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Abstract. Security is often investigated in terms of a single goal (e.g.,
confidentiality), but in practical settings mostly a compound property
comprising multiple and often interdependent aspects. Security strate-
gies are behavior profiles that guarantee some performance regardless
of how the adversary really behaves (provided that it stays within its
action set). While security strategies towards a single goal are easy to
compute via Nash-equilibria (or refinements thereof), playing safe to-
wards multiple security goals induces the notion of Pareto-optimal secu-
rity strategies. These were recently characterized via Nash-equilibria of
multi-player games, for which solution algorithms are intricate and may
fail for small instances already. Iterative techniques, however, exhibited
good stability even for large games. In this work, we thus report on
theoretical and practical results how security strategies for multiple (in-
terdependent) goals can be computed via a set of simple transformations
and a final application of humble fictitious play.

Keywords: Pareto-optimality, security strategies, game theory, equilib-
rium, fictitious play, security.

1 Introduction

Security strategies have been introduced in [18], as a mean of optimizing behav-
ior under uncertainty of the opponent. That is, a security strategy gives the best
payoff for player 1 under arbitrary, especially not equilibrium, behavior of player
2 in a two-person game. This models situations in which only the opponent’s
action space is known, but the player remains uncertain about the other’s payoff
structure(s). Information security is a natural incarnation of this, as we seek the
optimal defense against arbitrary actions of an adversary, whose possible actions
are known, but nothing about its particular behavior can be assumed reasonably.
Treating a single security goal in that sense yields scalar two-person games in
the style “honest-vs-adversary”. However, most practical settings require simul-
taneous defense strategies against various different threats, such as violations
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of confidentiality, integrity, availability and authenticity (CIA+ security). Secu-
rity strategies accounting for simultaneously optimal payoffs in various perhaps
strongly interdependent goals have not been studied very extensively so far, and
are subject of this work.

Security strategies in the scalar case, i.e., when only a single security goal
is of interest, are easily identified as Nash-equilibria of zero-sum games. In a
multi-dimensional case, i.e., for security in multiple possibly interdependent as-
pects, Pareto-optimal security strategies are sought. Applications of these are
manifold, e.g., creating high-security communication lines that are confidential,
robust and authentic, can be achieved by multipath-transmission and multipath-
authentication, which in turn leads to straightforward game-models (an example
is given in section 6.2).

Searching for security strategies is interesting from a theoretical and practical
point of view, as it can provide quantitative risk estimates. For example, setting
up a transmission channel between to peers by virtue of multipath transmis-
sion, the game can be defined with the sender acting as player 1, who chooses
the transmission configuration (in particular the paths over which information is
conveyed). Player two is the adversary, who chooses nodes to attack. The game’s
payoff function is the fraction of correctly delivered messages, where “correctly”
here covers confidentiality and integrity (at least). Given a particular network
infrastructure (topology), what is the likelihood of achieving the two security
goals upon a single transmission? The answer lets the sender utilize the network
in a proper way so as to minimize the risk of security breaches, and can be used
to enhance the network infrastructure (by additional protections at the most
likely targets for the opponent (adversary) in the network infrastructure). So,
the practical aspect of game-theory in network security is related to topologi-
cal vulnerability analysis, where the competition between the (honest) network
users and the adversary points out best practices to use the network, as well
as neuralgic spots being indicated as the most likely attack strategies for the
adversary (opponent player 2). We revisit this use case later.

Our focus here is, however, not on game-theoretic models of applied cryp-
tography, but rather on covering a numerical problem in the computation of
Pareto-optimal security strategies. These can be computed to support or en-
hance processes of topological vulnerability analysis and quantitative risk man-
agement. Especially the latter may call for efficient updates following changes
(enhancements) to the system. Therefore, the efficiency of computing security
strategies may be of interest besides its theoretical value.

