
G-Stream: Growing Neural Gas

over Data Stream

Mohammed Ghesmoune, Hanene Azzag, and Mustapha Lebbah

University of Paris 13, Sorbonne Paris City
LIPN-UMR 7030 - CNRS

99, av. J-B Clément – F-93430 Villetaneuse, France
firstname.secondname@lipn.univ-paris13.fr

Abstract. Streaming data clustering is becoming the most efficient way
to cluster a very large data set. In this paper we present a new approach,
called G-Stream, for topological clustering of evolving data streams. G-
Stream allows one to discover clusters of arbitrary shape without any
assumption on the number of clusters and by making one pass over the
data. The topological structure is represented by a graph wherein each
node represents a set of “close” data points and neighboring nodes are
connected by edges. The use of the reservoir, to hold, temporarily, the
very distant data points from the current prototypes, avoids needless
movements of the nearest nodes to data points and therefore, improving
the quality of clustering. The performance of the proposed algorithm is
evaluated on both synthetic and real-world data sets.

Keywords: Data Stream Clustering, Topological Structure, Growing
Neural Gas.

1 Introduction

Clustering is the problem of partitioning a set of observations into clusters such
that observations assigned in the same cluster are similar (or close) and the inter-
cluster observations are dissimilar (or distant). The other objective of clustering
is to quantify the data by replacing a group of observations (cluster) with one
representative observation (or prototype). A data stream is a sequence of poten-
tially infinite, non-stationary (i.e., the probability distribution of the unknown
data generation process may change over time) data arriving continuously (which
requires a single pass through the data) where random access to data is not fea-
sible and storing all arriving data is impractical. Mining data streams can be
defined as the process of finding a complex structure in a large data. Clustering
data streams requires a process capable of partitioning observations continuously
with restrictions of memory and time. In literature, many data stream algorithms
have been adapted from clustering algorithms, e.g., the density-based method
DbScan [6,8], the partitioning method k-means [1], or the message passing-based
method AP [14]. In this paper, we propose G-Stream (Growing Neural Gas over
Data Stream), a novel algorithm for discovering clusters of arbitrary shape in an
evolving data stream, whose main features and advantages are described below:

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 207–214, 2014.
c© Springer International Publishing Switzerland 2014



208 M. Ghesmoune, H. Azzag, and M. Lebbah

• The topological structure is represented by a graph wherein each node rep-
resents a cluster, which is a set of “close” data points and neighboring nodes
(clusters) are connected by edges. The graph size is not fixed but may evolve.

• We use an exponential fading function to reduce the impact of old data
whose relevance diminishes over time. For the same reason, links between
nodes are also weighted by an exponential function.

• Unlike many other data stream algorithms that start by taking a significant
number of data points for initializing the model (these data points can be
seen several times), G-Stream starts with only two nodes. Several nodes
(clusters) are created in each iteration, the opposite of traditional GNG [7].

• All aspects of G-Stream (including creation, deletion and fading of nodes,
edges management, and reservoir management) are performed online.

• A reservoir is used to hold, temporarily, the very distant data points, com-
pared to the current prototypes.

The remainder of this paper is organized as follows: Section 2 is dedicated to
related works. Section 3 describes the G-Stream algorithm. Section 4 reports
the experimental evaluation on both synthetic and real-world datasets. Section
5 concludes this paper.

