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Abstract. This paper introduces a new game-theoretic framework and algorithms
for addressing opportunistic crime. The Stackelberg Security Game (SSG), which
models highly strategic and resourceful adversaries, has become an important
computational framework within multiagent systems. Unfortunately, SSG is ill-
suited as a framework for handling opportunistic crimes, which are committed
by criminals who are less strategic in planning attacks and more flexible in ex-
ecuting them than SSG assumes. Yet, opportunistic crime is what is commonly
seen in most urban settings.We therefore introduce the Opportunistic Security
Game (OSG), a computational framework to recommend deployment strategies
for defenders to control opportunistic crimes. Our first contribution in OSG is a
novel model for opportunistic adversaries, who (i) opportunistically and repeat-
edly seek targets; (ii) react to real-time information at execution time rather than
planning attacks in advance; and (iii) have limited observation of defender strate-
gies. Our second contribution to OSG is a new exact algorithm EOSG to optimize
defender strategies given our opportunistic adversaries. Our third contribution is
the development of a fast heuristic algorithm to solve large-scale OSG problems,
exploiting a compact representation.We use urban transportation systems as a
critical motivating domain, and provide detailed experimental results based on a
real-world system.

1 Introduction

Security is a critical societal challenge. We focus on urban security: the problem of pre-
venting urban crimes. The Stackelberg Security Game (SSG) was proposed to model
highly strategic and capable adversaries who conduct careful surveillance and plan at-
tacks [1, 2], and has become an important computational framework for allocating secu-
rity resources against such adversaries. While there are such highly capable adversaries
in the urban security domain, they likely comprise only a small portion of the overall
set of adversaries. Instead, the majority of adversaries in urban security are criminals
who conduct little planning or surveillance before “attacking” [3]. These adversaries
capitalize on local opportunities and react to real-time information. Unfortunately, SSG
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is ill-suited to model such criminals, as it attributes significant planning and little exe-
cution flexibility to adversaries.

Inspired by modern criminological theory [3], this paper introduces the Opportunis-
tic Security Game (OSG), a new computational framework for generating defender
strategies to mitigate opportunistic criminals. This paper provides three key contribu-
tions. First, we define the OSG model of opportunistic criminals, which has three major
novelties compared to SSG adversaries: (i) criminals exhibit Quantal Biased Random
Movement, a stochastic pattern of movement to search for crime opportunities that con-
trasts with SSG adversaries, who are modeled as committed to a single fixed plan or
target; (ii) criminals react to real-time information about defenders, flexibly altering
plans during execution, a behavior that is supported by findings in criminology litera-
ture [4]; (iii) criminals display anchoring bias [5], modeling their limited surveillance
of the defender’s strategy. Second, we introduce a new exact algorithm, Exact Oppor-
tunistic Security Game (EOSG), to optimize the defender’s strategy in OSG based on
use of a markov chain. The third contribution of this work is a fast algorithm, Compact
OPportunistic Security game states (COPS), to solve large scale OSG problems. The
number of states in the Markov chain for the OSG grows exponentially with the num-
ber of potential targets in the system, as well as with the number of defender resources.
COPS compactly represents such states, dramatically reducing computation time with
small sacrifice in solution quality; we provided a bound for this error.

Thus, while OSG does share one similarity with SSG — the defender must commit
to her strategy first, after which the criminals will choose crime targets — the OSG
model of opportunistic adversaries is fundamentally different. This leads us to derive
completely new algorithms for OSG. OSG also differs fundamentally from another im-
portant class of games, pursuit-evasion games (PEG) [6]; these differences will be dis-
cussed in more depth in the related work section.

While OSG is a general framework for handling opportunistic crime, our paper will
use as a concrete example crime in urban transportation systems, an important chal-
lenge across the world. Transportation systems are at a unique risk of crime because
they concentrate large numbers of people in time and space [7]. The challenge in con-
trolling crime can be modeled as an OSG: police conduct patrols within the transporta-
tion system to control crime. Criminals travel within the transportation system for such
opportunities [8], usually committing crimes such as thefts at stations, where it is easy
to escape if necessary [9]. These opportunistic criminals avoid committing crime if they
observe police presence at the crime location.

In introducing OSG, this paper proposes to add to the class of important security
related game-theoretic frameworks that are widely studied in the literature, including
the Stackelberg Security Games and Pursuit Evasion Games frameworks. We use an
urban transportation system as an important concrete domain, but OSG’s focus is on
opportunistic crime in general; the security problems posed by such crime are relevant
not only to urban crime, but to other domains including crimes against the environment
[10], and potentially to cyber crime [11, 12]. By introducing a new model and new
algorithms for this model, we open the door to a new set of research challenges.
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2 Related Work

In terms of related work, there are three main areas to consider. First are Pursuit-Evasion
Games (PEG), which model a pursuer(s) attempting to capture an evader, often where
their movement is based on a graph [6]. However, PEG fail to model criminals who
opportunistically and repeatedly strike targets as modeled using QBRM in OSG. Fur-
thermore, in PEG, a pursuer’s goal is to capture an evader while in OSG, the defender’s
goal is to minimize crime; additionally in PEG, the evader’s goal is to avoid the pursuer
and not seek crime opportunities as in OSG. These critical differences in behaviors of
defenders and adversaries lead to new algorithms, i.e., EOGS and COPS, for OSG, that
are fundamentally different from algorithms for PEG.

Second are SSG [13–15], which use a model of highly strategic adversaries to gener-
ate randomized patrol strategies. The SSG framework has been successfully applied in
security domains to generate randomized patrol strategies, e.g., to protect flights [2], for
security in the cyber realm [11, 12], and for counter-terrorism and fare evasion checks
on trains [16, 17]. Recent work in SSG has begun to consider bounded rationality of
adversaries [18] and incorporate some limited flexibility in adversary execution [15].
However, SSG [13–15], again, fails to model criminals who use real-time information
to adjust their behavior in consecutive multiple attacks. In SSG, attackers cannot use
real-time observation to decide whether to attack at the current time, nor can they use it
to update beliefs and plan for their next consecutive attacks. Furthermore, SSG does not
investigate efficient algorithms of deriving defender strategies against such opportunis-
tic criminals. The Adversarial Patrolling Game (APG) [19], which is a variant of SSG,
does consider the attacker’s current observation. However, this game does not consider
multiple consecutive attacks. It fails to model attacker’s movement during multiple at-
tacks and therefore the influence of current observation on future movement. Recent
research has focused on applying game theory in network security [20], especially in
communication and computer networks [21, 22]. However, these works again do not
consider the flexibility and real-time adjustment of attackers under Stackelberg settings.
Besides, the physical constraints (e.g., travel time between targets) in OSG do not exist
in communication networks.

