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Preface

This book contains the extended and revised versions of a set of selected papers
from the second International Conference on Pattern Recognition (ICPRAM 2013),
held in Barcelona, Spain, from 15 to 18 February 2013.

ICPRAM was organized by the Institute for Systems and Technologies of
Information, Control and Communication (INSTICC) and was held in cooperation
with the Association for the Advancement of Artificial Intelligence (AAAI).

The hallmark of this conference was to encourage theory and practice to meet at
a single venue. The International Conference on Pattern Recognition Applications
and Methods aims at becoming a major point of contact between researchers,
engineers, and practitioners in the areas of Pattern Recognition. The focus is on
contributions describing applications of Pattern Recognition techniques to real-
world problems, interdisciplinary research, experimental and/or theoretical studies
yielding new insights that advance Pattern Recognition methods. The final ambition
is to spur new research lines and provide the occasion to start novel collaborations,
most of all in interdisciplinary research scenarios. In fact, in many respects, there is
still a frequent distance between more theoretical and more application-oriented
researchers. However, theory finds a significant test bed in practical applications,
while any technological design must rely on solid theoretical foundations.

The second edition of ICPRAM received 180 paper submissions from 43
countries, in all continents. This result is encouraging in itself since it testifies the
interest of the research community in the cultural project sketched above. To
evaluate each submission, a double-blind paper review was performed by the
Program Committee, whose members are highly qualified researchers in ICPRAM
topic areas. Based on the classifications provided, only 66 papers were selected for
oral presentation (23 full papers and 43 short papers) and 40 papers were selected
for poster presentation. The full paper acceptance ratio was about 13 %, and the
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total oral acceptance ratio (including full papers and short papers) was close to
37 %. These strict acceptance ratios show the intention to preserve a high-quality
forum which we expect to grow over the next years.

We deeply thank the authors, whose research and development efforts are
recorded here.

December 2013 Ana Fred
Maria De Marsico
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Part I
Theory and Methods



A Two-Part Approach to Face Recognition:
Generalized Hough Transform and Image
Descriptors

Marian Moise, Xue Dong Yang and Richard Dosselmann

Abstract This research considers a two-part approach to the problem of face
recognition. The first part, based on a variant of the generalized Hough transform,
takes a global view of the matter, specifically the edges that make up a sketch of
a face. The second component, on the other hand, examines the local features of a
given face using a novel image descriptor, known as the gradient distance descriptor.
The proposed technique performs well in testing. Moreover, this method does not
require any training and may be extended to general object recognition.

Keywords Face recognition · Generalized Hough transform · Image descriptors.

1 Introduction

Of all topics in computer vision, few have received as much attention in recent years
as face recognition [1]. A comparatively straightforward task for a human observer,
this problem is not easily handled by a machine. Humans have a seemingly innate
ability to recognize not only faces, but objects in general,with only afleeting glance of
the person, or item, in question [2]. This appears to be true regardless of the subject’s
pose, illumination or whether or not their face is partially occluded. This research
presently focuses on a particular application of face recognition, namely one of video
surveillance in which there is a given database of known, or target, individuals. The
goal is, thus, one of matching faces of known individuals against those in images of
a given scene. This is accomplished by way of a two-part approach, in turn offering
both a global, as well as local, perspective on the matter. The global shape of a face
in a given image is resolved using a variant of the generalized Hough transform

M. Moise (B) · X.D. Yang · R. Dosselmann
Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada
e-mail: moise20m@cs.uregina.ca
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4 M. Moise et al.

[3] (GHT). At the same time, local features are assessed using an original image
descriptor [4], known as the gradient distance descriptor (GDD). The proposed
solution functions well when tested over the popular Yale face database [5]. This
particular database enables a person to temporarily avoid issues of face alignment,
cropping and background removal. In any case, unlike many existing methods, this
approach does not require any training data. What’s more, this technique can be
extended to general object recognition. Following a brief overview of the existing
literature in this area, the new ideas of this research are presented in Sect. 2, along
with a discussion of the test results in Sect. 3. This is subsequently followed by some
closing statements and insight in Sect. 4. Note that this paper expands on the ideas
of Ref. [6], ideas that were originally documented in Ref. [7].

Both the generalized Hough transform and image descriptors, though not specif-
ically the GDD, have been employed in various vision tasks in the past. In an early
application, the GHT was used to recognize handwritten Chinese characters [8].
More recent efforts have centered on template-based matching [9], as well as match-
ing hand-drawn illustrations of objects, such as bottles, cars, horses, saxophones and
watches, to real images of these items [10]. Face recognition surfaces in Ref. [11], in
which real-time face detection and tracking is carried out using the GHT. Multiple
faces are detected using Hough forests [12] in Ref. [13]. Predating many of these
works are the classic notions of Eigenfaces [14] and Fisherfaces [15], with Fisher-
faces generally assumed to be the stronger of these two. Both of these techniques are
evaluated, later in Sect. 3, in relation to the newmethod of Sect. 2. Further approaches
to face recognition may be found in such surveys as Refs. [16–19].

An overview of previous efforts relating to descriptors begins with the locally
adaptive regression kernel [20] (LARK) descriptor. It is obtained from an assort-
ment of other descriptors by way of principal component analysis [21] (PCA). This
descriptor, along with the three described in a moment, are compared against the new
descriptor of Sect. 2.2. In Ref. [22], individual portions of two images are compared
using a descriptor based on the matrix cosine similarity [23] (MCS) measure, the
second descriptor taken up by this research. The third technique, namely the self
similarities local descriptor [24] (SSLD), enables one to find similarities in images
in which there are differences in colors and textures [24]. This makes it useful in
challenging applications such as object detection in images involving hand-drawn
illustrations or action detection in cluttered video data [24]. The final descriptor con-
sidered in this work is a generic one based on the popular discrete cosine transform
[25] (DCT).

2 Method

Each of twomajor components of thismethod are thoroughly described in the ensuing
subsections, along with pseudocode of the full method in Algorithm1.
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2.1 Modified GHT

In this segment, a variant of the GHT, known in this research as the modified GHT,
is defined. Like the GHT, it has the ability to handle changes in illumination, partial
occlusions and small deformations [3]. The newalgorithm is used to compare a global
sketch [26] of the face in a given, or query, image against sketches of a number of
target faces in a database. Each sketch is made up of a set of edges [25]. In this work,
edges are uncovered using a Canny [27] edge operator [28]. A number of thresholds
that determine just what constitutes an edge are examined in the experiments of
Sect. 3. Let xi = (xi , yi ) denote an individual edge in a sketch and let E be the set
of all edges in a sketch, where 0 ≤ i ≤ n, |E | = n, and xi and yi are the x and y
coordinates, respectively, of an individual edge xi ∈ E in a sketch. The angle or,
more formally, direction [25], of an individual edge xi is given by φi . Next, let r i

denote the vector between a given edge xi and a reference point [3] y = (xr , yr )

of a target image. This is the same reference point employed in the standard GHT
and, in this particular implementation, is taken to be the center of mass of the set of
edges E of a given target sketch. Just as with the conventional GHT, the vector r i ,
relating to a given edge point xi of a target sketch, is added to an R-table [3]. An
R-table is organized into a number of rows, or bins. An individual bin j contains the
set {r j } of individual vectors r i , each relating to an edge xi at an angle φ j = jΔφ

when rounded, for a selected step size Δφ. Adding a descriptor Di to a particular
bin, where Di , like r i corresponds to a given edge xi in a target sketch, one obtains a
modified R-table. An example of a modified R-table that incorporates this additional
descriptor information, specifically as individual sets {D j } of descriptors, is seen in
Table1. Image descriptors are examined in Sect. 2.2.

During the recognition process, in which a query sketch is checked against a target
sketch, the descriptors Di of the individual edges xi of the query sketch are compared
against those in the appropriate bin of the R-table of the target image. If a match is
found, then the two corresponding edges in the query and target sketches are said to
represent the same edge in a face. The details of this matching process are given in
Sect. 2.2. If the descriptor of a given edge in a query sketch cannot be matched to
any of those in the proper bin of the R-table of a target sketch, then that descriptor

Table 1 Modified R-table

j φ j {r j } {D j }
0 0 {r i | φ(xi ) = 0} {Di | φ(xi ) = 0}
1 Δφ {r i | φ(xi ) = Δφ} {Di | φ(xi ) = Δφ}
2 2Δφ {r i | φ(xi ) = 2Δφ} {Di | φ(xi ) = 2Δφ}
.
.
.

.

.

.
.
.
.

.

.

.

j jΔφ {r i | φ(xi ) = jΔφ} {Di | φ(xi ) = jΔφ}
.
.
.

.

.

.
.
.
.

.

.

.
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is discarded, and, consequently, the associated edge in the query sketch is removed
from further consideration. As with the traditional GHT, when a match does occur,
the individual entry xi + r∗

i of the Hough accumulator [3] array A is incremented,
where r∗

i ∈ {r j } corresponds to the descriptor D∗
i ∈ {D j } of the appropriate bin j of

the edge xi in the query sketch. Examples of accumulator arrays are seen in Fig. 5.
As with the conventional GHT, each individual entry of A is a count of the number
of votes of the assumed location xi + r∗

i = y∗ = (x∗
r , y∗

r ) of the reference point of
the target sketch. As expected, the entry that receives the most votes is taken to be
the reference point of the target sketch. Ultimately, the target image that receives the
highest overall vote count, a value given by N , is selected as the best match to the
face in the query image. The keen reader will observe that the specific pseudocode
of Algorithm 1 includes an additional scaling factor when incrementing A. This is
done so as to give more weight to those images that are a strong match to the current
image.

2.2 Gradient Distance Descriptor

Image descriptors mathematically describe local sections of an image by way of
attributes such as color, edges, luminosity, orientation, shape and texture. Moreover,
certain descriptors are invariant to lighting variations, rotation, scaling, shearing,
small deformations and translation, making them ideal for use in face recognition.
While image descriptors typically require more memory and increase the overall
computational complexity of the underlying algorithm, they are preferable to raw
pixel intensities as they better represent the features of a face than do single pixels.

This research introduces a new descriptor, the GDD. It is based on the LARK
descriptor, a technique that measures the similarity between a given pixel and its
surrounding neighbors via image gradients [25] and geodesic [29] distance. The
LARK descriptor has the ability to represent geometric shapes, even in noisy images
or in the presence of distortions and backgrounds. To no surprise, it has been found
to be useful in generic object detection [22]. Amore detailed derivation of the LARK
descriptor is given in Ref. [7]. The GDD goes one step further to consider the relative
significance of individual pixels. In particular, pixels that are closer to a given pixel,
ones that seemingly have more influence, are weighed more heavily than those that
are further from the given pixel. Accordingly, the GDD is the weighted average of
the horizontal and vertical image gradients Gx and Gy [25], denoted Ḡx and Ḡy ,
respectively, of an edge xi , over the pixels in a patch surrounding that edge xi .
Formally, for a patch of size p × p centered on a given edge xi , the GDD is equal to

GDD(xi ) =

⎡
⎢⎢⎢⎣

d1,1 d1,2 · · · d1,p

d2,1 d2,2 · · · d2,p
...

...
. . .

...

dp,1 dp,2 · · · dp,p

⎤
⎥⎥⎥⎦ , (1)
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where

dm,n = exp
(
− (

Ḡx · dxm,n + Ḡy · dym,n
)2)

, (2)

for 1 ≤ m, n ≤ p. So as to give more weight to those pixels that are nearest to
the center of the descriptor, the average gradients Ḡx and Ḡy of each entry dm,n are
scaled by the horizontal and vertical distances, dxm,n and dym,n , respectively, of a
pixel qm,n ∈ GDD(xi ) from the center of the descriptor. In particular,

dxm,n = n −
(

p + 1

2

)
(3)

and

dym,n = m −
(

p + 1

2

)
. (4)

The average gradients Ḡx and Ḡy are calculated using the MatLab®circular aver-
aging filter, denoted as K p×p in this paper. Formally,

Ḡx = 1

p2

p∑
u=1

p∑
v=1

(
au,v · Gx

)
(5)

and

Ḡy = 1

p2

p∑
u=1

p∑
v=1

(
au,v · Gy

)
, (6)

for weights au,v ∈ K p×p.
The process of matching descriptors Di , mentioned earlier in Sect. 2.1, is carried

out using the robust MCSmeasure. TheMCSmeasure was selected over the compet-
ing correlation [25] measure given its improved accuracy [30]. Further evidence of
this improved performance is seen in the three plots of Fig. 1, in which a given image
is compared, using these two measures, to individually brightened, contrast-adjusted
and rotated versions of that image. In all three instances, the MCS measure outper-
forms the correlation measure, regardless of the particular choice of patch size. Note
that the similarity of each measure, given on the vertical axes of the plots of Fig. 1,
is a value in the interval [0, 1], where a lower value corresponds to a smaller degree
of similarity and a larger value indicates a higher degree of similarity. Moving on,
the degree of similarity between any two descriptors is given by δ. A match between
two descriptors occurs when δ < ε, for a given threshold ε. In this research, the
GDD takes the place of the generic descriptor Di , which represents any descriptor.
Since any descriptor may be used, the performance of the new method given in this
research will inevitably improve as descriptors improve.
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Fig. 1 Performance comparison of MCS measure versus correlation measure over three modified
versions of a given image under varying patch sizes (original plots in color); a brightened image;
b contrast-adjusted image; c rotated image (Color figure online)

3 Results and Discussion

The two-part algorithm of Sect. 2 is tested over the popular Yale face database.
This database consists of 15 subjects, including both males and females, each in 11
different environments, resulting in a total of 15 · 11 = 165 images. Each of these
165 images is individually compared against the other 164 images in the database.
A search is deemed to be “successful” if the current image is matched to one of the
other ten images corresponding to the individual in the current image. The average
processing time needed to compare two faces from this particular database is roughly
20 s. The overall rate of success, or recognition rate, is plotted on the vertical axes of
each of the ensuing plots. Unless stated otherwise, in each of the following experi-
ments, Δφ = 3◦, ε = 0.05 and C = 1 × 106, where C is part of the scaling factor
mentioned briefly in Sect. 2.1.

In the first experiment, the modified GHT, in which each of the GDD, LARK,
SSLD and DCT descriptors are substituted for the generic descriptor Di , is tested.
Four separate scenarios are considered. In the first scenario, the patch size of the four
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A ← 0 {initialize accumulator array A to 0}
R ← ∅ {initialize R-table R to empty}

for all xi ∈ E do
φi ← direction of xi
r i ← xi − y
Di ← descriptor of xi
R.{r j } ← R.{r j } ∪ {r i } | φ(xi ) = φ j {add new entry r i to {r j } of R}
R.{D j } ← R.{D j } ∪ {Di } | φ(xi ) = φ j {add new entry Di to {D j } of R}

for all D∗
i ∈ R.{D j } | φ(xi ) = φ j do

δ ← MC S
(
Di , D∗

i

)
if δ < ε then
y∗ ← xi + r∗

i {r∗
i ∈ R.{r j } corresponds to D∗

i ∈ R.{D j }}
A (y∗) ← A (y∗) +round(C(ε − δ))+ 1 {increment vote count}

end if
end for

end for

N ← get_max_accumulator_array_vote_count(A)
ŷ ← get_max_accumulator_array_vote_count_point(A)
return {N , ŷ} {N is highest vote count, ŷ is best estimate of
y}

Algorithm 1: Modified GHT.

descriptors is varied. Exact sizes range from 7×7 to 35×35. The results are depicted
in the plot of Fig. 2a. The recognition rate of each of the GDD, LARK and SSLD
descriptors remains largely constant, regardless of the patch size. The performance
of the DCT, on the other hand, improves as the patch size increases. In the second
scenario, the results of which are displayed in Fig. 2b, the magnitude of the Canny
edge threshold is varied from between 0.20 and 0.55. This threshold determines the
number of edges, and therefore facial features, that are retained in a sketch. As the
threshold is lowered, more details are preserved. In this second scenario, all four
descriptors show varying degrees of performance as the threshold changes, with the
GDD generally showing the best performance of the pack. The performance of the
LARK descriptor appears to improve as the threshold increases. Conversely, the per-
formance of the DCT descriptor falls as the threshold rises. Lastly, the SSLD appears
to function best for a single threshold, namely 0.35, with poorer performance for both
larger and smaller thresholds. The third scenario looks at the effects of raising the
threshold ε from a minimum of 0.0001 to a maximum of 0.1000. This time, there are
noticeable differences in the performance of each of the three competing descriptors,
as one can see from Fig. 2c. Perhapsmost exciting, the GDD shows consistent perfor-
mance despite changes in the value of ε. The remaining three descriptors generally
show lower performance for smaller thresholds. Should the threshold be lowered too
much, however, the recognition rate will fall, regardless of the descriptor used. In
fact, when the threshold ε is very small, it is often the case that δ 	< ε, meaning,
of course, that the associated edge point is excluded from the voting process. With
fewer edges taking part in the voting process, the overall recognition rate begins to
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Fig. 2 Performance comparisons ofmodifiedGHTusingGDD,LARK, SSLDandDCTdescriptors
over database under varying conditions (original plots in color); a varying patch size; b varying
Canny edge threshold; c varying epsilon (ε) threshold (logarithmic scale); d varying number of bins
(Color figure online)

fall. In the final scenario, the performance of the four descriptors is assessed as the
number of bins changes. The precise number of bins considered varies between 15
and 180. The results of this final scenario are depicted in Fig. 2d. The GDD performs
somewhat better than the others. In all cases, though, the recognition rate ultimately
drops as the number of bins increases. The number of bins determines the maximum
allowable difference between the angles of the individual edges in a given bin. Thus,
when there are many bins, small differences in the individual angles φi of edges, typ-
ically the result of numerical error, cause these similarly-oriented edges to be placed
into separate bins. Conversely, when there are fewer such bins the recognition rate
is noticeably higher, as tiny variations in this angle become more or less negligible.
If there are, for instance, 20 bins, then the maximum allowable difference is equal to
360◦/20 = 18◦. If, however, there are many more bins, 90 perhaps, then this differ-
ence decreases to only 360◦/90 = 4◦. Although having fewer bins has the advantage
of making the method more robust to minor fluctuations in the directions of edges,
it increases the computational complexity as there are more descriptors in each bin,
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Fig. 3 Performance
comparison of Eigenfaces and
Fisherfaces over database
(original plot in color)(Color
figure Online)
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which means that more comparisons between descriptors have to be performed.
The second experiment evaluates the performance of the classic Eigenfaces and

Fisherfaces methods over this same database. This, therefore, allows one to compare
the performance of these two traditional methods against the proposed technique
based on the modified GHT. Training for both the Eigenfaces and Fisherfaces meth-
ods was carried out using 60 of the 165 images in the database, with the remaining
105 used for testing. The Fisherfaces procedure, as expected, decidedly outperforms
the competing Eigenfaces method, as observed in Fig. 3.

According to the plot of Fig. 3, the Eigenfaces method does not achieve a recog-
nition rate much beyond 0.60. The Fisherfaces approach, on the other hand, scores
much higher, closer to 0.70. Looking back at the results of the preceding experiment,
the modified GHT, in combination with the GDD, achieves recognition rates above
0.92, thereby significantly outperforming both of these classic approaches. For more
information pertaining to the number of features term, given on the horizontal axes
of the two plots of Fig. 3, see Refs. [14, 15].

Two additional experiments are conducted in order to better illustrate the underly-
ing behavior of the modified GHT algorithm. The first, captured in the plot of Fig. 4,
depicts the individually highest accumulator vote counts obtainedwhenmatching the
first of the 165 images in the database against the remaining 164. This experiment
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Fig. 5 Accumulator arrays (original plots in color); a same individual with and without glasses;
b two different individuals (Color figure online)

was undertaken as part of an earlier effort and therefore makes use of the LARK
descriptor rather than the newer GDD. In any case, one will notice that the highest
vote counts are obtained over the first ten images, specifically those of the same
individual in this first image of the database. Lower vote counts are obtained over
the remaining images of the database, namely those corresponding to images of
individuals other than the person in the first image.

Finally, as part of the last experiment, two separate accumulator arrays are
visualized in Fig. 5. In both cases, brighter colors, in the vertical direction, rep-
resent higher vote counts, whereas darker shades, also along the vertical axis,
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correspond to smaller counts. The x and y axes, together, represent the inferred
position y∗ = (x∗

r , y∗
r ) of the reference point. The array shown in Fig. 5a is obtained

by comparing two images of the same individual, one in which the person is wearing
glasses and one in which the person is not. There are a few “significant” counts in
the array of Fig. 5a, specifically those in the range of thereabouts 3× 105 to 6× 105.
Conversely, the counts in the array of Fig. 5b, in which two different individuals are
compared, are noticeably lower, with most lying between 1.5 × 105 and 3 × 105.
This sizeable gap in counts can be used to distinguish between individuals, with a
relatively high count suggesting that the faces in two different images are those of
the same person, while a lower count implies that they are not of the same person.

4 Conclusions

This research addresses the long standing problem of face recognition using a
two-part approach based on a variant of the GHT, along with a new image descriptor.
One of themost significant advantages of themodifiedGHT is the fact that it does not
require any training data. And, like the traditional GHT, it has the ability to handle
changes in illumination, partial occlusions and small deformations. Better yet, this
algorithm can be upgraded as new and more powerful descriptors become available.

A number of enhancements and extensions may explored at some point. First, it
is imperative that the new method be tested over a variety of additional databases,
such as the well-known labeled faces in the wild [31] database. Such databases
bring new challenges, specifically ones relating to background removal, cropping
and image alignment. And, perhaps as part of a larger study, the modified GHT
could be compared with more than just Eigenfaces and Fisherfaces.

More specific enhancements include, for example, the introduction of a set of
attribute classifiers [32] to reduce the number of target images in a database that
need to be considered. This is especially important when it comes to much larger
databases. These binary classifiers can be trained to differentiate individuals based on
traits such as age, hair color, gender, race or other features. Thus, when incorporated
into a face recognition system, they immediately allow certain target faces to be ruled
out, greatly reducing the overall computational burden.

Ensuring the proper alignment of faces is another major concern. Some of the best
alignment techniques are those based on the concept ofmutual information [33]. This
procedure is especially attractive given that it does not require complete information
about the surface properties of a face. Instead, it relies only on the shape of a face.
It is also robust to variations in illumination, a key concern in this field. Moreover,
as documented in Ref. [34], this approach works well in domains in which edge
or gradient methods experience difficulties and it is more robust than correlation.
A rather efficient algorithm is given in Ref. [35]. This face alignment procedure is
said to be robust not only to the effects of illumination, but also those of occlusion.
This algorithm is thought to better capture underlying image structure than those
approaches based on mere pixel intensities.
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Onemight alsowish to look at additional descriptors.Oneprospective contender in
this area is the local binary patterns [36] (LBP) descriptor. This technology works by
extracting features from a swath of different regions of an image and subsequently
concatenating them to build a single descriptor. The SIFT descriptor of Ref. [37]
offers another approach, this time one that is invariant to rotation and scaling and
that can address complications stemming from changes in viewpoint, illumination
and noise [38]. Another approach in this direction is presented in Ref. [39]. It, too,
is engineered to deal with the effects of image deformations. An altogether distinct
idea, given in Ref. [40], draws on the psychological and physiological characteristics
of the human visual system [41] (HVS), most notably the Weber-Fechner law [41].
The result is a descriptor, identified as the Weber local descriptor [40] (WLD), that
exploits the notion that humans perceive patterns according not only to changes
in the intensity of a stimuli, but also the initial intensity of a stimuli. Finally, with
different descriptors having their own unique advantages, onemight also consider the
possibility of combining multiple descriptors, with each encoding different elements
of a face image.

Lastly, the task of identifying multiple faces in an image, a situation that fre-
quently turns up in practice, could be addressed by way of the Hough forests method
mentioned earlier and given in Ref. [13]. A further means of handling multiple faces
is to employ a face detection scheme as part of a preprocessing stage. Later, only
those faces actually detected would be considered by the modified GHT.
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Improved Boosting Performance by Explicit
Handling of Ambiguous Positive Examples

Miroslav Kobetski and Josephine Sullivan

Abstract Visual classes naturally have ambiguous examples, that are different
depending on feature and classifier and are hard to disambiguate from surround-
ing negatives without overfitting. Boosting in particular tends to overfit to such hard
and ambiguous examples, due to its flexibility and typically aggressive loss func-
tions. We propose a two-pass learning method for identifying ambiguous examples
and relearning, either subjecting them to an exclusion function or using them in a
later stage of an inverted cascade. We provide an experimental comparison of dif-
ferent boosting algorithms on the VOC2007 dataset, training them with and without
our proposed extension. Using our exclusion extension improves the performance of
almost all of the tested boosting algorithms, without adding any additional test-time
cost. Our proposed inverted cascade adds some test-time cost but gives additional
improvements in performance. Our results also suggest that outlier exclusion is com-
plementary to positive jittering and hard negative mining.

Keywords Boosting · Image classification · Algorithm evaluation · Dataset
pruning · VOC2007

1 Introduction

Recent efforts to improve image classification performance have focused on designing
new discriminative features and machine learning methods. However, some of the
performance gains of many well-established methods are due to dataset augmen-
tation such as hard negative mining, positive mirroring and jittering [1–4]. These
data-bootstrapping techniques aim at augmenting sparsely populated regions of
the dataset to allow any learning method to describe the class distributions more
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accurately, and they have become standard tools for achieving state-of-the-art per-
formance for classification and detection tasks. In this paper we revisit the dataset
augmentation idea, arguing and showing that pruning the positive training set by
excluding hard-to-learn examples can improve performance for outlier-sensitive
algorithms.

We focus on the boosting framework and propose a method to identify and
exclude positive examples that a classifier is unable to learn—to make better use
of the available training data rather than expanding it. We refer to the non-learnable
examples as outliers and we wish to be clear that these examples are not label noise
(such as has been studied in [5–7]), but rather examples that with a given feature
and learner combination are ambiguous and too difficult to learn. We also propose
an inverted cascade that allows inclusion of these hard examples at a later stage of
the classification.

One of the main problems with most boosting methods is their sensitivity to
outliers such as atypical examples and label noise [5, 8–10]. Some algorithms have
tried to deal with this problem explicitly [6, 10–14], while others, such as LogitBoost
[15] are less sensitive due to their softer loss function.

The boosting methods with aggressive loss functions give outliers high weight
when fitting the weak learner, and therefore potentially work poorly in the presence
of outliers. Softer loss functions as seen in the robust algorithms can on the other
hand result in low weights for all examples far from the margin, regardless if they
are noisy outliers or just data to which the current classifier has not yet been able
to fit. This can be counter-productive in cases of hard inliers, which is illustrated in
Fig. 2a. Another problem that soft loss functions are not able to solve, is that outliers
are still able to affect the weak learners during the early stages of the training, which
due to the greedy nature of boosting can only be undone later on by increasing the
complexity of the final classifier. In this paper we provide an explicit analysis on
how various boosting methods relate to examples via their weight functions and we
argue that a distinct separation in the handling of inliers and outliers can help solve
these problems that current robust boosting algorithms are facing.

Following this analysis we propose our two pass boosting algorithm extension,
that explicitly handles learnable and non-learnable examples differently. We define
outliers as examples that are too hard-to-learn for a given feature and weak learner
set, and identify them based on their classification score after a first training round.
A second round of training is performed, where the outliers are subjected to a much
softer loss function and are therefore not allowed to interfere with the learning of
the easier examples, in order to find a better optimum. This boosting algorithm
extension consistently gives better test performance, with zero extra test-time costs
at the expense of increased training time. Some examples of found inliers and outliers
can be seen in Fig. 1. We also propose a method for reintroducing the hard examples
without reducing the performance of the classifier. We call this an inverted cascade.
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Fig. 1 Examples of outliers and inliers. The top rows of (a) and (b) show outliers while the bottom
rows show inliers. We focus on how to detect the outliers and how their omission from training
improves test results. The images are from the VOC2007 dataset. a Chair class, b Bottle class

1.1 Relation to Bootstrapping Methods

To further motivate our data-centric approach to learning, we illustrate the problems
that different dataset augmentation techniques address. In regions where the positive
training examples are dense and the negatives are existent but sparse, hard negative
mining might improve the chances of finding the optimal decision boundary. In
regions where positives are sparse and negatives existent, jittering and mirroring
might have some effect, but the proper analogue to hard negative mining is practically
much harder, since positive examples need to be labelled. At some scale this can be
done by active learning [16], where labelling is done iteratively on selected examples.
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Our approach tries to handle the regions where positives are sparse but additional hard
positive mining is not possible, either due to limited resources or because all possible
positive mining has already been done. We address this problem by restricting hard-
to-learn positives from dominating the training with their increasingly high weights
by excluding them from the training.

Our algorithm can be considered as dataset pruning and makes us face the high-
level question of more data versus better data—something that has recently been
addressed by [17]. It has been shown that in cases where huge labelled datasets
are available, even simple learning methods perform very well [18–20]. We address
the opposite case, where a huge accurately labelled data set cannot be obtained—a
common scenario both in academic and industrial computer vision.

1.2 Contributions

We propose a two-pass boosting extension algorithm, suggested by a weight-centric
theoretical analysis of how different boosting algorithms respond to outliers. We also
demonstrate that it is important to distinguish between “hard-to-learn” examples and
“non-learnable” outliers in vision as examples easily identified as positive by humans
could be non-learnable given a feature and weak-learner set, and demonstrate that the
different classes in VOC2007 dataset indeed have different fractions of hard-to-learn
examples using HOG as base feature. We also propose the inverted cascade—that
allows the hard positive examples to be re-introduced at a later stage. Finally we
provide extensive experimental comparison of different boosting algorithms on real
computer vision data and perform experiments using dataset augmentation tech-
niques, showing that our method is complementary to jittering and hard negative
mining.

2 Relation to Previous Work

As previously mentioned AdaBoost has been shown to be sensitive to noise [8, 9].
Other popular boosting algorithms such as LogitBoost or GentleBoost [15] have
softer loss functions or optimization methods and can perform better in the presence
of noise in the training data, but they have not been specifically designed to handle
this problem. It has been argued that no convex-loss boosting algorithm is able to cope
with random label noise [5]. This is however not the problem we want to address,
as we focus on naturally occurring outliers and ambiguous examples, which is a
significant and interesting problem in object detection today.

BrownBoost [11] and RobustBoost [10] are adaptive extensions of the Boost-
By-Majority Algorithm [21] and have non-convex loss functions. Intuitively these
algorithms “give up” on hard examples and this allows them to be less affected by
erroneous examples.
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Regularized LPBoost, SoftBoost and regularized AdaBoost [14, 22] regularize
boosting to avoid overfitting to highly noisy data. These methods add the concept of
soft margin to boosting by adding slack variables in a similar fashion to soft-margin
SVMs, and this decreases the influence of outliers. Conceptually these methods bear
some similarity to ours as the slack variables reduce the influence of examples on
the wrong side of the margin, and they define an upper bound on the fraction ν of
misclassified examples, which is comparable to the fraction of the dataset excluded
in the second phase of training.

There is recent work on robust boosting where new semi-convex loss functions
are derived based on probability elicitation [6, 7, 12]. These methods have shown
potential for high-noise problems such as tracking, scene recognition and artificial
label noise. But they have not been extensively compared to the common outlier-
sensitive algorithms on low-noise problems, such as object classification, where the
existing outliers are ambiguous or uncommon examples, rather than actual label
errors.

In all the mentioned robust boosting algorithms the outliers are estimated and
excluded on the fly and these outliers are therefore able to affect the training in the
early rounds. Also, as can be seen in Fig. 2, these algorithms can treat uncommon
non-outliers as conservatively as actual outliers, resulting in suboptimal decision
boundaries.

Reducing overfitting by pruning the training set has been studied previously [23,
24] but improved results have mostly been seen in experiments where training sets
include artificial label noise. Reference [23] is the only method that we have found
where pruning improves performance on a “clean” dataset. They use an approach very
similar to ours, detecting hard-to-learn examples, then removing those examples from
training. The base algorithm to which [23] apply dataset pruning is AdaBoost, which
we show is the most noise-sensitive boosting algorithm and not the one that should
be used for image classification. We propose a similar but more direct approach
that improves results for both robust and non-robust algorithms, while still using a
reasonable number of weak learners.

It is important to note that vision data is typically very high-dimensional and boost-
ing therefore also acts as feature selection—learning much fewer weak learners than
available dimensions. This is one of the key differences to typical machine learning
datasets, such as the ones used for validating the method in [23]. Our experiments on
the VOC2007 dataset verify that exclusion of ambiguous examples is useful for the
high-dimensional problems found in computer vision. We also compare a number of
well-known boosting algorithms using typical vision data, something that we have
not seen previously.

A different but related topic that deals with label ambiguity is Multiple Instance
Learning (MIL). Viola et al. [25] suggest a boosting approach to the MIL problem,
applying their solution to train an object detector with highly unaligned training data.

Our idea is also conceptually similar to a simplified version of self-paced learning
[26]. We treat the hard and easy positives separately and do not let the hard examples
dominate the easy ones in the search for the optimal decision boundary. This can seen



22 M. Kobetski and J. Sullivan

Fig. 2 Example with hard inliers. This toy problem shows how less dense, but learnable examples
do not contribute to the decision boundary when learned using RobustBoost. The colour coding
represents estimated probability p(y = 1|x). (Best viewed in colour.) a Toy example without
outliers, b Learnt AdaBoost classifier, c Learnt RobustBoost classifier

as a heavily quantized version of presenting the examples to the learning algorithm
in the order of their difficulty.

3 Boosting Theory

Boosted strong classifiers have the form Hm(x) = ∑m
i αi h(x;βi ), where h(x) is

a weak learner, with multiplier αi and parameters βi . To learn such a classifier
one wishes to minimize the average loss 1

N

∑N
j=1 L(H(x j ), y j ) over the N input

data points (x j , y j ) where each data label y j ∈ {−1, 1}. Learning the classifier
that minimizes the average loss by an exhaustive search is infeasible, so boosting
algorithms do this in a greedy stepwise fashion. At each iteration the strong classifier
is extended with the weak learner that minimizes the loss given the already learned
strong classifier



Improved Boosting Performance by Explicit Handling of Ambiguous Positive Examples 23

α∗, β∗ = argmin
α,β

1

N

N∑
j=1

L(Hm(x j ) + αh(x j ;β), y j ). (1)

Equation 1 is solved by weighting the importance of the input data by a weight
function w(x, y) when learning α and β. This w(x j , y j ) represents how poorly the
current classifier Hm(x j ) is able to classify example j .

Different boosting algorithms have different losses and optimizations procedures,
but the key mechanism to their behaviour and handling of outliers is the weight
function w(x, y). For this reason we believe that analyzing the weight functions
of different losses gives an insight to how different boosting algorithms behave in
the presence of hard and ambiguous examples. So in order to compare a number of
boosting algorithms in a consistent framework we re-derive w(x, y) for each of the
algorithms by following the GradientBoost approach [27, 28].

The GradientBoost approach views boosting as a gradient based optimization of
the loss in function space. According to the GradientBoost framework a boosting
algorithm can be constructed from any differentiable loss function, where each iter-
ation is a combination of a least squares fitting of a weak regressor h(x) to a target
w(x, y)

β∗ = argmin
β

⎛
⎝∑

j

(
w(x j , y j ) − h(x j ;β)

)2

⎞
⎠, (2)

and a line search α = argminα (L(H(x) + αh(x;β))) to obtain α. The loss function
is derived with respect to the current margin v(x, y) = y H(x) to obtain the negative
target function

w(x, y) = −∂L(x, y)

∂v(x, y)
. (3)

Equation 2 can then be interpreted as finding the weak learner that points in the
direction of the steepest gradient of the loss, given the data.

3.1 Convex-Loss Boosting Algorithms

3.1.1 Exponential Loss Boosting

AdaBoost and GentleBoost [15, 29] are the most notable algorithms with the
exponential loss

Le(x, y) = exp (−v(x, y)). (4)

AdaBoost uses weak classifiers for h(x) rather than regressors and directly solves for
α, while GentleBoost employs Newton-step optimization for the expected loss. In
the original algorithms w(x, y) is exponential and comes in via the weighted fitting
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of h(x), but we obtain
we(x, y) = exp (−v(x, y)), (5)

from the GradientBoost approach to align all analyzed loss functions in the same
framework. we(x, y) has a slightly different meaning than the weight function of the
original algorithms since it is the target of a non-weighted fit, rather than the weight
of a weighted fit. However, its interpretation is the same—the importance function
by which an example is weighted for the training of the weak learner h(x). Also, it
should be noted that we have omitted implementation-dependent normalization of
the weight function.

3.1.2 Binomial Log-Likelihood Boosting

LogitBoost is a boosting algorithm that uses Newton stepping to minimize the
expected value of the negative binomial log-likelihood

Ll(x, y) = log (1 + exp (−2v(x, y))). (6)

This is potentially more resistant to outliers than AdaBoost or GentleBoost as the
binomial log-likelihood is a much softer loss function than the exponential one [15].

Since the original LogitBoost optimizes this loss with a series of Newton steps,
the actual importance of an example is distributed between a weight function for the
weighted regression and a target for the regression—both varying with the margin
of the example. We derive w(x, y) by applying the GradientBoost approach to the
binomial log-likelihood loss function to collect the example weight in one function

wl(x, y) = 1

1 + exp (v(x, y))
. (7)

Figure 3a shows the different weight functions and suggests that LogitBoost
should be affected less by examples far on the negative margin than the exponential-
loss algorithms.

3.2 Robust Boosting Algorithms

3.2.1 RobustBoost

RobustBoost is specifically designed to handle outliers [10]. RobustBoost, a variation
of BrownBoost, is based on the Boost-by-Majority algorithm and has a very soft and
non-convex loss function
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Fig. 3 a, b Weight functions with respect to the margin. This illustrates how much examples
at different distances from the margin are able to affect the decision boundary for the different
algorithms. c Performance for different exclusion fractions δ. Average precision on the test set,
using the two-pass extension with LogitBoost for different exclusion fractions δ and different
classes. This figure illustrates that different classes have different optimal exclusion fractions δ

Lr (x, y, t) = 1 − erf

(
v(x, y) − μ(t)

σ (t)

)
, (8)

where erf(·) is the error function, t ∈ [0, 1] is a time variable and μ(t) and σ(t) are
functions

σ 2(t) = (σ 2
f + 1) exp (2(1 − t)) − 1 (9)

μ(t) = (θ − 2ρ) exp (1 − t) + 2ρ, (10)

with parameters θ , σ f and ρ. Equation 8 is differentiated with respect to the margin to
get the weight function

wr (x, y, t) = exp

(
− (v(x, y) − μ(t))2

2σ(t)2

)
. (11)
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Figure 3b shows Eq. 11 for some values of t . From these we can see the RobustBoost
weight function changes over time. It is slightly more aggressive in the beginning
and as t → 1, it focuses less and less on examples far away from the target margin θ .
One interpretation is that the algorithm focuses on all examples early in the training
stage, and as the algorithm progresses it starts ignoring examples that it has not been
able to push close to the target margin.

RobustBoost is self-terminating in that it finishes when t ≥ 1. In our experiments
we follow Freund’s example and set σ f = 0.1 to avoid numerical instability for t
close to 1 and we obtain the parameters θ and ρ by cross-validation.

3.2.2 TangentBoost

TangentBoost was designed to have a positive bounded loss function for both positive
and negative large margins, where the maximum loss for large positive margins is
smaller than for large negative margins [12]. To satisfy these properties the method
of probability elicitation [6] is followed to define TangentBoost to have a tangent
link function

f (x) = tan (p(x) − 0.5), (12)

and a quadratic minimum conditional risk

C∗
L(x) = 4p(x)(1 − p(x)), (13)

where p(x) = arctan(H(x)) + 0.5. is the intermediate probability estimate. Com-
bining the above equations results in the Tangent loss

Lt (x, y) = (2 arctan (v(x, y)) − 1)2 . (14)

We immediately see that the theoretical derivation of TangentBoost and its imple-
mentation may have to differ as the probability estimates p(x) ∈ [−π/2+0.5, π/2+
0.5] are not proper, so that we only have proper probabilities p(x) ∈ [0, 1] for
|H(x)| < 0.546. This means that |H(x)| > 0.546 has to be handled according to
some heuristic, which is not presented in the original paper [12]. In the original
paper the Tangent loss is optimized through Gauss steps, which similarly to Logit-
Boost divides the importance of examples into two functions. So as with the other
algorithms we re-derive wt (x, y) by using the GradientBoost method, and obtain

wt (x, y) = −4 (2 arctan (v(x, y)) − 1)

1 + (v(x, y))2 . (15)

As seen in Fig. 3b this weight function gives low weights for examples with large
negative margin, but it also penalizes large positive margins by assigning negative
weight to very confident examples. Since wt (x, y) is actually the regression target
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this means that the weak learner tries to fit very correct examples to an incorrect
label.

4 A Two-Pass Exclusion Extension

Our main point is that some fraction of the data, that is easy to learn with a given
feature and weak-learner set, defines the core shape of the class—we call these
examples inliers. Then there are examples that are ambiguous or uncommon so that
they cannot be properly learned given the same representation. Trying to do so might
lead to overfitting, create artefacts or force a poorer definition of the shape of the
core of the class. We call these examples non-learnable or outliers and illustrate their
effect on training in Fig. 4. It is important to note that there might be hard examples
with large negative margin during some parts of training, but that eventually get
learned without overfitting. We refer to these examples as hard inliers, and believe
they are important for learning a well performing classifier.

Figure 4 illustrates that even if robust algorithms are better at coping with outliers,
they are still negatively affected by them in two ways; The outliers still have an effect
on the decision boundary learnt, even if their effect is reduced. Hard inliers are also
subject to the robust losses, thus having less influence over the decision boundary
than for non-robust losses, illustrated in Fig. 2.

We propose that outliers and inliers should be identified and handled separately
so that the outliers are only allowed to influence the training when already close to
the decision boundary and therefore can be considered as part of the core shape of
the class. This can be achieved with a very soft loss function, such as the logistic loss
or the Bayes consistent Savage loss [6]. We use the logistic loss, since the Savage
loss gives more importance to slightly misclassified examples, rather than being
symmetric around the margin.

Differentiating the logistic loss

Ls(x, y) = 1

1 + exp (−ηv(x, y))
, (16)

with respect to the margin results in the weight function

wexcl(x, y) = η σ(−η v(x, y)) σ (η v(x, y)) (17)

where σ(·) is the sigmoid function. This weight function can be made arbitrarily
thin by increasing the η parameter. We call this function the exclusion function, as
its purpose is to exclude outliers from training.

Since the inlier examples are considered learnable we want the difficult examples
in the inlier set to have high weight, according to the original idea of boosting.
For this reason all inliers should be subjected to a more aggressive loss such as the
exponential loss or the binomial log-likelihood loss.
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Fig. 4 Example with five outliers. The decision boundaries the different algorithms produce in the
presence of a few outliers. The colour coding represents estimated probability p(y = 1|x). We can
see how AdaBoost overfits to the outliers, TangentBoost overfits slightly less and RobustBoost is
able to handle the problem, even if it is less certain around the boundary. Applying the two-pass
method to this problem results in a decision boundary that completely ignores the outliers. (Best
viewed in colour.) a AdaBoost, b TangentBoost, c RobustBoost, d AdaBoost with two-pass method

The main challenge is to identify the outliers in a dataset. To do this we follow
our definition of outliers as non-learnable and say that they are the examples with
the lowest confidence after completed training. We therefore define the steady-state
difficulty d(x j ) of the examples as their negative margin −v(x j , y j ) after a fully
completed training round, and normalize to get non-negative values.

d(x j ) =
{

max(H(x)) − H(x j ) if y j = 1

H(x j ) − min(H(x)) if y j = −1,
(18)

where H(x j ) is the classification score of example j . This is referred to as the first
pass.

We order the positive examples according to their difficulty d(x j ) and re-train
the classifier, assigning a fraction δ of the most difficult examples to the outlier set
and subjecting them to the logistic loss function. This second iteration of training
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is what we call the second pass. Figure 1 shows some inlier and outlier examples
for the bottle and chair classes. As we have mentioned, what will be considered an
outlier depends on the features used. We use HOG in our experiments [2], so it is
expected that the tilted bottles and the occluded ones are considered outliers, since
HOG cannot capture such variation well.

As previously mentioned, our model for outlier exclusion has two parameters:
δ and η, where δ controls how many examples will be considered as outliers and
η controls how aggressively the outlier examples will be down-weighted. In our
experiments we choose a large value for η—effectively ignoring outliers completely
in the second round. The actual fraction of outliers is both class and feature dependent,
so δ needs to be properly tuned. We tune δ by cross-validation, yet we have noticed that
simple heuristics seem to work quite well too. Figure 3c shows how the performance
is affected by δ for three different classes. We can clearly see that different classes
have different optimal values for δ, which is related to the number of outliers in their
datasets, given the used features and learners.

4.1 Inverted Cascade

The excluded examples are not necessarily label noise, but are defined as exam-
ples that increase the cross-validation error, they can still hold valuable information
about the class. One way of making use of this information without reducing the
performance of the exclusion-type classifier is to learn separate classifiers, and take
the max of their classification scores as output. Since there is a difficulty ordering
between the two classifiers, it is more natural to approach this problem as an inverted
cascade. An inverted cascade is a cascade where each positive classification aborts
the cascade instead of negative classifications as in standard cascades. Each negative
classification continues to the next classifier. This way the learnable examples can be
correctly classified by the first classifier while hard false negatives can be subjected
to stricter classification criteria in a later cascade stage.

5 Experiments

We perform experiments on a large number of classes to reduce the influence of
random performance fluctuations. For this reason, and due to the availability of a
test set we select the VOC2007 dataset for our experiments. Positive examples have
bounding-box annotations, so we crop and resize all positive examples to have the
same patch size. Since our main focus is to investigate how our two-pass exclusion
method improves learning, we want to minimize variance or tweaking in the areas
not related to learning, and therefore choose a static non-deformable feature. We use
the HOG descriptor [2] to describe the patches, since it has shown good performance
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in the past, is popular within the vision community, and its best parameter settings
have been well established.

To get the bounding boxes for the negative examples, we generate random posi-
tions, widths and heights. We make sure that box sizes and aspect ratios are restricted
to values that are reasonable for the positive class. Image patches are then cropped
from the negative training set according to the generated bounding boxes. The patches
are also resized to have the same size as the positive patches, after which the HOG
features are computed. We then apply our two-pass training procedure described in
Sect. 4 to train a boosted stump classifier.

We train boosted stumps using four different boosting algorithms: AdaBoost,
LogitBoost, TangentBoost and RobustBoost. AdaBoost and LogitBoost are chosen
for their popularity and proliferation in the field. TangentBoost and RobustBoost are
chosen as they explicitly handle outliers. We also train an SVM classifier to use as
reference.

For LogitBoost, TangentBoost and AdaBoost there are no parameters to be set. For
RobustBoost two parameters have to be tuned: the error goal ρ and the target margin
θ . We tune them by holdout cross-validation on the training set. With TangentBoost
we encountered an implementation issue, due to the possibility of negative weights
and improper probability estimates. After input from the author of [12] we manually
truncate the probability estimates to make them proper. Unfortunately this forces
example weights to zero for margins |v(x, y)| > 0.546, which gives poor results
as this quickly discards a large portion of the training set. To cope with this and to
obtain reasonable performance we lower the learn rate of the algorithm. The linear
SVM is trained with liblinear [30], with normalized features and using 5-fold cross-
validation to tune the regularization term C.

Jittering the positive examples is a popular way of bootstrapping the positive
dataset, but we believe that this can also generate examples that are not representative
of that class. For this reason our two-pass approach should respond well to jittered
datasets. We therefore redo the same experiments for the best performing classifier,
augmenting the positive sets by randomly generating 2 positive examples per labelled
positive example, with small random offsets in positions of the bounding box. We
also mine for hard negatives to get a complete picture of how the outlier exclusion
extension interacts with bootstrapping methods.

6 Results

A summary of our results is that all boosting algorithms except TangentBoost show
consistent improvements for the experiments using our two-pass extension, which
can be seen in Table 1. Before employing our two-pass extension LogitBoost per-
forms best with 11 wins over the other algorithms. After the two-pass outlier exclu-
sion LogitBoost dominates even more with 15 wins over other outlier-excluded
algorithms and 13 wins over all other algorithms, including LogitBoost without
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Fig. 5 Margin before and after outlier exclusion. The margin for the learnable examples becomes
wider when using the outlier exclusion extension

outlier exclusion. Figure 5 shows an example of how the margin becomes much
wider when using the extension.

The inverted cascade with LogitBoost performs the best overall with the most
significant improvements, both over the base algorithm but also over the outlier-
excluded one.

6.1 Comparison of Boosting Algorithms

Table 1 also includes a comparison of the performance between algorithms, showing
performance differences with and without the outlier exclusion. Among the convex-
loss algorithms LogitBoost performs better than AdaBoost. The difference in perfor-
mance shrinks when our two-pass method is applied, which suggests that naturally
occurring outliers in real-world vision data affects the performance of boosting algo-
rithms and that those better able to cope with such outliers have a greater potential
for good performance.

Even so, the robust algorithms perform worse than LogitBoost. One reason for
this could be that the robust algorithms make no distinction between outliers and hard
inliers, as previously discussed. Our two-pass algorithm only treats “non-learnable”
examples differently, not penalizing unkommon learnable examples for being diffi-
cult in the early stages of learning.

Although RobustBoost has inherent robustness, it is improved the most by our
extension. One explanation is its variable target error rate ρ, which after the exclusion
of outliers obtains a lower value through cross-validation. RobustBoost with a small
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value ρ is more similar to a non-robust algorithm, and should not suffer as much
from the hard-inlier-problem demonstrated in Fig. 2c.

The SVM classifier is provided as a reference and sanity check, and we see that
the boosting algorithms give superior results even though only decision stumps are
used.

The higher performance of the boosted classifier is likely due to that combination
of decision stumps can produce more complex decision boundaries than the hyper-
plane of a linear SVM. It is not surprising that the linear SVM is not improved by the
outlier exclusion as it has a relatively soft hinge loss, tuned soft margins, and lacks
the iterative reweighting of examples and greedy strategy, that our argumentation
is based on. SVMs suffer from outliers too [17], but our method is not optimal for
SVMs, since some of the excluded examples could be important support vectors.

6.2 Bootstrapping Methods in Relation to Outlier Exclusion

We can see in Table 2 that jittering has a positive effect on classifier performance and
that our outlier exclusion method improves that performance even more. This shows
that our two-pass outlier exclusion is complementary to hard negative mining and
positive jittering and could be considered as a viable data augmentation technique
when using boosting algorithms.

7 Discussion and Future Work

We show that all boosting methods perform better when handling outliers separately
during training. As RobustBoost and TangentBoost do not reach the performance of
LogitBoost they might be too aggressive in reducing the importance of hard inliers
and not aggressive enough for outliers. We must remember that the problem posed
by the VOC2007 dataset does not include label noise, but does definitely have hard
and ambiguous examples that might interfere with learning the optimal decision
boundary. RobustBoost and other robust boosting algorithms have previously shown
good results on artificially flipped labels, but we believe that a more common prob-
lem in object classification is naturally occurring ambiguous examples and we have
therefore not focused on artificial experiments where labels are changed at random.

We notice that the improved performance from excluding hard and ambiguous
examples is correlated with the severity of the loss function of the method. AdaBoost,
with its exponential loss function, shows large improvement while LogitBoost has
less average gain and TangentBoost gains almost nothing from the exclusion of out-
liers. More surprising is that RobustBoost is improved the most, in spite of its soft
loss function. One explanation is that there is an additional mechanism at work
in improving the performance of RobustBoost. RobustBoost is self-terminating,
stopping when it has reached its target error. When training on a dataset with a
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smaller fraction non-learnable examples, a lower target error is better suited and the
cross-validation process will ensure that a lower target error is selected. This will
result in later termination and an overall more aggressive loss function.

We have seen that pruning of the hard-to-learn examples in a dataset without label
noise can lead to improved performance, contrary to the “more data is better” phi-
losophy. This point has also been examined by [17], who demonstrate that removing
perfectly fine examples can improve overall classification performance in the case
where model flexibility is insufficient to adapt to all training data.

Our belief is that our method removes bad data, but also that it reduces the impor-
tance of examples that make the learning more difficult, in this way allowing the
boosting algorithms to find better local minima. We still believe that more data is
better if properly handled, so this first approach of selective example exclusion should
be extended in the future, and might potentially combine well with positive example
mining, especially in cases where the quality of the positives cannot be guaranteed.

8 Conclusions

We provide an analysis of several boosting algorithms and their sensitivity to outlier
data. Following this analysis we propose a two-pass training extension that can
be applied to boosting algorithms to improve their tolerance to naturally occurring
outliers. We show experimentally that excluding the hardest positives from training
by subjecting them to an exclusive weight function is beneficial for classification
performance. Introducing an inverted cascade to re-include the hard positives we
improve the performance even more. We also show that this effect is complementary
to jittering and hard negative mining, which are common bootstrapping techniques.

The main strength of our approach is that classification performance can be
improved without any extra test-time cost, only at the expense of training-time cost.
If test time can be increased slightly the inverted cascade allows additional perfor-
mance. We believe that handling the normal and hard examples separately might
allow bootstrapping of training sets with less accurate training data.

We also present results on the VOC2007 dataset, comparing the performance of
different boosting algorithms on real world vision data, concluding that LogitBoost
performs the best and that some of this difference in performance can be due to its
ability to better cope with naturally occurring outlier examples.
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Discriminative Dimensionality Reduction
for the Visualization of Classifiers

Andrej Gisbrecht, Alexander Schulz and Barbara Hammer

Abstract Modern nonlinear dimensionality reduction offers powerful techniques to
directly inspect high dimensional data in the plane. Since the task of data projection
is generally ill-posed and information loss cannot be avoided while projecting, the
quality andmeaningfulness of the outcome is not clear. In this contribution, we argue
that discriminative dimensionality reduction, i.e. the concept to enhance the dimen-
sionality reduction technique by supervised label information, offers a principledway
to shape the outcome of a dimensionality reduction technique. We demonstrate the
capacity of this approach for benchmark data sets. In addition, based on discrimina-
tive dimensionality reduction, we propose a pipeline how to visualize the function of
general nonlinear classifiers in the plane.We demonstrate this approach by providing
a generic visualization of the function of support vector machine classifiers.

Keywords Dimensionality reduction · Fisher information metric · Classifier
visualization · Evaluation.

1 Introduction

The digitalization of almost all areas of daily life causes a dramatic increase of elec-
tronically available data sets. Due to improved sensor technology and dedicated stor-
age formats, data sets are increasing with respect to both, size and complexity. This
fact poses new challenges for data analysis: automated machine learning techniques
such as clustering, classification, or visualization constitute standard approaches to
automatically extract relevant information from the data. In recent time, however,
methods have to deal with very large data sets such that many algorithms rely on
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sampling or approximation techniques to maintain feasibility [2, 29]. In addition,
an exact objective is often not clear a priori; rather, the user specifies her interests
and demands interactively when applying data mining techniques and inspecting the
results [17, 36]. This places the human into the loop, causing the need for intuitive
interfaces to the machine learning scenarios [28, 32, 33].

The visual system constitutes one of our most advanced senses. Humans possess
astonishing cognitive capabilities as concerns e.g. visual grouping or recognition of
artifacts, according to the Gestalt principles of visual perception [14]. Relying on
these principles and the efficiency of human visual perception, visualization plays an
essential part in the context of the presentation of data and results to humans, and in
the enabling of efficient interactive machine learning systems. This causes the need
for reliable, fast and online visualization techniques of data and machine learning
results when training on the given data.

Dimensionality reduction refers to the specific task to map high dimensional data
points into low dimensions such that data can directly be displayed on the screen
while as much information as possible is preserved [19]. Classical techniques such
as principle component analysis (PCA) offer a linear projection only, thus their flex-
ibility is limited. Nevertheless, they are widely used today due to their excellent
generalization ability and scalability. In recent years, a large variety of nonlinear
alternatives has been proposed, formalizing the ill-posed objective of dimensionality
reduction while preserving as much information as possible via different mathemat-
ical objectives. Maximum variance unfolding, non-parametric embedding, Isomap,
locally linear embedding (LLE), stochastic neighbor embedding (SNE), and simi-
lar, constitute just a few popular examples, see e.g. the overviews [5, 19, 31]. Still,
many practitioners rely on simpler linear techniques such as PCA for practical appli-
cations e.g. in the biomedical context [3]. The reasons for this fact are twofold.
On the one hand, nonlinear dimensionality reduction techniques are often computa-
tionally costly, and they provide a mapping of the given data points only, requiring
additional effort for out-of-sample extensions. On the other hand, the results of non-
linear dimensionality reduction are often not easily interpretable by humans. Even a
universally accepted formal quantitative evaluation of the quality of a projection is
not yet available, first steps into the direction of principled evaluation measures for
dimensionality reduction having just recently been proposed [20].

In this contribution, we address the problem of shaping the ill-posed problem
of dimensionality reduction by means of an integration of often easily accessible
auxiliary information: a class labeling of the given data,more formally, discriminative
dimensionality reduction. In this setting, the goal is to visualize those aspects of
the data which are of particular relevance for the given labeling, as specified by
the practitioner. Hence this auxiliary information allows to explicitly specify which
information is regarded as relevant to the user: the aspects relevant for the given
labeling; versus which aspects can be neglected while projecting the data: all aspects
which do not change the shape of the data with respect to the given labeling.

A few approaches have been proposed in this context: classical Fisher’s linear dis-
criminant analysis (LDA) projects data such thatwithin class distances areminimized
while between class distances are maximized, still relying on a linear mapping. The
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objective of partial least squares regression (PLS) is to maximize the covariance of
the projected data and the given auxiliary information. It is also suited if data dimen-
sionality is larger than the number of data points. Informed projections [8] extend
PCA tominimize the sum squared error and themean value of given classes, this way
achieving a compromise of dimensionality reduction and clustering. Reference [24]
extends a dimensionality reduction mapping which is based on deep autoencoders
by auxiliary function information learned in parallel. In [11], the metric is adapted
according to auxiliary class information prior to projection to yield a global lin-
ear matrix transform. Further, interesting extensions of multidimensional scaling to
incorporate class information have recently been proposed [37]. Modern techniques
extend these settings to general nonlinear projections of data. One way is offered by
kernelization such as kernel LDA [1, 21, 23]. The approaches introduced in [15, 22]
can both be understood as extensions of SNE. Multiple relational embedding (MRE)
incorporates several dissimilarity structures in the data space induced by labeling, for
example, into one latent space representation. Colored MVU incorporates auxiliary
information into MVU by substituting the raw data by the combination of the data
and the covariance matrix induced by the given auxiliary information.

Another principled way to extend dimensionality reducing data visualization to
auxiliary information is offered by an adaptation of the underlying metric. The prin-
ciple of learning metrics has been introduced in [18, 25]: the Riemanian metric
on the given data manifold is substituted by an adapted form which measures the
information of the data for the given classification task [18, 25, 27, 34]. A slightly
different approach is taken in [9], relying on an ad hoc adaptation of the metric. Met-
ric adaptation based on the classification margin and subsequent visualization has
been proposed in [6], for example. Alternative approaches to incorporate auxiliary
information modify the cost function of dimensionality reducing data visualization.
In this contribution, we will rely on the principle of learning metrics based on esti-
mations of the Fisher information, and we will integrate this approach into a kernel
extension of t-distributed stochastic neighbor embedding, yielding excellent results.

What are the differences of a supervised visualization as compared to a direct clas-
sification of the data, i.e. a simple projection of the data points to their corresponding
class labels?Wewill argue that auxiliary information in the form of class labeling can
play a crucial role when addressing dimensionality reduction: it offers a natural way
to shape the inherently ill-posed problem of dimensionality reduction by explicitly
specifying which aspects of the data are relevant and, in consequence, which aspects
should be emphasized—those aspects of the data which are relevant for the given
auxiliary class labeling. In addition, the integration of auxiliary information can help
to solve the problem of the computational complexity of dimensionality reduction.
In this contribution, we will show that discriminative dimensionality reduction can
be used to infer a mapping of points based on a small subsample of data only, thus
reducing the complexity by an order of magnitude. We will use this technique in a
general framework which allows us to visualize not only a given labeled data set,
rather full classification models can be displayed this way, as we will demonstrate
for SVM.
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Albeit classification constitutes one of the standard tasks in data analysis, generic
techniques to visualize classifiers are often rather restricted. At present, the major
way to display the result of a classifier and to judge its suitability is by means of
the classification accuracy. This quantitative evaluation, however, does not offer any
intuitive interpretation of the result at all. It is not clear how to inspect the complexity
of the class boundary, the presence of outliers, the question whether classes overlap
etc. based on the classification accuracy only. Visualization could offer an intuitive
access to these questions, by directly displaying the data points and classification
boundary on the plane.

