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Preface

Recent advances in networking, communications, computation, software, and
hardware technologies have revolutionized the information technology landscape.
Indeed, this cyberspace has become an integral part of every person’s daily
life and the way we conduct business. Protecting the sensitive content of every
nation’s cyberspace infrastructure has thus become critical to ensure economic
growth, prosperity, and advancement. However, the heterogeneous, dynamic,
and large-scale nature of modern-day networked and information technology
infrastructure warrants novel analytical and practical approaches for securing
its assets and maintaining its trustworthiness.

Owing to its powerful analytical and modeling frameworks, game theory has
recently emerged as a key tool for building resilient, secure, and dependable
networked systems. Coupled with synergistic techniques such as dynamic con-
trol, mechanism design, and economics, game theory, along with incentives and
mechanisms design, is expected to provide one of the pillars of the “science of
security.” The proceedings of the GameSec 2014 conference contain original con-
tributions presenting theoretical and practical contributions that will build the
knowledge base in the science of security, in general, and game-theoretic security,
in particular.

The topics cover multiple facets of cybersecurity that include: rationality of
adversary, game-theoretic cryptographic techniques, vulnerability discovery and
assessment, multi-goal security analysis, secure computation, economic-oriented
security, and surveillance for security. These aspects are covered in a multitude of
domains that include networked systems, wireless communications, border patrol
security, and control systems. The GameSec conference aims to provide a forum
for engineers, game and control theorists, and computer scientists from research
and industry to contribute and develop the foundation of the next generation
of security science. We are pleased to bring these proceedings to your hands.
Enjoy!

September 2014 Walid Saad
Radha Poovendran
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Defending Against Opportunistic Criminals:
New Game-Theoretic Frameworks and Algorithms

Chao Zhang1, Albert Xin Jiang1 Martin B. Short2,
P. Jeffrey Brantingham3, and Milind Tambe1

1 University of Southern California, Los Angeles, CA 90089, USA
{zhan661,jiangx,tambe}@usc.edu

2 Georgia Institute of Technology, Atlanta, GA 30332, USA
mbshort@math.gatech.edu

3 University of California, Los Angeles, CA 90095, USA
pjb@anthro.ucla.edu

Abstract. This paper introduces a new game-theoretic framework and algorithms
for addressing opportunistic crime. The Stackelberg Security Game (SSG), which
models highly strategic and resourceful adversaries, has become an important
computational framework within multiagent systems. Unfortunately, SSG is ill-
suited as a framework for handling opportunistic crimes, which are committed
by criminals who are less strategic in planning attacks and more flexible in ex-
ecuting them than SSG assumes. Yet, opportunistic crime is what is commonly
seen in most urban settings.We therefore introduce the Opportunistic Security
Game (OSG), a computational framework to recommend deployment strategies
for defenders to control opportunistic crimes. Our first contribution in OSG is a
novel model for opportunistic adversaries, who (i) opportunistically and repeat-
edly seek targets; (ii) react to real-time information at execution time rather than
planning attacks in advance; and (iii) have limited observation of defender strate-
gies. Our second contribution to OSG is a new exact algorithm EOSG to optimize
defender strategies given our opportunistic adversaries. Our third contribution is
the development of a fast heuristic algorithm to solve large-scale OSG problems,
exploiting a compact representation.We use urban transportation systems as a
critical motivating domain, and provide detailed experimental results based on a
real-world system.

1 Introduction

Security is a critical societal challenge. We focus on urban security: the problem of pre-
venting urban crimes. The Stackelberg Security Game (SSG) was proposed to model
highly strategic and capable adversaries who conduct careful surveillance and plan at-
tacks [1, 2], and has become an important computational framework for allocating secu-
rity resources against such adversaries. While there are such highly capable adversaries
in the urban security domain, they likely comprise only a small portion of the overall
set of adversaries. Instead, the majority of adversaries in urban security are criminals
who conduct little planning or surveillance before “attacking” [3]. These adversaries
capitalize on local opportunities and react to real-time information. Unfortunately, SSG

R. Poovendran and W. Saad (Eds.): GameSec 2014, LNCS 8840, pp. 3–22, 2014.
c© Springer International Publishing Switzerland 2014



4 C. Zhang et al.

is ill-suited to model such criminals, as it attributes significant planning and little exe-
cution flexibility to adversaries.

Inspired by modern criminological theory [3], this paper introduces the Opportunis-
tic Security Game (OSG), a new computational framework for generating defender
strategies to mitigate opportunistic criminals. This paper provides three key contribu-
tions. First, we define the OSG model of opportunistic criminals, which has three major
novelties compared to SSG adversaries: (i) criminals exhibit Quantal Biased Random
Movement, a stochastic pattern of movement to search for crime opportunities that con-
trasts with SSG adversaries, who are modeled as committed to a single fixed plan or
target; (ii) criminals react to real-time information about defenders, flexibly altering
plans during execution, a behavior that is supported by findings in criminology litera-
ture [4]; (iii) criminals display anchoring bias [5], modeling their limited surveillance
of the defender’s strategy. Second, we introduce a new exact algorithm, Exact Oppor-
tunistic Security Game (EOSG), to optimize the defender’s strategy in OSG based on
use of a markov chain. The third contribution of this work is a fast algorithm, Compact
OPportunistic Security game states (COPS), to solve large scale OSG problems. The
number of states in the Markov chain for the OSG grows exponentially with the num-
ber of potential targets in the system, as well as with the number of defender resources.
COPS compactly represents such states, dramatically reducing computation time with
small sacrifice in solution quality; we provided a bound for this error.

Thus, while OSG does share one similarity with SSG — the defender must commit
to her strategy first, after which the criminals will choose crime targets — the OSG
model of opportunistic adversaries is fundamentally different. This leads us to derive
completely new algorithms for OSG. OSG also differs fundamentally from another im-
portant class of games, pursuit-evasion games (PEG) [6]; these differences will be dis-
cussed in more depth in the related work section.

While OSG is a general framework for handling opportunistic crime, our paper will
use as a concrete example crime in urban transportation systems, an important chal-
lenge across the world. Transportation systems are at a unique risk of crime because
they concentrate large numbers of people in time and space [7]. The challenge in con-
trolling crime can be modeled as an OSG: police conduct patrols within the transporta-
tion system to control crime. Criminals travel within the transportation system for such
opportunities [8], usually committing crimes such as thefts at stations, where it is easy
to escape if necessary [9]. These opportunistic criminals avoid committing crime if they
observe police presence at the crime location.

In introducing OSG, this paper proposes to add to the class of important security
related game-theoretic frameworks that are widely studied in the literature, including
the Stackelberg Security Games and Pursuit Evasion Games frameworks. We use an
urban transportation system as an important concrete domain, but OSG’s focus is on
opportunistic crime in general; the security problems posed by such crime are relevant
not only to urban crime, but to other domains including crimes against the environment
[10], and potentially to cyber crime [11, 12]. By introducing a new model and new
algorithms for this model, we open the door to a new set of research challenges.
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2 Related Work

In terms of related work, there are three main areas to consider. First are Pursuit-Evasion
Games (PEG), which model a pursuer(s) attempting to capture an evader, often where
their movement is based on a graph [6]. However, PEG fail to model criminals who
opportunistically and repeatedly strike targets as modeled using QBRM in OSG. Fur-
thermore, in PEG, a pursuer’s goal is to capture an evader while in OSG, the defender’s
goal is to minimize crime; additionally in PEG, the evader’s goal is to avoid the pursuer
and not seek crime opportunities as in OSG. These critical differences in behaviors of
defenders and adversaries lead to new algorithms, i.e., EOGS and COPS, for OSG, that
are fundamentally different from algorithms for PEG.

Second are SSG [13–15], which use a model of highly strategic adversaries to gener-
ate randomized patrol strategies. The SSG framework has been successfully applied in
security domains to generate randomized patrol strategies, e.g., to protect flights [2], for
security in the cyber realm [11, 12], and for counter-terrorism and fare evasion checks
on trains [16, 17]. Recent work in SSG has begun to consider bounded rationality of
adversaries [18] and incorporate some limited flexibility in adversary execution [15].
However, SSG [13–15], again, fails to model criminals who use real-time information
to adjust their behavior in consecutive multiple attacks. In SSG, attackers cannot use
real-time observation to decide whether to attack at the current time, nor can they use it
to update beliefs and plan for their next consecutive attacks. Furthermore, SSG does not
investigate efficient algorithms of deriving defender strategies against such opportunis-
tic criminals. The Adversarial Patrolling Game (APG) [19], which is a variant of SSG,
does consider the attacker’s current observation. However, this game does not consider
multiple consecutive attacks. It fails to model attacker’s movement during multiple at-
tacks and therefore the influence of current observation on future movement. Recent
research has focused on applying game theory in network security [20], especially in
communication and computer networks [21, 22]. However, these works again do not
consider the flexibility and real-time adjustment of attackers under Stackelberg settings.
Besides, the physical constraints (e.g., travel time between targets) in OSG do not exist
in communication networks.

A third thread of recent research has made inroads in the modeling of opportunistic
criminal behavior, and in how security forces might defend against such adversaries.
In [23] burglars are modeled as biased random walkers seeking “attractive” targets, and
[24] follows up on this work with a method for generating effective police allocations to
combat such criminals. However, these works make the extreme assumption that crim-
inals have no knowledge of the overall strategy of the police, and their behavior is only
affected by their observation of the current police allocation in their immediate neigh-
borhood. Also, in [24] police behave in a similarly reactionary way, allocating their
resources in an instantaneously optimal way in response to the current crime risk distri-
bution rather than optimizing over an extended time horizon. Furthermore, in [24] there
is no notion of the “movement” of police - rather, the distribution of police officers are
chosen instantaneously, with no regard for the mechanics of exactly how the allocation
may transform from one time step to the next. Our current approach is an attempt to
generalize these threads of research.
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3 OSG Framework

OSG unfolds on a connected graph that can be seen to model a metro rail system (though
many other domains are also possible), where stations are nodes and trains connecting
two stations are edges. Fig. 1 shows a simple scenario with three fully connected sta-
tions. Stations and trains are collectively referred to as locations. Let the stations be
labeled 1, . . . , N , with N denoting the number of stations. The train from station i to
its neighboring station j is denoted as i→ j. The number of locations is Nl > N , e.g.,
in Fig. 1, Nl = 9.

We divide time equally into time steps so that trains arrive at stations at the beginning
of each time step. There are two phases in any time step. First is the decision phase,
the period when trains are at stations for boarding and unboarding. In this phase, each
passenger at each location decides where in the system to move next. There are two
types of choices available. Go i → j means that (i) if a passenger is at station i, he
gets on the train i → j; (ii) if he is on a train arriving at station i, he now gets (or
stays) on the train i → j. Stay means that the passenger stays at the station, so that if
the passenger was on a train, he gets off. After the brief decision phase is the action
phase, in which trains depart from all stations to all directly connected stations. This
model matches the metro systems in Los Angeles, where trains leave stations at regular
intervals to all directly connected stations. Without losing generality, we assume that the
time it takes to travel between any two adjacent stations is identical; this assumption can
be relaxed by including dummy stations. In OSG, the defender (“she”) – assisted by our
algorithms – is modeled to be perfectly rational. The criminal (“he”) is modeled with
cognitive biases. Fig. 2 illustrates the OSG flowchart, with relevant equation numbers
near variables – these variables and equations are described in the following.

1

2

3

1->2 2->3
2->1 3->23->1

1->3

Fig. 1. The metro network

Td Tdb Csb Ctb E p Ts

Ct

Obj

1

52 3 4 6Cs

Fig. 2. Flow chart of OSG

3.1 Modeling Defenders

A defender is a team of police officers using trains for patrolling to mitigate crime. We
start with a single defender and deal with multiple defenders later. The defender con-
ducts randomized patrols using a Markov Strategy π, which specifies for each location
a probability distribution over all available actions. At location l, the probabilities of Go
i→ j and Stay are denoted by gi→j

l and sl respectively.

Example 1: Markov Strategy In Figure 1, a possible distribution for location 3 → 2
in a Markov strategy π is,

s3→2 = 0.1, g2→1
3→2 = 0.8, g2→3

3→2 = 0.1
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Table 1. Notation used throughout this paper

π Defender’s Markov strategy csb Criminal’s belief of cs

Td Defender transition matrix ctb Criminal’s belief of ct

cs Defender stationary coverage TdbCriminal’s belief of Td

ct Defender coverage vector at time step t E Target expected value for criminals
Ts Transition matrix for the OSG Markov chain p Criminal’s next strike probability

that is, if the defender is on the train from station 3 to 2, then at the next decision phase:
she has probability 0.1 to choose Stay, thereby exiting the train and remaining at station
2; 0.8 to Go 2→ 1, meaning she remains on her current train as it travels to station 1;
and 0.1 to Go 2→ 3, meaning she exits her current train and boards the train heading
the opposite direction toward station 3.

Given π, the defender’s movement is a Markov chain over the locations with de-
fender transition matrix Td, whose entry at column k, row l specifies the probability of
a defender currently at location k being at location l during the next time step. In Td,
index i (i ∈ 1, . . . , N) represents station i; indexes larger than N represent trains.

Example 2: For Example 1, Td is as follows:

1 2 · · · 2 → 3 3 → 1 3 → 2
1
2
3

1 → 2
1 → 3
· · ·

⎛
⎜⎜⎜⎜⎜⎜⎝

s1
0
0

g1→2
1

g1→3
1

· · ·

0
s2
0
0
0
· · ·

0
0

s2→3

0
0
· · ·

s3→1

0
0

g1→2
3→1

g1→3
3→1

· · ·

0
s3→2

0
0
0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

Using Td and ct = (c1, c2, · · · , cN , c1→2, · · · )T , defined as the probability distribu-
tion of a defender’s location at time t, we can calculate the coverage vector at time step
t1 > t through the formula

ct1 = (Td)
t1−t · ct (1)

We restrict each element in π to be strictly positive so that Td is ergodic, meaning it
is possible to eventually get from every location to every other location in finite time.
For an ergodic Td, based on Lemma 1, there is a unique stationary coverage cs, such
that Td · cs = cs. The dependence of cs on Td and hence on π is shown in Fig. 2. The
defender’s initial coverage, c1, is set to cs so that the criminal will face an invariant dis-
tribution whenever he enters the system. This invariant initial distribution is analogous
to assuming that the defender patrols for a long time and becomes stable, but under our
model, criminals can enter the system at any time.

Lemma 1. (Fundamental Theorem of Markov Chains) For an ergodic Markov chain
P , there is a unique probability vector c such that P · c = c and c is strictly positive.

Proof. This is a very simple restatement of the property of ergodic Markov chain. [25]
provides detailed proof.
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3.2 Modeling Opportunistic Criminals

1

1

1

Location
Time step

Strike

1->2

2

2->3

3

2

3

4

3->2

5

2

6

3

Fig. 3. Example of strikes

Our model of the criminal con-
sists of three components.

Criminal’s probability to
commit a crime at the current
time step: We assume the crim-
inal will only commit crimes at
stations, as discussed earlier [9],
and only during action phases,
since decision phases are con-
sidered instantaneous. The prob-
ability of such a crime is determined by two factors. The first is the attractivenes of each
target station [23], which measures the availability of crime opportunities at a station.
Attractiveness measures how likely a criminal located at that station during an action
phase is to commit a crime in the absence of defenders; Att = (Att1, Att2, · · · , AttN )
is the N vector composed of station attractiveness. The second factor is the defender’s
presence; i.e., if a criminal is at the same station as a defender, he will not commit a
crime. Thus, his probability of committing a crime at station i will be influenced by
ct(i). Using this strategy, the criminal will never be caught red handed by the defender,
but may be forced toward a less attractive target. Thus, the probability of the crimi-
nal committing a crime if located at station i during the action phase of time step t, is
denoted as qc(i, t) = (1− ct(i))Att(i).

Criminal’s Belief State of the Defender: During the decision phase, the criminal de-
cides the next target station; he then moves directly to that station at the next action
phase(s). Hence, the criminal’s motion within the metro system can be distilled down
to a sequence of stations where he chooses to locate; we refer to these instances of at-
tempted crime as Strikes. Figure 3 is a toy example showing the relationship between
the time steps and strikes for a criminal. As shown in the figure, only the time steps
when the criminal is at stations are counted as strikes.

When making these target decisions, the criminal tends to choose stations with high
expected utilities. He uses his knowledge of π and his real-time observations to make
such decisions. Let Tdb, ctb, and csb be his belief of Td, ct, and cs, respectively. As the
criminals have limited surveillance capability, these beliefs may not be the same as Td,
ct, and cs. To model the criminal’s surveillance imperfection we use anchoring bias
– a cognitive bias, with extensive experimental backing, which reveals the human bias
toward choosing a uniform distribution when assigning probabilities to events under
imperfect information [5, 18]. We denote the level of the criminal’s anchoring bias with
the parameter b, where b = 0 indicates no anchoring bias, and b = 1 indicates complete
reliance on such bias. We set Tdb = (1− b) · Td + b · Tu, with corresponding stationary
coverage csb , where Tu corresponds to the uniform distribution.

At any given time step t when the criminal is at a station, i.e., a strike, he may be
modeled as using his belief and observations to estimate ctb. We assume the opportunis-
tic criminal only uses his current observation, csb and Tdb to estimate ctb (criminal’s
belief of defender’s location distribution). Specifically, if the criminal is at station i and
the defender is also there, then ctb is (0, 0, ..., 1, 0, ..., 0)T , where row i is 1 and all others
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are 0. Otherwise the defender is not at i, and

ctb =
(csb(1), c

s
b(2), ..., 0, c

s
b(i+ 1), ..., csb(Nl))

T

[1− csb(i)]
, (2)

where row i is 0 and other rows are proportional to the corresponding rows in csb . Our
approach to compute ctb is justified on two grounds. First, it is computationally cheap.
Second, as we show in experimental results, even perfect knowledge provides very lim-
ited improvement in the criminal’s performance given our modeling of the criminal’s
bounded rationality and anchoring bias; thus a more complex procedure is unnecessary.
Given ctb and Tdb, the belief coverage vector at time step t1 (t1 > t), ct1b , is calculated
via Eq. 1.

Input: i: the criminal’s station; π: defender’s Markov strategy; m: the defender’s location;
b: parameter of criminal’s anchoring bias

Output: p(·|i, ct0b ): The criminal’s probability distribution for next target
1 Initial N with the number of stations ;
2 Initial Td by π;
3 Initial cs with stationary coverage of Td;
4 Initial ct0b with a 1× (3N − 2) zero vector ;
5 Tdb = (1− b) · Td + b · Tu ;
6 csb = (1− b) · cs + b · csu ;
7 if i == m then
8 ct0b (i) = 1;
9 end

10 if i �= m then
11 for j ∈ Location do

12 ct0b (j) =
csb(j)

1− csb(i)
;

13 end
14 ct0b (i) = 0 ;
15 end
16 for j ∈ Station do
17 t = |i− j|+ 1 ;
18 ct0+t

b = (Tdb)
t · ct0b ;

19 E(j|i, ct0b ) =

(
1−c

t0+t
b

(j)
)
Att(j)

t
;

20 end
21 for j ∈ Station do

22 p(j|i, ct0b ) =
E(j|i,ct0

b
)λ∑N

h=1
E(h|i,ct0

b
)λ

;

23 end
24 return p(·|i, ct0b );

Algorithm 1. BIASED RANDOM WALK ALGORITHM

We set the actual payoff for a crime to 1, but this can be generalized. The expected
payoff for the criminal when choosing station j as the next strike, given that the current
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strike is at station i at time step t, is qcb(j, t+ δij), where δij ≥ 1 is the minimum time
needed to arrive at j from i. But, criminals are known to discount more distant locations
when choosing targets. Therefore, the utility that the criminal places on a given payoff
is discounted over time. We implement this by dividing the payoff by the time taken.
Finally, the criminal must rely on his belief of the defender’s coverage when evaluating
qcb(j, t + δij). Altogether, station j has the expected utility E(j|i, ctb) =

qcb(j,t+δij)
δij

,
which is

E(j|i, ctb) =
(
1−

[
(Tdb)

δij · ctb
]
(j)
)
Att(j)

δij
. (3)

The Criminal’s Quantal Biased Random Movement (QBRM): Finally, we propose
QBRM to model the criminal’s bounded rationality based on other such models of
criminal movements in urban domains [23]. Instead of always picking the station with
highest expected utility, his movement is modeled as a random process biased toward
stations of high expected utility. Given the expected value for each station E(·|i, ctb),
the probability distribution for each being chosen as the next strike, p(·|i, ctb) is:

p(j|i, ctb) =
E(j|i, ctb)λ∑N

h=1 E(h|i, ctb)λ
, (4)

where λ ≥ 0 is a parameter that describes the criminal’s level of rationality. This is
an instance of the quantal response model of boundedly rational behavior [26]. The
criminal may, as an alternative to choosing a further strike, leave the system at exit
rate α. Therefore, the criminal eventually leaves the system with probability 1, and in
expectation receives a finite utility; he cannot indefinitely increase his utility.

Given the criminal’s QBRM, the Opportunistic Security Game can be simplified to a
Stackelberg game for specific value of the parameters describing criminal’s behaviour (
Theorem 2).

Lemma 2. When the criminal’s rantionality level parameter λ = 0, the defender’s
optimal strategy is a stationary strategy, meaning that the defender picks a station and
does not move in the patrol.

Proof. According to Eqn. 4, when λ = 0, p(j|i, ctb) = 1
N for all targets, which is inde-

pendent of defender’s Markov strategy π. Therefore, the OSG is equivalent to a Stackel-
berg Game where the leader (the criminal) makes his choice first, which is independent
of the follower’s (defender’s) choice. Then the follower can decide her action given the
leader’s action. Therefore, as in a Stackelberg game, the follower’s (defender’s) opti-
mal strategy is a pure strategy. Furthermore, we know that in this Stackelberg game, the
leader (the criminal) is making a uniform random choice, meaning that he chooses each
target with the same probability. Therefore, the defender’s optimal strategy is staying at
the station with highest attractiveness.

To summarize, as shown in Figure 2, the opportunistic criminal is modeled as fol-
lows: First, he decides whether to commit a crime or not based on the defender’s pres-
ence at his station at each strike. Next, he uses his imperfect belief Tdb of the defender’s
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strategy, which is affected by anchoring bias, and his real-time observation to update
his belief ctb using a simple scheme (Eq. 2). Finally, we use QBRM to model his next
attack (Eq. 4) based on the expected utility of different targets (Eq. 3). Algorithm 1 is
a full mathematical description of the criminal’s movement. In Algorithm 1, steps 1-4
are initialization; steps 5-6 model how the criminal generates his imperfect belief; steps
7-15 model how the criminal updates his belief given his real-time observation; steps
16-20 model how the criminal evaluates each station based on his updated belief; and
steps 21-24 use QBRM to model his probability distribution of visiting each station in
his next strike.

4 Exact OSG (EOSG) Algorithm

Given the defender and criminal models, the EOSG algorithm computes the optimal
defender strategy by modeling the OSG as a finite state Markov chain. As all the crim-
inals behave identically, we can focus on the interaction between the defender and one
criminal without loss of generality.

Each state of the EOSG Markov chain is a combination of the criminal’s station and
the defender’s location. Here we only consider situations where the criminal is at a
station as states because he only makes decisions at stations. Since there are N stations
and Nl locations, the number of states is N · Nl in the EOSG markov chain. State
transitions in this EOSG markov chain are based on strikes rather than time steps. The
transition matrix for this Markov chain, denoted as Ts, can be calculated by combining
the defender and criminal models. For further analysis, we pick the element pS1→S2

in Ts that represents the transition probability from state S1 to S2. Suppose in S1 the
criminal is at station i while the defender is at location m at time step t, and in S2, the
criminal is at station j while the defender is at location n at time step t+ δij . We need
two steps to calculate the transition probability pS1→S2. First, we find the transition
probability of the criminal from i to j, p(j|i, ctb). Then, we find the defender’s transition
probability from m to n, which is ct+δij (n) =

(
(Td)

δij · em
)
(n), where em is a basis

vector for the current location m. The transition probability pS1→S2 is therefore given
by

pS1→S2 = p(j|i, ctb) · ct+δij (n). (5)

Since p(j|i, ctb) and ct+δij (n) are determined by π, pS1→S2 is also in terms of π (see
Fig. 2), and hence so is Ts.

Given this EOSG model, we can calculate the defender’s expected utility at each
strike. For each successful crime, the defender receives utility ud < 0, while if there
is no crime, she receives utility 0. We do not consider the time discount factor in the
defender’s expected utility, as the goal of the defender shall be to simply minimize the
total expected number of crimes that any criminal will commit. Formally, we define a
vector rd ∈ RN ·Nl such that entries representing states with both criminal and defender
at the same station are 0 while those representing states with criminal at station i and
defender not present are Att(i) · ud. Then, the defender’s expected utility Vd(t) during
strike number t is Vd(t) = rd · xt, where xt is the state distribution at strike number t.
xt can be calculated from the initial state distribution x1, via xt = ((1−α) ·Ts)

t−1x1.



12 C. Zhang et al.

The initial state distribution x1 can be calculated from the initial criminal distribution
and cs. The defender’s total expected utility over all strikes is thus

Obj = lim
�→∞

∑�

t=1
Vd(t)

= rd · (I − (1− α)Ts)
−1x1 , (6)

where I is an identity matrix and α is the criminal’s exit rate. In this equation we use
the geometric sum formula and the fact that the largest eigenvalue of Ts is 1, so that
I − (1 − α)Ts is nonsingular for 0 < α < 1.

The objective is a function of the transition matrix Ts and x1, which can be expressed
in terms of π via Eqs. (1), (3), (4), and (5). We have thus formulated the defender’s prob-
lem of finding the optimal Markov strategy to commit to as a nonlinear optimization
problem, specifically to choose π to maximize Obj (that is, minimize the total amount
of crime).

5 OSG for Multiple Defenders

If K multiple defenders all patrol the entire metro, using the same π, which is denoted
as full length patrolling, then they will often be at the same station simultaneously,
which carries no benefit. On the other hand if we allow arbitrary defenders’ strategies
that are correlated, we will need to reason about complex real-time communication
and coordination among defenders. Instead, we divide the metro into K contiguous
segments, and designate one defender per segment, as in typical real-world patrolling
of a metro system. Each defender will have a strategy specialized to her segment.

Defenders: In the k-th segment, the number of locations is nk
l . Defender k patrols with

the Markov strategy πk . Her transition matrix is Tdk ∈ Rnk
l ×nk

l . Her coverage vector at
time t is ctk, and csk is her stationary coverage. Hence, defender k’s behavior is the same
as that in a single-defender OSG, while the collective defender behavior is described by
the Markov strategy π = (π1, π2, ..., πK). The transition matrix Td is as follows, where
we have dropped the trains between segments from the basis for Td and ensured that
station numbering is continuous within segments:

Td =

⎛⎜⎝Td1 . . . 0
...

. . .
...

0 . . . TdK

⎞⎟⎠ . (7)

The coverage of all units at time step t is ct, and is defined as the concatenation of
coverage vectors (ct1; c

t
2; ...; c

t
K). ct sums to K since each ctk sums to 1. The vector

ct evolves to future time steps t1 in the same way as before, via Eq. 1. The overall
stationary coverage is cs = (cs1; c

s
2; ...; c

s
K).

Opportunistic Criminals: The previous model for criminals still applies. However,
any variables related to defenders (Td, ct, cs) are replaced by their counterparts for the
multiple defenders. Furthermore, the criminal in segment k at time t cannot observe
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Input: i: the criminal’s station; π: vector of defender Markov strategies; m: vector of
defender locations; b: parameter of criminal’s anchoring bias

Output: p(·|i, ct0b ): The criminal’s probability distribution for next target
1 Initial N with the number of stations ;
2 Initial K with the number of defenders ;
3 Initial ki with the segment that station i is in ;
4 for k ≤ K do
5 Initial Tdk by πk;
6 Initial csk by stationary coverage of Tdk;
7 Tdbk = (1− b) · Tdk + b · Tuk;
8 csbk = (1− b) · csk + b · csuk ;
9 ct0bk = csbk

10 if k == ki then
11 Initial ct0bk with a 1× nk

l zero vector ;
12 if i == m(k) then
13 ct0bk(i) = 1;
14 end
15 if i �= m(k) then
16 for j ∈ Location in segment k do

17 ct0bk(j) =
csbk(j)

1− csbk(i)
;

18 end
19 ct0bk(i) = 0 ;
20 end
21 end
22 end

23 Tdb =

⎛
⎜⎜⎜⎝
Tdb1 0 . . . 0
0 Tdb2 . . . 0
...

...
. . .

...
0 0 . . . TdbK

⎞
⎟⎟⎟⎠

24 ct0b = (ct0b1; c
t0
b2; ...; c

t0
bK).

25 for j ∈ Station do
26 t = |i− j|+ 1 ;
27 ct0+t

b = (Tdb)
t · ct0b ;

28 E(j|i, ct0b ) =

(
1−c

t0+t
b

(j)
)
Att(j)

t
;

29 end
30 for j ∈ Station do

31 p(j|i, ct0b ) =
E(j|i,ct0

b
)λ∑N

h=1
E(h|i,ct0

b
)λ

;

32 end
33 return p(·|i, ct0b );

Algorithm 2. BIASED RANDOM WALK ALGORITHM WITH MULITPLE DE-
FENDERS
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defenders other than k. As a result, his belief of defender coverage is updated only
for segment k, i.e., ctb = (csb1; c

s
b2; ...; c

s
b(k−1); c

t
bk; c

s
b(k+1); ...; c

s
bK). Algorithm 2 de-

scribes a criminal’s behavior in the multiple defenders settings. Similar to Algorithm 1,
in Algorithm 2, steps 1-3 are initialization; steps 4-22 model how the criminal generates
and updates his imperfect belief for each defender, such that for defender k(k ≤ K),
the process of calculating the criminal’s belief is exactly the same as the single defender
scenario; steps 23-24 combine the criminal’s belief for each defender as his belief for
all the defenders; steps 25-29 model how the criminal evaluates each station based on
his belief; and steps 30-34 use QBRM to model his probability distribution of visiting
each station in his next strike.

EOSG: In optimizing defender strategies via a Markov chain, each state records the
station of the criminal and the location of each defender. As a result, each state is de-
noted as S = (i,m1, ...,mK), where the criminal is at station i and defender k is
at location mk. Since defender k can be at nk

l different locations, the total number
of states is N · n1

l · · ·nK
l . To apply EOSG for multiple defenders, Ts is still calcu-

lated using the defender and criminal models. The transition probability pS1→S2 from
S1 = (i,m1, ...,mK) at time t to S2 = (j, n1, ..., nK) at time t+ δij is

pS1→S2 = p(j|i, ctb)
∏

k
ct+δij (nk),

where ct+δij (nk) = ((Td)
δij · em1,m2,...,mK )(nk) and em1,m2,...,mK is an indicator

vector with 1 at entries representing locations m1,m2, ...,mK and 0 at all others. The
state distribution x and revenue rd are both N · n1

l · · ·nK
l vectors. The defenders’ total

expected utility is given by Eq. (6); our goal remains to find a π to maximize Obj.

6 The COPS Algorithm

The objective of EOSG can be formulated as a non-linear optimization. Unfortunately,
as we will show in our experiments, the EOSG algorithm fails to scale-up to real-
world sized problem instances due to the size of Ts in Eq. (6), which is exponential
( N · n1

l · · ·nK
l by N · n1

l · · ·nK
l ) for K defenders. We propose the Compact OP-

portunistic Security game state (COPS) algorithm to accelerate the computation. COPS
simplifies the model by compactly representing the states. The size of the transition ma-
trix in COPS is 2N × 2N , regardless of the number of defenders, which is dramatically
smaller than in the exact algorithm. The COPS algorithm is inspired by the Boyen-
Koller(BK) algorithm for approximate inference on Dynamic Bayesian Networks [27].
COPS improves upon a direct application of BK’s factored representation by maintain-
ing strong correlations between locations of players in OSG.

In OSG with a single defender, there are two components in a Markov chain state
for strike t: the station of the criminal St

c and the location of the defender θtd. These two
components are correlated when they evolve. We introduce an intermediate component,
the criminal’s observation Ot

c, which is determined by both St
c and θtd. Given the crimi-

nal’s current station and his observation, we can compute his distribution over the next
strike station. At the same time, the evolution of θtd is independent of St

c. Such evolution
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(b) COPS state evolution

Fig. 4. COPS algorithm

is shown in Figure 4(a). This is an instance of a Dynamic Bayesian Network: St
c, Ot

c,
and θtd are the random variables, while edges represent probabilistic dependence.

A direct application of the Boyen-Koller algorithm compactly represents the states
by using the marginal distribution of these two components, St

c and θtd, as approximate
states. The marginal distributions of St

c and θtd are denoted as Pr(St
c) and Pr(θtd) re-

spectively, and it is assumed that these two components are independent, meaning we
can restore the Markov Chain states by multiplying these marginal distributions. Note
that in Section 4.2, we set Pr(θtd) = cs for all strikes. Thus, we do not need to store
θtd in the state representation. Therefore, the total number of the approximate states in
this case is just N . However, such an approximation throws away the strong correlation
between the criminal’s station and defender unit’s location through the criminal’s real-
time observation. Our preliminary experiments showed that this approximate algorithm
leads to low defender expected utility.

To design a better algorithm, we should add more information about the correlation
between the criminal and defenders. To that end, our COPS algorithm compactly repre-
sents our Markov Chain states with less information lost. Instead of just considering the
marginal distributions of each component Pr(θtd) and Pr(St

c), we also include the ob-
servation of the criminal Ot

c while constructing the approximate states. The criminal’s
observation is binary: 1 if the defender is at the same station with him, 0 otherwise.
The new approximate states, named COPS states, only keep the marginal probability
distribution of Pr(St

c, O
t
c). So, the new state space is the Cartesian product of the sets

of St
c and Ot

c, which has size 2N .
One subtask of COPS is to recover the distributions over the full state space (St

c, θ
t
d),

given our state representation Pr(St
c, O

t
c). We cannot restore such distribution by mul-

tiplying Pr(θtd) and Pr(St
c) in COPS. This is because St

c, Ot
c, and θtd are not indepen-

dent. For example, in COPS state St
c = 1, Ot

c = 1, θtd cannot be any value except
1. In other words, the defender’s location distribution Pr(θtd|St

c, O
t
c) is no longer cs.

Instead, we approximate Pr(θtd|St
c, O

t
c) as follows. In each COPS state (St

c, O
t
c), the

estimated marginal distribution for the defender, P̂r(θtd|St
c, O

t
c), is found in a manner

similar to that used to find the criminal’s belief distribution ctb. Specifically, if Ot
c = 1,

P̂r(θtd|St
c, O

t
c) = (0, 0, ..., 1, 0, ..., 0)T , where the row representing station St

c is 1 and
all others are 0; if Ot

c = 0, then P̂r(θtd|St
c, O

t
c) is found through Equation 2, but with

the csb(j) replaced by the true stationary coverage value cs(j). We can then recover the
estimated distribution over full states P̂r(St

c = i, θtd|St
c = i, Ot

c) = P̂r(θtd|St
c = i, Ot

c)

for all i and P̂r(St
c = j, θtd|St

c = i, Ot
c) = 0 for all j �= i. Estimated full distributions
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evolve the same way as exact distributions do, as described in Section 4. At the future
strike, we can then project the evolved estimated full distribution to distributions over
COPS states. Figure 4(b) shows the whole process of the evolution of COPS states.
However, such a process would appear to involve representing a full Ts, negating the
benefit of the factored representation; we avoid that by using TCOPS , discussed below.

To streamline the process of evolving COPS states, in practice we use a transi-
tion matrix TCOPS ∈ R2N×2N . Each element of TCOPS , i.e., transition probability
Pr(St′

c , O
t′
c |St

c, O
t
c), can be calculated as follows:

Pr(St′
c , O

t′
c |St

c, O
t
c)

=
∑

θt′
d

∑
θt
d

Pr(St′
c , O

t′
c |St′

c , θ
t′
d ) · Pr(St′

c , θ
t′
d |St

c, θ
t
d) · P̂r(St

c, θ
t
d|St

c, O
t
c)

= Pr(St′
c |St

c, O
t
c)
∑

θt′
d

Pr(Ot′
c |St′

c , θ
t′
d ) ·

∑
θt
d

Pr(θt
′
d |St′

c , S
t
c, θ

t
d) · P̂r(θtd|St

c, O
t
c),

(8)

where Pr(St′
c |St

c, O
t
c) and Pr(θt

′
d |St′

c , S
t
c, θ

t
d) correspond to p(j|i, ct0b ) and

ct0+|i−j|+1(n), respectively, in Section 4.
The defenders’ total expected utility in COPS is calculated in a similar way as the

exact algorithm, which is

ObjCOPS = rd,COPS · (I − (1 − α)TCOPS)
−1x1,COPS , (9)

where rd,COPS , x1,COPS are the expected utility vector and the initial distribution for
COPS states. Similar to rd, rd,COPS(S) is 0 if in state S the defender is at the same sta-
tion with the criminal, else rd,COPS(S) = ud. COPS is faster than the exact algorithm
because the number of states is reduced dramatically. Meanwhile, the approximation
error of COPS algorithm is bounded according to Theorem 1.

Definition 1. Let mi be the location corresponding to station i. For a distribution over
OSG full states x, the corresponding distribution over COPS states xCOPS is:

xCOPS(i, o) =

{
x(i,mi) if o = 1∑

m �=mi
x(i,m) if o = 0

For a distribution over COPS states xCOPS , the corresponding approximate distri-
bution over OSG full states x′ is:

x′(i,m) =

{
xCOPS(i, 1) if m = mi

xCOPS(i, 0) · cs(m)
1−cs(i) otherwise

This conversion can be summarized through a single matrix multiplication, such that
x′ = Ax.

Lemma 3. Let μ2 be the magnitude of the second largest eigenvalue of transition ma-
trix Ts. Let δ be the largest possible L2 approximation error introduced when full state
distribution x is transformed into the COPS representation vector xCOPS and back
into the approximate distribution x′ over full states: ||x − Ax|| ≤ δ. At strike number
t, the L2 norm between the EOSG distribution yt and the distribution found through

COPS algorithm xt is bounded, such that ||yt − xt||2 ≤ (1− α)t−1 δ(1−μt
2)

1−μ2
.
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Proof. Let xt be the state vector as found through the COPS algorithm at time t. The
time evolution for x proceeds then as follows: xt = (1 − α)t−1(ATs)

t−1x1, where
x1 = Ay1, and y1 is the initial state vector for the EOSG algorithm. So, consider the
L2 error introduced at iteration t by the COPS approximation alone

||Tsxt −ATsxt||2 = (1− α)t−1||Ts(ATs)
t−1x1 −ATs(ATs)

t−1x1||2.

Since the vector Ts(ATs)
t−1x1 is a full state vector, the error bound here is simply

||Tsxt −ATsxt||2 ≤ δ(1 − α)t−1. (10)

Now, assume that the error between the state vectors xt and yt at some time t is
bound by ε: ||yt − xt||2 ≤ ε. Since in the EOSG Markov chain it is possible to travel
from any state to any other state in a finite amount of time, this Markov chain is ergodic.
Let the stationary distribution of Ts be xs, which is normalized such that

−→
1 · xs = 1.

μ1 = 1 > μ2 ≥ ... ≥ μN ·Nl
are the magnitudes of the eigenvalues of Ts corresponding

to eigenvectors v1(= xs), v2, ..., vN ·Nl
. Since Ts is the transition matrix of an ergodic

Markov chain, μk < 1 for k ≥ 2. For eigenvectors vk, k ≥ 2, we have |Ts · vk| =
|μk ·vk|. Multiplying by

−→
1 and noting that

−→
1 ·Ts =

−→
1 , we get |−→1 ·vk| = |μk ·

−→
1 ·vk|.

Since μk �= 1,
−→
1 · vk = 0.

Write xt and yt in terms of v1, v2, ..., vN ·Nl
as:

yt = β1x
s +

N ·Nl∑
i=2

βivi

xt = β′
1x

s +

N ·Nl∑
i=2

β′
ivi

Since yt = (1−α)t−1T t−1
s y1, then

−→
1 ·yt = (1−α)t−1; similarly,

−→
1 ·xt = (1−α)t−1.

Multiplying both equations above by
−→
1 , we get β1 = β′

1 = (1− α)t−1. Therefore,

||Ts · yt − Ts · xt||2 ≤ ||
N ·Nl∑
i=2

(βi − β′
i)μivi||2

≤ |μ2|
√
(β2 − β′

2)
2 + (β3 − β′

3)
2 + · · ·+ (βN ·Ni − β′

N ·Ni
)2

≤ μ2||xt − yt||2
≤ μ2ε

Accordingly, at t = 1, we have

||y1 − x1||2 = ||y1 −Ay1||2 ≤ δ .

At t = 2, we have

||y2−x2||2 = (1−α)||Tsy1−ATsx1|| = (1−α)||Tsy1−ATsx1+Tsx1−Tsx1|| ≤
(1− α)||Tsy1 − Tsx1||2 + (1 − α)||Tsx1 −ATsx1||2 .
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From above, the bound for the first term is μ2δ, given the error bound at t = 1. The
bound for the second term is directly given by (10), and is simply δ. Hence

||y2 − x2||2 ≤ (1 − α)δ(μ2 + 1) .

At t = 3, we have

||y3−x3||2 = (1−α)||Tsy2−ATsx2|| = (1−α)||Tsy2−ATsx2+Tsx2−Tsx2|| ≤
(1− α)||Tsy2 − Tsx2||2 + (1 − α)||Tsx2 −ATsx2||2 .

From above, the bound for the first term is μ2(1 − α)δ(μ2 + 1), given the error bound
at t = 2. The bound for the second term is taken from (10), and is δ(1− α). Hence

||y3 − x3||2 ≤ (1 − α)2δ(μ2
2 + μ2 + 1) .

By extension, then, the error bound at time step t between EOSG and COPS states
is:

||yt − xt||2 ≤ (1− α)t−1δ
t−1∑
i=0

μi
2 = (1− α)t−1δ

1− μt
2

1− μ2
.

Theorem 1. The difference between the EOSG objective and the COPS approximate

objective |Obj −ObjCOPS | is bounded by
√
N ·Nlδ|ud|

[1−(1−α)μ2] α

Proof. Since Lemma 3 gives the bound of L2 distance while |Obj − ObjCOPS | is L1

distance, we use the fact that for any two vectors v1, v2, the relationship between the L1

distance and L2 distance is: ||v1 − v2||2 ≤ ||v1 − v2||1 ≤
√
n||v1 − v2||2, where n is

the dimension of the vectors. Therefore, ||yt − xt||1 ≤
√
N ·Nl(1−α)t−1(1−μt

2)δ
1−μ2

. Hence
we have:

|Obj −ObjCOPS | =
∞∑
t=1

|rd · yt − rd · xt|

=

∞∑
t=1

|rd · (yt − xt)|

≤
∞∑
t=1

|rmax|||yt − xt||1

≤ |rmax|
∞∑
t=1

√
N ·Nl(1− α)t−1(1− μt

2)δ

1− μ2

= |rmax|
√
N ·Nl δ

[1− (1− α)μ2] α

where rmax is the element in rd with largest magnitude, which is min(Att(i) · ud)
because rd is a non-positive vector by definition. Given Att(i) ≤ 1, we have |Obj −
ObjCOPS | ≤

√
N ·Nlδ|ud|

[1−(1−α)μ2] α
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7 Experimental Results

Settings: We use the graphs in Figure 5 – metro structures commonly observed in the
world’s mega cities – in our experiments. We also tested our algorithm on line structure
systems, and the results are similar (online appendix: http://osgcops.webs.com/). We
solve the non-linear optimization in OSG using the FindMaximum function in Math-
ematica, which computes a locally optimal solution using an Interior Point algorithm.
Each data point we report is an average of 30 different instances, each based on a dif-
ferent attractiveness setting; these instances were generated through a uniform random
distribution from 0 to 1 for the attractiveness of each station. For multiple patrol unit
scenarios, we use segment patrolling (except for Fig. 6(d)), and divide the graph so
that the longest distances in each segments are minimized; the dashed boxes in Fig. 5
show the segments used. Results for other segmentations are similar (online appendix).
The defender’s utility of a successful crime is ud = −1. The criminal’s initial distri-
bution is set to a uniform distribution over stations. The criminal exit rate is α = 0.1.
Strategies generated by all algorithms are evaluated using Equation 6. All key results
are statistically significant (p < 0.01).

(a) 6 stations (b) 10 stations (c) 20 stations

Fig. 5. Part of metro systems in mega cities

Results: Fig. 6(a) shows the performance of the COPS algorithm and the EOSG al-
gorithm using the settings from Fig. 5(a) and Fig. 5(b). In both, we set λ = 1. The
Interior Point algorithm used by Mathematica is a locally optimal solver and there is
always a current best feasible solution available, although the quality of the solution
keeps improving through iterations. Therefore, one practical way to compare solutions
is to check the solution quality after a fixed run-time. The x-axis in this figure shows
runtime in seconds on a log scale, while the y-axis maps the defenders’ average ex-
pected utility against one criminal, achieved by the currently-best solution at a given
run time. Focusing first on results of 6 stations, where we have one defender, COPS
outperforms EOSG for any runtime within 100 s, even though COPS is an approximate
algorithm. This is because COPS reaches a local optimum faster than EOSG. Further,
even for runtime long enough for EOSG to reach its local optimum (3160 s), where it
outperforms COPS, the difference in solution quality is less than 1%. Focusing next on
results of 10 stations with 2 defenders (using segment patrolling), the conclusions are
similar to 6 stations, but the advantage of COPS is more obvious in this larger scale
problem. In most instances, COPS reaches a local optimum in 1000 s while the output
of EOSG are the same as initial values in 3160 s.
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Fig. 6. Experimental Results

Figure 6(b) employs criminals with varying levels of rationality to compare the per-
formance of three different strategies: the uniform random strategy, which is a Markov
strategy with equal probability for all available actions at each location; an SSG strat-
egy, which is the optimal strategy against a strategic attacker that attacks a single target;
and a COPS OSG strategy (given 1800 s so it reached a local optimum). In Fig. 6(b), we
set b = 0; results with other b are similar, which are shown in online appendix. The sys-
tem consists of 10 stations and 2 defenders. The COPS OSG strategy outperforms the
random and SSG strategies significantly for any λ. Next, two more settings are tested:
the first is the OSG strategy against criminals who have perfect knowledge of defend-
ers’ current location. This is a purely hypothetical setting, and created only to check if
a more complex criminal belief model than the one in Eq. 2 would have led to signifi-
cantly different defender performance. The degradation in performance against perfect
criminals is less than 6%, indicating that a more complex belief update for defenders’
current location would have insignificant impact on the results. The second is also an
OSG strategy, but the defenders set a fixed λ during computation to test performance
when the defender has an inaccurate estimate of λ. We picked λ = 1 from a set of sam-
pled λ, since the OSG strategy with λ = 1 performs best against criminals with various
levels of rationality. Even though the OSG strategy assuming λ = 1 performs slightly
worse than that using the correct λ, it is still better than SSG and uniform strategies.
We conclude that OSG is a better model against opportunistic criminals even with an
inaccurate estimation of λ.
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The COPS strategy, the SSG, and the uniform random strategy are compared again in
Fig. 6(c), this time against criminals with different levels of anchoring bias b. In order to
evaluate the performance of COPS when the defender has an inaccurate estimate of the
anchoring bias b, we plotted both the expected utility of COPS where the defender has
an accurate estimate of the criminal’s anchoring bias and that using a fixed anchoring
bias b = 0.5. b = 0.5 was picked from a set of sampled b since the OSG strategy with
this b performs best. In Fig. 6(c), λ is fixed to 1, but experiments with other λ generate
similar results, which are shown in the online appendix. Again, COPS outperforms
uniform random and SSG strategies.

To show COPS’s scalability, we compare its performance with different numbers of
defenders in metro systems with a varying number of stations; Five different settings
are compared in Fig. 6(d): one defender, two defenders with full length patrolling, three
defenders with full length patrolling, two defenders with segment patrolling, and three
defenders with segment patrolling. The max runtime is 1800 s. With the same patrol
techniques, more defenders provide higher expected utility. But, with the same amount
of resources, segment patrolling outperforms full length patrolling.

8 Summary

This paper introduces OSG, a new computational framework to address opportunistic
crime, opening the door for further research on this topic. Furthermore, we propose a
new exact algorithm, EOSG, to compute defender resource allocation strategies, and
an approximate algorithm, COPS, to speed up defender allocation to real-world scale
scenarios. Our experimental results show that the OSG strategy outperforms baseline
strategies with different types of criminals. We also show that COPS is more efficient
than EOSG in solving real-world scale problems. Given our experimental results, COPS
is being evaluated in the Los Angeles Metro system. Finally, in introducing OSG, this
paper has added to the class of important security-focused game-theoretic frameworks
in the literature, opening the door to a new set of research challenges for the community
of researchers focused on game theory for security.
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Addressing Scalability and Robustness

in Security Games with Multiple Boundedly
Rational Adversaries

Matthew Brown, William B. Haskell, and Milind Tambe
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Abstract. Boundedly rational human adversaries pose a serious chal-
lenge to security because they deviate from the classical assumption of
perfect rationality. An emerging trend in security game research ad-
dresses this challenge by using behavioral models such as quantal re-
sponse (QR) and subjective utility quantal response (SUQR). These
models improve the quality of the defender’s strategy by more accurately
modeling the decisions made by real human adversaries. Work on incor-
porating human behavioral models into security games has typically fol-
lowed two threads. The first thread, scalability, seeks to develop efficient
algorithms to design patrols for large-scale domains that protect against
a single adversary. However, this thread cannot handle the common situ-
ation of multiple adversary types with heterogeneous behavioral models.
Having multiple adversary types introduces considerable uncertainty into
the defender’s planning problem. The second thread, robustness, uses ei-
ther Bayesian or maximin approaches to handle this uncertainty caused
by multiple adversary types. However, the robust approach has so far
not been able to scale up to complex, large-scale security games. Thus,
each of these two threads alone fails to work in key real world security
games. Our present work addresses this shortcoming and merges these
two research threads to yield a scalable and robust algorithm, MIDAS
(MaxImin Defense Against SUQR), for generating game-theoretic patrols
to defend against multiple boundedly rational human adversaries. Given
the size of the defender’s optimization problem, the key component of
MIDAS is incremental cut and strategy generation using a master/slave
optimization approach. Innovations in MIDAS include (i) a maximin
mixed-integer linear programming formulation in the master and (ii) a
compact transition graph formulation in the slave. Additionally, we pro-
vide a theoretical analysis of our new model and report its performance
in simulations. In collaboration with the United States Coast Guard
(USCG), we consider the problem of defending fishery stocks from ille-
gal fishing in the Gulf of Mexico and use MIDAS to handle heterogeneity
in adversary types (i.e., illegal fishermen) in order to construct robust
patrol strategies for USCG assets.

1 Introduction

Incorporating human behavioral models [11,3] into security games represents an
important progression that has been demonstrated to improve the performance
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of defender patrol strategies in both simulations and human subject experi-
ments [15,19,18,13]. Behavioral models allow for the relaxation of the one of the
strongest assumptions in classical game theory: namely, that the adversary is
a perfectly rational utility maximizer. Instead, behavioral models, such as the
quantal response (QR) model [11] and the subjective utility quantal response
(SUQR) model [13], feature stochasticity in human decision making. These mod-
els are able to better predict the actions of real human adversaries and thus lead
the defender to choose strategies that perform better in practice. Boundedly ra-
tional human behavioral models raise two fundamental research challenges that
previous work has tried to address separately: scalability and robustness.

While perhaps counter-intuitive, modeling adversaries which behave subopti-
mally actually makes the defender’s optimization problem computationally more
difficult. Both QR and SUQR are non-linear models and are difficult to use di-
rectly in large-scale security domains. This issue of scalability for large-scale
security games with boundedly rational adversaries has received attention in the
literature. [19] presented a mixed-integer linear programming (MILP) approxi-
mation for QR and SUQR models which improves tractability. Additionally, [18]
introduces a cutting planes approach which can handle general patrol schedules
and uses a master-slave formulation to iteratively generate deep cuts. We empha-
size that the work [19,18] only allows for a single boundedly rational adversary.

However, in many domains the defender could encounter multiple different
types of boundedly rational human adversaries. Thus, a separate line of secu-
rity games research has focused on achieving robustness against uncertainty in
the true adversary model. [17] proposed a Bayesian approach which learns a
Gaussian distribution over adversary types. This approach has two potential
drawbacks. First, the assumption that the adversary types are normally dis-
tributed is difficult to justify in practice. Second, even if the adversaries are
normally distributed, a large amount of data is needed to learn the Gaussian
distribution. Alternatively, [5] introduced a maximin approach which does not
use a distribution over the adversary types. Instead, the defender chooses a patrol
that maximizes the worst-case expected defender reward over a set of adversary
types. In an effort to scale up, [17,5] focused on security games with a simplified
defender strategy space that do not have complicated patrol schedules.

In this paper, we merge these two research threads for the first time by ad-
dressing scalability and robustness simultaneously. Each thread alone is imprac-
tical for important real-world security domains, such as environmental crime.
Security games with complicated patrol schedules and multiple boundedly ratio-
nal adversary types present a number of modeling and computational challenges.
However, overcoming these challenges is critical as they are precisely the char-
acteristics that define real-world security games. Our main contribution here
is MIDAS (MaxImin Defense Against SUQR) which computes robust defender
patrols for large-scale security games with a heterogeneous adversary popula-
tion. Building off the insights of [19,18,17,5], we offer two key innovations: (i) a
robust model that generates patrols that hedge against uncertainty about a het-
erogeneous population of adversaries and (ii) a tractable MILP approximation of
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our robust problem. We develop key theoretical properties of MIDAS and also
compare MIDAS against previous approaches in simulation.

In collaboration with the United States Coast Guard (USCG), we have applied
MIDAS to protect fisheries in the Gulf of Mexico, where illegal, unreported, and
unregulated (IUU) fishing seriously threatens the health of local fish stocks.
The USCG has both surface and air assets with which to deter IUU fishing.
We frame the interaction between the USCG and illegal fisherman from Mexico
(henceforth called Lanchas) as a Stackelberg security game. By using historical
data on Lancha sightings, we learn and construct a set of SUQR adversary
types. However, there is not sufficient data to accurately construct a probability
distribution over Lancha types. Generation of robust defender strategies for this
domain has previously been explored in [5]. However, that work was more of a
hot spot prediction model and it did not account for actual USCG schedules. In
contrast, MIDAS constructs patrol schedules directly, resulting in higher quality
patrol schedules for the USCG. The USCG began live testing of patrol schedules
generated using MIDAS in July 2014.

2 Related Work

Game theory has been successfully applied to security problems such as the
protection of networks [9,12,14] and physical infrastructure [16]. In particular,
the Stackelberg game model with its leader-follower paradigm has been used
extensively in security domains. Stackelberg games capture the fact that, in the
real world, the defender (i.e., the security agency) must commit first to a strategy
that may be observed and then exploited by adversaries. Given this first mover
advantage, it is critical to understand and predict how adversaries will respond
to a given strategy in order to find the best strategy. Classical game theory
assumes that the adversary is perfectly rational and will always select the best
available action in response to the defender’s strategy. In some domains, such
as network security [4,8], this assumption is reasonable as the game is played by
software agents. For other domains, particularly those with human adversaries, a
theoretically optimal defender strategy under standard rationality assumptions
can perform poorly in practice. Under the assumption of perfect rationality, the
adversary will always select just one action (the utility maximizing action). This
assumption can lead to non-robust strategies for the defender.

As such, human behavioral models are becoming an increasingly important
aspect of security games research. [19] was the first to address human adversaries
in security games by incorporating the quantal response (QR) model [10] from
the social psychology literature. QR predicts a probability distribution over ad-
versary actions where actions with higher utility have a greater chance of being
chosen. By anticipating possible adversary deviation from the optimal action,
strategies computed with QR are more robust to uncertainty in human deci-
sion making. [7] generalized the QR model to be robust against all adversary
models satisfying monotonicity (i.e., higher utility actions are selected more fre-
quently than lower utility actions), but this approach struggles to scale up to
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larger security games. [13] extended the QR model by proposing that humans use
“subjective utility”, a weighted linear combination of factors (such as defender
coverage, adversary reward, and adversary penalty), to make decisions. [13] pro-
poses the subjective utility quantal response (SUQR) model which was shown
to outperform QR in predicting the actions of participants of human subject
experiments, thus leading to better defender strategies.

Building off that foundation, [18] presented an efficient cutting planes ap-
proach for solving security games with a large defender strategy space and a sin-
gle adversary following a QR model. Meanwhile, two approaches have emerged
for handling security games with multiple human adversary types. [17] utilized
a Bayesian approach which learns a distribution over a set of SUQR types from
available data. This distribution was assumed to be normal so as to minimize
the number of parameters that need to be learned. Alternatively, [5] developed
a robust version of [17] and applies it to the fishery protection domain where
only limited data about the adversaries is available. Borrowing from the robust
optimization literature [1,2], a maximin approach is used to optimize defender
expected utility against the worst-case type from the set of possible adversary
types. However, [18] handles only one adversary type, while [17] and [5] both
fail to scale up. Neither of these two threads of research is individually able to
handle the needs of security game applications in real-world domains such as
environmental crime.

Most security problems do not feature static deployments, but rather have
dynamic deployments that evolve in time and space. Thus, it is imperative to
consider the capabilities of and restrictions on security resources such as per-
sonnel, cars, boats, and aircraft. Additionally, the adversaries in most physical
security domains are likely to be humans, who have biases and limitations in
their decision making process. This bounded rationality makes it difficult to
predict the actions of the adversary and in turn for the defender to optimize
their strategy. As a further complication, rather than a single adversary type
there is usually a set of potential adversary types that may be encountered and
it is critical to be robust against uncertainty in adversary type. Prior work on
boundedly rational adversaries in security games has addressed only one of the
challenges of scalability and robustness.

In this paper, we propose MIDAS which improves upon prior work by provid-
ing a holistic model that better captures the practicalities of large-scale, real-
world security domains. More specifically, MIDAS enhances the incremental cut
generation technique for solving large-scale security games with a single bound-
edly rational adversary type from [18] by using a robust maximin formulation
for handling the uncertainty posed by multiple potential boundedly rational
adversary types. Additionally, the QR model used in [18] for modeling bound-
edly rational adversary types is replaced with the SUQR model. Thus, MIDAS
addresses the challenges of both scalability and robustness simultaneously, rep-
resenting the first and only approach for solving security games with patrols
schedules and multiple boundedly rational adversary types.
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3 Background

We consider a Stackelberg security game (SSG) where the defender uses M
available resources to protect a set of targets T = {1, . . . , |T |} from a set of
boundedly rational adversaries Ω. For the remainder of this paper we will focus
on the SUQR behavioral model and treat ω ∈ Ω as an SUQR adversary type.
SUQR outperforms QR and other human behavioral models in human subject
experiments. As a result, SUQR is widely considered to be the state of the art
for modeling boundedly rational adversaries in security games.

Each target t ∈ T is assigned a set of payoffs {Ra
t , P

a
t , R

d
t , P

d
t }: Ra

t is the
reward earned by an adversary if they successfully attack target t, while P a

t

is the penalty received by an adversary for an unsuccessful attack on target t.
Conversely, if the defender assigns a resource to protect target t and an adversary
attacks target t, the defender receives a rewardRd

t . If an adversary attacks target
t and the defender has not assigned a resource to protect target t, the defender
receives a penalty P d

t . It should be noted that the payoffs for all adversary types
in Ω are identical, it is the parameters of the SUQR behavioral model that
distinguish between types in Ω.

The defender commits to a mixed strategy that the adversaries are able to
observe and then respond to by choosing a target to attack (Korzhyk, Conitzer,
and Parr 2010; Basilico, Gatti, and Amigoni 2009). We denote the jth defender
pure strategy as Aj , which is an assignment of all the security resources. Aj

is represented as a column vector Aj = 〈Atj〉T , where Atj indicates whether
target t is covered by Aj . For example, in an SSG with 4 targets and 2 resources,
Aj = 〈1, 1, 0, 0〉 represents the pure strategy of assigning one resource to target 1
and another to target 2. Let A = {Aj} be the collection of feasible assignments of
resources, i.e., the set of defender pure strategies. The defender’s mixed strategy
can then be represented as a vector a = 〈aj〉, where aj ∈ [0, 1] is the probability
of choosing Aj . For large-scale security games, the number of pure strategies
can grow so large that A cannot be represented explicitly in practice making it
impossible to optimize a directly. However, there is a more compact ”marginal”
representation for defender strategies. Let x be the marginal strategy, where
xt =

∑
Aj∈A ajAtj is the probability that target t is covered. The set of all

feasible marginal distributions is

Xf =

⎧⎨⎩x : xt =
∑

Aj∈A
ajAtj , t ∈ T,

∑
Aj∈A

aj = 1, a ≥ 0

⎫⎬⎭ .

We treat ω ∈ Ω as an SUQR adversary type with the weight vector ω =
{ω1, ω2, ω3} which encodes the relative importance of xt, R

a
t , and P a

t , respec-
tively, in the decision making process of the adversary. Recall that the SUQR
model selects a probability distribution over adversary actions rather than de-
terministically selecting the utility maximizing adversary action. Given defender
strategy x, the probability that adversary ω will attack target t is
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qt (ω |x) =
eω1xt+ω2R

a
t +ω3P

a
t∑

t′ e
ω1xt′+ω2Ra

t′+ω3Pa
t′
.

If an adversary chooses to attack target t, then for a given defender strategy
x, the defender’s expected utility is

Ut (x) = xtR
d
t + (1− xt)P

d
t .

Against a known adversary type ω ∈ Ω, the defender’s optimization problem is
then

max
x∈X

F (x |ω) �
∑
t

Ut (x) qt (ω |x) , (1)

which can be solved for a defender mixed strategy a. However, in this paper
we consider an entire population of heterogeneous adversaries in Ω. Thus, the
optimization problem above is inadequate.

4 Adversary Uncertainty

4.1 Bayesian Estimation

If we have a distribution P over the set Ω of all possible types, then the expected
utility maximizing problem is

max
x∈Xf

ˆ
Ω

F (x |ω)P (dω) . (2)

Problem (2) maximizes the expected defender utility, where the expectation
is over the adversary types. In practice Problem (2) requires P to be estimated
from sample data. Estimation of P presents two potential issues: first, it assumes
that the types in Ω are normally distributed in order to use convenient update
rules; second, large amounts of data are required. This method is referred to as
Bayesian SUQR [17].

4.2 Maximin

Robust optimization offers up remedies for the shortcomings of Bayesian SUQR.
Maximin does not require large amounts of data, but it can still utilize data
when it is available even if only in small quantities. It is also less sensitive to
assumptions about the nature of the underlying data, for instance the assumption
that P is a normal distribution.

We treat Ω as an uncertainty set in line with robust optimization. For con-
venience, we assume that Ω is finite. This assumption is reasonable in practice
since we will only ever have finitely many observations of the adversary. Then
we solve the robust optimization problem

max
x∈Xf

min
ω∈Ω

F (x |ω) (3)
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to get a patrol for the defender, where again F (x |ω) is the expected utility
corresponding to type ω. Problem (3) is a nonlinear, nonconvex, nonsmooth
optimization problem. For easier implementation, we transform Problem (3) into
the constrained problem

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} , (4)

by introducing a dummy variable s ∈ R to replace the nonsmooth objective with
a collection of smooth constraints.

5 Mixed-Integer Linear Programming

By considering a human behavior model such as SUQR, Problem (4) becomes
a nonlinear nonconvex optimization problem. In the general case, this problem
class has been shown to be NP-hard to solve to optimality. Our idea in this
section is to introduce a tractable MILP approximation scheme.

An approximate approach for solving Problem (1) with a single boundedly
rational adversary was presented in [19,18]. This approach is based on a piece-
wise linear approximation that leads naturally to an MILP. In this section, we
generalize this approach to create MIDAS, an algorithm for solving the robust
Problem (4) with a set of boundedly rational adversaries.

First notice that, F (x |ω), the defender’s payoff against a single adversary
type ω ∈ Ω can be written out as

F (x |ω) =
∑
t

Ut (x) qt (ω |x) =
∑

t

((
Rd

t − P d
t

)
xt + P d

t

)
eω1xt+ω2R

a
t +ω3P

a
t∑

t e
ω1xt+ω2Ra

t +ω3Pa
t

which is a fractional function N (x |ω) /D (x |ω) where

N (x |ω) =
∑
t

((
Rd

t − P d
t

)
xt + P d

t

)
eω1xt+ω2R

a
t +ω3P

a
t

and D (x |ω) =
∑

t e
ω1xt+ω2R

a
t +ω3P

a
t . The goal in this section is to estimate the

optimal value, which we will denote s∗, of Problem (4), i.e., the defender receives
a payoff of at least s∗ against every adversary type ω ∈ Ω. We use a binary search
to compute s∗ by updating a parameter r. We know that r ≤ s∗ if there exists
some x ∈ Xf such that

r ≤ N (x |ω)
D (x |ω) , ∀ω ∈ Ω.

Equivalently, we can rearrange the terms to require

r D (x |ω)−N (x |ω) ≤ 0, ∀ω ∈ Ω.

Therefore, to check if r ≤ s∗, we solve

min
x∈Xf , ξ∈R

{ξ : ξ ≥ rD (x |ω)−N (x |ω) , ∀ω ∈ Ω} . (5)
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If the optimal value of the above problem is less than or equal to zero, then
r ≤ s∗; otherwise, r > s∗; then r is adjusted appropriately. However, Problem (5)
is still nonlinear and nonconvex. Thus, we need to find a tractable approximation
to implement this scheme.

5.1 Linear Approximation

The nonlinearity and nonconvexity of Problem (5), whose objective function is a
summation of nonlinear functions in x, can be overcome by approximating each
nonlinear function with a piecewise linear function with K pieces. The functions
rD (x |ω) − N (x |ω) in the constraints of Problem (5) can be approximated
with piecewise linear functions L (x |ω) of the form:

L (x |ω) =
∑
t∈T

(
r−P d

t

)(
ft(0|ω) +

K∑
k=1

γωtkxtk

)
−
∑
t∈T

(
Rd

t−P d
i

) K∑
k=1

μωtkxtk

where γωtk is the slope of the function ft(xt|w) in the kth segment while μωtk is
the corresponding slope of xtft(xt|ω). With this approximation, we then solve
the feasibility check problem

min
x,ξ

ξ (6)

s.t. ξ ≥ L (x |ω) , ∀ω ∈ Ω, (7)

0 ≤ xtk ≤ 1/K, ∀t, k = 1 . . .K, (8)

ztk/K ≤ xtk, ∀t, k = 1 . . .K − 1, (9)

xt(k+1) ≤ ztk, ∀t, k = 1 . . .K − 1, (10)

ztk ∈ {0, 1}, ∀t, k = 1 . . .K − 1, (11)

xt =
∑
Aj∈A

ajAtj , ∀t, (12)

∑
Aj∈A

aj = 1, (13)

x, a ≥ 0. (14)

5.2 Column Generation

In this subsection we produce a tractable scheme for solving Problem (6) - (14).
First, we derive a relaxation of Problem (6) - (14). Second, we show how to
iteratively improve this approximation via a network flow problem: to that end
Problem (6) - (14) is used to add new constraints to the relaxed version of
the problem, and column generation is used in service of solving Problem (6) -
(14) which then uses the network flow representation. Our network flow problem
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differs substantially from earlier work, which focused on aviation security and
environmental crime, because of the generality of our formulation.

To begin, we approximate the constraint x ∈ Xf with a linear relaxation{
x : Ĥ x ≤ ĥ

}
,

which represents a subset of linear boundaries of Xf . Then we solve the relaxation

max
x, s∈R

{
s : s ≤ F (x |ω) , ∀ω ∈ Ω, Ĥ x ≤ ĥ

}
(15)

using the binary search method, i.e. Problem (6) - (14).
Given a candidate x̃, we check if x̃ ∈ Xf by solving the projection problem

min
z∈R|T |,a∈RJ

∑
t∈T

zt (16)

s.t.Aa− x̃ ≤ z, (17)

− z ≤ Aa− x̃, (18)∑
Aj∈A

aj = 1, (19)

a ≥ 0. (20)

Problem (16) - (20) finds the best 1-norm approximation of x in Xf , and returns
the optimal value zero if x ∈ Xf . Otherwise, we find a violated constraint which

we add to the approximation Ĥ x ≤ ĥ.
Problem (16) - (20) has a large number of variables since A is exponentially

large. We solve (16) - (20) using a column generation method similar to the one
introduced in [6]. We solve a restriction of Problem (16) - (20) with a subset of

columns Â ⊂ A where a is now understood as a vector in a ∈ R|Â|, with aj = 0

for all j with Aj /∈ Â. Then we check for columns Aj to add to Â by computing

the reduced costs of variables aj with Aj /∈ Â via the dual problem.
The dual to Problem (16) - (20) is

max
y, u

x̃T y + u (21)

s.t.AT y + u ≤ 0, (22)

− 1 ≤ y ≤ 1, (23)

which has a large number of constraints due to the presence of the matrix A.
For a subset of columns Â ⊂ A (abusing notation since these are matrices), we
have the relaxation of the dual

max
y, u

x̃T y + u (24)

s.t. ÂT y + u ≤ 0, (25)

− 1 ≤ y ≤ 1, (26)

g ≥ 0. (27)
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We are looking for a column Aj such that

AT
j y + u ≤ 0

is violated. So, we solve the slave problem

max
Aj∈A

{
yTAj

}
+ u (28)

and identify a violated constraint if the optimal value of this problem is posi-
tive. Specifically, we solve Problem (28) using the technique in [6], i.e. we use a
maximum reward network flow problem (since Problem (28) is a maximization
problem).

To setup this network flow problem, we create a source node with supply 1,
and a sink node with demand 1. We have a fixed time horizon, n = 0, 1, . . . , N
stages, so we create a node (n, t) for every target and every time. The variables
in this problem are the flow between nodes,

μ(t,n), (t′,n+1)

which indicate a transition in the asset from target t at time n to target t′

at time n + 1 in the next period. Effectively, we are taking a transition graph
representation on the state space TN+1. This formulation has the advantage
of allowing us to express constraints on feasible patrols. The maximum reward
network flow problem is then of the form

max
μ

{∑
n∈N

yt
∑
n,t

μ(t,n), (t′,n+1) : network flow constraints on μ

}
.

The preceding network flow problem is a linear programming problem. This
problem class is well studied and many efficient solution algorithms (such as
the Simplex algorithm) exist that can obtain an exact optimal solution. We also
point out that the preceding network flow problem can be solved efficiently for
any underlying network topology.

6 Problem Properties

This section summarizes some key problem properties. The main points are to
better understand our approximation scheme, to confirm that our cut generation
scheme produces deep cuts, and to see how the standard Bayesian estimation
approach relates to our robust approach.

6.1 MILP Approximation Error

Our underlying approach is a piecewise linear approximation to a nonconvex
problem. We want to better understand the error bound for this approximation
and the resulting solution quality of the corresponding MILP. We will show that
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all of the nonconvex functions we are approximating have bounded Lipschitz
constants. Thus, since their variability is bounded, we have an upper bound
on the piecewise linear approximation error as a function of the fineness of the
discretization.

Recall that we are approximating the feasibility check problem, which solves

min
x∈Xf

max
ω∈Ω

{rD (x |ω)−N (x |ω)} ,

by linearly interpolating the functions r D (x |ω)−N (x |ω) for all ω ∈ Ω. The
first step in our approximation analysis is to estimate the Lipschitz constant of
rD (x |ω)−N (x |ω) for fixed ω ∈ Ω.

Lemma 1. The Lipschitz constant of r D (x |ω) − N (x |ω) for any ω ∈ Ω is
bounded above by∑

t

e1+maxt R
a
t +maxt P

a
t +

∑
t

(
Rd

t − P d
t

)
e1+maxt R

a
t +maxt P

a
t .

Proof. By direct computation, r D (x |ω)−N (x |ω) is equal to

r
∑
t

eω1xt+ω2R
a
t +ω3P

a
t −

∑
t

((
Rd

t − P d
t

)
xt + P d

t

)
eω1xt+ω2R

a
t +ω3P

a
t .

So

|r D (x |ω) − N (x |ω) − rD
(
x′ |ω

)
+ N

(
x′ |ω

)
|

≤
∑
t

|eω1xt+ω2Ra
t +ω3Pa

t −
∑
t

((
Rd

t − Pd
t

)
xt + Pd

t

)
eω1xt+ω2Ra

t +ω3Pa
t

− eω1x′
t+ω2Ra

t +ω3Pa
t −

∑
t

((
Rd

t − Pd
t

)
x′
t + Pd

t

)
eω1x′

t+ω2Ra
t +ω3Pa

t |

≤
∑
t

|eω1xt+ω2Ra
t +ω3Pa

t − eω1x′
t+ω2Ra

t +ω3Pa
t |

+
∑
t

|
((

Rd
t − Pd

t

)
xt + Pd

t

)
eω1xt+ω2Ra

t +ω3Pa
t −

((
Rd

t − Pd
t

)
x′
t + Pd

t

)
eω1x′

t+ω2Ra
t +ω3P

a
t |.

We have

|eω1xt+ω2R
a
t +ω3P

a
t − eω1x

′
t+ω2R

a
t +ω3P

a
t | ≤ eω2R

a
t +ω3P

a
t eω1 |xt − x′

t|.

Additionally,

|xte
ω1xt − x′

te
ω1x

′
t | ≤|xte

ω1xt − xte
ω1x

′
t |+ |xte

ω1x
′
t − x′

te
ω1x

′
t |

≤xte
ω1 |xt − x′

t|+ eω1 |xt − x′
t|

≤2eω1 |xt − x′
t|.

Now use the fact that eω2R
a
t +ω3P

a
t eω1 is bounded above by

e1+maxt P
a
t +maxt R

a
t ,
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and 2eω1 is bounded above by 2 e. Using Lemma 2 and the triangle inequality,
for any x, x′ ∈ Xf we compute

|max
ω∈Ω

{rD (x |ω)−N (x |ω)} −max
ω∈Ω

{r D (x′ |ω)−N (x′ |ω)} |

≤ rmax
ω∈Ω

|D (x |ω)−D (x′ |ω) |+max
ω∈Ω

|N (x |ω)−N (x′ |ω) |.

We can expand on the previous Lipschitz computation to produce an error esti-
mate for the overall piecewise linear approximation, by using the following fact
to bound the Lipschitz constant of

max
ω∈Ω

{r D (x |ω)−N (x |ω)} .

Lemma 2. Let X be a given set, and f1 : X → R and f2 : X → R be two
real-valued functions on X. Then,

(i) | infx∈X f1 (x)− infx∈X f2 (x) | ≤ supx∈X |f1 (x)− f2 (x) |, and
(ii) | supx∈X f1 (x)− supx∈X f2 (x) | ≤ supx∈X |f1 (x) − f2 (x) |.

Proof. To verify part (i), note

inf
x∈X

f1 (x) = inf
x∈X

{f1 (x) + f2 (x)− f2 (x)}

≤ inf
x∈X

{f2 (x) + |f1 (x)− f2 (x) |}

≤ inf
x∈X

{
f2 (x) + sup

y∈Y
|f1 (y)− f2 (y) |

}
≤ inf

x∈X
f2 (x) + sup

y∈Y
|f1 (y)− f2 (y) |,

giving
inf
x∈X

f1 (x) − inf
x∈X

f2 (x) ≤ sup
x∈X

|f1 (x)− f2 (x) |.

By the same reasoning,

inf
x∈X

f2 (x) − inf
x∈X

f1 (x) ≤ sup
x∈X

|f1 (x)− f2 (x) |,

and the preceding two inequalities yield the desired result. Part (ii) follows sim-
ilarly.

6.2 Projection

The feasible region of our problem, Xf , is exactly the same as the one found
in [18]. Thus, the results of the cut generation algorithm are unchanged and we
obtain deep cuts. The results are repeated here for completeness.

Lemma 3. (i) If x̃ /∈ Xf , let (y∗, g∗, u∗) be the dual variables at the optimal

solution of Problem ( (16)) - ( (20)). Then the hyperplane (y∗)T x−(g∗)T b+u∗ =
0 separates x̃ and Xf .

(ii) Furthermore, (y∗)
T
x− (g∗)

T
b+ u∗ = 0 is a deep cut.
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As in [18], we now consider a modified norm minimization problem. The idea
is that we weight the norm towards an optimal solution using local rate of
change information about the objective. In our case, the objective G (x) =
minω∈Ω F (x |ω) is a nondifferentiable function, so we use the subgradient in-
stead of the gradient. The subgradient is

∂G (x) = conv{∇xF (x |ω) : F (x |ω) = G (x)} .

For a subgradient s ∈ ∂G (x), we use the objective
∑

t (st + ξ) zt where ξ > 0
is chosen so that st + ξ > 0 for all t.

6.3 Duality

Here we comment on the relationship of our approach to Bayesian estimation.
Bayesian estimation is a classical and widespread tool for incorporating infor-
mation under uncertainty. To reveal this relationship, we compute the dual of
the constrained variant of Problem (3) which we reprint here for convenience:

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} .

The constraints above cause Lagrange multipliers to appear; so we can com-
pute the standard Lagrangian dual. To proceed we first introduce the Lagrange
multipliers which lie in R|Ω| (since there are only finitely many adversary types).

We let R
|Ω|
+ denote the set of nonnegative vectors in R|Ω|.

Let

P (Ω) �
{
Λ ∈ R

|Ω|
+ :

∑
ω∈Ω

Λ (ω) = 1

}

be the space of probability measures on Ω, it is a subset of R|Ω|. We will see
shortly that these probability measures are the decision variables in the dual to
Problem (4).

Theorem 1. The dual to Problem (4) is

min
Λ∈P(Ω)

{
d (Λ) � max

x∈Xf

∑
ω∈Ω

F (x |ω)Λ (ω)

}
. (29)

Proof. Let Λ ∈ R
|Ω|
+ be the Lagrange multiplier for the constraint s ≤ F (x |ω)

for all ω ∈ Ω. We obtain the Lagrangian

L (x, s, Λ) = s+
∑
ω∈Ω

[F (x |ω)− s]Λ (ω) .

The Lagrangian dual problem is then

min
Λ∈R

|Ω|
+

max
x∈Xf , s∈R

{L (x, s, Λ)} .
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We see that the inner maximization problem d (Λ) yields the implied constraint´
Ω
Λ (dω) = 1 via

max
s∈R

s

(
1−

∑
ω∈Ω

Λ (ω)

)
,

which is equal to infinity unless the equality
∑

ω∈Ω Λ (ω) = 1 holds. Thus, we
have the dual problem

min
Λ∈R

|Ω|
+

{
max
x∈Xf

∑
ω∈Ω

F (x |ω)Λ (ω) :
∑
ω∈Ω

Λ (ω) = 1

}
.

We emphasize that the dual decision variables are prior distributions on the set
of types. Notice that for any fixed Λ ∈ P (Ω), we see that we have a Bayesian
problem since we can treat Λ as a prior distribution. For Λ, we can then perform
Bayesian estimation as usual. Thus, we see that the dual problem is a search for
the “best” prior distribution. As a corollary, we reason that standard Bayesian
estimation gives us an upper bound on the optimal value to Problem (3).

Corollary 1. (i) maxx∈Xf
minω∈Ω F (x |ω) ≤ minΛ∈P(Ω) d (Λ).

(ii) Let Λ ∈ P (Ω) be any prior distribution, then maxx∈Xf
minω∈Ω F (x |ω) ≤

d (Λ).

Proof. Follows from weak duality for Problem (4),

max
x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} ≤ min
Λ∈P(Ω)

max
x∈Xf

∑
ω∈Ω

F (x |ω)Λ (ω)

which gives

max
x∈Xf

min
ω∈Ω

F (x |ω) ≤ min
Λ∈P(Ω)

max
x∈Xf

∑
ω∈Ω

F (x |ω)Λ (ω)

since
max

x∈Xf , s∈R

{s : s ≤ F (x |ω) , ∀ω ∈ Ω} = max
x∈Xf

min
ω∈Ω

F (x |ω) .

7 Evaluation

In this section, we evaluate MIDAS in the fishery protection domain, where the
USCG must patrol the Gulf of Mexico to prevent Mexican fishermen (Lanchas)
from entering the United States Exclusive Economic Zone (EEZ) and fishing
illegally. The zero-sum Stackelberg game we consider is played on a square grid,
where each grid cell is a potential target. The defender (USCG) commits to a
mixed strategy over fixed length patrols, where each target can be visited at
most once. Additionally, all patrols must start and end in the first row of the
grid. Meanwhile, the Lanchas select their mixed strategies over targets based on
the SUQR behavioral model where each adversary has a unique weight vector ω.
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For our experiments, the game payoffs are randomly generated withRa
t uniformly

distributed in [1,10] and P d
t uniformly distributed in [-10,-1]. The remaining

game payoffs, Rd
t and P a

t , are fixed at 10 and -10, respectively. Note that Ra
t

and P a
t are the same for all adversaries. All the adversary types ω ∈ Ω used

in the experiments were learned from USCG data. The default settings for each
experiment are: five piecewise linear segments, a set of ten adversary types (i.e.,
|Ω| = 10), and a patrol length equal to half the number of targets rounded down

(i.e.  |T |
2 �). We varied the dimensions of the square grid from 5× 5 to 8× 8 and

created thirty randomly generated game instances for each grid size.

7.1 Linear Approximation

In MIDAS, we use a linear approximation to estimate the nonlinear SUQR be-
havioral model. The classic tradeoff when using approximation techniques is
between solution quality and runtime. Thus, it is important to understand how
the granularity of the approximation affects the performance of MIDAS. Figure
1(a) shows how varying the number of segments (5, 10, and 20) used in the
linear approximations impacts the defender’s utility. The x-axis indicates the
size of the grid, while the y-axis is the maximin utility obtained by the defender
mixed strategy computed by MIDAS. For all grid sizes, we observe that increas-
ing the number of segments results in higher utility for the defender as we would
expect. In particular, going from 5 to 10 segments has a significant impact on
the defender utility, whereas going from 10 to 20 segments produces diminishing
returns and a much smaller improvement.

The other half of the tradeoff is how the number of segments impacts the
runtime of MIDAS. Increasing the number of segments increases the number of
variables and constraints in MIDAS, leading to a larger optimization problem
which presumably would take longer to solve. The results from varying the num-
ber of segments used in the linear approximation are shown in Figure 1(b). The
x-axis again indicates the size of the grid, while the y-axis is now the runtime of
MIDAS in seconds. For grid sizes 5 × 5 through 7 × 7, we see that the runtime
increases as the number of segments is increased. However, for the 8 × 8 grid,
MIDAS actually runs faster for 10 and 20 segments than it does with 5 segments.
One possible explanation is that while each iteration of MIDAS algorithm takes
longer to compute with more segments, the quality of the cuts generated by the
separation oracle improves as the feasible marginal space is represented with
higher granularity. Closer examination of the data for the 8 × 8 grid suggests
that this is indeed the case as MIDAS with 5 segments averages with 125 calls
to the separation oracle and patrol generation slave, while 10 and 20 segments
average 82 and 70, respectively.

In practice, it is up to the end user to determine the right tradeoff between ap-
proximation quality and runtime. Our numerical experiments here offer guidance
in this regard.
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Fig. 1. Effect of the number of piecewise linear segments on MIDAS

7.2 Adversary Types

The primary purpose of MIDAS is to provide a scalable approach for generating
game-theoretic patrols protecting against a set of adversaries with complex hu-
man behavior models such as SUQR. Therefore, we want to evaluate the effect
of the number of adversary types on MIDAS to ensure that it serves its intended
function. In Figure 2(a), we present the results for the defender maximin utility
obtained by varying the number of adversary types on different grid sizes. Given
that MIDAS computes a robust maximin strategy, we would expect that the
defender utility monotonically decreases as the set of adversary types expands,
as each additional type could present a new possible worst case for the defender.
While overall this trend holds, we occasionally observe that the defender utility
increases as the size of Ω is increased. One possible explanation may be the inter-
action between the linear approximation and the robust maximin formulation.
Using 5 piecewise segments may be leading to a coarse approximation in which
the monotincity properties no longer hold. As with the number of piecewise
linear segments, we would expect that increasing the number adversary types
would also lead to an increase in the runtime. In Figure 2(b), we present the
runtime results for MIDAS as the size of Ω is increased, which fall in line with
our expectations. In particular, for the 8 × 8 grid we see a significant runtime
increase as Ω is expanded. However, we also see that the runtimes are relatively
constant for a small number of targets.
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Fig. 2. Effect of the number of adversary types on MIDAS

7.3 Approach Comparison

Thus far, we have evaluated the performance of MIDAS as the scale of security
games is increased with respect to size of the grid or the size of Ω. Now we
want to compare how well MIDAS performs against other approaches that have
introduced for solving security games with multiple boundedly rational adver-
saries. The first approach we will compare against is Average, in which a single
adversary type ωavg is constructed by averaging the weight vectors of the adver-
sary types in Ω. After obtaining ωavg, we can use MIDAS to solve the security
game for Ω = {ωavg}. The second approach we will compare against is Marginal,
which is the robust maximin formulation from [5] that ignores resource assign-
ment constraints to produce a marginal coverage distribution over the targets.
To compute the Marginal strategy, we run MIDAS for a single iteration which
produces a marginal defender strategy without considering resource assignment
constraints that is then mapped into a probability distribution over patrols using
the one-norm projection. The third approach is Robust which involves running
the MIDAS algorithm to completion.

In Figure 3(a), we compare the worst case defender utility of the three ap-
proaches against sets of varying numbers of boundedly rational adversaries. The
x-axis shows the number of adversary types in Ω, while the y-axis indicates the
worst case defender utility of the strategies computed by the different approaches
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Fig. 3. Comparison of three approaches for handling multiple adversary types

against Ω. Perhaps unsurprisingly, the Average approach performs the worst out
of the three across all sizes of Ω. The defender is optimizing against an artifi-
cially constructed adversary type ωavg that is not in the setΩ. By not considering
the extreme points in Ω, the resulting defender’s strategy is highly susceptible
to being exploited by at least one adversary type which would define the worst
case defender utility. TheMarginal approach shows improvement by being robust
against all the types in Ω, even while it initially ignores the resource assignment
constraints. Finally, Robust uses MIDAS to its full potential and shows additional
benefit of considering resource assignment constraints by outperformingMarginal
for all sizes of |Ω|.

In addition to defender utility, runtime can provide another point of compar-
ison between the three approaches, which we analyze in Figure 3(b). Here the
x-axis again indicates the number of adversary types in Ω, while the y-axis is
now the runtime needed to generate the defender’s strategy using each approach.
One would expect that Average, considering one adversary type, would run faster
than Robust, considering |Ω| adversary types. By considering more types, the
defender’s optimization becomes larger with more variables and constraints. In-
deed, we observe that Robust takes longer than Average for all sizes of Ω. The
gap between the two approaches seems to grow as the number of adversaries is
increased, particularly for |Ω| = 80. However, the runtime improvement of Av-
erage is likely not enough to make up for the poor solution quality in real-world
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domains. Meanwhile, Marginal produces an essentially fixed runtime by solving
only a single iteration of MIDAS and thus requires the least amount of runtime
between the three approaches. Given the high stakes of real-world security do-
mains, it is easy to imagine scenarios where security agencies would prefer the
improved solution quality of Robust over the improved runtime of Marginal.

8 Conclusion

The use of bounded rationality models like QR and SUQR in security games is
becoming increasingly popular in order to generate strategies that perform better
against real human adversaries. These models raise two main research challenges:
(i) scalability when handling resource assignment constraints and (ii) robustness
when handling multiple boundedly rational adversaries. Up to this point, previ-
ous work has addressed these challenges individually. This paper addresses both
scalability and robustness simultanesouly by introducing a new algorithm, MI-
DAS. The key feature of MIDAS is the combination of incremental cut generation
with a robust minimax formulation. Our experiments demonstrate that MIDAS
can scale up to security games with complex resource allocation constraints in
the form of spatio-temporal patrols. Additionally, MIDAS outperforms previ-
ous approaches for protecting against multiple adversaries by providing better
solution quality guarantees in terms of worst-case performance. The overall per-
formance of MIDAS suggests that it represents the state of the art for complex
security game with boundedly rational adversaries.
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Empirical Game-Theoretic Analysis

of an Adaptive Cyber-Defense Scenario
(Preliminary Report)

Michael P. Wellman and Achintya Prakash

University of Michigan, Ann Arbor, MI, USA

Abstract. We investigate an adaptive cyber-defense scenario, where an
attacker’s ability to compromise a targeted server increases progressively
with probing, and the defender can erase attacker progress through a
moving-target technique. The environment includes multiple resources,
interdependent preferences, and asymmetric stealth. By combining sys-
tematic simulation over a strategy space with game-theoretic analysis,
we identify equilibria for six versions of this environment. The results
show how strategic outcomes vary qualitatively with environment con-
ditions, and demonstrate the value of reliable probe detection in setting
up an effective deterrent to attack.

1 Introduction

Game-theoretic analyses of cyber-security domains typically start with stylized
models of environments and agent strategies, and seek analytical characteriza-
tion of solutions (e.g., equilibria) in terms of qualitative strategy properties. Such
an approach often yields valuable insight, which may apply generally for broad
classes of scenarios. An alternative, less frequently employed, is to start with
a detailed environment model and specific dynamic strategies, and solve games
based on these. We take the latter approach because it complements the former,
and allows us to explore a rich set of questions without premature simplification,
such as isolating all the key strategic variables in advance. This flexibility is par-
ticularly valuable for the study of adaptive cyber-defense, due to the complexity
of analyzing strategies that interact over time.

The defining characteristic of adaptive cyber-defense, for our purposes, is that
the defender policy takes into account the attack state of the system, in consider-
ation of how successful attacks require a succession of actions to gain knowledge
about and eventually compromise targeted resources. The present study incor-
porates only simple forms of adaptive behavior, but these are sufficient to exhibit
strategically interesting decisions by both attacker and defender.

The approach we adopt is empirical game-theoretic analysis (EGTA)
(Wellman, 2006), in which game-theoretic models are estimated from simulation
data. The advantage of simulation is its ability to handle complex, stochastic, and
temporally extended scenarios. Its main disadvantage is that conclusions may be
difficult to generalize beyond the specific environments and strategy instances
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studied. This complements traditional game-theoretic treatments, which sacri-
fice complexity for generality (within the simplified model). We have employed
EGTA for strategic reasoning in a variety of domains, including for example
collusion in privacy attacks (Duong et al., 2010) and incentives for compliance
with a network security protocol (Wellman et al., 2013).

The EGTA exercise presented here demonstrates some of the interesting strate-
gic behavior emerging from a simple adaptive cyber-defense scenario, and shows
how solutions vary qualitatively depending on environmental conditions. Our
results shed light on important ingredients of attacker and defender strategies,
and pivotal features of environment models. We label the report “preliminary”
at this stage, however, as the investigation has as yet not sufficiently explored
the space of strategies and variations in environment settings that would lead
us to consider the findings conclusive about strategic behavior in this domain.

2 Scenario: General Description and Related Work

Our adaptive cyber-defense scenario comprises two players: a defender who oper-
ates an array of networked computational assets, and an attacker who seeks to
control or compromise these assets. For concreteness, we refer to the assets as
servers. Servers are initially under the control of the defender, but the attacker
may gain control through targeted attacks. A key feature of our scenario is that
attack effort is cumulative, in that the more time an attacker has spent probing a
server, the greater its prospect for successfully taking control. The main defense
action is a moving-target technique (Jajodia et al., 2011), where the defender ef-
fectively resets the state of the server such that the attacker must restart its effort
from scratch. For example, the defender could reimage a server, dynamically ran-
domizing the layout of its address space. Our scenario model abstracts from the
implementation details of this defense operation, but it falls in the category of dy-
namic runtime environment techniques, within the taxonomy of moving-target
defenses presented by Okhravi et al. (2014). The point of dynamically modifying
the runtime environment is that specific knowledge that the attacker has accumu-
lated from probes to that point (e.g., based on specific memory locations of attack
surfaces) is rendered obsolete by the runtime modification.

Figure 1 illustrates how a sequence of attack and defense actions can play out
over time in our scenario. Attacker probes are indicated by demon heads, and
defense reimage operations by reset icons. Each row represents a server, which
may be under control of the defender (light blue) or attacker (dark red). Attacker
probes succeed in changing control probabilistically, whereas defender reimages
always work. Although the figure presents a sequence of discrete time periods,
in our actual model time is continuous and actions are asynchronous.

The setup we investigate shares several features with the FlipIt abstract cyber-
security game (van Dijk et al., 2013). As in FlipIt, a server is at any time under
the control of one of the players, and gaining this control is the players’ main
interest. Also like FlipIt, our scenario exhibits stealth, in that defenders do not
know when the attacker has taken control. Our scenario also incorporates some
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Fig. 1. Illustrative timeline of our adaptive cyber-defense scenario

major extensions of the FlipIt model, along with other important differences.
First, we consider multiple servers, which is not simply the same as playing mul-
tiple FlipIts simultaneously because the utility of controlling or compromising
one server depends on the state of others. The second major extension is a finer-
grained model of attack actions, which compromise a server through cumulative
acquisition of knowledge rather than in a one-shot takeover. Each probe action
succeeds in taking over a server with some probability, which is increasing in the
number of probes since the last defender reset. This is an essential feature, since
as pointed out by Evans et al. (2011), moving target defenses are effective only
when the attack process is incremental or progressive in some way. Finally, the
stealth in our scenario is asymmetric. Attackers know when they have compro-
mised a server, and when the defender has retaken control. And though defenders
cannot tell whether an attack has succeeded, they can detect the attacker probe
actions.

Extensions related to these were also studied in a series of recent papers, most
written by Laszka and colleagues. In one extension, the authors incorporate mul-
tiple servers, and model objectives at two extremes where attacker control of one
or all is required to control the system (Laszka et al., 2013a). Pham and Cid
(2012) introduce sensing actions that reveal the compromise state of the server,
at some cost. In the FlipIt version studied by Laszka et al. (2013b), the effect of
attack actions is not immediate, but rather the compromise takes a stochastic
amount of time. These same authors also investigate a variation in which de-
fense actions are non-stealthy (Laszka et al., 2013c); that is, as in our scenario,
attackers are aware of the state of server control.

Each of these extensions is well motivated by practical realism, but seriously
complicates analysis of the FlipIt game, which to date has eluded complete ana-
lytic solution, even in its basic version. The works cited provide partial analytic
solutions, contributing significant strategic insights on individual issues. In order
to combine multiple issues and enable extension to yet richer environments, we
adopt a simulation-based approach.

3 Detailed Game Specification

The two players in our game vie for the control of m servers, with m = 3 in the
environment instances investigated here. The scenario runs for a finite horizon
of T time units. We set T = 10, 000 for the present study.
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3.1 States and Actions

At any point of time, the state of each server can be described by a triple 〈χ, υ, ρ〉,
where:

– χ ∈ {att , def } represents the player who controls the server;

– υ ∈ {up} ∪ [0, T ] represents whether the server is up (υ = up), or, is still
down from a reimage initiated at time υ ∈ [0, T ]; and

– ρ represents the number of attacker probes since the last defender reimage
action.

The state of the overall system is defined by the joint state of the servers, plus
the current clock time t ∈ [0, T ].

Each player has one available action, which it can choose to execute at any
time on a specified server. The action is atomic and instantaneous, with effect
described in terms of an associated state transition.

The attacker action is called probe. Probing a server has the effect of com-
promising it with some probability, depending on the extent of probing to that
point. To describe the action precisely, let 〈χt, υt, ρt〉 be the state at time t, when
a probe action is executed. We denote the state immediately following the probe
by 〈χt+, υt+, ρt+〉. We specify the probe action’s effects by the following rules:

– If υt �= up, the probe has no effect: 〈χt+, υt+, ρt+〉 = 〈χt, υt, ρt〉.
– If υt = up, the number of probes is incremented: ρt+ = ρt + 1.

– If υt = up and χt = att , the attacker maintains control: χt+ = att .

– If υt = up and χt = def , the attacker takes control with probability 1 −
e−α(ρt+1), where α > 0 is an environmental factor representing the informa-
tion value of probes. That is, with aforementioned probability χt+ = att , and
with remaining probability e−α(ρt+1), χt+ = def . In our focal environment,
we set α = 0.05.

The defender action is called reimage. The purpose of reimaging a server is
to reset its state, so that if compromised it reverts to defender control, and if
not compromised the cumulative effect of probes is erased. As for the attacker’s
action, we define the effect of reimage in terms of state transition rules. Suppose
the defender executes a reimage at time t.

– If υt �= up, the reimage has no effect: 〈χt+, υt+, ρt+〉 = 〈χt, υt, ρt〉.
– If υt = up, the state is reset as follows: 〈χt+, υt+, ρt+〉 = 〈def , t, 0〉.

