
Chapter 9
High-Accuracy Thermo-Elastic Simulation
on Massively Parallel Computer

Andreas Naumann, Florian Stenger, Axel Voigt and Jörg Wensch

Abstract Subproject A07 develops and explores numerical methods and tech-
niques to implement them to solve problems in connection with thermo-elastic
subassemblies’ and machine tools’ simulation in the CRC/Transregio 96. For this
purpose, high-resolution discretization methods were developed, tested and applied
both for high resolution discretization in space and for efficient integration in the
long term.

9.1 Introduction

The goal of this subproject entails the development of efficient methods to simulate
the thermo-elastic performance of machine tools or their subassemblies under real
load conditions. Modelling and parameter setting approaches covering the entire
system of the machine tool and used for the validation of several techniques for
model reduction are developed. A milling machine column and a spindle are chosen
as exemplary subassemblies (see Fig. 9.1, Chap. 1). The geometry of both parts is
represented by a CAD model. The spindle moves up and down at a given speed.
Frictional heat emitted along the line of contact makes the machine tool designers
interested in understanding the heat distribution within the machine tool and the
resulting deformation.
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Two mathematical approaches are taken into account for the phenomena
described above:

• Two different geometries, which are given independently, are sliding against
each other during the process. This leads to a contact problem with varying
contact conditions, which have to be considered numerically. Two different
approaches will be compared. A diffuse domain approach, introduced in Li et al.
(2009), in which the geometries and therefor also the contact area, are only
implicitly described by a phase-field function on one global discretization, and a
direct approach, in which the contact area is explicitly computed in each time
step and an interpolation between two different meshes is used to deal with the
heat exchange along the contact area. The different method and their comparison
on a simplified geometry are described in Sect. 9.2.2.

• In the reference problem, the thermo-elastic machine tool behaviour was sim-
ulated over a period of 15 h. Here, the spindle head’s movement occurs peri-
odically in one-hour time increments, with periods from 1.5 to 48 s. The periods
and velocities are shown in Table. 9.1. The timescale of the periods is clearly
shorter than that of the integration. Section 9.2.3 deals with an approach that
makes use of this periodicity in temporal integration. For numerical simulation,
defect corrected averaging employs a replacement problem identified as suit-
able, which precisely approximates the solution in stroboscopic spaces.

Fig. 9.1 The tool’s original geometry (left) and the simplified geometry used for different
simulation approaches (right). A spindle (blue, Xmov) and a column of a milling machine (red, Xfix)
is shown, the spindle moves up and down the column. Neumann boundaries C:;N are denoted and
the contact line CR ¼ Xfix

T
Xmov
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9.2 Approaches

9.2.1 Mathematical Model for Heat Exchange

On the two domains Xfix and Xmov, where the first one is fixed and the second one
represents the moving part, two temperatures Tfix and Tmov have to be considered.
The equations read:

qcpotTfix � kDTfix ¼ 0 in Xfix ð9:1Þ

qcpðotTmov þr � ðvTmovÞ � bDT � mov ¼ 0 in XmovðtÞ ð9:2Þ

where q is the materials density, cp the specific heat capacity and k the thermal
conductivity. v is the given velocity of the moving part. The boundary conditions

rTfix � n ¼ 0 on Cfix;NðtÞ ð9:3Þ

rTfix � n ¼ aðTfix � TmovÞ þ g
2

on CRðtÞ ð9:4Þ

rTmov � n ¼ 0 on Cmov;NðtÞ ð9:5Þ

rTmov � n ¼ aðTmov � TfixÞ þ g
2

on CRðtÞ; ð9:6Þ

with a the heat exchange parameter and g a source term due to friction, are applied.
Both equations are coupled through the boundary condition on the moving contact
line CR tð Þ. On the remaining boundaries Cfix;N and Cmov;N a no-flux condition with
n denoting the normal is assumed. Finally Xmov 0ð Þ ¼ Xmov;0 and Tfix ¼ Tmov ¼ T0
for the moving part and the temperatures are used as initial conditions respectively.