In fact, relying on the characterization as obtained in prior literature (and
cited below), “standard” algorithms to compute Nash-equilibria may be ap-
plied. Unfortunately, however, the whole armory of algorithms that ships with
the Gambit software [10], rapidly failed to compute the sought results even for
small examples (numerical instabilities occurred already in example instances
with, e.g., three goals and eight strategies per player). On the bright side, ficti-
tious play exhibited good numerical stability (though slow convergence) and has
been proven capable of computing the sought security strategies even for large
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games like those arising in our example application of security risk assessment
of multipath communication channels.

2 Preliminaries

Throughout this work, normal font denotes scalars and bold face font denotes
vectors. Sets are written in upper-case latin letters like N . The cardinality of a
set N is denoted by |N |.

A game is a triple Γ = (N,S,H), where N is the – in our case always finite
– set of n = |N | players, S = {PS1, . . . , PSn} contains the individual action
sets for each player, and H = {u1, . . . , un} is the family of payoff functions
ui :

∏n
i=1 PSi→R for each i ∈ N .

As a standard shorthand notation, we write PS−i for the cartesian product
of all PSj ∈ S, excluding PSi. The vector (s1, . . . , si−1, si+1, . . . , sn) ∈ PS−i is
abbreviated as s−i.

Hereafter, we write s for pure strategies, but mostly consider mixed strate-
gies, i.e., probability distributions over the action sets. For simplicity, we thus
denote Si as the set of all probability distributions supported on a set PSi of ac-
tions, also called pure strategies. This is the set of mixed strategies. Such mixed
strategies and general probability distributions are denoted by lowercase Greek
letters, e.g., θ, φ ∈ Si. We will hereafter drop the attribute “mixed”, as we will
not explicitly talk about pure strategies any more (and because pure strategies
arise via degenerate mixed strategies anyway). Random variables are denoted
by uppercase letters like X ; their distribution θ is told by the symbol X ∼ θ.

A Nash-equilibrium in an n-person game is a set of strategies (θ∗1 , . . . , θ
∗
n) so

that all players i ∈ N receive for all θi ∈ Si an expected payoff
E(θ∗

i ,θ
∗
−i)

ui(Xi, X−i) ≥ E(θi,θ∗
−i)

ui(Xi, X−i), where the expectation is taken over
the probability distributions noted in the subscripts of the expectation operator.
By a slight abuse of notation for the sake of simplicity, we let ui(θi, φi) also
denote the long-run average payoff (over an infinite number of repetitions of
the game1), as we will exclusively speak about expected payoffs in in the con-
text of mixed strategies. In that notation, the Nash-equilibrium condition in a
two-person zero-sum game (expected payoff functions being u1 and −u1) can
compactly be written as

u1(θ, φ
∗) ≤ u1(θ

∗, φ∗) ≤ u1(θ
∗, φ) ∀θ ∈ S1, φ ∈ S2, (1)

where the pair (θ∗, φ∗) denotes the equilibrium, and we call v = u1(θ
∗, φ∗) its

(saddle-point) value.

1 Even if the game cannot be repeated, then using indicator variables for the payoffs
turns the expected payoffs into probabilities. In this setting, the Nash-equilibrium
is the likelihood to win (or loose) in a single round of the game, thus making the
concept applicable even if the game is not repeatable.
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3 Security Strategies

Towards an axiomatic characterization of security strategies in general games
(finite or infinite), captured as definition 1, we take known results in the scalar
case as the template for upcoming definitions.

3.1 The Scalar Case

The following is a well-known fact (cf. [2] among others).

Lemma 1. Let Γ = (N,S,H = {u1, u2}) be a two-person game with continuous
payoff functions. Define the zero-sum game Γ0 = (N,S,H0 = {u1,−u1}), with
Nash-equilibrium v = u1(θ

∗, φ∗). Then, player 1 always receives u1(θ
∗, φ) ≥ v in

Γ , no matter how player 2 actually behaves. Moreover, there is a strategy φ′ ∈ S2

so that u1(θ
∗, φ′) = v in Γ .

The lower bound provided by the zero-sum equilibrium value is easily obtained
by observing that player 2 due to a perhaps different payoff structure in Γ most
likely deviates from the optimal zero-sum strategy φ∗ in Γ , thus leaving player
1 with more than the zero-sum equilibrium payoff v. The existence of a strategy
φ′ achieving equality directly follows from the continuity of the payoff functions.