2 Related Works

This section discusses previous works on data stream clustering problems, and
highlights the most relevant algorithms proposed in literature to deal with this
problem. Most of existing algorithms divided the clustering process in two phases:
(1) Online, the data will be summarized, (2) Offline, final clusters will be gen-
erated. Both CluStream [2] and DenStream [6] use a temporal extension of the
Clustering Feature vector [13] (calledmicro-clusters) to maintain statistical sum-
maries about data locality and timestamps during the online phase. By creating
two kinds of micro-clusters (potential and outlier micro-clusters), DenStream
overcomes one of the drawbacks of CluStream, its sensitivity to noise. In the
offline phase, the micro-clusters found during the online phase are considered
as pseudo-points and will be passed to a variant of k -means in the CluStream
algorithm (resp. to a variant of DbScan in the DenStream algorithm) in order to
determine the final clusters. StreamKM++ [1] maintains a small sketch of the
input data using the merge-and-reduce technique. The merge step is performed
by a means of data structure, named bucket set. The reduce step is performed by
a significantly different summary data structure, the coreset tree. SOStream [8]
is a density-based clustering algorithm inspired by both the principle of DbScan
algorithm and that of the self-organizing maps (SOM) [9]. E-Stream [12] clas-
sifies the evolution of data into five categories: appearance, disappearance, self
evolution, merge, and split. It uses another data structure for saving summary
statistics, named α-bin histogram. StrAP [14], an extension of the Affinity Prop-
agation algorithm for data stream, uses a reservoir for saving potential outliers.
AING [5], an incremental GNG that learns automatically the distance thresh-
olds of nodes based on its neighbors and data points assigned to the concerned



G-Stream: Growing Neural Gas over Data Stream 209

Table 1. Comparison between algorithms (WL: weighted links, 2 phases : on-
line+offline)

Algorithms based on topology WL phases remove merge split fade

G-Stream NGas � � online � � � �

AING NGas � � online � � � �

CluStream k -means � � 2 phases � offline � �

DenStream DbScan � � 2 phases � offline � �

SOStream DbScan, SOM � � online � � � �

E-Stream k -means � � 2 phases � � � �

StreamKM++ k -means � � 2 phases � � � �

StrAP AP � � 2 phases � � � �

node. It merges nodes when their number reaches a given upper bound. Table
1 summarizes the main features offered by each algorithm in terms of: basic
clustering algorithm, whether the algorithm identifies a topological structure or
not, whether links (if those exists) between clusters (nodes) are weighted, how
many phases does it adopt (online and offline), operations for updating clusters
(remove, merge, and split cluster), and the fading function.

3 Growing Neural Gas over Data Stream

In this section we introduce Growing Neural Gas over data Stream (G-Stream)
and highlight some of its novel features. G-Stream is based on Growing Neu-
ral Gas (GNG), which is an incremental self-organizing approach that belongs
to the family of topological maps such as Self-Organizing Maps (SOM) [9] or
Neural Gas (NG) [10]. It is an unsupervised algorithm capable of representing
a high dimensional input space in a low dimensional feature map. Typically,
it is used for finding topological structures that closely reflect the structure of
the input distribution. We assume that the data stream consists of a sequence
DS = {x1,x2, ...,xn} of n (potentially infinite) data streams arriving in times
T1, T2, ..., Tn, where xi = (x1

i , x
2
i , ...x

d
i ) is a vector in �d. At each time, G-Stream

is represented by a graph C where each node represents a cluster. Each node c ∈ C
has a prototype wc = (w1

c , w
2
c , ...w

d
c ) (resp. a distance threshold δc) representing

its position (resp. the distance from the node to the farthest data point assigned
to it). Starting with two nodes, and as a new data point is reached, the nearest
and the second-nearest nodes are identified, linked by an edge, and the nearest
node with and topological neighbors are moved toward the data point. Each
node has an accumulated error variable and has weight, which varies over time
using Fading function. Using Edge management, one, two or three nodes are in-
serted into the graph between the nodes with the largest error values. Nodes can
also be removed if they are identified as being superfluous. Figure 1 represents
a general diagram of the algorithm.

Fading Function: In most data stream scenarios, more recent data can
reflect the emergence of new trends or changes in data distribution [3]. There



210 M. Ghesmoune, H. Azzag, and M. Lebbah

Fig. 1. Diagram of G-Stream algorithm.

are three models of window commonly studied in the data stream: landmark
window, sliding window and damped window. We consider, like many others,
the damped window model, in which the weight of each data point decreases
exponentially with time t via a fading function f(t) = 2−λ1(t−t0), where λ1 > 0,
defines the rate of decay of the weight over time. t denotes the current time
and t0 is the timestamp of the data point. The weight of a node is based on
data points associated therewith: weight(c) =

∑m
i=1 2

−λ1(t−ti0 ), where m is the
number of points assigned to the node c in the current time t. If the weight of
a node is less than a parameter value then this node is considered as outdated
and then deleted (with its links).

