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Abstract. The recent trends towards outsourcing data to the Cloud
as well as various concerns regarding data integrity and availability cre-
ated an increasing interest in enabling secure Cloud data-centers. Many
schemes addressing data integrity issues and complying with various re-
quirements came to place: high scheme efficiency, stateless verification,
unbounded use of queries and retrievability of data. Yet, a critical ques-
tion remains: how to use these schemes efficiently, i.e. how often should
data be verified. Constantly checking is a clear waste of resources but
only checking at times increases risks. This paper attempts to resolve
this thorny issue by formulating the data integrity check problem as a
non-cooperative game and by performing an in-depth analysis on the
Nash Equilibrium and the engineering implications behind. Based on
our game theoretical analysis, the course of action was to anticipate the
Cloud provider’s behavior; we then derive the minimum verification re-
source requirement, and the optimal strategy of the verifier. Finally, our
game theoretical model is validated by showing correctness of the ana-
lytical results via simulation on a case study.

Keywords: Cloud computing, Game theory, Data integrity, Data avail-
ability, Nash equilibrium.

1 Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction [11].

However, all the benefits brought by the cloud, such as lower costs and ease of
use, come with a tradeoff. Users will have to entrust their data to a potentially
untrustworthy cloud provider (CP). As a result, cloud security has become an
important issue for both industry and academia [2].

One important security problem with cloud data storage is data integrity and
availability, since the client lacks control over his data, entailing difficulties in
ensuring that data stored in the Cloud are indeed left intact. Moreover, the
storage service provider, which experiences Byzantine failures occasionally, may
decide to hide data errors from the clients for his own benefit. On top of that,
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for both money and storage space saving purposes, the service provider might
deliberately delete rarely accessed data files that belong to an ordinary client.

In order to solve these problems, many verification schemes are provided in
the literature [10]. In all these works, it has taken major efforts to design solu-
tions that meet various requirements: low time complexity, stateless verification,
unbounded use of queries and retrievability of data, etc. In spite of these numer-
ous features, knowing how to use these schemes efficiently remains a major issue.
Indeed, it would be a waste of time and resources if the verifier checks the data
all the time while the CP is being honest. On the other hand, it would be risky
if the verifier checks the data just a few times while the CP is being dishonest.
The best approach for the verifier is to find the right frequency of verification
for the minimum cost, while maintaining accuracy and consistency of data. The
natural way to achieve this last condition is to use game theory, by modeling the
process of data verification as a game that contains two players, the defender
(verifier) and the attacker (CP).

Considering the role of the verifier, all the proposed schemes fall into two
categories: private verification, in which the client performs the auditing opera-
tion himself, and public verification, that consists in using a third party auditor
(TPA). In this paper, we focus on the latter, because in many cases, clients do
not know how to check data integrity, nor do they know which protocol they
should use. Moreover, a client who owns a considerable amount of outsourced
data (like a company) will have no incentive to check his data, as this process
requires considerable resources and time.

In such an environment, the major questions are: What is the expected be-
havior of a rational attacker (CP)? What is the optimal strategy of the defender
(TPA)?

In this paper, we answer these questions by developing a non-cooperative
game model of Cloud storage verification problem, analyzing the resulting equi-
libria, investigating the engineering implications behind the analytical results,
and then deriving the optimal strategy for the defender. It is worth noting that
the different cases taken into account in this work represent realistic situations,
in which a client expects a specific service level from the TPA as stated in his
contract with the TPA, which can be seen as an Audit Level Agreement.

Our main contributions can be summarized as follows:
1) We provide a game theoretical framework of cloud storage verification,

by analyzing as a first model the case of deterministic verification. Then, as
extensions, we study the case of the Leader/Follower game (Stackelberg game)
in the second model, and probabilistic verification in the third one.

2) For each model, we derive the expected behavior of a rational attacker,
the minimum verification resource requirements of the defender, as well as his
optimal strategy in terms of resource allocation.

The remainder of the paper is organized as follows: In Section 2, we describe
the technical background on which our work is based on. In Section 3, we study
the Nash equilibrium (NE) of the Cloud storage game for deterministic verifi-
cation. In Section 4, we explore several variants and extensions of the game, by
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analyzing the case of the Stackelberg game, and the case of probabilistic verifi-
cation. Section 5 provides numerical results of the game theoretical framework.
Finally, our concluding remarks are given in Section 6.

2 Technical Background

2.1 Integrity Verification Schemes

In recent years, a considerable amount of data integrity schemes were proposed
by different researchers, and have been gradually adapted to specific use cases
such as outsourced databases and Cloud Computing. Among these schemes,
Provable Data Possession (PDP) for ensuring possession of data, and Proof of
Retrievability (POR) for data possession and retrievability are the two main
directions explored by researchers.

The main idea of PDP is that a data owner generates some metadata infor-
mation for a data file to be used later for verification purposes. Many extensions
of this scheme managed to decrease the communication cost and complexity,
as well as to allow dynamic operations on data such as insertion, modification,
or deletion. Moreover, [18] and [16] proposed PDP schemes fitting requirements
specific to Cloud Computing.

The POR scheme is considered as a complementary approach to PDP. [9]
was among the first papers to consider formal models for POR schemes. In this
scheme, disguised blocks (called sentinels) are embedded into the data before
outsourcing. The verifier checks randomly picked sentinels which would be influ-
enced with a certain probability if data are corrupted. [10] gives a detailed survey
of the contributions of numerous extensions of the PDP and POR schemes.

