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Augmented Lagrangian Method for Optimal
Control Problems

Anatoly Antipin and Olga Vasilieva

Abstract This chapter describes a method for solving optimal control problems
with boundary conditions at the right-hand end point of system trajectories. Such
boundary conditions are expressed by means of finite-dimensional problem of con-
vex programming. The trajectories are generated by a system of linear differential
equations with control, and the latter is treated as an ordinary linear constraint. The
proposed approach is based on solving the dual maximization problem engendered
by an augmented Lagrangian of convex programming problem formulated in the
infinite-dimensional functional space. There is also an analog in finite-dimensional
convex programming, known as “augmented Lagrangian method.” The convergence
of the proposed method is proved in the infinite-dimensional functional space. This
convergence has the additional property of monotonicity of the norm with respect to
controls, trajectories, and adjoint functions.

Keywords Optimal control, Augmented Lagrangian method, Strong and weak
convergence

1 Introduction

In the optimal control theory, there are two general trends for the development of
solution methods without a priori discretization. First group of methods includes
various techniques directly based on the Pontryagin maximum principle where one
seeks to obtain an approximation of the control function that maximizes the Hamil-
tonian at (almost) each instant along the time interval. This group can be figuratively
referred to as Hamiltonian-type methods.
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2 A. Antipin and O. Vasilieva

Another group of methods exploits the notion of Lagrangian (or augmented La-
grangian) and treats the dynamic system as intertemporal constraint. Therefore, this
group can be regarded as Lagrangian-type methods. Under linear dynamics and with
convex objective, Lagrangians are susceptible to duality and engender a minimiza-
tion problem for primal variables and a dual problem of maximization. In other
words, they always possess saddlepoints whose primal components provide the op-
timal solution to underlying problem of optimal control. Therefore, in order to solve
an original optimal control problem, one may eventually seek for a saddlepoint of
the associated Lagrangian.

Saddlepoint methods were originally developed in order to deal with convex pro-
gramming problems in finite-dimensional spaces [11–13, 22–25], and were also
called “methods of multipliers” or “methods of modified/augmented Lagrangian.”
In essence, they are variants of (sub)gradient ascent applied to a dual function
engendered by the Lagrangian.

Subsequently, extra-gradient methods [1, 19] and extra-proximal methods [2, 5]
were designed. Later, these methods have been adapted to the problems of equilib-
rium programming, dealing with computation of fixed points of extremal mappings
[4, 6].

Extremal mappings help to describe many real-life situations of decision making
involving an external human factor. The preference of decision making is modeled
by an objective function that defines the best option from a variety of available
alternatives.

Other situations can be described by mathematical models which characterize dif-
ferent kinds of balances or equilibria (biological, economical, ecological, energetic,
financial, etc.). These models usually involve variational inequalities and equations.

These two classes of mathematical models have common features; however, they
may differ due to some specificities or particularities of the objective function that
is used in the preference system of decision making. Therefore, solution methods
applicable to these models may possess dissimilar structures and may have different
convergence properties.

Generally speaking, the efficiency of solution techniques is characterized by the
solution nature that is expressed by the phase portrait in the vicinity of underlying
solution. There are two main types of possible phase portraits. First type can be
referred to as (sub)gradient (or potential) since it is usually associated with potential
gradient vector field around minimum points of convex functions.Another type can be
regarded as saddle (or non-potential) since it is usually associated with nonpotential
vector field around saddlepoints of convex–concave functions.

In both cases, there exist solution methods generating explicit trajectories (contin-
uous or iterative), which converge monotonically in the norm to the problem solution
[7, 9].

In this chapter, an optimal control problem (formulated in Sect. ??) is treated
as a saddle model. This problem has linear dynamics and boundary conditions at
the right-hand end points given in the form of finite-dimensional problem of convex
programming. Section 3 provides some background results from finite-dimensional
convex programming together with general formulation of proximal-type methods
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aimed at finding a saddlepoint of an augmented Lagrangian. In Sect. 3, the optimal
control problem is transformed into a saddle model. Section 4 describes the aug-
mented Lagrangian approach in infinite-dimensional functional spaces and Sect. 5
presents a saddlepoint method of proximal type. The properties of weak convergence
in functional spaces are briefly revised in Sect. 6 and the convergence of the proposed
method is formally proved in Sect. 8.

2 Problem Formulation and Preliminaries

We consider an optimal control problem with linear dynamics on a fixed time interval
[t0, t1] and with conditions at the end points of the interval, which are implicitly
specified as solutions to optimization problems. If the controls u(t) ∈ U run through
the entire set of controls, the left- and right-hand end points of the corresponding
trajectories x(t0) = x0 and x(t1) = x1 describe the terminal (or boundary) sets
X0 ⊆ R

n and X1 ⊆ R
n, respectively. Both such sets X0 and X1 can be, in particular,

convex and closed. The “left” set X0 is called the set of initial conditions, while
the “right” one X1 is referred to as the set of attainability. We consider the direct
(or Cartesian) product of these sets {x0, x1 | x0, x1 ∈ X(t0)×X(t1)}, on which a
convex terminal function ϕ(x0, x1) is defined. Two components of the optimum of
this function x∗0 , x∗1 ∈ X(t0) × X(t1) engender, respectively, the initial and terminal
conditions for a controlled dynamic system.

In this situation, the optimal control problem with boundary conditions can be
formulated as follows: Find an optimal control u∗(t) whose underlying trajectory
x∗(t) engenders the left- and right-hand end points x∗0 , x∗1 representing together the
coordinates of the point that minimizes the terminal function ϕ(x0, x1) over the set
X(t0)×X(t1).

Now we provide a formal statement of the problem. Since the main focus of the
work will be placed on developing methods of solving the problem, let us formulate
it in a Hilbert space:

x∗0 , x∗1 ∈ Argmin
{
ϕ(x0, x1)

∣∣ A0x0 + A1x1 = a, (x0, x1) ∈ X0 ×X1
}
. (1)

d

dt
x(t) = D(t)x(t)+ B(t)u(t), x∗(t0) = x∗0 ∈ X0, x∗(t1) = x∗1 ∈ X1, (2)

U =
{

u(t) ∈ Lr
2[t0, t1]

∣∣
∫ t1

t0

u2(t)dt ≤ ρ2

}
, t0 ≤ t ≤ t1. (3)

HereD(t),B(t) are matrix functions (continuously dependent on time) of dimensions
n× n and n× r , respectively, and A0,A1 are fixed numerical matrices of dimension
n× n. The control functions belong to a convex set U which is closed and bounded
in the norm of Hilbert space Lr

2[t0, t1] and ρ > 0 is a given constant. It should
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be noted that some functions of such a set can be unbounded. Therefore, any pair
(x(·), u(·)) ∈ Ln

2[t0, t1]× U that satisfies identically the following condition

x(t) = x(t0)+
∫ t

t0

[D(τ)x(τ)+ B(τ)u(τ)] dτ , t0 ≤ t ≤ t1. (4)

should be understood as a solution to the differentional equation (3), (4).
It is shown in ([27], vol. 1, p. 443) that for any control u(·) ∈ U ⊆ Lr

2[t0, t1] there
is a unique underlying trajectory x(·) of the linear differential system, such that a
resulting pair satisfies the identity (4). In many applications, the control u(t) is often
defined as a piecewise continuous function. The presence of finite discontinuities in
control functions does not affect the continuity of underlying state trajectory x(t).
Strictly speaking, all state trajectories are absolutely continuous functions1. A set of
absolutely continuous functions denoted as ACn[t0, t1] is actually a dense subset in
the functional Hilbert space Ln

2[t0, t1], that is ACn[t0, t1] ⊂ Ln
2[t0, t1]. Moreover, the

trajectory x(t) will remain absolutely continuous even if we change the values of
u(t) on a set of measure zero. The latter implies that Newton–Leibniz formulas are
fulfilled over a linear manifold of pairs of functions (x(·), u(·)) and an integration by
parts can be performed.

Actually, problem (1)–(3) can be treated as a convex programming problem for-
mulated in functional spaces, more precisely on the Cartesian product of subsets
X(t0)×X(t1)×ACn[t0, t1]×U of the corresponding spaces R

n×R
n×Ln

2[t0, t1]×
Lr

2[t0, t1].
It is worthwhile to recall that the scalar products and norms in these spaces are

defined as:

〈x(·), y(·)〉 =
∫ t1

t0

〈x(t), y(t)〉dt , |x(·)|2 =
∫ t1

t0

|x(t)|2dt ,

where

〈x(t), y(t)〉 =
√√√√

n∑

i=1

xi(t)yi(t), |x(t)|2 =
n∑

i=1

x2
i (t)

and

x(·) = (x1(t), ..., xn(t))T , y(·) = (y1(t), ..., yn(t))T .

Since this chapter is focused on the convergence of solution methods, it is assumed
that solutions

(
x∗0 , x∗1

) ∈ X1 × X2, x∗(·) ∈ ACn[t0, t1] ⊆ Ln
2[t0, t1], u∗(·) ∈ U ⊆

Lr
2[t0, t1] always exist [10].
The system (1)–(3) works as follows. The linear controllable system (2) and (3) is

treated as a linear constraint, which selects a linear manifold of functions (processes)

1 For formal definitions of absolutely continuous functions and their properties, refer to [31, p. 270],
[18, p. 361] or other similar text books.
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(x(·), u(·)), defined on [t0, t1]. As already mentioned, the right- and left-hand end
points of the system trajectories engender the direct product X(t0)× X(t1). On this
set the function ϕ(x0, x1) allocates (or “highlights”) a single point of minimum or
a closed convex set of minimum points. Each point has two coordinates x0 and
x1. They will be treated as initial and terminal conditions for dynamic system (2),
respectively. Now the optimal control problem can be formulated in the following
way: find a control u∗(·) ∈ U under which both endpoints of the underlying trajectory
x∗(·) coincide with the coordinates of the minimum point of the function ϕ(x0, x1)
over the set X0×X1, where X0 is a set of initial conditions, X1 is a set of attainability
of the dynamical system (2).

This formulation includes a variety of particular options. For example, if the
terminal function and terminal constraints are split with respect to its variables (that
is, ϕ(x0, x1) = ϕ0(x0)+ ϕ1(x1) and A0x0 = a0, A0x1 = a1, a0 + a1 = a), then the
problem (1)–(3) takes a form where the initial condition at the left-hand end points
is defined as a solution to the problem of convex programming:

x∗0 ∈ Argmin{ϕ0(x0)
∣∣ A0x0 = a0, x0 ∈ X0}, (5)

while at the right-hand end points, a problem of optimal control is posed:

x∗1 ∈ Argmin
{
ϕ1(x1)

∣∣ A1x1 = a1, x1 ∈ X1
}
. (6)

d

dt
x(t) = D(t)x(t)+ B(t)u(t), x(t0) = x∗0 ∈ X0, x(t1) = x∗1 ∈ X1, (7)

U =
{

u(t) ∈ Lr
2[t0, t1]

∣∣
∫ t1

t0

|u(t)|2dt ≤ ρ2

}
, t0 ≤ t ≤ t1. (8)

Here, problem (5) provides a solution that will effectively serve as initial condition for
the dynamics (7). Then we choose a control u∗(·) ∈ U ⊆ Lr

2[t0, t1], with underlying
trajectory x∗(·) ∈ ACn[t0, t1] ⊂ Ln

2[t0, t1] that transforms the initial state x∗0 into the
final state x∗1 , i.e., connects by a “curve” the solutions of problems (5) and (6). Thus,
it turns out that the finite-dimensional problem is transferred by the system dynamics
from one state (initial state) to another (implicitly defined terminal state). It should
be noted that x∗(t), as a solution to (7), is also an absolutely continuous function (see
formal definition and properties in ([31], p. 270) or [18], p. 361)).

In the simplest case, that is, when the boundary condition at the left-hand end
points of the time interval is specified as a fixed initial condition, we have:

x∗1 ∈ Argmin
{
ϕ1(x1)

∣∣ A1x1 = a1, x1 ∈ X1
}
, (9)

d

dt
x(t) = D(t)x(t)+ B(t)u(t), x(t0) = x0 ∈ X0, x∗(t1) = x∗1 ∈ X1, (10)

U =
{

u(t) ∈ Lr
2[t0, t1]

∣∣
∫ t1

t0

|u(t)|2dt ≤ ρ2

}
, t0 ≤ t ≤ t1. (11)
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A meaningful picture of (9)–(11) is simplified even more, and can be interpreted in
the following way. It is required to choose a control u∗(·) ∈ U ⊆ Lr

2[t0, t1] with
underlying trajectory x∗(·) ∈ ACn[t0, t1] ⊂ Ln

2[t0, t1], generated by the dynamics
(10) with initial condition x(t0) = x0 whose right-hand end point will eventually hit
the terminal point indicated by the problem (9).

In the terminal problems (1), (5), (6), (9), the equality-type constraints can be
also replaced by inequality-type constraints.

3 Finite-Dimensional Convex Programming

Our approach for solving the problems formulated in Sect. 2 is based on the analysis
and reasoning, primarily developed for the finite convex programming problems
(see, e.g., [11, 22]). Recall that the concept of convexity and Lagrange function
are fundamental features of this theory. It should be also noted that optimal control
problems with convex terminal functions and linear controllable ordinary differential
equation (ODE) systems are, in effect, convex programming problems formulated
in infinite-dimensional function spaces.

These problems are fundamental in control theory. To solve such a problem implies
to find a synthesis of control function in the form of feedback. In this chapter, we
propose another approach to solving this type of problems.

At first, we recall the main concepts related to finite-dimensional convex pro-
gramming. For simplicity sake, we consider a problem with equality constraints
[27]:

x∗ ∈ Argmin{ϕ(x) | Ax + a = 0, x ≥ 0} (12)

where ϕ(x) is a convex function, x ∈ R
n+ and A is a numerical matrix of dimension

m × n. The minimum point x∗ ≥ 0 of the above problem is characterized by the
following feature. There exists a set of multipliers p∗ ∈ R

m (not simultaneously
zeros) which are coordinates of the gradient of the objective function evaluated
at x∗ corresponding to the basis formed by the gradients of constraints, namely,
∇ϕ(x∗) = ATp∗. Such vector p∗ ∈ R

m is referred to as dual solution of the convex
programming problem (12).

Therefore, together with problem (12), it is worthwhile to consider its scalarization
(or linear convolution), known as function of Lagrange (or Lagrangian):

L(p, x) = ϕ(x)+ 〈p,Ax + a〉 (13)

defined for all x ∈ R
n+, p ∈ R

m. As a rule, this function has a saddlepoint x∗,p∗ ∈
R

n+ × R
m that satisfies the inequalities:

ϕ(x∗)+ 〈p,Ax∗ + a〉 ≤ ϕ(x∗)+ 〈p∗,Ax∗ + a〉 ≤ ϕ(x)+ 〈p∗,Ax + a〉 (14)

for all (x,p) ∈ R
n+ × R

m. As stated by the theory of convex programming, in all
regular cases (when Slater’s condition holds), direct and dual solutions to a convex
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programming problem effectively determine a saddlepoint of the Lagrange function,
and vice versa.

Moreover, the saddle system can be written in other equivalent forms. For
example, as:

ϕ(x∗)+ 〈p∗,Ax∗ + a〉 ≤ ϕ(x)+ 〈p∗,Ax + a〉, (15)

Ax∗ + a = 0 (16)

for all x ∈ R
n+ or, alternatively, as:

p∗ = p∗ + k(Ax∗ + a) (17)

where k > 0.
It is known that the first component of the saddlepointp∗ ∈ R

m of (14) is a solution
to maximization problem of the function of minima (i.e., dual function [27])

maxϑ1(p) = max
{
min{L(p, x)

∣∣ x ∈ R
n
+}

}
, (18)

and the second component x∗ ∈ R
n+ (solution of 12) represents a solution to

minimization problem of the function of maxima:

minϑ2(x) = min
{
max{L(p, x)

∣∣ p ∈ R
m}}. (19)

Since the function L(p, x) is convex–concave with respect to its variables then,
according to [27], it is fulfilled that

maxminL(p, x) = minmaxL(p, x). (20)

It should be noted that ϑ1(p) is concave while ϑ2(x) is convex. The latter implies that
instead of finding a saddlepoint of the function L(p, x), one may also try to solve
the problem (18), i.e., to maximize the concave dual function using, for example,
the gradient method. However, in this case, other difficulties may arise. Namely,
the dual function ϑ1(p) is not differentiable, it is only subdifferentiable; therefore,
solution methods based on the property of subdifferentiability are rather ineffective
since they do not converge monotonically (in the space norm) to the optimum.

This obstacle can be overcome by using the idea of regularization of the
Lagrangian with respect to its direct variables:

M(p, x) = ϕ(x)+ 1

2k
|p + k(Ax + a)|2 − 1

2k
|p|2, x ≥ 0, p ∈ R

m (21)

for all (x,p) ∈ R
n+ ×R

m. The above function is easily obtained by adding a squared
residual of functional constraints to the Lagrangian (13), and then turning the under-
lying expression into a perfect square. The result of such synthesis, which is usually
called augmented Lagrangian, represents a “quadratic convolution” of the objective
function and underlying constraints.
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Augmented Lagrangian has a number of advantages. The most important of them
consists in the fact that both traditional and augmented Lagrangians have the same
set of saddlepoints. Another important property is that the dual function:

ϑ1(p) = min
{
M(p, x)

∣∣ x ∈ R
n
+
}
, (22)

generated by the augmented Lagrangian is differentiable and its gradient satisfies
Lipschitz condition with constant k > 0 (see more details in [11]).

Actually, for augmented Lagrangian the saddle system of inequalities similar to
(14) can be written as:

ϕ(x∗)+ 1

2k
|p + k(Ax∗ + a)|2 − 1

2k
|p|2

≤ ϕ(x∗)+ 1

2k
|p∗ + k(Ax∗ + a)|2 − 1

2k
|p∗|2

≤ ϕ(x)+ 1

2k
|p∗ + k(Ax + a)|2 − 1

2k
|p∗|2, (23)

for all (x,p) ∈ R
n+ × R

m. From the left-hand inequality of this system, we have

Ax∗ + a = 0, (24)

while the right-hand inequality yields:

ϕ(x∗) ≤ ϕ(x), (25)

provided that the variable x satisfies scalar constraint:

1

2k
|p∗ + k(Ax + a)|2 ≤ 1

2k
|p∗|2.

Two last formulas lead to the verification of (12), meaning that a pair (p∗, x∗) is also
a saddlepoint of the traditional Lagrangian (14).

It is known [11] that in order to compute the gradient of the function of minima
generated by augmented Lagrangian at the point p

′
, one should find an optimum

x
′ ∈ R

n+ of M(p, x) with respect to the variable x ∈ R
n+ for fixed p

′ ∈ R
m, and then

calculate the value of the partial derivative
∂M(p

′
, x

′
)

∂p
= ∇pM

(
p
′
, x

′)
at the point

(
p
′
, x

′)
. In this case, we obtain the gradient of the dual function:

∇p
′M

(
p
′
, x

′) = 1

k

(
p
′ + k

(
Ax

′ + a
))
− 1

k
p
′ = Ax

′ + a,

which also satisfies the Lipschitz condition. The proof of this fact plainly follows
from (23).

Using the resulting gradient, we can formulate the so-called method of augmented
Lagrangian, also referred to as “multipliers method” or, more precisely, gradient
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method for maximization of the dual function engendered by augmented Lagrangian.
This method has the form:

xn+1 ∈ Argmin
{
M

(
x,pn

) ∣∣ x ∈ R
n
+
}
,

pn+1 = pn + k
(
Axn+1 + a

)
, (26)

where k > 0.
The convergence of this method had been proved by several authors (see, e.g.,

[11, 13, 22–25]). Their assertions on convergence were confined to the fact that, under
an additional condition of boundedness of the sequencexn ∈ R

n+, the iterative process
converges monotonically with respect to dual variablep ∈ R

m in (an adequate) norm.
To ensure convergence with respect to direct variable x ∈ R

n+, one should introduce
a mechanism of approximation to an optimum with respect to this variable. For
example,

xn+1 ∈ Argmin

{
1

2

∣∣x − xn
∣∣2 + kM

(
x,pn

) ∣∣ x ∈ R
n
+

}
,

pn+1 = pn + k
(
Axn+1 + a

)
. (27)

To obtain some estimates which will be needed for formal proofs, it is useful to write
the process (27) in the form of variational inequalities, namely:

〈xn+1 − xn + k
(∇ϕ(xn+1)+ AT

(
pn + k

(
Axn+1 + a

)))
, x − xn+1〉 ≥ 0,

pn+1 = pn + k
(
Axn+1 + a

)
(28)

for all x ∈ R
n+,p ∈ R

m. In view of Eq. (26), the inequality (28) can be written as:

〈xn+1 − xn + k
(∇ϕ(xn+1)+ ATpn+1

)
, x − xn+1〉 ≥ 0,

pn+1 = pn + k
(
Axn+1 + a

)
(29)

Using the saddle systems (14), (23), we can write the variational inequalities similar
to (29) for the saddlepoint p∗, x∗ ∈ R

m × R
n+:

〈∇ϕ(x∗)+ kATp∗, x − x∗〉 ≥ 0,

Ax∗ + a = 0, (30)

for all p ∈ R
m, x ≥ 0.

Now, we can prove a theorem on convergence of the gradient-type method (27).

Theorem 1 If the set of solutions of (12) is nonempty, then iterative process (27)
converges monotonically in the space norm to some direct and dual solutions of this
problem, i.e., to a saddlepoint of Lagrangian x∗,p∗. In other words, |xn − x∗|2 +
|pn − p∗|2 → 0 when n→∞ and for all x0,p0 ∈ R

n+ × R
m.

Proof Let x = x∗ in (29) and set x = xn+1 in (30), then
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〈
xn+1 − xn + k

(∇ϕ(xn+1)+ AT pn+1
)
, x∗ − xn+1

〉 ≥ 0,
〈∇ϕ(x∗)+ kATp∗, xn+1 − x∗

〉 ≥ 0. (31)

Summing up the above inequalities we obtain:
〈
xn+1 − xn, x∗ − xn+1

〉+ 〈k∇ϕ(xn+1)− ∇ϕ(x∗), x∗ − xn+1〉
+ 〈

pn+1 − p∗, (Ax∗ + a)− (Axn+1 + a)
〉 ≥ 0. (32)

From (30), for p = pn+1, we have

〈Ax∗ + a,p∗ − pn+1〉 ≥ 0, (33)

Using this estimate, from (32) we obtain:

〈
xn+1 − xn, x∗ − xn+1

〉 + 〈k∇ϕ(xn+1)− ∇ϕ(x∗), x∗ − xn+1〉
− 〈

pn+1 − p∗,Axn+1 + a
〉 ≥ 0.

(34)

Setting p = p∗ in (29), yields:
〈
pn+1 − pn − k(Axn+1 + a),p∗ − pn+1

〉 ≥ 0

and hence
〈
pn+1 − pn,p∗ − pn+1

〉− k
〈
Axn+1 + a,p∗ − pn+1

〉 ≥ 0. (35)

By summing up (34) and (35) and taking into account the monotonicity of the
gradient, that is, 〈∇ϕ(xn+1)− ∇ϕ(x∗), xn+1 − x∗〉 ≥ 0, we get:

〈
xn+1 − xn, x∗ − xn+1

〉+ 〈
pn+1 − pn,p∗ − pn+1

〉 ≥ 0. (36)

Using the identity:

|p1 − p2|2 = |p1 − p3|2 + 2〈p1 − p3,p3 − p2〉 + |p3 − p2|2,

the scalar product can be expanded into the sum of the squares:

|xn+1 − x∗|2 + |pn+1 − p∗|2 + |xn+1 − xn|2 + |pn+1

− pn|2 ≤ |xn − x∗|2 + |pn − p∗|2.
The latter indicates that by increasing n the quantity |xn − x∗|2 + |pn − p∗|2 will
decrease monotonically. By summing up the above inequality from n = 0 to n = N ,
it is obtained that

|xN+1 − x∗|2 + |pN+1 − p∗|2 +
N∑

k=0

(|xk+1

− xk|2 + |pk+1 − pk|2) ≤ |x0 − x∗|2 + |p0 − p∗|2.
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This last inequality implies the boundedness of the trajectory |xN+1−x∗|2+|pN+1−
p∗|2 ≤ |x0 − x∗|2 + |p0 − p∗|2, the convergence of the series

∑∞
k=0 |xk+1 − xk|2 <

∞,
∑∞

k=0 |pk+1 − pk|2 < ∞ and, therefore, the tendency to zero of the quantities
|xn+1 − xn|2 → 0 and |pn+1 − pn|2 → 0 when n→∞.

Since the sequence {xn,pn} is bounded, then there exists an element
(
x
′
,p

′)
,

such that xni → x
′
,pni → p

′
when ni → ∞, while |xni+1 − xni |2 → 0 and

|pni+1 − pni |2 → 0.
Finally, by passing to limit in the inequality (29) for all ni →∞, we arrive to

〈∇ϕ(x
′
)+ ATp

′
, x − x

′ 〉 ≥ 0, x ≥ 0,

Ax
′ + a = 0.

These inequalities coincide with (30); therefore, x
′ = x∗,p′ = p∗ ∈ R

n+× ∈
R

m, that is, any limit point of the sequence {xn,pn} is a solution to our problem.
Additionally, monotone decreasing of the quantity |xn − x∗|2 + |pn − p∗|2 ensures
uniqueness of the limit point, and also convergence in the sense xn → x∗,pn → p∗
for n→∞.

Thus, we have shown that, in regular case, the problem of a finite-dimensional
convex programming is equivalent to the calculation of the saddlepoint of the La-
grange function. We have also established that by using the so-called augmented (or
regularized) Lagrangian, one can construct the gradient-type methods which con-
verge monotonically (in the space norm) to the saddlepoint of Lagrange function. It
is worth noting that first component of the saddlepoint provides solution of the direct
(primary) problem, while its second component engenders solution of the dual one.
Other methods of similar type can be found in [5].

Problem (5)–(8) and its particular cases are classified as problems of convex
programming formulated in functional spaces; therefore, this approach can be applied
to optimal control problems with boundary conditions at the end points of the time
interval.

4 Reduction of the Optimal Control Problem to Computation
of Lagrangian’s Saddlepoint

Problems (6)–(8) can be formally viewed as convex programming problems
formulated in the Hilbert space R

n × Ln
2[t0, t1]× Lr

2[t0, t1] of infinite dimension.
Let us introduce the Lagrange function:

L (p1, x1,ψ(·), x(·), u(·)) = ϕ1(x1)+ 〈p1,A1x1 + a1〉

+
∫ t1

t0

〈
ψ(t),D(t)x(t)+ B(t)u(t)− d

dt
x(t)

〉
dt , (37)

for all p1 ∈ R
m, x1 ∈ R

n, (x(·), u(·)) ∈ AC[t0, t1]× U ⊆ Ln
2[t0, t1]× Lr

2[t0, t1], and
ψ(·) ∈ Ψ n

2 [t0, t1] ⊆ Ln
2[t0, t1]	. Here, Ψ n

2 [t0, t1] is a linear manifold of absolutely
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continuous functions which is dense in Ln
2[t0, t1]. In other words, the closure of this

manifold Ψ n
2 [t0, t1] in the norm of Ln

2[t0, t1] coincides with Ln
2[t0, t1]. Each element

ψ(·) ∈ Ψ n
2 [t0, t1] is treated as a normal of a linear functional:

∫ t1

t0

〈ψ(t), x(t))〉 dt (38)

of the dual space Ln
2[t0, t1]	 of linear functionals (38) defined on ACn[t0, t1] ⊂

Ln
2[t0, t1] for all admissible u(·) ∈ U ⊂ Lr

2[t0, t1]. Alternatively, Ψ n
2 [t0, t1] can be

viewed as a “dual image” of all possible trajectories x(·) ∈ ACn[t0, t1] for underlying
u ∈ U of the primal differential equation (10) in the dual space Ln

2[t0, t1]	 of linear
functionals (38). Therefore, Ψ n

2 [t0, t1] describes a linear subspace of solutions to
homogeneous differential equation:

d

dt
ψ(t)+DT(t)ψ(t) = 0, (39)

also known as adjoint equation. Additionally, the kernel of primal Eq. (10) is or-
thogonal to the image of adjoint equation (39) and the kernel of (39) is orthogonal
to the image of (10). The latter is attributed to the fact that Hilbert space Ln

2[t0, t1] is
self-adjoint.

According to [17], in the regular case (i.e., under Slater’s condition), problem
(6)–(8) always has a solution reducible to computation of a saddlepoint of the
Lagrangian (37).

Naturally, a saddlepoint
(
(p∗1 ,ψ∗(·)), (x∗1 , x∗(·), u∗(·))) of Lagrange function is

formed by dual
(
p∗1 ,ψ∗(·)) and direct

(
x∗1 , x∗(·), u∗(·)) components and must satisfy

by definition the system of inequalities:

ϕ1(x∗1 )+ 〈p1,A1x
∗
1 + a1〉 +

∫ t1

t0

〈
ψ(t),D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

〉
dt

≤ ϕ1(x∗1 )+ 〈p∗1 ,A1x
∗
1 + a1〉 +

∫ t1

t0

〈
ψ∗(t),D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

〉
dt

≤ ϕ1(x1)+ 〈p∗1 ,A1x1 + a1〉 +
∫ t1

t0

〈
ψ∗(t),D(t)x(t)+ B(t)u(t)− d

dt
x(t)

〉
dt , (40)

for all p1 ∈ R
m,ψ(·) ∈ Ψ n

2 [t0, t1] ⊂ Ln
2[t0, t1]	, x1 ∈ R

n, (x(·), u(·)) ∈ ACn[t0, t1]×
U ⊂ Ln

2[t0, t1]× Ln
2[t0, t1]	, x(t0) = x0.

The left-hand inequality of this system represents a maximization problem of a
linear function depending on the variables (p1,ψ(·)) over the domain R

m×Ψ n
2 [t0, t1].

This inequality yields:

〈p1 − p∗1 ,A1x
∗
1 + a1〉

+
∫ t1

t0

〈
ψ(t)− ψ∗(t),D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

〉
dt ≤ 0, (41)
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where p1 ∈ R
m,ψ(·) ∈ Ψ n

2 [t0, t1]. Due to linearity with respect to p1,ψ(·), the last
inequality holds, if and only if,

A1x
∗
1 + a1 = 0, D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t) = 0, x(t0) = x0. (42)

The right-hand inequality of the system (40) represents a minimization problem of
Lagrange function with respect to the variables x1, x(·), u(·) for fixed values p1 =
p∗1 ,ψ(·) = ψ∗(t). Let us show that the system of vectors (p∗1 , x∗1 ,ψ∗(·), x∗(·), u∗(·))
is a solution of the problem (6)–(8). In view of (42), it follows from the right-hand
inequality of (40) that

ϕ1(x∗1 ) ≤ ϕ1(x1)+ 〈p∗1 ,A1x1 + a1〉 +
∫ t1

t0

〈
ψ∗(t),D(t)x(t)+ B(t)u(t)− d

dt
x(t)

〉
dt ,

(43)

for all x1 ∈ R
n, (x(·), u(·)) ∈ ACn[t0, t1],×U . Under the conditions

〈p∗1 ,A1x1 + a1〉 = 0,
∫ t1

t0

〈
ψ∗(t),D(t)x(t)+ B(t)u(t)− d

dt
x(t)

〉
dt = 0,

the inequality (43) results in an optimization problem:

ϕ1(x∗1 ) ≤ ϕ1(x1), (44)

subject to equality-type constraints

〈p∗,A1x1 + a1〉 = 0,
∫ t1

t0

〈
ψ∗(t),D(t)x(t)+ B(t)u(t)− d

dt
x(t)

〉
dt = 0 (45)

for all x1 ∈ R
n, (x(·), u(·)) ∈ ACn[t0, t1],×U .

From (42), it follows that x∗1 , x∗(t), u∗(t) are solutions to these vector equations.
On the other hand, there exists u∗(t) that engenders x∗(t) and x∗1 which is a minimizer
of (44) under scalar constraints (45). Solution sets of (44) and (45) are “wider” than
those engendered by vector constraints (42) in the sense that all solutions of (42) are
contained in the solution sets of (44) and (45).

Therefore, x∗1 , x∗(t), u∗(t) (as elements of “wider” solution sets of (44) and
(45) under scalar constraints) will also belong to a “narrower” subset of solutions
corresponding to vector constraints (43), that is,

ϕ1(x∗1 ) ≤ ϕ1(x1) (46)

subject to

A1x1 + a1 = 0, x1 ∈ R
n,

d

dt
x(t) = D(t)x(t)+ B(t)u(t), x(t0) = x0, u(·) ∈ U , (47)
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for all x1 ∈ R
n, (x(·), u(·)) ∈ ACn[t0, t1],×U . In other words, the saddlepoint of the

Lagrange function (37) is a solution to the original problem (6)–(8).
The converse statement (including infinite-dimensional cases) is known as

Karush–Kuhn–Tucker theorem or KKT theorem (see, e.g., [17, 20]). In consequence,
if the Lagrangian (37) has a saddlepoint, then its components provide both primal and
dual solutions of the original convex programming problem in infinite-dimensional
space.

5 Augmented Lagrangian Approach

Lagrange function (37), as well as any function of two variables, always engenders
a function of minima (and a function of maxima):

Θ(p1,ψ(t))=min
{
L(p1, x1,ψ(·), x(·), u(·))∣∣(x1, x(·), u(·))∈R

n×ACn[t0, t1]×U
}
.

In regular finite-dimensional case, the function of minima is concave; moreover,
its maximum coincides with the saddle value of the Lagrangian and is attained at
p1 = p∗1 ,ψ(·) = ψ∗(·). This point is referred to as dual solution of the convex
programming problem. Function Θ(p1,ψ(·)) is also known as dual function (see
[27]). It may seem that by employing the properties of dual function, one could have
applied the gradient approach for calculation of its maximum point and thus to find
a solution of the original problem. However, in general (even in finite-dimensional)
case this function is not differentiable (only subdifferentiable); therefore, its gradient
does not satisfy the Lipschitz condition, as compelled by convergence requirements
of the gradient methods. A similar approach was effectively applied to some game-
theoretical problems (see [28–30]).

However, Lagrange function is tolerable to various modifications (see, e.g., [1,
11, 22]) due to its linearity in dual variable; in particular, it admits a quadratic
regularization with respect to constraints. In this case, the dual function acquires good
properties of smoothness, becomes differentiable and its gradient satisfies Lipschitz
condition. All this avails for the formulation of gradient-type methods aimed at
maximization of the dual function. Around this fact, various authors (see, e.g., [1,
11, 22] and references therein) had developed an extensive theory for calculation
of saddlepoints of convex–concave functions; the latter also fits into more general
framework of the theory aimed at the calculation of fixed points in the context of
equilibrium programming problems [4–6].

Naturally, all stated above refers to the finite-dimensional theory. A similar
approach for optimal control problems was initially proposed in [8]. Generally
speaking, such an approach appears to be rather promising and evokes various
generalizations.

This chapter is focused on an optimal control problem with boundary conditions
at both endpoints of the time interval which are given in the form of convex program-
ming problems. In view of the foregoing, we introduce an augmented Lagrangian
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for optimal control problem (6)–(8) in the form:

M (p1, x1,ψ(·), x(·), u(·)) = ϕ1(x1)+ 1

2k
|p1 + k (A1x1 + a1)|2 − 1

2k
|p1|2

+ 1

2k

∫ t1

t0

∣∣∣∣ψ(t)+ k

(
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

)∣∣∣∣

2

dt − 1

2k

∫ t1

t0

|ψ(t)|2dt

(48)

which is defined for all p1 ∈ R
m, x1 ∈ R

n, ψ(·) ∈ Ψ n
2 [t0, t1]	, x(·) ∈ ACn[t0, t1],

u(·) ∈ U , x(t0) = x0.
Its saddle point

(
p∗1 , x∗1 ,ψ∗(·), x∗(·), u∗(·)), formed by the primal

(
x∗1 , x∗(·), u∗(·))

and dual
(
p∗1 ,ψ∗(·)) solutions of the original optimal control problem (6)–(8), must

satisfy (according to definition) the following system of inequalities:

M
(
p1, x∗1 ,ψ(·), x∗(·), u∗(·)) ≤ M

(
p∗1 , x∗1 ,ψ∗(·), x∗(·), u∗(·))

≤ M
(
p∗1 , x1,ψ∗(·), x(·), u(·)),

for all p1 ∈ R
m, x1 ∈ R

n,ψ(·) ∈ Ψ n
2 [t0, t1]	, x(·) ∈ ACn[t0, t1], u(·) ∈ U .

