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Abstract. Boundedly rational human adversaries pose a serious chal-
lenge to security because they deviate from the classical assumption of
perfect rationality. An emerging trend in security game research ad-
dresses this challenge by using behavioral models such as quantal re-
sponse (QR) and subjective utility quantal response (SUQR). These
models improve the quality of the defender’s strategy by more accurately
modeling the decisions made by real human adversaries. Work on incor-
porating human behavioral models into security games has typically fol-
lowed two threads. The first thread, scalability, seeks to develop efficient
algorithms to design patrols for large-scale domains that protect against
a single adversary. However, this thread cannot handle the common situ-
ation of multiple adversary types with heterogeneous behavioral models.
Having multiple adversary types introduces considerable uncertainty into
the defender’s planning problem. The second thread, robustness, uses ei-
ther Bayesian or maximin approaches to handle this uncertainty caused
by multiple adversary types. However, the robust approach has so far
not been able to scale up to complex, large-scale security games. Thus,
each of these two threads alone fails to work in key real world security
games. Our present work addresses this shortcoming and merges these
two research threads to yield a scalable and robust algorithm, MIDAS
(MaxImin Defense Against SUQR), for generating game-theoretic patrols
to defend against multiple boundedly rational human adversaries. Given
the size of the defender’s optimization problem, the key component of
MIDAS is incremental cut and strategy generation using a master/slave
optimization approach. Innovations in MIDAS include (i) a maximin
mixed-integer linear programming formulation in the master and (ii) a
compact transition graph formulation in the slave. Additionally, we pro-
vide a theoretical analysis of our new model and report its performance
in simulations. In collaboration with the United States Coast Guard
(USCG), we consider the problem of defending fishery stocks from ille-
gal fishing in the Gulf of Mexico and use MIDAS to handle heterogeneity
in adversary types (i.e., illegal fishermen) in order to construct robust
patrol strategies for USCG assets.

1 Introduction

Incorporating human behavioral models [11,3] into security games represents an
important progression that has been demonstrated to improve the performance
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of defender patrol strategies in both simulations and human subject experi-
ments [15,19,18,13]. Behavioral models allow for the relaxation of the one of the
strongest assumptions in classical game theory: namely, that the adversary is
a perfectly rational utility maximizer. Instead, behavioral models, such as the
quantal response (QR) model [11] and the subjective utility quantal response
(SUQR) model [13], feature stochasticity in human decision making. These mod-
els are able to better predict the actions of real human adversaries and thus lead
the defender to choose strategies that perform better in practice. Boundedly ra-
tional human behavioral models raise two fundamental research challenges that
previous work has tried to address separately: scalability and robustness.

While perhaps counter-intuitive, modeling adversaries which behave subopti-
mally actually makes the defender’s optimization problem computationally more
difficult. Both QR and SUQR are non-linear models and are difficult to use di-
rectly in large-scale security domains. This issue of scalability for large-scale
security games with boundedly rational adversaries has received attention in the
literature. [19] presented a mixed-integer linear programming (MILP) approxi-
mation for QR and SUQR models which improves tractability. Additionally, [18]
introduces a cutting planes approach which can handle general patrol schedules
and uses a master-slave formulation to iteratively generate deep cuts. We empha-
size that the work [19,18] only allows for a single boundedly rational adversary.

However, in many domains the defender could encounter multiple different
types of boundedly rational human adversaries. Thus, a separate line of secu-
rity games research has focused on achieving robustness against uncertainty in
the true adversary model. [17] proposed a Bayesian approach which learns a
Gaussian distribution over adversary types. This approach has two potential
drawbacks. First, the assumption that the adversary types are normally dis-
tributed is difficult to justify in practice. Second, even if the adversaries are
normally distributed, a large amount of data is needed to learn the Gaussian
distribution. Alternatively, [5] introduced a maximin approach which does not
use a distribution over the adversary types. Instead, the defender chooses a patrol
that maximizes the worst-case expected defender reward over a set of adversary
types. In an effort to scale up, [17,5] focused on security games with a simplified
defender strategy space that do not have complicated patrol schedules.

In this paper, we merge these two research threads for the first time by ad-
dressing scalability and robustness simultaneously. Each thread alone is imprac-
tical for important real-world security domains, such as environmental crime.
Security games with complicated patrol schedules and multiple boundedly ratio-
nal adversary types present a number of modeling and computational challenges.
However, overcoming these challenges is critical as they are precisely the char-
acteristics that define real-world security games. Our main contribution here
is MIDAS (MaxImin Defense Against SUQR) which computes robust defender
patrols for large-scale security games with a heterogeneous adversary popula-
tion. Building off the insights of [19,18,17,5], we offer two key innovations: (i) a
robust model that generates patrols that hedge against uncertainty about a het-
erogeneous population of adversaries and (ii) a tractable MILP approximation of
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our robust problem. We develop key theoretical properties of MIDAS and also
compare MIDAS against previous approaches in simulation.