9.2.2 Spatial Discretization for Contact Problem
in a Simplified Geometry

9.2.2.1 The Diffuse-Domain Method

A phase-field representation of the geometry is constructed in each time step and an
implicit mesh defined in the larger box-domain Xdd , with an adapted grid resolution
according to the position of the spindle. Three different were considered phase-field
variables, one for the column /fix, one for the spindle /mov tð Þ, and one for the
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boundary, where both domains are in contact /bnd tð Þ: /fix and /mov tð Þ are defined
according to

/ðx; tÞ :¼ 1
2

1� tanh
3rðx; tÞ

e

� �� �
; ð9:7Þ

where r x; tð Þ is the signed distance function to oXfix or oXmov tð Þ. e is the length
scale determining the width of the diffuse interface. /bnd tð Þ results as the product of
/fix and /mov tð Þ. Figure 9.2 shows the three phase-field functions on distinct clips of
the implicit mesh in Xdd ¼ 0; 400½ � � 0; 900½ � � 0; 900½ � in cm.

All quantities are extended to Xdd and the diffuse domain approximation is
specified as

qcp/fixotTfix � kr � ð/fixrTfixÞ þ 1
e
Bð/bndÞðaðTfix � TmovÞ þ g

2
Þ ¼ 0 ð9:8Þ

qcpðotð/movTmovÞ þ r � ð/movvTmovÞÞ � kr � ð/movrTmovÞ
þ 1

e
Bð/bndÞðaðTmov � TfixÞ þ g

2
Þ ¼ 0

ð9:9Þ

Fig. 9.2 Three clips through the implicit mesh showing the phase-fields for the column (left), the
spindle (middle) and the interface between both parts (right). In each of the three pictures the
respective component is shown by a transparent grey 0,5-contour. The mesh has approximately 1,2
Mio elements, the smallest edge is approximately 1.7 cm. Due to refinement and coarsening the
number of elements remains almost constant during the simulation
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in Xdd � e�1B /bndð Þ ¼ e�1/2
bnd 1� /bndð Þ2 serves as an approximation for the delta-

function of CR. The initial conditions are specified as rTfix � n ¼ rTmov � n ¼ 0 on
oXdd and Tfix ¼ Tmov ¼ T0.

9.2.2.2 Explicit Contact Formulation

The two coupled heat transfer equations (9.1) and (9.2) with their corresponding
boundary conditions (9.3) to (9.6) are discretized independently of each other by
means of linear finite elements in space. They appear in the corresponding weak
formulation

Tfix x; tð Þ ¼
X
i

Tfix;i tð Þufix;i xð Þ

Tmov x tð Þ; tð Þ ¼
X
i

Tmov;i tð Þumov;i x tð Þ; tð Þ

8j : qcp otTfix;ufix;j

� �þ k rTfix;rufix;j

� � ¼ g
2
þ a Tfix � Tmov

� �
;ufix;j

� �
CR tð Þ

8j : qcp otTmov;umov;j

� �þ k rTmov;rumov;j

� � ¼ g
2
þ a Tmov � Tfix

� �
;umov;j

� �
CR tð Þ

with the test functions umov and ufix as well as the commonly used L2-scalar
product ðf ; gÞ ¼ R

X f gdx with X ¼ Xfix;Xmov. The difficulty arises from the
approximation of the boundary integrals and the coupling of Tmov and Tfix at the
contact area.

The time dependency of the boundary integration area is represented by means
of the time dependent indicator function

Sðt; xÞ ¼ 1 x 2 CRðtÞ
0 else

(
:

Thus the boundary integrals are extended to the whole frictional boundary
CR ¼ S

t2 0;1½ � CR tð Þ, independent of the time.
The corresponding boundary integrals

g
2
þ aðTfix � TmovÞ;ufix;j

� �
CRðtÞ

¼ Sðt; xÞ g
2
þ aðTfix � TmovÞ

� �
;ufix;j

� �
CR

¼ ðFðt; xÞ;ufix;jÞCR

now only contain the time dependent non-linear function F t; xð Þ. This function
includes the temperature difference Tmov � Tfix, whose evaluation is illustrated in
Fig. 9.3 for the example of Tfix cið Þ on the moved boundary of Xmov. The value of
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Tfix at the quadrature point ci is determined by the interpolation of the basis
functions on Xfix.