In finite-dimensional case, the dual function (or function of minima), engendered
by an augmented Lagrangian is concave, differentiable, and its gradient satisfies the
Lipschitz condition [11]. It could be rather interesting to analyze the behavior and
properties of the function:

ΘM (p1,ψ(·)) = min
{
M (p1, x1,ψ(·), x(·), u(·)) ∣∣ (49)

(x1, x(·), u(·)) ∈ R
n × ACn[t0, t1]× U

}

under (regular) infinite-dimensional settings. Effectively, there are two possible ap-
proaches for further development of solution methods for optimal control problems,
namely:

1. To seek for a saddlepoint
(
(p∗1 ,ψ∗(·)), (x∗1 , x∗(·), u∗(·))) of the augmented

Lagrangian (48).
2. To seek for a maximum point (p∗1 ,ψ∗(·)), of the dual function (49). Then, using

(p∗1 ,ψ∗(·)), it will be easy to find (x∗1 , x∗(·), u∗(·)).
In the second item, we have a maximization problem of dual function that plays a
role of Lyapunov function, and thus ensures stability of the maximum (unlike the
first item, where no classical Lyapunov function can appear in principle, except for
some symmetry cases).

Formally, this maximization problem with respect to dual variables can be ar-
ticulated as a solution of the following system: find p1 = p∗1 ,ψ(·) = ψ∗(·) such
that

x∗1 , x∗(·), u∗(·) ∈ Argmin

{
ϕ1(x1)+ 1

2k

∣∣p∗1 + k (A1x1 + a1)
∣∣2 − 1

2k

∣∣p∗1
∣∣2

+ 1

2k

∫ t1

t0

∣∣∣∣ψ
∗(t)+ k

(
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

)∣∣∣∣

2

dt
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− 1

2k

∫ t1

t0

∣∣ψ∗(t)
∣∣2 dt

∣∣ x1 ∈ X1, (x(·), u(·)) ∈ ACn[t0, t1]× U

}
,

(50)

and

p∗1 = p∗1 + k
(
A1x

∗
1 + a1

)
, (51)

ψ∗(t) = ψ∗(t)+ k

(
D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

)
. (52)

In other words, one should choose p1 = p∗1 and ψ(·) = ψ∗(·) such that

A1x
∗
1 + a1 = 0, D(t)x∗(t)+ B(t)u∗(t) = d

dt
x∗(t). (53)

Let us formulate a method of simple iteration, which in our case is, in effect, a
gradient method aimed at maximization of the dual function Θ(p,ψ(·)).

Let an approximation
(
pn

1 ,ψn(t)
) ∈ R

m ×Ψ n
2 [t0, t1]	 be given; then by solving a

problem of quadratic optimization:

xn+1
1 , xn+1(·), un+1(·) ∈ Argmin

{
M(pn

1 , x1,ψn(·), x(·), u(·)) ∣∣

(x1, x(·), u(·)) ∈ R
n × ACn[t0, t1]× U

}
, (54)

we can find its solution xn+1
1 , xn+1(·), un+1(·). Then we should calculate the gradient

values of the dual function, that is,A1x
n+1
1 +a1,D(t)xn+1(t)+B(t)un+1(t)− d

dt x
n+1(t)

and finally perform a gradient step according to the formulas:

pn+1
1 = pn

1 + k
(
A1x

n+1
1 + a1

)
, (55)

ψn+1(t) = ψn(t)+ k

(
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

)
. (56)

Strictly speaking, this routine is known in finite-dimensional spaces as an augmented
Lagrangian method. It transforms an optimal control problem into customary op-
timization problem. However, the convergence properties of this method are not
good enough for the invention of efficient numerical routines. This method has a
property of monotone decreasing (in the space norm) only with respect to dual vari-
ables; moreover, it imposes some boundedness restrictions on underlying sequences
of primal variables.

6 Saddlepoint Method of Augmented Lagrangian

In this section, we consider a variant of the process (54)–(56) under regularization
with respect to primal variables at each step of the process (see also [4]), namely:

xn+1
1 , un+1(·), xn+1(·) ∈ argmin

{
|x1 − xn

1 |2 +
∫ t1

t0

|x(t)− xn(t)|2dt (57)
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+
∫ t1

t0

|u(t)− un(t)|2dt + k M(pn
1 , x1,ψn(·), x(·), u(·) ∣∣

x1 ∈ R
n, (x(·), u(·)) ∈ ACn[t0, t1]× U

}
,

pn+1
1 = pn

1 + k(A1x
n+1
1 + a1), (58)

ψn+1(t) = ψn(t)+ k

(
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

)
, (59)

where x(t0) = x0. Naturally, when the first three quadratic terms of the objective
function (57) are missing, we arrive to the problem (54)–(56).

At each step of this process, we solve a problem of quadratic optimization, whose
unique minimizer is then used in order to recalculate the following approximation
with respect to dual variables (pn+1,ψn+1(·)). To perform these operations, we need
some variational inequalities characterizing the optimal solutions. These inequalities
involve the calculation of gradients of the augmented Lagrangian.

Let us consider in more details the differentiation of a quadratic function. In
fact, this procedure is well-known and involves transition to the conjugate linear
operators. Despite of peculiarities of linear differential operators and bulkiness of
resulting formulas, we have to perform the differentiation of a quadratic function.
Using the increment of quadratic function in the form:

1

2
|A (x +�x)+ a|2 − 1

2
|Ax + a|2 = 〈AT(Ax + a),�x〉 + 1

2
|A�x|2,

let us write down a similar increment of augmented Lagrangian with respect to primal
variables and for fixed values of p,ψ(t):

M(p1, x1 +�x1,ψ(·), x(·)+�x(·), u(·)+�u(·))−M(p1, x1,ψ(·), x(·), u(·))

= ϕ1(x1 +�x1)− ϕ1(x1)+ 〈p1 + k (A1x1 + a1),A1�x1〉 + k

2
|A1�x1|2

+
∫ t1

t0

〈
ψ(t)+k

(
D(t)x(t)+B(t)u(t)− d

dt
x(t)

)
,D(t)�x(t)+B(t)�u(t)− d

dt
�x(t)

〉
dt

+ k

2

∫ t1

t0

∣∣∣∣D(t)�x(t)+ B(t)�u(t)− d

dt
�x(t)

∣∣∣∣

2

dt.

Hence, using the transition formulas to conjugate linear operators:

〈ψ ,Dx〉 = 〈DTψ , x〉, 〈ψ ,Bu〉 = 〈BTψ , u〉 (60)

together with integration by parts on the interval [t0, t1],

〈ψ(t1), x(t1)〉 − 〈ψ(t0), x(t0)〉 =
∫ t1

t0

〈
d

dt
ψ(t), x(t)

〉
dt +

∫ t1

t0

〈
ψ(t),

d

dt
x(t)

〉
dt.

(61)



18 A. Antipin and O. Vasilieva

we can write the linear part of the increment in the following form:

�M(�x(·),�u(·)) = 〈∇ϕ1(x1),�x1〉 + 〈AT
1 (p1 + k (A1x1 + a1) ),�x1〉 (62)

+
∫ t1

t0

〈
DT(t)

(
ψ(t)+ k

[
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

])
,�x(t)

〉
dt

+
∫ t1

t0

〈
BT(t)

(
ψ(t)+ k

[
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

])
,�u(t)

〉
dt

+
∫ t1

t0

〈
d

dt

(
ψ(t)+ k

[
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

])
,�x(t)

〉
dt

−
(〈

ψ(t1)+ k

[
D(t)x(t1)+ B(t)u(t1)− dx

dt
(t1)

]
,�x1

〉

−
〈
ψ(t0)+ k

[
D(t)x(t0)+ B(t)u(t0)− dx

dt
(t0)

]
,�x0

〉)
.

This linear part of the increment is a differential, i.e., a tangent plane to the augmented
Lagrangian at any point (x1, x(·), u(·)) under fixed values of dual variables (p1,ψ(·)).

Using this differential, we can write now a variational inequality to be satisfied
by the solution of the problem (57) by way of the necessary and sufficient condition
for a minimum:

〈
xn+1

1 − xn
1 , x1 − xn+1

1

〉+
∫ t1

t0

〈
xn+1(·)− xn(·), x(·)− xn+1(·)〉dt

+ k
〈∇ϕ1(xn+1

1 ), x1 − xn+1
1

〉+ k
〈
AT

1

(
pn

1 + k
(
A1x

n+1
1 + a1

) )
, x1 − xn+1

1

〉

+ k

∫ t1

t0

〈
DT(t)

(
ψn(t)+k

[
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

])
, x(t)−xn+1(t)

〉
dt

+ k

∫ t1

t0

〈
d

dt

(
ψn(t)+ k

[
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

])
, x(t)− xn+1(t)

〉
dt

− k

(〈
ψn(t1)+ k

[
D(t)xn+1(t1)+ B(t)un+1(t1)− dxn+1

dt
(t1)

]
, x(t1)− xn+1(t1)

〉

−
〈
ψn(t0)+ k

[
D(t)xn+1(t0)+ B(t)un+1(t0)− dxn+1

dt
(t0)

]
, x(t0)− xn+1(t0)

〉)

+ k

∫ t1

t0

〈
BT(t)

(
ψn(·)+k

[
D(t)xn+1(·)+B(t)un+1(·)− d

dt
xn+1(·)

])
, u(·)−un+1(·)

〉
dt

+
∫ t1

t0

〈un+1(·)− un(·), u(·)− un+1(·)〉dt ≥ 0. (63)

Additionally, this differential permits to derive the necessary (and, in our case, also
sufficient) condition for the minimum of augmented Lagrangian at the point p1 =
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p∗1 ,ψ(t) = ψ∗(t). Thus, a saddlepoint of augmented Lagrangian (and, therefore, of
traditional Lagrangian) can be characterized by a variational inequality of the form:

〈∇ϕ1(x∗1 ), x1 − x∗1
〉+ 〈

AT
1 (p

∗
1 + k

(
A1x

∗
1 + a1

) )
, x1 − x∗1

〉

+
∫ t1

t0

〈
DT(t)

(
ψ∗(t)+ k

[
D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

])
, x(t)− x∗(t)

〉
dt

+
∫ t1

t0

〈
BT(t)

(
ψ∗(t)+ k

[
D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

])
, u(t)− u∗(t)

〉
dt

+
∫ t1

t0

〈
d

dt

(
ψ∗(t)+ k

[
D(t)x∗(t)+ B(t)u∗(t)− d

dt
x∗(t)

])
, x(t)− x∗(t)

〉
dt

−
〈
ψ∗(t1)+ k

[
D(t)x∗(t1)+ B(t)u∗(t1)− dx∗(t1)

dt

]
, x1 − x∗1

〉

+
〈
ψ∗(t0)+ k

[
D(t)x∗(t0)+ B(t)u∗(t0)− dx(t0)

dt

]
, x0 − x∗0

〉
≥ 0, (64)

for all x1 ∈ R
n, (x(·), u(·)) ∈ ACn[t0, t1]×U , where x(t0) = x0, x(t1) = x1, ψ(t0) =

ψ0, u(t0) = u0.
Given the conditions (51), (52), in particular (52), for t = t0 and t = t1, we can

reduce (64) to the form:

〈∇ϕ1(x∗1 ), x1 − x∗1 〉 + 〈AT
1p

∗
1 , x1 − x∗1 〉

+
∫ t1

t0

〈
DT(t)ψ∗(t)+ d

dt
ψ∗(t), x(t)− x∗(t)

〉
dt

+
∫ t1

t0

〈BT(t)ψ∗(t), u(t)−u∗(t)〉dt−〈ψ∗(t1), x1−x∗1 〉+〈ψ∗(t0), x0−x∗0 〉 ≥ 0, (65)

for all x1 ∈ R
n, (x(·), u(·)) ∈ ACn[t0, t1] × U . The last term in (65) vanishes since

x(t0) = x0 = x∗0 .
Hence,

〈∇ϕ1(x∗1 )+ AT
1p

∗
1 − ψ∗(t1), x1 − x∗1 〉

+
∫ t1

t0

〈
DT(t)ψ∗(t)+ d

dt
ψ∗(t), x(t)− x∗(t)

〉
dt

+
∫ t1

t0

〈BT(t)ψ∗(t), u(t)− u∗(t)〉dt ≥ 0.

The resulting variational inequality can be viewed as a minimization problem of a
linear function on the Cartesian product of R

n×ACn[t0, t1]×U with respect to the
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variables x1, x(t), u(t). This problem naturally splits into two independent ones, each
with respect to its own variables:

〈∇ϕ1(x∗1 )+ AT
1p

∗
1 − ψ∗(t1), x1 − x∗1 〉

+
∫ t1

t0

〈
DT(t)ψ∗(t)+ d

dt
ψ∗(t), x(t)− x∗(t)

〉
dt ≥ 0,

∫ t1

t0

〈
BT(t)ψ∗(t), u(t)− u∗(t)

〉
dt ≥ 0. (66)

The upper inequality of (66) can be viewed as a minimization problem with respect
to the variables x1, x(·) ∈ R

n × ACn[t0, t1]; therefore, it can be rewritten as:

d

dt
ψ∗(t)+DT(t)ψ∗(t) = 0, ψ∗(t1) = ∇ϕ1(x∗1 )+ AT

1p
∗
1 . (67)

Bringing together (51), (52), (66), and (67), we obtain:

d

dt
x∗(t) = D(t)x∗(t)+ B(t)u∗(t), x(t0) = x0, x(t1) = x∗1 , (68a)

p∗1 = p∗1 + k(A1x
∗
1 + a1), (68b)

d

dt
ψ∗(t)+DT(t)ψ∗(t) = 0, ψ∗(t1) = ∇ϕ1(x∗1 )+ AT

1p
∗
1 , (68c)

∫ t1

t0

〈BT(t)ψ∗(t), u(t)− u∗(t)〉dt ≥ 0, (68d)

for all u(·) ∈ U . Thus, it has been shown that any solution of (50)–(52) is a solution
of (60) as well. The converse assertion also holds.

System (60) was obtained parting from the augmented Lagrangian. However, the
same system can be obtained by dealing with traditional Lagrangian, since both
functions equally characterize the saddlepoint which is the same for both Lagrange
functions. Actually, the terminal differential system (60) reflects that its solution is
exactly a saddlepoint of the Lagrange function (37) or (48). Variational inequality
(68d) is also known as an integral maximum principle (see more details in ([27],
p. 671)).

If U is convex, then the traditional maximum principle of L.S. Pontryagin results
from its integral form:

d

dt
x∗(t) = D(t)x∗(t)+ B(t)u∗(t), (69a)

p∗1 = p∗1 + k(A1x
∗
1 + a1), (69b)

d

dt
ψ∗(t)+DT(t)ψ∗(t) = 0, ψ∗(t1) = ∇ϕ1(x∗1 )+ AT

1p
∗
1 , (69c)

〈
BT(t)ψ∗(t), u− u∗(t)

〉 ≥ 0, (69d)
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for all u ∈ U at any instant t of the time interval [t0, t1]. Here, we can clearly see
that (68d) and (69d) are different variational inequalities with respect to the variables
u(·) ∈ U . The first one is the problem of maximizing a linear function on the set
U ⊂ Lr

2[t0, t1] in functional space, while the second inequality represents a family
of finite-dimensional variational inequalities depending on the parameter t ∈ [t0, t1],
each of which is a finite-dimensional problem of maximizing a linear function with
respect to u. Undoubtedly, the system (70) is stronger than (60) in the sense that (70)
can be formulated under no convexity of U . However, (60) clearly emphasizes its
“saddle” nature, and permits to design solution techniques (within the frameworks
of Hilbert space) possessing convergence to the solution of original problem with
respect to all of its variables—control functions, state trajectories, adjoint functions,
primal, and dual variables of the optimization problems at the end points. The authors
are not apprised of any similar method based on the maximum principle.

Turning back to the boundary value problem (60), it is worth to emphasize again
that even though (50)–(52) and (60) look rather different, they are equivalent indeed,
and each of them can be solved by formally different methods. If these methods are
properly justified, they will always yield the same result.

In this work, a numerical process of the form (57)–(59) is proposed for the solution
of the system (50)–(52). Therefore, we should prove its convergence. In order to
proceed, we need some essential facts from functional analysis. It seems reasonable
to collect these facts in a separate section, and then get back to the proof of the
convergence theorem.

7 Properties of Weak Convergence Applied to Linear Dynamics

1. Equation (68a) with initial condition, that is,

d

dt
x(·) = D(t)x(·)+ B(t)u(·), x(t0) = x∗0 , (70)

engenders two operators Fu(·) = x[u(·)] = x(·) and F1u(·) = x[u(·)]|t=t1 =
x(t1), which assign to each control u(·) ∈ U an underlying trajectory x(·) and
its right-hand end points (see ([27], vol. 2, p. 652) for more details). Similarly,
equation (68c):

d

dt
ψ(·)+DT(·)ψ(·) = 0, ψ(t1) = ∇ϕ1(x1)+ AT

1p1, (71)

generates a linear operator F0ψ(t1), that associates each terminal value of ψ(t1)
at the right-hand end points of the interval [t0, t1] with an underlying adjoint
trajectory ψ(·) = F0ψ(t1). The operators Fu(·), F1u(·), F0ψ(t1) are linear and
unequivocal; this is attributed to the linearity of differential equations (70) and
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(71), and uniqueness of its solutions with assigned initial and terminal condition,
respectively. Indeed, the linearity implies that for

d

dt
αx

′
(·) = D(t)αx

′
(·)+ B(t)αu

′
(·), x

′
(t0) = 0,

d

dt
βx

′′
(·) = D(t)βx

′′
(·)+ B(t)βu

′′
(·), x

′′
(t0) = 0,

we have

d

dt
(αx

′
(·)+ βx

′′
(·)) = D(t)(αx

′
(·)+ βx

′′
(·))+ B(t)(αx

′
(·)+ βx

′′
(·)),

where αx
′
(t0) + βx

′′
(t0) = 0. Hence, F (αu

′
(·) + βu

′′
(·)) = αFu

′
(·) + βFu

′′
(·)

and u
′
(·), u

′′
(·) ∈ U ⊂ PC([t0, t1]); in particular, for t = t1 we have F (αu

′
(t1)+

βu
′′
(t1)) = αFu

′
(t1)+βFu

′′
(t1). The latter implies that the operatorsFu(·),F1u(·)

are linear, and their images are convex sets. The same results hold for the operator
F0ψ(t1) under similar justification.

2. The operators Fu(·) and F1u(·) are bounded (see more details in ([27], vol. 2,
p. 653)). Let us show this for the operator F1u(·). Indeed, from (7), we have

|x[u(t)]| =
∣∣∣∣

∫ τ

t0

(D(τ )x[u(τ )]+ B(τ )u(τ ))dτ

∣∣∣∣

≤ Dmax

∫ τ

t0

∣∣x[u(τ )]
∣∣dτ + Bmax

∫ τ

t0

∣∣u(τ )
∣∣dτ ,

where Dmax = ‖D(t)‖L∞ ,Bmax = ‖B(t)‖L∞ . Hence, using the Gronwall lemma
(see, e.g., ([27], vol. 2, p. 653)) together with Cauchy–Bunyakovsky–Schwarz
inequality, we obtain:

|x[u(t)]| ≤ eDmax·t1 ·Bmax

∫ τ

t0

∣∣u(τ )
∣∣dτ ≤ K0

(∫ τ

t0

|u(τ )|2dτ

)1/2

for all u(t) ∈ U , t ∈ [t0, t1]. Here, K0 = eDmax·t1Bmax
√
t1. The last estimate can

be written as:
∣∣x[u(·)]∣∣ = ∥∥Fu(·)∥∥ ≤ ‖F‖∣∣u(·)∣∣. (72)

In particular, this estimate holds for t = t1 and yields:
∣∣∣x[u(t)]|t=t1

∣∣∣ = ‖F1u‖ ≤ ‖F1‖|u|, (73)

where ‖F‖ ≤ K0, ‖F1‖ ≤ K0. The boundedness of the set U implies the bound-
edness of image sets F (U ),F1(U ), and hence the boundedness of the operators
F ,F1. From the estimate (73), it follows that the set of attainability X(t1) should
also be bounded. Let us recall that, for linear operators, their boundedness always
implies continuity, that is, if |un(·) − u

′
(·)| → 0, then ‖Fun(·) − Fu

′
(·)‖ → 0
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when n → ∞. In this case, one speaks of strong convergence and strong con-
tinuity of Fu(·), i.e., convergence and continuity in the norm of Hilbert space.
All said above equally applies to the operator F1u(·), where its convergence and
continuity are understood in the sense of finite-dimensional Euclidean space.
We can prove the boundedness of linear operator F0ψ(t1) in a similar way. On
the other hand, its boundedness can be also proved by applying the theorems
on stability of linear ODE solutions with regards to perturbations in their initial
conditions.

3. The differential equation (70) can be written in terms of the operator Fu(·) as:

x(·) = Fu(·), (74)

for all u(·) ∈ U . Let us consider the behavior of Eq. (74) on weakly convergent
sequences (see formal definition of weak convergence in Hilbert spaces in ([15],
p. 114) or ([18], p. 208) among other books). Before doing so, it will be helpful
to recall the formal definition of a weakly convergent sequence. It is said that a
sequence of elements of uk(t) ∈ U converges weakly to an element u

′
(t) ∈ U ,

if the sequence of linear functionals
∫ t1
t0
〈uk(t), c(·)〉dt converges pointwise to a

linear functional
∫ t1
t0
〈u′ (t), c(·)〉dt for any c(·) ∈ U .

Suppose that the sequence uk(t) ∈ U ⊂ Lr
2[t0, t1] converges weakly to an element

u
′
(t) ∈ U . It can be shown that the image of this sequence under the mapping F

weakly converges to Fu
′
(t). The latter is done by considering a logical chain (for

details, see ([27], vol. 2, p. 651)):

lim
k→∞

∫ t1

t0

〈
Fuk(t), c(·)〉dt = lim

k→∞

∫ t1

t0

〈
F Tc(·), uk(t)

〉
dt

=
∫ t1

t0

〈
F Tc(·), u

′
(t)

〉
dt =

∫ t1

t0

〈
Fu

′
(t), c(·)〉dt.

Last formula implies that Fuk(t) converges weakly to Fu
′
(t) when k → ∞. In

other words, Fu(·) is a weakly continuous mapping in Hilbert space Lr
2[t0, t1]. Its

strong continuity was demonstrated above.
The class of weakly continuous functions is significantly narrower than the class of
continuous functions. Actually, the first class of functions can be slightly extended
to the class of weakly lower semicontinuous functions2, since the latter class of
functions is especially useful for optimization problems, because within it one can
guarantee the existence of minima of convex optimization problems on weakly
compact sets. It is worthwhile to note that a convex lower semicontinuous function
on a convex set is weakly lower semicontinuous. In particular, the quadratic
function f (x) = |x|2, x ∈ X is also weakly lower semicontinuous on the convex
set [27].

2 Formal definition can be consulted in [16, p. 209] or other similar textbooks.
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4. Using the regularizing properties of quadratic functions, we can strengthen the
definition of the minimum for regularized functions of the form f (z) = 1

2 |z −
x|2 + αϕ(z), z ∈ X,α > 0 where ϕ(z) is a convex function. Let xα be a point of
minimum of f (z), z ∈ X for any α > 0. It is known (see, e.g., [14, 26]) that a
continuous convex function is subdifferentiable and, therefore, its subdifferential
∂f (z) at the minimum point contains a positive subgradient as a necessary and
sufficient condition for the minimum:

〈xα − x + α∇ϕ(xα), z − xα〉 ≥ 0, x ∈ X. (75)

Let us introduce an obvious identity:

1

2
|z − x|2 = 1

2
|z − xα|2 + 〈z − xα , xα − x〉 + 1

2
|xα − x|2

together with convexity condition:

ϕ(z) ≥ ϕ(xα)+ 〈∇ϕ(xα), z − xα〉, x ∈ X

and then sum up these two expressions taking into account the inequality (75) in
order to arrive to

1

2
|xα − x|2 + αϕ(xα) ≤ 1

2
|z − x|2 + αϕ(z)− 1

2
|z − xα|2. (76)

This inequality [3, 27] enhances the usual definition of the minimum of f (z) for
z ∈ X.

8 Proof of Convergence

In this section, we are going to prove that numerical process (57)–(59) converges
monotonically in norm to solution of the original problem (50)–(52) with respect to
controls, state trajectories, adjoint functions, and terminal variables.

Theorem 2 If the set of solutions of (60) is not empty and belongs to the space
R

m×R
n×Ψ n

2 [t0, t1]	×ACn[t0, t1]×U , and the terminal function ϕ1(x1) is convex
and differentiable, then the sequence (pn

1 , xn
1 ,ψn(·), xn(·), un(·)), generated by (57)–

(59) for any value of k > 0 converges weakly to the solution monotonically decreasing
in the norm.

Proof By settingx(·) = x∗(·), u(·) = u∗(·),ψ(·) = ψ∗(·) in the variational inequality
(63) we have

〈
xn+1

1 − xn
1 , x∗1 − xn+1

1

〉+
∫ t1

t0

〈
xn+1(t)− xn(t), x∗(t)− xn+1(t)

〉
dt

+ k
〈∇ϕ1

(
xn+1

1

)
, x∗1 − xn+1

1

〉+ k
〈
AT

1

(
pn

1 + k
(
A1x

n+1
1 + a1

) )
, x∗1 − xn+1

1

〉
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+ k

∫ t1

t0

〈
DT(t)

(
ψn(t)+k

(
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

))
, x∗(t)−xn+1(t)

〉
dt

+ k

∫ t1

t0

〈
d

dt

(
ψn(t)+k

(
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

))
, x∗(t)−xn+1(t)

〉
dt

− k
( 〈

ψn(t1)+ k

(
D(t)xn+1(t1)+ B(t)un+1(t1)− dxn+1

dt
(t1)

)
, x∗(t1)− xn+1(t1)

〉

−
〈
ψn(t0)+ k

(
D(t)xn+1(t0)+ B(t)un+1(t0)− dxn+1

dt
(t0)

)
, x∗(t0)− xn+1(t0)

〉 )

+ k

∫ t1

t0

〈
BT(t)

(
ψn(t)+k

(
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

))
, u∗(t)−un+1(t)

〉
dt

+
∫ t1

t0

〈un+1(t)− un(t), u∗(t)− un+1(t)〉dt ≥ 0. (77)

Using the transition formulas to conjugate linear operators (60) and (61), the
inequality (77) can be transformed to the form:

〈
xn+1

1 − xn
1 , x∗1 − xn+1

1

〉+
∫ t1

t0

〈
xn+1(t)− xn(t), x∗(t)− xn+1(t)

〉
dt

+ k
〈∇ϕ1(x

n+1
1 ), x∗1 − xn+1

1

〉+ k
〈
AT

1 (p
n
1 + k

(
A1x

n+1
1 + a1

)
), x∗1 − xn+1

1

〉

+ k

∫ t1

t0

〈
ψn(t)+k

(
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

)
,D(t)(x∗(t)−xn+1(t))

〉
dt

+ k

∫ t1

t0

〈
ψn(t)+k

(
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

)
,

d

dt
(x∗(t)−xn+1(t))

〉
dt

− k
( 〈

ψn(t1)+ k

(
D(t)xn+1(t1)+ B(t)un+1(t1)− dxn+1

dt
(t1)

)
, x∗(t1)− xn+1(t1)

〉

−
〈
ψn(t0)+ k

(
D(t)xn+1(t0)+ B(t)un+1(t0)− dxn+1

dt
(t0)

)
, x∗(t0)− xn+1(t0)

〉 )

+ k

∫ t1

t0

〈
ψn(t)+k

(
D(t)xn+1(t)+B(t)un+1(t)− d

dt
xn+1(t)

)
,B(t)(u∗(t)− un+1(t))

〉
dt

+
∫ t1

t0

〈un+1(t)− un(t), u∗(t)− un+1(t)〉dt ≥ 0. (78)
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Using (58) and (59), and taking into account the convexity of terminal functions, we
obtain:

〈
xn+1

1 − xn
1 , x∗1 − xn+1

1

〉+
∫ t1

t0

〈
xn+1(t)− xn(t), x∗(t)− xn+1(t)

〉
dt

+ k
(
ϕ1(x

∗
1 )− ϕ1(x

n+1
1 )

)− k
〈
AT

1p
n+1
1 , x∗1 + xn+1

1

〉

+ k

∫ t1

t0

〈
ψn+1(t),D(t)

(
x∗(t)−xn+1(t)

)+B(t)(u∗(t)−un+1(t))− d

dt
(x∗(t)−xn+1(t))

〉
dt

+
∫ t1

t0

〈un+1(t)− un(t), u∗(t)− un+1(t)〉dt ≥ 0. (79)

From the right-hand side of the inequality (40) for x1 = xn+1
1 , x(·) = xn+1(·), u(·) =

un+1(·), we have

k
(
ϕ1(x

n+1
1 )− ϕ1(x

∗
1 )+

〈
p∗1 ,A1(x

n+1
1 + x∗1 )

〉 ) (80)

+ k

∫ t1

t0

〈
ψ∗(t),D(t)(xn+1(t)−x∗(t))

+B(t)(un+1(t)−u∗(t))− d

dt
(xn+1(t)−x∗(t))

〉
dt≥0.

Summing up the inequalities (79) and (80) we arrive to the following one:
〈
xn+1

1 − xn
1 , x∗1 − xn+1

1

〉+ k
〈
pn+1

1 − p∗1 ,A1(x
∗
1 + xn+1

1 )
〉

+
∫ t1

t0

〈
xn+1(t)− xn(t), x∗(t)− xn+1(t)

〉
dt +

∫ t1

t0

〈
un+1(t)− un(t), u∗(t)− un+1(t)

〉
dt

+
∫ t1

t0

〈
ψn+1(t)− ψ∗(t),D(t)(x∗(t)− xn+1(t))+ B(t)(u∗(t)− un+1(t))

− d

dt
(x∗(t)− xn+1(t))

〉
dt ≥ 0. (81)

From (58) and (59), we have

k
〈
pn+1

1 − pn
1 − kA1

(
xn+1

1 + x∗1
)
,p∗1 − pn+1

1

〉

+ k

∫ t1

t0

〈
ψn+1(t)− ψn(t)− k

(
D(t)(xn+1(t)− x∗(t))+ B(t)(un+1 − u∗(t))

− d

dt
(xn+1(t)− x∗(t))

)
,ψ∗(t)− ψn+1(t))

〉
dt ≥ 0. (82)

Now, we can sum up (81) and (82) to obtain:
〈
xn+1

1 − xn
1 , x∗1 − xn+1

1

〉+ k
〈
pn+1

1 − pn
1 ,p∗1 − pn+1

1

〉
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+
∫ t1

t0

〈xn+1(t)− xn(t), x∗(t)− xn+1(t)〉dt +
∫ t1

t0

〈un+1(t)− un(t), u∗(t)− un+1(t)〉dt

+
∫ t1

t0

〈ψn+1(t)− ψn(t),ψ∗(t)− ψn+1(t)〉dt ≥ 0. (83)

Using the identity

|y1 − y2|2 = |y1 − y3|2 + 2〈y1 − y3, y3 − y2〉 + |y3 − y2|2, (84)

the scalar products can be expanded into the sum of the squares:

|xn+1
1 − x∗1 |2 + |xn+1

1 − xn
1 |2 + |pn+1

1 − p∗1 |2 + |pn+1
1 − pn

1 |2

+
∫ t1

t0

|xn+1(t)− x∗(t)|2dt +
∫ t1

t0

|xn+1(t)− xn(t)|2dt

+
∫ t1

t0

|un+1(t)− u∗(t)|2dt +
∫ t1

t0

|un+1(t)− un(t)|2dt

+
∫ t1

t0

|ψn+1(t)− ψ∗(t)|2dt +
∫ t1

t0

|ψn+1(t)− ψn(t)|2dt ≤ |xn
1 − x∗1 |2 + |pn

1 − p∗1 |2

+
∫ t1

t0

|xn(t)− x∗(t)|2dt +
∫ t1

t0

|un(t)− u∗(t)|2dt +
∫ t1

t0

|ψn(t)− ψ∗(t)|2dt. (85)

If the second, fourth, sixth, eighth, and tenth terms in the left-hand side of this
inequality are discarded, then we obtain the property of monotonically decreasing
sequence. Geometrically, this would mean that the ball of (n + 1)st iteration is
embedded in the ball nth iteration.

Summing up the inequalities of (85) with respect to n that runs from n = 0 to
n = N , we obtain:

∣∣xN+1
1 − x∗1

∣∣2 +
N∑

n=0

∣∣xn+1
1 − xn

1

∣∣2 + ∣∣pN+1
1 − p∗1

∣∣2 +
N∑

n=0

∣∣pn+1
1 − pn

1

∣∣2

+
∫ t1

t0

∣∣xN+1(t)− x∗(t)
∣∣2dt +

N∑

n=0

∫ t1

t0

∣∣xn+1(t)− xn(t)
∣∣2dt

+
∫ t1

t0

∣∣uN+1(t)− u∗(t)
∣∣2dt +

N∑

n=0

∫ t1

t0

∣∣un+1(t)− un(t)
∣∣2dt

+
∫ t1

t0

∣∣ψN+1(t)− ψ∗(t)
∣∣2dt +

N∑

n=0

∫ t1

t0

∣∣ψn+1(t)− ψn(t)
∣∣2dt

≤ ∣∣x0
1 − x∗1

∣∣2 + ∣∣p0
1 − p∗1

∣∣2 ++
∫ t1

t0

∣∣x0(t)− x∗(t)
∣∣2dt



28 A. Antipin and O. Vasilieva

+
∫ t1

t0

∣∣u0(t)− u∗(t)
∣∣2dt +

∫ t1

t0

∣∣ψ0(t)− ψ∗(t)
∣∣2dt.

This inequality implies the boundedness of the approximating sequence with respect
to direct and dual terminal variables, state trajectories, control functions, and adjoint
functions:

∣∣xN+1
1 − x∗1

∣∣2 + ∣∣pN+1
1 − p∗1

∣∣2 +
∫ t1

t0

∣∣xN+1(t)− x∗(t)
∣∣2dt +

∫ t1

t0

∣∣uN+1(t)− u∗(t)
∣∣2dt

+
∫ t1

t0

∣∣ψN+1(t)− ψ∗(t)
∣∣2dt ≤ ∣∣x0

1 − x∗1
∣∣2 + ∣∣p0

1 − p∗1
∣∣2 + ∣∣x0(t)− x∗(t)

∣∣2dt

+
∫ t1

t0

∣∣u0(t)− u∗(t)
∣∣2dt +

∫ t1

t0

∣∣ψ0(t)− ψ∗(t)
∣∣2dt , (86)

as well as convergence of the series:

N∑

n=0

∣∣xn+1
1 − xn

1

∣∣2 <∞,
N∑

n=0

∣∣pn+1
1 − pn

1

∣∣2 <∞,
∞∑

n=0

∫ t1

t0

∣∣xn+1(t)− xn(t)
∣∣2dt <∞,

∞∑

n=0

∫ t1

t0

∣∣un+1(t)− un(t)
∣∣2dt <∞,

N∑

n=0

∫ t1

t0

∣∣ψn+1(t)− ψn(t)
∣∣2dt <∞

and tendency to zero of the quantities:

∣∣xn+1
1 − xn

1

∣∣2 → 0,
∣∣Pn+1

1 − pn
1

∣∣2 → 0,
∫ t1

t0

∣∣xn+1(t)− xn(t)
∣∣2dt → 0,

∫ t1

t0

∣∣un+1(t)− un(t)
∣∣2dt → 0,

∫ t1

t0

∣∣ψn+1(t)− ψn(t)
∣∣2dt → 0, (87)

when n→∞.
Since the sequence (xn

1 ,pn
1 , xn(·), un(·),ψn(·)) is bounded in R

n × R
m ×

ACn[t0, t1] × U × Ψ n
2 [t0, t1]	, it is also weakly compact. According to [21], the

latter means that this sequence is univocally associated with a sequence of linear
functionals in dual spaces:

〈xn
1 , x〉, 〈pn

1 ,p〉, 〈xn(·), x(·)〉, 〈un(·), u(·)〉, 〈ψn(·),ψ(·)〉.
This sequence of linear functionals has a subsequence that converges pointwise (i.e.,
on each element of its own space), to the set of functionals:

l1(x), l2(p), l3(x(·)), l4(u(·)), l5(ψ(·)). (88)

It is also known that these functionals are linear and bounded. Moreover, the dual
spaces of Hilbert spaces are also complete Hilbert space (see more details in [21]).
Therefore, all components of the family (88) are elements of the corresponding dual
spaces. According to Riesz representation theorem (see, e.g., ([31], Theorem 18.6)
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or ([18], Theorem 4.6.4)), we can conclude that all functionals of the family (88)
have the form:

〈x ′1, x〉, 〈p′1,p〉, 〈x ′ (·), x(·)〉, 〈u′ (·), u(·)〉, 〈ψ ′
(·),ψ(·)〉.

