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Abstract We examine the problem of classifying action sequences given a small
set of examples for each type of action. Based on the presumption that human
motion resides in a low dimensional space, we introduce a probabilistic
dimensionality reduction model able to recover the structure of a low-dimensional
manifold where all the involved actions reside. Requiring that sequences of the
same action are placed apart from other sequences, we are able to achieve higher
classification rates, with respect to other commonly used techniques, by performing
the classification on this manifold. The main contribution is the introduction of a
new model, based on Back-constrained GP-LVMwhich can be used for the efficient
classification of sequences. We compare our method with the classification based
on the Dynamic Time Warping distance and with the V-GPDS model, adapted for
classification. Results are provided for sequences taken from two publicly available
datasets which highlight different aspects of the method.

Keywords Action recognition · Dimensionality reduction · Manifold learning ·
Time series models · Motion capture

1 Introduction

Human action recognition is one of the most challenging applications in the field of
computer vision. It requires to infer an actionmodel from the observation of amotion
sequence, hence it requires the solution of an inverse problem [18]. Furthermore, the
modelling process is based on several steps tackling, in turn, different sub-problems:
data acquisition, motion analysis and segmentation in individual actions, alignment
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between sequences and classification with respect to a given taxonomy. All these
steps are computationally expensive, while ideally recognition should be performed
online.

In this paper we address the alignment and classification part of the complete
pipeline. Namely, we assume that a sequence that captures an individual action is
already available and the task is to recognize the performed action. To this end we
introduce a model based on the the Back-Constrained GP-LVM introduced in [9,
10], and extend it for the application of action recognition, exploiting the strength
of a lower dimensional manifold. In detail, we derive a discriminative, probabilistic
dimensionality reduction model for mapping motion capture sequences in a low
dimensional latent spacewhich assists the action classification process. The proposed
model introduces a latent space featuring a fixed set of actions and constrains feature
distances in data space to be suitably projected in the latent space, in order to preserve
the clustering of common patterns. Actions are represented as a sequence of poses,
which can be taken from motion capture (MoCap) data. This projection ensures a
discriminative power to the GP-LVMmodel and it also exploits the peculiar property
of action sequences of being reducible to a lower dimensional manifold [17].

In Sect. 2 we briefly review recent works on pose-based action recognition and
dimensionality reduction, showing themajor trends of research in this field. In Sect. 3
we overview the theoretical foundation of GP-LVM on which our model is based.
In Sect. 4 we present our discriminative model. Section5 demonstrates the latent
space structure recovered by the proposed model and examines its performance on
human action classification. We compare our method with a sequence classification
method based onDynamic TimeWarping as well as the Variational Gaussian Process
Dynamical Systems [6] recently proposed formodelling high dimensional dynamical
systems. We conclude the work addressing possible extensions.

2 Related Work

In this section we review some of the main approaches to action recognition
and mainly those which refer to manifold learning or treat the problem of action
recognition in MoCap sequences.

So far many techniques have been proposed in the literature regarding
action recognition where stochastic, volumetric or non-parametric models are most
commonly employed.Detailed reviews of the techniqueswhich have been considered
in the research on human motion analysis and on action recognition can be found in
[1, 12, 26]. Several works address the problem of modelling and recognizing human
motion by learning the structure of the low dimensional manifold where it resides,
and by recovering a mapping between the high dimensional observations and this
manifold.

In [7] the authors consider MoCap sequences and they learn the structure of a
unidimensional smooth manifold by applying the tensor voting technique [13]. A
motion distance score is used to compute the similarity between the actions recorded
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in two different sequences. The setting provides the possibility to compare also
actions extracted from videos with actions taken from MoCap sequences.

In [34] the authors consider a two dimensional manifold with a toroidal topology
in order to estimate humanmotion. They build on the idea of Gaussian Process Latent
Variable Models (GP-LVM) [9] to identify a manifold which jointly captures gait
and pose, via three different models. They introduce a new model (JGPM) which
they compare to two constrained latent variable models based on GP-LVM and Local
Linear GP-LVM [29] respectively.

