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Abstract. In this work, we describe how to realize rational cryptographic
protocols in practice from abstract game specifications. Existing work re-
quires strong assumptions about communication resources in order to pre-
serve equilibria between game descriptions and realized protocols. We ar-
gue that for real world protocols, it must be assumed that players have ac-
cess to point-to-point communication channels. Thus, allowing signaling
and strategy correlation becomes unavoidable. We argue that ideal world
game descriptions of realizable protocols should include such communica-
tion resources as well, in order to facilitate the design of protocols in the real
world. Our results specify a modified ideal and real world model that ac-
count for the presence of point-to-point communication channels between
players, where security is achieved through the simulation paradigm.

Keywords: Rational Multiparty Computation, Game Theory, Non-
Cooperative Computation.

1 Introduction

The field of rational cryptography departs from modeling players as either honest
or malicious, and instead models all players as rational utility-maximizing agents:
each player chooses those actions that maximize their utility function μ(·), which
expresses their preferences over outcomes. All players may arbitrarily depart
from the protocol specification if doing so is a utility-maximizing strategy. This
approach to modeling removes the strong assumption of the semi-honest model:
that honest players follow the protocol specification, regardless of whether or
not it is in their best interest. By considering all players as rational agents,
the standard properties of cryptographic protocols (e.g. privacy, correctness and
fairness) are modeled through the utility functions of the players. Security of
the protocol is then deduced from whether or not the stable equilibrium of the
original game specification is reachable given the players’ utility functions.

In secure multiparty computation (SMPC), the security of protocols are
demonstrated through the simulation paradigm. Define an ideal protocol for
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computing a functionality f that invokes an incorruptible and universally trusted
third party (TTP). Similarly, define a real protocol π for computing f where no
TTP exists. Security is established if an adversary A in the real model has no
advantage over a simulator S in the ideal model [1].

A major obstacle when defining security for rational multiparty protocols is
the potential for players to form coalitions, colluding to undermine the security
of the protocol. The strongest result, by Izmalkov et al. [2], allows any function
to be computed securely by rational players using the approach of Goldreich
et al. [1]. Although a universal result, it relies on strong assumptions including
forced actions and physical primitives. A weaker notion, referred to as collusion-
free computation [3–5], removes the ability of players to communicate additional
information subliminally through the protocol communication resources. The re-
sult relies on a trusted mediator at the center of a star network topology, where
all messages pass through the mediator and are re-randomized in order to pre-
vent steganographic communication between the players. This result relies on
adversarial independence, where simulators and adversaries are disallowed com-
munication in the protocol. However, a collusion-free protocol may still cause
issues when executed as part of a larger protocol. For example, the collusion-free
protocols of Izmalkov et al. [2, 5] provide no guarantees when all players are
malicious. This observation led to the work of Alwen et al. [6], where communi-
cation restrictions are further weakened to achieve collusion-preserving compu-
tation, which preserves any potential for collusion present in the original game
specification. Although this result removes the requirement of a trusted medi-
ator, it rules out a large class of communication resources (e.g. point-to-point
and broadcast channels). Kamara et al. [7] consider a setting where adversaries
have the capability to communicate additional information during protocol ex-
ecution, yet choose to be non-colluding. Fuchsbauer et al. [8] give constructions
under standard communication channels by forcing parties to send only unique
messages as part of the protocol. Thus, collusion within the protocol is avoided,
but communication outside of the protocol execution still facilitates collusion.

From this collection of work, addressing the issue of collusion appears to
require strong limitations on the type of communication resources granted to
players. As the general goal of rational cryptography is to provide a more realistic
view of how players behave in cryptographic protocols, we consider what can be
achieved when players have access to point-to-point communication channels -
an unavoidable aspect in real world applications. Thus, in this work we define a
security model where players may communicate information over point-to-point
channels both inside and outside the protocol execution.

Our work proposes a new security framework for rational agents that models
player access to point-to-point communication channels in the ideal world model.
From this, we describe how to demonstrate the security of protocols in a real
world model that implements games specified in our modified ideal world model.
We note that imposing restrictions on the ideal world to capture unavoidable
behavior exists currently in the cryptographic literature: it is a core feature of the
malicious model, which extends the semi-honest model to consider more powerful
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adversaries. In the malicious setting, the ideal world must capture the ability of
an adversary to coordinate the actions and inputs of players it corrupts, and force
aborts during protocol execution; these actions are unavoidable in the presence
of a monolithic malicious adversary. Our model necessarily limits the class of
games that may be modeled in the ideal world formulation of our framework,
as point-to-point communication channels must exist in the original game. Our
work differs from existing formulations, which attempt to realize all games at
the expense of restricting the communication interface available to players.

Throughout the remainder of the introduction, we argue that when point-to-
point communication channels are unavoidable, it is meaningful to consider what
games are realizable in their presence. We demonstrate that a non-trivial class of
games constructed in our modified ideal world model have realizable implemen-
tations in the real world model through the Signaling game in Section 1.2, and
the classic prisoner’s dilemma in Section 2. We give our technical contribution,
a security model for realizing protocols from game specifications in the pres-
ence of point-to-point communication channels, in Section 3. We demonstrate
the power of our model relative to others through a full proof of security for the
rational secret sharing protocol of Halpern and Teague [9] in Section 4, which
is inadmissible under existing frameworks due to the presence of point-to-point
communication channels. These examples demonstrate the key contribution of
our model, which is less restrictive than prior work yet is able to correctly model
the games’ equilibria when played in the real world.