The ordering of R that lets us define the equilibrium condition is lost upon
the transition to Rk for k > 1. This unfortunate fact renders the proof of lemma
1 non-transferable to Rk, and calls for more sophisticated concepts.

3.2 The Multi-criteria Case

A multi-objective game (MOG) has vector-valued payoffs. That is, the i-th player
receives ri different payoffs, denoted by the function ui :

∏n
i=1 PSi→Rri ,

(si, s−i) �→ (u
(1)
i (si, s−i), . . . , u

(ri)
i (si, s−i)). For two vectors a = (a1, . . . , ak),

b = (b1, . . . , bk) ∈ Rk, we write a ≤ b, if ai ≤ bi for all i = 1, 2, . . . , k. The
complement relation is a >1 b and holds iff an index 1 ≤ j ≤ k exists such
that aj > bj , no matter what the other components do. The vector-relations
≥, <1,≤1 and ≥1 are defined accordingly.

The sibling of Nash-equilibrium in the scalar case is the Pareto-Nash equilib-
rium in the multivariate case: here, we require the inequalities in (1) to fail in at
least one component upon a deviation from the optimum. That is, an n-player
MOG Γ = (N,S,H) admits a Pareto-Nash equilibrium (θ∗1 , . . . , θ

∗
n) if for every

player i ∈ N , we have ui(θi, θ
∗
−i) ≤1 ui(θ

∗
i , θ

∗
−i) for every θi. For two players, the

resulting pair of inequalities resembles the equilibrium condition (1) by requiring
that optimality fails in at least one goal by any deviation from the Pareto-Nash
strategy profile (θ∗i , θ

∗
−i).

In [13], a precursor definition towards an axiomatic characterization of network
provisioning security strategies is given. We adapt this construction into our
definition 1 here that is not confined to problems of secure data delivery.
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Definition 1. A strategy θ∗ ∈ S1 in a two-person multi-criteria game Γ with
continuous payoff u1 : S1 × S2 →Rk for player 1, is called a multi-criteria
security strategy (MCSS) with assurance vector v = (v1, . . . , vk), if the following
two conditions hold:

1. The assurances are the component-wise guaranteed payoff for player 1, i.e.
for all components i, we have

vi ≤ u
(i)
1 (θ∗, φ) ∀φ ∈ S2, (2)

with equality being achieved by at least one choice φi ∈ S2.
2. At least one assurance becomes void if player 1 deviates from x∗ by playing

θ 	= θ∗. In that case, some φ ∈ S2 exists such that

u1(θ, φ) ≤1 v. (3)

Observe that the above definition transforms the assertions of lemma 1 in the
scalar case into axioms in the multi-dimensional case. The existence of multi-
dimensional security strategies has been studied in the literature, where the
following characterization was established:

Theorem 1 ([13]). Let Γ be a two-player MOG. The distribution θ∗ consti-
tutes a multi-criteria security strategy (MCSS) v for player 1 and k goals in the
game Γ , if and only if it is a Pareto-Nash equilibrium strategy for player 0 in
the following (k+1)-player multi-objective auxiliary game Γ = (N,S,H), where:
N = {0, 1, . . . , k} , S = {PS1, PS2, . . . , PS2} (i.e. a multiset with |S| = k + 1)

and the payoffs are u0(s0, . . . , sk) := (u
(1)
1 (s0, s1), . . . , u

(k)
1 (s0, sk)) for player 0

(vector-valued), and ui(s0, . . . , sk) := −u
(i)
1 (s0, si) (scalar-valued) for the oppo-

nents i = 1, 2, . . . , k.

From theorem 1, the existence of security strategies is not immediately evident,
but can be concluded from results of [9] concerning the existence of Pareto-Nash
equilibria in multiobjective games (MOG).

Theorem 2 ([9]). Let Γ = (N,S,H) be a MOG, where each PSi ∈ S is convex
and compact, and each ui ∈ H is continuous. Moreover, assume that for each

player i ∈ N , every individual payoff u
(j)
i (si, s−i) for 1 ≤ j ≤ ri is a concave

function of si on PSi, whenever the remaining values s−i are fixed. Then, Γ has
a Pareto-Nash equilibrium.