The aforementioned schemes primarily focus on a single data file copy. Yet,
other schemes, such as [6], allow the verifier to check multiple copies of a data
file over multiple Cloud servers.

2.2 Approaches Related to Game Theory

Several works handle cloud-related problems using game theory. Most focus on
solutions such as resource allocation and management [8] or Cloud service negoti-
ation [17], while few papers addressed the problem of Cloud security [12,13]. [12]
addressed Cloud integrity issues by proposing a model where a client checks the
correctness of calculations made on the data by the CP. They considered the
case where for two CPs, the client sends a query to one of the two servers chosen
randomly, and with a fixed probability, he sends the query to the other server
as well.

Nix and Kantarcioglu also proposed in [13] to study the case of querying
one single cloud provider, since checking data at multiple CPs is prohibitively
expensive. [12,13] focused on checking that the queries sent to the CP are being
computed correctly, under the condition that the stored data is intact. On a side
note, they did not mention which type of verification protocol (deterministic
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or probabilistic) they used. Besides the Cloud, game theory has already been
applied to study network security [7] [1], intrusion detection [5], Botnet defense
[4], etc. The work presented in this paper was actually strongly inspired by [5].

3 Untrusted Cloud Storage Game for Deterministic
Verification

As a first step, we considered a basic model in which the data integrity verifica-
tion protocol is deterministic and always returns correct information. The main
problem of deterministic verification schemes is the fact that they are computa-
tionally expensive, since the TPA performs the verification process on the entire
data. After solving this game and finding its Nash Equilibrium (NE), which de-
scribes the optimal strategies of both players from which neither of them has
incentive to deviate unilaterally, we will progressively refine this model by taking
more realistic hypotheses into account.

3.1 Game Features

- Players: The game features two players, the auditor (TPA: third party auditor)
and the outsourced server (CP: Cloud provider).

- Information: The CP stores the client’s data D = {D1, D2, ..., DN}, with dif-
ferent importances and sizes. We consider that the TPA checks the data by using
a deterministic scheme guaranteeing a probability of detecting data modification
or deletion equal to 1.

- Actions: We consider mixed strategies where a probability is assigned to
each strategy of each player. Thus, for each data Di, the auditor may choose to
check its integrity and availability with probability ti that stems from a prob-
ability distribution t = {t1, t2, ..., tN}. On the other side, the CP can modify
or delete data Di with probability pi steming from a probability distribution
p = {p1, p2, ..., pN}. Both TPA and CP have resource constraints respectively
designated by T ≤ 1 and P ≤ 1.

- Payoffs: The two TPA possible actions are Check and Not Check. Mean-
while, the CP may Modify/Delete a data or not, hence possibly leading to Cor-
rupted/Unavailable data.

If the corrupted or unavailable data Di is not checked, then the CP gains Si,
which represents the size of the data, with S1 ≥ S2 ≥...≥ SN , while the TPA
loses data value and importance designated by Fi. If the TPA decides not to
verify, and the CP has the correct data, then both players will neither lose nor
gain anything.

Table 1. Cloud Storage Game with Deterministic Verification

CP \ TPA Check Not check

Correct/Available data 0 , −CtSi − CsSi 0 , 0

Corrupted/Unavailable data −CsSi − Si , −CtSi + Fi Si , −Fi
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Let CtSi be the cost of the verification process by the TPA, and CsSi be the
cost of executing the verification query by the Cloud Provider. Both costs are
proportional to the size of data Di.

If the TPA verifies the data whereas the CP has the correct data, we then
consider that the TPA should pay the cost of CP verification process CsSi, since
the data are intact. However, when the CP chose to modify or delete the data, the
TPA will gain Fi, which is the the importance of data Di, minus the verification
cost CtSi, while the CP will lose Si, minus the cost of verification CsSi. Table 1
illustrates the matrix payoff of both players (CP/TPA) in the strategic form.

The overall payoffs of the TPA (Ut) and the CP (Up) are defined as follows:

Ut(t, p) =

N∑

i=1

ti[pi(2Fi + CsSi)− (CtSi + CsSi)]−
N∑

i=1

piFi

Up(t, p) =

N∑

i=1

piSi[1− ti(2 + Cs)]

We finally define the Cloud storage verification game G.
Definition 1: the two players Cloud storage verification game G is defined as:

Players: Attacker (CP), Verifier (TPA).
Strategy type: Mixed strategy.
Strategy set: Attacker:

WP =

{
p : p ∈ [0, P ]N ,

N∑

i=1

pi ≤ P

}

Verifier:

WT =

{
t : t ∈ [0, T ]N ,

N∑

i=1

ti ≤ T

}

Payoff: Up for attacker, Ut for verifier.
Game rule: The attacker/verifier selects his strategy

p/t ∈ WP /WT to maximize Up/Ut.

3.2 Solving the Game

For non-cooperative games like ours, the most essential solution concept is the
Nash Equilibrium (NE), which can be considered as the optimal agreement be-
tween the players, i.e. an equilibrium in which no player has any incentive to
unilaterally deviate from his current strategy in order to maximize his payoff.