A third thread of recent research has made inroads in the modeling of opportunistic
criminal behavior, and in how security forces might defend against such adversaries.
In [23] burglars are modeled as biased random walkers seeking “attractive” targets, and
[24] follows up on this work with a method for generating effective police allocations to
combat such criminals. However, these works make the extreme assumption that crim-
inals have no knowledge of the overall strategy of the police, and their behavior is only
affected by their observation of the current police allocation in their immediate neigh-
borhood. Also, in [24] police behave in a similarly reactionary way, allocating their
resources in an instantaneously optimal way in response to the current crime risk distri-
bution rather than optimizing over an extended time horizon. Furthermore, in [24] there
is no notion of the “movement” of police - rather, the distribution of police officers are
chosen instantaneously, with no regard for the mechanics of exactly how the allocation
may transform from one time step to the next. Our current approach is an attempt to
generalize these threads of research.
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3 OSG Framework

OSG unfolds on a connected graph that can be seen to model a metro rail system (though
many other domains are also possible), where stations are nodes and trains connecting
two stations are edges. Fig. 1 shows a simple scenario with three fully connected sta-
tions. Stations and trains are collectively referred to as locations. Let the stations be
labeled 1, . . . , N , with N denoting the number of stations. The train from station i to
its neighboring station j is denoted as i → j. The number of locations is Nl > N , e.g.,
in Fig. 1, Nl = 9.

We divide time equally into time steps so that trains arrive at stations at the beginning
of each time step. There are two phases in any time step. First is the decision phase,
the period when trains are at stations for boarding and unboarding. In this phase, each
passenger at each location decides where in the system to move next. There are two
types of choices available. Go i → j means that (i) if a passenger is at station i, he
gets on the train i → j; (ii) if he is on a train arriving at station i, he now gets (or
stays) on the train i → j. Stay means that the passenger stays at the station, so that if
the passenger was on a train, he gets off. After the brief decision phase is the action
phase, in which trains depart from all stations to all directly connected stations. This
model matches the metro systems in Los Angeles, where trains leave stations at regular
intervals to all directly connected stations. Without losing generality, we assume that the
time it takes to travel between any two adjacent stations is identical; this assumption can
be relaxed by including dummy stations. In OSG, the defender (“she”) – assisted by our
algorithms – is modeled to be perfectly rational. The criminal (“he”) is modeled with
cognitive biases. Fig. 2 illustrates the OSG flowchart, with relevant equation numbers
near variables – these variables and equations are described in the following.

1

2

3

1->2 2->3
2->1 3->23->1

1->3

Fig. 1. The metro network

Td Tdb Csb Ctb E p Ts

Ct

Obj

1

52 3 4 6Cs

Fig. 2. Flow chart of OSG

3.1 Modeling Defenders

A defender is a team of police officers using trains for patrolling to mitigate crime. We
start with a single defender and deal with multiple defenders later. The defender con-
ducts randomized patrols using a Markov Strategy π, which specifies for each location
a probability distribution over all available actions. At location l, the probabilities of Go
i → j and Stay are denoted by gi→j

l and sl respectively.

Example 1: Markov Strategy In Figure 1, a possible distribution for location 3 → 2
in a Markov strategy π is,

s3→2 = 0.1, g2→1
3→2 = 0.8, g2→3

3→2 = 0.1
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Table 1. Notation used throughout this paper

π Defender’s Markov strategy csb Criminal’s belief of cs

Td Defender transition matrix ctb Criminal’s belief of ct

cs Defender stationary coverage TdbCriminal’s belief of Td

ct Defender coverage vector at time step t E Target expected value for criminals
Ts Transition matrix for the OSG Markov chain p Criminal’s next strike probability

that is, if the defender is on the train from station 3 to 2, then at the next decision phase:
she has probability 0.1 to choose Stay, thereby exiting the train and remaining at station
2; 0.8 to Go 2 → 1, meaning she remains on her current train as it travels to station 1;
and 0.1 to Go 2 → 3, meaning she exits her current train and boards the train heading
the opposite direction toward station 3.

Given π, the defender’s movement is a Markov chain over the locations with de-
fender transition matrix Td, whose entry at column k, row l specifies the probability of
a defender currently at location k being at location l during the next time step. In Td,
index i (i ∈ 1, . . . , N) represents station i; indexes larger than N represent trains.

Example 2: For Example 1, Td is as follows:

1 2 · · · 2 → 3 3 → 1 3 → 2
1
2
3

1 → 2
1 → 3
· · ·

⎛
⎜⎜⎜⎜⎜⎜⎝

s1
0
0

g1→2
1

g1→3
1

· · ·

0
s2
0
0
0
· · ·

0
0

s2→3

0
0
· · ·

s3→1

0
0

g1→2
3→1

g1→3
3→1

· · ·

0
s3→2

0
0
0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

Using Td and ct = (c1, c2, · · · , cN , c1→2, · · · )T , defined as the probability distribu-
tion of a defender’s location at time t, we can calculate the coverage vector at time step
t1 > t through the formula

ct1 = (Td)
t1−t · ct (1)

We restrict each element in π to be strictly positive so that Td is ergodic, meaning it
is possible to eventually get from every location to every other location in finite time.
For an ergodic Td, based on Lemma 1, there is a unique stationary coverage cs, such
that Td · cs = cs. The dependence of cs on Td and hence on π is shown in Fig. 2. The
defender’s initial coverage, c1, is set to cs so that the criminal will face an invariant dis-
tribution whenever he enters the system. This invariant initial distribution is analogous
to assuming that the defender patrols for a long time and becomes stable, but under our
model, criminals can enter the system at any time.

