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Abstract We propose for symmetric three-dimensional piecewise linear systems
with three zones a unified approach to analyze both Hopf and Hopf-pitchfork bi-
furcations. For the equilibrium at the origin, the crossing of a complex eigenvalue
pair through the imaginary axis of complex plane, with the possible simultaneous
crossing of a real eigenvalue, is considered. Some results related to the bifurcation
of limit cycles are provided, and an illustrative example is included.
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1 Introduction

The class of piecewise linear differential (PWL) systems is very important within
the realm of nonlinear dynamical systems. In fact, this kind of models is frequent
in applications from electronic engineering and nonlinear control systems, where
piecewise linear models cannot be considered as idealized ones, see [5] and refer-
ences therein; they are used in mathematical biology as well, see [14, 15], where
they constitute approximate models. On the other hand, since piecewise linear char-
acteristics can be considered as the uniform limit of smooth nonlinearities, the global
dynamics of smooth models has been sometimes approximated by piecewise linear
models and viceversa, see [9, 16], obtaining a good qualitative agreement between
the two modeling approaches. In practice, nonlinear characteristics use to have a
saturated part, which is difficult to be approximated by polynomial functions but
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suitable to be modeled by linear pieces, leading to what we could call a “global
linearization.”

The pioneering investigation of piecewise linear systems in a rigorous way was
due to Andronov et al. [1]. Their book Theory of Oscillations remains nowadays
an obligated reference, still being a source of ideas. More recently, the analysis
of piecewise linear systems received growing attention due to the interest on PWL
chaotic systems, see for instance [10] and references therein.

While bifurcation theory is rather well established for smooth vector fields, the
nonsmooth case and the PWL case in particular are nowadays an area of active re-
search, see [2, 5, 8, 13] among others. It is in this context, where we want to advance
in the theory; more precisely, we consider three-dimensional symmetric continuous
piecewise linear systems with three zones paying special attention to the bifurcation
of limit cycles. Limit cycles are isolated periodic orbits that, after equilibrium points,
correspond with the most important solutions of dynamical systems. Their determi-
nation is a difficult task, so that new results in this direction are of great relevance
in real applications, see [7]. In the case of piecewise smooth systems, there are very
few known results about, see again [5].

We study the analogous situation to Hopf bifurcation in smooth systems, allowing
that such a bifurcation be simultaneous with a pitchfork bifurcation, and proposing
a unified approach for both settings.

To be more specific, we consider the following family of PWL systems written in
the Luré form:

ẋ = F(x) = ARx + b sat(x), (1)

where x = (x, y, z)T ∈ R
3, the saturation function is given by

sat(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if u > 1,

u if |u| ≤ 1,

−1 if u < −1,

the dot represents derivative with respect to the time τ. Under generic assumptions,
see [4], there is no loss of generality in assuming that

AR =

⎛

⎜⎜
⎝

t −1 0

m 0 −1

d 0 0

⎞

⎟⎟
⎠ and b =

⎛

⎜⎜
⎝

T − t

M −m

D − d

⎞

⎟⎟
⎠ , (2)

where the coefficients t, m, d and T, M , D are the linear invariants (trace, sum of
principal minors and determinant) of the matrices AR and AC , respectively. Note
that in the region with |x| � 1, it becomes the homogeneous system:

ẋ(τ) = ACx(τ) =

⎛

⎜⎜
⎝

T −1 0

M 0 −1

D 0 0

⎞

⎟⎟
⎠ x(τ). (3)



A Unified Approach to Piecewise Linear Hopf and Hopf-Pitchfork Bifurcations 175

We observe that AC = AR + beT1 , where e1 = (1, 0, 0)T , and that the considered
family of systems is in the generalized Liénard form. Thus, under generic conditions
for every system of the form (1) after some change of variables, we can get the
matrices in the form given in (2) and (3).