Thus, we have shown that the sequence (57)–(59) generates a set of components
(x

′
1,p

′
1, x

′
(·), u

′
(·),ψ ′

(·)) that represents a weak limit (in the sense of pointwise
convergence of linear functionals) of a subsequence:

〈
x
ni
1 , x

〉
,

〈
p
ni
1 ,p

〉
,

〈
xni (·), x(·)〉, 〈

uni (·), u(·)〉, 〈
ψni (·),ψ(·)〉.

It is useful to recall (see [21] for further details), that in finite-dimensional (or Eu-
clidean) spaces, there is no difference between weak and strong convergence (with
respect to the space norm).

Now we can demonstrate that the set of components (x
′
1,p

′
1, x

′
(·), u

′
(·),ψ ′

(·)) is
a solution of the differential system (50)–(52) which is equivalent to the problems
(64) and (60).

To this end, we first present the problem (57) in the form of inequality (76) that
reflects more accurately the minimum properties of the regularized strongly convex
objective function. Then we revise this inequality together with the system (57)–(59)
on the elements of our subsequence:

1

2

∣∣xn+1
1 − xn

1

∣∣2 + 1

2

∫ t1

t0

∣∣xn+1(t)− xn(t)
∣∣2 dt + 1

2

∫ t1

t0

∣∣un+1(t)− un(t)
∣∣2 dt

(89a)

+ k
[
ϕ1

(
xn+1

1

)+ 1

2k

∣∣pn
1 + k

(
A1x

n+1
1 + a1

)∣∣2− 1

2k
|pn

1 |2−
1

2k

∫ t1

t0

|ψn(t)|2dt (89b)

+ 1

2k

∫ t1

t0

∣∣∣∣ψ
n(t)+ k

(
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

)∣∣∣∣

2

dt
]

(89c)

≤ 1

2

∣∣x1 − xn
1

∣∣2 + 1

2

∫ t1

t0

∣∣x(t)− xn(t)
∣∣2 dt + 1

2

∫ t1

t0

∣∣u(t)− un(t)
∣∣2 dt (89d)

+ k
[
ϕ1 (x1)+ 1

2k

∣∣pn
1 + k (A1x1 + a1)

∣∣2 − 1

2k
|pn

1 |2 −
1

2k

∫ t1

t0

|ψn(t)|2dt (89e)

+ 1

2k

∫ t1

t0

∣∣∣∣ψ
n(t)+ k

(
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

)∣∣∣∣

2

dt
]

(89f)

− 1

2

∣∣x1 − xn+1
1

∣∣2 − 1

2

∫ t1

t0

∣∣x(t)− xn+1(t)
∣∣2 dt − 1

2

∫ t1

t0

∣∣u(t)− un+1(t)
∣∣2 dt ,(89g)

pn+1
1 = pn

1 + k
(
A1x

n+1
1 + a1

)
, (90)

ψn+1(t) = ψn(t)+ k

(
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

)
, (91)
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where x(t0) = x∗0 .
In Sect. 6, it was pointed out that all finite-dimensional and bounded differential

operators which appear in (89), (90), and (91) are weakly continuous (in particular,
finite-dimensional operators are also strongly continuous). The latter implies that if
(x

ni
1 ,pni

1 , xni (·), uni (·),ψni (·)) w−→ (x
′
1,p

′
1, x

′
(·), u

′
(·),ψ ′

(·)) when ni →∞, then

−ψni+1(t1)+ ∇ϕ1(x
ni+1
1 )+ AT

1p
ni+1
1 −→ −ψ ′

(t1)+ ∇ϕ1(x
′
1)+ AT

1p
′
1,

d

dt
ψni+1(t)+DT(t)ψni+1(t)

w−→ d

dt
ψ
′
(t)+DT(t)ψ

′
(t),

A1x
ni+1
1 + a1 −→ A1x

′
1 + a1,

D(t)xni+1(t)+B(t)uni+1(t)− d

dt
xni+1(t)

w−→ D(t)x
′
(t)+B(t)u

′
(t)− d

dt
x
′
(t).

Here the symbol
w−→ denotes weak convergence.

Let us write the inequality (89) in the form:

ϕ1
(
xn+1

1

)+ 1

2k2

∣∣pn
1 + k

(
A1x

n+1
1 + a1

)∣∣2 (92a)

+ 1

2k2

∫ t1

t0

∣∣∣∣ψ
n(t)+ k

(
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

)∣∣∣∣

2

dt (92b)

≤ ϕ1 (x1)+ 1

2k2

∣∣pn
1 + k (A1x1 + a1)

∣∣2 + 1

k

(
αn

1 + αn
2 + αn

3

)
(92c)

+ 1

2k2

∫ t1

t0

∣∣∣∣ψ
n(t)+ k

(
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

)∣∣∣∣

2

dt (92d)

where

αn
1 =

1

2
|x1 − xn

1 |2 −
1

2
|x1 − xn+1

1 |2 − 1

2
|xn+1

1 − xn
1 |2,

αn
2 =

1

2

∫ t1

t0

|x(t)− xn(t)|2dt − 1

2

∫ t1

t0

|x(t)− xn+1(t)|2dt − 1

2

∫ t1

t0

|xn+1(t)− xn(t)|2dt ,

αn
3 =

1

2

∫ t1

t0

|u(t)− un(t)|2dt − 1

2

∫ t1

t0

|u(t)− un+1(t)|2dt − 1

2

∫ t1

t0

|un+1(t)− un(t)|2dt.

In the inequality (92), when we pass to the limit for n → ∞, the quantities αn
i →

0, i = 1, 2, 3 in virtue of (84), (87). Therefore, for each n, the right-hand side of
(92) can be treated as a constant function, and its left-hand side will be regarded as
a functional, bounded from below by the designated constant function.

Then, due to continuity of ϕ and linear constraint with respect to x, we have for
n→∞ that

ϕ1(xn+1
1 )+ 1

2k

∣∣pn
1 + k

(
A1x

n+1
1 + a1

)∣∣2 → ϕ1(x
′
1)+ 1

2k

∣∣∣p
′
1 + k

(
A1x

′
1 + a1

)∣∣∣
2
.
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On the other hand, in virtue of weak lower semicontinuity (see formal definition in,
e.g., ([16], p. 209)) of quadratic functions, that is,

lim
n→∞

1

2k

∫ t1

t0

∣∣∣∣ψ
n(t)+ k

(
D(t)xn+1(t)+ B(t)un+1(t)− d

dt
xn+1(t)

)∣∣∣∣

2

dt

≥ 1

2k

∫ t1

t0

∣∣∣∣ψ
′
(t)+ k

(
D(t)x

′
(t)+ B(t)u

′
(t)− d

dt
x
′
(t)

)∣∣∣∣

2

dt

the functional in (92) at the point ψ
′
(·), x ′ , u

′
may take a value not greater than

1

2k

∫ t1

t0

∣∣∣∣ψ
′
(t)+ k

(
D(t)x

′
(t)+ B(t)u

′
(t)− d

dt
x
′
(t)

)∣∣∣∣

2

dt.

Assuming that our functional takes exactly this value, the inequality (92) for n→∞
becomes

ϕ1

(
x
′
1

)
+ 1

2k

∣∣∣p
′
1 + k

(
A1x

′
1 + a1

)∣∣∣
2

(93a)

+ 1

2k

∫ t1

t0

∣∣∣∣ψ
′
(t)+ k

(
D(t)x

′
(t)+ B(t)u

′
(t)− d

dt
x
′
(t)

)∣∣∣∣

2

dt (93b)

≤ ϕ1 (x1)+ 1

2k

∣∣∣p
′
1 + k (A1x1 + a1)

∣∣∣
2

(93c)

+ 1

2k

∫ t1

t0

∣∣∣∣ψ
′
(t)+ k

(
D(t)x(t)+ B(t)u(t)− d

dt
x(t)

)∣∣∣∣

2

dt , (93d)

for all x1, x(·), u(·). For other possible values of this functional at ψ
′
(·), x ′ , u

′
, the

left-hand side of (93) can only get decreased and, hence, the inequality will be
strengthened and will remain valid.

We can complement (93) with the limits of Eqs. (90) and (91) when n→∞, that
is,

A1x
′
1 + a1 = 0,

d

dt
x
′
(t) = D(t)x

′
(t)+ B(t)u

′
(t). (94)

It is easy to see that the resulting system (93), (94) coincides with (50)–(52) which, in
its turn, is equivalent to (64) and (60). Effectively, system (93), (94) can be reduced
to

d

dt
x
′
(t) = D(t)x

′
(t)+ B(t)u

′
(t), x

′
(t1) = x∗0 , (95a)

A1x
′
1 + a1 = 0, (95b)

d

dt
ψ
′
(t)+DT(t)ψ

′
(t) = 0, ψ

′
(t1) = ∇ϕ1(x

′
1)+ AT

1p
′
1, (95c)

∫ t1

t0

〈BT(t)ψ
′
(t), u(t)− u

′
(t)〉dt ≥ 0, u(·) ∈ U , (95d)
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by reiterating the argument applied between the formulas (64) and (60).
Comparing the above system with (60), one can observe that any weak limit

point of the process (57)–(59) is a solution of the system (95). This essentially
means that the components of (x

′
1,p

′
1, x

′
(·), u

′
(·),ψ ′

(·)) and the components of
(x∗1 ,p∗1 , x∗(·), u∗(·),ψ∗(·)) describe the same point, which is a solution of (50)–(52),
and thus the solution of the original problem (6)–(8).

In other words, we have shown that the process (57)–(59) generates a sequence
that has limit points (in the sense of weak convergence). All these points are solutions
of (50)–(52). Additionally, this process decreases monotonically in the space norm
on the product R

n × R
m × ACn[t0, t1] × U × Ψ n

2 [t0, t1]	 in the sense of inequality
(85), that is, (n+ 1)-st iteration is embedded in a ball of nth iteration:

|xn+1
1 − x∗1 |2 + |pn+1

1 − p∗1 |2 +
∫ t1

t0

|xn+1(·)− x∗(·)|2dt

+
∫ t1

t0

|un+1(·)− u∗(·)|2dt +
∫ t1

t0

|ψn+1(·)− ψ∗(·)|2dt

≤ |xn
1 − x∗1 |2 + |pn

1 − p∗1 |2 +
∫ t1

t0

|xn(·)− x∗(·)|2dt

+
∫ t1

t0

|un(·)− u∗(·)|2dt +
∫ t1

t0

|ψn(·)− ψ∗(·)|2dt.

Here, the component
∫ t1
t0
|un(·)−u∗(·)|2dt may not tend to zero as n→∞. However,

we can affirm it regarding the the state component, that is,
∫ t1
t0
|xn(·)−x∗(·)|2dt → 0.

Additionally, weak convergence of uni (·) to u
′
(·) implies weak convergence of xni (·)

to x
′
(·) when ni → ∞. According to the Banach–Steinhaus theorem (see, e.g.,

([21], Chap. 4)) this sequence is bounded in norm and, being a sequence of functions
defined on the interval [t0, t1], is also uniformly bounded. Moreover, it can be shown
that this sequence satisfies the Lipschitz condition:

|x(t +Δt)[u(·)]− x(t)[u(·)]| ≤ L|Δt | 1
2 ,

where L = const is independent of n, t ,Δt . A sequence with such a property is
referred to as equicontinuous and, according to Arzelà theorem3 (see, e.g., ([16],
Theorem 2.12) or ([18], Theorem 2.7.4)) has a subsequence that converges pointwise
to x

′
(·) in the uniform norm maxt∈[t0,t1] |xn(t) − x∗(t)|2 → 0 (see more details in

([27], vol. 2, p. 659)). A fortiori, this sequence will be convergent in the space norm
of Ln

2[t0, t1]. A similar assertion will be valid for the sequence maxt∈[t0,t1] |ψn(t) −
ψ∗(t)|2 → 0 when n→∞ due to the same reasoning.

Along with the main iterative process developing in the functional space, there is
a subprocess that proceeds on the set of attainability. This subprocess is included in
the formulas (57) and (58), and takes place in a finite-dimensional Euclidean space.

3 also known as Arzelà—Ascoli theorem
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Within the frameworks of general numerical scheme, this subprocess converges to a
saddlepoint of the augmented Lagrangian:

m(p1, x1) = ϕ1(x1)+ 1

2k
|p1 + k(A1x1 + a1)|2 − 1

2k
|p1|2, (96)

and also of the traditional Lagrangian l(p1, x1) = ϕ1(x1) + 〈p1,A1x1 + a1〉, that
refers to a convex programming problem formulated on the set of attainability. The
convergence of this subprocess to a saddlepoint of Lagrangianl(p1, x1) is understood
in the sense of Euclidean norm, that is, |xn

1 − x∗1 |2+ |pn
1 −p∗1 |2 → 0 when n→∞.

Finally, the theorem is proved.
Thus, the global numerical process (57)–(59) takes place simultaneously in the

functional and finite-dimensional spaces. The control functions, state and adjoint
trajectories are moving in functional spaces, while a free right-hand end point of
the state trajectory is being iteratively transformed in finite-dimensional space. The
process has a weak limit point which is the solution of the original system. The
primal and dual functional components of this limit point form a saddlepoint of
the augmented Lagrangian (48), its primal and dual vector components produce
a saddlepoint of finite-dimensional augmented Lagrangian (96). In the absence of
dynamics in the original problem, the global process is reduced to an iterative process
in finite-dimensional space.

In virtue of condition (20), the primal component of the global saddlepoint is also
a maximizer of the dual function (49), and the method presented in this chapter can be
viewed as a gradient method for the maximization of (49). It should be emphasized
that this global process converges weakly to the solution of the original problem 4

and this convergence is of different nature for particular components of the process;
namely, it is weak for the control function and strong in the sense of norm for other
(functional) components of the process.

Additionally, all limit points of the process are solutions of the original system. It
remains only to point out that the Theorem 2 is an accurate and natural generalization
of the Theorem 1 (formulated and proved in Sect. 3 for a finite-dimensional case) to
the optimal control problem in functional spaces.

The proposed method guarantees a monotone approximation to the solution in the
space norm for all direct and dual variables. This regularizing property contributes
to the process sustainability even without guaranteeing strong convergence to the
solution with respect to all variables. This mainly refers to weak convergence of
control variables. Namely, all controls are uniformly bounded (belong to a functional
ball U ), but they do admit some finite discontinuities. Each point of discontinuity
can be surrounded by arbitrarily small interval inside which a discontinuous function
can be approximated by a smooth curve within the limits of given accuracy. In this
case, we have functions with arbitrarily large derivatives, which again lead us to
weak convergence.

4 This convergence is understood in the sense of subsequences.
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To overcome these difficulties, one should impose additional conditions on the
set of admissible controls U . For example, one may require that all u(·) ∈ U satisfy
the Lipschitz condition (in integral form) and that all approximations uk(t) of the
iterative process (57)–(59) remain inside U . In this case, the sequence of controls
will be equicontinuous (in integral sense) and, in virtue of Riesz theorem, will possess
the compactness property in the norm of Lr

2[t0, t1]. The latter will be sufficient to
guarantee a monotone convergence of our method to a single limit point.

9 Conclusions

The mathematical model described in this chapter contains two well-known compo-
nents: static and dynamic. The first component is related to optimization problem in
finite-dimensional space. Generally speaking, static optimization models describe
a situation of individual or collective decision making that does not vary in time.
Among them one should recall the problems of linear, convex, and equilibrium pro-
gramming, n-person games with Nash equilibrium, problems of multi-objective (or
vector) optimization, problems of economic equilibrium, etc.

The second component has time-varying nature described by a linear ODE system
and should be associated with dynamic optimization and optimal control. In particu-
lar, optimal control theory explores the possibility of transferring the dynamic system
from one state to another under an external effect of control functions. Based on this
concept, there are various methods for design of optimal control strategies that may
depend on the initial or current state of the dynamic system (program and feedback
controls). Though, many of them are only applicable to rather narrow classes of
problems.

In this chapter, we have proposed an integrated approach for the solution of
optimal control problems, whose boundary states are described by finite-dimensional
models of convex optimization. In other words, our integrated model anticipates an
adjustment of (finite-dimensional) decision making to possible changes over time in
future decision-making situations. The latter was done by exploiting the saddlepoint
conditions and methods, where the feedback to current states was described in terms
of dual (finite and functional) variables.
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Minimizing Sign Changes Rowwise: Consecutive
Ones Property and Beyond

Dominique Fortin and Ider Tseveendorj

Abstract A 0–1 matrix where in each row the 1s occur consecutively is said to
have the consecutive 1s property. Since this property is scarcely fulfilled in real
problems and since it is non-deterministic polynomial time (NP)-hard to find the
nearest arrangement to the property, we give a quadratic assignment formulation for
optimizing the distance to the property. The formulation carries over the sign case
with 0,+1,−1 matrix entries. We discuss and compare this exact approach, for both
signed and unsigned cases, with spectral approaches based on bisection instead.

Keywords 0–1 matrices · Consecutive 1s property · Consecutive sign property ·
Trigraph · QAP · Hoffman–Wielandt · Gilmore–Lawler

1 Introduction

A 0–1 matrix where in, say each row, the 1s occur consecutively is said to have the
consecutive 1s property (C1P). This property and its approximations have numerous
applications in clustering, seriation, and at a low-level data storage for compact-
ing sparse matrices. Testing this property holds in polynomial time; however, it
scarcely happens for real-life cases, thus methods that approximate, in some sense,
the property have been proposed: upto an approximation factor [6], with respect to
spectral ordering [1, 18, 10], number and distance of consecutive intervals of 1s
[16], within an ordered set of matrices [17], etc. Most approaches lead quickly to
non-deterministic polynomial time (NP)-hard optimization problems. In this chap-
ter, we give a raw formulation leading to a quadratic assignment problem (QAP) an
NP-hard problem too; unlike previous spectral approximations that relate the C1P
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optimization problem to bisection (through the Laplacian of underlied correlation
and its second (Fiedler) eigenvector to force convexity), the QAP formulation is
exact and does not enforce convexity.

The QAP approach allows a straigthforward generalization to consecutive
−1, 0,+1 entries (C±P for consecutive sign property), no matter the ordering among
consecutive values. It brings up new connections with the sign change counting func-
tion [12], as a signed generalization of the counting function [14, 20], both playing
a prominent role for improving a local solution in global optimization.

Since there is no methodological difference with maximizing the number of tran-
sitions instead, it relates our study to studies, to name a few, in mathematical physics:
the six vertex model under boundary wall condition and the alternating sign matrices
[9, 22]; in graph theory: a trigraph [2, 7, 8] has a signed vertex–vertex adjacency
matrix. Bearing in mind the consecutive sign property, we mainly follow the lead of
minimization, despite it deserves studying the six vertex model or the trigraph case,
under further constraints on the transitions within a row.

The chapter is organized as follows: Sect. 2 provides the basic formulation for
minimizing the number of transitions between 1s and 0s along either dimension of
matrices; in Sect. 3, we review bounding schemes for an enumerative approach in
both actual and spectral domains; in Sect. 4, we suggest a way to deal with the
signed case by recoursing to the average in spite of Schur convexity. The remaining
sections provide a thorough discussion of NP-hardness (Sect. 5), of experiments for
moderate-size matrices either signed or unsigned (Sect. 6) and of the comparison
between the circular and the standard shift case (Sect. 7).

2 Consecutive Ones Approximation

2.1 Minimizing Transitions

For a sparse n×m matrix A, let us consider the problem of minimizing the number
of transitions between valid and void entries in a per row basis; values do not matter
so that we assume the matrix binary with a 1 for valid entry and 0 otherwise. Denote
the identity matrix I and the circular shift by one column matrix Sc, using Toeplitz
matrix:

I − Sc =

⎡

⎢⎢⎢⎢⎢
⎣

1 0 . . . −1

−1 1 0 . . .

. . .

0 . . . −1 1

⎤

⎥⎥⎥⎥⎥
⎦

,

then the total number of circular column transitions is ‖A(I − Sc)‖2 using standard
dot product for matrices, namely, (A, B)= (Vect (A),Vect (B)) . The squared norm
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accounts for both ±1 differences between consecutive columns. Let Y ∈ Πm be
an unknown column permutation matrix minimizing the total number of circular
column transitions; define #C(A,Y ) = ‖AY (I − Sc)‖2, then we have to optimize
min#C(A,Y ) over column permutations Y ∈ Πm. It is straightforward to set it as a
QAP since

#C(A,Y ) = (AY (I − Sc),AY (I − Sc)) = (AtAY ,Y (I − Sc)(I − Sc)
t )

= QAP(Y ;AtA, Tm)

one of the most difficult problem in combinatorial optimization whose traveling
salesperson problem (TSP) is a special case. By analogy, we could minimize the
number of circular row transitions over row permutations X ∈ Πn,

#R(A,X) = ((I − Sc)
tXA, (I − Sc)

tXA) = ((I − Sc)(I − Sc)
tX,XAAt )

= QAP(X; Tn,AAt )

where

Tn =

⎡

⎢⎢⎢⎢⎢
⎣

2 −1 . . . −1

−1 2 −1 . . .

· · ·
−1 . . . −1 2

⎤

⎥⎥⎥⎥⎥
⎦

,

a Toeplitz matrix with neat eigenvalues 2(1− cos 2kπ
n

) for k = 0, n− 1. Minimizing
in both dimensions at the same time is twice involved since

#R(A,X)+ #C(A,Y ) = ((I − Sc)tXAY , (I − Sc)tXAY )

+ (XAY (I − Sc),XAY (I − Sc))

s.t. X ∈ Πn, Y ∈ Πm

since XXt = In and YY t = Im, respectively.
Solving QAP is hard in general, only a few cases are known to be polynomially

solvable see Sect. 5, therefore, we have to recourse to a Branch and Bound (B&B)
scheme in order to prove optimality of relaxed problem:

minQAP(X; Tn,AAt )

s.t. X ∈ En

where En stands for doubly-stochastic matrices, a nice domain described by linear
constraints Xe = e and Xte = e for the all 1s vector e. Notice the harness involved
with the squaring in the n2 unknown entries in X while the dimension is merely n.
See Sect. 6 for small-sized experiments.
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Table 1 Eigenvalues of Toeplitz matrices for different shifts

Type Shift Eigenvalues

Circular s ≥ 1 2(1− cos 2skπ
n

) k = 0 · · · n− 1

Standard 1 2(1− cos kπ
n

) k = 0 · · · n− 1

Standard n even 2 2(1− cos kπ
n

), 2(1− cos (k+1)π
n+1 ) k = 0, 2, · · · n− 2

Standard n odd 2 0, 2(1− cos (k−1)π
n

), 2(1− cos kπ
n+1 ) k = 2, 4 · · · n− 1

If we count transitions without wrapping the matrix then circular shift is replaced
by standard shift S and Tn has four corners modified:

I − S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 . . . 0

−1 1 0 . . .

· · ·
· · · 1

0 . . . −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Tn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 −1 . . . 0

−1 2 −1 . . .

· · ·
· · · −1 2 −1

0 . . . −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

a Toeplitz matrix whose eigenvectors and eigenvalues are analytically known as
a function of the dimension n [21]. Both circular and standard shifts extends to
transitions between columns/rows at distances> 1 leading to symmetric semidefinite
programming (SDP) Toeplitz matrices with off-diagonals at the same distance apart
(whose eigenvectors and eigenvalues are analytically known as a function of the
dimension n too [11]) (Table 1).

On the other hand, eigenvalues of AAt and AtA are derived from singular values
of A since σ = UAV for orthogonal matrices U ,V yields diagonalization σ 2 =
UAVV tAtUt = UAAtUt while σ 2 = V tAtUtUAV = V tAtAV .

Let Ā = Enm−A, the complement of A for the n×m all 1s matrix Enm; since the
role played by 0s is the same as the 1s. It suggests to add the number of transitions
in the complement #C(Ā,Y ) = ‖ĀY (I − Sc)‖2. Using properties of permutation
matrices Et

nmEnm = nEmm = Em, where a single index is a shortcut for square case,
EmY = Em and Y tEm = Em then,

#C(A,Y )+ #C(Ā,Y ) = 2(AtAY ,YT )− ((�+�t )Y ,YT )+ n(Em, Tm)

= 2QAP(Y;AtA, Tm)− QAP(Y;�+�t , Tm)+ n(Em, Tm),

a kind of Laplacian for the column degrees (�+�t )/2 = (Et
nm A+ At Enm)/2.



Minimizing Sign Changes Rowwise: Consecutive Ones Property and Beyond 41

2.2 Maximizing Correlation

Define the in correlation as the productAtA, another approach aims at maximizing the
cumulated correlations after permutation, i.e., ((AY )t (AY )Um) = ((AY )t (AY )Lm)
for the all 1s m×m upper (respectively lower) triangular matrix Um (respectively
Lm). Using symmetry and properties of permutation matrices, we get

QAP(Y;AtA,Um)+ QAP(Y;AtA,Lm) = (AtAY ,YEm)+ (AtAY ,YIm)

= (AtAEm,Y )+ (AtA, Im)

= LAP(Y;AtAEm)+ diag(�),

a linear assignment problem with m equivalent solutions. Therefore, the intuitive
correlation maximizing does not lead to a valid formulation.

3 Branch and Bound

For either correlation matrix F (AAt and AtA), let us consider a partial assignment,

w.l.o.g. X =
[
X11 0
0 X22

]
, where X22 stands for the unassigned indices, then the

problem rewrites:

QAP(X; Tn,F ) = QAP(X22; T 22
n ,F 22)+ (T 11X11,X11F 11)

+ 2(T 21
n X11F 12,X22),

where we used symmetry of both block submatrices F 21 = F 12t and T 21
n = T 12

n

t .
The second term is a constant and the last term is a linear assignment problem
LAP(X22; T 21

n X11F 12) since X11 is fully specified. The subproblem in first term
may be bounded in various ways.

3.1 Spectral Bound

In Sect. 2.1, we gave the spectral bound for QAP(X22; T 22
n ,F 22) at the root of the

enumeration tree; however, deeper in the tree when some columns are assigned, the
Toeplitz shift matrix shrinks to unassigned indices. For standard shift, since a fixed
index symmetrically cancels a −1, it splits in three different patterns according to
the diagonal corners diag([1, . . ., 1]), diag([1, . . ., 2]), diag([2, . . ., 2]) with possibly
isolated eigenvalues (of value 1 or 2). The kernel method in [11, 21]) directly ap-
plies on corresponding diagonal discrepancies, namely, for size n, eigenvalues are
2(1− cos (θ )) with necessary conditions:
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diag([1, . . ., 1]) : sin (θ )(sin ((n− 1)θ )− 2 sin (nθ )+ sin ((n+ 1)θ )) = 0

θ = kπ

n
, k = 0..n− 1,

diag([2, . . ., 2]) : sin ((n+ 1)θ ) = 0

θ = kπ

n+ 1
, k = 1..n,

diag([1, . . ., 2]) : sin (θ )(sin ((n+ 1)θ − sin (nθ )) = 0

θ = kπ

2n+ 1
, k = 1, 3, 5 . . . 2n− 1

For circular shift, however, the number of patterns increases unless the antidiag-
onals −1s corners are fixed, in which case it reduces to the standard shift patterns.
Despite tractable, an analytical expression for circular eigenvalues is more involved.

The overall time complexity is O(n3) since singular value decomposition (SVD)
requires very few sweeps ofn3 complexity each, the same complexity as linear assign-
ment by, say hungarian method. Define λ(T 22

n ,F 22) ≤ QAP(X22; T 22
n ,F 22) as the

corresponding spectral bound using Hoffman–Wielandt (Lidskii–Mirsky–Wielandt)
inequalities:

(λ↗ (A), λ↘ (B)) ≤ (AU ,UB) ≤ (λ↗ (A), λ↗ (B))

for, respectively, ascending ↗, descending ↘ orderings, then the whole bound
simplifies to

λ(T 22
n ,F 22) = (λ↗ (T 22

n ), λ↘ (F 22))+ (T 11
n X11,X11F 11)

λ(T 22
n ,F 22)+ 2minLAP(X22; T 21

n X11F 12) ≤ QAP(X; Tn,F ).

3.2 Gilmore–Lawler Bound

Every candidate assignment xij = 1 ∈ X22 leads to a linear relaxation (see [19] and
references therein) of QAP(X22; T 22

n ,F 22)

LAPij ≡ (AijX22)

A
ij

kl = T 22
n ik

F 22
j l , for all k �= i, for all l �= j.

By virtue of Hardy–Littlewood–Pólya (H.L.P. for short [13]), values of lij =
minLAPij for all i, j are easily retrieved by sorting rows in both matrices (nega-
tive entries in T 22

n are not actually a deal for which we can add E then subtract the
constant to get the result):

lij = (T 22
i. ↘,F 22

j. ↗).
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Let L be the result for all such LAPs, then the whole bounding becomes:

LAP(X22; Tn,F , L) = (L+ diag(T 22
n ⊗ F 22)+ 2(T 21

n X11F 12,X22),

(TnX
11,X11F 11)+minLAP(X22; Tn,F , L) ≤ QAP(X; Tn,F ),

where diag(T 22
n ⊗ F 22) is assumed matrixified conformably with L (precisely in

n× n row major order).
The overall time complexity isO(n2 log n) for building L andO(n3) for final LAP.

Notice that sorting, all but diagonal entries, simplifies to extracting maximum and
second maximum to give lij = −maxF 22

i. −max2F
22
i. or lij = −maxF 22

i. depending
on either row in T 22

n , so that complexity shrinks to O(n2) for building L indeed.

4 Consecutive Signs Approximation

The QAP formulation carries over the signed version provided transitions between
opposite signs never occurs contiguously; otherwise, the transition accounts for 2
instead of 1 as required. To circumvent this defect, we may apply to the ground set
{0,+1,−1} the three permutations, identity, left shift {+1,−1, 0}, and right shift
{−1, 0,+1} to yield a multiobjective problem. As usual for multiobjective problems,
taking the mean of all three QAPs (Schur convexity) helps in searching the optimal
solution, despite the average is accurate only at optimum. The sum of all three QAPs
amounts to a single QAP so that the formulation for C1P directly applies at the
expense of an actual counting at each integral node in the B&B enumeration.

5 About Problem Hardness

Testing consecutive ones property is known to be polynomial and a PC-tree storing
all permutations fulfilling the property results when true; however, if the property
fails then we only have a tree having prime nodes to deal with QAP formulation.

On the other hand, if the C1P is fulfilled then correlation matrix (either AAt or
AtA) may be reordered through overlapping sets such that it is monotone anti-Monge
(see Robinson property [3]). Since, Toeplitz matrices T are clearly benevolent [4] for
the underlied Toeplitz function f (1) = −1 <= 0 = f (j ) for all j �= 0, 1, then under
the C1P, the monotone anti-Monge-benevolent Toeplitz QAP polynomially solvable
case applies. Otherwise, either correlation matrix fails to fulfill anti-Monge monotone
property and despite Toeplitz is benevolent, minimizing the number of transitions
is NP-hard by reduction from the Hamming TSP [18] as soon as there is more than
one row. It completes the panel of negative result for QAP easy solvable cases to
the case of non-anti-Monge monotone-Toeplitz benevolent pair [4]. Moreover, it
yields another direct hardness proof by reduction from the NP-complete even–odd
partition problem, after converting each 1 in the matrix by a sequence 10 and each 0
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by a sequence 01 to guarantee evenness while the number of transitions is doubled
after unshuffling the overall sequence. Most generalizations like (k − δ)C1P, for
instance, leads to NP-hard problems [5].

Unlike other spectral approaches, ours does not force any convexity and straight-
forwardly generalizes to 3D dissimilarity data [17]: in real applications, very oftenly
the objects indexing a dissimilarity D are measured with respect to some human pre-
defined criterion so that there is a set of dissimilarities D = {D1, . . .,DK} associated
with each measurable criterion in [1, k]. Correspondingly, the minimization of the
weighted number of transitions rewrites as a weighted maximization of correlations:

#R(A,X) =
K∑

k=1

wkQAP(X; Tn,AkA
t
k).

6 Experiments

For a maximum of 1000 B&B nodes, the history of enumeration for Gilmore–Lawler
bounds and Hoffman–Wielandt (spectral) bounds, showed in minimizing case, that
the spectral lower bound happens to be far below than Gilmore–Lawler lower bound,
despite the Toeplitz structure gives eigenvalues for free. Many subproblems in the
history have a negative Hoffman–Wielandt lower spectral bound due to the remaining
assignment part while the number of transitions is obviously nonnegative!

As for eigenvalues of subproblems, the corresponding Toeplitz matrix decomposes
into a principal diagonal matrix fulfilling the standard case from upper left corner[

2 0 0
0 2 −1
0 −1 2

]

to lower right corner

[
2 −1 0
−1 2 0
0 0 2

]

while the remaining matrix simplifies

to a smaller circular Toeplitz case along one pair of 0s on symmetric entries at
upper and lower diagonals. W.l.o.g. assume they occur at entries (1, 2), (2, 1), then
applying the row and column permutations [2, 3, . . ., n, 1] yields a standard shift case
with diagonal corners equal to 2, like in standard subproblems. Notice that, due to
this observation, we need no facet defining inequalities for sum of hermitian matrices
[15] and directly retrieve the eigenvalues of subproblems instead.

Due to these spectral observations, we do not report the history of enumeration for
bounds and the examples below were rerun with the Gilmore–Lawler bound solely.

It is worth noticing that the standard count associated with the circular count is
not monotonic; it may happen in the enumeration that standard count may be better
than the next standard count associated to the next circular incumbent (upto 1 or 2
transitions); however, we always obtain the best standard incumbent from the best
circular incumbent. Finally, for all experiments we never succeed in closing the gap
within the node limit; however, the index of the best incumbent remains far from the
node limit so that we are in the common situation where the optimum is very likely
but the proof of optimality is hopeless due to the huge number of nodes remaining.
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Fig. 1 MANN_a9 quadratic assignment problem (QAP; min, start, max) circular (respectively
standard) rowwise transitions at (400,0,378)th Branch and Bound (B&B) nodes and value
(184,234,378; respectively (176,225,293))

Fig. 2 Johnson8-2-4 quadratic assignment problem (QAP; min, start, max) circular (respectively
standard) rowwise transitions at (13,0,8)th Branch and Bound (B&B) nodes and value (280,328,504;
respectively (270,310,480))

6.1 C1P on Symmetric Matrices

We borrow from maximum clique Dimacs benchmark, two easy examples for the
maximum clique problem that exhibit two opposite behaviors w.r.t. the enumerative
procedure.