From this we easily obtain the existence of MCSS under various conditions.
For example, every finite game admits multi-criteria security strategies, which
re-proves a known result of [1] by a humble application of theorems 1 and 2:

Corollary 1 (Existence of MCSS in matrix games). Every finite MOG
admits a multi-criteria security strategy.

We will not go into further details about existence of MCSS, beyond stressing the
fact that definition 1 is not limited to finite games or games with a finite number
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of players. In that sense, the characterization theorem 1 can be obtained with
alternative results to theorem 2 to establish the existence of MCSS for various
other classes of games.

For simplicity, e.g. security risk management in multipath communication
networks, we can work with corollary 1 to handle the arising matrix-games.

The proof of theorem 2 is “constructive” in the sense of equating the set of
Pareto-Nash equilibria to the set of Nash-equilibria in a scalarized version of
the MOG. Specifically, [9] prescribe the following steps to find a Pareto-Nash
equilibrium in the n-player MOG Γ :

1. Fix an arbitrary set of real numbers α11, α12, . . . , α1r1 , α21, . . . , α2r2 , . . . , αn1,
. . . , αnrn that satisfy condition (4):

∑ri
κ=1 αiκ = 1 for i = 1, 2, . . . , n, and

αiκ > 0 for κ = 1, 2, . . . , ri and i = 1, 2, . . . , n.

}

(4)

2. Form a (scalar) game Γs = (N,S,H ′) with H ′ = {f1, . . . , fn} and

fi =

ri∑

κ=1

αiκu
(κ)
i . (5)

3. Find a Nash-equilibrium θ∗ = (x∗
1, . . . , x

∗
n) in Γs, which is then a Pareto-Nash

equilibrium in Γ .

Notice that the Nash-equilibria found by the above algorithm depend on the
particular choice of weights. Indeed, the full set of equilibria is given as the
union of all equilibria over all admissible choices of α’s in (4) [9].

4 Numerical Computation of MCSS

Although there exist sophisticated algorithms and implementations to compute
Nash-equilibria in multi-person games, an experimental implementation of our
transformation using the Gambit software [10] showed that these algorithms
fail on games with many players and strategies. It therefore appears advisable to
prefer iterative numeric techniques over analytic ones for practical settings, in
which we can expect a large number of strategies and security goals, the latter
of which correspond to players. Our method of choice is fictitious play.

4.1 Fictitious Play in Multi-criteria Compound Games

Briefly speaking, fictitious play is the process of repeatedly playing the game
while every player notes and learns the other player’s moves, while at the same
time optimizing his/her own behavior based on the so-far recorded behavior
profiles. More concretely, let t ∈ N be the sequence of discrete time steps. Player
i moves along a sequence of actions (si(t))t∈N ∈ PSi and maintains beliefs for
each opponent j 	= i that are discrete probability distributions for each t ∈ N of
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the form
(
βi(t) =

1
t

∑t
τ=1 δi(τ)

)k

i=1
. Here, δi is the Dirac probability distribution

that assigns unit mass to action si (by this convention PSi is included in Si as
extremal points). Player i’s next move at time t+1 is then the optimal response to
its recorded opponent behavior profile (β1

i (t), . . . , β
i−1
i , βi+1

i , . . . , βn
i (t)) at time

t. We say that a game has the fictitious play property, if this process approaches
an equilibrium θ∗ in the sense that for every ε > 0 there is some t0 such that for
every t ≥ t0, we have

∥
∥(β1

i (t), . . . , β
n
1 (t))− θ∗

∥
∥ < ε in some norm. See [17] for a

more comprehensive account.

4.2 Computing MCSS by Fictitious Play

In the terminology of [17], the auxiliary game Γ is a “one-against-all” multi-
player game or compound game, which can be solved iteratively by fictitious play
if it were zero-sum. Although theorem 1 specifies Γ not as zero-sum, this can be
fixed easily without changing the set of equilibria. Indeed, it is the scalarization
(5) that will become helpful in a twofold manner, as it lets us apply standard
fictitious play and it lets us prioritize our security goals.