1.1 Local Adversaries

Translating the standard simulation paradigm to the game theoretic setting of
rational cryptography requires addressing how adversaries should be modeled.
In the original formulation, a centralized semi-honest or malicious adversary
corrupts a subset of the players. However, rational cryptography makes no such
distinction1 between honest and corrupted players, and assumes all players are
rational and acting to maximize their local utility function. Thus, translating
the concept of an adversary is not immediate. Alwen et al. [6] give a collusion
preserving framework where each player has an associated local adversary. Thus,
the monolithic adversary of the standard model is shattered into an adversary for
each individual player. Canetti et al. [11] argue that a local adversary should be
defined for each ordered pair of players, as this provides a more granular model of
the flow of information. Canetti et al. then demonstrate that the local universal
composition (LUC) model can preserve the incentive structure in games.

We follow this modeling trend of shattering the monolithic adversary A into
a set of local adversaries A = {Ai}i∈[1...n] such that each player Pi ∈ P is
associated with adversary Ai. Rather than considering local adversaries that
"corrupt" their associated player Pi, we simply require that the adversary selects

1 A mixed model has been proposed by Lysyanskaya et al. [10] where one subset of
players are arbitrarily malicious, and the other subset are utility-maximizing rational
agents.
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the actions of Pi to maximize their local utility function μi. Thus, we preserve
the assumption in rational cryptographic protocols that all players are purely
rational and bound to a utility function, rather than remaining honest unless
corrupted by a monolithic adversary.

1.2 Communication Resources

A core issue with existing work is how communication resources are modeled in
game descriptions. In order to prevent players from signaling information or coor-
dinating their actions, available communication resources are tightly restricted.
For example, Izmalkov et al. [2] propose rational secure computation where only
those equilibria in the game description exist in the realized protocol. However,
this result comes at the cost of requiring forced actions and physical primitives
such as opaque envelopes and ballot boxes2. Although not impossible to realize,
in practice it has limited applicability.

In the ideal world model of secure multiparty computation, a protocol is viewed
as an interaction between a set of players and a universally trusted third party
(TTP). An ideal computation of a function has each player send their private in-
put to the TTP, who computes the function and returns the results to each player.
Restricting communication resources is not necessary, as players are assumed to be
mutually distrustful. Further, any collusion between players is modeled through a
monolithic adversaryA that coordinates the actions of the players it corrupts.

In order to implement arbitrary games as protocols, strict notions of privacy
preservation and the prevention of signaling and correlation must be satisfied.
Arbitrary game specifications may impose restrictions on the communication
resources available to players. Thus, the corresponding protocol implementation
must not allow players to communicate more information than is possible in
the ideal game specification. We briefly review the characteristics a model for
implementing arbitrary games must satisfy3. We make the argument that even if
a protocol satisfies all of these characteristics, it is likely to fall short of satisfying
the ideal world model: communication between players outside of the protocol
is unavoidable in real world settings. Thus, the model we present is not bound
to satisfy these restrictions, and is a more accurate representation of what is
achievable for protocols executed in the real world.

Privacy. A protocol π implementing an arbitrary game Γ must preserve both
pre-game privacy and post-game privacy in addition to preserving the equilib-
rium of Γ . The notion of pre-game privacy ensures that the private input of
each party is not revealed, as this will affect the actions of other parties. How-
ever, protocols implementing arbitrary games must also preserve the notion of
post-game privacy, where nothing beyond the intended result (and what can be
2 This result is a direct application of the GMW protocol [1].
3 The ECRYPT summary report [12] on rational cryptographic protocols provides

background on modeling techniques used to address privacy, signaling and correlated
actions.
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inferred from this) is revealed. This notion is necessary so that the equilibria of
future games are not perturbed by information revealed in previous games.

Signaling. Similar to the notions of pre- and post-game privacy are the notions
of pre-game signaling and post-game signaling. The ability to signal other players
allows protocol participants to coordinate their actions to achieve a higher payoff.
For example, consider two players A and B with inputs a and b. The payoff
function is defined as Π(Γ ) ..= a⊕ b, and described in Table 1:

Table 1. Signaling Game

A sets a = 1 A sets a = 0

B sets b = 1 (0,0) (1,1)
B sets b = 0 (1,1) (0,0)

If A or B can signal even a single bit to the other, each will receive a payoff of 1
as opposed to an expected payoff of 1

2 . Thus, similar to the restriction on privacy,
preventing pre- and post-game signaling is necessary to preserve the equilibria
of individual and future games when constructing protocols for arbitrary games.

The signaling game specification can be formulated under existing frameworks
as a protocol, and demonstrated to preserve the mixed equilibrium of the orig-
inal game. Yet by ignoring the ability of players to communicate outside of the
protocol, the protocol formulation is invalidated in real world settings: players
will collude to achieve a payoff of 1, rather than the expected payoff of 1

2 of the
original game specification.

We only consider those game specifications that allow point-to-point commu-
nication, as these channels are unavoidable in the real world. Thus, our model
correctly predicts a payoff of 1 for players in the signaling game, as point-to-point
communication channels allow signaling.