2 Statements of Main Results

In this work, we consider a more general structure of eigenvalues than the one
appeared in [6] and [12], which includes both the piecewise linear analogue of
Hopf bifurcation and the one of Hopf-pitchfork bifurcation, also called Hopf-zero
bifurcation. Let us take ε as the main bifurcation parameter and assume the following
expressions for the eigenvalues of the linear part at the origin AC ,

λ(ε), σ (ε)± iω(ε),

where,

λ(ε) = λ0 + λ1ε +O(ε2),

σ (ε) = σ1ε +O(ε2),

ω(ε) = ω0 + ω1ε +O(ε2),

with ω0 > 0. Here we will assume that both σ1 and λ1 do not vanish; these vanishing
cases, much more involved, are left for future work. Clearly, when ε passes from
negative values to positive ones, a pair of complex eigenvalues crosses the imaginary
axis, which is the usual requirement for a Hopf bifurcation.

With this choice of the eigenvalues, the trace, principal minor of order two and
determinant must have the following form:

T (ε) = λ(ε)+ 2σ (ε),

M(ε) = σ 2(ε)+ ω2(ε)+ 2λ(ε)σ (ε), (4)

D(ε) = λ(ε)(σ 2(ε)+ ω2(ε)),

where

T0 = T (0) = λ0,

M0 = M(0) = ω2
0,

D0 = D(0) = λ0ω
2
0,

so that D0 −M0T0 = 0.
When λ0 �= 0, by moving the parameter ε through zero, we reproduce the

piecewise linear Hopf or focus-center-limit cycle bifurcation analyzed in [6], by
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Fig. 1 Structure of periodic
orbits in the central zone for
λ0 �= 0 and ε = 0; the
periodic orbits determine a
center configuration located
at the focal plane
λ2

0x − λ0y + z = 0

considering M and D constant; thus, we require here less restricted assumptions.
Furthermore, when λ0 = 0, as it is assumed λ1 �= 0, by moving ε we have the
simultaneous crossing of a zero eigenvalue and a complex pair, a situation analogous
to the Hopf-zero bifurcation in smooth systems. Thus, our analysis unifies the study
done in [12], with the one in [6] allowing also to consider new degenerate cases, not
yet analyzed.

In particular, the current formulation allows to pave the way for analysing the
situations λ0 = λ1 = 0, or the case ω0 = 0, where we should get a more degenerate
case for the focus-center-limit cycle bifurcation or a triple-zero case, respectively;
the analysis of such degenerate cases is lacking and far from being solved.

To start with, we emphasize in the next result an invariant property of systems
(1)–(2), whose proof is direct and will be omitted.

Proposition 1 Systems (1)–(2) are invariant under the following transformation:

(x, y, z, τ , t ,m, d , ε) −→ (x,−y, z,−τ ,−t ,m,−d ,−ε).

This symmetry property is useful for simplifying the analysis of the family under
consideration.

First, we consider the bifurcation for ε = 0 under the hypothesis λ0 �= 0, ω0 > 0,
and σ1 �= 0. Under these conditions, it is very easy to show that in the focal plane
λ2

0x − λ0y + z = 0 there exists a center configuration when ε = 0, see Fig. 1. From
the periodic orbit of this center that is tangent to the planes x = ±1, we can assure
the bifurcation of one limit cycle as follows.

Theorem 1 Let us consider systems (1)–(2) under condition (4) where it is assumed
ω0 > 0, λ0 �= 0, σ1 �= 0. Thus, we have MT − D = 0 for ε = 0 with M0 > 0.
Assuming

δ = d − tω2
0 + λ0(ω2

0 −m) �= 0,
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Fig. 2 Structure of periodic
orbits in the central zone for
λ0 = 0 and ε = 0. The two
solid cones are completely
foliated by periodic orbits
surrounding the segment of
equilibrium points
{(x, 0, xω2

0)T : |x| � 1}

for ε = 0, the system undergoes a focus-center-limit cycle bifurcation, that is, from
the linear center configuration in the central zone, which exists for ε = 0, one limit
cycle appears for δσ1ε > 0 and |ε| sufficiently small.

The period P and the amplitude A (measured as the maximum of |x|) of the
periodic orbit are analytic functions at 0, in the variable ε1/3, namely

P =2π

ω0
+ 2π

ω3
0δ

[
λ0σ1(tω2

0 − d)+ ω2
0σ1(ω2

0 −m)− ω0ω1δ
]
ε +O(ε4/3),

A =1+ 1

2

(
3π

2

σ1(λ2
0 + ω2

0)

δ

)2/3

ε2/3 +O(ε4/3).

In particular, if λ0 < 0 and δ > 0, then the limit cycle bifurcates for σ1ε > 0 and
is orbitally asymptotically stable.