6.2 C±P on Random Matrix

The lack of dedicated benchmarks for the consecutive sign problem leads us to test
the formulation against random matrices. As in Sect. 6.1, we draw the (best min
incumbent, original, best max incumbent) in black, white, and gray pixels instead,
according to the trivaluation. The enumeration is applied on both a single valuation
(Fig. 3) and the averaging approximation (Fig. 4 ). Clearly, the averaging formulation
yields better results for both the circular count and the standard count but unlike the
C1P case there is no visual evidence that the best incumbent improves over the orig-
inal data despite the relative improvements are comparable (see Table 2); however,
the visual evidence looks stronger between the best min and max incumbents. Our
random examples have a dense number (>60 %) of transitions among the complete
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Fig. 3 Random 45 × 45quadratic assignment problem (QAP; min, start, max) circular (respec-
tively standard) rowwise transitions at (565,0,0)th Branch and Bound (B&B) nodes and value
(1174,1348,1343; respectively (1150,1313,1321))

Fig. 4 Random 45 × 45 average quadratic assignment problem (QAP; min, start, max) circular
(resp. standard) rowwise transitions at (141,0,36)th Branch and Bound (B&B) nodes and value
(1141,1348,1568) (resp. (1118,1313,1531))

Table 2 Relative improvement of rowwise transitions between original and best incumbent

Minimize Maximize

Example Circular (%) Standard (%) Circular (%) Standard (%)

C1P (Fig. 1) 21 22 38 23

C1P (Fig. 2) 15 13 44 35

C±P (Fig. 3) 13 12 0 0

C±P (Fig. 4) 15 15 14 14

alternate case, so the best incumbent in standard max case is mostly found at the root
of the B&B tree unlike the averaging formulation.

7 Circular Shift versus Standard Shift

Though most real-life applications require standard shift formulation, counting cir-
cular transitions makes sense for it is clearly an upper bound for C1P; since the
optimization problem is more constrained, the B&B enumeration seems faster when
there is a big gap between bounds and slower when the gap is narrow. It always lead
in our experiments, to better standard incumbents than the standard formulation.
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8 Concluding Remarks

Unlike Vuokko [18] who stresses, after Atkins et al. [1], the efficiency of spectral
ordering by studying the Laplacian of an underlied graph, we study in this paper
a QAP formulation for optimizing the number of transitions with respect to C1P.
The formulation easily carries over the signed version of the problem C±P through
an averaging technique; to our knowledge, the recognition of the consecutive signs
Property has not been studied yet and opens up a challenging question about its
polynomiality.

Experiments for both standard and signed versions, happen to be effective within
the B&B framework even though the computation load is more heavy than the Fiedler
vector of the Laplacian approach. Despite the spectral bounding remains deceptive
compared with the standard Gilmore–Lawler bounding, it is worth noticing that
the Toeplitz structure of one matrix in the QAP allows the same O(n3) worse time
complexity for both bounds.

As a side effect, we find another negative result for the QAP pair of matrices [4],
a not anti-Monge monotone and Toeplitz benevolent pair.
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Variational and Hemivariational Inequalities in
Mechanics of Elastoplastic, Granular Media,
and Quasibrittle Cracks

Boris D. Annin, Victor A. Kovtunenko and Vladimir M. Sadovskii

Abstract This contribution is devoted to the mathematical theory of elastoplastic
and granular solids as well as the quasibrittle fracture of nonlinear cracks. Basic
variational and hemivariational inequalities describing nonlinear phenomena due to
plasticity, internal friction, interfacial interaction, and alike dissipative physics are
outlined from the point of view of nonsmooth and nonconvex optimization. Primary
results of the nonlinear theory and its application to solid mechanics are surveyed.

Keywords Plasticity · Granular solid · Quasibrittle crack · (Hemi)variational
inequality · Set-valued optimization · Constrained optimization · Nonsmooth
optimization · Nonconvex optimization

1 Introduction

The mathematical theory of elastoplastic and granular solids as well as their fracture
is originated in the engineering sciences related to materials, geophysics, and bio-
physics. As it is marked in the literature, modern materials developed in the recent
past exhibit essentially nonlinear properties. In particular, when the materials are
undergoing critical deformations. This motivates the actual research of nonlinear
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phenomena due to plasticity, internal friction, interfacial interaction, and other dis-
sipative physics. For its mathematical modeling, variational and hemivariational
inequalities are well suitable. In the present contribution this chapter, we survey the
principal issues of modeling in this respect.

Variational inequalities were applied to the problems of mechanics yet in nine-
teenth century by V. M. Ostrogradsky for the description of constrained motion
of a material point. Significant development of the methods using inequalities in
mechanics was contributed recently by (alphabetically) B. D. Annin, G. Fichera,
A. Haar, J. Haslinger, T. Karman, A. S. Kravchuk, J.-L. Lions, P. D. Panagiotopoulos,
A. Signorini, R. Temam, and others.

From the mathematical point of view, variational and hemivariational inequalities
appear in the governing relations as the consequence of fundamental thermodynamics
principles subject to one-sided restrictions. In fact, inequality constraints imposed
on geometric displacements lead to contact conditions, virtual stress that does not
exceed the yield limit implies plasticity, while the material strength is expressed by
restrictions on strains.

In the following sections, we outline, respectively, the modeling of governing
inequalities for elastoplastic and granular media, and in the theory of quasibrittle
cracks.

2 Variational Inequalities in Elastoplastic Theory

We start with the notation. For a reference solid occupying the domain Ω , spatial
points x ∈ Ω , and time t ≥ 0, we refer the displacement vector u(t , x), the strain ε(u)
which relies on the symmetric tensor ε(u) = 1

2 (∇u + ∇�u) of linear deformations,
and the stress tensor σ . In elastoplasticity, there is assumed a plastic strain εp.

Within the Hencky law, it holds (see the books [1, 13]) the constitutive equation:

ε(u) = ∂W
∂σ
+ εp (1)

supported with the following variational inequalities:

f (σ ) ≤ 0, (σ̄ − σ ) : εp ≤ 0 for all σ̄ : f (σ̄ ) ≤ 0. (2)

In (1), the notation W (σ ) stands for the strain energy potential. In linear elasticity,
it is quadratic, W (σ ) = 1

2σ : A : σ with the symmetric compliance tensor A,
hence ∂W

∂σ
= A : σ . Inequality (2) imply that the true stress σ lies inside the given

yield surface f (σ ) ≤ 0, and the plastic deformation εp is orthogonal to this surface.
Typical yield surfaces are the Tresca and von Mises ones. In the simplest case of
scalar σ , the yield surface is determined by f (σ ) = |σ |−σ 0 with the yield limit σ 0.
Together with the (quasi)static equilibrium equation:

−∇ · σ = F , (3)

where F is the external force, governing relations (1)–(3) form a complete system.
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Note that, if the one-sided constraint f (σ ) ≤ 0 was skipped, then inequalities (2)
would turn into the equality εp = 0. In this case, there is no plastic deformations, and
governing relations (1)–(3) correspond to common (generally nonlinear) elasticity.

From the nonlinear optimization viewpoint, the variational inequality (2) implies
that εp is a (nonunique) element of the Clarke subdifferential:

εp ∈ ∂χK (σ ) := {ε : χK (σ̄ )− χK (σ ) ≥ (σ̄ − σ ) : ε for all σ̄ }. (4)

In (4), the nonsmooth potential χK implies the indicator function of the convex set:

K = {σ̄ : f (σ̄ ) ≤ 0} (5)

that is χK (σ ) = 0 for σ ∈ K if f (σ ) ≤ 0, otherwise χK (σ ) = +∞. Details of
this formalism are presented in [29] and endowed with dual arguments using the
Legendre–Fenchel–Young transformation.

The Prandtl–Reuss law provides the following flow model (see [2, 30]):

ε(v) = ∂
∂t
( ∂W
∂σ

)+ ep (6)

with the velocities v := u̇ and ep := ε̇p, the variational inequality:

f (σ ) ≤ 0, (σ̄ − σ ) : ep ≤ 0 for all σ̄ : f (σ̄ ) ≤ 0, (7)

and the dynamic equation of motion:

ρv̇− ∇ · σ = F. (8)

Following the approach of J. Mandel, discontinuous solutions to the dynamic elasto-
plastic problems (6)–(8), which are of the shock wave type, are analyzed in the
monograph [30]. In this case, as far as in more general case of hardening materials,
the system of governing equations can be written in the unified form:

(
∂ϕ(U )
∂t
−

n∑

k=1

∂ψk (U )
∂xk

)
· (Ū − U ) ≥ 0 (9)

where n is the spacial dimension. In (9), the true variable U and its variation Ū

are admissible vectors composing all unknown functions: velocities, stresses, and
parameters of hardening. The vector functions ϕ = ∂Φ

∂U
and ψk = ∂Ψk

∂U
are expressed

in the terms of scalar generating potentials Φ(U ) and Ψk(U ), k = 1, . . . , n, which
are quadratic functions in the case of physically linear processes.

The formulation in form (9), in particular, is numerically advantageous for the
construction of algorithms of the Wilkins type, see [2]. This theoretical result is
strengthened by the engineering applications presented in [3, 4].
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Fig. 1 Rheological schemes
of granular material with rigid
(a), elastic (b) and
elastic–plastic (c) particles

3 Variational Inequalities in Theory of Granular Media

Granular solids exhibit complex behavior, in particular, different resistance under
compression and tension. To take it into account, the classical rheological method is
supplemented by a new element, namely, the rigid contact which can be expressed
schematically as two plates being in contact. Combining this element with the tra-
ditional rheological elements; the elastic spring, viscous dashpot, and plastic hinge
models with a suitable level of complexity can be derived (see the examples in Fig. 1).

The constitutive relationships expressing the rigid contact can be represented as
the linear complementarity problem:

σ ≤ 0, ε ≥ 0, σ ε= 0 (10)

for the scalar stress σ and strain ε. Indeed, the inequalities in (10) exclude arising
tensile stresses and compressive strains in a perfect granular material composed
of rigid particles. From the complementarity condition, it follows that one of the
quantities being considered (either stress or strain) must be zero. Therefore, (10) can
be reduced to two variational inequalities:

σ ≤ 0, (σ − σ̄ )ε ≤ 0 for all σ̄ ≤ 0, (11)

ε ≥ 0, σ (ε̄ − ε) ≤ 0 for all ε̄ ≥ 0, (12)

which are equivalent. This consideration admits extension to more complicated
rheological models and higher spacial dimensions.

Within the rheological approach, phenomenological models of granular solids are
generalized in the book [29]. In [28], the model of granular materials under finite
strains is considered. The generic model of materials with different compressive and
tensile strengths is analyzed in [23] where the modeling result is supported with the
existence theorems, analysis of mechanical properties, and estimation of the critical
equilibrium.
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4 Hemivariational Inequalities in Nonlinear Theory of Cracks

Macro- and microcracks appear in a wide range of real-world applications related to
fracture in the material science, faults in the earth causing earthquakes and subse-
quent tsunami, modern biomedical methodologies, and alike. The actual problems of
tribology and fracture need nonlinear modeling of cracking phenomena taking into
account dissipative interaction between the crack faces. This results in quasibrittle
models of fracture in contrast to classic brittle hypothesis due to Griffith–Irwin–Rice.

The fundamentals of quasibrittle and dynamic fracture were developed by (alpha-
betically) G. I. Barenblatt, G. P. Cherepanov, S. A. Christianovich, D. S. Dugdale,
R. V. Goldstein, M. Ya. Leonov, N. F. Morozov, V. V. Novozhilov, V. V. Panasyuk,
Yu. N. Rabotnov, L. Truskinovsky, and others. From a physical point of view, the
dissipative work of interaction phenomena due to contact with cohesion or friction at
the crack is closely related to elastoplastic physics. From a mathematical viewpoint,
its modeling results in hemivariational inequalities within set-valued and nonconvex
optimization context.

The basics of mathematical theory describing quasibrittle cracks are outlined be-
low by following the results obtained in [11, 17, 19, 20]. In the nonlinear optimization
framework, we suggest a class of hemivariational inequalities introduced as follows.

Let Γ ⊂ Ω be an interface. In the equilibrium equation (3), the total stress σ

distribution admits the following representation (compare with (1)):

σ = ∂W
∂ε
+ F iχΓ (13)

with the stress energy potential W (ε) and the interfacial traction F i . It is added in
Ω with the help of characteristic function χΓ of the interface Γ. In linear elasticity
where W is quadratic, W (ε) = 1

2ε : C : ε with the symmetric tensor C of elastic
stiffness, hence ∂W

∂ε
= C : ε in (13).

At Γ, we suggest complementary contact conditions (compare with (10)):

tr
Γ

(u) ≥ 0, Fc ≥ 0, Fc tr
Γ

(u) = 0 (14)

where the contact force Fc admits, generally, the decomposition as:

Fc = −F i + Fd. (15)

In (15), the dissipative force Fd represents irreversible work caused by cohesion as
well as friction at the interface Γ. In the context of cracks, Fd describes interaction
force between two crack faces being in contact, and tr

Γ
(u) implies the jump of

the normal traces of u across the crack [18]. For more issues of the modeling of
nonpenetration conditions tr

Γ
(u) ≥ 0, see [13, 16].

With a generating potential g, which is typically a concave function, the cohesion
force Fd in (15) can be expressed as a (nonunique) element of the superdifferential:

Fd ∈ ∂g(u) := {F : g(tr
Γ

(ū))− g(tr
Γ

(u)) ≤ F tr
Γ

(ū− u) for all ū}. (16)
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Examples of the generating potential g are given in [17]. For the reference setup:

g(tr
Γ

(u)) = σ 0

l
min(l, tr

Γ
(u)),

with the yield limit σ 0 and the characteristic length l.
After integration over the domain Ω \ Γ, relations (13)–(15) can be summarized

as the hemivariational inequality:

tr
Γ

(u) ≥ 0,
∫

Ω\Γ
( ∂W
∂ε
− σ ) : ε(ū− u) dx +

∫

Γ

F d tr
Γ

(ū− u) dSx ≥ 0, (17)

for all ū: tr
Γ

(ū) ≥ 0.

In fact, inclusion (16) argues that (17) is the necessary optimality condition for
minimization over admissible ū of the nonsmooth functional of energy:

minimize

{∫

Ω\Γ
(W − σ ) : ε(ū) dx +

∫

Γ

g(tr
Γ

(ū)) dSx

}
subject to tr

Γ
(ū) ≥ 0.

(18)

Moreover, the energy functional is nonconvex since g is concave.
The issues of nonsmoothness and nonconvexity are the principal difficulties for

analysis of the constrained minimization problem (18) which is presented in the cited
works.

While the hemivariational inequality (17) is necessary to (18), its sufficient opti-
mality condition implies a saddle point minimax problem with respect to the pair of
the primal variable u and the dual variable Fc (the Lagrange multiplier) associated
to the constraint tr

Γ
(u) ≥ 0 in accordance with (14). The saddle-point problem reads

minumaxFc

{∫

Ω\Γ
(W − σ ) : ε(ū) dx +

∫

Γ

g(tr
Γ

(ū)) dSx −
∫

Γ

F c tr
Γ

(ū) dSx

}

(19)

subject to Fc ≥ 0.

For nonunique solutions, the sufficient and necessary conditions do not coincide with
each other. This fact is in contrast to the case of convex minimization.

For the numerical solution of (19), hence (18) and (17), a primal dual active
set (PDAS)-based strategy is suggested in [11, 19]. The PDAS strategy is associ-
ated to generalized Newton methods obeying locally superlinear as well as globally
monotone convergence properties.

5 Conclusion

Here, we outline the further development of the subject directed to variational mod-
eling of fractional, damage, and geometrically singular phenomena in mechanics.
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Starting with frictional contact due to the Coulomb law [7, 12], typically, tangen-
tial components of the shear are subject to restriction. Its generalization is developed
in [6] for nonmonotone friction laws, and further in [21] for a cohesive–frictional
interaction restricting both the tangential as well as the normal shear components.
The resulting hemivariational inequalities are argued as pseudo-monotone variational
inequalities by the authors of [25].

The actual task concerns singular geometries, see [10, 14], arising in practice.
Motivated by fracture of composites (and used also in inverse problems for stratified
media [24]), geometrically heterogeneous models with nonlinear inclusions subject
to cracks and anticracks were developed in [15]. This study aims at the shape-
topological control to force either shielding or amplification of an incipient cracking.
For the variational analysis, Γ-convergence techniques are useful [26].

The other development consists in constituting variational models of damaged
elastic, elastoplastic, and cracked materials. The damaged models are treated by
using Γ-limits in [8] and within hysteresis formalism and rate-independent systems
in [22].

In respect to numerical theory of the underlying optimization problems, we re-
fer to [5] for saddle-point algorithms within nonconvex programming, to [9] for
globalization strategies, and to [27] for parametric and dynamic optimization.
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Effects of a Discrete Time Delay on an HIV
Pandemic

Ibrahim Diakite and Benito M. Chen-Charpentier

Abstract We investigate the effects of a discrete time delay on the disease progression
of a human immunodeficiency virus (HIV) pandemic. We consider a model of the
cell-free viral spread of HIV in a well-mixed compartment such as the bloodstream.
A discrete time delay is introduced to take into account the time between the infection
of a CD4+ T cell and the emission of viral particles at the cellular level. We first
investigate the effects of the delay on the virulence of the HIV strains. We derive an
analytical expression of the evolutionary stable strategy (ESS), and characterize how
changes in the delay could alter that evolutionary optimum. Our analysis will show
that the ESS of the HIV strains does not depend on the delay; however, the virulence
of the HIV strains may increase as a consequence of increasing the delay time. We
then present an analytic stability analysis of the endemically infected equilibrium.

We also present a novel numerical analysis of the stability and bifurcation process
of the same equilibrium using numerical tools. With the numerical methods, we are
able to reach the same conclusion as reached analytically.

Keywords Delay differential equations · Evolutionary stable strategy · Hopf
bifurcation

1 Introduction

All processes take time to complete. While some physical processes happen very
fast, biological process times such as gestation periods and maturation times can be
substantial when compared to the data collection times in most population studies [9].
Therefore, to have more realistic models of many biological processes it is imperative
to explicitly incorporate these process times into the mathematical models. Such
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delay models are referred as delay differential equation (DDE) models. Previous
works have shown how crucial a time delay can be for the study of stability of
dynamical systems. In general, DDEs exhibit much more complicated dynamics than
ordinary differential equations since a time delay could cause equilibrium states to
change stability and produce a Hopf bifurcation near that equilibrium. Therefore, an
analytic investigation of the stability of such models can be a very complicated task,
especially when one has multiple time delays in the model. Since, most biological
events have more than one time delay, numerical approaches to the stability analysis
of such delay models is of utmost importance.

We first present a DDE model of the human immunodeficiency virus (HIV) [3].
As stated in this chapter, HIV attacks the immune system by focusing on the CD4+
T lymphocytes. The virions bind to the membrane of the CD4+ T cells and injects its
own genetic material. After a time delay, this genetic material is replicated and many
new virions are released. These new virions can infect susceptible CD4+ T cells.

In this chapter, we first simplify the DDE model proposed in [3] by dropping the
logistic growth factor and then investigate the effects of the delay on the virulence of
the HIV strains. We derive an analytical expression of the ESS, and characterize how
changes in delay could alter that evolutionary optimum. The existence and stability
of the infected steady state are presented explicitly. We then investigate numerically
the dynamics of the system by using numerical tools such that DDE-BITFOL and
DDE23. The stability and bifurcation analysis of the steady state is again presented
numerically by using DDE-BITFOL.

2 Model Equations

Here, we consider the well-known standard ordinary differential equation for HIV
[3, 11], assuming that all the infected cells are capable of producing virus:

dT

dt
= s − μTT − k1V T , (1)

dI

dt
= k2V T − μII , (2)

dV

dt
= NμbI − k1V T − μVV , (3)

where T (t) is the concentration of healthy CD4+ T cells, I (t) is the concentration
infected CD4+ T cells and V (t) is the concentration of free HIV. All parameter
descriptions and values are given in Table 1.

The corresponding DDEs, where a discrete time delay is introduced to represent
the viral eclipse phase, is given as follows:

dT

dt
= s − μTT − k1V T , (4)
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Table 1 Parameters for viral spread

Parameters Description Values

μT Natural death rate of CD4+ T cells 0.02 day−1

μI Blanket death rate of infected CD4+ T cells 0.26 day−1

μb Lytic death rate for infected cells 0.24 day−1

μV Death rate of free virus 2.4 day−1

k1 Rate of CD4+ T cell to become infected by virus 2.4×10−5 mm3day−1

k2 Rate infected cells become active 2×10−5 mm3day−1

N Number of virions produced by infected CD4+ T cells 500

s Source term for uninfected CD4+ T cells 10 day−1mm−3

τ Discrete time delay due to viral eclipse phase Varies

dI

dt
= k2V (t − τ )T (t − τ )− μII , (5)

dV

dt
= NμbI − k1V T − μVV , (6)

with the initial values

T (θ ) = T0 = 1000 mm−3, I (θ ) = 0 mm−3,

V (θ ) = V0 = 1000 mm−3, θ ∈ [−τ , 0].

The description of the parameters and their values are given in Table 1.

3 Effects of Discrete Time Delay on the Virulence

3.1 The Basic Reproduction Number

The basic reproduction number, R0, is defined as the expected number of hary cases
produced by a single (typical) infection in a completely susceptible population. It
is important to note that R0 is a dimensionless number and not a rate, which would
have units of time−1. Some authors incorrectly call R0 the basic reproductive rate.
We can use the fact that R0 is a dimensionless number to help us in calculating it,
see [8].

R0 ∝
(

infection

contact

)
×

(
contact

time

)
×

(
time

infection

)
.

Note that R0 is a dimensionless quantity. More specifically:

R0 = γ × c × d ,

where γ is the transmissibility (i.e., probability of infection given contact between a
susceptible and infected individual), c is the average rate of contact between suscep-
tible and infected individuals, and d is the duration of infectiousness. If R0 > 1, then
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the disease will propagate, otherwise the disease will eventually die and a fraction
of the population will escape infection.

3.2 Next-Generation Matrix Method

There are several methods of computing R0. The most formal and most widely used
approach is the next generation matrix approach. Many papers such as [6] and [8]
provide a nice introduction for calculating R0 using this method. The notation we
use here follows their usage. Consider the next generation matrix G. It is composed
of two parts: F and V −1, where

F =
[
∂Fi(x0)

∂xj

]

and

V =
[
∂Vi(x0)

∂xj

]
.

The Fi are the new infections, while the Vi transfers of infections from one com-
partment to another. x0 is the disease-free equilibrium state. R0 is the dominant
eigenvalue of the matrix G = FV −1.

3.3 Evolutionary Stable Strategy of Virulence

It is instructive to think about epidemics from the pathogen’s perspective. Pathogens
bear biological information in their nucleic acids. This information varies from one
copy of a pathogen to another, and the ability of a pathogen to persist and multiply can
be a function of this variability [1, 8], known as virulence. In other word, virulence
is the ability of the pathogen to transmit disease to a host. There is a trade-off
between virulence and transmissibility. An increase in virulence will first lead to an
increase in transmissibility, which consequently will lead to a faster weakening and
may be death of the host. So, there are fewer possible contacts and shorter times to
transmit. But more virulent strains may have higher instantaneous transmissibility
rates that compensate for the fewer contacts. So, for a pathogen to invade a susceptible
population there has to be a balance between transmissibility and virulence.

An evolutionary stable strategy (ESS) is a phenotype that cannot be invaded by
a rare mutant. Loosely speaking, it represents the optimal phenotype. The ESS
virulence occurs where the fitness gradient equals zero [8], meaning:

dR0

dx
= 0,

where x denotes the virulence.
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3.4 Change in Selective Pressures

Previous work [2, 10] has proved that the direction of virulence evolution around an
ESS as selective pressures change will be determined by the sign of the derivative of
the fitness gradient with respect to the parameter that is changing. In other words, the
virulence will increase (decrease) when we increase (decrease) a selected parameter
n if:

∂

∂n

[
∂R0(x, n)

∂x

]
> 0. (< 0).

3.5 Effects of Discrete Time Delay on Virulence

To investigate the effects of the discrete time delay τ on the virulence, we compute
the basic reproduction number R0 (see Appendix):

R0(x, τ ) = log r0(x)τ

τ
,

where

r0(x) = Nμbk2(x)

μIμV(x)

is the basic reproduction number when there is no delay. x denotes the virulence,
and k2(x) and μV (x) are the rate at which the infected cells become active and the
death rate of free virions, respectively.

Theorem 1 The ESS of the virulence is independent of the discrete time delay.

Proof The fitness gradient of the system is given by:

∂R0(x, τ )

∂x
=

dk2(x)
k2(x) − dμv(x)

μv(x)

τ
. (7)

The ESS virulence occurs where

dR0

dx
= 0,

that is, if and only if:

dk2(x)

dμv(x)
= k2(x∗)

μv(x∗)
, (8)

where x∗ denoted the ESS of x (virulence).
When there is no delay (τ = 0) the fitness gradient is given by:

dr0(x)

dx
= Nμb

[
μvk

′
2(x)− k2μ

′
v(x)

]

μIμv
, (9)
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and therefore the ESS occurs when

μvk
′
2(x)− k2μ

′
v(x) = 0,

which is equivalent to Eq. 8. �

Equation 8 has a nice geometric interpretation. The ESS virulence occurs where
a line (L1) is tangent to the curve that relates k2 to μv. This result is known as the
marginal value theorem and has applications in economics and ecology as well as
epidemiology.

Theorem 2 The virulence of the HIV strain of the system (4)–(6) increases when
we increase the discrete time delay τ due to the viral eclipse if and only if

k2 < μv.

Proof The derivative of the fitness gradient (Eq. 7) with respect to τ is given as:

∂

∂τ

[
∂R0(x, τ )

∂x

]
= −

dk2(x)
k2(x) − dμv(x)

μv(x)

τ 2

and
∂

∂τ

[
∂R0(x, τ )

∂x

]
> 0,

if and only
dk2(x)

k2(x)
<

dμv(x)

μv(x)
.

Take the integral of both sides and notice that k2(0) = μv(0) = 0, to obtain

k2 < μv. �

3.6 Results

To illustrate the effects of the delay on the virulence of the infection, we compute
numerically the solution of system (4)–(6) using MATLAB package DDE23 [13].
The parameter values are given in Table 1. The discrete time delay introduces a time
shift, but has a minimal effect on the number of copies of uninfected CD4+ T cell
as shown in Fig. 1.

As we increase the delay, the virulence of the disease has a large increase and
therefore the decrease in the number of copies of infected CD4+ T cell, see Fig. 2,
and the number of copies of free virions, see Fig. 3, which shows the results for
τ = 5 days.
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Fig. 1 Time variation of uninfected CD4+ T cells without delay (left) and with delay τ = 5 days
(right)

Fig. 2 Time variation of infected CD4+ T cells without delay (left) and with delay τ = 5 days
(right)

Fig. 3 Time variation of free HIV virions without delay(left) and with delay τ = 5 days (right)
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4 Effects of Discrete Time Delay on Stability

In this section, we investigate the effects of a discrete time delay on the stability of a
steady state of a given dynamical system. To do so, we consider the same DDEs for
a HIV infection (system (4)–(6) as in Sect. 3). We first describe the stability of the
steady states of the system when there is no delay, i.e., τ = 0, and then investigate
the changes in stability as we introduce the delay. We also point out necessary and
sufficient conditions for the delay to affect the stability of the steady states, and to
introduce possible Hopf bifurcations.

4.1 Stability of the Ordinary Differential Model

In this subsection, we present necessary and sufficient conditions for the existence
and stability of the steady states of the standard system (1)–(3).

Proposition 1

i) If R ≤ 1, then the nonnegative steady state of the system (1)–(3) is (T ∗0 , I ∗0 ,V ∗0 ) =
( s
μT

, 0, 0).

ii) If R > 1 and β > 0 (i.e., N > Ncrit = μI (k1s+μvμT)
μbk1s

), then the nonnegative steady

states are: (T ∗0 , I ∗0 ,V ∗0 ) = ( s
μT

, 0, 0), (T ∗1 , I ∗1 ,V ∗1 ) = ( μvμ
2
I

k1(R−1) ,
βμI

k1(R−1) ,
β

k1μvμI

)
,

where

R = Nμb

μI

, β = (Nμb − μI)k1s − μvμIμT.

Notice that the threshold parameter R can be interpreted as the basic reproductive
number. If R > 1, then the disease will spread into the system, otherwise for R ≤ 1
the disease will eventually die. The parameter N is clearly a bifurcation parameter

Stability Analysis of the Equilibria
The Jacobian matrix of the model system evaluated at (T ∗, I ∗,V ∗) is

J =

⎡

⎢⎢
⎣

−μT − k1V
∗ 0 −k1T

∗

k2V
∗ −μI k2T

∗

−k1V
∗ Nμb −k1T

∗ − μv.

⎤

⎥⎥
⎦

We will study the stability of our model based on the eigenvalues of the Jacobian
matrix.
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Proposition 2

(i) If R ≤ 1 and β < 0 (i.e., N < Ncrit = μI(k1s+μvμT)
μbk1s

), then the steady state
(T ∗0 , I ∗0 ,V ∗0 ) = ( s

μT
, 0, 0) is stable.

(ii) If R ≤ 1 and β > 0, then the steady state (T ∗0 , I ∗0 ,V ∗0 ) is unstable.
(iii) If R > 1, β > 0, a1 > 0, a4 + a5 > 0 and a1(a2 + a3) − (a4 + a5) > 0, then

the steady state (T ∗1 , I ∗1 ,V ∗1 ) = ( μvμ
2
I

k1(R−1) ,
βμI

k1(R−1) ,
β

k1μvμI

)
is stable.

Here,

a1 : = k1(T ∗ + V ∗)+ μv + μI − μT (10)

a2 : = (μI + k1V
∗)k1T

∗ + μIμv (11)

a3 : = Nμbk2T
∗ (12)

a4 : = (μT + k1V
∗)Nμbk1k2T

∗V ∗ (13)

a5 : = (μT + k1V
∗)[(Nμb − k2V

∗ − μI)k1T
∗ − μIμv]. (14)

Proof The characteristic equation of matrix J is given by:

λ3 + a1λ
2 + (a2 + a3)λ+ (a4 + a5) = 0. (15)

(i) In this case, we substitute the steady state (T ∗0 , I ∗0 ,V ∗0 ) into Eq. 15 and find:

(λ+ μT)(λ2 + b1λ+ b2) = 0,

with

b1 := μIμT + k1s + μVμT

μT
and b2 := −β

μT

– If β < 0, then ζ = b2
1 − 4b2 ≤ 0 and therefore the eigenvalues of J are:

λ1 = −μT, λ2 = −b1
2 −

√
ζ

2 i and λ3 = −b1
2 +

√
ζ

2 i.

Thus, the steady state is stable.
– If β > 0, then ζ = b2

1 − 4b2 > 0 and therefore the eigenvalues of J are:

λ1 = −μT < 0, λ2 = −b1
2 −

√
ζ

2 < 0 and λ3 = −b1
2 +

√
ζ

2 > 0.
Thus, the steady state is unstable.

(ii) Since R > 1 and β > 0, the steady state (T ∗1 , I ∗1 ,V ∗1 ) exists. By the Routh–
Hurwitz criterion [7, 12], it follows that all roots of the characteristic equation
have negative real parts, if and only if,
a1 > 0, a4 + a5 > 0 and a1(a2 + a3)− (a4 + a5) > 0. �
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4.2 Stability of the DDE Model

Now, we consider the system (4)–(6), which is the delay model of HIV.
Notice that the delay system has the same steady states as the ordinary differential

equation (ODE) model. To study the stability of those steady states, let us define
solutions of the delay system of the form:

⎡

⎢⎢
⎣

cT ′

I ′

V ′

⎤

⎥⎥
⎦ = e−λτ

⎡

⎢⎢
⎣

cT

I

V

⎤

⎥⎥
⎦.

Then the Jacobian of the system is given by:

M =

⎡

⎢⎢
⎣

−μT − k1V
∗ 0 −k1T

∗

e−λτ k2V
∗ −μI e−λτ k2T

∗

−k1V
∗ Nμb −k1T

∗ − μv

⎤

⎥⎥
⎦.

The characteristic equation of the DDE model is given by:

λ3 + a1λ
2 + a2λ+ a3e

−λτ λ+ a4e
−λτ + a5 = 0, (16)

where ai , i = 1, ..., 5 are defined in Eqs. 10–14.

Proposition 3 The stability of the noninfected steady state does not depend on the
delay. Therefore, the stability conditions of the steady state (T ∗0 , I ∗0 ,V ∗0 ) remain the
same as those given in Proposition 2

Proof Notice that when we consider (T ∗0 , I ∗0 ,V ∗0 ), then the coefficients a3 = a4 = 0
and then the characteristic equation of the DDE system becomes (λ+μT )(λ2+b1λ+
b2) = 0, for all τ > 0. �

Recall that for the ODE model the steady state (T ∗1 , I ∗1 ,V ∗1 ) is stable for the pa-
rameter values satisfying conditions in Proposition 3.2.1(ii). Here, we are interested
in determining whether there exists a critical delay τc > 0 so that Re(λ) > 0 for
τ > τc. In other words, τc is the value of τ such that Re(λ) = 0, at which the
transition from stability to instability occurs. For the steady state (T ∗1 , I ∗1 ,V ∗1 ), if we
let λ(τ ) = α(τ ) + iω(τ ), where α and ω are real, then we have α(0) < 0. Suppose
α(τc) = 0 for some τc > 0, then by the continuity in τ of α, α(τ ) < 0 for values of
τ such that 0 ≤ τ < τc. Therefore, the steady state remains stable for these values
of τ .

If such τc > 0 exists, with α(τc) = 0 and α(τ ) < 0 for 0 ≤ τ < τc, then by
Rouche’s theorem (Dieudonne [4], Theorem 9.17.4), the steady state will lose sta-
bility at τ = τc. In fact such τc exists if and only there exists ω(τc) > 0 such that
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λ(τc) = iω(τc) = iωc is a root of the characteristic equation 16. That is

−iω3
c − a1ω

2
c + a2iωc + a5 + (a4 + a3iωc)( cosωcτc − i sinωcτc) = 0.

Equating real parts and imaginary parts of the equation to zero, one obtains:

a1ω
2
c − a5 = a4 cosωcτc + a3ωc sinωcτc, (17)

−ω3
c + a2ωc = a4 sinωcτc − a3ωc cosωcτc. (18)

Adding up the squares of equations 17 and 18, one obtains

u(ωc) := ω6
c + (a2

1 − 2a2)ω4
c + (a2

2 − 2a1a5 − a2
3)ω2

c + a2
5 − a2

4 = 0. (19)

For simplicity, we introduce the quantities

z := ω2
c , p := a2

1 − 2a2, q := a2
2 − 2a1a5 − a2

3 , r := a2
5 − a2

4 .

Then Eq. 19 reduces to

K(z) := z3 + pz2 + qz + r = 0. (20)

�

Lemma 1 Suppose that Eq. 20 has no positive roots. Then all the roots of the
characteristic equation have negative real parts for all τ > 0.

We present conditions that ensure that Eq. 20 has a positive root or has no positive
roots.

K ′(z) = 3z2 + 2pz + q = 0

has the roots:

Z0 := −p +
√
p2 − 3q

3
, Z1 := −p −

√
p2 − 3q

3
.

Lemma 2

(i) If either (a) r < 0, or (b) r ≥ 0, p2 − 3q > 0, p < 0 and K(Z0) < 0, then
Eq. 20 has a positive root.

(ii) If r ≥ 0 and p2 − 3q < 0, then Eq. 20 has no positive roots.

Proof

(i) Suppose that condition (a) holds, that is, r < 0. Then we have K(0) = r < 0.
On the other hand, since

lim
z→+∞K(z) = ∞,

by the intermediate value theorem Eq. 20 must have a positive root z0, that is,
K(z0) = 0. Now suppose that condition (b) holds. Since r ≥ 0, p < 0, and
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p2 − 3q > 0, we find that Z0 is real and Z0 > 0. Since K(0) = r ≥ 0 and
k(Z0) < 0, again by the intermediate value theorem, K has a zero between the
origin and Z0.

(ii) Since p2− 3q < 0, both zeros Z0 and Z1 are not real. That is, K ′(z) = 0 has no
real root. Noting that

K ′(0) = q >
p2

3
≥ 0

we conclude that the quadratic polynomial K ′ is strictly positive on the real
numbers. This implies that K is increasing on the real numbers. Moreover, since
K(0) = r ≥ 0, we observe that K(z) does not vanish for z > 0 and thus Eq. 20
has no positive roots.