Correlated Actions. Correlated actions are similar to signaling, but allow
parties to coordinate actions without exchanging information. This is usually
accomplished through a shared value, such as a common reference string (CRS).
The parties need not distribute information, but rather rely on the shared CRS to
coordinate their actions. As with signaling, protocol constructions for arbitrary
games must prevent pre- and post-game correlation to preserve equilibria in local
as well as future games.

2 Prisoner’s Dilemma

As a classic example, we consider the Prisoner’s Dilemma4: a game between two
suspects A and B that have been accused of committing both a principal and
4 The concept was originally proposed by Flood and Dresher while working at the

RAND corporation, and is described in detail by Poundstone [13].
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lesser crime. The Authority has sufficient evidence to convict both A and B
on the lesser crime, punishable by 1 year in prison. However, there is insufficient
evidence to convict A or B on the principal crime. The Authority separates A
and B, and offers the following proposal: confess and serve no time while your
partner serves 3 years in prison. Players A and B are then subject to the following
dilemma:

1. If both A and B remain silent, they will each be convicted on the lesser crime
and serve 1 year in prison.

2. If one confesses while the other remains silent, the confessor is set free while
the other serves 3 years in prison.

3. If both A and B confess, each will serve 2 years in prison.

Table 2. Prisoner’s Dilemma Game

A Remains Silent A Confesses

B Remains Silent (-1,-1) (0,-3)
B Confesses (-3,0) (-2,-2)

From the player payoffs listed in Table 2, note that each player maximizes
their utility by confessing to the principal crime regardless of the strategy of their
partner. We use this example to illustrate the necessity of removing monolithic
adversaries, as well as how communication assumptions should be formulated
in the ideal game description. Note that the original ideal game specification
of the prisoner’s dilemma requires that the suspects A and B are physically
separated: thus unable to communicate or otherwise coordinate their actions.
However, we will construct a modified formulation in the presence of point-to-
point communication channels with an equivalent equilibrium to the original
formulation under our proposed model.

2.1 Monolithic Adversaries

Traditionally, cryptographic protocols are analyzed with respect to their re-
silience to a monolithic adversary A corrupting some subset of the players. Pro-
tocol resilience to adversarial corruption is quantified by the fraction of players
that may be corrupted before the protocol security is violated.

In the game theoretic setting of rational cryptography, this model has been
called into question by Alwen et al. [6] and Canetti et al. [11]. The goal of ratio-
nal cryptography is to model each player as bound to their local utility function,
rather than controlled by a monolithic adversary with a global utility function.
The monolithic adversary in both of their models is shattered into a set of local
adversaries unique to each player. Removing the monolithic adversary in favor of
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a set of local adversaries is critical to preserving game theoretic equilibria. In the
running example of the Prisoner’s Dilemma, consider the case where A corrupts
both A and B. As A controls both players, A and B may be forced to remain
silent and achieve payoff (−1,−1). However, consider the case where A (resp.
B) has a local adversary AA (resp. AB): as AA is bound to the utility function
μA(·) of A, AA maximizes μA(·) by confessing as in the ideal specification of the
game. An identical argument holds for AB as well. Thus, a monolithic adversary
is capable of introducing a stable collusion equilibrium that does not exist in
the ideal game specification, whereas the local adversary model preserves the
original incentive structure.

2.2 Realistic Communication Model

To prevent pre- and post-game signaling and strategy correlation, many ratio-
nal cryptographic frameworks impose strong restrictions on the communication
resources available to players. This issue is most pronounced in the multiparty
setting, where communication resources may enable collusion. To prevent com-
munication resources from perturbing the equilibria of the ideal world game,
existing constructions require forced player action and physical primitives [2],
trusted mediators and forced broadcast channels [4], as well as the cooperation
of adversarial players to deliver messages [6].

While these results provide strong guarantees under restrictive communication
resource assumptions, the security guarantees are with respect to the protocol
only. That is, assuming players may only interact through the protocol and its
communication resources, the equilibria of the ideal world game is preserved.
However, we argue that this results in a false sense of security for protocols
realized in the real world, where players typically have access to point-to-point
communication channels - undermining the strict communication assumptions
of the protocol.

Our example of the prisoner’s dilemma illustrates a salient point: the necessary
and sufficient condition for preserving the equilibrium of the original formula-
tion is the ability of A and B to privately communicate with the Authority.
The original game specification requires the two players A and B to be physi-
cally separated, and thus unable to communicate. However, the key to preserving
the equilibrium (confess, confess) of the original game Γ only requires prevent-
ing A and B from observing their interaction with the Authority. Consider
a modified game Γ̄ where all players {A, B, Authority} ∈ P have access to a
point-to-point communication resource R. As long as the communication links
RA,Authority, RB,Authority are private, the original equilibrium is preserved despite
the presence of point-to-point communication channels. In game theoretic terms,
communication between A and B through RA,B is considered cheap talk, as both
A and B will claim to play silent, yet as utility maximizing agents they choose to
confess, which strictly dominates silent. As neither A nor B can observe the mes-
sage sent by the other to Authority, the coalition is unstable and disintegrates
despite the presence of point-to-point communication channels.
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3 Our Contribution

We argue that ideal world protocols should assume that players have the ability
to communicate over point-to-point channels. As in the standard SMPC ideal
world model, players may not wish to communicate due to mutual distrust. How-
ever, the option to do so should be part of the model, as this is unavoidable in the
real world. Thus, we present a modified ideal world model capturing the pres-
ence of point-to-point communication channels between all players. Specifically,
we answer the following questions:

1. How is security formalized when all players are rational and have access to
point-to-point communication channels?

2. What benefits result from weakening the security guarantees of the standard
malicious model by considering rational players with local adversaries?