Lemma 1. (Fundamental Theorem of Markov Chains) For an ergodic Markov chain
P , there is a unique probability vector c such that P · c = c and c is strictly positive.

Proof. This is a very simple restatement of the property of ergodic Markov chain. [25]
provides detailed proof.
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3.2 Modeling Opportunistic Criminals

1

1

1

Location
Time step

Strike

1->2

2

2->3

3

2

3

4

3->2

5

2

6

3

Fig. 3. Example of strikes

Our model of the criminal con-
sists of three components.

Criminal’s probability to
commit a crime at the current
time step: We assume the crim-
inal will only commit crimes at
stations, as discussed earlier [9],
and only during action phases,
since decision phases are con-
sidered instantaneous. The prob-
ability of such a crime is determined by two factors. The first is the attractivenes of each
target station [23], which measures the availability of crime opportunities at a station.
Attractiveness measures how likely a criminal located at that station during an action
phase is to commit a crime in the absence of defenders; Att = (Att1, Att2, · · · , AttN )
is the N vector composed of station attractiveness. The second factor is the defender’s
presence; i.e., if a criminal is at the same station as a defender, he will not commit a
crime. Thus, his probability of committing a crime at station i will be influenced by
ct(i). Using this strategy, the criminal will never be caught red handed by the defender,
but may be forced toward a less attractive target. Thus, the probability of the crimi-
nal committing a crime if located at station i during the action phase of time step t, is
denoted as qc(i, t) = (1− ct(i))Att(i).

Criminal’s Belief State of the Defender: During the decision phase, the criminal de-
cides the next target station; he then moves directly to that station at the next action
phase(s). Hence, the criminal’s motion within the metro system can be distilled down
to a sequence of stations where he chooses to locate; we refer to these instances of at-
tempted crime as Strikes. Figure 3 is a toy example showing the relationship between
the time steps and strikes for a criminal. As shown in the figure, only the time steps
when the criminal is at stations are counted as strikes.

When making these target decisions, the criminal tends to choose stations with high
expected utilities. He uses his knowledge of π and his real-time observations to make
such decisions. Let Tdb, ctb, and csb be his belief of Td, ct, and cs, respectively. As the
criminals have limited surveillance capability, these beliefs may not be the same as Td,
ct, and cs. To model the criminal’s surveillance imperfection we use anchoring bias
– a cognitive bias, with extensive experimental backing, which reveals the human bias
toward choosing a uniform distribution when assigning probabilities to events under
imperfect information [5, 18]. We denote the level of the criminal’s anchoring bias with
the parameter b, where b = 0 indicates no anchoring bias, and b = 1 indicates complete
reliance on such bias. We set Tdb = (1− b) · Td + b · Tu, with corresponding stationary
coverage csb , where Tu corresponds to the uniform distribution.

At any given time step t when the criminal is at a station, i.e., a strike, he may be
modeled as using his belief and observations to estimate ctb. We assume the opportunis-
tic criminal only uses his current observation, csb and Tdb to estimate ctb (criminal’s
belief of defender’s location distribution). Specifically, if the criminal is at station i and
the defender is also there, then ctb is (0, 0, ..., 1, 0, ..., 0)T , where row i is 1 and all others
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are 0. Otherwise the defender is not at i, and

ctb =
(csb(1), c

s
b(2), ..., 0, c

s
b(i+ 1), ..., csb(Nl))

T

[1− csb(i)]
, (2)

where row i is 0 and other rows are proportional to the corresponding rows in csb . Our
approach to compute ctb is justified on two grounds. First, it is computationally cheap.
Second, as we show in experimental results, even perfect knowledge provides very lim-
ited improvement in the criminal’s performance given our modeling of the criminal’s
bounded rationality and anchoring bias; thus a more complex procedure is unnecessary.
Given ctb and Tdb, the belief coverage vector at time step t1 (t1 > t), ct1b , is calculated
via Eq. 1.

Input: i: the criminal’s station; π: defender’s Markov strategy; m: the defender’s location;
b: parameter of criminal’s anchoring bias

Output: p(·|i, ct0b ): The criminal’s probability distribution for next target
1 Initial N with the number of stations ;
2 Initial Td by π;
3 Initial cs with stationary coverage of Td;
4 Initial ct0b with a 1× (3N − 2) zero vector ;
5 Tdb = (1− b) · Td + b · Tu ;
6 csb = (1− b) · cs + b · csu ;
7 if i == m then
8 ct0b (i) = 1;
9 end

10 if i �= m then
11 for j ∈ Location do

12 ct0b (j) =
csb(j)

1− csb(i)
;

13 end
14 ct0b (i) = 0 ;
15 end
16 for j ∈ Station do
17 t = |i− j|+ 1 ;
18 ct0+t

b = (Tdb)
t · ct0b ;

19 E(j|i, ct0b ) =

(
1−c

t0+t
b

(j)
)
Att(j)

t
;

20 end
21 for j ∈ Station do

22 p(j|i, ct0b ) =
E(j|i,ct0

b
)λ

∑N
h=1

E(h|i,ct0
b

)λ
;

23 end
24 return p(·|i, ct0b );

Algorithm 1. BIASED RANDOM WALK ALGORITHM

We set the actual payoff for a crime to 1, but this can be generalized. The expected
payoff for the criminal when choosing station j as the next strike, given that the current
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strike is at station i at time step t, is qcb(j, t+ δij), where δij ≥ 1 is the minimum time
needed to arrive at j from i. But, criminals are known to discount more distant locations
when choosing targets. Therefore, the utility that the criminal places on a given payoff
is discounted over time. We implement this by dividing the payoff by the time taken.
Finally, the criminal must rely on his belief of the defender’s coverage when evaluating
qcb(j, t + δij). Altogether, station j has the expected utility E(j|i, ctb) =

qcb(j,t+δij)
δij

,
which is

E(j|i, ctb) =
(
1− [

(Tdb)
δij · ctb

]
(j)

)
Att(j)

δij
. (3)

The Criminal’s Quantal Biased Random Movement (QBRM): Finally, we propose
QBRM to model the criminal’s bounded rationality based on other such models of
criminal movements in urban domains [23]. Instead of always picking the station with
highest expected utility, his movement is modeled as a random process biased toward
stations of high expected utility. Given the expected value for each station E(·|i, ctb),
the probability distribution for each being chosen as the next strike, p(·|i, ctb) is:

p(j|i, ctb) =
E(j|i, ctb)λ∑N

h=1 E(h|i, ctb)λ
, (4)

where λ ≥ 0 is a parameter that describes the criminal’s level of rationality. This is
an instance of the quantal response model of boundedly rational behavior [26]. The
criminal may, as an alternative to choosing a further strike, leave the system at exit
rate α. Therefore, the criminal eventually leaves the system with probability 1, and in
expectation receives a finite utility; he cannot indefinitely increase his utility.

