
Surveillance for Security
as a Pursuit-Evasion Game

Sourabh Bhattacharya1, Tamer Başar2, and Maurizio Falcone3
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Abstract. This work addresses a visibility-based target tracking problem that
arises in autonomous surveillance for covert security applications. Consider a
mobile observer, equipped with a camera, tracking a target in an environment
containing obstacles. The interaction between the target and the observer is as-
sumed to be adversarial in order to obtain control strategies for the observer that
guarantee some tracking performance. Due to the presence of obstacles, this prob-
lem is formulated as a game with state constraints. Based on our previous work in
[6] which shows the existence of a value function, we present an off-line solution
to the problem of computing the value function using a Fast Marching Semi-
Lagrangian numerical scheme, originally presented in [15]. Then we obtain the
optimal trajectories for both players, and compare the performance of the current
scheme with the Fully Discrete Semi-Lagrangian Scheme presented in [6] based
on simulation results.

Keywords: pursuit-evasion games, semi-Lagrangian schemes, fast marching.

1 Introduction

Security is an important concern in infrastructure systems. Although advanced elec-
tronic and biometric techniques can be used to secure facilities reserved for military
activities, vision-based monitoring is primarily used for persistent surveillance in build-
ings accessible to civilians. The idea is to cover the environment with cameras in order
to obtain sufficient visual information so that appropriate measures can be taken to se-
cure the area in case of any suspicious activity. However, the number of static cameras
needed to cover and monitor activities in a moderately sized building is substantial, and
this leads to fatigue in security personnel. In this work, we explore a scenario in which
mobile agents that can visually track entities in the environment are deployed in a sur-
reptitious manner for surveillance applications. This gives rise to a problem that is often
called the target tracking problem.
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Target tracking refers to the problem of tracking a mobile object, called a target.
Based on the sensing modality and sensing constraints, there is a range of problems
that can be addressed under this category. In this work, we assume that the autonomous
observer is equipped with a vision sensor for tracking the target. The environment con-
tains obstacles that occlude the view of the target from the observer. The goal of the
observer is to maintain a persistent line-of-sight with the target. Therefore, the mobile
observer has to control its motion, keeping in mind the sensing constraints and the mo-
tion constraints posed by the obstacles. In order to compute motion strategies for the
observer that can provide some performance guarantees, the target is assumed to be an
adversary. Several variants of the target-tracking problem have been considered in the
past that consider constraints in motion as well as sensing constraints for both agents.
For an extensive discussion regarding the previous work and its applications, we refer to
[13,12]. In this work, we consider the target tracking problem without any constraints
in sensing or motion models for both agents except for those posed by the obstacles
present in the environment.

Past efforts to provide a solution to the aforementioned problem can be primarily
divided into two categories: (1) Formulating the problem as a game of kind, and provid-
ing necessary conditions for pursuit and evasion in the presence of polygonal obstacles
[13,10,11]; (2) Formulating the problem as a game of degree, and using the theory of
differential games to provide necessary and sufficient conditions for pursuit [12,14,7,9].
Although, the structure of optimal solutions has been characterized extensively in previ-
ous works, a complete construction of the solution in a general environment containing
polygonal obstacles is still open. In [8], the authors analyze the problem in a simple en-
vironment containing a circular obstacle, and characterize the optimal trajectories near
termination using differential game theory. In [6], we use a semi-Lagrangian iterative
numerical scheme to provide a solution to the aforementioned problem. In this work,
we use another numerical technique, Fast Marching Semi-Lagrangian scheme, based
on the ideas of front propagation to provide an off-line solution to the problem. The
numerical techniques introduced in this work can be used for any 2-player generalized
pursuit-evasion game with state constraints.