3.1 Unstable Coalitions

A powerful aspect of the rational cryptographic setting with local adversaries is
the ability to design protocols where coalitions are unstable. As each player has a
local adversary that selects their actions in order to maximize a utility function,
protocols may be designed to incentivize players to leave coalitions [14]. This
benefit of modeling each player as an independently rational agent is frequently
overlooked, and allows game equilibria to be preserved despite the presence of
point-to-point communication channels. We have illustrated the power of unsta-
ble coalitions through our example of the prisoner’s dilemma. We now consider
coalition stability in the setting of rational secret sharing, as it is the most fa-
miliar example of a rational cryptographic protocol.

Rational Secret Sharing Candidate definitions for achieving security against
rational agents should accurately model well-studied problems in rational cryp-
tography. The most familiar rational cryptographic protocol is rational secret
sharing [8, 15–19]. The goal of threshold secret sharing is to split a secret among
n parties such that any k shares are sufficient to recover the secret value, using a
scheme such as the polynomial interpolation approach proposed by Shamir [20].
Rational secret sharing, introduced by Halpern and Teague [9], is particularly
concerned with the process of recovering the secret from the shares5. As noted
by Halpern et al. [9], rational players’ utility functions are assumed to value ex-
clusivity, where preference is given to learning the output of the function while
preventing other players from doing so. Under this assumption, no party has
any incentive to distribute their share to the other parties, which destabilizes
coalition formation. The equilibrium is to wait for other players to distribute
their shares, as this is the only action that increases a player’s utility function.
5 Maleka et al. [21] consider rational secret sharing in the context of repeated games,

and Nojoumian et al. [22] consider the repeated game setting from a socio-rational
perspective where player reputation is important.
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Thus, a player that does not distribute their share has the potential to be the
exclusive player to recover the secret.

The authors demonstrate that this implies no deterministic protocol exists
where rational parties are willing to disseminate their shares to other players.
Their randomized protocol is a modified game where players are distributed a set
of shares, where only one share is correct. In each round k, players distribute their
shares which evaluate to either the secret or a default value ⊥. The solution relies
on the fact that parties are unaware whether the current round k is terminal (k∗,
allowing the secret to be recovered), or merely a “test” round k �= k∗ (where the
secret cannot be recovered, but players who do not distribute shares are caught
as cheaters). By choosing k∗ from a geometric distribution, as in Groce et al.
[18], cheating players that choose strategy σ =⊥ when k �= k∗ are caught and
the game may be terminated. Thus, players now have an incentive to distribute
their share, as playing ⊥ only yields positive utility when k = k∗.

A candidate security definition should accept this probabilistic protocol for
rational secret sharing as secure against rational agents. However, the strong
restrictions on communication channels imposed by existing work preclude the
above protocol from satisfying their security definitions, despite refinements con-
sidering the problem under standard communication models [8, 23–25]. That is,
the rational secret sharing protocol of Halpern and Teague [9] assumes players
have access to a non-rushing broadcast channel. This clearly violates the as-
sumptions of models assuming physical primitives [2], and even fails to satisfy
the weakest security definition that has been proposed: collusion-preserving com-
putation [6]. Ideally, the original rational secret sharing protocol of Halpern and
Teague should be demonstrably secure against rational agents under a general
security framework. Our framework allows point-to-point communication in the
ideal model, and thus is able to accurately model the original solution to rational
secret sharing, which we demonstrate in Section 4.

3.2 Adversarial Model

Traditionally, an adversary A is viewed as a monolithic entity with a specified
computational complexity and ability to "corrupt" players in a static or dynamic
fashion. In our model, we consider all players to have the ability to act in an
adversarial manner. Thus, rather than considering a monolithic adversary A, we
endow each player P ∈ P with a local adversary AP. The adversary is bound to
the player’s utility function μP(·) and selects actions for P in order to maximize
μP(·). Note that as we bind player actions to a local adversary seeking to max-
imize a utility function, we cannot bound the number of players that deviate
from the protocol. This is an unavoidable consequence of modeling players as
rational agents; they select strategies to maximize a local utility function and
follow the protocol only when doing so is advantageous. As cryptographic pro-
tocols typically require a number of rounds of interaction, we allow the rational
players to update their strategy based on observations throughout the game Γ .
Thus, we assume each local adversary is mobile [26], and may choose to deviate
or follow the protocol at each round in a dynamic fashion. Additionally, players
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may choose probabilistic strategies6, so we must introduce a random tape rP
for each player P. Thus, each local adversary is adaptive, mobile, probabilistic,
malicious, runs in probabilistic polynomial-time (PPT) and is presumed rational:
bound to the player’s local utility function.

Given the above definition of adversaries, the following actions are unavoid-
able:

– Refusal to Participate: Players may refuse to participate in the protocol.
Constructions satisfying our definition thus assume that it is advantageous
for players to engage in the protocol, and that this constitutes a utility
maximization strategy with respect to their local utility function.

– Input Substitution: Players may supply an input to the protocol different
from their true input.

– Premature Abort: Players may abort the protocol prior to completion.
– Collusion: Players may privately communicate over point-to-point commu-

nication channels, and collude to influence the protocol execution.