Given the criminal’s QBRM, the Opportunistic Security Game can be simplified to a
Stackelberg game for specific value of the parameters describing criminal’s behaviour (
Theorem 2).

Lemma 2. When the criminal’s rantionality level parameter λ = 0, the defender’s
optimal strategy is a stationary strategy, meaning that the defender picks a station and
does not move in the patrol.

Proof. According to Eqn. 4, when λ = 0, p(j|i, ctb) = 1
N for all targets, which is inde-

pendent of defender’s Markov strategy π. Therefore, the OSG is equivalent to a Stackel-
berg Game where the leader (the criminal) makes his choice first, which is independent
of the follower’s (defender’s) choice. Then the follower can decide her action given the
leader’s action. Therefore, as in a Stackelberg game, the follower’s (defender’s) opti-
mal strategy is a pure strategy. Furthermore, we know that in this Stackelberg game, the
leader (the criminal) is making a uniform random choice, meaning that he chooses each
target with the same probability. Therefore, the defender’s optimal strategy is staying at
the station with highest attractiveness.

To summarize, as shown in Figure 2, the opportunistic criminal is modeled as fol-
lows: First, he decides whether to commit a crime or not based on the defender’s pres-
ence at his station at each strike. Next, he uses his imperfect belief Tdb of the defender’s
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strategy, which is affected by anchoring bias, and his real-time observation to update
his belief ctb using a simple scheme (Eq. 2). Finally, we use QBRM to model his next
attack (Eq. 4) based on the expected utility of different targets (Eq. 3). Algorithm 1 is
a full mathematical description of the criminal’s movement. In Algorithm 1, steps 1-4
are initialization; steps 5-6 model how the criminal generates his imperfect belief; steps
7-15 model how the criminal updates his belief given his real-time observation; steps
16-20 model how the criminal evaluates each station based on his updated belief; and
steps 21-24 use QBRM to model his probability distribution of visiting each station in
his next strike.

4 Exact OSG (EOSG) Algorithm

Given the defender and criminal models, the EOSG algorithm computes the optimal
defender strategy by modeling the OSG as a finite state Markov chain. As all the crim-
inals behave identically, we can focus on the interaction between the defender and one
criminal without loss of generality.

Each state of the EOSG Markov chain is a combination of the criminal’s station and
the defender’s location. Here we only consider situations where the criminal is at a
station as states because he only makes decisions at stations. Since there are N stations
and Nl locations, the number of states is N · Nl in the EOSG markov chain. State
transitions in this EOSG markov chain are based on strikes rather than time steps. The
transition matrix for this Markov chain, denoted as Ts, can be calculated by combining
the defender and criminal models. For further analysis, we pick the element pS1→S2

in Ts that represents the transition probability from state S1 to S2. Suppose in S1 the
criminal is at station i while the defender is at location m at time step t, and in S2, the
criminal is at station j while the defender is at location n at time step t+ δij . We need
two steps to calculate the transition probability pS1→S2. First, we find the transition
probability of the criminal from i to j, p(j|i, ctb). Then, we find the defender’s transition
probability from m to n, which is ct+δij (n) =

(
(Td)

δij · em
)
(n), where em is a basis

vector for the current location m. The transition probability pS1→S2 is therefore given
by

pS1→S2 = p(j|i, ctb) · ct+δij (n). (5)

Since p(j|i, ctb) and ct+δij (n) are determined by π, pS1→S2 is also in terms of π (see
Fig. 2), and hence so is Ts.

Given this EOSG model, we can calculate the defender’s expected utility at each
strike. For each successful crime, the defender receives utility ud < 0, while if there
is no crime, she receives utility 0. We do not consider the time discount factor in the
defender’s expected utility, as the goal of the defender shall be to simply minimize the
total expected number of crimes that any criminal will commit. Formally, we define a
vector rd ∈ RN ·Nl such that entries representing states with both criminal and defender
at the same station are 0 while those representing states with criminal at station i and
defender not present are Att(i) · ud. Then, the defender’s expected utility Vd(t) during
strike number t is Vd(t) = rd · xt, where xt is the state distribution at strike number t.
xt can be calculated from the initial state distribution x1, via xt = ((1−α) ·Ts)

t−1x1.
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The initial state distribution x1 can be calculated from the initial criminal distribution
and cs. The defender’s total expected utility over all strikes is thus

Obj = lim
�→∞

∑�

t=1
Vd(t)

= rd · (I − (1− α)Ts)
−1x1 , (6)

where I is an identity matrix and α is the criminal’s exit rate. In this equation we use
the geometric sum formula and the fact that the largest eigenvalue of Ts is 1, so that
I − (1 − α)Ts is nonsingular for 0 < α < 1.

The objective is a function of the transition matrix Ts and x1, which can be expressed
in terms of π via Eqs. (1), (3), (4), and (5). We have thus formulated the defender’s prob-
lem of finding the optimal Markov strategy to commit to as a nonlinear optimization
problem, specifically to choose π to maximize Obj (that is, minimize the total amount
of crime).

5 OSG for Multiple Defenders

If K multiple defenders all patrol the entire metro, using the same π, which is denoted
as full length patrolling, then they will often be at the same station simultaneously,
which carries no benefit. On the other hand if we allow arbitrary defenders’ strategies
that are correlated, we will need to reason about complex real-time communication
and coordination among defenders. Instead, we divide the metro into K contiguous
segments, and designate one defender per segment, as in typical real-world patrolling
of a metro system. Each defender will have a strategy specialized to her segment.