Edge Management: The edge management procedure performs operations
related to updating graph edges, as illustrated in steps 13-14 of the algorithm.
The way to increase the age of edges is inspired by the fading function in the
sense that the creation time of a link is taken into account. Contrary to the fading
function, the age of the links will be strengthened by the exponential function
2λ2(t−t0), where λ2 > 0, defines the rate of growth of the age over time. t denotes
the current time and t0 is the creation time of the edge. The next step is to add
a new edge that connects the two closest nodes. The last step is to remove each
link exceeding a maximum age, since these links are no longer useful because
they were replaced by younger and shorter edges that were created during the
graph refinement in steps 15-20.

Reservoir Management: The aim of using the reservoir is to hold, tem-
porarily, the far data points. As mentioned before, each node has a threshold
distance. The first bunch of data is assigned to nearest nodes without comparing
distances thresholds. The distance threshold of each node is learned by taking
the maximum distance of the node to the farthest point that it has been as-
signed. When the reservoir is full, its data is re-passed to the learning. They
are placed in the heap of the data stream, DS, to be dealt with first and the
distance thresholds of nodes are updated accordingly.

4 Experimental Evaluations

In this section, we present an experimental evaluation of G-Stream algo-
rithm. We compared our algorithm with the GNG algorithm and two relevant



G-Stream: Growing Neural Gas over Data Stream 211

Algorithm 1. G-Stream

Data: DS = {x1,x2, ..., xn}
Result: set of nodes C = {c1, c2, ...} and their prototypes W = {wc1 ,wc2 , ...}

1 Initialize node set C to contain two nodes, c1 and c2: C = {c1, c2};
2 while there is a data point to proceed do
3 Get the next data point in the data stream, xi;
4 Find the nearest node bmu1 ∈ C and the second nearest node bmu2 ∈ C;
5 if ‖xi −wbmu1‖ > δbmu1 then
6 put xi in the reservoir;
7 if the reservoir is full then Reservoir management

8 else
9 Increment the number of points assigned to bmu1;

10 error(bmu1) = error(bmu1) + ‖xi −wbmu1‖2;
11 Move bmu1 and its topological neighbors towards xi:

wbmu1 = wbmu1 + α1.‖xi −wbmu1‖;
12 wc = wc + α2.‖xi −wc‖ for all direct neighbors c of node bmu1;
13 Increment the age of all edges emanating from bmu1 and weight them;
14 if bmu1 and bmu2 are connected by an edge then set the age of this

edge to zero else create an edge between bmu1 and bmu2, and mark its
time stamp Remove edges whose age is greater than agemax;

15 if the number of points passed is multiple of a parameter β then
16 for i=1 to 3 do
17 Find node q with the maximum accumulated error;
18 Find the neighbor f of q with the largest accumulated error;
19 Add the new node, r, half-way between nodes q and f ;
20 Insert edges connecting the new node r with nodes q and f , and

remove the original edge between q and f ;

21 Application of fading, delete outdated and isolated nodes;
22 Finally, decrease the error of all units;

data stream algorithms. Our experiments were performed on MATLAB platform
using real-world and synthetic datasets. Table 2 overviews all the datasets used.
The real-world databases were taken from the UCI repository [4]. DS1 is generated
by http://impca.curtin.edu.au/local/software/synthetic-data-sets.