We model the reimaging duration by taking the server down for a specified time
interval Δ. (In our environment instances, Δ = 7.) If a reimage resets a server’s
state at time t, then the server comes back up Δ time units later. That is, we
have υt′ = t for t′ ∈ [t+, t + Δ), followed by an update to the state variable
υt+Δ = up. Aside from this one exception, all state changes in our scenario are
the immediate effects of player actions.
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3.2 Observation Model

As noted above, our observation model is asymmetric with respect to the two
players. The defender is aware of every probe that is executed on any server, but
is unaware of which probes succeed in compromising their targets. The attacker is
aware of which probes succeeded, and when the defender retakes a compromised
server through reimaging. To state this more precisely, we specify conditions on
action-generated state transitions that the players observe.

Following a probe action:

– The attacker perfectly observes the state at t+.
– If υt = up, the defender detects the probe, and can therefore infer ρt+.

Following a reimage action:

– The attacker detects the reimage if and only if (iff) it loses control of that
server due to the reimage, that is, iff χt = att and χt+ = def . In that case,
it observes the full state at t+.

– The defender perfectly observes the state at t+.

Note that the attacker always knows the control state χ, but can only im-
perfectly track ρ between actions. The reason is that a defender in control of a
server may reset the number of probes with a reimage, and the attacker does
not find out about this until its next probe. The defender always knows ρ, but
except right after a reimage does not know χ.

3.3 Utility

Each player accrues utility depending on the number of servers in their control
per unit time. Let ui

k denote the rate of utility accrual for player i ∈ {att , def }
when i controls k ∈ [0,m] servers. For example, if i controls m servers for T/2
time units, then loses control of one server for the remaining T/2 time units, its
utility accrued would be (T/2)ui

m+(T/2)ui
m−1. We normalize by setting ui

0 = 0
and ui

m = 1. Utility for control is monotonic: k′ > k ⇒ ui
k′ ≥ ui

k. In one example

instance (with m = 3), we set udef
1 = 0.1, udef

2 = 0.7, uatt
1 = 0.3, and uatt

2 = 0.7.
With these settings, the attacker’s utility per server compromised is close to
linear, whereas the defender takes a particularly large penalty for losing control
of its second server.

We can interpret these utility values in terms of the so-called “CIA triad”:
Confidentiality, Integrity, Availability (Pfleeger and Pfleeger, 2012). From the
defender’s perspective, confidentiality is maintained when all servers are under
its control, availability when any of them are, and integrity (in a rough sense)
when the predominance of servers are controlled by the defender. A low value
for udef

2 would indicate that confidentiality is paramount, as most utility is lost

if even one server goes out of control. Conversely, a high value of udef
1 would

represent that the defender is concerned primarily with availability.
In addition, our model imposes a cost for executing actions. Invoking a reimage

costs the defender cD > 0 per unit of downtime, or a total of cDΔ per reimage.
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The attacker pays a cost of cA > 0 per probe. In our study we set cA = 0.2, and
consider downtime costs cD ∈ {0.3, 0.6}.

4 Heuristic Strategies

A strategy for the attacker or defender is a policy by which the player chooses
when to execute its actions on what servers, as a function of its observation
history and the current time. Even with a single action type, the space of avail-
able strategies is vast, owing to the combinatorial explosion of possible histories.
Rather than explore the strategy space directly, we therefore focus on parameter-
ized families of heuristic strategies, defined by regular structures and patterns of
behavior over time. We define a restricted game over a selected set of such strate-
gies, and systematically refine this set through an iterative process of strategy
exploration and empirical game analysis.

Our strategy implementations interact with a discrete-event simulation of the
environment. Any time that a player’s knowledge state changes (see §3.2), the
player strategy is queried for its next action—time and target server—assuming
that it gets no further observations in the meantime. Depending on the strategy,
the player may choose to retain its pending (previously scheduled) action, or to
replace it on the queue with the action selected based on its latest knowledge. The
environment simulator is driven by the scheduling queue, continually processing
the next scheduled player action or environment event (i.e., server transition to
up), according to time precedence. Among events scheduled for the same time,
ties are broken randomly.

4.1 Attacker Strategies

The heuristic attacker strategies we consider are basically periodic, differing on
the period P and the criteria by which they choose the server to target. We have
thus far defined three different selection strategies.

– Uniform-Uncompromised. The attacker selects uniformly at random among
those servers under the defender’s control (χt = def ).

– MaxProbe-Uncompromised. The attacker selects the server that has been
probed the most since last reimage (that the attacker knows about), among
those servers under the defender’s control, breaking ties uniformly.

– Uniform-Uncompromised-or-Threshold. The attacker considers servers eligi-
ble for probe if they are under the defender’s control, or if they have not
been probed within the last τ time units. The rationale for attacking servers
already compromised is to prevent the defender from inferring from lack of
probes that it has lost control of a server. The attacker selects uniformly
among the eligible servers.

We implemented two different policies for employing these selections in a periodic
manner. In Periodic-A strategies, the attacker schedules a probe at time t + P
on the designated server (or null, if no servers meet the eligibility criteria).
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If the attacker observes a state change at time t < t′ < t + P , it withdraws its
pending probe, reconsiders according to the specified criteria, and schedules a
new probe for t′+P . In Periodic-B strategies, the attacker selects a server based
on its criteria at time t, and executes the probe immediately. It then schedules
a dummy action for t+ P so that it can evaluate its choice at that time.

In addition, we consider the No-Op strategy, in which the attacker never takes
any action.

4.2 Defender Strategies

For the defender, we define two selection criteria for periodic strategies, and
one heuristic based on probe activity. The periodic strategies are defined by
their period P , criteria for selecting which server to reimage, and the periodic
management policy. A defender using Periodic-A strategies schedules a reimage
at time t + P on the designated server. If all servers are down, the defender
schedules a dummy action for t+P and checks whether any servers are up at that
time. In case a server comes up at a time t′ ∈ [t, t+ P ], the defender schedules
a reimage action at t′ + P . In contrast to Periodic-A attackers, the Periodic-
A defenders do not reconsider their scheduled reimage based on observations
within the period. Periodic-B defenders select a server to reimage based on
their knowledge state at t, and initiate the reimage immediately.

– Uniform. The defender selects uniformly at random among all active servers
(υt = up)

– MaxProbe. The defender selects the active server that has been probed most
since the last reimage, breaking ties uniformly.

The third strategy triggers a reimage operation based on probe activity or inac-
tivity.

– ProbeCount-or-Period. The defender reimages a server whenever it detects
that it has been probed more than π times since the last reimage, or if
it has been probed at least once but not within the last P time units. The
rationale for reimaging a server that is not being probed is that this could be
an indication that the attacker has already compromised it and thus ceased
attack.

Finally, defenders may also adopt the null strategy No-Op.

5 Empirical Game Analysis

We analyze our adaptive cyber-defense scenario using empirical game-theoretic
analysis (EGTA), an approach combining simulation with game-theoretic rea-
soning. Starting with a representative set of heuristic strategies for attackers
and defenders, we evaluate their interactions by repeated simulation. Outcomes
from these scenarios are used to define payoffs for the respective strategies in the
game, and the resulting game model is analyzed to determine strategy profiles
that are in game-theoretic equilibrium.
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5.1 Simulation Setup and Game Model Generation

Our scenario specification includes several configurable parameters, described
in §3. As noted above, the scenario instances studied here take m = 3, T =
10, 000, α = 0.05, cA = 0.2, cD ∈ {0.3, 0.6}, and Δ = 7. We analyze six en-
vironment instances, differing only in defender utility for server control, and
downtime cost for reimaging. Specifically, our environments employ the follow-
ing utility settings, each for both Low (cD = 0.3) and High (cD = 0.6) downtime
costs:1

Int: udef
1 = 0.1, udef

2 = 0.7

Con: udef
1 = 0.1, udef

2 = 0.2

Ava: udef
1 = 0.8, udef

2 = 0.9

We label these utility settings by the “CIA” features they emphasize, respec-
tively: integrity, confidentiality, and availability. For all environments we take
uatt
1 = 0.3 and uatt

2 = 0.7, which means that the attackers value server control
in an approximately linear manner.

We implement the scenario using a discrete-event simulator. The simulator
maintains state as described in §3.1. It manages a queue of scheduled actions and
state transitions, repeatedly processing the next element of the queue. Actions
may be directly executable (fully specified probes or reimages), or may be dummy
action objects that require a call to the agent strategy to flesh out in detail.
Whenever a state transition includes something observable by an agent, that
agent is notified, and based on the strategy may also lead to insertion of further
actions (or dummy actions) on the queue.

Table 1 lists the strategy instances that we included in our evaluation. For
each attacker (Att) or defender (Def) heuristic, we specify the parameter values
covered. For example, we included Uniform-Uncompromised attacker strategies,
in both Periodic-A and Periodic-B policy versions, for each of the nine periods
(P ) listed. For the Uniform-or-Threshold attackers we considered all combina-
tions of the indicated P and τ values (25 total). For the defender, one P value
was inadvertently omitted in the Periodic-A case. We instantiated ProbeCount-
or-Period defender strategies for all combinations of parameters π and P listed,
except that for π = 1 the period is irrelevant so only one instance was included.
Altogether, we included 87 attacker and 58 defender strategy instances.

For each environment, we ran simulations of all 87 × 58 = 5046 strategy
profiles. Each profile was run at least 600 times (often many more), and for each
profile we take the sample-average payoff for attacker and defender as the payoff
vector in the estimated normal-form game.

5.2 Game-Theoretic Analysis Process

Once we have a normal-form game model for a specified scenario, we proceed to
analyze it using standard game-theoretic algorithms. Our analysis followed the

1 For the Ava/Low environment, we also ran a version with T = 1000, which produced
identical game analysis results.
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Table 1. Strategy instances included in our EGTA study

Att/Def Heuristic A/B P π or τ

Att Uniform A,B 0.1, 0.5, 0.7, 4, 7, 11, 15, 17, 20 —

Att MaxProbe A,B 0.1, 0.5, 0.7, 4, 7, 11, 15, 17, 20 —

Att Uniform-or-Threshold A,B 0.1, 5, 11, 17, 20 1, 5, 13, 27, 35

Def Uniform A 3, 15, 23, 31, 46, 57, 67, 75 —

Def Uniform B 3, 7, 15, 23, 31, 46, 57, 67, 75 —

Def MaxProbe A,B 3, 7, 15, 23, 31, 46, 57, 67, 75 —

Def ProbeCount-or-Period — 10, 50, 100, 150, 200, 250, 300 1, 2, 3, 4

Att,Def No-Op — — —

process displayed in Figure 2. As described above, simulating all combinations of
attacker and defender strategies yields estimated payoffs for a normal-form game.
We then simplify the game by removing dominated strategies. This produces a
game model we can solve with standard algorithms, employing Nash equilib-
rium as a solution concept. Further analysis yields insight on the qualitative
performance of heuristic strategies. The remainder of this section and the next
elaborate on the last three steps, and their application to the six environment
instances studied here.

Fig. 2. Empirical game-theoretic analysis pipeline

We start by eliminating strategies that are strictly dominated. Such strategies
cannot be part of any Nash equilibrium, and removing such strategies simpli-
fies the game. Moreover, eliminating a dominated strategy may render other
strategies dominated, hence we iterate the pruning process. One pass of iter-
ated elimination of strictly dominated strategies (IESDS) removes a strategy for
one player such that there exists another strategy that performs strictly bet-
ter regardless of the other player’s choice among its remaining strategies. We
implemented IESDS using the algorithm of Knuth et al. (1988). Starting from
games of size 87 × 58 for each of the six environments, IESDS is able to prune
2–8 attacker strategies, and 6–41 defender strategies. Using linear programming
to compute domination by mixtures eliminated just a few additional strategies.
The residual subgames are still too large for our available game solver, so we
require a more aggressive pruning regimen.

Toward this end, we eliminate some strategies that are not strictly dominated,
but would be if the dominating strategy (or mixture of strategies) were given
a boost by some small payoff increment δ. This concept, called δ-dominance
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(Cheng and Wellman, 2007), has been found to achieve significant simplification
with modest loss of accuracy. Although such aggressive pruning can eliminate
some equilibrium strategies, all equilibria of the game after iterated “weaker-
than-weak” elimination are guaranteed to be approximate equilibria of the orig-
inal game. Specifically, they are ε-Nash equilibria for any ε less then or equal to
cumulative δ (i.e., sum over iterations) employed for elimination.

In our study, we employed δ-dominance elimination as necessary to reduce
the number of strategies for each player to 42 or fewer: the size we determined
our solver could handle. In each round, we identified and removed the strat-
egy requiring minimum δ for elimination, then further pruned by IESDS (i.e.,
δ = 0). In all cases, we were able reduce the game sufficiently with relatively
small cumulative δ. For our six environments, δ-IESDS achieved reduced sizes
as follows:

Int/Low: 42× 18, with cumulative δ = 1.3
Con/Low: 42× 11, with cumulative δ = 0.8
Ava/Low: 22× 28, with cumulative δ = 0.03
Int/High: 38× 39, with cumulative δ = 0.02
Con/High: 28× 35, with cumulative δ = 0.02
Ava/High: 31× 38, with cumulative δ = 0.03

We calculate Nash equilibria using Gambit (McKelvey et al., 2014), a general
tool for game-theoretic computation. Gambit has some difficulty with games
even of this size, so we feed it a series of smaller games, with all combinations
of three undominated attacker strategies against the full set of undominated
defender strategies. This produces a set of candidate equilibria, which we then
filter by testing deviations from the rest of the undominated attacker set. This
process will produce all equilibria with attacker support three or fewer in the
shrunken game, as long as the subgame solutions are exhaustive.

5.3 Equilibrium Results and Analysis

We found three qualitatively distinct equilibria for this adaptive cyber-defense
scenario, which manifest across the six environments in an intuitively sensible
pattern (see Table 2). We did not conduct an explicit statistical analysis of the
results, as it was quite apparent that the sampling error made no difference to
the qualitative equilibrium conclusions.

Maximal Defense. In the Maximal Defense (MaxDef) equilibrium, the de-
fender responds to probing activity with aggressive reimaging, to the point that
the attacker cannot achieve any worthwhile amount of compromise, and in con-
sequence simply gives up. For example, suppose the defender plays ProbeCount-
or-Period with π = 1 (abbreviated by PCP (1, x), as the period is irrelevant at
that setting), which means it reimages as soon as it sees a probe. Even if the
attacker’s probe were successful, it would not maintain control for more than
an instant, so the probe had cost without benefit. The best response for the
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attacker is therefore No-Op. Against the No-Op attacker, the aggressive PCP
defense never actually has to reimage, so it achieves the greatest possible utility
(continual control of all servers, no reimaging cost) in this equilibrium.

Table 2. Nash equilibria for the six environments studied

Defender Utility (udef
1 , udef

2 )

cD Int (0.1, 0.7) Con (0.1, 0.2) Ava (0.8, 0.9)

Low (0.3) MaxDef MaxDef MaxDef, PerΔ

High (0.6) MaxDef, MaxAtt MaxDef, MaxAtt MaxDef, PerΔ

MaxDef is an equilibrium profile for all six of our environments. The attacker
utility is constant across these instances, and defender utility is maximal in all
as well given full control and no reimaging. Technically, there are a large set
of MaxDef equilibria, where the attacker plays No-Op and the defender plays
some mixture of PCP strategies that are sufficient to deter probes. Specifically,
No-Op is a best response for the attacker against PCP(1, x), PCP(2, 10), or
PCP(3, 10), and any PCP strategy is a best response against No-Op. Any mix-
ture of the strategies listed against No-Op would therefore constitute an equi-
librium, as would mixtures of these along with some probability of playing other
PCP strategies, as long as the components of the most aggressive PCP strategies
are probable enough to deter the attacker from probing.

In fact, our argument that MaxDef is in equilibrium applies under the general
assumptions of this scenario, even with respect to the full space of possible
attacker and defender strategies.

Proposition 1. For any environment parameter settings and any strategy sets
that include No-Op for the attacker and PCP (1, x) for the defender, the profile
comprising these strategies is a Nash equilibrium.

Proof. Suppose the defender plays PCP(1, x). The only way an attacker can
gain positive utility is to compromise servers through probing. However, with
PCP(1, x) the defender immediately takes back control on compromise, and
so the attacker ends up accruing zero utility, uatt

0 = 0, regardless. The No-Op
strategy achieves zero payoff, which is better than any strategy that involves any
probing. Therefore No-Op is a best response to PCP(1, x), among all possible
attacker strategies.

Suppose the attacker plays No-Op. In that case, the defender keeps control
of all servers, and accrues maximum utility udef

m = 1 with any strategy. The
strategy PCP(1, x) never reimages and thus incurs zero cost, so overall payoff is
maximal. Therefore PCP (1, x) is a best response to No-Op, among all possible
defender strategies.

We have established the Nash equilibrium with no reference to variable pa-
rameters m, T , α, cA, cD, Δ, or ui

k for 0 < k < m, thus the result holds for any
legal settings. ��
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For two of our environments, MaxDef is the only equilibrium found. The other
four have additional equilibria.

Maximal Attack Maximal Attack (MaxAtt) is the flip-side to MaxDef, where
the attacker probes sufficiently aggressively to deter active defense. Such de-
terrence applies when the utility the defender can achieve by taking control of
servers through reimaging is not worth its cost. In such a case, the defender’s
best response is No-Op. When the defender plays No-Op, the attacker maxi-
mizes payoff by taking control of the servers as quickly as possible, which for
our strategy set is achieved by the periodic (Uniform or MaxProbe) strategies,
with P = 0.1. The differences between Uniform and MaxProbe, and between
Periodic-A and Periodic-B in this situation are statistically indistinguishable.

MaxAtt is an equilibrium for environments Int/High and Con/High, but not
the others. To see why this is the case, consider that when the attacker is probing
at high frequency, maintaining control of the server requires reimaging it almost
as soon as it comes back up from the last reimage. We can gauge whether this
is worthwhile by comparing the utility for controlling servers with the downtime
cost (cD), since both parameters are in units of payoff/time. For environment

Int/Low, keeping control of one server is not worthwhile (udef
1 = 0.1 < 0.3 = cD),

but it is worthwhile to keep control of two (udef
2 = 0.7 > 0.6 = 2cD). When we

double cD to get environment Int/High, however, it is not worthwhile to keep
control of any number of servers against a high-frequency attacker. Therefore
MaxAtt is an equilibrium for Int/High, and for Con/High as well. It is not
an equilibrium for Ava/High, as defense is worthwhile for one server even at
the high downtime cost. At the low cost, MaxAtt is not in equilibrium for any
values of udef

1 and udef
2 , as defending all three servers is worthwhile regardless:

udef
3 = 1.0 > 0.9 = 3cD.
We illustrate the outcomes of responding to an aggressive attacker (Uniform

selection, Periodic-A, P = 0.1), in Figure 3. The top plot shows defender payoffs
for a range of periodic strategies. In both Ava environments, the defender accrues
the greatest payoff by choosing a period that maintains control of one server. The
maximum is achieved at a period coinciding with reimaging downtime. A higher
frequency of reimaging incurs more downtime cost, whereas at lower frequency
the defender controls no servers for much of the time. For the Int and Con cases,
respectively, the defender’s utility function particularly rewards controlling two
and three servers. With High downtime cost, the periodic defender cannot make
reimaging worthwhile, which is reflected in payoffs increasing toward zero with
longer periods. For Int with Low downtime cost, the defender can achieve small
positive payoff with a short period, which refutes MaxAtt as an equilibrium for
this environment.

The bottom plot shows the response of PCP strategies. Since these have two
parameters (π and P ), they cannot be ordered linearly on the x-axis. For each
environment, we can discern a pattern of payoffs as P is increased for each Probe-
Count threshold π. Some are increasing, some decreasing, and the Ava environ-
ments in particular exhibit interior maxima. The positive payoffs for PCP(1, x)
and PCP (2, 10) refute MaxAtt as an equilibrium in Con/Low.
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Fig. 3. Defender payoffs versus a maximally aggressive attacker, for all six environ-
ments. Marker shapes represent the different utility settings and colors represent dif-
ferent downtime costs. (top) Payoffs for periodic defender strategies, varying P , against
Unif (A, 0.1). (bottom) Payoffs for PCP defender strategies, varying π P , against
Unif (A, 0.1).

5.4 Periodic Δ Reimage

Our final equilibrium, Periodic Δ Reimage (PerΔ), has the defender playing a
periodic (MaxProbe, Periodic-B) strategy with P = 7, against a high-frequency
defender (MaxProbe, Periodic-B with P = 0.1). As suggested above, that the
defender’s period equals the downtime interval Δ is not a coincidence. By this
strategy, the defender keeps one server under its control (albeit down all the time),
leaving the other two to be grabbed by the attacker.These strategies are in equilib-
rium for the Ava utility environments (both Low and High downtime cost), where
the defender gets the lion’s share of its possible utility by controlling one server.
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PerΔ is not an equilibrium for the other environments, where controlling a single
server in this way is not worthwhile.

5.5 Discussion

We offer several observations about these results. First, the game-theoretic solu-
tions produced by our EGTA pipeline (Figure 2)make sense. As explained above,
it is intuitively clear why the equilibria identified are equilibria for their respec-
tive environments. In retrospect, it should have been possible to identify some
of these without the extensive simulation and game-theoretic reasoning process
undertaken, but in our experience it often takes some concrete simulation to ex-
pose the obvious in a complex environment. In any case, the simulations serve to
confirm the reasoning given, and the fact that sensible strategy profiles emerged
from the search counts as validation of the overall approach. Moreover, having
considered a broad variety of alternative strategies provides information about
other plausible heuristics that turn out not to be part of equilibrium solutions.

Of course, it is not possible to rule out additional equilibria beyond the strat-
egy sets considered here. The strategies we implemented include many obvious
candidates (e.g., the periodic strategies resemble similar strategies analyzed in
studies of FlipIt), but omit many others (e.g., stochastic renewal strategies, also
considered in FlipIt analyses). It would also be valuable to include strategies
that are more sophisticated in their adaptation to experience. Such strategies,
for example, could modulate their aggressiveness based on the observed behavior
of the other player.

Introducing further strategies could potentially overthrow the MaxAtt and
PerΔ equilibria we found, though as we showed (Proposition 1), the MaxDef
equilibrium will persist regardless of additional strategies.

For the environments with two qualitatively distinct equilibria, our analy-
sis has nothing to say about selection among these. For example, where both
MaxDef and MaxAtt are in equilibrium, which would prevail depends on the rela-
tive fortitude of the attacker and defender. More technically, we would ask which
player can more credibly threaten its maximalist policy. Such questions could
be addressed through a more extensive-form (dynamic) analysis, for example by
explicitly considering multiple stages of decision and adopting equilibrium refine-
ment based on perfection. Alternatively, we could consider Stackelberg models,
where one player or the other is presumed to have commitment power based on
the scenario setup.

It is also important to question whether features of the environment that
produce these results are entirely realistic. For instance, it seems strange to give
the defender so much credit for controlling a server that is down, particularly if
availability is the basis for a particular utility function. We saw that changing
the relative cost of downtime compared to server control utility (i.e., the Low
versus High environments) could indeed affect equilibria. Moreover, the analysis
underscores the necessity of interpreting a particular setting of cD relative to
the utility settings udef .
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The fact that MaxDef is always in equilibrium also prompts scrutiny about
environment assumptions. The credibility of the defender responding to every
probe relies crucially on the power the defender has to perfectly detect such
probes. Any inaccuracy in this detection would undermine the maximal defense.
If there were a significant prospect of false positives, this policy might be too
costly to the defender. Or with false negatives, the attacker could get some
traction even against the maximal defense.

6 Conclusions

We studied a simple scenario in adaptive cyber-defense. The model employs ab-
stract models of actions and attacker and defender objectives, yet goes beyond
previous models in simultaneously accommodating multiple resources, progres-
sive attack behavior, and asymmetric stealth. Through empirical methods, rely-
ing heavily on simulation coupled with game-theoretic reasoning, we identified
equilibrium strategy profiles for a variety of environment settings. Though the
results must be considered preliminary (sparse coverage of the space of environ-
ments, provisional equilibria based on incomplete strategy sets), the pattern of
equilibria we found reveal interesting strategic interactions between the attacker
and a moving-target defender. In particular, having perfect ability to detect
probes gives a defender a powerful deterrent strategy, applicable in a broad
range of environment settings.

Our study also illustrates empirical game-theoretic methodology in a salient
security domain. The simulation approach allows us to deal with dynamic com-
plexity in the environment, yet still apply standard game-theoretic solution con-
cepts.

Work on this scenario, and modeling adaptive cyber-defense more generally
in this framework, is ongoing. In addition to the extensions noted in §5.5, we
intend to explore environments with a range of probe efficacy (e.g., settings of
α), stochastic downtimes, and alternative attacker utility models. We are also
focusing on extending the space of strategies to include those far more adaptive
to opponent behavior, including intent inference, and explicit reasoning about
threats and counter-threats.
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Abstract. We investigate the incentives behind investments by compet-
ing companies in discovery of their security vulnerabilities and sharing
of their findings. Specifically, we consider a game between competing
firms that utilise a common platform in their systems. The game con-
sists of two stages: firms must decide how much to invest in researching
vulnerabilities, and thereafter, how much of their findings to share with
their competitors. We fully characterise the Perfect Bayesian Equilib-
ria (PBE) of this game, and translate them into realistic insights about
firms’ strategies. Further, we develop a monetary-free sharing mecha-
nism that encourages both investment and sharing, a missing feature
when sharing is arbitrary or opportunistic. This is achieved via a light-
handed mediator: it receives a set of discovered bugs from each firm and
moderate the sharing in a way that eliminates firms’ concerns on losing
competitive advantages. This research provides an understanding of the
origins of inefficiency and paves the path towards more efficient sharing
of cyber-intelligence among competing entities.

1 Introduction

Businesses across different sectors of the economy, from telecommunication and
finance to energy, healthcare and transportation, increasingly rely on cyberspace
and IT services. Past incidents of cyber-attacks and consequent damages have
left little doubt in the minds of business managers and policy makers about
the importance of investment in cybersecurity. Gathering and exchange of se-
curity intelligence are identified as key factors in enhancing the effectiveness of
cybersecurity measures. Steps have been taken by governments to provide the
environments to galvanise and coordinate the exchange of cybersecurity infor-
mation: UK launched the “Cyber Security Information Sharing Partnership” [1]
after a pilot program in 2011/12 as a “joint, collaborative initiative between
industry and government to share cyber threat and vulnerability information
in order to increase overall situational awareness of the cyber threat”. In the
US, the “National Coordinating Center for Communications (NCC)” acts as the
“Information Sharing and Analysis Center (ISAC)” for telecommunication [2].

While “Information Sharing and Analysis Centers (ISACs)” – such as Infor-
mation Technology (IT)-ISAC and Financial Services (FS)-ISAC – can provide
the platform for exchange of cyber-intelligence, the role of incentives must not be
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ignored. Providing the means of communication in the presence of strategic and
competing profit-maximizing entities does not necessarily lead to exchange of
their cybersecurity information. In order to understand the incentives of firms in
creating and sharing information security knowledge, it is important to identify
the distinct nature of the security information being shared. Some example cat-
egories of the type of cyber-intelligence to be shared are: (a) steps, protocols and
measures a firm has taken to improve its security; (b) past incidents of success-
ful or unsuccessful attacks and the resulting privacy, intellectual property and
financial losses; and (c) discovered security vulnerabilities. Sharing each of these
types of information have specific incentive implications. For instance, “public
disclosure” of security breach incidents can harm the consumers and investors’
confidence and lead to a statistically significant decreases in the market value of
firms [3–5]. In this paper, we particularly focus on the third type of information:
sharing discovered security vulnerabilities, or bugs for short.

From the societal point of view, sharing knowledge of security vulnerabilities
among firms is a positive move: it improves the overall efficiency of bug discovery
efforts. It moreover enhances the cyber protection of an entire industry against
future attacks by reducing the common exploitable threats. It is often the case
that different organizations of an economic sector bear similar vulnerabilities
in their information systems [6]. This is partly due to the adoption of common
implementations, libraries or operating systems. For instance, the Heartbleed

bug (formally, CVE-2014-0160), a buffer-over-read vulnerability in the OpenSSL

cryptographic library exposed in April 2014, affected around half a million cer-
tificates issued by trusted certificate authorities [7]. Another reason why different
technological companies face common threats is the incorporation of discovered
vulnerabilities into hacking toolkits which enables even less sophisticated users
to configure the same malware to attack across different organizations [6].

Recognizing the need for cyber-protection, companies may invest in finding
their security vulnerabilities. These can be “bugs” for example in their applica-
tion level software, operating system or implementation of a network protocol,
which we will hence generically refer to as the common platform. No company
knows exactly how many bugs there are in a software they are using. More
investment and effort in security research increases the chances of discovering
them, but there is always a factor of luck involved. Each company patches and
rectifies the vulnerabilities it finds, which is usually the much easier part than
finding them in the first place. Each bug that is not discovered by a company,
and hence not rectified, is potentially exploitable by cyber-attackers.

When a bug is indeed successfully exploited, the victim suffers direct losses.
These can include outage of their services, recovery costs, losses of important
data, user compensation, legal fines, etc. However, a company may also be af-
fected by incidents of cyber-attacks on other companies in that economic sector:
On one hand, the whole sector of the economy may suffer a blow: as customers
may lose confidence in the whole “service” and seek alternative “safer” means.
For instance, if one or a few major online banking companies fall victim to a
cyber-attack, then some customers may lose confidence in the whole sector and
switch to traditional banking altogether. Moreover, investors and stock holders
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may too lose confidence in the whole industry in favour of alternative options for
investment. These two effects translate to a net market value loss of the whole
sector, which bites all of the companies upon a successful attack on anyone of
them. However, on the other hand, if (and once) a bug is exploited in competi-
tor(s) that a company has discovered before (and has hence taken care of), it
can have the opposite effect of boosting the confidence of customers as well as
the investors: customers may switch to use and investors redirect their capital
to the “safer” company. In other words, discovering a bug in a common software
may give a company a “competitive edge” compared to others.

The two effects work in the opposite direction of each other in terms of incen-
tives for sharing the found vulnerabilities. The sharing strategies, in turn, affect
the investment decisions to discover the bugs in the first place: On the one hand,
sharing information translates to a more effective discovery process and hence
encourages investment, as the findings of one company is fortified by another’s
since the process of finding the bugs is probabilistic in nature. But on the other
hand, there can be a tendency of free-riding on the discovery investment of other
companies and hence get away with less investment. Further complicating the
problem is the presence of uncertainty and information asymmetry: companies
ought to make their discovery investment decisions in the face of uncertainties
about the total number of bugs, and they need to make decision about sharing
of their findings not knowing the number of findings of the other company.

Contributions of this paper are as follows: In Section 2, we model the interde-
pendent vulnerability research investment and information sharing decisions of
two strategic and competing firms as a two stage Bayesian game. We fully de-
termine the Perfect Bayesian Equilibria of the game in closed-form in Section 3.
Specifically, in Subsection 3.1, we derive the Bayesian equilibrium strategies of
the firms about sharing of their finding for a given investment pair, and given
their findings. In particular, we establish that the sharing strategies are unique
and dominant, and are in the simple forms of “full-sharing” or “no sharing”,
completely determined by the competitive nature of the security findings. In Sub-
section 3.2, we derive the investment strategies of the firms knowing their sub-
sequent sharing strategies. We show how “full sharing” leads to free-riding and
inefficiently low investments. Also how “no sharing” is socially inefficient by pre-
venting mutual benefit of sharing, double-efforts and potential over-investment.
Finally, in Section 4, we provide a light-weight mediation mechanism free of
monetary-transfers that enable (partial) sharing of the information when the
firms fail to achieve any sharing on their own.

Comparison to Literature: Information sharing in the context of cybersecurity is
investigated in papers like [8–15]. These works build on microeconomic models of
information sharing in a general oligopoly (e.g. [16–18]) where the effect of infor-
mation sharing is captured as improvement in the efficiency of production, i.e.,
reducing the marginal cost, or improving demand, or both. A common feature
of the models is that there is no specification of the type of security information
to be shared. The decision of how much information to share is modelled as a
normalized continuous variable between zero and one, zero corresponding to no
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sharing and one corresponding to full sharing. In contrast, we specifically model
the information as the discovered security vulnerabilities by each player, and
hence, the sharing decisions in our model is the “number” of bugs to be shared.
In addition, the relation between security investments and information sharing
is rather loose in the previous literature. For instance, the effective amount of
shared information is heuristically chosen as the product of the investment de-
cision and sharing decision. In contrast, we specifically model the process of
investment for “generation” of security information and subsequently, sharing of
them. Moreover, we develop a mediation monetary-free mechanism that enables
sharing in the face of competition as a novel contribution. More distantly, this
work is related to research on R&D rivalries, e.g. [19], with at least one major
difference that vulnerability discoveries are inherently not patentable.

2 Model

Our model considers a game between firm i and firm j where each decides how
much to invest in security research on a common “platform”, and subsequently
how many of their found security vulnerabilities to share with the other. The
platform has an unknown number of security vulnerabilities, or “bugs”, which, if
not discovered and rectified, may be exploited with ramifications for both firms.
Before the game starts, the nature determines the total number of bugs following
some distribution. Let the random variable representing the total number of bugs
be B with the sample space of N+1 and known mean value λ. The realisation
of B is not observed by any of the firms. The game play consists of two stages:
investment and sharing, as described in the following:

1- Investment: In this stage, the players, while unaware of the total number
of bugs in the platform, “simultaneously” decide how much to invest in bug
discovery, and make it publicly known. Note that simultaneous move in the
context of game theory just implies that neither one of the players can assume
pre-commitment to a decision by the other players. A player’s investment c
determines the probability p ∈ [0, 1) that each bug is discovered. For simplicity,
we assume that the bugs are homogeneous, in that they are equally difficult to
discover. Moreover, we assume discovery of each bug is independent across the
bugs and across the firms. The research investment c and discovery probability p
are related through function π as p = π(c), with limc→∞ π(c) = 1. We naturally
assume that dπ(c)/ dc > 0, as well as d2π(c)/ dc2 ≤ 0: The chance of finding
bugs should be improved with more investment, and it is increasingly more
difficult to improve the success of bug discoveries. In general we assume that the
two firms have distinct cost-probability relations, denoted as πi(c) and πj(c).
Because we assume both πi and πj are strictly incising, there is a one-to-one
mapping between investment and discovery probability. Indeed, ci = π−1

i (pi)

1 We adopt the convention that random variables are denoted by capital letters and
their realisations by lower case. Also, N+ := N ∪ {0}.
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and cj = π−1
j (pj). Hence, we can equivalently represent each player’s strategy

in this stage by its choice of discovery probability, i.e., pi and pj .

2- Sharing: After investments are made, each player privately and indepen-
dently “discovers” some bugs in the platform. Subsequently, each decides how
many of its findings to share with the other. Note that the discoveries are not
part of the strategies of the players and is rather determined probabilistically
–by “nature”– once the investments are made. Since the discoveries are private,
they cause an “incompleteness of information” of players about each other. We
therefore model this sharing decisions as a Bayesian game. Firms i and j re-
spectively discover Ni and Nj bugs in the platform, which are random variables
with the common sample space of {0, 1, . . . , B}.2 The set of discovered bugs
may have an overlap, i.e., some identical bugs may be discovered by both firms.
We denote the number of common bugs by Nij . The sample space of Nij is
{0, 1, . . . ,min(Ni, Nj)}. Given the total number of bugs B and investment levels
ci and cj, the nature determines the number of bugs discovered by each firm
and the number of commonly discovered bugs Ni, Nj and Nij . The quadruple
(B,Ni, Nj, Nij) is the random variable over the set of possible “states of the
world” Ω. Note that due to the revelation of investments at the end of the first
stage, the probability distribution of (B,Ni, Nj , Nij) over Ω is publicly known.
For each nature state (b, ni, nj , nij) ∈ Ω, firm i (resp. j) observes ni (resp. nj),
i.e., the number of bugs it has discovered, as its “type”. For each realisation of the
number of found bugs and announced investments, a firm must decide how many
of its found bugs to share with the other. Due to the homogeneity assumption
of bugs, the bugs to be shared can be assumed to be picked uniformly randomly.
A (pure) strategy of firm i is thus a mapping si(pj , ni) : [0, 1]× N+ → N+ such
that si(pj , ni) ≤ ni.

3 Let σi = (pi, si) denote the pure strategies of player i for
the whole game. After both σi and σj are decided, the the overall utilities of each
player is determined as the result of its investment together with the expected
losses/gains from security incidents.

In what follows, we describe the expected utility of the two players after two
stages of actions. We assume risk-neutral players, that is, the players care equally
about their utility of expected outcome and their expected utility. Hence, the
utilities are linear sums of the (negative of the) expected costs per each bug minus
the investment cost for discovery of the bugs. Note that at the time of taking
the decision about sharing the discovered bugs, the investments for discovering
the bugs are “sunk” costs, i.e., they are already spent and will not affect the
cost to go of different actions to take. Each bug, if not discovered by or informed
to a player, will be successfully exploited on that player by attackers with a
probability, which without loss of generality, we take to be one. We assume
that the exploitation probabilities and the severity of bugs are homogeneously
distributed. For each bug there are three types of losses/damages:4

2 By {0, 1, . . . , B}, it is meant that given the realisation B = b, the set is {0, 1, . . . , b}.
3 Since pi is part of player i’s strategy, it needs not be included as an argument to si.
4 For simplicity of exposition, we assume the losses and damages are symmetrical; it
is straightforward to generalise the results to non-symmetric cases.
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Table 1. List of main notations

Parameter Definition
B, b Random variable for the total number of bugs, and a realisation
Ni, ni Random variable for the number of bugs discovered by i, and a realisation
Nij Random variable for the number of common bugs discovered by both
ai Action of player i: how many discovered bugs to share
λ Expected number of the total number of bugs

pi, pj Probability that each bug is discovered by player i,j
ui, uj Expected utilities of player i, j
ci, cj Discovery investment cost of player i,j
l Direct loss upon exploitation of an (undiscovered) bug by attackers
δ Loss (gain) in utility of the player who is the only one attacked (not

attacked) – capturing the market competition effect
τ Loss in utility of both players if a bug is exploited in either one of them

– capturing the total market section shrinkage effect
p = π(c) The relation relating the level of investment c to the discovery probability

of a bug p. In this paper, we use p = π(c) = 1− e−θc.

- Direct loss l > 0 : affecting only the compromised firm (e.g. outage/denial
of its services, compromise/corruption of its data, etc.).

- Market shrinkage τ ≥ 0 : the common loss as a result of a successful attack
that affects both, even the firm that is not compromised. This is the effect of the
market shrinkage after a successful attack as a result of a portion of both demand
and investment moving away from (abandoning) the whole service/technology
in favour of “safer” alternatives, or simply relinquishing that sector altogether.

- Competitive loss δ ≥ 0 : when only one firm is compromised by attackers,
the compromised firm loses δ while the other gains δ. This represents the shifting
of demand and/or public investment (stocks) upon a successful attack.

Given the notions described above, there are four possibilities of net cost for
each bug that a player may incur: (a) The bug is known by both players (either
through own discovery or through the information shared by the other firm). In
this case, the utility of the players is (0, 0), as neither one of the players loses
anything.5 (b) The bug is known by player i, but not player j. In this case, the
utility pair is (δ− τ,−δ− τ− l): the bug will be exploited at firm j, which causes
its direct loss l and a competitive advantage δ for firm i, while both of them will
lose τ due to market shrinkage. (c) The bug is known by player j, but not player
i. This is the mirror situation to case-b: the utility pair is (−δ − τ − l, δ − τ).
(d) The bug is known by neither one of the players. Here, there is no competitive
advantage of one over the other, but there is still the market shrinkage effect,
besides the direct losses to both. Hence, the utilities are (−τ − l,−τ − l).

To facilitate the computation of the expected utilities, we define the following
auxiliary random variables (as also depicted by a Venn diagram in Fig. 1): Let
Bi,j , Bi,¬j , B¬i,j and B¬i,¬j represent the number of bugs that, respectively,
both players, only player i, only only player j, and neither player knows about.

5 The assumption is that once the bug is discovered, its “fix” is immediate and costless.
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B Nij

B¬i,¬j Ni Nj

Bi,¬j B¬i,jBi,¬j B¬i,j

NijNN

si(Ni) sj(Nj)

Bi,j

Fig. 1. Venn diagram illustration of the sets of bugs

Let the (expected) utility of players be denoted by u, which is a function from
the strategy profile of the players and the state of the world to the set of real
numbers. The expectation is taken with respect to the realisation of Bi,j , Bi,¬j ,
B¬i,j and B¬i,¬j given B, Ni, Nj and Nij , and the sharing strategies. We are
now ready to compute the expected utility of player i given a realisation of the
state of the world ω = (b, ni, nj , nij), and σi = (pi, si), σj = (pj , sj):

ui(ω, σi, σj) = −ci(pi) + 0 · E(Bi,j) + (δ − τ) · E(Bi,¬j)

+ (−δ − τ − l) · E(B¬i,j) + (−τ − l) · E(B¬i,¬j) (1)

In what follows we analyse further the structure of this utility function and
derive the “outcome” of the game and study its properties.

3 Analysis of the Game

When dealing with strategic entities with inter-dependent utilities, investigat-
ing equilibria, most notably Nash Equilibria, is a method of predicting their
decisions. Our game contains sequential moves, and thus an ordinary Nash equi-
librium concept would potentially cause the problem of “non-credible threats”.
Also note that our game contains simultaneous actions in each stage, and hence is
of “imperfect information”. We therefore examine possible perfect Bayesian equi-
libria (PBE), a solution concept that effectively eliminates non-credible threats
in sequential games with incomplete and imperfect information.

Informally, a PBE is a profile of strategies such that, given any belief about
the game history that is consistent with that profile, the induced strategy profile
must be a Nash equilibrium for the induced subgame (the game from the belief
in an information Set onward). To find the set of PBEs, we notice that since the
investment decisions are announced before sharing, each Bayesian game in the
second stage is a proper subgame of the whole game. This means that we can use
backward induction and first construct ((pi, si), (pj , sj)) such that si and sj form
a Bayesian Nash equilibrium (BNE) of the Bayesian game of sharing induced by
choices of pi and pj. This in turn determines the utility of the players for each
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choice of (pi, pj), which allows us to build a simple strategic-form game with
actions pi and pj corresponding to the first stage of the game. The remaining
task will be to find a Nash equilibrium for this game, which will lead to a proper
PBE for the whole two-stage game. We thus proceed by studying the second
stage of the game (information sharing), and then proceed to analyse players’
investments given their equilibrium sharing strategies.

3.1 Second Stage: Sharing the Bug Discoveries

To study the Bayesian game of the second stage, we first compute the utility
functions of the players from the basic description in (1). Since E(Bi,j) is mul-
tiplied by zero, we can safely ignore it. For the rest, we have:

E[Bi,¬j |ω, σi, σj ] = (ni − nij)(1−
si(pj , ni)

ni
) (2a)

E[B¬i,j |ω, σi, σj ] = (nj − nij)(1 −
sj(pi, nj)

nj
) (2b)

E[B¬i,¬j |ω, σi, σj ] = b− ni − nj + nij (2c)

In (2a),(2b), we have in part used the fact that the bugs to be shared are chosen
uniformly randomly across the discovered bugs. Replacing in (1), we obtain:

ui(ω, σi, σj) = −ci(pi) + (δ − τ)(ni − nij)(1 −
si(pj , ni)

ni
)+

(−δ − τ − l)(nj − nij)(1−
sj(pi, nj)

nj
) + (−τ − l)(b− ni − nj + nij) (3)

We are looking for strategy profiles (strategy pairs (si, sj) in our two-player
context) that are simultaneous best responses to each other, given the informa-
tion that each player has, notably including its number of discovered bugs. In
the Bayesian Nash equilibria of the game, each candidate strategy for a player
must be a maximizer of its expected utility given the strategy of the other player
and given its observed type (number of discovered bugs).6 Formally, for a given
pi and pj , we are looking for the strategy pairs (s∗i , s

∗
j ), such that:

∀ni∈N+, s∗i (pj , ni) ∈ arg max
si(pj ,ni)

E[ui(ω, (pi, si(pj , ni)), (pj , s
∗
j (pi, nj)))|ni] (4)

and simultaneously vice versa for j. Such pairs constitute the (pure) Bayesian
Nash Equilibria of the second stage of our game. The pair (s∗i , s

∗
j ) is further, a

Dominant (pure) Bayesian Nash Equilibrium iff:

∀ni∈N
+,∀sj , s∗i (pj, ni)∈arg max

si(pj ,ni)
E[ui(ω, (pi, si(pj , ni)), (pj , sj(pi, nj)))|ni] (5)

6 To analyse the game, each player must specify its actions for all of its possible types,
and not just the realised (and observed) type. This is because, the expected utility of
each player depends on the possible actions of the other player(s) weighted against
their potential types, since the type of other player(s) are not directly observed.
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and simultaneously vice versa for j. We are now ready to express the main
result of this section:

Proposition 1. Suppose pi, pj < 1. If δ < τ , the unique dominant pure Bayesian
Nash Equilibrium of the second stage of the game is (s∗i (pj , ni), s

∗
j (pi, nj)) =

(ni, nj), i.e., sharing all the discovered bugs. If δ > τ , it is (s∗i (pj , ni), s
∗
j (pi, nj))

= (0, 0), i.e., sharing no information at all. When δ = τ , any strategy pair be-
comes a Bayesian Nash Equilibrium. This proposition holds irrespective of the
distribution of the total number of bugs.

Proof. According to (5), a pair (s∗i , s
∗
j ) constitutes a Dominant Bayesian Equi-

librium if, for each type of a player, its corresponding action is the best (provided
the knowledge of its type), irrespective of the strategy of the other player. From
(3), the only term in the the expression of ui(ω, σi, σj) that involves si is the
second term: (δ− τ)[(ni−nij)(1− si(pj , ni)/ni)]. Hence, with the assumption of
pj < 1 in mind, the maximization of E[ui(ω, σi, σj)|ni] with respect to si(pj , ni)
reduces to maximizing (δ − τ)(1− si(pj , ni)), which yields the proposition.7 ��

Discussion The proposition makes intuitive sense: when δ > τ , each bug that is
only known by a player wins it a strictly positive (expected) competitive gain of
(δ− τ), as the competitive shift in the demand and public investment outweighs
the overall drop in the demand and fall in the stock market of the whole market
section. Hence it rather not share any of its findings, irrespective of what the
other player chooses. This is because the players have no means of making their
decisions “contingent” on the decision of the other.8 Similarly, when δ < τ , the
competitive shift in the demand and capital, falls short of the whole market
section shrinkage. Therefore, the players prefer to share all their findings to
(selfishly) keep themselves from being hurt. Perhaps the surprising result is that
the dominant strategy of the players turned out to be completely determined
by the relative values of only two parameters δ and τ . This proposition fully
determines the sharing strategy of the firms. Notably, aside from the special case
of δ = τ , the equilibrium is unique and hence, there is no ambiguity in selection
of the equilibrium. Next, we investigate how each firm invests for discovering the
bugs knowing the subsequent sharing strategies.

3.2 First Stage: Investment for Bug Discovery

In the first stage of the game, each player decides about its investment amount for
the discovery of bugs, heeding the strategy of the other player in the second stage.

7 Although the proposition leaves out the cases in which the condition pi, pj < 1
are not satisfied, they are not difficult to analyse: suppose pj = 1, then E[(ni −
nij)(1 − si(pj , ni)/ni)|ni] = 0, and hence the expression for E[ui(ω,σi, σj)|ni] will
not depend on si at all. Hence, in any Bayesian Nash Equilibria, the choice of si
becomes arbitrary. Similar situation happens for sj when pi = 1. Intuitively, if the
other player “knows every bug for certain”, then a player cannot affect its utility
through its action: it cannot gain any competitive advantage if δ > τ , or help prevent
market shrinkage when δ > τ . Note that realistically, we can safely assume pi, pj < 1,
as no practical amount of investment leads to absolute certainly of finding all bugs.

8 We will see in §4 how this situation can be altered in the presence of a mediator.
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To obtain closed-form results, we need to model the relation between investment
decision and the chance of finding bugs. A simple candidate for such relation is the
following: p = π(c) = 1 − e−θc, where θ represents a measure of the efficiency of
the investment: a larger θ corresponds to a higher efficiency of the investment. As
the level of investment increases to infinity, the probability of discovery of each bug
asymptotically approaches unity. The two firmsmay be different in how “efficient”
they are in their investment. A firm with more prepared talents can expect higher
chances of discovery with less investment. To capture the potential heterogeneity
in the investment efficiencies, we consider two potentially different θi and θj . Our
investment-discovery probability relation has the extra property that the relative
efficiency of the investment stays constant for all investment values, specifically:
(∂πi/∂c)/(∂πj/∂c) = θi/θj. This relation can also be equivalently represented
in its inverse form: ci(pi) = − ln(1 − pi)/θi for pi ∈ [0, 1), and likewise for j.
Note that the condition of Proposition 1 pi, pj < 1 is automatically satisfied when
limp→1 c(p)→∞, as is the case in our example.

To analyse this stage, we note that Proposition (1) fully determines (s∗i , s
∗
j )

for each profile of (pi, pj). This allows us to treat the first stage as a “one-shot”
game of investment with action profiles of the form (pi, pj).

3.3 The Case of δ < τ

For the case of δ < τ , from Proposition 1, the dominant strategy of both players
is to share all of their findings, i.e., si(pj , ni) = ni and sj(pi, nj) = nj for all
ni, ni ∈ N+. Then, the second and third terms in (3) become zero, and we get:

E[ui(ω, (pi, s
∗
i ), (pj , s

∗
j ))] = −ci(pi) + (−τ − l)E[B −Ni −Nj +Nij ]

= −ci(pi) + (−τ − l)λ(1 − pj)(1 − pi)

The best response pBR
i as a relation over pj is hence:

pBR
i (pj) = [c′−1

i (κ(1− pj))]
+, 9 where κ := λ(τ + l). (6)

Note that when pBR > 0, ∂pBR
i /∂pj = −κ/c′′i (pBR

i ) < 0, i.e., more investment
by the other player leaves less incentive for a player to invest. Similarly, we
have: E[ui(ω, (pi, s

∗
i ), (pj , s

∗
j ))] = −cj(pj)+ (−τ − l)(1− pi)λ(1− pj), and hence:

pBR
j (pi) = [c′−1

j (κ(1 − pi))]
+. The fixed points of the best response correspon-

dence (pi, pj) ⇒ ([c′−1
i (κ(1−pj))]

+, [c′−1
j (κ(1−pi))]

+) constitute the outcome of
the first stage. For our example cost function c = − ln(1−p)/θ, the simultaneous
best response must hence satisfy the following (Fig. 2a):

pBR
i (pj) = [1− 1

θiκ(1− pj)
]+, pBR

j (pi) = [1− 1

θjκ(1 − pi)
]+.

This, together with Proposition 1, lead to the following result:10

10 The exact values of the investments depend on the cost function adopted, however,
the qualitative observations hold for a wide class of such functions.
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Fig. 2. (a) Example best response curves for the case of δ < τ , investigated in §3.3.
In the figure θi > θj . The intersection gives the simultaneous best response pair in
the first stage of the game as: (p∗i , p

∗
j ) = ([1− (κθi)

−1]+, 0). The parameters used are:
λ = 100, τ = 0.5, l = 1, θi = 0.04, θj = 0.02. (b) Example best response curves for the
case of δ < τ and different θis and θjs.

Proposition 2. If δ < τ and θi > θj, the Perfect Bayesian Equilibrium (PBE) of

the two-stage game is ((p∗i , s
∗
i (pj , ni)), (p

∗
j , s

∗
j (pi, nj))) = (([1− 1

κθi
]+, ni), (0, nj))

for all ni, nj ∈ N+ and all pi, pj ∈ [0, 1), where κ := λ(τ+l). That is, only the more
efficient firm invests in discovery of the bugs – to achieve discovery probability of
[1− (κθi)

−1]+ – and all the findings are then shared.11

Discussion The less efficient firm free-rides on the bug discovery investment
of the more efficient company, knowing that all the findings will be shared.
This might leap the reader to the conclusion that the PBE outcome is socially
inefficient simply because of the existence of “free-riding”. However, a social
planner may also prefer that the investment is done by the more efficient firm
as opposed to distributing the investment among both, hence garnering a higher
social return on the aggregate investments. In what follows, we will evaluate the
social utility and the socially efficient outcome and compare the two.

Investigating Social Welfare: Let W represent the expected (utilitarian) so-
cial utility, defined simply as the sum of the expected utilities of the two firms,
i.e., W := ui + uj.

12 First off, it is straightforward to argue that in the socially
optimal outcome, all the findings are shared (the social utility can only be im-
proved by sharing the findings, as the investment decisions are now disentangled
from the sharing decisions). The expected social utility is hence as follows:

EW =−ci − cj − 2(τ + l)EB¬i,¬j=−ci(pi)− cj(pj)− 2κ(1− pi)(1− pj) (7)

11 When θi = θj = θ, i.e., the two firms are homogeneous in terms of their efficiencies
of bug discovery investments, the equilibrium point is not unique and becomes the
set: {(p∗i , p∗j ) ∈ [0, 1]2, p∗i = [1− (θκ(1− pj))

−1]+}.
12 Other notions of social welfare exist, e.g., the egalitarian objective W := min(ui, uj).
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For our example cost function, maximizing EW hence yields: (p̂i, p̂j) = ([1 −
(2κθi)

−1]+, 0). Comparing the socially optimal solution with the PBE outcome,
we have p̂j = p∗j = 0, and when 2κθi > 1, we have: p̂i > p∗i . That is, to maximize
the social utility (sum of the expected utilities of the two firms), the less efficient
firm, as in the PBE outcome, makes no investment free-rides on the investment
of the more efficient firm. However, compared to the PBE outcome, the more
efficient firm invests more. This makes intuitive sense: the less efficient firm
offers a lower return on investment (offers less “return” in turning investment
into probability of bug discovery) and hence should not invest at all. Instead,
the investments must be made by the more efficient firm and all the findings
be shared. Moreover, the more efficient firm must consider the aggregate losses
and invest more carrying the burden of the two, compared to the PBE, where it
only considers the effect of its investment on its own losses. Note that even when
the players are homogeneous in terms of their efficiencies, i.e., when θi = θj , the
socially optimal investment turns out to choose only one of the firms to invest.
This is because it will prevent from discovery of the same bugs by both players.
The value of the optimum social welfare is:

W (p̂i, p̂j) = − ln(2κθi)/θi − 1/θi for κθi > 1/2, and: − 2κ for κθi ≤ 1/2. (8)

The social welfare that is achieved at the equilibrium outcome of the game is:

W (p∗i , p
∗
j) := − ln(κθi)/θi − 2/θi for κθi > 1, and: − 2κ for κθi ≤ 1. (9)

An example comparison between the two is depicted in Fig. 3a.
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Fig. 3. (3a): Example depiction of the optimal and achieved social welfare (3a) and
security utility (3b) for the case of δ < τ as functions of κ = λ(τ + l)

Here, we define another metric of social welfare in the context of economics
of network security. Let the security utility uS of a player be the negative of the
costs of security attacks. Security utility, such defined, is related to the utility
of a player as uS = u + c: it includes all the secueity damages but excludes the
investment cost. Now, let the security welfare S, as a metric of the aggregate
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security of the two firms, be the sum of their security utilities: S := uS
i + uS

j .
The security utility is related to the utilitarian social welfare in the following
way: S = W + ci(pi) + cj(pj). The optimal S is achieved by picking pi = 1 and
sharing all the findings, which yields S = 0. Fig. 3b illustrates a comparison
between the achieved security utility at the equilibrium and the optimal S.

Comparative Statics. 13 Recall from Proposition (2), that for δ < τ , in part
we have: (p∗i , p

∗
j) = ([1 − 1/(κθi)]

+, 0). Hence, as long as δ < τ , θi > θj and
p∗i > 0 (i.e., for 1 < κθi), we have the following straightforward observations:

∂p∗i
∂τ

,
∂p∗i
∂l

,
∂p∗i
∂λ

,
∂p∗i
∂θi

> 0,
∂p∗j
∂τ

,
∂p∗j
∂l

,
∂p∗j
∂λ

,
∂p∗j
∂θj

= 0.

We also have ∂p∗i /∂θj = 0, and perhaps most interesting of all ∂p∗i /∂δ = 0;
intuitively, player i shares all of its findings and thus removes any dependence
of its utility (and hence its best strategy) on δ. Also, note that even though
∂p∗i /∂θi > 0, i.e., more efficiency in investment means higher choice of probability
of discovery, this does not necessarily translate to higher choice of investment. In
fact, we have: ∂ci(p

∗
i )/∂θi < 0 for 1 < κθi < e, and ∂ci(p

∗
i )/∂θi > 0 for κθi > e.

Moreover, from (9), for p∗i > 0 we have: W ∗ := W (p∗i , p
∗
j ) = − ln(κθi)/θi − 2/θi

and S∗ := S(p∗i , p
∗
j ) = −2/θi. Hence, when δ < τ , θi > θj and 1 < κθi, we have:

∂W ∗

∂τ
,
∂W ∗

∂l
,
∂W ∗

∂λ
< 0,

∂W ∗

∂θi
> 0,

∂S∗

∂τ
,
∂S∗

∂l
,
∂S∗

∂λ
= 0,

∂S∗

∂θi
> 0.

3.4 The Case of δ > τ

Following Proposition 1, the dominant strategy of the players in the second stage
is to share none of their findings, i.e., si(pj , ni) = 0 and sj(pi, nj) = 0 for all
ni, ni ∈ N+ and all pi, pj ∈ [0, 1). Then from (3), we obtain:

E[ui(ω, (pi, s
∗
i ), (pj , s

∗
j ))] = −ci(pi) + (δ − τ)λpi(1− pj)

+ (−δ − τ − l)pjλ(1 − pi) + (−τ − l)(1− pj)λ(1 − pi) (10)

The best response relation for player i is therefore:

pBR
i (pj) = [c′−1

i (λ(δ + l + pjτ))]
+.

A point to observe is that for pBR
i > 0, we have: ∂pBR

i /∂pj = λτ/c′′i (p
BR
i ) > 0,

i.e., more investment by the other player leads to more investment by a player.
This is in sharp contrast to the the previous case of δ < τ . Similarly: pBR

j (pi) =

[c′−1
j (λ(δ + l + piτ))]

+. For our example cost function, the simultaneous best

response is therefore the solution the following system (Fig. 2b):

pBR
i (pj) = [1− 1

θiλ(δ + l + pjτ )
]+, pBR

j (pi) = [1− 1

θjλ(δ + l + piτ )
]+. (11)

13 In economics, comparative statics is the study of the change in the “equilibrium”
outcome when a change in a parameter is/would be introduced.
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Straightforward algebraic investigation reveals that the solution is unique and
given as follows:

If Δ ≥ 0:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p∗i =

[
−λθiθj((δ + l)2 − τ2) + τ(θi − θj) +

√
Δ
]+

2τθiθj(δ + l+ τ)

p∗j =

[
−λθiθj((δ + l)2 − τ2)− τ(θi − θj) +

√
Δ
]+

2τθiθj(δ + l+ τ)

, (12)

and if Δ < 0: (p∗i , p
∗
j ) = (0, 0), where Δ :=

(
τ(θi + θj)− λθiθj(δ + l+ τ)2

)2 −
4τ2θiθj . This, along with Proposition 1, fully determines the PBE:

Proposition 3. When δ > τ , the Perfect Bayesian Equilibria (PBE) of the
security information sharing game is unique, in which (p∗i , p

∗
j ) are provided in

(12), and (s∗i (pj , ni), s
∗
j (pi, nj)) = (0, 0) for all ni, nj ∈ N+ and all pi, pj ∈ [0, 1).

That is, both of the firms may invest – to achieve discovery probabilities as given
in (12) – and none of the consequent findings are shared.

Discussion When δ > τ , the competitive gain outweighs the market shrinkage
of not sharing the found bugs. Knowing that the found bugs will not be shared,
both players, notably even the less efficient player, invest in discovery of the bugs
on their own. This is because of two facts: 1- Since the findings are not shared,
the firm would be exposed in its bugs if it does not discover and rectify them if
it does not invest. 2- Since the other firm invests and expectedly discovers some
bugs, the firm will further suffer through the competitive effect of being the sole
victim of such bugs if it does not invest.

Comparison to Socially Optimal Outcome: The social optimal outcome
certainly shares the found bugs. Compared to the case of δ < τ , both players in-
vest strictly more in discovery of the bugs. The social inefficiency of the outcome
for the case of δ < τ was due to underinvestment. Here, it is primarily due to lack
of sharing of the found bugs: if a player would receive information of a bug that
has not discovered itself, the social utility would have improved by preventing
the potential direct losses in that player as well as the market shrinkage losses in
both players. Another source of social inefficiency is the fact that “both” players
make discovery investment: there is a positive probability that the same bug
can be discovered independently by both firms. The investment could have been
more efficient by preventing such cases of “duplicate effort”, if directed to only
one player and the subsequent findings are shared. Anther source of social ineffi-
ciency, which is again rooted in lack of information sharing of the players, is the
possibility of “over-investment” in bug discovery. The optimal expected social
utility is the same as was computed in (8). Note in particular that it does not
depend on the value of δ. Sharing the information in the social optimal removes
the competitive effect of δ. However, in the case of δ > τ , the investment value of
both players increases with δ. This means that the threat of competitive losses
due to being the sole victim of a security attack can drive both firms to invest
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inefficiently large values in bug discovery, when they know the discoveries, as
competitive advantages, will not be shared. A combination of all of these three
effects is responsible for a high social inefficiency in this case.

Comparative Statics. Given δ > τ and our example cost functions, we note
that players’ best response functions as in (11) are increasing and concave. In-
vestigating the best-response expressions in (11) further reveals:

∂pBR
i

∂τ
,
∂pBR

i

∂l
,
∂pBR

i

∂λ
,
∂pBR

i

∂θi
,
∂pBR

i

∂δ
> 0,

∂pBR
j

∂τ
,
∂pBR

j

∂l
,
∂pBR

j

∂λ
,
∂pBR

j

∂θj
,
∂pBR

j

∂δ
> 0.

This means that player i is willing to invest more as any of the following param-
eters increases: τ , l, λ, θi, and similarly for player j (with θi replaced by θj).
Investigating the effect on the equilibrium point is a bit trickier. For simplicity
of exposition, we illustrate the “shift” in the equilibrium pair pictorially. In Fig.
4, the effect of increasing δ is depicted. Note that, on the “pi–pj” plane, pBR

i (pj)
shifts “up” and pBR

j (pi) shifts “right” as the value of δ increases. Hence, the
intersection, which indicates the equilibrium, moves towards up and right. The
algebraic details of the analysis is removed for brevity. Analysing the effect of
each parameter in turn reveals:

∂p∗i
∂τ

,
∂p∗i
∂l

,
∂p∗i
∂λ

,
∂p∗i
∂δ

,
∂p∗i
∂θi

,
∂p∗i
∂θj

≥ 0,
∂p∗j
∂τ

,
∂p∗j
∂l

,
∂p∗j
∂λ

,
∂p∗j
∂δ

,
∂p∗j
∂θj

,
∂p∗j
∂θi

≥ 0.

In words, the above inequalities indicate that if any of the following parame-
ters increases, then firms would invest more: τ , l, λ, and δ. Indeed, the higher
these parameters, the more severe impacts of security incidents would be, and
thus both firms have to secure themselves, especially when they receive no aid
from the other. An interesting result is the effect of improvement in the invest-
ment efficiency of the competitor: If θj is improved, then firm i invests more in
vulnerability research. Intuitively, this is due to the fact that an improvement
in the discovery probability of the competitor firm j means more competitive
pressure on firm i. This is because each bug that is discovered exclusively by
firm j brings it a net advantage of δ − τ at the cost of firm i. Thus the increase
in efficiency of firm j forces firm i to also improve its probability of discovery,
which happens by increasing its investment. This means that the utility of player
i decreases as the result of an improvement in player j’s efficiency. Specifically,
∂ui(p

∗
i , p

∗
j )/∂θj < 0. This is while, ∂uj(p

∗
i , p

∗
j )/∂θj > 0. Due to these opposing

effects of efficiencies on individual utilities, in general, the equilibrium social
welfare, W (p∗i , p

∗
j ), which is the sum of the two utilities at the equilibrium, may

increase or decrease as θi or θj is improved. Note, however, that the equilibrium
security welfare, S(p∗i , p

∗
j ), always improves when θi or θj increases.

4 Mediation: Encouraging Information Sharing

Our analysis in the previous section characterized the players’ behaviour in equi-
libria. For the case of δ < τ , which pertain to a the case where security acts
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Fig. 4. Example illustration of the comparative statics for the case of δ > τ . The
parameters used are λ = 1.5, l = 0.5, θi = 1, θj = 0.9, τ = 0.9, and the value of δ
is increased from δ = 1 to δ′ = 1.2. Notice the shift in the equilibrium value towards
“up” and “right” as a result.

effectively as a “common good”, sharing of security findings becomes inevitable,
and exactly because of that, free-riding emerges, which in turn leads to un-
derinvestment. In contrast, when δ > τ , which represents cases where security
effectively becomes a “competitive advantage”, firms would individually strive
for their security and refrain from sharing their findings. We observed that none
of these outcomes are in line with desirable social planning.

In this section, we make a preliminary attempt to remedy one of the sources of
social inefficiency, specifically, failure in information sharing in the “competitive
advantage” case. We develop a mediation mechanism that partially removes the
negative incentives of sharing the information while allowing the players to gain
from its positive effects. Informally put, our mediation plan states that if a firm
wants to be informed about n bugs that it failed but the other firm succeeded to
discover, it must reveal in exchange n bugs that the other firm is not aware of.
Note that this was not possible in the previous sections, as there was no means
of making the sharing actions of a firm “contingent” on the action of the other.
The mediator effectively ensures that no net “competitive advantage” is lost by
sharing the vulnerability findings, as any leakage of an “exclusive” discovery is
matched by an “exclusive” discovery of the competitor. We will hence refer to
our mediation plan as “matched sharing”.

Matched sharing operates in two steps: (i) each player/firm submit its set
of found bugs to the mediator, along with a specification of a “threshold” as
the maximum number of bugs it is willing to exchange with the other firm.
(ii) Subsequently, based on the reported sets and the players’ thresholds, the
mediator moderates the exchange of as many bugs as possible in the following
manner: the mediator marks the bugs that are exclusive to each player, i.e.,
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that the other player has not discovered them. Then the information of a bug
is transferred from player i to player j iff a) there is an exclusive bug to match,
i.e., to transfer from player j to i, and b) if the total number of bugs transferred
so far does not exceed either one of the players’ requested maximum threshold.
Note that the mediator is not a strategic player, and its behaviour is known to
and trusted by both players.

From the above description, a sharing action of a player entails the selection
of the threshold on exchange number. Note specifically, that we can without
loss of generality assume that both players submit all of their findings to the
mediator.14 This is because the players can restrict the sharing of their findings
by specifying the threshold. For instance, no sharing corresponds to requesting
a threshold of “zero”. Note that due to the nature of the Bayesian game, each
player must pick this bound for every realisation of bugs it discovers (given
the investment decisions). Formally, we can reuse the notations si(pj , ni) and
sj(pi, nj) to represent the sharing strategies, with the different interpretation
that si and sj denote the threshold, i.e., the maximum number of their bugs to
be shared by the mediator to the other player. Hence, the expressions in (2) in
the presence of the mediator and the new interpretation of the strategies become:

E[Bi,¬j |ω, si, sj ] = ni − nij −min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}
E[B¬i,j |ω, si, sj ] = nj − nij −min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij}

and, as before, E[B¬i,¬j |ω, si, sj ] = b− ni − nj + nij . In words, the term repre-
sented by the min function determines the number of bugs that are exchanged
between the players, which should be no more than the bounds set by both firms,
as well as what each firm individually has to offer. This in turn gives:

ui(ω, σi, σj) =− ci(pi) + δ(ni − nj)− τ (b− nij)− l(b− ni)

+ (2τ + l)min{si(pj , ni), sj(pi, nj), ni − nij , nj − nij} (13)

As we can see, the only term that involves si(pj , ni) is the last term. Maximiza-
tion of the expected utility of player i given the strategy of player j therefore
translates to maximizing min{si(pj , ni), sj(pi, nj), ni −nij , nj − nij}. Hence, we
have the following result:

Proposition 4. Suppose pi, pj < 1. The weakly dominant pure Bayesian Nash
Equilibrium of the second stage of the game is (s∗i (pj , ni), s

∗
j (pi, nj)) = (ni, nj)

for all ni, nj ∈ N+ and pi, pj ∈ [0, 1), i.e., asking the mediator to share the
maximum number of exclusive bugs. This proposition holds irrespective of the
distribution of the total number of bugs, or correlation in the discovery of bugs.

Proof. First, note that irrespective of the choice of sj , si(pi, ni) = ni maxi-
mizes the expression min{si(pj , ni), sj(pi, ni), ni − nij , nj − nij}, and likewise
for sj(pi, nj) = nj . Hence (si(pj , ni), sj(pi, nj)) = (ni, nj) for all ni, nj ∈ N+

and pi, pj ∈ [0, 1) belongs to the set of pure Bayesian Nash equilibria of the
second stage of the game. To see the weak dominance, consider the cases where

14 Assuming that both parties have established trust with the mediator.
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nj > ni > 0 and nij = 0. Note that Pr[Nj > ni ∧ Nij = 0 | Ni = ni] > 0.
Consider the strategy of player j as sj(pi, nj) = nj for all nj ∈ N+. Then
ui(ω, (pi, ni), (pj , sj)) > ui(ω, (pi, s

′
i), (pj , sj)) for any s′i(pj , ni) < ni, because:

min{ni, sj(pi, nj), ni−nij , nj−nij} > min{s′i(pj , ni), sj(pi, nj), ni−nij , nj−nij}
for any s′i(pj , ni) < ni when nj > ni, nij = 0 and sj(pi, nj) = nj .

4.1 Game’s First Stage: Investment in the presence of the Mediator

Given the weakly dominant equilibrium in Proposition 4, min{s∗i (pj , Ni),
s∗j (pi, Nj), Ni − Nij , Nj − Nij} = min{Ni, Nj} − Nij . Hence, utility of player
i in (13) becomes:

Eui(ω, pi, pj , s
∗
i , s

∗
j ) = −ci(pi) + δE[Ni −Nj ]− τE[B −Nij ]− qlE[B −Ni]

+ (2τ + l)(E[min{Ni, Nj}]− E[Nij ])

= −ci(pi)+λδ(pi−pj)−λτ (1−pipj)−λl(1−pi)+(2τ + l)(E[min{Ni, Nj}]−λpipj)

The term E[min{Ni, Nj}] depends on the specific distribution of the total num-
ber of bugs. A good candidate is the Poisson distribution. The presence of this
term in the utility function prevents a closed-form solutions for the best responses
and the equilibrium points. Instead, we pictorially illustrate in Fig. 5 the poten-
tial usefulness of the mediator when δ > τ , i.e., when players are motivated more
by competition than aggregate security. Fig. 5a depicts the equilibrium points of
players’ investments in two cases: sharing in the absence of the mediator (which
leads to no sharing) and our “matched sharing”. These are set in the context of
low security damage (l) compared to competitive advantage (δ) and inefficient
investment (θi = θj = 0.1). The end result is that with matched sharing, both
players invest more in finding vulnerabilities, which guarantee a a better security
for both. However, the social welfare, as well as the individual utilities of both
players, worsens with the introduction of the matched sharing, as it exacerbates
the already inefficiently high investments of the players in this example.
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Fig. 5. Illustration of opportunistic sharing vs. matched sharing when δ > τ , with
δ = 10, τ = 1, θi = θj = 0.1, with (a) l = 1 and (b) l = 10
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In contrast, Fig. 5b shows the effect of our mediator plan in situations with
either a significant security damage value (large l) or efficient investments (high
θi, θj), or both. In such scenarios, equilibrium points of the two cases are rel-
atively close to each other, i.e., they make similar levels of investments. With
the help of the mediator, players would share their intelligences and thus gain
extra value in security, making mediation a superior solution to opportunistic
sharing. This suggests the potential of our matched sharing mediation scheme,
and that it should be in the interest of the social planner to monitor environment
parameters and establish trusted mediation among firms whenever appropriate
for players/societal benefits.

5 Conclusion

In this work, we focused on the problem of sharing cybersecurity information,
as an envisioned pillar of cybersecurity planning for a more secure infrastruc-
ture. We analysed the strategic decisions of two competing firms with regards to
investment for discovery of security vulnerabilities (generating valuable cyber-
intelligence) and subsequently, to share their findings. We showed that sharing
becomes a dominant strategy when security tends to behaves as a common good,
i.e., when the common losses as a result of security attacks outweigh the compet-
itive gains of being protected. We analysed how in turn this leads to free-riding
of less efficient firm and the under-investment of the more efficient firm. We
also established that when security effectively becomes a competitive advantage,
i.e., when there is a net positive gain when a competitor is a sole victim of an
attack, then sharing no information becomes the dominant strategy, with neg-
ative implication on the social efficiency. Finally, we provided a monetary-free
light-weight mediation mechanism that (partially) enables sharing of the found
vulnerabilities in cases where they fail to achieve any sharing on their own.

Future Research This work has the potential to be extended in many directions.
We have already made some grounds in extending our results to the multi-
player situation. An interesting addition is considering “features” for the found
bugs, such as severity (seriousness of the potential damage), sophistication (ex-
ploitability), etc., and hence letting the sharing strategies depend on the type
of the found bug as well. Investigating the behaviour of risk-averse players –
as opposed to risk-neutral in this work – is another problem. Identifying other
types of “security information” to share is another interesting direction, for in-
stance, revealing past incidents of successful attacks and resultant losses carries
some market implications that sharing merely discovered security vulnerabilities
does not. Also, we assumed that both firms use a common implementation (the
“platform”). If instead, for instance, the firms are using a common protocol but
with their private implementations of it, then “some” of the discovered bugs
may be just exclusive to that party’s implementation. Sharing found bugs now
requires a modified analysis. Investigating other means of encouraging sharing
is another important direction. An example is “bargaining”: A player starts by
sharing one bug, then the other player matches with a bug of its own findings,
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and so on, until one stops. Another example is a generalisation of the “matched
sharing” mechanism in this work by allowing unequal number of matching that
may involve some randomisation as well. An exchange market of vulnerabilities
is another idea, although it may suffer from adverse selection and moral hazard.
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Abstract. While expensive cryptographically verifiable computation
aims at defeating malicious agents, many civil purposes of outsourced
computation tolerate a weaker notion of security, i.e., “lazy-but-honest”
contractors. Targeting this type of agents, we develop optimal contracts
for outsourcing of computational tasks via appropriate use of rewards,
punishments, auditing rate, and “redundancy”. Our contracts provably
minimize the expense of the outsourcer (principal) while guaranteeing
correct computation. Furthermore, we incorporate practical restrictions
of the maximum enforceable fine, limited and/or costly auditing, and
bounded budget of the outsourcer. By examining the optimal contracts,
we provide insights on how resources should be utilized when auditing ca-
pacity and enforceability are limited. Finally, we present a light-weight
cryptographic implementation of the contracts to mitigate the double
moral hazard problem between the principal and the agents.

1 Introduction

The idea of outsourcing complex computation tasks has been proposed and imple-
mented in a variety of applications. Research projects involving complex analysis
on a huge multitude of data have utilized parallel processing of their computa-
tions on the processors of millions of volunteering Internet users. These include
search for extra-terrestrial life (SETI@Home), investigation of protein folding and
computational drug design (Folding@Home andRosetta@home). Businesses from
different sections including finance, energy infrastructure, mining and commodi-
ties transport, technology and innovation [7] have also realized the benefits of out-
sourcing their data and computation, and “moving to the cloud”. The cloud, as a
dedicated infrastructurewith specializedman-force and powerful computing capa-
bilities, along with the ability to pool demands from different clients and dynamic
assignment of the resources can reduce the cost of computation. Meanwhile, the
outsourcer is also relieved frommaintaining a dedicated computing infrastructure
and in addition, has the total flexibility of pay-per-use paradigm, to flex-on or to
flex-off services effortlessly [7]. This growing trend has made possible small virtu-
alised computers and smart devices with powerful computational power, applica-
ble to critical mission scenarios and everyday use.
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In all of these scenarios, there is a concern for the outsourcer (client) about
the correctness of the returned results. The provider of computation services
(the servers) have an economic incentive to return guessed results as opposed to
performing the computation completely and honestly, and thereby save on the
computation work. Hence, to make this paradigm viable and guarantee sound-
ness of the results, there must be an auditing mechanism in place. The auditing,
however, is not free: it either creates computational overhead for the client, the
server, or both. The auditing can be done by the outsourcer itself or through
a trusted third party for a fee, say, through re-computation. Alternatively, a
redundancy scheme can be employed in which the same job is outsourced to
multiple servers and the results are checked against each other.

Irrespective of the auditing mechanism, the outsourcer can set an extremely
large fine for detected wrong results, and make cheating theoretically impossi-
ble even for the lowest probability of cheat detection. However, in practice, an
extremely large fine is a non-credible threat. A more reasonable assumption is
a cap on the maximum enforceable fine, with the special interesting case where
the cap is zero. In this paper we provide a concrete and general approach based
on Principal-Agent modelling from game theory to optimal contract designs for
outsourcing from the client (principal) to the servers (agents). Specifically, we as-
sume a general maximum enforceable fine, maximum budget, and costly and/or
limited auditing rate. We formulate the utilities of both the principal and the
agents, as well as essential constraints that guarantee honest computation (incen-
tive compatibility) along with their acceptance of the offer (participation). This
allows us to systematically compute the optimal contract such that the princi-
pal’s expense is minimized. Our work hence potentially provides a benchmark
enabling comparison among different deployments of outsourcing.

The paper is structured as follows: In Section 2, we review previous results
and describe our contributions. This is followed by a detailed motivation of our
contract model in Section 3, along with descriptions of important constraints
that make the problem non-trivial. In Section 4, we compute optimal contracts
involving only one agent, and explore related improvements. In Section 5, we
allow the principal to also potentially outsource the same task to multiple non-
colluding agents as an alternative means of auditing and develop optimal hybrid
contracts. We further establish the global optimality of our hybrid two-agent
contracts among all possible contracts involving any number of non-colluding
agents with respect to the notion of Nash Equilibria. In Section 6, we comment
on cryptographic implementation of our contracts, i.e., how to enforce the terms
and policies in an automated way. Finally, in Section 7, we conclude the paper
with a summary of the results and remark on some potential future directions.

2 Related Work

A line of research is focused on designing reliable verification techniques for out-
sourcing of special-purpose computations. For instance, [17] investigates outsourc-
ing of linear optimizations. Other notable examples are queries on outsourced
databases, including typical queries [1,5] and aggregation [18]. Their main
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paradigm is for the querier to rely on trusted information directly given by the
data owner (outsourcer) to verify the results returned by the servers.

Verification methods for general-purpose computing also appear in several re-
markable works. In [12] verification is performed by re-executing parts of the
computation. A variation is presented in [3] in which the authors utilize re-
dundancy over multiple agents, assuming that at least one of them is honest.
Outsourced computation has also caught attraction in cryptographic research: in
a seminal work, the authors of [8] formally define verifiable computation and give
a non-interactive solution. Their solution uses Yao’s garbled circuits to repre-
sent the computation and homomorphic encryption to hide such circuits from the
agents. More efficient but interactive solutions that use probabilistically-checkable
proofs (PCPs) have since been developed such as Pepper [15] and Ginger [16].

Incentive-based solutions such as [2,13] have studied contracts that the out-
sourcer may offer to the agents and through a combination of auditing, fines
and rewards, honest computation is enforced. All of these verification techniques
are, however, costly in terms of computation, memory, incentive rewards, etc.,
either to the prover or the verifier, or both. For example, the scheme in [12]
requires partial re-execution of the tasks, and the verification in [3] incurs cost
in the redundancy of the number of computing agents. Also, efficient protocols
like Pepper still incurs a cost in the order of m3 [15] on the principal, where
m is the size of the problem. The cost of employing verifiable computing across
these different schemes hence raises the important question of how to use them
economically, especially when there is a flexibility in parameters that govern the
overall cost to the outsourcer. Motivated by this, we abstract verification tech-
niques as an auditing tool with a exogenous cost and provide incentive-based
contracts that minimise the expected cost of the principal. Our contributions
generalize the results in [2,13] by (1) extending the feasibility of honesty enforc-
ing schemes for any bound on the enforceable fines and any auditing capacity;
(2) explicitly accounting for the cost of auditing and treating the auditing rate
as one of the choice variables; and (3) providing optimal contract that mini-
mize the aggregate cost of the principal as a combination of incentive payments
and auditing costs. In short, our work explicitly extends both applicability and
efficiency of incentive-based solutions based on a general abstraction of the verifi-
cation method employed. For readers’ interests, we also study in [10] the coalition
among agents that may give them advantages in cheating the principal.

3 Problem Definition: General Setup

In this section, we describe the general setting of the problem and basic assump-
tions behind our model. A list of notations is provided in Table 1 for reference.

The outsourcer, which we refer to as the principal1 has a deterministic com-
putation task to be executed to obtain the output (result). Instead of executing
the task itself, the principal hires a set of agents2 to do this. The principal

1 Also called the boss [2], master [6], outsourcer [4], client [8], data owner [13], etc.
2 Also referred to as the workers, servers, clouds, or contractors.
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aims to enforce fully honest computation of the task through setting a contract,
involving rewards, auditing, and punishments (fines).

The principal and the agents are each selfish non-cooperative expected utility
maximizers. Initially, we assume that everybody is risk-neutral, i.e., they have
no strict preference between their expected utility and their utility of expected
reward, and hence [9, ch.2.4], their utilities are linear function of the costs (with
negative sign) and the rewards (with positive sign). Moreover, we assume that
agents are “lazy but not malicious”, that is, they do not have any interest in
potentially reporting dishonest computations other than saving in their computa-
tion cost. Suppose the range and the probability distribution of the computation
result is known. Generating a guessed output according to this distribution has
zero computation cost and accuracy probability of q0 (which can be negligibly
small if the range of the output is large). For the sake of generality, as in [2],
suppose each agent also has access to a private and independent tricky algorithm
Alg that generates the correct output with probability q1, where q0 < q1 < 1, at
the cost of c(q1) ≥ c(q0) = 0. The cost of honest computation is c(1), which is
strictly greater than c(q1). To enforce honesty of the agents, the principal au-
dits the returned result with probability λ. We assume that auditing is perfect,
i.e., if the output is indeed correct, the audit definitely confirms it (no “false
positives”), and if the output is incorrect, the audit surely detects it (no “false
negatives”). In the most basic contract, the principal decides on an auditing rate
λ, sets a penalty (fine) f for detected erroneous answers and reward r otherwise.
What make the problem non-trivial are the following observations:

1. Costly detectability of cheating: that auditing all of the results is either infea-
sible or undesirable. Regarding the infeasibility, suppose that in the long run
the principal has a continuous demand (e.g. the Folding@Home project) of
tasks awaiting computation, appearing at a rate ρ tasks per unit time. Also,
suppose that each audit takes the principal ν machine cycles, and the com-
putation capacity of the principal’s machine is κ cycles per unit time. Then
the maximum feasible rate of verification is κ

νρ .
3 Moreover, auditing (e.g.

through re-computation) may be costly as it will consume the computation
power of the principal’s machine and slow it down, or it will require obtain-
ing additional hardware. The principal chooses the probability of auditing
of a task λ ∈ [0, Λ], where 0 < Λ ≤ 1 is associated with the computational
capacity of the principal. The principal incurs the cost Γ (λ) which is non-
decreasing in λ. For simplicity of exposition, we assume a linear relation:
Γ (λ) = γλ for a given γ ≥ 0. An alternative to the occasional redoing of the
whole computation by the principal can be using a third-party cloud that

3 Note that even when the principal is verifying at full capacity, it should not pick the
next immediate task to verify after finishing the previous one, since it may create
a “learnable” pattern of audited tasks, which the agent can use to only be honest
when computing them. This however can be avoided if the principal picks uniformly
randomly tasks at the rate of κ

νρ
and store them in a queue. However, the practical

buffer has a storage limit. Consequently, the maximum feasible auditing rate with
no essential pattern is strictly less than the full capacity rate κ

νρ
.
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is highly reliable but costly (with per access cost of γ). For this scenario,
the maximum auditing rate Λ is one, i.e., all of the tasks could be audited,
albeit at an excessive cost.

2. Limited enforceability of the fines : The problem of verifiable computing could
become trivial if there is no bound on the fine that can be practically levied
on a wrongdoer: as long as there is even a tiniest probability of detection,
then the principal can make the expected utility of the smallest likelihood
of cheating become negative by setting the fine for erroneous results large
enough. The issue with this argument is that such a fine may be extremely
large and hence, become an incredible threat, in that, if the cheating of an
agent is indeed caught, the fine is practically or legally non-collectable. Thus,
existence (feasibility) results of honesty enforcement that rely on choosing
a “large enough” fine are rather straightforward and uninteresting. In par-
ticular, such approaches leave unanswered the question of whether honest
computation is still attainable for a bounded enforceable fine below their
prescriptive threshold. Moreover, such results do not provide a good met-
ric of comparison between alternative incentive schemes, or across different
choices of parameters for a particular scheme. We will explicitly introduce
F ≥ 0 in our model to represent the maximum enforceable fine and obtain
the optimal contracts subject to f ≤ F . This can be the “security deposit”,
prepaid by the agent to the principal, that is collectible upon a provable de-
tection of an erroneous result. A special case of interest is F = 0, i.e., when
the only means of punishment is refusal to pay the reward.

3. Limited budget : As with the maximum enforceable fine to make it a credi-
ble threat, the maximum instantaneous “budget” of the principal leads to a
bound on the reward to make it a credible promise. Let the maximum in-
stantaneous payable reward by the principal be R. Thus, we require: r ≤ R.

4 Contracts for Single Agent

In this section, we consider the case where the contract is designed for and
proposed to only one computing agent. We provide the optimal contract for the
basic model in subsection 4.1. In subsection 4.2, we investigate what happens if
the risk-neutrality assumption of the agents is relaxed. Next in subsection 4.3,
we comment on moderating against using tricky algorithms and clever guesses.
Subsequently, in subsection 4.4, we discuss the optimal choice of the principal
in the light of the optimal contracts theretofore developed. We close the case of
single-agent in subsection 4.5 by generalising our results to contracts in which the
principal is allowed to reward unaudited and verified tasks potentially differently.
In Section 5, we will investigate the multi-agent case.

The action of the agent, given the parameters of the contract set by the
principal, is first whether to accept it, and if so, which (probabilistic) algorithm
to choose for computation of the assigned task. Since a naive random guess
is correct with probability q0, we assume that the agent’s algorithm is correct
with probability q ∈ [q0, 1]. Let uA denote the expected utility of the agent
after accepting the contract. With correctness probability of q, the agent is
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Table 1. List of main notations

parameter definition

λ probability of auditing an outsourced computation by the principal
Λ the physical upper-bound on λ
γ cost of auditing (incurred by the principal)
q probability of a correct computation by the agent
q0 the correctness probability of a random guess from the output space
c(q) the expected cost of computation to an agent for the correctness level of q
c(1), c cost of an honest computation to an agent

f fine collected from agent upon detection of an erroneous computation
F the maximum enforceable fine
r reward to the agent for an unaudited or audited and correct computation
R the maximum feasible reward
z the reserve utility (a.k.a., fallback utility or aspiration) of the agent
H auxiliary coefficient defined as c(1) + z (§4)
K auxiliary coefficient defined as (c(1) − c(q1))/(1− q1) (§4)
C the expected cost of the contract to the principal
α probability of using two agents for the same computation (§5.1)
F0 auxiliary coefficient defined as c/Λ − c (Proposition 5, §5.1)
F1 auxiliary coefficient defined as c[c− γ]+/[2γ − c]+ (Proposition 5, §5.1)

caught (and fined) with probability (1− q)λ. Hence, uA is composed of expected
reward [1− (1− q)λ]r, minus the expected cost composed of the cost c(q) of the
agent’s algorithm and the expected fines (1 − q)λf . Hence: uA(q) = [1 − (1 −
q)λ]r − c(q) − (1 − q)λf . The agent may be able to achieve the same level of
correctness, i.e., q, with different randomizations between the tricky algorithm
Alg, the honest algorithm and random (naive) guessing. It is straightforward to
make the following observation: For any q, the best c(q) is achieved as follows:

a) If [c(1) − c(q1)]/(1− q1) > c(1)/(1− q0), then: c(q) =

{
Lq0,q1(q) q0 ≤ q ≤ q1

Lq1,1(q) q1 ≤ q ≤ 1
;

b) If [c(1)− c(q1)]/(1− q1) < c(1)/(1− q0), then: c(q) = Lq0 ,1(q), where in both cases,

Lx,y(z) := c(x) +
c(y)− c(x)

y − x
(z− x), i.e., the linear combination of the costs of the

corresponding two end points.

Note that in case-(b), the risk-neutral agent would never use Alg, since the cost
of using it can be undercut (in expected value) by randomizing between honest
computation and random guessing. Hence, we only consider case-(a) for now and
revisit case-(b) in §4.3.

4.1 Optimum Contract for a Single Agent

The principal chooses the contract by setting the rate of auditing and reward and
punishment values, in order to maximize its own utility and ensure fully honest
computation. Hence, the reward and punishments, r and f , should be chosen
such that honest computation is the optimal course of action for the agent, if
the contract is accepted. This means ensuring: 1 = argmaxuA(q). Following the
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Principal-Agent modelling in game theory (e.g. [9, ch.7] or [14, ch.6]), we will
refer to this as the incentive compatibility constraint. For case (a), this becomes:

uA(1) = r − c(1) ≥ uA(q1) = [1− (1− q1)λ]r − c(q1)− (1− q1)λf (1)

The agent accepts the contract if its expected utility is larger than its reserve
utility, z ≥ 0.4 Given incentive compatibility, this participation constraint is
hence:5

uA(1) = r − c(1) ≥ z. (2)

The principal wants to get away with the least reward and auditing rate. There-
fore, the optimal contract for the single agent reduces to solution of the following
optimization:

min
r,f,λ

C := r + γλ (3a)

s.t. r ≤ R, 0 ≤ f ≤ F, 0 ≤ λ ≤ Λ, (3b)

r ≥ H, rλ + fλ ≥ K (3c)

where (3c) is derived from (1) and (2) in which we have used the auxiliary
coefficients H := c(1) + z and K := [c(1)− c(q1)]/(1− q1) for brevity. Then:

Proposition 1. With the parameters given in Table 1, the contract that enforces
honest computation and is accepted by the agent, and minimizes the cost of the
principal is by setting f∗ = F and choosing λ∗, r∗ as given by the following:6

γ ≤
K

Λ2
:

⎧⎪⎪⎨
⎪⎪⎩

[
K

Λ
− H]

+ ≤ F : λ
∗
=

K

H + F
, r

∗
= H, C∗

= H +
γK

H + F

[
K

Λ
− R]

+ ≤ F < [
K

Λ
− H]

+
: λ

∗
= Λ, r

∗
=

K

Λ
− F, C∗

=
K

Λ
+ γΛ − F

γ >
K

Λ2
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
√

Kγ − H]+ ≤ F : λ∗ =
K

H + F
, r∗ = H, C∗ = H +

γK

H + F

[
√

Kγ − R]+ ≤ F < [
√

Kγ − H]+ : λ∗ =

√
K

γ
, r∗ =

√
Kγ − F, C∗ = 2

√
Kγ − F

[
K

Λ
− R]+ ≤ F < [

√
Kγ − R]+ : λ∗ =

K

R + F
, r∗ = R, C∗ = R +

γK

R + F

For F < [KΛ − R]+, the optimization is infeasible, i.e., there is no honesty-
enforcing contract that is also accepted by the agent.

4 The reserve utility (also referred to as the fall-back utility or aspiration wage) is
the minimum utility that the agent aspires to attain or can obtain from other of-
fers. Naturally, z ≥ 0. Note that an implicit assumption here is that the agent is
replaceable by any other agent with the same fall-back utility, i.e., there are many
agents available with the same reserve utility. Without this assumption, the agent
has negotiation power by refusing the contract knowing that it cannot be replaced.
Alternatively, z can be thought as to (exogenously) capture the negotiation power
of the agents. This is an assumption we make throughout the paper.

5 Participation constraint is sometimes also called Individual Rationality constraint.
6 The notation x+ := max{0, x}.
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Discussion. The first observation is that the optimal contract should fully utilize
the maximum enforceable fine and punish at no less than F . For large values of
enforceable fines, we note that r∗ is at H , the minimum value to ensure partici-
pation, and limF→∞ λ∗ = 0, which yields limF→∞ C∗ = H . These are compatible
with intuition as a huge fine implies that honesty can be enforced with mini-
mum compensation and minuscule rate of inspection. When auditing is cheap
(γ ≤ K/Λ2), increasing the auditing rate is the better option to compensate
for lower values of F to maintain incentive compatibility (honest computation).
This is unless the auditing rate is at its maximum Λ, in which case, reward must
increase above H to maintain incentive compatibility and compensate for the
low value of F . Note that in this case, the participation constraint is not active
and is satisfied with a slack, while the incentive compatibility constraint is sat-
isfied tightly. For yet lower values of enforceable fine F , even maximum reward
r = R and auditing rate λ = Λ might not impose a strong enough threat against
cheating, hence the infeasibility region. When auditing is expensive (γ > K/Λ2),
in order to retain incentive compatibility in the situation of very low fine F , the
principal should increase reward, and only consider more frequent auditing if
the reward budget R has been reached. Fig. 1 depicts the optimal parameters of
the contract versus the maximum enforceable fine for the latter case (γ > K/Λ2).

Note that the infeasible region does not necessarily exist. Specifically, when
the principal’s instantaneous budget R is larger than K/Λ, then there is always
a feasible contract. Then even for F = 0, i.e., no enforceable fine, a contract
that enforces honest computing is feasible, albeit by using high values of reward
and/or auditing rate. In such cases, the principal “punishes” audited erroneous
computations only through not rewarding the agent. However, it is clear that
honesty cannot be enforced with zero auditing rate, and hence the case of Λ = 0
trivially leads to infeasibility. Moreover, to satisfy the participation constraint at
all, R has to be at least as large as H . Hence, for R < H , likewise, there exists no
feasible contract for any F . We also show that except for the special case of γ = 0,
the optimal contract has the feature that it is unique. Figures 2a and 2b depict
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infeasible

Maximum enforceable fine (F )

Fig. 1. Change of contract parameters r∗, λ∗ w.r.t. the maximum enforceable fine F
(Prop. 1, case of γ > K

Λ2 ), where K = 450, γ = 1200, Λ = 0.7, and c = 400
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Fig. 2. Optimal contract parameters w.r.t (a) the auditing cost γ, with K = 450,
Λ = 0.8, c = 400, and (b) auditing capacity Λ, with K = 450, γ = 450, c = 450

the change in the structure of the optimal contract versus varying auditing cost γ
and the maximum auditing capacity, respectively. From Fig. 2a, we can see that
for larger values of γ, the optimal contract utilizes lower values of inspection rate
λ∗ while using higher values of reward r to enforce honest computation. This
transition progress culminates when the payment reaches its threshold R, after
which the contract remains unchanged. In contrast, Fig. 2b shows how increasing
the maximum auditing capacity affects the optimal contract in the opposite
trend: as the principal is more capable of auditing, it should consider more
frequent auditing and lessen the reward for honest computation. The payment,
however, can never be lowered below H to maintain participation.

4.2 A Risk-Averse Agent

So far, we modelled the agent as risk-neutral, i.e., one that is indifferent between
its expected utility and utility of expectation, leading to a linear utility function.
However, empirically, individuals tend to show risk-aversion regarding decisions
that affect their income. By definition, (strict) risk aversion is (strict) preference
of expected utility over utility of expectation. Following Jensen’s inequality, this
is equivalent to assuming a (strictly) concave utility function (ref. e.g. [9, ch.2.4]).
We have the following simple but re-assuring result:

Proposition 2. The optimal contract given in Proposition 1 developed for a
risk-neutral agent stays feasible for any risk-averse agent as well.

Note that even though the feasibility of our contract is guaranteed, its optimal-
ity might no longer hold. This is because a lower value of fine and/or rewards
could potentially maintain incentive compatibility, as intuitively, cheating with
a chance of getting caught can be seen as a lottery. However, because the level of
risk-averseness of an agent is unknown, we argue that it is best practice to design
the optimal contract for the worst case with respect to risk, i.e., risk neutrality.
Specially, if a contract is designed assuming a particular degree of risk-aversion
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of the agent but the agent turns out to be less risk-averse than assumed, then
the incentive-compatibility for honest computation may be violated, failing the
principal’s intolerance of erroneous computations. Accordingly, for the rest of
the paper, we will retain risk-neutrality for agents.