Defenders: In the k-th segment, the number of locations is nk
l . Defender k patrols with

the Markov strategy πk . Her transition matrix is Tdk ∈ Rnk
l ×nk

l . Her coverage vector at
time t is ctk, and csk is her stationary coverage. Hence, defender k’s behavior is the same
as that in a single-defender OSG, while the collective defender behavior is described by
the Markov strategy π = (π1, π2, ..., πK). The transition matrix Td is as follows, where
we have dropped the trains between segments from the basis for Td and ensured that
station numbering is continuous within segments:

Td =

⎛

⎜
⎝

Td1 . . . 0
...

. . .
...

0 . . . TdK

⎞

⎟
⎠ . (7)

The coverage of all units at time step t is ct, and is defined as the concatenation of
coverage vectors (ct1; c

t
2; ...; c

t
K). ct sums to K since each ctk sums to 1. The vector

ct evolves to future time steps t1 in the same way as before, via Eq. 1. The overall
stationary coverage is cs = (cs1; c

s
2; ...; c

s
K).

Opportunistic Criminals: The previous model for criminals still applies. However,
any variables related to defenders (Td, ct, cs) are replaced by their counterparts for the
multiple defenders. Furthermore, the criminal in segment k at time t cannot observe
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Input: i: the criminal’s station; π: vector of defender Markov strategies; m: vector of
defender locations; b: parameter of criminal’s anchoring bias

Output: p(·|i, ct0b ): The criminal’s probability distribution for next target
1 Initial N with the number of stations ;
2 Initial K with the number of defenders ;
3 Initial ki with the segment that station i is in ;
4 for k ≤ K do
5 Initial Tdk by πk;
6 Initial csk by stationary coverage of Tdk;
7 Tdbk = (1− b) · Tdk + b · Tuk;
8 csbk = (1− b) · csk + b · csuk ;
9 ct0bk = csbk

10 if k == ki then
11 Initial ct0bk with a 1× nk

l zero vector ;
12 if i == m(k) then
13 ct0bk(i) = 1;
14 end
15 if i �= m(k) then
16 for j ∈ Location in segment k do

17 ct0bk(j) =
csbk(j)

1− csbk(i)
;

18 end
19 ct0bk(i) = 0 ;
20 end
21 end
22 end

23 Tdb =

⎛
⎜⎜⎜⎝

Tdb1 0 . . . 0
0 Tdb2 . . . 0
...

...
. . .

...
0 0 . . . TdbK

⎞
⎟⎟⎟⎠

24 ct0b = (ct0b1; c
t0
b2; ...; c

t0
bK).

25 for j ∈ Station do
26 t = |i− j|+ 1 ;
27 ct0+t

b = (Tdb)
t · ct0b ;

28 E(j|i, ct0b ) =

(
1−c

t0+t
b

(j)
)
Att(j)

t
;

29 end
30 for j ∈ Station do

31 p(j|i, ct0b ) =
E(j|i,ct0

b
)λ

∑N
h=1

E(h|i,ct0
b

)λ
;

32 end
33 return p(·|i, ct0b );

Algorithm 2. BIASED RANDOM WALK ALGORITHM WITH MULITPLE DE-
FENDERS



14 C. Zhang et al.

defenders other than k. As a result, his belief of defender coverage is updated only
for segment k, i.e., ctb = (csb1; c

s
b2; ...; c

s
b(k−1); c

t
bk; c

s
b(k+1); ...; c

s
bK). Algorithm 2 de-

scribes a criminal’s behavior in the multiple defenders settings. Similar to Algorithm 1,
in Algorithm 2, steps 1-3 are initialization; steps 4-22 model how the criminal generates
and updates his imperfect belief for each defender, such that for defender k(k ≤ K),
the process of calculating the criminal’s belief is exactly the same as the single defender
scenario; steps 23-24 combine the criminal’s belief for each defender as his belief for
all the defenders; steps 25-29 model how the criminal evaluates each station based on
his belief; and steps 30-34 use QBRM to model his probability distribution of visiting
each station in his next strike.

EOSG: In optimizing defender strategies via a Markov chain, each state records the
station of the criminal and the location of each defender. As a result, each state is de-
noted as S = (i,m1, ...,mK), where the criminal is at station i and defender k is
at location mk. Since defender k can be at nk

l different locations, the total number
of states is N · n1

l · · ·nK
l . To apply EOSG for multiple defenders, Ts is still calcu-

lated using the defender and criminal models. The transition probability pS1→S2 from
S1 = (i,m1, ...,mK) at time t to S2 = (j, n1, ..., nK) at time t+ δij is

pS1→S2 = p(j|i, ctb)
∏

k
ct+δij (nk),

where ct+δij (nk) = ((Td)
δij · em1,m2,...,mK )(nk) and em1,m2,...,mK is an indicator

vector with 1 at entries representing locations m1,m2, ...,mK and 0 at all others. The
state distribution x and revenue rd are both N · n1

l · · ·nK
l vectors. The defenders’ total

expected utility is given by Eq. (6); our goal remains to find a π to maximize Obj.

6 The COPS Algorithm

The objective of EOSG can be formulated as a non-linear optimization. Unfortunately,
as we will show in our experiments, the EOSG algorithm fails to scale-up to real-
world sized problem instances due to the size of Ts in Eq. (6), which is exponential
( N · n1

l · · ·nK
l by N · n1

l · · ·nK
l ) for K defenders. We propose the Compact OP-

portunistic Security game state (COPS) algorithm to accelerate the computation. COPS
simplifies the model by compactly representing the states. The size of the transition ma-
trix in COPS is 2N × 2N , regardless of the number of defenders, which is dramatically
smaller than in the exact algorithm. The COPS algorithm is inspired by the Boyen-
Koller(BK) algorithm for approximate inference on Dynamic Bayesian Networks [27].
COPS improves upon a direct application of BK’s factored representation by maintain-
ing strong correlations between locations of players in OSG.