3.3 Ideal World Model

We now formalize the ideal world model, under which an ideal game specifi-
cation Γ is constructed. We assume familiarity with standard game theoretic
concepts in our exposition7. We first define the game specification of Γ under
the extensive form game representation. In the game theoretic literature, normal
form game representation is generally used for single round games where actions
are played simultaneously. As cryptographic protocols typically proceed in a se-
ries of rounds where actions are played asynchronously, we prefer extensive form
game representation, where the ideal game specification Γ is represented as a
tree. At each node in the game tree, a subset P ⊆ P of the players select and
simultaneously play an action.

Definition 1. An extensive form game Γ consists of:

1. A finite set P = {Pi}ni=1 of players.
2. A (finite) set of sequences H called the history. The empty sequence ∅ is a

member of H. We let k denote the current decision node. If (ak)k=1,...,K ∈ H
and L < K then (ak)k=1,...,L ∈ H. If an infinite sequence (ak)∞k=1 satisfies
(ak)k=1,...,L ∈ H for every positive integer L then (ak)∞k=1 ∈ H. A history
(ak)k=1,...,K ∈ H is a terminal history if it is infinite or if there is no aK+1

such that (ak)k=1,...,K+1 ∈ H. The set of actions available after the nonter-
minal history h is denoted A(h) = {a : (h, a) ∈ H} and the set of terminal
histories is denoted Z. We let Hk denote the history through round k.

6 In a game theoretic setting, such strategies are referred to as mixed.
7 For a proper introduction to the subject, Katz [27] describes the current effort to

combine game theoretic and cryptographic concepts, while Osborne et al. [28] and
Fudenberg et al. [29] give a complete introduction to game theory.
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3. A player function P that assigns to each nonterminal history (each member
of H/Z) a member of P ∪ {nature}. When P (h) = nature, then nature
determines the action taken after history h.

4. For each player Pi ∈ P a partition Ii of {h ∈ H : P (h) = i} with the
property that A(h) = A(h′) whenever h and h′ are in the same member of
the partition. For Ii ∈ Ii we denote by A(Ii) the set A(h) and by P (Ii) the
player P (h) for any h ∈ Ii. Thus, Ii is the information partition of player
i, while the set Ii ∈ Ii is an information set of player i.

5. For each player Pi ∈ P a preference relation �i on lotteries8 over Z that
can be represented as the expected value of a payoff function defined on Z.

Throughout, we replace the preference relation �i by a utility function μi :
A → R, such that μi(a) ≥ μi(b) when b �i a.

We make the following modeling choices:

– Extensive Form Games: The ideal game specification Γ is described by
a game tree in extensive form representation.

– Imperfect Information: A game specification is said to have imperfect
information if players may have non-singleton information sets Ii ∈ Ii. That
is, at a given round in the game, players may be unaware of the move selected
by the previous player(s). Thus, their information set may contain more than
one node in the game tree at any given round.

– Local Simulators: Each player Pi ∈ P in the ideal model has a local sim-
ulator Si that forces P to play those actions that maximize μi(·), the utility
function of player Pi. Each simulator Si has an associated adversary Ai in
the real world execution model, denoted Si = Sim(Ai).

– Point-to-Point Communication Resources: Each player pair
(Pi, Pj)i�=j ∈ P has a secure point-to-point communication resource
Rij .

As we consider all players to be rational agents, we model the ideal world
protocol as a game specification Γ that aims to achieve an equilibrium. The
ideal game specification is an interaction between a set of n players P = {Pi}ni=1,
their local utility functions μ = {μi}ni=1 and action sets Ai, which contains those
actions playable by player Pi. Frequently, a deterministic choice of an action
a ∈ Ai will not yield a Nash equilibrium. Thus, we allow players to choose a
strategy σi: a probability distribution over Ai. The standard equilibrium concept
in the rational cryptographic literature is a computational Nash equilibrium
[24, 25, 30–32], given by Definition 2.

Definition 2. A computational Nash equilibrium of a two-party extensive-
form game Γ is an independent strategy profile σ∗ = {σ∗

i }ni=1, such that

1. ∀σ∗
i ∈ σ∗, σ∗

i is PPT computable.

8 Even if all actions are deterministic, moves by nature can induce a probability dis-
tribution over the set of terminal histories.
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2. for each player Pi, any other PPT computable strategy σ′
i �= σ∗

i , we have
μi(σ

′
i,σ

∗
−i) ≤ μi(σ

∗) + negl(λ)

where σ−i
def
= (σj)j∈[1...n]/{i}.

Intuitively, no player Pi has an incentive to deviate from strategy σi given
that every other player Pj selects their equilibrium strategy σj . The definition
of a computational Nash equilibria adds a negligible term negl(λ) with respect
to a security parameter λ. This is necessary in the computational setting, as
security rests on the premise that breaking cryptographic primitives occurs with
only negligible probability. Thus, this notion must be incorporated into the equi-
librium definition. Although computational Nash equilibria are the weakest of
the equilibrium concepts described in the rational cryptographic literature, pre-
serving only computational Nash equilibria in our framework is sufficient for
extensions to more powerful equilibrium concepts.

The standard ideal world model has players interact with an incorruptible
trusted third party (TTP) that accepts player inputs, computes the ideal func-
tionality f , and distributes the output to players. In the setting of rational
cryptography, we will consider a Mediator that enforces the ideal game specifi-
cation.