1) Data Distribution

Since the attacker has limited attack resources, a relevant approach consists in
determining if a rational attacker will target any data, or if he will tend to
focus on specific data only. This question will be studied before starting the NE
analysis.
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First, we introduce two sets that will be of use to clarify data distribution:
the attractive set DA, and the unattractive set DU . In order to do so, we
will introduce the notations N = {1, ..., N}, NA = {i ∈ N/Di ∈ DA}, and
NU = {i ∈ N/Di ∈ DU}.

Definition 2: The two sets DA and DU are defined as follows:

We set C =
|NA|

(
1

2+Cs

)− T
∑

j∈NA

(
1

2Sj+CsSj

)

{
Si > C, ∀i ∈ NA

Si < C, ∀i ∈ NU

where |NA| is the number of data contained in NA. The case where Si = C does
not need to be taken into account, since it happens with very low probability
and since these values rely on estimations. Therefore, should this case happen,
replacing Si with a slightly different estimation Si+ ε or Si− ε would be enough
to solve the situation.
Lemma 1: Given a Cloud provider that stores N Data, NA is uniquely deter-
mined and consists of NS data with the biggest sizes, such that:

1) if SN >
N
(

1
2+Cs

)− T
∑N

j=1

(
1

2Sj+CsSj

) , then NS = N .

2) if SN <
N
(

1
2+Cs

)− T
∑N

j=1

(
1

2Sj+CsSj

) , NS is determined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SNS >
NS

(
1

2+Cs

)− T
∑NS

j=1

(
1

2Sj+CsSj

)

SNS+1 <
NS

(
1

2+Cs

)− T
∑NS

j=1

(
1

2Sj+CsSj

)

Proof: See Appendix I.

Now we will study the implication of data distribution on the players’ deci-
sions.

Theorem 1: A rational attacker has no incentive to attack any data Di ∈ DU .

Proof: See Appendix II.

The theorem shows that the attacker only needs to attack data that belong
to DA in order to maximize his payoff. From this point, the defender has no
incentive to verify data that will not be attacked. The meaning of the theorem
is to assert the existence of data that are too small to be worth attacking to free
significant space. As a consequence, it would be a waste of resource for the TPA
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to verify the integrity of such data.

Guideline 1: A rational defender has only to verify the integrity and the
availability of data in DA.

2) NE Analysis

Definition 3: A strategy profile (p∗, q∗) is a Nash Equilibrium of the Cloud
storage verification game G, when both players (CP and TPA) cannot improve
their payoff by unilaterally deviating from their current strategy.

As G is a two-player game with mixed strategies, it admits at least one NE,
according to Theorem 1 in [14]. Let (t∗, p∗) denote the NE, it holds that:

0≤p∗i (2Fi+C
sSi)−(CtSi+C

sSi)=p∗j (2Fj+C
sSi)−(CtSi+C

sSi) ≥
p∗k(2Fk+C

sSi)−(CtSi+C
sSi) ∀i,j,k ∈ N , t∗i , t

∗
j > 0, t∗k = 0 (1)

Equation (1) can be shown by noticing the TPA payoff function. Indeed, if
the TPA gain when verifying Dk is lower than when verifying Di, then in order
to maximize his payoff, the TPA will not have incentive to verify Dk and will
set tk = 0. The same thing remains valid for the CP, and by noticing his payoff
function, it holds that:

0 ≤ Si(1− 2t∗i )− t∗iC
sSi = Sj(1− 2t∗j )− t∗jC

sSi ≥
Sk(1 − 2tk)− tkC

sSi ∀i,j,k ∈ N , p∗i , p
∗
j > 0, p∗k = 0 (2)

These two equations allow us to find the NE, which we study in two different
cases according to the players resource constraints. The NE is hence defined in
the following cases:

Case 1:
∑

i∈N
t∗i = T and

∑

i∈N
p∗i = P :

In this case, both TPA and CP use all their resources in order to verify/attack
data. The game can be seen as a resource allocation problem, in which each player
seeks to choose the most profitable strategy.

By combining (1) and (2), we get the NE displayed hereby:

t∗i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T − NS

2 + Cs
+ Si

∑NS

j=1

(
1

2Sj + CsSj

)

(2Si + CsSi)
∑NS

j=1

(
1

2Sj + CsSj

) , i ∈ NA

0, i ∈ NU

p∗i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P −∑NS

j=1

(
(Ct + Cs)(Sj − Si)

2Fj + CsSj

)

(2Fi + CsSi)
∑NS

j=1

(
1

2Fj + CsSj

) , i ∈ NA

0, i ∈ NU
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The necessary condition for the obtained result to be a NE is:
{
p∗i (2Fi + CsSi)− (CtSi + CsSi) ≥ 0,

Si[1− t∗i (2 + Cs)] ≥ 0 i ∈ NA

=⇒

⎧
⎪⎪⎨

⎪⎪⎩

P

Ct + Cs
≥ ∑NS

i=1

⎛

⎝ 1

2Fi
Si

+ CS

⎞

⎠

NS ≥ T (2 + Cs)

It is worth noting that Ut(t
∗, p∗)/Up(t

∗, p∗) is monotonously increasing in
T/P , which means that the more resources are available to both players, the
more payoff they will get.

This case is actually the most realistic situation to be considered, for both
the TPA and the CP. The number of data that are usually outsourced in the
Cloud is high enough to prevent both the attacker and the verifier from targeting
every data. Actions, both in attack and verification, are therefore limited to the
attractive data set DA.