Numerical techniques for games are primarily based on the principles of Dynamic
Programming (DP). Finite differences approximation schemes based on generalized
gradients were proposed by Tarasyev[20] who also considered the problem of the syn-
thesis of optimal controls using approximate values on the finite grid. Convergence
results to the value function of the generalized pursuit-evasion games for the approxi-
mation scheme based on Discrete Dynamic Programming (also called semi-Lagrangian
scheme) were first presented in [4], under either continuity assumptions on the value
function or for problems with a single player (i.e. control problems). The extension of
the scheme and of the convergence theorem to the discontinuous case was obtained in
[2]. Later these results have been extended to pursuit-evasion games with state con-
straints in [5,16]. Our work is in a similar vein, and uses the fully discrete scheme pro-
posed in the aforementioned works to address the target tracking game. For a general
introduction to semi-Lagrangian schemes and their applications in control and game
problems, we refer to [18].
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The paper is organized as follows. In Section 2, we present the problem formulation,
and address the issue of existence of the value function for our problem setting. In
Section 3, we reduce the dimensionality of the problem by reformulating it in relative
coordinates. In Section 4, we present the numerical scheme. In Section 5, a comparison
of the different schemes is presented based on simulation results. Finally, Section 6
includes some concluding remarks.

2 Problem Statement

In this section, we present the problem formulation (see Figure 1(a)). Consider a circular
obstacle in the shape of a disc of radius a1 in the plane enclosed inside a concentric
circular boundary of radius a2. The centers of both circles are assumed to be at the
origin of the reference frame. Consider a mobile observer and a target in the plane. Each
agent is assumed to be a point in the plane. Let y∈R

2 and z∈R
2 denote the coordinates

of, respectively, the observer and the target in the plane. Both agents are assumed to be
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Fig. 1. Figure (a) shows the geometry around a circular obstacle with a circular boundary. Figure
(b) shows the boundary of the terminal manifold of the game in relative coordinates.

simple kinematic agents, and their motions are governed by the following equations

ẏ = u1, ż = u2

subject to the constraints y ∈ KU , z ∈ KV where

KU ≡ {y ∈ R
2 : (‖y‖2

2 −a2
1)(‖y‖2

2 −a2
2)≤ 0}, KV ≡ {z ∈ R

2 : (‖z‖2
2 −a2

1)(‖z‖2
2 −a2

2)≤ 0}

Let x = (y,z)T and f (x,u1,u2) = (u1,u2)
T . The controls u1(·) and u2(·) belong to the

following sets

u1(·) : R→U, U = B1(0,0), u2(·) : R→V, V = Bμ(0,0)
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where Br(a) is a ball of radius r with center a, and μ is a parameter which represents the
maximum speed of the target. We will see later that we have to pick μ ≤ 1 to make the
problem meaningful. The line-of-sight between the pursuer and the evader is defined
as the line joining the two players on the plane. The line-of-sight is considered to be
broken if it intersects with the circular obstacle. In order to account for the worst-case
scenario, the target is assumed to be adversarial in nature. Therefore, the interaction
between the observer and the target is modeled as a game. The observer is assumed to
be the pursuer, and the target is assumed to be the evader. The objective of the pursuer
is to maximize the time for which it can continuously maintain a line of sight to the
evader. The objective of the evader is to break the line-of-sight in the minimum amount
of time. The game terminates when the line-of-sight between the pursuer and the evader
is broken. The problem is to compute the strategies of the players as a function of their
positions. Since this is a 2-player zero-sum game [1], we use the concept of saddle-point
equilibrium [12] to define the optimal strategy for each player.

Let T (x0) denote the optimal time of termination of the game when the players start
from the initial position x0. A strategy for a player will be defined as a map from the
control set of the opponent to its own control set, with some informational constraints
imposed, as appropriate. Let α and β denote the strategies of the pursuer and the evader,
respectively. A pair of strategies (α∗,β ∗) for the two players is said to be in saddle-point
equilibrium if the following pair of inequalities is satisfied

T (x0;α∗,β )≥ T (x0;α∗,β ∗)≥ T (x0;α,β ∗) ∀α,β admissible

(here we write explicitly the dependence of T on the strategies). If the pair (α∗,β ∗)
exists, then the function T ∗(x0) = T (x0;α∗,β ∗) is called the value of the game and T ∗
is called the value function. The existence of the value function depends on the class
of strategies under consideration for both the players. In this work, the notion of non-
anticipating strategies [17] will be used to define the information pattern between the
players.