Still, visualization is used in only a few places when inspecting a classifier: in
a low dimensional space, a direct visualization of the data points and classification
boundaries in 2D or 3D can be done. For high dimensional data, which constitutes the
standard case, a direct visualization of the classifier is not possible and dimension-
ality reduction techniques are required. One line of research addresses visualization
techniques to accompany the accuracy by an intuitive interface to set certain para-
meters of the classification procedure, such as e.g. ROC curves to set the desired
specificity, or more general interfaces to optimize parameters connected to the accu-
racy [13]. Surprisingly, there exists relatively little work to visualize the underlying
classifier itself for high dimensional settings. For the popular support vectormachine,
for examples, only some specific approaches have been proposed: one possibility is
to let the user decide an appropriate linear projection dimension by means of tour
methods [7]. As an alternative, some techniques rely on the distance of the data
points to the class boundary and present this information using e.g. nomograms [16]
or by using linear projection techniques on top of this distance [26]. A few nonlinear
techniques exist such as SVMV [35], which visualizes the given data by means of a
self-organizingmap and displays the class boundaries bymeans of sampling. Further,
very interesting nonlinear dimensionality reduction, albeit not for the primary aim of
classifier visualization, has been introduced in [4]. These techniques offer first steps
to visually inspect an SVM solution such that the user can judge e.g. remaining error
regions, the modes of the given classes, outliers, or the smoothness of the separation
boundary based on a visual impression.

However, so far, these techniques are often only linear, they require additional
parameters, and they provide combinations of a very specific classifier such as SVM
and a specific visualization technique. Discriminative dimensionality reduction con-
stitutes an important general technique based on which a given classifier can be
visualized. Here, we propose a principled alternative based on discriminative t-SNE
with the Fisher metric, which allows to visualize any given classifier provided the
method does not only output the class label, but some security of the classification
such as e.g. the distance to the decision boundary or a possibly nonlinear, monotonic
transformation thereof.

Nowwe will first introduce the Fisher metric as a general way to include auxiliary
class labels into a non-linear dimensionality reduction technique. Thereby, we con-
sider only one prototypical dimensionality reduction technique and emphasize the
role of discriminative visualization rather than a comparison of the underlying dimen-
sionality reduction technique. Hence we restrict to t-distributed stochastic neighbor
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embedding (t-SNE), which constitutes one of the most successful nonlinear dimen-
sionality reduction techniques used today [31]. All techniques could also be based on
alternatives such as LLE or Isomap.We show the difference of the result from a direct
classification in the context of discriminative t-SNE. Afterwards, we demonstrate the
effect of the Fisher metric in nonlinear dimensionality reduction mapping, namely
kernel t-distributed stochastic neighbor embedding. Finally, we display the suitabil-
ity of discriminative dimensionality reduction to visualize classifiers in a generic
way.

2 Supervised Visualization Based on the Fisher Information

Given a set of data points xi in some high-dimensional data space X , t-SNE finds
projections yi for these points in the two dimensional plane Y = R

2 such that
the probabilities of data pairs in the original space and the projection space are
preserved as much as possible. Probabilities in the original space are defined as
pi j = (p(i | j) + p( j |i))/(2N ) where N is the number of data points and

p j |i = exp(−‖xi − x j‖2/2σ2
i )∑

k �=i exp(−‖xi − xk‖2/2σ2
i )
.

depends on the pairwise distance; the neighborhood range σi is automatically deter-
mined such that the effective number of neighbors coincides with a parameter, the
perplexity. In the projection space, probabilities are defined as

qi j = (1 + ‖yi − y j‖2)−1
∑

k �=l(1 + ‖yk − yl‖2)−1 .

Using student-t instead of Gaussians helps to avoid the crowding problem because
of the involved long tails [31]. The goal of t-SNE is to find projectionts yi such that
the difference between pi j and qi j becomes small as measured by the Kullback-
Leibler divergence. Usually, a gradient based optimization technique is used to min-
imize these costs. Considerable speed-up of the technique can be obtained based on
approximations and tailored geometric data structures to handle distances in the low
dimensional projections, see [38].

The goal of dimensionality reduction is inherently ill-posed: since there does
not exist a loss-free representation of data in two-dimensions, information loss is
inevitablewhile projecting. It depends on the actual settingwhich type of information
is relevant for the application. A dimensionality reduction technique specifies which
type of information is regarded as relevant by specifying a mathematical objective
which is optimized while mapping. A formal mathematical cost function or training
prescription, however, is hardly accessible to a user, and it cannot easily be influenced
in terms of simple accessible parameters. This fact is one of the reasons that simple
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but easily interpretable dimensionality reduction techniques such as PCA are often
preferred in comparison to more powerful but not as easily interpretable ones.

To get around this problem, it has been proposed in [18, 25, 34] to enhance data
by auxiliary information specified by the user. Here, we restrict to the particularly
simple setting that auxiliary label information is given. Formally, we assume that
every data point xi is equipped with a class label ci which are instances of a finite
number of possible classes C . The task is to find projections yi such that the aspects
of xi which are relevant for ci are displayed. A given labeling induces a probability
p(c|x) given a data point x. Albeit, in practice, such a probability is not available
explicitly, it can be estimated based on the given data and labels using e.g. Parzen
window estimates or any other suitable non-parametric estimator.

One can define a Riemannian manifold which is based on the information of xi

for the class labels in a canonic way. The tangent space at a point xi of the data
manifold is equipped with the quadratic form

dxi (x, y) = xT J(xi )y

where J(x) denotes the Fisher information matrix

J(x) = E p(c|x)

{(
∂

∂x
log p(c|x)

) (
∂

∂x
log p(c|x)

)T
}
.

Note that this quadratic form scales dimensions locally according to its relevance for
the class probabilities. Data dimensions are emphasized if and only if the label infor-
mation changes rapidly along the considered axes, while dimensions along which
the class labeling is constant do not contribute to the tensor.

Per definition, J(x) is symmetric and positive semidefinite such that it can serve
as metric tensor. In addition, for typically smooth probability estimators p(c|x), the
parametrization is smooth such that J (x) is C∞, i.e. it can serve as tensor for a C∞
manifold.

ARiemannianmetric is induced from this tensor by takingminimumpath integrals

d(x, y) = inf
p

1∫

0

√
dp(t)(p′, p′)dt

for any two points x and y on the manifold. Here, the path p : [0, 1] → X ranges
over all smooth curves with p(0) = x to p(1) = y in X . We refer to this metric as
the Fisher metric in the following.

It offers a straightforward way to embed auxiliary information into t-SNE or any
other dimensionality reduction technique which relies on distances: Instead of the
standard Euclidean distance in X , we can use the Fisher distance to compare points
in the high dimensional data space. This procedure transforms the high dimensional
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space in such a way that those dimensions are locally emphasized, which influence
the class labeling.

Note that the resulting distance measure is different from a simple classification
of data, since it preserves important information such as e.g. the number of modes
of a class, outliers, or regions with overlapping classes. This fact is demonstrated
in a simple example in Fig. 1. Three classes which consist of two clusters each are
generated in two dimensions. Thereby, the classes of two modes overlap (see arrow).
We measure pairwise distances of these data using the Fisher metric, and display
the resulting transformed space using classical multidimensional scaling. As can be
seen, the following effects occur:

• the distance of data within a single mode belonging to one class becomes smaller
by scaling dimensions which are unimportant for a given labeling at a smaller
scale. Thus, data points in one clearly separated mode have the tendency to be
mapped on top of each other, and these cluster structures become more apparent.

• the number of modes of the classes is preserved, emphasizing the overall structure
of the class distribution in space—unlike a simple mapping of data to class labels
which would map all modes of one class on top of each other.

• overlapping classes are displayed as such (see arrow) and directions which cause
this conflict are preserved since they have an influence on the class labeling. In
contrast, a direct mapping of such data to their class labels tries to resolve such
conflicts in the data.

In practical applications, two approximations are necessary when computing the
Fisher metric:

Fig. 1 Asimple examplewhich demonstrates important properties of the FisherRiemannian tensor:
multi-modality as well as class overlaps are preserved. The original data are displayed at the left,
a plot of the data equipped with the Fisher metric displayed using metric multidimensional scaling
is shown on the right, the arrows point to regions of overlap of the classes, which are preserved by
the metric
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2.1 Computation of the Class Probabilities

The conditional probabilities p(c|x) are usually not available in closed form. How-
ever, they can always be estimated from the data using the Parzen nonparametric
estimator

p̂(c|x) =
∑

i δc=ci exp(−‖x − xi‖2/2σ2)∑
j exp(−‖x − x j‖2/2σ2)

.

The Fisher information matrix becomes

J(x) = 1

σ4 E p̂(c|x)
{

b(x, c)b(x, c)T
}

where
b(x, c) = Eξ(i |x,c){xi } − Eξ(i |x){xi }

ξ(i |x, c) = δc,ci exp(−‖x − xi‖2/2σ2)∑
j δc,c j exp(−‖x − x j‖2/2σ2)

ξ(i |x) = exp(−‖x − xi‖2/2σ2)∑
j exp(−‖x − x j‖2/2σ2)

E denotes the empirical expectation, i.e. weighted sums with weights depicted in the
subscripts. If large data sets or out-of-sample extensions are dealt with, a subset of
the data only is usually sufficient for the estimation of J(x).

2.2 Approximation of Minimum Path Integrals

Because of a general shape of the Riemannian tensor, path integrals and their mini-
mization is usually impossible in closed form.Note that it is not necessary to compute
exact values in particular for far apart points if distances are used for dimension-
ality reduction techniques; rather, the order of magnitude should be appropriate.
There exist different efficient ways to approximate the path integrals based on the
Fisher matrix as discussed in [25]. One possibility is offered by T -approximations: T
equidistant points on the line from xi to x j are sampled, and the Riemannian distance
on the manifold is approximated by

dT (xi , x j ) =
T∑

t=1

d1

(
xi + t − 1

T
(x j − xi ), xi + t

T
(x j − xi )

)
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where d1(xi , x j ) = (xi − x j )
T J (xi )(xi − x j ) is the standard distance as evaluated

in the tangent space of xi . Locally, this approximation gives good results such that a
faithful dimensionality reduction of data can be based thereon [25].

We integrate the Fisher information into a parametric kernel mapping, and in the
visualization of classifiers, to demonstrate its benefits.

3 Training a Discriminative Visualization Mapping

Similar tomany other nonlinear projection techniques, t-SNEhas the drawback that it
does not provide an explicit embeddingmapping. First extensions towards parametric
maps have been proposed in [5, 30]. The approach [5] has the drawback that it relies
on locally linear maps, i.e. it has limited local flexibility. Reference [30] on the other
hand uses deep autoencoders, i.e. very flexible maps, which require a large training
set for good generalization. A compromise has been proposed in [10] which is based
on kernel mappings. An explicit functional form is defined by

x �→ y(x) =
∑

j

α j · k(x, x j )∑
l k(x, xl)

.

The parameters α j ∈ Y are points in the projection space. The centre points x j are
taken from a fixed sample of data points used to train the mapping. k is the Gaussian
kernel.

Training takes place in two steps: First, an exemplary set of points xi and pro-
jections yi obtained by standard t-SNE (or any other dimensionality reduction tech-
nique). Afterwards, the parameters α j can analytically be determined as the least
squares solutions of these projections: the matrix A of parameters α j is given by

A = Y · K−1

where K is the normalized matrix with entries k(xi , x j )/
∑

j k(xi , x j ). Y denotes

the matrix of projections yi , and K−1 refers to the pseudo-inverse.
This technology, referred to as kernel t-SNE, has the benefit that training can

be done on a small subset of data only, extending the mapping to the full data set
by means of the explicit mapping prescription. Thus, besides an explicit parametric
form, a considerable speed up can be obtained.

We demonstrate the effect of incorporating the Fisher metric into the projection
mapping using three examples. In all cases, we substitute the dimensionality reduc-
tion technique used to obtain the training set for kernel t-SNE by Fisher t-SNE. For
the estimation of the Fisher information, 1% of the data are used. For training the
kernel mapping, 10% of the data are used. Results are reported for the following
three data sets:
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Fig. 2 Visualization of the ball data set using kernel t-SNE for the training set (left) and out of
sample extension (right) with the Fisher metric (top) versus the standard Euclidean metric (bottom)

• The ball data consists of randomly generated points on the sphere where class
labeling is given by two classes, induced by a band around the zero meridian.

• The usps data set consists of 11.000 points with dimensions representing hand-
written digits from 0 to 9 [12].

• The mnist data set contains 60.000 points with 484 dimensions also representing
handwritten digits.1

A visualization of the resulting projections for the training set and out of sample
extension obtained with t-SNE and Fisher t-SNE is displayed in Fig. 2 for the ball
data set, in Fig. 3 for the usps data set, and in Fig. 4 for the mnist data set. In all
three settings, the generalization of the kernel t-SNE parametric mapping to novel
data is excellent. As can be seen, the Fisher information accounts for clearer class
boundaries and a clearer formation of cluster structures.

1 http://yann.lecun.com/exdb/mnist/index.html.

http://yann.lecun.com/exdb/mnist/index.html.
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Fig. 3 Visualization of the usps data set using kernel t-SNE for the training set (left) and out of
sample extension (right) with the Fisher metric (top) versus the standard Euclidean metric (bottom)

For the ball data, the class around the zero meridian stays more connected if the
Fisher information is used as compared to a spread of the class for the standardEuclid-
ean metric. Similarly, the classes observed for usps and mnist are clearer separated
if the Fisher information is used. This finding can be accompanied by a numerical
evaluation taking the k-nearest neighbor classification error of the embedded data.
The results are displayed in Table1. The classification accuracy is larger if Fisher
information is included.

4 Visualization of Classifiers

We demonstrate the suitability of supervised dimensionality reduction to visualize
general classifiers. For this purpose, we assume a classification mapping f : X →
{1, . . . ,C} is present, which can be given by a support vector machine, for example.
This mapping has been trained using some points xi and their label ci . In addition, we
assume that the label prediction f (xi ) of a point xi can be accompanied by a real value
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Fig. 4 Visualization of the mnist data set using kernel t-SNE for the training set (left) and out of
sample extension (right) with the Fisher metric (top) versus the standard Euclidean metric (bottom)

Table 1 Classification
accuracy of a k-NN classifier
for the projected data sets

k-tsne Fisher k-t-SNE

Ball: test 0.9127 0.9153

train 0.9121 0.9764

mnist: test 0.8419 0.8813

train 0.9271 0.9608

usps: test 0.8496 0.8769

train 0.9273 0.9991

r(xi ) ∈ R which indicates the (signed) strength of class-membership association.
This can be induced by the class probability or ta monotonic transformation thereof.
for example. Now the task is to map the points xi and the classification boundary
induced by f to 2D.

A very simple approach would consist in the following procedure: we sample
the original space X and project these data x using a standard dimensionality reduc-
tion technique. Since smooth values r(x) are present, isobars corresponding to the
classifier can then be displayed in the plane. This naive approach encounters two
problems: (i) sampling the original data space X is infeasible due to a usually high
dimensionality and (ii) projecting exhaustive samples from high dimensions to 2D
necessarily encounters loss of possibly relevant information.
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Fig. 5 Principled procedure how to visualize a given data set and a trained classifier. The example
displays a SVM trained in 3D

These two problems can be avoided if label information is taken into account
already at the dimensionality reduction step, and the procedure is slightly altered.
We propose the following procedure as displayed in Fig. 5:
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• Project the data xi using a nonlinear discriminative visualization technique leading
to points p(xi ) ∈ Y = R

2.
• Sample the projection space Y leading to points z′

i . Determine points zi in the data
space X which are projected to these points p(zi ) ≈ z′

i .• Visualize the training points xi together with the contours induced by the sampled
function (z′

i , r(zi )).

This procedure avoids the problems of the naive approach: a discriminative dimen-
sionality reduction technique focusses on the aspects which are particularly relevant
for the class labels and thus emphasizes the important characteristics of the classifica-
tion function. On the other hand, sampling takes place in the projection space only,
which is low dimensional. One open issue remains: we need to determine points
zi ∈ X which correspond to the projections z′

i ∈ Y . Here, we take an approach
similar to kernel t-SNE; we define a mapping

p−1 : Y → X, y �→
∑

i

αi · ki (yi , y)∑
i ki (yi , y)

= A · [K]i

of the projection space to the original space which is trained based on the given
samples xi , its projections yi , and its labels ci . As before, k is the Gaussian kernel,
K the kernel matrix applied to the points yi which are projections of xi and [K]i the
i th column. A is the matrix of parameters αi . These parameters αi are determined
by means of a numeric optimization of the error:

λ1 · ‖X − A · K‖2 + λ2 · ‖r(X) − r(A · K)‖2

Thereby, X denotes the points xi used to train the discriminative mapping. r(·)
denotes real values associated to the classification f indicating the strength of the
class-membership association. λ1 and λ2 are positive weights which balance the two
objectives: a correct inverse mapping of the data xi and its projections yi on the one
side and a correct match of the induced classifications as measured by r on the other
side.

An example application is displayed in Fig. 6 for the ball data set, Fig. 7 for the
usps data set, and Fig. 8 for mnist. For all settings, an SVM with Gaussian kernel
is trained on a subset of the data which is not used to train the subsequent kernel
t-SNE or Fisher kernel t-SNE, respectively. Thereby, we use two different t-SNE
mappings to obtain the training set for the inverse mapping p−1: kernel t-SNE and
Fisher kernel t-SNE, respectively. The weights of the cost function has been chosen
as λ1 = 0.1 and λ2 = 10,000, respectively.

Obviously, the visualization based on Fisher kernel t-SNE displays much clearer
class boundaries as compared to a visualizationwhich does not take the class labeling
into account. Similarly, the classification of the Fisher-induced visualization better
coincides with the classification of the observed SVM. This visual impression is
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Fig. 6 Visualization of an SVM classifier trained on the ball data set by means of kernel t-SNE
(left) and Fisher kernel t-SNE (right). The accuracy of the SVM is 95%. The SVM classification
coincides for 92% of the data for the Fisher projection, and only for 87% for the standard projection

Fig. 7 Visualization of an SVM classifier trained on the mnist data set by means of kernel t-SNE
(left) and Fisher kernel t-SNE (right). The accuracy of the SVM is 99% on the training set and 97%
on the test set. The SVM classification coincides with 90% of the data for the Fisher projection,
and only 87% for the standard projection

mirrored by a quantitative comparison of the projections, as detailed in the figure
captions: including Fisher information always leads to an improved coincidence
of the mapping accuracy and the original SVM, i.e. a projection which is more
trustworthy as regards the overall accuracy.
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Fig. 8 Visualization of an SVM classifier with 99% accuracy on the training set and 97% accuracy
on the test set for the usps data, the visualization is trained by means of kernel t-SNE (left) and
Fisher kernel t-SNE (right). The accuracy of the SVM is 95%. The SVM classification coincides
with 92% of the data for the Fisher projection, and only 85% for the standard projection

5 Conclusions

We have introduced discriminative visualization by means of the Fisher information
into kernel t-SNEmapping, and we have demonstrated the potential of this technique
in the context of the visualization of classifiers. At present, we have restricted to SVM
as one of the most popular classifiers, leaving the test of the technique for alternative
classifiers as future work.

Acknowledgments Funding by DFG under grants number HA 2719/7-1, HA 2719/6-2 and by the
CITEC centre of excellence are gratefully acknowledged.
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Online Unsupervised Neural-Gas Learning
Method for Infinite Data Streams

Mohamed-Rafik Bouguelia, Yolande Belaïd and Abdel Belaïd

Abstract We propose an unsupervised online learning method based on the
“growing neural gas” algorithm (GNG), for a data-stream configuration where each
incoming data is visited only once and used to incrementally update the learned
model as soon as it is available. The method maintains a model as a dynamically
evolving graph topology of data-representatives that we call neurons. Unlike usual
incremental learning methods, it avoids the sensitivity to initialization parameters by
using an adaptive parameter-free distance threshold to produce new neurons. More-
over, the proposed method performs a merging process which uses a distance-based
probabilistic criterion to eventually merge neurons. This allows the algorithm to pre-
serve a good computational efficiency over infinite time. Experiments on different
real datasets, show that the proposed method is competitive with existing algorithms
of the same family, while being independent of sensitive parameters and being able
to maintain fewer neurons, which makes it convenient for learning from infinite
data-streams.

Keywords Incremental learning ·Unsupervised neural learning ·Online learning ·
Data streams.

1 Introduction

Recently, research focused on designing efficient algorithms for learning from con-
tinuously arriving streams of data, in an incremental way, where each data can be
visited only once and processed dynamically as soon as it is available. Particularly,
unsupervised incremental neural learning methods take into account relations of
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neighbourhood between representatives, and show a good clustering performance.
Among these methods, GNG algorithm [1] has attracted considerable attention. It
allows dynamic creation and removal of neurons (representatives) and edges between
them during learning by maintaining a graph topology using a competitive Hebbian
Learning strategy [2]. Each edge has an associated age which is used in order to
remove old edges and keeps the topology dynamically updated. After adapting the
graph topology using a fixed number of data-points from the input space (i.e. a time
period), a new neuron is inserted between the two neighbouring neurons that cumu-
lated the most important error. Unlike usual clustering methods (e.g. Kmeans), it
does not require initial conditions such as a predefined number of representatives
and their initialization. This represents an important feature in the context of data
streams where we have no prior knowledge about the whole dataset. However, in
GNG, the creation of a new neuron is made periodically, and a major disadvantage
concerns the choice of this period. For this purpose, some adaptations that relaxes this
periodical evolution have been proposed. The main incremental variants are IGNG
[3], I2GNG [4] and SOINN [5]. Unfortunately, the fact that these methods depend
on some sensitive parameters that must be specified prior to the learning, reduces
the importance of their incremental nature. Moreover, large classes are unnecessar-
ily modelled by many neurons representing many small fragments, and leading to a
significant drop of computational efficiency over time.

In this paper we propose a GNG based incremental learning algorithm (AING)
where the decision of producing a new neuron from a new coming data-point is
based on an adaptive parameter-free distance threshold. The algorithm overcomes
the shortcoming of excessive number of neurons by condensing them based on a
probabilistic criterion, and building a new topology with a fewer number of neu-
rons, thus preserving time and memory resources. The algorithm depends only on
a parameter generated by the system requirements (e.g. allowed memory budget),
and unlike the other algorithms, no parameter related to a specific characteristics
dataset needs to be specified. Indeed, it can be really difficult for a user to estimate
all the parameters that are required by a learning algorithm. According to [6], “A
parameter-free algorithm would limit our ability to impose our prejudices, expecta-
tions, and presumptions on the problem at hand, and would let the data itself speak to
us”. An algorithm which uses as few parameters as possible without requiring prior
knowledge is strongly preferred, especially when the whole dataset is not available
beforehand (i.e. a data-stream configuration).

This paper is organized as follows. In Sect. 2, we describe a brief review of some
incremental learning methods (mainly the GNG based ones), and analyse their prob-
lems. Then the algorithm we propose is presented in Sect. 3. In Sect. 4, we expose
our experimental evaluation on synthetic and real datasets. In Sect. 5, we give the
conclusion and present some perspectives of this work.
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2 Related Work

Before describing some incremental methods and discussing their related problems,
we firstly give some notations to be used in the rest of this paper: x refers to a data-
point, y to a neuron, X y is the set of data-points that are already assigned to neuron
y, Vy is the set of current neurons that are neighbours of y (neurons linked to y by
an edge), wy is the reference vector of neuron y, and ny = |X y | is the number of
data-points currently assigned to y.

The basic idea of the Incremental Growing Neural Gas algorithm (IGNG) [3]
is that the decision of whether a new coming data-point x is close enough to its
nearest neurons is made according to a fixed distance threshold value T (Fig. 1a).
Nevertheless, the main drawback of this approach is that the threshold T is globally
the same for all neurons and must be provided as a parameter prior to the learning.
There is no way to know beforehand which value is convenient for T , especially in
a configuration where the whole dataset is not available.

I2GNG [4] is an improved version of IGNGwhere each neuron y has its own local
threshold value (Fig. 1b) which is continuously adapted during learning. If there is
currently no data-point assigned to a neuron y, then its associated threshold is a
default value T which is an input parameter given manually as in IGNG; otherwise,
the threshold is defined as d̄ + ασ , where d̄ is the mean distance of y to its currently
assigned data-points, σ is the corresponding standard deviation, and α a parameter.
Choosing “good” values for parameters T and α is important since the evolution
of the threshold will strongly depends on them. For instance, if they are set at a
relatively small value (depending on the dataset) then many unnecessary neurons
are created. On the other hand, if their values are relatively big, then some data-
points may wrongly be assigned to some close clusters. This clearly makes systems

Fig. 1 Threshold based methods
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using such an algorithm dependent on an expert user and gives less emphasis to its
incremental nature.

In the Self-Organizing Incremental Neural Network (SOINN) [5], the threshold
of a given neuron y is defined as the maximum distance of neuron y to its current
neighbours if they exist, otherwise it is the distance of y to its nearest neuron among
the existing ones (Fig. 1c). SOINN’s threshold is often more sensitive to the creation
order of neurons (induced by the arrival order of data-points), especially in first
steps. Furthermore, SOINN deletes isolated neurons and neurons having only one
neighbour when the number of input data-points is a multiple of a parameter λ (a
period).

Many other parameter-driven methods have been designed especially for data
stream clustering, among this methods we can cite: Stream [7], CluStream [8] and
Density-Based clustering for data stream [9].

There are several variants of Kmeans that are said “incremental”. The one pro-
posed in [10] is based on a creation cost of cluster centers; the higher it is, the fewer
is the number of created clusters. The cost is eventually incremented and the clus-
ter centers are re-evaluated. However, the algorithm assumes that the size of the
processed dataset is known and finite.

3 Proposed Algorithm (AING)

In this section, we propose a scalable unsupervised incremental learning algorithm
that is independent of sensitive parameters, and dynamically creates neurons and
edges between them as data come. It is called “AING” for Adaptive Incremental
Neural Gas.

3.1 General Behaviour

The general schema of AING can be expressed according to the following three
cases. Let y1 and y2 respectively be the nearest and the second nearest neurons from
a new data-point x , such that dist(y1, x) < dist(y2, x):

1. if x is far enough from y1: a new neuron ynew is created at x (see Fig. 2, 1st case).
2. if x is close enough to y1 but far enough from y2: a new neuron ynew is created

at x , and linked to y1 by a new edge (see Fig. 2, 2nd case).
3. if x is close enough to y1 and close enough to y2 (see Fig. 2, 3rd case):

• move y1 and its neighbouring neurons towards x , i.e. modify their reference
vectors to be less distant from x

• increase the age of y1’s edges
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Fig. 2 AING general cases

• link y1 to y2 by a new edge (reset its age to 0 if it already exists)
• activate the neighbouring neurons of y1
• delete the old edges if any.

An age in this context is simply a value associated to each existing edge. Each
time a data-point x is assigned to the winning neuron y1 (the 3rd case), the age of
edges emanating from this neuron is increased. Each time a data-point x is close
enough to neurons y1 and y2, the age of the edge linking this two neurons is reset to
0. If the age of an edge continues to increase without being reset, it will reaches a
maximum age value and the edge will be considered “old” and thus removed.

A data-point x is considered far (respectively close) enough from a neuron y, if
the distance between x and y is higher (respectively smaller) than a threshold Ty .
The following subsection shows how this threshold is defined.

3.2 AING Distance Threshold

Since the input data distribution is unknown, we define a parameter-free adaptive
threshold Ty which is local to each neuron. The idea is to make the threshold Ty of a
neuron y, dependent on the distances to data in its neighbourhood. The neighbour-
hood of y consists of data-points previously assigned to y (for which y is the nearest
neuron), and data-points assigned to the neighbouring neurons of y (neurons that are
linked to y by an edge).

According to formula 1, the threshold Ty of a neuron y is defined as the sum of
distances from y to its data-points, plus the sum of weighted distances from y to its
neighbouring neurons,1 averaged on the total number of the considered distances. In
the case where the neuron y has no data-points that were already assigned to it (X y

is empty) and has no neighbour (Vy is empty), then we consider the threshold Ty as
the half distance from y to its nearest neuron.

Ty =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
e∈X y

dist(y,e)+ ∑
e∈Vy

|Xe|×dist(y,e)

|X y |+ ∑
e∈Vy

|Xe| if X y �= ∅ ∨ Vy �= ∅
dist(y,ỹ)

2 , ỹ = argmin
ỹ �=y

dist(y, ỹ) otherwise
(1)

1 The distance is weighted by the number of data-points associated to the neighbouring neuron.
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Fig. 3 AING threshold
definition

Note that we do not need to save data-points that are already seen in order to
compute this threshold. It is incrementally computed each time a new data-point
comes, by updating some information associated to each neuron (e.g. number of
data-points associated to a neuron, the sum of their distances to this neuron, etc.). If
we consider the example of Fig. 3, there are 3 data-points assigned to y1 (namely x1,
x2 and x3), and two neurons that are neighbours of y1 (namely y2 with 4 assigned
data-points, and y3 with 5 data-points). In this case, the threshold associated to the
neuron y1 is computed as

Ty1 = dist(y1, x1) + dist(y1, x2) + dist(y1, x3) + 4 dist(y1, y2) + 5 dist(y1, y3)

3 + 4 + 5

As we can see, the proposed threshold is independent of parameters and evolves
dynamically according to the data and the topology of neurons.

3.3 AING Merging Process

Since data is processed online, it is usually common that algorithms for data stream
clustering generate many cluster representatives. However, this may significantly
compromise the computational efficiency over time. Instead of introducing parame-
ters in the threshold computation to control the number of created neurons, AING
can eventually reduce the number of neurons through the merging process. Indeed,
when the number of current neurons reaches an upper bound (up_bound), some
close neurons can be merged.

The merging process globally follows the same scheme as previously, but instead
of relying on a hard rule based on a threshold, it uses a more relaxed rule based
on a probabilistic criterion. Saying that “a neuron y is far enough from its nearest
neuron ỹ” is expressed as the probability that y will not be assigned to ỹ, according

to the formula Py,ỹ = |X y |×dist(y,ỹ)

κ
. This probability is proportional to the distance

between the two neurons (dist(y, ỹ)) and to the number of data-points assigned to y
(|X y |), that is, the more y is large and far from ỹ, the more likely it is to remain not
merged. The probability is in contrast inversely proportional to a variable κ , which
means that by incrementing κ , any given neuron y will have more chance to be
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merged with its nearest neuron. Let d̄ be the mean distance of all existing neurons to
the center-of-mass of the observed data-points. κ is incremented by κ = κ + d̄ each
time the neurons need to be more condensed, i.e. until the merging process takes
effect and the number of neurons becomes less than the specified limit up_bound.
Note that Py,ỹ as specified may be higher than 1 when κ is not yet sufficiently big;

a better formulation would be Py,ỹ = min( |X y |×dist(y,ỹ)

κ
, 1), to guarantee it to be

always a true probability.
The merging process is optional. Indeed, up_bound can be set to +∞ if desired.

Alternatively, the merging process can be triggered at any time chosen by the user, or
by choosing the parameter up_bound according to some system requirements such
as the memory budget that we want to allocate for the learning task, or the maximum
latency time tolerated by the system due to a high number of neurons.

Finally, the code is explicitly presented in Algorithms 1 and 2, which provide an
overall insight on the AING method. They both follow the same scheme described
in Sect. 3.1. Algorithm 1 starts from scratch and incrementally processes each data-
point from the stream using the adaptive distance threshold described in Sect. 3.2.
When the number of current neurons reaches a limit, Algorithm 2 is called and some
neurons are grouped together using the probabilistic criterion described in Sect. 3.3.
We just need to point out two additional details appearing in our algorithms:

• If a data-point x is close enough to its two nearest neurons y1 and y2, it is assigned
to y1 and the reference vector of this later and its neighbours are updated (i.e.
they move towards x) by a learning rate: εb for y1 and εn for its neighbours (lines
15–17 of Algorithm 1). Generally, a too big learning rate implies instability of
neurons, while a too small learning rate implies that neurons do not learn enough
from their assigned data. Typical values are 0 < εb � 1 and 0 < εn � εb.
In AING, εb = 1

|X y1 | is slowly decreasing proportionally to the number of data-

points associated to y1, i.e. the more y1 learns, the more it becomes stable, and
εn is simply heuristically set to 100 times smaller than the actual value of εb (i.e.
εn � εb).

• Each time a data-point is assigned to awinning neuron y1, the age of edges emanat-
ing from this neuron is increased (line 14 of Algorithm 1). Let nmax the maximum
number of data-points assigned to a neuron. A given edge is then considered “old”
and thus removed (line 19 of Algorithm 1) if its age becomes higher than nmax .
Note that this is not an externally-set parameter, it is the current maximum number
of data-points assigned to a neuron among the existing ones.



64 M.-R. Bouguelia et al.

Algorithm 1: AING Algorithm (up_bound).

1: init graph G with the two first coming data-points
2: κ = 0
3: while some data-points remain unread do
4: get next data-point x , update d̄ accordingly
5: let y1, y2 the two nearest neurons from x in G
6: get Ty1 and Ty2 according to formula 1
7: if dist (x, wy1 ) > Ty1 then
8: G ← G ∪ {ynew/wynew = x}
9: else
10: if dist (x, wy2 ) > Ty2 then
11: G ← G ∪ {ynew/wynew = x}
12: connect ynew to y1 by an edge of age 0
13: else
14: increase the age of edges emanating from y1
15: let εb = 1

|X y1 | , εn = 1
100×|X y1 |

16: wy1+ = εb × (x − wy1 )

17: wyn + = εn × (x − wyn ),∀yn ∈ Vy1
18: connect y1 to y2 by an edge of age 0
19: remove old edges from G if any
20: end if
21: end if
22: while number of neurons in G > up_bound do
23: κ = κ + d̄
24: G ← Merging(κ , G)
25: end while
26: end while

4 Experimental Evaluation

4.1 Experiments on Synthetic Data

In order to test AING’s behaviour, we perform an experiment on artificial 2D data of
5 classes (Fig. 4a) composed of a Gaussian cloud, a uniform distribution following
different shapes, and some uniformly distributed random noise. Figure4b, c show
the topology of neurons obtained without using the merging process (up_bound =
+∞), whereas for Fig. 4d, e, the merging process was also considered. However, for
Fig. 4b, d, the data were given to AING class by class in order to test the incremental
behaviour of AING. The results show that AING perfectly learns the topology of
data and confirms that it has good memory properties.
On the other hand, for Fig. 4c, e the arrival order of data was random. The results
show that AING performs well, even if the arrival order of data is random.
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Algorithm 2: Merging (κ , G).

1: init G̃ with two neurons chosen randomly from G
2: for all y ∈ G do
3: let ỹ1, ỹ2 the two nearest neurons from y in G̃
4: let d1 = dist (wy, wỹ1 ), d2 = dist (wy, wỹ2 )

5: if random
uni f orm

([0, 1]) < min( ny×d1
κ

, 1) then

6: G̃ ← G̃ ∪ {ỹnew/wỹnew = wy}
7: else
8: if random

uni f orm
([0, 1]) < min( ny×d2

κ
, 1) then

9: G̃ ← G̃ ∪ {ỹnew/wỹnew = wy}
10: connect ỹnew to ỹ1 by an edge of age 0
11: else
12: increase age’s edges emanating from ỹ1
13: Let εb = 1

|X ỹ1 | , εn = 1
100×|X ỹ1 |

14: wỹ1+ = εb × (wy − wỹ1 )

15: wỹn + = εn × (wy − wỹn ),∀ỹn ∈ Vỹ1
16: connect ỹ1 to ỹ2 by an edge of age 0
17: remove old edges from G̃ if any
18: end if
19: end if
20: end for
21: return G̃

Fig. 4 The built topology of activated neurons, with and without the merging process a 2D dataset.
b, c AING without merging. d, e AING with merging. c, e Random arrival order of data. b, d Class
by class arrival order of data
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4.2 Experiments on Real Datasets

We consider in our experimental evaluation, AING with and without the merging
process,2 somemain incremental neural clustering algorithms, and an accurate incre-
mental Kmeans [10] as a reference in comparing the results.

We consider a total of six datasets of different size and dimensions. Three standard
public handwritten digit datasets (i.e. Pendigit and Optdigit from the UCI repository
[11], and Mnist dataset [12]), and three different datasets of documents represented
as bag of words, taken from a real administrative documents processing chain:

• Pendigit: 7,494 data for learning, 3,498 data for testing, 17 dimensions, 10 classes.
• Optdigit: 3,823 data for learning, 1,797 for testing, 65 dimensions, 10 classes.
• Mnist: 60,000 data for learning, 10,000 for testing, 784 dimensions, 10 classes.
• 1st documentary dataset: 1,554 data for learning, 777 for testing, 272 dimensions, 143 classes.
• 2nd documentary dataset. 2,630 data for learning, 1,315 for testing, 278 dimensions, 24 classes.
• 3rd documentary dataset. 3,564 data for learning, 1,780 for testing, 293 dimensions, 25 classes.

In addition to the number of produced representatives and the number of required
parameters, we consider as evaluation measures the recognition rate (R) and the
v-measure (V) [13]. Basically, v-measure is an entropy-based measure which
expresses the compromise between homogeneity and completeness of the produced
clusters and gives an idea about the ability to generalize to future data. Indeed,
according to [13], it is important that clusters contain only data-points which are
members of a single class (perfect homogeneity), but it is also important that all
the data-points that are members of a given class are elements of the same cluster
(perfect completeness).

For each algorithm,we repeatmany experiments by slightly varying the parameter
values needed by each of them. We finally keep the parameter values matching the
best clustering results according to the considered evaluation measures.

The results obtained on the 3 first datasets are shown in Table1, where AING1
(respectively AING2) refers to AING without (respectively with) the merging
process. From Table1, we see that concerning the 1st dataset, Kmeans achieves a
better v-measure, and maintains fewer representatives, but does not reach a recogni-
tion rate which is comparable to the other algorithms. Although AING1 (without the
merging process) is independent of external parameters, it realises almost the same
recognition rate and v-measure as SOINN and I2GNG. AING2 (with the merging
process) produces fewer neurons and the recognition rate as well as the v-measure
are improved further. Concerning the 2nd dataset (Optdigit), AING1 realises the
greatest performances. With AING2, the number of neurons is considerably reduced
and a better compromise between homogeneity and completeness is achieved. The
recognition rate is a little worse than theAING1, but still very close to the highest rate
obtained by the other algorithms. Concerning the Mnist dataset, AING2 achieved
the best performances.

2 We will refer to AING without the merging process by AING1, and to AING with the merging
process by AING2.
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Table 1 Validation on public
standard datasets (R =
Recognition rate, V =
V-Measure, Params =
Number of parameters)

Method Neurons R(%) V(%) Params

Pendigit dataset

AING1 1943 97.427 52.538 0

AING2 1403 97.827 53.624 1

Kmeans 1172 97.055 54.907 3

SOINN 1496 97.341 52.222 3

I2GNG 2215 97.541 52.445 4

Optdigit dataset

AING1 1371 97.718 54.991 0

AING2 825 97.440 55.852 1

Kmeans 1396 97.495 52.899 3

SOINN 1182 96.82 53.152 3

I2GNG 1595 97.161 53.555 4

Mnist dataset

AING1 3606 94.06 45.258 0

AING2 2027 94.21 46.959 1

Kmeans 2829 94.04 45.352 3

SOINN 2354 93.95 44.293 3

I2GNG 5525 94.10 43.391 4

Table2 shows the results obtained on the documentary datasets. Roughly, we can
make the same conclusions as with the previous datasets. AING1 performs well,
although it does not require other pre-defined parameters. However, when using the
merging process (AING2) on these datasets, the obtained results are of lower quality
than those obtained with AING1. This is due to the fact that these documentary
datasets are not very large and that the obtained neurons are not sufficient to represent
well all the different classes. Indeed, the documentary datasets contains much more
classes than the 3 first handwritten digits datasets. The merging process is thus more
convenient when dealing with large datasets.

Figure5 shows how the recognition rate changeswith changing values of the upper
bound parameter (up_bound) for some datasets. Due to the reason cited previously,
for the documentary datasets, the results are better as the value of the parameter
up_bound is higher (which impliesmore neurons). However, if we take as an example
the Pendigit dataset, we can observe that for all values greater than or equal to
600 (i.e. most reasonable values that up_bound can take), the recognition rate is in
[97, 98] (i.e. around the same value). Note that for two experiments with a fixed
value of up_bound, the result may slightly be different since the merging process is
probabilistic. Furthermore, the maximum number of neurons that can be generated
for this example is 1943, thus, for values of up_bound in [1943, +∞[, the merging
process does not take place and AING2 performs exactly like AING1 (i.e. for AING
on the Pendigit dataset ∀ up_bound ∈[1943, +∞[: R = 97.4271%).
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Table 2 Validation on
datasets of administrative
documents (R = Recognition
rate, V = V-Measure, Params
= Number of parameters)

Method Neurons R(%) V(%) Params

1st documentary dataset

AING1 1030 91.505 87.751 0

AING2 1012 89.446 87.461 1

Kmeans 1013 90.862 86.565 3

SOINN 1045 88.545 87.375 3

I2GNG 1367 91.119 86.273 4

2nd documentary dataset

AING1 1215 98.251 57.173 0

AING2 1011 97.490 59.356 1

Kmeans 1720 98.098 53.966 3

SOINN 1650 97.338 55.124 3

I2GNG 1846 98.403 54.782 4

3rd documentary dataset

AING1 2279 91.685 60.922 0

AING2 1897 89.269 62.367 1

Kmeans 2027 91.179 60.192 3

SOINN 2437 88.707 61.048 3

I2GNG 2618 90.393 60.954 4

Fig. 5 The recognition rate achieved by AING according to the parameter up_bound for some
datasets

Furthermore, the time required to incrementally integrate one data-point is
strongly related to the current number of neurons (representatives) because the search
for the nearest neurons from a new data-point is the most consuming operation.
Figure6 shows that AING is more convenient for a long-life learning task since it
maintains a better processing time than the other algorithms over long periods of
time learning, thanks to the merging process. The overall running time for the Mnist
dataset (i.e. required for all the 60,000 data-points) is 1.83h for AING, 2.57h for
SOINN and 4.49h for I2GNG.
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Fig. 6 The average time (in millisecond) required to incrementally integrate one data-point (for
the Mnist dataset)

5 Conclusions and Future Work

This paper presents an online unsupervised learning method which incrementally
processes data from the data stream, without being sensitive to initialization para-
meters. It initially decides whether a new data-point should produce a new cluster
representative by means of a parameter-free adaptive threshold associated to each
existing representative, and evolving dynamically according to the data and the topol-
ogy of neurons. Some representatives may eventually be assigned to others by means
of a distance-based probabilistic criterion each time their number exceed a specified
limit; thus,maintaining a better clusters completeness, and preserving time andmem-
ory resources.

Nonetheless, further work still needs to be done. One of our directions for future
work is to provide some theoretical worst-case bounds on memory and time require-
ment, and allow the algorithm to automatically determine an appropriate upper bound
for the number of representatives; this will allow AING to perform a long-life learn-
ing. Then, we want to integrate the algorithm in a case-based reasoning system for
document analysis, whose case-base will be continuously maintained by the AING
algorithm.

Another direction is the extension of thiswork to semi-supervised and active learn-
ing. Indeed,AING is unsupervised and cannot be directly applied to any classification
task. The work in [14] extends AING in order to be suitable for a text document clas-
sification task, by allowing the algorithm to learn from both labelled and unlabelled
documents and to actively query (from a human annotator) the class-labels of only
documents that are most informative for learning, thus saving annotation time and
effort.
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The Path Kernel: A Novel Kernel
for Sequential Data

Andrea Baisero, Florian T. Pokorny, Danica Kragic and Carl Henrik Ek

Abstract We define a novel kernel function for finite sequences of arbitrary length
which we call the path kernel. We evaluate this kernel in a classification scenario
using synthetic data sequences and show that our kernel can outperform state of the
art sequential similarity measures. Furthermore, we find that, in our experiments, a
clustering of data based on the path kernel results in much improved interpretability
of such clusters compared to alternative approaches such as dynamic time warping
or the global alignment kernel.

Keywords Kernels · Sequences

1 Introduction

Machine learning methods have had an enormous impact on a large range of fields
such as computer vision, robotics and computational biology. These methods have
allowed researchers to exploit evidence from data to learn models in a principled
manner. One of the most important developments has been that of kernel methods
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[5] which embed the input data in a potentially high-dimensional vector space with
the intention of achieving improved robustness of classification and regression tech-
niques. The main benefit of kernel methods is that, rather than defining an explicit
feature space that has the desired properties, the embedding is characterised im-
plicitly through the choice of a kernel function which models the inner product in
an induced space. This creates a very natural paradigm for recovering the desired
characteristics of a representation. Kernel functions based on a stationary distances
(usually an Lp − norm) have been particularly successful in this context [3]. How-
ever, for many application domains, the data does not naturally lend itself to a finite
dimensional vectorial representation. Symbolic sequences and graphs, for example,
pose a problem for such kernels.

For non-vectorial data, the techniques used for learning and inference are gener-
ally much less developed. A desirable approach is hence to first place the data in a
vector space where the whole range of powerful machine learning algorithms can be
applied. Simple approaches such as the Bag-of-Words model, which creates a vec-
torial representation based on occurrence counts of specific representative “words”,
have had a big impact on computer vision [18]. These methods incorporate the fact
that a distance in the observed space of image features does not necessarily reflect a
similarity between the observed scenes. Another approach, where strings are trans-
formed into a vectorial representation before a kernel method is applied, has been
the development of string kernels [14, 17]. Such kernels open up a whole range of
powerful techniques for non-vectorial data and they have been been applied success-
fully to robotics [15], computer vision [13] and biology [12]. Other related works
are based on convolution kernels [11]. Using such kernels, a vectorial representation
that respects the structure of a graph can be recovered. Another approach to define an
inner product between sequences is to search for a space where similarity is reflected
by “how well” sequences align [6, 7, 19].

In this paper, we present a new kernel for representing sequences of symbols
which extends and further develops the concept of sequence alignment. Our kernel
is based on a ground space which encodes similarities between the symbols in a
sequence. We show that our kernel is a significant improvement compared to the
state of the art both in terms of computational complexity and in terms of its ability
to represent the data.

2 Kernels and Sequences

Before we proceed with describing previous work for creating kernel induced feature
spaces for sequences, we will clarify our notation and our notion of kernels. When
discussing kernels in the context ofmachine learning, we have to distinguish between
several uses of theword kernel. In this paper, a kernel denotes any symmetric function
k : X × X → R, where X is a non-empty set [10]. A positive semi-definite (psd)
kernel is a kernel k : X × X → R such that

∑n
i, j ci c j k(xi , x j ) � 0 for any

{x1, . . . , xn} ⊂ X , n ∈ N and c1, . . . cn ∈ R. If the previous inequality is strict
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when ci �= 0 for at least one i ∈ {1, . . . , n}, the kernel is called positive definite
(pd). Further specialisations, such as negative definite (nd) kernels, exist and are of
independent interest.

While there are strong theoretical results on the existence of embeddings corre-
sponding to psd kernels [2, p. 22], non-psd kernel functions can still be useful in
applications. Examples of kernels that are known to be neither pd nor psd but which
are still successfully used in classification include [9]. On another note, there are
also kernels which are conjectured to be psd, and which have been shown to be
psd in experiments, but for which there currently is no proof for the corresponding
positiveness [1].

In this work, we consider finite sequences of symbols belonging to an alphabet
set �, i.e. s = (s1, s2, . . . , s| s |) denotes such a sequence, with si ∈ �, and where
| s | ∈ N0 denotes the length of the sequence. We denote by sa:b, with 1 � a < b �
| s |, the subsequence sa:b = (sa, . . . , sb). When the indices a or b are omitted, they
implicitly refer to 1 or | s | respectively. The inverse of a sequence s is defined by
inv(s)i = s| s |−(i−1).

In this work, we assume that we are given a psd kernel function k� : � ×� → R

describing the similarity between elements of the alphabet � and will refer to k� as
the ground kernel. Given k� , we can now define the path matrix.

Definition 1 (Path Matrix)Given twofinite sequences s, t with elements in an alpha-
bet set� and a kernel k� : �×� → R, we define the path matrix G(s, t) ∈ R| s |×| t |
by [G(s, t)]i j = k�(si , t j ).

We denote δ00
def= (0, 0), δ10

def= (1, 0), δ01
def= (0, 1), δ11

def= (1, 1) and S
def=

{δ10, δ01, δ11}. S is called the set of admissible steps. A sequence of admissible steps
starting from (1, 1) defines the notion of a path:

Definition 2 (Path) A path over am × n path-matrix G is amap γ : {1, . . . , | γ |} →
N × N such that

γ(1) = (1, 1), (1)

γ(i + 1) = γ(i) + δi , for 1 � i < | γ | , with δi ∈ S, (2)

γ(| γ |) = (m, n). (3)

| γ | and δi denote the path’s length and i th step respectively. Furthermore, we adopt
the notation γ(i) = (γX (i), γY (i)). A path determines stretches, or alignments, on
the input sequences according to sγX = (sγX (1), . . . , sγX (| γ |)) and tγY = (tγY (1), . . . ,

tγY (| γ |)).

We denote the set of all paths on a m × n matrix as Γ (m, n). Its cardinality is equal
to the Delannoy number Del(m, n).
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2.1 Sequence Similarity Measures

A popular similarity measure between time-series is Dynamic TimeWarping (DTW)
[8, 16], which determines the distance between two sequences s and t as the minimal
score obtained by all paths, i.e.

dDTW(s, t) = min
γ ∈Γ

Ds,t (γ), (4)

where Ds,t represents the score of a path γ defined by

Ds,t (γ) =
| γ |∑
i=1

ϕ(sγX (i), tγY (i)), (5)

where ϕ is some given similarity measure. However, DTW lacks a geometrical
interpretation in the sense that it does not necessarily respect the triangle inequality
[7]. Furthermore, this similarity measure is not likely to be robust as it only uses
information from the minimal cost alignment.

Taking the above into consideration, Cuturi et al. suggest a kernel referred to as
the Global Alignment Kernel [7]. Instead of considering the minimum over all paths,
the Global Alignment Kernel combines all possible path scores. The kernel makes
use of an exponentiated soft-minimum of all scores, generating a more robust result
which reflects the contents of all possible paths:

kGA(s, t) =
∑
γ ∈Γ

e−Ds,t (γ). (6)

By taking the ground kernel to be k�(α,β) = e−ϕ(α,β), kGA can be described using
the path matrix as

kGA(s, t) =
∑
γ ∈Γ

| γ |∏
i=1

G(s, t)γ(i). (7)

The leading principle in this approach is hence a combination of kernels on the
level of symbols over all paths along G(s, t). Cuturi shows that incorporating all the
elements of G(s, t) into the final results can vastly improve classification compared
to using only the minimal cost path. Furthermore, kGA is proven to be psd under the
condition that both k� and k�

1+k�
are psd [7], giving foundation to its geometrical

interpretation.
However, Cuturi’s kernel makes use of products between ground kernel evalua-

tions along a path. This implies that the score for a complete path will be very small
if ϕ(si , t j ) is sufficiently large, which leads to the problem of diagonally dominant
kernel matrices [6, 8] from which the global alignment kernel suffers. The issue is
particularly troubling when occurring at positions near the top-left or bottom-right
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corners of the pathmatrix because it will affect many of the paths. Furthermore, paths
contribute with equal weight to the value of the kernel. To reduce this effect, it is
suggested in [7] to rescale the kernel values and use its logarithm instead. We argue
that paths which travel closest to the main diagonal of the path matrix should be con-
sidered as more important than others, since they minimise the distortion imposed
on the input sequences, i.e. sγX and tγY are then most similar to s and t . To rectify
this and to include a preference towards diagonal paths, a generalisation called the
Triangular Global Alignment Kernel was developed, which considers only a subset
of the paths [6]. This generalisation imposes a crude preference for paths which do
not drift far away from the main diagonal.

In this paper, we develop a different approach by introducing a weighting of the
paths in Γ based on the number of diagonal and off-diagonal steps taken. We manip-
ulate the weights to encode a preference towards consecutive diagonal steps while
at the same time accumulating information about all possible paths. Furthermore,
by replacing the accumulation of symbol kernel responses along the path using a
summation rather than a product, the kernel’s evaluation reflects more gracefully the
structure of the sequences and avoids abrupt changes in value.

3 The Path Kernel

In this section we will describe our proposed kernel which we will refer to as the
path kernel. Figure1 illustrates the contents of a path matrix in a simplified example,
showing the emergence of diagonal patterns when the two sequences are in good
correspondence.

Table1 shows the resulting alignments associated with the paths shown in Fig. 1.
We argue that the values, the length and the location of these diagonals positively
reflect the relation between the inputs and should thus be considered in the formu-

(a) (b) (c)

Fig. 1 Illustration of the concept of paths and the contents of G(s, t) for s = “ANNA” and
t = “BANANA”. On the left, we illustrate a small number of paths which traverse G. The path
kernel makes use of these, together with all the other paths, to collect data from the matrix and to
extract a final score. In the center, we display the contents of G(s, t), assuming k�(α,β) = δαβ , i.e.
Kroenecker’s delta function. On the right, we highlight the corresponding diagonals whose number,
length and position are related to the similarity between subsequences of s and t



76 A. Baisero et al.

Table 1 Stretches associated to the paths in Fig. 1a with the underlined substrings denoting a
repeated symbol

Stretches

γ1 A N N A A A A A A γ2 A N N N N A

B B B B A N A N A B A N A N A

γ3 A N N N N A γ4 A A A A A A N N A

B A N A N A B A N A N A A A A

Note that, even though γ2 and γ3 produce the same stretches, they traverse the matrix differently
and should thus be considered separately

lation of a good kernel. High values imply a good match on the ground kernel level,
while their length encodes the extent of the match. On the other hand, the posi-
tion relative to the main diagonal reflects how much the input sequences had to be
“stretched” in order for the match to be encountered. We wish to have a feature space
where a smaller stretch implies a better correspondence between the sequences.

Let us now define a new kernel that incorporates different weightings depending
on the steps used to travel along a path.

Definition 3 (Path Kernel) For any sequences s, t , we define

kPATH(s, t)
def=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k�(s1, t1)

+ CHV kPATH(s2:, t)

+ CHV kPATH(s, t2:)
+ CD kPATH(s2:, t2:)

| s | � 1 | t | � 1,

0 otherwise,

(8)

where CHV and CD represent weights assigned to vertical or horizontal steps and
diagonal steps respectively. By enforcing the constraints CHV > 0 and CD > CHV,
we aim to increase the relative importance of paths with many diagonal steps.

The symmetry of the kernel is easily verifiable. On the other hand, the positive
semi-definiteness of the kernel is not immediately obvious from the definition.1

3.1 Efficient Computation

Kernel methods often require the computation of a kernel function on a large dataset,
where the number of kernel evaluations will grow quadratically with the number of
data-points. It is hence essential that the kernel evaluations themselves are efficiently
computable.

Not only can the path kernel be evaluated using a Dynamic Programming algo-
rithm which avoids the expensive recursion in (8) and which achieves a computa-

1 In an extension of this work, which is currently under review, we provide a proof of the positive
semi-definiteness of our kernel.
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(a) (b)

Fig. 2 On the left, a precomputed 15 × 15 weight matrix with CH V = 0.3 and CD = 0.34 is used
to select a 10 × 12 weight matrix which can then be used to evaluate kPATH(s, t) for input sizes
| s | = 10 and | t | = 12. On the right, the inversion invariant ω̃PATH corresponding to k̃PATH for the
same input sizes is displayed

tional complexity comparable with DTW and kGA, but it can also be computed very
efficiently using the following alternative formulation:

kPATH(s, t) =
∑

i j

G(s, t)i j ωPATHi j , (9)

[ωPATH]i j =
min (i, j)−1∑

d=0

Ci+ j−2−2d
HV Cd

D(d, i − 1 − d, j − 1 − d)!. (10)

The usefulness of (9) comes from the fact that the contents of the weight matrix
ωPATH do not really depend on s, t , and thus ωPATH can in fact be pre-computed up to
an adequate size2 (Fig. 2). After this, the evaluation of the kernel for input of sizes m
and n is achieved by simply selecting the sub-matrix ranging from (1, 1) to (m, n);
the remaining matrix element-wise multiplication can then be efficiently carried out.
By taking advantage of this, one can evaluate the kernel at speeds depending only on
the speed of the evaluation of G and the speed of a simple matrix multiplication (with
the initial overhead consisting of the pre-computation of ωPATH). The weight matrix
can also be computed through an efficient and very simple Dynamic Programming
algorithm similar to the one which can be used to evaluate the kernel itself.

We call a kernel satisfying k(s, t) = k(inv(s), inv(t)) inversion invariant. If a
kernel k does not naturally have this property, it can be enforced by replacing k with

k̃(s, t) = 1

2
[ k(s, t) + k(inv(s), inv(t))]. (11)

2 For any specific dataset, that would be the length of the longest sequence.



78 A. Baisero et al.

The path kernel is not originally inversion invariant, but invariance can be enforced
without the need for a double computation of the kernel for each evaluation. This is
done by modifying the selected sub-matrix of ωPATH as follows: for any two inputs
with lengths m and n, we replace the weight matrix ωPATH by

[ω̃PATH]i j = 1

2

[
ωPATHi j + ωPATHm−i+1,n− j+1

]
, (12)

and then proceed using this weight matrix.

3.2 Ground Kernel Choice

The path kernel is based on a ground kernel which, apart from being a psd kernel
function, is not constrained in any other way. However, we show in this paragraph
that an arbitrarily k� may lead to undesirable results.

Assume an alphabet and a ground kernel such that α,β ∈ �, k�(α,α) = 1,
k�(β,β) = 1 and k�(α,β) = −1. Given the input sequences s = (α,β, . . . ,α,β)

and t = (β,α, . . . ,β,α), one may be inclined to say that s and t are very similar
because each can be obtained from the other by cyclically shifting the symbols
by one position. However, the contents of G(s, t) show a collection of ones and
negative ones organised in a chessboard-like disposition. This obviously leads to
heavy fluctuations during the computation of kPATH(s, t) and to potentially very small
values. Furthermore, the issue is present even in the computation of kPATH(s, s) and
kPATH(t, t) which is not desirable under any circumstance. This problem is however
easily rectifiable by considering only ground kernels that yield non-negative results
on elements of �.

4 Experiments

In this section, we present the results of experiments performed with the proposed
kernel. In particular, we perform two separate quantitative experiments that, in
addition to our qualitative results, shed some light on the behaviour of the proposed
method in comparison to previous work. We will compare our approach to kGA as
well as the non-psd kernel obtained by using the negative exponential of the DTW
distance,

kDTW(s, t) = e−dDTW(s,t). (13)

In thefirst experiment,wegenerate eight different classes of uni-variate sequences.
Each class consists of a periodic waveform namely ±sine, ±cosine, ±sawtooth
and ±square. From these, we generate noisy versions by performing three different
operations:
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1. The length of the sequence is generated by sampling from a normal distribution
N (100,σ2

l ), rounding the result and rejecting non-positive lengths.
2. We obtain an input sequence as | s | equidistant numbers spanning 2 periods of

the wave; we then add to each element an input noise which follows a normal
distribution N (0,σ2

i ).
3. We feed the noisy input sequence to the generating waveform and get an output

sequence, to which we add output noise which follows a normal distribution
N (0,σ2

o).

Figure3 shows the sequences for the parameter setting σ{l,i,o} = 5. This corresponds
to the setting which we will use to present our main results.

The path kernel has two different sets of parameters: the ground kernel and the
weights associated with steps in the path matrix. In our experiments, we use a simple
zero mean Gaussian kernel with standard deviation 0.1 as ground kernel. The step
weights CHV and CD are set to 0.3 and 0.34 respectively. We use the same setting
throughout the experiments. The behaviour of the kernel will change with the value
of these parameters. A complete analysis of this is however beyond the scope of this
paper. Here, we focus on the general characteristics of our kernel which summarises
all possible paths using step weights satisfying CHV < CD—implying a preference
for diagonal paths.

In order to get an understanding of the geometric configuration of the data that
our kernel matrices corresponds to, we project the data onto the two first principal
directions as determined by each of these kernels. The result can be seen in Fig. 4.
It is important to note that, as the DTW kernel has negative eigenvalues, it does not
imply a geometrically valid configuration of datapoints in a feature space.

From Fig. 4, we get a qualitative understanding of how the induced feature spaces
looks like. However, a representation is simply the means to an end and to be able
to make a valuable assessment of its useability, we need to use it to achieve a task.
We do so through two different experimental setups: The first is meant to test the
discriminative capabilities of the representation; the second evaluates how well the
representation is suited for generalisation.