Case 2:
∑

i∈N
t∗i < T and

∑

i∈N
p∗i < P :

In this case, both the CP and the TPA have sufficient resources, so they do
not use up all their resources to respectively attack and verify data. Noticing Ut

and Up, we have:

{
Si(1 − 2t∗i − t∗iC

s) = 0
p∗i (2Fi + CsSi)− (CtSi + CsSi) = 0,

i ∈ N

=⇒ NE =

⎧
⎪⎨

⎪⎩

t∗i=
1

2 + Cs
, i ∈ N

p∗i=
CtSi + CsSi

2Fi + CsSi
, i ∈ N

At the NE, we have:
⎧
⎪⎨

⎪⎩
Ut(p

∗, t∗) = −
N∑

i=1

(
Fi (C

tSi + CsSi)

2Fi + CsSi

)

Up(p
∗, t∗) = 0

In this case, the necessary condition for this result to be a NE isN < T (2+Cs).
Lemma 1 then states that NS = N , which means that DU = ∅. This is an
expected result since both players have enough resources to target any data.

Moreover, from the above utility, it appears that having sufficient resources
drags the utility of the attacker to zero, and leads the defender to be able to face
greater risks by verifying more valuable data. The fact that the NE does not
depend on the available resources is therefore consistent. Finally, the NE values
show that the TPA will spend the necessary amount in order to prevent the CP
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from gaining anything. In other words, the CP cannot expect to gain anything
when the TPA has enough resources to verify all the outsourced data.

However, for medium and large companies, it is very unlikely that this case
could actually occur given the amount and the wide diversity of data that are
usually outsourced.

In the previous analysis, we identified the specific amount of resources that
both the TPA and the CP should allocate for respectively verifying and attacking
the attractive data set, in two different cases. A numerical analysis of this model
is provided in section V.

However, this model obviously lacks some more realistic hypotheses, such as
taking into account the fact that both players are more likely to act one after
the other rather than at the same time, or taking into account a probabilis-
tic integrity checking protocol instead of a deterministic one. The next section
therefore considers such extensions of our primary model.

4 Extensions

4.1 Cloud Storage for Stackelberg Game

In the previous model, we considered that the two players take their decisions
locally and simultaneously. However, a player can follow a certain strategy taking
into account his opponent’s decision (meaning that the follower makes his choice
only after knowing the other’s strategy). In this extended model, we address this
case by modeling the interaction between TPA and CP as a Stackelberg game.
The leader begins by choosing his best strategy, then the follower, after being
informed about the leader’s choice, chooses his own strategy which will maximize
his payoff. We define the Stackelberg game for the Cloud storage verification like
this: In this definition, the TPA is assumed as a leader, and the CP as a follower.

Players: Leader : verifier side;
Follower : attacker side;

Strategy type: Mixed strategy.
Strategy: t ∈ WT and p ∈ WP

Payoff: UT for leader and UP for follower
Game rule: the leader decides t first, the follower

decides p after knowing t.

Follower’s problem:
According to the leader’s chosen strategy, the follower chooses the strategy

that maximizes his payoff (best response). Formally, for any chosen strategy t,
the follower solves the following optimization problem:

p(t) = arg max
p∈WP

Up(p, t)

Leader’s problem:
The leader chooses his strategy which will maximize his payoff, given the

follower will subsequently choose his best strategy. In other words, the leader
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Table 2. Payoff matrix of the lead-or-follow game in extensive form

TPA/CP Lead (pL) Follow (pF )

Lead

(tL)

Up = −δ
∑

i∈N

(
Si(C

t + Cs)(2 + Cs)
2Fi
Si

+Cs

)

Ut = −ε
∑

i∈N

(
(2Fi +CsSi)

2 +Cs

)

−
∑

i∈N
Fi

(
CtSi + CsSi

2Fi + CsSi
− ε

)

Up = 0

Ut = −
∑

i∈N

(
CtSi + CsSi

2 + Cs

)

−δ
∑

i∈N
(CtSi + CsSi)

Follow

(tF )

Up =
∑

i∈N
Si

(
CtSi + CsSi

2Fi + CsSi
− ε

)

Ut = −
∑

i∈N
Fi

(
CtSi + CsSi

2Fi +CsSi
− ε

)
Up = 0

Ut = 0

chooses his strategy that gives the maximum gain in the worst case scenario.
Formally, the leader solves the following optimization problem:

t(p) = arg max
t∈WT

Ut(p(t), t)

In most cases, Stackelberg games are solved by the backward induction tech-
nique. The solution consists of taking the follower’s best response strategy as a
function of the leader’s strategy. Then, giving follower’s best chosen response,
the leader chooses his best strategy. The obtained equilibrium is referred to as
a Stackelberg equilibrium (SE) or Stackelberg– Nash equilibrium (SNE).
Next, we address all possible cases, starting by considering the attacker as a
leader and the verifier as a follower, then the verifier as a leader and the attacker
as a follower, then we lastly examinate with the case when a player decides to be
a leader or a follower without knowing the adversary’s choice. In our study, we
focus on the scenario where the attacker and the verifier have sufficient resources.