4.3 Mitigating Clever Guesses

An inherent problem of outsourced computation is that a (not always) correctly
guessed output is indistinguishable from an honestly computed one. For instance,
consider the question of whether a large natural number is a prime: the deter-
ministic guess of “no” is most likely correct. Also, since the principal might not
know the exact cost and success probability of potential guessing algorithms, it
is hard to design a contract that enforces honesty. Therefore, the principal may
prefer to avoid identifying the parameters of guessing algorithms altogether.

One way to mitigate the possibility of “clever” guesses is to enlarge the output
range by requiring the agent to return not just the final computation output,
but also snapshots of intermediate steps of the computing process [2]. This will
reduce the correctness probability of a naive guess down to q0 = negl. More-
over, requiring snapshots of the intermediate steps makes guessing of the correct
output more costly. Let c(q1) be the cost of a tricky algorithm that tries to
produce the expanded output with the intermediate steps of the honest com-
putation, where it succeeds with probability q1. We make the assumption that
now c(q1) > q1c(1), so that any guessing algorithm with cost c(q1) can be re-
placed with a randomization between naive guess (with weight 1−q1) and honest
computation (with weight q1). Thus, for incentive compatibility, we only need
to make sure that the agent’s utility from honest computation is better than a
naive guess that succeeds with negligible probability q0 = negl. To avoid distrac-
tion in our analysis, we assume q0 = 0, as the results can easily be realized for
q0 = negl. Our simplified constraints for the contract become:

participation : r ≥ c(1) + z, incentive compatibility : r ≥ 1

λ
c(1)− f. (4)

Comparing to the constraints in (3c), this translates to changing K to c(1).
This in turn implies that the new incentive compatibility constraint requires a
strictly lower fine value. Intuitively, as guessing becomes more difficult, cheating
becomes less attractive and hence can be deterred with a smaller fine. Hereafter,
we assume that the principal is employing this technique and use the above
incentive compatibility constraint. Moreover, for simplicity of exposition, we
assume that the reserve utility z is zero, and hence H becomes c(1), which we
will abbreviate as c.

4.4 Optimal Choice for the Principal

So far we have considered auditing as a blackbox and only included its cost and
capacity into the model. However, when auditing is via redoing the computation
(at the cost of γ) it might be optimal for the principal to not offer any contract
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at all. Indeed, when Λ = 1, the principal can potentially audit all computations
by redoing them. Specifically, if the optimal contract costs C∗ ≥ γ, then it
is optimal for the principal to do the computation itself, as that only costs
γΛ = γ. In case Λ < 1, the principal cannot do all the computations, and must
outsource a portion of it. Interestingly, the following proposition establishes that
the principal’s optimal choice is either to not outsource at all, or fully outsource
its computation.

Proposition 3. Consider the case where auditing is through redoing the compu-
tation. Let x be the probability that the principal computes the tasks itself. Then,
either x∗ = 0 and the optimal contract is as per Proposition 1, or x∗ = Λ = 1
and there should be no outsourcing.

The proposition has this important corollary:

Corollary 1. When Λ < 1, the optimal choice for the principal is to use the
optimal contact given by Proposition 1. When Λ = 1, the optimal choice of the
principal is to compare the expected cost achieved by the optimal contract in
Proposition 1 (for the value of maximum enforceable fine at hand) against γ,
and accordingly decide to outsource or independently compute all of the tasks.

4.5 Optimal Contract for a Single Agent: Two-Level Reward

In our contracts so far, verified correct results and unaudited results are rewarded
identically at r. Suppose, alternatively, that the principal rewards r0 for accepted
but not audited results and r1 for corroborated correct answers, and as before,
penalizes f for detected wrong computations. This way, the principal may hope
to save significantly by, for example, not paying for unaudited computations. The
new incentive compatibility and participation constraints are: (1−λ)r0+λr1−c ≥
(1−λ)r0−λf and (1−λ)r0 +λr1− c ≥ 0, respectively. The optimization of (3)
for a contract with two-level reward changes to:

min
r0,r1,f,γ

C := r1λ+ r0(1 − λ) + γλ

s.t. r0, r1 ≤ R, f ≤ F, 0 ≤ λ ≤ Λ, r1λ+ r0(1− λ) ≥ c, r1 ≥
c

λ
− f.

Proposition 4. For F ≥ [c/Λ − R]+, the optimal single-agent contract for
two-level rewarding is given as: f∗ = F , λ∗ = c/(F +R), r∗1 = R, r∗0 =
Fc/(R− c+ F ), C∗ = c (1 + (γ + c−R)/(F +R)). For F < [c/Λ − R]+, the
contract is infeasible.

Discussion of the two level reward contract. First, note that there is no improve-
ment in terms of the infeasibility region compared with the single-level reward
contract. However, the achieved cost is always better. This was to be expected as
the single-level rewarding can be thought of as a special case of two-level. How-
ever, the behaviour of the optimal contract now does not depend on the value
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of the auditing cost γ. This is where the strength of the two-level rewarding lies:
for high values of γ, the two-level contract increasingly outperforms the single
reward-level contract.

Note that the optimal reward for audited and correct results r1 is at the
principal’s maximum budget R irrespective of the value of F . The value of reward
for unaudited results r0 is always strictly less than c, i.e., the cost of honest
computation (and hence strictly less than r1 as well). The value of r0, unlike r1,
depends on F : For higher values of maximum enforceable fine, in fact somewhat
unexpectedly, the optimal contract chooses increasing values of reward r∗0 . Still
intuitively, a larger threat allows less necessity for auditing, and thus the contract
starts to behave as a “lottery”, in which the low-chance “winner” receives r∗1 = R
and the “loser” r0 < c < R.

5 Optimal Contracts for Multiple Agents

When there are more than one agent available, the set of possible contracts gets
extended. Specifically, as e.g. [2] and [13] discuss, the principal has the option
of submitting the same task to multiple agents and comparing the outcomes.
We will refer to this option as the redundancy scheme. If the returned results
do not match, it is clear that at least one agent is cheating. Furthermore, as
[13] assumes, if the agents are non-colluding, and returning the intermediate
steps along with the computation result is required, then the probability that
the results produced by cheating will be the same will be negligible, which we
again assume to be zero (for simplicity). Hence, the returned results are correct
if and only if they are the same.

In the next subsection, we develop optimal contracts considering two agents.
Subsequently, we establish the global optimality of two-agent contracts among
any number of agents with respect to the notion of Nash Equilibrium.

5.1 Optimal Contracts for Two Agents

Consider the case that there are two agents available: agent 1 and 2. As in
the single-agent case, consider a principal that has a computation task and a
maximum auditing rate of Λ. Then, in general, a principal can use a hybrid
scheme: it may choose to send the same job to both of the agents sometimes,
and to one randomly selected agents the rest of the time. Sending the same
task to two agents provides a definite verification, however, at the cost of paying
twice the reward, since both agents must be rewarded for honest computation.
Hence, an optimal choice of redundancy scheme is not immediately clear, even
less so if this schemes is randomized with just choosing one agent and doing
independent audits. In this section, we investigate optimal contracts among all
hybrid schemes.

Besides lack of collusion, we assume the agents do not communicate either.
Therefore, on the event that any of the agents receives a task, it has no infor-
mation about the busy/idle state of the other agent. The action of each agent is
selection between honest computation, which we represent by H , and cheating,
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which we denote by C . Since the agents have no information about the state of
the other agent, the set of their (pure) strategies and actions are the same.

The expected utility of each agent depends in part on the action of itself and
of the other agent. Let uA(a1, a2) represent the utility of agent 1 when it chooses
action a1 and agent 2 chooses a2, where a1, a2 ∈ {H ,C }. The principal wants to
enforce honest computation with probability one. If uA(H ,H ) ≥ uA(C ,H ),
then given that agent 2 is going to be computing honestly, agent 1 will prefer
to do the same too, and due to symmetry, likewise for agent 2. In the game
theoretic lingo, this means that (H ,H ) is a (Nash) equilibrium. If, further,
uA(H ,C ) ≥ uA(C ,C ), then (H ,H ) will be the dominant (Nash) equilibrium,
i.e., honest computation is the preferred action irrespective of the action of the
other agent.

The principal utilizes the redundancy scheme with probability α or employs
only one of the agents (selected equally likely)7 with probability 1 − α. If the
principal chooses only one agent, then it audits it with probability ρ. Since
auditing only occurs when a single agent receives the task, the likelihood λ that
the task will ever be audited is ρ(1 − α). As in the single-agent single-reward
scenario, if only one agent is selected, the agent is rewarded r if there is no
indication of wrongdoing, and is punished f if audited and caught wrong. When
the redundancy scheme is selected and the returned results are equal, both agents
are rewarded r. Otherwise, both are fined at f . With the model so described,
the expected utilities of an agent are computed as follows:8

uA(H ,H ) =r − c, uA(C ,H ) =(1− α− λ)r/2 − (α+ λ/2)f.

Hence, the condition uA(H ,H ) ≥ uA(C ,H ) becomes: r ≥ (1 + α)c/(λ+ 2α)−
f . Subject to making (H ,H ) an equilibrium, the contract is accepted if the
expected utility of it to the agents is above their reserve utility, which we assume
here too to be zero for simplicity: r−c ≥ 0. Then the expected cost of the contract
to the principal is:

C = 2rα+ γλ+ r(1 − α) = (1 + α)r + γλ.

The principal chooses λ, α, f , r such that honest computation is enforced, the
contract is accepted, and the expected cost of the principal is minimized. λ and
α must satisfy the structural condition 0 ≤ α ≤ 1, 0 ≤ λ ≤ Λ and α + λ ≤ 1.
The instantaneous budget of the principal imposes r ≤ R if α = 0, and 2r ≤ R if
α > 0. We assume R ≥ 2c, since otherwise, the principal can never employ both
of the agents without violating its instantaneous budget constraint, and hence,
the problem reduces to the single agent problem. Then, the budget constraint

7 We will formally show through the proof of proposition 6 that equal randomization
is the best option. Intuitively, this removes any information that the agents may
infer upon receiving a task.

8 Since the only information state to an agent is whether it receives the job, the ex-ante
and ex-post analysis, i.e., before and after reception of the task, become equivalent.
We present the ex-ante view for simplicity.
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simplifies to r ≤ R/2. Therefore, the optimal contracts for two agents that make
(H ,H ) an equilibrium are solutions of the optimization problem of:

min
r,f,α,λ

r(1 + α) + γλ subject to:

r ≤ R/2, f ≤ F, 0 ≤ λ ≤ Λ, λ ≤ 1− α, α ≥ 0, r ≥ c, r ≥ c(1 + α)

λ+ 2α
− f.

Note that the above optimisation only guarantees that (H ,H ) is a Nash equi-
librium. Other strategy profiles might become equilibria, for example (C ,C ).
However we notice that because agents are only rewarded when they are both
honest, (H ,H ) is thus the most attractive equilibrium to agents both individu-
ally and socially. We therefore only care to ensure that (H ,H ) is an equilibrium.
The optimal contracts are as follows:

Proposition 5. Let F0 = c/Λ − c and F1 = c[c − γ]+/[2γ − c]+,9 the optimal
one-level reward two-agent contract that makes (H ,H ) a Nash equilibrium is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F1 ≤ F : f∗ = F, α∗ =
c

2F + c
, λ∗ = 0, r∗ = c, C∗ = c(1 +

c

2F + c
)

F0 ≤ F < F1 : f∗ = F, α∗ = 0, λ∗ =
c

c + F
, r∗ = c, C∗ = c(1 +

γ

F + c
)

F < min(F0, F1) : f∗ = F, α∗ =
c − Λ(c + F )

c+ 2F
, λ∗ = Λ, r∗ = c, C∗ =

c(c+ F )(2 − Λ)

c + 2F
+ γΛ

For Λ = 1, (H ,H ) is moreover the dominant Nash equilibrium.

Corollary 2. If auditing is more expensive than the cost of honest computation
(γ ≥ c), the optimal contract only uses the redundancy scheme. When γ ≤ c/2,
either there is no redundancy scheme (α = 0) or the whole auditing capacity is
used (λ∗ = Λ).

The first part of the corollary is quite intuitive: when γ > c, any instance of out-
sourcing to a single agent and performing independent auditing can be replaced
by the redundancy scheme (job duplication) and strictly lower the cost by γ− c.

Further Discussion. First, note that in our optimal two-agent contract, as long
as R ≥ 2c, there is no infeasible region: there is always a contract that makes
(H ,H ) an equilibrium. Moreover, the payment to any of the agents is never
more than the cost of honest computation. Fig. 3a provides a pictorial represen-
tation of the proposition where c/2 < γ < c and Λ = 0.5. When the enforceable
fine is large, the redundancy scheme is preferable. This is despite the fact that
the redundancy scheme is more expensive than auditing: it costs an extra c as
opposed to γ < c. In other words, for high values of fine, the redundancy scheme
is a more effective threat against cheating than independent auditing. When F is
less than F1, the independent auditing becomes the preferred method. For lower
values of F , when the auditing capacity is all used up, the redundancy scheme
is added to compensate for the low value of fine to maintain incentive compati-
bility. Fig. 3b depicts the effect of auditing capacity, Λ, on the optimal contract

9 We adopt the convention that x/0 = +∞ for x > 0.
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where c/2 < γ < c. When Λ = 0, redundancy scheme is the only means to en-
force honest computation. If furthermore no fine can be enforced (F = 0), then
α = 1: the job should be always duplicated. As Λ increases, there is a gradual
transition from using redundancy scheme to independent auditing (F < F1).

0 500 1,000
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0.2

0.4

α∗

λ∗

Maximum enforceable fine (F )

(a)

0 0.2 0.4 0.6 0.8
0
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0.4

0.6

0.8

α∗(F = 1)

α∗(F = 50)

α∗(F = 150)

ρ∗(F = 1)
ρ∗(F = 50)

ρ∗(F =150)

Auditing capacity (Λ)

(b)

Fig. 3. Optimal contract (where c = 400, γ = 250) w.r.t. (a) max. enforceable fine F
(Λ = 0.5); and (b) auditing capacity Λ (F1 = 600). Recall ρ = λ

1−α
is the conditional

probability of auditing given the job is assigned to a single agent.

5.2 Global Optimality of Two-Agent Contracts

In developing the optimal contracts for two-agent case, we made a few critical
assumptions: (a) the independent auditing is perfect; (b) the agents are non-
colluding and non-communicating; (c) the range of intermediate steps is large
enough that the probability of any two guessed results to be same, or the guessed
result to be the correct result, is negligible; and (d) the agents are lazy but not
malicious. It turns out that these assumptions are sufficient to warrant global
optimality of two-agent contracts among contracts that engage any number of
agents in the following notion:

Proposition 6. The contract that hires at most two agents and chooses its
terms according to proposition 5, is globally optimal, that is, it achieves the least
cost to the principal among all contracts that employ any number of agents and
aim to make honest computation a Nash Equilibrium.

The above proposition shows that our contract for two agents is not just a
special case solution of multiple agents, but it is indeed the solution involving
any number of agents. In other words, given the stipulated assumptions, there is
no advantage ever in hiring more than two agents. Incidentally, we also show that
the best contracts makes the probability of any of the agents to be hired equal.
This makes intuitive sense, as unequal probability of task assignment creates
some “information” which the agents can potentially exploit to their benefit,
and to the detriment of the principal.



94 V. Pham, M.H.R. Khouzani, and C. Cid

6 Contract Implementation

For completeness of the solutions, in this section we discuss notable technical
concerns on the implementation of our contracts.

6.1 Intermediate Steps and Hash Functions

As we discussed in Section 4.3, the use of intermediate steps as part of the output
would prevent trivial/clever guessing. However, the data representing intermedi-
ate steps could be large and thus cumbersome for transmission. [2] proposes the
use of cryptographic hash as a sufficient representation of intermediate steps:
Instead of sending a large amount of data detailing these steps, the agent can
only send the cryptographic hash of such data. On receiving the agent’s hash
hA, the principal repeats the computation, and computes its own hash hP from
the intermediate steps, then verifies that hA = hP .

Informally, the use of hash function is considered secure if it is unlikely that
the agent can come up with the correct hash without knowing the correct inter-
mediate steps. The authors in [2] require such hash function to be a “random
oracle”, i.e., a function mapping in which each output is chosen uniformly ran-
domly regardless of the input. While this is a sufficient condition, the notion
of random oracle is rather impractical, and also an overkill. Indeed, we argue
that for this purpose of hash checking, it is necessary and sufficient that the
hash function is “collision resistant”, that is, it should be difficult to find two
different messages with the same hash.

Lastly, note that the process of hashing the intermediate steps may itself
carry a considerable cost. For instance, if the computation task is to hash a
large string, then the cost of hashing the intermediate steps (if the same hash
function is used) would be at least as much as computation cost. Therefore,
either the cost of hasing intermediate steps must be negligible compared to that
of the original computation task, or it must enter the contract model.

6.2 Enforcing Contract Policies

With regards to legal enforcement of the contract, it is necessary that behaviours
of contract participants are observable and verifiable. Actions such as “assigning
a job” or “paying a reward” are of this type. However, probabilistic behaviours,
e.g., “employing two agents with probability α”, are usually unverifiable. Our
contracts unfortunately rely on these probabilistic actions of the principal as
explicitly stated in the terms and policies for auditing, task duplication and/or
rewarding (the latter in two-level reward contracts of §4.5). It is critical to ensure
(by both ends) that the principal in reality sticks to such actions, for two reasons.
Firstly, the principal must establish to the agents its compliance to the contract
so as to make the threats credible. Secondly, the agent needs an assurance that
the principal cannot deviate from the contract and thus take away some of
its benefits (in two-level rewarding). Without an appropriate security measure,
this is usually not possible, e.g., the fact that the principal does not audit tells
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little about whether its auditing probability is indeed λ = 0.3 or λ = 0.6. This
important implementation issue has not been discussed in previous works.

Usually this could be achieved cryptographically using multiparty computa-
tion (MPC) [11], in which a sampling function on the principal’s behaviour is
accurately and securely computed among the contract participants. However,
MPC assumes pairwise secure communication among participants, which in this
case implies a need for direct communication between the agents. This poses a
potential threat to our model: if agents can freely communicate, they may as well
collude and give identically incorrect result, thus fooling the principal. Therefore
we seek a mechanism that requires no agent-to-agent communication. In Fig. 4,
we propose a communication protocol between the principal and two agents that
resolves this problem. Particularly, our security objective is to make sure that
the principal gains negligible benefit by deviating from its prescribed behaviour
as stated in the contract. To fulfil this objective, we rely on the fact that the
contract can be legally enforced by an authority (e.g., a court), and thus pun-
ishment on the principal’s cheating is guaranteed if there is enough evidence for
the accusation. What remains is to ensure that each agent alone can prove the
principal’s deviation (from the contract) whenever the principal benefits from
doing so.

Protocol ContractProtocol

Requirement A (non-interactive) commitment scheme (Setup,Commit,Open)
and a trusted third party TTP. An optimal contract 〈r, f, α, λ〉, a compu-
tation task J, and a security parameter k > 0.

Preparation The contract is signed by all parties with an additional term: if the
principal is caught deviating from the below protocol, it must pay the worst
possible cost 10. TTP generates CK from Setup(k) and gives it to the principal
(P ), agent 1 (A1) and agent 2 (A2).

Protocol 1. A1: generates N1 ←$ {0, 1}k, computes (c∗1, d
∗
1) = CommitCK(N1),

then sends c∗1 to P .
2. A2: generates N2 ←$ {0, 1}k, computes (c∗2, d

∗
2) = CommitCK(N2), then

sends c∗2 to P .
3. P : sends (c∗1 , c

∗
2) to both A1 and A2.

4. A1: sends d
∗
1 to P .

5. A2: sends d
∗
2 to P .

6. P : opens N1 ← OpenCK(c
∗
1, d

∗
1), N2 ← OpenCK(c

∗
2, d

∗
2), compute ω ←

GenΔ(Ω)(N1 ⊕N2), and follows plan ω.
7. P : sends (d∗1, d

∗
2) to both A1 and A2.

8. A1, A2: open N1 ← OpenCK(c
∗
1, d

∗
1), N2 ← OpenCK(c

∗
2, d

∗
2), compute ω ←

GenΔ(Ω)(N1 ⊕N2), and check if the principal follows ω.

Fig. 4. Communication protocol for the contract
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In order to provably design such mechanism, we define the principal’s action
as a plan, which essentially captures the its deterministic choices for all possible
decision-making situations which might arise while executing the contract. An
example of such plan could be: give the task to both agents; if the result com-
ing back is the same, then reward both. Another example is: give the task to
agent 1, then audit on return. For convenience we denote the set of all possible
plans as Ω, which also contains an element ⊥ representing an invalid plan. The
principal P is supposed to pick a plan ω ∈ Ω according to a contract-specific
probability distribution Δ(Ω), but the agents do not know if P actually follows
this distribution, or a different one to its eventual benefit. As a result, we decide
to let such a plan be picked by the agents instead of the principal. The protocol
for “picking plan” should satisfy the following properties:

– Correctness: Honest execution of the protocol must ensure that the plan
is picked according to Δ(Ω).

– Hiding: Before the contract is executed, the agents must know nothing
about the plan they have picked for the principal.

– Revealing: After the contract is executed, there must be a secure way for
the previously picked plan to be revealed to the agents.

– No cheating: Suppose that the agents execute the protocol honestly, then
the principal receives no better benefit than being a honest principal.

We are now ready to construct our contract implementation protocol. For
each probability distribution Δ(Ω) assume that there exists a PPT contract-
generation algorithm GenΔ(Ω)(·) which efficiently samples Δ(Ω), that is, there
exists a negligible function εG and k1 > 0 such that for all k ≥ k1:

sup
o∈Ω

∣∣Pr [r ←$ {0, 1}k;ω ← GenΔ(Ω)(r)
]
− Pr [ω ← Δ(Ω)]

∣∣ ≤ εG(k). (7)

Whilst the protocol construction can be seen in Fig. 4, its security is described in
Proposition 7. In words, the protocol involves the agents independently generate
at uniformly random nonces N1 and N2, respectively. The agents then exchange
these values using a commitment scheme via the principal P . The use of com-
mitment ensures that even if the principal is able to modify the messages, it
must not be able to convince each agent Ai of a nonce from the other which is
dependent of Ni. This ensures that when Ai perform N1 ⊕ N2 it would get a
uniformly random value. Given the above property of GenΔ(Ω) the agent would
receive a plan ω in the same distribution implied by the contract, thus avoid
meaningful cheating by the principal.

Proposition 7 (informal). Suppose all participants in ContractProtocol are
PPT algorithms. Suppose that (Setup,Commit,Open) is a secure non-malleable
commitment scheme, and that contract terms can be legally enforced and that
both agents are honest, then ContractProtocol satisfies the following properties:
correctness, hiding, revealing, and no cheating.

10 Here the worst possible cost (including what has been spent) is max(2r, r + γ), and
it could either be distributed to the agents, or paid to the court as fine.
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7 Conclusion

In this paper, we provide an incentive analysis of outsourced computation with
non-malicious but selfish utility-maximising agents. We design contracts that
minimise the expected cost of the outsourcer whilst ensuring participation and
honesty of computing agents. We incorporate important real-world restrictions,
in that the outsourcer can only levy a restricted fine on dishonest agents and
that auditing can be costly and/or limited. We allow partial outsourcing, direct
auditing and auditing through redundancy, i.e., employing multiple agents and
comparing the results, and optimized the utility of the outsourcer among all
hybrid possibilities.

We observe that outsourcing all or none of the tasks is optimal (and not partial
outsourcing). We show that when the enforceable fine is restricted, achieving
honest computation may still be feasible by appropriately increasing the reward
above the sheer cost of honest computation. We demonstrate that when auditing
is more expensive than the cost of honest computation, redundancy scheme is
always the preferred method, and when the auditing cost is less than half of the
cost of honest computation, independent auditing is preferable. When the cost
of auditing is between half and the full cost of honest computation, the preferred
method depends on the maximum enforceable fine: for large enforceable fines,
redundancy scheme is preferred despite the fact that it is more expensive “per
use” than independent auditing, since owing to its higher effectiveness, it can be
used more sparingly. We establish the global optimality of contracts involving at
most two agents among any arbitrary number of agents as far as implementing
honesty as a Nash Equilibrium is aimed for. Finally, we present a light-weight
cryptographic implementation of our contracts that provides mutual affirmation
on proper execution of the agreed terms and conditions.
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Abstract. An analytical approach for a dynamic cyber-security prob-
lem that captures progressive attacks to a computer network is presented.
We formulate the dynamic security problem from the defender’s point of
view as a supervisory control problem with imperfect information, mod-
eling the computer network’s operation by a discrete event system. We
consider a min-max performance criterion and use dynamic program-
ming to determine, within a restricted set of policies, an optimal policy
for the defender. We study and interpret the behavior of this optimal
policy as we vary certain parameters of the supervisory control problem.

Keywords: Cyber-Security, Computer Networks, Discrete Event Sys-
tems, Finite State Automata, Dynamic Programming.

1 Introduction

Cyber-security has attracted much attention recently due to its increasing im-
portance in the safety of many modern technological systems. These systems
are ubiquitous in our modern day life, ranging from computer networks, the in-
ternet, mobile networks, the power grid, and even implantable medical devices.
This ubiquity highlights the essential need for a large research effort in order
to strengthen the resiliency of these systems against attacks, intentional and
unintentional misuse, and inadvertent failures.

The study of cyber-security problems in the existing literature can be divided
into two main categories: static and dynamic.

Static problems concern settings where the agents, commonly considered to be
an attacker and a defender, receive no new information during the time horizon
in which decisions are made. Problems of this type in the security literature
can largely be classified under the category of resource allocation, where both
the defender and attacker make a single decision as to where to allocate their
respective resources. The main bodies of work involve infrastructure protection
[3, 7, 9] and mitigation of malware and virus spread in a network [5, 6, 8, 16].
Some of the above works consider settings where the agents are strategic [3, 9].
The presence of strategic agents results in a game between the attacker and
defender. The strategic approaches in the above works are commonly referred to
as allocation games. The survey by Roy et al. [18], as well as [20], provide useful
outlines of some static game models in security.

R. Poovendran and W. Saad (Eds.): GameSec 2014, LNCS 8840, pp. 99–117, 2014.
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Dynamic security problems are those that evolve over time, with the defender
taking actions while observing some new information from the environment.1

The formulation of a security problem as a dynamic problem, instead of a static
one, offers numerous advantages. The first advantage is clear; since real-world
security problems have an inherently dynamic aspect, dynamic models can more
easily capture realistic security settings, compared to static models. Also, most
attacks in cyber-security settings are progressive, meaning more recent attacks
build upon previous attacks (such as denial-of-service attacks, brute-force at-
tacks, and the replication of viruses, malware, and worms, to name a few). This
progressive nature is more easily modeled in a dynamic setting than in a static
setting.

The literature within the dynamic setting can be further subdivided into two
areas: models based on control theory [10, 13, 14, 17, 19] and models based on
game theory [11, 18, 21, 22].

The control theory based security models in the literature differ in the ways
in which the dynamics are modeled. The work by Khouzani et al. [10] studies the
problem of a malware attack in a mobile wireless network; the dynamics of the
malware spread are modeled using differential equations. A large part of the lit-
erature on control theory based models focuses on problems where the dynamics
are modeled by finite state automata. The works of [13, 14, 19] implement spe-
cific control policies (protocols) for security purposes. The work of Schneider [19]
uses a finite state automaton to describe a setting where signals are sent to a
computer. Given a set of initial possible states, the signals cause the state of
the computer to evolve over time. An entity termed the observer monitors the
evolution of the system and enforces security in real-time. Extensions of Schnei-
der’s model are centered around including additional actions for the observer.
Ligatti et al. [13] extend Schneider’s model by introducing a variety of abstract
machines which can edit the actions of a program, at run-time, when deviation
from a specified control policy is observed. More recent work [14] develops a
formal framework for analyzing the enforcement of more general policies. An-
other category of dynamic defense concerns scenarios where the defender selects
an adaptive attack surface2 in order to change the possible attack and defense
policies. A notion termed moving target defense (a term for dynamic system
reconfiguration) is one class of such dynamic defense policies. The work of Rowe
et al. [17] develops control theoretic mechanisms to determine maneuvers that
modify the attack surface in order to mitigate attacks. The work involves first
developing algorithms for estimation of the security state of the system, then
formalizing a method for determining the cost of a given maneuver. The model
uses a logical automaton to describe the evolution of the state of the system;
however, it does not propose an analytical approach for determining an optimal
defense policy.

1 This new information could consist of the attacker’s actions, events in nature, or the
state of a some underlying system.

2 For example, changing the network topology.



A Supervisory Control Approach to Dynamic Cyber-Security 101

The next set of security models in the literature are based on the theory of
dynamic games. The work in [15] considers a stochastic dynamic game to model
the environment of conflict between an attacker and a defender. In this model,
the state of the system evolves according to a Markov chain. This paper has
many elements in common with our model; however, it assumes the attacker and
defender have perfect observations of the system state. In our paper, we consider
the problem from the defender’s point of view and assume that the defender has
imperfect information about the system state. The work by Khouzani [11] studies
a zero-sum two-agent (malware agent and a network agent) dynamic game with
perfect information. The malware agent is choosing a strategy which trades
off malware spread and network damage while the network agent is choosing
a counter-measure strategy. The authors illustrate that saddle-point strategies
exhibit a threshold form. The work of Yin et al. [22] (dynamic game version
of [3]) studies a Stackelberg game where the defender moves first and commits
to a strategy. The work addresses how the defender should choose a strategy
when it is uncertain whether the attacker will observe the first move. Van Dijk
et al. [21] propose a two player dynamic game, termed Flipit, which models a
general setting where a defender and an attacker fight (in continuous time) over
control of a resource. The results concern the determination of scenarios where
there exist dominant strategies for both players. We refer the reader to Roy et
al. [18], and references therein, for a survey on the application of dynamic games
to problems in security.

While models based on game theory have generated positive results in the
static setting, there has been little progress in the dynamic setting. We believe
this is for two reasons; first, dynamic security has not been fully investigated in
a non-strategic context and second, the results in the theory of dynamic games
are limited.

In this paper, we develop a (supervisory) control theory approach to a dy-
namic cyber-security problem and determine the optimal defense policy against
progressive attacks. We consider a network of K computers, each of which can
be in one of four security states, as seen in Figure 1. The state of the system
is the K-tuple of the computer states and evolves in time with both defender
and attacker actions. We use a finite state logical automaton to model the dy-
namics of the system. The defender adjusts to attacks based on the information
available.

Our model takes a different approach than the existing papers in the literature.
One fundamental difference of our work from the existing literature that make
use of automata is the development of an analytical framework for determining
optimal defense policies within a restricted set of policies. Other works involving
automata propose methods for enforcing a predetermined policy, rather than
determining an optimal policy. Also, our control theoretic approach considers
imperfect information regarding attacker actions, which we feel is an aspect that
is engrained into security problems.
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si = N si = R si = W si = F

Routing Layer

Computer Layer

Fig. 1. An instance of the problem that we consider. Computers are connected through
a routing layer. Each computer can be in one of four security states: normal (N),
compromised (R), fully compromised (W), or remote compromised (F).

1.1 Contribution

The contribution of this paper is the development of a formal model for an-
alyzing a dynamic cyber-security problem from the defender’s point of view.
Our approach has the following desirable features: (i) It captures the progressive
nature of attacks; (ii) It captures the fact that the defender has imperfect knowl-
edge regarding the state of the system; this uncertainty is a result of the fact
that all attacks are uncontrollable and most are unobservable, by the defender;
(iii) It allows us to quantify the cost incurred at every possible state of the sys-
tem, as well as the cost due to every possible defender action; (iv) It allows us
to quantify the performance of various defender policies and to determine the
defender’s optimal control policy, within a restricted set of policies, with respect
to a min-max performance criterion.

1.2 Organization

The paper is organized as follows. In Section 2 we discuss our dynamic defense
model. This is done by introducing the assumptions on the computer network and
corresponding state, as well as the events which drive the evolution of the system
state. In Section 3, we model the defender’s problem of keeping the computer
network as secure as possible while subjected to progressive attacks. We provide
a simplified problem formulation that is tractable. In Section 4, we determine
an optimal control policy for the defender based on dynamic programming. We
discuss the nature of the optimal policy in Section 5. We offer conclusions and
reflections in Section 6.
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2 The Dynamic Defense Model

The key features of our model are characterized by assumptions (A1) – (A6).
We first describe the assumptions related to the computer network, discussed in
assumption (A1). In assumption (A2) we introduce the notion of the computer
network system state. Next, in assumptions (A3) – (A5), we discuss the events
that can occur within the system. We describe how the events cause the system
state to evolve, as well as specify which events are controllable and observable
by the defender. In (A6) we discuss an assumption on the rules of interaction
between the attacker and the defender. As mentioned in the introduction, we
consider the cyber-security problem from the defender’s viewpoint; the model
we propose reflects this viewpoint.

Assumption 1 - Computer Network : We assume a set of networked com-
puters, N = {1, 2, . . . ,K}. Each computer, i ∈ N , can be at security level
zi ∈M = {N,R,W,F} where M is the set of security states.

Each computer, i ∈ N , is assumed to have three security boundaries, denoted
by B = {B1, B2, B3}, representative of a layered structure to its security. These
security boundaries partition the set of security states M. Throughout this pa-
per, we assume that the set of security states M = {N,R,W,F} is defined as
follows.

Normal (zi = N): Computer i is in the normal state if none of the security
boundaries have been passed by the attacker.
Compromised (zi = R): Computer i is compromised when security boundary
B1 has been passed by the attacker. In this state, the attacker has exploited
some vulnerability on the computer and has managed to obtain user-level
access privilege to the computer.
Fully Compromised (zi = W ): Computer i is fully compromised when both
boundaries B1 and B2 have been passed by the attacker. The attacker has
exploited some additional vulnerability on the computer and has managed
to obtain root level or execute privilege to the computer.
Remote Compromised (zi = F ): Computer i is remote compromised when
all security boundaries B1, B2, and B3 have been passed by the attacker.
The attacker has managed to obtain enough privileges to attack another
computer and obtain user-level access privilege on that computer.

Assumption 2 - System State : We assume that the computer network oper-
ates over an infinite time horizon, T = {0, 1, 2, . . .}. The state of the computer
network, Zt, which evolves with time t ∈ T , is the combination of the states of
all the computers at time t. Each state Zt has a corresponding cost.

The state of the network, denoted Zt = (z1t , z
2
t , . . . , z

K
t ) ∈ Z, is a K-tuple

of all of the computer states.3 The set Z denotes the set of all possible states,

3 For example, a three computer network could have a network state of Z′
t =

(N,R,W ). Notice that state Z′
t is distinct from state Z′′

t = (R,N,W ).
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Z = {Z1, Z2, . . . , Z |M|K} = {(N,N, . . . , N), (N,N, . . . , R), . . . , (F, F, . . . , F )},
where |M|K is the number of system states.

The cost of the network state Zt is defined by the costs of the states of the
computers. We assign a cost, c(zit), to each computer i depending upon its state
zit ∈M. This cost is defined as follows

c(zit) =

⎧⎪⎪⎨⎪⎪⎩
cN if zit = N
cR if zit = R
cW if zit = W
cF if zit = F

(1)

with 0 ≤ cN < cR < cW < cF <∞. The cost of state Zt is then defined as

CZt =
∑
i∈N

c(zit) (2)

The state of the network, Zt, evolves in time due to events, which we discuss in
the next set of assumptions.

Assumption 3 - Events: There is a set of events, E = A ∪ D, where A are
the attacker’s actions and D are the defender’s actions.

We assume that the attacker has access to three types of actions. The set of
attacker actions, A =

{
Na, {P i

n}i∈N ,n∈B, {Hij}i,j∈N
}
, is defined as follows.

Na, null : The attacker takes no action. The null action does not change the
system state and is admissible at any state of a computer.
P i
n, security boundary attack : Attacking the nth security boundary of com-

puter i causes the security state of computer i to transition across the nth

security boundary. Specifically, P i
B1

causes computer i to transition from

normal, zi = N , to compromised, zi = R; P i
B2

from zi = R to zi = W ; and

P i
B3

from zi = W to zi = F . Actions P i
B1

, P i
B2

, and P i
B3

are only admissible

from states zi = R, zi = W , and zi = F , respectively.
Hij, network attack : Using a computer i in state zi = F to attack any
other normal or compromised computer j in the network that is in state
zj = {N,R} to bring computer j to state zj = W . The action Hij is
admissible at state zi = F for zj ∈ {N,R,W}.

We assume that the defender knows the set A as well as the resulting state
transitions due to each action in A.

The defender has access to three types of costly actions. These actions are
admissible at any computer state. The set of defender actions, denoted by D ={
Nd, {Ei}i∈N , {Ri}i∈N

}
, is defined as follows.

Nd, null : The defender takes no action. The null action does not change the
system state.
Ei, sense computer i: The sense action, Ei, reveals the state of computer i
to the defender. The sense action does not change the system state.
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Ri, re-image computer i: The re-image action, Ri, brings computer i back
to the normal state from any state that it is currently in. For example, R3

applied to state (N,R, F ) results in (N,R,N).

The costs of the actions in D are defined by Ĉ(Nd), Ĉ(Ei), Ĉ(Ri), where
0 ≤ Ĉ(Nd) < Ĉ(Ei) < Ĉ(Ri) <∞ for all i ∈ N .

Assumption 4 - Defender’s Controllability of Events: The actions in A
are uncontrollable whereas the actions in D are controllable.

Since the problem is viewed from the perspective of the defender, all actions
in D are controllable. For the same reason, the defender is unable to control any
of the attacker’s actions A.

Assumption 5 - Defender’s Observability of Events: All actions in D and
some actions in A are assumed to be observable.

Again, due to taking the defender’s viewpoint, all actions in D are observable.
Although we assume that the defender knows the setA, we assume that it cannot
observe Na or any P i

n actions; it can only observe actions of the type Hij . One
justification for this is that the the network attack Hij involves passing sensitive
information of computer j through the routing layer of the system to computer i.4

We assume that the routing layer is able to detect the transfer of sensitive data
through the network, and thus the defender is aware when an action of the form
Hij occurs.

Assumption 6 - Defender’s Decision Epochs: The defender acts at regular,
discrete time intervals. At these time intervals, the defender takes only one action
in D. The attacker takes one action in A between each defender action.

We require that the defender should consider taking a single action in D at
regular time instances. We assume that between any two such instances, the
attacker can only take one action in A. This order of events is illustrated in
Figure 2 for a given time t = τ . We introduce intermediate states, denoted by

Z̃ = (Z̃1, Z̃2, . . . , Z̃ |M|K ), which represent the system states at which events
from A are admissible (that is, the states in which the attacker takes an action).

The system states, denoted by Z = (Z1, Z2, . . . , Z |M|K ), are the states at which
actions from D are admissible.

Assumption (A6) is, in our opinion, reasonable within the security context.
Since time has value in security problems,5 the defender should take actions
at regular time intervals (note that at these instances the defender may choose
Nd, that is, choose to do nothing). In general, a finite number of events in A
may occur between any two successive defender actions; however, to reduce the
dimensionality of the problem, we assume that only one event in A can occur.

4 This sensitive information could be the login credentials of computer j.
5 A computer that is compromised by the attacker for two time steps is more costly
to the defender than a computer that is compromised for one time step.
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τ τ+ τ++ τ + 1 t

Fig. 2. Order of events for a given time-step. At time t = τ , the cost of the current
state CZτ is realized. At τ+, the defender takes an action in D (the cost of which
is realized immediately). The resulting system state due to the defender’s action is
denoted by Z̃τ+ ∈ Z̃. At τ++ the attacker takes an action in A. At τ +1, the resulting
system state is denoted by Zτ+1 ∈ Z.

One important implication of assumption (A6) is related to the defender’s
observability of events in A. By (A6), the defender is aware when an event in A
occurs. Since the event Hij is observable, if the defender does not observe Hij

when an event in A is known to occur, then it knows that one of the unobservable
events, Na or one of {P i

n}i∈N ,n∈B, has occurred. To incorporate this fact into
the defender’s knowledge about the system’s evolution, we group the above men-
tioned unobservable events into one event, denoted X =

{
Na, {P i

n}i∈N ,n∈B
}
.

This philosophy is used in constructing the system automaton from the de-
fender’s point of view, as well as in defining the defender’s information state
(discussed in Section 3). As a result of the above grouping, the set of events
A′ =

{
X, {Hij}i,j∈N

}
is observable by the defender. Notice, however, that by

performing this grouping, we have introduced non-determinism into the system;
that is, the event X can take the system to many possible system states. All
unobservable events in the problem have been eliminated due to Assumption
(A6) and the grouping of unobservable events in A.

As a result of assumptions (A1) – (A6), the evolution of the system state,
Zt, from the defender’s viewpoint, can be modeled by a discrete event system
represented by a finite state automaton, which we term the system automaton.
Due to assumption (A6), we duplicate the system states by forming the set of

intermediate states, denoted by Z̃ = (Z̃1, Z̃2, . . . , Z̃ |M|K ). The set of interme-
diate states represents the states at which an event from A can occur. The set
of system states, denoted by Z, are the states at which the defender takes an
action d ∈ D. The resulting automaton has 2|M|K states. The set of events that
can occur is described by the set E ′ = A′∪D; the transitions due to these events
follow the rules discussed in assumption (A3). The system automaton takes the
form of a bipartite graph, as seen in Figure 3. Notice that, like the null action,
the sense actions, Ei, for all i ∈ N , do not change the underlying system state.
The purpose of sense is to update the defender’s information state, which will
be defined and explained in the following section.

3 The Defender’s Problem

We now formulate the defender’s problem – protecting the computer network.
The defender must decide which costly action to take, at each time step, in order
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Intermediate States

System States

Z̃1 Z̃ |M|KZ̃2

Z1 Z2 Z |M|K

Ei, N
d X

R3

X

R1

R2

X

H12

R1

Ei, N
d X Ei, N

d X

X

X

Fig. 3. The system automaton represented as a bipartite graph of intermediate states,

Z̃ = (Z̃1, Z̃2, . . . , Z̃|M|K ), and system states, Z = (Z1, Z2, . . . , Z|M|K ), with events
E ′ = A′ ∪ D. Notice the non-determinism of the event X ∈ A′.

to keep the system as secure as possible given that it has imperfect knowledge
of the network’s state.

3.1 The Defender’s Optimization Problem

Let g := {gt, t ∈ T }, denote a control policy of the defender, where

gt : Dt−1 ×A′t−1 → D, (3)

and Dt−1 and A′t−1
denote the space of the defender’s actions and observations

up to t − 1, respectively. Let G := {g | gt : Dt−1 × A′t−1 → D for all t ∈ T }
denote the space of admissible control policies for the defender.

The defender’s optimization problem is

min
g∈G

max
{Zg

t ∈Z,t∈T }

{∑
t∈T

βt

[
CZg

t
+ Ĉ

(
dt
)]}

(PD)

subject to Assumptions (A1) – (A6)

where {Zg
t ∈ Z, t ∈ T } denotes a sequence of states generated by control policy g

and dt is the defender’s action at t generated according to Equation (3). Problem
(PD) is a supervisory control problem with imperfect observations.

3.2 Discussion of Problem (PD)

The notion of an information state [12] is a key concept in supervisory (and gen-
eral) control problems with imperfect information. Because of the nature of the
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performance criterion and the fact that the defender’s information is imperfect,
an appropriate information state for the defender at time t is σ(Dt−1,A′t−1

),
the σ-field generated by the defender’s actions and observations, respectively, up
to t − 1. Using such an information state, one can, in principle, write the dy-
namic program for Problem (PD). Such a dynamic program is computationally
intractable. For this reason, we formulate another problem, called (P ′

D), where
we restrict attention to a set of defense policies that have a specific structure; in
this problem we can obtain a computationally tractable solution.

3.3 Specification of Problem (P ′
D)

We define the defender’s observer as follows. The defender’s observer is built
using the defender’s observable events, A′, and its actions, D. The observer’s
state at time t, denoted by St ⊆ Z, consists of the possible states that the
network can be in at time t from the defender’s perspective. We denote by S the
space to which St belongs, for any t ∈ T .

The evolution of the observer’s state is described by the function f : S ×D×
A′ → S. The observer’s state St follows the update

St+1 = f(St, dt, a
′
t)

where dt ∈ D is the realization of the defender’s action and its effect at time t+,
and a′t ∈ A′ is the realization of the defender’s observation at t++. The precise
form of the function f is determined by the dynamic defense model of Section
2. Thus, the dynamics of the defender’s observer are described by a finite state
automaton with state space S and transitions that obey the dynamics defined
by the function f(St, dt, a

′
t).

Using the defender’s observer we formulate Problem (P ′
D) as follows.

min
g∈G′

max
Zg

t ∈Z,t∈T

{∑
t∈T

βt

[
CZg

t
+ Ĉ

(
dt
)]}

(P ′
D)

subject to Assumptions (A1) – (A6),

dt = gt(St), t ∈ T ,
Zg
t ∈ St, t ∈ T ,

St+1 = f(St, dt, a
′
t), t ∈ T .

where G′ := {g | g := {gt, t ∈ T }, gt : S → D for all t ∈ T }.

4 Dynamic Programming Solution for the Defender’s
Problem

4.1 The Dynamic Program

We solve Problem (P ′
D) using dynamic programming. The dynamic program

corresponding to Problem (P ′
D) is

V (S) = min
d∈D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV (S′)

]
. (4)
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for every S ∈ S (see [2, 12]), where Q(S, d, Z) is the set of observer states that
can be reached by S when the defender’s action is d and the true system state
in S is Z. The set Q(S, d, Z) is determined as follows. If at time t the observer’s
state is S and the defender takes action d then, before the effect of d at time
t+ and the observation at time t++ are realized, there will be several potential
candidate observer states at t+1. Only a subset of these possible observer states
can occur when the true state of the system at time t is Z ∈ S. This subset is
Q(S, d, Z). We illustrate the form of the set Q(S, d, Z) by the following example.

Example 1. Assume a network of three computers and a current observer state
of

St = {(F,N,N), (F,N,R), (F,R,N)}.

If the defender takes action E2 then, before the effect of E2 and the observation
H1,2 at t++ are realized, the possible observer states St+1 are{

{(F,W,N), (F,W,R)}, {(F,W,N)}
}
.

If the true system state is Zt = (F,N,R) then

Q(St, E2, Zt) = {(F,W,N), (F,W,R)}.

�

4.2 Solution of the Dynamic Program

We obtain the solution of the dynamic program, Equation (4), via value iteration
[2, 12]. For that matter, we define the operator T by

TV (S) := min
d∈D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV (S′)

]
. (5)

We prove the following result.

Theorem 1. The operator T , defined by Equation (5), is a contraction map.

Proof. We use Blackwell’s sufficiency theorem (Theorem 5, [4]) to show that T
is a contraction mapping. We show:

i) Bounded value functions : First, note that |S|, |D| < ∞, and that we have
bounded costs, CZ ≤M1 <∞, ∀S ∈ S; Ĉ(d) ≤M2 <∞, ∀ d ∈ D. Starting
from any bounded value function, V (S) ≤ M3 <∞ with M3 > M1+M2

1−β we
have

TV (S) = min
d∈D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV (S′)

]
≤M1 +M2 + βM3 < M3 <∞

for all S ∈ S.
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ii) Monotonicity: Assume V2(S) ≥ V1(S) ∀S ∈ S. Then, for all S ∈ S, Z ∈ S
and d ∈ D,

CZ + Ĉ(d) + max
S′∈Q(S,d,Z)

βV2(S
′) ≥ CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV1(S

′)

Therefore, for all S ∈ S and d ∈ D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV2(S

′)

]
≥

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV1(S

′)

]
Hence,

TV2(S) = min
d∈D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV2(S

′)

]
≥ min

d∈D
max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV1(S

′)

]
= TV1(S).

iii) Discounting : Assume V2(S) = V1(S) + a. Then, for all S ∈ S

TV2(S) = min
d∈D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
β(V1(S

′) + a)

]
= min

d∈D
max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV1(S

′)

]
+ βa

= TV1(S) + βa.

By Blackwell’s sufficiency theorem, the operator T is a contraction mapping. �

Since T is a contraction mapping, we can use value iteration to obtain the
solution to Equation (4), which we term the stationary value function, V ∗(S).
From the stationary value function, we can obtain an optimal policy, g∗, as
follows

g∗(S) = argmin
d∈D

max
Z∈S

[
CZ + Ĉ(d) + max

S′∈Q(S,d,Z)
βV (S′)

]
The optimal policy, g∗(S), is not always unique. That is, for a given observer state
S ∈ S, there could be multiple d ∈ D which achieve the same minimum value of

mind∈D maxZ∈S

[
CZ + Ĉ(d)+maxS′∈Q(S,d,Z) βV (S′)

]
. We denote by D∗(S) the

set of optimal actions for a given observer state S. In the event that D∗(S) is not
a singleton for a given state S, we choose a single action d∗(S) ∈ D∗(S) based
on a quantity we define as the confidentiality threat. The confidentiality threat
is a measure of the degree to which computer i is presumed (by the defender) to
be compromised and is defined as follows

T̃i =
∑
Z∈S

c(zi), i ∈ N



A Supervisory Control Approach to Dynamic Cyber-Security 111

where c(zi), zi ∈ M, is the cost of the state, as defined in Equation (1), of
the ith computer in the candidate system state Z ∈ S. Summing over all can-
didate system states in the observer state S for a given computer i, we obtain
the confidentiality threat T̃i. Next, we compare the confidentiality threat of each
computer and choose the action d∗(S) ∈ D∗(S) that corresponds to the highest
confidentiality threat. In the case of equal confidentiality threats (which arise
when the observer state is symmetric), we choose the action in D∗(S) corre-
sponding to the computer with the lower index i ∈ N .6

5 Optimal Defender’s Policy

We now discuss the characteristics of the optimal policy for Problem (P ′
D),

henceforth referred to as the optimal policy. We illustrate sensitivity analysis
via numerical results for both a two computer and a three computer network.
We also discuss some qualitative observations of the optimal policy.

First we note that determining the set of observer states and its associated
dynamics is not a trivial computational task, even for moderately sized networks.
Our calculations show for the case of a two computer network, the defender’s
observer automaton consists of 87 states and 1207 transitions. Extending the
system to a three computer network results in 1423 states with 65602 transitions.
To automate the procedure, we have developed a collection of programs which
makes use of the UMDES-LIB software library [1]. The specific procedure is
discussed in Appendix A.

The sensitivity analysis studies how the cost of re-imaging affects the optimal
policy. For both the two computer and three computer networks, we increase the
re-image cost, Ĉ(Ri) = r, ∀i ∈ N , and observe how the optimal policy behaves.
Since the number of observer states in the two computer network, denoted |S2|,
is modest, |S2| = 87, we are able to plot the behavior for each observer state
S ∈ S2, as seen in Figure 4(a).7 In the three computer network, the size of
observer state space, |S3| = 1423, is much larger than that of the two computer
network. As a result, we plot the percentage of observer states that have the
optimal action d, for all d ∈ D, and analyze how the percentage changes as we
increase r, as seen in Figure 4(b).

The behavior of the optimal policy due to increasing re-image costs, r, is
intuitive. As r increases, the optimal policy exhibits a threshold form,8 switching
from specifying more expensive actions to less expensive actions. For very low
re-image costs, the optimal policy specifies Ri in the majority of the observer
states. As r increases, observer states for which Ri was optimal, switch to either
sense, Ei, or null, Nd. Once the optimal action is null, it remains null for all
higher values of r. For the observer states where the action switched to sense,
a further increase in r may result in a switch to null; however, there exist some

6 This choice is arbitrary; we could randomize the choice as well.
7 The “ordering” of these states is arbitrary.
8 In the simulations that we have performed.
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Fig. 4. Sensitivity analysis for varying re-image cost r, where r = Ĉ(Ri) for all i ∈ N .
Other parameters are Ĉ(Nd) = 0, Ĉ(Ei) = 0.1 ∀ i ∈ N , cN = 0, cR = 1, cW = 2,
cF = 8, and β = 0.9.

observer states where the optimal action is sense for all higher values of r. This
threshold behavior is clearly depicted in Figure 4(a).

As a result of the aforementioned threshold behavior, for high enough values
of r, the optimal policy eventually specifies Nd or Ei for all states S ∈ S. The
argument to see why there is no re-image action for high values of r is straight-
forward; at these values of r the cost of re-imaging is prohibitively expensive and
the defender would rather incur the cost of being in a poor system state (see
Equation (2)).

An interesting (related) observation can be seen by analyzing the characteris-
tics of the observer states and how these characteristics influence when the policy
undergoes a switch as r increases. Consider Figure 4(a), and observe the behav-
ior of the optimal policy around the re-image cost of r = 20. There is a collection
of observer states (with indices 74 – 87) that contain the (F, F ) element (both
computers are in the remote compromised state) where the optimal policy speci-
fies a switch from re-image to null. In these observer states, the defender believes
that the true system state is so poor that, even if the a computer were to be
re-imaged, the events in A would cause the system to transition back to a poor
state in so few iterations that the defender would just be wasting its resources
by re-imaging. That is, the number of time steps that it takes for the system to
return to a poor state is not high enough to justify the cost that the defender
must incur to keep the system in a secure operating mode. For this reason, in
these observer states, the defender exhibits the passive behavior of giving up by
choosing the cheapest action, Nd. An interesting related observation is that for
other observer states in the system (the observer states that do not contain the
element (F, F )) the optimal policy specifies a switch away from re-image at a
higher re-image cost (around r ∈ [25 26]). In these observer states the defender
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views the process of securing the system as economically efficient because it can
be returned to a secure operating mode in a small enough number of iterations
(compared to the observer states that contain the system state (F, F )). This
observed behavior reflects the fact that attacks are progressive and that time
has value in our model.

Another observation is that there are sets of parameters for which the sense
action is useful (as seen starting in Figure 4(a) around r = 2 and peaking in
Figure 4(b) around r = 25). In these cases the act of sensing a computer results
in a split observer state that has a lower future cost than if the defender were to
choose either null or re-image. Thus, paying the cost to sense can result in the
defender having a better idea of the underlying system state and thus make a
wiser decision on which future action to take. However, for low values of r, we
can see that the defender prefers to re-image over obtaining a better estimate
of the system (and similarly for high values of r, the defender prefers to take
the null action). This behavior highlights the duality between estimation and
control.

Interestingly, sensing remains an optimal action even for high values of r
when there is no re-image action prescribed in the optimal defense policy. In
these cases, even though sensing does not change the state of the network, it
refines the defender’s information which then results in a lower future cost for
the defender. Even though the sense action is more expensive than the null
action, this lower future cost causes the defender to choose sense over null.

The intent of determining an optimal policy is to offer a set of procedures
for the defender such that the network is able to be kept as secure as possible.
After the defender specifies its costs for actions and costs for states, the optimal
policy specifies a procedure that the defender should follow. For each action the
defender takes, d ∈ D, and for each event it observes, a′ ∈ A′, the resulting
observer state is known through the dynamics of the observer state. For each
of these observer states resulting from the sequence of defender actions and
observed events, the optimal policy specifies whether to sense or re-image a
particular computer, or to wait and do nothing. The resulting defender behavior
will keep the network as secure as possible under the min-max cost criterion.

6 Conclusion and Reflections

In this paper we have proposed a supervisory control approach to dynamic cyber-
security. We have taken the viewpoint of the defender whose task is to defend
a network of computers against progressive attacks. Some of the attacker ac-
tions are unobservable by the defender, thus the defender does not have perfect
knowledge of the true system state. We define an observer state for the defender
to capture this lack of perfect knowledge.

We have assumed that the defender takes a conservative approach to preserv-
ing the security of the system. We have used the min-max performance criterion
to capture the defender’s conservative approach.

Dynamic programming was used to obtain an optimal defender policy to Prob-
lem (P ′

D). The numerical results show that the optimal policy exhibits a threshold
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behavior when the cost of actions are varied. We have also observed the duality of
estimation and control in our optimal policy.

We believe that our approach is suitable for modeling interactions between an
attacker and a defender in general security settings. In general, we can use our
approach to study dynamic defense against attacks in a network of N resources
each with M (orderable) security levels and M− 1 security boundaries. The
attack actions can penetrate through some of these boundaries to compromise a
resource, or use a compromised resource to attack other resources in the network.
Some of these actions can be unobservable to the defender. On the other hand,
the defender can take actions to change the state of resources to a more secure
operating mode or sense the system state to obtain more refined information
about the system’s status.

The model we have defined is rich enough to be extended to capture more
complicated environments. Some examples of such environments can be hetero-
geneity of the network’s computers9 or the introduction of a dummy computer10

into the system so as to increase the network’s resiliency to attacks.
One bottleneck of our approach is that the number of states and transitions

grows exponentially with the number of computers. One solution to this is to
use a hierarchical decomposition for the system. For example an Internet Service
Provider (ISP) can model a collection of nodes in their network as one region
(resource). Once a non-secure region is observed in the system, the ISP can more
carefully analyze the nodes within that region and take appropriate actions.
Approximate dynamic programming methods could also be useful in dealing
with systems with a large number of computers.
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A Appendix – UMDES-LIB

The UMDES-LIB library [1] is a collection of C-routines that was built to study
discrete event systems that are modeled by finite state automata. Through spec-
ification of the states and events of a system automaton (along with the control-
lability and observability of events), the library can construct an entity termed
the observer automaton. In our problem the observer automaton is the defender’s
observer automaton, since we take the viewpoint of the defender. Thus, the ob-
server automaton consists of the defender’s observer states.

In this appendix we describe an automated process11 for extracting the de-
fender’s observer state from the system automaton that makes use of UMDES-
LIB. This requires first constructing the system automaton in an acceptable
format for the library while preserving all the features of our model. After run-
ning the library on the provided system automaton, we extract the defender’s
observer state from the observer automaton output. This method allows one to
construct the defender’s observer state for any number of computers.12

Constructing the System Automaton. The input that we provide to
UMDES-LIB is the system automaton from the defender’s viewpoint, as illus-
trated earlier in Figure 3.

In order to preserve all features of our model in the resulting observer au-
tomaton, we need to introduce additional sensing actions. Recall that the sense
action, {Ei}i∈N , causes the system automaton to transition to the same state
as the null action, Nd (see Figure 3). However, as stated in Section 2, the sense
action updates the information state of the defender. In order to ensure that
UMDES-LIB captures this functionality, we expand the sense action Ei for each
computer i into |M| distinct actions, denoted by Ezi

i , which represent sensing
computer i when it is in state zi ∈ M. This results in a reduced level of uncer-
tainty for the defender as it splits the observer state into, at most, |M| possible
sets of observer states. The admissible actions from {Ezi

i }zi∈M, at a given sys-
tem state, are the sense actions that correspond to the true system state. For
example, from the system state Zt = (N,R,W ), the admissible sense actions are
EN

1 , ER
2 , and EW

3 . The above example of the expanded sense action is perhaps
worrisome at first glance – if the only admissible sense actions from the current
state are the ones that correspond to the current state of the computer, then
the defender will know what the current state of each computer is, eliminating
the need for a sense action. However, the observer state that is obtained from
each expanded sense action is the same as the observer state that is obtained if
the defender were to observe the true, unknown state of a computer.

Running UMDES-LIB on the system automaton with the expanded sense ac-
tions results in the observer automaton.

11 Source code is available upon request.
12 The only bottleneck being the (potentially large) dimensionality of the problem.
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Extracting the Defender’s Observer State. The output of UMDES-LIB is
the observer automaton, from which we must extract the defender’s observer
state. First, since the defender does not have the ability to choose the expanded
sense actions, Ezi

i , we re-group them into a single, non-deterministic action,
Ei ∈ D, for each i ∈ N . Next, we need to extract the function, f : S×D×A′ → S
from the observer automaton. The observer automaton, generated by UMDES-
LIB, takes the form of a bipartite graph; one collection of states of the bipartite
graph is observer states over system states Z, denoted S, whereas the other
collection is observer states over intermediate states Z̃, denoted S̃. Defender
actions, D, are the only admissible actions from observer states S. The defense
action d ∈ D causes a transition13 to an observer state in S̃, where only events
in A′ are admissible. Each event a′ ∈ A′ causes a transition back to an observer
state in S. Repeating this process for all observer states in S, actions d ∈ D,
and events a′ ∈ A′, the function f : S ×D×A′ → S is defined. To construct the
set Q(S, d, Z) we follow the approach described in Section 4.1 and illustrated by
Example 1.

13 This transition may be non-deterministic due to the sense action.
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Abstract. Security is often investigated in terms of a single goal (e.g.,
confidentiality), but in practical settings mostly a compound property
comprising multiple and often interdependent aspects. Security strate-
gies are behavior profiles that guarantee some performance regardless
of how the adversary really behaves (provided that it stays within its
action set). While security strategies towards a single goal are easy to
compute via Nash-equilibria (or refinements thereof), playing safe to-
wards multiple security goals induces the notion of Pareto-optimal secu-
rity strategies. These were recently characterized via Nash-equilibria of
multi-player games, for which solution algorithms are intricate and may
fail for small instances already. Iterative techniques, however, exhibited
good stability even for large games. In this work, we thus report on
theoretical and practical results how security strategies for multiple (in-
terdependent) goals can be computed via a set of simple transformations
and a final application of humble fictitious play.

Keywords: Pareto-optimality, security strategies, game theory, equilib-
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1 Introduction

Security strategies have been introduced in [18], as a mean of optimizing behav-
ior under uncertainty of the opponent. That is, a security strategy gives the best
payoff for player 1 under arbitrary, especially not equilibrium, behavior of player
2 in a two-person game. This models situations in which only the opponent’s
action space is known, but the player remains uncertain about the other’s payoff
structure(s). Information security is a natural incarnation of this, as we seek the
optimal defense against arbitrary actions of an adversary, whose possible actions
are known, but nothing about its particular behavior can be assumed reasonably.
Treating a single security goal in that sense yields scalar two-person games in
the style “honest-vs-adversary”. However, most practical settings require simul-
taneous defense strategies against various different threats, such as violations
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of confidentiality, integrity, availability and authenticity (CIA+ security). Secu-
rity strategies accounting for simultaneously optimal payoffs in various perhaps
strongly interdependent goals have not been studied very extensively so far, and
are subject of this work.

Security strategies in the scalar case, i.e., when only a single security goal
is of interest, are easily identified as Nash-equilibria of zero-sum games. In a
multi-dimensional case, i.e., for security in multiple possibly interdependent as-
pects, Pareto-optimal security strategies are sought. Applications of these are
manifold, e.g., creating high-security communication lines that are confidential,
robust and authentic, can be achieved by multipath-transmission and multipath-
authentication, which in turn leads to straightforward game-models (an example
is given in section 6.2).

Searching for security strategies is interesting from a theoretical and practical
point of view, as it can provide quantitative risk estimates. For example, setting
up a transmission channel between to peers by virtue of multipath transmis-
sion, the game can be defined with the sender acting as player 1, who chooses
the transmission configuration (in particular the paths over which information is
conveyed). Player two is the adversary, who chooses nodes to attack. The game’s
payoff function is the fraction of correctly delivered messages, where “correctly”
here covers confidentiality and integrity (at least). Given a particular network
infrastructure (topology), what is the likelihood of achieving the two security
goals upon a single transmission? The answer lets the sender utilize the network
in a proper way so as to minimize the risk of security breaches, and can be used
to enhance the network infrastructure (by additional protections at the most
likely targets for the opponent (adversary) in the network infrastructure). So,
the practical aspect of game-theory in network security is related to topologi-
cal vulnerability analysis, where the competition between the (honest) network
users and the adversary points out best practices to use the network, as well
as neuralgic spots being indicated as the most likely attack strategies for the
adversary (opponent player 2). We revisit this use case later.

Our focus here is, however, not on game-theoretic models of applied cryp-
tography, but rather on covering a numerical problem in the computation of
Pareto-optimal security strategies. These can be computed to support or en-
hance processes of topological vulnerability analysis and quantitative risk man-
agement. Especially the latter may call for efficient updates following changes
(enhancements) to the system. Therefore, the efficiency of computing security
strategies may be of interest besides its theoretical value.

In fact, relying on the characterization as obtained in prior literature (and
cited below), “standard” algorithms to compute Nash-equilibria may be ap-
plied. Unfortunately, however, the whole armory of algorithms that ships with
the Gambit software [10], rapidly failed to compute the sought results even for
small examples (numerical instabilities occurred already in example instances
with, e.g., three goals and eight strategies per player). On the bright side, ficti-
tious play exhibited good numerical stability (though slow convergence) and has
been proven capable of computing the sought security strategies even for large
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games like those arising in our example application of security risk assessment
of multipath communication channels.

2 Preliminaries

Throughout this work, normal font denotes scalars and bold face font denotes
vectors. Sets are written in upper-case latin letters like N . The cardinality of a
set N is denoted by |N |.

A game is a triple Γ = (N,S,H), where N is the – in our case always finite
– set of n = |N | players, S = {PS1, . . . , PSn} contains the individual action
sets for each player, and H = {u1, . . . , un} is the family of payoff functions
ui :

∏n
i=1 PSi→R for each i ∈ N .

As a standard shorthand notation, we write PS−i for the cartesian product
of all PSj ∈ S, excluding PSi. The vector (s1, . . . , si−1, si+1, . . . , sn) ∈ PS−i is
abbreviated as s−i.

Hereafter, we write s for pure strategies, but mostly consider mixed strate-
gies, i.e., probability distributions over the action sets. For simplicity, we thus
denote Si as the set of all probability distributions supported on a set PSi of ac-
tions, also called pure strategies. This is the set of mixed strategies. Such mixed
strategies and general probability distributions are denoted by lowercase Greek
letters, e.g., θ, φ ∈ Si. We will hereafter drop the attribute “mixed”, as we will
not explicitly talk about pure strategies any more (and because pure strategies
arise via degenerate mixed strategies anyway). Random variables are denoted
by uppercase letters like X ; their distribution θ is told by the symbol X ∼ θ.

A Nash-equilibrium in an n-person game is a set of strategies (θ∗1 , . . . , θ
∗
n) so

that all players i ∈ N receive for all θi ∈ Si an expected payoff
E(θ∗

i ,θ
∗
−i)

ui(Xi, X−i) ≥ E(θi,θ∗
−i)

ui(Xi, X−i), where the expectation is taken over
the probability distributions noted in the subscripts of the expectation operator.
By a slight abuse of notation for the sake of simplicity, we let ui(θi, φi) also
denote the long-run average payoff (over an infinite number of repetitions of
the game1), as we will exclusively speak about expected payoffs in in the con-
text of mixed strategies. In that notation, the Nash-equilibrium condition in a
two-person zero-sum game (expected payoff functions being u1 and −u1) can
compactly be written as

u1(θ, φ
∗) ≤ u1(θ

∗, φ∗) ≤ u1(θ
∗, φ) ∀θ ∈ S1, φ ∈ S2, (1)

where the pair (θ∗, φ∗) denotes the equilibrium, and we call v = u1(θ
∗, φ∗) its

(saddle-point) value.

1 Even if the game cannot be repeated, then using indicator variables for the payoffs
turns the expected payoffs into probabilities. In this setting, the Nash-equilibrium
is the likelihood to win (or loose) in a single round of the game, thus making the
concept applicable even if the game is not repeatable.
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3 Security Strategies

Towards an axiomatic characterization of security strategies in general games
(finite or infinite), captured as definition 1, we take known results in the scalar
case as the template for upcoming definitions.

3.1 The Scalar Case

The following is a well-known fact (cf. [2] among others).

Lemma 1. Let Γ = (N,S,H = {u1, u2}) be a two-person game with continuous
payoff functions. Define the zero-sum game Γ0 = (N,S,H0 = {u1,−u1}), with
Nash-equilibrium v = u1(θ

∗, φ∗). Then, player 1 always receives u1(θ
∗, φ) ≥ v in

Γ , no matter how player 2 actually behaves. Moreover, there is a strategy φ′ ∈ S2

so that u1(θ
∗, φ′) = v in Γ .

The lower bound provided by the zero-sum equilibrium value is easily obtained
by observing that player 2 due to a perhaps different payoff structure in Γ most
likely deviates from the optimal zero-sum strategy φ∗ in Γ , thus leaving player
1 with more than the zero-sum equilibrium payoff v. The existence of a strategy
φ′ achieving equality directly follows from the continuity of the payoff functions.

The ordering of R that lets us define the equilibrium condition is lost upon
the transition to Rk for k > 1. This unfortunate fact renders the proof of lemma
1 non-transferable to Rk, and calls for more sophisticated concepts.

3.2 The Multi-criteria Case

A multi-objective game (MOG) has vector-valued payoffs. That is, the i-th player
receives ri different payoffs, denoted by the function ui :

∏n
i=1 PSi→Rri ,

(si, s−i) �→ (u
(1)
i (si, s−i), . . . , u

(ri)
i (si, s−i)). For two vectors a = (a1, . . . , ak),

b = (b1, . . . , bk) ∈ Rk, we write a ≤ b, if ai ≤ bi for all i = 1, 2, . . . , k. The
complement relation is a >1 b and holds iff an index 1 ≤ j ≤ k exists such
that aj > bj , no matter what the other components do. The vector-relations
≥, <1,≤1 and ≥1 are defined accordingly.

The sibling of Nash-equilibrium in the scalar case is the Pareto-Nash equilib-
rium in the multivariate case: here, we require the inequalities in (1) to fail in at
least one component upon a deviation from the optimum. That is, an n-player
MOG Γ = (N,S,H) admits a Pareto-Nash equilibrium (θ∗1 , . . . , θ

∗
n) if for every

player i ∈ N , we have ui(θi, θ
∗
−i) ≤1 ui(θ

∗
i , θ

∗
−i) for every θi. For two players, the

resulting pair of inequalities resembles the equilibrium condition (1) by requiring
that optimality fails in at least one goal by any deviation from the Pareto-Nash
strategy profile (θ∗i , θ

∗
−i).

In [13], a precursor definition towards an axiomatic characterization of network
provisioning security strategies is given. We adapt this construction into our
definition 1 here that is not confined to problems of secure data delivery.
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Definition 1. A strategy θ∗ ∈ S1 in a two-person multi-criteria game Γ with
continuous payoff u1 : S1 × S2→Rk for player 1, is called a multi-criteria
security strategy (MCSS) with assurance vector v = (v1, . . . , vk), if the following
two conditions hold:

1. The assurances are the component-wise guaranteed payoff for player 1, i.e.
for all components i, we have

vi ≤ u
(i)
1 (θ∗, φ) ∀φ ∈ S2, (2)

with equality being achieved by at least one choice φi ∈ S2.
2. At least one assurance becomes void if player 1 deviates from x∗ by playing

θ �= θ∗. In that case, some φ ∈ S2 exists such that

u1(θ, φ) ≤1 v. (3)

Observe that the above definition transforms the assertions of lemma 1 in the
scalar case into axioms in the multi-dimensional case. The existence of multi-
dimensional security strategies has been studied in the literature, where the
following characterization was established:

Theorem 1 ([13]). Let Γ be a two-player MOG. The distribution θ∗ consti-
tutes a multi-criteria security strategy (MCSS) v for player 1 and k goals in the
game Γ , if and only if it is a Pareto-Nash equilibrium strategy for player 0 in
the following (k+1)-player multi-objective auxiliary game Γ = (N,S,H), where:
N = {0, 1, . . . , k} , S = {PS1, PS2, . . . , PS2} (i.e. a multiset with |S| = k + 1)

and the payoffs are u0(s0, . . . , sk) := (u
(1)
1 (s0, s1), . . . , u

(k)
1 (s0, sk)) for player 0

(vector-valued), and ui(s0, . . . , sk) := −u(i)
1 (s0, si) (scalar-valued) for the oppo-

nents i = 1, 2, . . . , k.

From theorem 1, the existence of security strategies is not immediately evident,
but can be concluded from results of [9] concerning the existence of Pareto-Nash
equilibria in multiobjective games (MOG).

Theorem 2 ([9]). Let Γ = (N,S,H) be a MOG, where each PSi ∈ S is convex
and compact, and each ui ∈ H is continuous. Moreover, assume that for each

player i ∈ N , every individual payoff u
(j)
i (si, s−i) for 1 ≤ j ≤ ri is a concave

function of si on PSi, whenever the remaining values s−i are fixed. Then, Γ has
a Pareto-Nash equilibrium.

From this we easily obtain the existence of MCSS under various conditions.
For example, every finite game admits multi-criteria security strategies, which
re-proves a known result of [1] by a humble application of theorems 1 and 2:

Corollary 1 (Existence of MCSS in matrix games). Every finite MOG
admits a multi-criteria security strategy.

We will not go into further details about existence of MCSS, beyond stressing the
fact that definition 1 is not limited to finite games or games with a finite number
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of players. In that sense, the characterization theorem 1 can be obtained with
alternative results to theorem 2 to establish the existence of MCSS for various
other classes of games.

For simplicity, e.g. security risk management in multipath communication
networks, we can work with corollary 1 to handle the arising matrix-games.

The proof of theorem 2 is “constructive” in the sense of equating the set of
Pareto-Nash equilibria to the set of Nash-equilibria in a scalarized version of
the MOG. Specifically, [9] prescribe the following steps to find a Pareto-Nash
equilibrium in the n-player MOG Γ :

1. Fix an arbitrary set of real numbers α11, α12, . . . , α1r1 , α21, . . . , α2r2 , . . . , αn1,
. . . , αnrn that satisfy condition (4):∑ri

κ=1 αiκ = 1 for i = 1, 2, . . . , n, and
αiκ > 0 for κ = 1, 2, . . . , ri and i = 1, 2, . . . , n.

}
(4)

2. Form a (scalar) game Γs = (N,S,H ′) with H ′ = {f1, . . . , fn} and

fi =

ri∑
κ=1

αiκu
(κ)
i . (5)

3. Find a Nash-equilibrium θ∗ = (x∗
1, . . . , x

∗
n) in Γs, which is then a Pareto-Nash

equilibrium in Γ .

Notice that the Nash-equilibria found by the above algorithm depend on the
particular choice of weights. Indeed, the full set of equilibria is given as the
union of all equilibria over all admissible choices of α’s in (4) [9].

4 Numerical Computation of MCSS

Although there exist sophisticated algorithms and implementations to compute
Nash-equilibria in multi-person games, an experimental implementation of our
transformation using the Gambit software [10] showed that these algorithms
fail on games with many players and strategies. It therefore appears advisable to
prefer iterative numeric techniques over analytic ones for practical settings, in
which we can expect a large number of strategies and security goals, the latter
of which correspond to players. Our method of choice is fictitious play.

4.1 Fictitious Play in Multi-criteria Compound Games

Briefly speaking, fictitious play is the process of repeatedly playing the game
while every player notes and learns the other player’s moves, while at the same
time optimizing his/her own behavior based on the so-far recorded behavior
profiles. More concretely, let t ∈ N be the sequence of discrete time steps. Player
i moves along a sequence of actions (si(t))t∈N ∈ PSi and maintains beliefs for
each opponent j �= i that are discrete probability distributions for each t ∈ N of
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the form
(
βi(t) =

1
t

∑t
τ=1 δi(τ)

)k
i=1

. Here, δi is the Dirac probability distribution

that assigns unit mass to action si (by this convention PSi is included in Si as
extremal points). Player i’s next move at time t+1 is then the optimal response to
its recorded opponent behavior profile (β1

i (t), . . . , β
i−1
i , βi+1

i , . . . , βn
i (t)) at time

t. We say that a game has the fictitious play property, if this process approaches
an equilibrium θ∗ in the sense that for every ε > 0 there is some t0 such that for
every t ≥ t0, we have

∥∥(β1
i (t), . . . , β

n
1 (t))− θ∗

∥∥ < ε in some norm. See [17] for a
more comprehensive account.

4.2 Computing MCSS by Fictitious Play

In the terminology of [17], the auxiliary game Γ is a “one-against-all” multi-
player game or compound game, which can be solved iteratively by fictitious play
if it were zero-sum. Although theorem 1 specifies Γ not as zero-sum, this can be
fixed easily without changing the set of equilibria. Indeed, it is the scalarization
(5) that will become helpful in a twofold manner, as it lets us apply standard
fictitious play and it lets us prioritize our security goals.

Given a two-player MOG Γ and its auxiliary game Γ , we prepare the latter
for fictitious play by making it zero-sum before the necessary scalarization. To
this end, recall that player 1 in Γ , who is player 0 in Γ , has k goals to optimize,
each of which is represented as another opponent in the auxiliary game Γ . We
define the payoffs in a compound game (“one-against-all”) from the payoffs in Γ ,
while making the scalar payoffs vector-valued to achieve the zero-sum property:

– player 0:

u0 : PS1 ×
k∏

i=1

PS2→Rk,

u0(s0, . . . , sk) = (u
(1)
1 (s0, s1), u

(2)
1 (s0, s2), . . . , u

(k)
1 (s0, sk))

– i-th opponent for i = 1, 2, . . . , k:

ui = (0, 0, . . . , 0,−u(i)
1 , 0, . . . , 0). (6)

Obviously, the “vectorization” of the opponents payoffs does not affect any equi-
librium conditions, so the so-modified game comes with the same set of equilibria
as Γ . To numerically compute (one of) them, we scalarize as follows: to each of
player 0’s k goals, we assign a weight α01, . . . , α0k. The scalarization in (5) is via

αji := α0i for i = 1, 2, . . . , k and j = 1, 2, . . . , k.

With these weights, the payoffs in the scalarized compound game are:

– for player 0: f0 = α01u1 + α02u2 + · · ·+ α0kuk,
– for the i-th opponent, where i = 1, 2, . . . , k

fi = α01 · 0 + α02 · 0 + · · ·+ α0,i−1 · 0 + α0i · (−u(i)
1 ) + α0,i+1 · 0 + α0k · 0

= −α0i · u(i)
1 (7)
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Concluding the transformation, we obtain a scalar compound game

Γ sc = ({0, 1, . . . , k} , {PS1, PS2, . . . , PS2︸ ︷︷ ︸
k times

}, {f0, . . . , fk}) (8)

from the original two-person MOG Γ with payoffs u
(1)
1 , . . . , u

(k)
1 that can directly

be be plugged into expressions (6) and (7).
Towards a numerical computation of equilibria in Γ sc, we need yet another

transformation due to [17]: for the moment, let us consider a general compound
game Γc as a collection of k two-person games Γ1, . . . , Γk, each of which is played
independently between player 0 and one of its k opponents. With Γc, we associate
a two-person game Γcr that we call the reduced game. The strategy sets and
payoffs of player 0 in Γcr are the same as in Γc. Player 2’s payoff in the reduced
game is given as the sum of payoffs of all opponents of player 0 in the compound
game.

Lemma 2 ([17]). A fictitious play process approaches equilibrium in a com-
pound game Γc, if and only if it approaches equilibrium in its reduced game Γcr.

So, it suffices to consider the reduced game Γ scr belonging to Γ sc. It is a
trivial matter to verify the following fact (by substitution).

Lemma 3. The reduced game Γ scr of the scalarized compound game Γ sc defined
by (8) is zero-sum.

So by the famous result of [15] on the convergence of fictitious play in two-person
zero-sum games, we obtain the following final result:

Theorem 3. The scalarized compound game Γ sc defined by (8) has the fictitious
play property.

Theorem 3 induces the following procedure to compute multi-criteria security
strategies according to definition 1:

Algorithm to compute MCSS: Given a two-player MOG Γ with k payoffs

u
(1)
1 , . . . , u

(k)
1 for player 1 (and possibly unknown payoffs for player 2), we obtain

a MCSS along the following steps:

1. Assign strictly positive weights α01, . . . , α0k, satisfying
∑k

i=1 α0i = 1, to each
goal, and set up the scalarized auxiliary compound game Γ sc by virtue of
expressions (8), (6) and (7).
Observe that, as we can choose the weights arbitrarily, these give us a method
to prioritize different goals. However, practical experiments indicated that
different choices of priorities (α-values) have only a minor if not negligible
effect on the particular result of the computation.

2. Run fictitious play in Γ sc, stopping when the desirable precision of the equi-
librium approximation is reached. In our experiments, we stopped when the
difference between the intermediate result vectors θ∗t−1 and θ∗t at steps t and
t− 1 has become less than an adjustable threshold δ > 0 in the 1-norm.
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3. The result vector θ∗ is directly the sought multi-criteria security strategy,
whose assurances are given by the respective expected payoffs of the oppo-
nents. In case of matrix games, where the i-th payoff is given by a matrix
Ai, the sought assurances are vi = (θ∗)TAiφ

∗
i for i = 1, 2, . . . , k, where

φ∗
1, . . . , φ

∗
k are the other player’s equilibrium strategy approximations ob-

tained along the fictitious play.

5 Experimental Evaluation

We stress that theorem 3 asserts the fictitious play property for the games con-
structed, yet does not limit numerical solution techniques to a particular algo-
rithm (not even to fictitious play). Our experimental implementation used the
basic (and non-optimized) fictitious play procedure [15], but can easily be re-
placed by more sophisticated algorithms (e.g., [20]) to gain speed. Our tests were
done on a 3 x AMD Opteron 6212 machine, having 2.6 GHz 24 cores (virtual-
ized), 96 GB RAM, and 1 TB disk space.

Towards a (non-application-specific) performance evaluation, we created ran-
dom payoff matrices to simulate arbitrary matrix game structures (matrices with
independent and uniformly distributed Bernoulli random entries) ranging from
2 to 170 strategies (in steps of 2) for the honest player, seeking to secure its
behavior in terms of two security goals. In each setting, we ran (at least) 50
trials, taking the average number of iterations until convergence as the empirical
performance indicator. Convergence is said to be reached once the change in the
payoff-values v1, . . . , vk (per security goal) between two iterations has become
less than a threshold δ = 0.01 in the 1-norm.2 Figure 1a plots the results.

Fictitious play has shown to be numerically stable, yet suffers from slow con-
vergence (without optimizations) and memory shortage in case of games with
many goals (each of which corresponds to a player with its own payoff structure).
In the latter cases, the computation may be parallelized towards a speed-up by
assigning each player its own processor and memory. The temporal speed under
parallelization is then mostly determined by the communication overhead, which
in a multi-processor CPU is not too much of a problem.

As expected, the maximal number of iterations grows with the size of the
strategy sets and the number of security goals. Towards an empirical estimate
of asymptotic complexity in terms of the game’s size (number of strategies),
we fitted a linear model to the plot of N(n) (Figure 1a). Here, n is the num-
ber n of strategies, and the model took the form N = a · n + b + ε with an
error term ε being normally distributed. The parameter estimates came up to
a ≈ 71.5657, b ≈ −507.7625. The normality hypothesis on the residual term ε
was accepted by a Shapiro-Wilks test with a p-value of ≈ 0.8918 at a confidence
level of α = 0.95. Hence, we may – on empirical evidence – assume a growth of
the iteration count N that is proportional to the number n of strategies, giving

2 Notice that convergence in the fictitious play process as defined above implies con-
vergence under our modified criterion by the continuity of the payoff functions.
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Fig. 1. Complexity of computing two-criteria security strategies

linear asymptotic average-case complexity N ∈ O(n). The same linear relation-
ship was also confirmed for trials in 3 and 4 dimensions (using smaller games in
terms of strategy counts, though). Interestingly, the constants within the big-O
were roughly equal between 2, 3 and 4 dimensions, indicating that convergence
rates are only mildly affected by the number of security goals (dimensions).
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This is somewhat confirmed by the plot in Figure 1b, although a more thorough
empirical investigation needs to be done. A deeper exploration of both obser-
vations will be done with games that correspond to network security protocols
(see the related work section 6), and will appear in companion work to this.

The convergence speed (number of iterations) is rather slow: the computation
took about 15 minutes computing time until a precision of δ = 0.01, and another
15 minutes to undercut δ = 0.001 in three dimensions with 100 strategies. Fig-
ure 2 shows the evolution of the difference between adjacent equilibrium profile
approximations (beliefs) over the iterations of a single run, taking 200 strategies
in two dimensions until a precision of δ = 0.001 is reached. As the figure shows,
the algorithm quickly approaches the equilibrium, but slows down substantially
near the optimum. So, although we get a quick-and-dirty first approximation,
retrieving more accurate results upon fictitious play takes some time. Section 6.2
describes an application to network security, based on multipath transmission.

0 0.5 1 1.5 2 2.5

·105
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‖θ
∗ t−

1
−

θ
∗ t
‖ 1

Fig. 2. Convergence speed plot

The speed of convergence of fictitious play in general games is known to be
very slow, as was demonstrated by [4] on a concrete example game, where the
FP process takes exponentially many rounds until the equilibrium is reached.
Alternatively, convergence may be measured by considering the difference in
the payoffs, rather than the behavior profiles (beliefs), such as we did in our
experimental implementation. These may converge even though the distributions
themselves may oscillate.

However, the slow convergence of regular fictitious play may – in large games –
become unhandy, thus calling for replacements by more refined and sophisticated
learning techniques. Inspecting the applicability of such alternatives is an inter-
esting direction of future research.
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6 Related Work

The idea of Pareto-optimal security strategies (POSS) is not new and has pre-
viously been introduced in [7,6,18]. This prior work appears as a special case
of definition 1 when the games are finite. Infinity of action spaces, which arise
when continuous parameters (such as timing) were not covered by this prelim-
inary work. Treating communication as a game is a well-researched field, with
a comprehensive account given by [2], and much precursor work (such as [21]).
Game-theory has in the past as well been used to negotiate optimal service and
operational level agreements (see [11,8] among others) and to quantitatively an-
alyze security in ad hoc networks [22] under several optimality concepts (among
which is Pareto-optimality). Our work aids and further substantiates this direc-
tion of research. An interesting yet unexplored relation to our work also exists in
the results of [16], who consider a “non-static” gameplay. This direction is one
of future considerations.

6.1 Multipath Transmission

A fruitful application is a game-theoretic model of multipath transmission.
Roughly speaking, the game is about an honest sender attempting to communi-
cate over a network that is partially under the attacker’s control. The attacker is
not constrained in its computational power, but limited to control a fixed maxi-
mal number of nodes, by which it can read and insert network traffic at its own
will. The honest player’s goal is to deliver a message to a designated receiver,
while the payload remaining confidential and authentic, and with the maximum
probability of delivery (availability). The gameplay is by the honest party (player
1) randomly choosing transmission paths, while the attacker (player 2) randomly
chooses nodes to sniff, which – in its simplest form just described – makes the
scenario almost a diagonal game. An illustration is given in Figure 3.

BobAlice

Network

Splitting Recovery

Path 1 (e.g., ciphertext)

Path 2 (e.g., key/share 1)

Path n (e.g., key/share n-1)

...

Adversary

Intercepted
Channels

Message Message

Fig. 3. Illustration of multipath transmission

We leave the protocol-, game- and cryptography-details aside here (referring
the interested reader to [5,19,3,12,14] to fill these gaps), and confine ourselves
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to stating that experimental evaluations on real life enterprise network topolo-
gies lead to small games (after eliminating redundant and dominated strategies)
that are easy to handle. This is mostly due to low connectivity (many enter-
prise network backbones have a graph vertex connectivity of two, for reasons
of redundancy). Realistic wide area topologies would follow an Erdös-Rényi or
scale-free topology, which we simulate in the course of a research project (see
the acknowledgement) on which we will report in subsequent work. Here, for the
sake of generality, this example shall merely substantiate the applicability of the
theoretical concept of Pareto-optimal security strategies, while our evaluation
will be on matrix games with randomly chosen payoff structures.

6.2 Example: Security of Multipath Transmission

Nevertheless, the method appears viable to compute quantitative security of
multipath transmission on a given network topology. As an example, consider
the network topology depicted in Figure 4, where Alice wishes to securely send
a message to Bob over the network. Hereby, a message m is called secure, if its
transmission is confidential, the payload is authentic and the delivery does not
fail (availability). Hence, we have three goals, i.e., three dimensions.

4

BobAlice

2 3

1

5

Fig. 4. Example network

The transmission protocol uses two paths and a one-time pad encryption,
sending the key k over one path, and the ciphertext c = m⊕ k over the second
path, where ⊕ denotes the bitwise XOR (note that this scheme is trivial to
generalize to the usage of n > 2 paths).

The adversary is allowed to conquer any two nodes between Alice and Bob
(excluding the two, for obvious reasons), and is computationally unbounded (i.e.,
we are after unconditional security here).

The game’s payoff structure is composed from three indicator functions of

success, measuring confidentiality as u
(conf)
1 = 1 : ⇐⇒ [the attacker misses

either k or c], availability as u
(avail)
1 = 1 : ⇐⇒ [the attacker fails to intercept

k or c], and authenticity. This is achieved by the protocol in [14], and yields

u
(auth)
1 = 1 :⇐⇒ [the attacker fails to conquer at least one of the chosen paths].

The strategy set for player 1 is the set of pairs of disjoint transmission paths (a
total of |PS1| = 3 strategies). The strategy set for player 2 is the set of two-
element subsets of {1, 2, 3, 4, 5}, giving a total of |PS2| =

(
5
2

)
= 10 strategies. The
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payoff for player 1 is the vector u1 = (u
(conf)
1 , u

(avail)
1 , u

(auth)
1 ). The importance

weights are (α0,conf, α0,avail, α0,auth) = (1/3, 1/3, 1/3).
The fictitious play process converged within 6 iterations until an accuracy of

δ < 10−3, giving the final multicriteria security strategy θ∗ = (13 ,
1
3 ,

1
3 ), with

assurance v = (23 , 0,
2
3 ). This is indeed what we expect, since if the attacker in-

tercepts one of the paths, the message remains confidential and cannot be forged

unnoticeably (u
(conf)
1 = 1 = u

(auth)
1 ), but it can become destroyed (u

(avail)
1 = 0).

The assurance vectors thus give the conditional probability Pr[m is authentic
and has not been disclosed |m was correctly delivered ] ≥ 2/3, but the uncon-
ditional likelihood Pr[delivery of m can be disrupted] = 1. By the properties of
MCSS, this is the best that the attacker can do. The protocol is as such insecure,
as it is vulnerable to denial-of-service, although it can be made arbitrarily and
unconditionally secure against eavesdropping (under the given adversary model)
by repeating the process on a sequence of packets m1,m2, . . . ,m� whose bitweise
XOR recovers m = m1 ⊕m2 ⊕ · · · ⊕m�. Then, the likelihood to disclose m is
2−O(�), if all � messages are delivered according to the security strategy θ∗.

It is straightforward to apply the technique to other more efficient protocols
like [19,5], and to take further probabilistic security in the network into account,
by replacing the payoff functions accordingly.

7 Conclusion

Fictitious play has been demonstrated as a working method to numerically com-
pute security strategies towards playing safe in multiple regards (security goals).
The axiomatic characterization of multi-criteria security strategies as Pareto-
Nash equilibria, which in turn can be computed as Nash-equilibria of multi-
player games, induces a sequence of simple and straightforward transformations
that culminate in a game enjoying the fictitious play property. In addition, we
gain a degree of freedom to assign importance weights to different security goals,
although these seem to have only minor (if not negligible) influence on the actual
outcome (equilibrium) that is computed. Nevertheless, it adds an interesting as-
pect to practical applications by showing that a “prioritization” between security
goals is not necessarily useful in general.

Aspects of future work are non-static game-plays, improved variants of ficti-
tious play and examining complexities to more detail. As a showcase application,
we will apply our algorithms to problems of establishing confidential, authen-
tic and reliable communication in large scale computer networks by means of
multipath transmission. Given the available cryptographic fundament, quantify-
ing security in terms of Pareto-optimal security strategies then boils down to a
straightforward application of our numerical method presented here.
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Abstract. In this work, we describe how to realize rational cryptographic
protocols in practice from abstract game specifications. Existing work re-
quires strong assumptions about communication resources in order to pre-
serve equilibria between game descriptions and realized protocols. We ar-
gue that for real world protocols, it must be assumed that players have ac-
cess to point-to-point communication channels. Thus, allowing signaling
and strategy correlation becomes unavoidable. We argue that ideal world
game descriptions of realizable protocols should include such communica-
tion resources as well, in order to facilitate the design of protocols in the real
world. Our results specify a modified ideal and real world model that ac-
count for the presence of point-to-point communication channels between
players, where security is achieved through the simulation paradigm.

Keywords: Rational Multiparty Computation, Game Theory, Non-
Cooperative Computation.

1 Introduction

The field of rational cryptography departs from modeling players as either honest
or malicious, and instead models all players as rational utility-maximizing agents:
each player chooses those actions that maximize their utility function μ(·), which
expresses their preferences over outcomes. All players may arbitrarily depart
from the protocol specification if doing so is a utility-maximizing strategy. This
approach to modeling removes the strong assumption of the semi-honest model:
that honest players follow the protocol specification, regardless of whether or
not it is in their best interest. By considering all players as rational agents,
the standard properties of cryptographic protocols (e.g. privacy, correctness and
fairness) are modeled through the utility functions of the players. Security of
the protocol is then deduced from whether or not the stable equilibrium of the
original game specification is reachable given the players’ utility functions.

In secure multiparty computation (SMPC), the security of protocols are
demonstrated through the simulation paradigm. Define an ideal protocol for
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computing a functionality f that invokes an incorruptible and universally trusted
third party (TTP). Similarly, define a real protocol π for computing f where no
TTP exists. Security is established if an adversary A in the real model has no
advantage over a simulator S in the ideal model [1].

A major obstacle when defining security for rational multiparty protocols is
the potential for players to form coalitions, colluding to undermine the security
of the protocol. The strongest result, by Izmalkov et al. [2], allows any function
to be computed securely by rational players using the approach of Goldreich
et al. [1]. Although a universal result, it relies on strong assumptions including
forced actions and physical primitives. A weaker notion, referred to as collusion-
free computation [3–5], removes the ability of players to communicate additional
information subliminally through the protocol communication resources. The re-
sult relies on a trusted mediator at the center of a star network topology, where
all messages pass through the mediator and are re-randomized in order to pre-
vent steganographic communication between the players. This result relies on
adversarial independence, where simulators and adversaries are disallowed com-
munication in the protocol. However, a collusion-free protocol may still cause
issues when executed as part of a larger protocol. For example, the collusion-free
protocols of Izmalkov et al. [2, 5] provide no guarantees when all players are
malicious. This observation led to the work of Alwen et al. [6], where communi-
cation restrictions are further weakened to achieve collusion-preserving compu-
tation, which preserves any potential for collusion present in the original game
specification. Although this result removes the requirement of a trusted medi-
ator, it rules out a large class of communication resources (e.g. point-to-point
and broadcast channels). Kamara et al. [7] consider a setting where adversaries
have the capability to communicate additional information during protocol ex-
ecution, yet choose to be non-colluding. Fuchsbauer et al. [8] give constructions
under standard communication channels by forcing parties to send only unique
messages as part of the protocol. Thus, collusion within the protocol is avoided,
but communication outside of the protocol execution still facilitates collusion.

From this collection of work, addressing the issue of collusion appears to
require strong limitations on the type of communication resources granted to
players. As the general goal of rational cryptography is to provide a more realistic
view of how players behave in cryptographic protocols, we consider what can be
achieved when players have access to point-to-point communication channels -
an unavoidable aspect in real world applications. Thus, in this work we define a
security model where players may communicate information over point-to-point
channels both inside and outside the protocol execution.

Our work proposes a new security framework for rational agents that models
player access to point-to-point communication channels in the ideal world model.
From this, we describe how to demonstrate the security of protocols in a real
world model that implements games specified in our modified ideal world model.
We note that imposing restrictions on the ideal world to capture unavoidable
behavior exists currently in the cryptographic literature: it is a core feature of the
malicious model, which extends the semi-honest model to consider more powerful
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adversaries. In the malicious setting, the ideal world must capture the ability of
an adversary to coordinate the actions and inputs of players it corrupts, and force
aborts during protocol execution; these actions are unavoidable in the presence
of a monolithic malicious adversary. Our model necessarily limits the class of
games that may be modeled in the ideal world formulation of our framework,
as point-to-point communication channels must exist in the original game. Our
work differs from existing formulations, which attempt to realize all games at
the expense of restricting the communication interface available to players.

Throughout the remainder of the introduction, we argue that when point-to-
point communication channels are unavoidable, it is meaningful to consider what
games are realizable in their presence. We demonstrate that a non-trivial class of
games constructed in our modified ideal world model have realizable implemen-
tations in the real world model through the Signaling game in Section 1.2, and
the classic prisoner’s dilemma in Section 2. We give our technical contribution,
a security model for realizing protocols from game specifications in the pres-
ence of point-to-point communication channels, in Section 3. We demonstrate
the power of our model relative to others through a full proof of security for the
rational secret sharing protocol of Halpern and Teague [9] in Section 4, which
is inadmissible under existing frameworks due to the presence of point-to-point
communication channels. These examples demonstrate the key contribution of
our model, which is less restrictive than prior work yet is able to correctly model
the games’ equilibria when played in the real world.