In [23] the authors propose a non-linear generative model for human motion
data that considers binary latent variables. The introduced architecture makes
on-line inference efficient and allows for a simple approximate learning procedure.
The method performance is evaluated by synthesizing various motion sequences and
by performing on-line filling in of data, lost during motion capture.

Following a different perspective, in [21] the authors explore the space of actions,
spanned by a set of action-bases, to identify some action invariants with respect to
viewpoint, execution rate and subject’s body shape. Action recognition is performed
for four different kind of actions (sitting, standing, running and walking) and the
results show that it is possible to correctly classify most of these actions using the
proposed method.

The redundancy of the original representation of MoCap sequences is also
exploited in [11]where a compressive sensingmethod is introduced. Here the authors
argue that human actions are sparse in the action space domain as well as the time
domain, and they seek therefore a sparse representation. The sparse representation
introduced can assist in different applications regarding MoCap data like motion
approximation, compression, action retrieval and action classification.

Finally, in [32] (see also [30, 33]) the authors examine whether and to what extent
the use of information about the subject’s pose assists recognition. In this case, several
pose-based features are used, based on the relative pose features introduced in [14,
15]. Their results suggest that knowing the pose of the subject leads to better results,
in terms of classification rate. It is also shown that pose based features alone are
usually sufficient, as their combination with appearance based features is usually not
leading to higher classification rate.

3 Gaussian Process Latent Variable Models

In this section we review Gaussian Process Latent Variable Models [9]. A Gaussian
process is a collection of random variables such that any finite collection of them
has a Gaussian distribution [19]. Namely, a random variable of a Gaussian process is
f (xi ) = GP(μ(xi ), k(xi , x j )), with μ and k(x, x′) the mean and covariance function
of the process respectively, indexed over the set X of all the possible inputs. The
Gaussian process is a non parametric prior for the random variable f (xi ) where xi

is the deterministic input. Gaussian processes have been successfully used for both
regression and classification tasks.
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In [9] the author shows that Principal Component Analysis (PCA) can be inter-
preted as a product of Gaussian processes mapping latent-space points to points
in data-space, when the covariance function is linear; when instead a non-linear
covariance function is used, such as an RBF kernel then the mapping is non-linear.
Lawrence shows the advantages in using Gaussian Processes Latent VariableModels
(GP-LVM); for example, for optimization purposes, the data can be divided in active
and inactive, according to some rule. Then, because points in the inactive set project
into the data-space as Gaussian distributions, due to the properties of the variance
the likelihood of each data point can be optimized independently.

In addition to the advantage in terms of visualization and computational effi-
ciency highlighted in [9], GP-LVM turns out to be a powerful unsupervised learning
algorithm. Indeed, GP-LVM can manage, via the non-linear mapping of the latent
variables to the data-space, noisy or incomplete input data, when Gaussian processes
are used as non parametric priors for them.

At this point,we introduce somepreliminary definitions thatwewill refer through-
out the following sections

Let Y be the normalized data in R
N×d , for example specifying the pose of a

subject in space, with respect to a coordinate frame; let X be the mapped positions
in latent-space, with X ∈ R

N×q , with q ≤ d. Let f be a mapping, such that:

ynj = f (xn,w j ) + εnj , (1)

Here, ynj is the observed element of the nth row and j th column of Y, εnj denotes
the noise affecting the mapping and xn , the nth row of X, and w j are the parameters
of the mapping f . Given a Gaussian process as a prior on f , when the prior is the
same on each of the f functions one obtains [9]:

p(Y|X, θ) =
d∏

j=1

N (y j |0,K) (2)

Here, y j is the j th column of Y and K is the N × N kernel of the Gaussian process.
We see that (2) suggests a conditional independence in the data space, given the
latent space representation.