Given a two-player MOG Γ and its auxiliary game Γ , we prepare the latter
for fictitious play by making it zero-sum before the necessary scalarization. To
this end, recall that player 1 in Γ , who is player 0 in Γ , has k goals to optimize,
each of which is represented as another opponent in the auxiliary game Γ . We
define the payoffs in a compound game (“one-against-all”) from the payoffs in Γ ,
while making the scalar payoffs vector-valued to achieve the zero-sum property:

– player 0:

u0 : PS1 ×
k∏

i=1

PS2 →Rk,

u0(s0, . . . , sk) = (u
(1)
1 (s0, s1), u

(2)
1 (s0, s2), . . . , u

(k)
1 (s0, sk))

– i-th opponent for i = 1, 2, . . . , k:

ui = (0, 0, . . . , 0,−u
(i)
1 , 0, . . . , 0). (6)

Obviously, the “vectorization” of the opponents payoffs does not affect any equi-
librium conditions, so the so-modified game comes with the same set of equilibria
as Γ . To numerically compute (one of) them, we scalarize as follows: to each of
player 0’s k goals, we assign a weight α01, . . . , α0k. The scalarization in (5) is via

αji := α0i for i = 1, 2, . . . , k and j = 1, 2, . . . , k.

With these weights, the payoffs in the scalarized compound game are:

– for player 0: f0 = α01u1 + α02u2 + · · ·+ α0kuk,
– for the i-th opponent, where i = 1, 2, . . . , k

fi = α01 · 0 + α02 · 0 + · · ·+ α0,i−1 · 0 + α0i · (−u
(i)
1 ) + α0,i+1 · 0 + α0k · 0

= −α0i · u(i)
1 (7)
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Concluding the transformation, we obtain a scalar compound game

Γ sc = ({0, 1, . . . , k} , {PS1, PS2, . . . , PS2︸ ︷︷ ︸
k times

}, {f0, . . . , fk}) (8)

from the original two-person MOG Γ with payoffs u
(1)
1 , . . . , u

(k)
1 that can directly

be be plugged into expressions (6) and (7).
Towards a numerical computation of equilibria in Γ sc, we need yet another

transformation due to [17]: for the moment, let us consider a general compound
game Γc as a collection of k two-person games Γ1, . . . , Γk, each of which is played
independently between player 0 and one of its k opponents. With Γc, we associate
a two-person game Γcr that we call the reduced game. The strategy sets and
payoffs of player 0 in Γcr are the same as in Γc. Player 2’s payoff in the reduced
game is given as the sum of payoffs of all opponents of player 0 in the compound
game.

Lemma 2 ([17]). A fictitious play process approaches equilibrium in a com-
pound game Γc, if and only if it approaches equilibrium in its reduced game Γcr.

So, it suffices to consider the reduced game Γ scr belonging to Γ sc. It is a
trivial matter to verify the following fact (by substitution).

Lemma 3. The reduced game Γ scr of the scalarized compound game Γ sc defined
by (8) is zero-sum.

So by the famous result of [15] on the convergence of fictitious play in two-person
zero-sum games, we obtain the following final result:

Theorem 3. The scalarized compound game Γ sc defined by (8) has the fictitious
play property.

Theorem 3 induces the following procedure to compute multi-criteria security
strategies according to definition 1:

Algorithm to compute MCSS: Given a two-player MOG Γ with k payoffs

u
(1)
1 , . . . , u

(k)
1 for player 1 (and possibly unknown payoffs for player 2), we obtain

a MCSS along the following steps:

1. Assign strictly positive weights α01, . . . , α0k, satisfying
∑k

i=1 α0i = 1, to each
goal, and set up the scalarized auxiliary compound game Γ sc by virtue of
expressions (8), (6) and (7).
Observe that, as we can choose the weights arbitrarily, these give us a method
to prioritize different goals. However, practical experiments indicated that
different choices of priorities (α-values) have only a minor if not negligible
effect on the particular result of the computation.