1.1 Local Adversaries

Translating the standard simulation paradigm to the game theoretic setting of
rational cryptography requires addressing how adversaries should be modeled.
In the original formulation, a centralized semi-honest or malicious adversary
corrupts a subset of the players. However, rational cryptography makes no such
distinction1 between honest and corrupted players, and assumes all players are
rational and acting to maximize their local utility function. Thus, translating
the concept of an adversary is not immediate. Alwen et al. [6] give a collusion
preserving framework where each player has an associated local adversary. Thus,
the monolithic adversary of the standard model is shattered into an adversary for
each individual player. Canetti et al. [11] argue that a local adversary should be
defined for each ordered pair of players, as this provides a more granular model of
the flow of information. Canetti et al. then demonstrate that the local universal
composition (LUC) model can preserve the incentive structure in games.

We follow this modeling trend of shattering the monolithic adversary A into
a set of local adversaries A = {Ai}i∈[1...n] such that each player Pi ∈ P is
associated with adversary Ai. Rather than considering local adversaries that
"corrupt" their associated player Pi, we simply require that the adversary selects

1 A mixed model has been proposed by Lysyanskaya et al. [10] where one subset of
players are arbitrarily malicious, and the other subset are utility-maximizing rational
agents.



Realizable Rational Multiparty Cryptographic Protocols 137

the actions of Pi to maximize their local utility function μi. Thus, we preserve
the assumption in rational cryptographic protocols that all players are purely
rational and bound to a utility function, rather than remaining honest unless
corrupted by a monolithic adversary.

1.2 Communication Resources

A core issue with existing work is how communication resources are modeled in
game descriptions. In order to prevent players from signaling information or coor-
dinating their actions, available communication resources are tightly restricted.
For example, Izmalkov et al. [2] propose rational secure computation where only
those equilibria in the game description exist in the realized protocol. However,
this result comes at the cost of requiring forced actions and physical primitives
such as opaque envelopes and ballot boxes2. Although not impossible to realize,
in practice it has limited applicability.

In the ideal world model of secure multiparty computation, a protocol is viewed
as an interaction between a set of players and a universally trusted third party
(TTP). An ideal computation of a function has each player send their private in-
put to the TTP, who computes the function and returns the results to each player.
Restricting communication resources is not necessary, as players are assumed to be
mutually distrustful. Further, any collusion between players is modeled through a
monolithic adversaryA that coordinates the actions of the players it corrupts.

In order to implement arbitrary games as protocols, strict notions of privacy
preservation and the prevention of signaling and correlation must be satisfied.
Arbitrary game specifications may impose restrictions on the communication
resources available to players. Thus, the corresponding protocol implementation
must not allow players to communicate more information than is possible in
the ideal game specification. We briefly review the characteristics a model for
implementing arbitrary games must satisfy3. We make the argument that even if
a protocol satisfies all of these characteristics, it is likely to fall short of satisfying
the ideal world model: communication between players outside of the protocol
is unavoidable in real world settings. Thus, the model we present is not bound
to satisfy these restrictions, and is a more accurate representation of what is
achievable for protocols executed in the real world.

Privacy. A protocol π implementing an arbitrary game Γ must preserve both
pre-game privacy and post-game privacy in addition to preserving the equilib-
rium of Γ . The notion of pre-game privacy ensures that the private input of
each party is not revealed, as this will affect the actions of other parties. How-
ever, protocols implementing arbitrary games must also preserve the notion of
post-game privacy, where nothing beyond the intended result (and what can be
2 This result is a direct application of the GMW protocol [1].
3 The ECRYPT summary report [12] on rational cryptographic protocols provides

background on modeling techniques used to address privacy, signaling and correlated
actions.
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inferred from this) is revealed. This notion is necessary so that the equilibria of
future games are not perturbed by information revealed in previous games.

Signaling. Similar to the notions of pre- and post-game privacy are the notions
of pre-game signaling and post-game signaling. The ability to signal other players
allows protocol participants to coordinate their actions to achieve a higher payoff.
For example, consider two players A and B with inputs a and b. The payoff
function is defined as Π(Γ ) ..= a⊕ b, and described in Table 1:

Table 1. Signaling Game

A sets a = 1 A sets a = 0

B sets b = 1 (0,0) (1,1)
B sets b = 0 (1,1) (0,0)

If A or B can signal even a single bit to the other, each will receive a payoff of 1
as opposed to an expected payoff of 1

2 . Thus, similar to the restriction on privacy,
preventing pre- and post-game signaling is necessary to preserve the equilibria
of individual and future games when constructing protocols for arbitrary games.

The signaling game specification can be formulated under existing frameworks
as a protocol, and demonstrated to preserve the mixed equilibrium of the orig-
inal game. Yet by ignoring the ability of players to communicate outside of the
protocol, the protocol formulation is invalidated in real world settings: players
will collude to achieve a payoff of 1, rather than the expected payoff of 1

2 of the
original game specification.

We only consider those game specifications that allow point-to-point commu-
nication, as these channels are unavoidable in the real world. Thus, our model
correctly predicts a payoff of 1 for players in the signaling game, as point-to-point
communication channels allow signaling.

Correlated Actions. Correlated actions are similar to signaling, but allow
parties to coordinate actions without exchanging information. This is usually
accomplished through a shared value, such as a common reference string (CRS).
The parties need not distribute information, but rather rely on the shared CRS to
coordinate their actions. As with signaling, protocol constructions for arbitrary
games must prevent pre- and post-game correlation to preserve equilibria in local
as well as future games.

2 Prisoner’s Dilemma

As a classic example, we consider the Prisoner’s Dilemma4: a game between two
suspects A and B that have been accused of committing both a principal and
4 The concept was originally proposed by Flood and Dresher while working at the

RAND corporation, and is described in detail by Poundstone [13].
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lesser crime. The Authority has sufficient evidence to convict both A and B
on the lesser crime, punishable by 1 year in prison. However, there is insufficient
evidence to convict A or B on the principal crime. The Authority separates A
and B, and offers the following proposal: confess and serve no time while your
partner serves 3 years in prison. Players A and B are then subject to the following
dilemma:

1. If both A and B remain silent, they will each be convicted on the lesser crime
and serve 1 year in prison.

2. If one confesses while the other remains silent, the confessor is set free while
the other serves 3 years in prison.

3. If both A and B confess, each will serve 2 years in prison.

Table 2. Prisoner’s Dilemma Game

A Remains Silent A Confesses

B Remains Silent (-1,-1) (0,-3)
B Confesses (-3,0) (-2,-2)

From the player payoffs listed in Table 2, note that each player maximizes
their utility by confessing to the principal crime regardless of the strategy of their
partner. We use this example to illustrate the necessity of removing monolithic
adversaries, as well as how communication assumptions should be formulated
in the ideal game description. Note that the original ideal game specification
of the prisoner’s dilemma requires that the suspects A and B are physically
separated: thus unable to communicate or otherwise coordinate their actions.
However, we will construct a modified formulation in the presence of point-to-
point communication channels with an equivalent equilibrium to the original
formulation under our proposed model.

2.1 Monolithic Adversaries

Traditionally, cryptographic protocols are analyzed with respect to their re-
silience to a monolithic adversary A corrupting some subset of the players. Pro-
tocol resilience to adversarial corruption is quantified by the fraction of players
that may be corrupted before the protocol security is violated.

In the game theoretic setting of rational cryptography, this model has been
called into question by Alwen et al. [6] and Canetti et al. [11]. The goal of ratio-
nal cryptography is to model each player as bound to their local utility function,
rather than controlled by a monolithic adversary with a global utility function.
The monolithic adversary in both of their models is shattered into a set of local
adversaries unique to each player. Removing the monolithic adversary in favor of
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a set of local adversaries is critical to preserving game theoretic equilibria. In the
running example of the Prisoner’s Dilemma, consider the case where A corrupts
both A and B. As A controls both players, A and B may be forced to remain
silent and achieve payoff (−1,−1). However, consider the case where A (resp.
B) has a local adversary AA (resp. AB): as AA is bound to the utility function
μA(·) of A, AA maximizes μA(·) by confessing as in the ideal specification of the
game. An identical argument holds for AB as well. Thus, a monolithic adversary
is capable of introducing a stable collusion equilibrium that does not exist in
the ideal game specification, whereas the local adversary model preserves the
original incentive structure.

2.2 Realistic Communication Model

To prevent pre- and post-game signaling and strategy correlation, many ratio-
nal cryptographic frameworks impose strong restrictions on the communication
resources available to players. This issue is most pronounced in the multiparty
setting, where communication resources may enable collusion. To prevent com-
munication resources from perturbing the equilibria of the ideal world game,
existing constructions require forced player action and physical primitives [2],
trusted mediators and forced broadcast channels [4], as well as the cooperation
of adversarial players to deliver messages [6].

While these results provide strong guarantees under restrictive communication
resource assumptions, the security guarantees are with respect to the protocol
only. That is, assuming players may only interact through the protocol and its
communication resources, the equilibria of the ideal world game is preserved.
However, we argue that this results in a false sense of security for protocols
realized in the real world, where players typically have access to point-to-point
communication channels - undermining the strict communication assumptions
of the protocol.

Our example of the prisoner’s dilemma illustrates a salient point: the necessary
and sufficient condition for preserving the equilibrium of the original formula-
tion is the ability of A and B to privately communicate with the Authority.
The original game specification requires the two players A and B to be physi-
cally separated, and thus unable to communicate. However, the key to preserving
the equilibrium (confess, confess) of the original game Γ only requires prevent-
ing A and B from observing their interaction with the Authority. Consider
a modified game Γ̄ where all players {A, B, Authority} ∈ P have access to a
point-to-point communication resource R. As long as the communication links
RA,Authority, RB,Authority are private, the original equilibrium is preserved despite
the presence of point-to-point communication channels. In game theoretic terms,
communication between A and B through RA,B is considered cheap talk, as both
A and B will claim to play silent, yet as utility maximizing agents they choose to
confess, which strictly dominates silent. As neither A nor B can observe the mes-
sage sent by the other to Authority, the coalition is unstable and disintegrates
despite the presence of point-to-point communication channels.
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3 Our Contribution

We argue that ideal world protocols should assume that players have the ability
to communicate over point-to-point channels. As in the standard SMPC ideal
world model, players may not wish to communicate due to mutual distrust. How-
ever, the option to do so should be part of the model, as this is unavoidable in the
real world. Thus, we present a modified ideal world model capturing the pres-
ence of point-to-point communication channels between all players. Specifically,
we answer the following questions:

1. How is security formalized when all players are rational and have access to
point-to-point communication channels?

2. What benefits result from weakening the security guarantees of the standard
malicious model by considering rational players with local adversaries?

3.1 Unstable Coalitions

A powerful aspect of the rational cryptographic setting with local adversaries is
the ability to design protocols where coalitions are unstable. As each player has a
local adversary that selects their actions in order to maximize a utility function,
protocols may be designed to incentivize players to leave coalitions [14]. This
benefit of modeling each player as an independently rational agent is frequently
overlooked, and allows game equilibria to be preserved despite the presence of
point-to-point communication channels. We have illustrated the power of unsta-
ble coalitions through our example of the prisoner’s dilemma. We now consider
coalition stability in the setting of rational secret sharing, as it is the most fa-
miliar example of a rational cryptographic protocol.

Rational Secret Sharing Candidate definitions for achieving security against
rational agents should accurately model well-studied problems in rational cryp-
tography. The most familiar rational cryptographic protocol is rational secret
sharing [8, 15–19]. The goal of threshold secret sharing is to split a secret among
n parties such that any k shares are sufficient to recover the secret value, using a
scheme such as the polynomial interpolation approach proposed by Shamir [20].
Rational secret sharing, introduced by Halpern and Teague [9], is particularly
concerned with the process of recovering the secret from the shares5. As noted
by Halpern et al. [9], rational players’ utility functions are assumed to value ex-
clusivity, where preference is given to learning the output of the function while
preventing other players from doing so. Under this assumption, no party has
any incentive to distribute their share to the other parties, which destabilizes
coalition formation. The equilibrium is to wait for other players to distribute
their shares, as this is the only action that increases a player’s utility function.
5 Maleka et al. [21] consider rational secret sharing in the context of repeated games,

and Nojoumian et al. [22] consider the repeated game setting from a socio-rational
perspective where player reputation is important.
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Thus, a player that does not distribute their share has the potential to be the
exclusive player to recover the secret.

The authors demonstrate that this implies no deterministic protocol exists
where rational parties are willing to disseminate their shares to other players.
Their randomized protocol is a modified game where players are distributed a set
of shares, where only one share is correct. In each round k, players distribute their
shares which evaluate to either the secret or a default value ⊥. The solution relies
on the fact that parties are unaware whether the current round k is terminal (k∗,
allowing the secret to be recovered), or merely a “test” round k �= k∗ (where the
secret cannot be recovered, but players who do not distribute shares are caught
as cheaters). By choosing k∗ from a geometric distribution, as in Groce et al.
[18], cheating players that choose strategy σ =⊥ when k �= k∗ are caught and
the game may be terminated. Thus, players now have an incentive to distribute
their share, as playing ⊥ only yields positive utility when k = k∗.

A candidate security definition should accept this probabilistic protocol for
rational secret sharing as secure against rational agents. However, the strong
restrictions on communication channels imposed by existing work preclude the
above protocol from satisfying their security definitions, despite refinements con-
sidering the problem under standard communication models [8, 23–25]. That is,
the rational secret sharing protocol of Halpern and Teague [9] assumes players
have access to a non-rushing broadcast channel. This clearly violates the as-
sumptions of models assuming physical primitives [2], and even fails to satisfy
the weakest security definition that has been proposed: collusion-preserving com-
putation [6]. Ideally, the original rational secret sharing protocol of Halpern and
Teague should be demonstrably secure against rational agents under a general
security framework. Our framework allows point-to-point communication in the
ideal model, and thus is able to accurately model the original solution to rational
secret sharing, which we demonstrate in Section 4.

3.2 Adversarial Model

Traditionally, an adversary A is viewed as a monolithic entity with a specified
computational complexity and ability to "corrupt" players in a static or dynamic
fashion. In our model, we consider all players to have the ability to act in an
adversarial manner. Thus, rather than considering a monolithic adversary A, we
endow each player P ∈ P with a local adversary AP. The adversary is bound to
the player’s utility function μP(·) and selects actions for P in order to maximize
μP(·). Note that as we bind player actions to a local adversary seeking to max-
imize a utility function, we cannot bound the number of players that deviate
from the protocol. This is an unavoidable consequence of modeling players as
rational agents; they select strategies to maximize a local utility function and
follow the protocol only when doing so is advantageous. As cryptographic pro-
tocols typically require a number of rounds of interaction, we allow the rational
players to update their strategy based on observations throughout the game Γ .
Thus, we assume each local adversary is mobile [26], and may choose to deviate
or follow the protocol at each round in a dynamic fashion. Additionally, players
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may choose probabilistic strategies6, so we must introduce a random tape rP
for each player P. Thus, each local adversary is adaptive, mobile, probabilistic,
malicious, runs in probabilistic polynomial-time (PPT) and is presumed rational:
bound to the player’s local utility function.

Given the above definition of adversaries, the following actions are unavoid-
able:

– Refusal to Participate: Players may refuse to participate in the protocol.
Constructions satisfying our definition thus assume that it is advantageous
for players to engage in the protocol, and that this constitutes a utility
maximization strategy with respect to their local utility function.

– Input Substitution: Players may supply an input to the protocol different
from their true input.

– Premature Abort: Players may abort the protocol prior to completion.
– Collusion: Players may privately communicate over point-to-point commu-

nication channels, and collude to influence the protocol execution.

3.3 Ideal World Model

We now formalize the ideal world model, under which an ideal game specifi-
cation Γ is constructed. We assume familiarity with standard game theoretic
concepts in our exposition7. We first define the game specification of Γ under
the extensive form game representation. In the game theoretic literature, normal
form game representation is generally used for single round games where actions
are played simultaneously. As cryptographic protocols typically proceed in a se-
ries of rounds where actions are played asynchronously, we prefer extensive form
game representation, where the ideal game specification Γ is represented as a
tree. At each node in the game tree, a subset P ⊆ P of the players select and
simultaneously play an action.

Definition 1. An extensive form game Γ consists of:

1. A finite set P = {Pi}ni=1 of players.
2. A (finite) set of sequences H called the history. The empty sequence ∅ is a

member of H. We let k denote the current decision node. If (ak)k=1,...,K ∈ H
and L < K then (ak)k=1,...,L ∈ H. If an infinite sequence (ak)∞k=1 satisfies
(ak)k=1,...,L ∈ H for every positive integer L then (ak)∞k=1 ∈ H. A history
(ak)k=1,...,K ∈ H is a terminal history if it is infinite or if there is no aK+1

such that (ak)k=1,...,K+1 ∈ H. The set of actions available after the nonter-
minal history h is denoted A(h) = {a : (h, a) ∈ H} and the set of terminal
histories is denoted Z. We let Hk denote the history through round k.

6 In a game theoretic setting, such strategies are referred to as mixed.
7 For a proper introduction to the subject, Katz [27] describes the current effort to

combine game theoretic and cryptographic concepts, while Osborne et al. [28] and
Fudenberg et al. [29] give a complete introduction to game theory.
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3. A player function P that assigns to each nonterminal history (each member
of H/Z) a member of P ∪ {nature}. When P (h) = nature, then nature
determines the action taken after history h.

4. For each player Pi ∈ P a partition Ii of {h ∈ H : P (h) = i} with the
property that A(h) = A(h′) whenever h and h′ are in the same member of
the partition. For Ii ∈ Ii we denote by A(Ii) the set A(h) and by P (Ii) the
player P (h) for any h ∈ Ii. Thus, Ii is the information partition of player
i, while the set Ii ∈ Ii is an information set of player i.

5. For each player Pi ∈ P a preference relation �i on lotteries8 over Z that
can be represented as the expected value of a payoff function defined on Z.

Throughout, we replace the preference relation �i by a utility function μi :
A→ R, such that μi(a) ≥ μi(b) when b �i a.

We make the following modeling choices:

– Extensive Form Games: The ideal game specification Γ is described by
a game tree in extensive form representation.

– Imperfect Information: A game specification is said to have imperfect
information if players may have non-singleton information sets Ii ∈ Ii. That
is, at a given round in the game, players may be unaware of the move selected
by the previous player(s). Thus, their information set may contain more than
one node in the game tree at any given round.

– Local Simulators: Each player Pi ∈ P in the ideal model has a local sim-
ulator Si that forces P to play those actions that maximize μi(·), the utility
function of player Pi. Each simulator Si has an associated adversary Ai in
the real world execution model, denoted Si = Sim(Ai).

– Point-to-Point Communication Resources: Each player pair
(Pi, Pj)i�=j ∈ P has a secure point-to-point communication resource
Rij .

As we consider all players to be rational agents, we model the ideal world
protocol as a game specification Γ that aims to achieve an equilibrium. The
ideal game specification is an interaction between a set of n players P = {Pi}ni=1,
their local utility functions μ = {μi}ni=1 and action sets Ai, which contains those
actions playable by player Pi. Frequently, a deterministic choice of an action
a ∈ Ai will not yield a Nash equilibrium. Thus, we allow players to choose a
strategy σi: a probability distribution over Ai. The standard equilibrium concept
in the rational cryptographic literature is a computational Nash equilibrium
[24, 25, 30–32], given by Definition 2.

Definition 2. A computational Nash equilibrium of a two-party extensive-
form game Γ is an independent strategy profile σ∗ = {σ∗

i }ni=1, such that

1. ∀σ∗
i ∈ σ∗, σ∗

i is PPT computable.

8 Even if all actions are deterministic, moves by nature can induce a probability dis-
tribution over the set of terminal histories.
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2. for each player Pi, any other PPT computable strategy σ′
i �= σ∗

i , we have
μi(σ

′
i,σ

∗
−i) ≤ μi(σ

∗) + negl(λ)

where σ−i
def
= (σj)j∈[1...n]/{i}.

Intuitively, no player Pi has an incentive to deviate from strategy σi given
that every other player Pj selects their equilibrium strategy σj . The definition
of a computational Nash equilibria adds a negligible term negl(λ) with respect
to a security parameter λ. This is necessary in the computational setting, as
security rests on the premise that breaking cryptographic primitives occurs with
only negligible probability. Thus, this notion must be incorporated into the equi-
librium definition. Although computational Nash equilibria are the weakest of
the equilibrium concepts described in the rational cryptographic literature, pre-
serving only computational Nash equilibria in our framework is sufficient for
extensions to more powerful equilibrium concepts.

The standard ideal world model has players interact with an incorruptible
trusted third party (TTP) that accepts player inputs, computes the ideal func-
tionality f , and distributes the output to players. In the setting of rational
cryptography, we will consider a Mediator that enforces the ideal game specifi-
cation.

Input Distribution: Each player Pi ∈ P receives its input xi, random coins
ri and auxiliary inputa zi. Each player has the option of
inputting a different input x̄i �= xi, as this is unavoidable.

Game Execution: The Mediator allows the subset of players P ⊆ P specified
at each node of the game specification Γ to simultaneously
play their actions. Note that games where only a single
player moves at each node (asynchronous play) are fully
supported, as this is modeled by setting the subset P =
{Pi}.

Payoff Assignment: If the current node k is terminal (i.e. k ∈ Z), then Mediator
distributes the payoffs associated with k to all players Pi ∈
P .

a An auxiliary input is provided to all players to model additional information available
to them [33].

Protocol 3.1. Ideal World Game Execution

Definition 3. Let Γ represent the ideal game specification in extensive form
representation, R a point-to-point communication resource available between all
pairs of players in P, S the set of local simulators, μ the set of player utility
functions and z any auxiliary information provided to a player. We denote by x̄
the set of inputs for players (which may differ from the set of their true inputs x)
and by r the random coins provided to a player. We then define the ith output of
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an ideal world execution for players P in the presence of local simulators
S as: {

IDEAL
(i∈[1...n])
Γ,R,P,S,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

� {σ∗, I}

where σ∗ is the equilibrium in the ideal game specification Γ , S = {Si}i∈[1...n]

is the set of simulators such that Si = Sim(Ai), I is the information partition
set for P, |x̄i| = |x̄j |∀i �= j and |z| = poly(|x̄i|).

This ideal world model necessarily limits the class of games that may be re-
alized, as any game specification that disallows point-to-point communication
channels between all parties cannot be modeled in the presence of R. However,
we will demonstrate that a broad class of games that initially appear inadmis-
sible under our model are realizable through minor modifications to the game
specification, and which preserve the equilibria of the original game.

3.4 Real World Model

We now introduce the real world model protocolΠ that implements the ideal game
specification Γ . In order to translate ideal game specifications into realizable pro-
tocols, we assume the existence of a public key infrastructure (PKI) in the real
world model. That is, we must translate the ideal world point-to-point communi-
cation resourceR into an implementation allowing point-to-point private commu-
nication between all players Pi, Pj ∈ P during the execution of Π . We denote the
real world PKI communication resource by C, where ∀(Pi, Pj)i�=j ∈ P , ∃Cij ∈ C.

In the real world execution, each player Pi has an associated local adversary
Ai, rather than a simulator Si as in the ideal world game. The local adversary
Ai selects the actions of Pi to maximize the player’s local utility function μi.
Similarly, in the real world execution there is no Mediator, as the goal is to
remove reliance on trusted third parties.

Input Distribution: Each player Pi ∈ P receives its input xi, random coins ri and
auxiliary input zi. Each player has the option of inputting
a different input x̄i �= xi, as this is unavoidable.

Protocol Execution: The execution of Π proceeds in a series of rounds, where at
each round a subset of players P ⊆ P specified at each node
play their actions. Each player pair (Pi, Pj)i�=j ∈ P is con-
nected by a private authenticated point-to-point communi-
cation channel Cij , and may exchange messages throughout
the protocol execution.

Payoff Assignment: If the current node k is terminal (i.e. k ∈ Z), then each
player Pi ∈ P receives its associated payoff.

Protocol 3.2. Real World Protocol Execution
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Definition 4. Let Π represent the real world protocol implementing Π, C a
point-to-point authenticated and private PKI communication resource available
between all pairs of players in P, A the set of local adversaries, μ the set of player
utility functions and z any auxiliary information provided to a player. We denote
by x̄ the set of inputs for players (which may differ from the set of their true
inputs x) and by r the random coins provided to a player. We then define the
ith output of a real world execution for players P in the presence of local
adversaries A as:{

REAL
(i∈[1...n])
Π,C,P,A,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

� {σ∗, I}

where σ∗ is the equilibrium in the real world protocol Π, I is the information
partition set for P, |x̄i| = |x̄j |∀i �= j and |z| = poly(|x̄i|).

3.5 Establishing the Security of Realized Protocols

The security of protocols is established by demonstrating that the real and ideal
world distribution ensembles are computationally indistinguishable9. This guar-
antees that any attack available to an adversary A in the real model is also
available to a simulator S in the ideal model.

Definition 5. (Security against Rational Adversaries) Let Γ be an n-player
ideal game specification and Π be an n-party real world protocol. We say that
Π securely realizes Γ if there exists a set {Simi}i∈[1...n] of PPT transforma-
tions admissible in the ideal model such that for all PPT rational adversaries
A = {Ai}i∈[1...n] admissible in the real model, for all x ∈ ({0, 1}∗)n and z ∈
({0, 1}∗)n, and for all i ∈ [1 . . . n],

{
IDEAL

(i∈[1...n])
Γ,R,P,S,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

c≡
{
REAL

(i∈[1...n])
Π,C,P,A,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

where S = {Si}i∈[1...n] is the set of simulators such that Si = Sim(Ai), I is the
information partition set for P and r is chosen uniformly at random.

Thus, to establish the security of a realized protocol Π , we must construct a
simulator Si for all players Pi ∈ P such that for all probabilistic polynomial-time
distinguishers D, the distributions of S in the ideal world and A in the real world
can only be differentiated with probability negligibly greater than 1

2 .

4 Demonstrating the Model on Rational Secret Sharing

To illustrate the power of our model, we return to the example of rational secret
sharing. We demonstrate that, despite the presence of point-to-point communi-
cation channels, the original game specification is admissible in our ideal world
9 That is, any probabilistic polynomial-time (PPT) distinguisher D cannot distinguish

between an execution of Γ in the ideal world model and an execution of Π in the
real world model with probability non-negligibly greater than 1

2
.
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model, and realizable in the real world model. This violates the assumptions
of existing security frameworks, which disallow point-to-point communication
either within the protocol execution, outside of the protocol execution, or both.

4.1 Ideal World Game Specification

The ideal world game Γ is an interaction between a set of playersP = {Pi}i∈[1...n],
where Pi has access to a point-to-point communication resource RPi,Pj∀j �= i.
That is, Pi may privately communicate with any other player Pj . We now demon-
strate that Γ is admissible in our ideal world definition.

Input Distribution: Each player Pi ∈ P receives its input share xi, random coins
ri and auxiliary input zi. Each player has the option of
inputting a different share x̄i �= xi or aborting the protocol
at any time, as this is unavoidable.

"Cheap Talk": Player Pi is free to collaborate with all players Pj ∈ P̂ over
RPi,Pj , where P̂ is the set of colluding players. Proposition
1 demonstrates that communication over R is considered
"cheap talk" (it does not affect the strategy selection of the
player), and that the local simulator Si for each player will
select ai = reveal, as this maximizes μi.

Game Execution: The Mediator instructs Pi,∀i ∈ n to play their action ai at
each round k, where ai ∈ {silenta, reveal}.

Payoff Assignment: At the terminal round k∗ where the shares yield the secret,
Mediator distributes the payoffs to Pi ∈ P .

a Note that selecting ai = silent is equivalent to aborting.

Protocol 4.1. Ideal World Game Γ Execution

Let Γ be the ideal game specification for rational secret sharing, with player
set P = {Pi}i∈[1...n] and associated set of local simulators S = {Si}i∈[1...n] that
select actions for players to maximize their local utility functions, resource set
R = {RPi,Pj}∀i,i�=j, and all players Pi ∈ P have utility functions defined as

μi(σi) �→

⎧⎨⎩
(μ++)(p) : σi = silent, k = k∗

(μ−)(1 − p) : σi = silent, k �= k∗

(μ+) : σi = reveal
(1)

where μ+ represents positive utility, μ− represents negative utility, and μ++ >
μ+ as players value exclusivity.

Proposition 1. For all players Pi ∈ P in Γ with utility function defined as
μi(σi) in Equation 1, strategy {σ∗

Pi = reveal}∀i∈n > {σPi = silent}∀i∈n when
p < μ+

μ++ .
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Proof. In the original rational secret sharing protocol, the strategy σ∗ = {σ∗
Pi =

reveal}∀i∈n is the only Nash equilibrium, as the true final round k∗ (where com-
bining shares reveals the shared secret) is chosen from a geometric distribution.
As the probability of correctly guessing the final round k∗ is the parameter p,
the expected utility for σPi = silent is at most (μ++)(p). We set μ++ > μ+, as
players are assumed to value exclusivity (recovering the secret while preventing
other players from doing so). If a player remains silent in any round k < k∗,
they are caught by the other players as a cheater and excluded from future
rounds (receiving negative utility μ−). By choosing p such that p < μ+

μ++ , we
have (μ++)(p) < μ+ which implies μPi(silent) < μPi(reveal). Thus revealing the
share for each round strictly dominates remaining silent. Players in our ideal
model Γ may communicate over R and attempt to convince other players that
they will select silent. This provides a greater degree of exclusivity, as only those
colluding players in P̂ ⊆ P will recover the secret. However, this communication
is considered cheap talk, as each player maximizes μi by selecting σi = silent
regardless of the messages sent over R when p < μ+

μ++ .

4.2 Real World Protocol Construction

We now translate the ideal game specification Γ to a real world protocol Π , and
demonstrate that there exist simulators such that the distribution of the ideal
world game is computationally indistinguishable from the distribution of the real
world protocol execution.

Input Distribution: Each player Pi ∈ P receives its input share xi, random coins
ri and auxiliary input zi. Each player has the option of
inputting a different share x̄i �= xi or aborting the protocol
at any time, as this is unavoidable.

"Cheap Talk": Player Pi is free to collaborate with all players Pj ∈ P̂ over
CPi,Pj , where P̂ is the set of colluding players. Proposition
1 demonstrates that communication over C is considered
"cheap talk" (it does not affect the strategy selection of
the player), and that the local adversary Ai for each player
selects ai = reveal, as this maximizes μi.

Game Execution: Each player Pi ∈ P selects and plays their action ai at each
round k, where ai ∈ {silenta, reveal}.

Payoff Assignment: At the terminal round k∗ where the shares yield the secret,
each player Pi ∈ P receives its associated payoff.

a Note that selecting ai = silent is equivalent to aborting.

Protocol 4.2. Real World Protocol Π Execution

In the real world model, the communication resource R is replaced with a
public key infrastructure C. Each pair of players (Pi, Pj) ∈ P has access to a
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private and authenticated point-to-point communication channel Cij . Let Π be
a real world protocol, with player set P = {Pi}i∈[1...n] and associated set of local
adversaries A = {Ai}i∈[1...n] that select actions for players to maximize their
local utility functions, communication channel set C = {Cij}∀i�=j , and all players
have identical utility functions defined as in Equation 1.

Clearly Π is admissible under the real world model, as the PKI infrastructure
C facilitates the point-to-point communication channels between all players. The
real world protocol Π for rational secret sharing proceeds as in Protocol 4.2.
Again, the original equilibrium of σ∗ = {σPi = reveal} is preserved despite the
presence of the communication channel C.

4.3 Demonstrating Protocol Π Security

We use the simulation paradigm [33] to demonstrate the security of the construc-
tion by proving the distribution of the real world protocol is computationally
indistinguishable from the ideal world distribution.

Theorem 1. (Security of Π against Rational Adversaries) Let Γ be the n-party
ideal world game specification of Protocol 4.1 and let Π be the n-party real world
execution of Protocol 4.2. There exists a set {Simi}i∈[1...n] of PPT transfor-
mations admissible in the ideal model such that for all PPT rational adver-
saries A = {Ai}i∈[1...n] admissible in the real model, for all x ∈ ({0, 1}∗)n and
z ∈ ({0, 1}∗)n, and for all i ∈ [1 . . . n],

{
IDEAL

(i∈[1...n])
Γ,R,P,S,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

c≡
{
REAL

(i∈[1...n])
Π,C,P,A,µ,z(λ, x̄; r)

}
λ∈N,x̄,r∈{0,1}∗

establishing that Π securely realizes Γ .

Proof. To prove the security of Π against rational adversaries A = {Ai}i∈[1...n]

we must construct a set of simulators S = {Si}i∈[1...n] whose output in the ideal
game specification Γ is indistinguishable from the output of A in the real world
execution.

To achieve this, we construct simulators Si = Sim(Ai) that simulate all mes-
sages and the output of Ai in the real world execution of Π , and is thus able to
return these as its own. The simulated messages and output returned by Si must
be computationally indistinguishable such that, for all probabilistic polynomial-
time distinguishers D, the probability of differentiating the ideal world and real
world distributions is at most negligibly greater than 1

2 .
Each simulator Si will rely on the private communication resource R to simu-

late the messages exchanged and final output produced by Ai acting to maximize
the utility function μi for player Pi. The simulator Si given in Construction 4.1
holds for all players P = {Pi}i∈[1...n].

The construction relies on the computational indistinguishability of the real
world communication channel C from the ideal world private and authenticated
communication resource R. All messages sent by simulators Si ∈ S in the ideal
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worldmodel are passed overR. In the realworld execution,messages are encrypted
between players using the PKI communication resource C. Thus, all probabilistic
polynomial-timedistinguishersD are able to distinguish the view of the ideal world
execution from the real world execution with at most probability negligibly greater
than 1

2 by the security of the PKI communication resource C.

Input Distribution: The simulator Si ∈ S is given input share xi, random coins
ri and auxiliary input zi

"Cheap Talk": The simulator Si is free to communicate over RSi,Sj where
i �= j. Si,∀i �= j must simulate the "cheap talk" between
the other player’s adversary Aj . Si uses its random coins
ri to construct a random message m, and sends m over
resource RSi,Sj . By definition, R is a private and authen-
ticated point-to-point communication resource. Thus, the
messages sent by the simulator are computationally indistin-
guishable from those sent in the real world execution, which
are encrypted under the public key infrastructure commu-
nication resource C. The local simulator Si for each player
selects mi = reveal, as this maximizes μi regardless of the
messages exchanged during this phase.

Game Execution: The simulator Si sends a message m to Sj ,∀j �= i over
RSi,Sj with their decision, where m ∈ {silent, reveal}. By
definition, R is a private and authenticated point-to-point
communication resource. Thus, the messages sent by the
simulator to Sj are computationally indistinguishable from
those sent in the real world execution, which are encrypted
under the public key infrastructure communication resource
C.

Payoff Assignment: After Pj ∈ P ,∀j �= i has received mSi , each simulator re-
ceives the payoff associated with the outcome.

Construction 4.1. Construction of Simulator Si

5 Conclusion

In this work, we have proposed a security definition capturing rational cryp-
tographic protocols in the presence of standard point-to-point communication
resources. Rather than limit the communication resources available to players, we
answer the question of how game specifications admissible in an ideal model al-
lowing point-to-point communication channels may be realized in practice. Thus,
the ideal world model necessarily limits the class of games that are admissible
and is not a general result. However, we have argued that point-to-point com-
munication channels are unavoidable in real-world settings, and consequently
must be incorporated into the definition of security. Further, we have demon-
strated that not all game specifications forbidding point-to-point communication
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are inadmissible under our model. We presented the transformation for the clas-
sic prisoner’s dilemma, which disallows point-to-point communication through
physical assumptions, into a modified game that is admissible under our model
and preserves the original equilibrium. Similarly, we have demonstrated that the
signaling game has an expected payoff of 1 when executed in the presence of
point-to-point channels, rather than an expected payoff of 1

2 : a distinction not
captured by models that disallow communication outside of the protocol execu-
tion. Finally, we have presented a full security proof for rational secret sharing
under our proposed framework. Although our results are not universal, we have
demonstrated a powerful benefit of our model: assigning local adversaries may
aid mechanism design in destabilizing the formation of coalitions. Thus, there are
tangible benefits from adopting our definition of security against local rational
adversaries in the presence of point-to-point communication resources.
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Abstract. We present the results of research of limiting adversarial
budget in attack games, and, in particular, in the failure-free attack
tree models presented by Buldas-Stepanenko in 2012 and improved in
2013 by Buldas and Lenin. In the previously presented models attacker’s
budget was assumed to be unlimited. It is natural to assume that the
adversarial budget is limited and such an assumption would allow us to
model the adversarial decision making more close to the one that might
happen in real life. We analyze three atomic cases – the single atomic
case, the atomic AND, and the atomic OR. Even these elementary cases
become quite complex, at the same time, limiting adversarial budget
does not seem to provide any better or more precise results compared
to the failure-free models. For the limited model analysis results to be
reliable, it is required that the adversarial reward is estimated with high
precision, probably not achievable by providing expert estimations for
the quantitative annotations on the attack steps, such as the cost or the
success probability. It is doubtful that it is reasonable to face this com-
plexity, as the failure-free model provides reliable upper bounds, being
at the same time computationally less complex.

1 Introduction

The failure-free models [2,3] provide reliable utility upper bounds, however this
results in systems that might be over-secured. It has not been studied how much
extra cost the upper-bound oriented methods cause. We present the intermediate
results of researching the model assuming that the adversarial budget is limited
and compare the results of analysis using adaptive strategies with limited budget
to the analysis results of the failure-free model, in which the adversary is not
limited in any way. The adversarial limitation is the only limitation applied to
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the adversary, all other assumptions and concepts are identical to the failure-free
model.

The assumption that the adversarial budget is limited is natural, as this is
what happens in reality. Limited budget models the adversarial strategic decision
making in a better way, which is more close to the one likely to be observed in
real life and the research on the adaptive strategies with limited budget is an
important research area in quantitative security analysis based on attack trees.

We analyze three cases: the atomic attack case, the atomic AND, and the
atomic OR analyzing the effect of limiting adversarial budget in fully-adaptive
strategies [2,3]. We show that the atomic attack case and the atomic AND case
do not provide whatsoever better or more reliable results, compared to the ex-
isting failure-free models. The atomic AND case might provide more precise
result, but in this case analysts must estimate the adversarial reward with the
required precision, which in real-life scenarios might be less than e1. If they
fail to do that, the results of such an analysis are unreliable. In practice, it is
doubtful that analysts would be able to come up with such precise estimations.
Even if such precise estimations existed, the model would not provide reliable
results, as there is still margin for human mistake and in case analysts might
overlook the estimations provided to such parameters as cost of the attack step,
or the adversarial reward, the results of the analysis would not be reliable. On
the contrary, the existing failure-free models with unlimited adversarial budget
provide reliable utility upper bounds, despite the fact that this may result in
over-secured systems.

It seems that limited budget makes the model much more complex compared
to the unlimited budget approach. For example, optimal strategies that were
shown to be non-adaptive in the failure-free models [2,3] can be adaptive and
more complex to analyze in the limited budget model. The best move to under-
take in certain states of the game changes bouncing between the attack steps.

Even the elementary cases studied in this paper become quite complex con-
sidering limited budget assumption compared to the corresponding cases in the
failure-free models [2,3]. It is doubtful that the more general case will have a
graceful easy solution to derive optimal strategies. Considering the requirement
to be able to estimate the adversarial reward very precisely it is doubtful that it
is reasonable to face the complexity of the calculations on the limited adaptive
strategies.

The outline of the paper is the following: Section 1 provides a high-level
overview of the problem and briefly outlines the results obtained so far. Sec-
tion 2 describes the work related to the presented approach, Section 3 provides
definitions of terms used throughout the paper. Section 4 describes the effect
of limited budget assumption on the fully-adaptive strategies and the strate-
gic decision making undertaken by the adversary. Finally, Section 5 summarizes
the obtained results, outlines questions still left open, and describes interesting
problems for future research.
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2 Related Work

In this section, we outline the work that has lead to and influenced the develop-
ment of the presented model.

2.1 Schneier Attack Trees’ Concept

The idea of analyzing security using the so-called attack trees was popularized
by Schneier in [7]. The author suggested to use attack trees as a convenient
hierarchical representation of an attack scenario. The analysis implied that the
analysts had to estimate one single parameter they would like to reason about, for
each of the leaves in the attack tree. Then the bottom-up parameter propagation
approach was applied to propagate the results of calculations towards the root
node of the tree, the result of the root node was considered the result of such an
analysis. The suggested bottom-up parameter propagation method allowed to
reason about such parameters like minimal/average/maximal cost of the attack
scenario, likelihood of its success, etc. The analysis relied on an assumption that
the analyzed parameters are mutually independent, which allowed to analyze
them independently of each other and to derive some meaningful conclusions
about the security of the systems based on the obtained results.

2.2 Buldas-Priisalu Model

The model of Buldas et al. [1] is remarkable for introducing the multi-parameter
approach to the quantitative security risk analysis. The model is based on the
assumption of a rational adversary who is always trying to maximize his average
outcome. The authors state that in order to assess security it is sufficient to as-
sess adversarial utility. If the utility is negative or zero, the system is reasonably
secure, as attacking it is not profitable. If the utility is positive, the adversary has
an incentive to attack and attacking is profitable for him. The adversary under-
takes strategic decision-making in accordance with the rationality assumption –
the adversary will start attacking iff it is profitable. Additionally, authors state
that malicious actions are, as a rule, related to criminal behavior and for this
reason they applied economic reasoning in their model which considers the risk
of detection and potential penalties of the adversary. Their model introduced
a novel way to think about security and gave start to multi-parameter quanti-
tative security analysis. Jürgenson et al. have shown that Buldas et al. model
is inconsistent with Mauw-Oostijk foundations [6] and introduced the so-called
parallel model [4] and the serial model [5] which provided more reliable results,
however in both models the adversary did not behave in a fully adaptive way.

2.3 Buldas-Stepanenko Fully Adaptive Model

In the Buldas-Stepanenko fully adaptive model [3] the adversaries behave in a
fully adaptive way launching atomic attack steps in an arbitrary order, depending
on the results of the previous trials. However, the model had force-failure states,
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when the adversary could not continue playing and thus adversarial fully adap-
tive behavior was limited. In their model optimal strategies are non-adaptive and
in some cases, like atomic OR or atomic AND, may be easily derived by calcu-
lating certain invariants. In their failure-free model the adversary was expected
to launch attack steps until success, thus the failure-free model is similar to the
fully adaptive model with the difference that in the failure-free model success
probabilities of the attack steps are equal to 1. The most significant contribu-
tion of the paper [3] is the upper bounds ideology by which the models should
estimate adversarial utility from above, trying to avoid false-positive security
results.

2.4 Improved Failure-Free Model

The improved failure-free model [2] improves the Buldas-Stepanenko failure-free
model [3] by eliminating the force-failure states. In the improved model the ad-
versarial behavior more fully conforms to the upper bounds ideology introduced
in [3] – the adversary may repeat failed attack steps and play on when caught.
It turned out that the elimination of the force failure states has made the model
computationally easier. The authors show that in the new model optimal strate-
gies always exist. Optimal strategies are single-branched BDD-s where the order
of attack steps is irrelevant. Additionally, authors show that finding an optimal
strategy in the new model is NP-complete. Two computational methods were
introduced – the one allowing to compute the precise adversarial utility value,
and the one which allowed to derive the approximated estimation of adversarial
utility upper bound.

3 Definitions

Definition 1 (Derived function). If F (x1, . . . , xm) is a Boolean function and
v ∈ {0, 1}, then by the derived Boolean function F|xj=v we mean the function
F(x1, . . . , xj−1, v, xj+1, . . . , xm) derived from F by the assignment xj := v.

Definition 2 (Constant functions). By 1 we mean a Boolean function that
is identically true and by 0 we mean a Boolean function that is identically false.

Definition 3 (Satisfiability game). By a satisfiability game we mean a single-
player game in which the player’s goal is to satisfy a monotone Boolean function
F (x1, x2, . . . , xk) by picking variables xi one at a time and assigning xi = 1.
Each time the player picks the variable xi he pays some amount of expenses
Ei ∈ R, sometimes also modelled as a random variable. With a certain probability
pi the move xi succeeds. Function F representing the current game instance is
transformed to its derived form F|xi=1 and the next game iteration starts. The
game ends when the condition F ≡ 1 is satisfied and the player wins the prize
P ∈ R, or when the player stops playing. With probability 1 − pi the move xi

fails. The player may end up in a different game instance represented by the
derived Boolean function F|xi≡0 in the case of a game without move repetitions,
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and may end up in the very same instance of the game F in the case of a game
with repetitions. Under certain conditions with a certain probability the game
may end up in a forced failure state, i.e. if the player is caught and this implies
that he cannot continue playing, i.e. according to the Buldas-Stepanenko model
[3]. The rules of the game are model-specific and may vary from model to model.
Thus we can define three common types of games:

1. SAT Game Without Repetitions - the type of a game where an adversary can
perform a move only once.

2. SAT Game With Repetitions - the type of a game where an adversary can
re-run failed moves again an arbitrary number of times.

3. Failure-Free SAT Game - the type of a game in which all success probabilities
are equal to 1. It is shown in [2] that any game with repetitions is equivalent
to a failure-free game (Thm. 5).

Definition 4 (Satisfiability game with limited budget). By a satisfiability
game with limited budget we mean the SAT game with move repetitions in which
the current state of the game is described by the Boolean function F(x1, . . . , xk)
and the budget λ – 〈F , λ〉. Every move xi made by the player changes the state
of the game. If xi succeeded, the game moves into the state 〈F|xi=1, λ− Ci〉 and
if xi has failed, the new state of the game is 〈F|xi=0, λ− Ci〉, where Ci is the cost
of xi. The game ends if the player has satisfied the Boolean function F ≡ 1 and
reached the state 〈1, λ〉 thus winning the game, or when the player has reached
the state 〈F , λ〉 in the case of which the expenses of every possible move Ei > λ
and F has not been satisfied, meaning the loss of the game.

Definition 5 (Line of a game). By a line of a satisfiability game we mean
a sequence of assignments γ = 〈xj1 = v1, . . . , xjk = vk〉 (where vj ∈ {0, 1}) that
represent the player’s moves, and possibly some auxiliary information. We say
that γ is a winning line if the Boolean formula xi1 ∧ . . .∧xik ⇒ F (x1, . . . , xn)
is a tautology, where F is a Boolean function of the satisfiability game.

Definition 6 (Strategy). By a strategy S for a game G we mean a rule that
for any line γ of G either suggests the next move xjk+1

or decides to give up.

Strategies can be represented graphically as binary decision diagrams (bdds).

Definition 7 (Line of a strategy). A line of a strategy S for a game G is the
smallest set L of lines of G such that (1) 〈〉 ∈ L and (2) if γ ∈ L, and S suggests
xj as the next move to try, then 〈γ, xj = 0〉 ∈ L and 〈γ, xj = 1〉 ∈ L.

Definition 8 (Branch). A branch β of a strategy S for a game G is a line γ
of S for which S does not suggest the next move. By BS we denote the set of all
branches of S.

For example, all winning lines of S are branches.

Definition 9 (Expenses of a branch). If β = 〈xi1=v1 , . . . , xik=vk〉 is a branch
of a strategy S for G, then by expenses εG (S, β) of β we mean the sum E i1 +
. . .+ E ik where by E ij we mean the mathematical expectation of Eij .
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Definition 10 (Prize of a branch). The prize PG (S, β) of a branch β of a
strategy S is P if β is a winning branch, and 0 otherwise.

Definition 11 (Utility of a strategy). By the utility of a strategy S in a
game G we mean the sum: U (G,S) =

∑
β∈BS

Pr (β) · [PG (S, β) − εG (S, β)]. For

the empty strategy U (G, ∅) = 0.

Definition 12 (Prize and Expenses of a strategy). By the expenses E (G,S)
of a strategy S we mean the sum

∑
β∈BS

Pr (β) · εG (S, β). The prize P (G,S) of S

is
∑

β∈BS
Pr (β) · PG (S, β).

It is easy to see that U (G,S) = P (G,S) − E (G,S).

Definition 13 (Utility of a satisfiability game). The utility of a SAT game
G is the limit U (G) = sup

S
U (G,S) that exists due to the bound U (G,S) � P.

Definition 14 (Optimal strategy). By an optimal strategy for a game G we
mean a strategy S for which U (G) = U (G,S).

It has been shown that for satisfiability games optimal strategies always exist [2].

4 Limiting Adversarial Budget in the Improved
Failure-Free Model

In this paper we focus on the fully adaptive adversarial strategies assuming
that the adversarial budget is limited. Budget limitation is the only limitation
used, compared to the improved failure-free model [2]. Adversaries still behave
in a fully adaptive way and are allowed to launch failed attack steps again in
any order, until the budget gets so small that no attack steps can be launched.
When the budget decreases by a considerable amount, monetary limitation starts
effecting possible strategic choices of the attacker – possible set of choices reduces
(the adversary may launch only some subset of the attack steps) and eventually,
this subset becomes an empty set. It turns out that the optimal strategy depends
on the amount of the monetary resource available to the adversary.

In the improved failure-free model the state of the game is represented by the
Boolean function F . If the attack step has failed, the adversary finds himself in
the very same state of the game F . Due to this non-adaptive strategies always
exist in the set of optimal strategies of the game.

This is not always the case when we consider budget limitations – in general,
optimal strategies are adaptive, except for some certain sets of parameters in
case of which optimal strategies are non-adaptive. When we consider budget
limitations the state of the game is represented by the Boolean function F and
the budget λ. We denote the utility in a certain game state 〈F , λ〉 with Uλ(F).
When an attack step fails, the adversary finds himself in an another state of the
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game represented by Uλ−C(F), where C is the cost of the failed attack step. The
relation between the utility upper bound U∞(F) in [2] and the utility Uλ(F)
given budget λ is the following:

U∞(F) = lim
λ→∞

Uλ(F) .

In some certain cases optimal strategies are non-adaptive, but in general they
are not. This makes computations reasonably complex. When the adversarial
budget increases, his utility increases as well and approaches the adversarial
utility upper bound in the improved failure-free model [2]. It turns out that in the
case of a reasonably big budget the complexity added by the budget limitation
does not add any value nor give any additional benefits, as the difference between
the utility in the model with budget limitations and the utility upper bound
becomes negligible.

In this paper we focus on the three elementary games – the single attack
case, the atomic AND and the atomic OR game and show the effect of budget
limitations in these games. Even these elementary cases become quite complex
when taking budget limitations into account. It becomes doubtful if the prac-
tical application of the model with budget limitations is efficient and reliable.
Using complex computational procedures we face the risk to make the model
inapplicable for the practical cases, while the negligible deviation between the
results of the model with budget limitations and the one without them in case
of a reasonably big budget (which is the expected case in real-life scenarios) and
much less complex and more efficient computations induces us to give preference
to the model without budget limitations, despite the fact that it overestimates
adversarial power and capabilities for the cases when the adversarial budget is
reasonably small.

4.1 Single Atomic Attack Case

In case the adversary may choose from a single available choice, he will continue
launching the attack step until it succeeds, or as long as the budget allows it.
Such a strategy may be represented in the form of a single-branched bdd as in
Fig. 1:

X

Uλ(X )

X

Uλ−CX (X )

. . . X

Uλ−k·CX (X )

X X X

Fig. 1. An adaptive strategy suggesting to iterate attack step X until it succeeds or as
long as the adversarial budget allows to launch the attack step

In accordance with the strategy, the adversary launches an attack step X with
cost C and success probability p. If it succeeds, the adversary has accomplished
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the attack and has won the game. If X fails, the adversary finds himself in another
state of the game 〈X , λ− C〉. Thus, adversarial utility may be expressed in the
form of the relation (1):

Uλ(X ) = max
{
0, U(X ) + (1− p) · Uλ−C(X )

}
. (1)

It can be seen (see Fig. 2) that the adversarial utility changes in the points where
the budget is multiples of the cost of the attack step. In case the adversarial
budget is less than the cost of the attack step, the adversary cannot launch a
single attack step and thus his utility is 0. The optimal strategy in this case
is an empty strategy – the attacker will be better off not trying to attack. In
case the budget exceeds the cost of the attack step, the utility grows with each
subsequent trial to launch an attack step, as every subsequent trial increases the
likelihood of success that the attack step will succeed. Thus, adversarial utility
asymptotically approaches the utility upper bound in the model without budget
limitations.

0 C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C
λ

Uλ(X )

U∞(X )

Uλ(X )

Fig. 2. Single atomic attack case

The utility value that the adversary may achieve, given budget λ, may be
expressed in the form of equation (2):

Uλ(X ) =

[
P − C

p

]
·
[
1− (1− p)λ

C �
]
= U∞(X )

[
1− (1− p)λ

C �
]

, (2)

where U∞(X ) is the utility upper bound [2].

Comparison with the Improved Failure-Free Model

We will investigate the case when the improved failure-free model analysis result
states that the system is insecure, while the budgeted model result states that
the system is secure.
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According to the improved failure-free model the adversarial utility U∞ (X ) =
P − C

p . The system is secure in case P � C
P and insecure in case P > C

P .{
U∞(X ) = P − C

p > 0

Uλ(X ) =
[
P − C

p

] [
1− (1− p)λ

C �
]
� 0

(3)

It can be seen that the condition (3) can be reached only when the adversary
has no resources to attack (λ < C). Thus limiting adversarial budget does not
provide more trustworthy nor more reliable results compared to the improved
failure-free model in case of single atomic attack games. If in the case of some
positive budget λ the adversarial utility is positive, it will be less or equal to
zero in the model with budget limitations only if λ < C. In other words, if the
system is insecure in the improved failure-free model, it will also be insecure
in the model with budget limitations for any adversarial budget, sufficient to
launch the attack step at least once.

4.2 Two Attack Steps

In the case of atomic games of 2 possible attack steps Xi and Xj and correspond-
ing costs CXi

and CXj
, the adversarial utility changes in the so-called lattice points

which are the projections of points (n CXi
,m CXj

) in two-dimensional Euclidean

space into one-dimensional space using the formula Li = n CXi
+m CXj

, where

n ∈
{
1, 2, . . . ,

⌊
λ

CXi

⌋}
, m ∈

{
1, 2, . . . ,

⌊
λ

CXj

⌋}
, ∀i : Li � λ (see Fig. 3). In

the case of three attack steps the utility changes in the projections of points in
three-dimensional space into one-dimensional space. Thus with the increase in
the amount of possible attack steps the lattice argument space becomes more
complex.

It can be shown that the distance between the two adjacent lattice points has
a lower bound.

Theorem 1. If the relation of attack step costs may be expressed in terms of a
rational fraction (a fraction of two rational numbers, corresponding cost values

may be irrational)
CXi

CXj

= p
q , then the distance between two adjacent lattice points

Li and Li+1 will be not less than
CXj

q .

Proof. The distance δ between the two adjacent lattice points Li and Li+1 may
be expressed as

δ = |(n− n′)CXi
+ (m−m′)CXj

| = | (n− n′)p+ (m−m′)q︸ ︷︷ ︸
α∈Z

| ·
CXj

q

=

{
0 , if α = 0,

�
CXj

q , if α �= 0.

��
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If the ratio of the attack step costs is irrational, lattice points appear with
increasing frequency eventually positioning infinitely close to each other. In real
life we can expect the costs to be rational (it would be difficult to estimate an
irrational value for the cost parameter) and for this reason the above mentioned
bound exists in the practical cases.
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Fig. 3. Projections of the lattice points in the two-dimensional space into the one-
dimensional space

Atomic OR Case

In the case of an atomic OR game in order to win it is sufficient that any of
the two attack steps, X = {Xi, Xj} succeeds. The initial state of the game is
〈Xi ∨ Xj , λ〉 and the subset of available attack steps to launch is {Xi,Xj}. In
each state of the game the player may choose to launch any attack step from
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the subset of available attack steps, or to discontinue playing. The attacker
launches an attack step Xk from this set. If Xk succeeded the game moves into
the state 〈1, λ− Ck〉, where Ck is the cost of the launched attack step, and
the player has won the game. If the attack has failed, the game moves into
the state 〈Xi ∨ Xj , λ− Ck〉 and the game goes on while Ek � λ. At some point
the current λ will reduce the set of available attacks to one (cheapest) attack,
and eventually, the set of possible attacks becomes an empty set. Upon reaching
the state in which Ek > λ and the Boolean function of the game has not been
satisfied – the player has lost the game.

Adversarial utility may be expressed in the form of the relation (4):

Uλ(Xi ∨ Xj) = max

⎧⎪⎨⎪⎩
0 ,

U(Xi) + (1− pXi
) Uλ−CXi (Xi ∨ Xj) ,

U(Xj) + (1− pXj
) Uλ−CXj (Xi ∨ Xj) .

(4)

In certain cases under certain conditions the optimal strategy in the atomic
OR case is non-adaptive and suggests to repeat one of the attacks independently
of the current state of the game. We will bring an example of such a case.

Theorem 2. If the costs of the attacks are equal, the attack having greater suc-
cess probability will be best to try in every state of the game.

Proof. Assume that CXi
= CXj

= C. The utility of the game may be expressed

in the form of

Uλ(Xi ∨ Xj) = max

⎧⎪⎨⎪⎩
0 ,

U(Xi) + (1− pXi
) · Uλ−C(Xi ∨ Xj) ,

U(Xj) + (1 − pXj
) · Uλ−C(Xi ∨ Xj) .

Optimal strategy will suggest to try attack Xi if

U(Xi) + (1− pXi
) · Uλ−C(Xi ∨ Xj) > U(Xj) + (1− pXj

) · Uλ−C(Xi ∨ Xj) (5)

Solving inequality (5) we reach condition pXi
> pXj

. ��

Algorithm 4.1 outlines the recursive procedure to calculate maximal adver-
sarial utility in the atomic OR game given budget λ according to (4).

We show how the best move changes in the atomic OR game, depending on
the current budget λ demonstrating it by several examples:

The first example (Fig. 4) shows that the best move bounces between the two
attack steps when the budget is rather small, and sticks to one attack step later
on. By ∅ we mean that the best move is not to start attacking at all.

The second example (Fig. 5) demonstrates the case when both of the attack
steps are equally good when the budget is rather small and thus there is no
difference for the attacker whether to launch attack step Xi or to launch attack
step Xj . But when the budget increases, the adversary has a clear preference for
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Algorithm 4.1. Maximal utility of the atomic OR case with the given
budget

Input: Attack step Xi cost i cost
Input: Attack step Xi probability i pr
Input: Attack step Xj cost j cost
Input: Attack step Xj probability j pr
Input: Prize of the game prize
Input: Budget budget
Output: Maximal adversarial utility value (a real number)

1 Procedure AtomicOr (i cost, i pr, j cost, j pr, prize, budget)
2 if budget is less than i cost and j cost then
3 return (0)
4 i utility := -i cost + i pr · prize
5 j utility := -j cost + j pr · prize
6 if budget is greater than i cost then
7 ui = i utility + (1-i pr) · AtomicOr (i cost, i pr, j cost, J pr, prize,

budget-i cost)
8 if ui is negative then
9 ui := 0

10 if budget is greater than j cost then
11 uj = j utility + (1-j pr) · AtomicOr (i cost, i pr, j cost, j pr, prize,

budget-j cost)
12 if uj is negative then
13 uj := 0

14 if ui is not less than uj then
15 maximal utility := ui

16 else
17 maximal utility := uj

18 return (maximal utility)

0 2 3 4 5 6 7 8 9 10

∅ Xi Xj Xi Xj Xj Xj Xj Xj λ

Fig. 4. Atomic OR case with parameters CXi
= 2, pXi

= 0.3, CXj
= 3, pXj

=

0.48, P rize = 30

one attack over the other one. By = we mean that launching attack step Xi is
as good as launching attack step Xj .

The third example (Fig. 6) demonstrates the case when the costs of the attacks
are irrational, but their relation may be expressed in terms of a fraction of
rational numbers. It can be seen that the best move to undertake in a certain
state of the game between attack steps Xi and Xj .

The next example (Fig. 7) demonstrates that there are cases where the optimal
strategy is non-adaptive and iterates one single attack step Xj .
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0 2 4 6 8 10 12 14 16 18

∅ = = Xj Xj Xj Xj Xj Xj λ

Fig. 5. Atomic OR case with parameters CXi
= 2, pXi

= 0.05, CXj
= 6, pXj

=

0.9, P rize = 30
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Fig. 6. Atomic OR case with parameters CXi
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Fig. 7. Atomic OR case with parameters CXi
=

√
2, pXi

= 0.1, CXj
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, pXj

=

0.38, P rize = 30

Comparison with the Improved Failure-Free Model

We will show that the case when the improved failure-free model analysis result
states that the system is insecure, while the budgeted model result states that
the system is secure is impossible. Lets consider adversarial budget I for which
the following inequalities hold:

UI(Xi ∨ Xj) > 0 , (6)

UI−C(Xi ∨ Xj) � 0 , (7)

where C is the cost of any of the atomic attacks. Assuming I is greater than the
costs of attacks Xi and Xj :

UC(Xi ∨ Xj) � 0 . (8)

Let Xk with cost C and probability p be the optimal move in the considered state
of the game. In this case:

UI(Xi ∨ Xj) = UC(Xi ∨ Xj) + (1− p) · UI−C(Xi ∨ Xj) . (9)

As UI−C(Xi ∨ Xj) � 0 by (7) and UC(Xi ∨ Xj) � 0 by (8), it contradicts with
the initial assumption UI(Xi ∨ Xj) > 0. Thus it seems that there is no point in
limiting adversarial budget in the elementary OR case.

Atomic AND Case

In the case of atomic AND game in the initial state of the game the adversary
has to choose either to launch the attack step Xi, or to launch Xj or not to start
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playing. If the adversary has chosen to launch attack Xi and it has failed, the
game moves into the state

〈
Xi ∧ Xj , λ− CXi

〉
. If Xi succeeded, the game moves

into the state
〈
Xi ∧ Xj |Xi=1, λ− CXi

〉
which is identical to

〈
Xj , λ− CXi

〉
. In this

case, the attacker has the following choices: either to launch the remaining attack
Xj (if λ is sufficient for it), or to discontinue playing the game. If Xj succeeds,

the game moves into the state
〈
1, λ− CXi

− CXj

〉
and the adversary has won

the game. In case Xj fails, the game moves into the state
〈
Xj , λ− CXi

− CXj

〉
and the game continues until the budget λ is sufficient to continue playing.
Adversarial utility may be expressed in the form of the relation (10).

Uλ(Xi∧Xj) = max

⎧⎪⎨⎪⎩
0

−CXi
+ pXi

Uλ−CXi (Xj) + (1−pXi
) Uλ−CXi (Xi∧Xj)

−CXj
+ pXj

Uλ−CXj (Xi) + (1−pXj
) Uλ−CXj (Xi∧Xj)

(10)

where (according to (2)):

Uλ−CXi (Xj) = U∞(Xj)

⎡⎣1− (1− pXj
)

⌊
λ−CXi
CXj

⌋⎤⎦ ,

Uλ−CXj (Xi) = U∞(Xi)

[
1− (1− pXi

)

⌊λ−CXj
CXi

⌋]
.

In the atomic AND game the positive utility may not be achieved immediately
by the adversary. We call the minimal value of the adversarial budget, sufficient
to achieve positive utility the adversarial utility budget lower bound, which can
be computed as:

λ0 = min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ,[
log(1−pXj

)

[
1−

CXi

pXi
U∞(Xj)

]]
· CXj

+ CXi
,[

log(1−pXi
)

[
1−

CXj

pXj
U∞(Xi)

]]
· CXi

+ CXj
.

(11)

Algorithm 4.2 outlines the recursive procedure to calculate maximal adver-
sarial utility in the atomic AND game given budget λ according to (10).

We show how the best move changes in the atomic AND game, depending on
the current budget λ demonstrating it by several examples

The first example (Fig. 8) shows that there are certain sets of parameters
which make the adversary indifferent in whether to launch attack step Xi or
attack step Xj in every state of the game.

The second example (Fig. 9) demonstrates the case when the best move
bounces between attack step Xi and attack step Xj . In some states of the game
both of the attack steps are equally optimal to launch.
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Algorithm 4.2. Maximal utility of the atomic AND case with the given
budget

Input: Attack step Xi cost i cost
Input: Attack step Xi probability i pr
Input: Attack step Xj cost j cost
Input: Attack step Xj probability j pr
Input: Prize of the game prize
Input: Budget budget
Output: Maximal adversarial utility value (a real number)

1 Procedure AtomicAnd (i cost, i pr, j cost, j pr, prize, budget)
2 if budget is less than the sum of i cost and j cost then
3 return (0)

4 i inf := prize− i cost
i pr

5 j inf := prize− j cost
j pr

6 i rep := i inf ·
[
1− (1− j pr)

⌊
budget-i cost

j cost

⌋]

7 j rep := j inf ·
[
1− (1− i pr)�

budget-j cost
i cost �

]
8 ui = -i cost + i pr · j rep + (1-i pr) · AtomicAnd (i cost, i pr, j cost, j pr, prize,

budget-i cost)
9 if ui is negative then

10 ui := 0
11 uj = -j cost + j pr · i rep + (1-j pr) · AtomicAnd (i cost, i pr, j cost, j pr, prize,

budget-j cost)
12 if uj is negative then
13 uj := 0
14 if ui is not less than uj then
15 maximal utility := ui
16 else
17 maximal utility := uj

18 return (maximal utility)

0 2 4 6 8 10 12 14 16 18 20

∅ ∅ ∅ ∅ = = = = = =
λ

Fig. 8. Atomic AND case with parameters CXi
= 2, pXi

= 0.05, CXj
= 6, pXj

=

0.9, P rize = 30

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∅ ∅ ∅ ∅ Xi Xi Xj Xi Xj Xi = Xi Xi Xi λ

Fig. 9. Atomic AND case with parameters CXi
= 2, pXi

= 0.3, CXj
= 3, pXj

=

0.48, P rize = 30
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The third example (Fig. 10) demonstrates the case when the costs of the
attacks are irrational, but their relation may be expressed in terms of a fraction
of rational numbers. It can be seen that with the given parameters optimal
strategy will suggest to iterate attack step Xj and thus the optimal strategy is
non-adaptive.
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Fig. 10. Atomic AND case with parameters CXi
=

√
2, pXi

= 0.8, CXj
=

√
2

2
, pXj

=

0.45, P rize = 30.

The next example (Fig. 11) demonstrates the case when the optimal strategy is
adaptive and the best move to undertake in a certain state of the game alternates
between attack step Xi and attack step Xj .
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Fig. 11. Atomic AND case with parameters CXi
=

√
2, pXi

= 0.1, CXj
=

√
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3
, pXj

=

0.38, P rize = 30

Comparison with the Improved Failure-Free Model

We will investigate the case when the improved failure-free model analysis result
states that the system is insecure, while the budgeted model result states that
the system is secure. According to the improved failure-free model the adversarial

utility U∞ (Xi ∧ Xj) = P−
CXi

pXi

−
CXj

pXj

. The system is secure in case P �
CXi

pXi

+
CXj

pXj

and insecure in case P >
CXi

pXi

+
CXj

pXj

.

Let the adversarial budget λ suffice to launch m attack steps in total and
the adversarial strategy may be the one as shown in Fig. 12 and for the sake of
simplicity lets assume that CXi

= CXj
= C and pXi

= pXj
= p.

Adversarial utility may in this case be computed as shown in (12).

Um×C(Xi∧Xj) =

[
U∞(Xj)−

C
p

] [
1−(1−p)m−1]−(m−1)(1−p)m−1 [p U∞(Xj)]

(12)

=

[
P− 2C

p

] [
1−(1−p)m−1]−(m−1)(1−p)m−1 [pP−C]
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Fig. 12. An adaptive strategy consisting of two attack steps Xi and Xj , with adversarial
budget λ

According to the budgeted model the strategy is not profitable for an attacker,
while the improved failure-free model states that the strategy is profitable if:

2C
p

< P � 2C
p
· 1− [1 + C(m− 1)] (1 − p)m−1

1 − [1 + p(m− 1)] (1− p)m−1
. (13)

Inequality (13) shows the interval for the value of prize within which the result
of the limited budget model and result of the improved failure-free models differ.
We will show what happens to the results of the analysis of both models in the
broader view.

2C
p

2C
p ·

1−[1+C(m−1)](1−p)m−1

1−[1+p(m−1)](1−p)m−1

U∞(Xi ∧ Xj) = 0 Uλ(Xi ∧ Xj) = 0U∞(Xi ∧ Xj) < 0

Uλ(Xi ∧ Xj) < 0

U∞(Xi ∧ Xj) > 0

Uλ(Xi ∧ Xj) < 0

U∞(Xi ∧ Xj) > 0

Uλ(Xi ∧ Xj) > 0
P

Profit accuracy bounds

Fig. 13. Comparison of the improved failure-free model to the limited budget model

Thus, Fig. 13 shows that if prize is less than 2C
p then the system is secure

according to both models. If prize is greater than 2C
p ·

1−[1+C(m−1)](1−p)m−1

1−[1+p(m−1)](1−p)m−1 then

the system is insecure according to both models. Only when the prize is between
2C
p and 2C

p ·
1−[1+C(m−1)](1−p)m−1

1−[1+p(m−1)](1−p)m−1 the limited budget model may produce result

different from the result of the improved failure-free model.
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We have experimented with various parameters and observed that the prize
interval (13) becomes negligibly small – less than 1 e. In practice, as a rule, it
is practically impossible to estimate the value of the protected assets with the
precision of less than e1 and for this reason we think that the limited budget
model may produce false-positive results in case analysts are unable to estimate
prize with required precision and this makes us give preference to the failure-free
models which provides reliable utility upper bounds.

Table 1 demonstrates an example of such calculations. It can be seen that
already with rather small increase in budget (approximately 3 times greater
than the costs of the attack steps) the prize must be estimated with precision
less than e1 in order to ensure reliability of the results.

The first column in a table describes the monetary budget of the adversary.
The second column describes the interval for possible prize values, the column
named span shows the length of such an interval. Precision is the length of
uncertainty interval divided by mean value.

5 Conclusions and Future Research

We have analyzed the 3 kinds of elementary games – the single attack game, the
atomic OR and the atomic AND, assuming that the adversarial budget is limited.
In the result of limiting adversarial budget the model and computations become
reasonably complex that makes it doubtful that this approach is applicable for
real-life case analysis. Additionally, in case of atomic AND we have to be able to
estimate the prize parameter quite precisely – if we fail to do that, the analysis
results will be unreliable. In practice it is very hard to estimate the cost of an
asset or information with the desired precision and thus is it doubtful if it is
reasonable to face the complexities of budget limitations and its false positive
results which might happen in the case of AND type games.

The improved failure-free model is, on the contrary, less complex and provides
reliable upper bounds. Due to the fact that when the move fails the player finds
himself in the very same instance of the game results in the existence of non-
adaptive strategies in the set of optimal strategies of the game and the ordering
of the attack steps in non-adaptive optimal strategies is irrelevant. In the model

Table 1. Initial setting: Prize: e30 Cost: e2 Probability: 0.3

Lambda (#) P Domain (e) Span (e) Deviation (e) Precision (%)

2 (13.(3), 28.(8)] 15.(5) ±7.(7) 0.518519
3 (13.(3), 22.4074] 9.07407 ±4.537035 0.302469
4 (13.(3), 19.242] 5.9087 ±2.95435 0.196957
5 (13.(3), 17.4047] 4.07139 ±2.035695 0.135713
6 (13.(3), 16.232] 2.89863 ±1.449315 0.0966211
7 (13.(3), 15.4386] 2.10531 ±1.052655 0.0701772
8 (13.(3), 14.8816] 1.54822 ±0.77411 0.0516073
9 (13.(3), 14.4806] 1.14723 ±0.573615 0.038241
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with budget limitations the subset of non-adaptive strategies exists in the set of
all strategies. Non-adaptive strategies are relatively easy to derive and compute.
One of the open questions is to figure out how well the most optimal strategy
from the subset of non-adaptive strategies Uλ

na(G) might approximate the optimal
strategy from the set of all possible strategies Uλ(G). If Uλ

na(G) provides pretty
good approximation to Uλ(G), then there exists infinitely small α such that:

Uλ
na(G) � Uλ(G) � α · Uλ

na(G) � U∞(G) .

If this holds, it might enable calculation of acceptably precise result without
facing the complexity and the computational overhead introduced by the precise
utility calculation routines.

Secondly, it would be interesting to see when the optimal move in certain
states of the game changes by bouncing between the two possible moves thus
following some pattern. Additionally, to verify the hypothesis that this might
happen in the theoretical case when the ratio of the costs of the move is irrational.

The bigger the adversarial budget λ is, the more adversarial utility approaches
the utility upper bound in the improved failure-free model. Optimal strategies
in the improved failure-free model are non-adaptive and do not depend on the
ordering of the attack steps. In the case of big λ optimal strategies are likely
to behave non-adaptively as well in the limited budget model. This means that
optimal move in certain states of the game is likely to bounce changing from one
attack to another, but with increase in λ the optimal move remains the same. It
also means that the utility of various strategies, beginning with different moves,
become closer to each other with the increase in λ and there should exist infinitely
small δ such that

| Uλ(Si)− Uλ(Sj) | � δ ,

where Si and Sj are the two strategies from the set of all strategies of the game.
The improved failure-free model provides reliable utility upper bounds, how-

ever this results in systems that might be over-secured. It has not been studied
how much extra cost the upper-bound oriented methods cause. The assumption
that the adversarial budget is limited is natural, as this is what happens in re-
ality. Models assuming limited budget model the adversarial strategic decision
making in a better way, which is more close to the one likely to be observed in
real life and the research on the adaptive strategies with limited budget is an
important research area in quantitative security analysis based on attack trees.
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Abstract. Recent high-profile targeted attacks showed that even the
most secure and secluded networks can be compromised by motivated
and resourceful attackers, and that such a system compromise may not
be immediately detected by the system owner. Researchers at RSA pro-
posed the FlipIt game to study the impact of such stealthy takeovers.
In the basic FlipIt game, an attacker and a defender fight over a sin-
gle resource; in practice, however, systems typically consist of multiple
resources that can be targeted. In this paper, we present FlipThem, a
generalization of FlipIt to multiple resources. To formulate the players’
goals and study their best strategies, we introduce two control models:
in the AND model, the attacker has to compromise all resources in order
to take over the entire system, while in the OR model, she has to com-
promise only one. Our analytical and numerical results provide practical
recommendations for defenders.

Keywords: FlipIt, game theory, advanced persistent threats, targeted
attacks, attacker-defender games.

1 Introduction

In recent years, the world witnessed a series of high-profile targeted attacks
against various targets [4,19,7,8,2,5,14,13]. These attacks showed that even the
most secure and secluded networks can be compromised, and they induced an
interesting discussion in the security industry and in the research community
alike. An important lesson that the security community can learn from these in-
cidents is that we must revisit some of the most fundamental assumptions which
our systems rely on for security. In particular, one must make the assumption
that motivated and resourceful attackers can fully compromise a system and gain
access to its resources, and this may not be immediately detected by the system
owner. The new challenge is to design security mechanisms that minimize the
damage that such determined attackers can cause.

In order to help to address this challenge, researchers at RSA – which itself was
a victim of a successful targeted attack in 2011 [18] – developed a game-theoretic
modeling framework, called FlipIt [3,1]. FlipIt is an attacker-defender game

R. Poovendran and W. Saad (Eds.): GameSec 2014, LNCS 8840, pp. 175–194, 2014.
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designed to study the problem of stealthy takeover of control over a critical
resource. In FlipIt, control over the critical resource is obtained by “flipping”
it for a certain cost, and the players receive benefits proportional to the total time
that they control the resource. The payoff of each player is, therefore, determined
by the difference between the benefit of controlling the resource and the cost of
flipping it. Naturally, the goal of the players is to maximize their payoffs.

This is a simple, yet powerful model to study the strategic interaction of at-
tackers and designers of security policies and mechanisms. Moreover, the basic
model can be extended in different directions. For instance, in the basic FlipIt

game, the players flip the resource without being able to observe who was in
control before the flip. This model is ideal to study the security of a resource
with off-line properties, such as passwords or cryptographic keys. In [16], Pham
and Cid extend the basic model by giving the players the option to test if they
control the resource before making a move, and use this extended model to study
periodic security assessments and their positive effects. In [12,11], Laszka et al.
propose and study another variation of the model, in which the defender’s moves
are non-stealthy, while the attacker’s moves are non-instantaneous. Finally, re-
searchers have also studied the FlipIt game in behavioral experiments, where
human participants played against computerized opponents [15,17,6], which com-
plement the theoretical work by showing the difficulty of finding optimal choices
in games of timing.

In this paper, we propose a new generalization of the FlipIt game, which,
to the best of our knowledge, has not been considered yet in the academic liter-
ature. Namely, we extend the basic FlipIt model, where the attacker and the
defender fight over a single resource, to multiple resources. Accordingly, we call
our generalized model the FlipThem game. In practice, compromising a system
often requires more than attacking just a single component of it. Typically, suc-
cessful takeovers consist of multiple steps, aiming at gradually escalating the
privileges obtained by the attacker until he obtains full administrative access to
the system. During this process, the attacker must gain control over a subset of
available resources (e.g., he may be required to break a password and exploit a
software vulnerability in an application). Hence, our model is closer to reality
than the original FlipIt game, and, as we show in this paper, it is still amenable
to mathematical analysis.

More specifically, we make the following contributions in this paper:
– We extend the FlipIt game to multiple resources. To formulate the players’

goals, we introduce two control models: the AND and the OR control model.
In the AND control model, the attacker needs to compromise all resources
in order to take over the entire system, whereas in the OR control model,
the attacker needs to control at least one resource (out of many available) to
take over the entire system. More complex requirements on combinations of
resources to be compromised for a successful take-over can be constructed
by appropriate combination of these basic control models.

– As a first step to derive good multi-resource FlipThem strategies, we in-
troduce two combinations of single-resource FlipIt strategies, namely the
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independent and the synchronized combinations. In the independent case,
the player flips each resource independently of the other resources, whereas
in the synchronized case, the player always flips all resources together. We
study and compare these two combinations, and derive analytical results for
the players’ gains.

– As a next step, to represent more complex multi-resource strategies, we in-
troduce the Markov strategy class, where the decision to flip a resource (or
set of resources) at a given time depends only on the times elapsed since
the previous flips of the resources. We show how the best-response Markov
strategy can be computed using a linear program. Using this linear program,
we compare various defender strategies based on the resulting benefit for the
defender.

– Finally, based on our analytical and numerical results, we provide practical
recommendations for defenders. These recommendations can readily be used
in practice where the assumptions of the FlipThem game apply.

It is important to note that, while the idea of generalizing FlipIt to multiple
resources may seem straightforward, the exact mathematical treatment of Flip-
Them is not trivial at all. The reason for this is that FlipThem is more than
just the collection of independent FlipIt instances. In general, the attacker
and/or defender strategies in FlipThem do not handle the different resources
independently from each other, and this dependence among the resources results
in complex optimization problems when solving the game.

The organization of this paper is the following. In Section 2, we summarize
the FlipIt game and the most important conclusions drawn in related work.
In Section 3, we introduce FlipThem, the generalization of FlipIt for multiple
resources. In Section 4, we show how single-resource FlipIt strategies can be
combined into multi-resource strategies and compute the players’ benefits for
various combinations. In Section 5, we introduce the Markov strategy class and
show how a best-response Markov strategy can be computed using a linear pro-
gram. Finally, in Section 6, we discuss the implications of our results and provide
practical recommendations for defenders.

2 The FlipIt Game

In this section, we summarize the FlipIt game and the most important con-
clusions drawn in related work. It is important to get familiar with the key
concepts and notation of the original FlipIt game to understand our results for
the multiple resources case. Table 1 contains the most important differences in
notation between the original FlipIt game and our FlipThem game. Note that
the assumptions of the FlipIt game are very different from those of the previous
work in the field of game theory for security. For a detailed comparison between
FlipIt and previous work, we refer the reader to [3].

FlipIt [3,1] is a two-player, non-zero-sum game modeling stealthy takeovers,
in which both players are trying take control of a single resource. One of the
players is called the defender (denoted by D), while the other player is called the
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Table 1. List of Symbols

Symbol Description

FlipIt

ci player i’s flipping cost
βi ” asymptotic benefit rate
γi ” ” gain rate
αi ” ” flip rate
Zi random variable representing the time since the last flip of player i

FlipThem

N number of resources
cir player i’s flipping cost for resource r
αi
r ” asymptotic flip rate for resource r

Zi
r rand. var. representing the time since the last flip of player i on resource r

attacker (denoted by A). The game starts at time t = 0 and continues indefinitely
(that is, t → ∞). In general, time can be both continuous and discrete, with
most results being applicable to both cases. At any time instance, player i may
choose to take control of the resource by “flipping” it, which costs her ci. Then,
the resource remains under the control of player i until the other player flips it.
Consequently, at any given time instance, the resource is controlled by either one
or the other player. The interesting aspect of the FlipIt game is that neither of
the players knows who is in control. As a result, the players occasionally make
unnecessary flips (i.e., flip the resource when it is already under their control)
since they have to execute their flips “blindly”. For an illustration of the game,
see Figure 1.

t

Fig. 1. An illustration of the FlipIt game with discrete flip timing. Blue and red
disks represent the defender’s and attacker’s flips. Takeovers, that is, flips changing the
player controlling the resource, are indicated by arrows. Blue and red shaded rectangles
represent control of the resource by the defender and the attacker, respectively.

The state of the resource is represented by the time-dependent variables CA

and CD: CA(t) = 1 when the attacker controls the resource, and 0 otherwise;
CD(t) is vice versa (i.e., CD(t) = 1− CA(t)). Since the players can (and, as we
will soon see, should) employ randomized strategies, both CD(t) and CA(t) are
random variables. The variables CD(t) and CA(t) can be also expressed using
the times elapsed since the last flips made by the players as

CD(t) = IZD(t)≤ZA(t) and CA(t) = IZD(t)>ZA(t) , (1)
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where Zi is the time elapsed since the last flip of player i and I is the indicator
function.

Player i’s asymptotic gain rate γi is defined as the average fraction of time
the resource is controlled by player i. Formally,

γi = lim inf
t→∞

∫ t

0
Ci(τ)dτ

t
. (2)

Note that player i’s asymptotic gain is equal to the probability that the resource
is controlled by player i at a random time instance. Formally,

γi = Pr
[
Ci = 1

]
. (3)

Player i’s asymptotic flip rate αi is defined as the average number of flips made
by player i in a unit of time. Formally,

αi = lim inf
t→∞

ni(t)

t
, (4)

where ni(t) denotes the number of flips made by player i up to time t. Finally,
player i’s game-theoretic utility, called player i’s asymptotic benefit βi, is defined
as the average fraction of time the resource is controlled by the player minus the
average cost of flips. Formally,

βi = γi − ciαi . (5)

Since takeovers are assumed to be stealthy in the FlipIt game, players do
not automatically know when the other player has last moved. However, when a
player makes a move (i.e., flips the resource), she might be able to receive some
feedback. For example, when an attacker compromises a system, she may learn
when the defender last updated the system (that could be attributed as a flip
action), and use this information to plan her next move. In [3], three models are
introduced for feedback received during the game:

– Non-adaptive (NA): The player does not receive any feedback when she
moves.

– Last move (LM): The player learns the exact time of the other player’s last
flip.

– Full history (FH): The player learns the complete history of flips made by
the other player.

Besides receiving feedback during the game, a player might also be able to
receive information before the game starts. For example, an attacker might learn
the defender’s flip strategy and exploit this knowledge. In [3], two models are
introduced for information received by a player before the game starts :

– Rate of Play (RP): The player knows the asymptotic flip rate α of the other
player.
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– Knowledge of Strategy (KS): Besides the asymptotic flip rate, the player
knows additional information about the other player’s strategy. For exam-
ple, the player may know that the other player employs a renewal process
to generate her flip sequence, and may also know the probability density
function of the process. However, it is always assumed that the randomness
of the other player’s strategy remains secret; consequently, the player cannot
know which realization of the renewal process will be used.

In our analysis of defender’s strategies in Section 5, we assume a strong attacker
model meaning that the attacker always has the Knowledge of Strategy. We
assume that the attacker knows everything, except the randomness part of the
defender’s strategy. This complies with Kerckhoff’s principle on security without
obscurity.

2.1 Strategies

In this subsection, we summarize the most important strategies and the cor-
responding results from [3]. For a detailed analysis of these and some other
strategies, we refer the interested reader to [3].

In this paper, we focus on non-adaptive strategies, which do not require feed-
back received by the player during the game. The rationale behind this is that

– defenders rarely know the exact strategies of the attackers (or even the iden-
tities of the attackers) in practice; thus, they have to use strategies that do
not rely on feedback,

– defenders can choose randomized strategies that schedule their subsequent
flips such that even an FH attacker has no more advantage than random
guessing (see exponential strategy below), and

– in case of high-importance computer systems, attackers might have limited
feedback options if they want to operate stealthily.

A renewal strategy is a non-adaptive strategy in which the time intervals
between consecutive flips are generated by a renewal process. More formally, time
intervals between consecutive moves are independent and identically distributed
random variables, chosen according to a probability density function f . Renewal
strategies include (but are not limited to) periodic strategies and non-arithmetic
renewal strategies, which we discuss below.

A player can also choose to drop out of the game (i.e., never flip the resource),
which is a rational decision if her expected benefit is less than zero for every
strategy choice available to her. This can happen when her opponent’s flipping
cost is much lower and her opponent can afford to flip the resource extremely
fast.

Periodic P: A strategy is periodic if the time intervals between consecutive
flips are constant, denoted by δ. It is assumed that a periodic strategy has a
random phase, that is, the time of the first flip is chosen uniformly at random
from [0, δ]. A periodic strategy with random phase is characterized by the fixed
time interval δ between consecutive flips. It is easy to see that the flip rate of
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a periodic strategy is α = 1
δ . The periodic strategy of rate α is denoted by Pα ,

and the class of all periodic strategies is denoted by P .
Periodic is probably the strategy most widely used in practice as most systems

require passwords, cryptographic keys, etc. to be changed at regular intervals,
for example, every thirty days or every three months. In [3], it was shown that
the periodic strategy strongly dominates all other renewal strategies if the other
player uses a periodic or non-arithmetic renewal strategy. Thus, the periodic
strategy is a good choice for an attacker who plays against a non-adaptive (NA)
defender.

However, due to its completely deterministic nature1, the periodic strategy is
a very poor choice for defenders who face an attacker observing the last move
of the defender (LM attacker). An LM attacker can learn the exact time of the
defender’s next flip, and schedule her own flip to be immediately after that.
Consequently, if flipping costs are of the same order of magnitude, an attacker
can keep the resource permanently under her control (with negligible interrupts
from the defender). Therefore, a defender facing an LM attacker has two options:
if her flipping cost is much lower than that of the attacker, she can flip fast
enough to force the attacker to drop out; otherwise, she has to use a randomized
strategy, such as the following ones.

Non-Arithmetic Renewal R: A renewal process is called non-arithmetic if
there is no positive real number d > 0 such that interarrival times are all integer
multiples of d. The renewal strategy generated by the non-arithmetic renewal
process with probability density function f is denoted by Rf , and the class of
all non-arithmetic renewal strategies is denoted by R.

The class of non-arithmetic renewal strategies is very broad as there are an in-
finite number of possible probability density functions, even for a given flip rate.
Of these probability density functions, the exponential is the most important
one in the FlipIt game.

Exponential E: An exponential (or Poisson) strategy is a non-arithmetic re-
newal strategy generated by a Poisson process. Formally, the interarrival times
of the process follow an exponential distribution: f(τ) = λe−λτ , where λ is the
parameter characterizing the distribution. The flip rate of this strategy is simply
α = λ. The exponential strategy with rate λ is denoted by Eλ, and the class of
all exponential strategies is denoted by E .

The exponential strategy is of key importance, because the exponential distri-
bution is the only memoryless continuous probability distribution. The memory-
less property means that the conditional probability that we have to wait more
than τ1 time before the next flip, given that the time elapsed since the last flip
is τ2, is independent of τ2. This implies that, if a defender uses an exponential
strategy, an LM (or even an FH) attacker cannot learn any information regard-

1 The random phase ensures that an NA opponent cannot determine the flip times of
the player; however, if the opponent learns the exact time of at least one flip made
by the player, she is able to determine the time of every flip.
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ing the time of the defender’s next flip. Consequently, the exponential strategy
is a good choice for a defender facing an LM attacker.

3 The FlipThem Game: FlipIt on Multiple Resources

In this section, we generalize the FlipIt game for multiple resources as follows.
There are N resources, identified by integer numbers 1, . . . , N . Each resource
can be flipped individually and, as a result, becomes controlled by the flipping
player. The cost of flipping resource r for player i is cir. Each resource has to
be flipped individually; i.e., if a player chooses to flip multiple resources at the
same time, she still has to pay the flipping cost for each resource that she flips.

The goal of the attacker is to control the system of resources, while the goal
of the defender is to prevent the attacker from doing so. The criterion for the
attacker controlling the system can be defined in multiple ways, which makes the
generalization non-straightforward: as we will later see, different formulations can
lead to opposite results. In this paper, we study two elementary control models
(see Figure 2 for an illustration):

– All resources [AND]: The attacker controls the system only if she controls
all resources. Formally,

CA(t) = ZD
1 (t) > ZA

1 (t) ∧ . . . ∧ ZD
N (t) > ZA

N (t) . (6)

This models scenarios where the attacker has to compromise every resource
in order to compromise her target.

– One resource [OR]: The attacker controls the system if she controls at least
one resource. Formally,

CA(t) = ZD
1 (t) > ZA

1 (t) ∨ . . . ∨ ZD
N (t) > ZA

N (t) . (7)

This models scenarios where the attacker only has to compromise a single
resource in order to compromise her target.

Similarly to the basic FlipIt game, the players receive benefits proportional to
the time that they are controlling the system minus their costs of flipping the
resources. More complex control models can be built by combining the AND and
OR models in appropriate ways, but the study of that is left for future work.

Notice that, for non-adaptive strategies, the two control models are completely
symmetric: the benefit of one player in one model is equivalent to the benefit of
the other player in the other model. Consequently, for non-adaptive strategies,
it suffices to compute the benefits only in one control model (the AND model in
our paper) as the formulas for the other model can be derived readily.

In the following sections, we introduce and study various FlipThem (i.e.,
multi-resource) strategies, compute the resulting asymptotic benefits, and dis-
cuss which strategies should be chosen by the players. First, in Section 4, we
study combinations of multiple single-resource strategies. Then, in Section 5, we
propose a novel multi-resource strategy class, called the Markov strategy class.
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tRes. #1:

tRes. #2:

AND:

OR:

Fig. 2. An illustration of the FlipThem game with the AND and OR control models
(see Figure 1 for graphical notations)

4 Combining Single-Resource Strategies

One of the challenges posed by FlipThem lies in the potentially complex struc-
ture of the strategies, which can use elaborate rules to exploit the dependence
among the resources. A possible way of finding well-performing, yet analytically
tractable multi-resource strategies is to combine multiple single-resource strate-
gies that are known to perform well in the basic FlipIt game. In this section,
we propose and study two combinations:

– Independent: The player flips each resource independently of the other re-
sources. More specifically, the player uses N independent single-resource
strategies (i.e., processes), one for each resource, with each one having its
own flip rate αi

r. The asymptotic benefit of a player i using the independent

combination is βi = γi −
∑N

r=1 c
i
rα

i
r.

– Synchronized: The player always flips all resources together. More specifi-
cally, the player uses only one single-resource strategy (i.e., process) for all
of the resources, with a single flip rate αi. The asymptotic benefit of a player

i using the synchronized combination is βi = γi − αi
∑N

r=1 c
i
r.

Since the AND and OR control models are symmetric, we only compute the
asymptotic gains in the AND model in this paper. Formulas for the asymptotic
gains in the OR model can be derived from our results readily. Furthermore,
since the defender’s asymptotic gain γD can be computed from the attacker’s
asymptotic gain γA using the simple formula γD = 1−γA, we only compute the
asymptotic gain of the attacker.

The proofs of the formulas can be found in the extended online version of this
paper [10]. Here, we first show the more general results for the strategy class
R ∪ P (Table 2); then, we analyze the game for the classes E and P (Table 3
and Figure 3).

Table 2 shows the attacker’s asymptotic gain for various multi-resource strate-
gies chosen by the defender and the attacker. The R ∪ P in the first and third
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Table 2. Asymptotic Gain for Various Combinations of Single-Resource Strategies

Defender Attacker Attacker’s gain
single-resource
strategies

comb. single-resource
strategies

comb. γA

R∪ P

ind.

R∪ P

ind.
∏N

r=1

∫ ∞
0

fZD
r
(zr)FZA

r
(zr)dzr

syn.

∫ ∞
0

∏N
r=1

(
1− FZD

r
(z)

)
fZA (z)dz

syn.

∫ ∞
0

fZD (z)FZA(z)dz

ind.
∫ ∞
0

∏N
r=1 FZA

r
(z)fZD (z)dz

column indicates that we assume that the players use combinations of either
non-arithmetic renewal (R) or periodic (P) single-resource strategies. The com-
binations used by the defender and the attacker are in the second and fourth
columns, respectively. Finally, the attacker’s gain γA for the given combinations
is in the fifth column.

To express the attacker’s gain, we use a notion similar to that of the basic
FlipIt game. We let Zi

r be the random variable representing the time elapsed
since player i’s last flip on resource r (we omit the index r and denote it by
simply Zi if the player uses a synchronized strategy). We denote the cumulative
distribution and density functions of Zi

r by FZi
r
(z) and fZi

r
(z). These functions

can easily be computed from the generating distribution of any non-arithmetic
renewal strategy (see the extended online version [10]).

It is noteworthy that, when both players use the synchronized combination,
the game is equivalent to the basic FlipIt game (with ci =

∑
r c

i
r): each player

uses only one single-resource (i.e., basic FlipIt) strategy, and the state of all
resources is the same as they are always flipped together. Consequently, the
formula for the attacker’s gain is identical to the corresponding formula in [3].

Table 3 shows the attacker’s asymptotic gain for various combinations of ex-
ponential and periodic strategies. We selected these single-resource strategies
because they are known to be optimal in some respect (see Section 2). The table
is similar to Table 2, except that the synchronized defender against independent
attacker case is omitted to keep the table simple (it can be found in the extended
version of this paper [10]) and because it is not a good strategy for either of the
players.

The table shows that the independent combination is generally better than
the synchronized one for the defender, as her flip rates are added together in the
former. This can be explained by the nature of the AND control model: since the
defender only needs to control at least one resource, her best strategy is to flip
one resource at a time. This forces the attacker to frequently flip all resources
back as she cannot know which resources were flipped by the defender (since the
exponential process is memoryless).
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Table 3. Asymptotic Gain for Various Combinations of Exponential and Periodic
Strategies

Defender Attacker Attacker’s gain
single-resource
strategy

comb. single-resource
strategy

comb. γA

E

ind.
E

ind.
∏N

r=1

αA
r

αA
r + αD

r

syn.

αA

αA +
∑N

r=1 αD
r

syn.
αA

αA + αD

ind.

P

ind.
∏N

r=1
αA
r

αD
r

(
1− e

−αD
r

αA
r

)

syn.

αA∑N
r=1 αD

r

(
1− e

−
∑N

r=1 αD
r

αA

)

syn.
αA

αD

(
1− e

−αD

αA

)

The formulas also suggest that the attacker should choose the synchronized
combination over the independent one. When both players use exponential single-
resource strategies, the attacker’s gain decays exponentially as the number of
resources increases (∼ k−N) if she uses the independent combination, but only
according to a power law (∼ N−k) if she uses the synchronized one (given that
flip rates stay the same). When the attacker uses the periodic single-resource
strategy, the relationship between the number of resources and the attacker’s
gain is more complicated, but similar.

Figure 3 shows the attacker’s asymptotic gain as a function of the num-
ber of resources for various combinations of exponential and periodic strate-
gies. The plotted pairs of combinations are the following: both players use in-
dependent strategies (solid line ), the attacker uses synchronized while the
defender uses independent strategy (dashed line ), and both players use syn-
chronized strategies (dotted line ). The flip rates are assumed to be uniform,
i.e., αA = αA

r = αD = αD
r = 1, r = 1, . . . , N .

The figure shows that, for the given single-resource classes and parameters,
the synchronized combination strongly dominates the independent one for the
attacker. Again, this can be explained by the nature of the AND control model:
since the attacker needs to control all resources, it makes sense to flip them
all together. Otherwise, the probability that all resources become controlled by
the attacker is very low. However, by using the synchronized combination, the
attacker loses the freedom of choosing the flipping rate for each resource inde-
pendently. Thus, when the heterogeneity of the attacker’s flipping costs is very
high, the independent combination may outperform the synchronized one.



186 A. Laszka et al.
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(a) Both players use exponential
strategies.
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(b) Defender uses exponential, at-
tacker uses periodic strategy.