In order to test the discriminability of the feature space generated by the path
kernel, we perform a classification experiment using the same data as explained
above, and where the task is to predict the generating class of a waveform. We
feed the kernel matrix into an SVM classifier [4], use a 2-fold cross-validation, and
report the average over 50 runs. Due to the negative eigenvalues, the classification
fails for the DTW kernel. For this reason, we only present results for the remaining
two kernels. In Fig. 5a, the results for the classification with increasing noise levels
are shown. For moderate noise-levels (up to σ{l,i,o} = 5), the global alignment and
the path kernel are comparable in performance, while—at a higher noise level—the
performance of the global alignment kernel rapidly deteriorates and at σ{l,i,o} = 9
its performance is about chance, while the path kernel still achieves a classification
rate of over 80%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 The figure above shows the eight different waveforms used for the classification for a noise
level corresponding to σ{l,i,o} = 5. The golden curve depicts the base waveformwithout noise while
the blue and red curves show the shortest and the longest noisy example respectively. The black
curves display the remaining examples in the database
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 The above figure displays the two dimensional principal subspace for the DTWKernel (top),
Global Alignment Kernel (middle) and the Path Kernel (bottom). The left column represents data
with generation noise σ{l,i,o} = 2, while, in the right column, the noise is increased to σ{l,i,o} = 5,
corresponding to the waveforms in Fig. 3. The different waveforms are displayed as follows: sine
and-sine as a magenta circle and a green square, cosine and-cosine as a pink pentagon and a yellow
star, sawtooth and-sawtooth as a light-blue hexagon and an orange diamond and square and-square
as a blue and a red triangle respectively
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The classification experiment shows that the path kernel significantly outper-
formed the global alignment kernel when noise in the sequence became significant.
Looking at the feature space, depicted in Fig. 4, we see that the path kernel encodes
a feature space having more clearly defined clusters corresponding to the different
waveforms. Additionally, the clusters also have a simpler structure. This signifies
that the path kernel should be better suited for generalisation purposes, where it is
beneficial to have a large continuous region of support which gracefully describes
the variations in the data—rather than working in a space that barely separates the
classes.

We now generate a new dataset consisting of 100 noisy sine-waves (σ{l,i,o} = 5)
shifted in phase between 0 and π. The data is split uniformly into two halves and the
first is used for training and the second for testing. We want to evaluate how well the
kernel is capable of generalising over the training data. To that end we regress from
the proportion of the training data to the test data and evaluate how the prediction error
changes by altering this proportion. The prediction is performed using simple least-
square regression over the kernel induced feature space. Figure5b shows the results
using different sizes of the training data; The path kernel performs significantly better
compared to the global alignment kernel and the results improve with the size of the
training dataset. Interestingly, the global alignment kernel produces very different
results dependent on the size of the training dataset indicating that it is severely
over-fitting the data.

(a) (b)

Fig. 5 The left figure displays the classification rate for predicting the waveform type using an
SVM classifier in the feature space defined by the Global Alignment Kernel (blue) and the Path
Kernel (green). The x-axis depicts the noise level parametrized by σ{l,i,o}. The right figure depicts
the RMS error when predicting the phase shift from a noisy sine waveform by a regression over
the feature space induced by the kernels. The red bars correspond to the Global Alignment Kernel
and the green bars to the Path Kernel. The y-axis shows the error in percentage of phase, while the
x-axis indicates the size of the training dataset. The test set has a constant size of 50
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5 Conclusions

In this paper, we have presented a novel kernel for encoding sequences. Our kernel
reflects and encodes all possible alignments between two sequences by associating
a cost to each. This cost encodes a preference towards specific paths. The kernel is
applicable to any kind of symbolic or numerical data as it requires only the existence
of a kernel between symbols. We have presented both qualitative and quantitative
experiments exemplifying the benefits of the path kernel compared to competing
methods. We show that the proposed method significantly improves results both
with respect to discrimination and generalisation especially in noisy scenarios. The
computational cost associated with the kernel is considerably lower than competing
methods, making it applicable to data-sets that could previously not be investigated
using kernels.

In this paper, we have chosen a very simple dataset in order to evaluate our
kernel. Given our encouraging results, we are currently working on applying our
kernel to more challenging real-world datasets. Additionally, we are investigating
the possibility of optimizing the kernel parameters to further improve classification
results.
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A MAP Approach to Evidence Accumulation
Clustering

André Lourenço, Samuel Rota Bulò, Nicola Rebagliati, Ana Fred, Mário
Figueiredo and Marcello Pelillo

Abstract The Evidence Accumulation Clustering (EAC) paradigm is a clustering
ensemble method which derives a consensus partition from a collection of base
clusterings obtained using different algorithms. It collects from the partitions in the
ensemble a set of pairwise observations about the co-occurrence of objects in a same
cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred
to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering
Ensembles (PEACE) algorithm is a principled approach for the extraction of a con-
sensus clustering from the observations encoded in the co-association matrix based
on a probabilistic model for the co-association matrix parameterized by the unknown
assignments of objects to clusters. In this paper we extend the PEACE algorithm by
deriving a consensus solution according to a MAP approach with Dirichlet priors
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defined for the unknown probabilistic cluster assignments. In particular, we study
the positive regularization effect of Dirichlet priors on the final consensus solution
with both synthetic and real benchmark data.

Keywords Clustering algorithm · Clustering ensembles · Probabilistic modeling ·
Evidence accumulation clustering · Prior knowledge
1 Introduction

TheEvidenceAccumulationClustering algorithm (EAC) [1–3]was proposed in 2001
as one possible approach for the clustering combination problem. In this setting, a
consensus clustering is determined from an ensemble of clusterings constructed
from a set of base clustering algorithms. The leverage of an ensemble of clusterings
is considerably more difficult than combining an ensemble of classifiers, due to the
correspondence problem between the cluster labels produced by the different clus-
tering algorithms. This problem becomes more serious if clusterings with different
numbers of clusters are allowed in the ensemble.

In the EAC framework the clustering ensemble is summarized into a pair-wise
co-association matrix, where each entry counts the number of clusterings in the
ensemble in which a given pair of objects is placed in the same cluster, thus side-
stepping the cluster label correspondence problem. This matrix, which is regarded to
as a similarity matrix, is then used to feed a pairwise similarity clustering algorithm
to deliver the final consensus clustering [3]. The drawback of this approach is that
the information about the very nature of the co-association matrix is not properly
exploited during the consensus clustering extraction.

A first work in the direction of finding amore principled way of using the informa-
tion in the co-association matrix is [4]. There, the problem of extracting a consensus
partition is formulated as a matrix factorization problem, under probability simplex
constraints on each column of the factor matrix. Each of these columns can then be
interpreted as the multinomial distribution that expresses the probabilities of each
object being assigned to each cluster. The drawback of that approach is that thematrix
factorization criterion is not supported on any probabilistic estimation rationale.

The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE)
algorithm [5] is a probabilistic model for the co-association matrix, which regards
its entries as independent observations of binomial random variables counting the
number of times two objects occur in a same cluster. These random variables are
indirectly parametrized by the unknown assignments of objects to clusters which are
in turn estimated by adopting a Maximum-Likelihood Estimation (MLE) approach.

In this paper we extend PEACE by estimating the solution using a maximum
a-posteriori (MAP) approach with Dirichlet prior for the unknown probabilistic
assignments. With this Dirichlet prior the MAP estimate can be regarded as a reg-
ularized MLE estimate. Our formulation translates into a non-linear optimization
problem, which is addressed by means of a primal line-search procedure that guar-
antees to find a local solution of the MAP estimation problem. In the experiments,
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based on synthetic and real-world datasets from theUCImachine learning repository,
we study the regularization and its positive effect on results.

The remainder of the paper is organized as follows. In Sect. 2, we describe our
probabilistic model for the co-association matrix and the related MAP estimation of
the unknown cluster assignments. Section3 is devoted to solving the optimization
problem arising for the unknown cluster assignments estimation. Section4 contex-
tualizes this model on related work. Finally, Sect. 5 reports experimental results and
Sect. 6 presents some concluding remarks.

2 Probabilistic Model

Let O = {1, . . . , n} be the indices of a set of n objects to be clustered into k
classes and let E = {pu}m

u=1 be a clustering ensemble, i.e., a set of m clusterings
(partitions) obtained by different algorithms (e.g. different parametrizations and/or
initializations) on (possibly) sub-sampled versions of the object set. Each clustering
pu ∈ E is a function pu : Ou → {1, ..., ku}, where Ou ⊆ O is a sub-sample of O
used as input to the uth clustering algorithm, and ku is the corresponding number
of clusters, which can be different on each pu ∈ E . Let Ωi j ⊆ {1, ..., m} denote
the set of clustering indices where both objects i and j have been clustered, i.e.
(u ∈ Ωi j ) ⇔ (

(i ∈ Ou)∧ ( j ∈ Ou)
)
, and let N be a n × n matrix where Ni j = |Ωi j |

for all i, j ∈ O. The ensemble of clusterings is summarized in the co-association
matrixC ∈ {0, ..., m}n×n. Each entryCi j of this matrix with i �= j counts the number
of times objects i and j are observed as clustered together in the ensemble E , i.e.

Ci j =
∑

l∈Ωi j

1lpl (i)=pl ( j)

where 1lP is an indicator function returning 1 or 0 according to whether the condition
P given as argument is true or false. Of course, 0 ≤ Ci j ≤ Ni j .

Our basic assumption is that each object has an (unknown) probability of being
assigned to each cluster independently of other objects. We denote by yi =
(yi

1, ..., yi
k)

	 the probability distribution over the set of class labels {1, . . . , k}, that
is yi

k = P[i ∈ Ck], where Ck denotes the subset of O that constitutes the kth cluster.

Of course, yi belongs to the probability simplex Δ = {x ∈ R
k+ : ∑k

j=1 x j = 1}.
Finally, we collect all the yi ’s in a k × n matrix Y = [ y1, . . . , yn] ∈ Δn.

In our model, the probability that objects i and j are co-clustered is

k∑

k=1

P[i ∈ Ck, j ∈ Ck] =
K∑

k=1

yi
k y j

k = yi 	 y j



88 A. Lourenço et al.

Let Ci j be a Binomial random variable representing the number of times that
objects i and j are co-clustered; from the assumptions above, we have that Ci j ∼
Binomial

(
Ni j , yi 	 y j

)
, that is,

P
[
Ci j = c| yi , y j ] =

(
Ni j

c

)(
yi 	 y j )c(1 − yi 	 y j )Ni j −c

.

Each elementCi j of the co-associationmatrix is interpreted as a sample of the ran-
dom variable Ci j , and the different Ci j are all assumed independent. Consequently,

P[C|Y] =
∏

i, j∈O
i �= j

(
Ni j

Ci j

)
( yi 	 y j )Ci j (1 − yi 	 y j )Ni j −Ci j .

In [5], the MAP estimate of Y was taken, herein, we take a different approach the
maximum a posterior estimate of Y. The posterior probability of Y given the evidence
C is defined as

P[Y|C] ∝ P[C|Y]P[Y|Θ]

where P[Y|Θ] is the prior distribution on the probabilistic cluster assignments. Let
Θ = [θ1, . . . ,θn] ∈ R

k×n+ . In our setting, we assume each assignment yi to be
an independent realization of a Dirichlet prior distribution with parameter θi =
(θi

1, . . . , θ
i
k)

	 ∈ R
k. Therefore, we have that

P[Y|Θ] =
∏

i∈O
P[ yi |θi ] =

∏

i∈O
B(θi )−1

k∏

k=1

(yi
k)

θi
k−1 ,

where B is the multinomial Beta function.
We compute the maximum a-posteriori estimate of Y by maximizing logP[Y|C].

By simple algebraic manipulations, this yields the following optimization problem:

Y∗ ∈ arg max
Y∈Δn

f (Y) (1)

where

f (Y) =
∑

i, j∈O
i �= j

Ci j log
(

yi 	 y j
)

+ (Ni j − Ci j ) log
(
1 − yi 	 y j

)
(2)

+
∑

j∈O

k∑

k=1

(θ
j
k − 1) log(y j

k ) + constant.

Hereafter, we use log 0 ≡ −∞, 0 log 0 ≡ 0, and denote by dom( f ) = {Y : f (Y) �=
−∞} the domain of f .
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In this paper we focus on a uniform regularization by assuming that Θk j = λ for
all k ∈ {1, . . . , k} and j ∈ O, where λ > 1 is the regularization parameter. When
λ = 1 the MAP estimate coincides with a MLE estimate. As λ tends to infinity, the
MAP solution Y∗ tends to a constant matrix.

3 Optimization Algorithm

The optimization method described in this section belongs to the class of primal
line-search procedures. This method iteratively finds a direction which is feasible,
i.e. satisfying the constraints, and ascending, i.e. guaranteeing a (local) increase of
the objective function, along which a better solution is sought. The procedure is
iterated until it converges or a maximum number of iterations is reached.

The first part of this section describes the procedure to determine the search
direction in the optimization algorithm. The second part is devoted to determining
an optimal step size to be taken in the direction found.

3.1 Computation of a Search Direction

Consider the Lagrangian of (1):

L(Y,λ,M) = f (Y) + Tr
[
M	Y

]
− λ	(Y	ek − en)

where Tr[·] is the matrix trace operator, ek is a k-dimensional column vector of all 1s,
Y ∈ dom( f ) andM = [μ1, . . . ,μn] ∈ R

k×n+ ,λ ∈ R
n are the Lagrangianmultipliers.

By derivating L with respect to yi and λ and considering the complementary slack-
ness conditions, we obtain the first order Karush-Kuhn-Tucker (KKT) conditions [6]
for local optimality:

⎧
⎪⎨

⎪⎩

gi (Y) − λi en + μi = 0, ∀i ∈ O
Y	ek − en = 0
Tr

[
M	Y

] = 0,

(3)

where

gi (Y) =
⎡

⎣
∑

j∈O\{i}
Ci j

y j

yi 	 y j
− (Ni j − Ci j )

y j

1 − yi 	 y j

⎤

⎦ + diag
[

yi
]−1

(θi − ek).

Here, diag[v]−1 is the inverse of the diagonal matrix having v on the diagonal. We
can express the Lagrange multipliers λ in terms of Y by noting that
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yi 	 [
gi (Y) − λi en + μi

]
= 0 ,

yields λi = yi 	gi (Y) for all i ∈ O.
Let ri (Y) be given as

ri (Y) = gi (Y) − λi ek = gi (Y) − yi 	gi (Y)ek,

and letσ( yi ) denote the support of yi , i.e. the set of indices corresponding to (strictly)
positive entries of yi . An alternative characterization of the KKT conditions, where
the Lagrange multipliers do not appear, is

⎧
⎪⎨

⎪⎩

[ri (Y)]k = 0, ∀i ∈ O,∀k ∈ σ( yi ),

[ri (Y)]k ≤ 0, ∀i ∈ O,∀k /∈ σ( yi ),

Y	ek − en = 0.

(4)

The two characterizations (4) and (3) are equivalent. This can be verified by exploit-
ing the non negativity of both matrices M and Y, and the complementary slackness
conditions.

The following proposition plays an important role in the selection of the search
direction.

Proposition 1 Assume Y ∈ dom( f ) to be feasible for (1), i.e. Y ∈ Δn ∩ dom( f ).
Consider

J ∈ arg max
i∈O

{[gi (Y)]Ui − [gi (Y)]Vi

}
,

where

Ui ∈ arg max
k∈{1...k}

[gi (Y)]k and

Vi ∈ arg min
k∈σ( y j )

[gi (Y)]k .

Let U = UJ and V = VJ . Then the following holds:

– [gJ (Y)]U ≥ [gJ (Y)]V and
– Y satisfies the KKT conditions for (1) if and only if [gJ (Y)]U = [gJ (Y)]V .

Proof We prove the first point by simple derivations as follows:

[gJ (Y)]U ≥ yJ 	gJ (Y) =
∑

k∈σ( yJ )

y J
k [gJ (Y)]k

≥
∑

k∈σ( yJ )

y J
k [gJ (Y)]V = [gJ (Y)]V .

By subtracting yJ 	gJ (Y) we obtain the equivalent relation
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[rJ (Y)]U ≥ 0 ≥ [rJ (Y)]V , (5)

where equality holds if and only if [gJ (Y)]V = [gJ (Y)]U .
As for the second point, assume that Y satisfies the KKT conditions. Then

[rJ (Y)]V = 0 because V ∈ σ( yJ ). It follows by (5) and (4) that also [rJ (Y)]U =
0 and therefore [gJ (Y)]V = [gJ (Y)]U . On the other hand, if we assume that
[gJ (Y)]V = [gJ (Y)]U then by (5) and by definition of J we have that [ri (Y)]Ui =
[ri (Y)]Vi = 0 for all i ∈ O. By exploiting the definition of Ui and Vi it is straight-
forward to verify that Y satisfies the KKT conditions.

Given Y a non-optimal feasible solution of (1), we can determine the indicesU , V
and J as stated in Proposition 1. The next proposition shows how to build a feasible
and ascending search direction by using these indices. Later on, we will point out
some desired properties of this search direction. We denote by e( j)

n the j th column
of the n-dimensional identity matrix.

Proposition 2 Let Y ∈ Δn ∩ dom( f ) and assume that the KKT conditions do

not hold. Let D =
(

e(U )

k − e(V )

k

) (
e(J )

n

)
	, where J , U and V are computed as in

Proposition 1. Then, for all 0 ≤ ε ≤ y J
V , we have that Zε = Y+ εD belongs to Δn,

and for all small enough, positive values of ε, we have f (Zε) > f (Y).

Proof Let Zε = Y+ εD. Then for any ε,

Zε
	ek = (Y+ εD)	ek = Y	ek + εD	ek

= en + ε e(J )
n

(
e(U )

k − e(V )

k

) 	ek = en.

As ε increases, only the (V, J )th entry of Zε, which is given by y J
V − ε, decreases.

This entry is non-negative for all values of ε satisfying ε ≤ y J
V . Hence, Zε ∈ Δn for

all positive values of ε not exceeding y J
V as required.

As for the second point, the Taylor expansion of f at Y gives, for all small enough
positive values of ε:

f (Zε) − f (Y) = ε

[
lim
ε→0

d

dε
f (Zε)

]
+ O(ε2)

=
(

e(U )

k − e(V )

k

) 	gJ (Y) + O(ε2) > 0

= [gJ (Y)]U − [gJ (Y)]V + O(ε2) > 0

The last inequality derives from Proposition 1 because if Y does not satisfy the KKT
conditions then [gJ (Y)]U − [gJ (Y)]V > 0.



92 A. Lourenço et al.

3.2 Computation of an Optimal Step Size

Proposition 2 provides a direction D that is both feasible and ascending for Y with
respect to (1). We will now address the problem of determining an optimal step ε∗
to be taken along the direction D. This optimal step is given by the following one
dimensional optimization problem:

ε∗ ∈ arg max
0≤ε≤y J

V

f (Zε) , (6)

where Zε = Y+ εD. We prove this problem to be concave.

Proposition 3 The optimization problem in (6) is concave, provided that θ
j
k ≥ 1 for

all j ∈ O and k ∈ {1, . . . , k}.
Proof The direction D is everywhere null except in the J th column. Since the first
sum in (2) is taken over all pairs (i, j) such that i �= j we have that the argument of
every log function (which is a concave function) is linear in ε. The same holds true
for the rest of the function since each coefficient of the log function is nonnegative.
Concavity is preserved by the composition of concave functions with linear ones and
by the sum of concave functions [7]. Hence, the maximization problem is concave.

Let ρ(ε′) denote the first order derivative of f with respect to ε evaluated at ε′, i.e.

ρ(ε′) = lim
ε→ε′

d

dε
f (Zε) =

(
e(U )

k − e(V )

k

) 	gJ (Zε′).

By the concavity of (6) and Kachurovskii’s theorem [8] we derive that ρ is non-
increasing in the interval 0 ≤ ε ≤ y J

V . Moreover, ρ(0) > 0 since D is an ascending
direction as stated by Proposition 2. In order to compute the optimal step ε∗ in (6)
we distinguish 2 cases:

– if ρ(y J
V ) ≥ 0 then ε∗ = y J

V for f (Zε) is non-decreasing in the feasible set of (6);
– if ρ(y J

V ) < 0 then ε∗ is a zero of ρ that can be found by dichotomic search.

Suppose the second case holds, i.e. assume ρ(y J
V ) < 0. Then ε∗ can be found by

iteratively updating the search interval as follows:

(
�(0), r(0)

)
=

(
0, y J

V

)

(
�(t+1), r(t+1)

)
=

⎧
⎪⎨

⎪⎩

(
�(t), m(t)

)
if ρ

(
m(t)

)
< 0 ,

(
m(t), r(t)

)
if ρ

(
m(t)

)
> 0

(
m(t), m(t)

)
if ρ

(
m(t)

) = 0 ,

(7)

for all t > 0, where m(t) denotes the center of segment [�(t), r(t)], i.e. m(t) =
(�(t) + r(t))/2.
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We are not in general interested in determining a precise step size ε∗ but an
approximation is sufficient. Hence, the dichotomic search is carried out until the
interval size is below a given threshold. If δ is this threshold, the number of iterations
required is expected to be log2(y J

V /δ) in the worst case.

3.3 Complexity

Consider a generic iteration t of our algorithm and assume A(t) = Y	Y and g(t)
i =

gi (Y) given for all i ∈ O, where Y = Y(t). The computation of ε∗ requires the
evaluation of function ρ at different values of ε. Each function evaluation can be
carried out in O(n) steps by exploiting A(t) as follows:

ρ(ε) =
⎡

⎣
∑

i∈O\{J }
CJ i

d	 yi

A(t)
J i + ε d	 yi

+ (NJ i − CJ i )
d	 yi

1 − A(t)
J i − ε d	 yi

⎤

⎦

+d	diag
[

yJ + ε d
]−1

(θ J − ek) ,

where d =
(

e(U )

k − e(V )

k

)
. The complexity of the computationof the optimal step size

is thus O(nγ) where γ is the average number of iterations needed by the dichotomic
search. Next, we can efficiently update A(t) as follows:

A(t+1) =
(
Y(t+1)

) 	Y(t+1) = A(t) + ε∗ (
D	Y+ Y	D+ ε∗D	D

)
. (8)

Indeed, since D has only two non-zero entries, namely (V, J ) and (U, J ), the terms
within parenthesis can be computed in O(n). The computation of Y(t+1) can be
performed in constant time by exploiting the sparsity of D as Y(t+1) = Y(t) + ε∗ D.
The computation of g(t+1)

i = gi (Y(t+1)) for each i ∈ O \ {J } can be efficiently
accomplished in O(k) (it requires O(nk) to update all of them) as follows:

g(t+1)
i = g(t)

i + Ci J

(
( yJ )(t+1)

A(t+1)
i J

− ( yJ )(t)

A(t)
i J

)

+ (Ni J − Ci J )

(
( yJ )(t+1)

1 − A(t+1)
i J

− ( yJ )(t)

1 − A(t)
i J

)

. (9)

The complexity of the computation of g(t+1)
J , instead, requires O(nk) steps:
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g(t+1)
J =

⎡

⎣
∑

i∈O\{J }
CJ i

( yi )(t+1)

A(t+1)
J i

− (NJ i − CJ i )
( yi )(t+1)

1 − A(t+1)
J i

⎤

⎦

+ diag
[
( yJ )(t+1)

]−1
(θ J − ek). (10)

By iteratively updating the quantities A(t), g(t)
i ’s and Y(t) according to the aforemen-

tioned procedures, we can keep a per-iteration complexity of O(nk), that is linear
in the number of variables in Y. Iterations stop when KKT conditions of proposition
(1) are satisfied under a given tolerance τ , i.e. [gJ (Y)]U − [gJ (Y)]V < τ .

Algorithm 1: PEACE-MAP.

Require: Y(0) ∈ Δn ∩ dom( f )

Define the prior distribution parameters Θ = [θ1, . . . ,θn] ∈ R
k×n+

Initialize g(0)
i ← gi (Y) for all i ∈ O

Initialize A(0)
i ← (

Y(0)
) 	Y(0)

t ← 0
while termination-condition do
Compute U, V, J as in Proposition 1
Compute ε∗ as described in Sec. 3.2/3.3
Update A(t+1) as described in Sec. 3.3
Update Y(t+1) as described in Sec. 3.3
Update g(t+1)

i as described in Sec. 3.3
t ← t + 1

end while
return Y(t)

4 Related Work

The topic of clustering combination, also known as consensus clustering, has been
very active in the last decade. A very recent and complete survey can be found in
[9]. Several consensus methods have been proposed in the literature [1, 3, 10–14].
Some of them are based on estimates of similarity between partitions, others cast the
problem as a categorical clustering problem, and finally others on similarity between
data points (induced by the clustering ensemble). Our work belongs to this last type,
where similarities are aggregated on the co-association matrix. Moreover there are
methods that produce a crisp partition from the information provided by the ensemble
and methods that induce a probabilistic solution, as our work.

In [15] the entries of the co-association matrix are also exploited and modeled
using a generative aspectmodel for dyadic data, and producing a soft assignment. The
consensus solution is found by solving a maximum likelihood estimation problem,
using the Expectation-Maximization (EM) algorithm.
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In a different fashion, other probabilistic approaches to consensus clustering that
do not exploit the co-association matrix are [11, 16]. There, the input space directly
consists of the labellings from the clustering ensemble. Themodel is based on a finite
mixture of multinomial distribution. As usual, the model’s parameters are found
according to a maximum-likelihood criterion by using an EM algorithm. In [17],
the idea was extended introducing a Bayesian version of the multinomial mixture
model, theBayesian cluster ensembles. Although the posterior distribution cannot be
calculated in closed-form, it is approximated using variational inference and Gibbs
sampling, in a very similar procedure as in latent Dirichlet allocation model [18,
19], but applied to a different input feature space. Finally, in [20], a nonparametric
version of this work was proposed.

5 Experiments and Results

In this section we present the evaluation of our algorithm, using synthetic datasets,
UCI data and two text-data benchmark datasets.We compare its performance against
an algorithm that rely on the same type of data, and on similar assumptions, theBaum-
Eagon (BE) [4] algorithm, which also extracts a soft consensus partition from the
co-association matrix.

As in similar works, the performance of the algorithms is assessed using an exter-
nal criterion of clustering quality, comparing the obtained partitions with the known
ground truth partition. GivenO, the set of data objects to cluster, and two clusterings,
pi = {p1i , . . . , ph

i } and p j = {p1l , . . . , pk
l }, we chose the Consistency Index (C I )

[1].
The Consistency Index, also called H index [21], gives the accuracy of the

obtained partitions and is obtained by matching the clusters in the combined par-
tition with the ground truth labels:

C I (pi , pl) = 1

k

∑

k′=match(k)

mk,k′ , (11)

where mk,k′ denotes the contingency table, i.e. mk,k′ = |pk
i ∩ pk′

l |. It corresponds to
the percentage of correct labellings when the number of clusters in pi and pl is the
same.

5.1 UCI and Synthetic Data

Following the usual strategy of producing clustering ensembles, and combining them
on the co-association matrix, we created two different types of ensembles were cre-
ated: (1) using k-means with random initialization and random number of clusters
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Fig. 1 Sketch of the synthetic datasets

Table 1 Benchmark datasets Data-Sets k n Ensemble

ku

Spiral 2 200 2–8

Cigar 4 250 4–20

Rings 3 450 3–20

Image-c 7 739 7–15, 20, 30

Image-1 8 1,000 8–15, 20, 30

Iris 3 150 3–10, 15, 20

Wine 3 178 3–10, 15, 20

House-votes 2 232 2–10, 15, 20

Ionosphere 2 351 2–10, 15, 20

std-yeast-cell 5 384 5–10, 15, 20

Breast-cancer 2 683 2–10, 15, 20

Optdigits 10 1,000 10, 12, 15, 20, 35, 50

[22]; (2) combining multiple algorithms (agglomerative hierarchical algorithms: sin-
gle, average, ward, centroid link; k-means [23]; spectral clustering [24]) applied over
subsampled versions of the datasets (subsampling percentage 0.9).

Table1 summarizes the main characteristics of the UCI and synthetic datasets
used on the evaluation, and the parameters used for generating ensemble (2). Figure1
illustrates the synthetic datasets used in the evaluation: (a) spiral; (b) image-c. Tables2
and 3 summarize the average performance of both algorithms over ensembles (1) and
(2), after several runs, accounting for possible different solutions due to initialization,
in terms of Consistency Index (C I ). The λ parameter controls the regularization and
when λ = 1 PEACE-MAP reduces to PEACE.

The performance of PEACE is globally better than BE, mainly when taking into
account the effect of regularization. Comparing the performance of both ensembles:
on ensemble (1), regularized PEACE has better performance than BE on 7 datasets
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Table 2 Results for
benchmark datasets,
ensemble (1), in terms of C I
index

Data-Sets λ BE

1 5 10 20 50

Spiral 0.500 0.500 0.500 0.500 0.500 0.500
Cigar 0.708 0.792 0.836 0.804 0.588 0.708

img-c 0.585 0.831 0.407 0.215 0.164 0.676

Rings 0.682 0.682 0.373 0.373 0.464 0.527

Image 0.647 0.660 0.443 0.267 0.198 0.608

Iris 0.967 0.967 0.973 0.513 0.493 0.969

Wine 0.966 0.978 0.978 0.927 0.573 0.970

House 0.905 0.905 0.905 0.905 0.905 0.905
Ionosphere 0.778 0.769 0.758 0.746 0.658 0.735

std-yeast 0.693 0.690 0.693 0.378 0.315 0.695
Breast 0.969 0.969 0.969 0.969 0.969 0.969
Optdigits 0.602 0.415 0.205 0.165 0.148 0.741

Table 3 Results for
benchmark datasets,
ensemble (2), in terms of C I
index

Data-Sets λ BE

1 5 10 20 50

Cigar 0.624 0.640 0.668 0.672 0.316 0.708
Rings 0.558 0.407 0.504 0.664 0.540 0.571
Spiral 0.505 0.505 0.505 0.505 0.500 0.505
img-c 0.434 0.590 0.553 0.252 0.175 0.482

Image 0.602 0.604 0.631 0.235 0.188 0.465

Iris 0.907 0.900 0.707 0.513 0.613 0.707

Wine 0.961 0.961 0.972 0.601 0.646 0.972
House 0.875 0.892 0.892 0.875 0.858 0.875

Ionosphere 0.632 0.632 0.632 0.632 0.618 0.615

std-yeast 0.544 0.544 0.615 0.333 0.331 0.542

Breast 0.734 0.734 0.734 0.734 0.736 0.736
Optdigits 0.786 0.833 0.426 0.162 0.162 0.886

(over 12), and equal on 3 datasets, while on ensemble (2) it has better or equal
performance that the other on 7 (over 12), and equal on 2 datasets. The regular-
ized PEACE has almost every time better performance than unregularized PEACE
(column λ = 1), but when λ increases to larger values the performance decreases
drastically, indicating the regularization may have a negative effect if it is too strong.



98 A. Lourenço et al.

5.2 Text Data

We also evaluated the proposed algorithm over two well known text-data bench-
mark datasets: the KDD mininewsgroups1 and the webKD dataset.2 The mininews-
groups dataset, is composed by usenet articles from 20 newsgroups. After remov-
ing three newsgroups not corresponding to a clear concept (‘talk.politics.misc’,
‘talk.religion.misc’, ‘comp.os.ms-windows.misc’), we ended up analyzing 17 news-
groups, grouped in 7 macro-categories (‘rec’, ‘comp’, ‘soc’, ‘sci’, ‘talk’, ‘alt’,
‘misc’). In this collection there are only 100 documents on each newsgroups, adding
up to 1,700 documents.

ThewebKDdataset corresponds toWWW-pages collected fromcomputer science
departments of various universities in January 1997.We concentrated our analysis on
4 categories ( ‘project’, ‘student’, ‘course’, ‘faculty’). For each, we analyzed only the
documents belonging to universities (‘texas’, ‘washington’, ‘wisconsin’, ‘cornell’),
adding up to 1041 documents.

The analysis followed the usual steps for text-processing [25]: tokenization,
stopword-removal, stemming (Porter Stemmer), feature weighting (using Tf-Idf)
and feature removal. In the feature removal step, we removed tokens that appeared
in less than 40 documents and words that had a low variance of occurrence. On
the mininewsgroups dataset this feature removal step, led to 500-dimension term
frequency vector, while on the webKD led to 335-dimension term frequency vector.

We build the clustering ensembles based on the split andmerge strategy (ensemble
(1)) using:K-meanswith cosine similarity - ensemble. For the generationwe assumed
that each partition had a random number of clusters, chosen in the interval K =
{√ns/2;√

ns}, where ns is the number of samples.
Figure2 illustrates an example of the obtained co-association matrices. To allow a

better understanding of obtained matrices, samples are aligned according to ground

Fig. 2 Examples of obtained co-associations for miniNewsgroups and webKD datasets using an
ensemble of K-means with cosine similarity. a miniNewsgroups. b webKD

1 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.

http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Table 4 Results for text
datasets, in terms of C I index

Data-Sets λ BE

1 5 10 20 50

miniN 0.420 0.385 0.111 0.094 0.087 0.435
webKD 0.426 0.493 0.462 0.385 0.306 0.387

truth. The block-diagonal structure of the co-association of webKD dataset is much
more evident than on the miniNewsgroups.

In Table4 we summarize the obtained results for the PEACE (with and without
regularization) and BE algorithm, indicating average result after several runs. High-
est values for each data set are in bold. PEACE algorithm has better performance
in ensembles exhibiting higher compactness properties. In this case we also expe-
rience a positive effect from the regularization. However, in situations where the
co-association matrices have a less evident structure, with a lot of noise connecting
clusters, its performances tend to decrease.

6 Conclusions

In this paper we have presented a probabilistic approach to consensus clustering
based on the EAC paradigm. In our model, the entries of the co-association matrix
are regarded as realizations of binomial random variables parameterized by unknown
probabilistic assignments of objects to clusters. These parameters are estimated by
adopting a maximum a-posteriori approach with Dirichlet prior distributions defined
for each probabilistic cluster label assignment. We have studied the effect of the
regularization on the consensus solution found. From the computational perspective,
the optimization problem resulting from the MAP estimation is non-linear and non-
convex and we addressed it using a primal line-search algorithm. Evaluation on both
synthetic and real benchmarks data assessed the effectiveness of our approach.

It is interesting to note that if we have a-priori knowledge about one or more labels
a point belongs to, we can add this knowledge through the Dirichlet priors by tuning
the related parameters in Θ . This would allow to consider a semisupervised setting
within the EAC framework.

Acknowledgments This work was partially financed by an ERCIM “Alain Bensoussan” Fellow-
ship Programme under the European Union Seventh Framework Programme (FP7/2007–2013),
grant agreement n. 246016, by FCT under grants SFRH /PROTEC/49512/2009, PTDC/EEI-
SII/2312/2012 (LearningS project) and PEst-OE/ EEI/LA0008/2011, and by the Área Departa-
mental de Engenharia Electronica e Telecomunicações e de Computadores of Instituto Superior de
Engenharia de Lisboa, whose support the authors gratefully acknowledge.



100 A. Lourenço et al.

References

1. Fred, A.: Finding consistent clusters in data partitions. In: Kittler, J., Roli, F. (eds.) Multiple
Classifier Systems, pp. 309–318. Springer, Heidelberg (2001)

2. Fred, A., Jain, A.: Data clustering using evidence accumulation. In: Proceedings of the 16th
International Conference on Pattern Recognition, pp. 276–280 (2002)

3. Fred, A., Jain, A.: Combining multiple clustering using evidence accumulation. IEEE Trans.
Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)

4. Rota Bulò, S., Lourenço, A., Fred, A., Pelillo, M.: Pairwise probabilistic clustering using evi-
dence accumulation. In: Proceedings of 2010 International Conference on Structural, Syntactic,
and Statistical Pattern Recognition. SSPR&SPR’10, pp. 395–404 (2010)

5. Lourenço, A., Rota Bulò, S., Rebagliati, N., Figueiredo, M.A.T., Fred, A.L.N., Pelillo, M.:
Probabilistic evidence accumulation for clustering ensembles (2013)

6. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, Heidelberg
(2008)

7. Boyd, S., Vandenberghe, L.: Convex Optimization, 1st edn. Cambridge University, Cambridge
(2004)

8. Kachurovskii, I.R.: On monotone operators and convex functionals. Uspekhi Mat. Nauk 15(4),
213–215 (1960)

9. Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rew. DataMin. Knowl. Disc. 1(4),
305–315 (2011)

10. Strehl,A.,Ghosh, J.: Cluster ensembles—aknowledge reuse framework for combiningmultiple
partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

11. Topchy, A., Jain, A., Punch, W.: A mixture model of clustering ensembles. In: Proceedings of
the SIAM Conference on Data Mining, April 2004

12. Dimitriadou, E., Weingessel, A., Hornik, K.: A combination scheme for fuzzy clustering. In:
AFSS’02, pp. 332–338 (2002)

13. Ayad, H., Kamel, M.S.: Cumulative voting consensus method for partitions with variable
number of clusters. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 160–173 (2008)

14. Fern, X.Z., Brodley, C.E.: Solving cluster ensemble problems by bipartite graph partitioning.
In: Proc ICML’04 (2004)

15. Lourenço, A., Fred, A., Figueiredo, M.: A generative dyadic aspect model for evidence accu-
mulation clustering. In: Proceedings of 1st International Conference Similarity-based Pattern
Recognition. SIMBAD’11, pp. 104–116. Springer, Heidelberg (2011)

16. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and weak
partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1866–1881 (2005)

17. Wang, H., Shan, H., Banerjee, A.: Bayesian cluster ensembles. In: 9th SIAM International
Conference on Data Mining (2009)

18. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci. USA 101(Suppl
1), 5228–5235 (2004)

19. Steyvers, M., Griffiths, T.: Latent semantic analysis: a road to meaning. In: Probabilistic Topic
Models. Laurence Erlbaum (2007)

20. Wang, P., Domeniconi, C., Laskey, K. B.: Nonparametric bayesian clustering ensembles. In:
ECML PKDD’10, pp. 435–450 (2010)

21. Meila, M.: Comparing clusterings by the variation of information. In: Proceedings of the Six-
teenth Annual Conference of Computational Learning Theory (COLT). Springer, Heidelberg
(2003)

22. Lourenço, A., Fred, A., Jain, A.K.: On the scalability of evidence accumulation clustering. In:
20th International Conference on Pattern Recognition (ICPR), Istanbul Turkey, pp. 782–785,
Aug 2010

23. Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, New Jersey (1988)
24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS,

pp. 849–856. MIT, Cambridge (2001)
25. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge

University, New York (2008)



Feature Discretization with Relevance
and Mutual Information Criteria

Artur J. Ferreira and Mário A.T. Figueiredo

Abstract Feature discretization (FD) techniques often yield adequate and compact
representations of the data, suitable for machine learning and pattern recognition
problems. These representations usually decrease the training time, yielding higher
classification accuracy while allowing for humans to better understand and visual-
ize the data, as compared to the use of the original features. This paper proposes
two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray
quantization algorithm, coupled with a relevance criterion, being able perform unsu-
pervised, supervised, or semi-supervised discretization. The second technique works
in supervised mode, being based on the maximization of the mutual information
between each discrete feature and the class label. Our experimental results on stan-
dard benchmark datasets show that these techniques scale up to high-dimensional
data, attaining in many cases better accuracy than existing unsupervised and super-
vised FD approaches, while using fewer discretization intervals.

Keywords Classification · Feature discretization · Linde-Buzo-Gray · Mutual
information · Quantization · Relevance · Supervised learning

1 Introduction

Feature discretization (FD) [5, 20] represents a numeric (integer or real) feature by
a set of discrete values from a finite alphabet. FD has been extensively considered in
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the past, due to its several benefits. In some cases, features have noisy values or show
minor fluctuations that are irrelevant or even harmful for the learning task at hand.
For such features, the performance of machine learning and data mining algorithms
can be improved by discretization. The storage space necessary for the data can
be dramatically decreased, after FD. Another common benefit of FD techniques
is the improvement of the quality of data visualization. Moreover, some learning
algorithms require a discrete representation of the data. In summary, FD provides
compact representations, with lower memory usage, while at the same time it may
reduce the training time and improve the classification accuracy. The literature on
FD includes many techniques; see for instance [5, 11, 16, 20].

1.1 Our Contribution

In this paper, we propose two new FD techniques to discretize data with a variable
number of bits per feature. Both techniques start with a coarse discretization and
assess relevance as discretization is carried out. Whenever there is not a significant
increase in the relevance of a given feature, discretization is halted for that feature.
Otherwise, it allocates one more bit for that feature.

The first technique applies the Linde-Buzo-Gray (LBG) [15] quantization algo-
rithm, guided by a relevance criterion, being applicable to unsupervised, supervised,
or semi-supervised learning. It aims at finding features with low mean square error
(MSE) with the continuous feature and high relevance with the class label. The sec-
ond technique is supervised being based on maximization of the mutual information
(MI) [4] between each (discretized) feature and the class label. MI acts as a rele-
vance measure for discretization purposes, allocating more bits to the most relevant
features.

The remainder of this paper is organized as follows. Section2 reviews some back-
ground on information theory measures, as defined by both Shannon and Renyi and
discusses the key issues of FD techniques, describing some unsupervised and super-
vised approaches. Section3 details both our methods for FD. Section4 reports the
experimental evaluation of our methods compared against other unsupervised and
supervised techniques, on public benchmarks. Finally, Sect. 5 provides some con-
cluding remarks and directions for future work.

2 Background

In this section, we briefly review the concept of MI from information theory for dis-
crete randomvariables, as defined byShannon andRenyi (Sect. 2.1).We also review a
taxonomy on FD techniques, describing their key benefits and drawbacks (Sect. 2.2)
along with a description of successful unsupervised and supervised techniques in
Sects. 2.3 and 2.4, respectively.
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2.1 Entropy and Mutual Information

Let X and Y be two discrete random variables (RV) that take values in their corre-
sponding setsXi and Yi. The entropy [4], in the Shannon sense, of X, denoted Hs(X)

is defined as
Hs(X) = −

∑
Xi ∈ Xi

p(Xi) log2(p(Xi)), (1)

ranging from 0 ≤ Hs(X) ≤ log2(N), with N = |Xi|. The entropy is zero if one of the
outcomes happens with probability one (there is no uncertainty about X). It attains
its maximum value for an uniform probability mass function of X, which represents
maximum uncertainty about the outcomes.

Mutual information (MI) [4] as defined by Shannon, measures the dependency
between two random variables

MIs(X; Y) =
∑

Xi ∈ Xi

∑
Yj ∈ Yj

p(Xi, Yj) log2

(
p(Xi, Yj)

p(Xi) p(Yj)

)
, (2)

in which p(Xi, Yj) is the joint probability of Xi and Yj outcomes. MI is non-negative,
being zero if and only if X and Y are statistically independent. In the opposite case,
if X and Y are dependent we get MIs(X; Y) = min{Hs(X), Hs(Y)}. MI can also be
expressed by

MIs(X; Y) = Hs(X) − Hs(X|Y) = Hs(Y) − Hs(Y |X), (3)

as functions of the individual Hs(.) and conditional entropies Hs(.|.). In order to
maximize (3), one must minimize one of the conditional entropies. For instance, we
can choose to minimize Hs(X|Y), that is, the uncertainty about X, given a known
Y . We have 0 ≤ Hs(X|Y) ≤ Hs(X), with Hs(X|Y) = 0 meaning deterministic
dependence. On the other extreme case, we get Hs(X|Y) = Hs(X) corresponding
to statistical independence between X and Y . The concepts of entropy and MI as
proposed by Shannon were later generalized by Renyi [17] in the decade of 1960.
The MI as defined by Renyi is

MIα
r (X; Y) = 1

α − 1
log2

⎛
⎝ ∑

Xi∈ Xi

∑
Yj∈ Yj

pα(Xi, Yj)

pα−1(Xi) pα−1(Yj)

⎞
⎠ , (4)

with α �= 1; notice that limα→1 MIα
r = MIs, as defined by (2). For a detailed

discussion of the extensions proposed by Renyi, their properties and applications the
interested reader is referred to [17].
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2.2 Feature Discretization

A typical dataset is usually composed by categorical and numeric features. The
former are discrete by nature whereas the latter use real or integer representations. In
some cases, the numeric features may have noise or may exhibit minor fluctuations
which degrade the performance of the learning task.

Regardless of the type of classifier considered, FD techniques aim at finding a
representation of each feature that contains enough information for the learning task
at hand, while ignoringminor fluctuations thatmay be irrelevant for that task. The use
of a discretization technique will lead to a more compact (using less memory), and
hopefully to a better representation of the data for learning purposes, as compared to
the use of the original features. For these reasons, the use of discretization algorithms
has played an important role in data mining. They produce a concise representation
of continuous features allowing the users to understand the data more easily, making
learning more accurate and faster.

It has been found that the use of FD techniques may improve the results of many
learning methods [5, 20]. Although supervised discretization (i.e., making use of the
class labels) may, in principle, lead to better classifiers, the literature on FD reports
that unsupervised FD methods (which do not use the class labels) perform well on
different types of data (see for instance [21]). FD methods can also be classified
as dynamic or static [5, 20]; while static methods treat each feature independently,
dynamicmethods try to quantize all features simultaneously, thus taking into account
feature interdependencies. FD methods can also be categorized as local (discretiza-
tion of some features based on a decision mechanism such as learning a tree) or
global (discretize all the features). These methods can work in a top-down (splitting)
or a bottom-up (merging) approach, regarding on how they construct the binary codes
for each feature. Finally, in direct FD methods, one decides a priori on the number
of bits per feature, whereas incremental methods start with a coarse discretization
pass for all features and subsequently allocate more bits to each feature.

The quality of discretization is usually assessed by two indicators: the generaliza-
tion error and the complexity, i.e., the number of intervals or equivalently the number
of bits used to represent each instance. A possible drawback of FD is arguably the
(time and memory) cost of the discretization procedure.

For reviews on FD methods please see the works of [5, 11, 13, 16] and the many
references therein. A very recent survey of FD algorithms classified according to
the taxonomy described above, along with an experimental evaluation can be found
in [9].

2.3 Unsupervised Discretization

The most common techniques for unsupervised FD are [20]:

• equal-interval binning (EIB), which performs uniform quantization;
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• equal-frequency binning (EFB) [3], which obtains a non-uniform quantizer with
intervals such that, for each feature, the number of occurrences in each interval is
the same;

• proportional k-interval discretization (PkID) [21],which computes the number and
size of the discretization intervals as functions of the number of training instances.

EIB is the simplest and easiest to implement, but is sensitive to outliers. In EFB,
the quantization intervals are smaller in regions where there are more occurrences of
the values of each feature; EFB is thus less sensitive to outliers, as compared to EIB.
In the EIB and EFB methods, the user can choose the number of discretization bins
(static discretization). In contrast, PkID is an incremental method since it sets the
number and size of the discretization intervals as a function of the number of training
instances, seeking a trade-off between bias and variance of the class probability
estimate of a naïve Bayes classifier [21].

Recently, we have proposed [7] an unsupervised scalar FD method based on the
LBG algorithm [15]. For a given number of discretization intervals, LBG discretizes
the data seeking the minimumMSE with respect to the original representation. This
incremental approach, named unsupervised LBG (U-LBG 1) applies the LBG algo-
rithm to each feature independently and stops when the MSE falls below a threshold
Δ or when the maximum number of bits q per feature is reached. A static variant
of U-LBG1, named U-LBG2, using a fixed number of bits per feature q was also
proposed. Both U-LBG1 and U-LBG2 rely on the idea that a discrete representation
with low MSE with the original feature representation is adequate for learning.

2.4 Supervised Discretization

This Section briefly reviews the most common techniques for supervised FD. The
information entropy minimization (IEM)method [6], based on the minimum descrip-
tion length (MDL) principle, is one of the oldest and most often used methods for
supervised FD. The key idea of using the MDL principle is that the most informative
features to discretize are the most compressible ones. The IEM method is based on
the use of the entropy minimization heuristic for discretization of a continuous value
intomultiple intervals. IEMadopts a recursive approach computing the discretization
cut-points in such away that theyminimize the amount of bits needed to represent the
data. It follows a top-down approach, starting with one interval and splits intervals
as discretization is carried out. The method termed IEM variant (IEMV) [12] is also
based on an entropy minimization heuristic to choose the discretization intervals. It
applies a function, based on the MDL principle, which decreases as the number of
different values for a feature increases.

The supervised static class-attribute interdependence maximization (CAIM) [14]
algorithm aims to maximize the class-attribute interdependence and to generate a
(possibly) minimal number of discrete intervals. The algorithm does not require a
predefined number of intervals, as opposed to some other FDmethods. Experimental
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results reported show that CAIM compares favorablywith six other FD discretization
algorithms, in that the discrete attributes generated by CAIM almost always have the
lowest number of intervals and the highest class-attribute interdependency, achieving
the highest classification accuracy [14]. The class-attribute contingency coefficient
(CACC) algorithm [19], is an incremental, supervised, top-down FD method, that
has been shown to achieve promising results regarding execution time, number of
discretization intervals, and training time of the classifiers. For a very recent survey
with an extensive list of supervised FD algorithms please see [9].

3 Proposed Methods

3.1 Relevance-Based LBG

As in U-LBG1, our first FD proposal, named relevance-based LBG (R-LBG) and
described in Algorithm 1, uses the LBG algorithm, discretizing data with a variable
number of bits per feature. We use a relevance function, denoted @rel, and a (non-
negative) stopping factor, ε. The relevance function, producing non-negative values,
is applied after each discretization. R-LBG behaves differently, depending on the
value of ε. If ε is positive, whenever there is an increase below ε on the relevance
between two subsequent discrete versions (with b and b + 1 bits), discretization
is halted and b bits are kept, for that feature; otherwise, with a significant (larger
than ε) increase on the relevance, it discretizes with one more bit, assessing the new
relevance.

R-LBGdiscretizes a featurewith an increasing number of bits, stopping onlywhen
there is no significant increase on the relevance of the recently discretized feature.
If ε = 0, each feature is discretized from 1 up to the maximum q bits and the corre-
sponding relevance is assessed on each discretization. Then, the minimum number
of bits that ensures the highest relevance is kept and applied to discretize that feature.
Regardless of the value of ε, themethod discretizes datawith a variable number of bits
per feature aiming at producing discrete features with high relevance and low MSE
with the original representation. The relevance assessment rib = @rel(Q i

b(Xi); ...),
of feature i with b bits, in line 5 of Algorithm 1, can refer to unsupervised, supervised,
or semi-supervised learning. This depends on how the relevance function makes use
(or not) of the class labels. The value of ε, when different from zero, should be set
according to the range of the @rel function. There are many different choices for
the relevance criterion to apply in R-LBG. In the unsupervised case, if we consider
@rel = MSE (between original and discrete features) we have the unsupervised
U-LBG1 approach. Another relevance criterion is given by the quotient between the
variance of the discrete feature and the number of discretization intervals

NV AR(X̃i) = var(X̃i)/2
bi , (5)
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Algorithm 1: R-LBG - Relevance-based LBG.

Input: X: n × d matrix training set (n patterns, d features).
y: n-length vector with class labels (supervised).
q: maximum number of bits per feature.
@rel, ε (≥ 0): relevance function, stopping factor.

Output: X̃: n × d matrix, discrete feature training set.
Q 1

b1
, ..., Q d

bd
: set of d quantizers (one per feature).

1: for i = 1 to d do
2: pRel = 0; {/* Initial/previous rel. for feature i. */}
3: for b = 1 to q do
4: Apply LBG to the i-th feature to obtain a b-bit quantizer Q i

b(·);
5: Compute rib = @rel(Q i

b(Xi); ...), relevance of feature i with b bits;
6: if (ε == 0) then
7: continue; {/* Discretize up to q bits. */}
8: end if
9: if ( (rib − pRel) > ε) then
10: Q i(·) = Qb(·); {/* High increase. Store quantizer. */}
11: X̃i = Q i

b(Xi); {/* Discretize the feature. */}
12: else
13: break; {/* Small increase. Break loop. Move on to the next feature. */}
14: end if
15: pRel = rib; {/* Keep previous relevance. */}
16: end for
17: end for
18: if (ε == 0) then
19: for i = 1 to d do
20: Get bi = arg max

b ∈ {1,...,q} ri∗ {/* Minimum bits for maximum relevance. */}

21: Q i(·) ← Apply LBG (bi bits) to the i-th feature;
22: X̃i = Q i

bi
(Xi); {/* Discretize feature. */}

23: end for
24: end if

where bi is the number of bits of the discrete feature. For the supervised case, we
propose to compute relevance by the MI, defined by Shannon (3) or Renyi (4) (see
Sect. 2.1) between the discretized features X̃i, with bi bits and the class label vector
y. There are many other (unsupervised and supervised) feature relevance criteria;
in fact, all the criteria used in feature selection (FS) methods to rank features are
suited to serve as the relevance measure in R-LBG. The relevance function can also
use the class label for those instances for which it is available, thus being usable in
semi-supervised learning.

As an illustration of the supervised case, Fig. 1 (top) shows the evolution of MIs

defined by (3) between the class label and some of the features discretized by the
R-LBG algorithm, using ε = 0.1 and q ∈ {1, . . . , 10} bits per feature, for the two-
class Hepatitis and three-class Wine datasets. In the bottom plot, we compare the
MI values obtained by discretizing with q = 1 and q = 10 bits, for all the features
in each dataset. On the Hepatitis dataset, the top plot shows that for features 1, 12,
and 14, the MI grows with the number of bits and then it levels off. For feature 12
(which is categorical, thus originally discrete), as expected, an increasing number
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Fig. 1 R-LBG (MIs,ε = 0.1) discretization on the Hepatitis (left) and Wine (right) datasets. Top:
MIs as a function of the number of bits q ∈ {1, . . . , 10}, for four features on each dataset. Bottom:
MIs with q = 1 and q = 10 bits, for all the features

of bits does not lead to a higher MI. Thus, R-LBG can handle both numeric and
categorical features and the relevance values provide a feature ranking score. In the
bottom plot, we see that some features, such as 3, 4, 5, and 6, show no significant MI
increase, when moving from q = 1 to q = 10. On the other hand, for features 14 to
18, we have a strong MI increase, which usually corresponds to numeric informative
features. On the three-class problem posed by the Wine dataset, in the top plot we
see that MI levels off at q = 7 bits for feature 5, whereas features 1, 7, and 10 keep
on increasing their MI with more than 7 bits. In the bottom plot, we observe a large
increase on the MI by moving from q = 1 to q = 10 bit. In practice, the choice of
adequate values for ε, which depends on the type of data, can be done using these
plots, by checking how the MI increases on each particular type of data.

3.2 Mutual Information Discretization

In this Section, we present our supervised FD method, named mutual information
discretization (MID). Essentially, the MID method consists in discretizing each fea-
ture individually, computing the discretization cut-points in order tomaximize theMI
of the discrete feature with the class label. The key motivation for this FD proposal is
that the MI between features and class labels has been successfully and extensively
used as a relevance criterion for FS purposes, in the past two decades; see the seminal
work in [1] and [2] for a review of MI-based FS methods. It is thus expectable that
a good criterion for FS will also be adequate for FD. The usual argument on the
adequacy of MI for learning purposes is based on bounds for the probability of error
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which depend on the MI between the observations and the class label, namely the
Hellman-Raviv [10] and Santhi-Vardi bounds [2, 18]. The Hellman-Raviv bound on
the Bayes risk is given by

errBayes(X̃i) ≤ 1

2
Hs(y|X̃i), (6)

and the Santhi-Vardy bound [18] is

errBayes(X̃i) ≤ 1 − 2−Hs(y|X̃i). (7)

Applying (3) between a discrete feature X̃i and the class label vector y, we get

MIs(X̃i; y) = Hs(X̃i) − Hs(X̃i|y) = Hs(y) − Hs(y|X̃i). (8)

Thus, in order to maximize the MI in (8), one must minimize Hs(X̃i|y), that is, the
uncertainty about the feature value, given a known class label. We have 0 ≤
Hs(X̃i|y) ≤ Hs(X̃i), with Hs(X̃i|y) = 0 meaning deterministic dependence (an ideal
feature) and Hs(X̃i|y) = Hs(X̃i) corresponding to independence between the feature
and the class label (a useless feature). On the other hand, Hs(y) does not change with
discretization; thus, maximizing (8) is equivalent to minimizing Hs(y|X̃i), that is, the
uncertainty about the class label given the feature. We have 0 ≤ Hs(y|X̃i) ≤ Hs(y),
with Hs(y|X̃i) = 0 corresponding to deterministic dependence (again, the ideal case)
andHs(y|X̃i) = Hs(y)meaning independence (a useless feature). For an ideal feature
(one that is a deterministic injective function of the class label), we have

MIs(X̃i; y) = min{Hs(X̃i), Hs(y)}. (9)

The maximum possible value for MIs(X̃i; y) depends on both the number of bits
used to discretize Xi and the number of classes K . If we discretize Xi with bi bits,
its maximum entropy is Hsmax(X̃i) = bi bit/symbol; the maximum value of the class
entropy is Hsmax(y) = log2(K) bit/symbol, which corresponds to K equiprobable
classes. We thus conclude that the maximum value of the MI between the class label
and a discretized feature (with bi bits) is

MIsmax(X̃i; y) = min{bi, log2(K)}. (10)

In the binary case K = 2, we have MIsmax(X̃i; y) = 1 bit. Moreover, to attain the
maximum possible value for the MI, one must choose the maximum number of bits
q taking into account this expression; this implies that q ≥ 	log2(K)
, which is more
meaningful for multi-class problems.

At the discretization stage, we search for discretization boundaries such that the
resulting discrete feature has the highest MI with the class label. Thus, as described
above, by maximizing the MI at each cut-point we are aiming at leveraging the
performance of the discrete feature, leading to higher accuracy. The method works



110 A.J. Ferreira and M.A.T. Figueiredo

Fig. 2 The incremental and recursive partition procedure for FD, using q = 3 bits, leading to a
8-interval quantizer. On each level, the cut points u∗ are computed to maximize the MI between the
resulting discrete feature and the class label

in a recursive way, by successively breaking each feature into intervals, as depicted
in Fig. 2 with q = 3 bits, yielding a 8-interval non-uniform quantizer.

We propose two versions of the MID technique. The first, named MID fixed, uses
a fixed number of q bits per feature. In summary, given a training set with n instances
and d features,X and amaximum number of bits per feature q, theMID fixedmethod
applies the recursive discretization method described in Fig. 2, using up to q bits per
feature, yielding quantizer Qi(·) for feature i and the discretized feature X̃i = Qi(Xi).
The second version, named MID variable allocates up to q bits per feature, leading
to a variable number of bits per feature. As in R-LBG, we halt the bit allocation for
feature Xi with b bits, whenever its discretization with b + 1 bits does not lead to
a significant increase (larger than ε) on the MI(X̃i; y). As a consequence, the MID
variable version will produce fewer discretization intervals (and thus fewer bits per
instance), as compared to the MID fixed method. By setting ε = 0, MID variable
discretizes feature X̃i, with maximum MI, using the smallest possible number of
bits bi ≤ q (it acts in a similar fashion as R-LBG). The number of discretization
intervals depends on the value of ε; larger values will lead to fewer intervals, since
discretization is stopped at earlier stages.

Figure3 (top) plots the evolution of MIs for some features of the Hepatitis and
Wine datasets. In the bottomplot, we compare theMIs values obtained by discretizing
with q ∈ {1, 2, 3, 4} bits, for all the features in each dataset. On both datasets, we
observe in the top plots an increase in the first few bits and then the values of MIs

level off. In the bottom plot, we see an overall increase of the MIs when moving
from 1 to 3 bits; however, using one more bit per feature (with q = 4), there is no
appreciable increase on the MI. As compared to Fig. 1, that uses the same features
of the same datasets, we have a much faster growing in the MIs values, yielding high
values of MIs with less bits.

4 Experimental Evaluation

This section reports experimental results of our FD techniques on several public
benchmark datasets, for the task of supervised classification. Table1 presents the 14
datasets used in the experiments, publicly available from the university of California
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Fig. 3 MID (MIs) discretization on the Hepatitis (left) and Wine (right) datasets. Top MI as a
function of the number of bits q ∈ {1, . . . , 10}, for 4 features on each dataset. Bottom MI with
q ∈ {1, 2, 3, 4} bits, for all the features

at Irvine (UCI) repository [8], from the gene expression model selector (GEMS),1

the Arizona state university (ASU) repository,2 or the knowledge extraction based on
evolutionary learning (KEEL) repository.3 In order to assess the performance of our

Table 1 The 14 datasets used in the experiments; d, K , and n are the number of features, classes,
and instances, respectively

Dataset d K n Problem Dataset d K n Problem

Car 6 4 1,728 Car
acceptability

SpamBase 57 2 4,601 Email SPAM

Bupa 6 2 345 Liver
disorders

Sonar 60 2 208 Sonar signal

Heart 13 2 270 Heart disease
detection

Colon 2,000 2 62 Colon cancer
detection

Wine 13 3 178 Classify wine
cultivar

AR10P 2,400 10 130 Face database

Zoo 17 7 101 Classify
animals

PIE10P 2,420 10 210 Face database

Hepatitis 19 2 155 Hepatitis
detection

Leukemia 7,129 2 72 Cancer detec-
tion

Ionosphere 33 2 351 Radar signal
return

Dexter 20,000 2 2,600 Text classifi-
cation

1 www.gems-system.org.
2 http://featureselection.asu.edu/datasets.php.
3 http://sci2s.ugr.es/keel/datasets.php.

http://www.gems-system.org
http://featureselection.asu.edu/datasets.php
http://sci2s.ugr.es/keel/datasets.php
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FD methods, we have used two classifiers, namely: linear support vector machines
(SVM) and naïve Bayes (NB) from the Weka toolkit,4 with their default parameters.
The classification accuracy is assessed using 10-fold cross validation (CV); on each
CV fold, the FD methods are applied to the training set to learn a quantizer, which
is then applied to the test set.