Learning amounts to maximizing the likelihood of the position of the latent vari-
ables X and θ, which are the parameters of the kernel:

L(X, θ) = −d

2
log|K| − 1

2
Tr

(
K−1YY�)

(3)

In order to optimize the non-linear model, it is necessary to initialize the model
using appropriate initial values for the positions of the latent-space points. It is also
necessary to initialize the hyperparameters of the model. Optimization is obtained
by an iterative minimization of the objective function, by using a gradient based
algorithm. As the model is non-linear, the hypersurface is subject to local-minima,
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so the initialization of the positions of the latent-space points is crucial. When non-
linear dimensionality reduction methods are used for the initialization, like local
linear embedding (LLE) [20] or ISOMAP [24], the structure of the manifold is
expected to be more accurately recovered. GP-LVM have been exploited in many
applications as for example in [27–29, 31].

4 Discriminative Sequence Back-Constrained GP-LVM

As mentioned in the previous sections, models from the family of GP-LVMmethods
are well suited for predicting missing values or missing samples of time sequences.
However, they do not seem to perform equally well when they are used for clustering
and classification problems, particularly for time-series data. This drawback of the
classical GP-LVM methods can be also witnessed by observing that it is hard to
recover the structure of a common latent-space for a set of sequences, as their latent
space representations are scattered across the latent-space and no relation can be
drawn between sequences corresponding to the same action. This is due to the fact
that standard GP-LVM models do not provide a mechanism to encourage points to
be placed closer to each other in the latent-space when they belong to the same class
and the same also holds at the level of individual sequences.

Local distances can be directly used inGP-LVM to provide a common latent-space
representation as they are well suited for classification purposes. In fact local
distances in data-space provide some information regarding the intra-class variation.
Lawrence and Quiñonero-Candela in [10] have introduced Back-Constrained
GP-LVM which considers local distances in the data-space. The GP-LVM model
uses a product of Gaussian processes to map from the latent-space to the data-space.
Each of these processes refers to a different dimension of the data-space and it is
governed by the coordinates of the latent-points. In order to obtain a smoothmapping
in the opposite direction, the authors in [10] propose to construct this mapping by
means of a kernel based regression. Adopting this technique, the latent points are
constrained to be the product of a smooth mapping from the data-space. This forces
small distances in data-space to lead to small distances between the corresponding
points in the latent-space. The smoothness of the mapping from the data-space to
the latent-space is determined by the kernel function. Using this mapping, it is not
needed to perform a new optimization to approximate the latent-space representation
of new data.

The previous method cannot be directly applied on data originating from
sequences, as it is expected that individual elements of a sequence do not provide
sufficient information regarding the characteristics of the entire sequence. Building
on the same principle, namely the use of local distances in the data-space as back-
constraints, we formulate a GP-LVMvariant which considers entire sequences rather
than individual data points.
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Before introducing our model, we briefly review the Dynamic Time Warping
(DTW) algorithm, as well as a set of sequence alignment kernels based on DTW and
its variants, which will be used for the derivation of our model.

4.1 Dynamic Time Warping and Sequence Alignment Kernels

Dynamic Time Warping is used to match two time dependent sequences by nonlin-
early warping one sequence onto the other. Let us consider two vector sequences
Y = (y1, . . . , yN ) with N ∈ N and Z = (z1, . . . , zM ) with M ∈ N. Each vector
in the sequence belongs to a n-dimensional feature space F so yn, zm ∈ F . A local
distance measure is defined to compare a pair of features, provided by an appropriate
kernel function:

κ : F × F → R
+ (4)

A warping path is a sequence p = (p1, . . . , pL) where each element is a pair
pl = (nl ,ml). The total cost of awarping path p, according to the predefined distance
measure, is:

cp(yn, zm) =
L∑

l=1

κ(ynl , zml ) (5)

The Dynamic Time Warping distance between two sequences is defined as the
minimal total cost among all possible warping paths. To obtain this value we have
to solve the following optimization problem:

DT W (Y,Z) = min
p

{
cp(Y,Z)

}
(6)

We can also identify an optimal warping path (not necessarily unique):

p∗ = argmin
p

{
cp(Y,Z)

}
(7)

The DTW distance is well-defined, even though there may exist many warping
paths of minimal total cost. Moreover, it is symmetric if the distance measure is also
symmetric, but it is not a proper metric, as it does not satisfy the triangle inequality. In
order to applyDTWonMoCap sequences, wemust first define the local cost measure
κ. Two popular choices are to use the sum of the geodesic distances between the unit-
quaternions representing the joint angles, as well as the optimal alignment distance
between the three dimensional positions of the joints [14].