Notice that Lemma 2(ii) implies that there is no positive ω such that iω is a solution
of the characteristic equation 16. Therefore, the real parts of all the eigenvalues of
(16) are negative for all delay τ ≥ 0. �

Next, we will provide the conditions on the parameters to ensure that Hopf bifur-
cation occurs. Suppose conditions in Lemma 2(i) hold, then Eq. 20 has a positive root.
We denote, without loss of generality the positive roots of (20) by mj , j ∈ {0, 1, 2}
depending on the number of positive roots (20) has. Equation 19, therefore has at
most six roots, ±√mj forj = 0, 1, 2.

If the solution of Eq. 19 exists, it is among these±√mj for j = 0, 1, 2. If λ = iω

is a root of Eq. 16 so is −iω.
Substituting ωj into Eqs. 17 and 18 and solving for τ, we obtain

τ
(n)
j = 1

ωj

arccos
a3ω

4
j + (a1a4 − a2a3)ω2

j − a4a5

a2
4 + a2

3ω
2
j

+ 2nπ

ωj

,

where j = 0, 1, 2 and n = 0, 1, 2, . . .
Now, let τc > 0 be the smallest of such τ for which α(τc) = 0. Thus,

τc = minτ (n)
j > 0, 0 ≤ j ≤ 2, n ≥ 1, ωc = ωjc (21)

Theorem 3 For the time lag τ , let the critical time lag τc andωc be defined as in (21),
and suppose that (E2E3 − E1E4) sinωcτc − (E2E4 + E1E3) cosωcτc �= 0 then the
system of DDEs (4)–(6) exhibits a Hopf bifurcation at the steady state (T ∗1 , I ∗1 ,V ∗1 ),
with

E1 := a3 sinωcτc − 2a1ωc, E2 := a3 cosωcτc + a2 − 3ω2
c ,

E3 := a4ωc, E4 := a3ω
2
c .

Proof We will show that
dα(τ )

dτ
|τ=τc �= 0,
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which guarantees that the Hopf bifurcation occurs. First, we equate real parts and
imaginary parts of the characteristic equation to zero:

α3 − 3αω2 + a1α
2 − a1ω

2 + a2α + a5

+ e−ατ [(α cosωτ + ω sinωτ )a3 + a4 cosωτ ] = 0, (22)

3α2ω − ω3 + 2a1αω + a2ω

+ e−ατ [(ω cosωτ − α sinωτ )a3 − a4 sinωτ ] = 0. (23)

We differentiate Eqs. 22 and 23 with respect to τ and evaluate at τ = τc for which
α(τc) = 0 and ω(τc) = ωc. We then obtain

E1
dω(τ )

dτ

∣∣∣
τ=τc

+ E2
dα(τ )

dτ

∣∣∣
τ=τc

= E3 sinωcτc − E4 cosωcτc, (24)

E2
dω(τ )

dτ

∣∣∣
τ=τc

− E1
dα(τ )

dτ

∣∣∣
τ=τc

= E3 cosωcτc + E4 sinωcτc. (25)

By solving Eqs. 24 and 25, we obtain

dα(τ )

dτ
|τ=τc =

(E2E3 − E1E4) sinωcτc − (E2E4 + E1E3) cosωcτc

E2
1 + E2

2

�= 0.

Hence, the Hopf bifurcation occurs when τ passes through the critical value τc. �

5 Numerical Methods

Using DDE-BIFTOOL [5], we will examine the stability and the bifurcation process

of the steady state (T ∗1 , I ∗1 ,V ∗1 ) = (
μvμ

2
I

k1(R−1) ,
βμI

k1(R−1) ,
β

k1μvμI
). We compute the eigen-

values of the characteristic equation 16, and display their real parts versus imaginary
parts as shown in Fig. 4.

All eigenvalues have negative real part, therefore the steady state (T ∗1 , I ∗1 ,V ∗1 ) is
stable for those values of τ . But as we increase the delay, there are eigenvalues with
positive real part, see Fig. 5. So, there exists a critical delay τc such that the steady
state is destabilized (some of the eigenvalues of the characteristic Eq. 16 have strictly
positive real parts) as τ passes through τc.

Figure 6 shows the existence of a pair of pure imaginary eigenvalues where there
is a Hopf bifurcation, and also of a real eigenvalue where we have a fold or turning
point bifurcation.

One can plot the time lag τ versus the rate of infection of the CD4+ T cells with
free virus, and notice that as τ passes through the critical delay τc the steady state is
destabilized through a second Hopf bifurcation branch, see Fig. 7.
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Fig. 4 Roots of the characteristic equation 16 with τ = 10 days (left) and τ = 15 days (right)

Fig. 5 Roots of the characteristic equation 16 with τ = 20 days (left), and real part vs. k1 (right)

Fig. 6 A pair of pure
eigenvalues is clearly visible
(Hopf bifurcation) and also a
real eigenvalue (turning point
or fold bifurcation)
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Fig. 7 Hopf bifurcation branches: τ vs. k1

6 Conclusions

We investigated the effects of a discrete time delay on disease progression of an
HIV pandemic. We first investigated the effects of the delay on the virulence of the
HIV strains. We derived an analytical expression of the ESS, and characterized how
changes in delay could alter that evolutionary optimum. Our analysis showed that
the ESS of the HIV strains does not depend on the delay; however, the virulence
of the HIV strains may increase as a consequence of increasing the delay time. We
then presented an analytic stability analysis of the endemically infected equilibrium
similar to the analysis done by [3]. We presented a novel numerical analysis of the
stability and bifurcation process of the same equilibrium using numerical tools. With
the numerical methods we were able to reach the same conclusion as the analytic
version.
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Appendix

In this appendix, we compute the basic reproductive number by the method of next
generation matrix. System (4)–(6) has the matrix of newly raised infections:

F =
⎡

⎣0 k2e
−λτ

0 0

⎤

⎦ (26)

and the matrix of transferred infections:

V =
⎡

⎣μ1 0

−Nμb μv

⎤

⎦. (27)

The next generation matrix is

FV −1 =
⎡

⎣e
−λτ k2Nμb

μ1μb
e−λτ k2

μv

0 0

⎤

⎦, (28)

which has the characteristic equation

λ

(
λ− e−λτ

k2Nμb

μ1μv

)
= 0. (29)

If τ = 0, then the dominant eigenvalue is

r0 = k2Nμb

μ1μv
(30)

If τ > 0, then the dominant eigenvalue is

R0 = ln r0τ

τ
. (31)
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On the Riemann Problem for a Hyperbolic
System of Temple Class

Richard A. De la cruz Guerrero and Juan C. Juajibioy

Abstract In this chapter, we study the one-dimensional Riemann problem for
a hyperbolic system of three conservation laws of temple class. Under suitable
generalized Rankine–Hugoniot relation and entropy condition, both existence and
uniqueness of particular delta-shock type solutions are established. Moreover, we
show explicitly the solution of generalized Riemann problem.

Keywords Temple class · Linearly degenerate fields · Riemann problem · General-
ized Riemann problem · Delta shock solution

1 Introduction

The modeling of viscoelastic materials and fluids is important for many applications.
In [6], the authors introduced a new system of conservation laws that models

shallow viscoelastic fluids. This new system is motivated in [6, Eq. (5.6)] and is
written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + π )x = 0,

(ρ π

s2 )t + (ρu π

s2 + u)x = 0,

st + usx = 0,

ct + ucx = 0,

(A)

where ρ denotes the layer depth of fluid, u is the horizontal velocity, s is related to
the stress tensor and it is a conserved quantity, π is the relaxed pressure, and c > 0 is
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ρ0(x)

ρ(t, x)

u(t, x)

Fig. 1 Simplified viscoelastic shallow fluid model

introduced in order to parameterize the speeds. This system describes a simple model
for a thin layer of non-Newtonian viscoelastic fluid over a given topography at the
bottom when the movement is driven by gravitational forces such as geophysical
flows (mud flows, landslides, debris avalanches).

In [19], since s is a conserved quantity, the author considers the case s = constant
> 0. Moreover, the field c does not appear in the first four equations and we remove
it. We consider s = constant > 0 and introducing the new variable v = π

s2 to simplify
the system (A) in the following:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + s2v)x = 0,

(ρv)t + (ρuv+ u)x = 0.

(1)

We refer to the system above as the Suliciu relaxation system [5, 9, 24] and correspond
the case homogeneous with constant stress tensor of the model proposed by Bouchut
and Boyaval, i.e., it is a simplified viscoelastic shallow fluid model.

Also, this system can be considered as a relaxation for the isentropic Chaplygin
gas dynamics system:

⎧
⎨

⎩
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P )x = 0,

where ρ and u, respectively, stand for the density and the velocity of the gas, while
the pressure P is given by the state equation P (ρ) = − s2

ρ
with s = constant > 0.

One of the main difficulties of the system (1) is to obtain existence and uniqueness
of solutions of Cauchy problems in the presence of vacuum regions (where the layer
deep ρ = 0). The existence of global weak solutions including vacuum regions,
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was obtained in [19] using compensated compactness. The results on existence and
uniqueness for general rich type and temple class system can be found in [2–4, 7,
13, 20, 21]. However, some of these results do not apply to (1) since it has all fields
being linearly degenerate and the initial data may have oscillations.

The Riemann problem for the Suliciu relaxation system has been extensively
studied, for instance in [5, 10]. However, it seems to us that they did not consider all
possible arrays. Now, we propose delta wave solutions type for the Suliciu relaxation
system. In this chapter, we construct the Riemann solution for the system focusing
our attention on delta shock waves of certain type and the solution of the generalized
Riemann problem. The existence and uniqueness of solutions involving delta shock
waves can be obtained by solving the generalized Rankine–Hugoniot relation under
an entropy condition [12, 16].

2 Properties of the Suliciu Relaxation System and Some
Assumptions

The eigenvalues associated to the system (1) are given by,

λ1 = u− s/ρ, λ2 = u and λ3 = u+ s/ρ, (2)

where the corresponding Riemann invariants are

R1 = s2v− su, R2 = v+ 1/ρ, and R3 = s2v+ su. (3)

It is easy to see that system (1) is linearly degenerate. Moreover, we have that for
each i, j , k ∈ {1, 2, 3} with j �= i, k �= i, it holds

∂

∂Rj

(
1

λk − λi

∂λi

∂Rk

)
= ∂

∂Rk

(
1

λj − λi

∂λi

∂Rj

)
. (4)

This means that system (1) is of rich type [22]. In this chapter, we focus on the study
of the Suliciu relaxation system of conservation laws (1) with bounded initial data:

(ρ(0, x), u(0, x), v(0, x)) = (ρ0(x), u0(x), v0(x)), x ∈ R

ρ0(x) ≥ ρ = constant > 0, (5)

subject to the following conditions:

H1: The functions ρ0, u0, and v0 satisfy

c1 ≤ u0(x)− sv0(x) ≤ c2, c3 ≤ u0(x)+ sv0(x) ≤ c4

and v0(x)+ 1

ρ0(x)
> c5,

where ci , i = 1, . . ., 5, are suitable constants satisfying c5 − c4−c1
2s > 0.
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H2: The total variations of u0(x)− sv0(x) and u0(x)+ sv0(x) are bounded.

The conditions H1 and H2 are somehow natural to impose since they ensure that
ρ is positive giving a physical meaning to the Suliciu relaxation system (1). All
entropies associated to (1) are of the form,

η(ρ, u, v) = ρ (F (u+ sv)+G(u− sv)+H (v+ 1/ρ)) , (6)

where F ,G,H are arbitrary functions having entropy flux:

q(ρ, u, v) = (ρu+ s)F (u+ sv)+ (ρu− s)G(u− sv)+ ρuH (v+ 1/ρ). (7)

Moreover, if the functions F ,G, and H are convex, then, the entropy is also convex
(see [19, Theorem 2]). Thus, from each convex pair (η, q), we have the following
condition:

ηt (ρ, u, v)+ qx(ρ, u, v) = 0 (8)

in the sense of distributions.

3 Riemann Problem

In this section, we study the solution for the Riemann problem associated with the
Suliciu relaxation system with initial data:

(ρ, u, v)(0, x) =
⎧
⎨

⎩
(ρr, ur, vr), if x > 0,

(ρl, ul, vl), if x < 0,
(9)

in which left and right constant states (ρl, ul, vl) and (ρr, ur, vr), respectively, satisfy
the conditions H1, H2 and λ1(ρl, ul, vl) < λ3(ρr, ur, vr).

Consider the self-similar solution (ρ, u, v)(t , x) = (ρ, u, v)(ξ ), ξ = x
t
, for which

the system (1) becomes
⎧
⎪⎪⎨

⎪⎪⎩

−ξρξ + (ρu)ξ = 0,

−ξ (ρu)ξ + (ρu2 + s2v)ξ = 0,

−ξ (ρv)ξ + (ρuv+ u)ξ = 0,

(10)

and initial data (9) changes to the boundary condition

(ρ, u, v)(−∞) = (ρl, ul, vl) and (ρ, u, v)(+∞) = (ρr, ur, vr). (11)

This is a two-point boundary value problem of first-order ordinary differential equa-
tions with the boundary values in the infinity. For smooth solution, (10) is reduced
to

⎛

⎜⎜
⎝

u− ξ ρ 0

0 ρ(u− ξ ) 0

0 1 ρ(u− ξ )

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

ρ

u

v

⎞

⎟⎟
⎠

ξ

= 0. (12)
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It provides either the general solutions (constant states) (ρ, u, v)= constant (ρ > 0) or
singular solutions

ξ = λ1 = u− s/ρ, d (u− s/ρ) = 0 and d (v+ 1/ρ) = 0,

ξ = λ2 = u, du = 0 and dv = 0, (13)

ξ = λ3 = u+ s/ρ, d (u+ s/ρ) = 0 and d (v+ 1/ρ) = 0.

Integrating (13) from (ρl, ul, vl) to (ρ, u, v), one can get that

ξ = λ1 = u− s/ρ, u− s/ρ = ul − s/ρl and v+ 1/ρ = vl + 1/ρl,

ξ = λ2 = u, u = ul and v = vl, (14)

ξ = λ3 = u+ s/ρ, u+ s/ρ = ul + s/ρl and v+ 1/ρ = vl + 1/ρl.

For a bounded discontinuity at ξ = ω, the Rankine–Hugoniot conditions hold,
⎧
⎪⎪⎨

⎪⎪⎩

−ω[ρ]+ [ρu] = 0,

−ω[ρu]+ [ρu2 + s2v] = 0,

−ω[ρv]+ [ρuv+ u] = 0,

(15)

where [q] = ql−q is the jump of q across the discontinuous line andω is the velocity
of the discontinuity. From (15), we have

ω = u− s/ρ, u− s/ρ = ul − s/ρl and v+ 1/ρ = vl + 1/ρl,

ω = u, u = ul and v = vl, (16)

ω = u+ s/ρ, u+ s/ρ = ul + s/ρl and v+ 1/ρ = vl + 1/ρl.

From (14) and (16), we conclude that the rarefaction and shock waves are coincident
[25], which correspond to contact discontinuities [8]. Namely, for a given left state
(ρl, ul, vl), the contact discontinuity curves, which are the sets of states that can be
connected on the right by a 1-contact discontinuity J1, a 2-contact discontinuity J2,
or a 3-contact discontinuity J3, are as follows:

J1 : (ρ, u, v) := (ρ, ul − s/ρl + s/ρ, vl + 1/ρl − 1/ρ),

J2 : (ρ, u, v) := (ρ, ul, vl), (17)

J3 : (ρ, u, v) := (ρ, ul + s/ρl − s/ρ, vl + 1/ρl − 1/ρ), ρ > 0.

In the space (ρ > 0, u ∈ R, u ∈ R), through the point (ρl, ul, vl), we draw curves
(17) which are denoted by J1, J2, and J3 respectively. So, J1 has asymptotes ρ = 0
and (ρ, ul − s/ρl, vl + 1/ρl) for ρ ≥ 0, and J3 has asymptotes ρ = 0 and (ρ, ul +
s/ρl, vl + 1/ρl).

In order to solve the Riemann problem (1)–(9), we consider left and right constant
states Ul = (ρl, ul, vl) and Ur = (ρr, ur, vr), respectively, such that the condi-
tions H1–H2 are satisfied and λ1(Ul) < λ3(Ur). Then exist intermediate states,
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U∗ = (ρ∗, u∗, v∗) and U∗∗ = (ρ∗∗, u∗∗, v∗∗) such that U∗ = J1(σ1)(Ul), U∗∗ =
J2(σ2)(U∗) and Ur = J3(σ3)(U∗∗), for some σ1, σ2, σ3.

Furthermore, because of (17), the states U ∗, U ∗∗ should satisfy

u∗ = (ul − s/ρl)+ s/ρ∗, v∗ = (vl + 1/ρl)− 1/ρ∗, (18a)

u∗ = u∗∗, v∗ = v∗∗, (18b)

u∗∗ = (ur + s/ρr)− s/ρ∗∗ and v∗∗ = (vr + 1/ρr)− 1/ρ∗∗. (18c)

From Eq. (19), we have

1/ρ∗∗ − 1/ρ∗ = (vr + 1/ρr)− (vr + 1/ρl) (19)

and

1/ρ∗∗ + 1/ρ∗ = {(ur + s/ρr)− (ul − s/ρl)} /s. (20)

Observe that by conditions H1 and H2, we have that U∗ and U∗∗ also satisfies H1,
H2.

This guarantees that ρ∗ and ρ∗∗ are positive.
Note that λ1(Ul) < λ3(Ur), implies |R2(Ur)− R2(Ul)| < 1

s
(λ3(Ur)− λ1(Ul)).

Additionally, as usual, since the system is linearly degenerate, λ1(Ul) = λ1(U∗),
λ2(U∗) = λ2(U∗∗), and λ3(U∗∗) = λ3(Ur).

The results of this section can be summarized in the following theorem.

Theorem 1 Given left and right constant states (ρl, ul, vl) and (ρr, ur, vr), respec-
tively, such that they satisfy conditions H1, H2 and λ1(ρl, ul, vl) < λ3(ρr, ur, vr).
Then, there is a unique global solution to the Riemann problem (1)–(9). Moreover,
this solution is given by

(ρ, u, v)(t , x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ρl, ul, vl), if x < λ1(ρl, ul, vl)t ,

(ρ∗, u∗, v∗), if λ1(ρl, ul, vl)t < x < λ2(ρ∗∗, u∗∗, v∗∗)t ,

(ρ∗∗, u∗∗, v∗∗), if λ2(ρ∗∗, u∗∗, v∗∗)t < x < λ3(ρr, ur, vr)t ,

(ρr, ur, vr), if x > λ3(ρr, ur, vr)t ,

(21)

where

1

ρ∗
= 1

2s
(ur − ul)− 1

2
(vr − vl)+ 1

ρl
,

1

ρ∗∗
= 1

2s
(ur − ul)+ 1

2
(vr − vl)+ 1

ρ
,

u∗ = 1

2
{(ul + svl)+ (ur − svr)} = u∗∗ and v∗ = 1

2s
{(ul + svl)− (ur − svr)} = v∗∗.
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Remark 1 (Explicit solutions) Observe that using the Euler–Lagrange (E–L) trans-
formation [17, 20, 26, 27], (t , x) → (t , y) = (t ,Y (t , x)), defined by

dy = ρ dx − ρu dt and Y (0, x) = Y0(x)
def=

∫ x

0
ρ0(ξ ) dξ ,

the system (1) in Lagrangian coordinates becomes
⎧
⎪⎪⎨

⎪⎪⎩

ωt − νy = 0,

νt + s2κy = 0,

κt + νy = 0,

(22)

where ω(t , y) denotes the quantity 1
ρ(t ,x) in Lagrangian coordinates, ν(t , y) = u(t , x)

and κ(t , y) = v(t , x). The eigenvalues associated to (22) are given by

λ̃1 = −s, λ̃2 = 0, λ̃3 = s, (23)

and the corresponding Riemann invariants are given by R1 = s2κ− sν, R2 = ν+ω,
and R3 = s2κ − sν. Also, the entropy condition (8) transforms into η̃t (ω, ν, κ) +
q̃x(ω, ν, κ) = 0, for each η̃ with η̃(ω, ν, κ) = F (ν + sκ)+G(ν − sκ)+H (ω + κ)
and q̃(ω, ν, κ) = sF (ν + sκ) − sG(ν − sκ) where F ,G,H are (arbitrary) convex
functions. The initial conditions (5) becomes

⎧
⎨

⎩
(ω(0, y), ν(0, y), κ(0, y)) = (ω0(y), ν0(y), κ0(y)), y ∈ R,

ω0(y) ≥ ω > 0.
(24)

The explicit solution of the corresponding Cauchy problem (22)–(24) is

ω(t , y) = ω0(y)+ κ0(y)− κ(t , y),

ν(t , y) = (ν0(y + st)+ ν0(y − st))/2− s(κ0(y + st)− κ0(y − st))/2, (25)

κ(t , y) = (κ0(y + st)+ κ0(y − st))/2− (ν0(y + st)− ν0(y − st))/2s.

Moreover, by condition H1 we obtain that c1 ≤ ν(t , y)−sκ(t , y) ≤ c2, c3 ≤ ν(t , y)+
sκ(t , y) ≤ c4 and ω(t , y)+κ(t , y) > c5, and since ρ0(x) ≥ ρ = constant > 0 by (5),
we have that ω(t , y) ≥ ω > 0, ensuring that the function y �→ X(t , y) is invertible
and bi-Lipschitzian from R to R for all t ≥ 0.

Therefore, we consider X0 = Y−1
0 . Then, the unique function x = X(t , y) that

satisfy X(0, y) = X0(y) is given by

X(t , y) = 1

2s

∫ y+st

y−st
u0(X0(ξ )) dξ +

∫ y

0

(
v0(X0(ξ ))+ 1

ρ0(X0(ξ ))

)
dξ

− 1

2

∫ y+st

0
v0(X0(ξ )) dξ − 1

2

∫ y−st

0
v0(X0(ξ )) dξ. (26)

From the above, we obtain the following theorem.
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Theorem 2 Assume that ρ0, u0, v0 ∈ L∞(R) with ρ0(x) ≥ ρ > 0, the conditions
H1, H2 hold and

inf
x∈R

(
u0(x)+ s

ρ0(x)

)
> sup

x∈R

(
u0(x)− s

ρ0(x)

)
. (27)

Then, the Cauchy problem (1)–(5) has an unique global solution (ρ, u, v) ∈ L∞(R+×
R) that satisfies the entropy condition (8) for all pair (η, q) defined in (6) and (7).
Moreover, this solution is given by

ρ(t , x) = ρ0(X0(Y (t , x)))

1+ ρ0(X0(Y (t , x))) [v0(X0(Y (t , x)))− v(t , x)]
,

u(t , x) =Γ +u0
(t , x)− sΓ −v0

(t , x) and v(t , x) = Γ +v0
(t , x)− 1

s
Γ −u0

(t , x),

where Γ ±G0
(t , x) = 1

2 [G0(X0(Y (t , x)+ st))±G0(X0(Y (t , x)− st))] .
Usually, the condition (27) guarantees existence and uniqueness of solutions in

linearly degenerate systems [11, 23].

4 Delta Shock Solution

Now, we discuss the solution for the Riemann problem associated with the Suliciu
relaxation system, in which left and right constant states (ρl, ul, vl) and (ρr, ur, vr),
respectively, satisfy the conditions H1 and H2, but unlike previous section they
satisfy λ1(ρl, ul, vl) ≥ λ3(ρr, ur, vr).

Let s ∈ R, the Sobolev spaceHs(R) is the collection of all temperate distributions
f such that (1+ξ 2)s/2f̂ ∈ L2(R, dξ ). Moreover, the Sobolev spaceHs(R) is a Hilbert
space with respect to the inner product

(f , g)s =
∫

R

(1+ ξ 2)s f̂ (ξ )̂g(ξ ) dξ.

Properties on Sobolev spaces can be found in [1, 14, 18].
Denote byBM(R) the space of bounded Borel measures on R. Then, the definition

of a measure solution of Suliciu relaxation system inBM(R) can be given as follows.

Definition 1 A triple (ρ, u, v) constitutes a measure solution to the Suliciu relaxation
system, if it holds that

1. ρ ∈ L∞((0,∞),BM(R)) ∩ C((0,∞),H−s(R)),
2. u ∈ L∞((0,∞),L∞(R)) ∩ C((0,∞),H−s(R)),
3. v ∈ L∞loc((0,∞),L∞loc(R)) ∩ C((0,∞),H−s(R)), s > 0,
4. u and v are measurable with respect to ρ at almost for all t ∈ (0,∞),
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and
⎧
⎪⎪⎨

⎪⎪⎩

I1 =
∫∞

0

∫
R

(φt + uφx) dρdt = 0,

I2 =
∫∞

0

∫
R

u(φt + uφx) dρdt + ∫∞
0

∫
R
s2vφx dxdt = 0,

I3 =
∫∞

0

∫
R

v(φt + uφx) dρdt + ∫∞
0

∫
R

uφx dxdt = 0,

(28)

for all test function φ ∈ C∞0 (R+ × R).

Definition 2 A two-dimensional weighted delta function w(s)δL supported on a
smooth curve L parameterized as t = t(s), x = x(s) (c ≤ s ≤ d) is defined by

〈w(s)δL,φ(t , x)〉 =
∫ d

c

w(s)φ(t(s), x(s)) ds (29)

for all φ ∈ C∞0 (R2).

Definition 3 A triple distribution (ρ, u, v) is called a delta shock wave if it is
represented in the form

(ρ, u, v)(t , x) =

⎧
⎪⎪⎨

⎪⎪⎩

(ρl, ul, vl)(t , x), x < x(t),

(w(t)δ(x − x(t)), uδ(t), g(t)), x = x(t),

(ρr, ur, vr)(t , x), x > x(t),

(30)

and satisfies Definition 1, where (ρl, ul, vl)(t , x) and (ρr, ur, vr)(t , x) are piecewise
smooth bounded solutions of the Suliciu relaxation system (1).

We set dx
dt
= uδ(t) since the concentration in ρ needs to travel at the speed of

discontinuity. Hence, we say that a delta shock wave (30) is a measure solution to
the Suliciu relaxation system (1), if and only if, the following relation holds:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t)
dt
= uδ(t),

dw(t)
dt
= −[ρ]uδ(t)+ [ρu],

dw(t)uδ (t)
dt

= −[ρu]uδ(t)+ [ρu2 + s2v],
dw(t)g(t)

dt
= −[ρv]uδ(t)+ [ρuv+ u].

(31)

In fact, for any test function φ ∈ C∞0 (R+ × R), from (28), we obtain

I1 =
∫ ∞

0

∫

R

(φt + uφx) dρdt =
∫ ∞

0

{
−uδ(t)[ρ]+ [ρu]− dw(t)

dt

}
φ dt ,

I2 =
∫ ∞

0

{
−uδ(t)[ρu]+ [ρu2 + s2v]− dw(t)uδ(t)

dt

}
dt , and

I3 =
∫ ∞

0

{
−uδ(t)[ρv]+ [ρuv+ u]− dw(t)g(t)

dt

}
φ dt.

The relation (31) are called the generalized Rankine–Hugoniot relation.
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In addition, to guarantee uniqueness, the delta shock wave should satisfy the
admissibility (entropy) condition:

λ3(ρr, ur, vr) ≤ uδ(t) ≤ λ1(ρl, ul, vl). (32)

Now, the generalized Rankine–Hugoniot relation is applied to the Riemann problem
(1)–(9) with left and right constant states Ul = (ρl, ul, vl) and Ur = (ρr, ur, vr),
respectively, satisfying the conditions H1, H2, the fact λ3(ρr, ur, vr) ≤ λ1(ρl, ul, vl)
and

⎧
⎨

⎩
ul − ur ≥ max{− s2

ρl
(vl − vr), s2

ρr
(vl − vr)}, if ul − ur ≥ 1,

(ul − ur)2 ≥ max{− s2

ρl
(vl − vr), s2

ρr
(vl − vr)}, if ul − ur ≤ 1.

(33)

Thereby, the Riemann problem is reduced to solving (31) with initial data x(0) = 0,
w(0) = 0, g(0) = 0, under entropy condition ur + s

ρr
≤ uδ(t) ≤ ul − s

ρl
. From it

follows that

w(t) = −[ρ]x(t)+ [ρu]t ,

w(t)uδ(t) = −[ρu]x(t)+ [ρu2 + s2v]t , and (34)

w(t)g(t) = −[ρv]x(t)+ [ρuv + u]t.

Multiplying the first equation in (34) by uδ(t) and then subtracting it from the second
one, we obtain that [ρ]x2(t)− 2[ρu]x(t)t + [ρu2 + s2v]t2 = 0 .

One can find uδ(t) := uδ is a constant and x(t) = uδt . So it can be rewritten in

[ρ]u2
δ − 2[ρu]uδ + [ρu2 + s2v] = 0. (35)

When [ρ] = ρl−ρr = 0, the situation is very simple and one can easily calculate
the solution

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uδ = ul+ur
2 + s2 [v]

2ρl[u] ,

x(t) = uδt ,

w(t) = ρl(ul − ur)t ,

g(t) = [ρuv+u]−uδ
[ρu] ,

(36)

which obviously satisfies the entropy condition (32).
When [ρ] = ρl − ρr �= 0, the discriminant of the quadratic equation (35) is

Δ = 4[ρu]2 − 4[ρ][ρu2 + s2v] = ρlρr[u]2 − s2[ρ][v] > 0 (37)

and with the help of the entropy condition (32), we can find the admissible solution
is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uδ = [ρu]−
√

[ρu]2−[ρ][ρu2+s2v]
[ρ] ,

x(t) = [ρu]−
√

[ρu]2−[ρ][ρu2+s2v]
[ρ] t ,

w(t) = √
[ρu]2 − [ρ][ρu2 + s2v]t ,

g(t) = −[ρu][ρv]+[ρv]
√

[ρu]2−[ρ][ρu2+s2v]+[ρ][ρuv+u]

[ρ]
√

[ρu]2−[ρ][ρu2+s2v]
t.

(38)
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Thus, we have proved the following result.

Theorem 3 Given left and right constant states (ρl, ul, vl) and (ρr, ur, vr), respec-
tively, such that satisfy the conditions H1, H2, λ1(ρl, ul, vl) ≥ λ3(ρr, ur, vr) and
(33).

Then, the Riemann problem (1)–(9) admits a unique entropy solution in the sense
of measures. This solution is of the form

(ρ, u, v)(t , x) =

⎧
⎪⎪⎨

⎪⎪⎩

(ρl, ul, vl), if x < uδt ,

(w(t)δ(x − uδt), uδ , g(t)), if x = uδt ,

(ρr, ur, vr), if x > uδt ,

(39)

where uδ , w(t), and g(t) are show in (36) for [ρ] = 0 or 38 for [ρ] �= 0.
The above result includes the array 1

s
(λ3(Ur)− λ1(Ul))−(R2(Ur)− R2(Ul)) = 0

or 1
s
(λ3(Ur)− λ1(Ul))+ (R2(Ur)− R2(Ul)) = 0.

5 Generalized Riemann Problem

In this section, we show explicitly the solution of the generalized Riemann prob-
lem. We also calculate the first-order expansion given by Lefloch and Raviart [15].
Consider the Suliciu relaxation system in Lagrangian coordinates (22) with initial
data

(ω, ν, κ)(0, y) =
⎧
⎨

⎩
(ωL, νL, κL)(y), if y < 0,

(ωR , νR , κR)(y), if y > 0,
(40)

whereωi(y), νi(y), κi(y), for i = L,R, are piecewise smooth functions but discontin-
uous at y = 0. Moreover, we consider that functions ωi , νi , κi , for i = L,R, satisfies
conditions H1, H2 and supy (ν(0, y)− sω(0, y)) < infy (ν(0, y)+ sω(0, y)).

Let (ω0
i , ν0

i , κ0
i ) = (ωi , νi , κi)(0) for i = L,R. Then by Sect. 3, the classical

Riemann problem for (22) with initial data

(ω, ν, κ)(0, y) =
⎧
⎨

⎩
(ω0

L, ν0
L, κ0

L), if y < 0,

(ω0
R , ν0

R , κ0
R), if y > 0,

(41)

has an entropy weak solution (ω0, ν0, κ0)(t , y) which is self-similar and consists of
four constant states separated by contact discontinuities,

(ω0, ν0, κ0)(t , y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ω0
L, ν0

L, κ0
L), if y < −st ,

(ω0∗, ν0∗ , κ0∗ ), if − st < y < 0,

(ω0∗∗, ν0∗∗, κ0∗∗), if 0 < y < st ,

(ω0
R , ν0

R , κ0
R), if y > st.

(42)
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On the other hand, the solution of the generalized Riemann problem is

(ω, ν, κ)(t , y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ωL, νL, κL)(t , y), if y < −st ,
(ω∗, ν∗, κ∗)(t , y), if − st < y < 0,

(ω∗∗, ν∗∗, κ∗∗)(t , y), if 0 < y < st ,

(ωR , νR , κR)(t , y), if y > st.

(43)

where

ωi(t , y) = ωi(y)+ κi(y)− κi(t , y),

νi(t , y) = (νi(y + st)+ νi(y − st))/2− s(κi(y + st)− κi(y − st))/2,

κi(t , y) = (κi(y + st)+ κi(y − st))/2− (νi(y + st)

− νi(y − st))/2s, for i = L or R,

ω∗(t , y) = (νR(t , y)− νL(t , y))/2s − (κR(t , y)− κL(t , y))/2+ ωL(t , y),

ω∗∗(t , y) = (νR(t , y)− νL(t , y))/2s + (κR(t , y)− κL(t , y))/2+ ωR(t , y),

ν∗(t , y) = (νR(t , y)+ νL(t , y))/2− s(κR(t , y)− κL(t , y))/2 = ν∗∗(t , y),

κ∗(t , y) = (κR(t , y)+ κL(t , y))/2− (νR(t , y)− νL(t , y))/2s = κ∗∗(t , y).

5.1 Asymptotic Expansion of LeFloch–Raviart

For smooth solutions for the generalized Riemann problem, consider the Taylor
expansions ωi(y) = ω0

i +
∑∞

j=1 ω
j

i y
j , νi(y) = ν0

i +
∑∞

j=1 ν
j

i y
j and κi(y) = κ0

i +∑∞
j=1 κ

j

i y
j , i = L or R. Then, by the asymptotic expansion of LeFloch–Raviart, for

the first order, we obtain that
⎧
⎪⎪⎨

⎪⎪⎩

ωi(t , y) ≈ ω0
i + (yω1

i + tν1
i ),

νi(t , y) ≈ ν0
i + (yν1

i − s2tκ1
i ),

κi(t , y) ≈ κ0
i + (yκ1

i − tν1
i ), for i = L or R,

(44)

ω∗(t , y) ≈ ω0
∗ + y(ω1

L + κ1
L)−Φ−(t , y)/s, (45)

ω∗∗(t , y) ≈ ω0
∗∗ + y(ω1

R + κ1
R)−Φ−(t , y)/s, (46)

ν∗(t , y) = ν∗∗(t , y) ≈ ν0
∗ +Φ+(t , y), (47)

κ∗(t , y) = κ∗∗(t , y) ≈ κ0
∗ +Φ−(t , y)/s, (48)
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where

Φ±(t , y) = [
(y − st)(ν1

L + sκ1
L)± (y + st)(ν1

R − sκ1
R)
]
/2.

Note that for smooth solutions, the first order of exact solution evaluate in y = 0,
(ω, ν, κ)(t , 0), coincides with the expansion of Lefloch–Raviart.

6 Conclusions

In previous works, the classical Riemann problem for the Suliciu relaxation system
was solved [5, 9]. In this chapter, we show the unique entropy solution of the Rie-
mann problem associated to the Suliciu relaxation system under assumptions of the
conditions H1 and H2. First, we analyze the case λ1(ρl, ul, vl) < λ3(ρr, ur, vr) and
found unique solution in L∞. For the case λ1(ρl, ul, vl) ≥ λ3(ρr, ur, vr), we show
that the existing delta shock wave solution under a entropy condition guarantees the
uniqueness of the solution. Finally, we show explicitly the solution of the generalized
Riemann problem and calculate the first-order expansion of Lefloch–Raviart.
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Consequences of Weak Allee Effect in a
Leslie–Gower-Type Predator–Prey Model with a
Generalized Holling Type III Functional
Response

Paulo C. Tintinago-Ruíz, Leonardo D. Restrepo-Alape and
Eduardo González-Olivares

Abstract In this work, we analyze a predator–prey model derived from the Leslie–
Gower type model considering two modifications: a generalized Holling type III
functional response and a weakAllee 430054755 effect on prey, which is described by
an autonomous bidimensional ordinary differential equation system. Conditions for
the existence of the equilibrium points or singularities and their nature are determined.
The existence of separatrix curves on the phase plane dividing the behavior of the
trajectories are also shown. Thus, two closed solutions but in different sides of this
separatrix curve can have different ω-limit sets; therefore, there exist trajectories
highly sensitive to initial conditions. The existence of constraints on the parameter
values for which the unique equilibrium point at the first quadrant is unstable and
surrounded by a unique limit cycle in the phase plane is also proven. Computer
simulations are also given in order to support our conclusions.