In collaboration with the United States Coast Guard (USCG), we have applied
MIDAS to protect fisheries in the Gulf of Mexico, where illegal, unreported, and
unregulated (IUU) fishing seriously threatens the health of local fish stocks.
The USCG has both surface and air assets with which to deter IUU fishing.
We frame the interaction between the USCG and illegal fisherman from Mexico
(henceforth called Lanchas) as a Stackelberg security game. By using historical
data on Lancha sightings, we learn and construct a set of SUQR adversary
types. However, there is not sufficient data to accurately construct a probability
distribution over Lancha types. Generation of robust defender strategies for this
domain has previously been explored in [5]. However, that work was more of a
hot spot prediction model and it did not account for actual USCG schedules. In
contrast, MIDAS constructs patrol schedules directly, resulting in higher quality
patrol schedules for the USCG. The USCG began live testing of patrol schedules
generated using MIDAS in July 2014.

2 Related Work

Game theory has been successfully applied to security problems such as the
protection of networks [9,12,14] and physical infrastructure [16]. In particular,
the Stackelberg game model with its leader-follower paradigm has been used
extensively in security domains. Stackelberg games capture the fact that, in the
real world, the defender (i.e., the security agency) must commit first to a strategy
that may be observed and then exploited by adversaries. Given this first mover
advantage, it is critical to understand and predict how adversaries will respond
to a given strategy in order to find the best strategy. Classical game theory
assumes that the adversary is perfectly rational and will always select the best
available action in response to the defender’s strategy. In some domains, such
as network security [4,8], this assumption is reasonable as the game is played by
software agents. For other domains, particularly those with human adversaries, a
theoretically optimal defender strategy under standard rationality assumptions
can perform poorly in practice. Under the assumption of perfect rationality, the
adversary will always select just one action (the utility maximizing action). This
assumption can lead to non-robust strategies for the defender.

As such, human behavioral models are becoming an increasingly important
aspect of security games research. [19] was the first to address human adversaries
in security games by incorporating the quantal response (QR) model [10] from
the social psychology literature. QR predicts a probability distribution over ad-
versary actions where actions with higher utility have a greater chance of being
chosen. By anticipating possible adversary deviation from the optimal action,
strategies computed with QR are more robust to uncertainty in human deci-
sion making. [7] generalized the QR model to be robust against all adversary
models satisfying monotonicity (i.e., higher utility actions are selected more fre-
quently than lower utility actions), but this approach struggles to scale up to
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larger security games. [13] extended the QR model by proposing that humans use
“subjective utility”, a weighted linear combination of factors (such as defender
coverage, adversary reward, and adversary penalty), to make decisions. [13] pro-
poses the subjective utility quantal response (SUQR) model which was shown
to outperform QR in predicting the actions of participants of human subject
experiments, thus leading to better defender strategies.

Building off that foundation, [18] presented an efficient cutting planes ap-
proach for solving security games with a large defender strategy space and a sin-
gle adversary following a QR model. Meanwhile, two approaches have emerged
for handling security games with multiple human adversary types. [17] utilized
a Bayesian approach which learns a distribution over a set of SUQR types from
available data. This distribution was assumed to be normal so as to minimize
the number of parameters that need to be learned. Alternatively, [5] developed
a robust version of [17] and applies it to the fishery protection domain where
only limited data about the adversaries is available. Borrowing from the robust
optimization literature [1,2], a maximin approach is used to optimize defender
expected utility against the worst-case type from the set of possible adversary
types. However, [18] handles only one adversary type, while [17] and [5] both
fail to scale up. Neither of these two threads of research is individually able to
handle the needs of security game applications in real-world domains such as
environmental crime.

Most security problems do not feature static deployments, but rather have
dynamic deployments that evolve in time and space. Thus, it is imperative to
consider the capabilities of and restrictions on security resources such as per-
sonnel, cars, boats, and aircraft. Additionally, the adversaries in most physical
security domains are likely to be humans, who have biases and limitations in
their decision making process. This bounded rationality makes it difficult to
predict the actions of the adversary and in turn for the defender to optimize
their strategy. As a further complication, rather than a single adversary type
there is usually a set of potential adversary types that may be encountered and
it is critical to be robust against uncertainty in adversary type. Prior work on
boundedly rational adversaries in security games has addressed only one of the
challenges of scalability and robustness.

In this paper, we propose MIDAS which improves upon prior work by provid-
ing a holistic model that better captures the practicalities of large-scale, real-
world security domains. More specifically, MIDAS enhances the incremental cut
generation technique for solving large-scale security games with a single bound-
edly rational adversary type from [18] by using a robust maximin formulation
for handling the uncertainty posed by multiple potential boundedly rational
adversary types. Additionally, the QR model used in [18] for modeling bound-
edly rational adversary types is replaced with the SUQR model. Thus, MIDAS
addresses the challenges of both scalability and robustness simultaneously, rep-
resenting the first and only approach for solving security games with patrols
schedules and multiple boundedly rational adversary types.
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3 Background

We consider a Stackelberg security game (SSG) where the defender uses M
available resources to protect a set of targets T = {1, . . . , |T |} from a set of
boundedly rational adversaries Ω. For the remainder of this paper we will focus
on the SUQR behavioral model and treat ω ∈ Ω as an SUQR adversary type.
SUQR outperforms QR and other human behavioral models in human subject
experiments. As a result, SUQR is widely considered to be the state of the art
for modeling boundedly rational adversaries in security games.