Fig. 3. The attacker’s asymptotic gain as a function of the number of resources for var-
ious combinations of exponential and periodic strategies. Plotted pairs of combination
are: both players use independent strategies (solid line), attacker uses synchronized
strategies while defender uses independent strategies (dashed line), and both players
use synchronized strategies (dotted line). In this figure, the flip rates are assumed to
be uniform, i.e., αA = αA

r = αD = αD
r = 1, r = 1, . . . , N .

The figure also supports our finding that the independent combination strongly
dominates the synchronized one for the defender. Since a player has complete
freedom in choosing her flip rates in the independent combination, this combi-
nation is better for the defender even for very heterogeneous flipping costs.

Finally, by comparing Subfigures 3a and 3b, we conclude that the periodic
strategy dominates the exponential strategy as the attacker’s gain is higher when
she chooses the former.

5 The Markov Strategy Class

In the previous section, we studied how single-resource strategies can be com-
bined into multi-resource strategies. However, such combinations represent only
a tiny fraction of the actual multi-resource strategy space as there are an in-
finite number of multi-resource strategies that cannot be represented by such
simple combinations. For example, a defender might choose to flip one resource
periodically, then wait for a time interval chosen according to an exponential dis-
tribution, and then flip another resource. To model such complex multi-resource
strategies, in this section, we introduce the Markov strategy class.

For the clarity of presentation, we derive results for two resources, yet the
approach is applicable for any number of resources. Furthermore, as opposed to
the basic model, we are going to use discrete time in this section. Note that the
discrete time model can be very realistic as players typically do not flip their re-
sources at arbitrary times. Examples are the change of passwords, cryptographic
keys or the application of software updates. We denote the duration of a time
step by Δ. Finally, we define the time-dependent age functions as follows. The
random variables representing the number of time steps elapsed since the last
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flip of resource r by the attacker and the defender at time k are denoted by
ZA
r (k) and ZD

r (k), respectively.
In the case of two resources, the attacker can perform one of the following

actions in a given time slot:

– she does not flip any of the resources,
– she flips one of the resources,
– or she flips both resources.

If the decision which action to choose depends only on the times elapsed since
the previous flips of the resources, then {(ZA

1 (k), ZA
2 (k)), k = 0, 1, . . . } defines

a Markov process. In this case, the behavior of the attacker can be characterized
by the following joint distributions corresponding to the events that can happen
in two consecutive time steps:

p
(0)
i,j = Pr

[
ZA
1 (k) = i, ZA

2 (k) = j, ZA
1 (k + 1) = i+ 1, ZA

2 (k + 1) = j + 1
]

p
(1)
i,j = Pr

[
ZA
1 (k) = i, ZA

2 (k) = j, ZA
1 (k + 1) = 0, ZA

2 (k + 1) = j + 1
]

p
(2)
i,j = Pr

[
ZA
1 (k) = i, ZA

2 (k) = j, ZA
1 (k + 1) = i+ 1, ZA

2 (k + 1) = 0
]

p
(1,2)
i,j = Pr

[
ZA
1 (k) = i, ZA

2 (k) = j, ZA
1 (k + 1) = 0, ZA

2 (k + 1) = 0
]
,

where p
(0)
i,j is the probability that nothing is flipped in the next time step, p

(1)
i,j

(p
(2)
i,j ) is the probability that only resource 1 (or 2) is flipped, while p

(1,2)
i,j is the

probability of both resources being flipped in the next time step.
We denote by Mp the Markov strategy generated by a Markov process with

event probabilities p = {p(0)i,j , p
(1)
i,j , p

(2)
i,j , p

(1,2)
i,j for i, j = 0, 1, . . .}, and by M the

class of all Markov strategies. That is,

M = {Mp | p is a set of event probabilities} . (8)

5.1 Linear Programming Solution

With these definitions and notations, we can define a linear program to determine

the optimal probabilities p
(•)
i,j . However, since linear programming problems can

only be solved with a finite number of variables (in the general case), we have
to restrict the game to a finite time horizon. The last time step we take into
consideration is denoted by T .

The attacker wants to maximize her benefit βA, which is composed of the
asymptotic gain and the cost of the flips against both resources as

βA = max
p

{ T∑
i=0

T∑
j=0

qi,jPr
[
ZD

1 > i, ZD
2 > j

]
︸ ︷︷ ︸

γA

(9)

− cA1

( T∑
i=0

T∑
j=0

p
(1)
i,j + p

(1,2)
i,j

) 1

Δ︸ ︷︷ ︸
αA
1

−cA2

( T∑
i=0

T∑
j=0

p
(2)
i,j + p

(1,2)
i,j

) 1

Δ︸ ︷︷ ︸
αA
2

}
,



188 A. Laszka et al.

where qi,j is the probability that the number of time steps since the attacker’s
last flips of resource 1 and 2 are i and j, respectively. This probability can be

expressed easily as qi,j = p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j ; thus, the objective function

given by (9) defines a linear relation with respect to p
(•)
i,j .

As variables p
(•)
i,j must be valid probabilities, we need to apply the inequality

constraints p
(0)
i,j ≥ 0, p

(1)
i,j ≥ 0, p

(2)
i,j ≥ 0, p

(12)
i,j ≥ 0; and we also need to ensure that

the probabilities sum up to 1, that is,
∑T

i=0

∑T
j=0 p

(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j = 1.

Further equality constraints are required to define the possible state transi-
tions, yielding

qi,j = p
(0)
i−1,j−1 for i > 0, j > 0, q0,0 =

T∑
i=0

T∑
j=0

p
(1,2)
i,j ,

q0,j =

T∑
i=0

p
(1)
i,j−1 for j > 0, qi,0 =

T∑
j=0

p
(2)
i−1,j for i > 0, (10)

with qi,j given above.
Finally, we require that a resource is always flipped in the next time step if

its age has reached the maximum age T :

p
(0)
i,j = 0 for i = T or j = T, p

(1)
i,j = 0 for j = T, p

(2)
i,j = 0 for i = T. (11)

5.2 Results

The linear program defined above answers several questions regarding the Flip-
Them game, including the following:

– What is the attacker’s optimal strategy against a given defender strategy?
– What are the optimal flip rates maximizing the defender’s benefit if the

attacker always plays an optimal strategy?
– What is the Nash equilibrium of this game?

Solving the optimization problem using a linear programming based approach
poses some challenges. In particular, the length of the time horizon T is limited
by the capabilities of the linear program solver. For our examples, we used the
built-in solver of MATLAB with T = 30 (resulting in 900 variables in case of
two resources).2 Note that the number of variables increases polynomially in
the length of the time horizon and exponentially in the number of resources.
Using custom software, the analysis can be extended to much larger values of
T ; however, the results we obtained with MATLAB are already revealing and
useful.

In the rest of this section, we consider several numerical examples to demon-
strate the usefulness of the model. In each of these examples, the attacker is as-
sumed to be non-adaptive (NA), but she is assumed to know the strategy of the

2 This can model, for example, the key update policy of a company over a duration
of 2.5 years assuming that updates are defined by the granularity of a month.
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defender (KS). The defender, however, has no information about the attacker.
For the definitions and rationale behind these modeling choices, see Section 2.

OptimalAttackagainst aGivenDefenderStrategy. In this example, the de-
fender flips the resources according to independent Poisson processes with param-
eters αD

1 = 1 and αD
2 = 3. The joint age function is then Pr

[
ZD
1 > i, ZD

2 > j
]
=

e−αD
1 iΔ−αD

2 jΔ. The attacker’s flip costs are cA1 = 0.1 and cA2 = 0.05. The discrete
problem is solved with T = 30 andΔ = 0.03.

At this point, we take the opportunity to introduce the conditional state
transition probability matrices P (0),P (1),P (2) and P (1,2) that help to visualize
and understand the strategy of the attacker. The entries of these matrices are

[P (•)]i,j =
p
(•)
i,j

p
(0)
i,j + p

(1)
i,j + p

(2)
i,j + p

(1,2)
i,j

. (12)

To simulate an attack, one has to follow the state of the attacker given by po-
sitions i, j in the matrices. In state (i, j), no flips occur with probability [P (0)]i,j ,
and the next state of the attacker is (i+1, j+1). With probability [P (1)]i,j (or
[P (2)]i,j), only resource 1 (or resource 2) is flipped in the next time step, and
the next state of the system is (0, j + 1) (or (i + 1, 0)). Finally, both resources
are flipped in the next time step with probability [P (1,2)]i,j , followed by a jump
to state (0, 0).
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Fig. 4. Optimal attack strategy against two resources flipped according to independent
Poisson processes

By solving the linear program, we obtain the optimal strategy of the attacker,
represented by the matrices depicted in Figure 4. In this particular example,
the entries of all four matrices are all either 0 (represented by white squares)
or 1 (black squares). Matrix P (1) is not depicted as it has only 0 entries. By
following the attacker’s strategy in the above described manner, we have that
she first waits 9 time steps (black squares on the diagonal of [P (0)]), then flips
one resource (black square in P (2)(9, 9)), waits another 10 time steps, and finally
flips both resources (black square in P (1,2)(20, 11)).
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Thus, based on the matrices, a “periodic” attack can be identified with a pe-
riod of δ = 20. The resources are not flipped in a synchronized manner. Resource
2 is flipped at the 9th time step from the beginning of the period, while both
resources are flipped at the end of the period.

If the defender flips both resources according to independent periodic strate-
gies, the joint age process is given by Pr

[
ZD
1 > i, ZD

2 > j
]
= (1 − αD

1 iΔ)(1 −
αD
2 jΔ), if iΔ < 1/αD

1 , jΔ < 1/αD
2 , and Pr

[
ZD
1 > i, ZD

2 > j
]
= 0 otherwise.

When keeping all parameters the same as before, the optimal strategy of the
attacker is more complex in this case (see Figure 5). The period of her strategy
is δ = 22 now, and she flips solely resource 2 at time steps 6 and 13, while she
flips both resources at time step 22, which also marks the end of her period.

It is noteworthy that the attacker’s benefit is 0.265 in the Poisson case, but
only 0.047 in the periodic case, which means that the periodic defense is less
economical to attack (given, of course, that the attacker has no knowledge on
the last move of the defender, thus it is of type NA).
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Fig. 5. Optimal attack strategy against two resources flipped according to independent
periodic strategies

Defender’s Optimal Flip Rates. The linear program can also be used to find
the defender’s optimal flip rates given that the attacker always uses her best-
response strategy. Notice that we do not calculate a Nash equilibrium here, thus
the defender does not have to take the strategy of the attacker into consideration.

First, consider the case when the defender flips her resources according to
independent Poisson processes. Assume that the attacker’s flipping costs are
cA1 = 0.1 and cA2 = 0.2. We solved the linear program with various combinations
of αD

1 and αD
2 , and with two different settings for the parameters cD1 and cD2 .

The results are shown in Figure 6. As the benefit of the attacker is the subject of
optimization in the linear program, the corresponding plot is obviously smooth,
and gives higher values for lower flip rates of the defender. The corresponding
gain rates (which are not plotted due to the lack of space), however, are not
smooth. As the defender’s benefit is directly related to the attacker’s gain rate,
the plots of the defender’s benefit are not smooth either. The maximum benefit
for the defender is 0.222, obtained at αD

1 = 0.8, αD
2 = 0.7.

If the defender flips the resources according to independent periodic strategies,
higher flip rates are required to maximize her benefit. The corresponding results
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Fig. 6. Benefits of the attacker (βA) and defender (βD) for various flip rates of the
defender (Poisson case). Darker shades of gray indicate higher benefit.

are depicted in Figure 7: the optimal flip rates are αD
1 = 0.9, αD

2 = 1.2, and her
benefit βD = 0.61595 is higher compared to the Poisson case. Observe that the
attacker always drops out for higher flip rates, which is indicated by the white
area on the plot of her benefit and also by the sharp line appearing on the plots
of the defender’s benefit.
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Fig. 7. Benefits of the attacker (βA) and defender (βD) for various flip rates of the
defender (periodic case). Darker shades of indicate higher benefit.

Optimal Flip for a Fixed Budget. In this example, we assume that the
defender has a fixed budget, and we are looking for the flip rates maximizing her
benefit. By a fixed budget, we mean that the defender spends a fixed amount B
on average on flipping her resources, thus B = cD1 αD

1 + cD2 αD
2 is fixed, while the

ratio of the flip rates R = αD
1 /αD

2 is subject of optimization. Notice that B and
R determine the flip rates uniquely as

αD
1 =

RB

cD1 R+ cD2
, αD

2 =
B

cD1 R+ cD2
. (13)

The flip costs of the attacker and the defender are set to cA1 = 0.1, cA2 =
0.05 and cD1 = cD2 = 0.001, the total cost is B = 0.004, and we apply a finer
discretization in this example with T = 90 and Δ = 0.01.
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Fig. 8. Benefits of the attacker and the defender as functions of the ratio between the
flip rates for the resources

Figure 8 depicts the players’ benefits assuming that the attacker always flips
according to her best-response Markov strategy. The optimal ratio R (from the
defenders point of view) is 3.4 when she flips her resources periodically, and it
is between 0.9 and 5.2 when she uses exponential strategies. By looking at the
results closer, we find that, when the defender chooses an optimal ratio, the
attacker uses a synchronized periodic attack against the resources in both cases.

Nash Equilibrium. The proposed linear program can be applied to calculate
the optimal strategies of both the defender and the attacker. We can thus use a
simple iterative algorithm to find a Nash equilibrium of the game. This algorithm
starts with assigning a random strategy to the defender, followed by the alter-
nating optimizations of the attacker’s and the defender’s strategies. In practice,
however, we found that this algorithm does not converge in the vast majority of
the cases, but it starts oscillating after a number of iterations, suggesting that
no Nash equilibrium exists.

6 Concluding Remarks

Extending the FlipIt game to multiple resources requires modeling the players’
goals as functions of the compromised resources. We selected the two most in-
tuitive choices, namely the AND and OR control models, to represent the gains
derived from controlling the resources. From the attacker’s viewpoint, the AND
control model represents the case when all resources need to be compromised
to get access to the system. This is similar to the total effort model of security
interdependence in the state-of-the-art [9,20]. The OR control model represents
the case when the compromise of a single resource suffices to get access. This
second choice relates to the weakest link model of interdependence [9,20].

We proposed two major classes of multi-resource strategies: combinations of
single-resource strategies (independent processes and synchronized processes)
and the Markov strategy class. Based on our result, we can formulate a set of
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recommendations for the defender. These recommendations can be readily used
in practice where the assumptions of the FlipThem game apply, for example,
when defining the key update strategy for a security infrastructure.

– In the AND control model, we found that the defender should use inde-
pendent flipping strategies. In practice, this means that cryptographic keys
should not be updated at the same time, but rather independently.

– On the other hand, in the OR control model, the defender should use syn-
chronized flipping strategies. In practice, this means updating cryptographic
keys synchronously. However, the defender needs to pay attention to the
cost of updating keys in the OR control model. If these costs are very het-
erogeneous, the key update processes should remain synchronized, but with
different update rates across the keys.

– If the attacker is non-adaptive, then the periodic defender strategy is a good
choice according to our numerical results.3 Periodic strategies have multiple
advantageous properties such as higher benefits for the defender, robustness
to optimization errors and ease of implementation in practice. However, peri-
odic strategies perform poorly against an LM attacker [3]. Thus, the defender
needs to carefully assess the potential information available to an attacker
when choosing her strategy.

– Surprisingly, the defender’s benefit is not a smooth or monotonic function of
her flip rates, which makes optimization difficult in practice. Our numerical
results imply that this observation holds for any combination of the periodic
and the exponential strategy classes. The major reason behind this non-
monotonous property is that, as the defender’s flip rate reaches a threshold,
the attacker drops out of the game. In realistic cases, the defender’s flipping
cost is much lower than the attacker’s flipping cost, which causes the attacker
to drop out.

Acknowledgment. This work is supported in part by the National Science
Foundation (CNS-1238959).

References

1. Bowers, K.D., van Dijk, M., Griffin, R., Juels, A., Oprea, A., Rivest, R.L., Trian-
dopoulos, N.: Defending against the unknown enemy: Applying flipIt to system
security. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp.
248–263. Springer, Heidelberg (2012)

2. cnet.com: Comodo hack may reshape browser security (April 4, (2011),
http://news.cnet.com/8301-31921_3-20050255-281.html

3. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FlipIt: The game of “stealthy
takeover”. Cryptology ePrint Archive, Report 2012/103 (2012)

4. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet Dossier (February 2011),
http://www.symantec.com/connect/blogs/w32stuxnet-dossier

3 This complies with the results of the basic FlipIt game for a single resource in [3].

http://news.cnet.com/8301-31921_3-20050255-281.html
http://www.symantec.com/connect/blogs/w32stuxnet-dossier


194 A. Laszka et al.

5. Finkle, J., Shalal-Esa, A.: Hackers breached U.S. defense contractors (May 27,
2011), http://www.reuters.com/article/2011/05/27/us-usa-defense-
hackers-idUSTRE74Q6VY20110527

6. Grossklags, J., Reitter, D.: How task familiarity and cognitive predispositions im-
pact behavior in a security game of timing. In: Proceedings of the 27th IEEE
Computer Security Foundations Symposium, CSF (2014)

7. Kaspersky Lab: Flame. . . the latest cyber-attack (May 2012),
http://www.kaspersky.com/flame

8. Kaspersky Lab: The MiniDuke Mystery: PDF 0-day Government Spy Assembler
0x29A Micro Backdoor (February 2013), http://www.securelist.com/en/blog/
208194129/The_MiniDuke_Mystery_PDF_0_day_Government_Spy_

Assembler_0x29A_Micro_Backdoor

9. Laszka, A., Felegyhazi, M., Buttyán, L.: A survey of interdependent security games.
Tech. Rep. CRYSYS-TR-2012-11-15, CrySyS Lab, Budapest University of Tech-
nology and Economics (November 2012)

10. Laszka, A., Horvath, G., Felegyhazi, M., Buttyán, L.: FlipThem: Model-
ing targeted attacks with FlipIt for multiple resources (extended version),
http://www.crysys.hu/%7Elaszka/papers/laszka2014flipthem.pdf

11. Laszka, A., Johnson, B., Grossklags, J.: Mitigating covert compromises: A game-
theoretic model of targeted and non-targeted covert attacks. In: Proceedings of the
9th Conference on Web and Internet Economics (WINE), pp. 319–332 (2013)

12. Laszka, A., Johnson, B., Grossklags, J.: Mitigation of targeted and non-targeted
covert attacks as a timing game. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M.
(eds.) GameSec 2013. LNCS, vol. 8252, pp. 175–191. Springer, Heidelberg (2013)

13. Mandiant: APT1: Exposing one of China’s cyber espionage units (February 18,
2013), http://www.mandiant.com/apt1

14. Menn, J.: Key Internet operator VeriSign hit by hackers (February 2, 2012),
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-

idUSTRE8110Z820120202

15. Nochenson, A., Grossklags, J.: A behavioral investigation of the FlipIt game. In:
Proceedings of the 12th Workshop on the Economics of Information Security, WEIS
(2013)

16. Pham, V., Cid, C.: Are we compromised? Modelling security assessment games. In:
Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 234–247.
Springer, Heidelberg (2012)

17. Reitter, D., Grossklags, J., Nochenson, A.: Risk-seeking in a continuous game of
timing. In: Proceedings of the 13th International Conference on Cognitive Modeling
(ICCM), pp. 397–403 (2013)

18. Rivner, U.: Anatomy of an attack (April 2011),
http://blogs.rsa.com/anatomy-of-an-attack/

19. Symantec Security Response: W32.Duqu: The Precursor to the Next Stuxnet (Oc-
tober 18, 2011), http://www.symantec.com/connect/w32_duqu_precursor_
next_stuxnet

20. Varian, H.: System reliability and free riding. In: Economics of Information Secu-
rity, pp. 1–15. Springer (2004)

http://www.reuters.com/article/2011/05/27/us-usa-defense-hackers-idUSTRE74Q6VY20110527
http://www.reuters.com/article/2011/05/27/us-usa-defense-hackers-idUSTRE74Q6VY20110527
http://www.kaspersky.com/flame
http://www.securelist.com/en/blog/208194129/The_MiniDuke_Mystery_PDF_0_day_Government_Spy_Assembler_0x29A_Micro_Backdoor
http://www.securelist.com/en/blog/208194129/The_MiniDuke_Mystery_PDF_0_day_Government_Spy_Assembler_0x29A_Micro_Backdoor
http://www.securelist.com/en/blog/208194129/The_MiniDuke_Mystery_PDF_0_day_Government_Spy_Assembler_0x29A_Micro_Backdoor
http://www.crysys.hu/%7Elaszka/papers/laszka2014flipthem.pdf
http://www.mandiant.com/apt1
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://blogs.rsa.com/anatomy-of-an-attack/
http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet
http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet


Secure Message Delivery Games

for Device-to-Device Communications

Emmanouil Panaousis1, Tansu Alpcan2,
Hossein Fereidooni3,�, and Mauro Conti3,�

1 Queen Mary University of London, UK
e.panaousis@qmul.ac.uk

2 The University of Melbourne, Australia
tansu.alpcan@unimelb.edu.au

3 University of Padua, Italy
{hossein,conti}@math.unipd.it
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selection. To this end, we propose the Secure Message Delivery (SMD)
protocol, whose main functionality is determined by the solution of the
Secure Message Delivery Game (SMDG). This game is played between
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instance, to infect a device with malware. Simulation results demon-
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1 Introduction

Nowadays, the vast demand for anytime-anywhere wireless broadband connectiv-
ity has posed new research challenges. As mobile devices are capable of communi-
cating in both cellular (e.g., LTE) and unlicensed (e.g., IEEE 802.11) spectrum,
the Device-to-Device (D2D) networking paradigm has the potential to bring sev-
eral immediate gains. Networking based on D2D communication [1–4] not only
facilitates wireless and mobile peer-to-peer services but also provides energy ef-
ficient communications, locally offloading computation, offloading connectivity
and high throughput.

Another emerging feature of D2D is the establishment and use of multi-hop
paths to enable communications among non-neighboring devices. In multi-hop
D2D communications, messages are delivered from a source to a destination
via intermediate devices, independently of operators’ networks. Relay by device
has been proposed by the Telecommunication Standardization Advisory Group
(TSAG) in the International Telecommunication Union Telecommunication Sec-
tor (ITU-T).

A key question in multi-hop D2D networks is, which route should the origina-
tor of a message choose to send it to an intended destination? To motivate the
application of our model, we emphasize in the need for localized applications. In
particular, these applications run in a collaborative manner by groups of devices
at a location where telecommunications infrastructures:

– are not presented at all, e.g., underground stations, airplanes, cruise ships,
parts of a motorway, and mountains;

– have collapsed due to physical damage to the base stations or insufficient
available power, e.g., areas affected by a disaster such as earthquake;

– are over congested due to an extremely crowded network, e.g., for events in
stadiums, and public celebrations.

Furthermore, relay by device can be leveraged for commercial purposes such
as advertisements and voucher distributions for instance in large shopping cen-
ters. This is considered a more efficient way of promoting businesses than other
traditional methods such as email broadcasting and SMS messaging due to the
immediate identification of the clients in a surrounding area. Home automation
and building security are another two areas that multi-hop message delivery us-
ing D2D communications is likely to overtake our daily life in the near future.
Lastly,multi-hop D2D could be leveraged towards the provision of anonymity
against cellular operators as proposed in [12].

Due to the large number of areas D2D communications are applicable to,
devices are likely to be an ideal target for attackers. Malware for mobile de-
vices evolves in the same trend as malware for PCs. It can spread for instance
through a Multimedia Messaging System (MMS) with infected attachments, or
an infected message received via Bluetooth aiming at stealing users’ personal
data or credit stored in the device. An example of a well-known worm that
propagates through Bluetooth was Cabir [7], which consists of a message con-
taining an application file called caribe.sis. Mabir, a variant of Cabir, was
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spread also via MMS by sending out copies of itself as a .sis file. Van Ruiten-
beek et al. [8] investigated the effects of MMS viruses that spread by sending
infected messages to other devices. In addition, Bose and Shin [9] examined the
propagation of malware that spread via SMS or MMS messages and short-range
radio interfaces while Polla et al. [10] have made a thorough survey on mobile
malware.

1.1 Contributions

In this paper, we assume that each device has some host-based intrusion detec-
tion capabilities (e.g., antivirus). Therefore, a device would be able to detect
malicious application-level events as in [11]. We assume that each device has
its own detection rate which contributes towards the overall detection rate of
the routes that this device is on. To increase the level of security of a mes-
sage delivery, the route with the highest detection capabilities must be selected
to relay the message to the destination. Apart from security, energy consump-
tion is of crucial importance because devices (e.g., smartphones) usually impose
strict energy constraints. This becomes more important due to the limited CPU
and memory capabilities that devices have, which entail higher energy cost as
opposed to cases where no message inspection takes place.

In this paper, we propose the Secure Message Delivery (SMD) protocol. The
primary objective of this protocol is to choose the most secure path to deliver a
message from a sender to a destination in a multi-hop D2D network. SMD can
work on top of underlying physical and MAC layer protocols [5, 6]. Apart from
security, SMD respects the energy costs and Quality-of-Service (QoS) of each
route. This happens by giving certain weights to each of the involved parameters
(security, energy, QoS) with more emphasis to be put on security.

We formulate Secure Message Delivery Games (SMDGs) in order to derive
an optimal behavior for the SMD. In these games, one or more adversaries,
abstracted by the attacker, aim at increasing the security damage, incurred to the
defender (i.e., network), by injecting malicious messages into the D2D network.
On the other hand, the defender chooses the “best route” for message delivery.
In SMDGs, the utility of the defender is influenced by: (i) the probability of
the delivered message to be correctly classified as malicious or benign before
it is delivered to the intended destination; (ii) the energy cost associated with
message forwarding, and message inspection on relay devices during message
delivery; and (iii) the QoS of the message communications on the chosen D2D
path.

The remainder of this paper is organized as follows. Section 2 summarizes
the most relevant related work within the intersection of game theory, security
and mobile distributed networking. In Section 3 we present the system model
whilst Section 4 formulates the SMDGs and it provides their solutions. In Section
5 the SMD routing protocol for D2D networks is described. We present some
preliminary simulation results in Section 6 for different number and types of
malicious messages distributions, and different D2D network profiles. Section
7 concludes this paper by summarizing its main contributions, limitations and
highlighting our plans for future work.
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2 Related Work

The papers we discuss in this section have used game theory in favor of secu-
rity in mobile distributed networks. These address different challenges including
secure routing and packet forwarding [13,27,29–31], trust establishment [15,27],
intrusion detection [15,21,23,24,26], and optimization of energy costs [17–19,22].

In [27], Sun et al. presented an information theoretic framework to evaluate
trustworthiness in ad hoc networks and to assist malicious detection and route
selection. According to their mechanism, a source node chooses a route to send
a message to a destination by looking up the packet-forwarding nodes’ trustwor-
thiness, and selecting the most trustworthy route. Yu et al. examined, in [29], the
dynamic interactions between “good” nodes and adversaries in mobile ad hoc
networks (MANETs) as secure routing and packet forwarding games. They have
derived optimal defense strategies and studied the maximum potential damage,
which incurs when attackers find a route with maximum number of hops and
they inject malicious traffic into it. Extension of the previous work is presented
in [31], where Yu and Liu examined the issues of cooperation stimulation by
modeling the interactions among nodes as multi-stage secure routing and packet
forwarding games. In [30], the same authors focused on a two-player packet for-
warding game stating that nodes must not help their opponents more than their
opponents has helped them back. Felegyhazi et al. have studied in [13] the Nash
equilibria of packet forwarding strategies with TFT (Tit-For-Tat) punishment
strategy in a repeated game.

In [17], the authors presented a Bayesian hybrid detection approach to pre-
serve the energy spent for intrusion detection. In the proposed static game, the
defender fixes the prior probabilities about the types of his opponent. The dy-
namic game allows the defender to update his belief about his opponent’s type
based on new observed actions and the game history. The authors formulated
the attacker/defender game model in both static and dynamic Bayesian game
contexts, and investigated the equilibrium strategies of the two players. Lui et
al. in [18] put forwarded a more comprehensive game framework and they used
cross-feature analysis on feature vectors constructed from the training data to
determine the actions of a potential attacker in each stage game. They proposed
to use the equilibrium monitoring strategies to operate between a lightweight
IDS and a heavyweight IDS. In [19], Marchang et al. proposed a game-theoretic
model of IDS for MANETs. They have used game theory to model the interac-
tions between the IDS and the attacker to determine whether it is essential to
always keep the IDS running without impacting its effectiveness in a negative
manner.

In [23], Patcha et al. provided a mathematical framework to analyze intru-
sion detection in MANETs. They model the interaction between an attacker
and an individual node as a two player non-cooperative signaling game. The
sender could be a regular or a malicious node. A receiving node equipped with
an intrusion detection system (IDS) detects a “message/attack” with a prob-
ability depending on his belief, and the IDS updates the beliefs according to
this message. However, it is not explained how the IDS updates the beliefs
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according to this message. The same authors have also reinforced the suitability
of using game theory for modeling intrusion detection by giving a theoretically
consistent model in [24]. They used the concept of multi-stage dynamic non-
cooperative game with incomplete information to model intrusion detection in a
network that uses host-based IDSs. A cooperative approach is proposed in [21] by
Otrok et al. to detect and analyze intrusions in MANETs. The authors used the
Shapley value to analyze the contribution of each node to the network security
and proposed pre-defined security classes to decrease false positives. They also
considered cache poisoning and malicious flooding attacks. Santosh et al. in [26],
employed game theoretic approaches to detect intrusions and identify anomaly
behaviors of nodes in MANETs. The authors aimed at building an IDS based
on a cooperative scheme to detect intrusions in MANETs using game theoretic
concepts.

In [15], Cho et al. developed a mathematical model to analyze and reveal the
optimal rate to perform intrusion detection related tasks. They enhanced the
system reliability of group communication systems in MANETs given informa-
tion regarding operational conditions, system failures, and attacker behaviors.
They have also discussed to prolong the system lifetime and cope with inside at-
tacks. They proposed that intrusion detection should be executed at an optimal
rate to maximize the mean time to failure of the system.

Finally in [22], Panaousis and Politis present a routing protocol that respects
the energy spent by intrusion detectors on each route and therefore prolonging
network lifetime. However, this protocol does not investigate the effect of differ-
ent malicious messages. It rather takes a simplistic approach according to which
the attacker either attacks or not a route.

As we have seen in this section, a substantial amount of game theoretic mod-
els for security in distributed mobile networks (e.g., mobile ad hoc networks)
have been proposed in the literature. However, none of them addresses all as-
pects of security, QoS and energy efficiency at the same time. Motivated by this
observation, our work contributes to the existing literature by bringing together
these three aspects, under a generic but also customizable model provided by
the SMDGs. Furthermore, our work defines the adversary’s pure strategies to be
a set of different malicious messages. And this is not an aspect of investigation
of papers identified by our literature review. It is worth noting that we con-
sider the work undertaken, in this paper here, as the first step towards a more
complex and advanced game theoretic secure message delivery protocol for D2D
networks.

3 System Model

This section presents our system model and its different components. We as-
sume a multi-hop Device-to-Device (D2D) communication network that extends
a cellular network (e.g., LTE Advanced) as illustrated in Fig. 1.

Data transmission takes place in the application layer in the form of data
units called messages. Any device can be the source (s) of a message and each
message has a final destination (d). When d is not within the transmission range
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Fig. 1. Example of a D2D network

of s, a route must be established to allow message delivery. Therefore, there is
an apparent need for the devices to collaborate to relay messages towards d.

We refer to the i-th mobile device by si, and define the set of all legitimate
mobile devices in a mobile network as S � {si}. When the l-th type of message,
denoted by ml, has to be delivered to a destination device (d), a route must
be chosen by s to serve that purpose. Formally, we denote route j by rj . The
devices on rj must forward ml towards d. We define the set of all routes from s

to d as R � {rj}, and the set of all devices that constitute rj is expressed by Sj .
We denote the set of all different types of messages1 by M. This equals the

union of the set of all malicious undetected messages (Mm), and the set of
all benign messages (Mb). Therefore, M � Mm ∪ Mb. An attack is defined
as the attempt of the attacker to harm d through the delivery of a malicious
message. When ml stays undetected prior to be delivered to d, we say that
it causes harm Hl, which is associated with the damage caused to an asset
that the device holds (e.g., data loss). We also assume that any false alarm has
loss equivalent to F . The security effectiveness of a device against a malicious
message is denoted by δ(si,ml), and it is equivalent to the detection rate of
an attack. The vector Δ(si) � 〈δ(si,m1), . . . , δ(si,mψ)〉 defines all the different
values of security effectiveness of si with regard to the different messages. For
more convenience, Table 1 summarizes the notation used in this paper.

3.1 Collaborative Detection

In our model, the aim of the devices is to detect malicious messages injected
through an entry point into the D2D network. We assume that each device
that receives a message is responsible for inspecting it by using its detection
capabilities to the best level possible. Based on the results of the detection,
the device updates the confusion matrix of the route. This is a right stochastic
matrix, which holds the probability of the different messages being detected

1 Very often, we use the terms types of messages, and messages interchangeably ac-
cording to the context.
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Table 1. Notation

S Set of devices si device i

ml message l h� Maximum possible route
length in hops

s Message source d Message destination
PA Attacker PD Defender
R Set of routes from s to d rj j-th route from s to d

Sj Set of devices on rj M Set of messages
Mm Set of malicious messages Mb Set of benign messages

δ(si,ml)
Security effectiveness of si
against ml

Δ(si) Security effectiveness vector of si

σi Security energy cost of si fi Forwarding energy cost of si

εi
Total message delivery en-
ergy cost of si

ej Total energy cost on rj

T
Lifetime of a Nash mes-
sage delivery plan

E Vector of energy costs, ∀ rj from s to d

hj Number of hops on rj H Vector of hops, ∀ rj from s to d

C(si) Confusion matrix of si C(rj) Confusion matrix of rj
F False alarm loss Hl Security damage if ml undetected
ws Security cost weight wfa False alarm cost weight
we Energy cost weight wq QoS cost weight
D Payoff matrix of PD A Payoff matrix of PA

djl Utility of PD for (rj ,ml) ajl Utility of PA for (rj ,ml)
D∗ Nash message delivery plan r∗ Nash route

correctly, being confused with other messages or being identified as benign. This
matrix type was initially proposed in [28] (p. 100).

Each device that receives a message, follows exactly the same procedure until
the message arrives at d. At this point, the confusion matrix should have taken
the most accurate detection values (ideally is the identity matrix) due to all
inspections undertaken by the devices on this route. Collaborative detection of
a malicious message along a path requires forwarding state information, which
includes results of the inspections previously conducted on the message. This
prevents unnecessary duplication of inspections, thus saving energy.

3.2 Device Confusion Matrix

Given the set of messages M, the linear mapping C(si):M→M describes the
detection capability of si for a message received. This capability is modeled using
a stochastic device confusion matrix as follows:

C(si) � [C(si)
uv ]ψ×ψ, where 0 ≤ C(si)

uv ≤ 1, ∀u, v ∈ {1, . . . , ψ}. (1)

A confusion matrix value C
(si)
uv denotes the probability of a message u being

reported as message v. If mu �= mv, then the device confuses one message for
another. Such misinterpretation is beneficial for the attacker because the attack
associated with the message is not mitigated. If mu ∈ Mm, and mv ∈ Mb,

C
(si)
uv is the probability of the D2D network failing to report an attack. If mu ∈
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Mb, and mv ∈ Mm, then C
(si)
uv is the probability of a false alarm. One of

the objectives of the D2D network must be the confusion matrix to become
the identify matrix (no confusion) by the time a message is delivered to d.
In another sense, if the confusion matrix is the identity matrix, every single
malicious message can be detected before it infects d. However this case is not
likely to be achieved in practice due to, for instance, 0-day vulnerabilities, and
other misclassification errors. To motivate the computation of confusion matrices
we present the following example.

Example 1. Assume S = {s1, s2}, and M = {m1, m2, m3}. Also, m1,m2 ∈
Mm, and m3 ∈ Mb. We also set the false alarm rate equal to 0.05 for both
devices. The security effectiveness vectors are Δ(s1) = 〈0.5, 0.8〉 and Δ(s2) =
〈0.75, 0.6〉. We also assume that none device confuses a malicious message for

another malicious message and therefore C
(rj)
uv = 0, ∀u �= v, mu,mv ∈ Mm.

Then the devices confusion matrices are the following:

C(s1) =

⎛⎝ 0.5 0 0.5
0 0.8 0.2

0.05 0.05 0.9

⎞⎠ , C(s2) =

⎛⎝0.75 0 0.25
0 0.6 0.4

0.05 0.05 0.9

⎞⎠ . (2)

3.3 Route Confusion Matrix

Similarly, given the set of messages M, the linear mapping C(rj) : M → M
describes the final detection capability of the D2D network on rj . This is the
route confusion matrix for rj derived from the confusion matrices of the devices
that constitute this route. In the problem we examine, the order of detectors
does not matter. Therefore, the confusion matrix for each combination can be
computed prior to the message delivery.

An advanced way of deriving the route confusion matrix values is to use a
boosting meta-algorithm such as Adaboost [16]. If we consider that each device
detector is a weak classifier then boosting makes classifiers focusing on data that
was previously misclassified. The underlying concept of Adaboost is that several
weak classifiers can yield a strong classifier. The confusion matrix of a route is a
representation of the weighted classifiers on the devices. It is worth mentioning
here that boosting is effective only when all devices trust each other. For the
boosting scheme to work there is a need for a broadcasting system which updates
the classifiers and pre-sets confusion matrices for the combination of detectors.
Nevertheless, such a system has to be implemented anyway for updating virus
signatures and anomaly detector parameters. Thus, the update of the classifiers
can be piggybacked on top of them.

A“naive” alternative to boosting can be a linear combination algorithm where
each device contributes linearly to the final route detection capability by some
weight determined by characteristics of the route (e.g.,#hops).
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3.4 Energy Costs and QoS

Each time a device receives a message it spends energy: (i) to detect any sign
of malice (security energy cost, σi) and (ii) to forward a message towards d

(forwarding energy cost, fi). The former is determined by all required intrusion
detection tasks undertaken during message inspection. The second is related to
the energy spent for relaying the message towards the next-hop on the route
from s to d. We denote by εi the secure message delivery cost incurred to a
device during message delivery. Formally, we have that ∀si ∈ S : εi � σi + fi.

The total route energy cost on rj , when a message is delivered over rj , is
denoted by ej, and it is derived by ej =

∑
si∈Sj

εi. The energy costs of all routes

between s and d are given by the vector E � 〈e1, . . . , eξ〉.
Apart from security and energy efficiency, QoS is an important consideration

when deciding upon message delivery. We denote by hj the number of hops on

rj . In this paper, we measure the QoS of a route as hj/h
�, where h� � NS − 1,

and NS is the total number of devices in the D2D network. The number of hops
of all routes r1, . . . , rξ from s to d are given by H � 〈h1, . . . , hξ〉.

In this paper, we assume a best effort message delivery service without ac-
knowledgments. Along with having higher end-to-end delay due to this assump-
tion, as the number of hops increases the probability of a message to be lost is
higher. This is due to mobility, which is meant to be common in D2D networks.
It is worth noting here that our model does not consider real-time multime-
dia communications because they require higher bandwidth than what a typical
multi-hop D2D network provides.

3.5 Network Profiles

To allow the expression of different network profiles, we have defined an impor-
tance costs vector [ws, wfa, we, wq]. By ws, we denote the security importance
weight which accounts for the level of importance the defender gives to some
expected security damage (e.g., data theft); wfa is the importance of the false
alarm cost (i.e., cost for dropping an innocent message); we is the importance
that the defender places into the energy cost which can influence the network
lifetime and speed up network fragmentation; and wq is the importance of the
QoS for the defender which accounts for the message success delivery rate and
end-to-end delay. This vector allows the network designer to define their net-
work profile based on their requirements, measured in terms of security, energy
preservation, and QoS.

4 Secure Message Delivery Games

In this section, we use game theory to model the interactions between a D2D
network (the defender) and any adversarial entity (the attacker). The latter
aims at launching an attack against a device by sending a malicious message to
it through the network’s entry point as depicted in Fig. 1. Formally, we define
the set of players as P � {PD, PA}.
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The objective of PD is to securely deliver a message to the intended desti-
nation d. By secure delivery we refer to the message being relayed through the
network and collaboratively inspected by the devices on its way to d, in order to
mitigate any security risk inflicted by PA. Therefore the security objective of PD

is to correctly detect and filter out malicious messages before they reach their
destination. Every request for message delivery to d defines a Secure Message
Delivery Game (SMDG).

4.1 Game Characterization

The SMDG is a non-cooperative two-person zero-sum game. The explanation
to the zero-sum nature of SMDG is that we have assumed that the attacker
aims at inflicting the highest possible damage to the defender. We could model
a game where the benefit of the attacker is smaller than the loss of the defender.
However, we have left this for future work along with the investigation of different
attacker profiles that are associated with different payoffs.

The defender primarily aims at delivering the message securely to d while the
attacker aims at infecting d with some malware attached to a malicious message
as we mentioned previously. The SMDG is a repeated game since players make
their decisions once for a pair of 〈d, T 〉, where T is a predefined timeout, and d

is the destination device for which the game is played. Afterwards, they repeat
the game for either every other destination or when T expires. The value of T
may depend on the devices’ mobility. For instance, high mobility dictates small
T in order valid routes to be discovered.

In SMDG, the players make their decisions concurrently without any order
of play. However, an order of play can be imposed as an alternative where the
attacker becomes the leader and the defender the follower of a Stackelberg game.
Nevertheless, this consideration is out of the scope of this paper.

4.2 Strategies and Payoffs

The pure strategies of PD consists of all routes from s to d. Therefore, the action
set of PD is defined as AD � R = {r1, r2, . . . , rξ}. On the other hand, the pure
strategies of PA are the different messages that PA can choose to send to d. A
message can be one of the following:

{malicious1, . . . , maliciousn, harmless, surveillance} (3)

Then, the finite action set of the attacker is defined as:

AA �M = {m1, . . . ,mψ} = {m1, . . . ,mn} ∪ {harmless, surveillance}.

We denote by Gd � 〈D,A〉 an ξ × ψ bi-matrix game where the PD (i.e., row
player) has a payoff matrix D ∈ Rξ×ψ and the payoff matrix of PA (i.e. the
column player) is denoted by A ∈ Rξ×ψ.
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PD chooses as one of their pure strategies one of the rows of the payoff bi-
matrix (D,A) � (dj,l, aj,l)(rj ,ml)∈[ξ]×[ψ]. For any pair of strategies, (rj ,ml) ∈
[ξ]× [ψ], PD, PA have payoff values equivalent to dj,l and aj,l, respectively. The
payoff of the defender for a given pair of players’ pure strategies (rj ,ml) follows:

UD(rj ,ml) � dj,l � −ws(1− C
(rj)
ll )Hl − wfa(1 − C

(rj)
ll )F − weej − wqhj . (4)

Generally, the first term is the expected security damage (e.g., data theft) in-
flicted by the attacker due to malicious messages being undetected while the
second term expresses the expected cost of the defender due to false alarms.
This accounts for benign messages that are dropped due to being detected as
malicious. The next to last term is the energy cost of the defender when mes-
sage delivery takes place over rj while the last term expresses the expected QoS
experienced on this route. Since players act independently, we can enlarge the
strategy spaces, so as to allow the players to base their decisions on the outcome
of random events. Therefore we consider the mixed strategies of both PD and
PA. The mixed strategyD � [q1, . . . , qξ] of the defender is a probability distribu-
tion over the different routes from s to d, where qj is the probability of delivering
a message via rj . We refer to a mixed strategy of PD as the message delivery

plan. On the other hand, the attacker’s mixed strategy A � [p1, . . . , pψ] is a
probability distribution over the different messages, where pl is the probability
of choosing ml.

When considering mixed strategies, the defender’s objective is quantified by
the utility function:

UD(D,A) =

ξ∑
j=1

ψ∑
l=1

qjdj,l pl = −ws[
∑

ml∈Mm

∑
rj∈R

qj (1− C
(rj)
ll ) plHl] −

wfa [
∑

ml∈Mb

∑
rj∈R

qj (1− C
(rj)
ll ) pl F ] − weDET − wqDHT , (5)

where j ∈ {1, . . . , ξ}, l ∈ {1, . . . , ψ}.

Because SMDG is a zero-sum game, the attacker’s utility is given by UA(D,A) =
−UD(D,A). This can be interpreted as, the attacker can cause the maximum
damage to the defender.

4.3 Nash Equilibrium

SMDG is a two-person zero-sum game with finite number of actions for both
players, and according to Nash [20] it admits at least a Nash Equilibrium (NE)
in mixed strategies. Saddle-points correspond to Nash equilibria as discussed
in [28] (p. 42).

The following result, from [14], establishes the existence of a saddle (equilib-
rium) solution in the games we examine and summarizes their properties.

Theorem 1 (Saddle point of the SMDG). The Secure Message Delivery
Game defined admits a saddle point in mixed strategies, (D∗,A∗), with the prop-
erty that
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D∗ = argmax
D

min
A

UD(D,A), ∀A and A∗ = argmax
A

min
D

UA(D,A), ∀D.

Then, due to the zero-sum nature of the game the following holds:

max
D

min
A

UD(D,A) = min
A

max
D

UD(D,A).

The pair of saddle point strategies (D∗,A∗) are at the same time security strate-
gies for the players, i.e., they ensure a minimum performance regardless of the
actions of the other. Furthermore, if the game admits multiple saddle points
(and strategies), they have the ordered interchangeability property, i.e., the player
achieves the same performance level independent from the other player’s choice
of saddle point strategy.

Our results can be extended to non-zero sum, bi-matrix games. In the latter
case, the existence of a NE is also guaranteed, but the additional properties hold
only in the case where the attacker’s utility is a negative affine transformation
(NAT) of the defender’s utility.

Definition 1. The Nash message delivery plan, denoted by D∗, is the probability
distribution over the different routes, as determined by the NE of the SMDG.

The minimax theorem states that for zero sum games NE and minimax so-
lutions coincide. Therefore, D∗ = argminD maxA UA(D,A). This means that
regardless of the strategy the attacker chooses, the Nash message delivery plan
is the defender’s security strategy that guarantees a minimum performance.

We can convert the original matrix game into a linear programming (LP)
problem and make use of some of the powerful algorithms available for LP to
derive the equilibrium. For a given mixed strategy D of PD, PA can cause
a maximum damage to PD by injecting a message m̂ into the D2D network.
In that case, the utility of PD is minimized and it is denoted by UD(D, m̂)
(i.e.,Umin

D = UD(D, m̂)). Formally, PD seeks to solve the following LP:

max
D

UD(D, m̂ )

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

UD(D,m1)− UD(D, m̂)e ≥ 0
...

UD(D,mψ)− UD(D, m̂)e ≥ 0

De = 1

D ≥ 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑ξ
j=1 qjdj,1 − UD(D, m̂)e ≥ 0

...∑ξ
j=1 qjdj,ψ − UD(D, m̂)e ≥ 0

De = 1

D ≥ 0

In this problem, e is a vector of ones of size ξ.

5 The Secure Message Delivery Protocol

In this section, we present the Secure Message Delivery (SMD) routing protocol
whose routing decisions are taken according to the Nash message delivery plan.
SMD increases security in a D2D network by mitigating the risk of adversaries
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harming legitimate devices via, for instance, malware attached to messages. SMD
has been designed based on the mathematical findings of the SMDG and its main
goal is to maximize UD(D,A).

According to SMD, each time a request for message delivery to d is issued,
s has to compute the Nash message delivery plan by solving an SMDG for this
destination. To this end, the device uses its latest information about confusion
matrices, QoS and energy costs. Then, the message is relayed and collaboratively
inspected by the devices on its way to d. The objective of the network (i.e., PD)
is to correctly detect and filter out malicious messages before they infect d.

5.1 SMD Considerations

The SMD protocol takes routing decisions that increase the probability of detect-
ing malicious messages. Apart from security, SMD utilizes standard approaches
to take into account (i) the energy costs resulting from message forwarding and
inspection, and (ii) the QoS of the chosen route. According to SMD, the devices
maintain routing tables with at least three metrics per route:

– the route confusion matrix,
– the total expected energy cost on this route and,
– the shortest path in terms of number of hops (i.e., QoS).

If the only factor affecting the routing decision was security, then the route with
the highest detection capability would be always chosen. This would result to
a faster depletion of this route’s energy as opposed to when a combination of
different routes is chosen. Consequently, the D2D network would suffer fragmen-
tation across the entire topology and consequently security would be reduced.
This is the motivation behind considering energy costs upon path selection. Nev-
ertheless, while the shortage of a device’s battery can be solved by, for example,
by using mobile solar cells as discussed in [4], and QoS might not be so much of a
concern for message communications, secure message delivery remains a critical
issue.

The formulation of the defender’s utility function allows a device to decide
how important the expected QoS and energy costs are compared to the expected
security damage. For instance, the defender can decide to set the energy costs
equal to 0 when a constant source of energy supply is available or to give a higher
importance to security losses than QoS.

Due to the best effort nature of the communications (as a result of the multi-
hop environment) the higher the number of hops (i.e., QoS) of a route the more
likely a message is to be lost during its delivery via that route. QoS accounts
for a successful message delivery rate and therefore the defender might never
really want to ignore it. In general, SMD allows network designers to customize
the protocol based on the network profile of the D2D network. In any case, all
defender’s preferences are reflected to the Nash message delivery plan.
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5.2 Routing

Getting inspired by the functionalities of the well-known Dynamic Source Rout-
ing (DSR) [25] routing protocol, SMD consists of two main stages.

SMD - Stage I. In the first stage, s broadcasts a Route REQuest (RREQd)
to discover routes towards d. Each device that receives a RREQd acts similarly
by broadcasting it towards d and caches relevant information (i.e., originator of
the request, ID of the RREQd). When d receives a RREQd, it prepares the RREPd
and sends it back towards s by using the reverse route which is built during
the delivery of RREQd to d. Each RREPd carries information about the route. This
information includes the route confusion matrix (E1), the total energy costs due
to inspection and forwarding on this route (E2), and the total number of hops
(E3). All three fields are updated while the RREPd is traveling back to s.

Each device, involved in route discovery, that receives RREPd, it updates E1

by using boosting (e.g., Adaboost) or simply a linear combination algorithm
without learning features. The same device (e.g., si) updates E2 by adding its
total energy cost εi to the route energy cost. Lastly, E3 is increased by 1 in every
hop from s to d.

Data: s, d,ml

Result: ml delivered
Stage 1:
s seeks for a route to d by broadcasting RREQd
if device si receives RREQd then

if si �= d then
s ← si
Execute Algorithm 1

else
Send an RREPd back towards s using the reverse route rj

end

end
Stage 2:
if device si receives RREPd then

if si �= s then

Update C(rj), ej, hj
Attach 〈C(rj), ej, hj〉 to the RREPd
Relay RREPd back towards s

else

Cache 〈C(rj), ej, hj〉 to the routing table
break;

end

end
s: Derive the Nash message delivery plan D∗

s: Choose r∗ probabilistically as dictated by D∗

s: Deliver ml to d over r�

Algorithm 1. SMD Stages
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According to SMD, after s sends a RREQd it has to await for some timeout
Treq. Within this period s aggregates RREPd messages and updates its routing
table with information from those messages.

SMD - Stage II. In the second stage, s uses its routing table to solve the
SMDG by computing the Nash message delivery plan D∗. The latter has a
lifetime equivalent to T , as defined earlier. Then, s probabilistically selects a
route according to D∗ to deliver the message to d. The chosen route is called
the Nash route and it is denoted by r∗. Note that for the same d and before
T expires, s uses the same D∗ to derive r∗, upon a message delivery request.
Algorithm 1 summarizes the main SMD functionalities.

It is worth noting here that the complexity of the SMD protocol measured
in terms of the number of messages exchanged in performing route discovery is
O(2NS), where NS is the total number of devices in the D2D network.

6 Performance Evaluation

6.1 Simulation Parameters

In this section, we evaluate the performance of SMD by simulating 30 devices and
6 routes between s and d. The number of devices per route is selected randomly
and the maximum number of devices per route has been set to 10. The number
of malicious messages vary from 2 to 20 with an incremental step of 2.

We consider different network profiles to assess the performance of the SMD
protocol. Note here that the network profile refers to the preference of the D2D
network in terms of security (i.e., risk appetite), QoS (i.e., delay in message de-
livery), energy cost (i.e., spent for message inspection and message forwarding),
and false alarm (probability of dropping benign messages) as determined by the
cost importance vector.

We have used a uniform random generator to create the security effective-
ness values for all devices. From these values the simulator creates all devices’
confusion matrices. Then, we derive the route confusion matrices by using the
Algorithm 2. Note that Algorithm 2 is executed by each device at the step of
Algorithm 1 where C(rj) is updated. This is a linear algorithm (less efficient
than boosting due to lack of learning features) which allows us to get some pre-
liminary results about the performance of SMD. This algorithm implements a
weighted method according to which each device contributes to the route security
effectiveness by

Table 2. The importance cost vectors used in our simulations

Network Profile ws wfa we wq Network Profile ws wfa we wq

Security 10 0.5 0 0
Security & Energy

Efficiency
5 0.5 5 0

Security & QoS 5 0.5 0 5
Security & QoS &

Energy Efficiency
4 0.5 3 2.5
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(Device security effectiveness) × (1/Maximum number of hops in the network).

The final route detection capability not only depends on the detection capa-
bility of each device on the route but also on the number of devices. As a result
of this, the longer a route is the better its final security effectiveness.

After the route confusion matrices have been derived, the simulator computes
the Nash message delivery plan for each of the network profiles presented in Table
2. We evaluate the performance of SMD by measuring the defender’s expected
cost when s uses SMD instead of a shortest path routing protocol. According to
the latter, s chooses the path with the minimum number of hops to d. For each
message delivery and protocol used we compute the defender’s total expected
cost which includes security, false alarm, energy and QoS costs.

Data: C(si), C(rj)

Result: Updated C
(rj)
uv

for u ∈ M do
for v ∈ M do

if u ∈ Mm then
if v == u then

C
(rj)
uv ← C

(si)
uv /h� + C

(rj)
uv

end
if v ∈ Mb then

C
(rj)
uv ← 1− C

(rj)
uu

else
// probability a malicious message u to be confused

with another malicious message

C
(rj)
uv ← 0

end

end
if u ∈ Mb then

if v /∈ Mb then
// fa: device false alarm rate

C
(rj)
uv ← fa/h

� + C
(rj)
uv

froute
a ← C

(rj)
uv

else
// froute

a : route false alarm rate

C
(rj)
uv ← 1− froute

a

end

end

end

end

Algorithm 2. How a device si updates the route confusion matrix

We have considered 10 Cases each representing a different attacker’s action
set akin to different number of available malicious messages namely; 2, 4, . . . , 20.
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For each Case we have simulated 1,000 message deliveries for a fixed network
topology and we refer to the run of the code for the pair 〈Case,#message
deliveries〉 by the term Experiment. We have repeated each Experiment for 25
independent network topologies to compute the standard deviation. We do that
for all 10 Cases and each type of attacker profile.

In this paper we consider 2 different attacker profiles; Uniform and Nash. A
Uniform attacker chooses any of the available messages with the same probability
whilst a Nash attacker plays the attack mixed strategy given by the NE of the
SMDG. Therefore, we have totally simulated

10 (Cases) × 1,000 (Message deliveries) × 25 (Runs of each experiment) × 2
(Attacker profiles) = 500,000 Message deliveries.

Per message delivery, the simulator chooses an attack sample from the attack
probability distribution which is determined by the attacker profile. The simula-
tor aggregates the cost values of each Experiment for both SMD and the shortest
path routing protocol.

6.2 Simulation Results

We have plotted the improvement on the total expected defender’s cost when
SMD is chosen as opposed to the shortest path routing protocol. The plots
illustrate different number of available malicious messages, attacker profiles and
importance cost vectors, in Figures 2 and 3.

From both figures we notice that SMD outperforms the shortest path routing
protocol with the highest improvement to be achieved under the “Security” net-
work profile. From Fig. 2 we notice that the average values of this improvement
fluctuate approximately within the range [30%, 43%]. The second best perfor-
mance is achieved under the “Security & QoS” network profile and it is only
slightly better than the improvement we get under the “Security and Energy

Efficiency” profile. The lowest improvement is noticed under the “Security &

QoS & Energy Efficiency” network profile with the mean values to be within
the range [10%, 18%]. We notice the same trends for a Nash attacker as illus-
trated in Fig. 3. One difference in the results is that under the network pro-
file Security & QoS the difference in improvement compared to the Security

& Energy Efficiency is more pronounced as opposed to the scenarios with a
Nash attacker. We also notice that for all network profiles SMD improves the de-
fender’s expected cost in a greater degree in the presence of a Uniform Attacker
rather than a Nash attacker although the defender chooses the Nash routing
plan in either cases (since it minimizes the maximum potential cost inflicted by
the attacker). This is due to the attacker maximizing the minimum defender’s
expected cost at the NE as stated in Theorem 1. On the other hand, the uniform
attacker follows a naive distribution to inject different messages into the D2D
network and therefore achieving a worse performance than the Nash attacker.

As a generic comment, the more focused objectives SMD has the higher the
improvement of the defender’s expected cost is, compared to a shortest path
protocol. We also notice that the standard deviation is large in all Experiments.



212 E. Panaousis et al.

Fig. 2. Simulation results in presence of a uniform attacker

Fig. 3. Simulation results in presence of a Nash attacker

This can be explained by looking at the results from the different Experiments in
more detail. By doing so, we noticed that occasionally the same routes are chosen
by both SMD and the shortest path routing protocol. This can be explained by
the number of available routes being only 6 in our simulations here. The generic
trends demonstrate the improvement that SMD introduces even without the
use of a boosting algorithm. These preliminary results are promising and we
have plans for further investigations when a boosting algorithm (e.g., Adaboost)
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is used and a larger number of devices and routes are given. In addition, we
are planning to examine different mobility levels and see how these affect the
expected defender’s cost under different network profiles with SMD.

7 Conclusions

In this paper we have investigated secure message delivery for device-to-device
networks in a hostile environment with possible malicious behavior. We have
formulated Secure Message Delivery Games (SMDGs) to study the interactions
between the defender (i.e., device-to-device network), and different adversaries,
which are abstracted by the player called attacker. The defender seeks the “best
route” to deliver a message from a source device to a destination device whilst
the latter aims to harm the destination with mobile malware attached to a
message. The defender solves an SMDG to derive the Nash message delivery plan
(i.e., Nash mixed strategy). Then, the defender probabilistically chooses a route
according to this plan and delivers the message to the destination. Due to the
multi-hop nature of the network, intermediate devices relay the message towards
the destination. Apart from forwarding, the relaying devices are responsible for
the inspection of the message to identify malicious signs and therefore providing
security for the D2D message communications.

We have proposed the Secure Message Delivery (SMD) routing protocol which
takes routing decisions according to the Nash message delivery plan. Apart from
security, the protocol respects energy costs and end-to-end delay with the ability
to be customized to consider each objective at a different degree. We have un-
dertaken simulations to show how much SMD improves the defender’s expected
utility compared to a shortest path routing protocol. We believe this improve-
ment will be more pronounced when we implement boosting techniques for the
computation of the final intrusion detection capabilities (i.e., confusion matri-
ces) of the routes. We have also plans to take into account the remaining energy
of each route in the utility function of the defender, and investigate the impact
of mobility to the results. Lastly, future work will consider a network-wide ex-
tension of the per-message game where the attacker aims to spread a mobile
malware while the defender is attempting to stop it.
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Abstract. In this paper, we formulate a three-player three-stage Colonel
Blotto game, in which two players fight against a common adversary. We
assume that the game is one of complete information, that is, the players
have complete and consistent information on the underlying model of the
game; further, each player observes the actions taken by all players up to
the previous stage. The setting under consideration is similar to the one
considered in our recent work [1], but with a different information struc-
ture during the second stage of the game; this leads to a significantly
different solution.

In the first stage, players can add additional battlefields. In the
second stage, the players (except the adversary) are allowed to transfer
resources among each other if it improves their expected payoffs, and
simultaneously, the adversary decides on the amount of resource it allo-
cates to the battle with each player subject to its resource constraint. At
the third stage, the players and the adversary fight against each other
with updated resource levels and battlefields. We compute the subgame-
perfect Nash equilibrium for this game. Further, we show that when play-
ing according to the equilibrium, there are parameter regions in which (i)
there is a net positive transfer, (ii) there is absolutely no transfer, (iii)
the adversary fights with only one player, and (iv) adding battlefields
is beneficial to a player. In doing so, we also exhibit a counter-intuitive
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property of Nash equilibrium in games: extra information to a player
in the game does not necessarily lead to a better performance for that
player. The result finds application in resource allocation problems for
securing cyber-physical systems.

1 Introduction

The Colonel Blotto game is a complete-information static non-cooperative two-
player game, in which two resource-constrained players fight against each other
on a fixed number of battlefields. The players decide on the allocation of resources
on each battlefield subject to their resource constraints. On each battlefield, the
player deploying the maximum resource is declared the winner of that battlefield
and accrues certain payoff. The goal of each player is to maximize the expected
total number of battlefields that he/she wins.

The setup of the Colonel Blotto game is found naturally in several engineering
and economic systems. Consider, for example, a data center with multiple servers
under attack from a hacker. Each server can be viewed as a battlefield with the
data center and the hacker viewed as the two players. Each player has limited
computational resource to deploy – the data center deploys resource for securing
the servers, and the hacker deploys resource for hacking the servers. The resulting
game is captured by the Colonel Blotto game. Similarly, the competition between
two research companies that are deploying their resources in different projects
can also be analyzed within the framework of the Colonel Blotto game.

The Colonel Blotto game in which both players have equal resources and
there are three battlefields was first solved in [2]. This result was later extended
to the case of symmetric resources and arbitrary number of battlefields in [3].
In the same paper, the authors computed the Nash equilibrium for the case
of asymmetric resources and two battlefields. However, Colonel Blotto game
with asymmetric resources and three or more battlefields remained open until
2006, when Roberson established the existence of a Nash equilibrium in mixed
strategies, and computed the (mixed) equilibrium strategies of the players in [4].
A similar setup was also considered in [5], in which the resource levels of both
players were considered to be equal.

The work of Roberson sparked great interest in the field; numerous theoretical
extensions of the game followed after 2006. In particular, [6] and [7] considered
two-stage Colonel Blotto games. In [6], the authors identified situations in which
adding battlefields during the first stage of the game is beneficial to the play-
ers. In [7], the authors considered a three-player Colonel Blotto game, in which
the first two players fight against a common adversary. They have identified
conditions under which forming a coalition could be beneficial to both players.
However, they do not obtain a Nash equilibrium of the game.

Applications of the Colonel Blotto game have also received attention. Refer-
ences [8] and [9] studied phishing attacks and defense strategies over the internet.
References [10] and [11] conducted experimental studies of the Colonel Blotto
game with human subjects, and proposed a novel decision procedure, which
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the authors called multi-dimensional reasoning. Another interesting experimen-
tal paper is [12], where the authors study social interactions using a Facebook
application called “Project Waterloo”, which allows users to invite both friends
and strangers to play Colonel Blotto against themselves.

Recently, we have formulated in [1] a three-stage Colonel Blotto game with
hierarchical information structure, in which two players fight against a common
adversary. In that paper, the problem formulation was as follows: At the first
stage, the players may add battlefields. At the second stage, the game has a
hierarchical information structure; the players may transfer some resources to
each other, and the adversary has access to the amount of resource transferred.
Based on this information, the adversary decides on its allocation of resources for
the battles against the two players. At the third stage, the adversary fights two
battles against the two players with the updated resource levels and battlefields.
We further assumed that this is a game of complete information, that is, at any
stage, all players including the adversary have access to all the information that
has been generated in the past stage(s), and this is common knowledge.

This paper also considers a similar setup as in [1], but with a different in-
formation structure. In [1], we had assumed that the adversary has access to
the information about the amount of resources that are transferred between the
players during the second stage. In this paper, on the other hand, we assume
that the adversary does not have access to that information. In other words, the
transfer between the two players and the resource allocation of the adversary
towards the two battles happen simultaneously1. This leads to a very different
Nash equilibrium. One of the primary goals of this paper is to underscore the
importance of information structure in the allocation of resources in a class of
Colonel Blotto games. Furthermore, this study also provides insight on “what
information about the formation of a strategic alliance should be made public”
in such games. The information that is made public in a strategic alliance be-
tween two cyber-physical systems may have severe repercussions on the security
and vulnerabilities of those systems if they are attacked by a strategic adversary.
For the setting considered in this paper, if the information about the transfer
between the first two players is provided to the adversary, then the adversary
ends up with a lower total expected payoff. In other words, the first two players
are better off by making the information about their strategic alliance public.

1.1 Outline of the Paper

We formulate the three-stage three-player Colonel Blotto game problem and
identify several outstanding issues in Section 2. Thereafter, we recall the Nash
equilibrium and the equilibrium expected payoffs to the players in the classical
static two-player Colonel Blotto game in Section 3. The discussion in this section

1 In decision problems, when decision makers act simultaneously, then it does not
necessarily mean that they act at the same time instant; it simply means that a
decision maker may not have access to the action of the other decision maker who
may have acted in the past. The two cases require the same analysis.
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is based on [4]. In Section 4, we compute the subgame-perfect Nash equilibrium
of the game formulated in Section 2 for three specific cases. We also discuss and
comment on the Nash equilibrium obtained in that section. We provide some
concluding discussions and state the future directions that the research can take
in Section 5.

Before we discuss the general setup of the game, we introduce a few notations
in the next subsection.

1.2 Notations

For a natural number N , we use [N ] to denote the set {1, . . . , N}. R+ and Z+

denote, respectively, the sets of all non-negative real numbers and non-negative
integers. Let Xi, i ∈ [N ] be non-empty sets. If x1 ∈ X1, . . . , xN ∈ XN are ele-
ments, then x1:N denotes the sequence {x1, . . . , xN}. Similarly, X1:N denotes the
product space X1 × · · · × XN .

2 Problem Formulation

In this section, we formulate a three-player three-stage Colonel Blotto game.
The first two players are fighting against an adversary, call it A, who is the third
player in the game. Henceforth, we use Player 3 and A interchangeably to refer
to the adversary. Each player is endowed with some resources at the beginning
of the game. We use βi and α, respectively, to denote the initial endowment of
the resources of Player i ∈ {1, 2} and the adversary. At the beginning of the
game, for every Player i ∈ {1, 2}, there are ni ≥ 3 battlefields, each with payoff
vi, at which the battle between Player i and the adversary will take place.

During the first stage of the game, each of the first two players may add
additional battlefields at some cost. During the second stage of the game, the
first two players may exchange resources among themselves if it improves their
payoffs, while the adversary decides on the allocation of resources to fight against
the first two players. At the final stage, the players fight against the adversary
with updated battlefields and resources. We consider here a game of complete
and perfect information.

2.1 Information Structures and Strategies of the Players

At the first stage of the game, the players know all the parameters and the model
of the game, and we assume that this is common knowledge. Player i ∈ {1, 2}
decides on mi ∈ Z+, the number of battlefields he/she wants to add to the
existing set of battlefields and pays a total cost of cm2

i . The adversary does not
take any action at the first stage.

At the second stage of the game, all players, including the adversary, observe
the number of battlefields (m1,m2) that were added. At this stage, the first two
players decide on the transfers: Player i chooses a function ti,j : Z2

+ → [0, βi]
which takes the number of battlefields added by the players, (m1,m2), as input,
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and outputs the amount of resource he/she transfers to Player j �= i, where
i, j ∈ {1, 2}. These functions have to satisfy the following constraint:

ti,j(m1,m2) ≤ βi, for all m1,m2 ∈ Z+, j �= i.

The adversary does not observe the transfers among the players, and decides
on functions αi : Z

2
+ → [0, α] with the constraint

α1(m1,m2) + α2(m1,m2) ≤ α, for all m1,m2 ∈ Z
2
+.

We use ri to denote the amount of resource available to Player i ∈ {1, 2} after
the redistribution of resources. This is given by

ri := ri(t1,2, t2,1) = βi + (tj,i − ti,j) i �= j, i, j ∈ {1, 2}.

For a given triple αi, ri ∈ R+ and mi ∈ Z+, let us define the sets

Ai(αi,m1:2) :=

{
{αi,k}ni+mi

k=1 ⊂ R+ :

ni+mi∑
k=1

αi,k = αi(m1,m2)

}
,

Bi(ri,mi) :=

{
{βi,k}ni+mi

k=1 ⊂ R+ :

ni+mi∑
k=1

βi,k = ri(t1,2, t2,1)

}
.

At the final stage of the game, Player i and the adversary play the usual static
two-player Colonel Blotto game on ni +mi battlefields, with Player i having ri
and adversary having αi amounts of resource. Thus, given the resource levels
ri of Player i, i = 1, 2, and αi of the adversary, the action spaces of Player i
and the adversary are, respectively, Bi(ri,mi) and Ai(αi,mi). If ni ≥ 3, then
there is no pure strategy Nash equilibrium of Player i and the adversary at
the final stage. Thus, given the resource levels of the players, Player i and the
adversary, respectively, decide on probability measures μi ∈ ℘(Bi(ri,mi)) and
νi ∈ ℘(Ai(αi,mi)) over their respective action spaces.

Henceforth, we use γi := {γi
1, γ

i
2, γ

i
3} to denote the strategy of Player i ∈

{1, 2, A}, which is defined as follows:

γi
1 := mi, for i ∈ {1, 2},

γ1
2(m1,m2) := {t1,2(m1,m2)}, γ2

2(m1,m2) := {t2,1(m1,m2)},
γA
2 (m1,m2) := {α1(m1,m2), α2(m1,m2)}

γi
3(m1,m2, t1,2, t2,1) := {μi}, i ∈ {1, 2},

γA
3 (m1,m2, t1,2, t2,1) := {ν1, ν2}.

Thus, each γi is a collection of functions; we denote the set of all such γis by Γ i.

2.2 Payoff Functions of the Players

Consider the game between Player i and the adversary at the third stage of the
game. Let us use βi,k and αi,k to denote, respectively, the amounts of resource
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Player i and the adversary deploy on battlefield k ∈ [ni+mi]. On every battlefield
k ∈ [ni + mi], the player who deploys maximum amount of resource wins and
receives a payoff vi. In case of a tie, the players share the payoff equally2. We
let pi,k(βi,k, αi,k) denote the payoff that Player i receives on the battlefield k,
which we take to be given by

pi,k(βi,k, αi,k) =

⎧⎨⎩
vi βi,k > αi,k,
vi
2 βi,k = αi,k,
0 otherwise,

for i ∈ {1, 2} and k ∈ [ni +mi]. The payoff to the adversary on a battlefield k
in the battle with Player i is given by

pAi,k(βi,k, αi,k) = vi − pi,k(βi,k, αi,k).

We take the expected payoff functionals of Player i and the adversary as

πi(γ
1:3) = E

[
ni+mi∑
k=1

pi,k(βi,k, αi,k)

]
− cm2

i , i ∈ {1, 2},

πA(γ
1:3) = E

[
2∑

i=1

ni+mi∑
k=1

pAi,k(βi,k, αi,k)

]
,

where the expectation is taken with respect to the probability induced on the
random variables {βi,k, αi,k}i,k by the choice of strategies of the players in the
game. The model of the game and the payoff functions are common knowledge
among the players. The Colonel Blotto game formulated above is referred to as
CB(n, β, α, v, c).

We now define the Nash equilibrium of the game formulated above. The set of
strategy profiles {γ1�, γ2�, γA�} is said to form a Nash equilibrium of the game
if it satisfies

πi(γ
1:2�, γA�) ≥ πi(γ

i, γ−i�, γA�), i ∈ {1, 2}
πA(γ

1:2�, γA�) ≥ πA(γ
1:2�, γA)

for all possible γi ∈ Γ i, i ∈ {1, 2, A}, where γ1:2 := {γ1, γ2}.
The set of all subgame-perfect Nash equilibria (SPNE) of a complete infor-

mation game is a subset of all Nash equilibria of the game, and they can be
obtained using a dynamic programming type argument (for precise definition,
see [13]). In Section 4, we compute the SPNE of the game formulated above.

2 It should be noted that if players play according to the Nash equilibrium strategies on
the battlefields, then the case of both players having equal resource on a battlefield
has a measure zero. Therefore, in equilibrium, the tie breaking rule does not affect
the equilibrium expected payoffs.
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2.3 Research Questions and Solution Approach

At the outset, it is not clear what kind of solution we would expect in such
a game. We are particularly interested in investigating the conditions on the
parameters of the game, under which the following scenarios are possible:

1. There is a positive transfer from one player to another. Since this is a non-
cooperative game, the transfer should increase or maintain the payoffs to
both players - the player who transfers resources and the player who accepts
the transfer.

2. There is no transfer among the players at the second stage.

3. The adversary allocates all its resource to fight only one player.

4. The players have an incentive to add new battlefields.

We first recall some relevant results on the two-players static Colonel Blotto
game from [4]. Solving the general problem formulated above is somewhat diffi-
cult due to the discontinuity of the expected payoff functions in the endowments
of the players in the static game. Therefore, we restrict our attention to a sub-
set of all possible parameter regions in order to keep the analysis tractable. We
compute the parameter regions which feature the scenarios listed above.

3 Relevant Results on the Static Two-Player Colonel
Blotto Game

In this section, we recall the two-player Colonel Blotto game considered in [4].
The setting is that of two agents, and for clarity, we call them agents in this
section. Agent i ∈ {1, 2} is endowed with certain amount of resources, denoted
by ri ∈ R+. There is a total of n battlefields over which the agents fight. Define
Ri := {a ∈ Rn

+ :
∑n

k=1 ak ≤ ri} and let ∂Ri be the boundary of the region Ri.
The action space of Agent i is Ri. Each agent decides on a mixed strategy over
its action space, that is, a probability distribution over its action space, denoted
by μi ∈ ℘(Ri).

On each battlefield, the agent who deploys maximum resources wins, and
accrues a payoff denoted by v ∈ R+

3. In case both agents deploy equal amount
of resources, then each accrue a payoff of v

2 .

For a strategy of Agent i, μi, let Prk#μi denote the marginal of μi on the

kth battlefield. Since any agent winning a battlefield is dependent only on the
amount of resources deployed by both agents, for a given strategy tuple of the
agents (μ1, μ2), the expected payoff to Agent i on battlefield k ∈ [n] is dependent
solely on the marginal distributions (Prk#μ1,Pr

k
#μ2).

For this game, we assume that all the parameters defined above is common
knowledge among the agents. We denote this game by SCB({1, r1}, {2, r2}, n, v).
Let us now recall the following result from [4].

3 Typically, v is taken to be 1
n
in the static Colonel Blotto game.
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Theorem 1. For the static Colonel Blotto game SCB({1, r1}, {2, r2}, n, v) with
n ≥ 3, there exists a Nash equilibrium (μ�

1, μ
�
2) with unique payoffs to each agent.

The set of all Nash equilibria of the game SCB({1, r1}, {2, r2}, n, v) is denoted
by NE(SCB({1, r1}, {2, r2}, n, v)). Note that we do not claim uniqueness of Nash
equilibrium of the game SCB({1, r1}, {2, r2}, n, v). However, for any i ∈ {1, 2},
there exists a unique measure ν ∈ ℘([0, ri]) such that if μ�

i and μ̃�
i are two Nash

equilibrium strategies of Agent i, then Prk#μ
�
i = Prl#μ̃

�
i = ν for all l, k ∈ [n]. In

other words, the marginals on any two battlefields under any two equilibrium
strategies for a agent are the same, and this marginal is unique.

We have the following result on the expected payoffs of the agents when play-
ing under Nash equilibrium strategies in the game SCB({1, r1}, {2, r2}, n, v).

Lemma 1. Consider the static Colonel Blotto game SCB({1, r1}, {2, r2}, n, v)
with n ≥ 3. Let P i(SCB({1, r1}, {2, r2}, n, v)) denote the expected payoff to
Agent i when both agents act according to Nash equilibrium strategies. If r1 and
r2 are such that 1

n−1 ≤
r1
r2
≤ n− 1, then the expected payoffs to the agents under

Nash equilibrium strategies (μ�
1, μ

�
2) are

P 1(SCB({1, r1}, {2, r2}, n, v)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nv
(

2
n −

2r2
n2r1

)
if 1

n−1 ≤
r1
r2

< 2
n

nv
(

r1
2r2

)
if 2

n ≤
r1
r2
≤ 1

nv
(
1− r2

2r1

)
if 1 ≤ r1

r2
≤ n

2

nv
(
1− 2

n + 2r1
n2r2

)
if n

2 < r1
r2

< n− 1

,

P 2(SCB({1, r1}, {2, r2}, n, v)) = nv − P 1(SCB({1, r1}, {2, r2}, n, v)).

If r1 = 0, then P 1(SCB({1, 0}, {2, r2}, n, v)) = 0.

Remark 1. Note that for fixed r2, n and v, r1 �→ P 1(SCB({1, r1}, {2, r2}, n, v))
is a concave monotonically increasing function in the parameter region 1

n−1 ≤
r1
r2
≤ n − 1. This is also illustrated in Figure 1 for a specific set of parameters.

Furthermore, r1 �→ P 1(SCB({1, r1}, {2, r2}, n, v)) is a non-decreasing function
on R+ (note that here we do not restrict the range of r1). This is a consequence
of the result in [4]. �

This completes our revisit of the results for two-player static Colonel Blotto
game from [4].

4 SPNE of the Game

We now consider the three-stage Colonel Blotto game formulated in Section 2. To
ease exposition, let us write t := t1,2 − t2,1, which denotes the net transfer from
Player 1 to Player 2. This can be negative if Player 2 transfers more resources
than Player 1. We further define r1 := r1(t) = β1 − t and r2 := r2(t) = β2 + t
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Fig. 1. For a fixed resource r2 = 1 of Agent 2, the payoff to Agent 1 is a concave
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to denote, respectively, the resource levels of Player 1 and Player 2 after the
transfer is complete.

As stated previously, we are interested in computing the subgame-perfect
Nash equilibrium for the three-stage game. At the final stage of the game, all
players know the resource levels of all players and the resource allocation of the
adversary for the battles against the other two players. All players also know the
updated number of battlefields over which the battle is to be fought. Thus, the
game at the final stage comprises two instances of the static Colonel Blotto game
recalled in the previous section. This insight results in the following lemma.

Lemma 2. At the final stage, Player i ∈ {1, 2} and the adversary will play a
static Colonel Blotto game SCB({1, ri}, {A,αi}, ni + mi, vi). Thus, the SPNE
strategy pair of Player i and the adversary at the third (last) stage is (μ�

i , ν
�
i ) ∈

NE(SCB({1, ri}, {A,αi}, ni +mi, vi)).

In the light of the lemma above, to compute the SPNE of the game, we need
to compute (i) at the second stage, the allocation functions of the adversary
{α�

1, . . . , α
�
N}, the transfer functions {t�1,2} and {t�2,1} of the first two players,

and (ii) at the first stage, the battlefields added by the first two players m�
1 and

m�
2.
As noted in the previous section, the expected payoff functions of the players in

the static Colonel Blotto game are computed in four different parameter regions.
Thus, for the game at hand, we have a total of 64 different cases to consider.
To ease the exposition, we consider here only four of these cases. These cases
comprise games in which, when players act according to Nash equilibrium at the
first stage (so that m1,m2 are fixed and are common knowledge), the ratio of
the adversary’s allocation of resource for the battle with Player i and Player i’s
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resources after the transfer is complete lie in the interval ( 2
ni+mi

, ni+mi

2 ). This
simplification leads us to the following four cases:

1. 2/n1 < α1/r1 < 1 and 2/n2 < α2/r2 < 1
2. 2/n1 < α1/r1 < 1 and 2/n2 < r2/α2 < 1
3. 2/n1 < r1/α1 < 1 and 2/n2 < r2/α2 < 1
4. 2/n1 < r1/α1 < 1 and 2/n2 < α2/r2 < 1

It should be noted that the second and third cases are essentially the same
with only the indices of the first two players interchanged. Thus, we only focus
on three cases, Cases 1, 2 and 4, with the understanding that the result for Case
3 can directly be obtained from the result of Case 2.

In the next subsection, we compute the reaction curves of the players (also
called best response strategies) for the game at the second stage. Thereafter, we
compute the SPNE of the game in the sequel for all the three cases.

4.1 Reaction Functions of the Players

In this subsection, we compute the best response strategies of the players in the
game.

Preliminary Notations: We use the following notations to describe the allo-
cation strategy of the adversary for various cases:

a1(m1,m2, t) :=
α

1 +
√

(n2+m2)v2(β2+t)
(n1+m1)v1(β1−t)

,

λ1(m1,m2, t) :=

√
(n2 +m2)v2(β1 − t)(β2 + t)

(n1 +m1)v1
,

d(m1,m2, t) :=

⎧⎪⎨⎪⎩
α if (n1+m1)v1

β1−t > (n2+m2)v2
β2+t

0 if (n1+m1)v1
β1−t < (n2+m2)v2

β2+t

α w.p. p ∈ (0, 1) if (n1+m1)v1
β1−t = (n2+m2)v2

β2+t

.

Note that in the definition of d(m1,m2, t), the probability p can take any value in
the interval (0, 1). The next lemma computes the reaction curves of the players
at the second stage of the game.

Lemma 3. Consider a game CB(n, β, α, v, c). For a t ∈ [−β2, β1], let r1 = β1−t
and r2 = β2 + t. Fix m1,m2 ∈ Z+. The reaction curves of the players at the
second stage are given by the following expressions in various cases:

1. If 2
n1+m1

< α
β1−t < 1 and 2

n2
< α

β2+t < 1, then

α∗
1(m1,m2, t) = d(m1,m2, t).

2. If 2
ni+mi

< ri
ai(m1,m2,t)

< 1, i = 1, 2, then

α∗
1(m1,m2, t) = a1(m1,m2, t).
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3. If 2
n1+m1

< α−λ1(m1,m2,t)
β1−t < 1 and 2

n2+m2
< β2+t

λ1(m1,m2,t)
< 1, then

α∗
1(m1,m2, t) = α− λ1(m1,m2, t).

In all cases, if α1 is a constant (or dependent only on m1,m2), then

t∗1,2(m1,m2, α1) =

{
0 if α1 > 0,
t1,2 ∈ [0, β1] if α1 = 0.

t∗2,1(m1,m2, α1) =

{
0 if α1 < α,
t2,1 ∈ [0, β2] if α1 = α.

Proof: The proof is available in [14, Lemma 4, p. 13], but we recall it here for
the convenience of the reader.

Since Player i and the adversary are going to play a static Colonel Blotto game
SCB({i, ri}, {A,αi}, ni + mi, vi) at the final stage of the game, the expected
payoff functions to the players are given by the result of Lemma 1 (that are
dependent on the ratio ri/αi).

The reaction function for the adversary is the best response strategy of the
adversary given the strategy of the other two players. Towards this end, fix m1:2

and t and define ei := (ni +mi)vi for i = 1, 2. The expected payoff function to
the adversary as a function of the adversary’s allocation α1 to the battle with
Player 1 for the three cases are

Case 1: πA(α1) =
e1α1

2(β1 − t)
+

e2(α− α1)

2(β2 + t)
,

Case 2: πA(α1) = e1

(
1− (β1 − t)

2α1

)
+e2

(
1− (β2 + t)

2(α− α1)

)
,

Case 3: πA(α1) =
e1α1

2(β1 − t)
+ e2

(
1− (β2 + t)

2(α− α1)

)
.

In Cases 2 and 3, the payoff to the adversary πA is a concave function of α1,
since the second derivative of πA with respect to α1 is strictly negative. One can
set the first derivative of πA to zero to get the optimal value of α1 as a function
of m1, m2, and t. The fact that d(m1,m2, t) maximizes the payoff πA in Case 1
can be verified easily. This completes the proof of the lemma.

Having now computed the reaction functions of the players at the second stage
of the game, we now compute the SPNE strategies of the players below.

4.2 The Case of Weakest Adversary

We now turn our attention to computing SPNE of the game for Case 1, in which
the adversary has the least amount of resources among all players.



A Three-Stage Colonel Blotto Game 227

Preliminary Notation for Theorem 2. Let m̄1 = argmaxm1∈Z+ m1v1−cm2
1

and m̄2 = argmaxm2∈Z+ m2v2 − cm2
2. Define

t̄1,2(m1,m2) =
(n2 +m2)v2β1 − (n1 +m1)v1β2

(n1 +m1)v1 + (n2 +m2)v2
,

t̄2,1(m1,m2) =
(n1 +m1)v1β2 − (n2 +m2)v2β1

(n1 +m1)v1 + (n2 +m2)v2
,

ζ1 = t̄2,1(0, m̄2) ζ2 = t̄1,2(m̄1, 0).

Theorem 2. Consider a game CB(n, β, α, v, c) with α < min{β1, β2} and 2
ni

<
α
βi

for both i ∈ {1, 2}. If the parameters of the game satisfy either

(n1 + m̄1)v1
β1

<
n2v2
β2

,

(
1− α

2(β2 + ζ2)

)
v2 < c,

2

n1 + m̄1
<

α

β1 − ζ2
< 1,

2

n2
<

α

β2 + ζ2
< 1,

or
n1v1
β1

>
(n2 + m̄2)v2

β2
,

(
1− α

2(β1 + ζ1)

)
v1 < c,

2

n2 + m̄2
<

α

β2 − ζ1
< 1,

2

n1
<

α

β1 + ζ1
< 1,

then there is a family of SPNEs for this game, given by

α�
1(m1,m2) = d(m1,m2, 0),

t�1,2(m1,m2) =

{
t ∈ [0, t̄1,2(m1,m2)) if (n1+m1)v1

β1
< (n2+m2)v2

β2

0 otherwise

t�2,1(m1,m2) =

{
t ∈ [0, t̄2,1(m1,m2)) if (n1+m1)v1

β1
> (n2+m2)v2

β2

0 otherwise

m�
1 =

{
m̄1 if (n1+m̄1)v1

β1
< n2v2

β2

0 otherwise
,

m�
2 =

{
m̄2 if n1v1

β1
> (n2+m̄2)v2

β2

0 otherwise
.

Proof: The reaction curves of the players are given as in Lemma 3. It is easy to
see that for givenm1 andm2, the (family of) Nash equilibria stated above are the
best response strategies of each other. Now, maximizing the payoff functionals
of Players 1 and 2 over m1 and m2 given α�

1, t
�
1,2 and t�2,1, we get the result.

The sufficient conditions on the parameters ensure that Players 1 and 2 and the
adversary’s allocation have appropriate ratios if all players act according to the
SPNE.
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Remark 2. Along the equilibrium path, one player has an incentive to add bat-
tlefields and transfer some (or none) of its resource to the other player. �

Remark 3. In the theorem above, if v1 < c, then m̄1 = 0. Similarly, if v2 < c,
then m̄2 = 0. �

4.3 Other Cases

We now consider other scenarios, where the adversary may have comparable or
large endowment of resources as compared to any other player in the game.

Preliminary Notation for Theorem 3

si :=
√

viβi

(√
njvjβj

)
, i, j ∈ {1, 2}, i �= j,

c1 := v1

(
1− α

2β1

)
+
(√

n1 + 1−√n1

) √n2v2β2v1

2
√
β1

c2 := (
√
n2 + 1−√n2)

√
v2β2n1v1

2
√
β1

.

Theorem 3. Consider a game CB(n, β, α, v, c) ∈. The SPNE of the game is
given as:

1. If 2
ni+mi

< βi

ai(m1,m2,0)
< 1, i = 1, 2 and

c >
1

2α
max

i∈{1,2}

(
viβi +

(√
ni + 1−√ni

)
si
)
,

then α�
1(m1,m2) = a1(m1,m2, 0).

2. If α > λ1(m1,m2, 0),
2

n1+m1
< α−λ1(m1,m2,0)

β1
< 1, 2

n2+m2
< β2

λ1(m1,m2,0)
< 1,

and c > max {c1, c2}, then

α�
1(m1,m2) = α− λ1(m1,m2, 0).

In both cases, t�1,2(m1,m2) = t�2,1(m1,m2) = 0 and m�
1 = m�

2 = 0.

Proof: Given the best response strategies of the players as in Lemma 3, one
can just check that the given strategies indeed form a SPNE of the game. Fur-
thermore, the sufficient conditions on c merely ensure that adding any battlefield
leads to lower expected payoffs to the first two players.

Remark 4. In the statement of both cases in Theorem 3 above, the sufficient
conditions on c are not hard constraints. If the value of c is small, then adding
battlefields may be beneficial to one or both players. The Nash equilibrium at
the second stage of the game remains unchanged (as long as the restrictions on
the parameters are met). �
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4.4 Discussions on Equilibrium Strategies

In Theorem 2, we see that the amount of resource one player transfers to another
could take any value in a set. This is due to the fact that the adversary does
not attack the player who makes the transfer (hence, his payoff is not affected
by making the transfer) if everyone plays according to the equilibrium.

Figure 2 shows that for a specific set of parameters, a transfer takes place from
one player to another in certain regions of β1 and β2. It is interesting to note that
there is a transfer from Player 1 to Player 2 even when the resource level of Player
1 is significantly small as compared to the resource level of Player 2.

0 5 10 15
0

5

10

15

20

25

30

35

β
1

β 2

v
1
= 2, v

2
=1, c=3, n

1
=10, n

2
=30, α=2

Fig. 2. For fixed parameters v1 = 2, v2 = 1, c = 3, n1 = 10, n2 = 30, and α = 2, Player
1 transfers to Player 2 in the red region, whereas Player 2 transfers to Player 1 in the
blue region. There is no addition of battlefield by any player (see also Remark 3) in
the colored region. In the white region, transfer may or may not occur. See Theorem
2 for a complete characterization.

On the other hand, in Theorem 3, where the adversary has comparable or
more resources than other players, the SPNE is unique, and there is no trans-
fer among the first two players. There are two reasons why we see no transfer
among the players as SPNE strategies in both cases. The first reason is that the
adversary divides its resources into two positive parts, and allocates each of the
two parts to the battle with one of the other two players. Since both players
are fighting against the adversary, the best response strategies of the first two
players are not to transfer their resources to the other player (see Lemma 3).
The second reason, which is more subtle, is that the adversary does not observe
the value of the transfer among the other two players (or in other words, all
players act simultaneously in the second stage). If we allow the adversary to
access information on the amount of resource transferred between the players,
then the SPNE may feature a transfer even if the adversary allocates positive
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resources to fight both players. A few such cases are investigated in [7] and our
earlier work [1]. However, [7] does not compute the Nash equilibrium strategies
(or SPNE) of the players under such a setting.

In all cases, if the cost for adding battlefields is sufficiently high, then the first
two players do not add any battlefield.

We now outline the differences in the behaviors of the players in this game as
compared to the one studied in [1]. For the case when the adversary is weakest
(that is, has the least amount of resources among all players), the players act
according to the same behavior as proved in [1]. This is because the adversary
deploys all its resource to fight against only one player in this case. So, whether
or not a transfer occurs, the behavior of the adversary remains unchanged. Thus,
giving the adversary access to the information about the transfer does not result
in any change in its behavior.

To compare the results in this paper with that in [1] for other cases, when the
adversary has comparable or more resources than other players, we will recall
the result for [1] for those cases. However, to ease exposition, we introduce the
following definition.

Definition 1. Consider the three-stage Colonel Blotto game formulated in Sec-
tion 2. We say that the information structure of the three-stage game is N if at
the second stage, the adversary does not observe the transfer between the first
two players. We say, on the other hand, that the information structure of the
three-stage game is T, if at the end of the second stage, the adversary has access
to the transfer between the players. �

We now reproduce the result from [1] below for the case when adversary has
comparable or more resources as compared to other players.

Preliminary Notation for Theorem 4

t̄1(m1,m2) :=
(β1 − β2)

2
− (β1 + β2)

2

√
(n1 +m1)v1

(n1 +m1)v1 + (n2 +m2)v2
,

w1(m1,m2) := (n1 +m1)v1 +
√
(n1 +m1)v1((n1 +m1)v1 + (n2 +m2)v2),

m̄1 := arg max
m1∈Z+

m1v1

(
1− α

2(β1 + β2)

)
− cm2

1,

ζ1(m1,m2) :=
4(n1 +m1)v1α

2

(n2 +m2)v2(β1 + β2)2
.

Theorem 4 ([1]). Consider a game CB(n, β, α, v, c) with information structure
T in which the adversary has access to the information about the transfer of
resources among the first two players at the second stage of the game. The SPNE
of the game is given as follows:
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1. Assume c > β1+β2

4α max {w1(1, 0)− w1(0, 0), v2} and let t̄1 := t̄1(m1,m2). If
2

ni+mi
< ri(t)

ai(m1,m2,t)
< 1, i = 1, 2, then

α�
1(m1,m2, t) = a1(m1,m2, t),

t�1,2(m1,m2) =

{
t̄1 if β1−β2

2β1β2
>
√

(n1+m1)v1
(n2+m2)v2

0 otherwise

t�2,1(m1,m2) = 0, m�
1 = m�

2 = 0.

2. If c > (β1+β2)v2
4α , 2

n1+m1
< α−λ1(m1,m2,t)

(β1−t) < 1, and 2
n2+m2

< (β2+t)
λ1(m1,m2,t)

< 1,

then

α�
1(m1,m2, t) = α− λ1(m1,m2, t),

t�1,2(m1,m2) =

{
β1−ζ1(m1,m2)β2

ζ1(m1,m2)+1 if β1+β2

2α >
√

(n1+m1)v1β2

(n2+m2)v2β1

0 otherwise.

t�2,1(m1,m2) = 0, m�
1 = m̄1, m�

2 = 0.

An interesting distinction in the behaviors of the players in the games with
two different information structures is as follows: In the game with information
structure N, the players do not transfer resources among themselves. In con-
trast, the game with information structure T features a transfer. The reason
for this behavior is the following. With information structure T, the adversary,
after observing the transfer, allocates more resource to fight against Player 2 as
compared to what it allocates in the game with information structure N. Thus,
in the game with information structure T, the transfer makes both Players 1 and
2 better off4, while the adversary loses in terms of the expected payoff5,6.

Remark 5. The analysis above exposes a counterintuitive feature of games. One
may be led into thinking that the extra information about the transfer to the
adversary should make him better off, but this, clearly, is not the case in the
game with information structure T. Consistent with the results of [15], in games,
extra information to a player does not necessarily result in a better performance
for that player! �
4 Note here that since this is a non-cooperative game, if the transfer does not improve
the expected payoffs to both Players 1 and 2, then either the receiving player will
not accept the transfer, or the donating player will not initiate a transfer. The fact
that a positive transfer is a Nash equilibrium implies that the transfer it increases
or maintains the expected payoffs to both players.

5 We assume that the parameters of the game are such that the sufficient conditions
on parameters are satisfied, enabling us to make this comparison.

6 Since the Colonel Blotto game is a constant-sum game, the sum of total expected
payoffs for all the players (including the adversary) is a constant. Thus, if Players 1
and 2 increase their expected payoffs, then this leads to a decrease in the expected
payoff to the adversary.
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5 Conclusion

We formulated a three-stage three-player Colonel Blotto (non-cooperative) game
in which the first two players fight against a common adversary. The first two
players could add battlefields at some cost and they can form a coalition and
transfer resources among each other if it improves their expected payoffs. We
computed subgame-perfect Nash equilibria of the game. We found that if the
adversary is weakest, that is, has the least endowment of resources, then it
attacks only one of the two players (when playing under Nash equilibrium). The
player who does not suffer an attack can transfer some of its resources to the
other player. If the adversary has comparable or more resources than the other
two players, then there is no transfer of resources among those two players when
playing under Nash equilibrium. In all cases, additional battlefields are created
by the first two players if the cost for adding them is sufficiently low.

The result gives a qualitative picture of how players should behave in order to
secure cyber-physical systems. In case the cyber-physical systems under attack
have significantly more resources (computational or physical) as compared to
the attacker, then it is in their best interest to share their resources to secure
themselves. On the other hand, if the adversary is as mighty as the systems,
then it is in the best interests for the systems to use all their resources to secure
themselves.

Furthermore, we see that adding battlefields could result in a better payoff.
Consider, for example, a data center which acts to reduce the threat of data
compromise. If adding additional servers for storing data is cheap, then it is
in its best interest to keep small amount of data in different servers. In doing
so, even if a certain number of data servers are compromised, the amount of
compromised data will be less.

For the future, our plan is to extend the analysis to general N -player games in
which an adversary fights against N−1 players. We expect that a similar type of
result (as obtained in this paper) will also hold for the general N -player setup –
(i) if the adversary is weakest, then it will attack only one player, whereas other
players may or may not transfer the resource to the player under attack, and (ii)
if the adversary has comparable or more resources, then the adversary will fight
against a set (or all) of the players, and the players will not transfer any resource
among each other. Another possibility is to analyze the N -player M -adversary
Colonel Blotto game, where M adversaries can collaborate (non-cooperatively)
for battles against N players, who themselves can collaborate among each other
(non-cooperatively).