1) Leader: Attacker side; Follower: Verifier side
As the attacker will choose his strategy before the verifier, we have to find

his best strategy subject to the constraint that the verifier makes a decision
according to his best response function. We first start solving the verifier’s best
response by performing backward induction as follows:

ti(t) =

⎧
⎪⎨

⎪⎩

= 0, pi < Hi, i ∈ N
∈ [0, 1], pi = Hi, i ∈ N
= 1, pi > Hi, i ∈ N

Where Hi =
CtSi + CsSi
2Fi + CsSi

.

By noticing the leader’s utility function
∑

i∈N piSi[1−ti(2+Cs)], we obtain the
following SNE :

{
tSi = 0, i ∈ N
pSi = Hi, i ∈ N
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The corresponding payoff of both TPA and CP is as follows:
{
Ut(t

S , pS) = −∑
i∈D Fi Hi, i ∈ N

Up(t
S , pS) =

∑
i∈D Si Hi, i ∈ N

The fact that Ut(t
S , pS) = Ut(t

′, pS), ∀t′ ∈ WT makes the above solution a
weak Stackelberg equilibrium. Hence, the leader risks getting a negative payoff
(Up(t

S , pS) = −∑
i∈N Hi

(
Si(1 + Cs)

)
), since the follower can set ti = 1 for all

targets instead of tS . This is clearly not acceptable for the attacker while his
payoff is 0 when doing nothing.

As a solution, the attacker has to decrease his strategy a little bit by setting
pi = pSi −ε = Hi−ε, where ε is a small positive number, in order to guarantee that
TPA will operate on tS . As a result, the payoff will be

∑
i∈N SiHi − ε

∑
i∈N Si,

which is slightly less than his desired payoff, since ε is sufficiently small.

2) Leader: Verifier side; Follower: Attacker side:
In this case, as the verifier plays the role of the leader, we will try to find the

maximum value of his minimum payoff. Following the same analysis of the first
case, The SNE is:

⎧
⎨

⎩
tSi =

1

2 + Cs
, i ∈ N

pSi = 0, i ∈ N
In order to make sure that the attacker will operate on ps, the verifier needs

to increase his strategy a little bit by setting ti = tSi + δ =
(
1/(2 + Cs)

)
+ δ,

where δ is a small positive number. In such a situation, the TPA payoff will be
−∑

i∈N
(
CtSi +CsSi/(2 +Cs)

)− δ
∑

i∈N (CtSi +CsSi), which is a slightly less
than his desired payoff at the SNE.

3) Lead or Follow :
Here we look at an interesting scenario where each player decides to choose

the leader or the follower strategy, without knowing his adversary’s choice. In
this case, we aim to address the following questions: Is being a leader a better
strategy than being a follower? Does the leader always control the behavior of
the follower?

We formulate the (lead or follow) Cloud storage verification game as follows:
the players are the verifier and the attacker; each player seeks to maximize his
payoff by operating either on the leader strategy that we denote by tL and pL,
respectively, or the follower strategy denoted by tF and pF , respectively. ∀i ∈ N ,
we have:

tLi =
1

2 + Cs
+ δ, tFi = 0, pLi = Hi − ε, pFi = 0

Table 2 shows the payoff of both the attacker and the verifier. We ignored the
terms that contain εδ due to their small value.

For the verifier, we can notice from Table 2 that the first row is strictly
dominated by the second row, which means that it is better off for the verifier
to be the follower. Hence, (pL, tF ) is the NE of the game; the case when the
attacker plays the role of the leader and the verifier follows.
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From the above result, we can notice that the NE of the game is more favorable
to the CP than the TPA, since the leader can control the behavior of the follower
and pushes him to keep silent. Nevertheless, the TPA (follower) can influence
the attacker’s strategy, since both the strategy and the payoff of the attacker
at the NE depends on the verification cost of the verifier. That being said, if
Ct � Fi; both pi and Up are very small at the NE.

For the TPA, we would like to mention that his strategy at the NE tFi = 0
does not mean that no defender is needed, since before reaching the equilibrium,
both players may try different strategies before choosing the one that maximizes
their payoff.

Guideline 2: The TPA should choose the follower strategy in order to max-
imize his payoff, while leader is the best strategy for the CP.

4.2 Cloud Storage Game for Probabilistic Verification

Unlike the previous models, in which we consider that the TPA uses a deter-
ministic verification protocol that guarantees a probability of detecting data
modification or deletion equal to 1, in this extended model, we analyze the case
of a probabilistic verification protocol that guarantees a detection probability
inferior to one (a < 1) such as [3,9,15], since the TPA only performs verification
on some parts of the data, in order to alleviate the verification cost. This means
that there is a possibility that the TPA could not detect the incorrectness of the
data with probability (1− a > 0). On top of that, we now consider that the CP
loses some storage cost when he does not attack the data while the TPA does
not verify it.