Spatial discretization followed by the special processing of the contact boundary
condition produces an ordinary differential equation of the type

Mfix 0
0 Mmov

� �
Tfix
Tmov

� �
¼ A11ðtÞA12ðtÞ

A21ðtÞA22ðtÞ
� �

Tfix
Tmov

� �
þ G1ðtÞ

G2ðtÞ
� �

ð9:10Þ

including the mass matrices Mfix and Mmov, the time dependent stiffness matrices Aij

and the friction terms Gj tð Þ. The resulting system of ordinary differential equations
is solved by suitable time integration techniques. Because this is a stiff problem,
implicit techniques have to be employed. The Rosenbrock methods have particu-
larly proved to be the method of choice.

9.2.3 Efficient Long-Term Integration of the Column
Geometry

9.2.3.1 Defect Corrected Averaging

When interpreting the thermal or thermo-elastic machine tool simulation according
to the method of lines, then, after having performed the spatial discretization, an
ordinary differential equation (9.10) is obtained. A notable feature in the case of the
spatially discretized machine tool is a periodic source term on the right side,
whereas the period is very short versus temporal horizon of simulation. It is costly
and labour-intensive to subject the problem to long-term integration with simulta-
neous resolution of the small timescale, which, in turn, is dictated by the period

Fig. 9.3 Interpolation of the
solutions fo Xfix (red) in
the quadrature point ci of the
moved grid Xmov (blue) at the
contact area
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itself. With the method of defect corrected averaging engineered by the authors, it is
possible to reach a solution in large time intervals with significantly less calculation
time thanks to the use of longer increments. In the following sections, this meth-
odology is introduced when applied to ordinary differential equations of the form

y0ðtÞ ¼ LyðtÞ þ fðtÞ; yð0Þ ¼ y0 ð9:11Þ

In this equation, Ly results from the spatial discretization of an elliptic differ-
ential operator, and the discretized source f tð Þ is periodical with period e, that is,
f t þ eð Þ ¼ f tð Þ.

A promising approach consists of replacing the source terms by averaging over a
period. Simple averaging, however, leads to solutions that are relatively inaccurate.
Defect corrected averaging, in turn, is similar to the concept of stroboscopic
averaging by Calvo et al. (2011) and defines a replacement problem, which can be
solved with large time increments. The replacement problem is defined so that its
exact solution in the stroboscopic points t ¼ ne largely conform to the exact
solution of the initial problem. The discretized differential operator L remains
unchanged here, and the right side f tð Þ is replaced by a constant v.

The strategy is illustrated in Fig. 9.4. The highly oscillating solution of the initial
problem is marked by circle symbols in the stroboscopic points. The solution by
means of simple averaging is a coarse approximation in the stroboscopic points
(triangle symbols). The solution of the replacement problem approximates the
solution of the initial problem in the stroboscopic points at high accuracy (Fig. 9.5).

Let S t0; t1; y0; fð Þ be the solution operator of the differential equation (9.11) with
the source f tð Þ, meaning that the solution in t1 yields y t1ð Þ ¼ S t0; t1; y0; fð Þ for

Fig. 9.4 Principle approach in defect corrected averaging: the exact solution (bold) is significantly
better approximated in the stroboscopic points (circle symbol) by defect corrected averaging (cross
symbol) rather than by simple averaging (triangle symbol)
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y t0ð Þ ¼ y0. For a constant source term f tð Þ ¼ v, the solution is represented (see
Strehmel and Weiner 1982) as

Sðt0; t0 þ t; y0; fÞ ¼ expðtLÞy0 þ t/1ðtLÞv;with /ðzÞ ¼ ðez � 1Þ=z: ð9:12Þ

Sð0; ne; y0; vÞ ¼ Sð0; ne; ðnþ 1Þe; y0; vÞ8y0; 8n 2 N: ð9:13Þ

is required for the constant replacement source f tð Þ ¼ v. Utilising the following
properties of the solution operator