For sake of brevity, the proof of Theorem 1, being rather similar to the one given
in [6], will be omitted.

The case λ0 = 0 with λ1 �= 0 would lead to a richer structure of periodic orbits
when ε = 0, see Fig. 2, and then the following assertions about possible equilibrium
points of the family are relevant.

Proposition 2 For systems (1) and (2) under condition (4) with ω0 > 0, λ0 = 0,
and λ1 �= 0, the following statements hold:

(a) If dλ1ε > 0, then the unique equilibrium point is the origin.
(b) If dλ1ε < 0, then the equilibria are the origin and the two points

x+ε =
1

d
(d −D(ε), dT (ε)− tD(ε), dM(ε)−mD(ε))T , x−ε = −x+ε .



178 E. Ponce et al.

(c) If ε = 0, then all the points of the segment

{(x, y, z)T ∈ R
3 : (x, y, z)T = μ(1, 0,ω2

0)T, |μ| � 1}
are equilibria for the system. If furthermore d �= 0, the above segment captures
all the equilibrium points.

For a proof of Proposition 2, see the similar result in [12]. From the above state-
ment (c), we see that at ε = 0 systems (1)–(2) have a degenerate pitchfork bifurcation.
Note that for dλ1ε > 0, the points x±ε are vanishing points for the vector field
corresponding to |x| > 1 but they are out of their corresponding zones. They do
not constitute real equilibria, although they still organize the dynamics of external
regions. This type of equilibrium is usually called a virtual equilibrium point.

Our first result when λ0 = 0 concerns the possible bifurcation of symmetrical
periodic orbits using the three zones. We note that ifλ0 = 0, we now have δ = d−tω2

0,
which characterizes the criticality of the bifurcation, in a similar way to what happens
in the cases considered in [3] and [6].

Theorem 2 Let us consider systems (1)–(2) under condition (4) where it is assumed
λ0 = 0, λ1 �= 0, ω0 > 0, and δ = d − tω2

0 �= 0. For ε = 0, the systems (1)–(2)
undergo a trizonal limit cycle bifurcation, that is, from the configuration of periodic
orbits that exists in the central zone for ε = 0, one limit cycle appears for δσ1ε > 0
and |ε| sufficiently small. It is symmetric with respect to the origin and bifurcates
from the ellipse {(x, y, z)T ∈ R

3 : ω2
0x

2 + y2 = ω2
0, z = 0}. This limit cycle has

period:

P = 2π

ω0
+ 2π

ω0σ1(ω2
0 −m)− ω1δ

ω2
0δ

ε +O(ε4/3),

and its amplitude in x measured as max{x} −min{x} is

A = 1+ 1

2

(
3π

2

ω2
0σ1

δ

)2/3

ε2/3 +O(ε4/3).

Furthermore, the bifurcating limit cycle is stable if and only if t < 0, d < 0, and
δ > 0.

By using Proposition 1, we could add a new assertion saying that the bifurcating
limit cycle is completely unstable (the two characteristic exponents have positive
real part) if and only if t > 0, d > 0, and δ < 0.

Our last result, which also assumes λ0 = 0, gives account of the bifurcation of a
symmetrical pair of limit cycles that only use two linearity zones. This result requires
extra assumptions, but when they are fulfilled allow us to assure the simultaneous
bifurcation of three limit cycles.

Theorem 3 Let us consider system 1–2 under conditions (4) where it is assumed
δ = d − tω2

0 �= 0, λ0 = 0, λ1 �= 0, and ω0 > 0 fixed. Thus, if we have σ1 �= 0,



A Unified Approach to Piecewise Linear Hopf and Hopf-Pitchfork Bifurcations 179

dσ1 − λ1δ �= 0, and

0 < ẑ = dσ1ω
2
0

dσ1 − λ1δ
< ω2

0

and fixed, a bifurcation takes place for the critical value ε = 0. Thereby, a symmet-
rical pair of limit cycles appears when δσ1ε > 0 and |ε| is sufficiently small. They
are stable if and only if t < 0 and λ1σ1 < 0, or t = 0 and dσ1(λ1 + 2σ1) < 0. Their
common period is

P = 2π

ω0
+ 2π

[
ω0σ1(ω2

0 −m)− ω1δ
]

ω2
0δ

ε +O(ε5/3),

and their common amplitude in x measured as max{x} −min{x} is

A = 2λ1δ

λ1δ − dσ1
− 2(3π )2/3

5

(
σ1

ω0δ

)2/3
dλ1σ1ω

2
0[2t(ω2

0 −m)− 3δ]

(λ1δ − dσ1)2
ε2/3 +O(ε).