The experimental results are organized as follows. Section4.1, evaluates the
behavior of our supervised FD methods using a variable number of bits per feature.
In Sect. 4.2, we compare our methods with existing unsupervised and supervised FD
techniques (reviewed in Sects. 2.3 and 2.4, respectively). This evaluation is focused
on both the complexity and the generalization error.

4.1 Comparison Between Our Approaches

In this Section, we analyze the behavior of our approaches. For both the R-LBG and
MID variable algorithms, we assess the number of discretization intervals and the
generalization error. Table2 reports experimental results with the average number of
bits per instance (with q = 3 and ε ∈ {0, 0.05}) and the test set error rate for the
linear SVMclassifier (No FD denotes the use of the original features). On the R-LBG
algorithm, ε = 0 usually leads to a larger number of bits per instance, as compared
with ε = 0.05. This happens because with ε = 0 we are aiming at finding the
maximum relevance, whereas with ε > 0 we halt the discretization process at earlier
stages. For the MID variable algorithm, ε = 0 leads to the choice of the minimum
bits per feature that ensure the maximum MI; for this reason, with ε = 0 we usually
have fewer bits per instance as compared with ε > 0. Regarding the classification
accuracy, ε = 0 usually attains the best results with a few exceptions and the MID
variable algorithm attains better results than R-LBG. The use of Renyi’s MI usually
leads to less bits per instance, as compared to Shannon’s MI; for the Sonar dataset,
it also leads to lower generalization error.

Figure4 shows the evolution of both the number of bits/instance and the test set
error rate for a 10-fold CV of the NB classifier on data discretized by R-LBG and
MID variable on the Wine dataset. On the left-hand side, we use q = 5 bits and ε in
the real interval from 0 to 0.3; on the right-hand-side, we show the effect of varying
the maximum number of bits for discretization, q ∈ {1, . . . , 10}, while keeping a
fixed ε = 0.05.

As ε increases, the number of discretization intervals and thus the number of bits
per instance decreases. The test set error rate is unacceptably high for ε > 0.15 for
R-LBG, whereas MID variable shows a stable behavior with respect to the increase
of this parameter. Using MID variable, the test set error rate does not increase so
fast as in R-LBG, whenever the number of bits per instance decreases. By increasing
the maximum number of bits per feature, MID variable uses fewer bits per instance
as compared to the R-LBG algorithm. The test set error rates are similar and both

4 www.cs.waikato.ac.nz/ml/weka.

www.cs.waikato.ac.nz/ml/weka
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Table 2 Evaluation of R-LBG (@rel = MI) and MID variable with q = 3 and ε ∈ {0, 0.05}
MI by Shannon, as in (2) MI by Renyi, α = 2, as in (4)

R-LBG (MI) MID var. R-LBG (MI) MID var.

Dataset No FD ε = 0 ε = 0.05 ε = 0 ε = 0.05 ε = 0 ε = 0.05 ε = 0 ε = 0.05

Car 12.0 11.0 6.0 10.0 12.0 12.0 6.0 10.0

21.1 21.7 26.3 13.9 13.9 21.7 23.3 13.9 13.9

Bupa 17.2 18.0 16.1 17.8 17.2 17.8 6.0 13.6

42.0 40.3 42.0 31.9 32.5 40.3 42.0 34.8 35.1

Heart 27.5 24.6 22.1 21.2 27.5 23.4 13.0 18.4

15.9 15.2 15.6 14.1 14.1 15.2 15.9 15.2 14.4

Wine 39.0 33.5 36.5 33.9 38.9 33.8 13.0 13.0

1.1 2.2 1.6 2.2 2.2 1.6 1.6 1.6 1.6

Zoo 18.0 18.4 17.0 17.4 18.0 18.0 16.0 16.0

7.9 6.9 6.9 3.9 3.9 6.9 6.9 3.9 3.9

Hepatitis 39.6 42.9 28.1 40.9 39.7 40.7 19.0 33.0

22.0 20.1 21.4 14.9 15.0 19.4 22.1 19.4 18.1

Ionosphere 97.0 88.3 69.8 60.4 96.8 89.4 33.0 33.0

11.9 11.9 12.5 7.4 5.4 11.9 11.6 8.0 8.0

SpamBase 159.6 152.6 128.4 106.0 159.9 147.9 54.0 92.0

10.2 9.4 13.2 6.4 6.5 9.3 12.1 6.6 6.7

Sonar 176.2 160.3 159.1 144.1 176.0 149.2 60.0 89.4

24.6 21.2 26.6 22.6 20.7 21.2 23.2 20.3 20.7

Colon 5,885.3 5,396.7 4,675.1 4,540.0 5,869.1 5,334.5 2,000.0 2,319.0

16.2 19.3 21.0 17.6 17.6 19.3 21.0 22.1 22.1

AR10P 7,198.9 7,190.0 7,050.5 7,050.1 7,199.4 7,195.3 2,400.0 2,400.0

1.0 0.0 0.0 2.0 2.0 0.0 0.0 6.5 6.5

PIE10P 7,259.3 7,241.1 7,164.9 7,164.7 7,259.4 7,252.2 2,420.0 2,420.0

0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Leukemia 20,974.5 19,248.6 17,353.3 17,562.9 20,913.1 18,948.4 7,129.0 8,411.6

1.3 2.5 2.5 1.3 1.3 2.5 1.3 4.2 4.2

Dexter 11,206.5 21,894.0 7,851.3 21,855.7 11,195.4 21,851.4 7,312.7 21,744.9

8.3 9.0 16.0 6.3 6.3 v8.7 12.0 7.0 5.7

For each dataset, the first row contains the number of bits per instance and the second row the test
set error rate (%), of a 10-fold CV for the linear SVM classifier. The discretization with less bits
and the best error rate are in bold face

algorithms exhibit a stable behavior in the sense that an (excessive) increase on the
maximumnumber of bits per feature q does not lead to a degradation on this indicator,
due to the incremental procedure that stops allocating bits, whenever the relevance
criterion is not fulfilled. Our methods show stability regarding the variation of their
input parameters q and ε. We have found that in most cases, by setting ε from 0 to
10% of the maximum relevance is adequate for different kinds of data.
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Fig. 4 Number of bits/instance and the test set error rate (%) for a 10-fold CV of the NB classifier
on data discretized by R-LBG and MID variable on the Wine dataset for R-LBG (top) and MID
variable (bottom). Left: q = 5 bits and ε in the real interval from 0 to 0.3. Right: q ∈ {1, . . . , 10}
and ε = 0.05

4.2 Comparison with Existing Methods

We now compare our methods with some well-known existing approaches for FD.
First, in Table3 we assess the behavior of R-LBG in unsupervised mode, comparing
it with five existing unsupervised FDmethods (see Sect. 2.3).We evaluate the average
number of discretization intervals and the 10-fold CV error (%), for the linear SVM
classifier, using each FD method with q = 3 bits. R-LBG uses @rel = NV AR
and ε = 0.05. For all datasets, the use of a FD technique leads to equal or better
results as compared to the use of the original features, with the exception of theWine
dataset. In these unsupervised settings, the R-LBG algorithm seems to be adequate
for the higher-dimensional datasets since it computes fewer discretization intervals,
as compared to the other techniques. R-LBG does not show improvement over the
other techniques on lower and medium-dimensional data.

We now assess the behavior of our methods for supervised FD. The MID fixed,
MID variable, and R-LBG methods, with q = 3 bits and ε = 0.1, are compared
against the four supervised FD techniques described in Sect. 2.4. R-LBG uses MIs

as the relevance measure. Table4 reports the average number of bits per instance
(first row for each dataset) and the test error (%) for a 10-fold CV of the linear SVM
classifier. In Table4, the use of a FD technique improves on the test set error rate,
as compared to the use of the original features, in the majority of the datasets. The
CAIM and CACC algorithms are not suitable for the higher-dimensional datasets,
since they both take a prohibitive running time (several hours) as compared to other
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Table 3 For each dataset, the first row presents the average total number of bits per instance and
the second row has the test set error rate (%), using a 10-fold CV for the linear SVM classifier (the
best results are in bold face)

Existing unsupervised FD methods Proposed

Dataset No FD EIB EFB PkID U-LBG1 U-LBG2 R-LBG

Car 18.0 18.0 12.0 12.0 18.0 18.0

21.2 19.1 17.4 18.3 21.7 19.1 19.1

Bupa 18.0 18.0 29.0 18.0 18.0 15.2
42.0 40.0 27.3 26.9 41.1 41.1 35.6

Heart 39.0 39.0 33.0 26.0 39.0 36.7

16.7 16.7 15.9 16.3 16.3 17.0 16.3

Wine 39.0 39.0 52.0 22.0 39.0 38.0

1.1 2.8 2.8 2.2 6.0 2.8 2.8

Zoo 48.0 48.0 18.0 18.0 48.0 48.0

5.8 5.8 4.8 5.8 5.8 5.8 5.8

Hepatitis 57.0 57.0 46.0 28.8 57.0 56.9

21.9 21.3 16.7 21.2 18.0 20.7 20.1

Ionosphere 99.0 99.0 145.0 44.7 99.0 99.0

12.9 10.9 14.8 17.1 11.7 12.9 12.9

SpamBase 162.0 162.0 324.0 55.8 162.0 60.0

10.0 20.5 6.4 6.8 19.9 9.3 18.3

Sonar 180.0 180.0 240.0 60.0 180.0 175.7

22.6 18.8 18.8 17.4 27.9 23.1 22.6

Colon 6,000.0 6,000.0 6,000.0 6,000.0 6,000.0 5,994.4
21.4 18.3 15.0 15.0 18.3 18.3 18.3

AR10P 7,200.0 7,200.0 9,270.0 7,200.0 7,200.0 7,192.2
1.0 0.0 5.5 5.0 0.0 0.0 0.0

PIE10P 7,260.0 7,260.0 9,680.0 7,260.0 7,260.0 7,242.6
0.5 0.0 0.0 0.5 0.0 0.0 0.0

Leukemia 21,387.0 21,387.0 21,387.0 21,387.0 21,387.0 21,087.3
1.7 2.9 1.7 1.7 2.9 2.9 2.9

Dexter 21,932.4 21,932.4 12,455.7 7,310.8 21,932.4 8,083.2

7.7 10.0 7.0 7.7 11.0 8.7 8.3

We have used q = 3 bit/feature, Δ = 0.05 range(Xi) for U-LBG1, @rel = NV AR, and ε = 0.05
on R-LBG

approaches (symbol N/A in Table4). On the Wine and Colon datasets, the use of FD
techniques do not show improvement, as compared to the use of the original features.
Regarding the test set error, one of our approaches usually attains the best result,
except in the case of the SpamBase dataset. Within our approaches, the MID fixed
and MID variable methods attain the best results, which suggests: (1) the adequacy
of MI between features and class labels for FD purposes; (2) that our incremental
FD methods are adequate for different types of data; (3) that a variable number of
bits per feature is adequate, regarding both complexity and generalization error.



116 A.J. Ferreira and M.A.T. Figueiredo

Table 4 For each dataset, the first row presents the average total number of bits per instance and
the second row has the test set error rate (%), using a 10-fold CV for the linear SVM classifier (the
best results are in bold face)

Existing supervised FD methods Proposed methods

Dataset No FD IEM IEMV CAIM CACC R-LBG MID fixed MID variable

Car 9.8 9.1 12.0 12.0 15.0 18.0 14.0

21.4 14.1 15.1 18.8 18.8 27.7 13.9 13.9

Bupa 33.2 29.6 18.1 18.1 18.0 18.0 18.0
41.7 43.2 39.1 32.7 32.7 42.0 31.5 31.5

Heart 26.5 26.0 29.0 29.0 31.8 39.0 26.8

16.7 15.6 14.8 16.3 16.3 23.0 14.1 14.1

Wine 20.0 21.2 39.1 39.1 27.5 39.0 22.8

1.1 1.7 1.7 3.3 3.3 5.0 1.7 2.2

Zoo 17.0 17.0 18.0 18.0 21.2 48.0 20.2

8.0 6.0 6.0 7.0 7.0 8.0 6.0 6.0

Hepatitis 45.2 42.8 43.6 43.6 53.0 57.0 50.6

19.2 18.0 22.0 19.2 19.2 23.1 17.8 20.5

Ionosphere 84.2 85.0 96.5 96.5 85.6 99.0 74.5
11.9 12.3 10.8 11.4 11.4 12.0 6.6 5.4

SpamBase 87.7 88.7 112.6 112.6 161.1 162.0 138.6

10.1 6.5 6.4 6.5 6.5 21.5 6.6 6.6

Sonar 304.9 280.2 221.1 221.1 177.5 180.0 165.0
23.5 19.7 22.1 19.6 19.6 34.6 20.2 17.9

Colon 11,329.0 11,089.4 N/A N/A 5,758.1 6,000.0 5,117.3
14.8 18.1 19.8 N/A N/A 22.6 17.9 16.4

AR10P 12,942.9 7,155.3 N/A N/A 7,144.2 7,200.0 7,065.5
1.0 2.0 6.0 N/A N/A 1.0 3.5 3.5

PIE10P 9,090.2 5,223.5 N/A N/A 7,071.6 7,260.0 7,152.4

0.3 0.0 0.0 N/A N/A 0.3 0.0 0.0

Leukemia 38,733.1 37,196.5 N/A N/A 20,299.9 21,387.0 18,254.9
1.3 1.3 1.3 N/A N/A 1.3 1.3 1.3

Dexter 12,559.6 12,550.4 N/A N/A 21,915.1 21,930.0 21,898.6

7.3 7.3 7.0 N/A N/A 29.7 5.0 5.7

We have used q = 3 bit/feature, @rel = MIs, and ε = 0.1 for both R-LBG and MID variable

5 Conclusions

FD is a useful pre-processing step for many machine learning and data mining tasks,
leading to compact representations of the data improving on the generalization error.
Even in the cases that it is not required, it may help improving the performance
of machine learning and data mining tasks. In this paper, we have proposed two
FD techniques. The first one is based on the unsupervised Linde-Buzo-Gray algo-
rithm with a relevance criterion. This technique works in unsupervised, supervised,
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or semi-supervised problems. The second technique is supervised and is based on
mutual information maximization between the discrete feature and the class label.
It uses a recursive approach that finds the optimal cut points in the mutual infor-
mation sense, discretizing with a fixed or variable number of bits per feature. The
experimental evaluation of these techniques has shown that both techniques improve
on the results of existing FD approaches for supervised learning tasks. The first
technique has obtained similar results, when compared to its unsupervised counter-
parts, being more adequate for the increasingly common high-dimensional datasets.
For the supervised FD tests, the second technique has proved to be more effective
regarding the number of discretization intervals and the generalization error. Both
techniques scale well for high-dimensional datasets and multi-class problems. As
future work, we will fine tune the use of Renyi’s mutual information in the super-
vised discretization process. Another issue that will be addressed is the research for
different relevance functions to guide unsupervised and supervised discretization.
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Multiclass Semi-supervised Learning
on Graphs Using Ginzburg-Landau
Functional Minimization

Cristina Garcia-Cardona, Arjuna Flenner and Allon G. Percus

Abstract We present a graph-based variational algorithm for classification of
high-dimensional data, generalizing the binary diffuse interface model to the case
of multiple classes. Motivated by total variation techniques, the method involves
minimizing an energy functional made up of three terms. The first two terms promote
a stepwise continuous classification function with sharp transitions between classes,
while preserving symmetry among the class labels. The third term is a data fidelity
term, allowing us to incorporate prior information into themodel in a semi-supervised
framework. The performance of the algorithm on synthetic data, as well as on
the COIL and MNIST benchmark datasets, is competitive with state-of-the-art
graph-based multiclass segmentation methods.

Keywords Diffuse interfaces · Learning on graphs · Semi-supervised methods

1 Introduction

Many tasks in pattern recognition andmachine learning rely on the ability to quantify
local similarities in data, and to infer meaningful global structure from such local
characteristics [1]. In the classification framework, the desired global structure is a
descriptive partition of the data into categories or classes. Many studies have been
devoted to the binary classification problems. The multiple-class case, where data
are partitioned into more than two clusters, is more challenging. One approach is to
treat the problem as a series of binary classification problems [2]. In this paper, we
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develop an alternative method, involving a multiple-class extension of the diffuse
interface model introduced in [3].

The diffuse interface model by Bertozzi and Flenner combines methods for diffu-
sion on graphs with efficient partial differential equation techniques to solve binary
segmentation problems. As with other methods inspired by physical phenomena [4–
6], it requires the minimization of an energy expression, specifically the Ginzburg-
Landau (GL) energy functional. The formulation generalizes the GL functional to
the case of functions defined on graphs, and its minimization is related to the mini-
mization of weighted graph cuts [3]. In this sense, it parallels other techniques based
on inference on graphs via diffusion operators or function estimation [1, 7–13].

Multiclass segmentation methods that cast the problem as a series of binary clas-
sification problems use a number of different strategies: (i) deal directly with some
binary coding or indicator for the labels [10, 14], (ii) build a hierarchy or combination
of classifiers based on the one-vs-all approach or on class rankings [15, 16] or (iii)
apply a recursive partitioning scheme consisting of successively subdividing clusters,
until the desired number of classes is reached [12, 13]. While there are advantages
to these approaches, such as possible robustness to mislabeled data, there can be a
considerable number of classifiers to compute, and performance is affected by the
number of classes to partition.

In contrast, we propose an extension of the diffuse interface model that obtains a
simultaneous segmentation into multiple classes. The multiclass extension is built by
modifying the GL energy functional to remove the prejudicial effect that the order of
the labelings, given by integer values, has in the smoothing term of the original binary
diffuse interface model. A new term that promotes homogenization in a multiclass
setup is introduced. The expression penalizes data points that are located close in the
graph but are not assigned to the same class. This penalty is applied independently
of how different the integer values are, representing the class labels. In this way,
the characteristics of the multiclass classification task are incorporated directly into
the energy functional, with a measure of smoothness independent of label order,
allowing us to obtain high-quality results. Alternative multiclass methods minimize
a Kullback-Leibler divergence function [17] or expressions involving the discrete
Laplace operator on graphs [10, 18].

This paper is organized as follows. Section2 reviews the diffuse interface model
for binary classification, and describes its application to semi-supervised learning.
Section3 discusses our proposed multiclass extension and the corresponding com-
putational algorithm. Section4 presents results obtained with our method. Finally,
Sect. 5 draws conclusions and delineates future work.

2 Data Segmentation with the Ginzburg-Landau Model

The diffuse interface model [3] is based on a continuous approach, using the
Ginzburg-Landau (GL) energy functional to measure the quality of data segmen-
tation. A good segmentation is characterized by a state with small energy. Let u(x)
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be a scalar field defined over a space of arbitrary dimensionality, and representing
the state of the system. The GL energy is written as the functional

GL(u) = ε

2

∫
|∇u|2 dx + 1

ε

∫
Φ(u) dx, (1)

with ∇ denoting the spatial gradient operator, ε > 0 a real constant value, and Φ a
double well potential with minima at ±1:

Φ(u) = 1

4

(
u2 − 1

)2
. (2)

Segmentation requires minimizing the GL functional. The norm of the gradient
is a smoothing term that penalizes variations in the field u. The potential term, on
the other hand, compels u to adopt the discrete labels of +1 or −1, clustering the
state of the system around two classes. Jointly minimizing these two terms pushes
the system domain towards homogeneous regions with values close to the minima
of the double well potential, making the model appropriate for binary segmentation.

The smoothing term and potential term are in conflict at the interface between
the two regions, with the first term favoring a gradual transition, and the second
term penalizing deviations from the discrete labels. A compromise between these
conflicting goals is established via the constant ε. A small value of ε denotes a small
length transition and a sharper interface, while a large ε weights the gradient norm
more, leading to a slower transition. The result is a diffuse interface between regions,
with sharpness regulated by ε.

It can be shown that in the limit ε → 0 this function approximates the
total variation (TV) formulation in the sense of functional (Γ ) convergence [19],
producing piecewise constant solutions but with greater computational efficiency
than conventional TV minimization methods. Thus, the diffuse interface model pro-
vides a framework to compute piecewise constant functions with diffuse transitions,
approaching the ideal of the TV formulation, but with the advantage that the smooth
energy functional is more tractable numerically and can be minimized by simple
numerical methods such as gradient descent.

The GL energy has been used to approximate the TV norm for image segmenta-
tion [3] and image inpainting [4, 20]. Furthermore, a calculus on graphs equivalent
to TV has been introduced in [12, 21].

2.1 Application of Diffuse Interface Models to Graphs

An undirected, weighted neighborhood graph is used to represent the local rela-
tionships in the data set. This is a common technique to segment classes that are
not linearly separable. In the N -neighborhood graph model, each vertex vi ∈ V of
the graph corresponds to a data point with feature vector xi , while the weight wi j
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is a measure of similarity between vi and v j . Moreover, it satisfies the symmetry
property wi j = w j i . The neighborhood is defined as the set of N closest points in
the feature space. Accordingly, edges exist between each vertex and the vertices of
its N -nearest neighbors. Following the approach of [3], we calculate weights using
the local scaling of Zelnik-Manor and Perona [22],

wi j = exp

(
−||xi − x j ||2

τ(xi ) τ (x j )

)
. (3)

Here, τ(xi ) = ||xi − xM
i || defines a local value for each xi , where xM

i is the position
of the M th closest data point to xi , and M is a global parameter.

It is convenient to express calculations on graphs via the graph Laplacian matrix,
denoted by L. The procedure we use to build the graph Laplacian is as follows.

1. Compute the similarity matrix W with components wi j defined in (3). As the
neighborhood relationship is not symmetric, the resulting matrix W is also not
symmetric. Make it a symmetric matrix by connecting vertices vi and v j if vi is
among the N -nearest neighbors of v j or if v j is among the N -nearest neighbors
of vi [23].

2. Define D as a diagonal matrix whose i th diagonal element represents the degree
of the vertex vi , evaluated as

di =
∑

j

wi j . (4)

3. Calculate the graph Laplacian: L = D − W.

Generally, the graph Laplacian is normalized to guarantee spectral convergence in
the limit of large sample size [23]. The symmetric normalized graph Laplacian Ls is
defined as

Ls = D−1/2 L D−1/2 = I − D−1/2 W D−1/2. (5)

Data segmentation can now be carried out through a graph-based formulation of
the GL energy. To implement this task, a fidelity term is added to the functional as
initially suggested in [24]. This enables the specification of a priori information in
the system, for example the known labels of certain points in the data set. This kind
of setup is called semi-supervised learning (SSL). The discrete GL energy for SSL
on graphs can be written as [3]:
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GLSSL(u) = ε

2
〈u, Lsu〉 + 1

ε

∑
vi ∈V

Φ(u(vi )) +
∑
vi ∈V

μ(vi )

2

(
u(vi ) − û(vi )

)2 (6)

= ε

4

∑
vi ,v j ∈V

wi j

(
u(vi )√

di
− u(v j )√

d j

)2

+ 1

ε

∑
vi ∈V

Φ(u(vi ))

+
∑
vi ∈V

μ(vi )

2

(
u(vi ) − û(vi )

)2
. (7)

In the discrete formulation, u is a vector whose component u(vi ) represents the state
of the vertexvi , ε > 0 is a real constant characterizing the smoothness of the transition
between classes, and μ(vi ) is a fidelity weight taking value μ > 0 if the label
û(vi ) (i.e. class) of the data point associated with vertex vi is known beforehand, or
μ(vi ) = 0 if it is not known (semi-supervised).

Minimizing the functional simulates a diffusion process on the graph. The infor-
mation of the few labels known is propagated through the discrete structure bymeans
of the smoothing term, while the potential term clusters the vertices around the states
±1 and the fidelity term enforces the known labels. The energyminimization process
itself attempts to reduce the interface regions. Note that in the absence of the fidelity
term, the process could lead to a trivial steady-state solution of the diffusion equation,
with all data points assigned the same label.

The final state u(vi ) of each vertex is obtained by thresholding, and the result-
ing homogeneous regions with labels of +1 and −1 constitute the two-class data
segmentation.

3 Multiclass Extension

The double-well potential in the diffuse interface model for SSL drives the state of
the system towards two definite labels. Multiple-class segmentation requires a more
general potential function ΦM (u) that allows clusters around more than two labels.
For this purpose, we use the periodic-well potential suggested by Li and Kim [6],

ΦM (u) = 1

2
{u}2 ({u} − 1)2, (8)

where {u} denotes the fractional part of u,

{u} = u − �u	, (9)

and �u	 is the largest integer not greater than u.
This periodic potential well promotes a multiclass solution, but the graph Lapla-

cian term in Eq. (6) also requires modification for effective calculations due to the
fixed ordering of class labels in the multiple class setting. The graph Laplacian term
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Fig. 1 Three-class
segmentation. Black Class 0.
Gray Class 1. White Class 2

penalizes large changes in the spatial distribution of the system state more than
smaller gradual changes. In a multiclass framework, this implies that the penalty
for two spatially contiguous classes with different labels may vary according to the
(arbitrary) ordering of the labels.

This phenomenon is shown in Fig. 1. Suppose that the goal is to segment the image
into three classes: class 0 composed by the black region, class 1 composed by the
gray region and class 2 composed by the white region. It is clear that the horizontal
interfaces comprise a jump of size 1 (analogous to a two class segmentation) while
the vertical interface implies a jump of size 2. Accordingly, the smoothing term will
assign a higher cost to the vertical interface, even though from the point of view of
the classification, there is no specific reason for this. In this example, the problem
cannot be solved with a different label assignment. There will always be an interface
with higher costs than others independent of the integer values used.

Thus, themulticlass approach breaks the symmetry among classes, influencing the
diffuse interface evolution in an undesirable manner. Eliminating this inconvenience
requires restoring the symmetry, so that the difference between two classes is always
the same, regardless of their labels. This objective is achieved by introducing a new
class difference measure.

3.1 Generalized Difference Function

The final class labels are determined by thresholding each vertex u(vi ), with the label
yi set to the nearest integer:

yi =
⌊

u(vi ) + 1

2

⌋
. (10)

The boundaries between classes then occur at half-integer values corresponding
to the unstable equilibrium states of the potential well. Define the function r̂(x) to
represent the distance to the nearest half-integer:

r̂(x) =
∣∣∣∣
1

2
− {x}

∣∣∣∣ . (11)
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Fig. 2 Schematic
interpretation of generalized
difference: r̂(x) measures
distance to nearest
half-integer, and ρ is a tree
distance measure

A schematic of r̂(x) is depicted in Fig. 2. The r̂(x) function is used to define a
generalized difference function between classes that restores symmetry in the energy
functional. Define the generalized difference function ρ as:

ρ(u(vi ), u(v j )) =
⎧⎨
⎩

r̂(u(vi )) + r̂(u(v j )) yi 
= y j

∣∣r̂(u(vi )) − r̂(u(v j ))
∣∣ yi = y j

(12)

Thus, if the vertices are in different classes, the difference r̂(x) between each
state’s value and the nearest half-integer is added, whereas if they are in the same
class, these differences are subtracted. The function ρ(x, y) corresponds to the tree
distance (see Fig. 2). Strictly speaking, ρ is not a metric since it does not satisfy
ρ(x, y) = 0 ⇒ x = y. Nevertheless, the cost of interfaces between classes becomes
the same regardless of class labeling when this generalized distance function is
implemented.

The GL energy functional for SSL, using the new generalized difference function
ρ and the periodic potential, is expressed as

MGLSSL(u) = ε

2

∑
vi ∈V

∑
v j ∈V

wi j√
di d j

[
ρ(u(vi ), u(v j ))

]2

+ 1

2ε

∑
vi ∈V

{u(vi )}2 ({u(vi )} − 1)2

+
∑
vi ∈V

μ(vi )

2

(
u(vi ) − û(vi )

)2
. (13)

Note that the smoothing term in this functional is composed of an operator that is
not just a generalization of the normalized symmetric LaplacianLs . The new smooth-
ing operation, written in terms of the generalized distance function ρ, constitutes a
non-linear operator that is a symmetrization of a different normalized Laplacian, the
random walk Laplacian Lw = D−1L = I − D−1W [23]. The reason is as follows.
The Laplacian L satisfies

(Lu)i =
∑

j

wi j
(
ui − u j

)
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and Lw satisfies

(Lwu)i =
∑

j

wi j

di

(
ui − u j

)
.

Now replace wi j/di in the latter expression with the symmetric form wi j/
√

di d j .
This is equivalent to constructing a reweighted graph with weights ŵi j given by:

ŵi j = wi j√
di d j

.

The corresponding reweighted Laplacian L̂ satisfies:

(L̂u)i =
∑

j

ŵi j
(
ui − u j

) =
∑

j

wi j√
di d j

(
ui − u j

)
, (14)

and

〈u, L̂u〉 = 1

2

∑
i, j

wi j√
di d j

(
ui − u j

)2
. (15)

While L̂ = D̂ − Ŵ is not a standard normalized Laplacian, it does have the
desirable properties of stability and consistency with increasing sample size of the
data set, and of satisfying the conditions for Γ -convergence to TV in the ε → 0
limit [25]. It also generalizes to the tree distance more easily than does Ls. Replacing
the difference

(
ui − u j

)2 with the generalized difference [
ρ(ui , u j )

]2 then gives the
new smoothing multiclass term of Eq. (13). Empirically, this new term seems to
perform well even though the normalization procedure differs from the binary case.

By implementing the generalized difference function on a tree, the cost of inter-
faces between classes becomes the same regardless of class labeling.

3.2 Computational Algorithm

The GL energy functional given by (13) may beminimized iteratively, using gradient
descent:

un+1
i = un

i − dt

[
δMGLSSL

δui

]
, (16)

where ui is a shorthand for u(vi ), dt represents the time step and the gradient direction
is given by:

δMGLSSL

δui
= ε R̂(un

i ) + 1

ε
Φ ′

M (un
i ) + μi

(
un

i − ûi
)

(17)
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R̂(un
i ) =

∑
j

wi j√
di d j

[
r̂(un

i ) ± r̂(un
j )

]
r̂ ′(un

i ) (18)

Φ ′
M (un

i ) = 2 {un
i }3 − 3 {un

i }2 + {un
i } (19)

The gradient of the generalized difference function ρ is not defined at half integer
values. Hence, we modify the method using a greedy strategy: after detecting that a
vertex changes class, the new class thatminimizes the smoothing term is selected, and
the fractional part of the state computed by the gradient descent update is preserved.
Consequently, the new state of vertex i is the result of gradient descent, but if this
causes a change in class, then a new state is determined.

Algorithm 1: Calculate u.

Require: ε, dt, ND, nmax, K
Ensure: out = uend

for i = 1 → ND do
u 0

i ← rand((0, K )) − 1
2 . If μi > 0, u 0

i ← ûi
end for
for n = 1 → nmax do

for i = 1 → ND do
un+1

i ← un
i − dt

(
ε R̂(un

i ) + 1
ε

Φ ′
M (un

i ) + μi
(
un

i − ûi
))

if Label(un+1
i ) 
= Label(un

i ) then

k̂ = argmin 0≤k<K
∑

j
wi j√
di d j

[
ρ(k + {un+1

i }, un+1
j )

]2

un+1
i ← k̂ + {un+1

i }
end if

end for
end for

Specifically, let k represent an integer in the range of the problem, i.e. k ∈
[0, K − 1], where K is the number of classes in the problem. Given the fractional
part {u} resulting from the gradient descent update, find the integer k that minimizes∑

j
wi j√
di d j

[
ρ(k + {ui }, u j )

]2, the smoothing term in the energy functional, and use

k + {ui } as the new vertex state. A summary of the procedure is shown in Algo-
rithm 1 with ND representing the number of points in the data set and nmax denoting
the maximum number of iterations.

4 Results

The performance of the multiclass diffuse interface model is evaluated using a num-
ber of data sets from the literature, with differing characteristics. Data and image
segmentation problems are considered on synthetic and real data sets.
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4.1 Synthetic Data

4.1.1 Three Moons

A synthetic three-class segmentation problem is constructed following an analogous
procedure to the one used in [11] for “two moon” binary classification. Three half
circles (“three moons”) are generated in R

2. The two top circles have radius 1 and
are centered at (0, 0) and (3, 0). The bottom half circle has radius 1.5 and is centered
at (1.5, 0.4). 1,500 data points (500 from each of these half circles) are sampled
and embedded in R100. The embedding is completed by adding Gaussian noise with
σ 2 = 0.02 to each of the 100 components for each data point. The dimensionality
of the data set, together with the noise, make this a nontrivial problem.

The symmetric normalized graph Laplacian is computed for a local scaling graph
using N = 10 nearest neighbors and local scaling based on the M = 10th closest
point. The fidelity term is constructed by labeling 25 points per class, 75 points
in total, corresponding to only 5% of the points in the data set. The multiclass
GL method was further refined by geometrically decreasing ε over the course of
the minimization process, from ε0 to ε f by factors of 1 − Δε (nmax iterations per
value of ε), to allow sharper transitions between states as in [3]. Table1 specifies the
parameters used. Average accuracies and computation times are reported over 100
runs. Results for k-means and spectral clustering (obtained by applying k-means to
the first 3 eigenvectors of Ls) are included as reference.

Segmentations obtained for spectral clustering and formulticlassGLwith adaptive
ε methods are shown in Fig. 3. The figure displays the best result obtained over
100 runs, corresponding to accuracies of 81.3% (spectral clustering) and 97.9%
(multiclass GL with adaptive ε). The same graph structure is used for the spectral
clustering decomposition and the multiclass GL method.

For comparison, we note the results from the literature for the simpler two-moon
problem (also R

100, σ 2 = 0.02 noise). The best results reported include: 94% for
p-Laplacian [11], 95.4% for ratio-minimization relaxedCheeger cut [12], and 97.7%
for binary GL [3]. While these are not SSL methods, the last of these does involve
other prior information in the form of a mass balance constraint. It can be seen that

Table 1 Three-moons results

Method Parameters Correct % (stddev %) Time [s]

k-means – 72.1 (0.35) 0.66

Spectral clustering 3 eigenvectors 80.0 (0.59) 0.02

Multiclass GL μ = 30, ε = 1, dt = 0.01, 95.1 (2.33) 0.89

nmax = 1, 000

Multiclass GL (adaptive ε) μ = 30, ε0 = 2, ε f = 0.01, 96.2 (1.59) 1.61

Δε = 0.1, dt = 0.01,

nmax = 40
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Fig. 3 Three-moons segmentation. Left Spectral clustering. Right Multiclass GL with adaptive ε

(a) (b)

(c) (d)

Fig. 4 Evolution of label values in three moons, using multiclass GL (fixed ε): R2 projections
at 100, 300 and 1,000 iterations, and energy evolution a 100 iterations, b 300 iterations, c 1,000
iterations, d Energy evolution

our procedures produce similarly high-quality results even for the more complex
three-class segmentation problem.

It is instructive to observe the evolution of label values in the multiclass method.
Figure4 displaysR2 projections of the results of multiclass GL (with fixed ε), at 100,
300 and 1,000 iterations. The system starts from a random configuration. Notice that
after 100 iterations, the structure is still fairly inhomogeneous, but small uniform
regions begin to form. These correspond to islands around fidelity points and become
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seeds for further homogenization. The system progresses fast, and by 300 iterations
the configuration is close to the final result: some points are still incorrectly labeled,
mostly on the boundaries, but the classes form nearly uniform clusters. By 1,000
iterations the procedure converges to a steady state and a high-quality multiclass
segmentation (95% accuracy) is obtained.

In addition, the energy evolution for one typical run is shown in Fig. 4d for the case
with fixed ε. The figure includes plots of the total energy (red) as well as the partial
contributions of each of the three terms, namely smoothing (green), potential (blue)
and fidelity (purple). Observe that at the initial iterations, the principal contribution
to the energy comes from the smoothing term, but it has a fast decay due to the
homogenization taking place. At the same time, the potential term increases, as ρ

pushes the label values toward half-integers. Eventually, the minimization process is
driven by the potential term,while small local adjustments aremade. Thefidelity term
is satisfied quickly and has almost negligible influence after the first few iterations.
This picture of the “typical” energy evolution can serve as a useful guide in evaluating
the performance of the method when no ground truth is available.

4.1.2 Swiss Roll

A synthetic four-class segmentation problem is constructed using the Swiss roll map-
ping, following the procedure in [26]. The data are created in R2 by randomly sam-
pling from a Gaussian mixture model of four components with means at (7.5, 7.5),
(7.5, 12.5), (12.5, 7.5) and (12.5, 12.5), and all covariances given by the 2×2 iden-
tity matrix. 1,600 points are sampled (400 from each of the Gaussians). The data
are then converted from 2 to 3 dimensions, with the following Swiss roll mapping:
(x, y) → (x cos(x), y, x sin(x)).

As before, we construct the weight matrix for a local scaling graph, with N = 10
and scaling based on the M = 10th closest neighbor. The fidelity set is formed by
labeling 5% of the points selected randomly.

Table2 gives a description of the parameters used, as well as average results
over 100 runs for k-means, spectral clustering and multiclass GL. The best results
achieved over these 100 runs are shown in Fig. 5. These correspond to accuracies of
50.1% (spectral clustering) and 96.4% (multiclass GL). Notice that spectral cluster-
ing produces results composed of compact classes, but with a configuration that does

Table 2 Swiss roll results

Method Parameters Correct % (stddev %) Time s

k-means – 37.9 (0.91) 0.05

Spectral clustering 4 eigenvectors 49.7 (0.96) 0.05

Multiclass GL μ = 50, ε = 1, dt = 0.01 91.0 (2.72) 0.75

nmax = 1,000
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Fig. 5 Swiss roll results a Spectral clustering, b Multiclass GL

not follow the manifold structure. In contrast, the multiclass GL method is capable
of segmenting the manifold structure correctly, achieving higher accuracies.

4.2 Image Segmentation

We apply our algorithm to the color image of cows shown in Fig. 6a. This is a
213 × 320 color image, to be divided into four classes: sky, grass, black cow and
red cow. To construct the weight matrix, we use feature vectors defined as the set of
intensity values in the neighborhood of a pixel. The neighborhood is a patch of size
5 × 5. Red, green and blue channels are appended, resulting in a feature vector of
dimension 75.A local scaling graph with N = 30 and M = 30 is constructed. For
the fidelity term, 2.6% of labeled pixels are used (Fig. 6b).

Fig. 6 Color (multi-channel) image. Original image, sampled fidelity and results a Original, b
Sampled, c Black cow, d Red cow, e Grass, f Sky
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The multiclass GL method used the following parameters: μ = 30, ε = 1,
dt = 0.01 and nmax = 800. The average time for segmentation using different
fidelity sets was 19.9s. Results are depicted in Fig. 6c–f. Each class image shows
in white the pixels identified as belonging to the class, and in black the pixels of
the other classes. It can be seen that all the classes are clearly segmented. The few
mistakes made are in identifying some borders of the black cow as part of the red
cow, and vice-versa.

4.3 Benchmark Sets

4.3.1 COIL-100

The Columbia object image library (COIL-100) is a set of 7,200 color images of 100
different objects taken from different angles (in steps of 5 degrees) at a resolution of
128×128 pixels [27]. This image database has been preprocessed andmade available
by [28] as a benchmark for SSL algorithms. In summary, the red channel of each
image is downsampled to 16 × 16 pixels by averaging over blocks of 8 × 8 pixels.
Then 24 of the objects are randomly selected and partitioned into six arbitrary classes:
38 images are discarded from each class, leaving 250 per class or 1,500 images in all.
The downsampled 16× 16 images are further processed to hide the image structure
by rescaling, adding noise and masking 15 of the 256 components. The result is a
data set of 1,500 data points, of dimension 241.

We build a local scaling graph, with N = 4 nearest neighbors and scaling based
on the M = 4th closest neighbor. The fidelity term is constructed by labeling 10%
of the points, selected at random. The multiclass GL method used the following
parameters: μ = 100, ε = 4, dt = 0.02 and nmax = 1,000. An average accuracy of
93.2%, with standard deviation of 1.27%, is obtained over 100 runs, with an average
time for segmentation of 0.29s.

For comparison,we note the results reported in [17]: 83.5% (k-nearest neighbors),
87.8% (LapRLS), 89.9% (sGT), 90.9% (SQ-Loss-I) and 91.1% (MP). All these are
SSL methods (with the exception of k-nearest neighbors which is supervised), using
10% fidelity just as we do. As can be seen, our results are of greater accuracy.

4.3.2 MNIST Data

The MNIST data set [29] is composed of 70,000 28 × 28 images of handwritten
digits 0 through 9. The task is to classify each of the images into the corresponding
digit. Hence, this is a 10-class segmentation problem.

The weight matrix constructed corresponds to a local scaling graph with N = 8
nearest neighbors and scaling based on the M = 8th closest neighbor. We perform
no preprocessing, so the graph directly uses the 28×28 images. This yields a data set
of 70,000 points of dimension 784. For the fidelity term, 250 images per class (2,500
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images, corresponding to 3.6% of the data) are chosen randomly. The multiclass GL
method used the following parameters:μ = 50, ε = 1, dt = 0.01 and nmax = 1,500.
An average accuracy of 96.9%, with standard deviation of 0.04%, is obtained over
50 runs. The average time for segmentation using different fidelity sets was 60.89 s.

Comparative results from other methods reported in the literature include: 87.1%
(p-Laplacian [11]), 87.64% (multicut normalized 1-cut [13]), 88.2% (Cheeger
cuts [12]), 92.6% (transductive classification [9]). As with the three-moon prob-
lem, some of these are based on unsupervised methods but incorporate enough
prior information that they can fairly be compared with SSL methods. Comparative
results from supervised methods are: 88% (linear classifiers [29, 30]), 92.3–98.74%
(boosted stumps [29]), 95.0–97.17% (k-nearest neighbors [29, 30]), 95.3–99.65%
(neural/convolutional nets [29, 30]), 96.4–96.7% (nonlinear classifiers [29, 30]),
98.75–98.82% (deep belief nets [31]) and 98.6–99.32% (SVM [30]). Note that all
of these take 60,000 of the digits as a training set and 10,000 digits as a testing
set [29], in comparison to our approach where we take only 3.6% of the points for
the fidelity term. Our SSL method is nevertheless competitive with these supervised
methods. Moreover, we perform no preprocessing or initial feature extraction on the
image data, unlike most of the other methods we compare with (we have excluded
from the comparison, however, methods that explicitly deskew the image). While
there is a computational price to be paid in forming the graph when data points use
all 784 pixels as features, this is a simple one-time operation.

5 Conclusions

We have proposed a new multiclass segmentation procedure, based on the diffuse
interfacemodel. Themethod obtains segmentations of several classes simultaneously
without using one-vs-all or alternative sequences of binary segmentations required
by other multiclass methods. The local scaling method of Zelnik-Manor and Perona,
used to construct the graph, constitutes a useful representation of the characteristics
of the data set and is adequate to deal with high-dimensional data.

Our modified diffusion method, represented by the non-linear smoothing term
introduced in the Ginzburg-Landau functional, exploits the structure of the multi-
classmodel and is not affected by the ordering of class labels. It efficiently propagates
class information that is known beforehand, as evidenced by the small proportion
of fidelity points (2% – 10% of dataset) needed to perform accurate segmentations.
Moreover, the method is robust to initial conditions. As long as the initialization
represents all classes uniformly, different initial random configurations produce very
similar results. The main limitation of the method appears to be that fidelity points
must be representative of class distribution. As long as this holds, such as in the
examples discussed, the long-time behavior of the solution relies less on choosing
the “right” initial conditions than do other learning techniques on graphs.

State-of-the-art results with small classification errors were obtained for all clas-
sification tasks. Furthermore, the results do not depend on the particular class label
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assignments. Future work includes investigating the diffuse interface parameter ε.
We conjecture that the proposed functional converges (in the Γ -convergence sense)
to a total variational type functional on graphs as ε approaches zero, but the exact
nature of the limiting functional is unknown.
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Probabilistic Discriminative Dimensionality
Reduction for Pose-Based Action Recognition

Valsamis Ntouskos, Panagiotis Papadakis and Fiora Pirri

Abstract We examine the problem of classifying action sequences given a small
set of examples for each type of action. Based on the presumption that human
motion resides in a low dimensional space, we introduce a probabilistic
dimensionality reduction model able to recover the structure of a low-dimensional
manifold where all the involved actions reside. Requiring that sequences of the
same action are placed apart from other sequences, we are able to achieve higher
classification rates, with respect to other commonly used techniques, by performing
the classification on this manifold. The main contribution is the introduction of a
new model, based on Back-constrained GP-LVMwhich can be used for the efficient
classification of sequences. We compare our method with the classification based
on the Dynamic Time Warping distance and with the V-GPDS model, adapted for
classification. Results are provided for sequences taken from two publicly available
datasets which highlight different aspects of the method.

Keywords Action recognition · Dimensionality reduction · Manifold learning ·
Time series models · Motion capture

1 Introduction

Human action recognition is one of the most challenging applications in the field of
computer vision. It requires to infer an actionmodel from the observation of amotion
sequence, hence it requires the solution of an inverse problem [18]. Furthermore, the
modelling process is based on several steps tackling, in turn, different sub-problems:
data acquisition, motion analysis and segmentation in individual actions, alignment
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between sequences and classification with respect to a given taxonomy. All these
steps are computationally expensive, while ideally recognition should be performed
online.

In this paper we address the alignment and classification part of the complete
pipeline. Namely, we assume that a sequence that captures an individual action is
already available and the task is to recognize the performed action. To this end we
introduce a model based on the the Back-Constrained GP-LVM introduced in [9,
10], and extend it for the application of action recognition, exploiting the strength
of a lower dimensional manifold. In detail, we derive a discriminative, probabilistic
dimensionality reduction model for mapping motion capture sequences in a low
dimensional latent spacewhich assists the action classification process. The proposed
model introduces a latent space featuring a fixed set of actions and constrains feature
distances in data space to be suitably projected in the latent space, in order to preserve
the clustering of common patterns. Actions are represented as a sequence of poses,
which can be taken from motion capture (MoCap) data. This projection ensures a
discriminative power to the GP-LVMmodel and it also exploits the peculiar property
of action sequences of being reducible to a lower dimensional manifold [17].

In Sect. 2 we briefly review recent works on pose-based action recognition and
dimensionality reduction, showing themajor trends of research in this field. In Sect. 3
we overview the theoretical foundation of GP-LVM on which our model is based.
In Sect. 4 we present our discriminative model. Section5 demonstrates the latent
space structure recovered by the proposed model and examines its performance on
human action classification. We compare our method with a sequence classification
method based onDynamic TimeWarping as well as the Variational Gaussian Process
Dynamical Systems [6] recently proposed formodelling high dimensional dynamical
systems. We conclude the work addressing possible extensions.

2 Related Work

In this section we review some of the main approaches to action recognition
and mainly those which refer to manifold learning or treat the problem of action
recognition in MoCap sequences.

So far many techniques have been proposed in the literature regarding
action recognition where stochastic, volumetric or non-parametric models are most
commonly employed.Detailed reviews of the techniqueswhich have been considered
in the research on human motion analysis and on action recognition can be found in
[1, 12, 26]. Several works address the problem of modelling and recognizing human
motion by learning the structure of the low dimensional manifold where it resides,
and by recovering a mapping between the high dimensional observations and this
manifold.

In [7] the authors consider MoCap sequences and they learn the structure of a
unidimensional smooth manifold by applying the tensor voting technique [13]. A
motion distance score is used to compute the similarity between the actions recorded
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in two different sequences. The setting provides the possibility to compare also
actions extracted from videos with actions taken from MoCap sequences.

In [34] the authors consider a two dimensional manifold with a toroidal topology
in order to estimate humanmotion. They build on the idea of Gaussian Process Latent
Variable Models (GP-LVM) [9] to identify a manifold which jointly captures gait
and pose, via three different models. They introduce a new model (JGPM) which
they compare to two constrained latent variable models based on GP-LVM and Local
Linear GP-LVM [29] respectively.

In [23] the authors propose a non-linear generative model for human motion
data that considers binary latent variables. The introduced architecture makes
on-line inference efficient and allows for a simple approximate learning procedure.
The method performance is evaluated by synthesizing various motion sequences and
by performing on-line filling in of data, lost during motion capture.

Following a different perspective, in [21] the authors explore the space of actions,
spanned by a set of action-bases, to identify some action invariants with respect to
viewpoint, execution rate and subject’s body shape. Action recognition is performed
for four different kind of actions (sitting, standing, running and walking) and the
results show that it is possible to correctly classify most of these actions using the
proposed method.

The redundancy of the original representation of MoCap sequences is also
exploited in [11]where a compressive sensingmethod is introduced. Here the authors
argue that human actions are sparse in the action space domain as well as the time
domain, and they seek therefore a sparse representation. The sparse representation
introduced can assist in different applications regarding MoCap data like motion
approximation, compression, action retrieval and action classification.

Finally, in [32] (see also [30, 33]) the authors examine whether and to what extent
the use of information about the subject’s pose assists recognition. In this case, several
pose-based features are used, based on the relative pose features introduced in [14,
15]. Their results suggest that knowing the pose of the subject leads to better results,
in terms of classification rate. It is also shown that pose based features alone are
usually sufficient, as their combination with appearance based features is usually not
leading to higher classification rate.

3 Gaussian Process Latent Variable Models

In this section we review Gaussian Process Latent Variable Models [9]. A Gaussian
process is a collection of random variables such that any finite collection of them
has a Gaussian distribution [19]. Namely, a random variable of a Gaussian process is
f (xi ) = GP(μ(xi ), k(xi , x j )), with μ and k(x, x′) the mean and covariance function
of the process respectively, indexed over the set X of all the possible inputs. The
Gaussian process is a non parametric prior for the random variable f (xi ) where xi

is the deterministic input. Gaussian processes have been successfully used for both
regression and classification tasks.
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In [9] the author shows that Principal Component Analysis (PCA) can be inter-
preted as a product of Gaussian processes mapping latent-space points to points
in data-space, when the covariance function is linear; when instead a non-linear
covariance function is used, such as an RBF kernel then the mapping is non-linear.
Lawrence shows the advantages in using Gaussian Processes Latent VariableModels
(GP-LVM); for example, for optimization purposes, the data can be divided in active
and inactive, according to some rule. Then, because points in the inactive set project
into the data-space as Gaussian distributions, due to the properties of the variance
the likelihood of each data point can be optimized independently.

In addition to the advantage in terms of visualization and computational effi-
ciency highlighted in [9], GP-LVM turns out to be a powerful unsupervised learning
algorithm. Indeed, GP-LVM can manage, via the non-linear mapping of the latent
variables to the data-space, noisy or incomplete input data, when Gaussian processes
are used as non parametric priors for them.

At this point,we introduce somepreliminary definitions thatwewill refer through-
out the following sections

Let Y be the normalized data in R
N×d , for example specifying the pose of a

subject in space, with respect to a coordinate frame; let X be the mapped positions
in latent-space, with X ∈ R

N×q , with q ≤ d. Let f be a mapping, such that:

ynj = f (xn,w j ) + εnj , (1)

Here, ynj is the observed element of the nth row and j th column of Y, εnj denotes
the noise affecting the mapping and xn , the nth row of X, and w j are the parameters
of the mapping f . Given a Gaussian process as a prior on f , when the prior is the
same on each of the f functions one obtains [9]:

p(Y|X, θ) =
d∏

j=1

N (y j |0,K) (2)

Here, y j is the j th column of Y and K is the N × N kernel of the Gaussian process.
We see that (2) suggests a conditional independence in the data space, given the
latent space representation.

Learning amounts to maximizing the likelihood of the position of the latent vari-
ables X and θ, which are the parameters of the kernel:

L(X, θ) = −d

2
log|K| − 1

2
Tr

(
K−1YY�)

(3)

In order to optimize the non-linear model, it is necessary to initialize the model
using appropriate initial values for the positions of the latent-space points. It is also
necessary to initialize the hyperparameters of the model. Optimization is obtained
by an iterative minimization of the objective function, by using a gradient based
algorithm. As the model is non-linear, the hypersurface is subject to local-minima,
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so the initialization of the positions of the latent-space points is crucial. When non-
linear dimensionality reduction methods are used for the initialization, like local
linear embedding (LLE) [20] or ISOMAP [24], the structure of the manifold is
expected to be more accurately recovered. GP-LVM have been exploited in many
applications as for example in [27–29, 31].

4 Discriminative Sequence Back-Constrained GP-LVM

As mentioned in the previous sections, models from the family of GP-LVMmethods
are well suited for predicting missing values or missing samples of time sequences.
However, they do not seem to perform equally well when they are used for clustering
and classification problems, particularly for time-series data. This drawback of the
classical GP-LVM methods can be also witnessed by observing that it is hard to
recover the structure of a common latent-space for a set of sequences, as their latent
space representations are scattered across the latent-space and no relation can be
drawn between sequences corresponding to the same action. This is due to the fact
that standard GP-LVM models do not provide a mechanism to encourage points to
be placed closer to each other in the latent-space when they belong to the same class
and the same also holds at the level of individual sequences.

Local distances can be directly used inGP-LVM to provide a common latent-space
representation as they are well suited for classification purposes. In fact local
distances in data-space provide some information regarding the intra-class variation.
Lawrence and Quiñonero-Candela in [10] have introduced Back-Constrained
GP-LVM which considers local distances in the data-space. The GP-LVM model
uses a product of Gaussian processes to map from the latent-space to the data-space.
Each of these processes refers to a different dimension of the data-space and it is
governed by the coordinates of the latent-points. In order to obtain a smoothmapping
in the opposite direction, the authors in [10] propose to construct this mapping by
means of a kernel based regression. Adopting this technique, the latent points are
constrained to be the product of a smooth mapping from the data-space. This forces
small distances in data-space to lead to small distances between the corresponding
points in the latent-space. The smoothness of the mapping from the data-space to
the latent-space is determined by the kernel function. Using this mapping, it is not
needed to perform a new optimization to approximate the latent-space representation
of new data.

The previous method cannot be directly applied on data originating from
sequences, as it is expected that individual elements of a sequence do not provide
sufficient information regarding the characteristics of the entire sequence. Building
on the same principle, namely the use of local distances in the data-space as back-
constraints, we formulate a GP-LVMvariant which considers entire sequences rather
than individual data points.



142 V. Ntouskos et al.

Before introducing our model, we briefly review the Dynamic Time Warping
(DTW) algorithm, as well as a set of sequence alignment kernels based on DTW and
its variants, which will be used for the derivation of our model.

4.1 Dynamic Time Warping and Sequence Alignment Kernels

Dynamic Time Warping is used to match two time dependent sequences by nonlin-
early warping one sequence onto the other. Let us consider two vector sequences
Y = (y1, . . . , yN ) with N ∈ N and Z = (z1, . . . , zM ) with M ∈ N. Each vector
in the sequence belongs to a n-dimensional feature space F so yn, zm ∈ F . A local
distance measure is defined to compare a pair of features, provided by an appropriate
kernel function:

κ : F × F → R
+ (4)

A warping path is a sequence p = (p1, . . . , pL) where each element is a pair
pl = (nl ,ml). The total cost of awarping path p, according to the predefined distance
measure, is:

cp(yn, zm) =
L∑

l=1

κ(ynl , zml ) (5)

The Dynamic Time Warping distance between two sequences is defined as the
minimal total cost among all possible warping paths. To obtain this value we have
to solve the following optimization problem:

DT W (Y,Z) = min
p

{
cp(Y,Z)

}
(6)

We can also identify an optimal warping path (not necessarily unique):

p∗ = argmin
p

{
cp(Y,Z)

}
(7)

The DTW distance is well-defined, even though there may exist many warping
paths of minimal total cost. Moreover, it is symmetric if the distance measure is also
symmetric, but it is not a proper metric, as it does not satisfy the triangle inequality. In
order to applyDTWonMoCap sequences, wemust first define the local cost measure
κ. Two popular choices are to use the sum of the geodesic distances between the unit-
quaternions representing the joint angles, as well as the optimal alignment distance
between the three dimensional positions of the joints [14].

Based on the notions of theDTWdistance and the optimalwarping path, alignment
kernels have been proposed which consider entire sequences as a whole. As an
example we cite here [2, 5, 22].
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4.2 Sequence Back-Constrained GP-LVM

In this section we show how to enforce a clustering of the sequences in the latent-
space, governed by their respective similarity, which will enable a more accurate
classification of a new sequence. To ensure that data instances which are close to
each other in the data-space, are mapped to positions which are close also in the
latent-space, we apply a similarity measure for comparing different sequences and
identify a characteristic feature, summarizing the entire sequence.

Here we consider that each frame of a motion sequence is represented as a
d-dimensional array. An entire sequence, with index s, is represented thus as a set
of d dimensional arrays of cardinality Ls , forming a matrix Ys ∈ R

Ls×d . A col-
lection of S motion sequences is represented as the concatenation of the respective
sub-matrices forming the data-matrix Y ∈ R

N×d , with N = ∑S
s=1 Ls . Let Js be the

set of indices of the sth sequence in the data matrix, the corresponding representation
of the data-points in the q dimensional latent-space form a matrix X ∈ R

N×q . The
coordinates of the centroid of the latent-space representation of the sth sequence, is
defined as:

μsq = 1

Ls

∑
n∈Js

xnq (8)

The likelihood of the GP-LVM model is given by (3). The centroid of the latent
positions of the data points is taken to be the characteristic feature of the sequence.
Therefore, we require that the local distances between the sequences in data-space,
computed via the DTW technique, are preserved in latent-space; thus they are speci-
fied as the distances between the centroids µs . Hence, we consider a mapping to the
latent-space governed by an alignment kernel k:

gq(Ys) =
S∑

m=1

amqk(Ys,Ym) (9)

The degree to which the local distances in the data-space are preserved depends
on the particular characteristics of the kernel employed for the mapping.

We, thus, have to maximize a constrained likelihood, instead of maximizing the
likelihood of the original GP-LVM model.

Each of the S · q constraints can be written as:

gq(Ys) − μsq = 0 (10)

Maximizing the constrained likelihood of the model, we expect to obtain a
latent-space representation, where similar sequences are better grouped together,
with respect to the representation obtained by the original model. Another important
advantage of this approach is that we can use the inverse mapping recovered in the
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learning phase, for the purposes of fast inference. In this way, we avoid the costly
operation of reoptimisation, which is otherwise necessary to obtain the latent-space
representation of new sequences.

Up to this point, we did not consider the labels of each type of sequence. In the
following section, we modify our model by replacing the Gaussian prior with a prior
which will make the model more discriminative.

4.3 Discriminative Sequence Back-Constrained GP-LVM

Discriminative GP-LVM (D-GPLVM) has been originally introduced in [27]. In
order to make the Sequence Back-Constrained GP-LVM (SB-GPLVM) model more
discriminative, we can consider a measure of the between-group variation and the
within-group separation. Referring to Fisher’s Discriminant Analysis, in case we
need to estimate a linear projection of the data, such that an optimal separation is
achieved, we need to maximize the ratio of the between-group-sum of squares to the
within-group-sum of squares.

We thus seek the direction of projection given by the vector a which provides a
good separation of the data. Denoting as X = [x1, . . . , xN ]T the low dimensional
representation of the data points Y = [y1, . . . , yN ]T, the between-group-sum of
squares is given as:

aTBa =
C∑

c=1

Nc

N
aT(μc − μ0)(μc − μ0)

Ta (11)

The within-group-sum of square is given as:

aTWa = 1

N

C∑
c=1

Nc∑
n=1

aT(x(c)n − μc)(x(c)n − μc)
Ta (12)

Here X(c) = [x(c)1 , . . . , x(c)Nc
]T are the Nc points which belong to the class c, µc is the

mean of the elements of class c and µ0 is the mean computed across all the points.
The criterion used for maximizing between-group separability and minimizing

within-group variability is the following [8]:

J (X) = Tr(W−1B) (13)

Based on the previous discussion, in order to transform the SB-GPLVM model
making it discriminative, it is necessary to replace the Gaussian prior with a prior
which depends on (13). This prior takes the following form:

p(X) = 1

α
exp

{
−γ

2
J−1

}
(14)
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where α is a normalization constant, possibly depending on p, and γ represents the
scaling factor of the prior.

The log likelihood associated with the discriminative model becomes:

L = −d

2
log|K| − 1

2
Tr

(
K−1YYT

)
− γ

2
Tr

(
B−1W

)
(15)

The parameter γ controls the relative importance of the discriminative prior and
it reflects the ability of the model to be more discriminative or more generalizing,
according to the value it takes.