Based on the notions of theDTWdistance and the optimalwarping path, alignment
kernels have been proposed which consider entire sequences as a whole. As an
example we cite here [2, 5, 22].
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4.2 Sequence Back-Constrained GP-LVM

In this section we show how to enforce a clustering of the sequences in the latent-
space, governed by their respective similarity, which will enable a more accurate
classification of a new sequence. To ensure that data instances which are close to
each other in the data-space, are mapped to positions which are close also in the
latent-space, we apply a similarity measure for comparing different sequences and
identify a characteristic feature, summarizing the entire sequence.

Here we consider that each frame of a motion sequence is represented as a
d-dimensional array. An entire sequence, with index s, is represented thus as a set
of d dimensional arrays of cardinality Ls , forming a matrix Ys ∈ R

Ls×d . A col-
lection of S motion sequences is represented as the concatenation of the respective
sub-matrices forming the data-matrix Y ∈ R

N×d , with N = ∑S
s=1 Ls . Let Js be the

set of indices of the sth sequence in the data matrix, the corresponding representation
of the data-points in the q dimensional latent-space form a matrix X ∈ R

N×q . The
coordinates of the centroid of the latent-space representation of the sth sequence, is
defined as:

μsq = 1

Ls

∑

n∈Js

xnq (8)

The likelihood of the GP-LVM model is given by (3). The centroid of the latent
positions of the data points is taken to be the characteristic feature of the sequence.
Therefore, we require that the local distances between the sequences in data-space,
computed via the DTW technique, are preserved in latent-space; thus they are speci-
fied as the distances between the centroids µs . Hence, we consider a mapping to the
latent-space governed by an alignment kernel k:

gq(Ys) =
S∑

m=1

amqk(Ys,Ym) (9)

The degree to which the local distances in the data-space are preserved depends
on the particular characteristics of the kernel employed for the mapping.

We, thus, have to maximize a constrained likelihood, instead of maximizing the
likelihood of the original GP-LVM model.

Each of the S · q constraints can be written as:

gq(Ys) − μsq = 0 (10)

Maximizing the constrained likelihood of the model, we expect to obtain a
latent-space representation, where similar sequences are better grouped together,
with respect to the representation obtained by the original model. Another important
advantage of this approach is that we can use the inverse mapping recovered in the
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learning phase, for the purposes of fast inference. In this way, we avoid the costly
operation of reoptimisation, which is otherwise necessary to obtain the latent-space
representation of new sequences.

Up to this point, we did not consider the labels of each type of sequence. In the
following section, we modify our model by replacing the Gaussian prior with a prior
which will make the model more discriminative.

4.3 Discriminative Sequence Back-Constrained GP-LVM

Discriminative GP-LVM (D-GPLVM) has been originally introduced in [27]. In
order to make the Sequence Back-Constrained GP-LVM (SB-GPLVM) model more
discriminative, we can consider a measure of the between-group variation and the
within-group separation. Referring to Fisher’s Discriminant Analysis, in case we
need to estimate a linear projection of the data, such that an optimal separation is
achieved, we need to maximize the ratio of the between-group-sum of squares to the
within-group-sum of squares.

We thus seek the direction of projection given by the vector a which provides a
good separation of the data. Denoting as X = [x1, . . . , xN ]T the low dimensional
representation of the data points Y = [y1, . . . , yN ]T, the between-group-sum of
squares is given as:

aTBa =
C∑

c=1

Nc

N
aT(μc − μ0)(μc − μ0)

Ta (11)

The within-group-sum of square is given as:

aTWa = 1

N

C∑

c=1

Nc∑

n=1

aT(x(c)n − μc)(x(c)n − μc)
Ta (12)

Here X(c) = [x(c)1 , . . . , x(c)Nc
]T are the Nc points which belong to the class c, µc is the

mean of the elements of class c and µ0 is the mean computed across all the points.
The criterion used for maximizing between-group separability and minimizing

within-group variability is the following [8]:

J (X) = Tr(W−1B) (13)

Based on the previous discussion, in order to transform the SB-GPLVM model
making it discriminative, it is necessary to replace the Gaussian prior with a prior
which depends on (13). This prior takes the following form:

p(X) = 1

α
exp

{
−γ

2
J−1

}
(14)
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where α is a normalization constant, possibly depending on p, and γ represents the
scaling factor of the prior.