Table 3 shows the matrix payoff of both players (CP/TPA) in the following
extensive form: when the CP does not attack the data while the TPA does not
verify it, the CP loses a payoff proportional to the size of the data, denoted
by BSi, where B ∈ [0, 1]. If the TPA verifies the data when it happens to be
corrupted, then the TPA will gain (-CsSi+Fi) while CP gets (-CsSi-Si), with
probability a. With probability (1 − a), the TPA has to pay the cost of the
verification that is executed in both parts and also loses the data size, which
means (-CsSi-C

tSi-Fi) while CP gains (-CsSi+CsSi+Si) = Si.
The utility functions of CP and TPA are defined as follows:

Ut(t, p) =
∑

i∈N
ti

[
pia

(
2Fi + CsSi

)− (
CtSi + CsSi

)]−
∑

i∈N
piFi

Table 3. Cloud storage game for probabilistic verification

CP \ TPA Check Not check

Available/
Correct data

Up = 0
Ut = −CtSi − CsSi

Up = −BSi

Ut = 0

Unavailable/
Corrupted data

Up = (1− 2a)Si − aCsSi

Ut=−(1− 2a)Fi − (1− a)CsSi-C
tSi

Up = Si

Ut = −Fi
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Up(t, p) =
∑

i∈N
pi

[
ti
(−(B + 2a)Si − aCsSi

)
+ (1 +B)Si

]
−

∑

i∈N
(1− ti)BSi

For data distribution, we keep the same characteristics as in the first model, in
which data are distributed in two sets: the attractive setDA, and the unattractive
set DU . The sets NA and NU are defined as in section III as well.

Now, we will investigate the NE of the game, according to players resource
constraints. In this model, DA and DU are defined as follows.

Let W =
(1 +B) |NA| − T (B + a(2 + Cs))

(1 +B)
∑

j∈NA

1
Sj

.

Then : {
Si > W, ∀i ∈ NA

Si < W, ∀i ∈ NU

It is interesting to note that the detection rate a has a real influence on the
constitution of the data sets DA and DU , since it follows from the preceding
definition that DA grows as a increases. This remark can be interpreted as fol-
lows: when the detection rate is low, the CP can target the most interesting data
to corrupt without being detected, whereas with a high detection rate, the CP
will have to take more targets into consideration in order to mitigate the risk of
being detected.

As in section 3, the NE can be analyzed following two different cases, depend-
ing on the players resource constraints.

Case 1:
∑

i∈N
t∗i = T and

∑

i∈N
p∗i = P :

This case represents the most frequent situation, encountered when both play-
ers do not have enough resources to attack or defend every target.

The NE, obtained by a reasoning similar to section 3, is as follows:

t∗i=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T +
1 +B

B + 2a+ aCs

NS∑

j=1

(
Si − Sj

Sj

)

Si

∑NS

j=1

(
1

Sj

) , i ∈ NA

0, i ∈ NU
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p∗i=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P +
∑NS

j=1

(
(Ct + Cs)(Si − Sj)

a(2Fj + CsSj)

)

a(2Fi + CsSi)
∑NS

j=1

(
1

2Fj + CsSj

) , i ∈ NA

0, i ∈ NU

The necessary condition for the solution to be a NE is:
⎧
⎪⎪⎨

⎪⎪⎩

P

Ct + Cs
≥ ∑NS

i=1

⎛

⎝ 1

a
(
2Fi
Si

+ CS
)

⎞

⎠

NS(1 +B) ≥ T (B + a(2 + Cs))

In this case, as in the deterministic verification model, both players try to use
the maximum of their resources in order to maximize their payoff. Moreover,
calculating Ut(t

∗, p∗) shows, as expected, that improving the detection rate of
the protocol used by the TPA (i.e., increasing a) can increase his utility and
alleviate the attack intensity.

Case 2:
∑

i∈N
t∗i < T and

∑

i∈N
p∗i < P :

Both players have enough resources to attack and verify every data. The NE
is then:⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

t∗i=
1 +B

B + 2a+ aCs
, i ∈ N

p∗i=
CtSi + CsSi

a(2Fi + CsSi)
, i ∈ N

Where the necessary condition is N(1 +B) < T (B + a(2 + Cs)).
As shown in the payoff values at the NE given below, having sufficient re-

sources for both players is not suitable for the CP, who gets a negative payoff
due to the fact that he loses some storage cost even when he does not attack.
Since the TPA can target every data for verification, the CP has overall no
chance to gain anything when attacking a data, and also suffers some loss, at
least in this model, when doing nothing.

At the NE, the corresponding payoffs are indeed:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut(t
∗, p∗) = −∑N

j=1

(
Fi(C

tSi + CsSi)

a(2Fi + Cs)

)

Up(t
∗, p∗) = −∑N

j=1

[
BSi

(
1− (1 +B)

B + a(2 + Cs)

)]

It is also interesting to note that when the detection rate a increases, the
TPA payoff increases, and the CP payoff decreases, which is a consistent result
since a higher detection rate means that the TPA will have less failed verification
attempts, while it will be harder for the CP to behave fraudulently without being
detected.



Data Integrity and Availability Verification Game 301

From this analysis, we conclude that this theoretical model is realistic and
consistent, and we were able to deduce the optimal strategies for both players in
the two preceding cases, while putting into relief the importance of the detection
rate a in the data distribution as well as in the players payoffs. A numerical study
will now allow us to confirm these theoretical results.

5 Numerical Study

In this section, we validate the analytical results of the previous models by
performing a numerical study.

In order to simplify the analysis, we consider that a client stores 20 data
in the Cloud provider’s data center with different sizes and sensibilities. We
therefore consider that each data Di has a size Si and an importance Fi equal to
(21− i) ∗ 0.05, (i = 1, 2, ..., 20). As we mentioned earlier, the client delegates the
check process to a special third party auditor TPA, that is equipped with high-
performance verification modules and powerful processing capabilities. Thus,
we set Ct = Cs = 0.1 for the case of deterministic verification schemes, and
Ct = Cs = 0.01 for probabilistic schemes, since these schemes are much lighter,
in terms of complexity, than deterministic ones.