Keywords Limit cycles · Stability · Separatrix curve · Predator–prey model ·Allee
effect · Functional response ·AMS classification (2000): 34C07, 37B25, 92D25

1 Introduction

In this work, a predator–prey model described by an autonomous bidimensional
differential equation system is analyzed, considering the following aspects in the
interaction:
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Fig. 1 Generalized Holling type III functional response when b ≥ 0 (left poster) and b < 0 (right
poster)

1. The predators growth function is of logistic type [30].
2. The functional response or predator consumption rate is a generalized Holling III

type [18, 19].
3. The prey population is affected by the Allee effect.

The first aspect characterizes the Leslie-type predator–prey models, also named
logistic predator–prey model [30] or Leslie–Gower model [3], in which, the predator
environmental carrying capacity Ky is a function of prey population size x, i.e.,
it depends on the available resources. Here, we consider that Ky = K(x) = nx,
proportional to prey abundance as in the May–Holling–Tanner model [2, 27]. Leslie
model can leads to anomalies in their predictions [30], because it predicts that even at
very low prey density, predator population can nevertheless increase, when predator
prey ratio is very small and the consumption rate by individual predator is essentially
zero [30]. However, these models are recently employed to study some predator–prey
interactions [12, 16].

The predator functional response or consumption function refers to the change in
attacked prey per unit of time per predator when the prey population size changes
[9, 23, 26]. In this work, we have considered that the predator functional response

is expressed by the function h (x) = qx2

x2+bx+a , presented in [19, 20]. This functional
response can have different behaviors according to the sign of the parameter b, as
is shown in Fig. 1.

We note when b < 0, the function h (x) is a nonmonotonic functional response
[29] representing the phenomenon of group defence formation [19, 26, 29] with a
maximum at x = 2a

b
; however, in this work, we consider only the case when b > 0,

being the function h (x) sigmoid asymptotically monotonic increasing . This type
of functional response has been recently used in an interesting work, considering a
Leslie–Gower model in which the Allee effect is absent [18].

Sigmoid functional responses may arise from a variety of mechanisms, one of
which is switching to alternative food sources [22] on predator–prey interaction
[30], but this is only verifiable in the Volterra model [25] that sigmoid may stabilize
an unstable equilibrium [29], but we show this does not happen in the Leslie–Gower
model [28]. Many marine mammals appear to be generalist predators, and theory
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would predict that they have a sigmoid functional response tending to stabilize prey
populations [12].

On the other hand, any mechanism leading to a positive relationship between a
component of individual fitness and the number or density of conspecifics can be
regarded as a mechanism of the Allee effect [7]. This phenomenon has been also
called depensation in fisheries sciences [21], or negative competition effect, inverse
density dependence, positive density dependence, and various other names are used
in population dynamics [21].

Populations can exhibit Allee dynamics due to a wide range of biological phe-
nomenon, such as reduced antipredator vigilance, social thermoregulation, genetic
drift, mating difficulty, reduced defense antipredator, deficient feeding to low
densities, (see Table 2.1 in [7]).

A simplest form to the growth rate of a population affected by the Allee effect
which will be used in this work is described by the cubic polynomial differential
equation:

dx

dt
= r

(
1− x

K

)
(x −m) x

where −K < m � K and r ,K > 0. When m > 0, it has a strong Allee effect and
the population growth rate decreases if the population size is below the threshold
level m and the population goes to extinction. If m ≤ 0, it is said that the population
is affected by a weak Allee effect [13]. When m < −K , the above equation does not
represent an Allee effect.

Many algebraic forms have been used to describe the Allee effect as are shown in
[4], although most of them are topologically equivalent as is proved in [11]. Nonethe-
less, different forms may produce a change in the quantity of limit cycles surrounding
a positive equilibrium point in predator–prey models as is shown (demonstrated) in
[14].

The problem of determining conditions, which guarantees the uniqueness of a
limit cycle or the global stability of the unique positive equilibrium in predator–prey
systems, has been extensively studied over the past three decades [17], starting with
the work by Cheng [5], who was the first to prove the uniqueness of a limit cycle for
a specific predator–prey model with a Holling type II functional response, using the
symmetry of the prey isocline.

The latter is related to the unsolved problem proposed by the mathematician David
Hilbert in 1900 [10], and refers to finding the maximum number of limit cycles of a
bidimensional polynomial differential equation system, whose degree must be equal
to p ∈ N. However, it is not an easy task to study the quantity of limit cycles that
can be generated throughout the bifurcation of a center focus [6].

This chapter is organized as follows: The modified Leslie–Gower model is pre-
sented in the next section; in Sect. 2; properties of model are established in Sect. 3;
Sect. 4 shows some simulations and the last section presents a discussion of results.
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2 The Model

The predator–prey model to be analyzed is described by the autonomous differential
equation system of Kolmogorov type given by:

Xμ :

⎧
⎨

⎩

dx
dt =

(
r
(
1− x

K

)
(x −m)− qx y

x2+bx+a
)
x

dy
dt = s

(
1 − y

n x

)
y

(1)

where x(t) and y(t) denote the prey and predator population size, respectively, for
t ≥ 0, measured as the number of individuals or biomass or density by area or volume
unit. All parameters are positive, i.e., μ = (r , q, a, s,K , n, b,m) ∈ R

7+ × ]−K ,K[,
having the following biological meanings: r represents the intrinsic growth rate of the
prey, K is the prey environmental carrying capacity, m > 0 is the minimum viable
population, that is, the threshold below which the population goes to extinction, q
is the per capita attack rate of predators, or the maximal per capita consumption
rate, i.e., the maximum number of prey that can be eaten by a predator in each time
unit (when b ≥ 0); when b < 0, q is the saturation predation, a and b are fitting
parameters [19]. When b = 0,

√
a is the half-saturation constant. s represents the

intrinsic growth rate of predators, n is a measure of the food quality. In this work,
only the case where b > 0 will be analyzed.

We note that system (1) is not defined at the y-axis, particularly at the point (0, 0),
which is a point of particular interest; the system (1) or vector field Xμ is defined on
the set:

Ω = {
(x, y) ∈ R

2/x > 0, y ≥ 0
} = R

+ × R
+
0 .

The equilibrium point of system (1) or singularities of vector field Xμ are: PK =
(K , 0), Pe = (xe, ye), where Pe is the positive equilibrium point, satisfying the
equations of the isoclines y = nx and y = r

qx

(
1− x

K

)
(x −m)

(
x2 + bx + a

)
.

In order to reduce the number of parameters and make an adequate description of
behavior of the system (1), we follow the methodology used in [1, 25, 27], making
a change of variables and time rescaling given by the function:

ϕ : Ω̄ × R → Ω × R

such as,

ϕ (u, v, τ) =
(
Ku,Knv,

u

rK

(
u2 + b

K
u+ a

K2

)
τ

)
= (x, y, t)

with

Ω̄ = {
(u, v) ∈ R

2/u ≥ 0, v ≥ 0
} = R

+
0 × R

+
0 .

We have that det Dϕ (u, v, τ) > 0, that is, ϕ is a diffeomorphism preserving the
orientation of the time [6, 8], for which the vector field Xμ or system (1) in the new
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system of coordinates, is topologically equivalent to the vector field Yδ = ϕ◦ Xμ;
it takes the form Yη = P (u, v) ∂

∂u + Q(u, v) ∂
∂v [8] and the associated differential

equations is given by a sixth-order polynomial system:

Yδ :

⎧
⎨

⎩

du
dτ =

(
(1− u) (u−M)

(
u2 + Bu+ A

)−Quv
)

u2

dv
dτ = S (u − v)

(
u2 + Bu+ A

)
v

(2)

with A = a

K2 , Q = qn

rK
, S = s

rK
, B = b

K
; M = m

K
where, δ = (M ,A,Q,B, S) ∈

]1, 1[× R
4+. In the following, we only consider in the model the weak Allee effect,

that is, when M = 0; the model with strong Allee effect for M > 0 will be analyzed
in a future work. So, system (2) takes the form:

Yη :

⎧
⎨

⎩

du
dτ =

(
(1− u)

(
u2 + Bu+ A

)−Qv
)

u3

dv
dτ = S (u − v)

(
u2 + Bu+ A

)
v

(3)

with η = (A,B,Q, S) ∈ R
4+. System (3) is also defined at Ω̄ . The equilibrium

points of system (3) or singularities of vector field Xμ are (0, 0), (1, 0) and the
positive equilibrium points satisfying the equations of the isoclines v = u and
v = 1

Q
(1− u)

(
u2 + Bu+ A

)
.

The abscise of this point at Ω̄ satisfies the third-degree equation:

P (u) = u3 − (1− B) u2 + (A− B +Q) u− A = 0. (4)

By Descartes’ rule of sign, the polynomial P (u) may have a real positive root or
three different real positive roots or two different real positive roots, one of them with
multiplicity two, depending on the sign of the coefficients (1− B) and (A− B +Q).
We denote by H the real positive root that always exists.

If 1− B > 0 and A− B +Q > 0, there exists at least one positive real root that
we denote as u = H .

If 1− B > 0 and A− B +Q ≤ 0, there exists a unique positive real root.
If 1 − B ≤ 0 and any be the sign of A − B +Q, there exists a unique positive

real root.
To determine the local nature of equilibrium points we need the Jacobian matrix

of system (3) given by

DYη (u, v) =
⎛

⎝DYη (u, v)11 −Qu3

Sv
(
A+ 2Bu− Bv− 2uv+ 3u2

)
(u− 2v)

(
u2 + Bu+ A

)

⎞

⎠

with DYη (u, v)11 = −u2
(
6u3 + (5B − 5) u2 + (4A− 4B) u+ (3Qv − 3A)

)
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3 Main Results

For system (3) or vector field Yη, we have the following results:

Lemma 1 The set Γ̄ = {
(u, v) ∈ R

2/u ≥ 0, v ≥ 0
}

is an invariant region.

Proof As system (3) is of Kolmogorov type, then, the coordinates axis are invariant
sets [6].

Let u = 1; we have that du
dτ = −Qv < 0, and for any sign of dv/dτ =

S (1− v) (A+ B + 1) v the trajectories enter to the region Γ̄ . �

We note that in system (1) the set

Γ = {
(x, y) ∈ R

2/x > 0, y ≥ 0
}

is an invariant region.

Lemma 2 The solutions are bounded.

Proof Using Poincaré compactification [6].

Let be X = u
v and Y = 1

v , then,

dX

dτ
= 1

v2

(
v

du

dτ
− u

dv

dτ

)
,

dY

dτ
= − 1

v2

dv

dτ
;

then, the system takes the form:

Ŷη :

⎧
⎪⎨

⎪⎩

dX
dτ = 1

Y 4

(
X4Y −X5 − BX4Y −QX3Y + SX3Y − SX4Y + AX2Y 3

−AX3Y 2 + BX3Y 2 + ASXY 3 − ASX2Y 3 + BSX2Y 2 − BSX3Y 2

)

dY
dτ = − S

Y 2 (X − 1)
(
AY 2 +X2 + BXY

)
.

To simplify the calculus, we make a time rescaling given by T = 1
Y 4 τ then,

Ỹη :

⎧
⎪⎨

⎪⎩

dX
dτ =

(
X4Y −X5 − BX4Y −QX3Y + SX3Y − SX4Y + AX2Y 3

−AX3Y 2 + BX3Y 2 + ASXY 3 − ASX2Y 3 + BSX2Y 2 − BSX3Y 2

)

dY
dτ = −SY 2 (X − 1)

(
AY 2 +X2 + BXY

)

then,

DỸη (0, 0) =
⎛

⎝ 0 0

0 0

⎞

⎠.

For desingularizing the origin, we consider the blowing-up directional method [8],
making X = r and Y = r2s; then, we have:

Vη :

⎧
⎨

⎩

dr
dT = dr

dT
ds
dT = 1

r2

(
dY
dT − 2rs dr

dT

)
.
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So,

Vη :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dr
dT = −r5

⎛

⎝ Qs − Ss − rs + Ar2s2 − Ar3s3 − Br2s2 + Brs

+Srs − BSrs2 − ASr2s3 + ASr3s3 + BSr2s2 + 1

⎞

⎠

ds
dT = r4s

⎛

⎝2Qs − Ss − 2rs + 2Ar2s2 − 2Ar3s3 − 2Br2s2 + 2Brs

+Srs − BSrs2 − ASr2s3 + ASr3s3 + BSr2s2 + 2

⎞

⎠

Once again, making a time rescaling given by: λ = r4T , a new rescaled vector field
is obtained:

V̄η :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dr
dλ = −r

⎛

⎝ Qs − Ss − rs + Ar2s2 − Ar3s3 − Br2s2 + Brs

+Srs − BSrs2 − ASr2s3 + ASr3s3 + BSr2s2 + 1

⎞

⎠

ds
dλ = s

⎛

⎝2Qs − Ss − 2rs + 2Ar2s2 − 2Ar3s3 − 2Br2s2 + 2Brs

+Srs − BSrs2 − ASr2s3 + ASr3s3 + BSr2s2 + 2

⎞

⎠.

Evaluating the Jacobian matrix of V̄η in (0, 0), we obtain

DV̄η (0, 0) =
⎛

⎝−1 0

0 2

⎞

⎠

Thus, (0, 0) is a hyperbolic saddle point of vector field V̄η since det DV̄η (0, 0);
so, (0, 0) is a nonhyperbolic saddle point of vector field Y η and Ỹη, which is repelling
over the positive s-axis; hence, (0,∞) is a nonhyperbolic saddle point of vector field
Yη, repelling negatively over the v− axis, Therefore, the solutions of the system (3)
are bounded. �

For the following lemma, we define � = (1− B −H)2 − 4 A
H

.

Lemma 3

1. For Eq. (4), we have:
1.1. There is one positive real root , if and only if, � < 0.
1.2. Three different real positive roots, if and only if, � > 0.
1.3. Two real positive roots, one of them having multiplicity two, if and only if,

� = 0; they are

H and E∗ = 1−H − B

2

2. For system (3) or vector field Yη, we have:
2.1. If � < 0, there is a unique equilibrium point Pe = (H ,H) at the interior of

Ω̄.
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2.2. If � = 0, there exist two equilibrium points at the interior of Ω̄ , which are

Pe = (H ,H) and P ∗ =
(

1−H − B

2
,

1−H − B

2

)

2.3. If � > 0, there exist three equilibrium points at the interior of Ω̄ , which are
Pe = (H ,H) , P2 = (E2,E2), and P3 = (E3,E3) with

E2 = (1−H − B)−√�

2
and E3 = (1−H − B)+√�

2

Proof 1. Let ue = H be the positive real root that always exists for Eq. (4) and
Pe = (H ,H) the equilibrium point that always exists in Ω̄.

Dividing the polynomial P (u) by (u−H), the polynomial

P1(u) = u2 − (1−H − B) u+ A− B +Q+H (B +H − 1)

is obtained as factor of P (u) and the rest is

R (H) = H 3 − (1− B)H 2 + (A− B +Q)H − A = 0.

Then,

Q = 1
H
(1−H)

(
H 2 + BH + A

)
.

Replacing Q in P1(u), we have that:

P1(u) = u2 − (1−H − B) u+ A
H
.

Considering the sign of �, for P1(u) we have � = (1−H − B)2 − 4 A
H

:

(1.1) Has no real root, if and only if, � < 0.
(1.2) Has two different real positive root, if and only if, � > 0, which are:

E2 = (1−H−B)−√�

2 and E3 = (1−H−B)+√�

2 .
Clearly, E2 < E3.

(1.3) Has one positive roots of multiplicity two, if and only if, � = 0.
E∗ = 1−H−B

2
2. It is immediate. �

Lemma 4 The singularity or equilibrium point (1, 0) is a saddle point for all
parameter values.
Proof Evaluating the Jacobian matrix at equilibrium point (1, 0)

DYη (1, 0) =
⎛

⎝− (A+ B + 1) −Q
0 S (A+ B + 1)

⎞

⎠
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Clearly, det DYη (1, 0) = −S (A+ B + 1)2 < 0, thus, the point (1, 0) is a hyperbolic
saddle point. �

Lemma 5 The point (0, 0) is a nonhyperbolic singularity of the vector field Yη,
which has a hyperbolic and a parabolic sector [24]. Thus, there exists a separatrix
curve Σ dividing the behavior of trajectories in the phase plane.

Proof Evaluating the Jacobian matrix at the point (0, 0) we have that

DYη (0, 0) =
⎛

⎝0 0

0 0

⎞

⎠.

Here, the origin is a nonhyperbolic singularity [8, 24]. To desingularize the origin,
we consider the vertical blowing-up method [24], that is, we consider the function
given by Ψ (p, q) = (pq, q) = (u, v).

We have that dp
dτ = 1

q

(
du
dτ − p

dq
dτ

)
and dq

dτ = dv
dτ ; rescaling the time by T = qτ , it

becomes,

Y η :

⎧
⎪⎨

⎪⎩

dp
dτ = p

(
p4q3 − p5q4 + AS + Ap2q − Ap3q2 + Bp3q2 − Bp4q3 −Qp2q2+
Sp2q2 − Sp3q2 − ASp − BSp2q + BSpq

)

dq
dτ = Sq

(
p3q2 − p2q2 + Bp2q − Bpq + Ap − A

)
.

If q = 0, then dq
dτ = 0. Moreover, dp

dτ = p (AS − ASp), thus the singularities are:
(0, 0) and (0, 1) , then

DYη (0, 0) =
⎛

⎝AS 0

0 −SA

⎞

⎠,

then, det DYη (0, 0) = −A2S2 < 0; (0, 0) is saddle point. Repeller by the p-axis
and attractor by the q-axis.

DYη (0, 1) =
⎛

⎝ 0 A

−BS + AS −AS

⎞

⎠

then, det DYη (0, 1) = −AS (A− B). Thus, the point (0, 1) of vector field Y is:

a. A nonhyperbolic saddle point , if and only if, A > B.
b. An attractor equilibrium point, if and only if, A < B.

Then, by the blowing down, the point (0, 0) is a nonhyperbolic saddle point in the
system (3). �

We note the point (0, 0) of the vector field Yη is a nonhyperbolic attractor point.
The trajectories above the separatrix Σ have the point (0, 0) as their ω-limit. The
trajectories below this separatrix Σ have different ω-limit as will be shown later.
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Corollary 1 The stable manifold Ws (0, 0) of the nonhyperbolic equilibrium point
(0, 0) divides the behavior of trajectories; so, the point (0, 0) is an attractor and
ω-limit of all solutions which initial conditions lie above Ws (0, 0).

Proof By Lemma 5 above the point (0, 0) is a nonhyperbolic saddle point with a
hyperbolic sector; the stable manifold Ws (0, 0) determined by the separatrix curve
divides the behavior of trajectories in the phase plane; any solutions above the man-
ifold Ws (0, 0) have (0, 0) as its ω-limit. Those trajectories with initial conditions
below the separatrix curve can have different ω-limits. �

Theorem 1 Let Ws (0, 0) and W u (1, 0) be the stable and unstable manifolds of
(0, 0) and (1, 0); then there exists a subset of parameters for which the intersection of
Ws (0, 0) and W u (1, 0) is not empty, giving rise to the heteroclinic curve γ joining
the point (0, 0) and (1, 0).

Proof By Lemma 5, the point (0, 0) has a separatrix and by Lemma 4 the point
(1, 0) is saddle.

Let Ws (0, 0) and W u (1, 0) be the stable and unstable manifolds of (0, 0) and
(1, 0); it is clear that the α-limit of Ws (0, 0) and the ω-limit of W u (1, 0) are not
at infinity on the direction of v-axis; then, there are points (u	, vs) ∈ Ws (0, 0) and
(u	, vu) ∈ W u (1, 0) where vs and vu are functions of the parameters A, B, Q, and S,
i.e., vs = f1 (A,B,Q, S) and vu = f2 (A,B,Q, S).

It is clear that if 0 < u � 1, then vs < vu and if 0 � u < 1, then vs > vu.

Since the vector field Yη is continuous with respect to the parameter values, then the
unstable manifold Ws (0, 0) intersects the unstable manifold W u (1, 0); therefore,
there exist

(
u	
s , v	s

) ∈ Γ (invariant region), such as v	 = v	. This equation defines a
surface in the parameter space for which the heteroclinic curve γ exists. �

The separatrix curve Σ , the straight line u = 1 and the u-axis determine a
subregion Γ̄ , which is closed and bounded, that is,

Γ̄ = {
(u, v) ∈ (R+)2/0 ≤ u ≤ 1, 0 ≤ v ≤ vs and vs ∈ Σ

}

it is a compact region, where it is possible to apply the Poincaré–Bendixon theorem.
To study the nature of the equilibrium point (H ,H ) with H < 1, by Lemma 3, we
have that Q = 1

H
(1−H)

(
H 2 + BH + A

)
; then, the vector field Xμ or system (3)

takes the form:

Xθ :

⎧
⎨

⎩

du
dτ =

(
(1− u)

(
u2 + Bu+ A

)− (1−H)(H 2+BH+A)
H

v
)

u3

dv
dτ = S (u − v)

(
u2 + Bu+ A

)
v

(5)

with θ = (A,B,Q,H) ∈ (]0, 1[)2 × R
2. The Jacobian matrix is:

DXθ (u, v) =
(
−H 3

(
A− B − 2H + 2BH + 3H 2

) −H 2 (1−H)
(
A+ BH +H 2

)

SH
(
A+ BH +H 2

) −SH (
A+ BH +H 2

)

)

Then,

det DXθ (H ,H) = SH 3
(
H 2 + BH + A

) (
A+ BH 2 −H 2 + 2H 3

)
> 0
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and the trace is given by:

trDXθ (H ,H ) = −H 3
(
A− B − 2H + 2BH + 3H 2

)−HS
(
H 2 + BH + A

)
.

If trDXθ (H ,H ) = 0, then S = H 2(−3H 2+2(1−B)H+(B−A))
H 2+BH+A Let

P = (trDYθ (H ,H ))2 − 4 det DYθ (H ,H)

=H 2
(
A+BH +H 2

)2
S2+ 2H 3

(
A+BH +H 2

) (−2A+AH −BH −H 3
)
S

+H 6
(
A− B − 2H + 2BH + 3H 2

)2

System (5) has the following properties:

Theorem 2 Let (H ,H) be the unique positive equilibrium point at the first
quadrant; then,

1. It is an attractor, if and only if, trDXθ (H ,H )< 0; then, S >
H 2(−3H 2+2(1−B)H+(B−A))

H 2+BH+A . Moreover,
a) It is an attractor node, if and only if, P > 0.
b) It is an attractor focus, if and only if, P < 0.

2. It is a repeller, if and only if, trDXθ (H ,H )> 0; thus, S <
H 2(−3H 2+2(1−B)H+(B−A))

H 2+BH+A . Moreover,
a) It is a repeller focus, surrounded by a limit cycle, if and only if, P < 0.
b) It is a repeller node, if and only if, P > 0.

3. It is a weak focus, if and only if, S = H 2(−3H 2+2(1−B)H+(B−A))
H 2+BH+A .

Proof

1. (H ,H ) is an attractor, if and only if, S >
H 2(−3H 2+2(1−B)H+(B−A))

H 2+BH+A ; moreover,
a) If P > 0 then, the point (H ,H ) is an attractor node.
b) If P < 0 then, the point (H ,H ) is an attractor focus.

2. If S <
H 2(−3H 2+2(1−B)H+(B−A))

H 2+BH+A if and only if trDXθ (H ,H ) > 0 and (H ,H ) is
an repeller; moreover,
a) If P < 0, then, the point is a repeller focus. By the Poincaré–Bendixon

theorem [6, 15, 24] in the subregion Γ̄ determined by the line u = 1, the
u-axis and the stable manifold Ws (0, 0), the point (H ,H ) is surrounded by at
least one limit cycle.

b) When the parameters change, the limit cycle increases until it coincides with
the heteroclinic γ ; when the heteroclinic is broken this limit cycle disappears.

Then, P > 0 and S <
H 2(−3H 2+2(1−B)H+(B−A))

H 2+BH+A ;
therefore, (H ,H) becomes a repeller node. �

Lemma 6 A Hopf bifurcation at equilibrium point (H ,H ) occurs in the system (3)

for the bifurcation value S = H 2(−3H 2+2(1−B)H+(B−A))
H 2+BH+A .
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Saddle

Non-hyperbolic singularity

Fig. 2 For A = 0.1, B = 0.0002, S = 0.024, and Q = 0.6, the point (H ,H) is a repeller focus
surrounded by a limit cycle and a wide set of trajectories going to this ω-limit. The point (0, 0) is a
nonhyperbolic local attractor, the point (1, 0) is a hyperbolic saddle; there exists a separatrix curve
Σ dividing the behavior of trajectories

Proof The proof follows from the above theorem since the determinant is always
positive and the trace changes sign. In addition, the transversality condition [15] is
verified, since we have that

d
(
trDYη(H ,H )

)

dS
= −H (

A+ BH +H 2
)
< 0.

�

4 Simulations

In order to reinforce the obtained results, some computer simulations are also given
(Figs. 2, 3 and 4), presenting different behaviors of system (3). The diverse natures
of the positive equilibrium point (H ,H) are shown for different parameters values.

5 Conclusions

In this work, we analyze a Leslie–Gower predator–prey model where a generalized
Holling type III functional response and a weak Allee effect on prey are assumed. In
order to facilitate the calculations we make a reparameterization and a time rescaling
to obtain a topologically equivalent polynomial. We observe that the incorporation of
this ecological phenomenon into a Leslie–Gower predator–prey model can increase
the number of equilibrium points at interior of the first quadrant [19].

However, we analyzed only one case assuming the existence of a unique positive
equilibrium point; the other cases must be studied in future works to complete the
description of the properties of the model described by system (1).

Using the method of blowing up, we demonstrate the existence of a separatrix
determined by the stable manifold of nonhyperbolic singularity (0, 0) dividing the



Consequences of Weak Allee Effect in a Leslie–Gower-Type Predator–Prey Model . . . 101

Fig. 3 For A = 0.1, B = 0.0002, Q = 0.6, and S = 0.089 the point (H ,H) is an attractor
focus. The point (0, 0) is a nonhyperbolic saddle-node and (1, 0) is a saddle point

Fig. 4 For A = 0.1, B = 0.0002, Q = 0.6, and S = 2.23, the point (H ,H) is an attractor
node. The point (1, 0) is a hyperbolic saddle and the point (0, 0) is a nonhyperbolic attractor

behavior of trajectories in the phase plane, which can have different ω-limit. Then,
some solutions are highly sensitive to initial conditions, which means that those
trajectories with initial condition below this curve, i.e., in region Γ̄ , have as ω-limit
either a limit cycle or a stable positive equilibrium point. Those with initial conditions
above this curve have the origin (0, 0) as their ω-limit.

Ecologically this implies that small perturbations due to environmental changes
caused by pollution or other causes, could provoke the extinction of both popula-
tions. Then, populations can coexist oscillating around the positive equilibrium either
tending to this equilibrium or the extinction of both populations can occur, yet, if the
ratio prey–predator is high.

The existence of parameter constraints for which the positive equilibrium point is
an attractor or is a repeller surrounded by at least one limit cycle is proved. Moreover,
it is proved that there exists a heteroclinic curve joining the equilibrium (1, 0) and
the singularity (0, 0).
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We conclude that the weak Allee effect causes significant changes with respect to
the system where this phenomenon is absent [18], since it can change the quantity
of equilibrium points and limit cycles surrounding a positive equilibrium point.
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Critical Points of Solutions to Elliptic Equations
in Planar Domains with Corners

Jaime Arango and Jairo Delgado

Abstract We consider the solution u to a semilinear elliptic boundary value problem
with Dirichlet boundary condition on an annular planar domain with corners. We
prove that u possesses a finite number of critical points and at most one critical
curve. For certain annular domains having a regular n–gon as an outer boundary, we
rule out the existence of critical curves.

Keywords Critical points · Morse theory · Nonlinear elliptic equations · Moving
planes

1 Introduction

Several applications in continuous mechanics are modeled by boundary value
problems of the type:

� u = f (u) in Ω , (1)

u = 0 on ∂Ω , (2)

where� is the Laplace operator, Ω is a planar domain, and f is a real-value function.
For instance, (1) is the prototypical model for the deflection of a nonlinear membrane,
fixed at the boundary, upon an external force f. When f ≡ 1, problem (1) reduces
to the famous torsion problem.

The existence, uniqueness, and regularity questions of solution to (1) has been
thoroughly investigated. However, the qualitative properties of solution to (1) seems
to be less documented. In this investigation, we study the critical set of u, i.e., the
points of vanishing gradient:
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IK = {x ∈ Ω : ∇u(x) = 0}.
Let us summarize some previous results on the description of the critical set IK.

Makar–Limanov [10] considered the linear case f ≡ 1 of problem (1) in 1971
and proved that z = √−u is concave provided the domain Ω is convex, and as
a consequence u has exactly one critical point. Later on, Cabré and Chanillo [3]
extended Makar–Limanov result; they proved that semistable solutions to problem
(1) in convex domains with positive curvature have a unique nondegenerated critical
point. For more recent results, we refer the reader to Finn (2008) [4], Arango and
Gómez (2012) [1, 2]. We also mention Grossi and Molle [8], Gladiali and Grossi [9],
and Grecco [6] who have tackled this and some other related problems. Although
there are plenty results concerning the regularity of solutions to (1) in nonsmooth
domains (see for instance [7]), very few is known about the critical set IK in such
domains, not even when the boundary ∂Ω is made up of polygons.

The goal of this investigation is to extend to domains with corners the following
result due to Arango and Gómez [1] :

Theorem 1 (cf. [1, Theorem 3.1]) Let f be real analytic with f (0) > 0 and Ω

be a smooth planar domain. If u is a solution to 1, then its critical set is made up
of finitely many isolated points and Jordan curves. Moreover, if there is any Jordan
curve contained in the critical set, this curve must be analytic and Ω cannot be
simply connected.

Assumption 1 Ω is an annular open region whose boundary ∂Ω is made up of two
Jordan curves with convex interior. We assume that the outer boundary is a Lipschitz
continuous piecewise analytic curve with a finite number of corners, while the inner
is a smooth curve.

Let us precise the meaning of corners:

Definition 1 Assume Ω fulfills Assumption 1. An outer boundary point p is
called a corner, if there exist αj ∈ C1([0, 1], ∂Ω), j = 1, 2, such that α1([0, 1]) ∩
α2([0, 1]) = {p} and

α1(1) = α2(0) = p and lim
t→1−

α′1(0) �= lim
t→0+

α′2(0).

If f is real analytic with f (0) > 0 and Ω fulfills Assumption 1, we will extend
Theorem 1 by proving that IK is made up of finitely many isolated points and at most
one Jordan curve. We further prove that nut-like domains (see Definition 2) possesses
no critical curves, and as a consequence, in nut-like domains IK is finite. We finish
the chapter stating the following conjecture: in nut-like domain with a n-gon outer
boundary, the set IK is made up of exactly 2n (critical) points. We also conjecture
that only concentric annulus possesses a critical curve.

2 Critical Points and Moving Planes

In order to guarantee existence, uniqueness, and regularity of the solution u to (1),
the following assumption on f will suffice:

Assumption 2 f : IR→ IR is real analytic and nondecreasing, and f (0) > 0.



Critical Points of Solutions to Elliptic Equations in Planar Domains with Corners 107

Proposition 1 Let Ω be a planar domain having a Lipschitz continuous boundary
∂Ω. If f fulfills Assumption 2, then there is a unique solution u to problem 1.
Moreover, u is negative, real analytic in Ω , and continuous in Ω.

The proof of the above proposition is spread through the technical literature of
elliptic equations. See for instance [5, Theorems 8.15 and 12.5] regarding the ex-
istence and uniqueness results; the analyticity of the solution is proved in [11]. We
also refer the reader to the existence and uniqueness results due to Krasnoselki (see
[12, Theorem 1.16]).

Next, we establish some general results regarding the composition of the critical
set IK.

Lemma 1 Let Ω ⊂ IR2 is a bounded planar domain and suppose f ∈ C1(IR) is
such that f is nondecreasing and f (0) > 0. If u is a solution to 1, then �u > 0 on
Ω . In particular, the Hessian matrix Hu vanishes nowhere in Ω

The proof follows closely the one presented in Lemma 2 and Corollary 1 of [1].
We also refer to [2] for a slightly more general version of Lemma 1.

An immediate consequence of Lemma 1 is that all critical points of the solution u
are semi-Morse. We use the term semi-Morse to refer to critical points p of a smooth
function v, such that the Hessian matrix Hv(p) does not vanish (see [1, 2] for more
details).

Proposition 2 Let f fulfill Assumption 2. If a Jordan critical curve exists inside the
domain Ω , then Ω cannot be simply connected. Moreover, if Ω fulfills Assumption 1,
then there is at most one Jordan critical curve, and in such a case, the curve circles
the inner boundary of Ω.

Proof Let Ωγ be the subregion of Ω inside a critical curve γ . Notice that for all
θ ∈ S1, the directional derivatives uθ (x) = ∇u(x) · θ satisfy

(�− f ′(u))uθ = 0 in Ωγ ,

uθ = 0 on ∂Ωγ .

Suppose by contradiction that Ω is simply connected. Since f ′ is nonnegative by
Assumption 2, a classical maximum principle argument yields uθ ≡ 0 on Ωγ , and
this holds for all θ . Now by Proposition 1, uθ is real analytic on Ω , therefore uθ ≡ 0
for all θ in Ω so that u ≡ 0. In view of Assumption 2, u ≡ 0 cannot be a solution to
problem 1 and a contradiction is reached.

If Ω is smooth, then a straightforward application of Lemma 1 and the Hopf’s
boundary point lemma (see [14, Theorem 2.8.3]) yields that the solution u to problem
(1) possesses no critical point at the boundary. However, if we have corners at the
boundary, the matter is very different.

Example 1 The interior of an equilateral triangle of side 2
√

3 centered at the origin
can be described by

Ω = {(x1, x2) ∈ IR2 : x2 + 1 > 0,
√

3|x1| < 2− x2}.
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Now, consider problem (1) with f (s) ≡ 1. The solution u is given by

u(x1, x2) = x2 + 1

12

(
3x2

1 − (x2 − 2)2
)
.

A direct calculation shows that ∇u vanishes at (0, 2), (
√

3,−1), (−√3,−1). These
points are precisely the vertices of the triangle.

In what remains of this section, we will prove that critical points cannot accumulate
at the boundary. This is a direct consequence of the Hopf’s boundary point lemma
when the boundary is smooth. However, in corner point we have to resource to the
moving plane method. We refer the very influential paper of Serrin [13] to the reader
for more details about the moving planes.

Proposition 3 Suppose that f and Ω fulfill Assumptions 2 and 1, respectively.
Then any critical boundary point of the solution u to (1) must be a corner. Moreover,
boundary points are not limit points of IK .

Proof Let p ∈ ∂Ω . If p is not a corner, by Lemma 1, we can readily apply Hopf’s
boundary point lemma to conclude that

∂u

∂η
(p) �= 0,

where η stands for the unitary normal outer direction to ∂Ω atp.And as consequence
∇u(p) �= 0, therefore critical points cannot accumulate at p.