2. Run fictitious play in Γ sc, stopping when the desirable precision of the equi-
librium approximation is reached. In our experiments, we stopped when the
difference between the intermediate result vectors θ∗t−1 and θ∗t at steps t and
t− 1 has become less than an adjustable threshold δ > 0 in the 1-norm.
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3. The result vector θ∗ is directly the sought multi-criteria security strategy,
whose assurances are given by the respective expected payoffs of the oppo-
nents. In case of matrix games, where the i-th payoff is given by a matrix
Ai, the sought assurances are vi = (θ∗)TAiφ

∗
i for i = 1, 2, . . . , k, where

φ∗
1, . . . , φ

∗
k are the other player’s equilibrium strategy approximations ob-

tained along the fictitious play.

5 Experimental Evaluation

We stress that theorem 3 asserts the fictitious play property for the games con-
structed, yet does not limit numerical solution techniques to a particular algo-
rithm (not even to fictitious play). Our experimental implementation used the
basic (and non-optimized) fictitious play procedure [15], but can easily be re-
placed by more sophisticated algorithms (e.g., [20]) to gain speed. Our tests were
done on a 3 x AMD Opteron 6212 machine, having 2.6 GHz 24 cores (virtual-
ized), 96 GB RAM, and 1 TB disk space.

Towards a (non-application-specific) performance evaluation, we created ran-
dom payoff matrices to simulate arbitrary matrix game structures (matrices with
independent and uniformly distributed Bernoulli random entries) ranging from
2 to 170 strategies (in steps of 2) for the honest player, seeking to secure its
behavior in terms of two security goals. In each setting, we ran (at least) 50
trials, taking the average number of iterations until convergence as the empirical
performance indicator. Convergence is said to be reached once the change in the
payoff-values v1, . . . , vk (per security goal) between two iterations has become
less than a threshold δ = 0.01 in the 1-norm.2 Figure 1a plots the results.

Fictitious play has shown to be numerically stable, yet suffers from slow con-
vergence (without optimizations) and memory shortage in case of games with
many goals (each of which corresponds to a player with its own payoff structure).
In the latter cases, the computation may be parallelized towards a speed-up by
assigning each player its own processor and memory. The temporal speed under
parallelization is then mostly determined by the communication overhead, which
in a multi-processor CPU is not too much of a problem.

As expected, the maximal number of iterations grows with the size of the
strategy sets and the number of security goals. Towards an empirical estimate
of asymptotic complexity in terms of the game’s size (number of strategies),
we fitted a linear model to the plot of N(n) (Figure 1a). Here, n is the num-
ber n of strategies, and the model took the form N = a · n + b + ε with an
error term ε being normally distributed. The parameter estimates came up to
a ≈ 71.5657, b ≈ −507.7625. The normality hypothesis on the residual term ε
was accepted by a Shapiro-Wilks test with a p-value of ≈ 0.8918 at a confidence
level of α = 0.95. Hence, we may – on empirical evidence – assume a growth of
the iteration count N that is proportional to the number n of strategies, giving

2 Notice that convergence in the fictitious play process as defined above implies con-
vergence under our modified criterion by the continuity of the payoff functions.
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Fig. 1. Complexity of computing two-criteria security strategies

linear asymptotic average-case complexity N ∈ O(n). The same linear relation-
ship was also confirmed for trials in 3 and 4 dimensions (using smaller games in
terms of strategy counts, though). Interestingly, the constants within the big-O
were roughly equal between 2, 3 and 4 dimensions, indicating that convergence
rates are only mildly affected by the number of security goals (dimensions).
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This is somewhat confirmed by the plot in Figure 1b, although a more thorough
empirical investigation needs to be done. A deeper exploration of both obser-
vations will be done with games that correspond to network security protocols
(see the related work section 6), and will appear in companion work to this.