Input Distribution: Each player Pi ∈ P receives its input xi, random coins
ri and auxiliary inputa zi. Each player has the option of
inputting a different input x̄i �= xi, as this is unavoidable.

Game Execution: The Mediator allows the subset of players P ⊆ P specified
at each node of the game specification Γ to simultaneously
play their actions. Note that games where only a single
player moves at each node (asynchronous play) are fully
supported, as this is modeled by setting the subset P =
{Pi}.

Payoff Assignment: If the current node k is terminal (i.e. k ∈ Z), then Mediator
distributes the payoffs associated with k to all players Pi ∈
P .

a An auxiliary input is provided to all players to model additional information available
to them [33].

Protocol 3.1. Ideal World Game Execution

Definition 3. Let Γ represent the ideal game specification in extensive form
representation, R a point-to-point communication resource available between all
pairs of players in P, S the set of local simulators, μ the set of player utility
functions and z any auxiliary information provided to a player. We denote by x̄
the set of inputs for players (which may differ from the set of their true inputs x)
and by r the random coins provided to a player. We then define the ith output of
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an ideal world execution for players P in the presence of local simulators
S as: {

IDEAL
(i∈[1...n])
Γ,R,P,S,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

� {σ∗, I}

where σ∗ is the equilibrium in the ideal game specification Γ , S = {Si}i∈[1...n]

is the set of simulators such that Si = Sim(Ai), I is the information partition
set for P, |x̄i| = |x̄j |∀i �= j and |z| = poly(|x̄i|).

This ideal world model necessarily limits the class of games that may be re-
alized, as any game specification that disallows point-to-point communication
channels between all parties cannot be modeled in the presence of R. However,
we will demonstrate that a broad class of games that initially appear inadmis-
sible under our model are realizable through minor modifications to the game
specification, and which preserve the equilibria of the original game.

3.4 Real World Model

We now introduce the real world model protocolΠ that implements the ideal game
specification Γ . In order to translate ideal game specifications into realizable pro-
tocols, we assume the existence of a public key infrastructure (PKI) in the real
world model. That is, we must translate the ideal world point-to-point communi-
cation resourceR into an implementation allowing point-to-point private commu-
nication between all players Pi, Pj ∈ P during the execution of Π . We denote the
real world PKI communication resource by C, where ∀(Pi, Pj)i�=j ∈ P , ∃Cij ∈ C.

In the real world execution, each player Pi has an associated local adversary
Ai, rather than a simulator Si as in the ideal world game. The local adversary
Ai selects the actions of Pi to maximize the player’s local utility function μi.
Similarly, in the real world execution there is no Mediator, as the goal is to
remove reliance on trusted third parties.

Input Distribution: Each player Pi ∈ P receives its input xi, random coins ri and
auxiliary input zi. Each player has the option of inputting
a different input x̄i �= xi, as this is unavoidable.

Protocol Execution: The execution of Π proceeds in a series of rounds, where at
each round a subset of players P ⊆ P specified at each node
play their actions. Each player pair (Pi, Pj)i�=j ∈ P is con-
nected by a private authenticated point-to-point communi-
cation channel Cij , and may exchange messages throughout
the protocol execution.

Payoff Assignment: If the current node k is terminal (i.e. k ∈ Z), then each
player Pi ∈ P receives its associated payoff.

Protocol 3.2. Real World Protocol Execution
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Definition 4. Let Π represent the real world protocol implementing Π, C a
point-to-point authenticated and private PKI communication resource available
between all pairs of players in P, A the set of local adversaries, μ the set of player
utility functions and z any auxiliary information provided to a player. We denote
by x̄ the set of inputs for players (which may differ from the set of their true
inputs x) and by r the random coins provided to a player. We then define the
ith output of a real world execution for players P in the presence of local
adversaries A as:{

REAL
(i∈[1...n])
Π,C,P,A,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

� {σ∗, I}

where σ∗ is the equilibrium in the real world protocol Π, I is the information
partition set for P, |x̄i| = |x̄j |∀i �= j and |z| = poly(|x̄i|).

3.5 Establishing the Security of Realized Protocols

The security of protocols is established by demonstrating that the real and ideal
world distribution ensembles are computationally indistinguishable9. This guar-
antees that any attack available to an adversary A in the real model is also
available to a simulator S in the ideal model.

Definition 5. (Security against Rational Adversaries) Let Γ be an n-player
ideal game specification and Π be an n-party real world protocol. We say that
Π securely realizes Γ if there exists a set {Simi}i∈[1...n] of PPT transforma-
tions admissible in the ideal model such that for all PPT rational adversaries
A = {Ai}i∈[1...n] admissible in the real model, for all x ∈ ({0, 1}∗)n and z ∈
({0, 1}∗)n, and for all i ∈ [1 . . . n],

{
IDEAL

(i∈[1...n])
Γ,R,P,S,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

c≡
{
REAL

(i∈[1...n])
Π,C,P,A,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

where S = {Si}i∈[1...n] is the set of simulators such that Si = Sim(Ai), I is the
information partition set for P and r is chosen uniformly at random.

Thus, to establish the security of a realized protocol Π , we must construct a
simulator Si for all players Pi ∈ P such that for all probabilistic polynomial-time
distinguishers D, the distributions of S in the ideal world and A in the real world
can only be differentiated with probability negligibly greater than 1

2 .