Incomplete information static Colonel Blotto game is also an important prob-
lem that requires further investigation, in which the existence of a Nash equilib-
rium has not been established yet.
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Abstract. A typical distributed computation problem deals with a net-
work of multiple agents and the constraint that each agent is able to
communicate only with its neighboring agents. Two important issues of
such a network are the convergence rate of the corresponding distributed
algorithm and the security level of the network against external attacks.
In this paper, we take algebraic connectivity as an index of convergence
rate, which works for consensus and gossip algorithms, and consider cer-
tain type of external attacks by using the expected portion of the infected
agents to measure the security level. Extremal examples and analysis
show that fast convergence rate and high security level require opposite
connectivity of the network. Thus, there has to be a trade-off between
the two issues in the design of network topology. This paper aims to pro-
vide an approach to design a network topology which balances between
convergence rate and security. A class of tree graphs, called extended star
graphs, are considered. The optimal extended star graph is provided un-
der appropriate assumptions.

Keywords: security, topology design, external attack, algebraic connec-
tivity, distributed computation.

1 Introduction

Over the past few decades, there has been considerable interest in developing
algorithms for information distribution and computation among members of in-
teractive agents via local interactions [1–3]. Recently, distributed computation
and decision making problems of all types have arisen naturally. Notable among
these are consensus problems [4], distributed averaging [5], multi-agent coverage
problems [6], rendezvous problems [7], multi-sensor localization [8], and multi-
robot formation control [9]. These problems have found applications in a variety
of fields including sensor networks, robotic teams, social networks [10], and elec-
tric power grids [11]. Thus, distributed control has become an active area of
research. Compared with traditional centralized control, distributed control is
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believed to be more promising for large-scale complex networks because of its
fault tolerance and cost saving features, and its ability to accommodate various
physical constraints such as limitations on sensing, computation, and communi-
cation.

One of the most important problems in distributed control and computation
is the consensus problem [4, 12–16]. In a typical consensus seeking process, the
agents in a given group all try to agree on some quantity by communicating what
they know only to their neighboring agents. One particular type of consensus
process, whose goal is to compute the average of the initial values of the quantity
of interest at the agents, is called distributed averaging [5]. There are three
different approaches to the distributed averaging problem: linear iterations [5,
17], gossiping [18, 19], and double linear iterations [20] which are also known as
push-sum [21], weighted gossip [22], and ratio consensus [23]. Recently, based on
the ideas of consensus and distributed averaging, various algorithms have been
proposed for more general distributed computation scenarios, such as convex
optimization [24], constrained consensus [25], voting [26], liner programming
[27], linear algebraic equations [28], and Nash equilibrium seeking [29].

Of particular interest is the rate at which these algorithms converge. It is well
known that the convergence rate depends on the network topology of the neigh-
bor relationships among the agents [30]. The neighbor relationships are often
described by a graph G in which vertices correspond to agents and edges indi-
cate neighbor relationships. We assume that G is an undirected graph without
self-loops. Thus, the neighbors of an agent i have the same labels as the vertices
in G which are adjacent to vertex i. For convergence to be possible, it is clearly
necessary that G be a connected graph, and we make this assumption in this
paper. We focus on tree graphs as they satisfy the least restrictive connectivity
condition required for distributed computation.

Another issue which has received much attention lately is the security of a net-
work. The effects of external attacks such as Byzantine attacks were studied in
[31] for the consensus process. Modified consensus protocols were proposed in [32]
and [33] for persistent disturbances and malicious agents, respectively. Privacy-
preserving distributed averagingwas considered in [34]. Potential-theoretic strate-
gies were investigated in [35] for robust distributed averaging in the presence of
adversarial intervention.Node capture and cloning attacks in awireless sensor net-
work were considered in [36]. Randomized and strategic attacks for general multi-
agent networks were studied in [37]. A complementary line of research is called
competitive contagion in social networks [38–40].

A natural question that arises is that of the “best” topology of neighbor graph
G for a fixed number of agents. So far the topology design works in the literature
have only considered the convergence rate issue [41–43]. Although some new
concepts have been proposed to measure the “robustness” of a network [44–46],
very few papers take convergence rate and security into account together. The
ultimate goal of this work is to provide an approach to design a network topology
which is both fast and secure for distributed computation.
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1.1 Preliminaries

An undirected graph is connected if there is a path between every pair of distinct
vertices in the graph. A connected graph is called a tree if any two vertices are
connected by exactly one path. In other words, a tree is a connected graph
without cycles. A path graph and a star graph are two examples of a tree. The
degree of a vertex in a graph is the number of edges incident to the vertex. A
leaf vertex is a vertex of degree 1. The distance between two vertices in a graph
is the number of edges in a shortest path connecting them. The diameter of a
graph is the largest distance between any pair of two vertices in the graph.

Given an n-vertex undirected graph G = (V , E), where V = {1, 2, . . . , n}
denotes the vertex set and E ⊂ {(i, j) | i, j ∈ V , i �= j} denotes the edge set,
its Laplacian matrix is an n× n matrix defined by L = D − A, where D is the
n × n diagonal matrix whose ith diagonal entry equals the degree of vertex i
and A is the adjacency matrix of G whose ijth entry equals 1 if (i, j) ∈ E and
0 otherwise. It is well known that L is always positive semi-definite with an
eigenvalue at 0. Its second smallest eigenvalue, denoted by a(G), is called the
algebraic connectivity of G. The algebraic connectivity of G is positive if and
only if G is connected.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2, we consider
a specific randomized gossip algorithm to illustrate, for a fixed neighbor graph,
that algebraic connectivity can be used to measure the convergence rate of the
algorithm. In Section 3, we consider a certain type of external attacks and take
the expected portion of infected agents in a network as an index of the security
level of the network. The trade-off between convergence rate and security is
discussed in Section 4. In Section 5, we focus on extended star graphs, a class
of tree graphs, and derive the optimal extended star graph with the diameter
constraint. The paper ends with a couple of illustrative examples in Section 6,
and some concluding remarks in Section 7.

2 Convergence Rate

It is well known that in both discrete- and continuous-time linear consensus pro-
cessses, algebraic connectivity determines convergence rate when the neighbor
graph does not change over time [12]. The following randomized gossip algorithm
illustrates that algebraic connectivity also works for gossiping.

Consider a network of n > 1 agents labeled 1 to n. Each agent i has control
over a real-valued scalar quantity xi, called a gossip variable, which the agent
is able to update from time to time. We say that a gossip occurs at time t ∈
{1, 2, . . .} between agents i and j if the values of both agents’ gossip variables
at time t+ 1 equal the average of their values at time t; in other words, in this
case xi(t+1) = xj(t+1) = 1

2 (xi(t)+ xj(t)). If agent i does not gossip at time t,
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its gossip variable does not change; thus, in this case xi(t + 1) = xi(t). Each
agent can gossip only with its neighbors and is allowed to gossip with at most
one of its neighbors at one time. Assume that at each time t, only one pair of
neighboring agents are activated to gossip. Each pair of neighboring agents has
an equal probability 1

m of being activated, where m is the number of edges in
G. In the case when G is a tree, m = n− 1.

For the above randomized gossiping algorithm, the agents’ gossip variable
update rules can be written in a state form. Toward this end, for each pair of
agents (i, j) ∈ E , where E denotes the set of edges, let A(i,j) be the matrix that
describes the updating rule when agents i and j are the only pair to gossip.
Then, x(t + 1) = Aσ(t)x(t), where x is the state vector x = [x1 x2 · · · xn]

′

and σ : {1, 2, ...} → E is a switching signal whose value at time t is the index
representing the randomly chosen pair of agents at time t. Let Ā(G) denote the
mean of the independent and identically distributed matrices Aσ(t). It has been
shown that the rate of convergence in mean square is governed by λ2(Ā(G)),
the second largest eigenvalue of Ā(G) [18]. It is straightforward to show that
Ā(G) = I − 1

mL(G), where L(G) denotes the Laplacian matrix of the neighbor
graph G. Then, we can express the eigenvalues of Ā(G) in terms of those of

L(G). In particular, λ2(Ā(G)) = 1 − a(G)
m . Thus, algebraic connectivity also

determines the convergence rate for this gossiping process in that the larger
algebraic connectivity is, the faster is the convergence.

It is well known that among all graphs with n vertices, the complete graph
has the maximum algebraic connectivity. Thus, the complete graph achieves the
fastest convergence. If we focus on tree graphs, more can be said. It has been
shown in [47] that among all trees with n vertices, the path has the minimum
algebraic connectivity and the star attains the maximum algebraic connectivity,
which leads to the following result.

Lemma 1. Suppose that the neighbor graph G is a tree with n vertices. Then,
the above randomized gossip algorithm achieves fastest convergence when G is a
star and slowest convergence when G is a path.

3 External Attack

Next we consider the effects of topology under security constraints. Consider a
network of n > 1 agents whose neighbor graph is G with n vertices. Suppose
that there is an external attacker who is able to infect one of the agents in the
network. We assume that each agent has probability p with which it will be
infected when it is under attack. In other words, each agent is immune to an
attack with probability 1− p. It is also assumed that if an agent i is immune to
an attack, it will not be infected any longer. Once an agent is infected at time
t, then each of its neighbors will be under attack at the next time t+ 1.

In distributed averaging, for example, the initial values of the infected agents
may deviate from their true values, thus negatively affecting the final agreement
among the agents. It follows that the fewer are the infected agents in the network,
the more accurate would the final agreement be. Thus, a rational attacker will
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aim to attack that agent which leads to the largest expected number of infected
agents, and a topology designer should minimize this number.

Suppose that an attacker chooses to attack agent i at the initial time. In this
case, it is possible to explicitly express the expected number of infected agents.
Toward this end, let N(d) denote the number of those vertices in the graph
whose distance to vertex i equals d and let E(i) denote the expected number
of infected agents in the network when agent i is initially attacked. Then, it is
straightforward to verify that

E(i) = p+

D∑
d=1

N(d)pd

where D is the diameter of the underlying graph G. The attacker will seek the
agent, say i∗, achieving the following maximum:

Emax = max
i∈V

E(i) = E(i∗)

where V is the vertex set of G. It is worth noting that i∗ may not be unique.
The value of Emax can be viewed as a security level of a network. In particular,

the larger Emax is, the lower is the security level of the network.

Lemma 2. Suppose that the neighbor graph G is a tree with n vertices. Then,
the security level against the above external attack achieves lowest level when G

is a star and highest level when G is a path.

The proof of this lemma is fairly simple and thus is omitted.

4 Trade-Off

From the preceding discussion and results, the topology of the underlying neigh-
bor graph has opposite effects on convergence rate and security. In particular,
when we focus on tree graphs, star graphs are the best for convergence rate but
the worst for security, and path graphs are the best for security but the worst
for convergence rate. Thus, if we take convergence rate and security into account
together, there must be some optimal tree structure between the extremes of the
star graphs and path graphs. Notwithstanding this, the following questions re-
main. What are the criteria to evaluate convergence rate and security together?
What is the best tree topology based on those criteria? These are the questions
which will be considered next.

Roughly speaking, the better is the connectivity of the topology, the faster
is the convergence rate, but the lower is the security level against the attack.
To be more precise, the following result shows that adding an additional edge
to a given graph will increase the algebraic connectivity and thus accelerate the
convergence.

Lemma 3. [47] Let G be a non-complete graph and G
′ be the graph obtained from

G by joining two non-adjacent vertices of G with an edge. Then, a(G′) ≥ a(G).
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But the next lemma says that adding more edges to a given graph will decrease
the security level.

Lemma 4. Let G be a non-complete graph and G′ be the graph obtained from
G by joining two non-adjacent vertices of G with an edge. Then, Emax(G

′) ≥
Emax(G).

Proof of Lemma 4: Suppose that G′ is obtained from G by joining two vertices
i and j which are non-adjacent in G. Then, for any two distinct vertices i and j,
the distance between i and j in G′ is shorter than that in G. Let E′(v) denote
the expected number of infected agents when agent v in G′ is initially attacked.
Since p ∈ [0, 1], E′(v) ≥ E(v) for any vertex v. Therefore, Emax(G

′) ≥ Emax(G).
��

In the sequel, we will focus on tree graphs because they satisfy the least
restrictive connectivity condition for distributed computation. It has been shown
in [47] that for any tree graph T with n vertices, a(T) ≤ 1 with equality if and
only if T is the star graph. We use b(T) to denote the maximum expected portion
of infected agents in the network. Then,

b(T) =
Emax(T)

n
≤ 1

Our final goal is to find the optimal tree which maximizes the following function:

ρ(T) =
a(T)

b(T)

5 Extended Stars

In this section, we consider “extended stars”, a class of tree graphs. We say that
a tree graph is an extended star if it is composed of k > 1 paths connected at one
end to a common vertex. We call the common vertex the root of the extended
tree and each path a branch of the extended tree at the root. An extended star is
an ordinary path when k = 2. Fig. 1 shows an example of an extended star which
has 4 path branches at the root v. An extended star graph is called uniform if
its k paths have the same length l. Thus, a uniform extended star is an ordinary
star when l = 1.

Fig. 1. An extended star
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The main result of this paper is as follows.

Theorem 1. Suppose that T is an n-vertex extended star with even diameter D.
Let q and r respectively denote the unique integer quotient and remainder of n
divided by D

2 . If r �= 0, then ρ(T) attains the maximum if T has q branches of

length D
2 and one branch of length r. If r = 0, then ρ(T) attains the maximum

if T is a uniform extended star having q branches of length D
2 .

To prove this theorem, we need the following concepts and lemmas.
In [48], tree graphs are partitioned into two classes, Type I and Type II, ac-

cording to their eigenvectors corresponding to algebraic connectivity, the second
smallest eigenvalue of the Laplacian matrix. To be more precise, a tree is of Type
I if the eigenvector has at least one zero entry; in this case, the vertex corre-
sponding to the zero entry is called a characteristic vertex. A tree is of Type II
if the eigenvector does not have any zero entry.

Lemma 5. [49] Let T be a Type I tree with characteristic vertex v. Suppose
that T′ is the tree obtained from T by adjoining a new leaf vertex to v. Then,
a(T′) = a(T). In particular, T′ is a Type I tree with characteristic vertex v.

Lemma 6. [50] Let T be a Type I tree with characteristic vertex v and T′ be the
graph obtained from T by taking any subtree of a branch at v and joining it on
at vertex v. Then, T′ is a Type I tree and a(T′) = a(T).

In [51], a tree T is called multi-symmetric if there is a vertex v such that
all the branches of T at v can be partitioned into finite classes which satisfy
the following conditions: (1) each class has two or more branches; (2) any two
branches from the same class are isomorphic; (3) any two branches from different
classes are not isomorphic. In particular, v is called the center of T.

Lemma 7. [51] Every multi-symmetric tree is of Type I and its center is the
characteristic vertex of the tree.

We also need the following lemmas.

Lemma 8. [52] Let G be a graph and G′ be the graph obtained from G by adding
a leaf vertex to a vertex of G. Then, a(G′) ≤ a(G).

Lemma 9. [53] Let T be an n-vertex tree with diameter D. Then,

a(T) ≤ 2

(
1− cos

(
π

D + 1

))

With these concepts and lemmas, we have the following result.

Proposition 1. Suppose that T is an n-vertex extended star with even diameter
D. Then,

a(T) = 2

(
1− cos

(
π

D + 1

))
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Proof of Proposition 1: Suppose that T is an n-vertex extended star with
k > 1 branches at root v. It must have two branches of length D

2 since its
diameter is even and equals D. Let T′ be an extended star obtained from T

by adding each branch of T to the root v one more time. Then, T′ is a multi-
symmetric tree. By Lemma 7, T′ is a Type I tree with characteristic vertex v.
Moreover, by Lemma 8, a(T′) ≤ a(T).

Note that T′ has 2k branches at v. Keep two of them which are of length
D
2 . We construct another extended star T′′ by taking each leaf vertex of the
remaining 2k− 2 branches and adding it to v until all the 2k− 2 branches are of
length 1. Thus, T′′ is an extended star which has 2 branches of length D

2 and all
the remaining branches are of length 1. By Lemma 6, T′′ is still of Type I with
characteristic vertex v and a(T′′) = a(T′).

Note that T′′ can also be obtained from a path of length D by adding leaf
vertices to v. Thus,

a(T′′) = 2

(
1− cos

(
π

D + 1

))
Since a(T′) ≤ a(T) and a(T) cannot exceed a(T′′) by Lemma 9, it follows that
a(T) = a(T′′), which completes the proof. ��

Now we are in a position to prove the main result.

Proof of Theorem 1: We provide a constructive proof for the theorem. Since
T is an extended star on n vertices with even diameter D, it must have two
branches of length D

2 . For each of the remaining vertices, it can be added to

either the root v or the end of an existing branch whose length is less than D
2 .

From Proposition 1, no matter where each vertex is added, the construction
process will not change the algebraic connectivity. Thus, each vertex should be
added to the place which leads to the smallest b(T), the expected portion of the
final infected agents. Note that the best position of T for the initial attack is the
root v. By the definition of b(T), the vertex should be added as far as possible
to the root v so as to minimize b(T). Thus, if there is an existing branch whose
length is less than D

2 , the vertex should be added to the longest of such branches.
Otherwise, the vertex can only be added to the root v. From this construction
process, the optimal extended star has q branches of length D

2 and one branch
of length r. In particular, if r = 0, the optimal extended star is uniform. ��

6 Discussion

In this section, we first provide an example to show that the result of Theorem 1
does not hold when the diameter is odd. Suppose that T is an 8-vertex extended
star with diameter D = 5. With this constraint, there are only two possible
extended stars which are shown in Fig. 2. We write T1 and T2 respectively for
the left and right extended stars in Fig. 2. It is straightforward to compute
that a(T1) = 0.2434, a(T2) = 0.2538, b(T1) = (p + 3p2 + 3p3 + p4)/8, and
b(T2) = (p + 4p2 + 2p3 + p4)/8. Thus, in this case, the relation between ρ(T1)
and ρ(T2) depends on the value of p.
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Fig. 2. Two 8-vertex extended stars with diameter 5

Next we consider general tree graphs. In general, the algebraic connectivity
a(G) and the security level b(G) cannot reach the optimal values for the same
graph G. Thus, it is natural to introduce a trade-off index in topology design.
To be more precise, given the set of all trees with n vertices, we aim to find the
optimal tree which minimizes the following function:

f(T) = (1 − β)a(T) − βb(T)

where β is a constant in the interval [0, 1] which represents the trade-off between
convergence rate and security. In the special cases when β equals 0 and 1, only
convergence rate and security are considered, respectively. With the above target
function, it follows that the optimal tree will depend on the value of β, as well
as the value of p. For example, assuming that n = 8, the computations show
that the optimal trees are as given in Fig. 3 and Fig. 4, with different values of
β and p.

Fig. 3. The optimal 8-vertex tree with β = 0.5 and p = 0.5

Fig. 4. The optimal 8-vertex tree with β = 0.85 and p = 0.7

7 Concluding Remarks

An approach to design a network topology for distributed computation which
balances between convergence rate and security has been introduced. As a first
step, a class of tree graphs, extended star graphs, have been considered and the
optimal extended star graph has been derived under a diameter constraint. The
optimal topology of more general tree graphs is a subject of future study.
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16. Touri, B., Nedić, A.: Product of random stochastic matrices. IEEE Transactions
on Automatic Control 59(2), 437–448 (2014)

17. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based
on average consensus. In: Proceedings of the 4th International Conference on In-
formation Processing in Sensor Networks, pp. 63–70 (2005)

18. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Transactions on Information Theory 52(6), 2508–2530 (2006)

19. Liu, J., Mou, S., Morse, A.S., Anderson, B.D.O., Yu, C.: Deterministic gossiping.
Proceedings of the IEEE 99(9), 1505–1524 (2011)



244 J. Liu and T. Başar
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Abstract. The popularity of third-party apps on social network sites
and mobile networks emphasizes the problem of the interdependency
of privacy. It is caused by users installing apps that often collect and
potentially misuse the personal information of users’ friends who are typ-
ically not involved in the decision-making process. In this paper, we pro-
vide an economic model and simulation results addressing this problem
space. We study the adoption of social apps in a network where privacy
consequences are interdependent. Motivated by research in behavioral
economics, we extend the model to account for users’ other-regarding
preferences; that is, users care about privacy harms they inflict on their
peers.

We present results from two simulations utilizing an underlying scale-
free network topology to investigate users’ app adoption behaviors in
both the initial adoption period and the late adoption phase. The first
simulation predictably shows that in the early adoption period, app adop-
tion rates will increase when (1) the interdependent privacy harm caused
by an app is lower, (2) installation cost decreases, or (3) network size in-
creases. Surprisingly, we find from the second simulation that app rank-
ings frequently will not accurately reflect the level of interdependent
privacy harm when simultaneously considering the adoption results of
multiple apps. Given that in the late adoption phase, users make their in-
stallation decisions mainly based on app rankings, the simulation results
demonstrate that even rational actors who consider their peers’ well-
being might adopt apps with significant interdependent privacy harms.
Our findings complement the usable privacy and security studies which
show that users install privacy-invasive apps because they are unable to
identify and understand apps’ privacy consequences; however, we show
that fully-informed and rational users will likely fall for privacy-invasive
apps as well.
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1 Introduction

Over the last ten years, we have witnessed the rapidly increasing popularity of
social network sites, with Facebook being the most successful entity. In order
to expand its service and functionality, Facebook opened its platform to allow
outside developers to interact with users through so-called third-party Facebook
applications (or social apps). Those applications gained worldwide popularity
ever since their emergence. Similarly, the most important mobile platforms such
as Android and iOS have enabled outside developers to create app content which
met significant success in the marketplace.

Despite their high adoption rates, third-party apps pose privacy risks to users
when they collect and potentially use user information. Some well-acknowledged
issues are apps collecting more information than needed for their stated purposes
[1,2]; and users demonstrating very little understanding of or ability with the
management of app permissions [3,4].

A newly addressed problem associated with app permissions is the interde-
pendency of privacy, which refers to the phenomenon that in an interconnected
setting, the privacy of individual users not only depends on their own behaviors,
but is also affected by the decisions of others [5].1 The interdependent privacy
issue is caused by users installing apps that often collect and potentially misuse
the personal information of users’ friends who are typically not involved in the
decision-making process.

Research has not yet adequately investigated the problem of interdependent
privacy, in particular, from an economic perspective. Most closely related to our
work, Biczók and Chia aim to define interdependent privacy and to provide initial
evidence from the Facebook permission system for social apps. They further
develop a game-theoretic model to analyze users’ app adoption decisions under
the scenario of interdependent privacy. However, their study is limited to cases
where two users are engaged in the decision-making over the adoption of one app,
and therefore does not consider the complex dynamics of today’s app adoption
behaviors. To address this literature gap, we follow an economic approach to
study how large groups of users, who are connected in a complex social network,
act in an interdependent privacy scenario.

We develop an app adoption model of a rational consumer who considers cost
of app adoption, benefits of an app, and the privacy consequences associated
with an app adoption decision. Individuals in our model do not only consider
personal costs and benefits of their decision. Instead, we consider that consumers
have different levels of concern about the consequences of their adoption de-
cisions for their peers. To accomplish this objective, we utilize the theory of

1 In the security context, several studies have considered the interdependency of
decision-making, but those models are less applicable to the app adoption scenario
[6,7]. For a survey of the results in the area of interdependent security see [8].
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other-regarding preferences which is well-established in psychology and eco-
nomics, and has been demonstrated in various experimental studies [9,10]. In
a nutshell, the theory of other-regarding preferences allows us to model users so
that they consider their peers’ utility when making adoption decisions.

In our research, we take a graph-theoretical approach and simulate app adop-
tion decisions in scale-free networks to represent an approximate version of real
social networks. More specifically, we conduct two simulations to investigate indi-
viduals’ app adoption behaviors in two phases. One phase is the start-up period
of new apps, the other phase is the later app adoption stage. More precisely, the
first simulation, which considers the iterative/sequential adoption process of so-
cial apps, is used to study users’ app adoption behaviors when an app is initially
introduced. The second simulation, which is about comparing early adoption
results of multiple apps, allows us to establish popularity rankings of the early
adoption of those apps. We use those rankings to draw conclusions about the
likely adoption processes of the considered apps in later adoption phases which
are then heavily influenced by rankings [11].

As expected, we find that in the initial adoption phase, app adoption rates
will increase when (1) the interdependent privacy harm caused by an app is
lower, (2) installation cost decreases, or (3) network size increases. In the second
simulation, interestingly, we find that app rankings frequently will not accurately
reflect the level of interdependent privacy harm when considering the adoption
results of multiple apps. Our analysis implies that in the later adoption period,
even rational actors who consider their peers’ well-being might adopt apps with
invasive privacy practices. This helps us to explain why some apps that cause sig-
nificant interdependent privacy issues are nevertheless highly popular on actual
social network sites and mobile networks.

The paper is structured as follows. In Section 2, we discuss research on privacy
consequences of installing third-party applications on social networking sites and
mobile platforms. In Section 3, we develop our economic model of app adoption
behavior. In Section 4, we describe our simulation setup. In Sections 5 and 6, we
present our simulation results. Finally, we conclude in Section 7.

2 Related Work

2.1 Third-Party Applications on Social Network Sites

Primary motivators for our study are incidents that highlight the potential neg-
ative privacy and security consequences of third-party app adoption on social
network sites. Several studies have documented how third-party apps are utilized
to extract and to transfer user information not only to third-party app devel-
opers but also to advertising and data firms [12,13,14]. These studies are highly
valuable because in most cases it is difficult to observe data practices once users
have authorized third-parties to access their profiles (and their friends’ profiles).

To understand the problem space from a more user-centered perspective, sev-
eral research papers focus on the disclosure and authorization procedures as-
sociated with third-party apps. User studies document the concerns users have
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about app adoption, and their misunderstandings about the access of third-party
developers to their profiles [3,15,16]. Similarly, the impact of interface improve-
ments of the authorization dialogies for third-party apps on user behavior has
been investigated in several user studies (see, for example, [17,18]).2

Table 1. Most frequently requested Facebook permissions explicitly involving infor-
mation of users’ friends (abbreviated table from Wang et al. [17])

Permission Number of apps
requesting per-
mission

Percentage of
apps requesting
permission

Total times a per-
mission is requested
by apps

friends birthday 206 2.19% 19,237,740
friends photos 214 2.27% 13,051,340
friends online presence 121 1.29% 10,745,500
friends location 104 1.11% 8,121,000
friends hometown 21 0.22% 5,862,500
friends work history 86 0.91% 5,260,660
friends education history 14 0.15% 3,564,500
friends activities 22 0.23% 3,448,300
friends about me 17 0.18% 3,328,000
friends interests 13 0.14% 3,163,500
user work history 73 0.78% 2,961,900
friends relationships 3 0.03% 2,912,000
friends photo video tags 32 0.34% 2,423,340
friends likes 36 0.38% 2,385,960
friends checkins 6 0.06% 1,350,000
friends relationship details 4 0.04% 741,000
friends videos 2 0.02% 230,400

A selected number of studies have focused on measuring aspects of the permis-
sions system for third-party apps on social network sites [1,21,22]. These studies
identify the most requested permissions, and the average number of permissions
for all apps and specific categories. In Table 1, we summarize data that relates
to the sharing of other users’ information from a study by Wang et al. [17]. They
find that specific permissions (except for basic information and email) are only
used by a subset of all apps. However, due to the popularity of the over 9000 sur-
veyed apps, the impact of these data collection and usage practices is significant.
As a result, even though less than 1% of the apps request the friends’ employ-
ment history, this nevertheless means that the data is accessible to third-party
developers (and potentially other parties) in over 5 Million cases.

In aggregate, these studies document many obstacles that users have to over-
come to identify privacy consequences of social apps, and to implement their
privacy preferences in practice during the app adoption process. We comple-
ment these studies by showing that even from a rational consumer perspective

2 Already in the context of desktop computing, user studies have investigated how to
inform users more effectively about third-party apps which collect personal informa-
tion and potentially allow for privacy-invasive practices [19,20].
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the severity of privacy intrusions does not always translate into a low ranking of
an app in comparison to more privacy-friendly offerings.

2.2 Third-Party Applications on Mobile Networks

Security and privacy issues associated with third-party applications on mobile
networks are increasingly gaining importance. Particularly troublesome, app de-
velopers have been trying to use unwitting users’ devices for spam and unwanted
costly premium services [23]. More broadly, measurements studies found that
most apps include permission requests that enable potentially dangerous prac-
tices [24].

User studies of the utilized permission systems document comprehension and
usability problems that are largely similar to the results in the Facebook context
(see, for example, [4,25]). As a response, technological measures to help users
to manage permissions on mobile systems have been proposed. For example,
Beresford et al. introduced a system to disable information requests made by a
mobile application and to disable unwanted permissions [26].

Similar to the context of apps on social network sites, mobile applications
gain access in various ways to information of friends (or contacts more gener-
ally). Apps with multi-platform functionality that have access, for example, to
a user’s Facebook account will be able to share the same information also in the
mobile context. However, apps will frequently enrich this data with additional
information gathered in the mobile context. For example, the new Facebook mo-
bile app has caused a stir due to the requirement to access a user’s SMS and
MMS (i.e., personal and professional communications with other users) [27].

Security firm BitDefender audited over 800000 apps in the Android Play Store
and found that apps frequently require access to information that impacts friends
and other contacts. For example, almost 10% of the surveyed apps can read your
contact list, and a sizable minority leak a user’s phone book and call history [28].

For iOS devices, security firm Zscaler discovered when it scanned the 25 most
popular apps across five categories, that 92% require access to a user’s address
book, and 32% go through a user’s calendar [29].

These examples highlight that the problem of sharing the information of
friends or other contacts without their explicit consent goes well beyond the
context of applications on social network sites. We aim to better understand the
reasons for such sharing behaviors by developing an economic model that focuses
on the adoption of apps with different interdependent privacy consequences.

3 Model Overview

The framework of our model builds on the local network effects research by
Sundararajan [30]. His model studies the Bayes-Nash equilibria of a network
game in which heterogeneous agents connected in a social network consider the
purchase of a product with network effects. Individuals are rational and make
their decisions based on a well-specified payoff function. A person who does not
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purchase the product receives zero payoff, while the payoff of a purchaser is
influenced by the actions of her peers, her own valuation type of the product,
and the product cost.

Although, we use the basic structure of the payoff function of Sundararajan’s
model, the focus of our analysis is quite different. Sundararajan studied individ-
uals’ purchasing behavior in a scenario where all decisions are made simultane-
ously, while our goal is to discover users’ behavior when they can make adoption
decisions sequentially. In addition, we do not only consider positive network
effects, but also integrate one specific type of negative network effects: interde-
pendent privacy harm. We further consider individuals to have other-regarding
preferences. That is, when making adoption decisions, individuals include in
their evaluation the privacy harm they potentially inflict on their peers.

In the following, we present the model and break down its different constituent
parts. For reference, we provide a complete list of symbols used in our paper.

ai User i’s adoption choice (1 = adoption, 0 = no adoption)

c Cost of app adoption

e Individual’s interdependent privacy harm resulting from her friend’s
adoption behavior

θi User i’s valuation of an app (also called her type)
ki User i’s other-regarding preference
vi Number of user i’s friends who have already adopted the app
N Number of users in the network
ni Number of user i’s friends
pi User i’s payoff
M Number of connections per additional node in the Barabási-Albert

(BA) random graph model
M0 Number of initial seeds in the BA random graph model
SI Set of users that have already adopted the app
I Set of users that choose to adopt the app in one step
F Set of friends of users in I

In our work, we assume that individuals are rational in terms of their aware-
ness of the privacy harm associated with app adoption. In addition, they make
their adoption decisions based on the payoff of their actions. Extending Sun-
dararajan’s local network effects model, we propose that user i’s payoff function
is:

pi = ai[(vi + 1)θi −
ki

vi + 1
e · ni − c] (1)

If the payoff from adopting the app is larger than zero, the individual will
always install the app on her device; otherwise she would deny the installation
offer.

There are three parts in the above payoff function: value gained from the app
adoption; the perceived responsibility when inflicting privacy harm on peers (i.e.,
other-regarding preferences); and the cost of app adoption. We discuss each of
these parts in the following subsections.
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3.1 Value Gained from App Adoption

The value gained from app adoption is represented by (vi +1)θi. This value can
further be divided into two parts: the first part is the direct value gained from
using the app; the second part refers to the positive network effects, for example,
the extra enjoyment the individual will perceive when a game app can be played
together with her friends rather than alone.

Since individuals have different assessments regarding an app’s value, we use
an individual’s type, θi, to represent this heterogeneity. For example, those in-
dividuals with a higher valuation type, i.e., represented by a larger θi, will gain
more direct value from an app compared with those who have a lower valuation
type, which is represented by a smaller θi.

In addition, it is reasonable to consider vi, the number of user i’s friends who
adopt the app, will affect the utility user i gains from installing and using the
app. In particular, we assume that only the number of close friends, i.e., the
neighbors in the network, will positively influence the individual’s payoff. This
is referred to as positive local network effects [30]. In practice, apps may also
exhibit broader positive network effects; however, we assume that local network
effects dominate the adoption decision.

3.2 Care for Privacy Harm Inflicted on Friends by Adoption
Decisions

The central function of social network sites (from the user’s perspective) is to
find friends and interact with them. Typically, individuals will care about their
close friends’ well-being (however, the level of concern may differ) and try to
avoid taking actions that negatively affect their friends. Experimental results
provide substantial evidence of the existence of such other-regarding behaviors
in group interactions [10]. Other-regarding preferences, which indicate whether
and how much people tend to care about others’ well-being, are described in de-
tail in a recent review paper [9]. There are two primary types of other-regarding
preferences: distributive and reciprocal. The distributive other-regarding prefer-
ence is caused by people’s aversion of outcome inequality [31,32]. The reciprocal
aspect of the other-regarding preferences theory indicates that people tend to
respond in kind to a peer’s behavior [33], which means that people respond to
kindness with kindness, and hostility with hostility.

Our paper focuses primarily on the reciprocal aspect of other-regarding prefer-
ences. That is, users consider the well-being of their close friends who presumably
would act similarly. Under the scenario of interdependent privacy, if individual i
chooses to adopt an app, she will inflict a certain amount of privacy harm, e, on
her friends. More specifically, user i will incorporate partially the privacy harm
she inflicts on all her ni friends in her own payoff calculation. In our model,
this other-regarding preference is represented by e · ni. We make the assump-
tion that e is additive across users. In other words, if a user adopts a certain
app which likely impacts her friends’ privacy then her worry about this decision
will increase with the number of close friends, ni. We believe this assumption
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is reasonable. For example, annoyances such as spam typically affect all close
friends.3

Studies also found that group size likely reduces the impact of other-regarding
preferences due to a diffusion of responsibility [34]. When individuals know that
others have taken the same potentially harmful action, they do not experience the
full burden of responsibility. In our case, the guilt of inflicting privacy harm on
others will be diffused with each additional close friend who has already adopted
the app. Likewise, reciprocity requires an agent to respond to previous instal-
lation decisions that also impose potential privacy harm on her.4 We use e·ni

vi+1
to represent the part of the remaining responsibility that user i shoulders when
she calculates her payoff considering her diffused responsibility and reciprocal
factors. In particular, we make the assumption that the guilt of causing privacy
harm is split equally across the local peers who make the adoption decision.

In order to indicate to which degree an individual is generally concerned about
privacy harm imposed on friends, we use ki to represent agent i’s other-regarding
preference. A larger k indicates a higher other-regarding preference, a smaller k
represents lower other-regarding preferences. Thus, ki

vi+1e · ni reflects how agent
i cares about her friends’ privacy harm inflicted by herself.

Please note that users apply a heuristic evaluation when they calculate the
privacy harm inflicted on others with the formula stated above. For example, an
exact calculation would require an assessment of the overlap between her friends,
and her friends of friends. Theoretically, a user should only experience partial
emotional relief for the installation decisions of her friends when not all of her own
friends were affected by her friends’ app adoptions. However, while in practice it
is relatively easy to determine how many friends have installed a particular app;
it is extremely cumbersome (if not impossible for an average user) to determine
this more specific figure on most social network sites and mobile networks. In
addition, user i cannot easily reciprocate in the app installation context against a
specific user since her adoption decision affects the whole groups of close friends.

3.3 Cost of App Adoption

All practical costs associated with an adoption decision, except the interdepen-
dent privacy harm experienced by her choice, are included in the installation
cost. For example, the installation costs contain, but are not limited to, the cost
of finding and installing an app, the cost of learning how to use the app, and
user’s personal privacy harm when she chooses to install the app.

3 For example, if Bob installs Candy Crush, a very popular third-party Facebook app,
then this installation will typically trigger invitations to both his friends Eve and
Trudy.

4 Note that interdependent privacy harm user i already is suffering from cannot be
influenced by herself and is therefore not part of the payoff calculation. However, it
finds consideration in her other-regarding preferences.
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4 Simulation Setup

Given the model we proposed above, we conduct two simulations to investigate
app adoption in both its early and late phases. Based on available empirical
literature on the purchasing behavior for new products, we argue that the pro-
cesses for early and late adoption differ significantly. In the early phase, a pool of
potential first adopters is evaluating a newly introduced product (as described in
our model) while considering social and privacy factors [35]. In the later stages
of adoption, users are heavily influenced by available product rankings which are
interpreted as a proxy for the quality of a product [36]. (Note that early adop-
tion decisions can be also influenced by product rankings [36]. However, social
networking sites and mobile networks typically only include apps in rankings
once they have reached a certain popularity threshold.)

We proceed as follows. In the first simulation, we aim to understand the per-
centage of users who choose to adopt an app that collects information from users’
friends from the first moment the app is introduced into an app marketplace.
In addition, we will show how this percentage will be affected by network size,
the level of an app’s interdependent privacy harm, and installation cost. In the
second simulation, we simultaneously derive early adoption results for multi-
ple apps with different interdependent privacy harms. We then proceed to rank
these apps according to their associated frequency of positive early adoption de-
cisions. Based on these rankings, we then discuss the impact of these rankings
on potential later adoption by a larger pool of users.

4.1 Scale-Free Network

Evidence from measurement studies suggests that social network sites and other
human-formed networks exhibit properties of scale-free networks [37,38]. We
therefore conduct our simulations within the framework of a scale-free network
model. The model we use to generate the network is the Barabási-Albert (BA)
model [39]. The central idea of the BA model is that in a network, the more
nodes a particular node connects to, the more likely the node will attract new
connections. In our model, this means that the more friends a user has, the more
likely others are willing to be her friends (i.e., a notion of popularity).

When using the BA model to generate a scale-free network of N people, we
first randomly connect M0 initial nodes. Then, according to the principle that
the probability of connecting to an existing node is proportional to the degree
of that node, each new node is connected to M existing nodes. Following this
procedure, the remaining N −M0 nodes are then connected to the network one
by one [39].

4.2 Simulation Process

Users make their decisions according to the payoff function stated in Equation
(1). Thus, before we can simulate users’ behaviors, we have to decide on the
parameters that appear in Equation (1). These unknowns include the number
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of users in the network, topology of the network, valuation type and the other-
regarding preference type of each user, installation cost, and the level of an app’s
interdependent privacy harm. In order to decide on these unknowns, we make
the assumption that given the overall number of users in the network, nature
will determine how those people are connected, and what valuation type and
other-regarding preference type each user has. In addition, installation cost, c,
the level of an app’s interdependent privacy harm, e, and the network size, N ,
are predefined by us (i.e., we will indicate the specific values in the following
tables and figures).

Hence, before we simulate adoption rates of a newly introduced app that
causes interdependent privacy harm, we need to set values for unknown parame-
ters, i.e., e, c and N . We then use the BA model to generate a scale-free network
of N users. Next, we attribute a valuation type θi and an other-regarding prefer-
ence type ki to each user. Although, we assume both types to follow the uniform
distribution over the interval (0, 1), we do not randomly attribute types to users.
Instead, we assign types according to the assumption that friends tend to have
similar preferences (which is motivated by social science research, e.g., [40]). This
means, users are assigned to types in such a way that people who are friends
tend to have similar θi and ki.

After setting values for unknown parameters, we follow a fixed simulation
methodology and average the percentage of individuals who install the app across
10000 simulation rounds. In our simulation procedure each individual has the
opportunity to make a positive adoption decision more than once. In other words,
even if a user declines to adopt an app at first inspection, she can reconsider her
decision when more friends chose to adopt that app. The simulation is set up as
follows:

1. For each individual in the network, set her vi to be 0. This is reasonable
since none of the N individuals has yet installed the app. In addition, we
use SI to denote the set of people that have already installed the app. Here,
SI is ∅.

2. Check adoption decisions of all N individuals according to the payoff func-
tion. Use set I to record the individuals that choose to adopt the app in this
step. Add each person in I to SI.

3. For each individual in set I, find the friends of them and record these friends
in set F . For each person in F , find her current vi.

4. Check the adoption decision of each person in F . Change set I so that it
records all the new individuals who adopted the app in this step. Add each
element in I to the set SI.

5. Repeat step 3 and step 4 until there are no individuals left in set I.
6. Divide the number of individuals in SI by the total number of users in the

network. Output this result, which denotes the percentage of users who have
eventually decided to adopt the app.

7. Terminate this round.

The above simulation determines the adoption result for a particular app with
a given combination of values e, c, and N . To help us understand how adoption
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Table 2. Distribution of app adoption outcomes for various values of e and constant
c = 0, N = 100

e 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

≤ 10% 0 0.87 4.58 11.95 22.7 32.39 43.0 53.03 61.17 69.43
10% ∼ 90% 0.01 0.01 0.03 0.18 0.59 1.75 2.61 3.85 4.92 4.99
≥ 90% 99.99 99.12 95.39 87.87 76.71 65.86 54.39 43.11 33.91 25.58

results change with respect to each of these app dimensions, we systemically
vary these parameters.

5 Simulation Results 1: Individuals’ App Installation
Behaviors in Early Adoption Stage

In this section, we provide simulation results that describe early stage adoption
outcomes of apps with interdependent privacy consequences. The results help us
understand future app adoption outcomes which we will discuss in Section 6.

In the following subsections, we focus our analysis on one particular parameter
(i.e., e, c or N) to analyze its impact on app adoption.

How Is Adoption Impacted by Interdependent Privacy Harm? For this
analysis, we consider changes of the level of interdependent privacy harm, e, and
keep constant the values for c and N . We consider 4 different sets of (c,N) and
plot graphs to show the distribution of app adoption rates for each of these 4 sets
(Figure 1). The horizontal axis represents adoption rates, while the vertical axis
indicates the percentage of 10,000 simulation rounds that fall into a particular
range of adoption rates. Here, we consider three ranges of app adoption results:
less than 10% adoption rate; adoption rates between 10% and 90%; and adoption
rates above 90%.

Figure 1 shows that with increasing privacy harm the percentage of positive
adoption decisions decreases. E.g., adoption rates between 90% and 100% occur
much less frequently, while there is an increased possibility of falling into the
lower range of adoption rates, i.e., 0% to 10%. Numeric figures are provided in
Table 2.

How Is App Adoption Impacted by Installation Cost? In this subsection,
we vary the installation cost, c, from 0 to 1, while keeping the parameters for
privacy harm, e, and network size, N , constant. Similar to the previous analysis,
we consider 4 fixed sets of (e,N). Figure 2 demonstrates that when installation
costs increase, there is a higher probability that the app will suffer from a lower
adoption rate. Numeric values for fixed (e,N) equaling (0.5, 100) are provided
in Table 3.

How is adoption impacted by network size? We consider different app
network sizes from 100 to 2,000 nodes, and keep constant installation cost and
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c = 0.0 0.5

N = 100

200

Fig. 1. Distribution of app adoption outcomes for different e with fixed c and N

Table 3. Distribution of app adoption outcomes for various values of c and constant
e = 0.5, N = 100

c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

≤ 10% 4.82 8.02 12.4 18.78 28.68 41.6 55.72 72.93 87.69 96.77 99.99
10% ∼ 90% 0.01 0.16 0.64 1.11 2.04 2.85 3.01 2.86 1.63 0.53 0.01
≥ 90% 95.17 91.82 86.96 80.11 69.28 55.55 41.27 24.21 10.68 2.7 0

privacy harm. We consider 4 different fixed sets of (e, c), and plot the results in
Figure 3. In Table 4, we provide numeric results for (e, c) equaling (1.0, 0.5). From
both Figure 3 and Table 4, we can observe that as the network size increases the
probability of an app being adopted increases as well.

6 Simulation Results 2: App Installation Behaviors in the
Late Adoption Stage

In this section, we aim to understand app installation results once rational early
adopters have evaluated new apps and a ranking has become available that
increases the prominence of the new apps (proportional to its ranking) to a larger
user group. Rankings based on early adoption results play an important role in
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e = 0.5 1.0

N = 100

200

Fig. 2. Distribution of app adoption outcomes for different c with fixed e and N

Table 4. Distribution of app adoption outcomes for various values of N and constant
e = 1.0, c = 0.5

N 100 200 500 1000 2000

≤ 10% 74.21 61.07 37.54 19.07 5.23
10% ∼ 90% 3.12 4.0 3.94 2.11 0.55
≥ 90% 22.67 34.93 58.52 78.82 94.22

shaping users’ adoption behavior in the later adoption phase since consumers will
frequently rely on these rankings during their own adoption decisions [41,42].

For example, based on evidence from an iOS app market, Garg and Telang
found that top-ranked for-pay apps generated about 150 times more downloads
compared to apps ranked at about 200 [42]. Similarly, Carare showed that con-
sumers’ willingness to pay for a top-ranked app is about $4.50 greater than
for the same unranked app [41]. Further direct evidence of the impact of app
rankings is provided by a more recent study. Applying a data-driven approach,
Ifrach and Johari studied the effect of the top-rank position on demand in the
context of mobile app markets [11]. They found that the demand for an app al-
most doubles when its rank shifts from position 20 to position 1. Taken together,
rankings can serve as an important indicator for future adoption outcomes in
app markets.

In addition, previous research showed that users adopt apps with high privacy
harms because they did not understand the fact that apps maliciously harvest
their profile information [3,4]. Some researchers expect (e.g., [4]), it would be suf-
ficient to protect users from undesirable apps if at least some users demonstrated
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Fig. 3. Distribution of app adoption outcomes for different N with fixed e and c

awareness and understanding of permissions. However, in this section we show
that even if an early adopter group rationally evaluates the different aspects of
new apps, then the resulting app ranking can provide misleading signals to less
savvy consumers in the later adoption phase.

We take the following approach. We first investigate early adoption results
for multiple apps (by following the general methodology outlined in the previous
section). More precisely, we first simulate early adoption results of 100 apps with
different levels of e for 50 times. Note here, the level of privacy harm ranges from
0.1 to 10, the network size is fixed at N = 100, and installation cost is constant
at c = 0. We then rank those apps based on their early adoption rates for each of
the 50 simulations, i.e., we collect 50 rankings. By analyzing the variation in the
early adopter rankings, we can then gain some insights about apps’ likely future
adoption results. Or to put it differently, we can discuss the informativeness of
the app ranking as a signal to the consumer.

We show the simulation results in Figures 4 and 5. Note that in both figures,
each number on the x-axis indicates a particular app with a value of e equal
to that number. For example, 4 represents the app with e = 4. In Figure 4,
the y-axis represents the number of individuals who adopt the app. The y-axis
in Figure 5 represents the cardinal number of each app’s rank. In both figures,
the dots represent the mean value, while the ranges that include the dot in the
vertical direction denote the standard deviation of the relevant value.

As we can see in Figure 4, the more interdependent privacy harm an app
causes, the lower its adoption rate will become. In addition, adoption outcomes
of apps with either a particularly high e or low e do not vary too much. In most



260 Y. Pu and J. Grossklags

cases, those apps either have close to 0% adoption rate or a very high adoption
rate, respectively. However, adoption results of apps with a medium e change
a lot and rarely result in extremely high or low initial adoption rates. This
indicates that by comparing adoption results, we can differentiate among apps
with particularly low levels, medium levels and high levels of interdependent
privacy harm.

By inspecting the mean value in Figure 5, we can observe that the lower the
interdependent privacy harm, e, an app is associated with, the higher the ranking
it will receive. However, from a practical perspective this basic observation can
be challenged once we examine the standard deviation of rankings.5 Most apps
(except the very privacy-friendly apps) have a very high standard deviation
concerning their ranks; the result of which is the phenomenon that wide ranges
of apps’ potential ranking outcomes are overlapping. As is indicated in the figure,
this is particularly relevant for apps with e > 2. In other words, it is highly
possible that an app with a quite high privacy harm e ends up with a favorable
ranking, while an app with a comparatively low privacy harm e receives a very
low ranking. For example, observing Figure 5, simulation outcomes are quite
feasible in which a privacy-unfriendly app (e = 10) ranks in the 30th place while
the app with a low privacy harm (e = 2) receives rank 50. That is, it may be
very misleading to rely on rankings for apps that do not fall into the category
of the lowest privacy harm (e < 2) even if the initial ranking was determined by
a set of rational early adopters.

Fig. 4. Adoption results of 100 apps
with e changing from 0.1 to 10

Fig. 5. Rankings of 100 apps with e chang-
ing from 0.1 to 10

To better illustrate that rankings cannot accurately reflect apps’ interdepen-
dent privacy harm, we compare rankings between pairs of apps with one app
having a medium level of privacy harm and one app with a relatively high level
of privacy harm. Here, we compare four groups of apps: (1) app with e = 2.6

5 Essentially, we investigate the variation between a low number of different ranking
outcomes which in our case are 50 alternate universes of app rankings.
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and app with e = 9.5, (2) app with e = 3.4 and app with e = 9.5, (3) app with
e = 3.8 and app with e = 9.8 and (4) app with e = 4.5 and app with e = 8.8.
For each group, we plot the 50 rankings of a particular pair of apps in Figure 6.
As we can see in each figure, blue dots and red dots fall into the same range, and
reveal no discernible pattern. We use Welch’s t−test to examine the relationship
between the 50 rankings for each pair. The statistical results, shown in Table 5,
indicate that for all of these four pairs, the potential rankings of the app with
a medium level of privacy harm are not significantly different from the rankings
of the app with a high level of privacy harm.

(a) e=2.6 e=9.5 (b) e=3.4 e=9.5

(c) e=3.8 e=9.8 (d) e=4.5 e=8.8

Fig. 6. Comparison of app rankings for four sample groups

Table 5. Statistical results of Welch’s t-test for four sample groups

Group F -Value p-Value

e = 2.6 e = 9.5 -1.84 0.07
e = 3.4 e = 9.5 -1.42 0.16
e = 3.8 e = 9.8 -1.02 0.31
e = 4.5 e = 8.8 -0.63 0.53

In summary, we assume that in the early adoption period, rational users are
able to identify privacy-intrusive apps; for example, partly because of the lack
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of market signals (i.e., a ranking) they have a higher incentive to inspect appli-
cations. However, after a sufficiently large group of early adopters has inspected
the app, the platform provider will typically include the app in its rankings.
Rational as well as less savvy adopters will now likely rely on the app rankings
to guide their adoption behaviors. However, since the resulting ranking is not
informative enough to reflect app’s interdependent privacy harm level, users are
likely to also fall for apps with significant privacy harm. This observation com-
plements the findings in the behavioral literature that users adopt apps with high
privacy harms mostly due to their unawareness of apps’ malicious and intrusive
privacy practices. However, our take-away is somewhat disillusioning. Even if
we can motivate a group of early adopters to rationally evaluate apps and we
assume that they understand the privacy consequences of the installation, then
the long-term outcomes might still disappoint privacy and consumer advocates.

7 Conclusion

In the interconnected setting of social network sites and mobile networks, apps’
practices to collect personal information of users’ friends and to allow for po-
tential misuse amplifies the importance of interdependent privacy. That is, the
privacy of an individual user does not only depend on her own behavior, but it
is also the result of the decisions of her friends.

Taking an economic perspective, we propose a model of the adoption be-
havior for social apps in a networked system where privacy consequences are
interdependent. Motivated by behavioral economics research, we model users to
exhibit other-regarding preferences about the privacy well-being of their peers.
We present two simulation approaches to investigate individuals’ app adoption
behaviors: early adoption of individual apps, and later adoption of a pool of apps
with different privacy harms. The simulation results indicate that in the early
adoption period, either lowering the level of interdependent privacy harm or de-
creasing the installation cost will increase the app adoption rates. The results
also show app adoption rates will increase with a growing network size. Based
on the second simulation approach, we conclude that rankings based on early
adoption results frequently will not accurately reflect the level of apps’ interde-
pendent privacy harm. This is especially relevant for rankings of apps that have
medium and high level of privacy harm.

While further study is needed, for example, we are investigating the robust-
ness of our results to different specifications of the model, we believe that our
study can contribute to the policy discussion on app privacy [43]. Privacy ad-
vocates should cautiously reconsider the expected impact of added scrutiny by
early adopters in a marketplace; that is, encouraging individuals to pay more
attention to the potential privacy harm of apps may not create the anticipated
ripple-effects in the marketplace. We believe that in many cases it is likely mis-
leading to rely on such market signals when we are considering products with
strong network effects and interdependent privacy harm. In addition, our work
highlights the important role of the platform provider. In particular, the design
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and scope of rankings should be carefully tested to increase the likelihood that
market signals are meaningful. For example, rankings could be limited to data
with low variability of ratings.

To better understand the impact of different rankings we intend to work on
actual app adoption data. Unfortunately, publicly available data usually does
not provide details of app adoption dynamics. Instead, we favor an experimental
approach (similar to [36]) to further calibrate our model.
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Abstract. In this paper we investigate how to optimally invest in cyber-
security controls. We are particularly interested in examining cases where
the organization suffers from an underinvestment problem or inefficient
spending on cybersecurity. To this end, we first model the cybersecurity
environment of an organization. We then model non-cooperative cyber-
security control-games between the defender which abstracts all defense
mechanisms of the organization and the attacker which can exploit dif-
ferent vulnerabilities at different network locations. To implement our
methodology we use the SANS Top 20 Critical Security Controls and
the 2011 CWE/SANS top 25 most dangerous software errors. Based on
the profile of an organization, which forms its preferences in terms of
indirect costs, its concerns about different kinds of threats and the im-
portance of the assets given their associated risks we derive the Nash
Equilibria of a series of control-games. These game solutions are then
handled by optimization techniques, in particular multi-objective, multi-
ple choice Knapsack to determine the optimal cybersecurity investment.
Our methodology provides security effective and cost efficient solutions
especially against commodity attacks. We believe our work can be used
to advise security managers on how they should spend an available cy-
bersecurity budget given their organization profile.

Keywords: cybersecurity, game theory, optimization.

1 Introduction

One of the single largest concerns facing organizations today is how to protect
themselves from cyber attacks whose prominence impose the need for organiza-
tions to prioritize their cybersecurity concerns with respect to their perceived
threats. Organizations are then required to act in such a way so as to minimize
their vulnerability to these possible threats. The report [4] published by Deloitte
and NASCIO, points out that only 24% of Chief Information Security Officers
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(CISOs) are very confident in protecting their organization’s assets against exter-
nal threats. Another important finding in this report is that the biggest concern
CISOs face in addressing cybersecurity is a “Lack of sufficient funding” where
86% of respondents were concerned.

Most organizations will have a fixed budget for the protection of their systems.
Generally this budget would not allow them to fully cover all of the vulnerabilities
that their data assets are at risk from. As such an organization is interested
in how to use the limited financial budget available to best protect them from
various vulnerabilities given that the implementation of a cybersecurity control
is associated with a direct cost.

Apart from the direct costs of controls, there are also indirect costs incurred by
the implementation of these controls. From this point of view investing more in
cybersecurity might not always be the most efficient approach that CISOs can
follow. Therefore another dimension of the cybersecurity investment problem
is “what is the optimal cybersecurity budget allocation given the importance
that the organization places into its different assets, the system performance
requirements, and the profile of employees and clients?”

1.1 Our Contributions

In this work we provide a methodology and a tool that can support security
managers with decisions regarding the optimal allocation of their cybersecurity
budgets.

We first motivate a method for the creation of an organization’s cybersecurity
strategy (Section 3). This is achieved by performing a risk analysis of the data
assets that an organization has, and analyzing the effectiveness of different secu-
rity controls against different vulnerabilities. We then formulate control-games
(Section 4) based on these risk assessments, in order to calculate the most effec-
tive way for an organization to implement each control. In a control-game the
defender aims at reducing cybersecurity risks by implementing a control in a
certain way dictated by the Nash Equilibrium (NE). In this way, the defender
minimizes the maximum potential damage inflicted by the attacker. The solu-
tions of the different control-games are handled by the optimization techniques of
multi-objective, multiple choice Knapsack (Section 5) to decide upon an optimal
allocation of a cybersecurity budget. We also present a case study (Section 6)
which includes vulnerabilities (i.e. CWE) and cybersecurity controls published
by the Council on CyberSecurity. We have implemented our methodology (Sec-
tion 7) for this case study by computing games solutions and investments and
measure its performance in terms of cybersecurity defense for different organi-
zation profiles.

To demonstrate the effectiveness of our methodology we have implemented
part of the SANS Top 20 Critical Security Controls and the 2011 CWE/SANS
top 25 most dangerous software errors.We present examples of investment strate-
gies that our tool recommends and test their optimality by looking at alterna-
tives to show that they are the best. In this way, our work is a step towards
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implementing a theoretical cybersecurity investment decision-making methodol-
ogy into a realistic scenario.

2 Related Work

Anderson [1] first proposed the study of security from an economics perspective
putting forward the idea that cybersecurity is bounded by other non-technical
incentives. Anderson highlighted with an example that although some organi-
zations spend less money on security they spend it more effectively therefore
having put in place better cyber defenses. In our work we share Anderson’s
view. However our approach is quite different as we focus on developing cyber-
security decision support tools to assist security managers on how to spend a
cybersecurity budget in terms of different controls acquisition and implementa-
tion. Our work has been partially influenced by a recent contribution within the
field of physical security [17], where the authors address the problem of finding
an optimal defensive coverage. The latter is defined as the one maximizing the
worst-case payoff over the targets in the potential attack set. One of the main
ideas of this work we adopt here is that the more we defend the less rewards the
attacker receives.

Alpcan [5] (p. 134) discusses the importance of studying the quantitative as-
pects of risk assessment with regards to cybersecurity in order to better inform
decisions makers. This kind of approach is taken in this work where we provide an
analytical method for deciding the level of risk associated from different vulner-
abilities and the impact that different security controls have in mitigating these
risks. By studying the incentives for risk management Alpcan [6] developed a
game theoretic approach that optimizes the investment in security across differ-
ent autonomous divisions of an organization, where each of the divisions is seen
as a greedy entity. Furthermore Alpcan et al. examine in [14] security risk depen-
dencies in organizations and they propose a framework which ranks the risks by
considering the different complex interactions. This rank is dictated by an equi-
librium derived by a Risk-Rank algorithm. Saad et al. [12] model cooperation
among autonomous parts of an organization that have dependent security assets
and vulnerabilities for reducing overall security risks, as a cooperative game. In
[13] Bommannavar et al. capture risk management in a quantitative framework
which aids decision makers upon allocation of security resources. The authors
use a dynamic zero-sum game to model the interactions between attacking and
defending players; A Markov model, in which states represent probabilistic risk
regions and transitions, has been defined. The authors are using Q-learning to
cope with scenarios when players are not aware of the different Markov model
parameters. Previous work carried out by Fielder et. al. [9] considers how to op-
timally allocate the time for security tasks for system administrators. This work
identifies how to allocate the limited amount of time that a system administra-
tor has to work on the different security related tasks for an organization’s data
assets.

One of the initial works studying the way to model investment in cyberse-
curity was conducted by Gordon and Loeb [7]. The authors identify a method
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for determining the level of investment for the protection of individual targets,
showing that the optimal level of investment should be related to the proba-
bility of a vulnerability occurring. The main message of this work is that to
maximize the expected benefit from information security investment, an organi-
zation should spend only a small fraction of the expected loss due to a security
breach. The work published in [8] examines the weakest target game which refers
to the case where an attacker is always able to compromise the system target
with the lowest level of defense and not to cause any damage to the rest of the
targets. The game theoretic analysis the authors have undertaken shows that
the game leads to a conflict between pure economic interests and common so-
cial norms. While the former are concerned with the minimization of cost for
security investments, the latter imply that higher security levels are preferable.
Cavusoglu et. al. [11] compare a decision theory based approach to game theo-
retic approaches for investment in cybersecurity. Their work compares a decision
theory model to both simultaneous and sequential games. The results show that
the expected payoff from a sequential game is better than that of the decision
theoretic method, however a simultaneous game is not always better. Recent
work on cybersecurity spending has been published by Smeraldi and Malacaria
[10]. The authors identified the optimum manner in which investments can be
made in a cybersecurity scenario given that the budget allocation problem is
most fittingly represented as a multi-objective Knapsack problem. Cremonini
and Nizovtsev, in [15], have developed an analytical model of the attacker’s be-
havior by using cost-benefit analysis therefore considering rewards and costs of
achieving different actions. Lastly, Demetz and Bachlechner [16] have identified,
analyzed and presented a set of approaches for supporting information security
investment decisions. A limitation of this paper, as highlighted by the authors,
is that they assume that sufficient money is available to make an investment
although in reality cybersecurity budgets are limited.

3 Cybersecurity Model

In this section we describe our cybersecurity model to illustrate an organization’s
network topology, systems and security components. The network architecture
will determine how the different assets of an organization are interconnected. In
this paper we follow the network architecture as proposed in the SANS Criti-
cal Security Control 19-1 entitled “Secure Network Engineering” and published
in [3]. This consists of three depths namely the demilitarized zone (DMZ ), the
Middleware, and the Private Network. An organization’s assets that can be ac-
cessed from the Internet are placed in the DMZ, and they should not contain
any highly sensitive data. Any asset with highly sensitive data must be located
at the Private Network, and communicate with the outside world only through
a proxy which resides on the Middleware.

We define the depth of an asset, denoted by d, as the location of this asset
within an organization’s network architecture. Depths are separated from each
other by a set of network security software, e.g. firewalls, IDS. A depth deter-
mines (i) the level of security that needs to be breached or bypassed in order
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Fig. 1. Sample network architecture

for an attack to successfully exploit a vulnerability at this depth, and (ii) the
importance of the data asset compromised if an attack is successful.

We denote the set of all cybersecurity targets within an organization by T
and the set of all vulnerabilities threatened by commodity attacks by V .
Definition 1. Commodity attacks are attack methods where the attack tools can
be purchased by a user, where the adversaries do not develop the attacks them-
selves, and only configure the tools for their own use.

A cybersecurity target is defined as a (vulnerability, depth) pair, i.e. ti =
(vz , d). A target abstracts any data asset, located at depth d, that an attack
threatens to compromise by exploiting the vulnerability vz.

We define the set of all targets as T = {(vz, d)|vz ∈ V , d ∈ {1, . . . , n}}.
We assume that each network architecture has its own set of targets however
throughout this paper we consider the network architecture depicted in Fig. 1.
In this paper, we specify that data assets located at the same depth and having
the same vulnerabilities are abstracted by the same target, and they are worth
the same value to the organization.

A cybersecurity control is the defensive mechanism that can be put in place
to alleviate the risk from one or more attacks by reducing the probability of
these attacks successfully exploiting vulnerabilities. The defender can choose to
implement a control cj at a certain level l ∈ {0, . . . ,L}. The higher the level the
greater the degree to which the control is implemented.

Definition 2. We define a cybersecurity process as the implementation of a
control at a certain level, and we denote by pjl the cybersecurity process that
implements the control cj at level l.

We define as C = {cj} the set of all cybersecurity controls the defender is
able to implement to defend the system, and Pj = {pjl} the set of all cyber-
security processes associated with control cj . A cybersecurity process pjl has a
degree of mitigation for each target ti which equals the effectiveness of the cy-
bersecurity process on this target, denoted by e(ti, pjl) ∈ (0, 1]. We also define
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Mitigation = e(ti, pjl). In this paper we are interested in how cybersecurity
processes are combined in a proportional manner to give an implementation plan
for this control. We call this a cybersecurity plan which allows us to examine ad-
vanced ways of mitigating vulnerabilities.

Definition 3. A cybersecurity plan is a probability distribution over different
cybersecurity processes.

In the following we describe the notions of Risks, Indirect and Direct Costs re-
sulting from the implementation and purchase of a control and the Organization
Profile which determines the preferences of an organization in terms of risks,
indirect costs and how concerned the organization is about the different threats.

Risks. The target risks express the damage incurred to the defender when the
attacker succeeds in compromising one or more targets. The different risks we
consider are Data Loss (DL), Business Disruption (BD), and Reputation (RE).
Each risk factor depends on the depth d that the attack targets; therefore we
denote by DLd, REd, and BDd the risk values associated with a depth d.

Indirect Costs. For each cybersecurity process we consider three different types of
indirect costs. The System Performance Cost (SPC) is associated with anything
related to system performance being affected by a cybersecurity process (e.g.
processing speed affected by anti-malware scanning). The Morale Cost (MOC)
accounts for morale issues that higher levels of security can cause to users’ hap-
piness and job satisfaction. One negative implication of high MOC is that the
stricter the security measures that an organization implements, the more likely
an individual will want to circumvent them if possible. In these cases the at-
tacker is able to take advantage of the reduced security from user actions. For
example, having a control about different passwords for everything, might an-
noy users therefore increasingMOC. This might lead to circumvention of security
by the user picking weak, memorable passwords which can often be cracked by
dictionary or brute force attacks. Lastly, Re-Training Cost (RTC) refers to the
cost for re-training users, including system administration, so they can either
perform the cybersecurity process in the right way or be able to continue using
all systems after a security update. We express the different indirect costs of a
cybersecurity process pjl by SPCjl, RTCjl, and MOCjl.

Direct Costs. Each cybersecurity process has a direct cost which refers to the
budget the organization must spend to implement the control cj at a level l. The
direct cost of a cybersecurity process is split into two categories, the Capital Cost
(CAC) and the Labour Cost (LAC). CAC is related to hardware or software that
must be purchased for the implementation of a control at some level. LAC is the
direct cost for having system administrators implementing the control such as
(hours spent) × (cost/hour). When investing in cybersecurity we will be looking
into the direct cost of each cybersecurity plan which is derived as a combination
of the different costs of the cybersecurity processes that comprise this plan.

Vulnerability Factors. The Council on CyberSecurity has published in [2] soft-
ware weaknesses (in this paper weakness and vulnerability are used interchange-
ably) and their factors. These factors are Prevalence (PR), Attack Frequency
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(AF), Ease of Detection (ED), and Attacker Awareness (AA). For a vulnerabil-
ity vz we denote the vulnerabilities factors by PRz ,AFz,EDz,AAz. The level of
a factor determines its contribution towards an overall vulnerability assessment
score. For a commodity attack, one can argue that AA measures whether the
average adversary would know that a malicious script is for sale, and ED is a
measure of the computational cost of the attack discovery process. PR indicates
the number of times the weakness is found in the system (e.g. only 30% of win-
dows systems ever downloaded a given patch), and AF dictates the number of
times someone actually tries to exploit it (e.g. how many random SQL injec-
tion probes a day). We see PR and AF accounting for threats that are currently
widespread (current threats) and ED and AA for threats that have the most
potential for future attack vectors (future potential threats).

Organization Profile. To represent an organization profile we define a set
{R,K, T } which dictates the preferences that an organization has with re-
gards to risks, indirect costs and how concerned the organization is about well-
known threats, respectively. These are given by the probability distributions
R = [r1, r2, r3], K = [k1, k2, k3], and T = [τ1, τ2]. The idea behind defining an
organization profile is that a security manager can reason about the organization
at a high level. This means whenever managers use our model they do not have
to undertake some detailed security assessment, but only considers the high level
needs of the organization.

The Risk Profile, denoted by R, represents the importance that each of the
potential areas of loss (DL,RE,BD) has to the organization. This is designed to
prioritize the risk factors, such that each organization is able to identify the
balance of the damage that they can expect from a successful attack. While the
expectation is that data loss will be the predominant concern for most organiza-
tions, there are some that may consider that their reputation or the disruption
to the operation of the business have a more significant impact. The most no-
ticeable case for this would be organizations that predominantly deal with third
party payment systems (e.g. Paypal), where the organization will hold relatively
little data of value for their customers. For the Risk Profile weights we create
the relation such that r1 �→ DL, r2 �→ RE, and r3 �→ BD. We implicitly assume
here that the organization’s risk profile remains the same at all depths. We then
define Risks = r1DLd + r2REd + r3BDd.

The Indirect Costs Profile K defines an importance for each of three different
indirect cost factors SPC, RTC, and MOC. This is so that an organization can
reason about the relative importance of indirect costs that it may incur when
implementing a defense. The mapping of the different weights to costs are k1 �→
SPC, k2 �→ RTC, and k3 �→ MOC. Therefore, Ind Costs = k1SPCjl + k2RTCjl +
k3MOCjl.

Lastly, Threat Concern T is the level of importance that the business places
on each of the threat factors. The main priority here is identifying whether
the organization is concerned more about current threats or future potential
threats. Therefore τ1 �→ current threats and τ2 �→ future potential threats. We
define Threat = τ1[(PRz + AFz)/2] + τ2[(EDz + AAz)/2].
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4 Cybersecurity Control-Games

In this section we use game theory to model the interactions between two play-
ers; the defender and the attacker. The defender D abstracts any cybersecurity
decision-maker (e.g. security manager) which defends an organization’s data as-
sets by minimizing cybersecurity risks with respect to the indirect costs of the
cybersecurity processes while the attackerA abstracts all adversaries that aim to
benefit from compromising the defender’s data assets. The game we model here
is a two-player game where there is a negative functional correlation between the
attacker and the defender payoffs; the idea is that the more an attacker gains the
more the defender loses. This means that equilibria in these games are minimax
in an associated zero sum game. For any control cj we define a control-subgame
as follows.

Definition 4 (Control-subgame Gjλ). A control-subgame Gjλ is a game where
(i) D’s pure strategies correspond to consecutive implementation levels of the
control cj starting always from 0 (i.e. fictitious control-game) and including all
levels up to λ and, (ii) A’s pure strategies are the different targets akin to pairs
of vulnerabilities and depths.

D’s finite strategy space is given by the set AD = {pjl}. This means that D’s
actions are the different cybersecurity processes akin to implementations of a
control cj at different levels. The attacker can choose among different targets to
attack therefore AA = {(vz, d)}. We define D’s mixed strategy as the probability
distribution Qjλ = [qj0, . . . , qjλ]. This expresses a cybersecurity plan, where qjl
is the probability of implementing cj at level l in the control-subgame Gjλ.

A mixed strategy of A is defined as a probability distribution over the differ-
ent targets and it is denoted by Hjλ = [hj1, . . . , hjn], where hji is the probability
of the adversary attacking target ti when D has only the control cj in their pos-
session. D’s aim in a control-subgame is to choose the Nash cybersecurity plan
Q�

jλ = [q�j0, . . . , q
�
jλ]. This consists of λ cybersecurity processes chosen proba-

bilistically as determined by the Nash Equilibrium (NE) of Gjλ and it minimizes
cybersecurity risks and indirect costs.

Example 1. In this example we consider a security control entitled Vulnerability
Scanning and Automated Patching, and we assume 5 different implementation
levels i.e. {0, 1, 2, 3, 4}where level 4 corresponds to real-time scanning while level
2 to regular scanning. We say that a mixed strategy [0, 0, 7

10 , 0,
3
10 ] determines a

cybersecurity plan that dictates the following:
3
10 �→ real-time scanning for the 30% of the most important devices

7
10 �→ regular scanning for the rest 70% of devices

This mixed strategy can be realized more as advice to a security manager on
how to undertake different control implementations rather than a rigorous set of
instructions related only to a time factor. We claim that our model is flexible thus
allowing the defender to interpret mixed strategies in different ways to satisfy
their requirements.
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We denote by UD(pjl, ti) the utility of D when target ti = 〈vz , d〉 is attacked,
and the cybersecurity process pjl has been selected to mitigate vz at depth d, in
general:

UD(pjl, 〈vz , d〉) := Risks×Threat × (1−Mitigation) + Ind Costs (1)

Theorem 1. The zero-sum cybersecurity control-subgame Gjλ admits an NE in
mixed strategies, (Q�

jλ, H
�
jλ), with the property that

Q�
jλ = argmax

Qjλ

min
Hjλ

UD(Qjλ, Hjλ), and H�
jλ = argmax

Hjλ

min
Qjλ

UA(Qjλ, Hjλ)

The minimax theorem states that for zero sum games NE and minimax solution
coincide. Therefore in Gjλ any Nash cybersecurity plan mini-maximizes the at-
tacker’s payoff. If any Gjλ admits multiple Nash cybersecurity plans they have the
ordered interchangeability property which means that D reaches the same level
of defense independent from A’s strategy, i.e.

Q�
jλ = argmin

Qjλ

max
Hjλ

UA(Qjλ, Hjλ)

Definition 5. The non-zero sum control-subgame G′
jλ = 〈UD, U

′
A〉 where U ′

A =
αUA + β, andα, β constants andα > 0 is called a positive affine transformation
(PAT) of the zero sum control-subgame Gjλ = 〈UD, UA〉.
Proposition 1. If one of the game matrices of a control-subgame Gj is a positive
affine transformations (PAT) of a zero sum control-subgame G′

j (and the other
matrix is the same for both games) then the Nash equilibria of Gj are minimax
strategies. These also correspond to saddle-points [5] (p. 42).

In the rest of the paper we will restrict ourselves to control-subgames which are
positive affine transformation of a zero sum control-subgame.

Definition 6 (Control-game Gj). For any control cj, with L possible im-
plementation levels, we define a control-game Gj which consists of L control-
subgames, each of them denoted by Gjλ, λ ∈ {0, 1, . . . ,L}.
In other words, a control-game is the collection of L control-subgames for a
specific control. The solution Cj of a control-game for the defender is a set of
Nash cybersecurity plans {Q�

jl}, ∀l ∈ {0, λ} each of them determined by the NE
of each control-subgame. The set {Cj} for all controls cj ∈ C contains all sets of
Nash cybersecurity plans one per control.

5 Cybersecurity Investment Optimization

In the previous section we were concerned with the implementation of a cyber-
security control. Nevertheless, organizations will generally implement more than
one control. In this section we identify a method for combining these controls
given that an organization’s budget is constrained. More specifically, we describe
how the control-game solutions are handled by optimization techniques to pro-
vide investment strategies. Each cybersecurity plan imposes its own direct costs
including both CAC and LAC. Given a set {cj} of N controls each of them being



Cybersecurity Games and Investments: A Decision Support Approach 275

associated with a set {Cj} of L Nash cybersecurity plans, and an available bud-
get B, in this section we examine how to optimally invest in the different plans
by choosing at most one plan per control.

In relation to the cybersecurity investment problem we consider a 0-1 Knap-
sack problem similar to the cybersecurity budget allocation problem studied by
Smeraldi and Malacaria [10]. In fact, in this paper we model this cybersecu-
rity investment optimization problem as a 0-1 Multiple-Choice Multi-Objective
Knapsack Problem.

We assume that a plan can be effective in protecting more than one target
and its benefit on a target is determined by the expected damage caused to the
target when only this plan is purchased. The benefit of an investment solution
on a target is determined by the sum of the benefits of the different plans on that
target where this sum never exceeds 1. Furthermore, each investment solution
has a score determined by the maximum expected damage across all targets.
When there are investment solutions with the same score we consider a tie-
break. The question then arises, which one solution should one use? We consider
that in the event of a tie-break, the solver uses the solution with the lowest cost.
This tie-break makes sense as no-one would normally pay more for a defense
that does no better.

The optimization method creates one objective function per target, which
constraint is constrained by a common total budget B. Our goal is to derive
the set of Nash cybersecurity plans (one per control) which minimizes the in-
vestment solution score. To derive the optimal investment solution, we compute
the expected damage of each target for each possible set of plans. The weakest
target is defined as the target that suffers the highest damage. In this way our
method of evaluating the security of a system is to consider that “the security of
a system is only as strong as it’s weakest point”. We then choose the set of plans
that provides the minimum final expected damage among all highest expected
damages.

Definition 7. Defining the value of any target ti as γi = −Risks × Threat,
considering N controls and assuming that each Nash cybersecurity plan Q�

jλ is

associated with some benefit bjλ(ti)
1 upon target ti, and it has cost ωjλ, the

defender seeks a cybersecurity investment I such that

max
I

min
ti
{1−

N∑
j=1

L∑
λ=0

bjλ(ti)xjλ} γi (2)

subject to

N∑
j=1

L∑
λ=0

ωjλxjλ ≤ B and

L∑
λ=0

xjλ = 1, xjλ ∈ {0, 1}, ∀j = 1, . . . , N

The objective of Definition 7 is to choose an investment solution with the
lowest expected damage for the weakest target. This is subject to the condition
that such an investment is within the budget B, where we consider if the control
is used, given by xjλ (either 0 or 1), and the cost of implementing the control,

1 We assume that
∑N

j=1

∑L
λ=0 bjλ(ti) ≤ 1 achieved by normalized benefit values.
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given by ωjλ. Additionally, we must satisfy that for each of the N controls
only a single subgame solution can and must be selected. Hence although each
xjλ can only take a value of 0 or 1, the sum must equal 1, ensuring that only
one solution (given by a control subgame solution) is selected for each control.
We denote by I, the vector of cybersecurity plans (i.e. investment solution)
purchased by solving the cybersecurity investment optimization problem for a
constant number of targets.

For example in Table 5, we buy the solution (represented by a value of 1 in the
knapsack) for subgame 3 of control 3, which might correspond to [0,0,0.3,0.7,0],
which suggests that the control is implemented at level 2, 30% of the time and
at level 3, 70% of the time, with a cost of 8.2. Such that we then select 0
for all other subgame solutions for that control. For each control cj there is a
cybersecurity plan, denoted by Q�

j that represents the optimal choice for the
defender to purchase given some budget. Therefore I = [Q�

1, Q
�
2, . . . , Q

�
N ].

6 Case Study

In this section we describe the case study we use to implement our methodology.
With regards to the organization size, we consider an SME with approximately
30 employees and we are interested in mitigating commodity attacks. This as-
sumption allows us to have complete information in all control-games because
the defender can be aware of the attacker’s payoff when it has been disclosed
online. From the 2011 CWE/SANS top 25 most dangerous software errors aka
vulnerabilities published in [2], we have considered 12 of those for the purposes
of this case study as described in Table 1 along with their factors, and asso-
ciated levels. For each vulnerability factor different levels are defined as in [2],
and summarized in Table 2. Moreover, we have chosen 6 controls out of the The
SANS 20 Critical Security Controls published by the Council on Cybersecurity
in [3]. These are shown in Table 4 along with the different vulnerabilities that
each control mitigates. As the same vulnerability can appear at different data
assets at the same depth, we assume that the implementation of a control miti-
gates all occurrences of this vulnerability. Otherwise, the security of the system
won’t increase because it is as strong as the weakest point. For a control, we
assume five possible levels (i.e. 0-4) that the control can be implemented, where

Table 1. Notation of 12 examined vulnerabilities

vz:Vulnerability
(CWE-code)

PR AF ED AA Vulnerability PR AF ED AA

v1: SQLi (89) 2 3 3 3
v7: Missing
encryption (311) 2 2 3 2

v2: OS command
injection (78) 1 3 3 3

v8: Unrestricted
upload (434) 1 2 2 3

v3: Buffer
overflow (120) 2 3 3 3

v9: Unnecessary
privileges (250) 1 2 2 2

v4:XSS (79) 2 3 3 3 v10:CSRF (352) 2 3 2 3

v5: Missing
authentication (306)

1 2 2 3
v11: Path
traversal (22)

3 3 3 1

v6: Missing
authorization (862)

2 3 2 2
v12: Unchecked
code (494)

1 1 2 3
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Table 2. Values of vulnerabilities fac-
tors published by CWE

level PR AF ED AA
3 Widespread Often Easy High
2 High Sometimes Moderate Medium
1 Common Rarely Difficult Low

Table 3. Indirect costs of the different
cybersecurity processes

Cyber. Proc. SPC MOC RTC
p00, . . . , p60 0,0,0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0
p01, . . . , p61 1,1,1,1,2,2 1,1,1,0,1,1 0,0,0,2,1,0
p02, . . . , p62 2,2,1,2,2,2 2,1,1,0,2,1 0,0,0,2,1,0
p03, . . . , p63 2,3,2,3,2,2 4,1,1,0,3,3 0,0,0,2,1,1
p04, . . . , p64 3,3,2,4,2,2 5,2,2,0,4,3 0,0,0,2,2,2

Table 4. Vulnerabilities that each control mitigates

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1:Account Monitoring and Control - � - - - � - � � � - -

c2:Continuous Vulnerability Assessment and Remediation � � � - � - � - - - - -

c3:Malware Defenses - - - � - - - � - � - �
c4:Penetration Tests and Red Team Exercises � � � - � � � - � � � �
c5:Controlled Use of Administrative Privileges - - - � - - - - � - � -

c6:Data Loss Prevention � - - � - - � � - - � -

level 0 corresponds to no defense against the vulnerabilities and level 4 presents
the highest possible level of control implementation with no regard for system
operation. In Table 3, we highlight the indirect costs for all 6 controls consid-
ered in this case study. In the following we classify the controls into different
implementation methods.

Depth Based Mitigation. This refers to controls that when applied at higher lev-
els are used to cover additional depths within a system. This form of mitigation
applies a system-wide control at level 1 and then applies more advanced coun-
termeasures at additional depths, based on the level of implementation. The dif-
ferent levels are 〈c, 0〉: no implementation, 〈c, 1〉: all depths – basic, 〈c, 2〉: depths
1,2 – basic & depth 3 – advanced, 〈c, 3〉: depth 1 – basic & depths 2,3 – advanced,
and 〈c, 4〉: all depths – advanced. Associated controls : c1, c3, c6.

Frequency Based Mitigation. This type of mitigation applies a control in a
system-wide manner and higher levels of implementation reduce the time be-
tween scheduled performance of the mitigation. Low levels of a frequency based
control may be performed as a one-off event or very infrequently, but this is
then made more frequent at higher levels, where at the highest level these ac-
tions can be performed on demand. The different levels are 〈c, 0〉: no implemen-
tation, 〈c, 1〉: all depths – infrequent, 〈c, 2〉: all depths – regular, 〈c, 3〉: all depths
– frequent, 〈c, 4〉: all depths – real-time. Associated controls : c2, c4.

Hybrid Mitigation. A hybrid mitigation control implements an approach to re-
ducing the vulnerability of a system that acts with aspects of both depth based
and frequency based controls. As such, these controls increase defense at lower
depths as the control level increases, but additionally the frequency with which
the schedule of the control at the other depths is also increased. The different lev-
els are 〈c, 0〉: no implementation, 〈c, 1〉: all depths – basic & infrequent, 〈c, 2〉: all
depths – basic & regular, 〈c, 3〉: all depths – basic & frequent, 〈c, 4〉: all depths –
advanced & real-time. Associated control : c5.
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Each cybersecurity plan Qjλ = [qj0, . . . qjλ] has a benefit, denoted by bjλ(ti),
on a target ti. This is derived by the sum of the effectiveness values of the
cybersecurity processes on ti multiplied by the corresponding probability hence
bjλ(ti) =

∑λ
l=0 e(ti, pjl)qjλ. A cybersecurity process pjl has its own direct costs

denoted by yjl. Therefore the direct cost of a cybersecurity plan Qjλ is given by

ωjλ =
∑λ

l=0 yjlqjl. In this work here we have defined the direct costs CAC and
LAC per annum. Some of the controls have a one-off cost therefore any purchase
can benefit the organization’s cybersecurity for the next years also. However,
we examine the challenge of spending a cybersecurity budget annually assuming
that in the worst case controls might need to be replaced or updated by spending
an amount of money similar or even higher to the amount spent in the last year.
In this paper we neither present the cybersecurity products we have chosen to
implement the various controls nor their direct costs.

Lastly, the different risks values 〈DLd,REd,BDd〉 are defined as depth 1 �→
〈2, 4, 3〉, depth 2 �→ 〈3, 2, 4〉, and depth 3 �→ 〈4, 3, 2〉. We have chosen the value
of data loss to be the highest within the Private Network, because this depth
will generally contain the most sensitive data. We have assessed the value of
reputation loss RE independently of the value of data loss DL to show the impact
that only RE has to the organization. We have set the highest value of RE to
the DMZ because it contains the forward facing assets of the organization. For
example when the organization’s website is defaced this can be seen by any
potential user who visits the organization’s website and harm its reputation. As
most of the organization’s workload is likely to be handled by devices in the
Middleware we have assigned the highest BD value to this depth.

7 Games Solutions and Investments

This section explains the set of results we have retrieved for 3 different organi-
zation profiles (3 Cases). For each profile: (i) we solve a series of control-games
therefore a set of control-subgames for each control to derive the Nash cyber-
security plans (in this section we use the terms Nash cybersecurity plans and
plans interchangeably) and, (ii) we determine the optimal cybersecurity invest-
ment given a budget by using optimization techniques and the control-game
solutions. In Cases 1, and 3 we consider an organization which places a high
importance on its data assigning a value 0.8 to DL. RE, and BD are equally
important taking the same value 0.1. We also consider here that the organiza-
tion is equally interested in current and potential future threats in all cases. In
Cases 1 and 2 the organization prioritizes system performance costs higher than
re-training and morale costs by giving an SPC value twice that of RTC and MOC
values. We have increased MOC in Case 3 making it twice as large as SPC to
assess the impact of morale in cybersecurity strategies.

To derive the different Nash cybersecurity plans we have solved 24 different
control-subgames (i.e. 6 control-games) for each organization profile. The game
solutions were computed by using a minimax solver, implemented in Python. For
simplicity reasons we have chosen the first equilibrium computed by our solver
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Table 5. Nash cybersecurity plans for the Case 1 with their associated direct costs

cj Q�
j0 Q�

j1 Q�
j2 Q�

j3 Q�
j4

c1 [1,0,0,0,0] 0 [0,1,0,0,0] 9.7 [0,0.7,0.3,0,0] 9.8 [0,0.4,0.23,0.37,0] 10.7 [0,0,0.14,0.22,0.64] 12.4

c2 [1,0,0,0,0] 0 [0,1,0,0,0] 1.7 [0,0.4,0.6,0,0] 2 [0,0,0.5,0.5,0] 5.1 [0,0,0.5,0.5,0] 5.1

c3 [1,0,0,0,0] 0 [0,1,0,0,0] 7.1 [0,0,1,0,0] 7.3 [0,0,0.3,0.7,0] 8.2 [0,0,0.3,0.7,0] 8.2

c4 [1,0,0,0,0] 0 [0,1,0,0,0] 4.2 [0,0,1,0,0] 8.3 [0,0,0,1,0] 16.7 [0,0,0,0,1] 33.4

c5 [1,0,0,0,0] 0 [0,1,0,0,0] 4.1 [0,0.47,0.53,0,0] 4.1 [0,0,0.41,0.59,0] 4.1 [0,0,0,0.33,0.67] 5.4

c6 [1,0,0,0,0] 0 [0,1,0,0,0] 6 [0,0,1,0,0] 7.4 [0,0,0.44,0.56,0] 12 [0,0,0.32,0.52,0.16] 13.6

Fig. 2. Case 1:R = [0.8, 0.1, 0.1], T = [0.5, 0.25, 0.25],K = [0.5, 0.5]

noting that all equilibria offer the same level of defense as we state in Theorem
1. In Table 5 we present the results of the control-subgames in Case 1, where
the solution calculated for each control subgame taken is the strategy with the
smallest support.

The graphs presented in Figs. 2 and 3 are designed to show which plans should
be chosen for each possible budget level. In other words, each graph shows the
optimal investment I which is the set of plans chosen for a certain budget.
The graphs should be used to identify which are the most important plans for
a given organization at an available budget. It is worth noting here that we
have normalized the cost values such that the sum of the direct costs of of all
the controls implemented at the highest possible level (i.e. the most expensive
possible cybersecurity plans) equals 100. Our methodology uses the optimization
technique presented in Section 5 to compute the investment solution I that
has the highest score for a given budget. As we have discussed in Section 5,
each investment solution has a score determined by the maximum expected
damage across all targets. A question a security manager may ask is, how is the
investment solution I translated in terms of controls acquisition and how can
someone describe that it is better, in terms of cyber defense, than alternative
solutions where I ′ �= I?

Example 2. From Fig. 2 we consider an available budget of 17. In this example
our decision support methodology advices the security manager to implement
I = [Q�

10, Q
�
21, Q

�
30, Q

�
42, Q

�
50, Q

�
61] with a cost of 16.102. The above solution
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determines a set of plans to be selected for the implementation of the 6 SANS
controls as defined in our case study. To be able to translate the solution into
the implementation of the different available controls in Table 5 we present the
Nash cybersecurity plans of Case 1. According to I the controls that should be
implemented and the manner in which they are implemented is listed as follows

– Q�
10:With the given budget,Account Monitoring and Control (c1) software

should not be purchased, nor should system administrators spend time on
activities to this control.

– Q�
21: The organization must implement the Continuous Vulnerability Assess-

ment and Remediation (c2) control by purchasing a vulnerability scanner and
patch management software. Additionally system administrators measuring
the delay in patching new vulnerabilities and audit the results of vulnerabil-
ity scans at all network depths infrequently (e.g, once per month).

– Q�
30: The decision tool does not recommend the implementation of specific

Malware Defenses (c3) given the available budget.
– Q�

42: The security manager is advised to schedule regular (e.g. twice a year)
system-wide Penetration Tests and Red Team Exercises (c4), with system
updates being performed based on the results of the exercise.

– Q�
50: The tool does not recommend the implementation of the Controlled Use

of Administrative Privileges (c5) control which means that neither enterprise
password manager software must be purchased nor any password renewal
policy must be enforced.

– Q�
61: The tool recommends the implementation of the Data Loss Preven-

tion (c6) control system-wide and at a basic level (e.g. integrated services
router with security, VPN).

By using Table 4 we see that with these controls all targets are covered to
some degree. In the following we consider alternative cases to highlight the opti-
mality of the solution. If we implement system-wide Penetration Tests and Red
Team Exercises infrequently (e.g. once per year) (Q�

41) instead of regularly (Q�
42)

then we release a budget of 4.174 therefore we can implement Controlled Use
of Administrative Privileges by using an enterprise password manager software
and renew passwords of all systems infrequently (e.g. annually) (Q�

51 with cost
4.153). This gives another investment I ′ = [Q�

10, Q
�
21, Q

�
30, Q

�
41, Q

�
51, Q

�
61] with

cost 16.081. Under I ′ the Controlled Use of Administrative Privileges control
improves the defense on targets associated with the following vulnerabilities;
XSS (v4), Unnecessary privileges (v9), and Path traversal (v11). But it then
leaves worse off, due to the less frequent Penetration Tests and Red Team Exer-
cises, 8 vulnerabilities namely; SQLi (v1), OS command injection (v2), Buffer
overflow (v3), Missing authentication (v5), Missing authorization (v6),
Missing encryption (v7), CSRF (v10), and Unchecked code (v12). Due to I be-
ing the choice of the optimization the score achieved by I is higher than I ′
therefore the weakest target in I ′ must appear in these 8 vulnerabilities and it
must be weaker than the weakest target under I. By saying weakest target we
refer to the target with the maximum expected damage. Therefore our methodol-
ogy advices the security manager to undertake Penetration Tests and Red Team
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Exercises regularly (e.g. twice a year, Q�
42) without implementing Controlled Use

of Administrative Privileges at all.
If we do not spend any money on Penetration Tests and Red Team Exercises we

then have an available budget of 8.347 which can be spent in implementing Mal-
ware Defenses by installing a free anti-malware software with manual scheduled
scans and database updates in all devices of the organization (Q�

31, 7.095). There-
fore another investment is I ′ = [Q�

10, Q
�
21, Q

�
31, Q

�
40, Q

�
50, Q

�
61]. Under I ′ targets

associated with Missing authorization (v6) and Unnecessary privileges (v9)
are not covered by any control thus one of these becomes the weakest target under
I ′. Due to I being the optimal investment solution provided by our tool, the weak-
est target (not covered at all) under I ′ must be weaker than the weakest (partially
covered) target under I. Therefore our solution recommends not to ignore (even
at some basic level) the implementation of Penetration Tests and Red Team Ex-
ercises which can actually identifies if a user can access a given resource, despite
not being authorized for that (v6) and it can also mitigate v9 by identifying cyber-
security processes that run with extra privileges, such as root or Administrator,
and they can disable the normal security checks.

Finally, if we assume a slightly higher budget of 17.145 we can choose the in-
vestment strategy I ′ = [Q�

10, Q
�
21, Q

�
31, Q

�
42, Q

�
50, Q

�
60] which does not implement

the Data Loss Prevention control but it installs free anti-malware with manual
scheduled scans and database updates system-wide (Q�

31). This is not a better
investment than I despite being more expensive. Both Data Loss Prevention (in
I) and Malware Defenses (in I ′) mitigate XSS (v4) and Unrestricted upload

(v8) which Penetration Tests and Red Team Exercises does not. Thus from
this point of view the replacement of Data Loss Prevention by Malware De-
fenses does not affect the effectiveness of the targets associated with XSS and
Unrestricted upload. However due to I being the choice of the optimization
the target associated with Path traversal (v11), which is mitigated only by
Penetration Tests and Red Team Exercises under I ′, is weaker than a target
associated with CSRF (v10) or Unchecked code (v12) mitigated only by Pene-
tration Tests and Red Team Exercises under I. In other words, according to the
effectiveness values we have provided in our case study, Path traversal is not
mitigated as much as CSRF and Unchecked code, which are both mitigated by
Penetration Tests and Red Team Exercises, therefore I is better than I ′.
Example 3. According to Fig. 2 for a budget of 28 our methodology gives the
investment solution I = [Q�

13, Q
�
21, Q

�
31, Q

�
41, Q

�
52, Q

�
60] with a total direct cost

27.80. This solution provides the following list of recommendations.

– Q�
13: Implementation of Account Monitoring and Control (c1) at a basic level

(e.g. control built into OS and manually review all accounts or set files/folders
auditing properties) in all devices in DMZ ; in 63% of the devices in Mid-
dleware; and in 40% of the devices in Private Network. The control must be
also implemented at an advanced level (e.g. vulnerability scanner and patch
management software) in 37% of the devices in Middleware and 60% of the
devices in Private Network.
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– Q�
21: System-wide Continuous Vulnerability Assessment and Remediation (c2)

must be implemented infrequently (e.g. once per month).
– Q�

31: System-wide Malware Defenses (c3) must be implemented at a basic
level (e.g. free anti-malware with manual scheduled scans and database up-
dates).

– Q�
41:Penetration Tests and Red Team Exercises (c4) to be undertaken infre-

quently (e.g. once per year).
– Q�

52:Controlled Use of Administrative Privileges (c5) to be implemented at
a basic level (e.g. using an enterprise password manager software) with 47%
of the devices to change passwords infrequently (e.g. once per year) and 53%
regularly (e.g. every 4 months).

– Q�
60: The purchase of a Data Loss Prevention control is not recommended.

To see how I outperforms other investments we have considered some alter-
native investments for a budget of 28. As the first alternative investment I ′,
we decide not to follow Q�

13 therefore saving 10.68. By doing that the targets
associated with v2, v6, v8, v9, v10 are now defended in a lower degree than in I
as the effectiveness of Q�

13 does not count in the sum of the benefits for these
targets. Also under I ′ the targets associated with v2, v9, and v10 are defended
by two controls while the targets with v6, and v8 are only defended by one
control. With a budget of 10.68 available we can purchase c6 and implement it
according to plan Q�

62 with cost 7.408 or according to Q�
61 with cost 6.052. If

we choose the former the control is implemented at an advanced level (e.g. drive
encryption, system recovery) in the Private network, and at a basic level (e.g.
integrated services router with security, VPN) in DMZ and Middleware. Data
Loss Prevention improves the defense of targets with v1, v4, v7, v8, and v11. When
implementing Data Loss Prevention, v6 (Missing authorization) is mitigated
only by one control therefore making any target with this vulnerability likely to
be the weakest among all in I ′ and weaker than the weakest target under I.
Our solution I dictates that it is preferable for the security manager to purchase
the Account and Monitoring Control as opposed to Data Loss Prevention to pre-
vent unauthorized users accessing resources or data of the organization in the
first case rather than allowing such access and hoping that data encryption and
system recovery capabilities can discourage an adversary from attacking.