Let p ∈ ∂Ω be a corner and suppose by contradiction that there exists a sequence
(qn)n in IK such that qn → p. Since the outer boundary has a convex interior, then
for every q ∈ Ω , close enough to p, there exists a straight segment T such that
Ω(T) ⊂ Ω , Ω ′(T) ⊂ Ω , where Ω(T) is closure of the subregion of Ω , bounded by
T and containing p and Ω ′(T) is the reflection of Ω(T) with respect to T , see Fig. 1.
Therefore, if n is big enough, we may choose T such that qn ∈ T . In Ω ′(T), we
define

w(x) = u(x)− u(x ′),

where x ′ denotes the reflection with respect to the line T of the point x. A direct
calculation yields �w(x) = f ′(c(x))w(x), where c is a smooth function, depends on
u(x) and u∗(x). A little tough shows that w satisfies

�w− f ′(c(x))w = 0 in Ω ′(T),

w < 0 on ∂Ω ′(T) \ T ,

w = 0 on T ∩ ∂Ω ′(T).

Then by the maximum principle (recall that f ′ is nonnegative), w reaches the maxi-
mum at the boundary ∂Ω ′(T ), i.e., w reaches its maximum onT . By Hopf’s boundary
point lemma, we obtain:

∂w

∂η
> 0 on T ∩ ∂Ω ′(T ).
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Fig. 1 The corner point p, the line T , the set Ω(T ) and its reflection Ω
′
(T ) ⊂ Ω with respect to T

Since qn ∈ T , we have reached a contradiction.

Corollary 1 Under the hypothesis of Proposition 3, there exist a compact setQ ⊂ Ω

containing all interior critical points of the solution u to (1).

3 Main Results

Now, we are in a position to estate the main results of our investigation.

Theorem 2 If f and Ω fulfill Assumptions 2 and 1 respectively, then the critical
set IK associated to the solution u to 1 is made up of finitely many isolated points
and at most one Jordan curve.

Proof By Corollary 1, there exists a compact set Q ⊂ Ω containing all the interior
critical points of u.

Let ε0 > 0 such that 0 < f (− ε0) and supQ u < −ε0. For 0 < ε < ε0, define

$ = {x ∈ Ω : u(x) = −ε}.
Notice that $ is made up of exactly two smooth curves defining the boundary of an
open annular region Ωε. Now define

v(x) = u(x)+ ε, x ∈ Ωε.

By Proposition 2, there is at most one critical curve.
If g(z) = f (z − ε), then g(0) = f (− ε) > 0 and so, g satisfies Assumption 2.

Moreover, since Hu = Hv in Ωε , then according to Lemma 1, Hv does not vanish by
and v satisfies:

� v = g(v) in Ωε ,

v = 0 on ∂Ωε.

It follows from Theorem 1 that v has a finite number of isolated critical points and at
most one Jordan critical curve. Finally, observe that u and v have the same critical
points in Ωε. Outside Ωε , the only critical points of u, if at all exist, are corners.
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Next, we rule out the existence of critical curves in certain planar domains.

Definition 2 A domain satisfying Assumption 1 is called a nut-like domain if the
outer boundary is a convex regular polygon and its inner boundary is circle-centered
at the polygon’s center.

If the outer boundary of a nut-like domain Ω is a convex regular n–gon, then
the rays, ei jπ/n, determine respectively axis of symmetry Tj of the domain Ω for
j = 1, . . . , n. Further, the symmetries of the domain are inherited by the solution u
to Problem 1, in the sense, that for all x ∈ Ω , and for all j = 1, . . . , n, u(x) equals
u(x(j )), where x(j ) is the reflection of x about the axis Tj .

Theorem 3 If f satisfies Assumption 2 and Ω is a nut-like domain, then the critical
set IK corresponding to the solution u to 1 has no Jordan curves.

Proof We carry out the proof assuming the outer boundary is a square, so that Ω
can be described by:

Ω = {
(x1, x2) ∈ IR2 : r2 < x2

1 + x2
2 , |x1| < a, |x2| < a

}
,

r and a fixed parameters with 0 < r < a.

Let q the π/4 rotation around the origin, Ω∗ = q(Ω) and S = Ω ∩Ω∗ see Fig. 2.
We write u∗ = u ◦ q−1 and notice that u∗ satisfies (1) in Ω∗. Now, observe that S
can be split up in eight congruent regions as it is shown in Fig. 2; the one containing
the x2 axis, lying above the x1 axis, is called D. Notice that ∂D = L1 ∪L2 ∪ α ∪ β,
where L1 and L2 are segments of the rays ei 3π/8 and ei 5π/8, respectively, α is the
arc r ei θ , 3π/8 < θ < 5π/8, and β is the segment of the horizontal line x2 = a,
bounded by the rays ei 3π/8 and ei 5π/8.

We remove the two extreme points of the segment β so that q−1(β) ⊂ Ω. Since
u∗(β) = u ◦ q−1(β), we obtain by Proposition 1 that u∗(x) < 0 for x ∈ β. Further,
any axis of symmetry of the domain Ω is also an axis of symmetry of the solution
u. Moreover, u and u∗ coincide on L1 ∪ L2, and due to the boundary conditions
satisfying u and u∗, we have u = u∗ on α. As a result, it follows that

u− u∗ ≥ 0 on ∂Ω.

Next, a straightforward calculation shows that u− u∗ satisfies

�(u− u∗) = f ′ (ξ (x))
(
u− u∗

)
in D,

where ξ (x) depends on u(x) and u∗(x). We recall that Assumption 2 guarantees that
f ′ (ξ (x)) ≥ 0 for all x ∈ D. Now by a standard maximum principle argument (see,
for example, Theorem 2.1.1 in [14]), it follows that

u− u∗ > 0 in D.

To finish the proof, suppose by contradiction that there exists a critical curve γ.

By Proposition 2, γ circles the inner boundary of Ω so that there exists a point
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Fig. 2 The set S = Ω ∩Ω∗,
the region D and its boundary
∂D = L1 ∪ L2 ∪ α ∪ β

p ∈ Ω ∩γ ∩L1.We observe that ∇(u− u∗)(p) = 0. But the Hopf’s boundary point
Lemma (see [14, Theorem 2.8.4]) leads to a contradiction.

As we have shown in Theorem 3, the set IK is finite provided Ω is a nut-like
domain. It is not difficult to prove that any axis of symmetries of an annular domain
has at least two critical points, so we expect a nut-like domain, whose outer boundary
is an n-gon, to have exactly 2n critical points, but a proof of this remains elusive to
the authors.

Finally, it is worth noticing that the only known examples of problem (1) having
a critical curve occur when Ω is a concentric annulus. Based on numerical evidence
and several particular cases (see [1]), we conjecture that under Assumptions 2 and
1, there are no other examples exhibiting critical curves.
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Sub-Riemannian Geodesics in the Octonionic
H -type Group

Christian Autenried and Mauricio Godoy Molina

Abstract In this chapter, we study sub-Riemannian geodesics in the octonionic
H -type group G1

7, which is a nilpotent group of step 2 and, as a manifold,
diffeomorphic to R

15.
The Lie group structure of G1

7, obtained via the Cayley–Dickson construction of
real division algebras, induces a natural Riemannian metric and a bracket-generating
distribution H of rank eight and step 2 on G1

7. Restricting the metric to H we obtain
a sub-Riemannian structure on G1

7.
The class of curves we are interested in are horizontal with respect to H and, most

importantly, critical points of the natural sub-Riemannian length functional. We
present a characterization of these critical points via a differential equation, similar
to the geodesic equation in Riemannian geometry, which states that for critical points
of the length functional the intrinsic acceleration ∇γ̇ γ̇ is a linear combination with
constant coefficients of some special rotations of the velocity γ̇ .

Keywords H -type group · First variation of length · Sub-Riemannian geodesics ·
Geodesic equation

1 Introduction

The H (eisenberg)-type Lie algebras were introduced by A. Kaplan in his founda-
tional work [7]. Their Lie algebra structure is intimately related to the existence of a
Clifford algebra representation over a certain inner product space. To make this claim
more precise, recall that a composition of two positive definite real quadratic forms ϕ
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and λ on two vector spaces H and U , respectively, is a bilinear map μ : H×U → H

such that for any h ∈ H , u ∈ U ,

ϕ(h)λ(u) = ϕ(μ(h, u)).

One can always assume there exists a vector u0 ∈ U such that μ(h, u0) = h for all
h ∈ H . Setting V as the orthogonal complement of Ru0 in U , one can introduce a
Lie bracket [· , ·] : H × H → V that induces a Lie algebra structure of step 2 on
H ⊕ V. The Clifford algebra representation mentioned before refers to the fact that

μ(μ(h, v), v) = −λ(v)h,

i.e., the existence of μ induces an H -representation of the Clifford algebra
C$(V,−λ).

Among the plethora of H -type Lie algebras, one can distinguish the class of
those satisfying the so-called J 2-condition, which is Clifford algebraic in its very
nature. This family of algebras was introduced in [4], and has been the subject
of intense study by analysts for the past 20 years. A major result, obtained in the
previous reference, is the fact that the nilpotent, connected, and simply connected
groups corresponding to H -type Lie algebras can be singled out as those appearing
in Iwasawa decompositions of real rank one simple Lie groups, and thus, there are
but a few classes of H -type Lie algebras satisfying the J 2-condition. These families
of H -type algebras are the trivial Euclidean spaces R

n, the Heisenberg Lie algebras
g

2n+1
1 , the quaternionicH -type algebras g

4n+3
3 , and the octonionicH -type algebra g1

7.
Note that, although there are nontrivial H -type Lie algebras with centers of arbitrary
dimension [7, Corollary 1], those that satisfy the J 2-condition are either abelian or
have centers of dimension 1, 3, and 7.

There is a natural connection between H -type Lie algebras and sub-Riemannian
geometry, which we proceed to explain. Recall that a sub-Riemannian manifold is
a triplet (M , H, 〈· , ·〉), where H ↪→ TM is a distribution, i.e., a subbundle of the
tangent bundle of M , and 〈· , ·〉 is a fiber inner product defined on H called the sub-
Riemannian metric. For most applications, it is assumed that the distribution H is
bracket generating, that is,

Lie H = Lie algebra generated by sections of H = Γ (TM),

where Γ (TM) denotes the space of vector fields on M . The step of H is, by con-
vention, the minimal length of brackets needed to generate all the vector fields on
M plus one. Associated to an H -type Lie algebra g = H ⊕ V there is a unique (up
to isomorphism) connected and simply connected Lie group G with Lie algebra g.
By left-translating the subspace H of g, we obtain a bracket-generating distribution
H ↪→ TG of step 2. The quadratic form ϕ induces a sub-Riemannian metric on H.

From now on, we focus our attention on the sub-Riemannian octonionic H -type
group, that is, the sub-Riemannian structure defined on the connected and simply
connected Lie group G1

7 with Lie algebra g1
7. The main purpose of this note is to give

a variational description of the critical points of the length functional:

L(γ ) =
∫ √

ϕ(γ̇ (t)) dt
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defined for horizontal curves inG1
7, that is, piecewise smooth curvesγ whose velocity

vector satisfies the constraint γ̇ (t) ∈ Hγ (t), whenever γ̇ is defined. We will refer to
these critical points as sub-Riemannian geodesics. An alternative description of these
curves, from a Hamiltonian point of view, has been obtained in [2]. Let us stress the
fact that we use their model of the group G1

7, which is obtained from the Cayley–
Dickson construction of division algebras, instead of the Clifford algebraic model
defined in [4].

This chapter is organized as follows. In Sect. 2, we recall briefly the definition
and main properties of the octonionic H -type group and its natural sub-Riemannian
structure, following [2]. In Sect. 3, we prove the main result of this chapter, following
the lines of [5, 10]. The two major difficulties to overcome when dealing with G1

7 are
the fact that as a manifold it is 15-dimensional and that underlying its structure we
are using the octonions, the only normed division algebra which is nonassociative.
Finally, we conclude with two appendices, where we collect all the formulas that
are too large to be displayed in an aesthetically pleasing way within the main line of
argumentation.

2 The Octonionic H-type Group G1
7

In this section, we give a short introduction to the octonionic H -type Lie algebra
g1

7 and the sub-Riemannian geometry of its (unique connected and simply con-
nected) Lie group G1

7, both concretely realized in R
15. For a deeper study, and

some interesting facts about its horizontal curves, we recommend [2].
Let us start by giving a description of g1

7 through vector fields defined on
R

15 = R
8 ⊕ R

7, with coordinates x1, . . . , x8, z1, . . . , z7. Consider the 8 × 8 ma-
trices J1, . . . , J7 with real coefficients given in Appendix 1. The horizontal space
H = span{X1, . . . ,X8} corresponds to the distribution generated by the vector fields:

Xl(x, z) = ∂xl +
1

2

7∑

m=1

(xJm)l∂zm , l ∈ {1, . . . , 8},

where x = (x1, . . . , x8) and (xJm)l denotes the lth coordinate of the row vector xJm.
Explicitly, these vector fields are given by

X1(x, z) = ∂x1 + 1

2
(−x2∂z1 − x3∂z2 − x4∂z3 − x5∂z4 − x6∂z5 − x7∂z6 − x8∂z7 ),

X2(x, z) = ∂x2 + 1

2
(x1∂z1 + x4∂z2 − x3∂z3 + x6∂z4 − x5∂z5 − x8∂z6 + x7∂z7 ),

X3(x, z) = ∂x3 + 1

2
(−x4∂z1 + x1∂z2 + x2∂z3 + x7∂z4 + x8∂z5 − x5∂z6 − x6∂z7 ),

X4(x, z) = ∂x4 + 1

2
(x3∂z1 − x2∂z2 + x1∂z3 + x8∂z4 − x7∂z5 + x6∂z6 − x5∂z7 ),
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X5(x, z) = ∂x5 + 1

2
(−x6∂z1 − x7∂z2 − x8∂z3 + x1∂z4 + x2∂z5 + x3∂z6 + x4∂z7 ),

X6(x, z) = ∂x6 + 1

2
(x5∂z1 − x8∂z2 + x7∂z3 − x2∂z4 + x1∂z5 − x4∂z6 + x3∂z7 ),

X7(x, z) = ∂x7 + 1

2
(x8∂z1 + x5∂z2 − x6∂z3 − x3∂z4 + x4∂z5 + x1∂z6 − x2∂z7 ),

X8(x, z) = ∂x8 + 1

2
(−x7∂z1 + x6∂z2 + x5∂z3 − x4∂z4 − x3∂z5 + x2∂z6 + x1∂z7 ).

The vertical distribution V , i.e., the center of the Lie algebra g1
7, is defined by

V = span{Z1, . . . ,Z7},
where Zi(x, z) = ∂zi . The Lie algebra g1

7 is the algebra spanned by the vector fields
X1, . . . ,X8,Z1, . . . ,Z7 with the usual commutator of vector fields in R

15, see Table 1.

Table 1 Nontrivial Lie bracket relations in g1
7

[Row, col.] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

X2 −Z1 0 Z3 −Z2 Z5 −Z4 −Z7 Z6

X3 −Z2 −Z3 0 Z1 Z6 Z7 −Z4 −Z5

X4 −Z3 Z2 −Z1 0 Z7 −Z6 Z5 −Z4

X5 −Z4 −Z5 −Z6 −Z7 0 Z1 Z2 Z3

X6 −Z5 Z4 −Z7 Z6 −Z1 0 −Z3 Z2

X7 −Z6 Z7 Z4 −Z5 −Z2 Z3 0 −Z1

X8 −Z7 −Z6 Z5 Z4 −Z3 −Z2 Z1 0

The Lie group G1
7 is the nilpotent Lie group structure on R

15 of step 2 in-
duced by the Lie algebra g1

7 via the Baker–Campbell–Hausdorff formula. An explicit
expression for the product rule can be found in [2, Eq. (3.7)].

We define an inner product 〈· , ·〉 on g1
7 such that the vector fields X1, . . . ,X8,

Z1, . . . ,Z7 form an orthonormal frame. The left invariant distribution:

H := span{X1, . . . ,X8},
and the restriction of 〈· , ·〉 to H give us the sub-Riemannian structure on G1

7 we
want to study further. The group G1

7 with the structure introduced before is called
the octonionic H -type group, since the map:

adX : ker(adX)⊥ ⊂ H → V,

is a surjective isometry for any X ∈ H of norm one, see [7]. From this definition, it
follows immediately that the distribution H is strongly bracket generating and, thus,
all length-minimizing curves are normal, i.e., they all solve a natural Hamiltonian



Sub-Riemannian Geodesics in the Octonionic H -type Group 117

equation, see [8, Chap. 1]. Explicit solutions to this equation in the case of the
octonionic H -type group can be found in [2]. The method employed to find these
solutions in [2] uses explicitly the coordinates of R

15, instead our approach is entirely
coordinate free.

With all these ingredients at hand, we can compute explicitly the Levi–Civita
connection of the metric 〈· , ·〉. To do this, we employ the well-known Koszul formula:

〈Z,∇YX〉 = 1

2
(X〈Y,Z〉 + Y 〈Z,X〉 − Z〈X,Y 〉

− 〈[X,Z],Y 〉 − 〈[Y,Z],X〉 − 〈[X,Y ],Z〉),
and we immediately notice that the following equations:

〈Xb,∇Xa
Zr〉 = −1

2
〈[Xa,Xb],Zr〉, 〈Zs ,∇Xa

Zr〉 = 0,

hold, for all a, b ∈ {1, . . . , 8}, r , s ∈ {1, . . . , 7}. We conclude that ∇Xa
Zr has trivial

vertical part, and thus

∇Xa
Zr = −1

2

8∑

b=1

〈[Xa,Xb],Zr〉Xb.

From this and the information in Table 1, we can deduce the expressions found
in Appendix 2. From these, it is natural to define the operators Jr : H → H,
r ∈ {1, . . . , 7}, by

Jr (X) := 2∇XZr , r ∈ {1, . . . , 7}.
These are almost complex structures on H, i.e., J 2

r = −Id|H, with the property that

〈Jr (X),Y 〉 + 〈X, Jr (Y )〉 = 0, (1)

for every r ∈ {1, . . . , 7} and all X,Y ∈ H. Furthermore, we note that this equation
implies that 〈X, Jr (X)〉 = 0, for all X ∈ H.

3 Geodesic Equation on G1
7

In this section, we follow the arguments in [5, 9, 10] to find an intrinsic differential
equation for the sub-Riemannian geodesics of G1

7 with respect to the sub-Riemannian
structure introduced in Sect. 2. An earlier attempt to this problem can be found in
[11], where the author obtained a differential equation for geodesics in CR sub-
Riemannian three-manifolds using the Tanaka–Webster connection. We conclude
with some examples and interpretations.
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3.1 Main Result

Recall that a piecewise smooth curve γ : [a, b] → G1
7 is called horizontal if γ̇ (s) ∈

Hγ (s), whenever γ̇ is defined. A variation of a curve γ : [a, b] → G1
7 is a C2-map

γ̃ : [a, b] × I → G1
7, where I is an open interval containing 0 and γ̃ (s, 0) = γ (s).

As customary, we will denote γ̃ (s, ε) = γε(s). If γ is horizontal, we say that γ̃ is an
admissible variation if all curves γε : [a, b] → G1

7 are horizontal, γε(a) = γ (a) and
γε(b) = γ (b). As an abuse of notation, we call γε an admissible variation of γ .

Given a vector v ∈ g1
7, we write vH for its orthogonal projection to the horizontal

space H . We will use the same notation for the horizontal components of vector
fields, vector fields along curves, etc.

Lemma 1 Let γ : [a, b] → G1
7 be a horizontal curve parameterized by arc length,

and let W be any C1 vector field along γ such that W (a) = W (b) = 0 satisfying

0 = γ̇ 〈W, Zr〉 − 2〈WH , Jr (γ̇ )〉, r ∈ {1, . . . , 7}. (2)

Then there exists an admissible variation γε of γ such that ∂
∂ε
|ε=0γε(s) = W.

Proof Note that there exists a vector field W̃ along γ , orthogonal to γ̇ , such that we
can write W = f γ̇ + W̃ for some smooth function f satisfying f (a) = f (b) = 0.
From the choice of W̃ , the definition of the almost complex structures Jr , the arc
length parameterization and horizontality of γ , we can immediately see that

〈W, γ̇ 〉 = f 〈γ̇, γ̇ 〉 + 〈W̃, γ̇ 〉 = f

〈W, Jr (γ̇ )〉 = f 〈γ̇, Jr (γ̇ )〉 + 〈W̃, Jr (γ̇ )〉 = 〈W̃, Jr (γ̇ )〉,
〈W,Zr〉 = f 〈γ̇,Zr〉 + 〈W̃,Zr〉 = 〈W̃,Zr〉,

for all r ∈ {1, . . . , 7}.
It is easy to see that if there exists a (not necessarily admissible) variationγ (s, ε) for

which ∂
∂ε
|ε=0γ (s, ε) = W̃ , then there exists γ1(s, ε) satisfying ∂

∂ε
|ε=0γ1(s, ε) = W .

This implies that, without loss of generality, we can and will assume that W ⊥ γ̇ .
We have to distinguish the cases in which the vector field W is horizontal or

not. Let us first examine the case when W is horizontal on some nonempty interval
I0 ⊂ [a, b]. By definition, we have that W = WH for all s ∈ I0, and since we are
assuming that W satisfies condition (2), we have the equalities:

〈WH , Jr (γ̇ )〉 = 〈W, Jr (γ̇ )〉 = 1

2
γ̇ 〈WH,Zr〉 = 0,

for all r ∈ {1, . . . , 7}. This implies that WH ∈ span{γ̇ }, and since WH is also
orthogonal to γ̇ , we can conclude that WH = 0.

The nonhorizontal case requires more care. If exp is the exponential map
associated to the (Riemannian) metric 〈· , ·〉 on G1

7, we can define the mapping

F (s, ε) = expγ (s) (εW (s))
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for sufficiently small ε > 0 and s ∈ [a, b]. Let us assume there exists s0 ∈ [a, b]
such that W (s0) /∈ Hγ (s0). We note that F (s, ε) defines locally a surface, which
is transverse to the horizontal space Hγ (s0), as it contains curves in non-horizontal
directions by definition. Furthermore, it is foliated by horizontal curves. These two
facts together imply that there exists a function g(s, ε) of class C2 such that we can
define a family of horizontal curves:

γε(s) = expγ (s) (g(s, ε)W (s)).

If we choose g such that ∂
∂ε
|ε=0g(s0, ε) = 1, it follows that γε is an admissible

variation of γ with associated vector field W . �

As simple computation shows that the converse of Lemma 1 also holds. For
completeness, we include it here. Given an admissible variation γε of a horizontal
curve γ with variational vector field W , then

0 = γ̇ 〈W,Zr〉 − 2〈WH , Jr (γ̇ )〉, r ∈ {1, . . . , 7}.

Since 〈γ̇ε ,Zr〉 = 0, for all r ∈ {1, . . . , 7}, it follows trivially that d
dε

∣∣
ε=0
〈γ̇ε ,Zr〉 = 0.

From this equality, the fact that ∇Zl
Zr = 0 for all r , l ∈ {1, . . . , 7}, and Eq. 1, we

deduce that

0 = d

dε

∣∣∣
ε=0
〈γ̇ε,Zr〉 = 〈∇W γ̇,Zr〉 + 〈γ̇,∇WZr〉

= 〈∇γ̇ W,Zr〉 + 〈γ̇,∇WH
Zr〉

= γ̇ 〈W,Zr〉 − 〈W,∇γ̇ Zr〉 + 〈γ̇, Jr (WH )〉
= γ̇ 〈W,Zr〉 − 〈WH , Jr (γ̇ )〉 − 〈Jr (γ̇ ),WH 〉
= γ̇ 〈W,Zr〉 − 2〈WH , Jr (γ̇ )〉.

Now, we have all tools to prove the main theorem.

Theorem 1 Let γ : [a, b] → G1
7 be a horizontal curve of class C2, parametrized

by arc length. Then γ is a critical point of the length functional (with respect to
admissible variations) if, and only if, there exist constants λ1, . . . , λ7 ∈ R such that
γ satisfies the second-order differential equation:

∇γ̇ γ̇ − 2
7∑

r=1

λrJr (γ̇ ) = 0. (3)

Proof Let us first assume that γ : [a, b] → G1
7 is a horizontal curve, parametrized

by arc length, satisfying Eq. (3) for some constants λ1, . . . , λ7 ∈ R. We consider a
C1-smooth vector field W , vanishing at the end points of γ and satisfying

γ̇ 〈W,Zr〉 = 2〈WH, Jr (γ̇ )〉, (4)
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for all r ∈ {1, . . . , 7}. It is well known, see [3], that the length functional L satisfies

d

dε

∣∣∣∣
ε=0

L(γε) = −
∫ b

a

〈∇γ̇ γ̇ ,W 〉,

therefore, to prove that γ is a critical point of L with respect to admissible variations,
we need to show that

∫ b

a
〈∇γ̇ γ̇ ,W 〉 = 0. Decompose W = WH +WV in its horizontal

and vertical parts, where WV = ∑7
r=1 grZr for some smooth functions g1, . . . , g7

satisfying gr (a) = gr (b) = 0. Then,

∫ b

a

〈∇γ̇ γ̇ ,W 〉
(
3
)

= 2
7∑

r=1

λr

∫ b

a

〈Jr (γ̇ ),W 〉 Jr (γ̇ )∈H= 2
7∑

r=1

λr

∫ b

a

〈Jr (γ̇ ),WH 〉
(
4
)

=
7∑

r=1

λr

∫ b

a

γ̇ 〈W,Zr〉 Zr∈V=
7∑

r=1

λr

∫ b

a

γ̇ 〈WV ,Zr〉

=
7∑

r=1

λr

∫ b

a

γ̇

〈
7∑

$=1

g$Z$,Zr

〉

=
7∑

r=1

λr

∫ b

a

γ̇ (gr )

=
7∑

r=1

λr

∫ b

a

d

dt
(gr (t))

gr (a)=gr (b)=0= 0.

For the converse, let γ be a critical point of the length functional, which is
horizontal and parametrized by arc length. This implies that

0 = d

dε

∣∣∣∣
ε=0

L(γε) = −
∫ b

a

〈∇γ̇ γ̇ ,W 〉,

where W is the vector field of the variation γε .
We know that the condition ‖γ̇ ‖2 = 〈γ̇ , γ̇ 〉 = 1 implies

〈∇γ̇ γ̇ , γ̇ 〉 = 1

2

d

dt
〈γ̇ , γ̇ 〉 = 1

2

d

dt
1 = 0.

Furthermore, since γ is horizontal, then 〈γ̇ ,Zr〉 = 0 for all r ∈ {1, . . . , 7}, and thus

0
〈γ̇,Zr 〉=0= γ̇ 〈γ̇ ,Zr〉 = 〈∇γ̇ γ̇ ,Zr〉 + 〈γ̇ ,∇γ̇ Zr〉 = 〈∇γ̇ γ̇ ,Zr〉 + 〈γ̇ , Jr (γ̇ )〉
〈X,Jr (X)〉=0= 〈∇γ̇ γ̇ ,Zr〉,

for all r ∈ {1, . . . , 7}. In summary, we have shown that ∇γ̇ γ̇ ⊥ γ̇ and ∇γ̇ γ̇ ⊥ Zr for
all r ∈ {1, . . . , 7}. Therefore, the vector field ∇γ̇ γ̇ has to be contained in the seven
dimensional subspace span{J1(γ̇ ), . . . , J7(γ̇ )}, that is

∇γ̇ γ̇ =
7∑

r=1

grJr (γ̇ ).
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It remains to show that the functions gr are in fact constant. We fix fr : [a, b] → R

for r ∈ {1, . . . , 7} such that fr (a) = fr (b) = 0 and
∫ b

a
fr = 0. Furthermore, we

consider a vector field W̃ such that its horizontal part satisfies W̃H = &7
r=1frJr (γ̇ )

and satisfies 〈W̃ ,Zr〉(s) = 2
∫ s

a
fr (t)dt .

The last condition for the vertical part of W̃ yields:

γ̇ 〈W̃,Zr〉 = d

ds

(
2
∫ s

a

fr (t)dt

)
= 2fr (s),

for all r ∈ {1, . . . , 7}. The horizontal condition and the orthonormality of the family
{J1(γ̇ ), . . . , J7(γ̇ )}, see Appendix 2, imply

〈W̃H , Jr (γ̇ )〉 =
〈

7∑

l=1

flJl(γ̇ ) , Jr (γ̇ )

〉

= fr (s),

for all r ∈ {1, . . . , 7}. These two equations together imply the condition (2) of
Lemma 1, which reads

γ̇ 〈W̃,Zr〉 = 2〈W̃H , Jr (γ̇ )〉,

for all r ∈ {1, . . . , 7}. Using Lemma 1, we conclude that W̃ is a vector field for an
admissible variation of γ . We obtain:

0 =
∫ b

a

〈∇γ̇ γ̇ , W̃ 〉 =
7∑

r=1

∫ b

a

fr〈∇γ̇ γ̇ , Jr (γ̇ )〉,

which is valid for any seven functions with mean zero, which implies that
〈∇γ̇ γ̇ , Jr (γ̇ )〉 is constant for all r ∈ {1, . . . , 7}. We obtain Eq. (3) for suitable
constants λ1, . . . , λ7 ∈ R. �

3.2 Interpretations and Examples

Similar equations to the one in our main theorem can be found in the literature in
different guises, and with various geometric and physical interpretations.

As mentioned in [6], when studying the case of the natural CR sub-Riemannian
structure on the three-dimensional sphere S3, the admissible C2 critical points of the
length functional satisfy the equation:

∇γ̇ γ̇ + 2λJ (γ̇ ) = 0, (5)

where J is the almost complex structure on the horizontal distribution of S3 induced
by the CR structure. In that case, the constant λ corresponds to a curvature in the
following sense: if γ solves Eq. 5 with parameter λ, then the projection of γ to S2
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via the Hopf fibration produces a piece of a geodesic circle with constant geodesic
curvature λ (see [6, Lemma 3.2]).

In the case of Theorem 1, after a rather tedious computation, we can show that the
curves in G1

7 starting from the origin and satisfying Eq. 3 with λ1 = · · · = λ7 = 0
are straight lines in R

15 contained in the eight-plane z1 = · · · = z7 = 0. This fact
indicates that we can again interpret the constants as curvatures. In a sense, the values
of λ1, . . . , λ7 measure how far are the curves solving (3) from being a Riemannian
geodesic. We are currently working on making this claim precise and applying it to
all the similar cases known to us.

Finally, it is of worth mentioning this equation has a very similar structure to
the so-called Wong’s equation, see [8, Chap. 12], which corresponds to a nonabelian
version of Lorentz equations for the dynamics of a particle. In that case, the parameter
λ corresponds to the charge of the particle which satisfies an additional restriction in
the form of an evolution equation. It would be of interest to study the precise relation
between Wong’s equation and the general formulation of critical points of length in
sub-Riemannian manifolds with transverse symmetries, see [1].
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Appendix 1

We present the matrices J1, . . . , J7 used in Sect. 2 to define the vector fields
X1, . . . ,X8.

J1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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J2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

J3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

J4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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J5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

J6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

J7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Appendix 2

Here we present the components of the Levi–Civita connection for the Riemannian
metric on G1

7 defined in Sect. 2.

∇X1Z1 = −1

2
X2, ∇X2Z1 = 1

2
X1, ∇X3Z1 = −1

2
X4, ∇X4Z1 = 1

2
X3,

∇X5Z1 = −1

2
X6, ∇X6Z1 = 1

2
X5, ∇X7Z1 = 1

2
X8, ∇X8Z1 = −1

2
X7,

∇X1Z2 = −1

2
X3, ∇X2Z2 = 1

2
X4, ∇X3Z2 = 1

2
X1, ∇X4Z2 = −1

2
X2,

∇X5Z2 = −1

2
X7, ∇X6Z2 = −1

2
X8, ∇X7Z2 = 1

2
X5, ∇X8Z2 = 1

2
X6,

∇X1Z3 = −1

2
X4, ∇X2Z3 = −1

2
X3, ∇X3Z3 = 1

2
X2, ∇X4Z3 = 1

2
X1,

∇X5Z3 = −1

2
X8, ∇X6Z3 = 1

2
X7, ∇X7Z3 = −1

2
X6, ∇X8Z3 = 1

2
X5,

∇X1Z4 = −1

2
X5, ∇X2Z4 = 1

2
X6, ∇X3Z4 = 1

2
X7, ∇X4Z4 = 1

2
X8,

∇X5Z4 = 1

2
X1, ∇X6Z4 = −1

2
X2, ∇X7Z4 = −1

2
X3, ∇X8Z4 = −1

2
X4,

∇X1Z5 = −1

2
X6, ∇X2Z5 = −1

2
X5, ∇X3Z5 = 1

2
X8, ∇X4Z5 = −1

2
X7,

∇X5Z5 = 1

2
X2, ∇X6Z5 = 1

2
X1, ∇X7Z5 = 1

2
X4, ∇X8Z5 = −1

2
X3,

∇X1Z6 = −1

2
X7, ∇X2Z6 = −1

2
X8, ∇X3Z6 = −1

2
X5, ∇X4Z6 = 1

2
X6,

∇X5Z6 = 1

2
X3, ∇X6Z6 = −1

2
X4, ∇X7Z6 = 1

2
X1, ∇X8Z6 = 1

2
X2,

∇X1Z7 = −1

2
X8, ∇X2Z7 = 1

2
X7, ∇X3Z7 = −1

2
X6, ∇X4Z7 = −1

2
X5,

∇X5Z7 = 1

2
X4, ∇X6Z7 = 1

2
X3, ∇X7Z7 = −1

2
X2, ∇X8Z7 = 1

2
X1.
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Regularization of Inverse Ill-Posed Problems
with L2-BV Penalizers and Applications to
Signal Restoration

Gisela L. Mazzieri, Ruben D. Spies and Karina G. Temperini

Abstract Several generalizations of the traditional Tikhonov- Phillips regulariza-
tion method for ill-posed inverse problems have been proposed during the past two
decades. Many of these generalizations are based upon inducing stability throughout
the use of different penalizers which allow the capturing of diverse properties of the
exact solution (e.g., edges, discontinuities, borders, etc.). However, in some prob-
lems in which it is known that the regularity of the exact solution is heterogeneous
and/or anisotropic, it is reasonable to think that a much better option could be the
simultaneous use of two or more penalizers of different nature. Such is the case, for
instance, in some image restoration problems in which preservation of edges, bor-
ders, or discontinuities is an important matter. In this work, we present some results
on the simultaneous use of penalizers of L2 and of bounded variation (BV) type.
For particular cases, existence and uniqueness results are proved. Open problems are
discussed and results to signal restoration problem are presented.
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1 Introduction and Preliminaries

For our general setting, we consider the problem of finding u in an equation of the
form:

T u = v, (1)

where T : X → Y is a bounded linear operator between two infinite dimensional
Hilbert spaces X and Y (usually they are both function spaces), the range of T is non-
closed and v is the data, which is supposed to be known, perhaps with a certain degree
of error. It is well known that under these hypotheses, problem (1) is ill-posed in the
sense of Hadamard [6] and it must be regularized before any attempt to approximate
its solutions is made [5]. The most usual way of regularizing a problem is by means
of the use of the Tikhonov–Phillips regularization method whose general formulation
can be given within the context of an unconstrained optimization problem. In fact,
given an appropriate penalizer W (u) with domain D ⊂ X , the regularized solution
obtained by the Tikhonov–Phillips method and such a penalizer is the minimizer uα

(provided it exits), over D, of the functional:

Jα,W (u) = ‖T u− v‖2 + αW (u), (2)

where α is a positive constant called regularization parameter. For general penalizers
W , sufficient conditions guaranteeing existence, uniqueness, and weak and strong
stability of the minimizers under different types of perturbations were found in [9].
In the sequel, unless otherwise specified, we will assume that X = L2(Ω), were
Ω ⊂ R

n, with n = 1, 2, or 3.
Each choice of an appropriate penalizer W originates a different regularization

method producing a particular regularized solution possessing particular properties.
Thus, for instance, the choice of W (u) = ‖u‖2 gives rise to the classical Tikhonov–
Phillips method of order zero producing always smooth regularized approximations
which approximate, as α→ 0+, the best approximate solution (i.e., the least squares
solution of minimum norm) of problem (1) (see [5]). The order-one method corre-
sponds to the choice of W (u) = ‖|∇u|‖2. Similarly, the choice of W (u) = ‖u‖BV

(where ‖·‖BV denotes the total variation norm) results in the so-called bounded vari-
ation (BV) regularization method [1, 10]. The use of this penalizer is appropriate
when preserving discontinuities or edges is an important matter. The method, how-
ever, has as a drawback that it tends to produce piecewise constant approximations
and therefore, it will most likely be highly inappropriate near regions where the exact
solution is smooth [3] producing the so-called staircasing effect.