The log likelihood associated with the discriminative model becomes:

L = −d

2
log|K| − 1

2
Tr

(
K−1YYT

)
− γ

2
Tr

(
B−1W

)
(15)

The parameter γ controls the relative importance of the discriminative prior and
it reflects the ability of the model to be more discriminative or more generalizing,
according to the value it takes.

4.4 Classification Based on D-SBGPLVM

In this sectionwe illustrate how to compute the latent representation of the data points
belonging to a new sequence. Thiswill allow to classify any new sequenced according
to the introduced D-SBGPLVM model. Let Y∗ be the data-space representation of
a new sequence and X∗ the corresponding latent-space representation. The new
sequence’s centroid in latent-space can be estimated orders of magnitude faster than
X∗ by making use of Eq. (9) introduced in Sect. 4.2. Thus, the coordinates of the test
sequence centroid, in each dimension of the latent space are given by:

∀ q : μ∗q = gq(Y∗) =
S∑

s=1

aqsk(Y∗,Ys) (16)

where μ∗q is the qth dimension coordinate of the centroid µ∗ of the test sequence.
In this case, no minimization is required and the time, necessary for computing the
coordinates of the centroid of the test sequence, is proportional to the time needed
to compute the kernel values.

At this point, any multi-class classification method can be employed, in order to
perform classification. As the latent-space has a dimensionality much smaller than
the original data-space, it is expected that classification is more robustly performed in
the latent representation of the sequences. Moreover, the proposed method provides
a concise way to classify sequences as a whole, as the model treats them explicitly
as individual entities.

5 Results

The ability of the Discriminative Sequence Back-Constrained GP-LVM model to
provide a latent-space representation suitable for efficient and robust classification
of sequences, is examined in this section.
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Evaluation on the HDM05 “Cuts” Dataset [16]. Part of the “Cuts” sequences, con-
tained in the HDM05 dataset, has been used for evaluating the model we propose,
in comparison to other methods which can be used for sequence classification. This
dataset includes the following actions: Clapping hands-5 repetitions (17 sequences);
Hopping on right leg-3 reps. (12 seqs.);Kick with right foot in front-2 reps. (15 seqs.);
Running on place-4 steps (15 seqs.); Throwing high with right hand while standing
(14 seqs.); Walking starting with right foot-4 steps (16 seqs.).

The sequences are sampled at a frequency of 120 frames per second. For this
dataset, sequences are already accurately segmented, in order to contain a single
action with the same number of repetitions.

The results of the proposed method are compared with the classification results,
obtained by directly using the DTW distances of the sequences in the data-space,
as well as using the highest class-conditional densities obtained by the Variational
Gaussian Process Dynamical Systems (V-GPDS) method [6]. All results are taken
by Cross-Validation. Each experiment is performed by keeping all action sequences
of one of the five subjects as test sequences and by using the sequences of the other
four subjects as training instances. Finally, the results are averaged over the five
individual experiments.

Table1 gives the accuracy rate achieved with each of these three methods for
each action as well as in average. Regarding the results obtained by the proposed
method, relative features are used and the dimensionality of the latent-space space
is fixed to four. Moreover, for the back-constraints the kernel proposed in [2] is used
and the initial positions of the latent points are obtained by using the Local Linear
Embedding algorithm [20]. Finally, classification in latent-space is performed by
SVMs using the RBF kernel function. Figure1 shows the corresponding confusion
matrix obtained by using the D-SBGPLVM model.