The convergence speed (number of iterations) is rather slow: the computation
took about 15 minutes computing time until a precision of δ = 0.01, and another
15 minutes to undercut δ = 0.001 in three dimensions with 100 strategies. Fig-
ure 2 shows the evolution of the difference between adjacent equilibrium profile
approximations (beliefs) over the iterations of a single run, taking 200 strategies
in two dimensions until a precision of δ = 0.001 is reached. As the figure shows,
the algorithm quickly approaches the equilibrium, but slows down substantially
near the optimum. So, although we get a quick-and-dirty first approximation,
retrieving more accurate results upon fictitious play takes some time. Section 6.2
describes an application to network security, based on multipath transmission.

0 0.5 1 1.5 2 2.5

·105
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10−2

10−1

100

iteration t

‖θ
∗ t−

1
−

θ
∗ t
‖ 1

Fig. 2. Convergence speed plot

The speed of convergence of fictitious play in general games is known to be
very slow, as was demonstrated by [4] on a concrete example game, where the
FP process takes exponentially many rounds until the equilibrium is reached.
Alternatively, convergence may be measured by considering the difference in
the payoffs, rather than the behavior profiles (beliefs), such as we did in our
experimental implementation. These may converge even though the distributions
themselves may oscillate.

However, the slow convergence of regular fictitious play may – in large games –
become unhandy, thus calling for replacements by more refined and sophisticated
learning techniques. Inspecting the applicability of such alternatives is an inter-
esting direction of future research.
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6 Related Work

The idea of Pareto-optimal security strategies (POSS) is not new and has pre-
viously been introduced in [7,6,18]. This prior work appears as a special case
of definition 1 when the games are finite. Infinity of action spaces, which arise
when continuous parameters (such as timing) were not covered by this prelim-
inary work. Treating communication as a game is a well-researched field, with
a comprehensive account given by [2], and much precursor work (such as [21]).
Game-theory has in the past as well been used to negotiate optimal service and
operational level agreements (see [11,8] among others) and to quantitatively an-
alyze security in ad hoc networks [22] under several optimality concepts (among
which is Pareto-optimality). Our work aids and further substantiates this direc-
tion of research. An interesting yet unexplored relation to our work also exists in
the results of [16], who consider a “non-static” gameplay. This direction is one
of future considerations.

6.1 Multipath Transmission

A fruitful application is a game-theoretic model of multipath transmission.
Roughly speaking, the game is about an honest sender attempting to communi-
cate over a network that is partially under the attacker’s control. The attacker is
not constrained in its computational power, but limited to control a fixed maxi-
mal number of nodes, by which it can read and insert network traffic at its own
will. The honest player’s goal is to deliver a message to a designated receiver,
while the payload remaining confidential and authentic, and with the maximum
probability of delivery (availability). The gameplay is by the honest party (player
1) randomly choosing transmission paths, while the attacker (player 2) randomly
chooses nodes to sniff, which – in its simplest form just described – makes the
scenario almost a diagonal game. An illustration is given in Figure 3.

BobAlice

Network

Splitting Recovery

Path 1 (e.g., ciphertext)

Path 2 (e.g., key/share 1)

Path n (e.g., key/share n-1)

...

Adversary

Intercepted
Channels

Message Message

Fig. 3. Illustration of multipath transmission

We leave the protocol-, game- and cryptography-details aside here (referring
the interested reader to [5,19,3,12,14] to fill these gaps), and confine ourselves
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to stating that experimental evaluations on real life enterprise network topolo-
gies lead to small games (after eliminating redundant and dominated strategies)
that are easy to handle. This is mostly due to low connectivity (many enter-
prise network backbones have a graph vertex connectivity of two, for reasons
of redundancy). Realistic wide area topologies would follow an Erdös-Rényi or
scale-free topology, which we simulate in the course of a research project (see
the acknowledgement) on which we will report in subsequent work. Here, for the
sake of generality, this example shall merely substantiate the applicability of the
theoretical concept of Pareto-optimal security strategies, while our evaluation
will be on matrix games with randomly chosen payoff structures.

6.2 Example: Security of Multipath Transmission

Nevertheless, the method appears viable to compute quantitative security of
multipath transmission on a given network topology. As an example, consider
the network topology depicted in Figure 4, where Alice wishes to securely send
a message to Bob over the network. Hereby, a message m is called secure, if its
transmission is confidential, the payload is authentic and the delivery does not
fail (availability). Hence, we have three goals, i.e., three dimensions.