tar.bz2. Uniform is generated with matlab code. The letter4 dataset is generated
by a Java code https://github.com/feldob/Token-Cluster-Generator. The
algorithms are evaluated using three performance measures: Rand, Normalized
Mutual Information and Accuracy (Purity) with the aim of maximizing each
measure [11]. As explained in section 3, GNG and G-Stream algorithms start
with two nodes. We used an online version of GNG but without the parameters
that we added and this, precisely, to show the interest and contribution of these
parameters in G-Stream. Therefore, we did experiments by initializing two nodes
randomly among the first 20 points and we repeated this 10 times. We used the
same initialization for both algorithms (G-Stream and GNG) and the average

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
https://github.com/feldob/Token-Cluster-Generator


212 M. Ghesmoune, H. Azzag, and M. Lebbah

Table 2. Overview of all datasets

Datasets size #features #classes
DS1 9153 2 14

Uniform 24000 2 4
letter4 9344 2 7
Shuttle 43500 9 7

L-recognition 20000 16 26
KddCup1 49402 34 18

value with its standard deviation is reported in Table 3. These results show that
G-Stream algorithm outperforms the GNG algorithm on almost all the datasets.
For comparison purpose, we used CluStream with stream R package http://

cran.r-project.org/web/packages/stream/index.html. Comparison is also
performed with StreamKM++ [1]. Results are reported in Table 3. Again, with
reference to Table 3, it is noticeable that G-Stream’s Accuracies (Acc) are higher
for all datasets as compared to GNG, StreamKM++, and CluStream. The NMI
values are also higher than the other algorithms except for CluStream in DS1,
and for the two data stream algorithms in Uniform. The Rand values are also
higher than the other algorithms except in Uniform and shuttle. We remind that
G-Stream proceeds in one single phase whereas CluStream and StreamKM++
proceed in two phases (online and offline phase).

Table 3. Comparing G-Stream with different algorithms

Datasets GNG G-Stream StreamKM++ CluStream

DS1 Acc 0.511±0.251 0.993±0.006 0.675±0.018 0.701±0.028
NMI 0.491±0.132 0.712 ±0.004 0.702±0.021 0.723±0.022
Rand 0.621±0.122 0.846±0.001 0.844±0.004 0.845±0.007

Uniform Acc 1 ± 0 1 ± 0 0.998±0.004 0.995±0.012
NMI 0.492±0 0.568±0.003 0.777±0.007 0.787±0.015
Rand 0.754±0 0.765±0 0.855±0.003 0.868±0.011

letter4 Acc 0.577±0.201 0.991±0 0.687±0.026 0.934±0.026
NMI 0.529±0.074 0.607±0 0.553±0.022 0.264±0.034
Rand 0.686±0.084 0.812±0 0.794±0.014 0.341±0.004

Shuttle Acc 0.963±0.002 0.973±0.004 0.822±0.003 0.899±0.017
NMI 0.355±0 0.362±0.007 0.258±0.015 0.340±0.035
Rand 0.378±0.001 0.376±0.001 0.753±0.039 0.559±0.059

L-recognition Acc 0.077±0.068 0.408±0.019 0.161±0.009 0.181±0.009
NMI 0.046±0.096 0.437±0.015 0.239±0.015 0.267±0.011
Rand 0.541±0.139 0.956±0.001 0.861±0.006 0.851±0.007

KddCup1 Acc 0.929±0.085 0.998±0.001 0.768±0 0.998±0
NMI 0.655±0.319 0.602±0.032 0.012±0.003 0.022±0.002
Rand 0.824±0.206 0.655±0.045 0.623±0.003 0.369±0.083

http://cran.r-project.org/web/packages/stream/index.html
http://cran.r-project.org/web/packages/stream/index.html


G-Stream: Growing Neural Gas over Data Stream 213

Figure 2a (resp. Figure 2b) compares G-Stream (red line with circle) with
GNG (blue line with cross) with respect to accuracy (resp. RMS error, number
of nodes). On almost all times, the accuracy value (resp. RMS error) of G-
Stream is higher (resp. is less) than the one of GNG. Figure 2c compares the
two algorithms in terms of number of nodes creating the graph. Despite this
we create several nodes at each iteration (against a single node for GNG), the
number of nodes created by G-Stream becomes steady (against a continuously
increase for GNG) due to the application of the fading function. The same result
can be shown on the rest of the datasets. The second row of Figure 2 shows the