Each target t ∈ T is assigned a set of payoffs {Ra
t , P

a
t , R

d
t , P

d
t }: Ra

t is the
reward earned by an adversary if they successfully attack target t, while P a

t

is the penalty received by an adversary for an unsuccessful attack on target t.
Conversely, if the defender assigns a resource to protect target t and an adversary
attacks target t, the defender receives a rewardRd

t . If an adversary attacks target
t and the defender has not assigned a resource to protect target t, the defender
receives a penalty P d

t . It should be noted that the payoffs for all adversary types
in Ω are identical, it is the parameters of the SUQR behavioral model that
distinguish between types in Ω.

The defender commits to a mixed strategy that the adversaries are able to
observe and then respond to by choosing a target to attack (Korzhyk, Conitzer,
and Parr 2010; Basilico, Gatti, and Amigoni 2009). We denote the jth defender
pure strategy as Aj , which is an assignment of all the security resources. Aj

is represented as a column vector Aj = 〈Atj〉T , where Atj indicates whether
target t is covered by Aj . For example, in an SSG with 4 targets and 2 resources,
Aj = 〈1, 1, 0, 0〉 represents the pure strategy of assigning one resource to target 1
and another to target 2. Let A = {Aj} be the collection of feasible assignments of
resources, i.e., the set of defender pure strategies. The defender’s mixed strategy
can then be represented as a vector a = 〈aj〉, where aj ∈ [0, 1] is the probability
of choosing Aj . For large-scale security games, the number of pure strategies
can grow so large that A cannot be represented explicitly in practice making it
impossible to optimize a directly. However, there is a more compact ”marginal”
representation for defender strategies. Let x be the marginal strategy, where
xt =

∑
Aj∈A ajAtj is the probability that target t is covered. The set of all

feasible marginal distributions is

Xf =

⎧
⎨

⎩
x : xt =

∑

Aj∈A
ajAtj , t ∈ T,

∑

Aj∈A
aj = 1, a ≥ 0

⎫
⎬

⎭
.

We treat ω ∈ Ω as an SUQR adversary type with the weight vector ω =
{ω1, ω2, ω3} which encodes the relative importance of xt, R

a
t , and P a

t , respec-
tively, in the decision making process of the adversary. Recall that the SUQR
model selects a probability distribution over adversary actions rather than de-
terministically selecting the utility maximizing adversary action. Given defender
strategy x, the probability that adversary ω will attack target t is
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qt (ω |x) = eω1xt+ω2R
a
t +ω3P

a
t

∑
t′ e

ω1xt′+ω2Ra
t′+ω3Pa

t′
.

If an adversary chooses to attack target t, then for a given defender strategy
x, the defender’s expected utility is

Ut (x) = xtR
d
t + (1− xt)P

d
t .

Against a known adversary type ω ∈ Ω, the defender’s optimization problem is
then

max
x∈X

F (x |ω) �
∑

t

Ut (x) qt (ω |x) , (1)

which can be solved for a defender mixed strategy a. However, in this paper
we consider an entire population of heterogeneous adversaries in Ω. Thus, the
optimization problem above is inadequate.

4 Adversary Uncertainty

4.1 Bayesian Estimation

If we have a distribution P over the set Ω of all possible types, then the expected
utility maximizing problem is

max
x∈Xf

ˆ
Ω

F (x |ω)P (dω) . (2)

Problem (2) maximizes the expected defender utility, where the expectation
is over the adversary types. In practice Problem (2) requires P to be estimated
from sample data. Estimation of P presents two potential issues: first, it assumes
that the types in Ω are normally distributed in order to use convenient update
rules; second, large amounts of data are required. This method is referred to as
Bayesian SUQR [17].

4.2 Maximin

Robust optimization offers up remedies for the shortcomings of Bayesian SUQR.
Maximin does not require large amounts of data, but it can still utilize data
when it is available even if only in small quantities. It is also less sensitive to
assumptions about the nature of the underlying data, for instance the assumption
that P is a normal distribution.

We treat Ω as an uncertainty set in line with robust optimization. For con-
venience, we assume that Ω is finite. This assumption is reasonable in practice
since we will only ever have finitely many observations of the adversary. Then
we solve the robust optimization problem

max
x∈Xf

min
ω∈Ω

F (x |ω) (3)
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to get a patrol for the defender, where again F (x |ω) is the expected utility
corresponding to type ω. Problem (3) is a nonlinear, nonconvex, nonsmooth
optimization problem. For easier implementation, we transform Problem (3) into
the constrained problem

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} , (4)

by introducing a dummy variable s ∈ R to replace the nonsmooth objective with
a collection of smooth constraints.

5 Mixed-Integer Linear Programming

By considering a human behavior model such as SUQR, Problem (4) becomes
a nonlinear nonconvex optimization problem. In the general case, this problem
class has been shown to be NP-hard to solve to optimality. Our idea in this
section is to introduce a tractable MILP approximation scheme.