Next, we assume another variation I ′ of our investment where Malware De-
fenses (c3) is removed and 7.095 budget is available for spending in other con-
trols. By not purchasing c3 vulnerabilities v4, v8 and v10 are mitigated by one less
control. With an available budget of 7.095 we can purchase c6 and implementing
it according to Q�

61. The difference between I and I ′ is that v10 is mitigated by
one more control in I. Since the latter has been the result of optimization, any
target with v10 (CSRF) is the weakest target and weaker than the weakest target
under I. In other words I advises the security manager to purchase Malware
Defenses rather than Data Loss Prevention to detect malware that can be in-
stalled when a CSRF attack is launched. Again here I dictates that stopping the
attack at a first infection stage is more important than guaranteeing that stolen
data are encrypted thus unreadable. Besides the attacker’s motivation might
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be to just corrupt or delete data which is something Data Loss Prevention can
address only at high levels of implementation which require a higher budget.

Graph Trends. From the graphs in Fig. 2 we see the results level off (at around
a budget of 45), when the perceived benefit from a combination of plans brings
the expected damage down to a minimum, this is such that adding a new plan
or a plan at a higher level won’t improve the defense of the system. This is as a
result of us capping the sum of improvements to 1, but would exist in any form
of interdependent control methodology and only the point at which it levels off
would change. Furthermore, this observation dictates that cybersecurity does not
get improved by investing more in cybersecurity plans. With higher budgets it
is much more feasible to reduce the damage of not just the weakest target, but
other targets as well. A spike exists when there is a small budget range that opens
up a number of new cybersecurity plans. In reality a number of the solutions in
that range will have similar expected damage values, but we only see the best
solution for that particular budget. For budgets 1-19 the progression is the same
regardless of the plans. The reason for this is that at these levels only certain
plan combinations are available and we want to ensure that as low an expected
damage as possible is achieved. At these levels it is seen as most important to
cover all of the targets with some form of plan, bringing down the system-wide
expected damage.

While there is a consistent strategy for investment with budget levels for so-
lutions up to a budget of 20, after this budget we see that different investment
profiles are suggested by our methodology across the different organization pro-
files. From budgets 22 to 26 and from 36 to 38, there is no change in the solution.
While alternative solutions may become available in these ranges, none of these
solutions will improve on the security of the weakest target, which means that as
with very low budgets there is no incentive to implement a more expensive plan
combination that does not improve the effectiveness of defense on the weakest
target. Between budgets 30 and 36 as the budget increases more, there are new
combinations of plans that become available at each of these levels that will im-
prove the overall defense of the system. However it can also be seen that in order
to implement a different solution some components of the previous solution need
to be removed in order to reduce the cost to fit within the budgetary constraint.

Sensitivity to Organizations’ Profile Perturbations. One question that
arises is how robust is the proposed approach to informing the way an organiza-
tion should invest in cyber security? We have focused on the importance of the
decisions made by the organization with regards to their profile. In this way we
have looked at how small perturbations in a single case affect the allocation of in-
vestment. We consider the two cases of [0.75, 0.125, 0.125] and [0.85, 0.075, 0.075]
for R. Both alternative profiles have minor deviations from the original solution.
Each of the deviations found would cause the solution to differ for up to a maxi-
mum of 3 consecutive budget levels, before the proposed controls would realign.
Using the values of [0.55, 0.45] and [0.45, 0.55] for T we find that, in the case of
[0.55, 0.45] there is a different investment strategy that is proposed between con-
trols 5 and 6 for budgets between 13 and 17. This is the only case we have seen
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Fig. 3. (i) Case 2: R = [0.6, 0.4, 0], T = [0.5, 0.25, 0.25],K = [0.5, 0.5], (ii) Case 3:
R = [0.8, 0.1, 0.1], T = [0.3, 0.1, 0.6],K = [0.5, 0.5]

where there is a difference in the low budget strategies across all the cases tested
for this work. With a value for T of [0.45, 0.55], we find that there is no change to
the proposed investment plans. In the case of K we consider [0.45, 0.275, 0.275]
and [0.55, 0.225, 0.225], which for both values give us no change in the proposed
investment from the original case. Importantly in all of the cases tested we have
seen that the stable investment solution for all of the results is the same as the
case presented in Fig. 2.

8 Conclusions

This paper presents a cybersecurity decision support methodology for calculat-
ing the optimal security investment for an organization. This is formulated as
a multiple choice and multi-objective Knapsack problem which handles the so-
lutions of cybersecurity control-games. Our methodology creates strategies for
each control at different levels of implementation and enforcement, where the
combination of the most effective controls within a budget are suggested for
implementation. The model supports the movement of human decision making
from trying to analyze the explicit security requirements of the system to de-
ciding upon an organization’s priorities. The feature of the model that helps
to create this movement is the organization profile, where a profile allows the
model to reflect the individual nature of different organizations in the proposed
investment. One of the most important factors that this work highlights is that
it is important for an organization to know how to appropriately generate their
profile. This is crucial because it influences the way an organization should in-
vest in their cybersecurity defenses. From the results we have noticed that for
similar organizations the best protection will be similar if not the same, because
the results of the control-games will favor certain targets or controls.

In this paper we have assumed additive benefits for the different plans and the
same target. One important future aim is to better understand the steps of the
attacks, as such identifying steps in the chain will better inform the way in which
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different security controls interact in order to better cover different targets. This
will better inform the way in which the subgames results are combined in the
investment problem and reflect in a more realistic way how cyber defenses work.

At the moment our data is generated with the advice of a limited set of ex-
perts. In the future we aim to increase the number of experts involved to better
understand their cyber environment needs. This will allow us to implement our
methodology in a realistic environment. Additional limitations of our work that
we wish to address in future work is to consider a higher number of available
controls and continuous values for the levels of controls implementation. More-
over, at the moment our control-subgames are games of complete information.
In the future we will examine incomplete information games where the defender
is not aware of the attacker’s payoff therefore any investment solution has to
respect this uncertainty which highlights a situation very close to realistic en-
vironments that are prone to 0-days attacks and Advanced Persistent Threats
(APTs). Finally, we do not see a strong case for using Stackelberg games in
the case of commodity attacks where both players have publicly available in-
formation about attack types. The case would have been stronger if we were
considering sophisticated cyber criminals or nation states where surveillance of
the defender’s actions prior to the attack would be important for the recognition
of the defending mechanisms and the exploitation of one or more weak targets.
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Abstract. The recent trends towards outsourcing data to the Cloud
as well as various concerns regarding data integrity and availability cre-
ated an increasing interest in enabling secure Cloud data-centers. Many
schemes addressing data integrity issues and complying with various re-
quirements came to place: high scheme efficiency, stateless verification,
unbounded use of queries and retrievability of data. Yet, a critical ques-
tion remains: how to use these schemes efficiently, i.e. how often should
data be verified. Constantly checking is a clear waste of resources but
only checking at times increases risks. This paper attempts to resolve
this thorny issue by formulating the data integrity check problem as a
non-cooperative game and by performing an in-depth analysis on the
Nash Equilibrium and the engineering implications behind. Based on
our game theoretical analysis, the course of action was to anticipate the
Cloud provider’s behavior; we then derive the minimum verification re-
source requirement, and the optimal strategy of the verifier. Finally, our
game theoretical model is validated by showing correctness of the ana-
lytical results via simulation on a case study.

Keywords: Cloud computing, Game theory, Data integrity, Data avail-
ability, Nash equilibrium.

1 Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction [11].

However, all the benefits brought by the cloud, such as lower costs and ease of
use, come with a tradeoff. Users will have to entrust their data to a potentially
untrustworthy cloud provider (CP). As a result, cloud security has become an
important issue for both industry and academia [2].

One important security problem with cloud data storage is data integrity and
availability, since the client lacks control over his data, entailing difficulties in
ensuring that data stored in the Cloud are indeed left intact. Moreover, the
storage service provider, which experiences Byzantine failures occasionally, may
decide to hide data errors from the clients for his own benefit. On top of that,
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for both money and storage space saving purposes, the service provider might
deliberately delete rarely accessed data files that belong to an ordinary client.

In order to solve these problems, many verification schemes are provided in
the literature [10]. In all these works, it has taken major efforts to design solu-
tions that meet various requirements: low time complexity, stateless verification,
unbounded use of queries and retrievability of data, etc. In spite of these numer-
ous features, knowing how to use these schemes efficiently remains a major issue.
Indeed, it would be a waste of time and resources if the verifier checks the data
all the time while the CP is being honest. On the other hand, it would be risky
if the verifier checks the data just a few times while the CP is being dishonest.
The best approach for the verifier is to find the right frequency of verification
for the minimum cost, while maintaining accuracy and consistency of data. The
natural way to achieve this last condition is to use game theory, by modeling the
process of data verification as a game that contains two players, the defender
(verifier) and the attacker (CP).

Considering the role of the verifier, all the proposed schemes fall into two
categories: private verification, in which the client performs the auditing opera-
tion himself, and public verification, that consists in using a third party auditor
(TPA). In this paper, we focus on the latter, because in many cases, clients do
not know how to check data integrity, nor do they know which protocol they
should use. Moreover, a client who owns a considerable amount of outsourced
data (like a company) will have no incentive to check his data, as this process
requires considerable resources and time.

In such an environment, the major questions are: What is the expected be-
havior of a rational attacker (CP)? What is the optimal strategy of the defender
(TPA)?

In this paper, we answer these questions by developing a non-cooperative
game model of Cloud storage verification problem, analyzing the resulting equi-
libria, investigating the engineering implications behind the analytical results,
and then deriving the optimal strategy for the defender. It is worth noting that
the different cases taken into account in this work represent realistic situations,
in which a client expects a specific service level from the TPA as stated in his
contract with the TPA, which can be seen as an Audit Level Agreement.

Our main contributions can be summarized as follows:
1) We provide a game theoretical framework of cloud storage verification,

by analyzing as a first model the case of deterministic verification. Then, as
extensions, we study the case of the Leader/Follower game (Stackelberg game)
in the second model, and probabilistic verification in the third one.

2) For each model, we derive the expected behavior of a rational attacker,
the minimum verification resource requirements of the defender, as well as his
optimal strategy in terms of resource allocation.

The remainder of the paper is organized as follows: In Section 2, we describe
the technical background on which our work is based on. In Section 3, we study
the Nash equilibrium (NE) of the Cloud storage game for deterministic verifi-
cation. In Section 4, we explore several variants and extensions of the game, by



Data Integrity and Availability Verification Game 289

analyzing the case of the Stackelberg game, and the case of probabilistic verifi-
cation. Section 5 provides numerical results of the game theoretical framework.
Finally, our concluding remarks are given in Section 6.

2 Technical Background

2.1 Integrity Verification Schemes

In recent years, a considerable amount of data integrity schemes were proposed
by different researchers, and have been gradually adapted to specific use cases
such as outsourced databases and Cloud Computing. Among these schemes,
Provable Data Possession (PDP) for ensuring possession of data, and Proof of
Retrievability (POR) for data possession and retrievability are the two main
directions explored by researchers.

The main idea of PDP is that a data owner generates some metadata infor-
mation for a data file to be used later for verification purposes. Many extensions
of this scheme managed to decrease the communication cost and complexity,
as well as to allow dynamic operations on data such as insertion, modification,
or deletion. Moreover, [18] and [16] proposed PDP schemes fitting requirements
specific to Cloud Computing.

The POR scheme is considered as a complementary approach to PDP. [9]
was among the first papers to consider formal models for POR schemes. In this
scheme, disguised blocks (called sentinels) are embedded into the data before
outsourcing. The verifier checks randomly picked sentinels which would be influ-
enced with a certain probability if data are corrupted. [10] gives a detailed survey
of the contributions of numerous extensions of the PDP and POR schemes.

The aforementioned schemes primarily focus on a single data file copy. Yet,
other schemes, such as [6], allow the verifier to check multiple copies of a data
file over multiple Cloud servers.

2.2 Approaches Related to Game Theory

Several works handle cloud-related problems using game theory. Most focus on
solutions such as resource allocation and management [8] or Cloud service negoti-
ation [17], while few papers addressed the problem of Cloud security [12,13]. [12]
addressed Cloud integrity issues by proposing a model where a client checks the
correctness of calculations made on the data by the CP. They considered the
case where for two CPs, the client sends a query to one of the two servers chosen
randomly, and with a fixed probability, he sends the query to the other server
as well.

Nix and Kantarcioglu also proposed in [13] to study the case of querying
one single cloud provider, since checking data at multiple CPs is prohibitively
expensive. [12,13] focused on checking that the queries sent to the CP are being
computed correctly, under the condition that the stored data is intact. On a side
note, they did not mention which type of verification protocol (deterministic



290 B. Djebaili et al.

or probabilistic) they used. Besides the Cloud, game theory has already been
applied to study network security [7] [1], intrusion detection [5], Botnet defense
[4], etc. The work presented in this paper was actually strongly inspired by [5].

3 Untrusted Cloud Storage Game for Deterministic
Verification

As a first step, we considered a basic model in which the data integrity verifica-
tion protocol is deterministic and always returns correct information. The main
problem of deterministic verification schemes is the fact that they are computa-
tionally expensive, since the TPA performs the verification process on the entire
data. After solving this game and finding its Nash Equilibrium (NE), which de-
scribes the optimal strategies of both players from which neither of them has
incentive to deviate unilaterally, we will progressively refine this model by taking
more realistic hypotheses into account.

3.1 Game Features

- Players: The game features two players, the auditor (TPA: third party auditor)
and the outsourced server (CP: Cloud provider).

- Information: The CP stores the client’s data D = {D1, D2, ..., DN}, with dif-
ferent importances and sizes. We consider that the TPA checks the data by using
a deterministic scheme guaranteeing a probability of detecting data modification
or deletion equal to 1.

- Actions: We consider mixed strategies where a probability is assigned to
each strategy of each player. Thus, for each data Di, the auditor may choose to
check its integrity and availability with probability ti that stems from a prob-
ability distribution t = {t1, t2, ..., tN}. On the other side, the CP can modify
or delete data Di with probability pi steming from a probability distribution
p = {p1, p2, ..., pN}. Both TPA and CP have resource constraints respectively
designated by T ≤ 1 and P ≤ 1.

- Payoffs: The two TPA possible actions are Check and Not Check. Mean-
while, the CP may Modify/Delete a data or not, hence possibly leading to Cor-
rupted/Unavailable data.

If the corrupted or unavailable data Di is not checked, then the CP gains Si,
which represents the size of the data, with S1 ≥ S2 ≥...≥ SN , while the TPA
loses data value and importance designated by Fi. If the TPA decides not to
verify, and the CP has the correct data, then both players will neither lose nor
gain anything.

Table 1. Cloud Storage Game with Deterministic Verification

CP \ TPA Check Not check

Correct/Available data 0 , −CtSi − CsSi 0 , 0

Corrupted/Unavailable data −CsSi − Si , −CtSi + Fi Si , −Fi
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Let CtSi be the cost of the verification process by the TPA, and CsSi be the
cost of executing the verification query by the Cloud Provider. Both costs are
proportional to the size of data Di.

If the TPA verifies the data whereas the CP has the correct data, we then
consider that the TPA should pay the cost of CP verification process CsSi, since
the data are intact. However, when the CP chose to modify or delete the data, the
TPA will gain Fi, which is the the importance of data Di, minus the verification
cost CtSi, while the CP will lose Si, minus the cost of verification CsSi. Table 1
illustrates the matrix payoff of both players (CP/TPA) in the strategic form.

The overall payoffs of the TPA (Ut) and the CP (Up) are defined as follows:

Ut(t, p) =

N∑
i=1

ti[pi(2Fi + CsSi)− (CtSi + CsSi)]−
N∑
i=1

piFi

Up(t, p) =

N∑
i=1

piSi[1− ti(2 + Cs)]

We finally define the Cloud storage verification game G.
Definition 1: the two players Cloud storage verification game G is defined as:

Players: Attacker (CP), Verifier (TPA).
Strategy type: Mixed strategy.
Strategy set: Attacker:

WP =

{
p : p ∈ [0, P ]N ,

N∑
i=1

pi ≤ P

}
Verifier:

WT =

{
t : t ∈ [0, T ]N ,

N∑
i=1

ti ≤ T

}
Payoff: Up for attacker, Ut for verifier.

Game rule: The attacker/verifier selects his strategy
p/t ∈ WP /WT to maximize Up/Ut.

3.2 Solving the Game

For non-cooperative games like ours, the most essential solution concept is the
Nash Equilibrium (NE), which can be considered as the optimal agreement be-
tween the players, i.e. an equilibrium in which no player has any incentive to
unilaterally deviate from his current strategy in order to maximize his payoff.

1) Data Distribution

Since the attacker has limited attack resources, a relevant approach consists in
determining if a rational attacker will target any data, or if he will tend to
focus on specific data only. This question will be studied before starting the NE
analysis.
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First, we introduce two sets that will be of use to clarify data distribution:
the attractive set DA, and the unattractive set DU . In order to do so, we
will introduce the notations N = {1, ..., N}, NA = {i ∈ N/Di ∈ DA}, and
NU = {i ∈ N/Di ∈ DU}.

Definition 2: The two sets DA and DU are defined as follows:

We set C =
|NA|

(
1

2+Cs

)
− T∑

j∈NA

(
1

2Sj+CsSj

)
{
Si > C, ∀i ∈ NA

Si < C, ∀i ∈ NU

where |NA| is the number of data contained in NA. The case where Si = C does
not need to be taken into account, since it happens with very low probability
and since these values rely on estimations. Therefore, should this case happen,
replacing Si with a slightly different estimation Si+ ε or Si− ε would be enough
to solve the situation.
Lemma 1: Given a Cloud provider that stores N Data, NA is uniquely deter-
mined and consists of NS data with the biggest sizes, such that:

1) if SN >
N
(

1
2+Cs

)
− T∑N

j=1

(
1

2Sj+CsSj

) , then NS = N .

2) if SN <
N
(

1
2+Cs

)
− T∑N

j=1

(
1

2Sj+CsSj

) , NS is determined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SNS >
NS

(
1

2+Cs

)
− T∑NS

j=1

(
1

2Sj+CsSj

)
SNS+1 <

NS

(
1

2+Cs

)
− T∑NS

j=1

(
1

2Sj+CsSj

)
Proof: See Appendix I.

Now we will study the implication of data distribution on the players’ deci-
sions.

Theorem 1: A rational attacker has no incentive to attack any data Di ∈ DU .

Proof: See Appendix II.

The theorem shows that the attacker only needs to attack data that belong
to DA in order to maximize his payoff. From this point, the defender has no
incentive to verify data that will not be attacked. The meaning of the theorem
is to assert the existence of data that are too small to be worth attacking to free
significant space. As a consequence, it would be a waste of resource for the TPA
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to verify the integrity of such data.

Guideline 1: A rational defender has only to verify the integrity and the
availability of data in DA.

2) NE Analysis

Definition 3: A strategy profile (p∗, q∗) is a Nash Equilibrium of the Cloud
storage verification game G, when both players (CP and TPA) cannot improve
their payoff by unilaterally deviating from their current strategy.

As G is a two-player game with mixed strategies, it admits at least one NE,
according to Theorem 1 in [14]. Let (t∗, p∗) denote the NE, it holds that:

0≤p∗i (2Fi+C
sSi)−(CtSi+C

sSi)=p∗j (2Fj+C
sSi)−(CtSi+C

sSi) ≥
p∗k(2Fk+C

sSi)−(CtSi+C
sSi) ∀i,j,k ∈ N , t∗i , t

∗
j > 0, t∗k = 0 (1)

Equation (1) can be shown by noticing the TPA payoff function. Indeed, if
the TPA gain when verifying Dk is lower than when verifying Di, then in order
to maximize his payoff, the TPA will not have incentive to verify Dk and will
set tk = 0. The same thing remains valid for the CP, and by noticing his payoff
function, it holds that:

0 ≤ Si(1− 2t∗i )− t∗iC
sSi = Sj(1− 2t∗j )− t∗jC

sSi ≥
Sk(1 − 2tk)− tkC

sSi ∀i,j,k ∈ N , p∗i , p
∗
j > 0, p∗k = 0 (2)

These two equations allow us to find the NE, which we study in two different
cases according to the players resource constraints. The NE is hence defined in
the following cases:

Case 1:
∑
i∈N

t∗i = T and
∑
i∈N

p∗i = P :

In this case, both TPA and CP use all their resources in order to verify/attack
data. The game can be seen as a resource allocation problem, in which each player
seeks to choose the most profitable strategy.

By combining (1) and (2), we get the NE displayed hereby:

t∗i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T − NS

2 + Cs
+ Si

∑NS

j=1

(
1

2Sj + CsSj

)
(2Si + CsSi)

∑NS

j=1

(
1

2Sj + CsSj

) , i ∈ NA

0, i ∈ NU

p∗i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P −

∑NS

j=1

(
(Ct + Cs)(Sj − Si)

2Fj + CsSj

)
(2Fi + CsSi)

∑NS

j=1

(
1

2Fj + CsSj

) , i ∈ NA

0, i ∈ NU
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The necessary condition for the obtained result to be a NE is:{
p∗i (2Fi + CsSi)− (CtSi + CsSi) ≥ 0,

Si[1− t∗i (2 + Cs)] ≥ 0 i ∈ NA

=⇒

⎧⎪⎪⎨⎪⎪⎩
P

Ct + Cs
≥
∑NS

i=1

⎛⎝ 1

2Fi
Si

+ CS

⎞⎠
NS ≥ T (2 + Cs)

It is worth noting that Ut(t
∗, p∗)/Up(t

∗, p∗) is monotonously increasing in
T/P , which means that the more resources are available to both players, the
more payoff they will get.

This case is actually the most realistic situation to be considered, for both
the TPA and the CP. The number of data that are usually outsourced in the
Cloud is high enough to prevent both the attacker and the verifier from targeting
every data. Actions, both in attack and verification, are therefore limited to the
attractive data set DA.

Case 2:
∑
i∈N

t∗i < T and
∑
i∈N

p∗i < P :

In this case, both the CP and the TPA have sufficient resources, so they do
not use up all their resources to respectively attack and verify data. Noticing Ut

and Up, we have:

{
Si(1 − 2t∗i − t∗iC

s) = 0
p∗i (2Fi + CsSi)− (CtSi + CsSi) = 0,

i ∈ N

=⇒ NE =

⎧⎪⎨⎪⎩
t∗i=

1

2 + Cs
, i ∈ N

p∗i=
CtSi + CsSi

2Fi + CsSi
, i ∈ N

At the NE, we have:⎧⎪⎨⎪⎩Ut(p
∗, t∗) = −

N∑
i=1

(
Fi (C

tSi + CsSi)

2Fi + CsSi

)
Up(p

∗, t∗) = 0

In this case, the necessary condition for this result to be a NE isN < T (2+Cs).
Lemma 1 then states that NS = N , which means that DU = ∅. This is an
expected result since both players have enough resources to target any data.

Moreover, from the above utility, it appears that having sufficient resources
drags the utility of the attacker to zero, and leads the defender to be able to face
greater risks by verifying more valuable data. The fact that the NE does not
depend on the available resources is therefore consistent. Finally, the NE values
show that the TPA will spend the necessary amount in order to prevent the CP
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from gaining anything. In other words, the CP cannot expect to gain anything
when the TPA has enough resources to verify all the outsourced data.

However, for medium and large companies, it is very unlikely that this case
could actually occur given the amount and the wide diversity of data that are
usually outsourced.

In the previous analysis, we identified the specific amount of resources that
both the TPA and the CP should allocate for respectively verifying and attacking
the attractive data set, in two different cases. A numerical analysis of this model
is provided in section V.

However, this model obviously lacks some more realistic hypotheses, such as
taking into account the fact that both players are more likely to act one after
the other rather than at the same time, or taking into account a probabilis-
tic integrity checking protocol instead of a deterministic one. The next section
therefore considers such extensions of our primary model.

4 Extensions

4.1 Cloud Storage for Stackelberg Game

In the previous model, we considered that the two players take their decisions
locally and simultaneously. However, a player can follow a certain strategy taking
into account his opponent’s decision (meaning that the follower makes his choice
only after knowing the other’s strategy). In this extended model, we address this
case by modeling the interaction between TPA and CP as a Stackelberg game.
The leader begins by choosing his best strategy, then the follower, after being
informed about the leader’s choice, chooses his own strategy which will maximize
his payoff. We define the Stackelberg game for the Cloud storage verification like
this: In this definition, the TPA is assumed as a leader, and the CP as a follower.

Players: Leader : verifier side;
Follower : attacker side;

Strategy type: Mixed strategy.
Strategy: t ∈ WT and p ∈ WP

Payoff: UT for leader and UP for follower
Game rule: the leader decides t first, the follower

decides p after knowing t.

Follower’s problem:
According to the leader’s chosen strategy, the follower chooses the strategy

that maximizes his payoff (best response). Formally, for any chosen strategy t,
the follower solves the following optimization problem:

p(t) = arg max
p∈WP

Up(p, t)

Leader’s problem:
The leader chooses his strategy which will maximize his payoff, given the

follower will subsequently choose his best strategy. In other words, the leader
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Table 2. Payoff matrix of the lead-or-follow game in extensive form

TPA/CP Lead (pL) Follow (pF )

Lead

(tL)

Up = −δ
∑
i∈N

(
Si(C

t + Cs)(2 + Cs)
2Fi
Si

+Cs

)

Ut = −ε
∑
i∈N

(
(2Fi +CsSi)

2 +Cs

)

−
∑
i∈N

Fi

(
CtSi + CsSi

2Fi + CsSi
− ε

)

Up = 0

Ut = −
∑
i∈N

(
CtSi + CsSi

2 + Cs

)

−δ
∑
i∈N

(CtSi + CsSi)

Follow

(tF )

Up =
∑
i∈N

Si

(
CtSi + CsSi

2Fi + CsSi
− ε

)

Ut = −
∑
i∈N

Fi

(
CtSi + CsSi

2Fi +CsSi
− ε

) Up = 0

Ut = 0

chooses his strategy that gives the maximum gain in the worst case scenario.
Formally, the leader solves the following optimization problem:

t(p) = arg max
t∈WT

Ut(p(t), t)

In most cases, Stackelberg games are solved by the backward induction tech-
nique. The solution consists of taking the follower’s best response strategy as a
function of the leader’s strategy. Then, giving follower’s best chosen response,
the leader chooses his best strategy. The obtained equilibrium is referred to as
a Stackelberg equilibrium (SE) or Stackelberg– Nash equilibrium (SNE).
Next, we address all possible cases, starting by considering the attacker as a
leader and the verifier as a follower, then the verifier as a leader and the attacker
as a follower, then we lastly examinate with the case when a player decides to be
a leader or a follower without knowing the adversary’s choice. In our study, we
focus on the scenario where the attacker and the verifier have sufficient resources.

1) Leader: Attacker side; Follower: Verifier side
As the attacker will choose his strategy before the verifier, we have to find

his best strategy subject to the constraint that the verifier makes a decision
according to his best response function. We first start solving the verifier’s best
response by performing backward induction as follows:

ti(t) =

⎧⎪⎨⎪⎩
= 0, pi < Hi, i ∈ N
∈ [0, 1], pi = Hi, i ∈ N
= 1, pi > Hi, i ∈ N

Where Hi =
CtSi + CsSi
2Fi + CsSi

.

By noticing the leader’s utility function
∑

i∈N piSi[1−ti(2+Cs)], we obtain the
following SNE : {

tSi = 0, i ∈ N
pSi = Hi, i ∈ N



Data Integrity and Availability Verification Game 297

The corresponding payoff of both TPA and CP is as follows:{
Ut(t

S , pS) = −
∑

i∈D Fi Hi, i ∈ N
Up(t

S , pS) =
∑

i∈D Si Hi, i ∈ N
The fact that Ut(t

S , pS) = Ut(t
′, pS), ∀t′ ∈ WT makes the above solution a

weak Stackelberg equilibrium. Hence, the leader risks getting a negative payoff
(Up(t

S , pS) = −
∑

i∈N Hi

(
Si(1 + Cs)

)
), since the follower can set ti = 1 for all

targets instead of tS . This is clearly not acceptable for the attacker while his
payoff is 0 when doing nothing.

As a solution, the attacker has to decrease his strategy a little bit by setting
pi = pSi −ε = Hi−ε, where ε is a small positive number, in order to guarantee that
TPA will operate on tS . As a result, the payoff will be

∑
i∈N SiHi − ε

∑
i∈N Si,

which is slightly less than his desired payoff, since ε is sufficiently small.

2) Leader: Verifier side; Follower: Attacker side:
In this case, as the verifier plays the role of the leader, we will try to find the

maximum value of his minimum payoff. Following the same analysis of the first
case, The SNE is:⎧⎨⎩ tSi =

1

2 + Cs
, i ∈ N

pSi = 0, i ∈ N
In order to make sure that the attacker will operate on ps, the verifier needs

to increase his strategy a little bit by setting ti = tSi + δ =
(
1/(2 + Cs)

)
+ δ,

where δ is a small positive number. In such a situation, the TPA payoff will be
−
∑

i∈N
(
CtSi +CsSi/(2 +Cs)

)
− δ

∑
i∈N (CtSi +CsSi), which is a slightly less

than his desired payoff at the SNE.

3) Lead or Follow :
Here we look at an interesting scenario where each player decides to choose

the leader or the follower strategy, without knowing his adversary’s choice. In
this case, we aim to address the following questions: Is being a leader a better
strategy than being a follower? Does the leader always control the behavior of
the follower?

We formulate the (lead or follow) Cloud storage verification game as follows:
the players are the verifier and the attacker; each player seeks to maximize his
payoff by operating either on the leader strategy that we denote by tL and pL,
respectively, or the follower strategy denoted by tF and pF , respectively. ∀i ∈ N ,
we have:

tLi =
1

2 + Cs
+ δ, tFi = 0, pLi = Hi − ε, pFi = 0

Table 2 shows the payoff of both the attacker and the verifier. We ignored the
terms that contain εδ due to their small value.

For the verifier, we can notice from Table 2 that the first row is strictly
dominated by the second row, which means that it is better off for the verifier
to be the follower. Hence, (pL, tF ) is the NE of the game; the case when the
attacker plays the role of the leader and the verifier follows.
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From the above result, we can notice that the NE of the game is more favorable
to the CP than the TPA, since the leader can control the behavior of the follower
and pushes him to keep silent. Nevertheless, the TPA (follower) can influence
the attacker’s strategy, since both the strategy and the payoff of the attacker
at the NE depends on the verification cost of the verifier. That being said, if
Ct " Fi; both pi and Up are very small at the NE.

For the TPA, we would like to mention that his strategy at the NE tFi = 0
does not mean that no defender is needed, since before reaching the equilibrium,
both players may try different strategies before choosing the one that maximizes
their payoff.

Guideline 2: The TPA should choose the follower strategy in order to max-
imize his payoff, while leader is the best strategy for the CP.

4.2 Cloud Storage Game for Probabilistic Verification

Unlike the previous models, in which we consider that the TPA uses a deter-
ministic verification protocol that guarantees a probability of detecting data
modification or deletion equal to 1, in this extended model, we analyze the case
of a probabilistic verification protocol that guarantees a detection probability
inferior to one (a < 1) such as [3,9,15], since the TPA only performs verification
on some parts of the data, in order to alleviate the verification cost. This means
that there is a possibility that the TPA could not detect the incorrectness of the
data with probability (1− a > 0). On top of that, we now consider that the CP
loses some storage cost when he does not attack the data while the TPA does
not verify it.

Table 3 shows the matrix payoff of both players (CP/TPA) in the following
extensive form: when the CP does not attack the data while the TPA does not
verify it, the CP loses a payoff proportional to the size of the data, denoted
by BSi, where B ∈ [0, 1]. If the TPA verifies the data when it happens to be
corrupted, then the TPA will gain (-CsSi+Fi) while CP gets (-CsSi-Si), with
probability a. With probability (1 − a), the TPA has to pay the cost of the
verification that is executed in both parts and also loses the data size, which
means (-CsSi-C

tSi-Fi) while CP gains (-CsSi+CsSi+Si) = Si.
The utility functions of CP and TPA are defined as follows:

Ut(t, p) =
∑
i∈N

ti

[
pia
(
2Fi + CsSi

)
−
(
CtSi + CsSi

)]
−
∑
i∈N

piFi

Table 3. Cloud storage game for probabilistic verification

CP \ TPA Check Not check

Available/
Correct data

Up = 0
Ut = −CtSi − CsSi

Up = −BSi

Ut = 0

Unavailable/
Corrupted data

Up = (1− 2a)Si − aCsSi

Ut=−(1− 2a)Fi − (1− a)CsSi-C
tSi

Up = Si

Ut = −Fi
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Up(t, p) =
∑
i∈N

pi

[
ti
(
−(B + 2a)Si − aCsSi

)
+ (1 +B)Si

]
−
∑
i∈N

(1− ti)BSi

For data distribution, we keep the same characteristics as in the first model, in
which data are distributed in two sets: the attractive setDA, and the unattractive
set DU . The sets NA and NU are defined as in section III as well.

Now, we will investigate the NE of the game, according to players resource
constraints. In this model, DA and DU are defined as follows.

Let W =
(1 +B) |NA| − T (B + a(2 + Cs))

(1 +B)
∑

j∈NA

1
Sj

.

Then : {
Si > W, ∀i ∈ NA

Si < W, ∀i ∈ NU

It is interesting to note that the detection rate a has a real influence on the
constitution of the data sets DA and DU , since it follows from the preceding
definition that DA grows as a increases. This remark can be interpreted as fol-
lows: when the detection rate is low, the CP can target the most interesting data
to corrupt without being detected, whereas with a high detection rate, the CP
will have to take more targets into consideration in order to mitigate the risk of
being detected.

As in section 3, the NE can be analyzed following two different cases, depend-
ing on the players resource constraints.

Case 1:
∑
i∈N

t∗i = T and
∑
i∈N

p∗i = P :

This case represents the most frequent situation, encountered when both play-
ers do not have enough resources to attack or defend every target.

The NE, obtained by a reasoning similar to section 3, is as follows:

t∗i=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
T +

1 +B

B + 2a+ aCs

NS∑
j=1

(
Si − Sj

Sj

)
Si

∑NS

j=1

(
1

Sj

) , i ∈ NA

0, i ∈ NU
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p∗i=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P +

∑NS

j=1

(
(Ct + Cs)(Si − Sj)

a(2Fj + CsSj)

)
a(2Fi + CsSi)

∑NS

j=1

(
1

2Fj + CsSj

) , i ∈ NA

0, i ∈ NU

The necessary condition for the solution to be a NE is:⎧⎪⎪⎨⎪⎪⎩
P

Ct + Cs
≥
∑NS

i=1

⎛⎝ 1

a
(
2Fi
Si

+ CS
)
⎞⎠

NS(1 +B) ≥ T (B + a(2 + Cs))

In this case, as in the deterministic verification model, both players try to use
the maximum of their resources in order to maximize their payoff. Moreover,
calculating Ut(t

∗, p∗) shows, as expected, that improving the detection rate of
the protocol used by the TPA (i.e., increasing a) can increase his utility and
alleviate the attack intensity.

Case 2:
∑
i∈N

t∗i < T and
∑
i∈N

p∗i < P :

Both players have enough resources to attack and verify every data. The NE
is then:⎧⎪⎪⎪⎨⎪⎪⎪⎩

t∗i=
1 +B

B + 2a+ aCs
, i ∈ N

p∗i=
CtSi + CsSi

a(2Fi + CsSi)
, i ∈ N

Where the necessary condition is N(1 +B) < T (B + a(2 + Cs)).
As shown in the payoff values at the NE given below, having sufficient re-

sources for both players is not suitable for the CP, who gets a negative payoff
due to the fact that he loses some storage cost even when he does not attack.
Since the TPA can target every data for verification, the CP has overall no
chance to gain anything when attacking a data, and also suffers some loss, at
least in this model, when doing nothing.

At the NE, the corresponding payoffs are indeed:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ut(t

∗, p∗) = −
∑N

j=1

(
Fi(C

tSi + CsSi)

a(2Fi + Cs)

)
Up(t

∗, p∗) = −
∑N

j=1

[
BSi

(
1− (1 +B)

B + a(2 + Cs)

)]
It is also interesting to note that when the detection rate a increases, the

TPA payoff increases, and the CP payoff decreases, which is a consistent result
since a higher detection rate means that the TPA will have less failed verification
attempts, while it will be harder for the CP to behave fraudulently without being
detected.
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From this analysis, we conclude that this theoretical model is realistic and
consistent, and we were able to deduce the optimal strategies for both players in
the two preceding cases, while putting into relief the importance of the detection
rate a in the data distribution as well as in the players payoffs. A numerical study
will now allow us to confirm these theoretical results.

5 Numerical Study

In this section, we validate the analytical results of the previous models by
performing a numerical study.

In order to simplify the analysis, we consider that a client stores 20 data
in the Cloud provider’s data center with different sizes and sensibilities. We
therefore consider that each data Di has a size Si and an importance Fi equal to
(21− i) ∗ 0.05, (i = 1, 2, ..., 20). As we mentioned earlier, the client delegates the
check process to a special third party auditor TPA, that is equipped with high-
performance verification modules and powerful processing capabilities. Thus,
we set Ct = Cs = 0.1 for the case of deterministic verification schemes, and
Ct = Cs = 0.01 for probabilistic schemes, since these schemes are much lighter,
in terms of complexity, than deterministic ones.

For the deterministic verification model, according to Definition 2, our data
are distributed into two sets: the first nine data belong to the attractive set DA,
whereas the remaining data are unattractive.

In the third model, where the verification process is probabilistic, we set B =
0.001. As expected, the data distribution is influenced by the probability of
detecting data tampering a. In the case where a = 0.9 the attractive data are
almost identical to the first model, since a is not so far from 1, while for a = 0.5
, the number of attractive data decreases to 5, until reaches 3 for a = 0.1.
This observation confirms our remark made in the previous section about the
effect of a on the size of the data sets DA and DU . To further evaluate our
analytical results, we investigate the case where TPA deviates from the NE. We
thus simulate 10000 random strategies for the TPA under the condition that
the CP chooses always his best response for each random strategy, in order to
maximize his payoff.

For the deterministic model, Table 5 shows the strategies and the utility
functions for both players at the NE, while Table 6 shows the payoffs of the
TPA when he deviates from the NE. Ut(t

r, p′)B is the best and the maximum
payoff that the TPA can gain, where tr is the random strategy for TPA, and p′

is the CP’s best response. Ut(t
r, p′)W is the worst and minimal gain for TPA,

while Ut(t
r, p′)A is the average of all 10000 random strategies.

Table 5 and 6 clearly show that the best strategy for the TPA that maximizes
his payoff is the NE, since Ut(t

r, p′)B < Ut(t
∗, p∗).

Fig.1 shows the utility functions of the TPA and the CP in the probabilistic
verification model, under different values of the detection rate a. The valuable
information that can be drawn here is that the TPA loss increases every time a
decreases, while the CP gains more payoff every time a decreases, due to the fact
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Fig. 1. Influence of the detection rate a on the TPA payoff in the probabilistic model

Table 4. Deterministic Verification Nash Equilibrium

The Defender (TPA) The Attacker (CP)

t∗1= 0.19189 p∗1= 0.10759
t∗2= 0.17692 p∗2= 0.10824
t∗3= 0.16030 p∗3= 0.10897
t∗4= 0.14172 p∗4= 0.10978
t∗5= 0.12081 p∗5= 0.11068
t∗6= 0.09712 p∗6= 0.11171
t∗7= 0.07004 p∗7= 0.11289
t∗8= 0.03880 p∗8= 0.11425
t∗9= 0.00235 p∗9= 0.11583
t∗10 − t∗20= 0 p∗10 − p∗20= 0

Ut(t
∗, p∗) = −0.77100 Up(t

∗, p∗) = 0.59702

that the more resources the CP uses to attack the first data in the attractive
set, the more space he gains. Moreover, it appears that the TPA gets less payoff
when he deviates from the NE.

These numerical results therefore corroborate our analysis of these theoretical
models, and prove the consistency of the NE concept as the optimal strategy
from which no player has any incentive to deviate in order to maximize his
payoff.

6 Conclusion

In this paper, we focused on the problem of verifying data integrity in the case
of data outsourced to an untrusted Cloud provider. We formulated the inter-
action between the verifier and the Cloud provider as a noncooperative game
with mixed strategies, before performing an in-depth analysis on a deterministic
model and on two extensions, namely the Stackelberg game for deterministic ver-
ification model, and a probabilistic verification model. Based on our analytical
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Table 5. TPA Deviation From NE in Deterministic Verification Model

Ut(t
r, p′)B Ut(t

r, p′)A Ut(t
r, p′)W

-0.79884 -0.89058 -1.01050

results, we presented the expected behavior of a rational attacker, then derived
the minimum verification resource requirement and the optimal strategy of the
defender. We were also able to validate our analytical results by performing
simulations.

However, the usual hypothesis of perfectly rational players limit the results
of this work to very experienced attackers and verifiers who had a thoughtful
approach of their actions. While not being unrealistic, given the fact that the
CP and TPA entities are both very rational players by nature, this hypothe-
sis remains a potential limitation to the superposition of this model with the
objective behaviour of such entities in the reality.

Moreover, this work does not take into account several variants of the situ-
ation, such as the introduction of a penalty symbolizing the reputation loss in
case of fraud from the CP, possibility to outsource numerous versions of a data
to a CP, or the possibility for a CP to store multiple copies of each data with
replication. Also, both the TPA and the CP can target more than one data at
a time, which can be represented by a multiple-shot game. These variants will
be the subject of future works that will aim at deepening this study in order to
refine the model and integrate the hypotheses that are closer to reality.
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Appendix I : Proof of Lemma 1

Here, we will prove that NA contains d data with the biggest sizes, and d = NS

by showing that neither d < NS nor d > NS is achieved.
In this proof, We need to only focus on the second case of the lemma, since

the first case is straightforwardly evident. Before delving into the proof that NA

is unique, we should mention that it clearly appears that the NS data with the
biggest sizes that satisfy the second case of the lemma constitute the attractive
data set NA, since the very definition of NA given in Definition 2 is satisfied.

We first show that if i ∈ NA, then ∀j < i (Sj ≥ Si), it holds that j ∈ NA.
Suppose this is not the case. Then, there exist j0 < i (Sj0 ≥ Si) such that
j0 ∈ N −NA. It follows that Sj0 ≤ C. On the other hand, from Definition 2, we
have Si > C. It follows that Si > Sj0 , which contradicts with Sj0 ≥ Si. Hence,
NA consist of the d data with the biggest sizes.

Now, we have to prove that d = NS . Suppose first that d < NS . From case 2
of the Lemma, we have:
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SNS >
NS

(
1

2+Cs

)
− T∑NS

j=1

(
1

2Sj+CsSj

) =⇒ SNS

∑NS

j=1

(
1

2Sj+CsSj

)
> NS

(
1

2+Cs

)
− T

=⇒ SNS

∑NS

j=1

(
1

2Sj+CsSj

)
− 1

2+Cs (NS − d) > d 1
2+Cs − T .

Noticing that SNS ≤ Si, ∀i ≤ NS and d < NS (i.e. Sd+1 ≥ SNS ), we have:

Sd+1

d∑
j=1

(
1

2Sj+CsSj

)
≥ SNS

d∑
j=1

(
1

2Sj+CsSj

)
≥ SNS

NS∑
j=1

(
1

2Sj+CsSj

)
− SNS

NS∑
j=d+1

(
1

2Sj+CsSj

)
> SNS

∑NS

j=1

(
1

2Sj+CsSj

)
− 1

2+Cs (NS − d) > d 1
2+Cs − T

Hence, Sd+1 >
d
(

1
2+Cs

)
− T∑d

j=1

(
1

2Sj+CsSj

) . On the other hand, from Definition 2, we have

Sd+1 ≤
(
d
(
(1/(2+Cs)

)
−T
)
/
(∑d

j=1

(
(1/2Sj+CsSj)

))
. This contradiction shows

that it is impossible that d < NS. Similarly, we can show that it is impossible
that d > NS . Hence, d = NS is uniquely determined, and so is NA. It follows
obviously that NU is also uniquely determined.

Appendix II : Proof of Theorem 1

The proof consists of showing that regardless of the verifier’s strategy t, for any
p ∈ WP such that ∃i ∈ NU , pi > 0, we can construct another strategy p′ such
that p′i = 0, ∀i ∈ NU and Up(t, p) < Up(t, p

′).
If SN ≥ C, then NU = ∅; the theorem holds evidently. We focus in our proof in
the case where SN < C, in other words, NU �= ∅.
We consider a vector t0 = (t01, t

0
2, ..., t

0
N ) where:

t0i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T − NS

2 + Cs
+ Si

∑NS

j=1

(
1

2Sj + CsSj

)
(2Si + CsSi)

∑NS

j=1

(
1

2Sj + CsSj

) , i ∈ NA

0, i ∈ N −NA

It holds that t0i ≥ 0 and
∑NS

i=1 t
0
i = T . Let t = (t1, t2, ..., tN ) denote the

verification probability distribution of the verifier, with
∑NS

i=1 ti ≤ T . By the
Pigeon Hole Principle, it holds that ∃m ∈ NA such that tm ≤ t0m.
We now consider any attacker strategy p = (p1, p2, ..., pN ) ∈ WP satisfying∑

i∈NU
pi > 0, i.e; the attacker attacks at least one target outside the attractive

data set with nonzero probability. We construct another attacker strategy profile
p′ based on p such that:
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p′i =

⎧⎪⎪⎨⎪⎪⎩
pi, i ∈ NA and i �= m

pm +
∑
j∈NU

pj , i = m

0, i ∈ NU

By comparing the attacker payoff at p and p′, noticing that ∀i ∈ NU ,

Si <
NS

(
(1/(2+Cs)

)
−T

)
(∑NS

j=1

(
(1/2Sj+CsSj)

) , we obtain:

UP (p)− UP (p
′) =

∑
i∈N

piSi

(
1− ti

(
2 + Cs

))
−
∑
i∈N

p′iSi

(
1− ti

(
2 + Cs

))
=
∑
i∈N

piSi

(
1− ti

(
2 + Cs

))
−

⎛⎝ ∑
i∈NA,i�=m

piSi

(
1− ti

(
2 + Cs

))
+

(
pm +

∑
i∈N−NA

pi

)
Sm

(
1− tm

(
2 + Cs

))⎞⎠
=

∑
i∈N−NA

piSi

(
1− ti

(
2 + Cs

))
−

∑
i∈N−NA

piSm

(
1− tm

(
2 + Cs

))
≤

∑
i∈N−NA

piSi

(
1− ti

(
2 + Cs

))
−

∑
i∈N−NA

piSm

(
1− t0m

(
2 + Cs

))

=
∑

i∈N−NA

piSi

(
1− ti

(
2 + Cs

))
−

∑
i∈N−NA

pi

⎛⎝ NS
1

2+Cs − T∑NS

j=1

(
1

2Sj+CsSj

)
⎞⎠

≤
∑

i∈N−NA

piSi −
∑

i∈N−NA

pi

⎛⎝ NS
1

2+Cs − T∑NS

j=1

(
1

2Sj+CsSj

)
⎞⎠ < 0

Hence, the strategy p′ gives more payoff to the CP than the strategy p. A
rational CP therefore has no incentive to attack any data Di ∈ DU .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Short Papers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

R. Poovendran and W. Saad  (Eds.): GameSec 2014, LNCS 8840, pp. 309–318, 2014. 
© Springer International Publishing Switzerland 2014 

Empirical Comparisons of Descriptive Multi-objective 
Adversary Models in Stackelberg Security Games 
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Abstract. Stackelberg Security Games (SSG) have been used to model defend-
er-attacker relationships for analyzing real-world security resource allocation 
problems. Research has focused on generating algorithms that are optimal and 
efficient for defenders, based on a presumed model of adversary choices. How-
ever, relatively less has been done descriptively to investigate how well those 
models capture adversary choices and psychological assumptions about adver-
sary decision making. Using data from three experiments, including over 1000 
human subjects playing over 25000 games, this study evaluates adversary 
choices by comparing 9 adversary models both nomothetically and ideographi-
cally in a SSG setting. We found that participants tended to be consistent with 
utility maximization and avoid a target with high probability of being protected 
even if the reward or expected value of that target is high. It was also found in 
two experiments that adversary choices were dependent on the defender’s 
payoffs, even after accounting for attacker’s own payoffs.  

Keywords: adversary modeling, Stackelberg Security Game, utility function. 

1 Introduction  

Relationships between attackers and defenders have been modeled as Stackelberg 
Security Games (SSG). In SSG, a defender moves first as a leader, an attacker then 
observes the defender’s strategy and choose a target to attack. Security resource allo-
cation research has focused on identifying defenders’ optimal strategy. One approach 
is to generate a robust method that is independent of adversaries’ strategies[1]. 
Another approach to determine a defender’s optimal strategy is to model adversaries’ 
strategies and construct an optimal defense in response[2, 3]. The approach that con-
siderably models adversaries’ choices has been proved to be more effective. 

However, relatively less has been done descriptively to investigate how well the 
adversary-based defenders’ algorithms capture adversary decision making and the 
psychological assumptions of adversaries’ choice behavior. This study aims to ex-
plore adversaries’ choices by comparing different adversary models in a SSG setting. 
Using data from three experiments, including over 1000 human subjects playing over 
25000 games, nine models were evaluated nomothetically and ideographically.  

The models compared in this paper all measure adversaries’ choices as probabilis-
tic choices, that is, if the probability of choosing one target is higher than that of 
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choosing an alternative, the adversary will choose that target to attack. In decision 
making research, Luce’s Choice Axiom (LCA)[4] assumes that choice behavior is 
probabilistic instead of deterministic. McFadden[5, 6] applied LCA to preferential 
choice in economic analysis. His model was able to exaggerate the differences be-
tween different alternatives by exponentiating utilities and the optimal choice is con-
sistent with utility maximization. McKelvey and Palfrey[7] later developed Quantal 
Response Equilibrium (QRE) in economics, which assumes that the chance of select-
ing a non-optimal strategy increases as the level of error increases, in which   
captures the rational level (absence of errors) of a player. Since expected utility max-
imizing is the baseline of a rational decision maker and it is easier to measure a para-
meter close to 0, we adjusted the quantal response model by reversing the parameter 
and let  represent the level of error (softmax): a player chooses randomly when ∞ and maximizes expected utility when 0. Let q  [0, 1] represent the 
probability that target t will be attacked: 

      
/∑ / ,  0 (1) 

Using the softmax function, we evaluated adversary decision making by assessing 
four different aspects of the proposed choice models:  

(1) Consistency level with utility function maximizing. As suggested by bounded 
rationality[8], inconsistency with utility function maximization could result when 
an attacker has limited time and resources to contemplate the optimal choice. The 
actual choice could deviate from optimal choice and magnitude of deviation is 
represented by the inconsistency level ( ). 
(2) Attention to probability of success. It has been assumed that adversaries pay 
more attention to probability rather than consequences such that they tend to 
choose targets with higher probability of success (“soft targets”)[9]. We hypothe-
sized that an attacker would pay extra attention to the probability of sucess.  
(3) Dependence on defender’s utility. Given that adversaries may be driven by 
emotion, it is reasonable to assume an attacker could “sacrifice” part of their own 
reward to “hurt” the enemy. We anticipated that terrorists would choose a target 
that could create more damage to the targeted population, even though that choice 
could have a lower expected return.  
(4) Risk attitude. Past research indicates that emotions can influence risk attitude, 
such that fear can lead to risk-aversion and anger can lead to risk-seeking[10]. 
There is little basis to assume adversaries are risk neutral or risk averse[11], espe-
cially for an attacker who could experience strong emotions. 

2 Models 

For each of the proposed models, we aim to capture an adversary’s consistency with 
utility maximization, attention to probability of success, dependence on defender’s 
utility, and risk attitude. The various proposed utility models all utilize the softmax 
function to calculate the attacker’s probability of choosing a particular target. The 
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nine utility functions can be partitioned into five categories: (1) attacker’s expected 
value (EV), (2) attacker’s expected utility (EU) accounting for risk attitude, (3) lens 
model[12, 13] with a weighted average of p(success), attacker’s reward and penalty 
and defender’s reward and penalty, (4) lens model accounting for risk attitude, and (5) 
multi-attribute utility (MAU) model with a weighted average of p(success), attacker’s 
EV and  defender’s EV[14]. 

A summary of the nine models grouped in five categories is presented in the Table 
1. All nine models capture the inconsistency level ( ). EV is the baseline model. The 
five lens models and the MAU model capture an attacker’s trade-offs among compet-
ing cues (or objectives). The EU– , lens–3–  and lens–5–  allow risk attitude to be 
accounted for; lens–4, lens–5, lens–5– , and MAU model take defender’s utility into 
account for attacker’s utility function. 

2.1 Attacker’s Expected Value 

The basic utility function of an adversary only captured the expected utility of an 
attacker who is risk neutral (expected value). The model was first introduced by Yang 
and colleagues[2] in the name of Quantal Response model. If the attacked target  (i 
= 1,2,..,8) is covered by the defender, the attacker receives penalty  and the de-
fender receives reward ; if the attacked target is not covered by the defender, the 
attacker received reward  and the defender receives penalty . Let  denotes 
the probability of a guard at , attacker’s expected utility at  is 

                   1                         (2) 

Yang et al. [2] further modified the model by adding an extra weight ( ,  0) to 
the target that is least protected by the defender, that is, the least defended target is given 
a bonus in the SOFTMAX calculation. This assumption is consistent with “soft target” 
hypothesis. Let  denote whether a target is covered by the least resource: 

 = 
1,0,                                 (3) 

2.2 Attacker’s Expected Utility Accounting for Risk Attitude 

A simple power utility function was constructed by adding a parameter α to capture 
risk attitude where α>1 indicates risk seeking and 0<α<1 indicates risk aversion. 
Assuming the same risk attitude for gain and loss, expected utility of target  is: 

              P 1 R                          (4) 
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2.3 Lens Model 

The lens model suggests that attacker judgments depend on a linear combination of 
multiple observable cues. Therefore, the expected utility function of an attacker can  
 

Table 1. A Summary of the Nine Models Grouped in Five Categories 

 

 
be a linear combination of three attributes that are important to the decision ( , , 
and ). The model, labeled the Subjective Utility Quantal Response (SUQR), was 
first proposed by Nguyen and colleagues [3]. The utility function was defined as: 

           =                           (5) 

We then extended this utility function to a linear combination of five cues with 
four weighting parameters ( , , , , and ) with a common weight for the 
sum of defender’s penalty and reward. We also extended this model to a linear com-
bination of all five cues with separate weighting parameter for each cue: 

         =                 (6) 

             =                 (7) 

2.4 Lens Model Accounting for Risk Attitude (lens- ) 

Risk attitude can be captured by introducing the parameter α  to the lens model:  

                                     (8) 

Category Model Abbreviation Equation 
Attacker’s expected 

utility models 
Attacker’s expected 

utility model 
EU ( ) = [ ( ) ][ ( ) ]/  

Attacker’s expected 
utility model accounting 

for soft target 

EU–soft target ( ) = [ ( ) ]/ ( )[ ( ) ]/ ( ) 
Attacker’s expected 

utility model accounting 
for risk attitude 

Attacker’s expected 
utility model accounting 

for risk attitude 

EU–  ( ) = [ ( ) ]/[ ( ) ]/  

Lens models Lens model – three pa-
rameters 

Lens–3 ( ) = ( )/( )/  

Lens model – four pa-
rameters 

Lens–4 ( ) = ( ( ))/( ( ))/  

Lens model – five pa-
rameters 

Lens–5 ( ) = ( )/( )/  

Lens models accounting 
for risk attitude 

Lens model – three at-
tributes accounting for 

risk attitude 

Lens–3–  ( ) = ( )/( )/  

Lens model – five at-
tributes accounting for 

risk attitude 

Lens–5–  ( ) = [ ( ) ( )]/[ ( ) ( )]/  

Multi-attribute utility 
model 

Multi-attribute utility 
model 

MAU ( ) = [ ( ) ] [ ( ) ][ ( ) ] [ ( ) ] 
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Risk attitude was also captured in the lens model with five cues. To reduce the 
number of parameters, we assumed a common weight on attacker’s reward and penal-
ty and another common weight on defender’s reward and penalty. The evaluation of 
choosing target  then is: 

                          (9) 

2.5 Multi-Attribute Utility Model 

Inspired from the lens model which assumed expected utility as a linear combination 
of different attributes, we developed a new model of multi-attribute utility assuming 
that the adversary had multiple objectives. We assumed adversaries had three objec-
tives: (1) maximize the probability of success, (2) maximize their expected utility and 
(3) minimize defender’s expected utility. The probability of choosing target  is: 

                              1 1  (10) 

3 Experiment 

3.1 Method 

The three experiments used the same game paradigm called “The Guards and The 
Treasure” written in PHP. Each participant was asked to play as an attacker and 
choose one out of eight gates to attack given , , , , and  for each alter-
native. The three experiments differ in attacker and defender payoff matrixes, defend-
er’s guarding strategies and experiment procedures1. The published work [1-3] fo-
cused on evaluating algorithms for defender strategy in terms of defender EV. This 
paper reports new analyses of data from the three experiments, focusing on evaluating 
attackers’ choices.  

Amazon Mechanical Turk (AMT) was used to collect data. In experiment I, 102 
participants, each played 40 rounds, and completed 4080 rounds in total. Forty of the 
102 participants were from the US and 48 were from India. Thirty-six (35%) were 
female. In experiment II, a total of 653 US participants, each played 25 rounds and 
completed 16325 rounds in total. Two-hundred and seventy-two (42%) were female. 
In experiment III, a total of 294 US participants, each played 25 to 33 rounds and 
completed 8538 rounds in total. Eighty-nine (30%) were female. 

 
 
 
 
 

                                                           
1 Please refer to the published worksfor the game procedures, payoff matrices and algorithms. 
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Table 2. Estimates of Parameters and AIC for Experiments I, II and III 

 

3.2 Results 

Nomothetic Analysis. Maximum Likelihood Estimation (MLE) [15] was employed 
to fit the data over all the games played in each of the three experiments and estimate 
parameters for all nine models. The likelihood function for each model is: 

L = ∏ , ,..,                         (11) 

The Akaike Information Criterion (AIC) [16] was calculated using equation 12 for 
each model in the three experiments, where k is the number of parameters of a model. 
AIC is an estimate of the expected, relative distance between the fitted model and the 
unknown true mechanism that generated the observed data [17]. The model with the 
minimum AIC is the best among the alternatives. 

AIC = -2 ln L + 2k                        (12) 

The estimates of the parameters and AICs for the nine models tested in experi-
ments I, II and III are summarized in Table 2. In experiment I, AIC results indicate 
that models EV and EU– were similar in terms of fit; model EU–soft target was 
slightly better than EU and EU– . The lens models fit better than model EU–soft 
target; among lens models, lens–5–  was the best. The MAU model did not fit as 
well as the linear utility models. Parameter estimates indicate that participants were 
consistent with maximization of the various evaluation functions (λ < 0.1) for all nine 
models. Both the lens models and the MAU model resulted in a negative weight on 
the probability of being caught, which suggests that participants tended to give a bo-
nus to targets that are less likely to be guarded. Parameter estimates for the four mod-
els that captured the weight participants put on defender’s rewards and penalties 
(Lens–4, lens–5, lens–5–  and MAU) suggest that the weight on defender’s side was 
much lower than that put on attacker’s rewards and penalties (about 1/10). Finally, 
model EU–  indicated that participants were risk-averse, while lens–3– and lens–5–

 indicated that attackers were risk-seeking. 
 
 

Model Experiment I Experiment II Experiment III 
AIC Parameters estimation AIC Parameters estimation AIC Parameters estimation 

EU 15036 .09 60674 .08 33334  
EU–soft target 14820 .59) 50548 .07,1.89) 27802 .41, 1.79) 

EU–  15012 .08, .86 59169  31065  
Lens–3 14670 w=(-.32,.44,.24) 52014 .04, w=(-.42,.35,.23) 25445 .07, w=(-.16,.18,.67) 
Lens–4 14656 .02, w=(-.31,.44,.23,.02) 48218 .01, w=(-.36,.30,.20,.14) 22937 w=(-.47,.03,.19,.31) 
Lens–5 14658 .05,  

w=(-.30,.43,.23,.02,.02) 
43265 .02,  

w=(-.31,.26,.17,.04,.20) 
22592 .04,  

w=(-.44,-.01,.04,.30,.21) 
Lens–3–  14645  

w=(-  
51929  

w=(-  
25159 .07,  

w=(-  
Lens–5–  14624 .08,  

w=(-  
48121 .04,  

w=(-  
23228  

w=(-.58,.07, .47 
MAU 14973 .08, w=(-.06,.84,.10) 45335 .03, w=(-.32,.39,.29) 26540 -.66,-.01,.33) 
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In experiment II, the AIC fit indices indicated consistency with experiment I; 
model EV was the worst model among the nine. Model EU–  was slightly better than 
EV but was worse than EU–soft target. The lens models and MAU were again better 
than EU–soft target. The MAU model was not as good as the lens models. Among the 
five lens models, lens–4 was better than lens–3 and lens–5 was better than lens–4. 
Adding a parameter for risk attitude on lens–3 (lens–3– ) improved the model 
slightly. Adding a parameter for risk attitude on lens–5 and combining attacker’s side 
and defender’s side (lens–5– ) did not improve the model. Parameter estimates indi-
cated that participants were rational (λ<0.1 for EU– , lens models, and MAU while 
λ<0.5 for EV and EU–soft target). Again, lens models and the MAU model indicated 
that a negative weight was put on the probability of being caught. Results of the four 
models that capture the weight attackers place on the defender’s rewards and penalties 
(lens–4, lens–5, lens–5–  and MAU) suggested that the weight on defender’s rewards 
and penalties was as high as the weight on attacker’s side. Finally, EU–  and EU–5–

 indicated that participants were risk-averse while EU–3–  indicated that partici-
pants were risk-seeking. 

In experiment III, AIC results were consistent with those from experiments I and 
II in that model EV was the worst model among the nine. EU–  was slightly better 
than EV but was worse than EU–soft target. EU–soft target was better than lens–3 and 
lens–3– , and was worse than lens–4, lens–5, lens–5– and MAU (all models ac-
counted for defender’s rewards and penalties). Among the five lens models, lens–4 
was better than lens–3 and lens–5 was better than lens–4. Adding a parameter for risk 
attitude on lens–3 (lens–3– ) improved the model slightly. Adding a parameter for 
risk attitude on lens–5and combining attacker’s rewards and penalties and defender’s 
rewards and penalties (lens–5– ) did not improve the model. The MAU model did 
not fit as well as lens–5 but was better than the other seven models. Parameter esti-
mates indicated that participants were rational (λ<0.1) for all models. Again, lens 
models and MAU indicated that a negative weight was put on the probability of being 
caught. Results of the four models that captured the weight participants put on de-
fender’s rewards and penalties (lens–4, lens–5, lens–5–  and MAU), suggested that 
the weight put on defender’s rewards and penalties was as high as that put on attack-
er’s rewards and penalties. Finally, EU–  indicated that attackers were risk-averse 
while lens–3– and lens–5–  indicatedthat attackers were risk-seeking. 

Ideographical Analysis. We expected there were individual differences in utility 
function parameters. For instance, some attackers may have multiple objectives of 
maximizing expected utility, minimizing the chance of being caught and minimizing 
their enemies’ (defenders) expected utility at the same time (captured in MAU). Some 
attackers may only maximize their own expected value (captured in EV). It is imposs-
ible to differentiate different types of “adversaries” with the nomothetic analysis 
alone. An ideographical analysis allows us to evaluate how each individual attacker 
made the decision and how that person is different from others. Again, parameters 
were estimated using MLE. Since the sample size (N) is small with respect to the 
number of parameters (k) (N/k < 40 using the k from the most complex model), AICc 
was calculated for comparisons over different models[17]: 
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AICc = -2 ln L + 2k ( )                            (13) 

The number of times each model has a minimum AICc is summarized in Table 3. 
Out of 102 attackers (each playing 40 games) in Experiment I, results indicated that 
lens–3 scored the minimum AICc most often. MAU model, EU–  and lens–4 also 
scored the minAICc more often than the other models. In Experiment II, out of 653 
attackers (playing 25 games each), results indicated that lens–5 scored the minimum 
AICc most often; MAU and lens–4 also scored the minimum AICc more often than 
other models. In Experiment III, out of 294 attackers (each playing 25-33 games), 
results indicated that lens–5 scored the minimum AICc most often, and lens–4 more 
often scored the minimum AICc compared to other models. EU and EU–  never 
scored the minimum AICc across all 294 attackers. 

Table 3. Number of Times Model i has Minimum AICc for Experiments I, II and III 

 

4 Discussion and Conclusion 

We found that attackers in all three experiments tended to behave consistently with 
the proposed evaluation functions ( 0 ). This suggests that in general attackers 
select targets based on maximizing one of the proposed evaluation functions. The EV 
model never provided as good a fit as the other eight models, suggesting that the tra-
ditional expected value model for an attacker cannot account for adversary choice. 
Moreover, while model EU–  was superior to model EV, it did not perform as well 
as the other seven models, suggesting that risk attitude alone does not fully explain 
adversaries’ deviations from EV.  

In addition to maximizing attackers’ own expected utility, it was found that anoth-
er predictor of adversaries’ choices is defender’s payoffs and rewards. In the nomo-
thetic analysis, Experiment I demonstrated that evaluation functions with more  
parameters (e.g., lens–5) did not fit any better than evaluation functions with fewer 
parameters (e.g., lens–3). However, in both experiments II and III the evaluation func-
tions with more parameters were better. Model lens–5–  was the best model in  
experiment I, and lens–5 was the best model in experiments II and III. Both models 
indicate that attackers take defender’s rewards and penalties into account when select-
ing a target. Additionally, results from experiments II and III indicated a comparable 
weight of defender’s payoffs with the weight of attacker’s own payoffs, which im-
plied that attackers gave as much weight to the defenders’ rewards and penalties as 
they did to their own payoffs. The idiographic analysis revealed substantial variability 
among attackers; however, model lens–5 was found to provide the best fits for the 
most attackers, consistent with findings from the nomothetic analysis. 

 

 
 EU EU – soft target EU–  Lens – 3 Lens – 4 Lens – 5 Lens–3–  Lens–5–  MAU Total 

Experiment I 7 3 14 28 11 3 7 8 21 102 
Experiment II 7 13 6 32 105 282 14 26 168 653 
Experiment III 0 29 0 34 56 96 11 33 35 294 
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We also found that another determinant of adversaries’ target selection is the like-
lihood of success. Participants tended to overvalue the target that was less likely to be 
guarded. For instance, in the MAU model, which double-counts the probability of 
success (or probability of being caught) both directly and in the EU calculation, was 
found to be a competitive model in both the nomothetic analysis and the idiographic 
analysis. We also found consistently in all three experiments that models accounting 
directly for success probability (lens models and MAU model) are better than models 
that account for success probability only in the calculation of EV or EU. 

Results from the idiographic analysis indicated that there is no best model among 
the nine that generally accounts for most of the attackers’ choices. Our results suggest 
that attackers used different evaluation functions to compute the “best” choice in a 
game. Therefore, individual differences in adversaries (diversity) should be taken into 
consideration when predicting attacker behavior. It is necessary to identify different 
types of adversaries in order to predict their choices and to compute optimal strategies 
for defenders. 
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Abstract. In many security problems, service providers are basically
unaware of the type of their clients. The client can potentially be an
attacker who will launch an attack at any time during their connections
to service providers. Our main goal is to provide a general framework for
modeling security problems subject to different types of clients connected
to service providers. We develop an incomplete information two-player
game, to capture the interaction between the service provider (i.e., the
server) and an unknown client. In particular, we consider two types of
clients, i.e., attacker and benign clients. We analyze the game using per-
fect Bayesian Nash equilibrium (PBNE) with different conditions. We
finally design an algorithm using the computed PBNE strategy profiles
to find the best defense strategy.

1 Introduction

With the rapid deployment of new computing and networking technologies and
services, we are witnessing different types of clients having access to service
providers via different communication infrastructures, such as the Internet. Ser-
vice providers (e.g., servers in the Internet) are generally unaware of the type
of their clients. These clients could be benign (legitimate) or attacker (mali-
cious). Moreover, there exists different malicious clients with different goals and
abilities. This includes but not limited to hackers, crackers, malicious insiders,
industrial spy, cybercriminals, hacktivist, and cyber terrorist. In summary, in
many security problems the identity of a client is unknown to the server.

Note that if a server only considers legitimate clients (i.e., optimistic point
of view) to design its defense mechanism, attackers would breach to the system
easily. But the server can provide a good quality of services to benign clients in
such cases. On the other hand, if the server assumes that each client is poten-
tially an attacker (i.e., pessimistic point of view), it would degrade the quality
of services for the connected benign clients. Therefore, to design optimal defense
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mechanism that prevents malicious activities and provides good quality of ser-
vices to benign clients, we should consider both types of clients simultaneously.
Game theory is an appropriate tool that can be used to deal with such problems.

Game theory has been used widely to tackle security issues in computer and
communication networks [7,4]. Most security problems are usually modeled be-
tween a defender (i.e., server) and an attacker (i.e., client), where the identity
of the players is clearly distinguished. However, it is not always possible to
assume that the identity of client (i.e., benign or malicious) is known to the
server [6,12,10,5]. Game theory enables the server to model its interaction with
clients whose identities are unknown to the server [2,13,8]. The main goal of this
paper is to propose a new class of security games that can be used to model the
interactions between a server and its client which can be either an attacker or a
benign client. By using multi-stage games with observed action and incomplete
information, we capture uncertainties that are dynamically evolving in this type
of security problems. This leads to the definition of perfect Bayesian Nash equi-
librium concept. We apply the computed PBNE to identify server’s uncertainty
about its clients. Furthermore, we propose the mechanism for the server to pre-
vent the malicious activities of the attacker client as well as provide good quality
service to the benign client.

Bayesian games have been used to model the uncertainties of one player about
its opponent. In [10], Parunchuri et al. consider Bayesian Stackelberg games
to model airport security problem, in which the leader is uncertain about the
types of adversary. In this model, leader assigns prior probability to each type of
adversary, i.e., follower. However, during the game, these prior probabilities will
remain constant. Our model modifies the belief of defender based on the clients’
behavior during the game. As an example in network security, Liu et al. [3] use
Bayesian games to model the interaction between defender and the connected
node that can be malicious or regular in wireless ad hoc network. In this model,
the best strategy of defender is computed by only considering malicious nodes. In
our model, we consider both types of clients in finding the server’s best defense
strategy.

This paper is organized as follows. In Section 2, we propose our system model.
We analyze the game in Section 3, followed by protocol design in Section 4.
Finally, we conclude the paper in Section 5.

2 System Model

In this section, we propose our model for security games when a server is un-
certain about type of a client. We name this security game as GS . Game theory
enables us to deal with the lack of knowledge about the identity of players [9].
As shown in Fig. 1, security game GS is a two-player game with a server S and
client C as players. Each player i ∈ {S, C} has a type θi in a finite set Θi.

In the security game GS , we consider two types (θC = 0 denotes benign client
and θC = 1 denotes attacker one) for clients of our server. Indeed, in our game
the server type is always θS = 0. The nature of communications between server
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Fig. 1. GS is a two-player repeated game between server and client. Client could be
either benign or attacker. At each stage (with various duration), the server updates its
belief about the type of its client based on the client’s current action and the history.

and client is repeated and played at stages t = 0, 1, 2, . . . , T . Different packets are
sent by the client to the server and vice versa. Each packet and the corresponding
response can be considered as one stage of the security game GS .

We model security game GS using multi-stage games with observed actions
and incomplete information [1] to deal with incomplete information about client
C’s type. Our security game GS is perfect information since each player can
observe the action of another player. Moreover, the server does not know the
identity of client. So, security game GS is incomplete information. Note that
different GS games are played in parallel when different clients are connected to
the server at the same time.

In GS game, ht is the history at the beginning of stage t. History denotes
actions of all players in all previous stages until stage t. h0 is the history at the
beginning of the game. h1 is the history at the end of stage zero and denotes
actions of both players at stage zero. Similarly, h2 represents the actions of both
players at stages zero and one.

The server has a prior knowledge about the type of its clients, i.e., μS(θC |h0).
In other words, this prior knowledge is the belief of server about type of its clients
at the beginning of the game. In general, μS(θC |ht) is the belief of server about the
type of playerC at time t.When t > 0, this belief is also called posterior probability.
This belief could be potentially updated at each stage. Players consider history,
action of other players at this stage and the belief at the previous stage to update
their beliefs about their opponents. Bayes’ rule is used to update belief at the end
of each stage. In stage zero, server uses its prior knowledge besides client’s action
to update its belief at the end of the stage. In stage 1, server updates its belief
using Bayes’ rule, μS(θC |h0), h1, and client’s current action. In other stages, for
example stage t, server updates its belief similar to stage 1, i.e., using Bayes’ rule,
μS(θC |ht−1), ht, and client’s current action. In the rest of this section, we first
define both players’ strategies and then calculate players’ payoffs.

In our security game GS presnted in Table 1, the strategy set of player C, i.e.,
client, is limited to Greedy and Normal, i.e., sC = {Greedy,Normal}, and the
server should only select between two strategies of Defend or Not Defend, i.e.,
sS = {Defend,NotD − efend}. Let’s explain how strategies can be defined
with two security examples.
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Table 1. Strategic Form of Security Game GS

Player S/ Player C Normal Greedy

Not Defend 0, 0 0, 0

Defend −α,−β −α,−β

Player C is Benign

Player S/ Player C Normal Greedy

Not Defend −G
′
, G

′ − τ
′ −G,G− τ

Defend g
′ −G

′ − α,G
′ − g

′ − τ
′
g −G − α,G− g − τ

Player C is Attacker

The first example is Intrusion Detection Systems (IDS) in mobile ad hoc
network which has been presented in [6]. In this case, Greedy strategy means
that client sends more packets than a certain threshold to the server. From
server’s point of view, Defend strategy could be interpreted as monitoring the
client. The Second example is password reset which is presented in [11]. In this
example, Defend strategy is moving into a new state. In other words, server
changes the password because the attacker might have penetrated to its system.
Moreover, Greedy strategy means that client tries to penetrate server’s system
by examining different passwords.

Our security game GS is a two-player repeated game between a server and a
client as players. The server is uncertain about type of its client which could be
either benign or attacker. We assume that the players’ identities remain consis-
tent throughout the game. To calculate server’s payoff, we consider a constant
cost for its Defend strategy, i.e., α, regardless of the type of player C. On the
other hand, we do not consider a cost for server’s strategy of Not Defend.

Benign type of player C, i.e., θC = 0, might play Greedy. If the server is smart
enough, it will not play Defend. Server sometimes plays Defend against benign
type of player C due to lack of sufficient information. This server’s action leads
to degradation in service or problem in communication to the benign client. We
quantify this degradation or problem by β. Note that there does not exist any
difference between Greedy strategy and Normal strategy of benign type of player
C. Because, the goal of server is to provide good quality service to benign clients.

Following our discussion in payoff calculation, now we consider attacker type
of player C, i.e., θC = 1. We represent attacker’s cost of playing Greedy and
Normal by τ and τ

′
, respectively. In some cases, playing Normal leads to spend

more time to launch successful attack. Therefore, alarming tools, such as IDS,
will be suspicious about type of this client. So, we do not consider τ

′
= 0 and

we assume that τ
′ ≥ τ .

If every step of game is done completely, the attack will be successful. Some
steps of attack are necessary for successful attack. Let us assume that each step of
attack gives attacker fraction of information for successful attack. We define G as
the information that is gained by attacker when attacker plays Greedy. Similarly,
we define G

′
as the attacker’s gain of information when it plays Normal. One can

simplify the model by not considering the attacker’s gain of information when
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playing Normal strategy. Note that, attacker’s gain of information when playing
Greedy is not lower than attacker’s gain when playing Normal, i.e., G ≥ G

′
.

In our security game GS , playing Defend has a cost for server as well as pre-
vents leakage of information to the attacker. This prevention must be different
with respect to attacker’s strategy. So, we define g and g

′
as prevention from

information’s leakage when attacker’s strategies are Greedy or Normal, respec-
tively. We assume that g ≥ g

′
.

3 Security Game Analysis

In this section, we analyze the security game GS to propose optimum probability
of playing Defend strategy for the server where it is uncertain about type of its
client. We find the best responses of players in Lemmas 1, 2, and 3. Furthermore,
Conjecture 1 shows that how the server can distinguish between the attacker or
the benign type of player C by using Bayes’ rule.

First, we show that four requirements in the definition of PBNE, i.e., B(i)-
B(iv), are satisfied for our security game GS (Please see [1] for the definition of
PBNE and its four requirements). B(i) is satisfied, because server has one type.
B(ii) is satisfied, since we use Bayes’ rule to update server’s belief. The action of
the server does not have any impact on the belief of the server about the type
of its client. In other words, μS(θC |ht) is just affected by the action of client C.
Therefore, B(iii) is also satisfied. Finally, B(iv) is satisfied, because this game is
a two-player game.

Let us define the following parameters to simplify the representations of the
actions’ probabilities given players’ actions as well as the type of clients:

r0 := σS(a
t
S = Defend|ht, θC = 0)

r1 := σS(a
t
S = Defend|ht, θC = 1)

q := σC(a
t
C = Greedy|ht, θC = 0)

p := σC(a
t
C = Greedy|ht, θC = 1)

r := σS(a
t
S = Defend|ht)

(1)

Let’s first assume that the server knows the type of its client. Lemma 1 shows the
best strategy of the server in such cases (All proofs can be found in Appendix A.).

Lemma 1 In our security game GS , if the server knows that its client is an
attacker, then it defends with probability equal to r∗1 given in Table 2. Otherwise,
it does not defend, i.e., r∗0 = 0.

Lemma 1 identifies five different cases, given that the server knows that its
client is attacker. In each case, it shows that how the server plays Defend.

• Cheap Defense: in this state, server plays Defend in all stages against an
attacker. Because the cost of playing Defend is lower than what server acquires
when playing Defend, i.e., α < g

′ ≤ g.
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Table 2. The best Defend strategy, given different power of client and the cost of
defend, when the server knows that its client is an attacker

Defense State Condition r∗1
Cheap Defense α < g

′
1

Expensive Defense α > g 0

Greedy G− g − τ > G
′ − g

′ − τ
′

1

& g
′ ≤ α ≤ g

G− g − τ ≤ G
′ − g

′ − τ
′

Uncertain & g
′ ≤ α ≤ g & g > g

′ (G−τ)−(G
′−τ

′
)

g−g
′

G− g − τ ≤ G
′ − g

′ − τ
′

Baffled & g
′
= α = g Any Probability

• Expensive Defense: in this state, cost of playing Defend is greater than
what server acquires when playing Defend, i.e., α > g ≥ g

′
. Therefore, server

does not play Defend at all.

• Greedy: in this state, attacker always plays Greedy and consequently, the
server plays Defend in all stages.

• Uncertain: in this state, server plays Defend by certain probability. In this
condition, if attacker plays Greedy, server will play Defend. Moreover, server
plays Not Defend when attacker plays Normal.

• Baffled: in this state, there is no difference between Normal and Greedy
strategy of attacker. Similarly, there is no difference between Defend and Not
Defend strategy of server. Hence, server can play Defend by any probability.

Lemma 2 In the security game GS, the benign type of player C plays Greedy by
any probability, i.e., q∗.

Lemma 2 states that the behavior of benign type is independent from the belief
of the server, as there is no difference between Normal and Greedy strategy
of benign client. The server does not know the type of its client. The server
has a belief about the type of its client. Attacker uses this belief to find its
best response. Lemma 3 represents the best response of the attacker in different
conditions.

Lemma 3 In our security game GS, the attacker plays Greedy with probability
p∗:

p∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
median {0, α−μS(θC=1|ht)g

′

μS(θC=1|ht)(g−g′ ) , 1} if g > g
′

1 if g = g
′
& G > G

′

1 if g = g
′
& τ < τ

′

any probability if g = g
′
& τ = τ

′
& G = G

′
.

(2)
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Note that the attacker knows that the server is uncertain about type of its
clients. Server only has a belief about the type of its client, i.e., μS(θC = 1|ht).
Therefore, attacker uses this belief to calculate its best response, i.e., p∗. The
higher the belief is, the lower the p∗ is. In other words, attacker tries to decrease
belief of server in the next stage by playing Greedy with lower probability.

Server updates its belief about the type of client at the end of each stage by
using Bayes’ rule. Note that server uses p∗ and q∗ according to Lemma 2 and
Lemma 3, respectively, in Bayes’ rule to update its belief.

Finally, Conjecture 1 shows the optimum strategy of server in which it is
uncertain about type of its client.

Conjecture 1 In our security game GS, server must play Defends with proba-
bility r∗:

r∗ = r∗1μS(θC = 1|ht) + r∗0μS(θC = 0|ht) (3)

Where r∗1 and r∗0 are calculated according to Lemma 1. The belief of server about
the type of its client is calculated based on Bayes’ rule.

Note that in Conjecture 1 contrary to Lemma 1, we consider both types of
player C in calculating probability of playingDefend. In Equation (3), the server’s
belief weights the probability of playing Defend given that the server knows the
identity of its client. For example, when μS(θC = 1|ht) is high (low), i.e., more
probable that the client is attacker (benign), server plays Defend (r) with higher
(lower) probability. In other words, the higher the μS(θC = 1|ht) is, the higher
the r is.

4 Protocol Design

The above results provides guidelines for designing a defense mechanism named
SmartTypeDetector, enabling the server to prevent malicious activities of the
attacker while providing service to the benign clients. In other words, we employ
our results for optimal Defend strategy presented in Conjecture 1 to compute
the probability of Defend strategy, i.e., r. Note that, one GS game is played for
one client and different clients are independent from each other. In summary,
the server finds p∗ and q∗ at each stage when the client plays Greedy. When the
client plays Normal, the server calculates 1−p∗ and 1−q∗. The server uses these
probabilities, Bayes’ rule, and its belief in the previous stage to update its belief
(update μ). The server calculates r according to Conjecture 1 where the server’s
belief has important influence in r.

Let’s consider a situation of the game GS between server and the attacker in
which p∗ = 1. Rational attacker will always play Greedy. But, irrational attacker
may play Normal strategy in some stages. If the attacker plays Normal in this
situation, the server’s belief will be equal to zero and remain constant for the
rest of the game. To avoid irrational behavior of the attacker, we also apply
upper and lower bounds on p∗.
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Algorithm 1. SmartTypeDetector

1: run this algorithm for each stage
2: if the client plays Greedy then
3: find q∗ (i.e., Lemma 2)
4: find p∗ (i.e., Lemma 3)
5: else
6: find 1− q∗ (i.e., Lemma 2)
7: find 1− p∗ (i.e., Lemma 3)
8: update μ
9: calculate r (according to Conjecture 1)
10: A = rand (random number with uniform distribution in [0,1])
11: if r ≥ A then
12: Defend
13: else
14: Not Defend

5 Conclusion

In this paper, we have proposed a Bayesian security game framework to tackle
with lack of knowledge about the type of the server’s client. In our game-theoretic
model, the game is between server and its client which could be either benign or
attacker. We analyzed the game using perfect Bayesian Nash equilibrium concept
and proposed SmartTypeDetector algorithm, based on our PBNE calculation. In
this algorithm, server uses its belief about the identity of its client to determine
which client is connected to the server. This framework can be applied in many
security problems, such as OS fingerprinting attack and IDS. We believe that
the framework is an efficient tool to model security problems in real life, where
defender does not have enough information about the type of attackers.
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A Proof of Lemmas

Proof of Lemma 1: If the server knows that its client is benign, Defend strategy
is strictly dominated by Not Defend strategy. So, probability of Defend given
that the server knows that dealing with benign client is equal to zero, i.e., r∗0 =
0. On the other hand, when the server knows that its client is attacker, r∗1 is
calculated as follows:
• Cheap Defense (α < g

′ ≤ g): the server’s dominant strategy is to play
Defend, i.e., r∗1 = 1.
• Expensive Defense (α > g ≥ g

′
): the Defend strategy of the server is

strictly dominated by Not Defend strategy, i.e, r∗1 = 0.
• Greedy (G − g − τ > G

′ − g
′ − τ

′
and g

′ ≤ α ≤ g): attacker’s dominant
strategy is to play Greedy. So, the server will play Defend, i.e., r∗1 = 0.
• Uncertain (G − g − τ ≤ G

′ − g
′ − τ

′
and g

′ ≤ α ≤ g and g > g
′
): in

this condition, there does not exist any dominant or dominated strategy. To
determine r∗1 , first we calculate attacker’s expected payoff by playing Normal
when the server plays its mixed strategy:

EuC [((r1, 1− r1), Normal|θC = 1)] = r1(G
′
− g

′
− τ

′
) + (1 − r1)(G

′
− τ

′
) (4)

Then, attacker’s expected payoff by playing Greedy when the server plays it
mixed strategy is:

EuC [((r1, 1− r1), Greedy|θC = 1)] = r1(G− g − τ) + (1− r1)(G− τ) (5)

We derived r∗1 by setting the Equations (4) and (5) equal:

r∗1 =
(G− τ)− (G

′ − τ
′
)

g − g′ (6)

• Baffled (G− g− τ ≤ G
′ − g

′ − τ
′
and g

′ ≤ α ≤ g and g = g
′
): as presented in

Section 2, we assume that G−G
′ ≥ 0 and τ − τ

′ ≤ 0. The condition G−g− τ ≤
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G
′ − g

′ − τ
′
could be written as G−G

′ ≤ τ − τ
′
. The left side of this inequality

is nonnegative, while the right side is nonpositive. So, both sides must be equal
to zero, i.e., G = G

′
and τ = τ

′
. In Baffled, there is no difference between

server’s strategies as well as attacker’s. Hence, the server could play Defend by
any probability.

Proof of Lemma 2: There is no difference between Normal and Greedy
strategy of the benign client. So, the benign client could play Greedy by any
probability.

Proof of Lemma 3: To calculate probability of playing given that the client
is attacker, we consider following conditions:
• g > g

′
: The server’s expected payoff for playing Defend given that both

types of its client playing their mixed strategy is calculated as:

EuS(Defend) = μS(θC = 1|ht)(p(g −G− α) + (1− p)(g
′ −G

′ − α))
+μS(θC = 0|ht)(−α) (7)

And the server’s expected payoff for playing Not Defend when both types of
its client playing their mixed strategy is:

EuS(NotDefend) = μS(θC = 1|ht)(p(−G) + (1 − p)(−G′
)) (8)

Note that in Equations (7) and (8), these expected payoffs are not function
of q. Since, there is no difference between Normal and Greedy strategy of the
benign client regardless of the server’s actions.

The attacker chooses p∗ to keep the server indifferent between Defend and
Not Defend strategy. p∗ is derived by setting Equations (7) and (8) equal, i.e.,

p∗ =
α− μS(θC = 1|ht)g

′

μS(θC = 1|ht)(g − g′)
(9)

In Equation (9), p∗ is function of μS(θC = 1|ht). If μS(θC = 1|ht) < α
g , p

∗

is bigger than 1. In this situation, we use p∗ = 1. Moreover, p∗ is less than 0
when μS(θC = 1|ht) > α

g′ . In this situation, we use p∗ = 0. Hence, we have

median {0, α−μS(θC=1|ht)g
′

μS(θC=1|ht)(g−g′ ) , 1}. Where, the median of a finite list of numbers

can be found by arranging all the numbers from lowest value to highest value
and picking the middle one.
• g = g

′
and G > G

′
: Normal strategy of the attacker is strictly dominated

by Greedy, i.e., p∗ = 1.
• g = g

′
and τ < τ

′
: Normal strategy of the attacker is strictly dominated by

Greedy, i.e., p∗ = 1.
• g = g

′
and τ = τ

′
and G = G

′
: there is no difference between Normal and

Greedy strategy of the attacker, i.e., p∗ = Any probability.
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Abstract. In this paper we consider a single resource-constrained
strategic adversary, who can arbitrarily distribute his resources over a
set of nodes controlled by a single defender. The defender can (1) in-
struct nodes to filter incoming traffic from another node to reduce the
chances of being compromised due to malicious traffic originating from
that node, or (2) choose an amount of investment in security for each
node in order to directly reduce loss, regardless of the origin of malicious
traffic; leading to a filtering and an investment game, respectively. We
shall derive and compare the Nash equilibria of both games for different
resource constraints on the attacker. Our analysis and simulation results
show that from either the attacker or the defender’s point of view, none
of the games perform uniformly better than the other, as utilities drawn
at the equilibria are dependent on the costs associated with each action
and the amount of resources available to the attacker. More interestingly,
in games with highly resourceful attackers, not only the defender sustains
higher loss, but the adversary is also at a disadvantage compared to less
resourceful attackers.

1 Introduction

The continuous attempts by malicious entities to discover and exploit security
vulnerabilities in networks and the ensuing efforts of network administrators at
patching up such exploits have evolved into a cat and mouse game between at-
tackers and defenders. In addition to research on mitigating security flaws and
building more robust networks by analyzing specific hardware and software in-
volved in a network, the problem has also been addressed by game theorists.
Game theory provides a broad framework to model the behavior of rational par-
ties involved in a competitive setting, where each party seeks to maximize their
own net worth. For instance, the interdependent nature of cyber-security leads to
numerous studies on games describing the behavior of multiple interdependent
agents protecting their assets in a network [8].

In this paper we study the strategic interaction between an attacker and a
defender1, both taking actions over a set of interconnected nodes or entities. The

1 For the remainder of the paper, to eliminate confusion, we will use he/him to refer
to the attacker, and she/her to refer to the defender.

R. Poovendran and W. Saad (Eds.): GameSec 2014, LNCS 8840, pp. 329–339, 2014.
� Springer International Publishing Switzerland 2014
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attacker is resource limited but can arbitrarily spread his resources or effort over
this set of nodes. The amount of effort exerted over a node determines the at-
tacker’s likelihood of infiltrating the node and inflicting a certain amount of loss;
a compromised node can go on to contaminate other connected nodes to inflict
further loss. From the defender’s point of view, the interactions between nodes
present possible security risks, but also value derived from the communication.

We consider two types of actions the defender can take. The first is inbound
filtering, whereby a certain amount of traffic from another node is blocked. This
is routinely done in practice, through devices such as firewalls and spam filters,
based on information provided by sources such as host reputation blacklists
(RBLs) [7, 9], where traffic originating from IP addresses suspected of malicious
activities (listed by the RBLs) are deemed unsafe and blocked. Ideally, if the
defender could distinguish between malicious and innocuous traffic, she could
block all malicious traffic and achieve perfect security. However, blocking traffic
comes at a price, since no detection mechanism is without false alarms. Thus,
filtering decisions leads to tradeoffs between balancing security risks and com-
munication values. The second type of action is self-protection through investing
in security. In this case the defender foregoes filtering, but instead focuses on
improving its ability to resist malicious effort in the presence of tainted traf-
fic. Self-protection is more costly than inbound filtering, but it does not put
legitimate communication at risk since it carries no false alarms.

These two types of actions result in a filtering game and an investment game,
respectively, which we analyze in this paper. Specifically, we derive Nash equilib-
ria in both scenarios. We shall see that for both games, more powerful attackers,
or those with larger amounts of resources, do not necessarily draw more utility at
the equilibrium. By contrast, a defender always prefers to face less powerful at-
tackers. In addition, we will compare these two games, and conclude that highly
resourceful attackers favor facing a defender that invests, while less resourceful
attackers’ preference depends on the cost of security investments.

Most of the existing literature on interdependent security games focus on a
collection of agents responding to a constant exogenous attempt to breach their
systems and inflict damage, while fewer publications have addressed games with
a strategic adversary. In reality, malicious sources have shown highly strategic
behavior. For instance, in November 2008 the McColo ISP was effectively blocked
by the rest of the Internet due to its massive operation in spam, and its takedown
was estimated to have contributed to a two-thirds reduction in global spam traffic
in the immediate aftermath [2]. However, by the second half of March, the seven-
day average spam volume was back at the same volume seen prior to the blocking
of McColo ISP [1]. In other words, if a defender decides to completely secure her
assets, then the attacker will likely respond strategically by redirecting resources.

Studies on strategic attackers and most relevant to the present paper include
[3–6, 10]. Specifically, in [3] Fultz and Grossklags propose a complete information
game consisting of a single attacker and N defenders, where defenders can decide
to protect their systems through security measures and/or self-insurance. The
attacker is assumed to decide only on the number of targeted nodes, with the in-
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tensity being equal among all. In [10] Nochenson and Heimann consider a single
attacker competing with a single defender in a game of incomplete information,
where the players can only choose from a set of action classes (e.g. protecting
the highest value node, protecting proportional to nodes’ values, etc). In [4–6],
Hausken considers one-shot and sequential attacker-defender games, under dif-
ferent assumptions on independent and interdependent security models, attacker
income and substitution effects, and so on.

Compared to the above references, the present paper examines a network
with a large number of nodes, where the attacker can spread his efforts over the
network arbitrarily. Moreover, the utility models studied herein differ from those
in [4–6]. Perhaps most importantly, our study complements existing literature
by considering filtering actions, in addition to the security investment actions,
in order to evaluate and compare the effectiveness of security measures and
blacklisting against strategic attackers from a game theoretical point of view.

In the remainder of the paper we present our model, provide intuition on how
it relates to current cyber-security practices, and derive the Nash equilibria of
games under discussion. We will then simulate, discuss and compare the games
and their respective equilibria. The proof of the theorems are omitted for brevity.

2 Filtering

We consider a network consisting of N inter-connected nodes. There is a sin-
gle attacker and a single defender both acting over these nodes. The attacker
has a fixed amount of resources he can use toward compromising any subset of
the N nodes. A compromised node sustains a certain amount of (direct) loss; a
compromised node is also assumed to inflict further (indirect) losses on nodes
it communicates with, thus modeling interdependence. On the defender’s side,
one mitigating option is inbound/outbound filtering over these nodes. Filtering
traffic can effectively reduce the amount of malicious traffic received by a node,
thereby reducing its probability of being compromised, or the incurred losses.
The extreme form of filtering is takedown, whereby traffic from a node is com-
pletely blocked, effectively isolating this node from the rest of the network. An
advantage of filtering is low cost; it takes relatively little to perform inbound
filtering, and we will assume its cost is zero in our analysis. The downside of
filtering is false positives, which reduce the value represented by communication
between two nodes; this aspect is explicitly modeled in this case.

Following the discussion above, the defender’s actions can be modeled by
a vector f ∈ [0, 1]N , where fi is the percentage of node i’s outgoing traffic
that is being dropped. We assume this filtering is performed uniformly, either
by outbound filtering across all egress points, or inbound filtering done by all
other nodes which have agreed upon the same filtering level. In reality, this
corresponds to the observation that filtering decisions are often source-based
rather that destination-based. The attacker’s actions are modeled by a vector
r ∈ RN

+ , where ri is the amount of effort spent by the attacker to breach node
i. Increased effort exerted over a node leads to increased losses (e.g., through
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increased probability of compromising a node). The total amount of loss inflicted
constitutes the attacker’s profit. We further assume that the attacker has a
limited amount of resources r, so that

∑N
i=1 ri ≤ r.

We will adopt the simplification of only considering indirect losses. The justi-
fication is that in large networks, the amount of direct loss sustained by a node
is negligible compared to the total indirect losses it can inflict on the network.
In a sense, the attacker’s main objective is to contaminate a large set of nodes
through network effects, rather than drawing utility from compromising selected
nodes. Let Lij denote the maximum loss per unit of effort that can be inflicted
on node j through a breached node i, when node i’s traffic is unfiltered. Note
that filtering the traffic leaving a breached node does not protect the node itself
against losses; it protects to some degree the rest of the network from indirect
losses from that node. Thus, the attacker’s utility is given by:

uF
a (r,f) =

N∑
i=1

ri

N∑
j=1
j �=i

Lijg
F (fi) , s.t.

N∑
i=1

ri ≤ r . (1)

Here, gF : [0, 1] → [0, 1] is a risk function with respect to the filtering policy,
which we will take to be linear (gF (fi) = 1 − fi). To further illustrate, it is
more natural to view a node as a network (a collection of individual machines
or IP addresses); in this case the single defender becomes a convenient way to
model consistent actions taken by different networks against other networks of
known malicious activities. For instance, benign networks may adopt similar
inbound filtering policies against a network known to send out large quantities
of malicious traffic (e.g., given by the reputation blacklists). More specifically, a
network may decide that all traffic from another network with a certain presence
on the RBLs (percentage of its IPs listed) shall be filtered at a certain level (with
some probability). In this case, the filtering level leads to linear reduction in risk
and loss in value for the node. Alternatively, a network may decide that all traffic
from listed IPs shall be blocked, in which case the amount of filtering is equal to
the fraction of blacklisted IP addresses. However, with this interpretation, the
reduction in risk and loss in value are no longer linear with respect to filtering
levels. This is because targeted filtering is presumably more accurate, leading to
higher risk reduction. We will revisit this case after deriving the equilibrium of
our game, and explain how the results might also hold for the nonlinear case.

Define Li :=
∑

j �=i Lij as the total indirect loss incurred by node i. We assume
without loss of generality that users are indexed such that Li is a decreasing
sequence. Equation (1) can then be re-written as:

uF
a (r,f) =

N∑
i=1

riLi(1− fi) , s.t.