One can see from the results provided in Table1 that our method gives the best
results, both for each individual type of action, except for Hop, as well as in average.
We observe that the classification accuracy is relatively high for the DTW distance
alone. This depends also on the fact that this dataset is specifically constructed in
such a way, that actions of the same kind can be aligned with a very small cost. This
is possible as they are defined at a high detail level regarding their execution and they

Table 1 Comparison of the classification results for the HDM05 “Cuts” dataset

DTW (%) V-GPDS (%) D-SBGPLVM (%)

Clap 70.6 16.7 88.2

Hop 100 66.7 83.3

Kick 40.0 33.3 53.3

Run 66.7 33.3 80.0

Throw 64.3 50.0 78.6

Walk 100 83.3 100

Average 73.0 47.2 80.9
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Fig. 1 Confusion matrix by using D-SBGPLVMmodel in combination with SVM on the HDM05
“Cuts” dataset. Average accuracy: 80.9%

have been also accurately segmented manually. Regarding classification of human
actions using the V-GPDS model, it is necessary to train a different model for each
individual type of action. After a model has been trained for each type of action, it
is possible to compute the class conditional densities for the new sequence.

Considering that the analogous model of V-GPDS, which does not consider time
dynamics introduced in [25], provides good classification results (e.g. on the USPS
Handwritten Digits Dataset) we expected higher classification rates for the adapted
V-GPDS model. Searching the cause of this issue, we have noticed that models for
certain actions tend to provide quite high conditional densities most of the time.
Further investigation is needed in this direction, as the experiments performed using
V-GPDS were not sufficient to derive safe conclusions and possibly a more suitable
adaptation of the model for classification purposes is needed.

In the case of D-SBGPLVM, the model is trained by optimising the latent coor-
dinates of the sequences and the hyper-parameters of the model by using all training
sequences. By the optimisation process, we recover also the parameters of the ker-
nel based regression, which forms the inverse mapping from the data-space to the
latent-space. We provide some examples of bi-dimensional latent-spaces recovered
by training the model using sequences of the HDM05 “Cuts” dataset in Fig. 2. In
these figures, each color corresponds to a different class of action, crosses are the
latent representations for each individual data point, triangles correspond to the cen-
troids of the training sequences and finally the squares correspond to the estimated
position of the testing sequences centroids computed using the back-constraints. In
Fig. 2 the recovered latent-spaces are shown for three different types of representa-
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Fig. 2 Left Column Latent-space representation by PPCA initalization and considering Euler
Angles (Top), Unit-Quaternion (Middle) and 3D Point Cloud (Bottom) representations Right Col-
umn latent-space representation considering relative features representation and PPCA (Top), LLE
(Middle) and ISOMAP (Bottom) initalization

tions considered for the sequences and by using Probabilistic PCA in order to retrieve
initial values for the latent points. In the case of Euler Angles and Unit-Quaternions,
one can notice that different sequences are placed on top of each other and thus we
expect classification rates to be low.

Our interpretation is that this mainly depends on the high non-linearity of the data-
space and the fact the PPCA, being a linear dimensionality reduction technique, is not
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able to provide suitable initial values for the latent points. As our model is non-linear
and it is optimized by using a gradient based algorithm, it is susceptible to local
minima. However, in the case of 3D point cloud representation, the data-space does
not show excessive non-linearity and even PPCA initialization seems to be sufficient
to recover a better structure for the latent-space.

The case of Relative Features (as in [14], but without discretization based on
some threshold) is examined also in Fig. 2. Relative features include for example
the distance between two specified joints, the distance of a joint with respect to
the plane defined by three other, the angle between two successive joints etc. Here
we can better observe the impact of the initialization technique on the resulting
structure of the latent-space. It is evident that the use ofmore sophisticated non-linear
dimensionality reduction techniques to obtain the initial values, helps recovering a
better structure of the common latent-space.
Evaluation on actions of the CMU Dataset [4]. Seven actions from the CMU dataset
have been also considered for evaluating themodel we propose. This dataset includes
the following actions: Walking (15 sequences); Running (15 seqs.); Jumping (15
seqs.); Sitting-Standing (7 seqs.); Throwing-Tossing (15 seqs.); Boxing (9 seqs.);
Dancing (9 seqs.).