Definition: A strategy α for player P is non-anticipating if α ∈ Γ , where

Γ = {α : V →U | b(t) = b̃(t), ∀t ≤ t ′ and b(t), b̃(t) ∈V ⇒ α[b](t) = α[b̃](t), ∀t ≤ t ′}
Similarly, we can define a non-anticipating strategy β ∈ Δ for E , where

Δ = {β : U →V | a(t) = ã(t), ∀t ≤ t ′ and a(t), ã(t) ∈V ⇒ β [a](t) = β [ã](t),∀t ≤ t ′}
Frequently, in problems involving games and optimal control, it is the case that the

value function ceases to exist in the class of strategies used by the players. In [6], we
show that the value of the game exists. Since the existence of the value function is
established from the above transversality conditions, we can address the problem of
computing it.

3 Dimensionality Reduction

In this section, we present a formulation of the problem in reduced coordinates where
we exploit the symmetry of the problem in order to reduce dimensionality. To this end,
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we formulate the problem in polar coordinates. We express the position of the players in
relative coordinates. Let the polar coordinates of the pursuer and the evader be denoted
as (rp,θp) and (re,θe), respectively. Instead, we can use the relative coordinates (R =
rp,r = re,φ = (θp −θe)) to define the state of the game. The equations of motion of the
two players in relative coordinates are given by the following

fR = Ṙ = urp ; fr = ṙ = ure ; fφ = φ̇ =
uθe

r
− uθp

R
, (1)

where (urp ,uθp) and (ure,uθe) are the radial and tangential components of the velocities
of the pursuer and the evader, respectively, and satisfy the following constraints

u2
rp
+ u2

θp
≤ 1; u2

re
+ u2

θe
≤ μ2 (2)

The problem statement dictates that a1 ≤ R,r ≤ a2 and −π ≤ φ ≤ π . The problem
is to determine the time of termination of the game, and the optimal strategies of the
individual players given the initial position x = (r,R,φ) of the pursuer and the evader:

(u∗rp
,u∗θp

,u∗re
,u∗θe

) = arg max
urp ,uθp

min
ure ,uθe

T (x;urp ,uθp ,ure ,uθe) (3)

The existence of the value function was established in [6], as indicated in the previous
section, and hence the max and min operations commute in the above equation. Since
the evader always wins from any given initial position of the players for μ > 1, we
only consider the case μ ≤ 1. The winning strategy of the evader for μ > 1 is to move
along the boundary of the obstacle with its maximum speed in a fixed direction. Based
on the problem formulation, the game terminates when the line-of-sight between the
pursuer and the evader intersects with the circular obstacle. Therefore, the boundary of
the terminal manifold is given by the set of states for which the line-of-sight between
the pursuer and the evader is tangent to the circular obstacle.

Figure 1(b) shows the boundary of the terminal manifold in relative coordinates for
a1 = 5 and a2 = 30. The line-of-sight is in the free space only if the state of the players
lies between the two symmetric surfaces. Otherwise, the game has terminated. The set
of states for which the line-of-sight intersects the obstacles is also the target set, denoted
as T . The objective of the evader is to drive the state of the system to the target set.
The objective of the pursuer is to prevent the state from reaching it. Let R denote the
reachable set, i.e., the set of initial points from which it is possible for the evader to drive
the state of the system to the target set in finite time irrespective of the pursuer’s control
action. One can clearly see that R depends on T and the dynamics of the players.

We have the following result from [4].