An approximate approach for solving Problem (1) with a single boundedly
rational adversary was presented in [19,18]. This approach is based on a piece-
wise linear approximation that leads naturally to an MILP. In this section, we
generalize this approach to create MIDAS, an algorithm for solving the robust
Problem (4) with a set of boundedly rational adversaries.

First notice that, F (x |ω), the defender’s payoff against a single adversary
type ω ∈ Ω can be written out as

F (x |ω) =
∑

t

Ut (x) qt (ω |x) =
∑

t

((
Rd

t − P d
t

)
xt + P d

t

)
eω1xt+ω2R

a
t +ω3P

a
t

∑
t e

ω1xt+ω2Ra
t +ω3Pa

t

which is a fractional function N (x |ω) /D (x |ω) where

N (x |ω) =
∑

t

((
Rd

t − P d
t

)
xt + P d

t

)
eω1xt+ω2R

a
t +ω3P

a
t

and D (x |ω) = ∑
t e

ω1xt+ω2R
a
t +ω3P

a
t . The goal in this section is to estimate the

optimal value, which we will denote s∗, of Problem (4), i.e., the defender receives
a payoff of at least s∗ against every adversary type ω ∈ Ω. We use a binary search
to compute s∗ by updating a parameter r. We know that r ≤ s∗ if there exists
some x ∈ Xf such that

r ≤ N (x |ω)
D (x |ω) , ∀ω ∈ Ω.

Equivalently, we can rearrange the terms to require

r D (x |ω)−N (x |ω) ≤ 0, ∀ω ∈ Ω.

Therefore, to check if r ≤ s∗, we solve

min
x∈Xf , ξ∈R

{ξ : ξ ≥ rD (x |ω)−N (x |ω) , ∀ω ∈ Ω} . (5)
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If the optimal value of the above problem is less than or equal to zero, then
r ≤ s∗; otherwise, r > s∗; then r is adjusted appropriately. However, Problem (5)
is still nonlinear and nonconvex. Thus, we need to find a tractable approximation
to implement this scheme.

5.1 Linear Approximation

The nonlinearity and nonconvexity of Problem (5), whose objective function is a
summation of nonlinear functions in x, can be overcome by approximating each
nonlinear function with a piecewise linear function with K pieces. The functions
rD (x |ω) − N (x |ω) in the constraints of Problem (5) can be approximated
with piecewise linear functions L (x |ω) of the form:

L (x |ω) =
∑

t∈T

(
r−P d

t

)
(

ft(0|ω) +
K∑

k=1

γωtkxtk

)

−
∑

t∈T

(
Rd

t −P d
i

) K∑

k=1

μωtkxtk

where γωtk is the slope of the function ft(xt|w) in the kth segment while μωtk is
the corresponding slope of xtft(xt|ω). With this approximation, we then solve
the feasibility check problem

min
x,ξ

ξ (6)

s.t. ξ ≥ L (x |ω) , ∀ω ∈ Ω, (7)

0 ≤ xtk ≤ 1/K, ∀t, k = 1 . . .K, (8)

ztk/K ≤ xtk, ∀t, k = 1 . . .K − 1, (9)

xt(k+1) ≤ ztk, ∀t, k = 1 . . .K − 1, (10)

ztk ∈ {0, 1}, ∀t, k = 1 . . .K − 1, (11)

xt =
∑

Aj∈A
ajAtj , ∀t, (12)

∑

Aj∈A
aj = 1, (13)

x, a ≥ 0. (14)

5.2 Column Generation

In this subsection we produce a tractable scheme for solving Problem (6) - (14).
First, we derive a relaxation of Problem (6) - (14). Second, we show how to
iteratively improve this approximation via a network flow problem: to that end
Problem (6) - (14) is used to add new constraints to the relaxed version of
the problem, and column generation is used in service of solving Problem (6) -
(14) which then uses the network flow representation. Our network flow problem
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differs substantially from earlier work, which focused on aviation security and
environmental crime, because of the generality of our formulation.

To begin, we approximate the constraint x ∈ Xf with a linear relaxation
{
x : Ĥ x ≤ ĥ

}
,

which represents a subset of linear boundaries of Xf . Then we solve the relaxation

max
x, s∈R

{
s : s ≤ F (x |ω) , ∀ω ∈ Ω, Ĥ x ≤ ĥ

}
(15)

using the binary search method, i.e. Problem (6) - (14).
Given a candidate x̃, we check if x̃ ∈ Xf by solving the projection problem

min
z∈R|T |,a∈RJ

∑

t∈T

zt (16)

s.t.Aa− x̃ ≤ z, (17)

− z ≤ Aa− x̃, (18)
∑

Aj∈A
aj = 1, (19)

a ≥ 0. (20)