4.4 Classification Based on D-SBGPLVM

In this sectionwe illustrate how to compute the latent representation of the data points
belonging to a new sequence. Thiswill allow to classify any new sequenced according
to the introduced D-SBGPLVM model. Let Y∗ be the data-space representation of
a new sequence and X∗ the corresponding latent-space representation. The new
sequence’s centroid in latent-space can be estimated orders of magnitude faster than
X∗ by making use of Eq. (9) introduced in Sect. 4.2. Thus, the coordinates of the test
sequence centroid, in each dimension of the latent space are given by:

∀ q : μ∗q = gq(Y∗) =
S∑

s=1

aqsk(Y∗,Ys) (16)

where μ∗q is the qth dimension coordinate of the centroid µ∗ of the test sequence.
In this case, no minimization is required and the time, necessary for computing the
coordinates of the centroid of the test sequence, is proportional to the time needed
to compute the kernel values.

At this point, any multi-class classification method can be employed, in order to
perform classification. As the latent-space has a dimensionality much smaller than
the original data-space, it is expected that classification is more robustly performed in
the latent representation of the sequences. Moreover, the proposed method provides
a concise way to classify sequences as a whole, as the model treats them explicitly
as individual entities.

5 Results

The ability of the Discriminative Sequence Back-Constrained GP-LVM model to
provide a latent-space representation suitable for efficient and robust classification
of sequences, is examined in this section.
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Evaluation on the HDM05 “Cuts” Dataset [16]. Part of the “Cuts” sequences, con-
tained in the HDM05 dataset, has been used for evaluating the model we propose,
in comparison to other methods which can be used for sequence classification. This
dataset includes the following actions: Clapping hands-5 repetitions (17 sequences);
Hopping on right leg-3 reps. (12 seqs.);Kick with right foot in front-2 reps. (15 seqs.);
Running on place-4 steps (15 seqs.); Throwing high with right hand while standing
(14 seqs.); Walking starting with right foot-4 steps (16 seqs.).

The sequences are sampled at a frequency of 120 frames per second. For this
dataset, sequences are already accurately segmented, in order to contain a single
action with the same number of repetitions.

The results of the proposed method are compared with the classification results,
obtained by directly using the DTW distances of the sequences in the data-space,
as well as using the highest class-conditional densities obtained by the Variational
Gaussian Process Dynamical Systems (V-GPDS) method [6]. All results are taken
by Cross-Validation. Each experiment is performed by keeping all action sequences
of one of the five subjects as test sequences and by using the sequences of the other
four subjects as training instances. Finally, the results are averaged over the five
individual experiments.

Table1 gives the accuracy rate achieved with each of these three methods for
each action as well as in average. Regarding the results obtained by the proposed
method, relative features are used and the dimensionality of the latent-space space
is fixed to four. Moreover, for the back-constraints the kernel proposed in [2] is used
and the initial positions of the latent points are obtained by using the Local Linear
Embedding algorithm [20]. Finally, classification in latent-space is performed by
SVMs using the RBF kernel function. Figure1 shows the corresponding confusion
matrix obtained by using the D-SBGPLVM model.

One can see from the results provided in Table1 that our method gives the best
results, both for each individual type of action, except for Hop, as well as in average.
We observe that the classification accuracy is relatively high for the DTW distance
alone. This depends also on the fact that this dataset is specifically constructed in
such a way, that actions of the same kind can be aligned with a very small cost. This
is possible as they are defined at a high detail level regarding their execution and they

Table 1 Comparison of the classification results for the HDM05 “Cuts” dataset

DTW (%) V-GPDS (%) D-SBGPLVM (%)

Clap 70.6 16.7 88.2

Hop 100 66.7 83.3

Kick 40.0 33.3 53.3

Run 66.7 33.3 80.0

Throw 64.3 50.0 78.6

Walk 100 83.3 100

Average 73.0 47.2 80.9
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Fig. 1 Confusion matrix by using D-SBGPLVMmodel in combination with SVM on the HDM05
“Cuts” dataset. Average accuracy: 80.9%

have been also accurately segmented manually. Regarding classification of human
actions using the V-GPDS model, it is necessary to train a different model for each
individual type of action. After a model has been trained for each type of action, it
is possible to compute the class conditional densities for the new sequence.

Considering that the analogous model of V-GPDS, which does not consider time
dynamics introduced in [25], provides good classification results (e.g. on the USPS
Handwritten Digits Dataset) we expected higher classification rates for the adapted
V-GPDS model. Searching the cause of this issue, we have noticed that models for
certain actions tend to provide quite high conditional densities most of the time.
Further investigation is needed in this direction, as the experiments performed using
V-GPDS were not sufficient to derive safe conclusions and possibly a more suitable
adaptation of the model for classification purposes is needed.

In the case of D-SBGPLVM, the model is trained by optimising the latent coor-
dinates of the sequences and the hyper-parameters of the model by using all training
sequences. By the optimisation process, we recover also the parameters of the ker-
nel based regression, which forms the inverse mapping from the data-space to the
latent-space. We provide some examples of bi-dimensional latent-spaces recovered
by training the model using sequences of the HDM05 “Cuts” dataset in Fig. 2. In
these figures, each color corresponds to a different class of action, crosses are the
latent representations for each individual data point, triangles correspond to the cen-
troids of the training sequences and finally the squares correspond to the estimated
position of the testing sequences centroids computed using the back-constraints. In
Fig. 2 the recovered latent-spaces are shown for three different types of representa-
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Fig. 2 Left Column Latent-space representation by PPCA initalization and considering Euler
Angles (Top), Unit-Quaternion (Middle) and 3D Point Cloud (Bottom) representations Right Col-
umn latent-space representation considering relative features representation and PPCA (Top), LLE
(Middle) and ISOMAP (Bottom) initalization

tions considered for the sequences and by using Probabilistic PCA in order to retrieve
initial values for the latent points. In the case of Euler Angles and Unit-Quaternions,
one can notice that different sequences are placed on top of each other and thus we
expect classification rates to be low.

Our interpretation is that this mainly depends on the high non-linearity of the data-
space and the fact the PPCA, being a linear dimensionality reduction technique, is not
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able to provide suitable initial values for the latent points. As our model is non-linear
and it is optimized by using a gradient based algorithm, it is susceptible to local
minima. However, in the case of 3D point cloud representation, the data-space does
not show excessive non-linearity and even PPCA initialization seems to be sufficient
to recover a better structure for the latent-space.

The case of Relative Features (as in [14], but without discretization based on
some threshold) is examined also in Fig. 2. Relative features include for example
the distance between two specified joints, the distance of a joint with respect to
the plane defined by three other, the angle between two successive joints etc. Here
we can better observe the impact of the initialization technique on the resulting
structure of the latent-space. It is evident that the use ofmore sophisticated non-linear
dimensionality reduction techniques to obtain the initial values, helps recovering a
better structure of the common latent-space.
Evaluation on actions of the CMU Dataset [4]. Seven actions from the CMU dataset
have been also considered for evaluating themodel we propose. This dataset includes
the following actions: Walking (15 sequences); Running (15 seqs.); Jumping (15
seqs.); Sitting-Standing (7 seqs.); Throwing-Tossing (15 seqs.); Boxing (9 seqs.);
Dancing (9 seqs.).

Each of these actions is performed from a different actor. Moreover, the actions
have not been hand-picked and their label only relies on the default labelling provided
by the publishers of the dataset. Finally, motion sequences have not been manually
segmented.Weperformclassification instead by just considering the first two seconds
of each sequence. For these reasons, we can see that this dataset represents a more
challenging and realistic instance of the action recognition problem. Five-fold cross-
validation has been used here for obtaining the final classification results.

The classification accuracy achieved by the proposed method, compared with the
results of DTW distances and V-GPDS method, are provided in Table2. Here, Euler
angles are considered as features provided to the D-SBGPLVM, while the rest of the
setting is the same with the one described for the “Cuts” experiments. In Fig. 3 we
provide the corresponding confusion matrix and the overall classification rate, when
the D-SBGPLVM model is used.

Table 2 Comparison of the classification results for the actions taken from CMU dataset

DTW (%) V-GPDS (%) D-SBGPLVM (%)

Walk 80.0 40.0 66.7

Run 60.0 40.0 66.7

Jump 86.7 40.0 73.3

Throw-Toss 80.0 40.0 80.0

Sit-Stand 46.7 40.0 80.0

Box 100 20.0 80.0

Dance 26.7 80.0 73.3

Average 63.5 42.9 72.9
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Fig. 3 Left Confusion matrix by using D-SBGPLVM model in combination with SVM on the
CMU dataset. Average accuracy: 72.9% Right sorted ARD covariance function values obtained
after training the model for the same dataset using the RBF-ARD kernel. Average accuracy: 74.1%

We can observe here, that the results for the “CMU” dataset are analogous to the
ones corresponding to the “Cuts” dataset. We expect that the lower rate achieved in
general by all algorithms mainly depend on the particular difficulties which charac-
terise this dataset, as mentioned above. Considering these difficulties, one can see
that the proposedmodel gives satisfying classification results. This also demonstrates
the generalization capabilities of the proposed probabilistic model, which based on
this characteristic leads to an overall accuracy that exceeds the accuracy achieved by
the other two methods considered here.

The same experiments were also performed by considering the recently proposed
‘path kernel’ [3] providing equivalent results. The classification rate was slightly
lower but thismay be related to the particular selection of the parameters of the kernel.
Moreover, we performed trials using the automatic relevance determination (ARD)
squared exponential kernel as in [6, 25]. In this case, considering eight dimensions
for the latent space, we obtained a classification rate of 74.1% for the CMU dataset.
What is important to note here are the values of the relative importance of each
dimension after training the model, shown in Fig. 3. One can see here that most of
the information for the actions is embedded in a four dimensional sub-manifold. This
result is in accordance with the ones reported in [17].

6 Conclusions

In this paper, we have introduced a novel GP-LVM variant in order to recover the
structure of a lower dimensional manifold for a set of sequences of different action
types. We have shown that the model, according to our approach, attains increased
classification accuracy by working in the low dimensional latent-space instead of
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the original data-space. By exploiting the inverse mapping, from the data-space to
the latent-space, our approach is able to infer the class of a new sequence within a
few seconds (Matlab implementation tested on the following system: 2.2GHz quad-
core AMD Phenom, 4GB RAM). This provides a crucial advantage with respect to
other GP-LVM models which require several minutes to complete this task, having
to deal with a new optimization to obtain the latent-space representation of the new
data instances.We have further shown that the proposed D-SBGPLVMmodel attains
classification rates equivalent to the current state-of-the-art when combined with a
standard classifier, as for example SVM, for classification in the latent-space.

Within the directions of our future work, we further consider the combination
of the proposed method with some pose recovery algorithm. In this way, it would
be possible to train the model by using action sequences taken from a MoCap
dataset and classify sequences recovered from videos by means of the pose recovery
algorithm. This would make action recognition from 2D video sequences also
possible. Finally, we are currently considering automated ways for the segmentation
of motion sequences to sub-sequences of individual actions without prior knowledge
of the actions preformed. This step is important for allowing the processing of
sequences containing multiple actions with the method described in this work.

Acknowledgments This paper describes research done under the EU-FP7 ICT 247870 NIFTi
project.
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Graph Cut Based Segmentation of Predefined
Shapes: Applications to Biological Imaging

Emmanuel Soubies, Pierre Weiss and Xavier Descombes

Abstract We propose an algorithm to segment 2D ellipses or 3D ellipsoids. This
problem is of fundamental importance in various applications of cell biology. The
algorithm consists of minimizing a contrast invariant energy defined on sets of non
overlapping ellipsoids. This highly non convex problem is solved by combining a
stochastic approach based on marked point processes and a graph-cut algorithm that
selects the best admissible configuration. In order to accelerate the computing times,
we delineate fast algorithms to assess whether two ellispoids intersect or not and
various heuristics to improve the convergence rate.

Keywords Nuclei segmentation · 2D and 3D images · Graph-cuts · Marked point
processes · Ellipses and ellipsoids · Multiple objects detection · Multiple birth and
cut · Bio-imaging

1 Introduction

Cell or nuclei segmentation in 2Dand3D is amajor challenge in bio-medical imaging.
New microscopes provide images at higher resolutions, deeper into biological tis-
sues, leading to an increasing need for automatic cell delineation. This task may be
easy in certain imaging modalities where images are well resolved and contrasted,
but it remains mostly unresolved in emerging fluorescent microscopes dedicated
to live imaging such as confocal, bi-photon, or selective plane illumination micro-
scopes. These modalities suffer from multiple degradations such as light attenuation
in the sample, photo bleaching, heavy noise and spatially varying blur that make the
segmentation task hard even for human experts.
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Our aim in this work is to propose a segmentation algorithm robust to such
situations. Since images are heavily deteriorated, standard methods aiming at finding
contours based on a sole regularity assumption such as active contours or Mumford-
Shah derivatives fail for the segmentation. This observation led us to introduce strong
shape priors: cells are modelled as ellipses or ellipsoids that should fit the image con-
tents. Unfortunately, adding geometrical constraints makes the optimization prob-
lems highly non convex and appeal for the development of new global optimization
methods.

Following recent works [5, 6, 9], we use randomized algorithms that allow to
escape from local minima. These algorithms are based on marked point processes.
The Marked Point Process (MPP) approach [1, 7] consists in estimating a configura-
tion of geometric objects (in our case ellipses or ellipsoids) whose number, location
and shape are unknown. It has proved to be very efficient in numerous image analy-
sis applications as it allows the combination of radiometric information with strong
geometrics constraints on the objects but also at a global scale. Defined by a density
against the Poisson process measure, its main advantage is to consider a random
number of objects and can be considered as an extension of the Markov Random
Field approach. A review of this approach and its applications can be found in [5].

The objects are defined on a state space χ = I × M by their location and their
marks (i.e. geometric attributes). The associated marked point process X is a ran-
dom variable whose realisations are random configurations of objects. Considering
a Gibbs process, the modeling consists of an energy construction. Similarly to the
Bayesian framework, this energy can be written as the sum of a data term and a prior.
In this paper we consider a pairwise interactions prior that forbids intersections be-
tween objects. Once the model defined, the solution is obtained by minimizing the
energy. This energy being highly non-convex requires stochastic dynamics, such as
MCMCmethods, to be minimized. The Reversible Jump MCMC embeded in a sim-
ulated annealing framework is a natural candidate for this task [10]. However, in
case of simple constraints such as non overlap, the recently proposed multiple birth
and death algorithm is preferable [6]. To avoid the fastidious calibration of annealing
parameters, we propose to revisit the combination of the multiple births principle
with the graph cut paradigm proposed by [9].

The paper is organized as follows. We formalize the segmentation problem as
a minimization problem in Sect. 2. Section3 begins by a global algorithm descrip-
tion and is followed by a precise description of each algorithm step. We finish by
presenting numerical results in Sect. 4.

2 Problem Statement

Figure1 contains typical examples of images encountered in biology. It is readily seen
from these images that most nuclei contours can be well approximated by ellipses
or ellipsoids, at least at a coarse scale. Moreover these nuclei cannot overlap due
to obvious physical considerations. We thus formulate our segmentation problem as
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Fig. 1 Example of a SPIM
image (Multicellular tumor
spheroid)

that of finding a set of non overlapping ellipsoids that fit the image contents. We
formalize this statement in the latter.

Let Cn, n ∈ N denote the set of configurations containing n objects that do not
overlap. An element x ∈ Cn is a set of n non overlapping objects. Since the number
of nuclei in the configuration is unknown, we aim both at finding this number n∗ and
the best configuration x ∈ Cn∗ with respect to a certain data fidelity term f (x). Our
optimization problem can thus be formulated as follows. Let

g(n) = min
x∈Cn

f (x)

denote the minimum value of f in the set Cn . We wish to find both

n∗ = argmin
n∈N

g(n)

and
x∗ = argmin

x∈Cn∗
f (x).

By convention, we assume that C0 = ∅ and that min
x∈C0

f (x) = 0. The data term

f should thus be negative for configurations that are likely to represent the nuclei
parameters and positive otherwise. We detail how the ellipses are parametrized and
the construction of such a function in the following paragraphs.
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Fig. 2 Parameters of the
ellipse

2.1 Object Modelling

In two dimensions, ellipses are parameterized using five parameters (see Fig. 2):

• (x, y) ∈ Ω: center coordinates which should belong to the image domain Ω .
• θ ∈ [0, 2π[: angle with the horizontal direction.
• 0 < λ− < b < a < λ+: describe the ellipses minor and major axes size. λ−
and λ+ are user defined parameters that describe the nuclei maximal size and
ellipticity.

In three dimensions, nuclei are parameterized using nine parameters:

• (x, y, z) ∈ Ω: center coordinates.
• φ, θ,ψ ∈ [0, 2π[3: Euler angles to define the ellipsoids orientations.
• 0 < λ− < c < b < a < λ+: axes lengths.

Overall, it can be seen that objects belong to a state space χ defined as a paral-
lelepiped:

χ = Ω × [0, 2π[×[λ−,λ+]2 (1)

in 2D and
χ = Ω × [0, 2π[3×[λ−,λ+]3 (2)

in 3D.
In this paper, the objects are denoted ω and their boundary is denoted ∂ω.

2.1.1 Data Term

Let u : Ω → R denote a grayscale image. In order to define the data term f (x), we
associate an elementary energy Ud(ω, u) to each element ω ∈ x and set:
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f (x) =
∑
ω∈x

Ud(ω, u). (3)

The functionUd(ω, u) ∈ [−1, 1] should be negative if the objectω is well positioned
on the image and positive otherwise.

In fluorescence microscopy, nuclei are usually characterized by bright region
surrounded by a dark background since they are stained or genetically modified in
order to express a fluorescent protein. Unfortunately, their radiometry is not constant
due to local bleaching or light attenuation in the deepest layers. We thus need to
construct an energy that is contrast invariant, meaning that local modifications of
the radiometry shall not affect the energy. Such an energy can be constructed easily
by considering the normal to the image level lines ∇u

|∇u| where ∇u denotes the usual

gradient in R
d and |∇u| denotes the gradient magnitude in the standard Euclidean

norm. This tool is well known to be contrast invariant. Let us define an energy U for
a given object ω as:

U (ω) = 1

|∂ω|
∫

∂ω
〈 ∇u(x)√|∇u(x)|2 + ε2

, n(x)〉dx (4)

where 〈·, ·〉 denotes the standard scalar product, |∂ω| denotes the length of the object
boundary, n(x) denotes the outward normal to ω at location x ∈ ∂ω and ε is a
regularization parameter that discard faint transitions. The behavior of this energy
is illustrated on Fig. 3. Overall, it does what is expected, but as can be seen on the
illustration (b) and (d) in Fig. 3, badly located ellipses might have a negative energy
and be kept in the final configuration. It is thus necessary to modify U in order to
promote well located objects only. A simple way to do so consists in setting:

Ud(ω, u) = ψ(U (ω), s)

where s ∈] − 1, 0] is an acceptance threshold for the objects and

ψ(α, s) = min(
1

s + 1
α − s

s + 1
, 1).

Fig. 3 Behavior of the energy given by Eq. (4). The corresponding energy values are: U= −1 (a).
U= −0.1 (b). U= −0.2 (c). U= −0.5 (d)
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Other data terms based on the contrast between the object interior and the back-
ground as presented by [9] (in dimension 2) could also be used but present two
drawbacks: first they require to compute an integral over the interior of the domain
while the proposed approach consist in computing a boundary integralwhich is faster.
Second, such measures might be inaccurate in the case of very dense media, where
the background can be difficult to extract. Finally our measure is contrast invariant,
which is central for the targeted applications.

3 Multiple Birth and Cut Algorithm

The Multiple Birth and Cut algorithm (MBC) has been proposed by [9] for counting
flamingos in a colony. In this section, we describe the different steps of the MBC
algorithm (Algorithm 1).

The main idea consists in generating two random configurations of non-
overlapping objects x and x′ (birth step) and then keep the subset of objects in
x ∪ x′ that minimizes f (cut step). This process is iterated and decreases f at each
iteration. The cut step can be performed efficiently using a Graph Cut algorithm
[4, 11]. We describe this algorithm more formally below:

Algorithm 1: Multiple Birth & Cut algorithm.

Require: N
1: Generate a configuration x[0] with Algorithm 2
2: n ←− 0
3: while (Not converged) do
4: Generate of a new configuration x′

using Algorithm 2.
5: x[n+1] ←− Cut (xn ∪ x′)
6: n ←− n + 1
7: end while

Interestingly, this algorithm contains only one parameter N (the number of objects
generated in a configuration). We observed experimentally that this parameter might
affect slightly the speed of convergence but not the segmentation accuracy. This
algorithm is thus much easier to tune than more standard RJMCMC based dynamics.

3.1 Birth Step

Anewconfigurationx′ of non-overlappingobjects is generated.Note that only objects
which are in the same configuration have to respect the non-overlapping constraint,
but two objects in different configurations can intersect as can be seen on Fig. 4.
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Fig. 4 Two configurations on an image (the black ellipses are the object to detect)

The birth step is detailed in Algorithm 2. The fourth step of this algorithm can
be efficiently implemented using a lookup table and the fast intersection algorithm
proposed in the latter.

Algorithm 2: Birth step.
Require: N , nmax .
1: Set k = 0, n = 0, x′ = ∅.
2: while k < N and n < nmax do
3: Construct an object ω′ by generating a random vector uniformly in χ.
4: If ω′ intersects an object in x′, set n = n + 1 and go back to 3.
5: Otherwise set x′ = x′ ∪ {ω′}, k = k + 1, n = 0 and go back to 3.
6: end while

3.2 Cut Step

This step consists in selecting the best configuration of non-overlapping objects in
(x[n] ∪x′). To perform this optimization, a weighted graph is constructed. The nodes
of this graph are the objects ω of the two configurations x[n] and x′. This graph also
possesses two special nodes, the source ‘s’ and the sink ‘t’. The weights should
belong to [0, 1] ∪ {+∞} and a weight equal to 1 should be associated to a well
positioned object. It is thus necessary to redefine the data term Ud(ω, u) by:

W (ω) = (1 − Ud(ω, u))/2.

which will be equal to 1 for Ud(ω, u) = −1 and to 0 for Ud(ω, u) = 1 what is
expected.
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3.2.1 Graph Construction

Each object of the configuration (x[n] ∪ x′) is linked to the source and the sink. The
difference between the objects ωi ∈ x[n] and the objects ω j ∈ x′ is that the objects
ωi ∈ x[n] are linked to the source with a weight equal to the data energy W (ω) and
to the sink with a weight equal to 1 − W (ω), while it is the reverse for the objects
ω j ∈ x′.

The weights associated to edges linking two objects are non zero only when two
objects intersect. If ω1 ∈ x[n] (current configuration) intersects with ω2 ∈ x′ (new
configuration), the link from ω1 to ω2 is set to ∞ and the link from ω2 to ω1 is
set to zero.1 This ensures that the cut step generates an admissible configuration
(with no overlapping objects). Figure5 summarises the graph construction of the
configurations on Fig. 4. The nuclei to detect are represented by black ellipses.

3.2.2 Cut

Once the graph is constructed, we perform a cut that consists in partitioning the
vertices into two disjoint subsets. One contains the source and the other the sink. The
cut realized is the one with minimal cost (the one minimizing the sum of the weights
of the removed edges).

Fig. 5 Graph corresponding to the Fig. 4

1 When two objects intersect the link affected by a weight of ∞ is always the link from the object
of the current configuration to the object of the new configuration.
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Fig. 6 Graph associated to
two overlapping objects

After the cut step, if ωi ∈ x[n] is in the sub-graph containing the source, we keep
it, otherwise we remove it. On the contrary the objects ω j ∈ x′ are kept only if
they belong to the sub-graph that contains the sink. This difference of interpretation
between the two configurations combined with the different weights to the source
and the sink, ensure that in case where an object of x[n] and an object of x′ intersect,
only one can be kept.

Let ωA ∈ x[n] and ωB ∈ x′ be two overlapping objects. Figure6 presents the
associated graph and Fig. 7 shows the four possible cuts of this graph.

As the cut step consists in finding the cutwithminimal cost, the situation presented
in 7(d) can not occur since the cost is equal to ∞. Furthermore, case 7(c) can occur
and then, for two overlapping objects, either one is kept (7(a) and 7(b)) or both are
removed (7(c)).

Remark 1 In 7(c) and 7(d) the vertices are well partitioned into two disjoint subsets
since there is no subset of edges in the resulting graph which allows to go from the
source ‘s’ to the sink ‘t’.

The cut step is implemented using the graph-cut code developed by Boykov and
Kolmogorov in [3, 4, 11].

3.3 A Fast Determination of Ellipses Intersection

One of the proposed algorithm bottleneck is the fast determination of whether two
ellipsoids intersect or not. In this section, we present a fast algorithm to answer that
question and prove theoretically that only a few arithmetic operations suffice to pro-
vide the answer with a low error rate.

Let ω be an ellipse or an ellipsoid. It can be defined using a quadratic function
Qω as ω = {x ∈ R

d , Qω(x) = 1}. The quadratic function Q can be defined by:
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Fig. 7 Four possible cuts of the graph corresponding to the Fig. 6. Keep wA, remove wB (a).
Cost = 1 − WA + WB . Keep wB , remove wA. Cost = 1 − WB + WA (b). Remove wA and wB .
Cost = WA + WB (c). Keep wA and wB . Cost = ∞ (d)

Qω(x) = 〈A(x − c), (x − c)〉 (5)

where c denotes the object center and A is positive definite matrix defined by:

A = P−1D P = PT D P.

where P is a rotation matrix and D is a positive diagonal matrix. In 2D, P is defined
by:

P =
(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)

and

D =
(

1
a2

0
0 1

b2

)
.

In 3D, the notation become cumbersome and we leave them to the reader.
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Letω1 andω2 be two ellipses or ellipsoids. In order to knowwhether they intersect
or not, we can find the minimal level set of Qω2 which intersects the boundary of
ω1. If this level set is associated to a value greater than 1, the ellipses are separated,
otherwise they overlap. This idea can be formulated as the following minimization
problem:

min
x∈Rd ,Qω1 (x)≤1

Qω2(x) (6)

This problem consists of minimizing a quadratic function over convex set. Projected
descentmethods can thus be used. Unfortunately, there exists no closed form solution
to the problem of projection of a point on an ellipse. We thus need to simplify the
constraint set:

min
Qω1 (x)≤1

Qω2(x)

= min〈A1(x−c1),(x−c1)〉≤1
〈A2(x − c2), (x − c2)〉

= min
〈√A1(x−c1),

√
A1(x−c1)〉≤1

〈A2(x − c2), (x − c2)〉

= min
‖y−√

A1c1‖22≤1
〈A2(A

− 1
2

1 y − c2), (A
− 1

2
1 y − c2)〉.

where y = √
A1x . In this reformulation, the constraint set Y = {y ∈ R

d , ‖y −√
A1c1‖22 ≤ 1} is a simple l2-ball and the function F(y) = 〈A2(A

− 1
2

1 y −
c2), (A

− 1
2

1 y − c2)〉 is a strongly convex differentiable function. We can thus use
a projected gradient descent that writes:

Algorithm 3: Detection of overlapping ellipsoids.

Require: Qω1 , Qω2 , ε > 0.
1: Set k = 0, y0 = c1+c2

2 .

2: Set μ = b21
a22
, L = a21

b22
.

3: Set τ = 2
μ+L .

4: while ‖yk+1 − yk‖ ≥ ε do
5: yk+ 1

2
= yk − τ∇F(yk).

6: yk+1 = �Y

(
yk+ 1

2

)
.

7: k = k + 1.
8: end while
9: If F(yk) >= 1 return 0 (the ellipsoids do not intersect with high probability).
10: If F(yk) < 1 return 1 (the ellipsoids intersect).

Let y∗ denote the solution of the above problem. The previous algorithm comes
with the following guarantees:
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Theorem 1 After k iterations, yk satisfies:

F(yk) − F(y∗) ≤ μ

2
‖y0 − y∗‖22

(
QF − 1

QF + 1

)2k

‖yk − y∗‖22 ≤ ‖y0 − y∗‖22
(

QF − 1

QF + 1

)2k

where

QF = a2
1

b22

a2
2

b21
≤ λ4+

λ4−
.

Proof The Hessian of F is HF (y) = 2A
− 1

2
1 A2A

− 1
2

1 . Since A1 and A2 are products
of orthogonal and diagonal matrices (A = PT D P), the eigenvalues of HF (y) can
be easily bounded:

λmin[HF (y)] ≥ b21
a2
2

λmax [HF (y)] ≤ a2
1

b22

The function F is thus μ-strongly convex withμ ≥ b21
a2
2

and its gradient is L-Lipschitz

with L ≤ a2
1

b22
. Using standard convergence theorems in convex analysis [2], we obtain

the announced result. �

The conditioning number QF depends solely on the ratio between the major axis
and the minor axis sizes and not on the dimension d. This algorithm will thus be
as efficient in 3D as in 2D. For two circles the ratio QF is equal to a

b = 1 and
the algorithm provides the exact answer after one iteration. For elliptic ratios of 2,
Q f = 16 and in the worst case, after 18 iterations, the algorithm returns a point
yk that is 100 times closer to the intersection than y0. We also tested an accelerated

algorithm by [12], where the convergence rate is of order
(√

QF −1√
QF +1

)2k
but it did not

improve the computing times.
In our problems the ratio between a and b is always less than 2 and the algorithm

usually converges in just a few iterations (2–10 depending on the problem).

3.4 Acceleration by Local Perturbations

When the objects variability is important, the state space size increases and affects the
convergence speed of the MBC algorithm. This problem is particulary important in
3D since ellipsoids are definedby9parameters instead of 5 for the 2 dimensional case.
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In order to improve the convergence speed, [8] proposed to insert a selection phase
in the birth step. This selection phase consists in generating a dense configuration
of objects at similar locations and to keep the best ones using Belief Propagation in
order to form the new configuration.

In this paper, we propose another heuristic in order to increase the convergence
speed. We propose to alternate between two different kinds of birth steps. The
first one is that proposed in algorithm 2. The second one consists in perturbating
locally the current configuration. This principle mimics the proposition kernels
used in RJMCMC algorithms [13]. The idea behind this modification is that after a
while, most objects are close to their real location and that local perturbations may
allow much faster convergence than fully randomized generation. This algorithm is
described in details in Algorithm 4.

Algorithm 4: MBC algorithm with local perturbations.

Require: N
1: Generate a configuration x[0] using Algorithm 2.
2: n ←− 0
3: while (Not converged) do
4: Generate a uniformly distributed random number r ∈ [0, 1].
5: if r < p then
6: Generate a new configuration x′

using Algorithm 2.
7: else
8: Generate a new configuration x′

using Algorithm 5.
9: end if
10: x[n+1] ←− Cut (xn ∪ x′)
11: n ←− n + 1
12: end while

3.4.1 Local Perturbations

A given object ω in x[n] is described by a set of parameters λ ∈ χ (see Eqs. 1 and 2).
We generate the new object ω′ by setting its parameters λ′ = λ + z where z is the
realization of a random vector Z distributed uniformly in χε where:

χε = [−δxy, δxy]2 × [−δab, δab]2 × [0, 2π[

in 2D and
χε = [−δxyz, δxyz]3 × [−δabc, δabc]3 × [0, 2π[3

in 3D.
The value of the different δ describes the perturbation extent. We observed that

small values accelerates the convergence speed.
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Algorithm 5: Birth step with local perturbation.
Require: x[n].
1: while k < si ze(x[n]) do
2: Construct an object ω′ by local perturbation of ωk ∈ x[n].
3: If ω′ intersects an object in x′, set k = k + 1 and go back to 2.
4: Otherwise set x′ = x′ ∪ {ω′}, k = k + 1 and go back to 2.
5: end while

Fig. 8 Comparison of the MBC and MBC with LP algorithms

3.4.2 Comparison of the Convergence Speed

We have tested this method in order to compare the speed of convergence of the
MBCalgorithm and theMBCalgorithmwith local perturbation. Figure8 presents the
energy evolutionwith respect to time for bothMBCandMBCwith local perturbations
(denoted MBC with LP) on the same image (the 3D nuclei of Drosophila embryo).
The segmentation result is presented on Fig. 13 (image size 700×350×100). These
results show that the MBC with LP algorithm strongly improve the MBC algorithm.

4 Results

In this section, we present some practical results in 2D and 3D. Figure9 shows the
segmentation result on a Drosophila embryo obtained using SPIM imaging. This is a
rather easy case, since nuclei shapes vary little. The images are impaired by various
defects: blur, stripes and attenuation. Despite this relatively poor image quality, the
segmentation results are almost perfect. The computing time is 5min using a c++
implementation. The image size is 700 × 350.



Graph Cut Based Segmentation of Predefined Shapes: Applications … 167

Fig. 9 Left Drosophila embryo. Right result of the proposed 2D segmentation algorithm

Figure10 presents a more difficult case, where the image is highly deteriorated.
Nuclei cannot be identified in the image center. Moreover, nuclei variability is
important meaning that the state space size χ is large. Some nuclei are in mitosis
(see e.g. top-left). In spite of these difficulties, the MBC algorithm provides accept-
able results. They would allow to make statistics on the cell location and orientation,
which is amajor problem in biology. The computing times for this example is 30min.

Nuclei segmentation is a major open problem with a large number of other appli-
cations. In Fig. 11, we attempt to detect the spermatozoon heads. The foreseen appli-
cation is tracking in order to understand their collective motion. Figure12 presents
a multicellular spheroid, an in vitro model mimicking microtumor region organiza-
tion, surrounded by a circle of high aspect ratio pillars made in a soft material by
advanced microfabrication processes. The aim of this experiment is to determine
the displacement of the pillars induced by the spheroid dynamics. To address this
question, the precise detection of the contours of the top of the pillars is required for
this quantitative measurement.

Fig. 10 2D segmentation of a multicellular tumor spheroid (Fig. 1)
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Fig. 11 Segmentation of a spermatozoon colony (5min). Image size: 2,000× 1,024

Fig. 12 Micro pillars detection ( <1min). Image size: 840× 800

3D results are presented in Figs. 13 and 14. For the Drosophila embryo, the seg-
mentation is very close to what a human expert would do. The computing times are
2 hours and the image size is 700 × 350 × 100. The curves in Fig. 8 correspond to
this image.

Fig. 13 Left 3DDrosophila embryonuclei.Right Result of the proposed 3Dsegmentation algorithm
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Fig. 14 Left 3D multicellular tumor spheroid. Right Result of the proposed 3D segmentation
algorithm

The spheroid segmentation presented in Fig. 14 is less precise than the previous
ones due to an important cell variability and to the fact that the images are extremly
blurry in the Z direction. For that case, image restoration algorithms and the design
of new energies robust to strong perturbations seem important.

5 Conclusions

We proposed a detection algorithm capable of identifying sets of non overlapping
ellipses or ellipsoids. Interestingly, this algorithm contains only parameters that are
related to physical properties of the underlying objects (e.g. nuclei variability in size
and ellipticity) and is thus easy to apply for any person working in fields such as
biological imaging. We presented the wide applicability of this algorithm for 2D
and 3D images. Even in hard cases with contrast loss and high noise, the algorithm
manages to find most nuclei due to contrast invariant energies.

Future work will include a quantitative evaluation of the algorithm efficiency with
gold standards. We are also investigating the possibility to encode more complex
interactions between objects to handle cases where the normal to the image level
lines do not provide sufficient information for ellipsoid fitting.
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Artificial Neural Network Modeling of Relative
Humidity and Air Temperature Spatial
and Temporal Distributions Over Complex
Terrains

Kostas Philippopoulos, Despina Deligiorgi and Georgios Kouroupetroglou

Abstract In this work we present a methodological approach of applying Artificial
Neural Networks (ANN) for modeling of both the air temperature (AT) and relative
humidity (RH) spatial and temporal distributions over complex terrains. A number
of implementation issues are discussed, along with their relative advantages and
limitations. Moreover, after the introduction of a set of metrics, the accuracy of
the evaluation of ANN based spatial and time series AT and RH modeling in the
case of a specific region is examined, by applying a number of alternative feed
forward ANN topologies. The Levenberg-Marquardt back propagation algorithm
was used for the ANNs training in the temporal forecasting of AT and RH, with the
optimum architecture being the one that minimizes the Mean Absolute Error on the
validation set. The Radial Basis Function and the Multilayer Perceptrons non-linear
Feed Forward ANNs schemes are compared for the spatial estimation of AT and RH.
We found that the spatial and temporal AT and RH variability over complex terrains
can be modeled efficiently by ANNs.

Keywords Artificial neural networks · Relative humidity modeling · Air tempera-
ture modeling · Spatial interpolation · Time-series forecasting

1 Introduction

Air temperature (AT) and relative humidity (RH) measurements in high resolution
time series are available only at limited stations because meteorological data are
generally recorded at specific locations and derived from different meteorological
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stations with non-identical characteristics. Spatial interpolation approaches essen-
tially transfer available information in the form of data from a number of adjacent
irregular sites to the estimated sites. Thus, spatial interpolation methods are fre-
quently used to estimate values of AT and RH data in locations where they are not
measured. Various methods have been developed with the purpose to compare the
performance of different traditional spatial interpolation methods for air tempera-
ture data [1, 2]. Accurate ambient temperature estimates are important not only in
spatial but also in temporal scales. Air temperature time series forecasting is one of
the most significant aspects in environmental research and in climate impact studies.
Time series forecasts are valuable in the renewable energy industry, in agriculture
for estimating potential hazards, and within an urban context, in air quality studies
for assessing the risk of adverse health effects in the general population.

During the last few decades, there has been a substantial increase in the interest on
Artificial Neural Networks (ANN). ANNs have been successfully adopted in solv-
ing complex problems in many fields. Essentially, ANNs provide a methodological
approach in solving various types of nonlinear problems that are difficult to deal with
using traditional techniques.Often, a geophysical phenomenon exhibits temporal and
spatial variability, and is suffering from issues of nonlinearity, conflicting spatial and
temporal scale and uncertainty in parameter estimation [3]. ANNs have been proved
[4] to be flexible models that have the capability to learn the underlying relationships
between the inputs and outputs of a process, without needing the explicit knowledge
of how these variables are related.

Recently, numerous applications of ANNs to estimate air temperature data have
been presented, e.g. in areas with sparse network of meteorological stations [5, 6],
for the prediction of hourly [7], daily [8] and year-round air temperature [9] or room
temperature [10], as well as for simulating the Heat Island [11].

In this work first we briefly present the theoretical background of ANN method-
ologies applicable to the field of AT and RH time series and spatial modeling. Next,
we focus on implementation issues and on evaluating the accuracy of the afore-
mentioned methodologies using a set of metrics in the case of a specific region
with complex terrain at Chania, Crete Island, Greece. A number of alternative Feed-
forward ANN topologies are applied in order to assess the spatial and temporal RH
and AT prediction capabilities in different time horizons.

2 ANN-Based Prediction Modeling

Artificial Neurons are Process Element (PE) that attempt to simulate in a simplistic
way the structure and function of the real physical biological neurons. A PE in
its basic form can be modelled as a nonlinear element that first sums its weighted
inputs x1, x2, x3, . . . , xn (coming either from original data, or from the output of
other neurons in a neural network) and then passes the result through an activation
function � (or transfer function) according to the formula:
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y j = �

(
n∑

i=1

xi w ji + θ j

)
(1)

where yj is the output of the artificial neuron, θj is an external threshold (or bias
value) and wji are the weight of the respective input xi which determines the strength
of the connection from the previous PE’s to the corresponding input of the current
PE. Depending on the application, various non-linear or linear activation functions
� have been introduced [12, 13] like the: signum function (or hard limiter), sigmoid
limiter, quadratic function, saturation limiter, absolute value function, Gaussian and
hyperbolic tangent functions. Artificial Neural Networks (ANN) are signal or infor-
mation processing systems constituted by an assembly of a large number of simple
Processing Elements, as they have been described above. The PE of an ANN are
interconnected by direct links called connections and cooperate to perform a Parallel
Distributed Processing in order to solve a specific computational task, such as pattern
classification, function approximation, clustering (or categorization), prediction (or
forecasting or estimation), optimization and control. One of the main strength of
ANNs is their capability to adapt themselves by modifying the interaction between
their PE. Another important feature of ANNs is their ability to automatically learn
from a given set of representative examples.

The architectures of ANNs can be classified into two main topologies: (a)
Feed-forward multilayer networks (FFANN) in which feedback connections are
not allowed and (b) Feedback recurrent networks (FBANN) in which loops exist.
FFANNs are characterized mainly as static and memory-less systems that usually
produce a response to an input quickly [14]. Most FFANNs can be trained using
a wide variety of efficient conventional numerical methods. FBANNs are dynamic
systems. In some of them, each time an input is presented, the ANN must iterate for
a potentially long time before it produces a response. Usually, they are more difficult
to train FBANNs compared to FFANNs.

FFANNs have been found to be very effective and powerful in prediction, fore-
casting or estimation problems [15]. Multilayer perceptrons (MLPs) and radial basis
function (RBF) topologies are the two most commonly-used types of FFANNs.
Essentially, their main difference is the way in which the hidden PEs combine val-
ues coming from preceding layers: MLPs use inner products, while RBF constitutes
a multidimensional function which depends on the distance r = ‖x − c‖ between
the input vector x and the center c (where ‖·‖ denotes a vector norm) [28]. As a
consequence, the training approaches between MLPs and RBF based FFANN is not
the same, although most training methods for MLPs can also be applied to RBF
ANNs. In RBF FFANNs the connections of the hidden layer are not weighted and
the hidden nodes are PEs with a RBF, however the output layer performs a simple
weighted summation of its inputs, like in the case of MLPs. One simple approach
to approximate a nonlinear function is to represent it as a linear combination of a
number of fixed nonlinear RBFs {zi (x)}, according to (2):
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�(x) =
l∑

i=1

zi (x) wi (2)

Typical choices for RBFs zi = F (‖x − c‖) are: piecewise linear approxima-
tions, Gaussian function, cubic approximation,multiquadratic function and thin plate
splines.

AMLP FFANN can havemore than one hidden layer. But theoretical research has
shown that a single hidden layer is sufficient in that kind of topologies to approximate
any complex nonlinear function [16, 17].

There are two main learning approaches in ANNs: (i) supervised, in which the
correct results are known and they are provided to the network during the training
process, so that the weights of the PEs are adjusted in order its output to match
the target value and (ii) unsupervised, in which the ANN performs a kind of data
compression, looking for correlation patterns between them and by applying clus-
tering approaches. Moreover, hybrid learning (i.e. a combination of the supervised
and unsupervised methodologies) has been applied in ANNs. Numerous learning
algorithms have been introduced for the above learning approaches [14].

The introduction of the back propagation learning algorithm [18] to obtain the
weight of a multilayer MLP could be regarded as one of the most significant break-
throughs for training ANNs. The objective of the training is to minimize the training
mean square error Emse of the ANN output compared to the required output for all
the training patterns:

Emse =
p∑

k=1

Ek = 1

2N

∑
j=Y

p∑
k=1

(
yi − dkj

)2 (3)

where: Ek is the partial network error, p is the number of the available patterns and
Y the set of the output PEs. The new configuration in time t > 0 is calculated as
follows:

w ji (k) = w ji (k − 1) − α
∂E

∂w ji
+ β[w ji (k − 1) − w ji (k − 2)] (4)

To speed up the training process, the faster Levenberg-Marquardt Back propa-
gation Algorithm has been introduced [19]. It is fast and has stable convergence
and it is suitable for training ANN in small-and medium-sized problems. The new
configuration of the weights in the k+1 step is calculated as follows:

w(k + 1) = w(k) −
(

J T J + λI
)−1

J T ε(k) (5)

The Jacobian matrix for a single PS can be written as follows:
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J =

⎡
⎢⎢⎣

∂ε1
∂w1

· · · ∂ε1
∂wn

∂ε1
∂w0

...
...

...
∂εp
∂w1

· · · ∂εp
∂wn

∂εp
∂w0

⎤
⎥⎥⎦ =

⎡
⎢⎣

x11 · · · xn1 1
...

...
...

x1p · · · xn p 1

⎤
⎥⎦ (6)

where: w is the vector of the weights, w0 is the bias of the PE and ε is the error vector,
i.e. the difference between the actual and the required value of the ANN output for
the individual pattern. The parameter λ is modified based on the development of the
error function E.

3 Application of ANN in Relative Humidity and Air
Temperature Estimation

The present work aims to quantify the ability of ANNs to estimate and model the
temporal and spatial AT and RH variabilities at a coastal environment. We focus
on implementation issues and on evaluating the accuracy of the aforementioned
methodologies in the case of a specific region with complex terrain. A number of
alternative ANN topologies are applied in order to assess the spatial and time series
AT and RH prediction capabilities in different time scales.

Moreover, this work presents an attempt to develop an extensive model perfor-
mance evaluation procedure for the estimation of the RH and the AT using ANNs.
This procedure incorporates a variety of correlation and difference statistical mea-
sures. In detail, the correlation coefficient (R), the coefficient of determination (R2),
the mean bias error (MBE), the mean absolute error (MAE), the root mean square
error (RMSE) and the index of agreement (d) are calculated for the examined predic-
tive schemes. The formulation and the applicability of such measures are extensively
reported in [20, 21].

3.1 Area of Study

The study area is the Chania plain, located in the northwestern part of the island of
Crete in Greece. The greater area is constricted by physical boundaries, which are the
White Mountains on the south, the Aegean coastline on the northern and eastern part
and the Akrotiri peninsula in the northeast of Chania city (Fig. 1). The topography
of the region is complex due to the geophysical features of the region. The influence
of the island of Crete on the wind field, especially during summer months and days
where northerly etesian winds prevail, is proven to cause a leftward deflection and
an upstream deceleration of the wind vector [22–24]. Moreover, the wind direction
of the local field in the broader area of Chania city varies significantly due to the
different topographical features [25].
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Fig. 1 Area of study and location of meteorological stations

Table 1 Geographical characteristics of the meteorological stations

Station Name Latitude (◦N) Longitude (◦W) Elevation (m) Characterization

Airport 24◦ 07′ 00′′ 35◦ 33′ 00′′ 140 Rural

TEI 35◦ 31′ 09′′ 24◦ 02′ 33′′ 38 Suburban—coastal

Souda 35◦ 30′ 30′′ 23◦ 54′ 40′′ 118 Suburban

Platanias 35◦ 29′ 46′′ 24◦ 03′ 00′′ 23 Rural—coastal

Malaxa 35◦ 27′ 57′′ 24◦ 02′ 33′′ 556 Rural

Pedio Volis 35◦ 34′ 11′′ 24◦ 10′ 20′′ 422 Rural

In this study, mean hourly AT and RH data are obtained from a network of six
meteorological stations, namely Airport, Souda, Platanias, Malaxa, Pedio Volis and
TEI (Fig. 1). The measurement sites cover the topography and land-use variability
of the region (Table1). The climatological station at the Airport is representative
of the meteorological conditions that prevail at the Akrotiri peninsula and in this
application it will be used as the reference station for examining the performance
of the temporal and spatial pattern recognition approaches. TEI, Souda and Malaxa
stations are situated along the perpendicular to the Aegean coastline north-south axis
of the Chania basin, while the TEI and Platanias stations are representative of the
coastal character of the basin. Moreover, TEI station is located at the east and in
close proximity to the densely populated urban district of Chania city.

The topography induces significant spatial AT and RH variation. In detail, the
inland stations at Souda and at the Airport exhibit the highest diurnal temperature
ranges (7.75 and 6.56 ◦C respectively), while the spatial minimum is observed at
Pedio Volis (2.32 ◦C), a finding that is attributed to the effect of altitude and the
proximity of the site to theAegean coastline. The highest dailymaximum temperature
values, averaged over the experimental period, are reported at the Airport (24 ◦C)
and the lowest at Malaxa (19.46 ◦C).
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3.2 Spatial Estimation of Air Temperature

Implementation. For the spatial estimation of air temperature the non-linear Feed
Forward Artificial Neural Networks MLPANN and RBFANN are compared. The
method aims to estimate the temperature at a target station, using AT observations
as inputs from adjacent control stations.

The target station is located at Airport, while the concurrent AT observations from
the remaining sites—control stations (Souda,Malaxa, Platanias, PedioVolis and TEI)
are used as inputs in the MLPANN and RBFANN models.

The study period is from 19 July 2004 to 31 August 2006 and due to missing
observations the input datasets consist of 12,416 simultaneous samples of hourly
observations for each station. The 60% of the available data (7,450 cases from 19
July 2004 at 23:00:00 to 1 Oct. 2005 at 09:00:00) was used for building and training
the models (training set), the subsequent 20% as the validation set (2,483 cases from
1 Oct. 2005 at 10:00:00 to 26 March 2006 at 11:00:00) and the remaining 20%
(2,483 cases from 26 March 2006 at 12:00:00 to 31 Aug. 2006 at 22:00:00) as the
test set which is used to examine the performance of both the RBFANN and the
MLPANN models. In MLPANNs the validation set is used for early stopping and
to determine the optimum number of hidden layer neurons and in the RBFANNs to
determine the optimum value of the spread parameter of the radial basis function.
Large spread values result in a smooth function approximation that might not model
the temperature variability adequately,while small spread values can lead to networks
that might not generalize well. In our case the validation set is used for selecting the
optimum value of the spread parameter, using the trial and calculating the error
procedure by minimizing the MAE.

The optimum architecture for the MLPANN model is 5-17-1 (5 inputs, 17 hid-
den layers and 1 output neuron). The RBFANN used had five inputs and a radial
basis hidden layer with 7,450 artificial neurons using Gaussian activation functions
radbas(n) = exp(−n2). The output layer had one PE with linear activation function.

Results. The model evaluation statistics for the Airport station for both MLPANN
and RBFANN approaches are presented in Table2. A general remark is that both
models give accurate air temperature estimates with MAE values less than 0.9 ◦C
and with very high d values and minimal biases. Furthermore the explained variance
is 95.9% for the RBFANNmodel and 96.3% for the MLPANN scheme. The metrics
indicate that MLPANN slightly outperforms the trained RBFANN network.

The comparison of the observed and the predicted air temperature values for both
models are presented in Fig. 2 scatter plots and the respective residuals’ distributions
are given in Fig. 3. Limited data dispersion is observed for both models and in both
cases the residuals are symmetrically distributed around 0 ◦C.

Moreover, a time series comparison between the observed and the predicted air
temperature from the MLPANN and RBFANNmodels are presented in Fig. 4 for the
period 10–23/8/2006. The predicted air temperature time series follows closely the
observed values with no signs of systematic errors.
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Table 2 ANN based model
performance

MLPANN RBFANN

R 0.981 0.979

R2 0.963 0.959

MBE(◦C) −0.008 0.034

MAE(◦C) 0.819 0.871

RMSE(◦C) 1.067 1.120

d 0.990 0.989

Fig. 2 Comparison of the observed and predicted air temperature values for the a MLPANN and
b RBFANN schemes

The temperature estimation errors are further examined by calculating the MAE
hourly values (Fig. 5). The analysis of both ANNmodels reveals two maxima, which
are observed during the early morning warming period and during the late after-
noon temperature decrease. The increase in the model errors can be attributed to the
different heating and cooling rates between stations, a mechanism that is highly site
specific and is greatly influenced by the local topography. For the remaining hours,
both models are very accurate with errors less than 0.7 ◦C, a fact, which indicates the
ability of the models to estimate with high accuracy the maximum, minimum and
diurnal temperature range for the examined site.

3.3 Temporal Estimation of Air Temperature

Implementation. In the temporal forecasting of air temperature ANNs are used as
function approximators aiming to estimate the AT in a location using the current and
previous AT observations from the same site.



Artificial Neural Network Modeling of Relative Humidity and Air Temperature . . . 179

Fig. 3 The residuals’ distribution for the a MLPANN and the b RBFANN models

Fig. 4 Comparison of the observed and predicted air temperature time series for the a MLPANN
and b RFBANN models

In this application the Feed-Forward Artificial Neural Network architecture with
one hidden layer is selected for predicting the AT time series.

Separate ANNs are trained and tested in predicting the one hour (ANN-T1), two
hours (ANN-T2) and three hours (ANN-T3) ahead air temperature at Airport station,
based on the current and the five previous air temperature observations fromthe same
site. Therefore, the input in each ANN is the air temperature at t, t − 1, t − 2, t − 3,
t − 4 and t − 5 and the output is the air temperature at: t + 1 for the ANN-T1, t + 2
for the ANN-T2 and t + 3 for the ANN-T3.

The study period is from 19 July 2004 to 31 August 2006. In all cases, the first
60% of the dataset is used for training the ANNs, the subsequent 20% for validation
and the remaining 20% for testing, as was described for the case of spatial estimation
of air temperature.

The optimum architecture (number of PEs in the hidden layer) is related to the
complexity of the input and output mapping, along with the amount of noise and the
size of the training data. A small number of PEs result to a non-optimum estimation
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Fig. 5 Hourly MAE values and comparison with the hourly temperature evolution and the Airport
station

Table 3 Optimum ANN architecture—number of PEs at the input, hidden and output layer

FFANN-T1 FFANN-T2 FFANN-T3

6 – 12 – 1 6 – 13 – 1 6 – 21 – 1

of the input-output relationship, while too many PEs result to overfitting and failure
to generalize [26]. In this study the selection of the number of PEs in the hidden layer
is based on a trial and error procedure and the performance is measured using the
validation set. In each case, ANNs with a varying number from 5 to 25 PEs in the
hidden layerwere trainedusing theLevenberg-Marquardt backpropagation algorithm
with the optimum architecture being the one that minimizes theMeanAbsolute Error
(MAE) on the validation set. A drawback of the backpropagation algorithm is its
sensitivity to initial weights. During training, the algorithm can become trapped in
local minima of the error function, preventing it from finding the optimum solution
[27]. In this study and for eliminating this weakness, each network is trainedmultiple
times (50 repetitions) with different initial weights. A hyperbolic tangent sigmoid
transfer function tansig(n)= 2/(1+exp(−2n))−1was used as the activation function
� for the PEs of the hidden layer. In the output layers, PEs with a linear transfer
function were used.

The optimum topologies of the selected ANNs that minimized the MAE on the
validation set are presented in Table3. In all cases, the architecture includes six PEs
in the input layer and one PE in the output layer. The results indicate that the number
of the neurons in the hidden layer is increased as the lag for forecasting the air
temperature is increased.

Results. The model evaluation statistics for the Airport station are presented in
Table4 and the observed and ANN based predicted air temperature values are
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Table 4 ANN based model
performance

FFANN-T1 FFANN-T2 FFANN-T3

R 0.988 0.967 0.942

R2 0.977 0.935 0.887

MBE(◦C) −0.068 −0.225 −0.405

MAE (◦C) 0.589 0.996 1.361

RMSE (◦C) 0.844 1.427 1.904

d 0.994 0.983 0.968

compared in the scatter plots of Fig. 6. A general remark is that the ANNs per-
formance is decreased with increasing the forecasting lag. In all cases the MAE is
less than 1.4 ◦C and the explained variance decreases from 97.7% for the ANN-T1
to 88.7% for the ANN-T3 model.

The ANN-T1 model exhibits very good performance, as it is observed from the
limited dispersion along the optimum agreement line of the one-hour air temperature
(Fig. 6a). The data dispersion for the ANN-T2 (Fig. 6b) and for the ANN-T3 (Fig. 6c)
scatter plots is increased and a small tendency of over-estimation of the low air
temperature values along with an under-estimation of the high air temperature values
is observed. This finding is furthermore established from the increased MBE for the
ANN-T3 model (◦C).

Regarding the residuals’ distributions (Fig. 7), the errors for the ANN-T1 and
for the ANN-T2 are approximately centered at 0 ◦C, while for the ANN-T3 model
the maxima of the distribution is shifted to negative residual values, a fact which is
attributed to the tendency of the ANN-T3model to underestimate the air temperature
values.

Fig. 6 Comparison of the observed and ANN based predicted air temperature values for the
a one-hour, b two-hour and c three-hour ahead estimation
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Fig. 7 Comparison of the residuals’ distributions for the aFFANN-T1,bFFANN-T2and cFFANN-
T3 models

3.4 Spatial and Temporal Estimation of Relative Humidity

For the spatial and temporal estimation of relative humidity the FFANN models are
employed. The implementation details are the same as in the case of air temperature
presented above. In accordance with the spatial and temporal RH the FFANNmodels
are used as function approximators of the relative humidity spatial and temporal
variability in short temporal and spatial scales.

The optimumarchitecture for the spatial FFANNmodel is 5-26-1. For the temporal
models, the number of the input-hidden-output neurons are presented in Table5.

A general remark is that for both applications the number of the hidden layer
neurons is higher for the RH estimation, compared to ambient temperature. This
finding is attributed to the increased complexity of the RH input-output mapping,
which is accomplished by the neural network transfer functions.

Regarding the RH spatial estimation, the model performance results are summa-
rized in Table6. The explained variance is greater than 72% and the model according
to the MBE statistic (−1.684%), slightly underestimates the observed values. This
minor tendency is also noted at the residuals distribution (Fig. 8a), where higher
frequencies are associated with positive residual values. The comparisons of the
observed versus the predicted RH values show some dispersion along the opti-
mum agreement line (Fig. 8b). In the comparison of the observed and predicted
RH time series (Fig. 9) some discrepancies mainly for the higher and lower values
are observed.

Similarly with the temperature spatial estimation MAE hourly values (Fig. 5), the
corresponding RHMAE hourly statistic values (Fig. 10) exhibit two maxima during

Table 5 FFANN optimum
topology for the temporal
estimation of RH

FFANN-T1 FFANN-T2 FFANN-T3

6-26-1 6-39-1 6-49-1

Table 6 Model evaluation
statistics for the RH spatial
FFANN model

R R2 MBE (%) MAE (%) RMSE (%) d

0.852 0.726 −1.684 6.828 8.992 0.917
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Fig. 8 a FFANN spatial model residuals distribution and b comparison of the observed and pre-
dicted RH values

Fig. 9 Comparison of the observed and predicted RH time series

the morning and late in the afternoon. The lower MAE values (less than 6%) are
observed during midday where the daily minima of RH are observed.

Regarding the temporal estimation of RH, the overall performance statistical met-
rics are presented in Table7. As expected in this case also the overall predictability of
the FFANN models is decreased with increasing forecasting lag. In detail, in accor-
dance with the scatter diagrams (Fig. 11) and the residual distributions (Fig. 12), the
predictive ability of the FFANNmodels is high for the one-hour ahead estimation and
decreases for the two and three-hour ahead RH estimations. The overall explained
variance is decreased from87 to 73.9% and 60.4% and theMAEvalues are increased
from 4.3 to 6.5% and 8.1%. The index of agreement is higher than 0.9 for the one
and two-hour ahead predictions and falls below this limit for the three hour ahead
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Fig. 10 Hourly MAE values in comparison with the diurnal RH evolution at the Airport site

Table 7 Model evaluation statistics for the temporal RH FFANN models

FFANN-T1 FFANN-T2 FFANN-T3

R 0.933 0.860 0.777

R2 0.870 0.739 0.604

MBE (%) 0.620 1.218 1.207

MAE (%) 4.280 6.497 8.092

RMSE (%) 6.135 8.685 10.659

d 0.965 0.921 0.869

Fig. 11 Comparison of the observed and predicted RH values for the a FFANN-T1, b FFANN-T2
and c FFANN-T3 models

estimation. The FFANN-T2 and FFANN-T3 models show signs of overestimation
(MBE statistic values greater than 1.2%).
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Fig. 12 Residual distributions for the a FFANN-T1, b FFANN-T2 and c FFANN-T3 models

4 Conclusions

The ability of neural networks to spatial estimate and predict short AT and RH values
is studied extensively and iswell established.We reviewed the theoretical background
and the relative advantages and limitations of ANN methodologies applicable to the
field of AT and RH time series and spatial modeling. Then, we have applied ANNs
methodologies in the case of a specific region with complex terrain at Chania coastal
region, Crete island, Greece. Details of the implementation issues are given along
with the set of metrics for evaluating the accuracy of the methodology. A number
of alternative feed-forward ANN topologies have been applied in order to assess the
spatial and time series RH andAT prediction capabilities. For the one hour, two hours
and three hours ahead AT and RH temporal forecasting at a specific site, ANNs were
trained based on the current and the five previous AT and RH observations from the
same site using the Levenberg-Marquardt back-propagation algorithm. The optimum
architecture is the one that minimizes the Mean Absolute Error on the validation set.
For the spatial estimation of AT at a target site the non-linear Radial Basis Function
andMultilayer Perceptrons non-linear Feed ForwardAANs schemeswere compared.
The underlying relative humidity and air temperature temporal and spatial variability
is found to be modeled efficiently by the ANNs.
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Beyond SIFT for Image Categorization
by Bag-of-Scenes Analysis

Sébastien Paris, Xanadu Halkias and Hervé Glotin

Abstract In this paper, we address the general problem of image/object
categorization with a novel approach referred to as Bag-of-Scenes (BoS). Our
approach is efficient for both low semantic applications, such as texture classifi-
cation and higher semantic tasks such as natural scenes recognition. It is based on
the widely used combination of (i) Sparse coding (Sc), (ii) Max-pooling and (iii)
Spatial Pyramid Matching (SPM) techniques applied to histograms of multi-scale
Local Binary/Ternary Patterns (LBP/LTP) as local features. This approach can be
considered as a two-layer hierarchical architecture. The first layer encodes quickly
the local spatial patch structure via histograms of LBP/LTP, while the second layer
encodes the relationships between pre-analyzed LBP/LTP-scenes/objects. In order
to provide comparative results, we also introduce an alternate 2-layer architecture.
For this latter, the first layer is encoding directly the multi-scale Differential Vec-
tors (DV) local patches instead of histograms of LBP/LTP. Our method outperforms
SIFT-based approaches using Sc techniques and can be trained efficiently with a
simple linear SVM. Our BoS method achieves 87.46%, and 90.35% of accuracy for
Scene-15, UIUC-Sport datasets respectively.
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1 Introduction

Image categorization consists of assigning a unique label with a generally high-level
semantic value to an image. It has long been a challenging problem area in computer
vision, biomonitoring and robotics and can be mainly viewed as belonging to the
broader supervised classification framework. In scene categorization, the difficulty of
the task can be partly explained by the high-dimensional input space of the images as
well as the high-level semantic visual concepts that lead to large intra-class variation.
Specifically, for object recognition the small aspect ratio (object’s size vs image’s
size) can induce a high level of uninformative background pixels. A preliminary
detection procedure is required to “hone-in” the object in a Region of Interest (ROI)
[1, 2].