Sð0; t1; y0; fðtÞÞ ¼ Sð0; t1; y0; 0Þ þ Sð0; t1; 0; fðtÞÞ ð9:14Þ

Sð0; t1; 0; f1 þ f2Þ ¼ Sð0; t1; 0; f1Þ þ Sð0; t1; 0; f2Þ: ð9:15Þ

Equation (9.13) is reduced to

Sð0; e; 0; vÞ ¼ Sð0; e; 0; f ðtÞÞ; ð9:16Þ

whereby only S 0; ne; 0; vð Þ ¼ t/1 tLð Þv is valid exactly.
A more in-depth consideration of this relation discloses the structure of the

ordinary differential equation (ODE). The solution of the ODE with the periodic
source over a time interval e is on the right side. On the left side, we find a solution
with the unknown source v. On the left side, a linear operator affects the unknown
v. The coefficients of the corresponding matrix are unknown, but the matrix-vector
product can be evaluated by solving the ODE numerically over an interval of e. In
other words: A linear equation system Ax ¼ b has to be solved, in which the
coefficients of A are unknown, whereas the products Ax can be calculated. This is
the standard situation for the application of (in which .. are used) Krylov solvers.
The Krylov method GMRES according to Saad and Schultz (1986) is used here.

Fig. 9.5 Comparison of
reference grid temperature
with the diffuse domain
solution along the line on Xfix
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The algorithm to calculate a solution in t ¼ te ¼ ne is described as follows:

1. Determine b ¼ S 0; e; 0; fð Þ with sufficient accuracy by means of a small-scale
integrator.

2. Solve S 0; e; 0; vð Þ ¼ b by means of GMRES, whereby S 0; e; 0; vð Þ is calculated
with the small-scale integrator.

3. Solve y0 ¼ Lyþ v by means of a suitable large-scale integrator in 0; te½ �.
When the solution is to be computed not only at the final point te ¼ ne, but also

at other stroboscopic points t0 2 0; teð Þ, then it is possible to choose the incremental
steps of the large-scale integrator. If the solution also has to be found for non-
stroboscopic points ti, then it is necessary to determine the solution by means of the
large-scale integrator at the first previous stroboscopic point, and to subsequently
achieve the solution at ti, by means of a small scale integrator. The method is very
efficient, if the solution is sought at a few selected points on a large time scale.

As practical tests show, it is possible to enhance the convergence of the GMRES
iteration when initialising with an averaging of the sources over a period so that it is
only necessary to correct the defect between the exact solution and the solution
which has been achieved through simple averaging over a period. Tests for this
simple defect corrected averaging by Naumann and Wensch (2013) enhance defect
reduction by a factor of 100 in comparison with simple averaging. Preconditioners,
which offer an opportunity for further acceleration of computation, are introduced
in Sect. 9.2.4.2.

9.2.3.2 Preconditioning in Defect Corrected Averaging

Our problem consists in the solution of the linear equation system

Ax ¼ b ð9:17Þ

whereby matrix A results from the spatially discretized differential operator
L through

A ¼ e/1ðeLÞ ¼ e
eL� 1
eL

: ð9:18Þ

A good preconditioner P is an approximation of the inverse of matrix A,
whereby the condition of P should be significantly less than the condition of A. For
this purpose, the authors employ Pade approximations R zð Þ of the function /1 zð Þ�1

in z ¼ 0, but, additionally, we demand the same asymptotic behaviour. The
resulting preconditioner is P ¼ R Lð Þ. Since /�1 shows for z ! �1 the same
asymptotic behaviour as �z, then p ¼ qþ 1, with p as the degree of numerator and
q as the degree of denominator. This results in 2q degrees of freedom, one of which
is used for the asymptote at �1, and the others for the adjustment of the derivates
in z ¼ 0. This means that one can adjust 2q� 1 derivates in z ¼ 0.
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The variants q ¼ 0 and q ¼ 1 yield:

1. R linear, R 0ð Þ ¼ /1 0ð Þ�1

RðzÞ ¼ � z
2
þ 1:

2. R is a rational fraction, degree of numerator 2, degree of denominator 1

RðzÞ ¼ z2 � 2zþ 2
�zþ 2

These preconditioners make the defect corrected averaging significantly more
efficient and allow for an exact solution for large oscillating ODEs on large time
scales.