Each of these actions is performed from a different actor. Moreover, the actions
have not been hand-picked and their label only relies on the default labelling provided
by the publishers of the dataset. Finally, motion sequences have not been manually
segmented.Weperformclassification instead by just considering the first two seconds
of each sequence. For these reasons, we can see that this dataset represents a more
challenging and realistic instance of the action recognition problem. Five-fold cross-
validation has been used here for obtaining the final classification results.

The classification accuracy achieved by the proposed method, compared with the
results of DTW distances and V-GPDS method, are provided in Table2. Here, Euler
angles are considered as features provided to the D-SBGPLVM, while the rest of the
setting is the same with the one described for the “Cuts” experiments. In Fig. 3 we
provide the corresponding confusion matrix and the overall classification rate, when
the D-SBGPLVM model is used.

Table 2 Comparison of the classification results for the actions taken from CMU dataset

DTW (%) V-GPDS (%) D-SBGPLVM (%)

Walk 80.0 40.0 66.7

Run 60.0 40.0 66.7

Jump 86.7 40.0 73.3

Throw-Toss 80.0 40.0 80.0

Sit-Stand 46.7 40.0 80.0

Box 100 20.0 80.0

Dance 26.7 80.0 73.3

Average 63.5 42.9 72.9
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after training the model for the same dataset using the RBF-ARD kernel. Average accuracy: 74.1%

We can observe here, that the results for the “CMU” dataset are analogous to the
ones corresponding to the “Cuts” dataset. We expect that the lower rate achieved in
general by all algorithms mainly depend on the particular difficulties which charac-
terise this dataset, as mentioned above. Considering these difficulties, one can see
that the proposedmodel gives satisfying classification results. This also demonstrates
the generalization capabilities of the proposed probabilistic model, which based on
this characteristic leads to an overall accuracy that exceeds the accuracy achieved by
the other two methods considered here.

The same experiments were also performed by considering the recently proposed
‘path kernel’ [3] providing equivalent results. The classification rate was slightly
lower but thismay be related to the particular selection of the parameters of the kernel.
Moreover, we performed trials using the automatic relevance determination (ARD)
squared exponential kernel as in [6, 25]. In this case, considering eight dimensions
for the latent space, we obtained a classification rate of 74.1% for the CMU dataset.
What is important to note here are the values of the relative importance of each
dimension after training the model, shown in Fig. 3. One can see here that most of
the information for the actions is embedded in a four dimensional sub-manifold. This
result is in accordance with the ones reported in [17].

6 Conclusions

In this paper, we have introduced a novel GP-LVM variant in order to recover the
structure of a lower dimensional manifold for a set of sequences of different action
types. We have shown that the model, according to our approach, attains increased
classification accuracy by working in the low dimensional latent-space instead of
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the original data-space. By exploiting the inverse mapping, from the data-space to
the latent-space, our approach is able to infer the class of a new sequence within a
few seconds (Matlab implementation tested on the following system: 2.2GHz quad-
core AMD Phenom, 4GB RAM). This provides a crucial advantage with respect to
other GP-LVM models which require several minutes to complete this task, having
to deal with a new optimization to obtain the latent-space representation of the new
data instances.We have further shown that the proposed D-SBGPLVMmodel attains
classification rates equivalent to the current state-of-the-art when combined with a
standard classifier, as for example SVM, for classification in the latent-space.

Within the directions of our future work, we further consider the combination
of the proposed method with some pose recovery algorithm. In this way, it would
be possible to train the model by using action sequences taken from a MoCap
dataset and classify sequences recovered from videos by means of the pose recovery
algorithm. This would make action recognition from 2D video sequences also
possible. Finally, we are currently considering automated ways for the segmentation
of motion sequences to sub-sequences of individual actions without prior knowledge
of the actions preformed. This step is important for allowing the processing of
sequences containing multiple actions with the method described in this work.
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