Theorem 1. If R \T is open, and T ∈C0(R \T ), then T (·) is a viscosity solution of
the following equation:

min
a∈U

max
b∈V

{− f (x,a,b) ·∇T (x)}− 1 = 0, x ∈R \T (4)

Let v(x) denote the Kružkov transform [3] of T (x)

v(x) =
{

1− e−T(x) if T (x)<+∞ (x ∈R)
1 if T (x) = +∞ (x �∈R)

(5)
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Since T (x) takes values in the interval [0,∞), v(x) takes values in the interval [0,1].
Using v(x) instead of T (x) leads to better numerical schemes due to the bounded val-
ues of v(x). Moreover, there is a bijective map between v(x) and T (x) given by the
following:

T (x) =−ln(1− v(x))

In terms of v(x), the reachable set is given by the following expression

R = {x|v(x)< 1}
Therefore, we address the problem of computing v(x) numerically in the following
sections. If v(x) is continuous, then it is the unique viscosity solution of the following
Dirichlet problem [4]{

v(x)+min
a∈U

max
b∈V

{− f (x,a,b) ·∇v(x)}− 1 = 0, for x ∈ R
n \T

v(x) = 0 for x ∈ ∂T

4 Numerical Scheme

First, we describe the discretization of the state space. The entire state space X(R3)
is discretized by constructing a three dimensional lattice of cubes with edge lengths
k. The lattice points are placed at the corners of cubes with the origin as one of the
lattice points. The numerical scheme computes the approximation of v(x) at the lattice
points. Let Q denote a closed and bounded subset of X containing the entire free space
including the obstacles. Once the state space is discretized, we are only concerned with
values of v at those lattice points which belong to Q. We will call these lattice points
as nodes. Let the nodes be ordered as {1, . . . ,N}, where N is the number of nodes in
Q. Let (x1, . . . ,xN) denote the state of the nodes in Q. Let IT denote the set of nodes
in Q that belong to the target set. The values of these nodes are set to zero since the
game would already have terminated if it started from any of these nodes. Therefore, if
xi ∈ IT , Txi = 0, which implies v(xi) = 0. We arrange the values of v at all the nodes in
the form of a vector V = (V1, . . . ,VN). The solution is usually obtained via a fixed point
iteration V n+1 = SV n starting from a given V 0 [18].

In the Fast Marching Method (FMM), the state space is initially discretized in a man-
ner described in the previous paragraph. At every instant of time, the nodes are divided
into the following three groups. The accepted nodes are those where the solution has
already been computed, and it cannot change in the subsequent iterations. The nar-
row band nodes are those where the computation actually takes place, and their values
can change in the subsequent iterations. The far nodes are those in the space where an
approximate solution has never been computed. The front in our problem represents
the surface that updates the initial value of v(xi) at node i to its approximate value as it
propagates in the state space. The accepted region represents the nodes in the state space
through which the front has already passed. The narrow band represents the nodes in
the region around the current position of the front where the values are being updated.
The far region represents the nodes where the front has not yet passed.

The algorithm initializes by labeling all the nodes in the target set as accepted nodes.
In order to compute the narrow band nodes, we need to first define the concept of
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reachable sets. The reachable set at any iteration is defined as the set of nodes from
which the pursuer can drive the state of the system to a node that belongs to the accepted
set irrespective of the controls of the evader. A sketch of the algorithm is given below:

1. The nodes belonging to the target set T are located and labeled as accepted, setting
their values to v(x) = 0. All other nodes are set to v(x) = 1 and labeled as far.

2. The initial narrow band is defined as the set of all the neighbors of the accepted
nodes. Their values are valid only if they are in the reachable set.

3. The node in the narrow band with the minimal valid value is accepted, and it is
removed from the narrow band.

4. Neighbors of the last accepted node that are not yet accepted are computed and
inserted in the narrow band. Their values are valid only if they are in the reachable
set.

5. If the narrow band is not empty, the next iteration starts at step 3.

The complete algorithm is given in the table below as Algorithm 1.