9.3 Results

9.3.1 Comparison of the Diffuse-Domain Method
with Explicit Formulation of the Contact

The two approaches described under Sects. 9.2.2.1 and 9.2.2.2 were compared in
terms of computation accuracy and run time characteristics. First, the convergence
behaviour of the explicit formulation of the contact was explored. To do this, 3
adaptively refined grids were used. The basic grid in Fig. 9.6 was refined along the
heating boundary so that the grid width is halved in this area. To calculate the

Fig. 9.6 Temperature on the explicit grid with the formulation of the contact at the times 6 and 20 s

9 High-Accuracy Thermo-Elastic Simulation on Massively … 105



reference solution, the time stepsize dt ¼ 24=320 and the basic grid refined twice
from Fig. 9.6 were used. The temperatures were compared at the point of t ¼ 12 s.
At this point, the spindle head is in the half-height position. The accuracy of the
explicit simulation is shown in Table 9.2.

The solutions of the explicit discretization are compared not only with the time
stepsizes 24/80, 24/160 and 24/320, but also with the basic grid and the grid refined
once with the reference solution in the L2 norm. For sufficiently fine grids, the
defect behaviour, shown in Table 9.2, corresponds to the theoretical prediction of
the implicit Euler method used. On the basic grid, however, the spatial defect
dominates.

The convergence behaviour of the diffuse domain method has already been
explored in Franz et al. (2012) and shows quadratic convergence in e.

For validation, the one-time motion of the spindle head upward is simulated.
After each time step, the implicit grid is adapted to the moved geometry. After 81
time increments, the spindle head reaches the upper end of the machine column.
Figures 9.7 and 9.6 show the temperature distribution on the subassembly’s
surface by means of the diffuse domain method and explicit discretization at two
different simulation times. The parameters q ¼ 7:200 kg/m3, Cp ¼ 460 kJ/ kg Kð Þ,

Fig. 9.7 Temperature field on the implicit grid by means of the diffuse domain method (sectional
plane) the times 6 and 20 s

Table 9.2 Accuracy and convergence behaviour of the explicit solution at time t ¼ 12

Tdt;h � Tref
�� ��

2
h h/2 EOCdt hð Þ

24/80 0.005 0.003 0.6

24/160 0.003 0.002 1.1

24/320 0.003 0.001 1.6

EOCh dtð Þ 0.5 1 1.9
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k ¼ 50; 000 kW/ kmð Þ, a ¼ 100 W/K, h ¼ 17:1875 J and v ¼ 0:041667 m/s were
used. The interface width was e ¼ 0:2 m.

The reference solution for the explicit coupling and the diffuse domain solution
described were used to compare both methods. Temperature is shown in Fig. 9.5
along the black line on the frictional boundary. Both temperature curves are
qualitatively similar. The offset is approximately equal to the washing out due to the
phase field width e.

The defect in the L2-norm over the entire area is 0.0065 and thus in the order of
magnitude of the explicit discretization’s numerical error, which confirms the
usability of the diffuse domain method. It took about 36 h to carry out the simu-
lation with the diffuse domain method, but only 72 min to perform the explicit
formulation of the contact for 320 time increments. The long runtime requirements
are caused by the substantially higher number of degrees of freedom. The signifi-
cant advantage of the approach, which is founded on rapid and simple grid gen-
eration and the usability of standard routines, is thus nullified again by the increased
runtime demand again. This becomes more obvious when using the original
geometry and process conditions. In the following, the explicit formulation of the
contact boundary condition was employed.