4

BobAlice

2 3

1

5

Fig. 4. Example network

The transmission protocol uses two paths and a one-time pad encryption,
sending the key k over one path, and the ciphertext c = m⊕ k over the second
path, where ⊕ denotes the bitwise XOR (note that this scheme is trivial to
generalize to the usage of n > 2 paths).

The adversary is allowed to conquer any two nodes between Alice and Bob
(excluding the two, for obvious reasons), and is computationally unbounded (i.e.,
we are after unconditional security here).

The game’s payoff structure is composed from three indicator functions of

success, measuring confidentiality as u
(conf)
1 = 1 : ⇐⇒ [the attacker misses

either k or c], availability as u
(avail)
1 = 1 : ⇐⇒ [the attacker fails to intercept

k or c], and authenticity. This is achieved by the protocol in [14], and yields

u
(auth)
1 = 1 : ⇐⇒ [the attacker fails to conquer at least one of the chosen paths].

The strategy set for player 1 is the set of pairs of disjoint transmission paths (a
total of |PS1| = 3 strategies). The strategy set for player 2 is the set of two-
element subsets of {1, 2, 3, 4, 5}, giving a total of |PS2| =

(
5
2

)
= 10 strategies. The
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payoff for player 1 is the vector u1 = (u
(conf)
1 , u

(avail)
1 , u

(auth)
1 ). The importance

weights are (α0,conf, α0,avail, α0,auth) = (1/3, 1/3, 1/3).
The fictitious play process converged within 6 iterations until an accuracy of

δ < 10−3, giving the final multicriteria security strategy θ∗ = (13 ,
1
3 ,

1
3 ), with

assurance v = (23 , 0,
2
3 ). This is indeed what we expect, since if the attacker in-

tercepts one of the paths, the message remains confidential and cannot be forged

unnoticeably (u
(conf)
1 = 1 = u

(auth)
1 ), but it can become destroyed (u

(avail)
1 = 0).

The assurance vectors thus give the conditional probability Pr[m is authentic
and has not been disclosed |m was correctly delivered ] ≥ 2/3, but the uncon-
ditional likelihood Pr[delivery of m can be disrupted] = 1. By the properties of
MCSS, this is the best that the attacker can do. The protocol is as such insecure,
as it is vulnerable to denial-of-service, although it can be made arbitrarily and
unconditionally secure against eavesdropping (under the given adversary model)
by repeating the process on a sequence of packets m1,m2, . . . ,m� whose bitweise
XOR recovers m = m1 ⊕ m2 ⊕ · · · ⊕ m�. Then, the likelihood to disclose m is
2−O(�), if all � messages are delivered according to the security strategy θ∗.

It is straightforward to apply the technique to other more efficient protocols
like [19,5], and to take further probabilistic security in the network into account,
by replacing the payoff functions accordingly.

7 Conclusion

Fictitious play has been demonstrated as a working method to numerically com-
pute security strategies towards playing safe in multiple regards (security goals).
The axiomatic characterization of multi-criteria security strategies as Pareto-
Nash equilibria, which in turn can be computed as Nash-equilibria of multi-
player games, induces a sequence of simple and straightforward transformations
that culminate in a game enjoying the fictitious play property. In addition, we
gain a degree of freedom to assign importance weights to different security goals,
although these seem to have only minor (if not negligible) influence on the actual
outcome (equilibrium) that is computed. Nevertheless, it adds an interesting as-
pect to practical applications by showing that a “prioritization” between security
goals is not necessarily useful in general.

Aspects of future work are non-static game-plays, improved variants of ficti-
tious play and examining complexities to more detail. As a showcase application,
we will apply our algorithms to problems of establishing confidential, authen-
tic and reliable communication in large scale computer networks by means of
multipath transmission. Given the available cryptographic fundament, quantify-
ing security in terms of Pareto-optimal security strategies then boils down to a
straightforward application of our numerical method presented here.
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