The direct framework in vision systems consists of extracting directly from
the images meaningful features (using shape/texture/similarity/color information)
in order to achieve the maximum generalization capacity during the classification
stage. Examples of such popular features in computer vision and human cognition
inspired models include GIST [3], HOG [4], Self-Similarity [5] and WLD [6].

Widely used in face detection [7, 8], face recognition [9, 10], texture classifica-
tion [11, 12] and scene categorization [13–16], Local Binary Pattern (LBP) [17] and
recent derivatives such as Local Ternary Pattern (LTP) [18], Gabor-LBP [19, 20],
LocalGradient Pattern (LGP) [21] orLocalQuantizedPattern (LQP) [22] are efficient
local micro-patterns that define competitive features achieving state-of-the-art per-
formances. LBP can be considered as a non-parametric local visual micro-pattern
texture, encoding mainly contours and differential excitation information of the 8
neighbors surrounding a central pixel [23, 24]. This process represents a contractive
mapping fromR

9 �→ N28 ⊂ N
+ for each local patch p(x) centered in x ([25] provide

a theoretical study of LBP).
The total number of different LBPs is relatively small and by construction is finite:

from 256 up to 512 different patterns (if improved LBP is used). LTPs [26] have been
extended from LBP as a parametric approximation of a ternary pattern. Instead of
mappingR9 �→ N38 ⊂ N

+, they propose a split of the ternary pattern into two binary
patterns followed by a concatenation of the two associated histograms. In [22], they
generalize local patterns with the use of LQP by increasing neighborhood range,
number of neighbors and pattern cardinality leading to map R

9 �→ NkN ⊂ N
+.

Histograms of LBPs (HLBP) (respectively HLTPs), which count the occurrence of
each LBP (respectively LTP) in the scene, can easily capture general structures in the
visual scene by integrating information in a ROI, while being less sensitive to local
high frequency details. This property is import ant when the desire is to generalize
visual concepts. As depicted in this work, it is advantageous to extend this analysis
for several sizes of local ROIs using a spatial pyramid denoted by Λ.

Recently, the alternative scheme of Bag-of-Features (BoF) has been employed in
several computer vision taskswithwide success. It offers a deeper extraction of visual
concepts and improves accuracy of computer vision systems. BoF image represen-
tation [27] and its SPM extension [28] share the same idea as HLBP: counting the
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presence (or combination) of visual patterns in the scene. BoF contains at least three
modules prior to the classification stage: (i) region selection for local feature extrac-
tion; (ii) codebook/dictionary generation and feature quantization; (iii) frequency
histogram based image representation with SPM.

In general, SIFT/HOG patches [4, 29] are employed in the first module. These
visual descriptors are then encoded, in an unsupervised manner, into a moderate
sized dictionary using Vector Quantization (VQ) [28] or sparse coding [30]. Both
SIFT patches or LBP computation followed by histograms can be seen as an encoder
and a pooler process respectively [31]. In other words, computing Histograms of
LBP/LTP can replace advantageously a first layer of encoder-pooler working on dif-
ferential vectors. In [32], Wu et al. were first to introduce LBP (via CENTRIST) into
a BoF framework coupled with the histogram intersection kernel (HIK). At least two
disadvantages can be addressed against the BoF framework, mainly concerning the
second stage. Firstly, the trained dictionaries don’t have enough representative basis
vectors for some (rare and detailed) local patches that are crucial for discriminative
purposes. Secondly, during quantification/encoding a lot of important information
can be lost [33].

In order to improve the encoding scheme, it has been shown that localized soft-
assignment [34], local-constrained linear coding (LLC) [35], Fisher vectors (FV)
[36, 37], orthogonal matching pursuit (OMP) [38] or Sparse coding (Sc) [14, 30]
can easily be plugged into the BoF framework as a replacement for VQ. Moreover,
pooling techniques coupled with SPM [28] can be effectively used as a replacement
for the global histogram based image representation.

Our contributions in this paper are three-fold.Wefirst re-introduce twomulti-scale
variants of the LBP operators and extend two novel multi-scale variants of the LTP
operators [26]. Secondly, we propose to insert HLBP/HLTP into the Sc framework
as a second analyzing layer and call this procedure Fast Bag-of-Scenes (FBoS).
This new approach is efficient both for scene categorization and object recognition.
The novel features can be trained efficiently with simple large-scale linear SVM
solver such as Pegasos [39] or LIBLINEAR [40]. FBoS can be seen as a two layer
Hierarchical BoF analysis: a first fast contractive low-dimension manifold encoder
via HLBP/HLTP and a second inflating high-dimension encoder via Sc. Finally, in
order to compare obtained resultswithFBoS,we introduce themulti-scale differential
vectors as local features and use 2 cascading layers to encode these local features.
We call this procedure Exact Bag-of-Scenes (EBoS). These local features represent
the common starting point of both FBoS and EBoS procedures, one use a parametric
encoder while for the second, DV encoding is trained from data.
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2 Fast Bag-of-Scenes with Histogram of Multi-scale Local
Patterns as the First Layer

For an image/patch I (ny × nx ), we present two existing multi-scale versions of the
LBP operator, denoted by the B operator and for its improved variant by the I B
operator. We also introduce two novel multi-scale versions of the LTP, denoted by
the T operator and for its improved variant by the I T operator.

2.1 Multi-scale LBP/ILBP

Basically, operator B encodes the relationship between a central block of (s × s)
pixels located in (yc, xc) with its 8 neighboring blocks [41], whereas operator I B
adds a ninth bit encoding a term homogeneous to the differential excitation (see
left Fig. 1). Both can be considered as a non-parametric local texture encoder for
scales. In order to capture information at different scales, the range analysis s ∈ S,
is typically set at S = [1, 2, 3, 4] for this paper, where S = Card(S).

These two micro-codes are defined as follows1:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B(yc, xc, s) =
i=7∑
i=0

2i1{Ai ≥Ac}

I B(yc, xc, s) = B(yc, xc, s) + 281{
7∑

i=0
Ai ≥8Ac

}.

(1)

For ∀(yc, xc) ∈ R ⊂ I, B(yc, xc, s) ∈ N28 and I B(yc, xc, s) ∈ N29 respectively.

Fig. 1 Left I and B(yc, xc, 4) overlaid. Right corresponding image integral II and the central block
Ac. Ac can be efficiently computed with the 4 corner points

1 1{x} = 1 if event x is true, 0 otherwise.
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2.2 Multi-scale LTP/ILTP

We introduce themulti-scale version ofLTPand its improved variant. The idea behind
LTP is to extend the LBP for k = 3 with the help of a single threshold parameter
t ∈ N28 . With the same neighborhood configuration with N = 8 (see left Fig. 1), a
direct extension would result to 38 = 6,561 different patterns. In [26], they proposed
to break the high dimensionality of the code by splitting the ternary code into two
binary operators Tp and Tn such as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tp(yc, xc, s; t) =
i=7∑
i=0

2i1{ 1
s2

(Ai −Ac)≥t}

Tn(yc, xc, s; t) =
i=7∑
i=0

2i1{ 1
s2

(Ai −Ac)≤−t}.

(2)

The improvedmulti-scale LTP operators (denoted I Tp and I Tn) are derived similarly
from MSLBP by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I Tp(yc, xc, s; t) = Tp(yc, xc, s; t) + 281{
1

s2

(
7∑

i=0
Ai −8Ac

)
≥t

}

I Tn(yc, xc, s; t) = Tn(yc, xc, s; t) + 281{
1

s2

(
7∑

i=0
Ai −8Ac

)
≤−t

}.

(3)

Now, for ∀(yc, xc) ∈ R ⊂ I, both codes {Tp(yc, xc, s; t), Tn(yc, xc, s; t)} ∈ N28

while the improved version {I Tp(yc, xc, s; t), I Tn(yc, xc, s; t)} ∈ N29 respectively.

2.3 Integral Image for Fast Areas Computation

The different areas {Ai } and Ac in Eqs. (1)–(3) can be computed efficiently using the
image integral technique [42].

Let’s define II the image integral of I by:

II(y, x) �
y′<y∑
y′=0

x ′<x∑
x ′=0

I(y′, x ′). (4)

Any square area A(y, x, s) ∈ R (see right Fig. 1) with upper-left corner located in
(y, x) and side length s is the addition of only 4 values:
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A(y, x, s) = II(y + s, x + s) + II(y, x)

−(II(y, x + s) + II(y + s, x)).
(5)

2.4 Histogram of Local Patterns

For all previously definedoperatorsop ∈ {B, IB, Tp, Tn, I Tn, I Tp}, efficient features
are obtained by counting occurrences of the j th visual LBP/LTP at scale s in a ROI
R ⊆ I:

zop(R, j, s) =
∑

(xc,yc)∈R

1{op(yc,xc,s)= j},

where j = 0, . . . , b −1 is the j th bin of the histogram and b = {256, 512, 256, 256,
512, 512} for op ∈ {B, I B, Tp, Tn, I Tn, I Tp} respectively.

Full histograms of LBP and its variant ILBP, denoted by zB , zI B , are computed
by:

zop(R, s) �
[
zop(R, 0, s), . . . , zop(R, b − 1, s)

]
, (6)

with a total size of patches d = b = {256, 512} respectively.
For LTP, full histograms, denoted by zT , zI T are defined by:

zop(R, s) �
[
zopp (R, 0, s), . . . , zopp (R, b − 1, s), . . . ,
, . . . , zopn (R, 0, s), . . . , zopn (R, b − 1, s)

]
,

(7)

with a total size of patches d = 2 · b = {512, 1024} respectively. To finalize the
patch extraction stage, regardless of the type of histogram of local patterns used, a
�2 clamped normalization procedure is performed on each histogram (clamp value
= 0.2).

2.5 Sparse Coding on Patches of Multi-scale Local Patterns

Following the same framework as in [28, 30, 43, 44],we showhere that the traditional
BoF approach can be advantageously replaced by (i) Sc, (ii) max-pooling technique
and (iii) a simple linear SVM as a classifier since the produced features are mostly
linearly separable.

2.5.1 Patches of HB/HIB/HT/HIT

Here,we replace the collectionof usual SIFTpatches densely sampledonagrid byour
HB/HIB/HT/HIT patches z seen previously. Specifically, F patches of size (m × m)

associatedwithROI’s {Ok} (possibly overlapping) are extracted for k = 0, . . . , F−1
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and ∀s ∈ S. For a faster computation for each scale s, the integral image II is first
computed from I.

For a complete dataset containing N images and ∀s ∈ S, we obtain a collection
of P = T · S patches Z � {zi }, i = 1, . . . , P , where T = N · F . We define, the
subset of patches zi at scale s by Z(s) ⊆ Z with T elements.

2.5.2 Sparse Coding Overview

In order to obtain highly discriminative visual features, a common procedure consists
of encoding eachpatch zi ∈ Z(s) at scale s through anunsupervised traineddictionary
D � [d1, . . . , dK ] ∈ R

b×K , where K denotes the number of dictionary elements,
and its corresponding weight vector ci ∈ R

K . In the BoF framework, the vector ci

is assumed to have only one non-zero element:

argmin
D,C

T∑
i=1

‖zi − Dci‖22 s.t. ‖ci‖�0 = 1, (8)

where C � [c1, . . . , cK ] and ‖ • ‖�0 defines the pseudo zero-norm, where here only
one element of ci is non-zero. In Eq. (8), under these constraints, (D, C) can be
optimized jointly by a K-means algorithm for example.

In the Sc approach, in order to (i) reduce the quantization error and (ii) to have
a more accurate representation of the patches, each vector xi is now expressed as
a linear combination of a few vectors of the dictionary D and not only by a single
one. Imposing the exact number of non-zero elements in ci (sparsity level) involves
a non-convex optimization [45]. In general, it is preferred to relax this constraint
and to use instead an �1 penalty which also involves sparsity. The problem is then
reformulated using the following equation:

argmin
D,C

T∑
i=1

‖zi − Dci‖22 + β‖ci‖�1 s.t. ‖ci‖�1 = 1, (9)

where the sparsity is controlled by the parameter β. The last equation is not jointly
convex in (D, C) and a common procedure consists of optimizing alternatively D
given C by a block coordinate descent and then C given D by a LASSO procedure
[46]. At the end of the process, for each scale s ∈ S, a trained dictionary D̂(s) is
obtained.

2.5.3 Spatial Pyramidal Matching and Max Pooling

For an image I and given a trained dictionary D̂(s) for a type of code at scale s,
F sparse vectors {ck(s)} are computed by a LASSO algorithm. The final efficient
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descriptor x(s) �
[
x0(s), . . . , x K−1(s)

] ∈ R
K is obtained by the following max-

pooling procedure [30, 47]:

x j (s) � max
k|Ok∈R

(|c j
k(s)|), j = 0, . . . , K − 1, (10)

where each element of x(s) represents the max-response of the absolute value of
sparse codes belonging to the ROI R. In order to improve accuracy, a spatial pyra-
midal matching procedure helps to perform a more robust local analysis. The spatial

pyramid Λ has V =
L−1∑
l=0

Vl ROIs {Rl,v} with l = 0, . . . , L − 1, v = 0, . . . , Vl − 1

(see Fig. 2 for an example). The quantity z j
l,v(s) for each ROI Rl,v is computed by:

x j
l,v(s) � max

k|Ok∈Rl,v

(|c j
k(s)|), j = 0, . . . , K − 1. (11)

We define generally our SPmatrixΛwith L levels such asΛ �
[
ey, ex , dy, dx ,λ

]
, a

matrix of size (L ×5). For a level l ∈ {0, . . . , L −1}, the image I, with size (ny ×nx ),
is divided into potentially overlapping sub-windows W l,v of size (hl × wl). All
these windows are sharing the same associated weight λl . In our implementation,
hl � �ny.ey,l and wl � �nx .ex,l where ey,l , ex,l and λl are the lth element of
vectors ey , ex and λ respectively. Sub-window shifts in x − y axis are defined by
integers δy,l � �ny.dy,l and δx,l � �nx .dx,l where dy,l and dx,l are elements of dy

and dx respectively. Overlapping can be performed if dy,l ≤ ey,l and/or dx,l ≤ ex,l .

For example Λ =
[
1 1 1 1 1
1
2

1
2

1
2

1
2 1

]
represents the two levels SP (1 × 1 + 2 × 2). The

total number of sub-windows is equal to V = ∑L−1
l=0 Vl = ∑L−1

l=0 � (1−ey,l )

dy,l
+ 1 ·

� (1−ex,l )

dx,l
+ 1.

We reinforce our model by an important normalization step, improving con-
siderably accuracy, consists of the �2 normalization of all vectors {xl,v(s)}, v =

Fig. 2 Example of SPM Λ with L = 3, F = 8 × 8 and V = 1 + 4 + 16. The F ROIs {Ok},
k = 0, . . . , F −1 associated with each patch zk are represented by blue squares. Sparse codes ck are
computed for each ROI Ok . Upper-left corner of each max-pooling window Rl,v taking {64, 16, 4}
ck is indicated with a green cross. Left R0,0 = I for l = 0. Middle {R1,v}, v = 0, . . . , 3 for l = 1.
Right {R2,v}, v = 0, . . . , 15 for l = 2
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0, . . . , Vl − 1, s ∈ S, i.e. belonging to the same pyramidal layer l. This step is also
very important and often hidden in the existing literature.

The final descriptor x(Λ) will be defined by the weighted concatenation of all the
xl,v(s) vectors, i.e. x(Λ) � {λlxl,v(s)}, l = 0, . . . , L − 1, v = 0, . . . , Vl − 1 and
∀s ∈ S. The total size of the feature vector x(Λ) is f = K · V · S, where typically in
our simulations, we fixed K = {1024, 2048}, V = {10, 21, 26} and S = 4. A final
�2 clamped normalization step is performed on the full vector x(Λ).

3 Exact Bag-of-Scenes with Differential Vectors as Local
Features

In order to compare our proposed method using HLBP/HLTP as fast first encoder-
pooler layer, we also introduce a two layer architecture where the first layer will
encode specifically our new DV patches (see Fig. 3). The idea is to learn directly
from data how to encode differential values used in the LBP/LTP formulation.

Fig. 3 Top classic flat features extraction-coding-pooling framework. Bottom our proposed 2-layer
architecture
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3.1 Multi-range Differential Vectors

For the first layer, in order to obtain some invariance to monotonic changes, we
introduce (see Fig. 4) a multi-range differential vector z1(s; R) ∈ R

d at scale s and
centered in (yc, xc). z1(s; R) is computed by subtracting areas As

i (of the square
block pixels Bs

i ) with the central area As
c (associated with block Bs

c ). Bs
i blocks,

belonging to some concentric holed squares surrounding Bs
c , are parameterized by

the block’s length vector S = [s1, . . . , sS ] while the square lattice is parameterized
by the border’s width vector U = [u1, . . . ,uU ]. DV at scale s ∈ S are defined by
concatenation of all local differential values for all square’s range:

z1(s; U) �
⋃

ri ∈U

⎧⎪⎨
⎪⎩

⋃
j \Bs

j ⊂H(ui ,s)

{
As

j − As
c

}
⎫⎪⎬
⎪⎭

, (12)

where H(u, s) is a holed square centered in (yc, xc) of borderwidth s and eccentricity
u · s. The total DV length is equal to d = ∑

ui ∈U(4 · (2 · (ui − 1) + 1) + 4). In
Fig. 4, an example of this square topology is represented for S = [4] and U = [1, 2]
leading to d = 8 + 16 = 24. For the special case where U = [1] and S = [1], we
retrieve the 8 differential values computed in LBP. These relatively small DV are
densely sampled on a regular grid with the same centers whatever the scale s ∈ S.
Typically, we sample F = 105 DV per scale. In order to compute efficiently the z1’s
vectors (all As

i areas), we used the integral image technique [42].

Fig. 4 Differential vectors with a neighborhood composed of two concentric holed squares
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3.2 A Two-Layer Architecture

Similarly to deep architectures, we use a two-layer stacked architecture. The first
layer encodes the DV mini-patches while a more robust global representation is
obtained by the second. Specifically, we chose the couple SC-MP as encoder-pooler
for both layers.

In the SC approach, each vector z j
t , j ∈ {1, 2} is now expressed as a linear

combination of a few vectors of the dictionary D j of size (d × K j ). The associated
sparse modeling problem, i.e. the offline estimation of θ j = D j given a random
collection of local feature patches, is formulated using the following equation:

arg min
D j ,C j

T∑
t=1

‖z j
t − D j c j

t ‖22 + β‖c j
t ‖�1 s.t. ‖c j

t ‖�1 = 1, (13)

where the sparsity in controlled by the parameter β. At the end of the process, for

each scale s ∈ S, a trained dictionary D̂
j
(s) is obtained. Given this trained dictionary

D̂
j
(s), T sparse codes C j = {c j

t (s)}, t = 1, . . . , T are computed by a LASSO
procedure.

As depicted in Fig. 3, after the first encoder, we pooled the selected sparse codes
set C1 over each window W1→2 ∈ Λ1→2, where Λ1→2 designs the spatial pyramid
(SP) configuration matrix from the first to the second layer.

For the current layer j , the current scale s and for the kth codeword, two following
quantities are computed by MP:

⎧⎪⎪⎨
⎪⎪⎩

xk, j (s) � max
t |z j

t ⊂W j
(|ck, j

t (s)|), j = {1, 2}

zk, j+1(s) � max
t |z j

t ⊂W j→ j+1
(|ck, j

t (s)|), j = 1,
(14)

where xk, j (s) and zk, j+1(s) defines the output of the j th layer and the input of the
j t+1 layer respectively. For the second pooling stage, input z2t , t = 1, . . . , V 1→2

will be assumed to be centered in the middle of W1→2
t and moreover, we will also

assume that for each W2
p, p = 1, . . . , V 2 at least exist a t such W1→2

t ⊂ W2
p.

The final global feature is constructed by concatenating all {xk,2(s)} into a unique
vector of length f 2 = S · V 2 · K 2. In order to have a multi-level analysis, the first
layer global representation can be also concatenated with the second layer one.

4 Experimental Results

We test our two BoS frameworks on Scene-15 [28], UIUC-Sport [48]. For each
dataset, we assume available a training data set {xi (Λ), yi }N

i=1, where xi (Λ) ∈ R f is
one of our previously defined features and yi ∈ {1, . . . , M}, where M is the number
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of classes. As in [30, 43], we will use a simple large-scale linear SVM such as
LIBLINEAR [40] with the 1-vs-all multi-class strategy.

For all datasets, we used SIFT patches with block size (16 × 16) pixels and
(26× 26) pixels for our HB/HIB/HT/HIT respectively. For HT/HIT patches, we fix
t = 1. For SIFT/HB/HIB/HT/HIT, we extract F = 35 ·35 = 1,225 patches per scale
while for DV patches, we extracted F = 120 · 120 = 14,400 patches per scale and
S = [1, 2, 3], U = [1, 2]. We fixed Λ1→2 = [

1
9

1
9

1
27

1
27 1

]
. For both dictionary

learning and sparse codes computation, we fix β = 0.2 and Nite = 50 iterations
to train dictionaries. We use our own modified version of the SPAMS toolbox [45].
Finally, we performed a 10 cross-validation to compute the average overall accuracy
and its standard deviation using theLIBLINEARsolver andfixingparameterC = 15.

4.1 Scene-15 Dataset

The Scene-15 dataset contains a total of 4,485 images in grey color assigned to
M = 15 categories. The number of images in each category ranges from 200 to 400.
100 images per class are used to train, the rest for testing.

For HT/HIT patches, we select 225,000 patches to train dictionaries and pooling is

performed with Λ =
[
1 1 1 1 1
1
3

1
3

1
6

1
6 1

]
. For DV patches, we select also 225,000 patches

to train dictionaries for the first layer and 75,000 to train dictionaries for the second

layer. Second pooling is performed with Λ2 =
[
1 1 1 1 1
1
3

1
3

1
6

1
6 1

]
.

In Fig. 5, we plot accuracy versus the number of words K in the dictionary train-
ing. With our particular choice of Λ and for one unique scale, we retrieved results
comparable to [30], i.e. 80.28% versus 81.24% for our implementation. Regardless
the number of scale used and the type of patch, our BoS framework outperforms
the SIFT-ScSPM approach. In Table1, we compare our results with the state-of-the-
art for this dataset (with S = 4 scales). The best performance is actually obtained
with the SIFT-LScSPM involving a more sophisticated dictionary training through
the Laplacian sparse coding. The latter is very time and memory consuming2 but
allows us an increase with normal SIFT patch from 80.28% ± 0.93 with simple
Sc to 89.75% ± 0.5 with LSc. The second best result is obtained with spatial FV
followed by the kernel descriptors. For FV, they reduced SIFT to 64 dimension (total
size equal to K (1 + 2 · d) = 12800) and used a multi-class logistic regression. It
is also worth noting that KDES-EKM uses a concatenation of 3 descriptors coupled
with an efficient featuremapping (KDES-A+LSVMgot 81.9%±0.60 for a fair com-
parison). However, our results with a HIT patch and a simple linear SVM are very
close (86.53%) while requiring sparse coding only for the second layer. Our EBoS
with DV patches is improving results by almost 1% but with more computational
efforts (for training/encoding both layers).

2 LSc requiers to store sparse codes of the template set, i.e, a sparse matrix (K × Ntemplate).
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Fig. 5 Results for Scenes 15. Left one scale are used for all kind of patches. Right four scales are
used for all kind of patches

Table 1 Recognition rate (and standard deviation) for Scene-15 dataset

Algorithms Accuracy ± Std

SIFT-ScSPM (K = 1024) [30] 80.28% ± 0.93

SIFT-ScSPM (K = 1024, our implementation) 81.24% ± 0.73

SIFT-MidLevel (K = 2048) [43] 84.20% ± 0.30

SIFT-LScSPM (K = 1024) [14] 89.75% ± 0.50

KDES-EKM (K = 1000) [49] 86.70%

PCASIFT-SFV (K = 100) [37] 88.20%
SIFT-DITC (K = 1000) [50] 85.4%

HB-ScSPM (K = 2048, our work) 86.04%±0.36

HIB-ScSPM (K = 2048, our work) 86.45%±0.44

HT-ScSPM (K = 2048, our work) 86.24%±0.43

HIT-ScSPM (K = 2048, our work) 86.53% ± 0.37

DV-Sc2SPM2 (K 1 = 2048, K 2 = 2048, our work) 87.46% ± 0.57

4.2 UIUC-Sport Dataset

The UIUC-sport dataset contains a total of 1,579 images assigned to M = 8 cate-
gories. 60 images per class are used to train, 70 for testing. For this dataset, we define

Λ =
[
1 1 1 1 1
1
2

1
2

1
4

1
4 1

]
. Color (R, G, B) information channels are used, sampling patches

and training dictionaries on each of them. For HT/HIT patches, we fix t = 5. We
select 240,000 patches to train dictionaries. For DV patches, we select also 225,000
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Fig. 6 Results for UIUC-Sport. Left one scale are used for all kind of patches. Right four scales
are used for all kind of patches

Table 2 Recognition rate (and standard deviation) for UIUC-Sport dataset

Algorithms Accuracy ± Std

SIFT-ScSPM (K = 1024) [30] 82.70% ± 1.50

SIFT-ScSPM (K = 1024, our implementation) 87.98% ± 1.08

SIFT-LScSPM (K = 1024) [14] 85.30% ± 0.31

SIFT-HOMP (K = 2 × 1024) [38] 85.70% ± 1.30

HB-ScSPM (K = 2048, our work) 87.42%±1.27

HIB-ScSPM (K = 2048, our work) 88.44%±1.25

HT-ScSPM (K = 2048, our work) 89.35%±1.42

HIT-ScSPM (K = 2048, our work) 89.85% ± 1.28

DV-Sc2SPM2 (K 1 = 2048,K 2 = 2048, our work) 90.38% ± 1.05

patches to train dictionaries for the first layer and 75,000 to train dictionaries for the

second layer. Second pooling is performed with Λ2 =
[
1 1 1 1 1
1
2

1
2

1
4

1
4 1

]
.

In Fig. 6, we plot accuracy versus. K . Notice, that our implementation of SIFT-
ScSPM outperforms results from [30]. Our choice of Λ, color information used in
training andour specificnormalizationproceduremayexplain these improved results.
We can also notice, especially for a small dictionary size, that our BoS framework is
far superior to SIFT-ScSPM. In Table2, we compare our results with the state-of-the-
art (with S = 4 scales). To our best of knowledge, Both FBoS and EBoS frameworks,
with HIT patches or DV patches, are obtaining the state-of-the-art performances with
89.85 / 90.38% respectively of overall accuracy.
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5 Conclusions and Perspectives

We have presented in this article FBoS and EBoS architectures. For FBos, HB/HIB
/HT/HIT patches are used as a fast local textures encoder and Sc as scenes encoder.
This first hand-crafted layer can advantageously replace complex hierarchical feature
extractors such as Deep Belief Networks and the patch extraction phase is even
faster than the SIFT one, attributed mainly to the integral image technique. Achieved
performances outperform state-of-the-art results with a simple linear SVM for object
recognition tasks. For EBos, a first layer is trained to encode the dataset specific
differential vectors. Some relative performance improvements are obtained compared
to FBoS with EBoS.

As potential future work, many perspectives can be investigated. For example,
experimenting with LSc [14] or FV [37] should improve the encoding part of the
pipeline, while supervised pooling techniques [51] will surely also improve results.
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Unsupervised Learning of Semantics of Object
Detections for Scene Categorization

Grégoire Mesnil, Salah Rifai, Antoine Bordes, Xavier Glorot, Yoshua Bengio
and Pascal Vincent

Abstract Classifying scenes (e.g. into “street”, “home” or “leisure”) is an important
but complicated task nowadays, because images come with variability, ambiguity,
and a wide range of illumination or scale conditions. Standard approaches build an
intermediate representation of the global image and learn classifiers on it. Recently, it
has been proposed to depict an image as an aggregation of its contained objects: the
representation on which classifiers are trained is composed of many heterogeneous
feature vectors derived from various object detectors. In this paper, we propose
to study different approaches to efficiently learn contextual semantics out of these
object detections. We use the features provided by Object-Bank [24] (177 different
object detectors producing 252 attributes each), and show on several benchmarks for
scene categorization that careful combinations, taking into account the structure of
the data, allows to greatly improve over original results (from +5 to +11%) while
drastically reducing the dimensionality of the representation by 97% (from 44,604
to 1,000). We also show that the uncertainty relative to object detectors hampers the
use of external semantic knowledge to improve detectors combination, unlike our
unsupervised learning approach.

Keywords Unsupervised learning · Transfer learning · Deep learning · Scene
categorization · Object detection
1 Introduction

Automatic scene categorization is crucial for many applications such as content-
based image indexing [37] or image understanding. This is defined as the task of
assigning images to predefined categories (“office”, “sailing”, “mountain”, etc.).
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Classifying scene is complicated because of the large variability of quality, subject
and conditions of natural images which lead to many ambiguities w.r.t. the corre-
sponding scene label.

Standard methods build an intermediate representation before classifying scenes
by considering the image as a whole [10, 28, 38, 40]. In particular, many such
approaches rely on power spectral information, such as magnitude of spatial fre-
quencies [28] or local texture descriptors [10]. They have shown to perform well in
cases where there are large numbers of scene categories.

Another line of work conveys promising potential in scene categorization. First
applied to object recognition [9], attribute-based methods have now proved to be
effective for dealing with complex scenes. These models define high-level represen-
tations by combining semantic lower-level elements, e.g., detection of object parts.
A precursor of this tendency for scenes was an adaptation of pLSA [15] to deal
with “visual words” proposed by [5]. An extension of this idea consists in model-
ing an image based on its content i.e., its objects [7, 24]. Hence, the Object-Bank
(OB) project [25] aims at building high-dimensional over-complete representations
of scenes (of dimension 44,604) by combining the outputs of many object detec-
tors (177) taken at various poses, scales and positions in the original image (leading
to 252 attributes per detector). Experimental results indicate that this approach is
effective since simple classifiers such as Support Vector Machines trained on their
representations achieve state-of-the-art performance. However, this approach suffers
from two flaws: (1) curse of dimensionality (very large number of features) and (2)
individual object detectors have a poor precision (30% at most). To solve (1), the
original paper proposes to use structured norms and group sparsity to make best use
of the large input. Our work studies new ways to combine the very rich information
provided by these multiple detectors, dealing with the uncertainty of the detections.
A method designed to select and combine the most informative attributes would be
able to carefully manage redundancy, noise and structure in the data, leading to better
scene categorization performance.

Hence, in the following, we propose a sequential 2-steps strategy for combining
the feature representations provided by the OB object detectors on which the linear
SVM classifier is destined to be trained for categorizing scenes. The first step adapts
Principal Components Analysis (PCA) to this particular setting: we show that it is
crucial to take into account the structure of the data in order for PCA to performwell.
The second one is based on Deep Learning. Deep Learning has emerged recently
(see [3] for a review) and is based on neural network algorithms able to discover
data representations in an unsupervised fashion [2, 14, 18, 19, 32]. We propose to
use this ability to combine multiple detector features. Hence, we present a model
trained using Contractive Auto-Encoders [33, 34], which have already proved to be
efficient on many image tasks and has contributed to winning a transfer learning
challenge [26].

We validate the quality of our models in an extensive set of experiments in which
several setups of the sequential feature extraction process are evaluated on bench-
marks for scene classification [21, 23, 31, 41]. We show that our best results sub-
stantially outperform the original methods developed on top of OB features, while
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producing representations of much lower dimension. The performance gap is usu-
ally large, indicating that advanced combinations are highly beneficial. We show that
our method based on dimensionality reduction followed by deep learning offers a
flexibility which makes it able to benefit from semi-supervised and transfer learning.

2 Scene Categorization with Object-Bank

Let us begin by introducing the approach of the OB project [24]. First, the 177
most useful (or frequent) objects were selected from popular image datasets such
as LabelMe [35], ImageNet [6] and Flickr. For each of these 177 objects, a specific
detector, existing in the literature [11, 16], was trained. Every detector is composed
of 2 root filters depending on the pose, each one coming with its own deformable
pattern of parts, e.g., there is one root filter for the front-view of a bike and one for
the side-view. These 354 = 177 × 2 part-based filters (each composed by a root
and its parts) are used to produce features of natural images. For a given image,
a filter is convolved at 6 different scales. At each scale, the max-response among
21 = 1+ 4+ 16 positions (whole image, quadrants, quadrantswithin each quadrant)
is kept, producing a response map of dimension 126 = 6 × 21. All 2 × 177 maps
are finally concatenated to produce an over-complete representation x ∈ R

44,604 of
the original image.

In the original OB paper [24], classifiers for scene categorization are learned
directly on these feature vectors of dimension 44,604. More precisely, C classifiers
(Linear SVM or Logistic Regression) are trained in a 1-versus-all setting in order to
predict the correct scene category ycategory(x) among C different categories. Various
strategies using structured sparsity with combinations of �1/�2 norms have been
proposed to handle the very large input.

3 Unsupervised Feature Learning

The approach of OB for the task of scene categorization, based on specific object
detectors, is appealing since it works well in practice. This suggests that a scene is
better recognized by first identifying basic objects and then exploiting the underlying
semantics in the dependencies between the corresponding detectors.

However, it appears that none of the individual object detectors reaches a recog-
nition precision of more than 30%. Hence, one may question whether the ideal
view that inspired this approach (and expressed above) is indeed the reason of OB’s
success. Alternatively, one may hypothesize that the 44,604 OB features are more
useful for scene categorization because they represent high level statistical properties
of images than because they precisely report the absence/presence of objects—see
Fig. 1. OB tried structured sparsity to handle this feature selection but there may be
other ways—simpler or not.
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Fig. 1 Left Cloud Middle Man Right Television. Top False Detections Bottom True Detections.
Images from SUN [41] for which we compute the OB representation and display the bounding
box around the average position of various objects detectors. For instance, the television detector
can be viewed either as a television detector or a rectangle shape detector i.e. high-order statistical
properties of the image

This paper investigates several ways of learning higher-level features on top
of the high dimensional representation provided by OB, expecting that capturing
further structure may improve categorization performance. Our approach employs
unsupervised feature learning/extraction algorithms, i.e. generic feature extraction
methods which were not developed specifically for images. We will consider both
standard Principal Component Analysis and Contractive Auto-Encoders [33, 34].
The latter is a recent machine learning method which has proved to be a robust
feature extraction tool.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) [17, 30] is the most prevalent technique for
linear dimensionality reduction. A PCA with k components finds the k orthonormal
directions of projection in input space that retain most of the variance of the training
data. These correspond to the eigenvectors associated with the leading eigenvalues
of the training data’s covariance matrix. Principal components are ordered, so that
the first corresponds to the direction along which the data varies the most (largest
eigenvalue), etc…

Since we will consider an auto-encoder variant (presented next), we should men-
tion here a well-known result: a linear auto-encoder with k hidden units, trained
to minimize squared reconstruction error, will learn projection directions that span
the same subspace as a k component PCA [1]. However the regularized non-linear
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auto-encoder variant that we consider below is capable of extracting qualitatively
different, and usually more useful, nonlinear features.

3.2 Contractive Auto-Encoders

Contractive Auto-Encoders (CAEs) [33, 34] are among the latest developments in a
line of machine learning research on nonlinear feature learning methods, that started
with the success of Restricted Boltzmann Machines [14] for pre-training deep net-
works, and was followed by other variants of auto-encoders such as sparse [13, 19,
32] and denoising auto-encoders [39]. It was selected here mainly due to its practical
ease of use and recent empirical successes.

Unlike PCA that decomposes the input space into leading global directions of
variations, the CAE learns features that capture local directions of variation (in some
regions of input space). This is achieved by penalizing the norm of the Jacobian of
a latent representation h(x) with respect to its input x at training samples. In [34],
authors show that the resulting features provide a local coordinate system for a low
dimensional manifold of the input space. This corresponds to an atlas of charts,
each corresponding to a different region in input space, associated with a different
set of active latent features. One can think about this as being similar to a mixture
of PCAs, each computed on a different set of training samples that were grouped
together using a similarity criterion (and corresponding to a different input region),
but without using an independent parametrization for each component of themixture,
i.e., allowing to generalize across the charts, and away from the training examples.

In the following, we summarize the formulation of the CAE as a regularized
extension of a basic Auto-Encoder (AE). In our experiments, the parametrization of
this AE consists in a non-linear encoder or latent representation h of m hidden units
with a linear decoder or reconstruction g towards an input space of dimension d.

Formally, the latent variables are parametrized by:

h(x) = s(W x + bh), (1)

where s is the element-wise logistic sigmoid s(z) = 1
1+e−z , W ∈ Mm×d(R) and

bh ∈ R
m are the parameters to be learned during training. Conversely, the units of

the decoder are linear projections of h(x) back into the input space:

g(h(x)) = W T h(x). (2)

Using mean squared error as the reconstruction objective and the L2-norm of the
Jacobian of h with respect to x as regularization, training is carried out byminimizing
the following criterion by stochastic gradient descent:

JCAE(Θ) =
∑
x∈D

‖x − g(h(x))‖2 + λ

m∑
i=1

d∑
j=1

∣∣∣∣
∂hi

∂x j
(x)

∣∣∣∣
2

, (3)
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where Θ = {W, bh}, D = {x (i)}i=1,...,n corresponds to a set of n training samples
x ∈ R

d and λ is a hyper-parameter controlling the level of contraction of h. A notable
difference between CAEs and PCA is that features extracted by CAEs are non-linear
w.r.t. the inputs, so that multiple layers of CAEs can be usefully composed (stacked),
whereas stacking linear PCAs is pointless.

4 Extracting Better Features with Advanced Combination
Strategies

In this work, we study two different sub-structures of OB. We consider the pose
response defined by the output of only one part-based filter at all positions and scales,
and the object response which is the concatenation of all pose responses associated
to an object. Combination strategies are depicted in Fig. 2.

4.1 Simplistic Strategies: Mean and Max Pooling

The idea of pooling responses at different locations or poses has been success-
fully used in Convolutional Neural Networks such as LeNet-5 [22] and other visual
processing [36] architectures inspired by the visual cortex.

Here, we pool the 252 responses of each object detector into one component (using
the mean or max operator) leading to a representation of size 177 = 44,604/252. It
corresponds to the mean/max over the object responses at different scales and loca-
tions. Onemay view the object max responses as features encoding absence/presence
of objects while discarding all the information about the detector’s positions.

(a) (b) (c)

Fig. 2 Different Combination Strategies (a) and (b) pose and object PCAs (c) high-level CAE:
pose-PCA as dimensionality reduction technique in the first layer and a CAE stacked on top. We
denote it high-level because it can learn context information i.e. plausible joint appearance of
different objects
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4.2 Combination Strategies with PCA

PCA is a standard method for extracting features from high dimensional input, so
it is a good starting point. However, as we find in our experiments, exploiting the
particular structure of the data, e.g., according to poses, scales, and locations, can
yield to improved results.

Whole PCA. An ordinary PCA is trained on the raw output of OB (x ∈ R
44,604) with-

out looking for any structure. Given the high-dimensionality of OB’s representation,
we used the Randomized PCA algorithm of the scikits toolbox.1

Pose-PCA. Each of the two poses associated with each object detector is considered
independently. This results in 354 = 2 × 177 different PCAs, which are trained on
pose outputs (x ∈ R

126)—see Fig. 2.

Object-PCA. Only each object response (x ∈ R
252) is considered separately, there-

fore 177 PCAs are trained in total. It allows the model to capture variations among
all pose responses at various scales and positions—see Fig. 2.

Note that, in all cases, whitening the PCA (i.e. dividing each eigenvector’s
response by the corresponding squared root eigenvalue) performs very poorly. For
post-processing, the PCA outputs x̃ are always normalized: x̃ ← (x̃ − μ)/σ accord-
ing to mean μ and the deviation σ of the whole, per object or per pose PCA outputs.
Thereby, we ensure contributions from all objects or poses to be in the same range.
The number of components in all cases has been selected according to the classifi-
cation accuracy estimated by 5-fold cross-validation.

4.3 Improving upon PCA with CAE

Due to hardware limitations and high-dimensional input, we could not train a CAE
on the whole OB output (“whole CAE”). However, we address this problem with the
sequential feature extraction steps below.

To overcome the tractability problem that forbids a CAE to be trained on the
whole OB output, we preprocess it by using the pose-PCAs as a dimensionality
reduction method. We keep only the 5 first components of each pose. Given this low-
dimensional representation (of dimension 1, 770), we are able to train a CAE—see
Fig. 2. The CAE has a global view of all object detectors and can thus learn to capture
context information, defined by the joint appearance of combinations of various
objects. Moreover, instead of using an SVM on top of the learned representations,
we can use a Multi-Layer Perceptron whose weights would be initialized by those of
this CAE. This setting is where the CAE has shown to perform best in practice [33].

1 Available from http://scikits.appspot.com/.

http://scikits.appspot.com/
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5 Experiments

5.1 Datasets

We evaluate our approach on 3 scene datasets, cluttered indoor images (MIT
Indoor Scene), natural scenes (15-Scenes), and event/activity images (UIUC-Sports).
Images from a large scale scene recognition dataset (SUN-397 database) have also
been used for unsupervised learning.

• MIT Indoor is composed of 67 categories and, following [24, 31], we used 80
images from each category for training and 20 for testing.

• 15-Scenes is a dataset of 15 natural scene classes. According to [21], we used 100
images per class for training and the rest for testing.

• UIUC-Sports contains 8 event classes. We randomly chose 70 / 60 images for our
training / test set respectively, following the setting of [23, 24].

• SUN-397 contains a full variety of 397well sampled scene categories (100 samples
per class) composed of 108,754 images in total.

5.2 Tasks

We consider 3 different tasks to evaluate and compare the considered combina-
tion strategies. In particular, various supervision settings for learning the CAE are
explored. Indeed, a great advantage of this kind of method is that it can make use of
vast quantities of unlabeled examples to improve its representations. We thus illus-
trate this by proposing experiments in which the CAE has been trained in supervised
or in semi-supervised way and also in a transfer context.

MIT Indoor (plain). Only the official training set of the MIT Indoor scene dataset
(5,360 images) is used for unsupervised feature learning. Each representation is
evaluated by training a linear SVM on top of the learned features.

MIT +SUN (semi-supervised). This task, like the previous one, uses the official
train/test split of the MIT Indoor scene dataset for its supervised training and evalua-
tion of scene categorization performance. For the initial unsupervised feature extrac-
tion however, we augmented the MIT Indoor training set with the whole dataset
of images from SUN-397 (108,754 images). This yields a total of 123,034 images
for unsupervised feature learning and corresponds to a semi-supervised setting. Our
motivation for adding scene images from SUN, besides increasing the number of
training samples, is that on MIT Indoor, which contains only indoor scenes, OB
detectors specialized on outdoor objects would likely be mostly inactive (as a sail-
boat detector applied on indoor scenes) and irrelevant, introducing an harmful noise
in the unsupervised feature learning. As SUN is composed of a wide range of indoor
and outdoor scene images, its addition to MIT Indoor ensures that each detector
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meaningfully covers its whole range of activity (having a “balanced” number of
positives/negatives detections through the training set) and the feature extraction
methods can be efficiently trained to capture it.

One may object that training on additional images does not provide a fair com-
parison w.r.t. the original OBmethod. Nevertheless, we recall that (1) the supervised
classifiers do not benefit from these additional examples and (2) object detectors
which are the core of OB representations (and all detector-based approaches) have
also obviously been trained on additional images.

UIUC-Sports and 15-Scenes (transfer). We would also like to evaluate the discrimi-
native power of the various representations learned on theMIT+SUN dataset, but on
new scene images and categories that were not part of the MIT+SUN dataset. This
might be useful in case other researcherswould like to use our compact representation
on a different set of images. Using the representation output by the feature extractors
learned with MIT+SUN, we train and evaluate classifiers for scene categorization on
images from UIUC-Sports and 15-Scenes (not used during unsupervised training).
This corresponds to a transfer learning setting for the feature extractors.

5.3 SVMs on Features Learned with Each Strategy

In order to evaluate the quality of the features generatedby each strategy, a linear SVM
is trained on the features extracted by each combination method. We used LibLinear
[8] as SVM solver and chose the best C according to 5-fold cross-validation scheme.
We compare accuracies obtained by features provided by all considered combination
methods against the original OB performances [24]. Results obtained with SVM
classifiers on all MIT-related tasks are displayed in Table1 and those concerning
UIUC and 15-scenes in Table2.

The simplistic strategy object mean-pooling performs surprisingly well on all
datasets and tasks whereas object max-pooling obtained the worst results. It suggests
that taking themean response of an object detector across various scales and positions
is actually meaningful compared to consider presence/absence of objects as max-
pooling does.

On MIT and MIT+SUN, object or pose PCAs reach almost the same range of
performance slightly above the current state-of-the-art performances [29], except for
whole-PCA which performs poorly: one must consider the structure of OB to com-
bine features efficiently. In the experiments, keeping the 10 (resp. 15) first principal
components gave us the best results for pose-PCA (resp. object-PCA).

Besides, Table3 shows that both PCAs and PCA+CAE allow a huge reduction
of the dimension of the OB feature representation.

Results obtained for the UIUC-Sports and 15-Scenes transfer learning tasks are
displayed in Table2. Representations learned on MIT+SUN generalize quite well
and can be easily used for other datasets even if images from those datasets have not
been seen at all during unsupervised learning.
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Table 1 MIT Indoor

MIT MIT+SUN

(plain) (%) (semi-supervised) (%)

object-MAX + SVM 24.3 –

object-MEAN + SVM 41.0 –

whole-PCA + SVM 40.2 –

object-PCA + SVM 42.6 46.1

pose-PCA + SVM 40.1 46.0

pose-PCA + MLP 42.9 46.3

pose-PCA + CAE (MLP) 44.0 49.1

Object Bank + SVM 37.6 –

Object Bank + rbf-SVM 37.7 –

DPM + Gist + SP 43.1 –

Improvement w.r.t. Object Bank +6.4 +11.5

Results are reported on the official split [31] for all combination strategies described in Sect. 4. Only
the unsupervised feature learning strategies (PCA and CAE based) can benefit from the addition
of unlabeled scenes from SUN. Object Bank + SVM refers to the original system [24] and DPM +
Gist + SP [29] corresponds to the state-of-the-art method on MIT Indoor

Table 2 UIUC Sports and 15-Scenes

UIUC-Sports (%) 15-SCENES (%)

object-MAX + SVM 67.23 ± 1.29 71.08 ± 0.57

object-MEAN + SVM 81.88 ± 1.16 83.17 ± 0.53

object-PCA + SVM 83.90 ± 1.67 85.58 ± 0.48

pose-PCA + SVM 83.81 ± 2.22 85.69 ± 0.39

pose-PCA + MLP 84.29 ± 2.23 84.93 ± 0.39

pose-PCA + CAE (MLP) 85.13 ± 1.07 86.44 ± 0.21

Object Bank + SVM 78.90 80.98

Object Bank + rbf-SVM 78.56 ± 1.50 83.71 ± 0.64

Improvement w.r.t. OB +6.23 +5.46

Results are reported for 10 random splits and compared to the original OB results [24]—Object
Bank + SVM—on one single split

Table 3 Dimensionality reduction

Object-Bank Pooling whole-PCA object-PCA pose-PCA pose-PCA+CAE

44,604 177 1,300 2,655 1,770 1,000

Dimension of representations obtained on MIT Indoor. The pose-PCA+CAE produces a compact
and powerful combination
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5.4 Deep Learning with Fine Tuning

Previous work [20] on Deep Learning generally showed that the features learned
through unsupervised learning could be improved upon by fine-tuning them through
a supervised training stage. In this stage (which follows the unsupervised pre-training
stage), the features and the classifier on top of them are together considered to be a
supervised neural network, a Multi-Layer Perception (MLP) whose hidden layer is
the output of the trained features.Hencewe apply this strategy to the posePCA+CAE
architecture, keeping the PCA transformation fixed but fine-tuning the CAE and the
MLP altogether. These results are given at the bottom of Tables1 and 2. The MLP
are trained with early stopping on a validation set (taken from the original training
set) for 50 epochs.

This yields 44.0% test accuracy on plain MIT and 49.1% on MIT+SUN: this
allows to obtain state-of-the-art performance, with or without semi-supervised train-
ing of the CAEs, even if these additional examples are highly beneficial. As a check,
we also evaluate the effect of the unsupervised pre-training stage by completely
skipping it and only training a regular supervised MLP of 1,000 hidden units on top
of the PCA output, yielding a worse test accuracy of 42.9% on MIT and 46.3%
on MIT+SUN. This improvement with fine-tuning on labeled data is a great advan-
tage for CAE compared to PCA. Fine-tuning is also beneficial on UIUC-Sports and
15-Scenes. On both datasets, this leads to an improvement of +6 and +5% w.r.t the
original system.

Finally, we trained a non-linear SVM (with rbf kernel) to verify whether this gap
in performances was simply due to the replacement of a linear classifier (SVM) by
a non-linear one (MLP) or to the detectors’ outputs combination. The poor results
of the rbf-SVM (see Tables1 and 2) suggests that the careful combination strategies
are essential to reach good performance (Table4).

Table 4 Context semantics

Context Semantics learned by the CAE

Sailboat, rock, tree, coral, blind

Roller coaster, building, rail, keyboard, bridge

Sailboat, autobus, bus stop, truck, ship

Curtain, bookshelf, door, closet, rack

Soil, seashore, rock, mountain, duck

Attire, horse, bride, groom, bouquet

Bookshelf, curtain, faucet, screen, cabinet

Desktop computer, printer, wireless, computer screen

Names of the detectors corresponding to the highest weights of 8 hidden units of the CAE. These
hidden units will fire when those objects will be detected altogether
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5.5 Use of External Semantic Information for Re-ranking

WordNet’s [27] semantic structure provides an easyway tomeasureword similarities.
We assume that closely related objects detectors (according to WordNet) should fire
together and could be grouped in order to build semanticallymeaningful features. E.g.
by grouping the output of ship, sea and sun into a single feature, the combination’s
output might be useful for classifying the “sailing” scene category.

In our experiments, we used the lesk distance inWordNet to extract the neighbors
of each detector’s name. Some examples are depicted in Table5. Afterwards, given
the score s(x) ∈ R

177 obtained with the mean-pooling strategy from the original OB
representation x ∈ R

44,604, we performed the following Re-Ranking operation:

s
′
i (x) =

177∑
j=1

s j (x)γR(i, j) for i = 1, . . . , 177 (4)

where γ ∈ [0, 1] is a decay hyper-parameter tuned on a validation set. R(i, j)
corresponds to the rank of the object j among the neighbors of object i according to
the lesk metric (R(i, i) = 0). Results are presented in Table6. The relatively small
improvement brought by WordNet illustrates the fact that the poor intrinsic quality
of the object detectors prevents any use of external semantic resource to improve
their combination.

Table 5 WordNet semantics Names of the detectors and their top-ranked neighbors according to
the lesk distance computed from WordNet

Rank Bus Lion Laptop

1. Car Tree Baggage

2. Ship Dog Desktop computer

3. Truck Bird Computer

4. Aircraft Horse Bed

5. Train Computer Door

Table 6 Re-Ranking Results are reported on the official split [31]

object-MEAN+SVM MIT (plain)

w/o Re-Ranking 41.03%

with Re-Ranking 41.52%

Object-mean+SVMrefers to themean-pooling strategywith andw/o theRe-Ranking transformation
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6 Discussion

In this work, we add one or more levels of trained representations on top of the
layer of object and part detectors (OB features) that have constituted the basis of
very promising trend of approach for scene classification [24]. These higher-level
representations are mostly trained in an unsupervised way, following the trend of
so-called Deep Learning [3, 14, 18], but can be fine-tuned using the supervised
detection objective.

These learned representations capture statistical dependencies in the co-occurrence
of detections the object detectors from [24]. In fact, one can see in Table4 plausible
contexts of joint appearance of several objects learned by the CAE. These detectors,
which can be quite imperfect when seen as actual detectors, contain a lot of infor-
mation when combined altogether. However, the uncertainty of detectors makes it
hard to combine using external semantic sources such as WordNet. As reported in
Table6, we observe a slight improvement (+0.5%) using our Re-Ranking strategy
and lesk words’ similarities. The extraction of those context semantics with unsu-
pervised feature-learning algorithms has empirically shown better performances but
these semantics are inherent to the detectors outputs and can not be easily combined
with any known predefined semantic system such as the one defined in WordNet.

In particular, we find that Contractive Auto-Encoder [33, 34] can substantially
improve performance on top of pose PCAs as a way to extract non-linear depen-
dencies between these lower-level OB detectors (especially when fine-tuned). They
also improve greatly upon the use of the detectors as inputs to an SVM or a logistic
regression (which were, with structured regularization, the original methods used by
OB).

This trained post-processing allows us to reach the state-of-the-art onMIT Indoor
andUIUC (85.13%against 85.30%obtained byLScSPM[12])while being competi-
tive on 15-scenes (86.44% also versus 89.70%LScSPM). On these last two datasets,
we reach the best performance for methods only relying on object/part detectors.
Compared to other kinds ofmethods,we are limited by the accuracy of those detectors
(only trained on HOG features), whereas competitive methods can make use of other
descriptors such as SIFT [12], known to achieve excellent performance in image
recognition.

Besides its good accuracies, it is worth noting that the feature representation
obtained by the pose PCA+CAE is also very compact, allowing a 97% reduction
compared to the original data (see Table3). Handling a dense input of dimension
44,604 is not a common thing. By providing this compact representation, we think
that researchers will be able to use the rich information provided by OB in the same
way they use low-level image descriptors such as SIFT.

As future work, we are planning other ways of combining OB features e.g. con-
sidering the output of all detectors at a given scale and position and combine them
afterwards in a hierarchical manner. This would be a kind of dual view of the OB
features. Other plausible departures could take into account the topology (e.g. spatial
structure) of the pattern of detections, rather than treat the response at each location
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and scale as an attribute and the set of attributes as unordered. This could be done
in the same spirit as in Convolutional Networks [22], aggregating the responses for
various objects detectors/locations/scales in a way that takes explicitly into account
the object category, location and scale of each response, similarly to the way filter
outputs at neighboring locations are pooled in each layer of aConvolutionalNetwork.
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Abstract A supervised learning approach to predict anatomical structures derived
from computed tomography (CT) images using demographic and anthropometric
information is proposed. The approach applies a dimensionality reduction tech-
nique to a training dataset to learn a low-dimensional manifold representing vari-
ation of organ geometry or variation of the CT intensities itself, which computes
a mapping between a low-dimensional feature vector and the organ geometry or
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CT volume. Regression analysis is then applied to determine a regression function
between the low-dimensional feature coordinates and external measurements of the
subjects such as demographic or anthropometric data. Then for an unseen subject,
the low-dimensional feature coordinates are predicted from external measurements
using the computed regression function. Subsequently, the organ geometry or the CT
volume is estimated from the mapping computed in the dimensionality reduction. As
an example case, lung shapes and thoracic CT scans were analyzed based on avail-
able demographic parameters (age, gender, race) and anthropometric measurements
(height, weight, and chest dimensions). The training dataset consisted of lung shapes
represented as a topologically consistent point distribution model (PDM) and CT
volumes (2563 voxels, 1.53 mm/voxel) of 124 subjects. The prediction error of lung
shape of an unknown subject based on 11 independent demographic and anthropo-
metric variables was 10.71±5.48mm. Isomap analysis of CT volumes revealed that
95% of the total variance was explained with 4 dimensions, and the computed map-
ping clearly captured trends in anatomical variation. This suggested a potential for
a direct CT-volume based statistical analysis using dimensionality reduction, which
we call a voxel-based statistical atlas. Potential application areas of the proposed
approach includes subject-specific ergonomic design in personal protective equip-
ment or population-specific finite-element modeling in biomechanical analysis.
Examples also include the use of a predicted patient-specific CT volume as it a
prior information for image quality improvement in low dose CT, and optimization
of CT scanning protocols.

Keywords Supervised learning · Dimensionality reduction · Organ geometry ·
Demographic and anthropometric data ·Regression analysis ·Statistical shape atlas ·
Allometry.

1 Introduction

Machine learning approaches in the analysis of organ geometries using statistical
shape atlases are a prevalent trend in various target application fields, such as cardiac
modeling [1], pelvis shape analysis for dose reduction in computed tomography
(CT) [2], 4-dimensional lung motion modeling [3], and a small animal research
using Micro-CT [4].

Most existing statistical shape atlases of human organs are created from a train-
ing dataset composed of an anonymized CT dataset, thus the analyses were mostly
confined to organ shape among a select disease group or subject population. To our
knowledge, the relationship between anthropometric and demographic data with a
statistical atlas of generalized population has not yet been investigated.

In order to address this gap, we propose a supervised learning approach to analyze
correlation between a subject’s external characteristics and their internal organ geom-
etry derived from CT data. As an initial feasibility study, we collected a thoracic CT
datasaet together with externally-available patient features, including demographic
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information and several anthropomorphic metrics. The lungs were segmented from
thoracic CT data as a target organ and considered its geometric features as a cloud
of connected points (Point Distribution Model, PDM).

Combined dimensionality reduction and regression analysis were used to demon-
strate the ability to predict the lung’s complex anatomy solely from external-derived
subject characteristics.

Demographic or stature-based prediction of information about internal organ
structures, which are typically measured via expensive medical imaging or other
invasive methods, may be useful in a variety of application scenarios ranging from
medical device development to personalized medicine and protection. Also, predic-
tion of a patient-specific CT volume may open new areas of research in CT recon-
struction and image-guided surgery. Prior information such as a previously scanned
CT or CAD models of an implant in the reconstruction FOV have been used in
CT reconstruction to improve reconstruction quality [5–7]. The patient-specific CT
volume predicted from non-invasively measured external information can be used
as a prior for those reconstruction methods, which would significantly improve im-
age quality in low dose CT. A roughly estimated CT volume can also be used in
optimization of patient-specific CT scanning protocol. Another potential application
area is a priori information for surgical guidance. Preoperative CT volumes are fre-
quently used for surgical guidance through rigid and/or deformable registration with
intraoperative images (e.g., X-ray projection [8], ultrasound [9], etc.). However, the
necessity of preoperative CT scanning, which impart ionizing radiation to the patient,
is a limiting factor for surgical guidance system. The trade-off between the benefit
of improved surgical quantitative data and accuracy versus ionizing radiation limits
the application of surgical guidance system to more challenging surgical treatments.
The patient-specific CT volumes predicted from non-invasive measurements would
broaden application of such surgical guidance to more common surgeries which does
not include preoperative CT in its routine protocol.

2 Methods

2.1 Materials

We used existing radiological CT scans of the chest region from 124 patients. Fol-
lowing Johns Hopkins Institutional Review Board (IRB) approval, we searched the
radiology archives at Johns Hopkins Hospital for thoracic or chest CT scans of males
and females ages 17–45. Only very strictly normal scans of lung were included in
this study (normal by report and inspection). Any scan with obvious or minimal
pathology was excluded. Scans that showed lungs without disease but with find-
ings different from normal (such as atelectasis, normal variants) were also excluded.
Subject characteristics of age, gender, ethnicity, height and weight were extracted
from their medical records archives. In order to reduce population bias in the sta-
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Table 1 Number of subjects in each population group in the training dataset

White (n) Black (n) Hispanic (n) Other (n) Total (%)

Male (n) 19 15 14 12 48.4

Female (n) 19 17 14 14 51.6

Total (%) 31.6 25.8 22.6 21.0 100

tistical atlas, selection involved patients with relatively even distribution of gender
and ethnicity. For the purpose of this initial study, ethnic groups’ bins includeWhite,
Black, Hispanic, and Other. Subjects were anonymized after extraction. Table1 and
Fig. 1 show the distribution of demographic property of the population in the training
dataset.

External measurements of each subject’s chest span, chest depth, chest breadth,
and inter-nipple distance were manually approximated from landmarks on the CT
images. Thesemeasurementswere selected to correspondwith those used in common
anthropometric surveys [10]. Chest span (cranio-caudal) was defined as the vertical
distance between highest level of first rib to the lower costophrenic angle. Chest
breadth (or width) was defined as the skin to skin depth of the chest at the carinal
plane at the level of nipples. Finally, the inter-nipple distancemeasurement wasmade
in an axial plane view where both nipples were visible.