Problem (16) - (20) finds the best 1-norm approximation of x in Xf , and returns
the optimal value zero if x ∈ Xf . Otherwise, we find a violated constraint which

we add to the approximation Ĥ x ≤ ĥ.
Problem (16) - (20) has a large number of variables since A is exponentially

large. We solve (16) - (20) using a column generation method similar to the one
introduced in [6]. We solve a restriction of Problem (16) - (20) with a subset of

columns Â ⊂ A where a is now understood as a vector in a ∈ R
|Â|, with aj = 0

for all j with Aj /∈ Â. Then we check for columns Aj to add to Â by computing

the reduced costs of variables aj with Aj /∈ Â via the dual problem.
The dual to Problem (16) - (20) is

max
y, u

x̃T y + u (21)

s.t.AT y + u ≤ 0, (22)

− 1 ≤ y ≤ 1, (23)

which has a large number of constraints due to the presence of the matrix A.
For a subset of columns Â ⊂ A (abusing notation since these are matrices), we
have the relaxation of the dual

max
y, u

x̃T y + u (24)

s.t. ÂT y + u ≤ 0, (25)

− 1 ≤ y ≤ 1, (26)

g ≥ 0. (27)
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We are looking for a column Aj such that

AT
j y + u ≤ 0

is violated. So, we solve the slave problem

max
Aj∈A

{
yTAj

}
+ u (28)

and identify a violated constraint if the optimal value of this problem is posi-
tive. Specifically, we solve Problem (28) using the technique in [6], i.e. we use a
maximum reward network flow problem (since Problem (28) is a maximization
problem).

To setup this network flow problem, we create a source node with supply 1,
and a sink node with demand 1. We have a fixed time horizon, n = 0, 1, . . . , N
stages, so we create a node (n, t) for every target and every time. The variables
in this problem are the flow between nodes,

μ(t,n), (t′,n+1)

which indicate a transition in the asset from target t at time n to target t′

at time n + 1 in the next period. Effectively, we are taking a transition graph
representation on the state space TN+1. This formulation has the advantage
of allowing us to express constraints on feasible patrols. The maximum reward
network flow problem is then of the form

max
μ

{
∑

n∈N

yt
∑

n,t

μ(t,n), (t′,n+1) : network flow constraints on μ

}

.

The preceding network flow problem is a linear programming problem. This
problem class is well studied and many efficient solution algorithms (such as
the Simplex algorithm) exist that can obtain an exact optimal solution. We also
point out that the preceding network flow problem can be solved efficiently for
any underlying network topology.

6 Problem Properties

This section summarizes some key problem properties. The main points are to
better understand our approximation scheme, to confirm that our cut generation
scheme produces deep cuts, and to see how the standard Bayesian estimation
approach relates to our robust approach.

6.1 MILP Approximation Error

Our underlying approach is a piecewise linear approximation to a nonconvex
problem. We want to better understand the error bound for this approximation
and the resulting solution quality of the corresponding MILP. We will show that
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all of the nonconvex functions we are approximating have bounded Lipschitz
constants. Thus, since their variability is bounded, we have an upper bound
on the piecewise linear approximation error as a function of the fineness of the
discretization.

Recall that we are approximating the feasibility check problem, which solves

min
x∈Xf

max
ω∈Ω

{rD (x |ω)−N (x |ω)} ,

by linearly interpolating the functions r D (x |ω)−N (x |ω) for all ω ∈ Ω. The
first step in our approximation analysis is to estimate the Lipschitz constant of
rD (x |ω)−N (x |ω) for fixed ω ∈ Ω.

Lemma 1. The Lipschitz constant of r D (x |ω) − N (x |ω) for any ω ∈ Ω is
bounded above by

∑

t

e1+maxt R
a
t +maxt P

a
t +

∑

t

(
Rd

t − P d
t

)
e1+maxt R

a
t +maxt P

a
t .

Proof. By direct computation, r D (x |ω)−N (x |ω) is equal to

r
∑

t

eω1xt+ω2R
a
t +ω3P

a
t −

∑

t

((
Rd

t − P d
t

)
xt + P d

t

)
eω1xt+ω2R

a
t +ω3P

a
t .

So

|r D (x |ω) − N (x |ω) − rD
(
x′ |ω)

+ N
(
x′ |ω) |

≤
∑

t

|eω1xt+ω2Ra
t +ω3Pa

t −
∑

t

((
Rd

t − Pd
t

)
xt + Pd

t

)
eω1xt+ω2Ra

t +ω3Pa
t

− eω1x′
t+ω2Ra

t +ω3Pa
t −

∑

t

((
Rd

t − Pd
t

)
x′
t + Pd

t

)
eω1x′

t+ω2Ra
t +ω3Pa

t |

≤
∑

t

|eω1xt+ω2Ra
t +ω3Pa

t − eω1x′
t+ω2Ra

t +ω3Pa
t |

+
∑

t

|
((

Rd
t − Pd

t

)
xt + Pd

t

)
eω1xt+ω2Ra

t +ω3Pa
t −

((
Rd

t − Pd
t

)
x′
t + Pd

t

)
eω1x′

t+ω2Ra
t +ω3P

a
t |.

We have

|eω1xt+ω2R
a
t +ω3P

a
t − eω1x

′
t+ω2R

a
t +ω3P

a
t | ≤ eω2R

a
t +ω3P

a
t eω1 |xt − x′

t|.