For the deterministic verification model, according to Definition 2, our data
are distributed into two sets: the first nine data belong to the attractive set DA,
whereas the remaining data are unattractive.

In the third model, where the verification process is probabilistic, we set B =
0.001. As expected, the data distribution is influenced by the probability of
detecting data tampering a. In the case where a = 0.9 the attractive data are
almost identical to the first model, since a is not so far from 1, while for a = 0.5
, the number of attractive data decreases to 5, until reaches 3 for a = 0.1.
This observation confirms our remark made in the previous section about the
effect of a on the size of the data sets DA and DU . To further evaluate our
analytical results, we investigate the case where TPA deviates from the NE. We
thus simulate 10000 random strategies for the TPA under the condition that
the CP chooses always his best response for each random strategy, in order to
maximize his payoff.

For the deterministic model, Table 5 shows the strategies and the utility
functions for both players at the NE, while Table 6 shows the payoffs of the
TPA when he deviates from the NE. Ut(t

r, p′)B is the best and the maximum
payoff that the TPA can gain, where tr is the random strategy for TPA, and p′

is the CP’s best response. Ut(t
r, p′)W is the worst and minimal gain for TPA,

while Ut(t
r, p′)A is the average of all 10000 random strategies.

Table 5 and 6 clearly show that the best strategy for the TPA that maximizes
his payoff is the NE, since Ut(t

r, p′)B < Ut(t
∗, p∗).

Fig.1 shows the utility functions of the TPA and the CP in the probabilistic
verification model, under different values of the detection rate a. The valuable
information that can be drawn here is that the TPA loss increases every time a
decreases, while the CP gains more payoff every time a decreases, due to the fact
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Fig. 1. Influence of the detection rate a on the TPA payoff in the probabilistic model

Table 4. Deterministic Verification Nash Equilibrium

The Defender (TPA) The Attacker (CP)

t∗1= 0.19189 p∗1= 0.10759
t∗2= 0.17692 p∗2= 0.10824
t∗3= 0.16030 p∗3= 0.10897
t∗4= 0.14172 p∗4= 0.10978
t∗5= 0.12081 p∗5= 0.11068
t∗6= 0.09712 p∗6= 0.11171
t∗7= 0.07004 p∗7= 0.11289
t∗8= 0.03880 p∗8= 0.11425
t∗9= 0.00235 p∗9= 0.11583
t∗10 − t∗20= 0 p∗10 − p∗20= 0

Ut(t
∗, p∗) = −0.77100 Up(t

∗, p∗) = 0.59702

that the more resources the CP uses to attack the first data in the attractive
set, the more space he gains. Moreover, it appears that the TPA gets less payoff
when he deviates from the NE.

These numerical results therefore corroborate our analysis of these theoretical
models, and prove the consistency of the NE concept as the optimal strategy
from which no player has any incentive to deviate in order to maximize his
payoff.

6 Conclusion

In this paper, we focused on the problem of verifying data integrity in the case
of data outsourced to an untrusted Cloud provider. We formulated the inter-
action between the verifier and the Cloud provider as a noncooperative game
with mixed strategies, before performing an in-depth analysis on a deterministic
model and on two extensions, namely the Stackelberg game for deterministic ver-
ification model, and a probabilistic verification model. Based on our analytical
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Table 5. TPA Deviation From NE in Deterministic Verification Model

Ut(t
r, p′)B Ut(t

r, p′)A Ut(t
r, p′)W

-0.79884 -0.89058 -1.01050

results, we presented the expected behavior of a rational attacker, then derived
the minimum verification resource requirement and the optimal strategy of the
defender. We were also able to validate our analytical results by performing
simulations.

However, the usual hypothesis of perfectly rational players limit the results
of this work to very experienced attackers and verifiers who had a thoughtful
approach of their actions. While not being unrealistic, given the fact that the
CP and TPA entities are both very rational players by nature, this hypothe-
sis remains a potential limitation to the superposition of this model with the
objective behaviour of such entities in the reality.

Moreover, this work does not take into account several variants of the situ-
ation, such as the introduction of a penalty symbolizing the reputation loss in
case of fraud from the CP, possibility to outsource numerous versions of a data
to a CP, or the possibility for a CP to store multiple copies of each data with
replication. Also, both the TPA and the CP can target more than one data at
a time, which can be represented by a multiple-shot game. These variants will
be the subject of future works that will aim at deepening this study in order to
refine the model and integrate the hypotheses that are closer to reality.
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Appendix I : Proof of Lemma 1

Here, we will prove that NA contains d data with the biggest sizes, and d = NS

by showing that neither d < NS nor d > NS is achieved.
In this proof, We need to only focus on the second case of the lemma, since

the first case is straightforwardly evident. Before delving into the proof that NA

is unique, we should mention that it clearly appears that the NS data with the
biggest sizes that satisfy the second case of the lemma constitute the attractive
data set NA, since the very definition of NA given in Definition 2 is satisfied.