4 Demonstrating the Model on Rational Secret Sharing

To illustrate the power of our model, we return to the example of rational secret
sharing. We demonstrate that, despite the presence of point-to-point communi-
cation channels, the original game specification is admissible in our ideal world
9 That is, any probabilistic polynomial-time (PPT) distinguisher D cannot distinguish

between an execution of Γ in the ideal world model and an execution of Π in the
real world model with probability non-negligibly greater than 1

2
.
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model, and realizable in the real world model. This violates the assumptions
of existing security frameworks, which disallow point-to-point communication
either within the protocol execution, outside of the protocol execution, or both.

4.1 Ideal World Game Specification

The ideal world game Γ is an interaction between a set of playersP = {Pi}i∈[1...n],
where Pi has access to a point-to-point communication resource RPi,Pj∀j �= i.
That is, Pi may privately communicate with any other player Pj . We now demon-
strate that Γ is admissible in our ideal world definition.

Input Distribution: Each player Pi ∈ P receives its input share xi, random coins
ri and auxiliary input zi. Each player has the option of
inputting a different share x̄i �= xi or aborting the protocol
at any time, as this is unavoidable.

"Cheap Talk": Player Pi is free to collaborate with all players Pj ∈ P̂ over
RPi,Pj , where P̂ is the set of colluding players. Proposition
1 demonstrates that communication over R is considered
"cheap talk" (it does not affect the strategy selection of the
player), and that the local simulator Si for each player will
select ai = reveal, as this maximizes μi.

Game Execution: The Mediator instructs Pi,∀i ∈ n to play their action ai at
each round k, where ai ∈ {silenta, reveal}.

Payoff Assignment: At the terminal round k∗ where the shares yield the secret,
Mediator distributes the payoffs to Pi ∈ P .

a Note that selecting ai = silent is equivalent to aborting.

Protocol 4.1. Ideal World Game Γ Execution

Let Γ be the ideal game specification for rational secret sharing, with player
set P = {Pi}i∈[1...n] and associated set of local simulators S = {Si}i∈[1...n] that
select actions for players to maximize their local utility functions, resource set
R = {RPi,Pj}∀i,i�=j, and all players Pi ∈ P have utility functions defined as

μi(σi) �→
⎧
⎨
⎩

(μ++)(p) : σi = silent, k = k∗

(μ−)(1 − p) : σi = silent, k �= k∗

(μ+) : σi = reveal
(1)

where μ+ represents positive utility, μ− represents negative utility, and μ++ >
μ+ as players value exclusivity.

Proposition 1. For all players Pi ∈ P in Γ with utility function defined as
μi(σi) in Equation 1, strategy {σ∗

Pi = reveal}∀i∈n > {σPi = silent}∀i∈n when
p < μ+

μ++ .
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Proof. In the original rational secret sharing protocol, the strategy σ∗ = {σ∗
Pi =

reveal}∀i∈n is the only Nash equilibrium, as the true final round k∗ (where com-
bining shares reveals the shared secret) is chosen from a geometric distribution.
As the probability of correctly guessing the final round k∗ is the parameter p,
the expected utility for σPi = silent is at most (μ++)(p). We set μ++ > μ+, as
players are assumed to value exclusivity (recovering the secret while preventing
other players from doing so). If a player remains silent in any round k < k∗,
they are caught by the other players as a cheater and excluded from future
rounds (receiving negative utility μ−). By choosing p such that p < μ+

μ++ , we
have (μ++)(p) < μ+ which implies μPi(silent) < μPi(reveal). Thus revealing the
share for each round strictly dominates remaining silent. Players in our ideal
model Γ may communicate over R and attempt to convince other players that
they will select silent. This provides a greater degree of exclusivity, as only those
colluding players in P̂ ⊆ P will recover the secret. However, this communication
is considered cheap talk, as each player maximizes μi by selecting σi = silent
regardless of the messages sent over R when p < μ+

μ++ .

4.2 Real World Protocol Construction

We now translate the ideal game specification Γ to a real world protocol Π , and
demonstrate that there exist simulators such that the distribution of the ideal
world game is computationally indistinguishable from the distribution of the real
world protocol execution.

Input Distribution: Each player Pi ∈ P receives its input share xi, random coins
ri and auxiliary input zi. Each player has the option of
inputting a different share x̄i �= xi or aborting the protocol
at any time, as this is unavoidable.

"Cheap Talk": Player Pi is free to collaborate with all players Pj ∈ P̂ over
CPi,Pj , where P̂ is the set of colluding players. Proposition
1 demonstrates that communication over C is considered
"cheap talk" (it does not affect the strategy selection of
the player), and that the local adversary Ai for each player
selects ai = reveal, as this maximizes μi.

Game Execution: Each player Pi ∈ P selects and plays their action ai at each
round k, where ai ∈ {silenta, reveal}.

Payoff Assignment: At the terminal round k∗ where the shares yield the secret,
each player Pi ∈ P receives its associated payoff.

a Note that selecting ai = silent is equivalent to aborting.

Protocol 4.2. Real World Protocol Π Execution

In the real world model, the communication resource R is replaced with a
public key infrastructure C. Each pair of players (Pi, Pj) ∈ P has access to a
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private and authenticated point-to-point communication channel Cij . Let Π be
a real world protocol, with player set P = {Pi}i∈[1...n] and associated set of local
adversaries A = {Ai}i∈[1...n] that select actions for players to maximize their
local utility functions, communication channel set C = {Cij}∀i�=j , and all players
have identical utility functions defined as in Equation 1.