Additionally,

|xte
ω1xt − x′

te
ω1x

′
t | ≤|xte

ω1xt − xte
ω1x

′
t |+ |xte

ω1x
′
t − x′

te
ω1x

′
t |

≤xte
ω1 |xt − x′

t|+ eω1 |xt − x′
t|

≤2eω1 |xt − x′
t|.

Now use the fact that eω2R
a
t +ω3P

a
t eω1 is bounded above by

e1+maxt P
a
t +maxt R

a
t ,
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and 2eω1 is bounded above by 2 e. Using Lemma 2 and the triangle inequality,
for any x, x′ ∈ Xf we compute

|max
ω∈Ω

{rD (x |ω)−N (x |ω)} −max
ω∈Ω

{r D (x′ |ω)−N (x′ |ω)} |
≤ rmax

ω∈Ω
|D (x |ω)−D (x′ |ω) |+max

ω∈Ω
|N (x |ω)−N (x′ |ω) |.

We can expand on the previous Lipschitz computation to produce an error esti-
mate for the overall piecewise linear approximation, by using the following fact
to bound the Lipschitz constant of

max
ω∈Ω

{r D (x |ω)−N (x |ω)} .
Lemma 2. Let X be a given set, and f1 : X → R and f2 : X → R be two
real-valued functions on X. Then,

(i) | infx∈X f1 (x)− infx∈X f2 (x) | ≤ supx∈X |f1 (x)− f2 (x) |, and
(ii) | supx∈X f1 (x)− supx∈X f2 (x) | ≤ supx∈X |f1 (x) − f2 (x) |.

Proof. To verify part (i), note

inf
x∈X

f1 (x) = inf
x∈X

{f1 (x) + f2 (x)− f2 (x)}
≤ inf

x∈X
{f2 (x) + |f1 (x)− f2 (x) |}

≤ inf
x∈X

{

f2 (x) + sup
y∈Y

|f1 (y)− f2 (y) |
}

≤ inf
x∈X

f2 (x) + sup
y∈Y

|f1 (y)− f2 (y) |,

giving
inf
x∈X

f1 (x) − inf
x∈X

f2 (x) ≤ sup
x∈X

|f1 (x)− f2 (x) |.

By the same reasoning,

inf
x∈X

f2 (x) − inf
x∈X

f1 (x) ≤ sup
x∈X

|f1 (x)− f2 (x) |,

and the preceding two inequalities yield the desired result. Part (ii) follows sim-
ilarly.

6.2 Projection

The feasible region of our problem, Xf , is exactly the same as the one found
in [18]. Thus, the results of the cut generation algorithm are unchanged and we
obtain deep cuts. The results are repeated here for completeness.

Lemma 3. (i) If x̃ /∈ Xf , let (y∗, g∗, u∗) be the dual variables at the optimal

solution of Problem ( (16)) - ( (20)). Then the hyperplane (y∗)T x−(g∗)T b+u∗ =
0 separates x̃ and Xf .

(ii) Furthermore, (y∗)T x− (g∗)T b+ u∗ = 0 is a deep cut.
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As in [18], we now consider a modified norm minimization problem. The idea
is that we weight the norm towards an optimal solution using local rate of
change information about the objective. In our case, the objective G (x) =
minω∈Ω F (x |ω) is a nondifferentiable function, so we use the subgradient in-
stead of the gradient. The subgradient is

∂G (x) = conv{∇xF (x |ω) : F (x |ω) = G (x)} .

For a subgradient s ∈ ∂G (x), we use the objective
∑

t (st + ξ) zt where ξ > 0
is chosen so that st + ξ > 0 for all t.

6.3 Duality

Here we comment on the relationship of our approach to Bayesian estimation.
Bayesian estimation is a classical and widespread tool for incorporating infor-
mation under uncertainty. To reveal this relationship, we compute the dual of
the constrained variant of Problem (3) which we reprint here for convenience:

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} .

The constraints above cause Lagrange multipliers to appear; so we can com-
pute the standard Lagrangian dual. To proceed we first introduce the Lagrange
multipliers which lie in R

|Ω| (since there are only finitely many adversary types).

We let R
|Ω|
+ denote the set of nonnegative vectors in R

|Ω|.
Let

P (Ω) �
{

Λ ∈ R
|Ω|
+ :

∑

ω∈Ω

Λ (ω) = 1

}

be the space of probability measures on Ω, it is a subset of R|Ω|. We will see
shortly that these probability measures are the decision variables in the dual to
Problem (4).

Theorem 1. The dual to Problem (4) is

min
Λ∈P(Ω)

{

d (Λ) � max
x∈Xf

∑

ω∈Ω

F (x |ω)Λ (ω)

}

. (29)

Proof. Let Λ ∈ R
|Ω|
+ be the Lagrange multiplier for the constraint s ≤ F (x |ω)

for all ω ∈ Ω. We obtain the Lagrangian

L (x, s, Λ) = s+
∑

ω∈Ω

[F (x |ω)− s]Λ (ω) .