Algorithm 1. FMSL

1: declare QAccepted , QNarrowBand , QFar be the sets of accepted nodes, narrow band nodes and
far nodes

2: for each xi ∈Q do
3: if xi ∈T then
4: Vxi = 0 and xi ∈QAccepted
5: else
6: Vxi = 1 and xi ∈QFar
7: end if
8: end for
9: QNarrowBand = {x j|x j ∈ ⋃

xi∈QAccepted

N(xi)∩Rh}
10: while TNarrowBand �= /0 do
11: if xk = argminV (x j) then
12: Remove xk from QNarrowBand and add it to QAccepted

13: Add N(xk)∩Rh to QNarrowBand
14: end if
15: end while

From [19], it is well known that the performance of FM deteriorates rapidly when the
characteristic and the gradient lines do not coincide. In order to overcome this limita-
tion, the Buffered Fast Marching Method (BFMM) was introduced in [15]. BFMM is an
amalgamation of SL and FM methods that retains the advantages of both techniques. In
BFMM, in addition to the accepted nodes, narrow band and far nodes, we have a buffer
zone. Every iteration of BFMM starts with the implementation of the FM scheme. Once
the nodes having the least value in narrow band are computed, they are moved to buffer.
All the nodes in the buffer are recomputed using the Fully Discrete Semi-Lagrangian
scheme for two different initial boundary conditions of the nodes. In the first step, the
values of all the nodes in the narrow band are set to 1. In the second step, the values of
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all the nodes in the narrow band are set to 0. If there is any node in the buffer for which
the value remains unchanged with two different boundary conditions, then the node is
considered to be accepted.

In the next section, we present some numerical results obtained from the FMM and
BFMM.

5 Results

In this section, we present simulation results, and compare it with our previous results
in [6]. All the simulations were performed on a Core 2 Duo P7450 processor. The radii
of the inner and outer obstacles are a1 = 1 and a2 = 10, respectively. The speed of
the evader is set at 0.8 for all simulations. Figure 2 depicts the value function for all
the three numerical schemes, and trajectories of the players for a specific initial posi-
tion. Figure 2(d) shows the trajectories of the players computed from the Fully Discrete
Semi-Lagrangian technique presented in [6]. Figures 2(e) and 2(f) show the trajecto-
ries of the players from the Fast Marching techniques proposed in this work. Figure 3
illustrates the variation of the performance of the three techniques on the basis of the
computational time and capture time with respect to the grid size. Figure 3(a) shows the
time expended to compute the value functions for the three different techniques as the
grid size increases. We can see that for a fixed grid size the iterative scheme takes more

(a) Fully Discrete Semi-
Lagrangian Scheme

(b) Fast Marching Scheme (c) Buffered Fast Marching
Scheme

(d) Fully Discrete Semi-
Lagrangian Scheme

(e) Fast Marching Scheme (f) Buffered Fast Marching
Scheme

Fig. 2. The figure shows variation of the value function computed at the nodes, and the trajectories
of the players for the three techniques
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Fig. 3. Figure (a) shows a plot of the computational time required to compute the v(xi) using the
three different techniques. Figure (b) shows the variation of the time required for the target to
escape with increasing number of grid points used for computation.

time to compute the value function as compared to the FM schemes. Moreover, the re-
sults clearly show that the time required for computation of the value function increases
as the grid resolution becomes finer. Figure 3(b) shows the variation of the termination
time for the game for a fixed trajectory of the target using the three techniques. One can
clearly see that the SL scheme is expensive in terms of computational time compared
to the other two techniques.

6 Conclusions

This work has addressed a vision-based surveillance problem for securing an environ-
ment. The task of keeping a suspicious target in the observer’s field-of-view was mod-
eled as a pursuit-evasion game by assuming that the target is adversarial in nature.
Due to the presence of obstacles, this problem was formulated as a game with state
constraints. We first showed that the value of the game and the saddle-point strategies
of the game exist. Then we obtained the optimal (saddle-point) strategies for the ob-
server from three different numerical techniques based on finite-difference schemes.
The relative performance of the three different schemes based on computational time,
and degree of approximation was illustrated through simulations.

An immediate extension of this work would be to apply the technique to problems
that have non-holonomic agents having more complicated dynamics, for example, a
Dubin’s car or a differential drive robot. We are also working on extending the current
technique to more general environments. A fundamental question that remains open
is the existence of the value function and the saddle-point strategies for the game in
general polygonal environments.
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