For a proof of both Theorems 2 and 3, one can follow the procedure given in
[12]. The results included here are similar to the ones in such a quoted paper, but
we emphasize that here the number of auxiliary fixed parameters describing the
eigenvalue configuration has been increased from two (ρ and ω) to five (λ0, λ1, σ1,
ω0, andω1), allowing a unified approach that encompasses both referred bifurcations,
including cases not analyzed in [6] nor in [12] and paving the way for future analysis
of more degenerate situations.

3 An Illustrative Example: An Electronic Oscillator

In this section, as an illustrative example of the usefulness of above results, we
consider an extended Bonhoeffer–van der Pol (BVP) electronic oscillator, which
consists of two capacitors, an inductor, a linear resistor, and a nonlinear conductance,
as shown in Fig. 3.

To obtain more information about this circuit, see [11], where a smooth nonlin-
earity is assumed for the conductance and a rich variety of dynamical behaviors is
found. The circuit equations can be written as:

C
dv1

dt
= −i − g(v1), C

dv2

dt
= i − v2

r
, L

di

dt
= v1 − v2,

where v1 and v2 are the voltages across the capacitors, the symbol i stands for the
current through the inductanceL, and the v−i characteristics of the nonlinear resistor
is written as g(v) = −av − b sat (cv), where a, b, c > 0. Note that, here we adopt a
PWL version of the nonlinearity considered in [11].
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Fig. 3 The extended
Bonhoeffer–van der Pol
(BVP) oscillator proposed in
[11]

i
L

g

vu

C C

r

After some standard manipulations, the normalized equations of the extended
BVP oscillator become

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = −z + αx + sat (βx),

ẏ = z − γy,

ż = x − y,

where the dot represents derivative with respect to the new time τ, and

τ = 1√
LC

t , α = a

√
L

C
, β = bc

√
L

C
, γ = 1

r

√
L

C
,

x = v1

b

√
C

L
, y = v2

b

√
C

L
, z = i

b
.

Making now the change of variables X = βx, we obtain the system in its Luré
form,

ẋ =

⎛

⎜⎜
⎝

α 0 −β
0 −γ 1

1/β −1 0

⎞

⎟⎟
⎠ x +

⎛

⎜⎜
⎝

β

0

0

⎞

⎟⎟
⎠ sat (eT1 x), (5)

and we will renameX as x in the sequel, for convenience. Then, it can be written in the
form 1–2, and so we will try to apply Theorems 1, 2, and 3 under the corresponding
assumptions. Effectively, with a linear change of variables given by the matrix:

P = 1

β

⎛

⎜⎜
⎝

β 0 0

γ 2 − 1 γ 1

γ 1 0

⎞

⎟⎟
⎠ ,
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we can write system (5) in its Liénard form as

ẋ =

⎛

⎜⎜
⎝

α − γ −1 0

2− αγ 0 −1

α − γ 0 0

⎞

⎟⎟
⎠ x +

⎛

⎜⎜
⎝

β

−βγ
β

⎞

⎟⎟
⎠ sat(x), (6)

where now the trace, the sum of second-order principal minors, and the determinant
in the different zones are evident, namely

T = α + β − γ , t = α − γ ,

M = 2− γ (α + β), m = 2− αγ ,

D = α + β − γ , d = α − γ.

(7)

From (7), we observe that T andD are identically equal, what implies that an extra
condition for eigenvalues must be fulfilled. Thus, taking into account the structure
of T and D given in (4), we must impose for all values of ε,

T (ε)−D(ε) = λ0(1− ω2
0)+ (λ1 − λ1ω

2
0 + 2σ1 − 2λ0ω1)ε +O(ε2) = 0.

We will take γ as the only bifurcation parameter, keepingα andβ fixed. In looking for
the bifurcations analyzed in Sect. 2 to take place at ε = 0, we need first λ0(1−ω2

0) =
0. If we assume λ0 �= 0, then we must conclude the two conditions

ω0 = 1 and σ1 = λ0ω1.