In OSG with a single defender, there are two components in a Markov chain state
for strike t: the station of the criminal St

c and the location of the defender θtd. These two
components are correlated when they evolve. We introduce an intermediate component,
the criminal’s observation Ot

c, which is determined by both St
c and θtd. Given the crimi-

nal’s current station and his observation, we can compute his distribution over the next
strike station. At the same time, the evolution of θtd is independent of St

c. Such evolution



Defending Against Opportunistic Criminals 15

SC

Strike t Strike t+1

θd

SC

θd

OC

(a) Full state evolution

COPS Full Full COPS 

SC

OC

SC

θd

SC

θd

SC
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Strike t Strike t+1
(b) COPS state evolution

Fig. 4. COPS algorithm

is shown in Figure 4(a). This is an instance of a Dynamic Bayesian Network: St
c, Ot

c,
and θtd are the random variables, while edges represent probabilistic dependence.

A direct application of the Boyen-Koller algorithm compactly represents the states
by using the marginal distribution of these two components, St

c and θtd, as approximate
states. The marginal distributions of St

c and θtd are denoted as Pr(St
c) and Pr(θtd) re-

spectively, and it is assumed that these two components are independent, meaning we
can restore the Markov Chain states by multiplying these marginal distributions. Note
that in Section 4.2, we set Pr(θtd) = cs for all strikes. Thus, we do not need to store
θtd in the state representation. Therefore, the total number of the approximate states in
this case is just N . However, such an approximation throws away the strong correlation
between the criminal’s station and defender unit’s location through the criminal’s real-
time observation. Our preliminary experiments showed that this approximate algorithm
leads to low defender expected utility.

To design a better algorithm, we should add more information about the correlation
between the criminal and defenders. To that end, our COPS algorithm compactly repre-
sents our Markov Chain states with less information lost. Instead of just considering the
marginal distributions of each component Pr(θtd) and Pr(St

c), we also include the ob-
servation of the criminal Ot

c while constructing the approximate states. The criminal’s
observation is binary: 1 if the defender is at the same station with him, 0 otherwise.
The new approximate states, named COPS states, only keep the marginal probability
distribution of Pr(St

c, O
t
c). So, the new state space is the Cartesian product of the sets

of St
c and Ot

c, which has size 2N .
One subtask of COPS is to recover the distributions over the full state space (St

c, θ
t
d),

given our state representation Pr(St
c, O

t
c). We cannot restore such distribution by mul-

tiplying Pr(θtd) and Pr(St
c) in COPS. This is because St

c, Ot
c, and θtd are not indepen-

dent. For example, in COPS state St
c = 1, Ot

c = 1, θtd cannot be any value except
1. In other words, the defender’s location distribution Pr(θtd|St

c, O
t
c) is no longer cs.

Instead, we approximate Pr(θtd|St
c, O

t
c) as follows. In each COPS state (St

c, O
t
c), the

estimated marginal distribution for the defender, P̂r(θtd|St
c, O

t
c), is found in a manner

similar to that used to find the criminal’s belief distribution ctb. Specifically, if Ot
c = 1,

P̂r(θtd|St
c, O

t
c) = (0, 0, ..., 1, 0, ..., 0)T , where the row representing station St

c is 1 and
all others are 0; if Ot

c = 0, then P̂r(θtd|St
c, O

t
c) is found through Equation 2, but with

the csb(j) replaced by the true stationary coverage value cs(j). We can then recover the
estimated distribution over full states P̂r(St

c = i, θtd|St
c = i, Ot

c) = P̂r(θtd|St
c = i, Ot

c)

for all i and P̂r(St
c = j, θtd|St

c = i, Ot
c) = 0 for all j �= i. Estimated full distributions
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evolve the same way as exact distributions do, as described in Section 4. At the future
strike, we can then project the evolved estimated full distribution to distributions over
COPS states. Figure 4(b) shows the whole process of the evolution of COPS states.
However, such a process would appear to involve representing a full Ts, negating the
benefit of the factored representation; we avoid that by using TCOPS , discussed below.

To streamline the process of evolving COPS states, in practice we use a transi-
tion matrix TCOPS ∈ R2N×2N . Each element of TCOPS , i.e., transition probability
Pr(St′

c , O
t′
c |St

c, O
t
c), can be calculated as follows:

Pr(St′
c , O

t′
c |St

c, O
t
c)

=
∑

θt′
d

∑

θt
d

Pr(St′
c , O

t′
c |St′

c , θ
t′
d ) · Pr(St′

c , θ
t′
d |St

c, θ
t
d) · P̂r(St

c, θ
t
d|St

c, O
t
c)

= Pr(St′
c |St

c, O
t
c)
∑

θt′
d

Pr(Ot′
c |St′

c , θ
t′
d ) ·

∑

θt
d

Pr(θt
′
d |St′

c , S
t
c, θ

t
d) · P̂r(θtd|St

c, O
t
c),

(8)

where Pr(St′
c |St

c, O
t
c) and Pr(θt

′
d |St′

c , S
t
c, θ

t
d) correspond to p(j|i, ct0b ) and

ct0+|i−j|+1(n), respectively, in Section 4.
The defenders’ total expected utility in COPS is calculated in a similar way as the

exact algorithm, which is

ObjCOPS = rd,COPS · (I − (1 − α)TCOPS)
−1x1,COPS , (9)

where rd,COPS , x1,COPS are the expected utility vector and the initial distribution for
COPS states. Similar to rd, rd,COPS(S) is 0 if in state S the defender is at the same sta-
tion with the criminal, else rd,COPS(S) = ud. COPS is faster than the exact algorithm
because the number of states is reduced dramatically. Meanwhile, the approximation
error of COPS algorithm is bounded according to Theorem 1.

Definition 1. Let mi be the location corresponding to station i. For a distribution over
OSG full states x, the corresponding distribution over COPS states xCOPS is:

xCOPS(i, o) =

{
x(i,mi) if o = 1
∑

m �=mi
x(i,m) if o = 0

For a distribution over COPS states xCOPS , the corresponding approximate distri-
bution over OSG full states x′ is:

x′(i,m) =

{
xCOPS(i, 1) if m = mi

xCOPS(i, 0) · cs(m)
1−cs(i) otherwise

This conversion can be summarized through a single matrix multiplication, such that
x′ = Ax.