N∑
i=1

ri ≤ r . (2)

From the defender’s viewpoint, let Vi be the value associated with node i’s traffic.
Similar to the definition of Li, Vi =

∑
j �=i Vij is the value of traffic from node

i to the rest of the nodes. Note that by filtering inbound traffic, the defender
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is inevitably losing a portion of a node’s value, as she is filtering parts of the
legitimate traffic as well. The defender’s utility is thus given by:

uF
d (r,f) = −uF

a (r,f) +
N∑
i=1

Vi(1− fi) . (3)

Together, GF := 〈(attacker, defender), (r,x), (uF
a , u

F
d )〉 defines a one-shot simul-

taneous move filtering game with perfect information between an attacker and
a defender. Theorem 1 characterizes the Nash equilibrium of the game GF .

Theorem 1. Assume r ≤
∑

Vi/Li. Define k to be the smallest integer such that

r ≤
∑k

i=1
Vi/Li. Define vectors r∗, f∗ as follows:

(r∗i , f
∗
i ) =

⎧⎪⎪⎨⎪⎪⎩
(

Vi

Li
, 1− Lk

Li

)
i < k ,(

r −
∑

j<k r
∗
j , 0
)

i = k ,

(0, 0) i > k .

(4)

Then (r∗, f∗) forms a Nash equilibrium for GF . Also if Li �= Lj for i �= j, and∑k
i=1

Vi/Li �= r, then this Nash equilibrium is unique.
For r >

∑
Vi/Li, any r such that ri ≥ Vi/Li can constitute an NE. The de-

fender’s response in such equilibria is fi = 1 for all i.

Note that at the Nash equilibrium, uF
a (r

∗,f∗) = rLk. Therefore, the efficiency
of the attacker is equal to Lk, where k is the strongest node under attack. It
is also worth noting that the attacker will only dedicate a maximum of Vi/Li

of resources to a node i; since beyond this point, the defender would filter that
node completely. Consequently, Vi/Li can be viewed as the capacity, or saturation
point, of each node, while

∑
Vi/Li is the capacity of the network. When direct

losses are not negligible, but still less that the total indirect losses, Li can be
redefined to include direct losses, and the results of Theorem 1 would still hold.

The game presented in this section can be viewed as a probabilistic filtering
game. In other words, fi represents the probability of blocking each unit of
node i’s outgoing traffic. It is also possible to consider the non-probabilistic,
or binary, version of this game, where the defender’s action space is {0, 1}N .
However, such games do not generally have a pure strategy Nash equilibrium.
Another interesting observation is that at the NE, no nodes are being completely
blocked. In fact, the maximum filtering level is f1 = 1− Lk/L1. If this maximum
is sufficiently small, then our assumption on the linearity of gF is justified.

While our model does not restrict the type of malicious activities the attacker
engages in, it helps to interpret the model in a more specific application context.
We will use spam as an example. In this case the “single” attacker more aptly
models a single spam campaign orchestrated by certain entity or entities. The
attacker’s effort translates into attempts toward acquiring bandwidth or process-
ing power from a machine, either by purchasing or hijacking it. The indirect loss
inflicted on other machines by an infected machine includes resources spent in
processing or acting on spam traffic (e.g., from running the spam filter, storage,
reading spams, to possible economic losses when taken in by spams).
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3 Investment

In this section, we consider a similar strategic game between the defender and the
attacker. However, the defender’s action here is to choose a level of protection,
effort, or investment in security, for each node, in order to mitigate the attacks.
More precisely, the defender can choose to invest an amount xi ∈ [0, 1] on node
i’s security. This investment in turn decreases the effectiveness of the attacker’s
effort. The defender incurs a cost of ci > 0 per unit of investment. Investing at
level xi = 1 is assumed to provide node i with perfect protection. The attacker’s
utility when the defender invests in security measures is given by:

uI
a(r,x) =

N∑
i=1

ri(1− xi)

N∑
j=1
j �=i

Lij(1− xj), s.t.

N∑
i=1

ri ≤ r . (5)

Here, Lij is the loss inflicted on node j per unit of attack on node i, when both
are unprotected. The utility of the defender is given by:

uI
d(r,x) = −uI

a(r,x)−
N∑
i=1

cixi . (6)

We refer to the game GI := 〈(attacker, defender), (r,x), (uI
a, u

I
d)〉 as the one-shot

investment game with perfect information between an attacker and a defender.
In order to choose an optimal action, each player solves the KKT conditions

for their respective optimization problem, assuming the other player’s action is
given. Therefore, at an NE, the following sets of conditions have to be satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− xi)
∑
j �=i

Lij(1− xj) + λi − η = 0 , (7a)

∑
j �=i

(riLij + rjLji)(1− xj)− ci + μi − νi = 0 , (7b)

λiri = 0, μixi = 0, νi(1− xi) = 0 , (7c)

η

(
N∑
i=1

ri − r

)
= 0,

N∑
i=1

ri ≤ r , (7d)

ri, λi, μi, νi, η ≥ 0, 0 ≤ xi ≤ 1 . (7e)

A solution to the above system of equations indicates a Nash equilibrium for
a given problem instance. Note that this problem has at least one NE, as the
utilities are linear, and the action spaces are convex and compact [11]. To provide
intuition on the properties of the equilibria of the game GI , we next propose a
set of conditions on the problem parameters to simplify the KKT conditions in
(7a)-(7e). We will then find the Nash equilibrium of the simplified game, and
study its properties and dependence on the problem parameters.

Assumption 1. For all i, and j �= i, the loss Lij can be written as Lij = αiΛj,
where Λj is a parameter that quantifies the size of the target j, while αi models
the importance of node i.
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Assumption 2. For all i, the unit cost of security investment ci is proportional
to the size of the node Λi, i.e., ci/Λi is a constant, ∀i.

Without loss of generality, assume users are indexed such that αi is a decreas-
ing sequence, and that

∑
Λj = 1. Then from Assumption 2, Λi = ci/

∑
ci. We

assume the number of nodes is large, so that we can approximate
∑

j �=i Lij ≈
αi

∑
j Λj = αi, hence αi ≈ Li from Section 2. Define A :=

∑
Λj(1 − xj), B :=∑

rjαj(1 − xj). Similarly for large networks, we can approximate
∑

j �=i Λj(1 −
xj) ≈ A and

∑
j �=i rjαj(1 − xj) ≈ B, for all i. Using this approximation and

Assumptions 1 and 2, we can characterize the Nash equilibrium of GI .

Theorem 2. Assume αi �= αj for i �= j. Let r∗ and x∗ be an equilibrium
point for the game GI , and let λ∗, μ∗, ν∗, η∗ and A∗, B∗ be the corresponding
parameters. Then there exists some 1 ≤ k ≤ N such that r∗k ≤ (ck − B∗Λk)/A∗αk,
and,

(r∗i , x
∗
i ) =

{
((ci − B∗Λi)/A∗αi, 1− η∗

/A∗αi) i < k ,

(0, 0) i > k .

If r∗k < (ck − B∗Λk)/A∗αk then x∗
k = 0, and if r∗k = (ck − B∗Λk)/A∗αk, then any

0 ≤ x∗
k ≤ 1− αk+1/αk constitutes an NE.

Consider an instance of GI where r∗k = (ck − B∗Λk)/A∗αk and x∗
k = 0. Using

Theorem 2, we can find the equilibrium point for such a case, where k nodes
have been completely saturated by the attacker, and the defender chooses not
to secure the kth node. We can represent this equilibrium point as a function of
k. Let r(k) and x(k) denote the NE, and rI(k) =

∑
rj(k) be the corresponding

parameter. Defining D(k) :=
∑k

j=1 cj
αk

αj
and E(k) :=

∑N
j=k+1 cj, we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rI(k) =

k∑
j=1

rj(k) =
1

αk

D(k)

2D(k) + E(k)

N∑
j=1

cj , (8a)

uI
a(k) := uI

a (r(k),x(k)) = D(k)
D(k) + E(k)

2D(k) + E(k)
, (8b)

uI
d(k) := uI

d (r(k),x(k)) =
D2(k)

2D(k) + E(k)
−

k∑
j=1

cj . (8c)

4 Numerical Results

To illustrate the results of Section 2, we generate a network of N nodes by
drawing Vi and Li independently from a Rayleigh distribution, and plot the
utilities of both parties at the NE, as a function of the attacker’s resources.

As a reference point, in all the following simulations, we set E[Vi] = 1. Also
the scaling of Li does not have an effect on the overall shape of the curve;
it only affects the maximum capacity of the network. Therefore, we will let
E[Li] = 1 throughout. Moreover, we will present the utilities of both parties as
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(a) Filtering game
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(b) Investment game
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(c) Comparison of NEs of GF and GI

Fig. 1. Defender and attacker utilities at the NEs of GF and GI

a percentage of the total value of the network, i.e.,
∑

Vi. The reason for this
choice of scaling is that in the absence of any attack (i.e., r = 0), the defender
obtains the entire value of the network at equilibrium. Therefore, the vertical
axis depicts the fraction of network value lost as a result of the attacks. Finally,
in order to obtain a better comparison among networks of different size, we scale
the horizontal axis by the number of nodes N , resulting in plots that illustrate
utilities as a function of the average attack resource per node.

Figure 1a plots the attacker and defender utilities under the filtering game GF ,
for two networks of size N = 100 and N = 10, 000. An important aspect to this
plot is that the utility of the attacker, ua(r

∗,f∗) is not necessarily an increasing
function of the total attack power r. In other words, the most successful attacker
is not necessarily the one with the highest attack power. This observation can be
intuitively explained as follows: assume an attacker with high r decides to spend
only a smaller amount r′ < r of his attack resources. If the defender’s response
is such that the NE corresponding to r′ is realized, a smaller number of nodes
would be filtered, and both parties would receive a higher utility. Nevertheless,
the attacker’s action will no longer be a best response to the defender’s strategy
in this scenario, as the attacker has access to additional resources to further
attack the unfiltered nodes. As the availability of these resources is common
knowledge, and thus known to the defender, she will not under-filter the system
against more powerful attackers. This increased filtering of nodes against a more
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powerful attacker in turn limits the attacker’s ability to profit from the network,
and ultimately, reduces his utility.

It is also interesting to note the sudden drops in the attacker’s utility, which
are more easily observable for N = 100. These drops correspond to points where
the attacker’s total power is such that exactly k nodes have been completely
saturated (r∗i = Vi/Li, 1 ≤ i ≤ k), following which an attacker with more attack
power would start putting his resources into the k + 1th node. As a result, the
defender’s filtering becomes more aggressive by limiting nodes under attack to
an effective loss of Lk+1 (i.e., Li(1− f∗

i ) = Lk+1, 1 ≤ i ≤ k), hence the drop in
the attacker’s utility. The defender’s utility, however, is always decreasing in r.

Figure 1b illustrates the utilities at the NE of GI as a function of r/N, by
plotting rI(k), uI

a(k) and uI
d(k) from (8a)-(8c). The parameters of the game are

generated similar to the filtering game simulations, i.e., αi (which is parallel to
Li in GF ) and ci are drawn from a Rayleigh distribution with unit mean.

One important aspect of the investment game is that the x-axis extends fur-
ther than the filtering game. In other words, the capacity of the network is
larger in comparison to GF . An intuitive explanation for this phenomenon is the
presence of internalities when nodes protect themselves via investment. When a
node is blacklisted, the rest of the network is protected against attacks targeting
that node, but this action does not protect the node itself. Therefore, filtering
is an action that has externality, but not internality. This is not the case for
investment, since investing in security protects oneself, as well as the rest of the
network. When the attacker is powerful, a large portion of the network is in-
vesting in security, and the defender is well-protected by internalities. Thus the
capacity of each node is relatively large.

To conclude this section, we look at the utilities of both parties under the
investment and filtering games in Figure 1c. To this end, we set N = 10, 000,
and compare the two games under two different security cost vectors c = V or
c = 2V , the latter indicating relatively costly security measures.

First, we note that as expected, investing in network security is preferred by
the defender when the cost of it is sufficiently low. The more surprising result
is however in the trend of the attacker’s utility under the different protection
models. We see that with low attack power, both filtering and security yield
similar utility to the attacker, as no considerable filtering or protection has yet
been introduced by the defender. As the attack power grows, the attacker who is
facing filtering gains a higher utility. Intuitively, this is also a consequence of the
internality of investment actions. To further illustrate, note that an unfiltered
attack on node i yields a payoff of

∑
j �=i Lij per unit of effort. In contrast, an

attack on an unprotected node i yields a payoff of
∑

j �=i Lij(1 − xj) per unit of
effort. Lastly, for very powerful attackers, the attacker facing investment is more
successful. This is due to the fact when the defender chooses to filter nodes,
the network gets increasingly close to being fully saturated under high attack
power. However, under investment, it takes more resources for the the attacker
to saturate all nodes, leaving him more room to gain profit.
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5 Conclusion

In this paper, we compare the efficacy of two security options, namely inbound/
outbound filtering based on RBLs and investing in self-protection methods, by
a defender controlling a set of nodes facing a resource constrained strategic at-
tacker. Specifically, our models take into account the indirect losses inflicted on
neighboring nodes by a compromised node, loss of value due to the inevitable fil-
tering of parts of the legitimate traffic, and the higher cost of self-protection as
compared to filtering. Our analysis and simulation results show that the defender
chooses to invest in security measures over filtering only when the cost of invest-
ing is sufficiently low. On the other hand, the attacker’s potential to benefit in the
face of each protection method is determined by his total attack power. Highly
resourceful attackers are less successful when facing filtering actions rather than
investment actions.

The current work can be continued in several directions. It would be interest-
ing to study filtering and investment actions under less restrictive conditions, e.g.
nonlinear risk functions with respect to the filtering policy, and taking dimin-
ishing returns into account when considering attacks originating from multiple
sources (the latter can be modeled by setting the attacker’s profit to a concave
function of the sum in Equation (1)). The same game form can also be analyzed a
dynamic framework, as both attacker and defender actions can be affected by the
history of past events, including previous attack patterns, node takedowns, and
the amount of time a node stays blacklisted. Modeling information asymmetries
among the players, and strategic interactions among multiple non-cooperative
attackers and/or defenders, are other possible extensions of the current model.
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1 Department of Computer Science, FEE, Czech Technical University in Prague,
Prague, Czeck Republic

klimaric@fel.cvut.cz, lisy@agents.fel.cvut.cz
2 Computer Science Department, University of Texas at El Paso,

EI Paso, TX, USA
cdkiekintveld@utep.edu

Abstract. We introduce a model for border security resource alloca-
tion with repeated interactions between attackers and defenders. The
defender must learn the optimal resource allocation strategy based on
historical apprehension data, balancing exploration and exploitation in
the policy. We experiment with several solution methods for this online
learning problem including UCB, sliding-window UCB, and EXP3. We
test the learning methods against several different classes of attackers
including attacker with randomly varying strategies and attackers who
react adversarially to the defender’s strategy. We present experimental
data to identify the optimal parameter settings for these algorithms and
compare the algorithms against the different types of attackers.

Keywords: security, online learning, multi-armed bandit problem, bor-
der patrol, resource allocation, UCB, EXP3.

1 Introduction

Border security is a major aspect of national security for many countries; in the
United States alone billions of dollars are spent annually on securing the borders.
However, the scale of the problem is massive, with thousands of miles of land
and sea borders and thousands of airports to secure. Allocating limited resources
to maximize effectiveness is a serious issue for the United States Customs and
Border Protection agency (CBP). Indeed, the most recent strategic plan for
the CBP places a great emphasis on mobilizing resources and using risk-based
models to allocate limited resources. [1].

Game theory is an increasingly important paradigm for strategically allocating
resources in security domains, and we argue that it can also be useful for bor-
der security. There are now many examples in which security games [6,11] have
been used as a framework for randomizing security deployments and schedules in
homeland security and infrastructure protection. This model has been success-
fully used to randomize the deployment of security resources in airports [7,8],
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to create randomized schedules for the Federal Air Marshals [6,12], and to ran-
domized patrolling strategies for the United States Coast Guard [10].

Existing models of security games rely on constructing a game-theoretic model
of the security problem including the actions and payoffs of both the attacker and
the defender. These models are based on whatever data is available combined
with expert analysis and risk assessment to model the attacker preferences. One
of the reasons for this style of modeling is that there is relatively little direct
evidence about the attackers; we cannot directly elicit their preferences, and
attack events are so rare that there is not enough data available to directly
construct a model. This lack of data leads to a time intensive, expert-driven
modeling process that still faces challenges in trying to validate the models and
keep them up to date.

In border security the situation is quite different from many of the areas where
security games have been applied. The CBP makes hundreds of thousands of
apprehensions annually for illegal entry, smuggling, and other violations. This
means that there is a large amount of data available for building and updating
game models of the interactions between border patrol and the illegal entrants.
The nature of the interaction is also different. A terrorist attack is a one-time,
very high stake events. However, border security is more accurately characterized
as a large number of repeated interactions with lower stakes. Similar situations
with frequent incidents occurs also in cyber security domains, so we expect that
our approachs is also applicable to these domains.

We propose to model border security using adversarial learning models that
are related to both game theory and machine learning. These models are more
dynamic, and account for the possibility of learning about the opponent during
repeated interactions of a game. We introduce a basic model for a border security
resource allocation task that is closely related to multi-armed bandit problems
studied in the online learning literature. We then apply several different online
learning algorithms to this model, including algorithms designed for adversarial
bandit problems. We present an empirical evaluation of the performance of these
algorithms and analyze the results to show the feasibility of modeling resource
allocation for border patrol using this approach.

2 Model

We study a simplified model of the problem of resource allocation for border
patrol. One of the main challenges that we try to capture in this model is the
problem of situational awareness, which can also be thought of as a problem of
balancing exploration and exploitation. There are limited resources available for
patrolling different regions of the border. Ideally, these resources should be used
in regions where there is a high level of illegal traffic. However, traffic patterns can
change over time as the attackers (e.g., illegal entrants and criminal smuggling
organizations) adapt to the border protection strategy. This means that it is
necessary to maintain situational awareness even in areas that currently have
low traffic so that any changes in the traffic patterns can be quickly detected.
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We consider a model where a border region is divided into z distinct zones.
The border patrol has only one resource available to patrol these zones, and must
decide which zone to patrol1. The attackers try to cross the border without being
detected. They must pick one of the z zones to attempt a crossing. The game is
played in a series of n rounds representing discrete time periods (e.g., one day, or
one hour). There are t attackers who attempt to cross during each round. Any
attackers who chooses the same zone as the defender are apprehended, while
attackers that chose different zones cross successfully.

We represent the defender and attacker strategies in a round using probability
distributions over the zones. The defender strategy for round i is given by a
vector Di = 〈di1 . . . diz〉 where dij represents the probability that the defender
patrols zone j in period i. Similarly, the attacker strategy round i is given by
a vector Ai = 〈ai1 . . . aiz〉 where aij represents the probability that an attacker
chooses zone j in period i. We assume that each of the t attackers chooses a zone
independently according to the distribution Ai. This assumption is made by the
idea that the attackers share common knowledge about the border; where it is
more suitable to cross or there is high probability of being caught.

The goal for the defender is to maximize apprehensions. We assume that all
zones are identical for the defender. The attacker has a penalty p for being caught
as well as a base value that differs across the zones, denoted by cj . For any zone
j we calculate the attacker’s expected value in round i as:

vij = cj − (dij ∗ p) (1)

where dij is the probability that the attacker will be caught in a given zone
in this round, which comes from the defender’s strategy. The values for the
different zones can be interpreted as the value of successfully crossing in a given
zone, less the costs associated with the crossing (e.g., payments to smuggling
organizations, and the difficulty and time required to traverse the terrain). The
asymmetry introduced by these values is also important, because if all zones are
identical for both players there is a trivial equilibrium solution in which both
players play the uniform random strategy (analogous to the symmetric game of
Rock, Paper, Scissors).

3 Attacker Models

We introduce four different models of attacker behavior that represent a spec-
trum of levels of adaptation and intelligence. These are also designed to present
different challenges for the online learning algorithms.

Random Fixed: This policy is a fixed attacker probability distribution over the
zones. The strategy is generated randomly at the beginning of the scenario by
drawing real random numbers from interval (0, 1) for each zone and normalizing.

1 We limit this to one resource to simplify the initial model, but plan to generalize to
multiple resources in future work.
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This is intended as a baseline that should be relatively easy for the online learning
methods to learn.

Random Varying: In this models we generate a new random attacker strategy
after a fixed number of rounds; the new strategy is unrelated to the previous one.
This models an attacker that changes strategies, but not intelligently in response
to the defender. We chose to generate large changes intermittently rather than
making constant small changes because it allows us to average results over many
runs and evaluate how quickly the learning methods are able to detect and
respond to sudden changes in attacker behavior.

Adversarial Fixed: This model assumes that the attacker is intelligently adapt-
ing in response to the defender’s strategy. We assume that the attacker knows
the number of times the defender has visited each zone in the past.2 The attacker
adapts his strategy gradually to maximize the value given in Equation 1. Here,
the attacker uses the observed frequencies of the defender patrols to estimate
the probability of being caught in each zone. This is motivated by fictitious play,
a well-known learning dynamic in which players play a best response to the his-
tory of actions played by the other players [4]. However, we parameterize this
learning strategy so that we can control the rate at which the attacker moves
towards a best response using the learning rate parameter α. The initial attack
strategy is selected randomly, and it is updated on each iteration according to:

Ai+1 = (1− α) ∗Ai + α ∗M (2)

where M represents a vector that has a 1 for the zone that gives the maximum
value, and 0s for all other zones.

Adversarial Varying: This model is identical to the previous one, except that
we randomly change the base values cj for each zone after a fixed number of
rounds, similar to the random varying policy. This model simulates an attacker
that adapts intelligently, but also has preferences that can change over time.

4 Defender Strategies

Our model captures one of the central difficulties in accurately estimating traffic,
which is the limited observations that the defender makes about the attacker’s
strategy. The defender only observes the level of traffic in the zone that is pa-
trolled in each time period, and not in the other zones, just like a patrol in the real
world. This means that a defender strategy that always tries to patrol the zones
with the highest levels of activity to maximize apprehensions risks developing
“blind spots” as the attacker strategy changes. What were previously low traffic
zones may have increased traffic due to adaptations by the attacker, but the

2 This assumes a very knowledgeable attacker, but is fairly realistic since major
transnational smuggling organizations use sophisticated surveillance to track bor-
der patrol presence.
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defender cannot observe this unless it allocates some resources to exploration–
patrolling zones that are believed to have low traffic to detect possible changes
in the traffic levels over time.

This becomes a problem of balancing exploration and exploitation when allo-
cating the patrolling resources [9]. The online learning literature contains many
examples of models that focus on this basic problem, including the well-known
multi-armed bandit problem [2]. In a multi-armed bandit, a player must select
from a set of possible arms to pull on each iteration. Each arm has a different
sequence of possible rewards that is initially unknown to the player. The player
selects arms with the goal of maximizing the cumulative reward received, and
must balance between selecting arms that have a high estimated value based on
the history of observations, and selecting arms to gain more information about
the true expected value of the arm.

From the defender’s perspective, our model very closely resembles the basic
stochastic multi-armed bandit problem if we assume a Random Fixed attacker.
The zones in our model map to arms in the bandit model, and the defender must
select zones both to maximize apprehensions based on the current estimates of
the attacker strategy, but also to explore other zones to improve the estimate of
the strategy. Based on this mapping, we apply variations of some of the existing
solution methods for multi-armed bandits to our border patrol scenario. For the
other attacker models this is no longer a stochastic multi-armed bandit prob-
lem because the underlying distribution of rewards changes over time (in some
cases based on an adversarial response). Therefore, we also consider solution
algorithms that have been developed for other variations of the bandit problem
that make different assumptions about how the underlying rewards can change.
We now describe in more detail the specific algorithms we consider.

Uniform Random: A baseline in which the defender chooses a zone to patrol
based on a uniform random distribution in every round.

Upper Confidence Bound (UCB): One of the standard policies used for
multi-armed bandits is UCB [2]. This method follows a policy that selects the
arm that maximizes the value of the following equation in each round:

xj +

√
2 ln(n)

nj
(3)

where xj is the average reward obtained from arm j, nj is the number of times
arm j has been selected so far and n is the number of rounds completed.

Sliding-Window UCB: This algorithm is a variant of the standard UCB that
is more suitable for non-stationary bandit problems [5]. This algorithm should
do well in an abruptly changing environment which is suitable for our attacker
models that can change strategies (or underlying preferences) quickly. The main
difference from the standard UCB is that the algorithm uses a fixed window
of data from the previous rounds to calculate the estimated average rewards.
At time step t we get average of rewards not from the whole history but only
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the � previous rounds. SW-UCB chooses a zone which maximize the sum of
exploitation and exploration part. The exploitation part of the UCB formula is
a local average reward:

X̄t(τ, i) =
1

Nt(τ, i)

t∑
s=t−τ+1

Xs(i)�{Is = i} (4)

where Ni is the number of times arm i was played. Xs(i) is a reward in time
step s of ith zone and the indicator function returns a value of one if the chosen
zone in the time step s is equal to ith zone, and zero otherwise.
The exploration part of the formula is defined by:

ct = (τ, i) = B
√
log (t ∧ τ)/(Nt(τ, i)) (5)

where (t ∧ τ) denotes the minimum of two arguments and τ is a constant. B
is a constant which should be tuned appropriately to the environment, which we
address in out experiments.

EXP3: The Exponential-weight algorithm for Exploration and Exploitation
(EXP3) [3] is designed for adversarial bandit problems in which an adversary can
arbitrarily change the rewards returned by the arms. It is the most pessimistic
algorithm due to the very weak assumptions about the structure of the rewards,
but is still able to bound the total regret, similar to the guarantees provided by
UCB for the standard model. It tends to result in greater rates of exploration
than the UCB policies. The details of the algorithm are somewhat more complex,
so due to space limitations we refer the reader to [3] for the full details.

5 Experiments

We now present the results of our initial empirical study of the performance
of the different online learning strategies for the defender in the border patrol
scenario. We test the algorithms against the four different attacker models that
represent increasing levels of adaptation and intelligence. The performance of
the learning strategies is evaluated based on the apprehension rate, which is the
ratio between the number of apprehensions and total number of attackers that
attempt to cross the border.

Unless otherwise specified, all of our experiments are conducted on a sim-
ulation with 8 zones. The simulation runs for 10000 rounds, and there are 10
attackers that attempt to cross each round according to the distribution specified
by the attacker’s strategy. Results are averaged over 50 runs of the simulation.

5.1 Parameter Selection

We begin by testing different parameter settings for the learning methods to find
the best settings to compare the performance of the different methods (random
and UCB do not have parameters). We are also interested in the sensitivity
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of the algorithm’s performance to the parameter settings in our domain. Many
of the parameters balance the tradeoff between exploration and exploitation,
so we expect that different settings will perform well against relatively static
opponents compared to more adaptive adversarial opponents. We choose the
parameters which give the best result for adversarial attacker.

EXP3: We first present parameter tuning results for the parameter � of
EXP3 that controls the level of exploration. The parameter has values in the
interval (0, 1], and for higher values the algorithm becomes similar to playing
randomly. Table 1 shows the apprehension rates for different values against the
four different attacker models. For values of � close to 1 we get behavior identical
to a random defender. The best value of � is 0.7 against adversarial attacker, so
we use this value in the next experiments.

Table 1. EXP3 parameter tuning

� value random random with changes adversarial adversarial with changes

0.1 20.05% 15.33% 14.65% 15.03%
0.3 19.47% 15.11% 15.18% 15.84%
0.5 16.77% 14.54% 16.06% 16.69%
0.7 15.13% 13.74% 16.58% 15.90%
1 12.53% 12.51% 12.50% 12.52%

Sliding-Window UCB: There are no parameters in the basic version of UCB,
but in sliding-window UCB there are several parameters specified in the original
implementation [5]. We tune the parameter B which controls the exploration
rate. The parameter � controls the size of sliding window of history used in
the calculations. For higher values of � the algorithm of SW-UCB converges to
standard UCB. We run several combinations of these parameters against two of
the attacker models: the fixed random attacker and the adversarial attacker.

Table 2. SW-UCB � tuning with different B parameter

random fixed attacker adversarial attacker

� value 0.5 1 5 10 20 0.5 1 5 10 20

50 21.11% 19.67% 14,25% 13.51% 12.92% 19.57% 18.21% 26.38% 26.52% 24.05%
100 21.74% 20.10% 14.93% 13.85% 13.15% 18.34% 19.03% 22.96% 24.26% 22.11%
500 21.64% 20.61% 17.08% 15.27% 13.82% 15.87% 16.39% 19.00% 21.91% 23.88%
1000 21.37% 23.08% 18.66% 15.87% 14.66% 15.09% 15.90% 18.72% 22.17% 26.53%
3000 21.58% 21.41% 19.75% 17.86% 15.08% 12.97% 13.45% 19.38% 23.02% 28.50%
5000 21.43% 21.51% 21.79% 18.81% 16.28% 12.68% 13.34% 19.84% 23.72% 28.98%

In Table 2 we present the performance for random fixed and adversarial at-
tacker for different settings of the SW-UCB algorithm. As expected, against a
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fixed attacker the best results come from the longest sizes of sliding windows; if
the environment is fixed, it does not make sense to throw out older data using
a sliding window since this data is still informative. Also we can observe that
lower values of B parameter give higher apprehension rates The value of 1 for
the B parameter results in the best performance here.

On the right side of Table 2 we have SW-UCB algorithm against an adver-
sarial attacker. We can see that the results are almost opposite than in random
fixed attacker case. We get better results with higher values of B parameter and
with longer sliding-windows. The best results here are with a high value of the
exploration rate of 20, compared to the opposite result for the fixed attacker.

In remaining experiments we set the � parameter for EXP3 equal to 0.7.
For sliding-window UCB we will use parameter B equal to 20 and parameter of
sliding window � equal to 5000. For adversarial attacker we will use a learning
rate of 0.5 learning rate. For attacker strategies with changes we select a new
random strategy or set of preference parameters every 2000 rounds.

5.2 Comparing Apprehension Performance

We now present initial results directly comparing the performance of the different
learning methods against the different attacker strategies. The figures show how
the apprehension rates of the algorithms evolve over the course of the 10000
round simulation. Results are averaged over 50 runs, and the plots are also
smoothed using a moving average over 500 round buckets.

The results in Figure 1a show the learning process of the defender strategies
against the random fixed attacker. The x-axis shows the number of simulation
rounds divided by 100, and the y-axis shows the apprehension rate. All of the
learning methods show the ability to learn against the fixed attacker. The stan-
dard version of UCB learns the fastest and has the best total apprehension rate,
while EXP3 has somewhat poorer performance due to a higher exploration rate.
For the SW-UCB there is a drop in the apprehension rate after the size of the
sliding window equal to 5000.

Figure 1b shows the performance for the defender strategies against the fixed
random attacker strategy with a change in the probability distribution every
2000 rounds. The points when the attacker strategy changes are clear in the
plot, since the performance for all of the learning strategies drops off abruptly.
However, the strategies are able to quickly respond and re-learn the adversaries
strategy. We note that UCB has a high variance here, but SW-UCB shows more
stable behavior, since it is designed for environments with abrupt changes.

In Figure 1c we present the behavior of the defender strategies against the
adversarial attacker. In this case SW-UCB performs the best out of all defender
strategies but tend to decrease over time. EXP3 gives the second best result
and is quite stable. For all of the algorithms the performance later on is poorer,
which is due to the intelligent adversary adapting to the defender strategy over
time. All of the algorithms appear to be converging to an equilibrium strategy
with the attacker over time.
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Fig. 1. Apprehension rates for different types of the attacker

Finally, Figure 1d shows the results against an adversarial attacker but with
underlying zone preferences that change every 2000 rounds. The SW-UCBmethod
again gives the best results, but the performance slightly decreases over time. We
see here that the changes in the attacker preferences are not as dramatic as the
direct changes in the attacker strategy, since they are muted and have an effect
over time. The performance of the learning algorithms is somewhat degraded, but
not dramatically worst than against the fixed adversarial attacker.

6 Conclusion

We have introduced a mathematical model for border patrol resource allocation
that captures the important problem of allocating resources to maintain situa-
tional awareness via exploration. We have proposed several candidate solution
methods drawn form the online learning literature that are suitable for making
these decisions, including UCB, SW-UCB, and EXP3. They offer different levels
of theoretical guarantees against changing and adversarial environments, with
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EXP3 providing bounds on performance in even the most adversarial settings.
Here, we have provided an initial empirical study comparing the performance
of these algorithms in a simple border patrol scenario. We tested the parame-
ters of the algorithms and determined the best settings, while also noting that
the practical performance of the algorithms depends heavily on the parame-
ter settings combined with how quickly the adversary changes. In comparison,
SW-UCB often gives the best performance in the more adversarial cases, but
all of the algorithms showed the ability to learn quickly and adapt even in the
face of rapidly changing, adaptive adversaries. This demonstrates the potential
for practical applications of these learning methods for resource allocation and
situational awareness for border patrol.

Acknowledgements. This research was supported by the Office of Naval Re-
search Global (grant no. N62909-13-1-N256).
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Abstract. In this paper we present a real-time distributed optimization
algorithmbased onAlternatingDirectionsMethod ofMultipliers (ADMM)
for resilient monitoring of power flow oscillation patterns in large power
system networks. We pose the problem as a least squares (LS) estimation
problem for the coefficients of the characteristic polynomial of the transfer
function, and combine a centralized Prony algorithm with ADMM to ex-
ecute this estimation via distributed consensus. We consider the network
topology to be divided into multiple clusters, with each cluster equipped
with a local estimator at the local control center. At any iteration, the
local estimators receive Synchrophasor measurements from within their
own respective areas, run a local consensus algorithm, and communicate
their estimates to a central estimator. The central estimator averages all
estimates, and broadcasts the average back to each local estimator as the
consensus variable for their next iteration.By imposing a redundancy strat-
egy between the local and the global estimators via mutual coordination,
we show that the distributed algorithm is more resilient to communication
failures as compared to alternative centralized methods. We illustrate our
results using a hardware-in-loop power system testbed at NC State feder-
ated with a networking and cyber-security testbed at USC/ISI.
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1 Introduction

Following the Northeast blackout of 2003, Wide-Area Measurement System
(WAMS) technology using Phasor Measurement Units (PMUs) has largely ma-
tured for the North American power grid [1]. However, as the number of PMUs
scales up into the thousands in the next few years under the US Department
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of Energy’s smart grid demonstration initiative, utility companies are struggling
to understand how the resulting gigantic volumes of real-time data can be ef-
ficiently harvested, processed, and utilized to solve wide-area monitoring and
control problems for any realistic power system interconnection. It is rather in-
tuitive that the current state-of-the-art centralized communication and informa-
tion processing architecture of WAMS will no longer be sustainable under such
a data explosion, and a completely distributed, self-adaptive cyber-physical ar-
chitecture will become imperative [2]. Motivated by this challenge, in this paper
we address the problem of implementing wide-area monitoring algorithms over
a distributed communication infrastructure using massive volumes of real-time
PMU data. Our goal is to establish how distributing a monitoring functional-
ity over multiple estimators can guarantee significantly more resiliency against
extreme events. Such events may result from both malicious attacks on the cy-
ber and physical assets as well as due to natural calamities such as storms and
earthquakes. The specific monitoring algorithm that we study is the estimation
of the frequency and damping of the electro-mechanical oscillations seen in the
power flows in the grid after any disturbance. If the system size is small then it
is straightforward to estimate these oscillation modes, or equivalently the eigen-
values and the eigenvectors of its state matrix, in a centralized way. Algorithms
such as Eigenvalue Realization Algorithm (ERA), Prony analysis, and mode me-
tering [3], for example, have been widely used by the WAMS community over
the past decade for this purpose. However, as the system size and the number of
PMUs scale up, the computational costs of these algorithms explode, and they
completely fail to provide the required resiliency. As a solution, in this paper we
present a distributed Prony-based algorithm combined with Alternating Direc-
tion Method of Multipliers [4] to estimate the frequency, damping and residue
of each oscillation mode via distributed consensus. We partition the network
topology into multiple clusters, with each cluster equipped with a local esti-
mator at the local control center. At any iteration, the local estimators receive
PMU measurements from within their own respective areas, run a local con-
sensus algorithm, and communicate their estimates to a central estimator. The
central estimator averages all estimates, and broadcasts the average back to each
local estimator as the consensus variable for their next iteration. By imposing
a redundancy strategy between the local and the global estimators via mutual
coordination, we show that the distributed algorithm is highly resilient to com-
munication failures. We also show that in case of an attack the local estimators
only need to exchange a certain set of parameter estimates, and not actual PMU
data, because of which the proposed algorithm is privacy preserving. We illus-
trate our results using a IEEE 39-bus system model emulated via a federated
testbed between NC State University (Phasorlab) and the Information Sciences
Institute (DETERLab) [5].

The remainder of the paper is organized as follows. Section 2 describes the
dynamical model of a power system. Section 3 and Section IV present RLS and
Prony/ADMM algorithms to estimate the the oscillation modes of this model.
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Section 5 describes the attack resiliency of the proposed distributed method via
simulations using the federated testbeds. Section 6 concludes the paper.

2 Power System Oscillation Model

Consider a power system network consisting of m synchronous generators and
nl loads connected by a given topology. Without loss of generality, we assume
buses 1 through m to be the generator buses, and buses m+ 1 through m+ nl
to be the load buses. Let Pi and Qi denote the total active and reactive powers
injected to the ith bus (i = 1, . . . ,m+ nl) from the network, calculated as:

Pi =

m+nl∑
k=1

(
V 2
i rik

z2
ik

+
ViVk

zik
sin(θik − αik)

)
, Qi =

m+nl∑
k=1

(
V 2
i xik

z2
ik

−
ViVk

zik
cos(θik − αik)

)
, (1a)

where Vi∠θi is the voltage phasor at the ith bus, θik = θi − θk, rik and xik

are the resistance and reactance of the transmission line joining buses i and
k, zik =

√
r2ik + x2

ik, and αik = tan−1(rik/xik). The electro-mechanical swing
model of the ith generator is given as

δ̇i(t) = ωs(ωi(t)− 1), (2a)

Miω̇i(t) = Pmi − Pei(t)−Di(ωi(t)− 1), i = 1, ..,m (2b)

with associated power balance equations given by

Pei(t) + Pi(t)− PLi(t) = 0, Qei(t) +Qi(t)−QLi(t) = 0,
Pk(t)− PLk

(t) = 0, Qk(t)−QLk
(t) = 0,

(3)

for i = 1, . . . ,m and k = m+ 1, . . . ,m+ nl. Here, δi, ωi, Mi, Di, Pmi , Pei , and
Qei denote the internal angle, speed, inertia, damping, mechanical power, active
and reactive electrical powers produced by the ith generator, respectively, and
PLk

and QLk
denote the active and reactive powers of the loads at the kth bus.

The Differential-Algebraic model (2)-(3) can be converted to a system of purely
differential equations by relating the algebraic variables Vi and θi in (1) to the
system state variables (δ, ω) and then substituting them back in (2) via Kron
reduction. The resulting system is a fully connected network of m second-order
oscillators with l ≤ m(m − 1)/2 tie-lines. Let Ẽi = Ei∠δi denote the internal
voltage phasor of the ith machine. The electro-mechanical dynamics of the ith

generator in Kron’s form can then be written as

δ̇i(t) = ωs(ωi(t)− 1), (4a)

Miω̇i(t) = Pmi −Di(ωi(t)− 1)−
∑
k

EiEk

(Xik

Z2
ik

sin(δik(t))−
Rik

Z2
ik

cos(δik(t))
)
, (4b)

where, i = 1, . . . ,m, Z2
ij = R2

ij + X2
ij , Rij and Xij denote the resistance and

reactance of the line connecting the ith and jth generator in the Kron’s form,
respectively, and δik(t) = δi(t) − δk(t). Linearizing (4) about the equilibrium
(δi0, 1) results in the small-signal state space model:[

Δδ̇(t)

Δω̇(t)

]
=

[
0m×m ωsIm×m

M−1L M−1D

]
︸ ︷︷ ︸

A

[
Δδ(t)

Δω(t)

]
+

[
0

M−1ej

]
︸ ︷︷ ︸

B

u(t), (5)
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where, Δδ(t) =
[
Δδ1(t) · · · Δδm(t)

]T
, Δω(t) =

[
Δω1(t) · · · Δωm(t)

]T
, Im×m

denote the (m × m) identity matrix, M = diag(Mi) and D = diag(Di) are
the (m ×m) diagonal matrices of the generator inertias and damping factors,
ej is the jth unit vector with all elements zero but the jth element that is 1,
considering that the input is modeled as a change in the mechanical power in the
jth machine. However, since we are interested only in the oscillatory modes or
eigenvalues of A, this assumption is not necessary and the input can be modeled
in any other feasible way such as faults and excitation inputs. The matrix L in
(5) is the (m×m) Laplacian matrix of the form

[L]i,j =
EiEj

Z2
ij

(
Xij cos(δi0 − δj0) +Rij sin(δi0 − δj0)

)
i �= j,

[L]i,i = −
n∑

k=1

[L]i,k. (6)

Let us denote the ith eigenvalue of the matrix M−1L by λ̂i. The largest eigen-
value of this matrix is equal to 0, and all other eigenvalues are negative, i.e.
λ̂m ≤ · · · ≤ λ̂2 < λ̂1 = 0. The eigenvalues of A are denoted by λi = (−σi ±
jΩi), (j =

√
−1). Our objective is to estimate λi ∀i = 1, ..,m using PMU

measurements of voltage, phase angle, and frequency from multiple buses in the
system in both centralized and distributed ways. We use Recursive Least Squares
(RLS) for the centralized estimation, and propose an ADMM-based Prony algo-
rithm for the distributed estimation. We illustrate that the distributed strategy
is more resilient to communication failures than centralized.

3 Centralized Recursive Least-Squares

We open the problem by considering a fixed input bus, i.e., a node through
which a disturbance input u(t) enters the system, and two distinct output nodes,
say bus p and bus q, which may or may not be the same as the input bus,
where PMUs are installed. In reality, there may be many more than just two
outputs. But for simplicity, we restrict our discussion to only two outputs, namely
yp(t) and yq(t), measured by the two PMUs. Since there are m generators, each
modeled by a second-order dynamic model, the total system order is n = 2m.
The corresponding discrete-time transfer functions for the two outputs can be
expressed as

Yp(z)

U(z)
=

a0 + a1z
−1 + ...+ ampz

−mp

1 + b1z−1 + ...+ bnz−n
,
Yq(z)

U(z)
=

c0 + c1z
−1 + ...+ cmqz

−mq

1 + b1z−1 + ...+ bnz−n
(7)

where mp ≤ n and mq ≤ n are the orders of the respective zero polynomials.
Taking inverse z-transform, (7) can be converted into the time-domain equations
represented by the block-matrix at the sample index k ∈ {0, 1, ...,∞}, as

yp(k) =
[
φp(k) Up(k)

] [γ3
γ1

]
, yq(k) =

[
φq(k) Uq(k)

] [γ3
γ2

]
(8)
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where, φp(k) = [yp(k − 1) · · · yp(k − n)], φq(k) = [yq(k − 1) · · · yq(k − n)], Up(k) =
[u(k) · · · u(k −mp)], Uq(k) = [u(k) · · · u(k −mq)], γ1 =

[
a0 a1 · · · amp

]
, γ2 =[

c0 c1 · · · cmq

]
, γ3 = [−b1 − b2 · · · − bn]. Our objective is to simply estimate

the common characteristic polynomial of two transfer functions captured by
the parameter vector γ3 from the known input sequence u(k) and the output
sequences yp(k) and yq(k). Without any loss of generality, we assume the incom-
ing disturbance u(t) to be an impulsive input, and apply a real-time, centralized
recursive least squares (RLS) approach to compute γ3. From (8), we can write[

yp(k)
yq(k)

]
︸ ︷︷ ︸

A(k)

=

[
φp(k) Up(k) 0
φq(k) 0 Uq(k)

]
︸ ︷︷ ︸

B(k)

⎡⎣γ3γ1
γ2

⎤⎦
︸ ︷︷ ︸

Θ

(9)

By assuming that any variable with a negative sample index is zero by default, we
construct matrices A and B for k ∈ {0, 1, ...,M} with M > n being a sufficiently
large integer, as below,

A = col(yp(1), yq(1), yp(2), yq(2), ..., yp(M), yq(M))

B =

⎡⎢⎢⎢⎢⎢⎣
φp(1) Up(1) 0
φq(1) 0 Uq(1)

...
...

...
φp(M) Up(M) 0
φq(M) 0 Uq(M)

⎤⎥⎥⎥⎥⎥⎦
2M×(n+mp+mq+2)

. (10)

The problem in the centralized case, therefore, is to generate the parameter
vector Θ that solves Θ = B+A, where + denotes pseudoinverse, and then extract
the first n entries of Θ, flip their sign to obtain the common parameter vector

β. The entire operation is denoted as β = −
[
B−1A

]+n
. The computation of Θ

can also be executed in a recursive fashion

θK+1 = θK + PK+1φK(yK − φT
KφK) (11)

whereK denotes an iteration index, Θ0 is an initial guess for Θ, and the matrix P
follows from the regressor equation using matrix inversion lemma (please see [6]
for details). The stop condition of this recursive algorithm is when ||ΘK+1 −
ΘK || < ε where ε is a chosen tolerance. The estimated common parameter vector
is then denoted as β = −[ΘK ]+n. Once β = {b1, b2, · · · , bn} is known, the
eigenvalues λi of the matrix A in (5) can be computed simply by solving for the
characteristic polynomial

1 + b1z
−1 + b2z

−2 + ...+ bnz
−n = 0, (12)

and converting the roots to their continuous-time counterparts. The architecture
for RLS is obvious from the foregoing analysis. Every PMU streams in its indi-
vidual measurements in real-time to a central estimator; this estimator executes
(11), and then (12).
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4 Distributed Prony Algorithm with ADMM

To circumvent the single-point centralized architecture of RLS, we next propose
the following distributed strategy combining the traditional centralized Prony’s
algorithm with Alternating Directions Multiplier Method (ADMM).

4.1 Prony’s Algorithm

Consider that a set of N PMU measurements y(t) = col(y1(t) · · · yN (t)) are
available over time t. From the structure of A in (5) we can write the output of
the pth PMU to be of the form

yp(t) =

n∑
i=1

rp,ie
(−σi+jΩi)t + r∗p,ie

(−σi−jΩi)t, p = 1, · · · , N (13)

The objective is to find the damping factors σi, the frequencies Ωi, and the
residues ri = col(r1,i · · · rp,i · · · rN,i) for i = 1, . . . , n. This can be done using the
following three steps of the Prony’s algorithm. For simplicity, we use only one
measurement y(t), i.e. p = 1.

Step 1. Let M be the total number of samples for y. The first step is to find
the coefficients of the characteristic polynomial b1 through bn in (7) by solving⎡⎢⎢⎢⎣

y(n)
y(n+ 1)

...
y(n+ �)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

c

=

⎡⎢⎢⎢⎣
y(n− 1) · · · y(0)
y(n) · · · y(1)
...

...
y(n+ �− 1) · · · y(�)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

H

⎡⎢⎢⎢⎣
−b1
−b2
...
−bn

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

b

(14)

where � is an integer satisfying n + � ≤ M − 1, where M − 1 is the time index
of the most recent measurement. One can find b by solving a least squares (LS)
problem defined as

min
b

1

2
||Hb− c||2 (15)

Step 2. We next find the roots of the discrete-time characteristic polynomial,
say denoted by zi, i = 1, . . . , n. Then, the eigenvalues of A in (5) are equal to
ln(zi)/T , T being the sampling period.

Step 3. The final step is to find the residues ri in (13). This can be done
by forming the following so-called Vandermonde equation and solving it for r1
through rn: ⎡⎢⎢⎢⎣

y(0)
y(1)
...

y(M)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 · · · 1

(z1)
1/T (z2)

1/T · · · (zn)
1/T

...
...

...
(z1)

M/T (z2)
M/T · · · (zn)M/T

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
r1
r∗1
...
rn
r∗n

⎤⎥⎥⎥⎥⎥⎦ (16)
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The method can be easily generalized to the case of multiple output measure-
ments y(t) = col(y1(t) · · · yN (t)) by subscripting c and H in (14) as ci and Hi

for i = 1, . . . , N , and concatenating them. Then, one can solve the following LS
problem for b:

min
b

1

2
||

⎡⎢⎣H1

...
HN

⎤⎥⎦b−

⎡⎢⎣ c1
...
cN

⎤⎥⎦||2 (17)

Step 3 then will be applied for each yi(t) individually.

4.2 Real-Time Distributed Prony Algorithm Using ADMM

The LS problem (17) is, in fact, a global consensus problem over a network of
N regional utility companies, and, as shown in the following, can be estimated
via distributed protocols with one central independent system operator (ISO)
performing a supervisory step to guarantee convergence. Before we describe the
mathematical formulation of the algorithm, we wish to briefly describe the way
this strategy may be actually implemented by an ISO. We assume that each
operating zone of the power system is equipped with its own regional PMUs,
and estimators or phasor data concentrators (PDC). In reality, there may be a
cluster of PDCs running in each area, but for convenience of analysis we only
consider an aggregate regional PDC to be responsible for accepting its area-level
PMU measurements, run the estimation using these measurements, and then
share a set of estimated transfer function parameters with PDCs of other areas,
albeit through one step of supervision through the central ISO-level PDC. This
problem, in general, is described as,

min
b1,...,bN ,z

N∑
i=1

1

2
||Hibi − ci||2 (18)

subject to bi − z = 0, for i = 1, . . . , N,

where the global consensus solution, denoted by z, is the solution of (17) that
is obtained when the local estimates of the entire N regional PDCs, denoted by
bi, ∀ i = 1, . . . , N , reaches the same value. We use ADMM to solve (18) using
an augmented Lagrangian

Lρ =
N∑
i=1

(
1

2
‖Hibi − ci‖2 +wT

i (bi − z) +
ρ

2
‖bi − z‖2),

where wi is the vector of the dual variables, or the Lagrange multipliers associ-
ated with (18), and ρ > 0 denotes the penalty factor. Using this, the resulting

ADMM problem, assuming z = b̄ � 1
N

∑N
i=1 bi, can be defined by the following

set of recursive optimization problems [4] to solve (18) in a distributed way:

b
(k+1)
i = ((H

(k)
i )TH

(k)
i + ρI)−1((H

(k)
i )T c

(k)
i −w

(k)
i + ρb̄(k)), (19a)

w
(k+1)
i = w

(k)
i + ρ(b

(k+1)
i − b̄(k+1)). (19b)
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Each iteration of (19) consists of the following steps: 1) update the local variable
bi locally at PDC i (19a); 2) gather the values bi at a central ISO-level PDC, and
calculate their mean b̄; 3) broadcast b̄ to the other local PDCs; and 4) finally,
update wi at each PDC i (19b). It can be shown that b̄ as k →∞ converges to
the global minimum of (18) [4].

5 Experimental Verification via Federated Testbeds

We next implement the RLS and Prony-ADMM algorithms using a federated
testbed, which has been recently established via a collaboration between USC/ISI
and NCSU. The testbed at ISI is a networking and cyber-security testbed called
DETERLab [5], while the one at NCSU is a power system testbed called Pha-
sorlab. We simulate a IEEE 39-bus power system model at Phasorlab using
Real-time Digital Simulators (RTDS), and excite it with a three-phase fault last-
ing for 0.3 mins. The system consists of 10 synchronous generators, partitioned
into 4 coherent clusters with one PMU in each cluster. Traces of the frequency
measurements from these four PMUs are shown in Figure 1. We represent the
communication topology for RLS in DETER with four PMU nodes, generating
the frequencies y1(k), y2(k), y3(k), and, y4(k), k = 0, . . . , 1800, with a sampling
rate of T = 0.01 seconds, and sending them to a central server node that ex-
ecutes (11). To facilitate the estimation speed, for this case we down-sample
the data at T = 0.2 second. The server node receives data packets with size of
250 bytes, which usually contains around 25 samples from total four PMU/PDC
nodes in parallel with each other. For distributed estimation, each partitioned
cluster has an additional Prony node representing a local PDC. The PMU nodes
stream their local measurements yi(k), i = 1, 2, 3, 4 to the local Prony node.
The Prony nodes run (19), and send their individual estimate bi to the server
node. The server nodes computes b̄, and broadcasts it back to the Prony nodes
for the next iteration. Since every node exchanges only a parameter vector with
the server, and vice versa, and not any actual PMU measurement, complete
‘data privacy’ is maintained between the clusters. The estimates for the three
slow or inter-area modes for the 4-area system are shown in the second and
third columns of Table 1. The actual values of the modes are shown in the first
column. It can be seen that both RLS and distributed Prony yield reasonably
accurate estimates. The slight mismatches in each from the actual values are
mostly attributed to the sensitivity of the root finding step to small errors in b.
The accuracy of RLS improves with more educated guesses for Θ0.

Next, we consider three different types of attacks using DETERLab, namely
(1) a malware attack that disrupts the operation of a PDC resulting in abnormal
termination of an estimation algorithm, (2) flooding attack, where an attacker
can flood a targeted network link with malicious traffic resulting in the reduc-
tion of the estimation traffic due to overload, and (3) malfunctioning of physical
infrastructure or hardware, eg. shutdowns due to power outages caused by earth-
quakes and other natural disasters.
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Fig. 1. PMU measurements of frequency from buses 1, 3, 4, 8 (in per unit)

We implement the flooding attack sequentially on
each of the four communication links in the RLS
topology, as shown in Figure 2. Once the algorithm
detects an attack, it takes three immediate actions:
1) update the list of live PMUs, 2) resize the com-
putation matrices A and B in (10), and 3) reset the
initial guess for Θ to its value immediately before
the attack. However, even with these accommoda-
tions, columns 2, 3 and 4 of Table 2 show that the
accuracy of RLS estimation degrades significantly as
more PMUs get disconnected by the attacks.

PDC

PMU PMU PMU PMU

PDC

PMU PMU PMU PMU

PDC

PMU PMU PMU PMU

PDC

PMU PMU PMU PMU

Fig. 2. Attacks on RLS links

In fact, as shown in the fourth column of Table 2, when three PMUs are
disconnected RLS cannot identify the second slow mode at all. Additionally,
the worse-case scenario is if the RLS server itself gets attacked by a malware or
physical malfunction resulting in the server source code to terminate abnormally.
In such a scenario, the RLS algorithm can not be resumed anymore.

In contrast, a unique feature of the proposed dis-
tributed Prony-ADMM algorithm is that each local
PDC can adopt the dual roles of local estimation and
central averaging. For example, as shown in Figure
3, if the central server is deactivated by a malware,
then the local PDCs can halt their estimation up-
dates immediately, and coordinate with each other
to select a candidate PDC among themselves that
can act as a pseudo central server. If, for instance, lo-
cal PDC 1 is selected as the pseudo server, then one
module, say M1, inside this PDC will continue to
implement the local optimization (19a)-(19b), while
another module M2 will implement the averaging
of bi communicated to it from M1 as well as ev-
ery other local PDC, to generate b̄. Thus, the al-
gorithm can continue uninterruptedly as soon as all
the PDCs agree on the choice of the pseudo server.

PMU PMU

PMU PMU

PDC PDC

PDC PDC
PDC

PMU PMU

PMU PMU

M1 PDC

PDC PDC
PDC

M2

Fig. 3. Resiliency Strategy

For the next round, we assume that M1 has very high security firewalls and,
therefore, is not allowed to be compromised, but the hacker has the choice of
deactivating M2 similarly as the central server in the previous round. In that
case, the PDCs will halt their estimation again, choose a different candidate
for the pseudo-server among themselves, and reassign M2 to that chosen PDC
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Table 1. Estimated Slow Eigenvalues for the 39-bus Power System

Actual Eigenvalues Centralized RLS Distributed Prony+ADMM

−0.1993 ± j3.1255 −0.197 ± j3.125 −0.1966 ± j3.1258
−0.6239 ± j5.5644 −0.5113 ± j5.5889 −0.5111 ± j5.5773
−0.5112 ± j6.1090 −0.3598 ± j6.0868 −0.4932 ± j6.0926

Table 2. Accuracy Evaluation for Attack Scenarios

Actual Eigenvalues
Centralized RLS Prony-ADMM

1 PMU attacked 2 PMUs attacked 3 PMUs attacked Server attacked

−0.1993 ± j3.1255 −0.1800 ± j3.1258 −0.2615 ± j3.1548 −0.3926 ± j3.3219 −0.1963 ± j3.1255
−0.6239 ± j5.5644 −0.6519 ± j5.6453 −0.7269 ± j5.5093 −0.5137 ± j5.5872
−0.5112 ± j6.1090 −0.2213 ± j5.8828 −0.0682 ± j6.4957 −0.6565 ± j6.6205 −0.4944 ± j6.0843

to resume (19). Since none of the steps of the original proposed Prony-ADMM
algorithm changes in these scenarios, the final estimate of β, and therefore of
the modes, in this case is almost same as that for the unattacked case shown in
the third column of Table 1. The fifth column of Table 2 testifies this fact.

6 Conclusion

In this paper we presented a distributed estimation algorithm for computing
oscillation modes of power systems from Synchrophasor data, and illustrated
its resiliency against component failures compared to conventional centralized
techniques. Our future work will include the extension of these methods to closed-
loop oscillation damping using delay-tolerant distributed Model Predictive Con-
trol, and to validate their resiliency properties using the two federated testbeds.
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Abstract. The microcircuit industry is witnessing a massive outsourcing of the 
fabrication of ICs (Integrated Circuit), as well as the use of third party IP (Intel-
lectual Property) and COTS (Commercial Off-The-Shelf) tools during IC de-
sign. These issues raise new security challenges and threats. In particular, it 
brings up multiple opportunities for the insertion of malicious logic, commonly 
referred to as a hardware Trojan, in the IC.  Testing is typically used along the 
IC development lifecycle to verify the functional correctness of a given chip. 
However, the complexity of modern ICs, together with resource and time limi-
tations, makes exhaustive testing commonly unfeasible. In this paper, we  
propose a game-theoretic approach for testing digital circuits that takes into ac-
count the decision-making process of intelligent attackers responsible for the in-
fection of ICs with hardware Trojans. Testing for hardware Trojans is modeled 
as a zero-sum game between malicious manufacturers or designers (i.e., the at-
tacker) who want to insert Trojans, and testers (i.e., the defender) whose goal is 
to detect the Trojans. The game results in multiple possible mixed strategy Nash 
equilibria that allow to identify optimum test sets that increase the probability 
of detecting and defeating hardware Trojans in digital logic.  

Keywords: Hardware Trojan, Cyber security, Game Theory, Functional  
Testing, Integrated Circuit. 

1 Introduction 

A hardware Trojan is a malicious modification of the circuitry of an Integrated Circuit 
(IC). A hardware Trojan is inserted into a main circuit at manufacturing or during 
design, and is mostly inactive until it is activated by a rare condition. When activated, 
it produces an error in the circuit, potentially leading to catastrophic consequences. 
The threat of serious, malicious IC alterations is of special concern to government 
agencies, military, finance, energy and political sectors. 

The threat of hardware Trojans has become more pronounced due to today's massive 
outsourcing of the IC manufacturing processes (fab-less model), as well as from the 
increased reliance on hardware COTS (Commercial Off-The-Shelf) components. A 
good example of the latter are legacy military systems including aerospace and defense 
platforms, which are facing obsolescence due to their extended lifetime (e.g., often be-

                                                           
*  The rights of this work are transferred to the extent transferable according to title 17 § 105 U.S.C. 
** Approved for Public Release; Distribution Unlimited: 88ABW-2014-2398, 19 MAY 2014. 
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cause of budgetary decisions) and which rely on the use of COTS for the maintenance 
and replacement of their electronics. Most chip designers have now gone fab-less, out-
sourcing their manufacturing to offshore foundries. In doing so, they avoid the huge 
expense of building a state-of-the-art fab. Trust for Trojan-free fabrication of the chip is 
often placed upon foundries overseas. This gives many possibilities for potential attack-
ers to maliciously alter the IC circuitry and insert hardware Trojans. 

Functional testing of a digital system aims at validating the correct operation of the 
system with respect to its functional specification [1]. It commonly consists of gene-
rating inputs to the system and comparing the obtained outputs against a so-called 
golden reference. Testing of Integrated Circuits (IC) is usually carried out during the 
IC development cycle via Automatic Test Pattern Generation (ATPG). However, 
because of the stealthy nature of hardware Trojans, standard functional or ATPG test-
ing is usually rendered as insufficient for detecting hardware Trojans. This is unders-
cored in [2] by showing a test set for a simple digital circuit that detects all stuck-at-
zero and stuck-at-one faults yet fails to detect the hardware Trojan. The specific ap-
plication of functional testing to the detection of hardware Trojans has led to a num-
ber of approaches in the literature [2, 3, 4]. In addition, Design for Testability (DFT) 
techniques have been used by a number of authors to specifically support the testing 
of hardware Trojans [5, 6]. 

To efficiently detect hardware Trojans, testing techniques need to be specifically 
designed to target intelligent faults. While a number of testing approaches exist for 
hardware Trojans, they do not explicitly address the decision-making process of intel-
ligent attackers responsible for infecting circuits with Trojans. Compared to the ap-
proaches cited above, our proposed testing methodology is built on a game-theoretic 
technique. To the best of our knowledge, this is the first work that adopts a game-
theoretic approach to detect hardware Trojans. Our approach, based on a mixed strat-
egy Nash equilibrium, captures the defender’s and attacker’s possible best responses 
that are used to enhance testing for hardware Trojans. The use of game theory in our 
approach allows for selecting optimum sets of verification tests that maximize the 
chances of detecting a hardware Trojan inserted in a circuit by an intelligent attacker. 
Unlike many other Trojan testing approaches, our methodology is independent of the 
circuit type (either combinational or sequential) and the lifecycle development phase 
in which the testing happens (either IC design or manufacturing). 

From our study of the literature, only the work by Kukreja et al. [7] applies game 
theory to the domain of testing. The authors model software test scheduling as a 
Stackelberg game between testers and developers. The testers act as defenders com-
mit to a testing strategy. Developers play the role of attackers who may check-in in-
sufficiently tested code to complete application functionality sooner. They compute a 
strong Stackelberg equilibrium that provides the optimal probability distribution of 
the test cases to be selected for a randomized schedule. 

However, none of the approaches described above on game theory have addressed 
the problem of hardware Trojans. As far as we know, our paper is the first application 
of game theory to the detection of hardware Trojans in digital circuits.  

The main contribution of this paper is to propose the use of game theory to expli-
citly model the interactions between intelligent attackers and testers of digital circuits. 
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Our work represents the first application of a game-theoretic approach to the field of 
hardware Trojan detection. The proposed game-theoretic methodology helps identify 
optimum test sets that increase the probability of uncovering hardware Trojans. It also 
allows finding the optimum test conditions that can be used to force an attacker not to 
insert any Trojan so as to avoid severe penalties. In this respect, we formulate a non-
cooperative game between malicious designers or manufacturers who seek to insert 
Trojans, and testers (who act as defenders) whose goal is to detect the Trojans. To 
solve this game, we analyze the Nash equilibrium point − representing the solution of 
the game − in which neither attacker nor defender has an incentive to change their 
strategy. The results show that the attacker is less likely to insert a high value (dam-
age) Trojan because such high values Trojans are frequently tested by the defender. 
Moreover, a rational attacker is better off not to insert any hardware Trojans when the 
defender follows our testing procedure.  

The paper is organized as follows. The game theoretic model is introduced in Sec-
tion 2. Section 3 illustrates the methodology via numerical analysis of the game theo-
retic model. Finally, Section 4 concludes the paper. 

2 Game Model 

We consider an attacker who inserts a single hardware Trojan in a digital IC. To mi-
nimize detection, the attacker does not insert multiple Trojans. The attacker’s strategy 
consists of inserting a Trojan from one of N possible classes. Thus, the attacker has N 
strategies that we denote , , … , . 

We consider that Trojans from different classes have different impacts in the sys-
tem and thus different values for the attacker. The attacker’s values for the Trojan 
classes are denoted by , , … ,  ( 0). We consider that the game is zero-sum. 
Any win for the attacker is a loss to the defender and vice-versa.  

We consider a defender who has limited resources to test and detect hardware Tro-
jans. In other words, the defender can only perform a partial test on each circuit. The 
defender tests the hardware for a limited number k of Trojan classes, . Therefore, 
the defender has  possible strategies. We assume that a Trojan is detected if the cor-
responding class is included in the subset tested; otherwise the Trojan is not detected. 

Further, we consider that there is a fine F ( 0) that the attacker pays to the  
defender when a Trojan is detected. Unlike software attacks where attribution is diffi-
cult, in an IC attack, the hardware manufacturer is known and can be made responsi-
ble for Trojan infection by paying a fine. The new requirements from the Defense 
Logistics Agency (DLA) mandate that hardware manufacturers with DoD contracts 
must use a botanic DNA to mark their chips, which will increase the attribution relia-
bility in hardware [8]. 

We consider the attacker and the defender to be both rational. The attacker inserts a 
Trojan that minimizes the likelihood of detection while the defender looks for a test 
set that maximizes the probability of detecting the Trojan. We assume that the test 
resources are common knowledge between the attacker and the defender. More pre-
cisely, both the attacker and the defender share the following knowledge: 
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• The defender’s test size k 
• The attacker’s values of the Trojan classes , , … ,  
• The attacker’s fine F 

In this model, the defender’s tests cannot be deterministic because a rational at-
tacker would simply avoid inserting a Trojan whose class is part of the test procedure. 
We propose to find the distribution that is most likely to detect a Trojan and yields the 
maximum payoff to the defender. Given this model, we have a strategic non-
cooperative game having two players i.e., an attacker and a defender. The attacker’s 
strategy is to choose a Trojan to insert in an IC while the defender selects a subset of 
Trojans classes to be tested. Both players’ payoffs will depend on the value of the 
Trojan inserted and the detection fines imposed on the attacker. We will investigate 
the mixed-strategy Nash equilibrium as a solution to this game. As previously men-
tioned, within the IC testing game, the use of mixed-strategies is suitable since the 
defender has an incentive to randomize over the test cases. Moreover, the mixed-
strategy Nash solution will allow us to find the frequency with which the defender 
and attacker will choose certain strategies at the equilibrium. In a nutshell, in this 
robust testing game approach, a mixed strategy Nash equilibrium is still well-founded 
to fight irrational attackers or those with limited knowledge because any sub-optimum 
action they take yields a benefit to the defender, i.e., zero-sum. 

3 Numerical Results 

Without loss of generality, we consider a digital circuit with 4 input partitions (4). This leads to four classes of Trojans, thus the attacker has 4 different strategies. 
We denote the attacker’s strategies by , , , . For this illustration, the values of the 
attacker’s strategies are: 1, 2, 4, 12. However, the results in this 
section can be generalized for different choice of values V. The current values are 
chosen with different orders of magnitude of Trojans’ impact on a system. 

The defender tests 2 of the 4 possible Trojan classes, i.e., 2. Therefore, the de-
fender has 6 possible strategies ( 6). The defender’s strategies are: AB, AC, AD, 
BC, BD, and CD, as represented in the normal form game in Table 1. 

Table 1. Hardware Trojan detection game in normal form 

 Defender 
AB AC AD BC BD CD 

 
Attacker 
 
 

A -F, F -F, F -F, F 1, -1 1, -1 1, -1 
B -F, F 2, -2 2, -2 -F, F -F, F 2, -2 
C 4, -4 -F, F 4, -4 -F, F 4, -4 -F, F 
D 12, -12 12, -12 -F, F 12, -12 -F, F -F, F 

 
Note that our model is still valid and will work when considering any other set of 

values for ,  and . The Nash equilibria are calculated using the game solver in [9]. 
Next, we will discuss the properties of the Nash equilibria and their implications on 
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hardware testing. Subsection 3.1 elaborates on the mixed strategy Nash equilibria of 
the game in Table 1. Those mixed strategies will be used as the basis for testing 
hardware Trojans. 

3.1 Mixed Strategy Nash Equilibrium 

For this section, we set the fine 8. Therefore,  . We can 
verify that the game in Table 1 does not admit a pure strategy Nash equilibrium. If the 
defender announces that he is testing only Trojan classes C and D (playing pure strat-
egy CD may be because C and D are the two most dangerous Trojan classes), an intel-
ligent attacker will insert a Trojan from class B which will go undetected giving the 
best payoff, i.e., a payoff of 2 for the attacker (thus -2 for the defender). The defend-
er’s best response to an attacker inserting a Trojan of class B is to play AB, BC or BD 
so that the Trojan can be detected and the attacker pays fine F, i.e., a payoff of -8 for 
the attacker and 8 for the defender. If the defender plays BC, the attacker’s best re-
sponse is to play D and go undetected, i.e., a payoff of 12 for the attacker and -12 for 
the defender. This circular reasoning shows that the game in Table 1 does not admit a 
pure strategy Nash equilibrium. 

However, the game admits three mixed strategy Nash equilibria (as calculated by 
the game solver from [9]) that we denote (1), (2) and (3).  

{0.323A + 0.29B + 0.242C + 0.145D; 0.355AD + 0.29BC + 0.129BD + 0.226CD} (1)

{0.323A + 0.29B + 0.242C + 0.145D; 0.29AC + 0.065AD + 0.419BD + 0.226CD} (2)

{0.323A + 0.29B + 0.242C + 0.145D; 0.29AB + 0.065AD + 0.129BD + 0.516CD} (3)

The attacker’s strategy is the same for the three mixed strategy Nash equilibria. 
The mixed-strategy Nash solution for the attacker is shown in Fig. 1. On the other 
hand, the defender has three possible mixed strategy Nash equilibria represented in 
the clustered column of Fig. 2. In all the three Nash equilibria, the attacker’s payoff is 
-2.193 while the defender’s payoff is 2.193. The three Nash equilibria are payoff 
equivalent to each other. Both players are indifferent to which mixed strategy is used 
for testing hardware Trojans. 

Fig. 1 shows a surprising result, i.e., the attacker’s probability to insert a Trojan 
decreases with the value of the Trojan class. In other words, the attacker is less likely 
to insert a high value Trojan. This is because high values Trojans are heavily pro-
tected by the defender as shown in Fig. 2 and Fig. 3. A high value Trojan has more 
chances to get detected by a defender who adopts the strategic, game-theoretic testing 
procedure proposed here. Thus the attacker is better off inserting low value Trojans. 
This will result in the maximum possible benefit to the attacker who is taking into 
account the defender’s best strategy. 
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Fig. 1. Attacker’s mixed strategy Nash equilibrium 

 

Fig. 2. Defender’s mixed strategy Nash equilibria 

 

Fig. 3. Marginal distribution of the defender’s mixed strategy Nash equilibria 
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Fig. 2 plots the three possible mixed strategy Nash equilibria of the defender. Mixed 
strategy 1 neither uses test AB nor AC. However, detection of Trojan classes A, B and C 
is covered by mixed strategy 1. Therefore, although combined classes AB and AC are 
not targeted by mixed strategy 1, tests based on mixed strategy 1 can cover all individu-
al Trojan classes A, B, C and D. We can make a similar conclusion for mixed strategies 
2 and 3. Any of the three mixed strategy Nash equilibria cover all Trojan classes. 

Fig. 3 expresses the marginal distribution of the defender’s mixed strategy Nash 
equilibria. For instance, the defender’s probability to detect a Trojan of class A is the 
marginal probability of A, which is calculated by adding the defender’s probability of 
using a test containing A, i.e., AB, AC, and AD. Remarkably, we can see that the three 
mixed strategies have the same marginal distribution. Each test detects a given class 
of Trojan with the same probability. We will see in Subsection 3.2 that this result 
cannot be generalized. A Trojan with low impact, say of class A, is less often tested 
(35% of the times), while the high impact class-D Trojan is tested with a high proba-
bility, 71%. Finally, the sum of the marginal probability of A, B, C and D is 2 because 
the defender tests two Trojan classes at a time. 

In short, although the defender has three mixed strategy Nash equilibria that appear 
to be completely different to each other, they share three important properties. First, 
they have the same marginal distribution. Second, the attacker’s and defender’s 
payoff are the same regardless of the mixed strategy used. Finally, each mixed strate-
gy covers all classes of Trojans. Therefore, the defender can choose any of the three 
mixed strategies to optimally test for hardware Trojans. 

Using the Nash equilibrium minimizes the risk of any possible exploitation by 
hardware Trojans. A defender who chooses one of the mixed strategy Nash equilibria, 
guarantees that he gets the maximum possible payoff against an intelligent attacker 
who, in turn, seeks to insert Trojans that escape detection and create the maximum 
damage. Therefore, the Nash equilibrium is a mathematically robust approach to de-
tecting and defeating deceptive digital logic.  

3.2 Considering No Trojan as an Attacker’s Additional Strategy 

We saw that the game in Table 1 yields a negative payoff to the attacker, i.e., -2.193. 
Therefore, one may wonder why an intelligent attacker should insert any Trojan at all 
in the first place. We expand the game in Table 1 by adding a new strategy for the 
attacker, No Trojan. The defender’s strategy and everything else remain the same. 
Moreover, if the attacker plays No Trojan, then both players get a zero payoff. 

This new game has 42 Nash equilibria. Interestingly, the attacker plays the pure 
strategy No Trojan in all of those equilibria. However, the defender can choose 
among 42 different strategies, all of them mixed strategies. The defender successfully 
prevents an attacker from inserting a Trojan. Our testing procedure is then a form of 
cyber deterrence.  

For simplicity, we have selected only 4 of the 42 possible mixed strategy Nash 
equilibria available to the defender and represented them in Fig. 4. Note that the de-
fender’s mixed strategy Nash equilibria no longer have the same marginal distribution 
as opposed to the result in Subsection 3.1 (Fig. 2 and Fig. 3). Moreover, none of the 
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three mixed strategy Nash equilibria in Fig. 2 remain an equilibrium for the new 
game. Therefore, a defender who considers the No Trojan strategy as a plausible at-
tacker’s strategy, must completely change his test procedure. 

However, the set of 42 possible tests cover all Trojan classes A, B, C, and D. Final-
ly, both players get a payoff of zero in all those 42 equilibria. This is because the at-
tacker always plays No Trojan. If the fine F was such that the attacker had a positive 
payoff in the game of Table 1, then the attacker could adopt a mixed strategy for this 
new game in which he would sometimes insert a Trojan in the hardware. 

 

 

Fig. 4. Defender’s mixed strategy Nash equilibria considering the No Trojan strategy 

3.3 Considering No Test among the Defender’s Strategy 

The defender’s goal for performing testing is to deter intelligent attackers from insert-
ing hardware Trojans by making the attacks unprofitable. Therefore, a defender may 
want to conserve testing resources by letting some of the hardware go untested. This 
is the defender’s No Test strategy. The attacker’s strategy No Trojan remains an op-
tion in this subsection. 

This new game has 62 Nash equilibria. As in Subsection 3.2, the attacker plays the 
pure strategy No Trojan in all of those equilibria. Moreover, the defender can choose 
among 62 different strategies, all of them mixed strategies. Notably, all of the 42 
mixed strategy Nash equilibria in Subsection 3.2 remain as Nash equilibria for this 
new game. However, the defender has 20 new mixed strategies based on No Test. Fig. 
5 shows 4 of the 20 new strategies. Both players still get a payoff of zero in all of 
those 62 equilibria. All Trojan classes are covered by the 62 equilibria.  

Although the 62 tests have the same performance, the mixed strategy 1 of Fig. 5 
will lead to the fastest test because it has the highest proportion of No Test. Using 
mixed strategy 1 as the test baseline, 37 % of the hardware does not need to be tested. 
This results in a test procedure that is 37 % faster than the 42 tests in Subsection 3.2. 
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Fig. 5. Defender’s mixed strategy Nash equilibria considering the No Test strategy 

4 Conclusion and Future Work 

We have proposed a game-theoretic methodology for analyzing the decision making 
processes involved in testing digital logic that may be infected with a hardware Tro-
jan. The methodology allows for identifying optimum sets of test cases that take into 
account the attacker’s decision-making, and that helps increase Trojan detection cov-
erage. This is done via the calculation of the mixed strategy Nash equilibria that allow 
the tester of an IC to optimally combat Trojan attacks deployed by an intelligent at-
tacker. The studied model also included the cases of: attackers who may decide not to 
insert a Trojan in the circuit to avoid the risk of being caught and paying a penalty; 
and testers who may decide not to test a subset of chips to conserve testing resources. 
The proposed game-theoretic approach leads to three important properties that im-
prove testing: (i) it allows to save testing resources by identifying test sets with the 
minimum number of test cases; (ii) when manufacturing large volumes of the same IC 
design, it allows to find the minimal subset of produced chips to be tested; (iii) it pro-
vides means to find the conditions that deter the attacker from infecting circuits with 
Trojans. 

An important result of our methodology is that it helps the defender find the condi-
tions that make the attacker’s payoff becomes negative and thus it discourages the 
attacker from inserting any Trojan at all, i.e., the No Trojan strategy (which is a pure 
strategy Nash equilibrium) becomes the best one for the attacker.  

Future work will look into extensions for both the game theory model and the test 
procedure. For example, the game theoretic model can be extended to consider in-
complete information games or lack of common knowledge between the attacker and 
the tester. We will also analyze the case in which a circuit infected with a Trojan does 
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not provide reliable information about its manufacturer/designer (e.g., it has no botan-
ic DNA) and thus the attacker cannot easily be identified. On the other hand, the test 
procedure can be extended with means for considering false positives/negatives and 
for estimating performance. Computational complexity of Nash equilibrium algo-
rithms will be taken into consideration in regard of the size and complexity of the IC 
under test.  
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Abstract. This work addresses a visibility-based target tracking problem that
arises in autonomous surveillance for covert security applications. Consider a
mobile observer, equipped with a camera, tracking a target in an environment
containing obstacles. The interaction between the target and the observer is as-
sumed to be adversarial in order to obtain control strategies for the observer that
guarantee some tracking performance. Due to the presence of obstacles, this prob-
lem is formulated as a game with state constraints. Based on our previous work in
[6] which shows the existence of a value function, we present an off-line solution
to the problem of computing the value function using a Fast Marching Semi-
Lagrangian numerical scheme, originally presented in [15]. Then we obtain the
optimal trajectories for both players, and compare the performance of the current
scheme with the Fully Discrete Semi-Lagrangian Scheme presented in [6] based
on simulation results.

Keywords: pursuit-evasion games, semi-Lagrangian schemes, fast marching.

1 Introduction

Security is an important concern in infrastructure systems. Although advanced elec-
tronic and biometric techniques can be used to secure facilities reserved for military
activities, vision-based monitoring is primarily used for persistent surveillance in build-
ings accessible to civilians. The idea is to cover the environment with cameras in order
to obtain sufficient visual information so that appropriate measures can be taken to se-
cure the area in case of any suspicious activity. However, the number of static cameras
needed to cover and monitor activities in a moderately sized building is substantial, and
this leads to fatigue in security personnel. In this work, we explore a scenario in which
mobile agents that can visually track entities in the environment are deployed in a sur-
reptitious manner for surveillance applications. This gives rise to a problem that is often
called the target tracking problem.

R. Poovendran and W. Saad (Eds.): GameSec 2014, LNCS 8840, pp. 370–379, 2014.
c© Springer International Publishing Switzerland 2014
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Target tracking refers to the problem of tracking a mobile object, called a target.
Based on the sensing modality and sensing constraints, there is a range of problems
that can be addressed under this category. In this work, we assume that the autonomous
observer is equipped with a vision sensor for tracking the target. The environment con-
tains obstacles that occlude the view of the target from the observer. The goal of the
observer is to maintain a persistent line-of-sight with the target. Therefore, the mobile
observer has to control its motion, keeping in mind the sensing constraints and the mo-
tion constraints posed by the obstacles. In order to compute motion strategies for the
observer that can provide some performance guarantees, the target is assumed to be an
adversary. Several variants of the target-tracking problem have been considered in the
past that consider constraints in motion as well as sensing constraints for both agents.
For an extensive discussion regarding the previous work and its applications, we refer to
[13,12]. In this work, we consider the target tracking problem without any constraints
in sensing or motion models for both agents except for those posed by the obstacles
present in the environment.

Past efforts to provide a solution to the aforementioned problem can be primarily
divided into two categories: (1) Formulating the problem as a game of kind, and provid-
ing necessary conditions for pursuit and evasion in the presence of polygonal obstacles
[13,10,11]; (2) Formulating the problem as a game of degree, and using the theory of
differential games to provide necessary and sufficient conditions for pursuit [12,14,7,9].
Although, the structure of optimal solutions has been characterized extensively in previ-
ous works, a complete construction of the solution in a general environment containing
polygonal obstacles is still open. In [8], the authors analyze the problem in a simple en-
vironment containing a circular obstacle, and characterize the optimal trajectories near
termination using differential game theory. In [6], we use a semi-Lagrangian iterative
numerical scheme to provide a solution to the aforementioned problem. In this work,
we use another numerical technique, Fast Marching Semi-Lagrangian scheme, based
on the ideas of front propagation to provide an off-line solution to the problem. The
numerical techniques introduced in this work can be used for any 2-player generalized
pursuit-evasion game with state constraints.

Numerical techniques for games are primarily based on the principles of Dynamic
Programming (DP). Finite differences approximation schemes based on generalized
gradients were proposed by Tarasyev[20] who also considered the problem of the syn-
thesis of optimal controls using approximate values on the finite grid. Convergence
results to the value function of the generalized pursuit-evasion games for the approxi-
mation scheme based on Discrete Dynamic Programming (also called semi-Lagrangian
scheme) were first presented in [4], under either continuity assumptions on the value
function or for problems with a single player (i.e. control problems). The extension of
the scheme and of the convergence theorem to the discontinuous case was obtained in
[2]. Later these results have been extended to pursuit-evasion games with state con-
straints in [5,16]. Our work is in a similar vein, and uses the fully discrete scheme pro-
posed in the aforementioned works to address the target tracking game. For a general
introduction to semi-Lagrangian schemes and their applications in control and game
problems, we refer to [18].
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The paper is organized as follows. In Section 2, we present the problem formulation,
and address the issue of existence of the value function for our problem setting. In
Section 3, we reduce the dimensionality of the problem by reformulating it in relative
coordinates. In Section 4, we present the numerical scheme. In Section 5, a comparison
of the different schemes is presented based on simulation results. Finally, Section 6
includes some concluding remarks.

2 Problem Statement

In this section, we present the problem formulation (see Figure 1(a)). Consider a circular
obstacle in the shape of a disc of radius a1 in the plane enclosed inside a concentric
circular boundary of radius a2. The centers of both circles are assumed to be at the
origin of the reference frame. Consider a mobile observer and a target in the plane. Each
agent is assumed to be a point in the plane. Let y∈R

2 and z∈R
2 denote the coordinates

of, respectively, the observer and the target in the plane. Both agents are assumed to be
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Fig. 1. Figure (a) shows the geometry around a circular obstacle with a circular boundary. Figure
(b) shows the boundary of the terminal manifold of the game in relative coordinates.

simple kinematic agents, and their motions are governed by the following equations

ẏ = u1, ż = u2

subject to the constraints y ∈ KU , z ∈ KV where

KU ≡ {y ∈ R
2 : (‖y‖2

2−a2
1)(‖y‖2

2−a2
2)≤ 0}, KV ≡ {z ∈ R

2 : (‖z‖2
2−a2

1)(‖z‖2
2−a2

2)≤ 0}

Let x = (y,z)T and f (x,u1,u2) = (u1,u2)
T . The controls u1(·) and u2(·) belong to the

following sets

u1(·) : R→U, U = B1(0,0), u2(·) : R→V, V = Bμ(0,0)
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where Br(a) is a ball of radius r with center a, and μ is a parameter which represents the
maximum speed of the target. We will see later that we have to pick μ ≤ 1 to make the
problem meaningful. The line-of-sight between the pursuer and the evader is defined
as the line joining the two players on the plane. The line-of-sight is considered to be
broken if it intersects with the circular obstacle. In order to account for the worst-case
scenario, the target is assumed to be adversarial in nature. Therefore, the interaction
between the observer and the target is modeled as a game. The observer is assumed to
be the pursuer, and the target is assumed to be the evader. The objective of the pursuer
is to maximize the time for which it can continuously maintain a line of sight to the
evader. The objective of the evader is to break the line-of-sight in the minimum amount
of time. The game terminates when the line-of-sight between the pursuer and the evader
is broken. The problem is to compute the strategies of the players as a function of their
positions. Since this is a 2-player zero-sum game [1], we use the concept of saddle-point
equilibrium [12] to define the optimal strategy for each player.

Let T (x0) denote the optimal time of termination of the game when the players start
from the initial position x0. A strategy for a player will be defined as a map from the
control set of the opponent to its own control set, with some informational constraints
imposed, as appropriate. Let α and β denote the strategies of the pursuer and the evader,
respectively. A pair of strategies (α∗,β ∗) for the two players is said to be in saddle-point
equilibrium if the following pair of inequalities is satisfied

T (x0;α∗,β )≥ T (x0;α∗,β ∗)≥ T (x0;α,β ∗) ∀α,β admissible

(here we write explicitly the dependence of T on the strategies). If the pair (α∗,β ∗)
exists, then the function T ∗(x0) = T (x0;α∗,β ∗) is called the value of the game and T ∗

is called the value function. The existence of the value function depends on the class
of strategies under consideration for both the players. In this work, the notion of non-
anticipating strategies [17] will be used to define the information pattern between the
players.

Definition: A strategy α for player P is non-anticipating if α ∈ Γ , where

Γ = {α : V →U | b(t) = b̃(t), ∀t ≤ t ′ and b(t), b̃(t) ∈V ⇒ α[b](t) = α[b̃](t), ∀t ≤ t ′}

Similarly, we can define a non-anticipating strategy β ∈ Δ for E , where

Δ = {β : U →V | a(t) = ã(t), ∀t ≤ t ′ and a(t), ã(t) ∈V ⇒ β [a](t) = β [ã](t),∀t ≤ t ′}

Frequently, in problems involving games and optimal control, it is the case that the
value function ceases to exist in the class of strategies used by the players. In [6], we
show that the value of the game exists. Since the existence of the value function is
established from the above transversality conditions, we can address the problem of
computing it.

3 Dimensionality Reduction

In this section, we present a formulation of the problem in reduced coordinates where
we exploit the symmetry of the problem in order to reduce dimensionality. To this end,
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we formulate the problem in polar coordinates. We express the position of the players in
relative coordinates. Let the polar coordinates of the pursuer and the evader be denoted
as (rp,θp) and (re,θe), respectively. Instead, we can use the relative coordinates (R =
rp,r = re,φ = (θp−θe)) to define the state of the game. The equations of motion of the
two players in relative coordinates are given by the following

fR = Ṙ = urp ; fr = ṙ = ure ; fφ = φ̇ =
uθe

r
−

uθp

R
, (1)

where (urp ,uθp) and (ure,uθe) are the radial and tangential components of the velocities
of the pursuer and the evader, respectively, and satisfy the following constraints

u2
rp
+ u2

θp
≤ 1; u2

re
+ u2

θe
≤ μ2 (2)

The problem statement dictates that a1 ≤ R,r ≤ a2 and −π ≤ φ ≤ π . The problem
is to determine the time of termination of the game, and the optimal strategies of the
individual players given the initial position x = (r,R,φ) of the pursuer and the evader:

(u∗rp
,u∗θp

,u∗re
,u∗θe

) = arg max
urp ,uθp

min
ure ,uθe

T (x;urp ,uθp ,ure ,uθe) (3)

The existence of the value function was established in [6], as indicated in the previous
section, and hence the max and min operations commute in the above equation. Since
the evader always wins from any given initial position of the players for μ > 1, we
only consider the case μ ≤ 1. The winning strategy of the evader for μ > 1 is to move
along the boundary of the obstacle with its maximum speed in a fixed direction. Based
on the problem formulation, the game terminates when the line-of-sight between the
pursuer and the evader intersects with the circular obstacle. Therefore, the boundary of
the terminal manifold is given by the set of states for which the line-of-sight between
the pursuer and the evader is tangent to the circular obstacle.

Figure 1(b) shows the boundary of the terminal manifold in relative coordinates for
a1 = 5 and a2 = 30. The line-of-sight is in the free space only if the state of the players
lies between the two symmetric surfaces. Otherwise, the game has terminated. The set
of states for which the line-of-sight intersects the obstacles is also the target set, denoted
as T . The objective of the evader is to drive the state of the system to the target set.
The objective of the pursuer is to prevent the state from reaching it. Let R denote the
reachable set, i.e., the set of initial points from which it is possible for the evader to drive
the state of the system to the target set in finite time irrespective of the pursuer’s control
action. One can clearly see that R depends on T and the dynamics of the players.

We have the following result from [4].

Theorem 1. If R \T is open, and T ∈C0(R \T ), then T (·) is a viscosity solution of
the following equation:

min
a∈U

max
b∈V

{− f (x,a,b) ·∇T (x)}− 1 = 0, x ∈R \T (4)

Let v(x) denote the Kružkov transform [3] of T (x)

v(x) =
{

1− e−T(x) if T (x)<+∞ (x ∈R)
1 if T (x) = +∞ (x �∈R)

(5)
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Since T (x) takes values in the interval [0,∞), v(x) takes values in the interval [0,1].
Using v(x) instead of T (x) leads to better numerical schemes due to the bounded val-
ues of v(x). Moreover, there is a bijective map between v(x) and T (x) given by the
following:

T (x) =−ln(1− v(x))

In terms of v(x), the reachable set is given by the following expression

R = {x|v(x)< 1}
Therefore, we address the problem of computing v(x) numerically in the following
sections. If v(x) is continuous, then it is the unique viscosity solution of the following
Dirichlet problem [4]{

v(x)+min
a∈U

max
b∈V

{− f (x,a,b) ·∇v(x)}− 1 = 0, for x ∈ Rn \T
v(x) = 0 for x ∈ ∂T

4 Numerical Scheme

First, we describe the discretization of the state space. The entire state space X(R3)
is discretized by constructing a three dimensional lattice of cubes with edge lengths
k. The lattice points are placed at the corners of cubes with the origin as one of the
lattice points. The numerical scheme computes the approximation of v(x) at the lattice
points. Let Q denote a closed and bounded subset of X containing the entire free space
including the obstacles. Once the state space is discretized, we are only concerned with
values of v at those lattice points which belong to Q. We will call these lattice points
as nodes. Let the nodes be ordered as {1, . . . ,N}, where N is the number of nodes in
Q. Let (x1, . . . ,xN) denote the state of the nodes in Q. Let IT denote the set of nodes
in Q that belong to the target set. The values of these nodes are set to zero since the
game would already have terminated if it started from any of these nodes. Therefore, if
xi ∈ IT , Txi = 0, which implies v(xi) = 0. We arrange the values of v at all the nodes in
the form of a vector V = (V1, . . . ,VN). The solution is usually obtained via a fixed point
iteration V n+1 = SV n starting from a given V 0 [18].

In the Fast Marching Method (FMM), the state space is initially discretized in a man-
ner described in the previous paragraph. At every instant of time, the nodes are divided
into the following three groups. The accepted nodes are those where the solution has
already been computed, and it cannot change in the subsequent iterations. The nar-
row band nodes are those where the computation actually takes place, and their values
can change in the subsequent iterations. The far nodes are those in the space where an
approximate solution has never been computed. The front in our problem represents
the surface that updates the initial value of v(xi) at node i to its approximate value as it
propagates in the state space. The accepted region represents the nodes in the state space
through which the front has already passed. The narrow band represents the nodes in
the region around the current position of the front where the values are being updated.
The far region represents the nodes where the front has not yet passed.

The algorithm initializes by labeling all the nodes in the target set as accepted nodes.
In order to compute the narrow band nodes, we need to first define the concept of
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reachable sets. The reachable set at any iteration is defined as the set of nodes from
which the pursuer can drive the state of the system to a node that belongs to the accepted
set irrespective of the controls of the evader. A sketch of the algorithm is given below:

1. The nodes belonging to the target set T are located and labeled as accepted, setting
their values to v(x) = 0. All other nodes are set to v(x) = 1 and labeled as far.

2. The initial narrow band is defined as the set of all the neighbors of the accepted
nodes. Their values are valid only if they are in the reachable set.

3. The node in the narrow band with the minimal valid value is accepted, and it is
removed from the narrow band.

4. Neighbors of the last accepted node that are not yet accepted are computed and
inserted in the narrow band. Their values are valid only if they are in the reachable
set.

5. If the narrow band is not empty, the next iteration starts at step 3.

The complete algorithm is given in the table below as Algorithm 1.

Algorithm 1. FMSL

1: declare QAccepted , QNarrowBand , QFar be the sets of accepted nodes, narrow band nodes and
far nodes

2: for each xi ∈Q do
3: if xi ∈T then
4: Vxi = 0 and xi ∈QAccepted
5: else
6: Vxi = 1 and xi ∈QFar
7: end if
8: end for
9: QNarrowBand = {x j|x j ∈

⋃
xi∈QAccepted

N(xi)∩Rh}

10: while TNarrowBand �= /0 do
11: if xk = argminV (x j) then
12: Remove xk from QNarrowBand and add it to QAccepted

13: Add N(xk)∩Rh to QNarrowBand
14: end if
15: end while

From [19], it is well known that the performance of FM deteriorates rapidly when the
characteristic and the gradient lines do not coincide. In order to overcome this limita-
tion, the Buffered Fast Marching Method (BFMM) was introduced in [15]. BFMM is an
amalgamation of SL and FM methods that retains the advantages of both techniques. In
BFMM, in addition to the accepted nodes, narrow band and far nodes, we have a buffer
zone. Every iteration of BFMM starts with the implementation of the FM scheme. Once
the nodes having the least value in narrow band are computed, they are moved to buffer.
All the nodes in the buffer are recomputed using the Fully Discrete Semi-Lagrangian
scheme for two different initial boundary conditions of the nodes. In the first step, the
values of all the nodes in the narrow band are set to 1. In the second step, the values of
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all the nodes in the narrow band are set to 0. If there is any node in the buffer for which
the value remains unchanged with two different boundary conditions, then the node is
considered to be accepted.

In the next section, we present some numerical results obtained from the FMM and
BFMM.

5 Results

In this section, we present simulation results, and compare it with our previous results
in [6]. All the simulations were performed on a Core 2 Duo P7450 processor. The radii
of the inner and outer obstacles are a1 = 1 and a2 = 10, respectively. The speed of
the evader is set at 0.8 for all simulations. Figure 2 depicts the value function for all
the three numerical schemes, and trajectories of the players for a specific initial posi-
tion. Figure 2(d) shows the trajectories of the players computed from the Fully Discrete
Semi-Lagrangian technique presented in [6]. Figures 2(e) and 2(f) show the trajecto-
ries of the players from the Fast Marching techniques proposed in this work. Figure 3
illustrates the variation of the performance of the three techniques on the basis of the
computational time and capture time with respect to the grid size. Figure 3(a) shows the
time expended to compute the value functions for the three different techniques as the
grid size increases. We can see that for a fixed grid size the iterative scheme takes more

(a) Fully Discrete Semi-
Lagrangian Scheme

(b) Fast Marching Scheme (c) Buffered Fast Marching
Scheme

(d) Fully Discrete Semi-
Lagrangian Scheme

(e) Fast Marching Scheme (f) Buffered Fast Marching
Scheme

Fig. 2. The figure shows variation of the value function computed at the nodes, and the trajectories
of the players for the three techniques
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Fig. 3. Figure (a) shows a plot of the computational time required to compute the v(xi) using the
three different techniques. Figure (b) shows the variation of the time required for the target to
escape with increasing number of grid points used for computation.

time to compute the value function as compared to the FM schemes. Moreover, the re-
sults clearly show that the time required for computation of the value function increases
as the grid resolution becomes finer. Figure 3(b) shows the variation of the termination
time for the game for a fixed trajectory of the target using the three techniques. One can
clearly see that the SL scheme is expensive in terms of computational time compared
to the other two techniques.

6 Conclusions

This work has addressed a vision-based surveillance problem for securing an environ-
ment. The task of keeping a suspicious target in the observer’s field-of-view was mod-
eled as a pursuit-evasion game by assuming that the target is adversarial in nature.
Due to the presence of obstacles, this problem was formulated as a game with state
constraints. We first showed that the value of the game and the saddle-point strategies
of the game exist. Then we obtained the optimal (saddle-point) strategies for the ob-
server from three different numerical techniques based on finite-difference schemes.
The relative performance of the three different schemes based on computational time,
and degree of approximation was illustrated through simulations.

An immediate extension of this work would be to apply the technique to problems
that have non-holonomic agents having more complicated dynamics, for example, a
Dubin’s car or a differential drive robot. We are also working on extending the current
technique to more general environments. A fundamental question that remains open
is the existence of the value function and the saddle-point strategies for the game in
general polygonal environments.
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