(a) accuracy (b) RMS error (c) Nb nodes

Fig. 2. DS1 Experimentation. Accuracy, RMS error, and number of nodes for G-Stream
on DS1. The second row shows visual result of G-Stream on DS1 (dataset and topo-
logical result).

evolution of the creation of nodes by applying G-Stream on DS1 (green points
represent data points of the data stream and blue ones are nodes of the graph
with edges in blue lines). It illustrates that G-Stream manages to recognize the
structures of the data stream and can separate these structures with the best
visualization. Due to space limitations, we omitted the visual results about the
other datasets since they have the same interpretation as that we have shown.

5 Conclusion

In this paper, we have proposed G-Stream, an efficient method for topological
clustering an evolving data stream in an online manner. In G-Stream, nodes
are weighted by a fading function as well as edges by an exponential function.
Starting with two nodes, G-Stream confronts the arriving data points to the cur-
rent prototypes, storing the very distant ones in a reservoir, learns the threshold



214 M. Ghesmoune, H. Azzag, and M. Lebbah

distances automatically, and many nodes are created in each iteration. Experi-
mental evaluation over a number of real and synthetic data sets demonstrates
the effectiveness and efficiency of G-Stream in discovering clusters of arbitrary
shape. Our experiments show that G-Stream outperformed the GNG algorithm
in terms of visual results and criteria as accuracy, rand and NMI. G-Stream is
also compared, in terms of clustering quality, to two relevant data stream al-
gorithms, results are promising. We plan in future to make adaptive windows,
make our algorithm as autonomous as possible and develop it in Spark or Storm
for testing on large datasets with other data stream algorithms.

Acknowledgments. This work has been supported by the French foundation
PIA Grant Big data ”Square Predict”.

References

1. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: Streamkm++: A clustering algorithm for data streams. ACM Journal of Ex-
perimental Algorithmics 17(1) (2012)

2. Aggarwal, C.C., Watson, T.J., Ctr, R., Han, J., Wang, J., Yu, P.S.: A framework
for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)

3. de Andrade Silva, J., Faria, E.R., Barros, R.C., Hruschka, E.R., de Car-
valho, A.C.P.L.F., Gama, J.: Data stream clustering: A survey. ACM Comput.
Surv. 46(1), 13 (2013)

4. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

5. Bouguelia, M.R., Beläıd, Y., Beläıd, A.: An adaptive incremental clustering method
based on the growing neural gas algorithm. In: ICPRAM, pp. 42–49 (2013)

6. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM, pp. 328–339 (2006)

7. Fritzke, B.: A growing neural gas network learns topologies. In: NIPS, pp. 625–632
(1994)

8. Isaksson, C., Dunham, M.H., Hahsler, M.: SOStream: Self organizing density-based
clustering over data stream. In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI),
vol. 7376, pp. 264–278. Springer, Heidelberg (2012)

9. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn.
Springer-Verlag New York, Inc., Secaucus (2001)

10. Martinetz, T., Schulten, K.: A “Neural-Gas” Network Learns Topologies. In: Arti-
ficial Neural Networks I, pp. 397–402 (1991)

11. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

12. Udommanetanakit, K., Rakthanmanon, T., Waiyamai, K.: E-stream: Evolution-
based technique for stream clustering. In: Alhajj, R., Gao, H., Li, X., Li, J., Zäıane,
O.R. (eds.) ADMA2007. LNCS(LNAI), vol. 4632, pp. 605–615. Springer, Heidelberg
(2007)

13. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method
for very large databases. In: SIGMOD Conference, pp. 103–114 (1996)

14. Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation.
In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II.
LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008)

http://archive.ics.uci.edu/ml

	G-Stream: Growing Neural Gasover Data Stream
	1 Introduction
	2 Related Works
	3 Growing Neural Gas over Data Stream
	4 Experimental Evaluations
	5 Conclusion
	References