Consequently, M(0) = ω2
0 = 1, and we get for the bifurcation parameter γ (ε) the

condition γ (0) = γ0, with

0 < γ0 = 1

α + β
�= 1, so that λ0 = 1− γ 2

0

γ0
.

To apply Theorem 1, we compute for ε = 0,

m = 2− α

α + β
, and so δ = λ0(1−m) �= 0.

From (7), writing γ = γ0 + ε, we also obtain

λ1 = −γ 4
0

1+ γ 2
0

1+ γ 6
0

, σ1 = γ 4
0 − 1

2(1+ γ 6
0 )

, and ω1 = −γ0(1+ γ 2
0 )

2(1+ γ 6
0 )

.

Thus, the following result is a direct consequence of Theorem 1.

Proposition 3 Let us consider system (5) or equivalently system (6) with α > 0,
β > 0, and γ0 = 1/(α+ β) fixed. For γ = γ0, the system undergoes a focus-center-
limit cycle bifurcation, that is, from the linear center configuration in the central
zone, which exists for γ = γ0, one limit cycle appears for γ −γ0 > 0 and sufficiently
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small. In particular, if α + β < 1, then γ0 > 1 and the bifurcating limit cycle is
asymptotically stable.

On the other hand, if we assume 0 < ω0 �= 1, then to get the consistency between
(4) and (7), we need λ0 = 0, and therefore,

σ1 = λ1

2
(ω2

0 − 1),

getting for the bifurcation parameter γ (ε) the condition γ (0) = γ0, with

0 < γ0 = α + β <
√

2,

with the additional requirement that α + β �= 1; otherwise, ω0 = 1 and σ1 = 0,
precluding the use of both Theorems 2 and 3. Note that ω2

0 = 2 − γ 2
0 and so when

γ0 < 1 we have ω0 > 1 and vice versa.
Using 7, we obtain for ε = 0 that t = d = −β and δ = β(ω2

0 − 1) �= 0. Writing
γ = γ0 + ε, we also obtain

λ1 = − 1

ω2
0

, σ1 = 1− ω2
0

2ω2
0

, and ω1 = − γ0

2ω0
.

We note that in Theorem 3,

ẑ = dσ1ω
2
0

dσ1 − λ1δ
= ω2

0

3
∈ (

0,ω2
0

)
.

Thus, from Theorems 2 and 3, we get the following result.

Proposition 4 Considering system (5) or equivalently system (6) withα > 0, β > 0
and 1 �= γ0 = α + β <

√
2 and fixed, the following statements hold:

(a) For γ > γ0, the origin is the only equilibrium of the system. Furthermore, if
γ γ0 < 1, then the origin is asymptotically stable.

(b) For γ = γ0, the system undergoes a PWL analogue of the Hopf-zero bifurcation;
from the periodic set existing at such critical situation, for γ − γ0 < 0 and
sufficiently small in absolute value, the bifurcation leads to the simultaneous
appearance of three limit cycles (one trizonal and two bizonal ones) along with
two additional equilibrium points.
Furthermore, if γ0 < 1 (1 < γ0 <

√
2), then the bifurcating trizonal limit cycle is

stable (unstable) while the bifurcating bizonal limit cycles are unstable (stable).
The bifurcating equilibrium points are stable whenever γ0 < 1 and, in the case
1 < γ0 <

√
2, when γ0 < 1/α.
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Fig. 4 Partial bifurcation set
of system (5), showing the
two main bifurcation surfaces
corresponding to the
piecewise linear Hopf and
Hopf-pitchfork bifurcations,
namely the surface
γ = 1/(α + β) and the plane
γ = α + β. It is also shown
the red straight-line
γ = α + β = √2, where
T = M = D = 0

0.5

1.0

1.5

a

0.5

1.0

1.5

b

0

2

4

6

g

In Fig. 4, we show the two main bifurcation surfaces corresponding to the piece-
wise linear Hopf and Hopf-pitchfork bifurcations, namely the surface γ = 1/(α+β)
and the plane γ = α + β. It is also shown as the straight-line γ = α + β = √2,
where T = M = D = 0 and so, a triple-zero bifurcation is involved. The analysis
of such a bifurcation is left for future work.
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