We first show that if i ∈ NA, then ∀j < i (Sj ≥ Si), it holds that j ∈ NA.
Suppose this is not the case. Then, there exist j0 < i (Sj0 ≥ Si) such that
j0 ∈ N −NA. It follows that Sj0 ≤ C. On the other hand, from Definition 2, we
have Si > C. It follows that Si > Sj0 , which contradicts with Sj0 ≥ Si. Hence,
NA consist of the d data with the biggest sizes.

Now, we have to prove that d = NS . Suppose first that d < NS . From case 2
of the Lemma, we have:
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SNS >
NS

(
1

2+Cs

)− T
∑NS

j=1

(
1

2Sj+CsSj

) =⇒ SNS

∑NS

j=1

(
1

2Sj+CsSj

)
> NS

(
1

2+Cs

)− T

=⇒ SNS

∑NS

j=1

(
1

2Sj+CsSj

)
− 1

2+Cs (NS − d) > d 1
2+Cs − T .

Noticing that SNS ≤ Si, ∀i ≤ NS and d < NS (i.e. Sd+1 ≥ SNS ), we have:

Sd+1

d∑

j=1

(
1

2Sj+CsSj

)
≥ SNS

d∑

j=1

(
1

2Sj+CsSj

)

≥ SNS

NS∑

j=1

(
1

2Sj+CsSj

)
− SNS

NS∑

j=d+1

(
1

2Sj+CsSj

)

> SNS

∑NS

j=1

(
1

2Sj+CsSj

)
− 1

2+Cs (NS − d) > d 1
2+Cs − T

Hence, Sd+1 >
d
(

1
2+Cs

)− T
∑d

j=1

(
1

2Sj+CsSj

) . On the other hand, from Definition 2, we have

Sd+1 ≤ (
d
(
(1/(2+Cs)

)−T )/(∑d
j=1

(
(1/2Sj+CsSj)

))
. This contradiction shows

that it is impossible that d < NS. Similarly, we can show that it is impossible
that d > NS . Hence, d = NS is uniquely determined, and so is NA. It follows
obviously that NU is also uniquely determined.

Appendix II : Proof of Theorem 1

The proof consists of showing that regardless of the verifier’s strategy t, for any
p ∈ WP such that ∃i ∈ NU , pi > 0, we can construct another strategy p′ such
that p′i = 0, ∀i ∈ NU and Up(t, p) < Up(t, p

′).
If SN ≥ C, then NU = ∅; the theorem holds evidently. We focus in our proof in
the case where SN < C, in other words, NU �= ∅.
We consider a vector t0 = (t01, t

0
2, ..., t

0
N ) where:

t0i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T − NS

2 + Cs
+ Si

∑NS

j=1

(
1

2Sj + CsSj

)

(2Si + CsSi)
∑NS

j=1

(
1

2Sj + CsSj

) , i ∈ NA

0, i ∈ N −NA

It holds that t0i ≥ 0 and
∑NS

i=1 t
0
i = T . Let t = (t1, t2, ..., tN ) denote the

verification probability distribution of the verifier, with
∑NS

i=1 ti ≤ T . By the
Pigeon Hole Principle, it holds that ∃m ∈ NA such that tm ≤ t0m.
We now consider any attacker strategy p = (p1, p2, ..., pN ) ∈ WP satisfying∑

i∈NU
pi > 0, i.e; the attacker attacks at least one target outside the attractive

data set with nonzero probability. We construct another attacker strategy profile
p′ based on p such that:
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p′i =

⎧
⎪⎪⎨

⎪⎪⎩

pi, i ∈ NA and i �= m

pm +
∑

j∈NU

pj , i = m

0, i ∈ NU

By comparing the attacker payoff at p and p′, noticing that ∀i ∈ NU ,

Si <
NS

(
(1/(2+Cs)

)
−T

)

(
∑NS

j=1

(
(1/2Sj+CsSj)

) , we obtain:

UP (p)− UP (p
′) =

∑

i∈N
piSi

(
1− ti

(
2 + Cs

))−
∑

i∈N
p′iSi

(
1− ti

(
2 + Cs

))

=
∑

i∈N
piSi

(
1− ti

(
2 + Cs

))

−
⎛

⎝
∑

i∈NA,i�=m

piSi

(
1− ti

(
2 + Cs

))
+

(
pm +

∑

i∈N−NA

pi

)
Sm

(
1− tm

(
2 + Cs

))
⎞

⎠

=
∑

i∈N−NA

piSi

(
1− ti

(
2 + Cs

))−
∑

i∈N−NA

piSm

(
1− tm

(
2 + Cs

))

≤
∑

i∈N−NA

piSi

(
1− ti

(
2 + Cs

))−
∑

i∈N−NA

piSm

(
1− t0m

(
2 + Cs

))

=
∑

i∈N−NA

piSi

(
1− ti

(
2 + Cs

))−
∑

i∈N−NA

pi

⎛

⎝ NS
1

2+Cs − T
∑NS

j=1

(
1

2Sj+CsSj

)

⎞

⎠

≤
∑

i∈N−NA

piSi −
∑

i∈N−NA

pi

⎛

⎝ NS
1

2+Cs − T
∑NS

j=1

(
1

2Sj+CsSj

)

⎞

⎠ < 0

Hence, the strategy p′ gives more payoff to the CP than the strategy p. A
rational CP therefore has no incentive to attack any data Di ∈ DU .
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