The Lagrangian dual problem is then

min
Λ∈R

|Ω|
+

max
x∈Xf , s∈R

{L (x, s, Λ)} .
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We see that the inner maximization problem d (Λ) yields the implied constraint´
Ω
Λ (dω) = 1 via

max
s∈R

s

(

1−
∑

ω∈Ω

Λ (ω)

)

,

which is equal to infinity unless the equality
∑

ω∈Ω Λ (ω) = 1 holds. Thus, we
have the dual problem

min
Λ∈R

|Ω|
+

{

max
x∈Xf

∑

ω∈Ω

F (x |ω)Λ (ω) :
∑

ω∈Ω

Λ (ω) = 1

}

.

We emphasize that the dual decision variables are prior distributions on the set
of types. Notice that for any fixed Λ ∈ P (Ω), we see that we have a Bayesian
problem since we can treat Λ as a prior distribution. For Λ, we can then perform
Bayesian estimation as usual. Thus, we see that the dual problem is a search for
the “best” prior distribution. As a corollary, we reason that standard Bayesian
estimation gives us an upper bound on the optimal value to Problem (3).

Corollary 1. (i) maxx∈Xf
minω∈Ω F (x |ω) ≤ minΛ∈P(Ω) d (Λ).

(ii) Let Λ ∈ P (Ω) be any prior distribution, then maxx∈Xf
minω∈Ω F (x |ω) ≤

d (Λ).

Proof. Follows from weak duality for Problem (4),

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} ≤ min
Λ∈P(Ω)

max
x∈Xf

∑

ω∈Ω

F (x |ω)Λ (ω)

which gives

max
x∈Xf

min
ω∈Ω

F (x |ω) ≤ min
Λ∈P(Ω)

max
x∈Xf

∑

ω∈Ω

F (x |ω)Λ (ω)

since
max

x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} = max
x∈Xf

min
ω∈Ω

F (x |ω) .

7 Evaluation

In this section, we evaluate MIDAS in the fishery protection domain, where the
USCG must patrol the Gulf of Mexico to prevent Mexican fishermen (Lanchas)
from entering the United States Exclusive Economic Zone (EEZ) and fishing
illegally. The zero-sum Stackelberg game we consider is played on a square grid,
where each grid cell is a potential target. The defender (USCG) commits to a
mixed strategy over fixed length patrols, where each target can be visited at
most once. Additionally, all patrols must start and end in the first row of the
grid. Meanwhile, the Lanchas select their mixed strategies over targets based on
the SUQR behavioral model where each adversary has a unique weight vector ω.
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For our experiments, the game payoffs are randomly generated withRa
t uniformly

distributed in [1,10] and P d
t uniformly distributed in [-10,-1]. The remaining

game payoffs, Rd
t and P a

t , are fixed at 10 and -10, respectively. Note that Ra
t

and P a
t are the same for all adversaries. All the adversary types ω ∈ Ω used

in the experiments were learned from USCG data. The default settings for each
experiment are: five piecewise linear segments, a set of ten adversary types (i.e.,
|Ω| = 10), and a patrol length equal to half the number of targets rounded down

(i.e. � |T |
2 �). We varied the dimensions of the square grid from 5× 5 to 8× 8 and

created thirty randomly generated game instances for each grid size.

7.1 Linear Approximation

In MIDAS, we use a linear approximation to estimate the nonlinear SUQR be-
havioral model. The classic tradeoff when using approximation techniques is
between solution quality and runtime. Thus, it is important to understand how
the granularity of the approximation affects the performance of MIDAS. Figure
1(a) shows how varying the number of segments (5, 10, and 20) used in the
linear approximations impacts the defender’s utility. The x-axis indicates the
size of the grid, while the y-axis is the maximin utility obtained by the defender
mixed strategy computed by MIDAS. For all grid sizes, we observe that increas-
ing the number of segments results in higher utility for the defender as we would
expect. In particular, going from 5 to 10 segments has a significant impact on
the defender utility, whereas going from 10 to 20 segments produces diminishing
returns and a much smaller improvement.

The other half of the tradeoff is how the number of segments impacts the
runtime of MIDAS. Increasing the number of segments increases the number of
variables and constraints in MIDAS, leading to a larger optimization problem
which presumably would take longer to solve. The results from varying the num-
ber of segments used in the linear approximation are shown in Figure 1(b). The
x-axis again indicates the size of the grid, while the y-axis is now the runtime of
MIDAS in seconds. For grid sizes 5 × 5 through 7 × 7, we see that the runtime
increases as the number of segments is increased. However, for the 8 × 8 grid,
MIDAS actually runs faster for 10 and 20 segments than it does with 5 segments.
One possible explanation is that while each iteration of MIDAS algorithm takes
longer to compute with more segments, the quality of the cuts generated by the
separation oracle improves as the feasible marginal space is represented with
higher granularity. Closer examination of the data for the 8 × 8 grid suggests
that this is indeed the case as MIDAS with 5 segments averages with 125 calls
to the separation oracle and patrol generation slave, while 10 and 20 segments
average 82 and 70, respectively.