Lemma 3. Let μ2 be the magnitude of the second largest eigenvalue of transition ma-
trix Ts. Let δ be the largest possible L2 approximation error introduced when full state
distribution x is transformed into the COPS representation vector xCOPS and back
into the approximate distribution x′ over full states: ||x − Ax|| ≤ δ. At strike number
t, the L2 norm between the EOSG distribution yt and the distribution found through

COPS algorithm xt is bounded, such that ||yt − xt||2 ≤ (1− α)t−1 δ(1−μt
2)

1−μ2
.
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Proof. Let xt be the state vector as found through the COPS algorithm at time t. The
time evolution for x proceeds then as follows: xt = (1 − α)t−1(ATs)

t−1x1, where
x1 = Ay1, and y1 is the initial state vector for the EOSG algorithm. So, consider the
L2 error introduced at iteration t by the COPS approximation alone

||Tsxt −ATsxt||2 = (1− α)t−1||Ts(ATs)
t−1x1 −ATs(ATs)

t−1x1||2.
Since the vector Ts(ATs)

t−1x1 is a full state vector, the error bound here is simply

||Tsxt −ATsxt||2 ≤ δ(1 − α)t−1. (10)

Now, assume that the error between the state vectors xt and yt at some time t is
bound by ε: ||yt − xt||2 ≤ ε. Since in the EOSG Markov chain it is possible to travel
from any state to any other state in a finite amount of time, this Markov chain is ergodic.
Let the stationary distribution of Ts be xs, which is normalized such that

−→
1 · xs = 1.

μ1 = 1 > μ2 ≥ ... ≥ μN ·Nl
are the magnitudes of the eigenvalues of Ts corresponding

to eigenvectors v1(= xs), v2, ..., vN ·Nl
. Since Ts is the transition matrix of an ergodic

Markov chain, μk < 1 for k ≥ 2. For eigenvectors vk, k ≥ 2, we have |Ts · vk| =
|μk ·vk|. Multiplying by

−→
1 and noting that

−→
1 ·Ts =

−→
1 , we get |−→1 ·vk| = |μk ·−→1 ·vk|.

Since μk �= 1,
−→
1 · vk = 0.

Write xt and yt in terms of v1, v2, ..., vN ·Nl
as:

yt = β1x
s +

N ·Nl∑

i=2

βivi

xt = β′
1x

s +

N ·Nl∑

i=2

β′
ivi

Since yt = (1−α)t−1T t−1
s y1, then

−→
1 ·yt = (1−α)t−1; similarly,

−→
1 ·xt = (1−α)t−1.

Multiplying both equations above by
−→
1 , we get β1 = β′

1 = (1− α)t−1. Therefore,

||Ts · yt − Ts · xt||2 ≤ ||
N ·Nl∑

i=2

(βi − β′
i)μivi||2

≤ |μ2|
√
(β2 − β′

2)
2 + (β3 − β′

3)
2 + · · ·+ (βN ·Ni − β′

N ·Ni
)2

≤ μ2||xt − yt||2
≤ μ2ε

Accordingly, at t = 1, we have

||y1 − x1||2 = ||y1 −Ay1||2 ≤ δ .

At t = 2, we have

||y2−x2||2 = (1−α)||Tsy1−ATsx1|| = (1−α)||Tsy1−ATsx1+Tsx1−Tsx1|| ≤
(1− α)||Tsy1 − Tsx1||2 + (1 − α)||Tsx1 −ATsx1||2 .
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From above, the bound for the first term is μ2δ, given the error bound at t = 1. The
bound for the second term is directly given by (10), and is simply δ. Hence

||y2 − x2||2 ≤ (1 − α)δ(μ2 + 1) .

At t = 3, we have

||y3−x3||2 = (1−α)||Tsy2−ATsx2|| = (1−α)||Tsy2−ATsx2+Tsx2−Tsx2|| ≤
(1− α)||Tsy2 − Tsx2||2 + (1 − α)||Tsx2 −ATsx2||2 .

From above, the bound for the first term is μ2(1 − α)δ(μ2 + 1), given the error bound
at t = 2. The bound for the second term is taken from (10), and is δ(1− α). Hence

||y3 − x3||2 ≤ (1 − α)2δ(μ2
2 + μ2 + 1) .

By extension, then, the error bound at time step t between EOSG and COPS states
is:

||yt − xt||2 ≤ (1− α)t−1δ
t−1∑

i=0

μi
2 = (1− α)t−1δ

1− μt
2

1− μ2
.

Theorem 1. The difference between the EOSG objective and the COPS approximate

objective |Obj −ObjCOPS | is bounded by
√
N ·Nlδ|ud|

[1−(1−α)μ2] α

Proof. Since Lemma 3 gives the bound of L2 distance while |Obj − ObjCOPS | is L1

distance, we use the fact that for any two vectors v1, v2, the relationship between the L1

distance and L2 distance is: ||v1 − v2||2 ≤ ||v1 − v2||1 ≤ √
n||v1 − v2||2, where n is

the dimension of the vectors. Therefore, ||yt − xt||1 ≤
√
N ·Nl(1−α)t−1(1−μt

2)δ
1−μ2

. Hence
we have:

|Obj −ObjCOPS | =
∞∑

t=1

|rd · yt − rd · xt|

=

∞∑

t=1

|rd · (yt − xt)|

≤
∞∑

t=1

|rmax|||yt − xt||1

≤ |rmax|
∞∑

t=1

√
N ·Nl(1− α)t−1(1− μt

2)δ

1− μ2

= |rmax|
√
N ·Nl δ

[1− (1− α)μ2] α

where rmax is the element in rd with largest magnitude, which is min(Att(i) · ud)
because rd is a non-positive vector by definition. Given Att(i) ≤ 1, we have |Obj −
ObjCOPS | ≤

√
N ·Nlδ|ud|

[1−(1−α)μ2] α
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7 Experimental Results

Settings: We use the graphs in Figure 5 – metro structures commonly observed in the
world’s mega cities – in our experiments. We also tested our algorithm on line structure
systems, and the results are similar (online appendix: http://osgcops.webs.com/). We
solve the non-linear optimization in OSG using the FindMaximum function in Math-
ematica, which computes a locally optimal solution using an Interior Point algorithm.
Each data point we report is an average of 30 different instances, each based on a dif-
ferent attractiveness setting; these instances were generated through a uniform random
distribution from 0 to 1 for the attractiveness of each station. For multiple patrol unit
scenarios, we use segment patrolling (except for Fig. 6(d)), and divide the graph so
that the longest distances in each segments are minimized; the dashed boxes in Fig. 5
show the segments used. Results for other segmentations are similar (online appendix).
The defender’s utility of a successful crime is ud = −1. The criminal’s initial distri-
bution is set to a uniform distribution over stations. The criminal exit rate is α = 0.1.
Strategies generated by all algorithms are evaluated using Equation 6. All key results
are statistically significant (p < 0.01).