Clearly Π is admissible under the real world model, as the PKI infrastructure
C facilitates the point-to-point communication channels between all players. The
real world protocol Π for rational secret sharing proceeds as in Protocol 4.2.
Again, the original equilibrium of σ∗ = {σPi = reveal} is preserved despite the
presence of the communication channel C.

4.3 Demonstrating Protocol Π Security

We use the simulation paradigm [33] to demonstrate the security of the construc-
tion by proving the distribution of the real world protocol is computationally
indistinguishable from the ideal world distribution.

Theorem 1. (Security of Π against Rational Adversaries) Let Γ be the n-party
ideal world game specification of Protocol 4.1 and let Π be the n-party real world
execution of Protocol 4.2. There exists a set {Simi}i∈[1...n] of PPT transfor-
mations admissible in the ideal model such that for all PPT rational adver-
saries A = {Ai}i∈[1...n] admissible in the real model, for all x ∈ ({0, 1}∗)n and
z ∈ ({0, 1}∗)n, and for all i ∈ [1 . . . n],

{
IDEAL

(i∈[1...n])
Γ,R,P,S,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

c≡
{
REAL

(i∈[1...n])
Π,C,P,A,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

establishing that Π securely realizes Γ .

Proof. To prove the security of Π against rational adversaries A = {Ai}i∈[1...n]

we must construct a set of simulators S = {Si}i∈[1...n] whose output in the ideal
game specification Γ is indistinguishable from the output of A in the real world
execution.

To achieve this, we construct simulators Si = Sim(Ai) that simulate all mes-
sages and the output of Ai in the real world execution of Π , and is thus able to
return these as its own. The simulated messages and output returned by Si must
be computationally indistinguishable such that, for all probabilistic polynomial-
time distinguishers D, the probability of differentiating the ideal world and real
world distributions is at most negligibly greater than 1

2 .
Each simulator Si will rely on the private communication resource R to simu-

late the messages exchanged and final output produced by Ai acting to maximize
the utility function μi for player Pi. The simulator Si given in Construction 4.1
holds for all players P = {Pi}i∈[1...n].

The construction relies on the computational indistinguishability of the real
world communication channel C from the ideal world private and authenticated
communication resource R. All messages sent by simulators Si ∈ S in the ideal
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worldmodel are passed overR. In the realworld execution,messages are encrypted
between players using the PKI communication resource C. Thus, all probabilistic
polynomial-timedistinguishersD are able to distinguish the view of the ideal world
execution from the real world execution with at most probability negligibly greater
than 1

2 by the security of the PKI communication resource C.

Input Distribution: The simulator Si ∈ S is given input share xi, random coins
ri and auxiliary input zi

"Cheap Talk": The simulator Si is free to communicate over RSi,Sj where
i �= j. Si,∀i �= j must simulate the "cheap talk" between
the other player’s adversary Aj . Si uses its random coins
ri to construct a random message m, and sends m over
resource RSi,Sj . By definition, R is a private and authen-
ticated point-to-point communication resource. Thus, the
messages sent by the simulator are computationally indistin-
guishable from those sent in the real world execution, which
are encrypted under the public key infrastructure commu-
nication resource C. The local simulator Si for each player
selects mi = reveal, as this maximizes μi regardless of the
messages exchanged during this phase.

Game Execution: The simulator Si sends a message m to Sj ,∀j �= i over
RSi,Sj with their decision, where m ∈ {silent, reveal}. By
definition, R is a private and authenticated point-to-point
communication resource. Thus, the messages sent by the
simulator to Sj are computationally indistinguishable from
those sent in the real world execution, which are encrypted
under the public key infrastructure communication resource
C.

Payoff Assignment: After Pj ∈ P ,∀j �= i has received mSi , each simulator re-
ceives the payoff associated with the outcome.

Construction 4.1. Construction of Simulator Si

5 Conclusion

In this work, we have proposed a security definition capturing rational cryp-
tographic protocols in the presence of standard point-to-point communication
resources. Rather than limit the communication resources available to players, we
answer the question of how game specifications admissible in an ideal model al-
lowing point-to-point communication channels may be realized in practice. Thus,
the ideal world model necessarily limits the class of games that are admissible
and is not a general result. However, we have argued that point-to-point com-
munication channels are unavoidable in real-world settings, and consequently
must be incorporated into the definition of security. Further, we have demon-
strated that not all game specifications forbidding point-to-point communication
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are inadmissible under our model. We presented the transformation for the clas-
sic prisoner’s dilemma, which disallows point-to-point communication through
physical assumptions, into a modified game that is admissible under our model
and preserves the original equilibrium. Similarly, we have demonstrated that the
signaling game has an expected payoff of 1 when executed in the presence of
point-to-point channels, rather than an expected payoff of 1

2 : a distinction not
captured by models that disallow communication outside of the protocol execu-
tion. Finally, we have presented a full security proof for rational secret sharing
under our proposed framework. Although our results are not universal, we have
demonstrated a powerful benefit of our model: assigning local adversaries may
aid mechanism design in destabilizing the formation of coalitions. Thus, there are
tangible benefits from adopting our definition of security against local rational
adversaries in the presence of point-to-point communication resources.
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