2.2 Construction of Training Datasets

We selected a template CT image from the acquired dataset.Wemanually segmented
this template and used it to generate a template tetrahedral mesh volume consisting
of 112,602 vertices and 509,034 tetrahedrons.

We developed a software pipeline for creating statistical atlas as follows. An
intensity-based deformable registration method (Mjolnir [11]) was applied to
deformably register the CT data of each subject to the template CT. The resulting
deformation field was applied to the template mesh to create a tetrahedral mesh

Fig. 1 Demographic property distributions of the population in training dataset
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Fig. 2 Training dataset. PointDistributionModel (PDM)of lung geometry of 124 subjectswere cre-
ated from CT dataset. Automatic segmentation combined with a deformable registration algorithm
(Mjolnir [11]) using one subject (subject #44) as a template was employed to obtain topology-
consistent meshes. Thus point correspondence was inherently solved. The subjects were chosen in
such a way that the demographic characteristics were well balanced

representing each individual subject. Thus, the geometric point correspondence,
which is one of the key considerations in a typical statistical atlas construction
process, was inherently solved in our pipeline.

Figure2 shows the entire training dataset that we used in this study, while Fig. 3
shows themean shape and standard deviation among each population group classified
based on race and gender.

The mean shape for white males was the largest, with its surface extending over
10mm beyond the grand mean. The other female demographic had the smallest lung
shape, with average lung surfaces about 10mm smaller than the grand mean. The
average shapes for white females and black males were overall similar to the grand
mean.

2.3 Proposed Approach

The workflow of the proposed method to predict internal lung anatomy from subject
demographic and anthropometric data is a 2-stage process, consisting of a learning
step and a prediction step (Fig. 4).

In the learning step, we modelled each shape instance as a vector of X, Y, Z
coordinates of all the mesh vertices and applied dimensionality reduction algorithm
creating low dimensional feature coordinates for each subject. Two types of dimen-
sionality reduction algorithms were tested, including principal component analysis
(PCA) and Isomap [12]. Linear least square regression analysis was performed to
compute a regression function between the feature coordinates (also called mode
weights in PCA) and the external measurements of the subject.

The prediction step predicted the feature coordinates of an unknown subject from
its external measurements, and subsequently the organ shape was estimated from
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Fig. 3 Mean shape (upper 2 rows) and standard deviation (lower 2 rows) of the training dataset in
each population group. Colormap of mean indicates the displacement of each vertex from the grand
mean (mean of the entire population) along the normal direction of a triangle mesh at each vertex,
positive indicating outward direction

Fig. 4 Overview of the workflow of organ geometry prediction. Learning step reduces dimension-
ality of the organ geometry based on the training dataset and produces feature vectors and feature
coordinates of each geometry. Then a regression function was created by a regression analysis on
the demographic/anthropometric data and the feature coordinates. Prediction step determines shape
of the target organ of a new subject based on feature coordinates predicted by the regression function
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the predicted feature coordinates. As is the case with a typical regression analysis,
the approach makes it possible to analyze magnitude and direction of correlation
between each external measurement and the feature coordinates which encode the
organ shape. The proposed approach makes the analysis of the complex variation of
organ shapes represented as a large dimensional vector tractable by using dimension-
ality reduction. The regression step can employ more general classes of non-linear
regression methods, although a simple linear least square approach was used in our
feasibility study reported here.

The following subsections detail each step in the proposed workflow.

2.3.1 Dimensionality Reduction

For analysis of organ geometry, mesh vertices of each subject were represented as a
3V-dimensional vector xi , where V is the number of vertices and i is the index of the
subject (V =112,602 in our analysis). For analysis of CT volumes, voxel intensities
of each subject were represented as a V-dimensional vector xi , where V is the number
of voxels (V = 2563 = 16, 777, 216 in our analysis). We performed dimensionality
reduction on both analyses in the same manner.

Principal Component Analysis

PCA was performed on the lung dataset {xi , i = 1, . . . , N} (N: number of subjects)
creating a new feature coordinate system that represents each geometry

xi = x̄ +
M∑

j=1

ai
j e j (1)

where e j represents the feature vectors (principal mode vectors), which is eigenvec-
tors of the covariance matrix of xi sorted according to decreasing eigenvalues λ j . is
the mean shape and ai

j are the feature coordinates (mode weights) that correspond
to each feature vector. M is the number of feature vectors.

Given a set of feature coordinates for an unknown subject {au
j , j = 1, . . . , M},

its organ geometry xu is estimated (reconstructed) by (1) (Fig. 5).

Isomap

Isomap is a type of non-linear dimensionality reduction method modeling training
datasets as a weighted graph based on its distance matrix. The distance matrix pro-
duces a new distance measure called geodesic distance, and classical eigen analysis,
multidimensional scaling (MDS [13]) is then applied on the geodesic distances.
The connectivity of each data point in the neighborhood graph is defined as its
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Fig. 5 Results of PCA analysis on point distribution model of lungs of the training dataset. a mean
shape, mean plus one standard deviation in the direction of mode 1 (b), mode 2 (c), and mode 3
(d). The colormap (0–20mm) shows displacement of each vertex from the mean shape

k-Nearest Neighbors (kNN) in the high-dimensional space. In this paper, a simple
Euclidean distance was used as the distance metric in the high-dimensional space
and K = 6 was chosen for kNN. Isomap computes a mapping between a high-
dimensional vectors {xi , i = 1, . . . , N} and a low-dimensional feature coordinates
{ai

j , j = 1, . . . , M}for each subject i.
For reconstruction of the organ geometry of an unseen subject xu from its feature

coordinates, we used kNN interpolation in the feature space. kNN was computed
based on Euclidean distance between the feature coordinates and an inverse distance
was used as the weight [14] as follows.

xu =
∑

i∈k N N

xi
d−p

i∑k
j=1 d−p

j

d j =
√∑M

m=1
(au

m − a j
m)

2
(2)

where di is the Euclidean distance between two M dimensional vector au and a j . We
employed a simple interpolation scheme to reduce the computation time in our initial
implementation, however, a more computationally intensive interpolation method
such as radial basis function (RBF) [15] can also be applied in this step.

2.3.2 Linear Least Square Regression on Feature Coordinates
and Measurements

We performed linear least square regression analysis on the low-dimensional feature
coordinates (ai

j ) and external measurements {xi , i = 1, . . . , N}. Here Xi represents
a K-vector consisting of K measurements of i th subject.

Using Xi as independent variables and ai
j as a dependent variable, we computed

regression coefficients Am (intercept) and Bm,k for each feature coordinate indepen-
dently. Thus the computed regression function can be written as follows.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = A1 +
k∑

k=1
B1, k Xk (feature coord.1)

a2 = A2 +
k∑

k=1
B2, k Xk (feature coord.2)

...

aM = AM +
k∑

k=1
BM, k Xk (feature coord.M)

(3)

2.3.3 Prediction of Organ Geometry from External Measurements

To compute the organ geometry of an unseen subject xu from a set of external
measurement of the subject Xu , we first computed a set of organ’s feature coordinates
{au

j , j = 1, . . . , M} using the regression function (3). Then the organ geometry
was computed based on the feature coordinates as described in sections “Principal
Component Analysis and Isomap respectively”.

2.4 Validation Method

In order to evaluate accuracy of the proposed method, leave-out validation tests on
the organ geometries were conducted. In the first set of tests, 2 subjects (#33 and
#47) were left out. The proposed learning step was performed to the training dataset
excluding the 2 subjects. Organ geometries of the 2 left-out subjects were predicted
using the proposed approach and compared with each subject’s true geometry. Dis-
tance between the vertices of the predicted and the true shape were computed as an
error metric and colormapped on the predicted shape.

The second validation tests were a series of leave-one-out tests. Each subject was
left-out one at a time, and the same test described above was repeated.

3 Results and Discussion

3.1 Comparison Between Two Dimensionality Reduction
Algorithms

Figure6 shows an example of sorting of the training datasets based on the first 2 prin-
cipal modes (feature vectors) using the 2 different dimensionality reductionmethods.
Subjects in the training datasets are sorted according to their feature coordinates and
plotted in Fig. 6a, b. Figure6c, d demonstrate lung shapes each corresponding to
those plots above.
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Fig. 6 A comparison between 2 different dimensionality reduction algorithms: PCA and Isomap.
The training datasets were sorted based on the first 2 principal modes (feature vectors). a, b plots
showing distribution of the training dataset, c, d lung shape of each dataset that corresponds to the
points in (a, b). The results produced by PCA and Isomap was similar

Figure7 shows an example of interpolation between 2 subjects in the feature
space using the 2 different methods. The interpolations were performed in its feature
coordinates and 4 sequentially interpolated shapes (20, 40, 60, 80% between the two
shapes) were shown.

As previous work noted [16], PCA and Isomap produced similar results, which
suggested that the modeling (parameterization) based on PDM does not produce
a highly nonlinear manifold. However, as shown in [12], a different type of input
dataset, such as face images, creates nonlinear manifold which can only be captured
by nonlinear dimensionality reductionmethods.We explore the potential of nonlinear
algorithm in the following section in the analysis of CT volumes.

3.2 Dimensionality Reduction on CT Datasets

Isomap analysis was performed on the original CT volumes of 124 training subjects.
Figure8 illustrates results of the analysis. 124 CT volumes were sorted (Fig. 8c–e)
based on the first two feature coordinate computed by Isomap (Fig. 8a). Surprisingly,



Supervised Learning of Anatomical Structures Using Demographic … 235

Fig. 7 A comparison of interpolation using 2 methods. Interpolation from subject #59 to #8 using
a Isomap and b PCA, from subject #61 to #117 using c Isomap and d PCA. Interpolated geometries
were computed by k-NN interpolation (K = 6) of feature coordinates (mode weights) of the two
subjects. Similar to the sorting result (Fig. 6), PCA and Isomap produced similar results

Fig. 8 Isomap analysis of CT volumes of 124 training subjects. a two dimensional manifold.
b residual variance as a function of dimensionality. More than 95% of variation was explained by
only 4 dimensions. c–e axial, sagittal and coronal slices of the CT volumes. Isomap captured 2
major trends in the anatomical variation, thick–thin (horizontal axis) and tall–short (vertical axis)
directly from the CT volumes
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Fig. 9 Results of linear least square analysis on the first 10 mode weights and 11 demo-
graphic/anthropometric measurements. The table shows coefficient of the computed regression
functions. Magnitude of correlation coefficient was colormapped in the table. Strong correlation
between mode 1 and a few anthropometric data is observed. Chest depth and chest span showed
higher correlation with mode 4 and 5. Distribution of the representative measurements (height, IN
distance, chest breadth) versus 1st mode weight were shown below left (a–c)

it turned out that 95% of the total variation was explained by the first four dimensions
and the first two dimensions clearly captured two major trends in the anatomical
variation (see Fig. 8c–e, where subjects were sorted thinner to thicker from left to
right and shorter to taller from bottom to top). This suggested a strong potential for
use of Isomap in supervised learning of CT volumes.

3.3 Regression on Mode Weights and Measurements

Results of the linear least square analysis on the first 10 mode weights are shown in
Fig. 9. There is strong correlation between mode 1 and several anthropometric data.
As indicated from the table color bar, the subject data with strongest correlation
included chest breadth and chest span. Chest breadth, gender, and overall height also
showed strong correlation. The three plots (Fig. 9a–c) demonstrate the correlation
between mode 1 and the individual variables of height (a), inter-nipple distance (b),
and chest breadth (c).

3.4 Leave-Out Validation Test

We left out two subjects (#33 and #47), and performed PCA and regression analysis
using the other 122 subjects. The accuracy of the prediction of each mode weight
was validated using the left-out 2 subjects. Table2 shows the error in prediction of
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Table 2 Results of mode weight prediction in leave-two-out validation test

True mode weights (mm) Predicted mode weights (mm) Prediction error (mm)

Subject ID #33 #47 #33 #47 #33 #47

Mode 1 −8.54 −15.5 −6.68 −11.36 1.85 4.14

Mode 2 −4.10 1.78 −3.80 1.16 0.30 −0.62

Mode 3 −1.56 −0.16 −0.11 −1.50 1.46 −1.34

Mode 4 1.54 −2.10 −0.81 0.51 −2.35 2.61

Mode 5 −1.40 1.83 0.84 3.08 2.24 1.24

Mode 6 −2.28 −0.09 0.75 −0.95 3.03 −0.87

Mode 7 2.34 −2.03 1.10 0.14 −1.25 2.17

Mode 8 0.56 −0.69 0.78 0.07 0.22 0.76

Mode 9 −1.23 −1.39 0.18 0.40 1.41 1.79

Mode 10 −0.61 −0.08 −0.38 −0.53 0.23 −0.45

the mode weights. Despite the large inter-subject variation in the true mode weights
(column 2 and 3), the proposed method predicted the mode weight with about 2mm
error on average.

Figure10 shows the result of prediction of the lung geometry. We compared our
prediction result (middle column) to the grand mean shape (right column), since
the mean shape is the best prediction when no additional information (external

Fig. 10 Results of the left-two validation test. a–c prediction of subject #33 (43 y.o., female,
48.53kg, 152cm). a true shape, b predicted shape, c mean shape. d–f true, predicted and mean
shape of subject #47 (44 y.o, female, 49.9kg, 160cm). The color map shows the error at each vertex
from the true shape. The predicted geometries were produced based on the predicted mode weights
using kNN interpolation (K = 6) in the feature space
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measurements) was involved. Compared to the error distribution in mean shape,
our prediction clearly showed improved results in both subjects, especially around
the inferior regions of the lung lobes.

Results of the repeated leave-one-out validation tests are shown in Fig. 11. The
distance error was about 10mm on average. A few outliers that showed much larger

Fig. 11 Results of leave-one-out validation test. All 124 subjects were left out and validated one
at a time. Each plot shows the displacement error (mm) at 112,602 vertices of the lung (box plot
25–75%, whisker plot maximum and minimum, dot median). Mean and standard deviation of the
error over the entire subjects were 10.71 ± 5.48mm

Fig. 12 An example of lung shape prediction based on 2 demographic parameters (height and
weight) using Isomap. Feature vectors were extracted from 124 training datasets using Isomap.
Regression function was computed to predict feature coordinate of a new instance based on the
2 demographic parameters. The figures show lung shapes when height and weight were varied
[−20 + 20] cm, [−20 + 20] kg respectively from a typical subject (#36, 68.03 kg, 173 cm). Color
map indicates distance at each vertex from the subject’s lung (shown at the center)
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error such as #15 or #115 were attributed as the error in the learning step due to either
segmentation or registration error.

Figure12 shows a simple application example of the proposed workflow where
the lung shape was predicted based on 2 simple external measurements, height and
weight.

4 Conclusions

We proposed a supervised learning framework using a statistical shape atlas of
human internal organs to predict an individual’s lung anatomy from their exter-
nal characteristics (demographic and anthropometric information). By incorporating
dimensionality reduction methods, the proposed approach can perform regression
analysis with a reasonably small number of variables, making the analysis of corre-
lation between complex shape variation and demographic information tractable.

We applied the proposed method on an initial dataset of 124 subjects and demon-
strated prediction of the lung geometry within 10mm average error. Improvement
of the predictive models would likely be achieved by expanding the training dataset.
Future work includes sample size analysis to determine the sufficient number of
samples for a particular application. Additionally, although only four external an-
thropometric features were selected in this paper, improvement of the predictive
models may be increased by increasing the number of external features employed.

The proposed supervised learning based workflow consisting of dimensionality
reduction and regression analysis is more broadly applicable to various cases such as
ergonomic design in industry, population-specific finite element modeling, prior in-
formation in low dose CT scanning, and patient-specific optimization of CT scanning
protocol.
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Wikifying Novel Words to Mixtures
of Wikipedia Senses by Structured
Sparse Coding
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Abstract We extend the scope of Wikification to novel words by relaxing two
premises of Wikification: (i) we wikify without using the surface form of the word
(ii) to a mixture of Wikipedia senses instead of a single sense. We identify two types
of “novel” words: words where the connection between their surface form and their
meaning is broken (e.g., a misspelled word), and words where there is no meaning to
connect to—the meaning itself is also novel. We propose a method capable of wik-
ifying both types of novel words while also dealing with the inherently large-scale
disambiguation problem. We show that the method can disambiguate between up to
1,000 Wikipedia senses, and it can explain words with novel meaning as a mixture
of other, possibly related senses. This mixture representation compares favorably to
the widely used bag of words representation.
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1 Introduction

Wikification aims to help users and computers alike in understanding texts by
enriching them with encyclopedic knowledge in the form of links to Wikipedia arti-
cles [1]. However, Wikification concerns itself only with correct and known words:
neologisms, misspelled words and the like fall outside its scope.

These novel words are different in that the connection between their surface form1

and their meaning is broken (e.g., a misspelled word), or—in the more involved
case—there is no meaning to connect to (e.g., a word with a completely new
meaning). This property makes them particularly hard to interpret, but it also makes
them the words that need interpreting the most.

This paper extends the scope of Wikification to novel words by interpreting them
(i) without relying on their surface form and (ii) as a weighted mixture of Wikipedia
senses, instead of as a single sense.

Usually, Wikification consists of two phases: link detection and link disambigua-
tion. The detection phase identifies the terms and phrases from which links should
be made. The disambiguation phase identifies the appropriate Wikipedia article for
each detected term to link to. For example, the term bank could link to an article
about financial institutions or river banks. We consider only disambiguation, as the
words to be disambiguated are assumed given: they are the novel words in the text.

Similarly to Mihalcea [1], we regard Wikipedia as a sense inventory, where each
link can be thought of as a sense-annotated word. In each link, the anchor text of the
link—the word—is annotated with the target Wikipedia page—the sense.

Novel words can be of two types with respect to this sense inventory. In the
first case, a novel surface form is—maybe incorrectly—associated with an already
known meaning. An example for correct word use is a neologism where a new word
gets associated with an already known sense (e.g., neologisms created by clipping:
professor → prof, facsimile → fax). Examples for words used incorrectly include
misspelled words, mixed up words like homophones, scanning or Optical Character
Recognition errors, errors introduced by automatic speech recognition, etc. For the
sake of simplicity, we also refer to these as novel words, although they may be
completely unintelligible (e.g., a word completely blurred in a scanned document).

In the second case, the meaning of the novel word itself is also novel—it is not
present in the sense inventory. In many cases, these words can be explained by
a mixture of senses. A striking example is neologisms created by blending, like
edutainment (from education and entertainment) and netiquette (from network and
etiquette) [2]. Even in less clear-cut cases, finding a set of senses closely related to
the novel meaning could help users and computer algorithms alike to understand it.

To interpret these novel words, we have to overcome a new difficulty. Aswe do not
rely on the surface form of the target word,2 the complexity of the disambiguation
problem increases. Current methods for Wikification treat the disambiguation of

1 The form of a word as it appears in the text.
2 The word to be explained with Wikipedia senses.
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different word types3 independently. In the case of novel words, we cannot formulate
an independent problem for each surface form; we have to disambiguate among
hundreds or thousands of senses at once instead of about a dozen. This vast number
of candidate senses results in a large-scale problem, and this is why the new difficulty
appears.

Typical methods to disambiguate words with correct surface form apply the
distributional hypothesis. According to the distributional hypothesis, words that
occur in the same contexts tend to have similar meanings [3]. Because our new
disambiguation problem without using the surface form is large-scale, exceptions to
the distributional hypothesis occur more frequently. Particularly, let us call two con-
texts spuriously similar if they are similar but belong to words that denote different
senses. The number of spuriously similar contexts tends to increase inherently with
the number of candidate senses. There is more chance to select a wrong sense from
among1,000 senses than fromamong10: the learning problembecomes considerably
harder.

To counter the effect of spurious similarities, we use the distributional hypothesis
in a novel way. We introduce structured sparse coding [4] to diminish the effect of
spurious similarities of contexts by matching the structure in the regularization to
the structure of the problem (Sect. 3).

The contributions of the paper are summarized as follows: (i) we propose a
method to interpret novel words as weighted mixtures of Wikipedia senses. (ii)
We show that structured sparsity reduces the effect of spurious similarities of con-
texts. (iii) We perform large-scale evaluations where we disambiguate among 1,000
Wikipedia senses at once.

In the next section we review related work. Our method and results are described
in Sects. 3 and 4. We discuss our results in Sect. 5 and conclude in Sect. 6.

2 Related Work

The main differences between previous methods for Wikification and ours is that
they consider the disambiguation problems of different word types independently,
and they wikify to a single Wikipedia sense. We relaxed these two premises to make
interpreting novel words possible.

Mihalcea et al. [1] introduced the concept ofWikification: they proposed amethod
to automatically enrich text with links to Wikipedia articles. They used keyword
extraction to detect the most important terms in the text, and disambiguated them
to Wikipedia articles with supervised learning using the contexts. The same task
was solved in [5] more efficiently. Here, contexts were taken into account also for
the detection phase. Disambiguation was done using sense commonness and sense
relatedness scores.

3 In “A rose is a rose is a rose”, there are three word types (a, rose, is), but eight word tokens.
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Unlike the previously mentioned works, which introduce links to important terms
in the text chiefly to achieve better readability, the goal of [6] was to add as many
links as possible to help information retrieval. The terms were disambiguated by
assuming that coherent documents refer to entities from one or a few related topics
or domains. Ratinov et al. [7] proposed a similar disambiguation system calledGlow
(Global Wikification), which used several local and global features to obtain a set of
disambiguations that are coherent in the whole text.

In information retrieval and speech recognition, unintelligible words pose a prac-
tical problem. The TREC-5 confusion track [8] studied the impact of data corruption
introduced by scanning or Optical Character Recognition errors on retrieval per-
formance. In the subsequent spoken document retrieval tracks [9], the errors were
introduced by automatic speech recognition.

Structured sparsity has been successfully applied to natural language processing
problems, e.g., in [10, 11]. Jenatton et al. [10] apply sparse hierarchical dictionary
learning to learn hierarchies of topics from a corpora of NIPS proceedings papers.
In a more recent application [11], structured sparsity was used to perform effective
feature template selection on three natural language processing tasks: chunking,
entity recognition, and dependency parsing.

3 The Method

The novel word is explained as a weighted mixture ofWikipedia senses. Particularly,
we assign a vector of coefficients to each novel word—an interpretation vector—
where each coefficient corresponds to a single Wikipedia sense.

The interpretation vector is determined in two steps. First, we formulate a linear
modelwith a structured sparsity inducing regularization and compute a representation
vector α. In the second step, this representation vector is condensed to yield an
interpretation vector.

We start with a set of Wikipedia senses the novel word could be interpreted
as. For each sense, we collect a number of contexts from Wikipedia. A context
of a sense consists of the N non-stopword words occurring before and after the
anchor of the link that points to the corresponding Wikipedia page. For example, the
anchor text bar could point to (and be tagged with) Bar_(law), Bar_(unit),
Bar_(establishment), etc. There can be at most 2N words in a context.

The presented method makes use of a collection of such contexts arranged in a
word-context matrix D [12] (Fig. 1). In this matrix, each context is a column repre-
sented as a bag-of-words vector v of word frequencies, where vi is the number of
occurrences of the i th word in the context.

To compute the representation vector α, the context x ∈ R
m of the target word is

approximated linearlywith the columns of theword-contextmatrixD = [d1,d2, . . . ,

dn] ∈ R
m×n , called the dictionary in the terminology of sparse coding. The columns

of the dictionary contain contexts, each labeled with the sense li ∈ L the context
was collected for. Please note that multiple contexts can be, and in many cases are,
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Fig. 1 The word-context matrix D. Each column is a context of a Wikipedia sense (e.g., Boot,
Foot). Each element Di j of the matrix holds the number of occurrences of the i th word in the j th
context. For example, the word leg occurs three times in the 7th context, which is the 3rd context
labeled with Foot

tagged with the same sense: li = l j is possible. There are m words in the vocabulary,
and n contexts in the dictionary.

The representation vector α consists of the coefficients of a linear combination

x ≈ α1d1 + α2d2 + · · · + αndn . (1)

For each target word, whose context is x ∈ R
m , a representation vector α =

[α1;α2; . . . ; αn] ∈ R
n is computed.

We introduce the structured sparsity inducing regularization by organizing the
contexts in D into groups. Each group contains the contexts annotated with a sin-
gle sense. Sparsity on the groups is realized by computing α with a group Lasso
regularization [13] determined by the labels.

The groups are introduced as a family of sets G = {Gl}l∈L ⊆ 2{1,...,n}. There are
as many sets in G as there are distinct senses in L . For each sense l ∈ L , there is
exactly one set Gl ∈ G that contains the indices of all the columns di tagged with l.
G forms a partition.

The representation vector α of the target word whose context is x is computed as
the minimum of the loss function

min
α∈Rn

1

2
‖x − Dα‖22 + λ

∑

l∈L

wl ||αGl ||2, (2)

where αGl ∈ R
|Gl | denotes the vector where only the coordinates present in the set

Gl ⊆ {1, . . . , n} are retained.
The first term is the approximation error, the second one realizes the structured

sparsity inducing regularization. Parameter λ > 0 controls the tradeoff between the
two terms. The parameters wl > 0 denote the weights for each group Gl .

If each group is a singleton (i.e., G = {{1}, {2}, . . . , {n}}) the Lasso problem [14]
is recovered:
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min
α∈Rn

1

2
‖x − Dα‖22 + λ

n∑

i=1

wi |αi |. (3)

Setting λ = 0 yields the least squares cost function.
For the sake of simplicity, we represent each sense with the same number of

contexts: there are an equal number of columns in D for each label l ∈ L (|G1| =
|G2| = · · · = |G|L||). The weights wl of the groups are set to 1.

In the second step, the target word is disambiguated to a mixture of Wikipedia
senses based on the weights in this vector. We utilize the group structure to condense
the vectorα ∈ R

n to a vector s ∈ R
|L| where each coordinate corresponds to a single

sense. The interpretation vector is obtained by summing the weights in each group
Gl ∈ G. The weight for each sense l ∈ L in the mixture is

sl =
∑

i

(αGl )i . (4)

The structured sparsity inducing regularization fulfills three purposes. Firstly, it
allows us to conveniently condense the representation vector α to the interpretation
vector s based on the groups. Secondly, it allows us to explain each target word
with only a few senses. This is important mainly for applications where human users
interpret the results.

Thirdly, and most importantly, the structured sparsity inducing regularization
allows us to reduce the effect of spurious similarities of contexts in the large-scale
disambiguation problem, as it selects whole groups of contexts.

Each group Gl ∈ G contains contexts tagged with the same sense l ∈ L , and
only a few groups can be selected. The 2-norm in the loss function favors dense
representations: it tries to represent each selected sense densely in the representation
vectorα. The method tends to choose representations where most of the contexts are
active in the group of a selected sense over representations where only a few contexts
are active. Intuitively, a context that is similar to the context of the target word only
by accident—the context in the group of an incorrect sense—won’t be selected, as
most of the other contexts in its group will be dissimilar, and so inactive. In the group
of the correct sense, most of the contexts will be similar and active, so that will be
selected instead.

An important consequence of reducing the effect of spurious similarities is
increased accuracy in large-scale problems compared to other algorithms (Sects.
4 and 5).

4 Results

We evaluate the proposed method on two tasks for the two types of novel words.
In the first task, we use the method to interpret words whose connection between
their surface form and their meaning is broken, but the sense they denote is present
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in our sense inventory. These include misspelled words, certain neologisms, errors
introduced by automatic speech recognition, and the like (Sect. 1).

In the second task, we interpret words with novel meaning. These are words for
whom there are no correct senses in our sense inventory. Our expectation is that
the meaning of these words can be approximated by mixtures of related senses. We
compare the quality of the interpretation vectors to the bag of words contexts by
measuring the quality of the clustering they induce.

4.1 The Datasets

The datasets used in our experiments are obtained by randomly sampling the links in
Wikipedia. Each dataset consists of contexts taggedwith senses (c1, l1), (c2, l2), . . . .
Each tagged context is obtained by processing a link: the bag-of-words vector gen-
erated from the context of the anchor text is annotated with the target of the link.

We use the English Wikipedia database dump from October 2010.4 Disambigua-
tion pages, and articles that are too small to be relevant (i.e., have less than 200
non-stopwords in their texts, or less than 20 incoming and 20 outgoing links)
are discarded. Inflected words are reduced to root forms by the Porter stemming
algorithm [15].

To produce a dataset, a list of anchor texts are generated that match a number of
criteria. These criteria have been chosen to obtain (i) words that are frequent enough
to be suitable training examples and (ii) are proper English words. The anchor text
has to be a single word between 3 and 20 characters long, must consist of the letters
of the English alphabet, must be present in Wikipedia at least 100 times, and must
point to at least two different Wikipedia pages, but not to more than 20. It has to
occur at least once in WordNet [16] and at least three times in the British National
Corpus [17].

A number of anchor texts are selected from this list randomly, and their linked
occurrences are collected along with their N -wide contexts. Each link is processed
to obtain a labeled context (ci , li ).

To ensure that there are an equal number of contexts tagged with each sense
l ∈ L , d randomly selected contexts are collected for each label. Labels with less
than d contexts are discarded. We do not perform feature selection, but we remove
the words that appear less than five times across all contexts, in order to discard very
rare words.

4 Downloaded from http://dumps.wikimedia.org/enwiki/.

http://dumps.wikimedia.org/enwiki/
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4.2 Interpreting Novel Words Whose Meaning Is Present
in the Sense Inventory

The first task is a disambiguation problem where the algorithm is used to select a
single correct sense from all the available senses in the sense inventory. Given a
context x ∈ R

m of a word, the goal is to determine the correct sense l ∈ L . The
performance of the algorithms is measured as the accuracy of this classification.

We compare the interpretation vectors computed with group Lasso to three
baselines: representations α computed with two different regularizations (least
squares and the Lasso) of the linear model described in Sect. 3, and a Support Vector
Machine (SVM). The SVM is a multiclass Support Vector Machine with a linear
kernel, used successfully for Wikification in previous works [5, 7].

The interpretation vector s yields a single sense by simply selecting its largest coef-
ficient. Similarly for least squares and the Lasso, the target word is disambiguated
to the sense that corresponds to the largest coefficient in α. For the SVM, a clas-
sification problem is solved using the labeled contexts (ci , li ) as training and test
examples.

The minimization problems of both the Lasso and group Lasso (Eq. 2) are solved
by the Sparse Learning with Efficient Projections (SLEP) package [18]. For the
support vector machine, we use the implementation of LIBSVM [19].

The algorithms are evaluated on five disjoint datasets generated from Wikipedia
(Sect. 4.1), each with different senses. We report the mean and standard deviation of
the accuracy across these five datasets.

There are |L| = 1,000 different senses in each dataset, and d = 50 contexts
annotated with each sense. The algorithms are evaluated on datasets of different sizes
(i.e., d and |L| are different), generated from the original five datasets by removing
contexts and their labels randomly.

In accord with [20, 21], and others, we use a broad context, N = 20. We found
that a broad context improves the performance of all four algorithms.

Before evaluating the algorithms, we examined the effect of their parameters on
the results. We found that the algorithms are robust: for the Lasso, λ = 0.005, for
the group Lasso, λ = 0.05, and for the SVM, C = 1 was optimal in almost every
validation experiment.

In the first evaluation, we examine the effect the number of training examples
per candidate sense has on the accuracy of the four algorithms. The starting datasets
consist of |L| = 500 senses with d = 10 contexts (or training examples) each. Strat-
ified 10-fold cross-validation is used to determine the accuracy of the classification:
the dataset is partitioned into 10 subsets (the same as d), where each subset contains
exactly |L| examples—one annotated with each sense. In one iteration, one subset
is used for testing, and the other 9 subsets form the columns of D: there are |L| test
examples and n = (d − 1)|L| columns in D in each iteration. For the SVM, the
columns of D are used as training examples.

To examine the effect of additional contexts, we add contexts to D for each can-
didate sense, and examine the change in accuracy. In order to evaluate the effect
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Fig. 2 Dependency of the accuracy on the number of contexts per candidate sense. There are d −1
such contexts in each step of the cross-validation, as there is one test example for each sense. The
data points are the mean of values obtained on the five datasets. The error bars denote the standard
deviations. “Group Lasso” means taking the largest weight in the interpretation vector computed
with group Lasso. The results of least squares are not illustrated as the standard deviations were
very large. It performs consistently below the Lasso

correctly (i.e., to not make the learning problem harder), the test examples remain
the same as with d = 10. In other words, we perform the same cross-validation as
before, only we add additional columns to D in each step. In Fig. 2, we report the
results for d = 10, 20, 30, 40, 50.

In the second evaluation, the accuracy of the algorithms is examined as the number
of candidate senses |L| increases.As in the first evaluation, there are d = 10 examples
per candidate sense, and stratified 10-fold cross-validation is performed. Then, the
number of examples is raised to d = 20 in the same way (i.e., the new examples are
not added to the test examples). We report the results for |L| = 100, 200, . . . , 1000
candidate senses in Fig. 3.

4.3 Interpreting Words with Novel Meaning

In this section, we extend our examinations of the presented method to interpret
words whose meaning is novel. In practice this means that we remove all knowledge
about the senses our target words denote from the dictionary D. The word with novel
meaning has to be interpreted based on its relatedness to other, possibly related
senses.

Words with novel meaning are simulated by making sure that there is no context
in the dictionary tagged with any sense the test examples are tagged with. Wikipedia
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Fig. 3 Dependency of the accuracy on the number of candidate senses, |L|. The data points are
the mean of values obtained on the five datasets. The error bars denote the standard deviations.
“Group Lasso” means taking the largest weight in the interpretation vector computed with group
Lasso. The results of least squares are not illustrated, as the standard deviations were very large. It
performs consistently below the Lasso. a dependency on the number of candidate senses (d = 10)
b dependency on the number of candidate senses (d = 20)

senses in the set T and the contexts tagged by them constitute the test examples (i.e.,
the contexts of words with novel meaning), while the rest of the senses in L together
with their contexts form D. The sets T and L , and so the examples for the words
with novel meaning and D are disjoint: there is not a single context in D for any of
the senses in T .
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The evaluation is based on the labeling of the test examples: for each target
word, we already know the sense it denotes. This labeling determines a clustering
of the resulting interpretation vectors s ∈ R

|L|: two interpretation vectors belong
to the same cluster if and only if they are tagged with the same sense. The quality of
the interpretation vectors (the performance of the presented method) is measured as
the quality of this clustering.

Clustering quality can be measured by various clustering validation measures
[22]. For our purposes, we need to consider different criteria than Liu et al. [22],
as we do not evaluate the clustering, but the data. Our measure should be able to
compare data in coordinate spaces of different dimension, and it should be somewhat
sensitive to noise and clusters of different density. On the other hand, the capability
to accurately tell the number of clusters in the dataset is not important for us. Based
on these criteria, we chose the well-known R-squared measure. R-squared may be
considered a measure of the degree of difference between clusters and the degree of
homogeneity between groups [23, 24].

If X denotes all the test examples, c is the center of X , Ct , t ∈ T are the different
clusters, and ct are the centers of the clusters, then R-squared is

RS =
⎛

⎝
∑

x∈X

‖x − c‖22 −
∑

t∈T

∑

x∈Ct

‖x − ct‖22
⎞

⎠ /
∑

x∈X

‖x − c‖22. (5)

For these evaluations, we obtain a single dataset by concatenating the five datasets
used in the first task into a larger dataset that contains 5,000 senses. The disjoint sets
T and L are randomly selected from among these 5,000 senses in each experiment.

Parameter λ was set to λ = 0.05, the same as in the first task. This value yields
interpretation vectors with approximately 30–70 active senses on average. There are
d = 20 contexts for each sense. We interpret |T | = 50 different senses in each
experiment, so there are 1,000 target words to interpret. Each experiment is repeated
30 times with different randomly selected senses in both T and L . We report the
mean, its standard error, and the standard deviation.

We compare the interpretation vectors to the input bag of words contexts. For
each sense t ∈ T , we use the same d = 20 contexts that were transformed into the
interpretation vectors. For bag of words, we conducted a single set of experiments,
as the results do not depend on the value of the parameter |L|. We report the results
in Fig. 4.

5 Discussion

In the first task, the results are very consistent across the five disjoint datasets, except
in the case when the representation vector was computed with least squares. The
performance of least squares was the worst of the four algorithms, and it was so
erratic that we did not plot it in order to keep the figure uncluttered.
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Fig. 4 Interpretation vectors of words with novel meaning versus the bag of words contexts. The
R-squared with the bag of words representation is constant, as it does not depend on the number of
senses in the interpretation vector, |L|. The data points are the mean of 30 experiments. The thick
error bars denote the standard errors of the mean. The thin error bars denote the standard deviations

For groupLasso and theSVM,additional training examples help up to20 examples
per sense (Fig. 2), but only small gains can be achieved by adding more than 20
examples.

The Lasso-based representation does not benefit fromnew training examples at all
when there aremany candidate senses. Thismay be the effect of spurious similarities.
As more and more contexts are added, the less chance Lasso has to select the right
sense from among the candidates.

Classification based on interpretation vectors computed with group Lasso sig-
nificantly outperforms the other methods, including SVM (Fig. 3). This illustrates
the efficiency of our method: structured sparsity decreases the chance of selecting
contexts spuriously similar to the context of the target word.

In the second task, we found that even when the correct sense of the novel word
is unknown, the interpretation vectors perform much better than the bag of words
contexts. This points to the possibility of improving performance in natural language
processing tasks by using interpretation vectors instead of a bag of words represen-
tation.

As thenumber of senses in the interpretationvector increases, the learningproblem
becomes harder, and the performance decreases—similarly to the first task. Although
there aremore andmore senses to represent meaningwith, these senses were selected
randomly fromWikipedia: the chance for senses that are closely related to the novel
meaning to appear is too low to offset the effect of the harder learning problem. Based
on this intuition, we believe that there is a promising direction for future improvement
of the method.
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In these first experiments, we interpreted words with novel meaning as mixtures
of senses that were randomly selected fromWikipedia. Our experience suggests that
a promising avenue of future research is to preselect the senses systematically based
on the context of the target word to increase the chance of closely related senses
to appear. We have observed some interesting examples where the (unavailable)
novel meaning was represented by a mixture of closely related senses. For example,
for the novel meaning Prime_number, its hypernym, Number was selected. For
Existence, the method selected Logos, Karma, and Eternity. The most
interesting example is that of Transformers: it was interpreted as a mixture
of Humanoid, Tram, Flash_(comics), Cyborg, and Hero. With a slight
stretch of the imagination, Transformers are Humanoid robots (Cyborg) that
can change into vehicles (Tram), and they are also Heroes that appear in comic
books (Flash_(comics)) and animated series.

6 Conclusions

We extended the scope of Wikification to novel words by relaxing its premises:
(i) wewikifywithout using the surface form of theword (ii) to amixture ofWikipedia
senses instead of a single sense.

We identified two types of novel words: words where the connection between
their surface form and their meaning is broken, and words where there is no meaning
to connect to—the meaning itself is also novel.

We proposed a method capable of wikifying both types of novel words while
also dealing with the problem of spuriously similar contexts that intensifies because
the disambiguation problem becomes inherently large-scale. The performance of the
method was demonstrated on two tasks for the two types of novel words. We found
that the method was capable of disambiguating between up to 1,000 Wikipedia
senses. Additionally, we used it to explain words with novel meaning as a mixture
of other, possibly related senses. This mixture representation compared favorably to
the bag of words input contexts.

In these first experiments of interpreting words with novel meaning, the sense
inventories were randomly generated from Wikipedia. Our experience suggests that
extending the method by constructing the sense inventory in a systematic way based
on the context of the target word is a promising direction for future research.

A possible future application of the presented method is the verification of links
to Wikipedia. The method assigns a weight to each candidate sense. If the weight
corresponding to the target of the link is small in contrast to weights of other pages,
the link is probably incorrect.

The method can be generalized, as it can work with arbitrarily labeled text frag-
ments as well as contexts of Wikipedia links. This more general framework may
have further applications, as the idea of distributional similarity offers solutions to
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many natural language processing problems. For example, topics might be assigned
to documents as in centroid-based document classification [25].
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Measuring Linearity of Planar Curves

Joviša Žunić, Jovanka Pantović and Paul L. Rosin

Abstract In this paper we define a new linearity measure which can be applied to
open planar curve segments. We have considered the sum of the distances between the
curve end points and the curve centroid. We have shown that this sum is bounded from
above by the length of the curve segment considered. In addition, we have proven
that this sum equals the length of the curve segment only in the case of straight
line segments. Exploiting such a nice characterization of straight line segments, we
define a new linearity measure for planar curves. The new measure ranges over the
interval (0, 1], and produces the value 1 if and only if the measured line is a perfect
straight line segment. Also, the new linearity measure is invariant with respect to
translations, rotations and scaling transformations.

Keywords Shape · Shape descriptors · Curves · Linearity measure · Image
processing.

1 Introduction

Shape descriptors have been employed in many computer vision and image processing
tasks (e.g. image retrieval, object classification, object recognition, object
identification, etc.). Different mathematical tools have been used to define the shape
descriptors: algebraic invariants [1], Fourier analysis [2], morphological opera-
tions [3], integral transformations [4], statistical methods [5], fractal techniques [6],
logic [7], combinatorial methods [8], multiscale approaches [9], integral invariants
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[10], etc. Generally speaking, shape descriptors can be classified into two groups:
area based descriptors and boundary based ones. Area based descriptors are more
robust (i.e. less sensitive to noise or shape deformations) while boundary based
descriptors are more sensitive. A preference for either type of descriptor depends
on the application performed and the data available. For example low quality data
would require robust descriptors (i.e. area based ones) while high precision tasks
would require more sensitive descriptors (i.e. boundary based ones). In the literature
so far, more attention has been paid to the area based descriptors, not only because
of their robustness but also because they are easier to be efficiently estimated when
working with discrete data. Due to the recent proliferation of image verification,
identification and recognition systems there is a strong demand for shape properties
that can be derived from their boundaries [10–12]. It is worth mentioning that some
objects, like human signatures for example, are curves by their nature and area based
descriptors cannot be used for their analysis.

In this paper we deal with linearity measures that should indicate the degree to
which an open curve segment differs from a perfect straight line segment. Several
linearity measures for curve segments are already considered in the literature [13–16].

Perhaps the simplest way to define the linearity measure of an open curve segment
is to consider the ratio between the length of the curve considered and the distance
between its end points. This is a natural and simple definition which is also called the
straightness index [17]. It satisfies the following basic requirements for a linearity
measure of open curve segments.

• The straightness index varies through the interval (0, 1];
• The straightness index equals 1 only for straight line segments;
• The straightness index is invariant with respect to translation, rotation and scaling

transformation on a curve considered.

Also, the straightness index is simple to compute and its behavior can be clearly
predicted, i.e. we can see easily which curves have the same linearities, measured
by the straightness index. It is obvious that those curves whose end points and the
length coincide, have the same straightness index. But the diversity of such curves
is huge and the straightness index cannot distinguish among them, which could be
a big drawback in certain applications. Some illustrations using simple polygonal
curves are shown in Fig. 1.

0.661 0.512 0.545 0.526 0.512

Fig. 1 Five displayed curves (solid lines) have different linearities measured by L(C). The straight-
ness index has the same value for all five curves
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In this paper we define a new linearity measure L(C) for open curve segments.
The new measure satisfies the basic requirements (listed above) which are expected
to be satisfied for any curve linearity measure. Since it considers the distance of the
end points of the curve to the centroid of the curve, the new measure is also easy to
compute. The fact that it uses the curve centroids implies that it takes into account a
relative distribution of the curve points.

The paper is organized as follows. Section 2 gives basic definitions and deno-
tations. The new linearity measure for planar open curve segments is in Sect. 3.
Several experiments which illustrate the behavior and the classification power of the
new linearity measure are provided in Sect. 4. Concluding remarks are in Sect. 5.

2 Definitions and Denotations

Without loss of generality, throughout the paper, it will be assumed (even if not
mentioned) that every curve C has length equal to 1 and is given in an arc-length
parametrization. I.e., planar curve segment C is represented as:

x = x(s), y = y(s), where s ∈ [0, 1].

The parameter s measures the distance of the point (x(s), y(s)) from the curve start
point (x(0), y(0)), along the curve C.

The centroid of a given (unit length) planar curve C will be denoted by (xC, yC)
and computed as

(xC, yC) =
⎛
⎝

∫

C
x(s) ds,

∫

C
y(s) ds

⎞
⎠ . (1)

Taking into account that the length of C is assumed to be equal to 1, we can see
that the coordinates of the curve centroid, as defined in (1), are the average values of
the curve points.

As usual,

d2(A, B) =
√
(x − u)2 + (y − v)2

will denote the Euclidean distance between the points A = (x, y) and B = (u, v).
As mentioned, we introduce a new linearity measureL(C)which assigns a number

from the interval (0, 1]. The curve C is assumed to have the length 1. More precisely,
any appearing curve will be scaled by the factor which equals the length of it before
the processing. So, an arbitrary curve Ca would be replaced with the curve C defined
by

C = 1∫
Ca

ds
· Ca =

{(
x∫

Ca
ds

,
y∫

Ca
ds

)
| (x, y) ∈ Ca

}
.
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Shape descriptors/measures are very useful for discrimination among the objects—
in this case open curve segments. Usually the shape descriptors have a clear geometric
meaning and, consequently, the shape measures assigned to such descriptors have a
predictable behavior. This is an advantage because the suitability of a certain mea-
sure to a particular shape-based task (object matching, object classification, etc.) can
be predicted to some extent. On the other hand, a shape measure assigns to each
object (here curve segment) a single number. In order to increase the performance
of shape based tasks, a common approach is to assign a graph (instead of a num-
ber) to each object. E.g. such approaches define shape signature descriptors, which
are also ‘graph’ representations of planar shapes, often used in shape analysis tasks
[18, 19], but they differ from the idea used here and in [16].

We will apply a similar idea here as well. To compare objects considered we use
linearity plots (the approach is taken from [16] where more details can be found) to
provide more information than a single linearity measurement. The idea is to compute
linearity incrementally, i.e. to compute linearity of sub-segments of C determined by
the start point of C and another point which moves along the curve C from the
beginning to the end of C. The linearity plot P(C), associated with the given curve C
is formally defined as follows.

Definition 1 Let C be a curve given in an arc-length parametrization: x = x(s),
y = y(s), and s ∈ [0, 1]. Let A(s) be the part of the curve C bounded by the starting
point (x(0), y(0)) and by the point (x(s), y(s)) ∈ C. Then, for a linearity measure
L, the linearity plot P(C) is defined by:

P(C) = {(s,L(A(s)) | s ∈ [0, 1]}. (2)

We will also use the reverse linearity plot Prev(C) defined as:

Prev(C) = {(s,L(Arev(1 − s)) | s ∈ [0, 1]}, (3)

where Arev(1 − s) is the segment of the curve C determined by the end point
(x(1), y(1)) of C and the point which moves from the end point of C, to the start
point of C, along the curve C. In other words, Prev(C) is the linearity plot of the curve
C′ which coincides with the curve C but the start (end) point of C is the end (start)
point of C′. A parametrization of C′ can be obtained by replacing the parameter s,
in the parametrization of C, by a new parameter s′ such that s′ = 1 − s. Obviously
such a defined s′ measures the distance of the point (x(s′), y(s′)) from the starting
point (x(s′ = 0), y(s′ = 0)) of C′ along the curve C′, as s′ varies through the interval
[0, 1].
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Fig. 2 Terms in the proof of Theorem 1 are illustrated above

3 New Linearity Measure for Open Curve Segments

In this section we introduce a new linearity measure for open planar curve segments.
We start with the following theorem which says that amongst all curves having

the same length, straight line segments have the largest sum of distances between
the curve end points to the curve centroid. This result will be exploited to define the
new linearity measure for open curve segments.

Theorem 1 Let C be an open curve segment given in an arc-length parametrization
x = x(s), y = y(s), and s ∈ [0, 1]. The following statements hold:

(a) The sum of distances of the end points (x(0), y(0)) and (x(1), y(1)) from the
centroid (xC, yC) of the curve C is bounded from above by 1, i.e.:

d2((x(0), y(0)), (xC, yC)) + d2((x(1), y(1)), (xC, yC)) ≤ 1. (4)

(b) The upper bound established by the previous item is reached by the straight line
segment and, consequently, cannot be improved.

Proof Let C be a curve given in an arc-length parametrization: x = x(s) and y =
y(s), with s ∈ [0, 1], and let S = (x(0), y(0)) and E = (x(1), y(1)) be the end
points of C. We can assume, without loss of generality, that the curve segment C is
positioned such that

• the end points S and E belong to the x-axis (i.e. y(0) = y(1) = 0), and
• S and E are symmetric with respect to the origin (i.e. −x(0) = x(1)),

as illustrated in Fig. 2. Furthermore, let

E = {X = (x, y) | d2(X, S) + d2(X, E) = 1}
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be an ellipse which consists of points whose sum of distances to the points S and E
is equal 1. Now, we prove (a) in two steps.

(i) First, we prove that the curve C and the ellipse E do not have more than one
intersection point (i.e. C belongs to the closed region bounded by E).
This will be proven by a contradiction. So, let us assume the contrary, that C
intersects E at k (k ≥ 2) points:

(x(s1), y(s1)), (x(s2), y(s2)), . . . , (x(sk), y(sk)),

where 0 < s1 < s2 < · · · < sk < 1. Let A = (x(s1), y(s1)) and B =
(x(sk), y(sk)). Since the sum of the lengths of the straight line segments [S A]
and [AE] is equal to 1, the length of the polyline SABE is, by the triangle
inequality, bigger than 1. Since the length of the arc Ŝ A (along the curve C) is
not smaller than the length of the edge [S A], the length of the arc ÂB (along
the curve C) is not smaller than the length of the straight line segment [AB], and
the length of the arc B̂ E (along the curve C) is not smaller than the length of the
straight line segment [B E], we deduce that the curve C has length bigger than
1, which is a contradiction. A more formal derivation of the contradiction 1 < 1
is

1 = d2(S, A) + d2(A, E)

< d2(S, A) + d2(A, B) + d2(B, E)

≤
∫

Ŝ A

ds +
∫

ÂB

ds +
∫

B̂ E

ds =
∫

C
ds

= 1. (5)

So, C and E do not have more than one intersection point, implying that C lies
in the closed region bounded by E .

(ii) Second, we prove that the centroid of C does not lie outside of E .
The proof follows easily:

• the convex hull CH(C) of C is the smallest convex set which includes C and,
consequently, is a subset of the region bounded by E ;

• The centroid of C lies in the convex hull CH(C) of C because it belongs to every
half plane which includes C (the intersection of such half planes is actually
the convex hull of C (see [20]));

• the two items above give the required:

(xC, yC) ∈ C H(C) ⊂ region_bounded_by_E .

Finally, since the centroid of C does not lie outside E, the sum of the distances of
the centroid (xC, yC) of C to the points S and E may not be bigger than 1, i.e.
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d2((x(0), y(0)), (xC, yC)) + d2((x(1), y(1)), (xC, yC))
= d2(S, (xC, yC)) + d2(E, (xC, yC))
≤ 1.

This establishes (a).
To prove (b) it is enough to notice that if C is a straight line segment of length 1,

then the sum of its end points to the centroid of C is 1. �

Now, motivated by the results of Theorem 1, we give the following definition for
a new linearity measure L(C) for open curve segments.

Definition 2 Let C be an open curve segment, whose length is 1. Then, the linearity
measure L(C) of C is defined as the sum of distances between the centroid (xC, yC)
of C and the end points of C. I.e.:

L(C) =
√
(x(0) − xC)2 + (y(0) − yC)2 +

√
(x(1) − xC)2 + (y(1) − yC)2

where x = x(s), y = y(s), s ∈ [0, 1] is an arc-length representation of C.
The following theorem summarizes desirable properties of L(C).

Theorem 2 The linearity measure L(C) has the following properties:

(i) L(C) ∈ (0, 1], for all open curve segments C;
(ii) L(C) = 1 ⇔ C is a straight line segment;

(iii) L(C) is invariant with respect to the similarity transformations.

Proof Item (i) is a direct consequence of Theorem 1.
To prove (ii) we will use the same notations as in the proof of Theorem 1 and give

a proof by contradiction. So, let us assume the following:

• the curve C differs from a straight line segment, and
• the sum of distances between the end points, and the centroid of C is 1.

Since C is not a straight line segment, then d2(S, E) < 1, and the centroid (xC, yC)
lies on the ellipse E = {X = (x, y) | d2(X, S) + d2(X, E) = 1}. Further, it would
mean that there are points of the curve C belonging to both hyperplanes determined by
the tangent on the ellipse E passing through the centroid of C. This would contradict
the fact that C and E do not have more than one intersection point (which was proven
as a part of the proof of Theorem 1).

To prove item (iii) it is enough to notice that translations and rotations do not
change the distance between the centroid and the end points. Since we assume that
C is represented by using an arc-length parametrization: x = x(s), y = y(s), with
the parameter s varying through [0, 1], the new linearity measure L(C) is invariant
with respect to scaling transformations as well. �
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Fig. 3 The shapes are ranking by their axes in increasing order according to linearity L (top row)
and sigmoidality S3 (bottom row)

4 Experiments

In this section we provide several experiments in order to illustrate the behavior and
efficiency of the linearity measure introduced here.

First Experiment: Illustration. The first example shows in Fig. 3 the results of
ranking a set of shapes by the properties of their axes. In the upper row the shapes
are ordered according to linearityLwhile for comparison in the lower row the shapes
are ordered according to Rosin’s S3 sigmoidality measure [21].

Second Experiment: Illustration. The second example shows how the linearity
measure can be used as an error measure for polygonal approximation in the same
manner as in [16]. For each curve segment the error (i.e. its deviation from linearity)
is calculated as (1 − L(Ci j )) · m0,0(Ci j ), where Ci j denotes the section of curve
between C(i) and C( j), while m0,0(Ci j ) is the length of Ci j . The optimal polygonal
approximation which minimises the summed error over the specified number of curve
segments can then be determined using dynamic programming. Results are shown in
Fig. 4 of polygonal approximations obtained using different error measures, namely
the standard L2 and L∞ errors norms on the distances between the curve segment
and the corresponding straight line segment as well as an error term based on the
linearity measure (L0) in [16]. It can be seen that there are differences between the
polygonal approximations produced by the various error terms, although they are
relatively small except for very coarse approximations.

Third Experiment: Illustration. To demonstrate how various shapes produce a
range of linearity values, Fig. 5 shows the first two samples of each handwritten digit
(0–9) from the training set captured by Alimoğlu and Alpaydin [22] plotted in a 2D
feature space of linearity L(C) versus rectilinearity R1(C) [23].

Despite the variability of hand writing, most pairs of the same digit are reasonably
clustered. The major separations occur for:

• “2” since only one instance has a loop in the middle;
• “4” since the instance next to the pair of “7”s is missing the vertical stroke;
• “5” since the uppermost right instance is missing the horizontal stroke.

The full data set consists of 7,485 digits for training and 3,493 digits for testing. A
nearest neighbour classifier using Mahalanobis distances was trained on the training
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Fig. 4 Two shapes with their optimal polygonal approximations using the L2 error function (top
row), L∞ error function (second row), the (1 − L0) · m0,0 error function (third row), and the
(1 −L) · m0,0 error function (fourth row). Approximations are determined using 30, 20 and 10 line
segments

Fig. 5 Handwritten digits
ordered by linearity and
rectilinearity
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data with just linearity as a single feature, and was applied to the test set, produc-
ing an accuracy of 21.39 %. This value is low since a richer feature set is required
for discrimination. As a step towards obtaining this, the digits were simplified by
applying Ramer’s polygonal approximation [24] at various thresholds ({2, 4, 8,
16, 32}); some examples are shown in Fig. 6. Linearity was computed at each scale to
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Fig. 6 Examples of digits simplified at five scales

obtain five features per digit, and this improved accuracy to 33.61 %. Finally, by fur-
ther extending the feature vector to include the first seven Hu moment invariants [1]
and six further moment invariants designed for character recognition [25], accuracy
was increased to 88.38 %.

Fourth Experiment: Filtering Edges. Figure 7 shows the application of the linear-
ity to filtering edges. The edges were extracted from the images using the Canny
detector [26], connected into curves, and then thresholded according to total edge
magnitude and length [27]. Linearity was measured in local sections of curve of
length 25, and sections above (or below) a linearity threshold were retained. It can
be seen that retaining sections of curve with L(C) < 0.5 finds small noisy or corner
sections. Keeping sections of curve with L(C) > 0.9 or L(C) > 0.95 identifies most
of the significant structures in the image.

Experiments are also shown in which Poisson image reconstruction is performed
from the image gradients [28]. In the middle column of Fig. 8 all the connected edges
with minimum length of 25 pixels (shown in the first column in Fig. 7) are used as a
mask to eliminate all other edges before reconstruction. Some fine detail is removed
as expected since small and weak edges have been removed in the pre-processing
stage.

When linearity filtering is applied, and only edges corresponding to sections of
curve with L(C) > 0.95 are used (see the fourth column in Fig. 7) then the image
reconstruction (Fig. 8 right column) retains only regions that are locally linear struc-
tures (including sections of large curved objects).
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Fig. 7 Filtering connected edges by linearity. Left/first column connected edges (minimum length:
25 pixels); second column sections of curve with L(C) < 0.5; third column sections of curve with
L(C) > 0.9; fourth column sections of curve with L(C) > 0.95
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Fig. 8 Reconstructing the image from its filtered edges. (left column) original intensity image;
(middle column) image reconstructed using all connected edges (minimum length: 25 pixels); (right
column) image reconstructed using sections of curve with L(C) > 0.95

Fig. 9 Examples of genuine (first three columns) and forged (last three columns) signatures

Fifth Experiment: Signature Verification. For this application we use data from
Munich and Perona [29] to perform signature verification. The data consists of pen
trajectories for 2,911 genuine signatures taken from 112 subjects, plus five forgers
provided a total of 1,061 forgeries across all the subjects. Examples of corresponding
genuine and forged signatures are shown in Fig. 9. To compare signatures we use
the linearity plots defined by (2) and (3) to provide more information than a single
linearity measurement. Linearity plot examples are in Fig. 10.

The quality of match between signatures C1 and C2 is measured by the similarity
between the linearity plots P(C1) and P(C2). This similarity is measured by the area
bounded by the linearity plots P(C1) and P(C2) and by the vertical lines s = 0 and
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Fig. 10 Examples of linearity plots for the genuine signatures (top row) and the forged signatures
(bottom row) in Fig. 9

s = 1. Figure 10 demonstrates the linearity plots for the signatures shown in Fig. 9.
The plots in the first (second respectively) row contain the three genuine (forged
respectively) signatures from Fig. 9.

Nearest neighbour matching is then performed on all the data using the leave-one-
out strategy. Signature verification is a two class (genuine or fake) problem. Since
the identity of the signature is already known, the nearest neighbour matching is
only applied to the set of genuine and forged examples of the subject’s signature.
Computing linearity of the signatures using L(C) produces 96.9 % accuracy. This
improves the results obtained by using the linearity measure defined in [16] which
achieved 93.1 % accuracy.

5 Conclusions

This paper has described a new shape measure L(C) for computing the linearity of
open curve segments. For a given unit length curve C, its assigned linearity measure
L(C) is computed as the sum of the distances of the end points of C to the centroid
of C. Of course, if the curve considered has an arbitrary length, then the assigned
linearity measure is computed as the ratio of the sum of distances of the curve end
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points to the curve centroid and the curve length. Such a defined open curve linearity
measure L(C) satisfies the basic requirements for a linearity measure:

• L(C) is in the interval (0, 1];
• L(C) equals 1 only for straight line segments;
• L(C) is invariant with respect to translation, rotation and scaling transformations

on the curve.

In addition L(C) is both extremely simple to implement and efficient to compute.
The effectiveness of the new linearity measure is demonstrated on a variety of

tasks. Since the linearity measure L(C) is a single number, in order to increase the
discrimination power in object classification tasks, based on a use of L(C), we have
employed two methods. The first one is based on a use of linearity plots, where the
quantity L(C) is replaced with a graph. The second one is based on an idea from
[30]: (i) Several shapes (i.e. open curves) were computed from an object (i.e. digit
curves in the presented example) by applying a tunable polygonal approximation
algorithm; (ii) L(C) values, assigned to each of such shapes/curves, were used for
the classification.

Acknowledgments This work is partially supported by the Serbian Ministry of Science and Tech-
nology/project III44006/OI174008.
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Video Segmentation Framework Based
on Multi-kernel Representations and Feature
Relevance Analysis for Object Classification

S. Molina-Giraldo, J. Carvajal-González, A.M. Álvarez-Meza
and G. Castellanos-Domínguez

Abstract A video segmentation framework to automatically detect moving objects
in a scene using static cameras is proposed. Using Multiple Kernel Representations,
we aim to enhance the data separability into the scene by incorporating multiple infor-
mation sources into the process, and employing a relevance analysis each source is
automatically weighted. A tuned Kmeans technique is employed to group pixels as
static or moving objects. Moreover, the proposed methodology is tested for the clas-
sification of people and abandoned objects. Attained results over real-world datasets,
show how our approach is stable using the same parameters for all experiments.