In both paradigms, the finite element discretization was performed by means of
the parallel adaptive finite element library AMDiS by Vey and Voigt (2007), Voigt
and Witkowski (2012), however, were used in the sequential mode.

9.3.2 Results of Defect Corrected Averaging

The method was used in order to simulate the thermo-elastic behaviour of the col-
umn/spindle configuration in its complex geometry over a period of 15 h. This
problem was regarded as the reference problem to evaluate and benchmark the
MOR techniques developed under A05 and A06. The periodic source is given here
by the frictional heat at the periodically moved contact position. For the whole
boundary, heterogeneous Robin boundary conditions are used, which represent the
ambient cooling. In this time span, 75–2,400 periodical motions are executed per
hour. The solution calculated by means of the small scale indicator was used as
reference solution. The comparison involves the solutions with simple averaging
and defect corrected averaging, where the latter was used with preconditioner. The
results in Table 9.3 demonstrate that defect correction enhances simple averaging.

Table 9.3 Runtime versus accuracy—compared for different averaging methods

Method Runtime Error (K)

Small scale integration 72 h

Simple averaging 3 min 0.25

Defect corr. averaging with preconditioning 22 min 0.025
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The cost of this advantage is an increased calculation time; however, this is still
lower by some orders of magnitude than in small scale simulation. In this simu-
lation, one third of the correction effort results from the application of the pre-
conditioned GMRES, and the other two thirds from the calculation of the right side
with 100 steps. After simulation of the thermal behaviour, the temperature fields are
employed to determine the corresponding deformations from linear elasticity.

The combination of the two approaches permits an efficient simulation of the
machine tool with its moving subassemblies. Figures 9.8 and 9.9 illustrate the
calculated temperature fields and the amount of deformation in the original
geometry with the given, varying periods after 15 h. The calculation is also carried
out in AMDiS.

Fig. 9.8 Temperaturfeld mit
defektkorrigierter Mittelung
nach 15 h

Fig. 9.9 Absolutwert der
Verschiebungen nach 15 h.
Die roten Linien entsprechen
der deformierten Geometrie
mit 100 facher Verstärkung
der Verschiebungen
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Figure 9.9 clearly shows the strongest heating at the frictional boundary; the
difference in temperature is here 11 K. In the correspondent right Fig. 9.9, the
absolute displacement is shown. The red lines represent the deformed geometry,
with the deformation amplified by a factor of 200 for visualisation. A detailed
comparison of the simulation results with the subprojects A05 and A06 and the
measurements gained in experiments is now underway.

9.4 Classification in the CRC/TR 96

In subproject A07, different mathematical methods for the simulation of the thermo-
elastic machine tool behaviour were investigated. Coupling strategies for finite
element spaces moved against each other were developed to simulate thermo-
elasticity in moving geometries. The interpolation algorithm applied here provided
exact results and is used to generate reference solutions for other subprojects. As an
alternative, the diffuse domain approach was tested. This approach provides similar
results and permits the use of standard methods and an easy processing of geom-
etries, but suffers, however, from substantially longer computer runtime. The high
resolution reference solutions generated contribute to the validation of the numer-
ical results obtained using the commercial software packages in A05 and the results
of the model reduction methods in A06. The comparisons (benchmarks) will be
published elsewhere.

9.5 Outlook

Defect corrected averaging was developed and further refined by preconditioning
techniques for the simulation over long time intervals, in which periodic motions
appear over large partial intervals. This method makes possible efficient simulation
over very long time intervals and is significantly more accurate than simple aver-
aging techniques. An additional strength is that it is substantially faster than a
simulation on the small time scale of periodic motions. After successful processing
of spatial discretization, the focus is on further improvement of time discretization.
At the time of publication, the method is being expanded by the Robin boundary
conditions that they are needed in subproject A05. In the next phase, temporal
integration methods that can be paralleled will be used in order to carry out sim-
ulations more efficiently over greater time spans. The methods of choice in terms of
the structure of the thermo-elastic FE models are the approaches by ParaReal
(Nielsen 2012), as well as ParaExp (Gander and Güttel 2013).
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