(a) 6 stations (b) 10 stations (c) 20 stations

Fig. 5. Part of metro systems in mega cities

Results: Fig. 6(a) shows the performance of the COPS algorithm and the EOSG al-
gorithm using the settings from Fig. 5(a) and Fig. 5(b). In both, we set λ = 1. The
Interior Point algorithm used by Mathematica is a locally optimal solver and there is
always a current best feasible solution available, although the quality of the solution
keeps improving through iterations. Therefore, one practical way to compare solutions
is to check the solution quality after a fixed run-time. The x-axis in this figure shows
runtime in seconds on a log scale, while the y-axis maps the defenders’ average ex-
pected utility against one criminal, achieved by the currently-best solution at a given
run time. Focusing first on results of 6 stations, where we have one defender, COPS
outperforms EOSG for any runtime within 100 s, even though COPS is an approximate
algorithm. This is because COPS reaches a local optimum faster than EOSG. Further,
even for runtime long enough for EOSG to reach its local optimum (3160 s), where it
outperforms COPS, the difference in solution quality is less than 1%. Focusing next on
results of 10 stations with 2 defenders (using segment patrolling), the conclusions are
similar to 6 stations, but the advantage of COPS is more obvious in this larger scale
problem. In most instances, COPS reaches a local optimum in 1000 s while the output
of EOSG are the same as initial values in 3160 s.
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Fig. 6. Experimental Results

Figure 6(b) employs criminals with varying levels of rationality to compare the per-
formance of three different strategies: the uniform random strategy, which is a Markov
strategy with equal probability for all available actions at each location; an SSG strat-
egy, which is the optimal strategy against a strategic attacker that attacks a single target;
and a COPS OSG strategy (given 1800 s so it reached a local optimum). In Fig. 6(b), we
set b = 0; results with other b are similar, which are shown in online appendix. The sys-
tem consists of 10 stations and 2 defenders. The COPS OSG strategy outperforms the
random and SSG strategies significantly for any λ. Next, two more settings are tested:
the first is the OSG strategy against criminals who have perfect knowledge of defend-
ers’ current location. This is a purely hypothetical setting, and created only to check if
a more complex criminal belief model than the one in Eq. 2 would have led to signifi-
cantly different defender performance. The degradation in performance against perfect
criminals is less than 6%, indicating that a more complex belief update for defenders’
current location would have insignificant impact on the results. The second is also an
OSG strategy, but the defenders set a fixed λ during computation to test performance
when the defender has an inaccurate estimate of λ. We picked λ = 1 from a set of sam-
pled λ, since the OSG strategy with λ = 1 performs best against criminals with various
levels of rationality. Even though the OSG strategy assuming λ = 1 performs slightly
worse than that using the correct λ, it is still better than SSG and uniform strategies.
We conclude that OSG is a better model against opportunistic criminals even with an
inaccurate estimation of λ.
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The COPS strategy, the SSG, and the uniform random strategy are compared again in
Fig. 6(c), this time against criminals with different levels of anchoring bias b. In order to
evaluate the performance of COPS when the defender has an inaccurate estimate of the
anchoring bias b, we plotted both the expected utility of COPS where the defender has
an accurate estimate of the criminal’s anchoring bias and that using a fixed anchoring
bias b = 0.5. b = 0.5 was picked from a set of sampled b since the OSG strategy with
this b performs best. In Fig. 6(c), λ is fixed to 1, but experiments with other λ generate
similar results, which are shown in the online appendix. Again, COPS outperforms
uniform random and SSG strategies.

To show COPS’s scalability, we compare its performance with different numbers of
defenders in metro systems with a varying number of stations; Five different settings
are compared in Fig. 6(d): one defender, two defenders with full length patrolling, three
defenders with full length patrolling, two defenders with segment patrolling, and three
defenders with segment patrolling. The max runtime is 1800 s. With the same patrol
techniques, more defenders provide higher expected utility. But, with the same amount
of resources, segment patrolling outperforms full length patrolling.

8 Summary

This paper introduces OSG, a new computational framework to address opportunistic
crime, opening the door for further research on this topic. Furthermore, we propose a
new exact algorithm, EOSG, to compute defender resource allocation strategies, and
an approximate algorithm, COPS, to speed up defender allocation to real-world scale
scenarios. Our experimental results show that the OSG strategy outperforms baseline
strategies with different types of criminals. We also show that COPS is more efficient
than EOSG in solving real-world scale problems. Given our experimental results, COPS
is being evaluated in the Los Angeles Metro system. Finally, in introducing OSG, this
paper has added to the class of important security-focused game-theoretic frameworks
in the literature, opening the door to a new set of research challenges for the community
of researchers focused on game theory for security.
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12. Clark, A., Zhu, Q., Poovendran, R., Başar, T.: Deceptive routing in relay networks. In:
Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 171–185. Springer,
Heidelberg (2012)

13. Basilico, N., Gatti, N., Amigoni, F.: Leader-follower strategies for robotic patrolling in envi-
ronments with arbitrary topologies. In: AAMAS (2009)

14. Basilico, N., Gatti, N.: Automated abstractions for patrolling security games. In: AAAI
(2011)

15. Basilico, N., Gatti, N., Rossi, T., Ceppi, S., Amigoni, F.: Extending algorithms for mobile
robot patrolling in the presence of adversaries to more realistic settings. In: Proceedings of
the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology, vol. 02 (2009)

16. Jiang, A.X., Yin, Z., Zhang, C., Tambe, M., Kraus, S.: Game-theoretic randomization for
security patrolling with dynamic execution uncertainty. In: AAMAS (2013)

17. Varakantham, P., Lau, H.C., Yuan, Z.: Scalable randomized patrolling for securing rapid
transit networks. In: IAAI (2013)
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