Keywords Background subtraction ·Multiple kernel learning ·Relevance analysis ·
Data separability

1 Introduction

A system that monitors an area by camera and detects moving people or objects
is called a surveillance system. Intelligent video surveillance systems can achieve
unsupervised results using video segmentation, with which the moving objects can be
extracted from video sequences. Many segmentation algorithms have been proposed.
Among them, algorithms with background subtraction usually show superior perfor-
mance [1]. Background subtraction is a typical and crucial process for a surveillance
system to detect moving objects that may enter, leave, move or left unattended in the
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surveillance region. Unattended objects as bags or boxes in public premises such as
airports, terminal bus and train stations are a threat for these places because they can
be used as a mean of terrorist attacks, especially for bombs [2].

Image sequences with dynamic backgrounds often cause false classification of
pixels, one common solution is to map alternate color spaces, however it has fallen
to solve this problem and an enhanced solution is the use of image features, where
the distributions at each pixel may be modelled in a parametric manner using a
mixture of Gaussians [3] or using non-parametric kernel density estimation [4]. The
self organizing maps have been also explored as an alternative for the background
subtraction task, because of their nature to learn by means of a self-organized manner
local variations [5], however, these techniques have the drawback of manually setting
a large number of parameters.

In this work, a methodology called Weighted Gaussian Kernel Video Segmen-
tation (WGKVS) is proposed, which aims to construct a background model and
then, incorporating multiple information sources by a MKL framework, performs a
background subtraction enhancing thus the representation of each pixel. A relevance
analysis for the automatic weight selection of the MKL approach is made. Further-
more, a tuned Kmeans technique is employed to group pixels as static or moving
objects. The proposed WGKVS is tested in the surveillance task of the classifica-
tion of abandoned objects in the scene. In this regard, using the segmented frame, the
objects detected as not belonging to the background model that are spatially split, are
relabelled as new independent objects and then characterized with the methodology
implemented in [2] for further classification.

The remainder of this work is organized as follows. In Sect. 2, the proposed
methodology is described. In Sect. 3, the experiments and results are presented.
Finally, in Sects. 4 and 5 we discuss and conclude about the attained results.

2 Theoretical Background

2.1 Background Initialization

The first step of the proposed WGKVS is a background model initialization. Given
an image sequence H with q frames, we propose to use a subsequence of frames
H(t :k) to initialize a background model based on the approach exposed in [6]. This
approach, using an optical flow algorithm is successfully able to construct a statistical
background model with the most likely static pixels during the subsequence for each
RGB component, and it also computes its standard deviation. We also propose to
compute a background model using the normalized RGB components (rgb) in order
to suppress the shadows casted by the moving objects as described in Ref. [4]. Hence,
a background model is stored in a matrix Y .
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2.2 Background Subtraction Based on Multi-kernel Learning
and Feature Representation

Recently, machine learning approaches have shown that the use of multiple kernels,
instead of only one, can be useful to improve the interpretation of data [7]. Given
a frame F from the image sequence H and a background model Y obtained from
the same sequence, using a set of p feature representations for each frame pixel
fi = { f z

i : z = 1, . . . , p} and each pixel yi = {yz
i : z = 1, . . . , p} belonging to

the background model, based on the Multi-Kernel Learning (MKL) methods [8], a
background subtraction procedure can be computed via the function:

κω

(
f z
i , yz

j

)
= ωzκ

(
f z
i , yz

i

)
, (1)

subject to ωz ≥ 0, and
∑p

i=1 ωz = 1 (∀ωz ∈ R). Regarding to video segmenta-
tion procedures, each pixel of each frame F can be represented by a dissimilarity
measure with a background model by using p different image features (e.g. Color
components, textures), in order to enhance the performance of further segmentation
stages. Specifically, we propose to use the RGB and the rgb components as features
and as basis kernel κ {·}, a Gaussian kernel G defined as:
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where σz
i corresponds to a percentage of the standard deviation of pixel yi in the

feature z from the background model.
As it can be seen from (1), it is necessary to fix the ωz free parameters, to take

advantage, as well as possible of each feature representation. To complete the feature
space, the row m and column position n are added as features, in order to keep the
local relationships among pixels. Therefore, a feature space X((m×n)×8) is obtained.

2.3 MKL Weight Selection Based on Feature Relevance Analysis

Using the feature space X , we aim to select the weights values ωz in MKL by means
of a relevance analysis. This type of analysis is applied to find out a low-dimensional
representations, searching for directions with greater variance to project the data, such
as Principal Component Analysis (PCA), which is useful to quantify the relevance
of the original features, providing weighting factors taking into consideration that
the best representation from an explained variance point of view will be reached [9].
Given a set of features

(
ηηηz : z = 1, . . . , p

)
corresponding to each column of the

input data matrix X ∈ R
r×p (a set of p features describing a pixel image hi ), the

relevance of ηηηz can be identified as ωz , which is calculated as ω = ∑d
j=1

∣∣λ j v j
∣∣,
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with ω ∈ R
p×1, and where λ j and v j are the eigenvalues and eigenvectors of the

covariance matrix V = X�X, respectively.
Therefore, the main assumption is that the largest values of ωz lead to the best

input attributes. The d value is fixed as the number of dimensions needed to conserve
a percentage of the input data variability. Then using ω, a weighted feature space is
computed as: X̂ = X × diag(ω).

2.4 Video Segmentation Based on Kmeans Clustering Algorithm

In order to segment the moving objects, a Kmeans clustering algorithm with a fixed
number of clusters equal to two is employed over X̂ , hence, the objects that do not
belong to the background model (moving objects) are grouped in a cluster and the
objects that belong to the background model (static objects) in the other one. Initially,
the clusters are located at the coordinates given by the matrix Q, which is obtained
by the cluster initialization algorithm called maxmin described in Ref. [10], making
the segmentation process more stable. Finally, with the attained labels l , using a
post-process stage, groups of pixels detected as moving objects that do not surpass
a value u of minimum size for an object are deleted. The results are stored into a
binary matrix S. In Fig. 1 is illustrated the general scheme for WGKVS.

2.5 Quantitative Measures

For measuring the accuracy of the proposed methodology for moving object seg-
mentation, three different pixel-based measures have been adopted:

• Recall = tp/
(
tp + fn

)
• Precision = tp/

(
tp + f p

)
• Similarity = tp/

(
tp + fn + f p

)

where tp (true positives), f p (false positives) and fn (false negatives) are obtained
while comparing against a hand-segmented ground truth. A method is considered
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Fig. 1 WGKVS scheme
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good if it reaches high Recall measures, without sacrificing Precision. Similarity has
been adopted with the only aim of further comparing the results achieved by other
proposed algorithms.

2.6 Object Characterization and Classification

The WGKVS approach is applied into a real world surveillance task: the classification
of abandoned objects. Using the segmented frame S, the groups detected as moving
objects that are spatially split, are relabelled as new independent objects. With these
new labels, each object is enclosed in a bounding box, and using the characterization
process described in Ref. [2], each object is represented by 14 geometrical and 7
statistical features. A Knn classifier is trained using images belonging to the classes:
people and baggage objects.

3 Experiments

The proposed methodology is tested using three different Databases. Each Database
includes image sequences that represent typical situations for testing video surveil-
lance systems. Following, the Databases are described.

A-Star-Perception: This Database is publicly available at http://perception.i2r.
a-star.edu.sg. It contains 9 image sequences recorded in different scenes. Hand-
segmented ground truths are available for each sequence, thus, supervised measures
can be used. For concrete testing, the sequences: WaterSurface, Fountain, Shopping-
Mall and Hall are used. The first two sequences are recorded in outdoor scenarios
which present high variations due to their nature, hence the segmentation process
posses a considerable challenge. The other two sequences are recorded in public halls,
in which are present many moving objects casting strong shadows and crossing each
other, hindering the segmentation task.

Left-Packages: Publicly available at http://homepages.inf.ed.ac.uk/rbf/ CAVIAR-
DATA1, this Database contains five different image sequences recorded at an interior
scenario which has several illumination changes. The main purpose of this database is
the identification of abandoned objects (a box and a bag). For testing, hand-segmented
ground truths from randomly selected frames are made.

MSA: This Database is publicly available at http://cvprlab.uniparthenope.it. It
contains a single indoor sequence, with stable lighting conditions, nonetheless, strong
shadows are casted by the moving objects. The purpose of this sequence is also the
detection of abandoned objects, in this case a briefcase. Hand-segmented ground
truths from randomly selected frames are made in order to give a quantitative measure.

Three different experiments are performed, in all of them, the free parameter σz
i

is heuristically set as five times the standard deviation of each pixel representation

http://perception.i2r.a-star.edu.sg
http://perception.i2r.a-star.edu.sg
http://homepages.inf.ed.ac.uk/rbf/
http://cvprlab.uniparthenope.it
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yz
i . The minimum size of a detected moving object u is set as a percentage of the

total size of the image 0.005 × (m × n).
The first experiment aims to prove the effectiveness of the proposed WGKVS

approach when incorporating more information sources into the segmentation process
with an automatic weighting selection. To this end, the image sequences WaterSur-
face, Fountain, ShoppingMall, Hall, LeftBag and LeftBox are used. The WGKVS
segmentation results are compared against GKVS (WGKVS with all equal weights),
and traditional GKVS-RGB (GKVS using only RGB components). In Fig. 2 are
shown the different segmentation results for the frame 1,523 of the sequence Water-
Surface. The relevance weights are shown in Fig. 3. In Tables 1, 2 and 3 are exposed
the attained results for each method.

The second type of experiments are performed to compare the WGKVS algorithm
against a traditional video segmentation algorithm named Self-Organizing Approach
to Background Subtraction (SOBS), which builds a background model by learning

Fig. 2 WaterSurface (Frame 1523). a Background model, b Original frame, c GKVS-RGB, d
GKVS, e WGKVS, f Ground truth

0

0.05

0.1

0.15

0.2

R G B m n r g b

Fig. 3 Relevance weights for sequence WaterSurface (Frame 1523)
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Table 1 Segmentation
performance for GKVS-RGB

Video Recall Precision Similarity

WaterSurface 0.677 0.995 0.676

Fountain 0.509 0.897 0.480

ShoppingMall 0.436 0.385 0.302

Hall 0.489 0.809 0.434

LeftBag 0.610 0.839 0.555

LeftBox 0.697 0.906 0.647

Table 2 Segmentation
performance for GKVS

Video Recall Precision Similarity

WaterSurface 0.762 0.995 0.759

Fountain 0.559 0.909 0.528

ShoppingMall 0.571 0.680 0.442

Hall 0.518 0.829 0.462

LeftBag 0.614 0.842 0.560

LeftBox 0.699 0.910 0.651

Table 3 Segmentation
performance for WGKVS

Video Recall Precision Similarity

WaterSurface 0.770 0.994 0.767

Fountain 0.587 0.908 0.552

ShoppingMall 0.643 0.715 0.512

Hall 0.520 0.837 0.473

LeftBag 0.627 0.848 0.571

LeftBox 0.729 0.915 0.674

in a self-organizing manner the scene variations, and detects moving object by using
a background subtraction [5]. The SOBS video segmentation approach has been
used as a reference to compare video segmentation approaches and it has been also
included in surveillance systems surveys [11]. The software for the SOBS approach is
publicly available at http://cvprlab.uniparthenope.it/index.php/dow-nload/92.html.
For testing, the 10 parameters of the SOBS approach are left as default. In Figs. 4
and 5 are the segmentation results using WGKVS and SOBS for the frame 0996 of
the sequence LeftBag and frame 1980 of the sequence ShoppingMall respectively.
In Table 4 are the segmentation results for the SOBS algorithm.

Finally, the third type of experiment is made in order to test the proposed WGKVS
for the classification of abandoned objects. In this sense, the process described in
Sect. 2.6 is employed. For testing, the sequences: LeftBag, LeftBox and MSA are
used. The aim is to classify objects as: people or baggage objects (e.g. briefcases,
boxes, backpacks, suitcases). A knn classifier is trained using a dataset of 70 images
of people and 82 images of baggage objects, and as validation, we use the objects
segmented by the WGKVS. It is important to remark, that the objects from the dataset

http://cvprlab.uniparthenope.it/index.php/dow-nload/92.html
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Fig. 4 LeftBag (Frame 0996). a Original frame, b SOBS, c WGKVS, d Ground truth

used for training are characterized by the same process. In Fig. 6, are shown some
resulting bounded objects. In total, 38 objects are used in the validation database, 11
belong to the baggage objects class and 27 to the people class. In Fig. 7, are shown
two samples of the characterization process for a person and a bag. The classification
results are exposed in Table 5.

4 Discussion

From the attained results of experiment one, it can be seen that when working only
with the RGB components, the method does not perform very good, lacking of extra
information that could enhance the clustering process (see Fig. 2c and Table 1). When
the rgb components and the spatial information are incorporated, the performance
improves by a 9.95 % of the similarity measure (see Fig. 2d and Table 2). Using
the proposed WGKVS methodology, the best results are achieved improving the
similarity measure by 4.32 % over the GKVS (Fig. 2e and Table 3). The results for the
second experiment, expose that the proposed WGKVS methodology clearly surpass
the attained results of the SOBS algorithm using its default parameters, and as can be
seen in Figs. 4 and 5, our approach achieves more reliable results for further stages
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Fig. 5 ShoppingMall (Frame 1980). a Original frame, b SOBS, c WGKVS, d Ground truth

Table 4 Segmentation
performance for SOBS

Video Recall Precision Similarity

WaterSurface 0.709 0.998 0.708

Fountain 0.349 0.971 0.346

ShoppingMall 0.522 0.861 0.482

Hall 0.708 0.888 0.648

LeftBag 0.472 0.642 0.373

LeftBox 0.746 0.806 0.634

like the classification of objects. The obtained segmented objects by the WGKVS
for the third experiment (see Fig. 6), are accurate for an adequate characterization
process (see Fig. 7). The latter can be corroborated with a classification performance
of 84.21 %. The misclassified samples belonging to the people class, are objects
where the complete body of the person is not in the scene.
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Fig. 6 Segmented object samples using WGKVS. a MSA, b LeftBag, c LeftBox

Fig. 7 Geometrical features examples. a Original object, b Corners, c Lines, d Fitting shapes

Table 5 Confusion matrix
using the Knn classifier

People Baggage objects

People 21 6

Baggage objects 1 10

5 Conclusions

We have proposed a methodology called WGKVS, which using image sequences
recorded by stationary cameras, segments the moving objects from the scene. The
aim of the proposed WGKVS is to construct a background model based on an optical
flow methodology, and using a MKL background subtraction approach, incorporates
different information sources, each source is weighted using a relevance analysis
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and a tuned Kmeans algorithm is used to segment the resulting weighted feature
space. Experiments showed that the weighted incorporation of the spatial and rgb
features enhances the data separability for further clustering procedures. Moreover,
the attained results expose that the proposed WGKVS has stable results using the
same parameters for all the experiments, and that it is suitable for supporting real
surveillance applications like the classification of abandoned objects. As future work,
the inclusion of other features which could enhance the process and a methodology for
the automatic actualization of the background model are to be studied. Furthermore,
the proposed WGKVS is to be implemented as a real time application.
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Quality-Based Super Resolution for Degraded
Iris Recognition

Nadia Othman, Nesma Houmani and Bernadette Dorizzi

Abstract In this paper we address the problem of low-quality iris recognition
via super resolution approaches. We introduce two novel quality measures, one
computed Globally (GQ) and the other Locally (LQ), for fusing at the pixel level
(after a bilinear interpolation step) the images corresponding to several shots of a
given person. These measures derive from a local GMM probabilistic characterization
of good quality iris texture. We performed two types of experiments. The first one
considers low resolution video sequences coming from the MBGC portal database:
it shows the superiority of our approach compared to score-based or average
image-based fusion methods. Moreover, we show that the LQ-based fusion
outperforms the GQ-based fusion with a relative improvement of 4.79 % at the Equal
Error Rate functioning point. The second experiment is performed on CASIA v4
database containing sequences of still images with degraded quality resulting in
severe segmentation errors. We show that the image fusion scheme improves greatly
the performance and that the LQ-based fusion is mainly interesting for low FAR
values.

Keywords Iris recognition · Video · Quality · Super resolution · Fusion of images

1 Introduction

The excellent performance of biometric systems based on the iris are obtained by
controlling the quality of the images captured by the sensors, by imposing certain
constraints on the enrolled subjects, such as standing at a fixed distance from the

N. Othman (B) · B. Dorizzi
CNRS UMR 5157 SAMOVAR, Institut Mines-Télécom/Télécom SudParis, 9 Rue Charles
Fourier, 91011 Evry, France
e-mail: nadia.othman@telecom-sudparis.eu

B. Dorizzi
e-mail: bernadette.dorizzi@telecom-sudparis.eu

N. Houmani
Laboratoire SIGMA, ESPCI-ParisTech, 10 Rue Vauquelin, 75005 Paris, France
e-mail: nesma.houmani@espci.fr

© Springer International Publishing Switzerland 2015
A. Fred and M. De Marsico (eds.), Pattern Recognition Applications and Methods,
Advances in Intelligent Systems and Computing 318,
DOI 10.1007/978-3-319-12610-4_18

285



286 N. Othman et al.

camera and looking directly at it, and by using algorithmic measurements of the
image quality (contrast, illumination, texture richness, etc.).

However, when working with moving subjects, as in the context of video surveil-
lance or portal scenarios for border crossing, many of these constraints become
impossible to impose. An “iris on the move” (IOM) person recognition system
was evaluated by the NIST by organizing the Multiple Biometric Grand Challenge
(MBGC) [1]. The image of the iris is acquired using a static camera as the person
is walking toward the portal. Hence, a sequence of images of the person’s face is
acquired, which normally contain the areas of the eyes (periocular region).

The results of the MBGC show degradation in performance of iris systems in
comparison to the IREX III evaluation [2] based on databases acquired in static mode.
At a 1 % False Acceptance Rate (FAR), the algorithm that gave the best results in
both competitions obtains 92 % of correct verification on the MBGC database, as
compared to 98.3 % on the IREX III database [2].

Indeed, acquisition from a distance causes a loss in quality of the resulting images,
showing a lack of resolution, often presenting blur and low contrast between the
boundaries of the different parts of the iris.

Nevertheless, images acquired in still conditions may also suffer from degradation
and variability due to the presence of eyeglasses, specular reflections and dilatation.
This results in segmentation errors, which influence particularly the quality of the
normalized iris texture. In that case two normalized iris images resulting from differ-
ent acquisitions of the same person may present a high discrepancy. Therefore, if the
segmentation module is not reliable enough, one can notice a significant decrease of
the recognition performance on such degraded normalized images.

One way to try to circumvent this issue is to use some redundancy that arises from
the availability of several images of the same eye in the database. These images can
be extracted either from a video sequence (case of MBGC) or from a set of images
acquired at different moments as in CASIA v4. A first approach consists in fusing
the scores coming from the frame-by-frame matching (1 to 1) using some operators
like the mean or the min. This has been shown to be efficient but at the price of
a high computational cost [3]. Another direction is to fuse the images at the pixel
level, exploiting this way the redundancy of the iris texture at an early stage and to
perform the feature extraction and matching steps on the resulting fused images. At
this level of study, the arising question is how to perform this fusion stage so that the
performance can be improved compared to 1 to 1 or score fusion schemes.

At our knowledge, few authors have considered the problem of fusing images
of low quality in iris videos for improving recognition performance. The first paper
is that of Fahmy [4] who proposed a super resolution technique based on an auto-
regressive signature model for obtaining high resolution images from successive low
resolution ones. He shows that the resulting images are valuable only if the initial
low-resolution images are blur-free and focused, stressing already the bad influence
of low quality images in the fusion. In [3], Hollingsworth et al. proposed to perform a
simple averaging of the normalized iris images extracted from the video for matching
NIR videos against NIR videos from the MBGC database. When compared to a fusion
of scores, the results are similar but with a reduced complexity. In the same spirit,
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Nguyen et al. [5, 6] proposed to fuse different images of the video at a pixel level
after an interpolation of the images. They use a quality factor in their fusion scheme,
which allows giving less importance to images of bad quality. The interpolation step
is shown very efficient as well as the quality weighting for improving recognition
performance. Note that they considered a protocol similar to MBGC, where they
compare a video to a high quality still image. More recent works [7, 8] explored the
fusion in the feature domain using PCA or PCT but not on the same MBGC protocol
as they usually degrade artificially the image resolution in their assessment stage.

For still images, these fusion techniques do not seem to have been envisaged
maybe because of the computational burden and the need of multi-shot acquisitions
as compared to simple 1 to 1 comparison.

In this work, we will consider the two above-mentioned situations, namely video
sequences of low resolution resulting from an acquisition at a distance and sequences
of still images, presenting variability and therefore segmentation defaults. We will
follow the same approach in the two situations.

In our work, like in [6], we propose to fuse the different frames of the sequence
at the pixel level, after an interpolation stage that allows increasing the size of the
resulting image by a factor of 2. When dealing with videos, contrary to [6], we do
not follow the MBGC protocol that compares a video to a still high quality image
reference. Indeed, we consider in our work, a video against video scenario, more
adapted to the re-identification context, meaning that we will use several frames in
both low quality videos to address the person recognition task. In the still images
context, we will consider different scenarios including the fusion or not of several
test images, that we will discuss comparatively.

The above literature review dealing with super resolution in the iris on the move
context has stressed the importance of choosing adequately the images involved in
the fusion process. Indeed, integration of low quality images leads to a decrease in
performance producing a rather counterproductive effect.

In this work, we will therefore concentrate our efforts in the proposition of a novel
way of measuring and integrating quality measures in the image fusion scheme.
More precisely, our first contribution is the proposition of a global quality measure
for normalized iris images, defined in [9], as a weighting factor in the same way as
proposed in [6]. The interest of our quality measure compared to [6] is its simplicity
and the fact that its computation does not require identifying in advance the type
of degradations that can occur in the iris images. Indeed, our measure exploits a
local Gaussian Mixture Model-based characterization of the iris texture. Bad quality
normalized iris images are therefore images containing a large part of non-textured
zones, resulting from segmentation errors or blur.

Taking benefit of this local measure, we propose as a second novel contribution
to perform a local weighting in the image fusion scheme, allowing this way to take
into account the fact that degradations can be different in different parts of the iris
image. This means that regions free from occlusions will contribute more in the
reconstruction of the fused image than regions with artifacts, such as eyelid or eyelash
occlusion and specular reflection. Thus, the quality of the reconstructed image will
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be better and we expect this scheme to lead to a significant improvement in the
recognition performance.

This paper is organized as follows. In Sect. 2, we describe our proposed Local
and Global quality-based super resolution approaches. In Sect. 3, we present the
comparative experiments that we performed on the MBGC and CASIA v4 databases.
Finally, conclusions are given in Sect. 4.

2 Local and Global Quality-Based Super Resolution

In this Section, we first briefly describe the iris recognition system used in this work.
Then, we recall the definition of the used local and global quality measures applied
on the normalized images (for more details refer to [9, 10]). We also explain how we
have adapted such measures to the context of iris images of a given sequence. After
that, we describe the super resolution process allowing interpolation and fusion of
images. Finally, we summarize the global architecture of the system that we propose
for person recognition from a sequence of iris images using these local and global
quality measures. Note that a sequence can be either frames of a video or several
stills images, of a given person.

2.1 The Iris Recognition System OSIRISv2

In the present work, we use the open source iris recognition system OSIRISv2,
inspired by Daugman’s approach [11], which was developed in the framework of the
BioSecure project [12]. The segmentation part uses the circular Hough transform
and an active contour approach to detect the contours of the iris and of the pupil
as circles. The normalization step is based on Daugman’s rubber-sheet model. The
classification part is based on Gabor phase demodulation and Hamming distance
classification.

However, in the case of the video scenario, we used a manual segmentation instead
of the one given by OSIRISv2. Indeed, one of the difficulties encountered in the videos
of the MBGC database lies in the very low contrast between the boundaries of the iris,
the pupil and the sclera, for which OSIRISv2 is not efficient. Moreover, sometimes,
light spots are present on these boundaries, which cause border detection errors. For
this reason, we performed a manual segmentation of the circular iris boundaries. The
advantage of this protocol is that it allows a good segmentation of the iris texture
and this way we can assess the interest of our approach on the problem of decrease
of resolution independently of segmentation problems. The impact of segmentation
errors will be studied exclusively in our second part of experiments with still images
of CASIA v4 database for which we will use the OSIRISv2 segmentation module. In
both cases, we use OSIRISv2 for the normalization, feature extraction and matching
steps.
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2.2 Local Quality Measure

As in [10], we use a Gaussian Mixture Model (GMM) to give a probabilistic measure
of the quality of local regions of the iris. In this work, the GMM is learned on small
images extracted from the MBGC and Casia v4 databases showing a good quality
texture free from occlusions. So, giving to this GMM a normalized input iris image,
this model will give a low probability on the noisy regions, which result from blur
or artifacts as shown in [9]. The interest of this approach is that there is no need to
recognize in advance the type of noise present in the images such as eyelid or eyelash
occlusion, specular reflection and blur.

For the video context, we trained the GMM with 3 Gaussians on 95 sub-images
free from occlusions, selected manually from 30 normalized images taken randomly
from MBGC database. For the still images context, we also trained the GMM with 3
Gaussians on 85 sub-images free from occlusions, taken manually from 25 normal-
ized images of CASIA V4 database. In the same way as in [9], the model is based on
four local observations grouped in the input vector: the intensity of the pixel, the local
mean, the local variance and the local contrast measured in a 5 × 5 neighborhood of
the pixel. The quality measure associated to a sub-image of an image is given by the
formula:

Qlocal(w) = exp− 1
d

∑d
i=1| log(p(xi /λ))−ā| (1)

where d is the size of the sub-image (w), xi is the input vector of our GMM, p(xi/λ)

is the likelihood given by the GMM λ to the input vector xi , and ā is the mean
log-likelihood on the training set. We use a negative exponential to obtain a value
between 0 and 1. The closest Q value will be to 1, the highest are the chances that
the sub-image w is of good quality, namely free from occlusion and highly textured.

2.3 Global Quality Measure

The local measure presented in Sect. 2.2 can also be employed for defining a global
measure of the quality of the entire image. To this end, we divide the normalized
image (of size 64 × 512) in overlapping sub-images of size 8 × 16 and we average
the probabilities given by the local GMM of each sub-image as follows:

Qglobal = 1

N

∑
n

Qlocal(wn) (2)

where N is the number of sub-images and Qlocal(wn) is the GMM local quality of
the nth sub-image.
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2.4 Super Resolution Implementation

MBGC’s images suffer from poor resolution, which degrades significantly iris recog-
nition performance. Super resolution (SR) approaches can remedy to this problem by
generating high-resolution images from low-resolution ones. Super resolution can
also be seen as a way of implementing fusion at the image level. For this reason,
even if the still images of CASIA v4 do not suffer from low resolution, we tested
this approach on such sequences as a way to compensate, via a fusion procedure, the
decrease of quality resulting from segmentation errors.

Among the various SR schemes, we chose in this work a simple version similar
to that exploited in [5], resulting into a double resolution image using a bilinear
interpolation. After interpolating each normalized image of the sequence, a step of
registration is generally needed before pixel’s fusion to ensure that those pixels are
correctly aligned with each other in the sequence. In the present work, experiments
showed that implementing a registration step did not produce any better recognition
performance. Indeed, the process of normalization already performs a scaling of the
iris zone, allowing an alignment of the pixels, which is sufficient for the present
implementation of super resolution.

This set of normalized interpolated images is then fused to obtain one high-
resolution image. We introduce some quality measures in this fusion process. More
precisely, as done in [5], we weight the value of each pixel of each image by the same
factor, namely the Global Quality (GQ) (defined in Sect. 2.3) of the corresponding
image. We also propose a novel scheme using our Local Quality (LQ) measure
(defined in Sect. 2.2). In this latter case, we compute the local quality measures of
all the sub-images as defined in Sect. 2.3 and we generate a matrix of the same size
as the normalized image which contains the values of the quality of each sub-image.
This matrix is then bilinearly interpolated. Finally, we weight the value of each pixel
of each interpolated image by its corresponding value in the interpolated quality
matrix. Figure 1 illustrates this LQ-based fusion process, which is more detailed in
Sect. 2.5.

2.5 Architecture of the Local Quality-Based System

Figure 2 presents the general architecture of our LQ-based system. The main steps
of such system are described as follow:

For each image of the sequence:

• Segment the iris using two non-concentric circles approximation for the pupillary
and limbic boundaries,

• Normalize the segmented iris zone with Daugman’s rubber sheet technique,
• Generate masks and measure the local quality on the normalized and masked

images, using the GMM already learned,
• Interpolate the normalized images and their corresponding masks and local quality

matrix to a double resolution using the bilinear interpolation.
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Fig. 1 Fusion process of the proposed local quality-based method

Fig. 2 Diagram of the local quality-based system for video-based iris recognition

Finally, for all the images, generate the fused image as follows:

Ifused =
∑F

i=1 I i (x, y) ∗ Mi (x, y) ∗ Qi (w)∑F
i=1 Mi (x, y) ∗ Qi (w)

(3)

where F is the total number of images, I i (x, y) and Mi (x, y) are the values of the
pixel in the position (x, y) of, respectively, the i th interpolated normalized image
and mask.Qi (w) is the local quality of the sub-image (w) to which the pixel (x, y)

belongs.
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The last steps of the recognition process, namely feature extraction and matching
(as recalled previously in Sect. 2.1), are performed on the fused reconstructed images.
Note that from one sequence of F images, we obtain only one image performing this
way an important and efficient compression of the information.

3 Experimental Results

As already mentioned, the proposed method has been evaluated on two challenging
databases: Multiple Biometric Grand Challenge (MBGC) database and CASIA-Iris-
Thousand (CASIA v4) database. The images of the first one suffer from poor res-
olution and blur. The images of the second database are better in terms of quality
but they are considered as difficult to segment due to the spots on the boundaries of
the pupil and the iris and the presence of eyeglasses. In this way, we can show the
interest of our fusion scheme for two distinct problems for iris recognition, which
are the bad quality of the images and the wrong segmentation of the iris.

3.1 Multiple Biometric Grand Challenge’s Results

Database and Protocols. The proposed method has been evaluated on the portal
dataset composed of Near Infra-Red (NIR) faces videos used during the Multiple
Biometric Grand Challenge (MBGC) organized by the National Institute of Standards
and Technology (NIST) [1]. This MBGC database was acquired by capturing facial
videos of 129 subjects walking through a portal located at 3 m from a NIR camera.
Although the resolution of the frames in the video is 2,048 × 2,048, the number
of pixels across the iris is about 120, which is below the minimum of 140 pixels
considered as the minimum to ensure a good level of performance [11]. The images
suffer not only from low resolution but also from motion blur, occlusion, specular
reflection and high variation of illumination between the frames. Examples of bad
quality images are shown in Fig. 3.

To segment the iris, first we have to detect and track the eyes in the sequence.
The detection is generally guided by the presence of spots that are located around

Fig. 3 Examples of bad quality images: a out of focus, b eyelid and eyelashes occlusions, c closed
eye, d dark contrast
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the eyes in the MBGC database. Due to the important variation of illumination
that can be observed between the frames across one sequence, we manually discard
darker frames as done in [3, 5]. After that, blurred frames from the sequence were
removed by using wavelet’s transformation. After this pre-processing process, the
used database is composed of 108 subjects; each one possesses two sequences with
at least 4 frames per sequence.

As mentioned in Sect. 2.1, we perform a manual segmentation of the iris bound-
aries, which provides the center coordinates and the diameter parameter of the two
circles defining the iris area. We then use OSIRISv2 for the normalization, feature
extraction and matching steps. For finding the occlusion masks, we use an adaptive
filter similar to that proposed in [13] but adapted to images extracted from a video
sequence.

In this work, we compare NIR videos to NIR videos like in [3]. For each person,
we use the first sequence as a target and the second one as a query.

Experiments and Results. The proposed approach is compared to other fusion
score methods such as Multi-Gallery Simple-Probe (MGSP), Multi-Gallery Multi-
Probe (MGMP) and also to fusion signal methods as simple averaging of images and
weighted super-resolution.

3.1.1 Fusion at the Score Level

• Matching 1 to 1: All the frames in the video of a person are considered as inde-
pendent images and used for performing inter-class and intra-class comparisons.
This system was used as a baseline system to compare the other methods.

• Matching N to 1, Multi-Gallery Simple-Probe: In this case, the different images
in the video are considered dependent as they represent the same person. If the
number of samples in the gallery and the probe are respectively N and 1 per person,
we get N Hamming distance scores which can be fused by making a simple average
[14] or the minimum of all the scores [15].

• Matching N to M, Multi-Gallery Multi-Probe: In this case, we consider M images
in the probe and N images in the gallery. We thus get N∗M scores per person and
combine them by taking the average or the minimum.

The performance results of these score fusion schemes are shown in Table 1.
As shown in Table 1, the best score’s fusion scheme (MGMP) reduces the Equal

Error Rate (EER) from 14.32 to 4.66 %. This indicates that recognition performance

Table 1 Equal Error Rate
(EER) values of the score‘s
fusion methods

Methods EER (in %)

Matching 1 to 1 (baseline) 14.32

Minimum Average

Matching N to 1(MGSP) 9.30 10.27

Matching M to N (MGMP) 4.66 5.65
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can be further improved by the redundancy brought by the video. However, the
corresponding matching time increases considerably when the recognition score is
calculated for N∗M matchings.

3.1.2 Fusion at the Signal Level

• Without a quality measure: At first, the fusion of images is carried out without
using quality measure. For each sequence, we create a single image by averaging
the pixels’ intensities of the different frames of such a sequence. We experimented
two cases: with and without interpolated images. Recognition performance of the
two methods is reported in Table 2 at the Equal Error Rate (EER) functioning point.

Table 2 shows that the fusion method based on the interpolation of images before
averaging the pixels’ intensities outperforms the simple average method, with a rel-
ative improvement of 25.30 % at the EER functioning point. This result is coherent
with Nguyen’s results which states that super resolution (SR) greatly improves recog-
nition performance [5].

By observing Tables 1 and 2, we see that the MPMG-min method is slightly
better than the simple average (4.66 vs. 4.9 %). These results are coherent with those
obtained by Hollingsworth et al. [3]. However, as explained in [3], the matching time
and memory requirements are much lower for image’s fusion than score’s fusion.

• With a quality measure (global and local): Given the considerable improvement
brought by the interpolation, we decided to perform further experiments only on
SR images. We introduce in the fusion the global quality (GQ) and local quality
(LQ) fusion schemes as explained in Sect. 2.4. Recognition performance results at
the Equal Error Rate (EER) of all methods are reported in Table 3 and the associated
DET-curves are shown in Fig. 4.

As shown in Table 3, introducing our global quality criterion in the fusion gives
a high relative recognition improvement (25.95 % at the EER) compared to when
no quality is considered. Our method is in agreement with Nguyen’s result [6] who

Table 2 Equal Error Rate
(EER) of the image‘s fusion
methods without using quality

Strategy of fusion EER (in %)

Simple average of normalized iris 4.90

Simple average of interpolated normal-
ized iris (SR)

3.66

Table 3 Equal Error Rate
(EER) of the image‘s fusion
methods with and without
quality measures

Strategy of fusion EER (in %)

Without quality 3.66

With global quality 2.71

With local quality 2.58
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Fig. 4 DET-curves of the three image’s fusion approaches

obtains an improvement of 11.5 % by introducing his quality measure (but with
another evaluation protocol). Compared to his method, our quality is simpler to
implement. Indeed, the metric employed by Nguyen to estimate the quality of a given
frame includes four independent factors: focus, off-angle, illumination variation and
motion blur. After calculating individually each of these quality scores, a single
score is obtained with the Dempster-Shafer theory [6]. Our quality measure has the
advantage of not requiring an extra strategy of combinations neither knowing in
advance the possible nature of the degradation.

By incorporating our GQ measure in the fusion process, the contribution of each
frame in the fused image will be correlated to its quality, this way more weight is
given to the high quality images.

Table 3 also shows that LQ-based fusion method outperforms the GQ-based fusion
method with a relative improvement of 4.79 % at the EER. This is due to the fact
that the quality in an iris image is not globally identical: indeed, due for example
to motion blur, a region in an iris image could be more textured than another one.
Moreover, our LQ measure can detect eventual errors of masks and assign them a
low value. The LQ-based fusion scheme allows therefore a more accurate weighting
of the pixels in the fusion scheme than the GQ-based method.

3.2 CASIA-Iris-Thousand V4

Database and Protocol. Experiments are carried out on a subset of the challenging
CASIA-Iris-Thousand database [16]. The complete database includes 20,000 iris
images from 2,000 eyes of 1,000 persons. Thus, each subject has 10 instances of
both left and right eye. The images are captured using the dual-eye iris camera using
IKEMB-100 produced by IrisKing. In this work, we select randomly 600 subjects.
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Fig. 5 Examples of images taken from CASIA-Iris-Thousand v4

Normalized iris image

Local quality matrix

(a)

(b)

Normalized iris image

Local quality matrix

Sclera

Fig. 6 Examples of two different segmentations on the same eye: a good segmentation and corre-
sponding normalization, b wrong segmentation and corresponding normalization

The main sources of variations in this database are eyeglasses, specular reflections
and dilatation (see Fig. 5), which make the iris segmentation particularly difficult.

To perform the segmentation step, we used the OSIRISv2 reference system
described in Sect. 2.1. As mentioned before, the segmentation is based on Hough
transform and active contour. This version has been improved in the latest version
but, as our purpose is to show the impact of using a local quality measure in the
fusion process when the segmentation of the iris fails, we decided to use the second
version, which leads to more cases of wrong segmentation. Figure 6 illustrates two
examples of such segmentation: a good (Fig. 6a) and a wrong (Fig. 6b) segmentation
and their corresponding normalized images and local quality matrix.

On Fig. 6b, we can see a part of the sclera on the normalized iris image. This is
due to the wrong localization of the boundary between the iris and the sclera. When
fusing the iris images, this zone which does not correspond to iris texture will degrade
the results. Therefore, we should give to this zone less importance in the process of
fusion. To do this, we will fuse the normalized iris images using their local quality
matrices. This way, dark areas of this matrix, which correspond to low quality zones
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(zones not belonging to the iris region), will therefore contribute less in the fusion
than bright ones.

Apart from this undesirable effect, a bad localization of the borders of the irises
also introduces some disparities in the normalized iris images and therefore two
images from the same eye can lead to two normalized images in which two points
with the same coordinates do not correspond to the same texture. Note that our actual
implementation does not take this effect into account.

Experiments and Results. For each subject, we divided arbitrary the 10 instances
into two equal parts: we used 5 images as a target sequence (references) and the rest as
a query sequence (test). On CASIA v4 database, we performed several experiments:

• As done on MBGC database (Table 1), we analyzed on CASIA v4 database the
impact of score fusion methods on recognition performance following the three
previously defined protocols: Matching 1 to 1, Matching N to 1, Matching M to
N. We report in Table 4, the recognition performance at the EER.

• We also analyzed the impact of image fusion methods considering only the case
of interpolated images (super resolution-based fusion). As in CASIA v4 database
there are several test images per person (5 images), we fused reference images
(as done on MBGC database) and also test images. Recognition performance
is computed by comparing the obtained fused test image to the obtained fused
reference image. This protocol is close to the MGMP one: in both scenarios, we
assume dependency between the reference images and the test images. Recognition
performance results are reported in Table 5.

We first observe in Table 4, as expected, that the results are highly improved thanks
to the fusion of the scores. A relative improvement of 56.16 % is observed considering
the scenario 5 to 1 and of 73.56 % considering the scenario 5 to 5, compared to the
scenario 1 to 1.

When comparing the results reported in Tables 4 and 5, we notice that all the
images fusion methods outperform the best obtained score fusion (EER=6.29 %).

Table 4 Equal Error Rate
(EER) values of the score’s
fusion methods on CASIA v4
database

Score’s fusion methods EER (in %)

Matching 1 to 1 23.82

Matching 5 to 1 (MGSP) 9.98

Matching 5 to 5 (MGMP) 6.29

Table 5 Equal Error Rate
(EER) values of the image
fusion methods. The fusion is
carried out on the reference
and test images

Images fusion methods: fusing
both reference and test images

EER (in %)

Without quality 5.48

With global quality 4.86

With local quality 5.54
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Fig. 7 DET-curves of the three image’s fusion approaches (scenario 5–5)

This interesting result points out the contribution of the fusion at the image level
compared to the fusion at the score level that is high time consuming.

We also notice in Table 5 that the best performance is obtained when the global
quality is considered in the images fusion (EER=4.86 %), while the result at the
EER functioning point with the local quality is the worst one. To refine this analy-
sis, we plotted in Fig. 7 the DET curve of the different image fusion methods. We
observe that at FAR values lower than 1 %, the local quality-based system leads to a
significant improvement in terms of recognition performance compared to the global
quality-based system and to when no quality is considered. Indeed at FAR=0.1 %,
FRR=33.3 % with the local quality measure while FRR=39.5 % with the global
quality measure and FRR=41.2 % when no quality is considered. This is an interest-
ing result, as low FAR values are often considered in the iris recognition framework.

4 Conclusions

In this paper, we have proposed novel contributions to the problem of iris performance
decrease due to some degradation of the iris image. We considered only the case
where we have at disposal several shots of the same eye for each person. We have
tackled two different situations, namely video sequences of low resolution resulting
from an acquisition at a distance (MBGC database) and sequences of multi-shot
still images, presenting variability and therefore segmentation defaults (CASIA v4
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database). Our approach is based on simple super-resolution techniques improved by
taking into account some quality criteria. Our main novelty is the introduction in the
fusion scheme, at the pixel level, of a local quality (LQ) measure relying on a GMM
estimation of the distribution of a clean iris texture. This LQ measure can also be used
to compute a global quality (GQ) measure of the normalized iris image. We have
shown on the MBGC database that the LQ-based fusion allows a high improvement
in performance compared to other fusion schemes (at the score or image level) or to
our GQ-based fusion. The experiments on the CASIA v4 still images database also
show a big improvement thanks to the use of image fusion for the references and test
sets. While the LQ-based image fusion does not bring any improvement at the EER
functioning point compared to the global quality schemes, it is very efficient at low
FAR values.

The present work is a first step towards the introduction of super resolution tech-
niques in the context of low quality image sequences. Our first results need to be
confirmed by extensive experiments. From a practical point of view, processing
videos would require a completely automatic system, which was not implemented in
the present work. Indeed, we have manually chosen the adequate images in the video
and segmented them manually. The results obtained with the manual segmentation
therefore allowed us to conclude on the positive effect of our approach on low res-
olution images (independently of segmentation errors). An automatic segmentation
procedure can replace the manual one but, due to the low quality of MBGC frames,
we expect that it will produce a large number of errors (as assessed by the degrada-
tion of performance observed in the MBGC competition). Anyhow, the good results
that we obtained by fusing the sequences of still images from CASIA v4 (which are
badly segmented with OSIRISv2) can make us optimistic in the global performance
of an automatic system for processing low resolution iris videos in Near Infra Red.
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Generic Biometry Algorithm Based on Signal
Morphology Information: Application
in the Electrocardiogram Signal

Tiago Araújo, Neuza Nunes, Hugo Gamboa and Ana Fred

Abstract This work presents the development, test, and implementation of a new
biometric identification procedure based on electrocardiogram (ECG) signal mor-
phology. ECG data were collected from 63 subjects during two data-recording ses-
sions separated by six months (Time Instance 1, T1, and Time Instance 2, T2). Two
tests were performed aiming at subject identification, using a distance-based method
with the heartbeat patterns. In both tests, the enrollment template was composed by
the averaging of all the T1 waves for each subject. Two testing datasets were cre-
ated with five meanwaves per subject. While in the first test the meanwaves were
composed with different T1 waves, in the second test T2 waves were used. The T2
waves belonged to the same subjects but were acquired in different time instances,
simulating a real biometric identification problem. The classification was performed
through the implementation of a kNN classifier, using themeanwave’s Euclidean dis-
tances as the features for subject identification. The accuracy achieved was 95.2%
for the first test and 90.5% for the second. These results were achieved with the
optimization of some crucial parameters. In this work we determine the influence of
those parameters, such as, the removal of signal outliers and the number of waves
that compose the test meanwaves, in the overall algorithm performance. In a real time
identification problem, this last parameter is related with the length of ECG signal
needed to perform an accurate decision. Concerning the study here depicted, we
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conclude that a distance-based method using the subject’s ECG signal morphology
is a valid parameter for classification in biometric applications.

Keywords Biometry · Classification · Electrocardiography · Meanwave · Signal
processing

1 Introduction

Every day, large amounts of confidential data are stored and transferred through the
internet. New concerns about security and authentication are arising; speed and effi-
ciency in intruders detection is crucial. Biometric recognition addresses this problem
in a very promising point of view. The human, voice, fingerprint, face, and iris are
examples of individual characteristics currently used in biometric recognition sys-
tems [1]. Recently, several works have studied the electrocardiography (ECG) signal
as an intrinsic subject parameter, exploring its potential as a human identification
tool [2–4].

Biometry based in ECG is essentially done by the detection of fiducial points and
subsequent feature extraction (Fig. 1) [5]. Nevertheless there are some works that
use a classification approach without fiducial points detection [6], referring com-
putational advantages, better identification performance and peak synchronization
independence.

Since 2007, Institute of Telecommunications (IT) research group has explored this
theme addressing it, essentially, in two ways: (i) analysis of the ECG time persistent
information, with possible applicability in biometrics over time; and (ii) development
of acquisition methods which enabled the ECG signal acquisition with less obtrusive
setups, particularly using hands as signal acquisition point.

Following these goals, a recent work proposed a finger-based ECG biometric
system, collecting the signals through a minimally intrusive 1-lead ECG setup at the
fingers and recurring to Ag/AgCl electrodes without gel [5]. In the same work, an
algorithm was developed for comparison between the R peak amplitude from the

Fig. 1 The ecg fiducial points
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heartbeats of test patterns and the R peak from the enrollment template database.
The results revealed that this could be a promising technique.

In this work we used the IT ECG database and follow the same methodology as
described before, but using a new biometrics classification algorithm based on the
heartbeat meanwave’s Euclidean distances.

In the following section we will depict the procedure for the ECG data acquisi-
tion and pre-processing. We also explain the methodology followed in this study to
efficiently classify the heartbeat waves into the respective subject. The results of the
classification procedure are exposed and discussed in section three. Conclusions are
taken in section four of this paper.

2 Procedure

2.1 Data Collection

ECG data were collected from 63 subjects, 166.55±8.26cm, 61.82±11.7Kg and
21±4.46years old, during two data-recording sessions with six months between
them.We divided those acquisitions in two groups, T1 and T2, referring respectively
to the first recording instance and the second recording six months after. The subjects
were asked to be seated and relaxed in both recordings.

2.2 Signal Acquisition and Conditioning

The signals were acquired by two dried electrodes assembled in a differential config-
uration [5]. The sensor uses a virtual ground, an input impedance over 1M�, 110dB
of CMRR and gain of 10 in the first stage. The conditioning circuit consists of two
filtering levels: (i) bandpass between 0.05 and 1,000Hz and (ii) notch filter centered
in 50Hz to remove network interference. The final amplification stage has a gain of
100 to improve the resolution of the acquired signal. This system also magnifies the
signal after filtering undesired frequencies in each conditioning stage. The signal is
then digitalized for further digital processing. This processing consists in: (a) band-
pass digital filter (FIR) of 301 order and bandwidth from 5 to 20Hz, obtained using
a hamming window, (b) detection of QRS complexes, (c) segmentation of ECG and
determination RR intervals, (d) outliers removal, (e) meanwave computation and
feature extraction, and finally (f) the data classification. The signal acquisition and
the processing steps (a), (b) and (c) were done by the methodology developed in
IT [5].
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Fig. 2 The process of data classification

In the following section the methodology designed for the implementation of the
remaining steps ((d), (e) and (f)) will be described.

2.3 The Process of Data Classification

Data classification is amachine learning technique used to predict groupmembership
for data instances. The main goal of this study was to successfully use the patterns
of ECG heartbeats to make subject’s identification in different time periods, using a
classification method.

Figure2 depicts the usual process that is followed to classify a set of data.
This process comprises a first stage of feature extraction,making data transformations
to generate useful and novel features froma set of candidates. In the data classification
there’s a supervised learning process.
A first set of data, called training set, is received as input by the classifier, then, with
those inputs, it will learn about the features and correspondent classes. The new set
of data given, called test set, will match the features with the input training set and
associate each sample to the correspondent classes.

2.4 Feature Extraction

The Fig. 3 provides a schematics of the methodology followed in this work.
The data used in this studywere divided in two groups: the T1 and T2 acquisitions.

In the first test weworkwith only T1waves, and in the second test we compare the T2
waves with the T1 template—therefore we can check the differences in classification
accuracy when working with acquisitions separated in time from the same subject,
simulating a real biometric identification problem.
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Fig. 3 Template and Tests of the classification process

The dataset defined as template is composed with the T1 subjects’ meanwaves,
and the features computed for the classification process will be the distance value
between the template meanwaves and the meanwaves of future acquisitions (tests).

To compose the template, the first step was to compute a meanwave [7] by the
averaging of all T1 waves (which were already segmented into RR-aligned heart-
beats). An outliers removal procedure followed, by computing the mean square error
distance of each wave to the resulting meanwave. Equation1 displays the expression
for the computation of this distance for only one heartbeat (being l the length, in
samples, of the normalized cycle and meanwave). After gathering the distance of
each wave to the meanwave, the mean distance value was computed and the waves
which presented a distance value higher than two times the mean were removed from
the template.

A new meanwave for each subject was then computed without the outliers. Each
subject’s meanwave was composed with 100 heartbeat waves. This completed the
template for the classifier.

distance =
√∑l

i=1(cyclei − meanwavei )2

l
(1)

For the first Test dataset, we also used the T1 waves, but divided them randomly
into 5 groups, computing one meanwave for each group. Each meanwave was com-
posed with 20 heartbeat waves. Those five test meanwaves were compared, using a
distance metric, with the T1 template, for each subject. The distance metric used was
the same presented before in Eq.1, where we used the meanwaves computed from
each group instead of each subject’s cycle.

For the second Test we followed the same procedure as before but with a calcula-
tion of the distance between the T1 template meanwave and the 5 meanwaves from
T2 for each subject.

With the distance values computed for both tests we composed two distances’
matrices with 63 columns or features, representing the distance of each sample (the
Test meanwaves) to each subject’s meanwave of the template T1, and 315 (5× 63)
rows or samples, representing the 5 meanwaves we gathered for each subject and
each Test.
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Fig. 4 Schematics used in Orange for classification

2.5 Classifier

To classify the data, a user friendly toolbox [8] was used. As input, it received the
distances matrices and used a k-Nearest Neighbor (kNN) classifier with a “leave one
out” criterion to learn about the data given. Figure4 shows the Orange schematics
of the data classification and results gathering.

In this image the icons represent the steps of the data classification process: The
File icon represents the distance matrices given as input to be classified; The k
Nearest Neighbor classifies samples based on the closest class amongst its k nearest
neighbors (we used k = 5); The test learner represents the stage where the data
given is processed by the classification algorithm and the classifier learns about the
samples and correspondent classes; The confusion matrix confronts the predictions
with the expected results to return the detailed results of the specified classifier.

3 Results and Discussion

3.1 Distance Matrix

Figure5 shows the distances matrices given as input to the classifier for Test 1 and
Test 2 in a color scale image.

The darker colors represent minimum distance values, which are associated to
the heartbeat intra-subject distances. For both tests five samples per subject were
compared with the meanwave template. Therefore, it is expected to see a diagonal
composed with 5 dark cells and all the other cells with lighter colors (in the best
case scenario, they would be totally white). As we can see in Fig. 5, the test 1 is
closer to the ideal result, as this test comprises waves from the same acquisition both
in template and test sets. In the second test the subjects are not so easily visually
identified by the distance metric, and therefore it is expected to see a decrease in
accuracy for the second test (Table1).
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Fig. 5 Distance matrices for
Test 1 and Test 2 given as
input to the classifier

3.2 Classification Accuracy

After the learning process in Orange, a confusionmatrix returned the depicted results
of the classifier. An example of that matrix is shown in Table2.

This matrix gathers the results of the classification for each class (each subject).
The ideal case was to have a diagonal always with 5 samples—it represents that all
samples were efficiently classified, as we had 5 samples per subject. A cell presenting
an inferior value represents that at least one misclassification was made, associating
a sample to other class (at least one heatbeat’s meanwave was classified as belonging
to a different subject).

The final classification results for test 1 and 2, concerning all subjects are included
in Table1.
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Table 1 Results for the
classification accuracy

Test 1 Test 2

Accuracy 95.2% 90.5%

Table 2 Part of the
confusion matrix returned
from the classifier

1 2 3 4 5 6 7 8 9 10 (...) 60 61 62 63

1 5 0 0 0 0 0 0 0 0 0 ... 0 0 0 0

2 0 5 0 0 0 0 0 0 0 0 ... 0 0 0 0

3 0 0 5 0 0 0 0 0 0 0 ... 0 0 0 0

4 0 0 0 5 0 0 0 0 0 0 ... 0 0 0 0

5 0 0 0 0 4 0 0 0 0 1 ... 0 0 0 0

6 0 0 0 0 0 5 0 0 0 0 ... 0 0 0 0

7 0 2 0 0 0 0 3 0 0 0 ... 0 0 0 0

8 0 0 0 0 0 0 0 5 0 0 ... 0 0 0 0

9 0 0 0 0 0 0 0 0 5 0 ... 0 0 0 0

10 0 0 0 0 0 0 0 0 0 5 ... 0 0 0 0

(...) ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

60 0 0 0 0 0 0 0 0 0 0 ... 5 0 0 0

61 0 0 0 0 0 0 0 0 0 0 ... 0 5 0 0

62 0 0 0 0 0 0 0 0 0 0 ... 0 0 5 0

63 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 5

Table 3 Classification
accuracy results for Test 1
and Test 2 with and without
removal of outliers

Test 1 (%) Test 2 (%)

w/ outliers removal 95.2 90.5

w/o outliers removal 88.2 85.4

3.3 Algorithm Parameterization Versus Classification Accuracy

The methodology followed to achieve the depicted results was designed to optimize
the classification rate. Before gathering the meanwaves for each subject, an outlier
removal algorithmwas applied to removewaveswhichwere distant from the template
wave. The outliers removal algorithm is relevant to the classification process, as seen
in the accuracy rates shown in Table3. The classification accuracy increases by 2%
and 5% after removal of the outlier heartbeat waves.

Also stated in the methodology of this work, each of the test sample meanwaves
were composed with 20 heartbeat waves from each subject. This was the optimal
number of waves to achieve the higher classification rate, as shown in Fig. 6.
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Fig. 6 Influence of the number of waves composing the test sample meanwaves

4 Conclusions

A new biometric classification procedure based on electrocardiogram (ECG) heart-
beats meanwave’s distances was implemented and depicted in this study. Our goal
was to successfully use the patterns of ECG heartbeats to make subject’s identifica-
tion. In order to validate the developed solutions, the methods were tested in a real
ECG database. The database was composed by two finger-based ECG acquisitions
from 63 subjects. The acquisitions from each subject were separated by six months
between them. This fact enabled the evaluation of the algorithm accuracy in a test
case scenario, where the test and enrollment template belonged to the first acquisi-
tions, and a real case scenario where we used the first acquisitions as the enrollment
template and the second one as test. Using our approach it was possible to obtain
accuracy rates of 95.2% for the test scenario (Test 1) and 90.5% for the real case
scenario (Test 2). Compared with a previous state-of-the-art approach, the results
outperform the recent studies on finger-ECG based identifications. Previous works
present 89% [9] and 94.4% [5] of accuracy.

Future work will be focused on improving the feature extraction process and add
features to the classifier, such as the correlation between waves or the intra-subject
variability—as we noticed that some subjects had an higher variability in their
meanwaves, and therefore the distance computed isn’t the best feature per se.

Acknowledgments The authors would like to thank the Escola Superior de Saúde-Cruz Vermelha
Portuguesa (ESSCVP) for the data collections infrastructures and subjects providence.



310 T. Araújo et al.

References

1. Jain, A., Hong, L., Pankanti, S.: Biometric identification. Commun. ACM. 42(2), 90–98 (2000)
2. Silva, H., Gamboa, H., Fred, A.: Applicability of lead v2 ecg measurements in biometrics. In:

Proceedings of Med-e-Tel (2007)
3. Coutinho, D. P., Fred, A. L. N., Figueiredo, M. A. T.: Personal identification and authentication

based on one-lead ecg using ziv-merhav cross parsing. In: 10th International Workshop on
Pattern Recognition in Information Systems (2010)

4. Li, M., Narayanan, S.: Robust ecg biometrics by fusing temporal and cepstral information. In:
20th International Conference on Pattern Recognition (2010)

5. Lourenco, A., Silva, H., Fred, A.: Unveiling the biometric potential of finger-based ecg signals.
In: Computational Intelligence and Neuroscience (2011)

6. Plataniotis, K.N., Hatzinakos, D., Lee, J.K.M.: Ecg biometric recognition without fiducial detec-
tion. In: Biometric Consortium Conference, Biometrics Symposium (2006)

7. Nunes, N., Araujo, T., Gamboa, H.: Time series clustering algorithm for two-modes cyclic
biosignals. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2011, CCIS 273, pp. 233–245.
Springer, Heidelberg (2012)

8. Orange. http://orange.biolab.si/ (2012)
9. Chan, A.D.C., Hamdy, M.M., Badre, A., Badee, V.: Wavelet distance measure for person iden-

tification using electrocardiograms in IEEE Transactions on Instrumentation and Measurement
(2008)

http://orange.biolab.si/


Erratum to: A MAP Approach
to Evidence Accumulation Clustering

André Lourenço, Samuel Rota Bulò, Nicola Rebagliati, Ana Fred,
Mário Figueiredo and Marcello Pelillo

Erratum to:
Chapter ‘A MAP Approach to Evidence Accumulation
Clustering’ in: A. Fred and M. De Marsico (eds.), Pattern
Recognition Applications and Methods,
DOI 10.1007/978-3-319-12610-4_6

The authors name and their affiliations in ‘A MAP Approach to Evidence Accu-
mulation Clustering’ should be displayed in first page as shown below:

The online version of the original chapter can be found under
DOI 10.1007/978-3-319-12610-4_6

A. Lourenço (&)
Instituto Superior de Engenharia de Lisboa, Instituto de Telecomunicações, Lisbon, Portugal
e-mail: alourenco@deetc.isel.ipl.pt

A. Fred � M. Figueiredo
Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
e-mail: afred@lx.it.pt

M. Figueiredo
e-mail: mtf@lx.it.pt

S. Rota Bulò
Fondazione Bruno Kessler, Trento, Italy
e-mail: rotabulo@fbk.eu

M. Pelillo
DAIS, Università Ca’ Foscari Venezia, Venice, Italy
e-mail: pelillo@dsi.unive.it

N. Rebagliati
VTT, Espoo, Finland
e-mail: nicola.rebagliati@gmail.com

© Springer International Publishing Switzerland 2015
A. Fred and M. De Marsico (eds.), Pattern Recognition Applications and Methods,
Advances in Intelligent Systems and Computing 318,
DOI 10.1007/978-3-319-12610-4_20

E1

http://dx.doi.org/10.1007/978-3-319-12610-4_6
http://dx.doi.org/10.1007/978-3-319-12610-4_6


A. Lourenço
Instituto Superior de Engenharia de Lisboa, Instituto de Telecomunicações, Lisbon,
Portugal
e-mail: alourenco@deetc.isel.ipl.pt

A. Fred � M. Figueiredo
Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
e-mail: afred@lx.it.pt

M. Figueiredo
e-mail: mtf@lx.it.pt

E2 A. Lourenço et al.



Author Index

A
Álvarez-Meza, A., 273
Araújo, T., 301
Armand, M., 225

B
Baisero, A., 71
Barbara Hammer, B., 39
Belaïd, A., 57
Belaïd, Y., 57
Bengio, Y., 209
Bordes, A., 209
Bouguelia, M.-R., 57
Bulò, S., 85

C
Carboni, M., 225
Carneal, C., 225
Carrino, J., 225
Carvajal-González, J., 273
Castellanos-Domínguez, G., 273
Corner, B., 225

D
DeCristofano, B., 225
Deligiorgi, D., 171
Descombes, X., 153
Dorizzi, B., 285
Dosselmann, R., 3

E
Ek, C., 71

F
Ferreira, A., 101
Figueiredo, M., 85, 101
Flenner, A., 119
Fred, A., 85, 301

G
Gamboa, H., 301
Garcia-Cardona, C., 119
Gisbrecht, A., 39
Glorot, X., 209
Glotin, H., 191

H
Halkias, X., 191
Houmani, N., 285

K
Kobetski, M., 17
Kouroupetroglou, G., 171
Kragic, D., 71

L
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