In practice, it is up to the end user to determine the right tradeoff between ap-
proximation quality and runtime. Our numerical experiments here offer guidance
in this regard.
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Fig. 1. Effect of the number of piecewise linear segments on MIDAS

7.2 Adversary Types

The primary purpose of MIDAS is to provide a scalable approach for generating
game-theoretic patrols protecting against a set of adversaries with complex hu-
man behavior models such as SUQR. Therefore, we want to evaluate the effect
of the number of adversary types on MIDAS to ensure that it serves its intended
function. In Figure 2(a), we present the results for the defender maximin utility
obtained by varying the number of adversary types on different grid sizes. Given
that MIDAS computes a robust maximin strategy, we would expect that the
defender utility monotonically decreases as the set of adversary types expands,
as each additional type could present a new possible worst case for the defender.
While overall this trend holds, we occasionally observe that the defender utility
increases as the size of Ω is increased. One possible explanation may be the inter-
action between the linear approximation and the robust maximin formulation.
Using 5 piecewise segments may be leading to a coarse approximation in which
the monotincity properties no longer hold. As with the number of piecewise
linear segments, we would expect that increasing the number adversary types
would also lead to an increase in the runtime. In Figure 2(b), we present the
runtime results for MIDAS as the size of Ω is increased, which fall in line with
our expectations. In particular, for the 8 × 8 grid we see a significant runtime
increase as Ω is expanded. However, we also see that the runtimes are relatively
constant for a small number of targets.
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Fig. 2. Effect of the number of adversary types on MIDAS

7.3 Approach Comparison

Thus far, we have evaluated the performance of MIDAS as the scale of security
games is increased with respect to size of the grid or the size of Ω. Now we
want to compare how well MIDAS performs against other approaches that have
introduced for solving security games with multiple boundedly rational adver-
saries. The first approach we will compare against is Average, in which a single
adversary type ωavg is constructed by averaging the weight vectors of the adver-
sary types in Ω. After obtaining ωavg, we can use MIDAS to solve the security
game for Ω = {ωavg}. The second approach we will compare against is Marginal,
which is the robust maximin formulation from [5] that ignores resource assign-
ment constraints to produce a marginal coverage distribution over the targets.
To compute the Marginal strategy, we run MIDAS for a single iteration which
produces a marginal defender strategy without considering resource assignment
constraints that is then mapped into a probability distribution over patrols using
the one-norm projection. The third approach is Robust which involves running
the MIDAS algorithm to completion.

In Figure 3(a), we compare the worst case defender utility of the three ap-
proaches against sets of varying numbers of boundedly rational adversaries. The
x-axis shows the number of adversary types in Ω, while the y-axis indicates the
worst case defender utility of the strategies computed by the different approaches
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Fig. 3. Comparison of three approaches for handling multiple adversary types

against Ω. Perhaps unsurprisingly, the Average approach performs the worst out
of the three across all sizes of Ω. The defender is optimizing against an artifi-
cially constructed adversary type ωavg that is not in the setΩ. By not considering
the extreme points in Ω, the resulting defender’s strategy is highly susceptible
to being exploited by at least one adversary type which would define the worst
case defender utility. TheMarginal approach shows improvement by being robust
against all the types in Ω, even while it initially ignores the resource assignment
constraints. Finally, Robust uses MIDAS to its full potential and shows additional
benefit of considering resource assignment constraints by outperformingMarginal
for all sizes of |Ω|.

In addition to defender utility, runtime can provide another point of compar-
ison between the three approaches, which we analyze in Figure 3(b). Here the
x-axis again indicates the number of adversary types in Ω, while the y-axis is
now the runtime needed to generate the defender’s strategy using each approach.
One would expect that Average, considering one adversary type, would run faster
than Robust, considering |Ω| adversary types. By considering more types, the
defender’s optimization becomes larger with more variables and constraints. In-
deed, we observe that Robust takes longer than Average for all sizes of Ω. The
gap between the two approaches seems to grow as the number of adversaries is
increased, particularly for |Ω| = 80. However, the runtime improvement of Av-
erage is likely not enough to make up for the poor solution quality in real-world
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domains. Meanwhile, Marginal produces an essentially fixed runtime by solving
only a single iteration of MIDAS and thus requires the least amount of runtime
between the three approaches. Given the high stakes of real-world security do-
mains, it is easy to imagine scenarios where security agencies would prefer the
improved solution quality of Robust over the improved runtime of Marginal.

8 Conclusion

The use of bounded rationality models like QR and SUQR in security games is
becoming increasingly popular in order to generate strategies that perform better
against real human adversaries. These models raise two main research challenges:
(i) scalability when handling resource assignment constraints and (ii) robustness
when handling multiple boundedly rational adversaries. Up to this point, previ-
ous work has addressed these challenges individually. This paper addresses both
scalability and robustness simultanesouly by introducing a new algorithm, MI-
DAS. The key feature of MIDAS is the combination of incremental cut generation
with a robust minimax formulation. Our experiments demonstrate that MIDAS
can scale up to security games with complex resource allocation constraints in
the form of spatio-temporal patrols. Additionally, MIDAS outperforms previ-
ous approaches for protecting against multiple adversaries by providing better
solution quality guarantees in terms of worst-case performance. The overall per-
formance of MIDAS suggests that it represents the state of the art for complex
security game with boundedly rational adversaries.
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