In certain types of problems, particularly in those in which it is known that the
regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable
to think that using and spatially adapting two or more penalizers of different nature
could be more convenient. During the past 15 years several regularization methods
have been developed in light of this reasoning. Thus, for instance, in 1997 Blomgren
et al. [2] proposed the use of the following penalizer, by using variable Lp spaces:

W (u) =
∫

Ω

|∇u|p(|∇u|)dx, (3)
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where lim
u→0+

p(u) = 2, lim
u→∞p(u) = 1 and p is a decreasing function. Thus, in regions

where the modulus of the gradient of u is small the penalizer is approximately equal
to ‖|∇u|‖2

L2(Ω) corresponding to a Tikhonov–Phillips method of order one (appro-
priate for restoration near smooth regions). On the other hand, when the modulus
of the gradient of u is large, the penalizer resembles the BV seminorm ‖|∇u|‖L1(Ω),
whose use, as mentioned earlier, is highly appropriate for border detection purposes.
Although this model for W is quite reasonable, proving basic properties of the cor-
responding generalized Tikhonov–Phillips functional turns out to be quite difficult.
A different way of combining these two methods was proposed by Chambolle and
Lions [3]. They suggested the use of a thresholded penalizer of the form:

Wβ(u) =
∫

|∇u|≤β
|∇u|2 dx +

∫

|∇u|>β

|∇u| dx,

where β > 0 is a prescribed threshold parameter. Thus, in regions where borders
are more likely to be present (|∇u| > β), penalization is made with the BV semi-
norm while a standard order-one Tikhonov–Phillips method is used otherwise. This
model was shown to be successful in denoising of images possessing regions with
homogeneous intensity separated by borders. However, in the case of images with
nonuniform or highly degraded intensities, the model is extremely sensitive to the
choice of the threshold β. More recently penalizers of the form:

W (u) =
∫

Ω

|∇u|p(x)dx, (4)

for certain functions p with range in [1, 2], were studied in [4] and [8]. It is timely
to point out here that all previously mentioned results work only for the case of
denoising, i.e., for the case T = id .

In this work, we propose the use of a model for general restoration problems,
which combines, in an appropriate way, the penalizers corresponding to zero-order
Tikhonov–Phillips method and the BV seminorm. Although several mathematical is-
sues still remain open, its use in some signal restoration problems has already proved
to be very promising. The purpose of this chapter is to introduce the model, show
some mathematical results regarding existence and uniqueness of the corresponding
regularized solutions, and present a few results of its application to signal restoration
problems.

2 Main Results

In this section, we will state our main results concerning existence and uniqueness
of minimizers of certain generalized Tikhonov–Phillips functionals with combined
L2-BV penalizers. We remark that all results will be presented without proofs. More
details on those results including complete proofs will appear in a forthcoming chap-
ters. In what follows, Ω will denote a bounded convex region in R

n, n = 1, 2, or 3,
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whose boundary δΩ is Lipschitz continuous and M(Ω) shall denote the set of all
real–valued measurable functions defined on Ω and θ ∈ M(Ω), a function with
values in [0, 1].

Definition 1 Given θ ∈M(Ω) we define the functional W0,θ (u) with values on the
extended reals by

W0,θ (u)
.= sup

ν∈Vθ

∫

Ω

−u div(θν) dx, u ∈M(Ω) (5)

where Vθ
.= {ν : Ω → R

n such that θν ∈ C1
0 (Ω) and |ν(x)| ≤ 1∀ x ∈ Ω}.

Remark 1 For any θ : Ω → [0, 1], θ ∈M(Ω), it follows easily that

W0,θ (u) ≤ J0(u), ∀ u ∈M(Ω), (6)

where J0(u) denotes the BV seminorm given by

J0(u) = sup
ν∈V

∫

Ω

−u divν dx, (7)

with V .= {ν : Ω → R
n such that ν ∈ C1

0 (Ω) and |ν(x)| ≤ 1∀ x ∈ Ω}.
Although inequality (6) is important by itself since it relates the functionals W0,θ

and J0, in order to be able to use the known coercitivity properties of J0 (see [1]), an
inequality of the opposite type is desired. That is, we would like to show that under
certain conditions on θ ( · ), there exists a constant C = C(θ ) such that W0,θ (u) ≥
C J0(u) for all u ∈M(Ω). The following theorem provides sufficient conditions on
θ assuring such an inequality.

Theorem 1 Let θ : Ω → [0, 1] be such that 1
θ
∈ L∞(Ω) and let J0, W0,θ be the

functionals defined in (7) and (5), respectively. Then J0(u) ≤ ‖ 1
θ
‖L∞(Ω) W0,θ (u) for

all u ∈M(Ω).
The following lemma is of fundamental importance in all the upcoming results.

Lemma 1 The functional W0,θ defined by (5) is weakly lower semicontinuous with
respect to the Lp topology, ∀p ∈ [1,∞).

We are now ready to present several results on existence and uniqueness of
minimizers of generalized Tikhonov–Phillips functionals with penalizers involving
spatially varying combinations of the L2-norm and of the functional W0,θ , under
different hypotheses on the function θ .

Theorem 2 Let Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary,

X = L2(Ω), Y a normed vector space, T ∈ L(X , Y), v ∈ Y , α1, α2 positive
constants, θ : Ω → [0, 1] a measurable function and Fθ the functional defined by

Fθ (u)
.= ‖T u− v‖2

Y + α1‖
√

1− θ u‖2
L2(Ω) + α2 W0,θ (u), u ∈ L2(Ω). (8)

If there exists ε2 ∈ R, such that θ (x) ≤ ε2 < 1 for a.e. x ∈ Ω , then the functional
(8) has a unique global minimizer u∗ ∈ L2(Ω). If moreover there exists ε1 ∈ R such
that 0 < ε1 ≤ θ (x) for a.e. x ∈ Ω , then u∗ ∈ BV (Ω).



Regularization of Inverse Ill-Posed Problems with L2-BV Penalizers . . . 131

Remark 2 Note that if θ (x) = 0 ∀ x ∈ Ω , then in (2), W (u) = ‖u‖2
L2(Ω) and Fθ

as defined in (8) is the classical Tikhonov–Phillips functional of order zero. On the
other hand, if θ (x) = 1 ∀ x ∈ Ω , then W (u) = J0(u) is the BV-seminorm and
Fθ has a global minimizer provided that the operator T does not anhilates constant
functions on Ω , i.e., T χΩ �= 0 (see [1]).

Theorem 3 Let Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary,

X = L2(Ω), Y a normed vector space, T ∈ L(X , Y), v ∈ Y , α1, α2 positive
constants and θ : Ω → [0, 1] such that 1

1−θ ∈ L1(Ω) and 1
θ
∈ L∞(Ω). Then the

functional (8) has a unique global minimizer u∗ ∈ BV (Ω).

Theorem 4 Let Ω ⊂ R
n be a bounded open convex set with Lipschitz boundary,

X = L2(Ω), Y a normed vector space, T ∈ L(X , Y), v ∈ Y , α1, α2 positive
constants, θ : Ω → [0, 1], θ ∈ M(Ω), and Ω0

.= {x ∈ Ω such that θ (x) = 0}.
If 1

θ
∈ L∞(Ω c

0 ) and 1
1−θ ∈ L1(Ω c

0 ), then the functional (8) has a unique global
minimizer u∗ ∈ L2(Ω) ∩ BV (Ω c

0 ).

Theorem 5 Let n ≤ 2, Ω ⊂ R
n be a bounded open convex set with Lipschitz

boundary, X = L2(Ω), Y a Hilbert space, T ∈ L(X , Y), v ∈ Y , α1, α2 positive
constants. Let θ : Ω → [0, 1], θ ∈ M(Ω) and Ω1

.= {x ∈ Ω such that θ (x) = 1}.
If 1

θ
∈ L∞(Ω c

1 ), 1
1−θ ∈ L1(Ω c

1 ) and T χΩ �= 0, then the functional (8) has a global
minimizer u∗ ∈ L2(Ω) ∩ BV (Ω c

1 ).

3 Applications to Signal Restoration

The purpose of this section is to present some applications of the simultaneous use
of penalizers of L2 and of BV type to signal restoration problem.

A basic mathematical model for signal blurring is given by convolution, as a
Fredholm integral equation of first kind:

v(t) =
∫ 1

0
k(t , s)u(t)ds, (9)

where k(t , s) = 1√
2πσb

exp
(
− (t−s)2

2σ 2
b

)
is a Gaussian kernel, σb > 0, u is the original

signal and v is the blurred signal. For the numerical examples that follow, Eq. (9)
was discretized in the usual way (using collocation and quadrature), resulting in a
discrete model of the form:

Af = g, (10)

where A is a (n + 1) × (n + 1) matrix, f , g ∈ R
n+1 (fj = u(tj ), gj = v(tj ), tj =

j

n
, 0 ≤ j ≤ n). We took n = 130 and σb = 0.05. The data g was contaminated with

a 1 % zero-mean Gaussian additive noise (i.e., standard deviation equal to 1 % of the
range of g). Figure 1 shows the original signal (unknown in real life problems) and
the blurred noisy signal which constitutes the data of the inverse problem.
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Fig. 1 Original signal (red dotted line) and blurred noisy signal (blue line)

Figure 2 shows the regularized solutions obtained with the classical Tikhonov–
Phillips method of order zero and with penalizer associated to the BV seminorm J0.
As expected, the regularized solution obtained with the J0 penalizer is significantly
better than the one obtained with the classical Tikhonov–Phillips method near jumps
and in regions where the exact solution is piecewise constant. The opposite happens
where the exact solution is smooth.

Figure 3 shows the regularized solution obtained with the combined L2-BV
method (see (8)). In this case, the function θ (t) was chosen to be θ (t)

.= 1 for
t ∈ (0, 0.4] and θ (t)

.= 0 for t ∈ (0.4, 1). Although this choice of θ (t) is clearly based
upon “a priori” information about the regularity of exact solution, other choices of θ
can be made by using only data-based information. For example, the function θ (t) can
be computed by normalizing in [0, 1] the modulus of the gradient of the regularized
solution obtained with a pure zero-order Tikhonov–Phillips method (see Fig. 4). For
this function θ , the regularized solution obtained with the combined L2-BV method
is shown in Fig. 5. In all cases, reflexive boundary conditions were used [7] and the
regularization parameters were calculated using the Morozov’s discrepancy principle
with τ = 1.1 [5].
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Fig. 2 Original signal (red dotted line) and regularized solution (green line) obtained with
Tikhonov–Phillips (right) and bounded variation seminorm (left)
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Fig. 3 Original signal (red dotted line) and regularized solution (green line) obtained with the
combined method L2-bounded variation (BV) and binary function θ

Remark 3 The estimation of the optimal parametersα1 andα2 was performed as fol-
lows: first optimal regularization parameters δ1 and δ2 were estimated independently
of one another by using Morozov’s discrepancy principle for Tikhonov–Phillips and
BV methods, respectively. Then δ1 and δ2 were used as weights on each penalizing
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Fig. 4 Function θ computed by normalizing in [0, 1] the modulus of the gradient of the regularized
solution with a pure zero-order Tikhonov–Phillips method

term of the mixed L2-BV method and finally, by using once again the discrepancy
principle, a third optimal parameter α multiplying both terms was determined, so
that the actual penalizer W considered was:

W (u) = α
(
δ1‖
√

1− θ u‖2
L2(Ω) + δ2 W0,θ (u)

)
. Hence, α1 = αδ1 and α2 = αδ2.

For the case of binary function θ , the improvement of the combinedL2-BV method
with respect to the pure simple cases, Tikhonov–Phillips method of zero order and
regularization with penalizer associated to the BV seminorm, is notorious. In that
case, however, the function θ was constructed based on a priori information that
may not be available in a concrete problem. Nevertheless, the regularized solution
obtained with the data-based function θ shown in Fig. 4 is also significantly better
than the those obtained with the single-based penalizers. This fact is clearly and
objectively reflected by the improved signal-to-noise ratio (ISNR) defined as

ISNR = 10 log10

( ‖g − f ‖2

‖fα − f ‖2

)
,

(where fα is the restored signal obtained with regularization parameter α). For all the
previously shown examples, the ISNR was computed in order to have a parameter
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Fig. 5 Original signal (red dotted line) and regularized solution (green line) obtained with the
combined method L2-bounded variation (BV) and function θ showed in Fig. 4

Table 1 Improved signal-to-noise ratio (ISNR)

Regularization method ISNR

Tikhonov–Phillips of order zero (T–P) 3.4866

Bounded variation seminorm 0.6459

Combined method L2-BV with binary θ 14.725

Combined method L2-BV with θ obtained using regularized T 4.7686

for objectively measuring and comparing the quality of all regularized solutions (see
Table 1).

Remark 4 We find it appropriate to make a final remark regarding the performance
of the mixed methods for different noise levels. Table 2 shows the ISNR values
obtained with the four methods for different noise levels. For low noise levels (less
than 1.5 %), both mixed methods consistently performed better than both single
ones. For higher noise levels, the mixed method with binary weighting function θ

performed better than Tikhonov while the method with θ estimated by convolution
did not. Thus, in the presence of high noise levels, this fact points to the need of either
having suitable information for estimating θ and/or to the necessity of developing
appropriate ways for its adequate estimation.
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Table 2 ISNR values for different noise levels

Method 1 % noise 1.5 % noise 4 % noise 5 % noise

Tikhonov–Phillips 3.4866 2.9614 2.5403 2.3045

Bounded variation 0.6459 −0.6568 0.1767 0.5103

Mixed L2-BV with binary θ 14.725 6.1543 4.1817 3.1271

Mixed L2-BV with Tikhonov-based θ 4.7686 2.7934 2.2086 1.6797

4 Conclusions

In this chapter, we introduced a generalized Tikhonov–Phillips regularization method
in which the penalizer is given by a combination of the L2 norm and the BV semi-
norm. For particular cases, existence and uniqueness results were shown. Finally,
applications of the model to signal restoration problem were shown.

Although these preliminary results are clearly quite promising, much further re-
search is needed. In particular, in spite of interesting numerical results, no rigorous
mathematical proofs are yet known on the existence and uniqueness of minimizers of
functional (8) for the case θ (t) binary (i.e., with θ (t) taking only the values 0 and 1).
Further, the choice of the function θ (t) in a somewhat optimal way is also a subject
which deserves much further attention. Research in all these directions is currently
under way.
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Stability Analysis of a Finite Difference Scheme
for a Nonlinear Time Fractional Convection
Diffusion Equation

Carlos D. Acosta, Pedro A. Amador and Carlos E. Mejía

Abstract The nonlinear time fractional convection diffusion equation (TFCDE) is
obtained from a standard nonlinear convection diffusion equation by replacing the
first-order time derivative with a fractional derivative (in Caputo sense) of order
α ∈ (0, 1). Developing numerical methods for solving fractional partial differential
equations is of increasing interest in many areas of science and engineering. In this
chapter, an explicit conservative finite difference scheme for TFCDE is introduced.
We find its Courant–Friedrichs–Lewy (CFL) condition and prove encouraging results
regarding stability, namely, monotonicity, the total variation diminishing (TVD)
property and several bounds. Illustrative numerical examples are included in order
to evaluate potential uses of the new method.

Keywords Caputo fractional derivative · Finite difference scheme · Stability ·
CFL · TVD

1 Introduction

The area of fractional calculus is as old as classical calculus, that is, the end of the
seventeenth century. In the introduction of [13], there is an annotated chronological
bibliography on fractional calculus prepared by Professor Bertram Ross of the Uni-
versity of New Haven. This chapter contains seven pages for the twentieth century
(up to 1975), five pages for the nineteenth century, and only two entries for the eigh-
teenth and seventeenth centuries. According to more recent works like [9], [14], and
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[15], it is quite possible that the last quarter of the twentieth century amounts for
as much research on the subject as all the previous works. The reasons are: Better
knowledge of mathematics and the generalized use of computers.

We are interested in numerical strategies for Cauchy problems of the form:

uα
t + cux = A(u)xx , 0 < α < 1, (x, t) ∈ ΠT := R× (0, T ), T > 0 (1)

with initial condition given by

u(x, 0) = u0(x), x ∈ R.

Here c is a positive constant, the integrated diffusion coefficient A(u) is defined by

A(u) =
∫ u

0
a(s)ds, a(u) ≥ 0, a ∈ L∞(R) ∩ L1(R) (2)

and uα
t denotes Caputo’s fractional derivative of order α defined by

uα
t (x, t) = 1

Γ (1− α)

∫ t

0

∂u(x, ξ )

∂ξ

1

(t − ξ )α
dξ. (3)

The diffusion function a(s) is allowed to vanish on intervals of positive length and
thus, in principle, (1) might be a strongly degenerate parabolic equation.

In this chapter, we introduce a new finite difference scheme for Eq. (1), establish
some of its main features and conclude with some illustrative numerical examples.
Finite difference methods are promising for fractional diffusion equations [3, 7, 8,
12, 16, 17] and for strongly degenerate parabolic equations with or without fractional
derivatives [1, 2, 4, 10].

Convergence studies for the numerical solution of problems like (1) are widely
unknown and are the subject of current research. Promising perspectives are pre-
sented in [4] in which the authors deal with a a fractional nonlinear diffusion term,
[5] for a degenerate fractional diffusion term and [6] in which the authors study a
scalar conservation law with ut replaced by the time derivative of a Volterra-type
convolution in time of the solution and a kernel k. However, there are still a lot of
open questions.

The rest of this chapter consists on three sections dedicated to the numerical
method, some stability considerations and a collection of numerical examples and
final remarks, respectively.

2 The Numerical Method

We begin our discussion of a finite difference scheme for Eq. (1) by defining a grid
of points in the (x, t) strip. Let �x be a positive real number, N be a positive integer
and let us define �t = T

N
. The grid will be the points (xj , tn) = (j�x, n�t) for all

j ∈ Z and n = 0, 1, . . .,N .
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Following [16], the Caputo fractional derivative at time tn+1 can be approximated
by

uα
t

(
x, tn+1

) = (�t)−α

Γ (2− α)

n∑

k=0

bk
[
u
(
x, tn−k+1

)− u
(
x, tn−k

)]+O
(
(�t)2−α),

for n = 0, 1, ...,N − 1 and weights bk = (k + 1)1−α − k1−α for k = 0, 1, ..., n.
The partial derivatives with respect to x are approximated in a straightforward

way by

∂u(xj , t)

∂x
= u(xj , t)− (xj−1, t)

�x
+O(�x) (4)

and

∂2A(u(xj , t))

∂x2
= A(u(xj+1, t))− 2A(u(xj , t))+ A(u(xj−1, t))

(�x)2
+O

(
(�x)2

)
(5)

Let us denote by vnj the numerical approximation of u(xj , tn). The numerical method
for the solution of (1) is obtained from the previous approximations and is given by
the explicit finite difference scheme:

(�t)−α

Γ (2− α)

n∑

k=0

bk

[
vn−k+1
j − vn−kj

]
+ c

vnj − vnj−1

�x

=
A
(

vnj+1

)
− 2A

(
vnj

)
+ A

(
vnj−1

)

(�x)2 .

Let λ = Γ (2− α) (�t)α /�x, μ = λ/�x and An
j = A

(
vnj

)
. If n = 0, the

numerical scheme can be written as:

v1
j = v0

j − cλ
(
v0
j − v0

j−1

)+ μ
(
A0

j+1 − 2A0
j + A0

j−1

)
. (6)

Likewise, if n ≥ 1, the numerical scheme becomes

vn+1
j = vnj − cλ

(
vnj − vnj−1

)+ μ
(
An

j+1 − 2An
j + An

j−1

)−
n∑

k=1

bk

[
vn−k+1
j − vn−kj

]
.

(7)

An alternative way to write scheme (7) is

vn+1
j = vnj − cλ

(
vnj − vnj−1

)+ μ
(
An

j+1 − 2An
j + An

j−1

)
(8)

− b1vnj +
n−1∑

k=1

dkvn−kj + bnv0
j ,

where dk = bk − bk+1 for k = 1, 2, . . ., n− 1.
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Sometimes it is appropriate to consider the method in sequence form. Let
vn = (vnj )j∈Z. Method (6) and (7) are represented by an expression of the form:

vn+1 = H
(
vn, vn−1, · · ·, v0; j

)
(9)

where the right-hand side in (9) corresponds to the right-hand side in (6) or (7),
depending on the value of n.

The first feature of scheme (6) and (7) is that it allows a conservative form, which
guarantees that the numerical method does not converge to nonsolutions.

Lemma 1 (6) and (7) is conservative, that is, it admits a conservation form. More
precisely,

vn+1
j = vnj − λ

(
ψn

j − ψn
j−1

)
, (10)

where

ψ0
j = cv0

j −
1

�x

(
A0

j+1 − A0
j

)
, for n = 0

ψn
j = cvnj −

1

�x

(
An

j+1 − An
j

)−
n∑

k=1

bkψ
n−k
j , for n ≥ 1

Proof The case n = 0 follows from (6). Suppose it is possible to achieve the
conservation form (10) for k = 0, 1, · · ·, n− 1, that is

vk+1
j = vkj − λ

(
ψk

j − ψk
j−1

)
.

For k = n,

vn+1
j = vnj − cλ

(
vnj − vnj−1

)+ μ
(
An

j+1 − 2An
j + An

j−1

)

−
n∑

k=1

bk

(
vn−k+1
j − vn−kj

)

= vnj − λ

{
c
(
vnj − vnj−1

)− 1

�x

[(
An

j+1 − An
j

)− (
An

j − An
j−1

)]}

+ λ

n∑

k=1

bk

(
ψn−k

j − ψn−k
j−1

)
.

We end this section by clarifying that convergence issues are not addressed here
although they are important. Since nonlinear equations may have several weak so-
lutions, an entropy condition is usually required to identify the physically correct
solution. These ideas, along with the notion of nonlinear stability, are treated by many
authors. For an initial boundary value problem of a strongly degenerate parabolic
equation in which the time derivative is not fractional, we recommend [2].

Next section deals with conditional stability and other properties of scheme (6)
and (7).
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3 Stability Analysis

Explicit schemes require certain restrictions on the discretization parameters in
order for the method to be useful. Among them, the inequality known as Courant–
Friedrichs–Lewy (CFL) condition is of paramount importance. We begin by
introducing the CFL condition for scheme (6) and (7), which is

cλ+ 2μ ‖a‖∞ ≤ 2− 21−α. (11)

Provided the CFL condition is satisfied, two important properties of the method are
derived.

3.1 Monotonicity Property

Let un
j and vnj be two discrete functions to which method (9) can be applied. The

numerical method (9) is called a monotone method if

u0
j ≤ v0

j for all j $⇒ un
j ≤ vnj for all j and all n

Theorem 1 If the CFL condition (11) holds, then method (9) is monotone.

Proof Suposse u0
j ≤ v0

j for all j ∈ Z. For all n, we denote An
j = A

(
vnj

)
and

Ān
j = A(un

j ). For n = 1, monotonicity is proved as follows:

v1
j − u1

j =
(
v0
j − u0

j

)− cλ
((

v0
j − u0

j

)− (
v0
j−1 − u0

j−1

))

+ μ
((
A0

j+1 − Ā0
j+1

)− 2
(
A0

j − Ā0
j

)+ (
A0

j−1 − Ā0
j−1

))

=
v0
j∫

u0
j

(1− cλ− 2μa(u)) du+ μ

v0
j+1∫

u0
j+1

a(u)du+ μ

v0
j−1∫

u0
j−1

a(u)du

≥ 0

The CFL condition (11) allows nonnegativity of the first of the three integrals. Now,
suppose uk

j ≤ vkj for k = 0, 1, · · ·, n and all j ∈ Z. Thus,

vn+1
j − un+1

j =
vnj∫

unj

(1− cλ− 2μa(u)) du+ μ

vnj+1∫

unj+1

a(u)du+ μ

vnj−1∫

u0
j−1

a(u)du

− b1

vnj∫

unj

du+
n−1∑

k=1

dk

(
vn−kj − un−k

j

)
+ bn

(
v0
j − u0

j

)
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=
vnj∫

unj

(1− b1 − cλ− 2μa(u)) du+ μ

vnj+1∫

unj+1

a(u)du+ μ

vnj−1∫

u0
j−1

a(u)du

+
n−1∑

k=1

dk

(
vn−kj − un−k

j

)
+ bn

(
v0
j − u0

j

)

≥ 0

where we have taken into consideration that 1−b1 = 2−21−α and the CFL condition.

3.2 Stability Bounds

The next theorem establishes two stability bounds in the ∞-norm and the 1-norm,
respectively, and it includes a total variation diminishing property of importance in
case a convergence analysis is sought.

Theorem 2 If the CFL condition (11) is satisfied, then the following inequalities
hold:

∥∥vn
∥∥∞ ≤

∥∥v0
∥∥∞ , n = 1, 2, · · ·,N

∥∥vn
∥∥

1 ≤
∥∥v0

∥∥
1 , n = 1, 2, · · ·,N

∑

j

∣∣∣vn+1
j+1 − vn+1

j

∣∣∣ ≤
∑

j

∣∣vnj+1 − vnj
∣∣ , n = 1, 2, · · ·,N

Proof First observe that

v1
j = v0

j − cλ
(
v0
j − v0

j−1

)+ μ
(
A0

j+1 − 2A0
j + A0

j−1

)

= (1− cλ) v0
j + cλv0

j−1 + μ
((
A0

j+1 − A0
j

)− (
A0

j − A0
j−1

))

= (1− cλ) v0
j + cλv0

j−1 + μ
(
a(ζ 0

j+1/2)
(
v0
j+1 − v0

j

)− a(ζ 0
j−1/2)

(
v0
j − v0

j−1

))

= (
1− cλ− μa(ζ 0

j+1/2)− μa(ζ 0
j−1/2)

)
v0
j

+ cλv0
j−1 + μa(ζ 0

j+1/2)v0
j+1 + μa(ζ 0

j−1/2)v0
j−1.

for some values ζ 0
j±1/2 between v0

j±1 and v0
j , respectively. Then,

∣∣v1
j

∣∣ ≤ (
1− cλ− μa(ζ 0

j+1/2)− μa(ζ 0
j−1/2)

) ∣∣v0
j

∣∣+ cλ
∣∣v0

j−1

∣∣

+ μa(ζ 0
j+1/2)

∣∣v0
j+1

∣∣+ μa(ζ 0
j−1/2)

∣∣v0
j−1

∣∣ ≤ ∥∥v0
∥∥∞ .

Also,
∑

j

∣∣v1
j

∣∣ ≤
∑

j

(
1− cλ− μa(ζ 0

j+1/2)− μa(ζ 0
j−1/2)

) ∣∣v0
j

∣∣+
∑

j

cλ
∣∣v0

j−1

∣∣
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+ μ
∑

j

a(ζ 0
j+1/2)

∣∣v0
j+1

∣∣+ μ
∑

j

a(ζ 0
j−1/2)

∣∣v0
j−1

∣∣

≤
∑

j

∣∣v0
j

∣∣− cλ
∑

j

(∣∣v0
j

∣∣− ∣∣v0
j−1

∣∣)

− μ
∑

j

(
a(ζ 0

j+1/2)
∣∣v0

j

∣∣− a(ζ 0
j−1/2)

∣∣v0
j−1

∣∣)

− μ
∑

j

(
a(ζ 0

j−1/2)
∣∣v0

j

∣∣− a(ζ 0
j+1/2)

∣∣v0
j+1

∣∣)

≤
∑

j

∣∣v0
j

∣∣ .

Similarly, we get:

∑

j

∣∣v1
j − v1

j−1

∣∣ ≤
∑

j

∣∣v0
j − v0

j−1

∣∣ .

To conclude the proof, we proceed by induction. Suppose the following inequalities
are satisfied:

∥∥vk
∥∥∞ ≤

∥∥v0
∥∥∞ , k = 1, 2, . . ., n− 1 < N

∥∥vk
∥∥

1 ≤
∥∥v0

∥∥
1 , k = 1, 2, . . ., n− 1 < N

∑

j

∣∣vkj+1 − vkj
∣∣ ≤

∑

j

∣∣∣vk−1
j+1 − vk−1

j

∣∣∣ , k = 1, 2, . . ., n− 1 < N

Thus, for k = n, we have:

vn+1
j = vnj − cλ

(
vnj − vnj−1

)+ μ
(
An

j+1 − 2An
j + An

j−1

)

− b1vnj +
n−1∑

k=1

dkvn−kj + bnv0
j

= (
1− b1 − cλ− μa(ζ n

j+1/2)− μa(ζ n
j−1/2)

)
vnj

+ cλvnj−1 + μa(ζ n
j+1/2)vnj+1 + μa(ζ n

j−1/2)vnj−1

+
n−1∑

k=1

dkvn−kj + bnv0
j .

By the CFL condition (11), we obtain:
∣∣∣vn+1

j

∣∣∣ ≤ (
1− b1 − cλ− μa(ζ n

j+1/2)− μa(ζ n
j−1/2)

) ∣∣vnj
∣∣

+ cλ
∣∣vnj−1

∣∣+ μa(ζ n
j+1/2)

∣∣vnj+1

∣∣+ μa(ζ n
j−1/2)

∣∣vnj−1

∣∣
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Table 1 Numerical results for Example 1

α = 1/2 α = 2/3 α = 3/4

�x L∞−err Order L∞−err Order L∞−err Order

1/32 0.099289 – 0.24896 – 0.27227 –

1/64 0.0062903 3.9804 0.029929 3.0563 0.046724 2.5428

1/128 0.0003967 3.987 0.0038678 2.952 0.0076661 2.6076

+
n−1∑

k=1

dk

∣∣∣vn−kj

∣∣∣+ bn
∣∣v0

j

∣∣

≤
(

1− b1 +
n−1∑

k=1

dk + bn

)
∥∥v0

∥∥∞ =
∥∥v0

∥∥∞ .

since
∑n−1

k=1 dk = bn − b1. Similarly, we obtain the other inequalities.

4 Numerical Examples and Final Remarks

4.1 Numerical Experiments

Example 1 Fractional linear diffusion.
This experiment is a linear time fractional diffusion equation with constant diffusion
a(u) = ā = 0.001 for all u. The right-hand side term f (x, t) is chosen in such a
way that the equation has a unique polynomial solution (Fig. 1). The problem is the
following:

uα
t =0.001uxx + f (x, t), 0 < α < 1, x ∈ [0, 1] , 0 < t ≤ 1,

The exact solution is given by

u(x, t) = 10x2(1− x)(t + 1)2

For this problem, the CFL condition (11) becomes

2Γ (2− α)ā
(�t)α

(�x)2
≤ 2− 21−α

and indicates that �t behaves like O
(

(�x)
2
α

)

Table 1 shows results for three different values of α and suggests that the order of
accuracy is about 2

α
for �x as the main discretization parameter. This is consistent

with the theory, because monotone numerical methods are at most first-order accurate
(see [11, Theorem 15.6]).
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Fig. 1 Comparison of the exact solution and numerical solution for Example 1 with α = 2/3 and
�x = 1/128

Example 2 This is a nonlinear time fractional convection diffusion equation
(TFCDE) and, as before, the right-hand side function f (x, t) is chosen so that the
equation has a unique polynomial solution (Fig. 2):

uα
t + cux =A(u)xx + f (x, t), 0 < α < 1, x ∈ [0, 2] , 0 < t ≤ 1

c = 1, A(u) = 4εu2

(
1

2
− u

3

)
, ε = 0.001

The exact solution is given by

u(x, t) = t2x(2− x)

Table 2 summarizes our results for three different values of α and several discretiza-
tion parameters. It suggests that the order of accuracy is about 1 for �x as the main
discretization parameter.

Example 3 Once again, this is a nonlinear TFCDE and, as before, the right-hand
side function f (x, t) is chosen so that the equation has a unique closed form solution
(Fig. 3):
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Fig. 2 Comparison of the exact solution and numerical solution for Example 2 with α = 2/3 and
�x = 1/128

Table 2 Numerical results for Example 2

α = 1/2 α = 2/3 α = 3/4

�x L∞−err Order L∞−err Order L∞−err Order

1/32 0.025104 – 0.029653 – 0.034915 –

1/64 0.012526 1.003 0.013879 1.0953 0.016232 1.105

1/128 0.0062491 1.0032 0.0065186 1.0903 0.0074625 1.1211

uα
t + cux =A(u)xx + f (x, t), 0 < α < 1, x ∈ [0, 1] , 0 < t ≤ 1,

c = 1, A(u) = ε
un+1

n+ 1
, ε = 0.001, n = 2

The exact solution is

u(x, t) = t2 sin (2πx)

The numerical results are presented in Table 3 which includes experiments for three
different values of α and several discretization parameters. As in the previous ex-
ample, the table suggests that the order of accuracy is about 1 for �x as the main
discretization parameter.
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Fig. 3 Comparison of the exact solution and numerical solution for Example 3 with α = 2/3 and
�x = 1/128

Table 3 Numerical results for Example 3

α = 1/2 α = 2/3 α = 3/4

�x L∞−err Order L∞−err Order L∞−err Order

1/32 0.22037 – 0.21317 – 0.2107 –

1/64 0.11147 0.98327 0.10815 0.97897 0.10725 0.97421

1/128 0.056076 0.9912 0.054304 0.9939 0.053776 0.99594

4.2 Concluding Remarks

A new method for the numerical solution of (1) has been presented. It is an explicit
conservative finite difference method which under a reasonable CFL condition sat-
isfies standard stability estimates. If some day an entropy solution of (1) is defined,
method (8) is an excellent candidate to be convergent. This is so due to the properties
proved in Sect. 3 and the encouraging numerical examples of Sect. 4.
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Dealing with Uncertainties in Computing: From
Probabilistic and Interval Uncertainty to
Combination of Different Types of Uncertainty

Vladik Kreinovich

Abstract To predict values of future quantities, we apply algorithms to the current
and past measurement results. Because of the measurement errors and model in-
accuracy, the resulting estimates are, in general, different from the desired values
of the corresponding quantities. There exist methods for estimating this difference,
but these methods have been mainly developed for the two extreme cases: the case
when we know the exact probability distributions of all the measurement errors and
the interval case, when we only know the bounds on the measurement errors. In
practice, we often have some partial information about the probability distributions
which goes beyond these bounds. In this chapter, we show how the existing methods
of estimating uncertainty can be extended to this generic case.

Keywords Error estimation · Measurement errors · Model inaccuracy · Interval
computations

1 Need to Deal with Uncertainty in Computing

Need for Data Processing To make a proper decision, we need to be able to predict
the results of making a certain decision (or of not making any decision at all). In many
real-life situations, we know how the desired future value y of each corresponding
quantity depends on the current values of relevant quantities q1, . . ., qn; in other
words, we have an algorithm that, given the values q1, . . ., qn, produces the estimate
y = A(q1, . . ., qn). This algorithm can be as simple as a straightforward computation
by using an explicit formula, or it can be as complex as a solution of the corresponding
system of partial differential equations (as in weather prediction).

Sometimes, the quantities q1, . . ., qn can be measured directly; in such cases, to
predict the future value y, we measure the current values of these quantities and use
the algorithm f to predict the future value y.
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In many practical situations, however, some of the quantities qi are difficult (or
even impossible) to measure directly. For example, to make predictions in geo-
sciences, we must know the densities and stresses at different depths, including areas
much deeper that current boreholes can reach. In such situations, instead of directly
measuring the corresponding quantity qi , we can measure it indirectly: namely, we
measure the auxiliary quantities a1, . . ., am which are related to qi by a known depen-
dence, and then use a known algorithm to estimate qi based on the results of these
measurements. For example, to estimate the density at different depths, we measure
gravity at different Earth locations, we measure travel times of seismic waves, etc.
As a result, we arrive at the following problem:

• First, we (directly) measure some quantities; we will denote these quantities
by x1, . . ., xn. Some of these quantities may be the easy-to-measure quantities
qi , some may be auxiliary quantities whose measurement is needed to estimate
difficult-to-measure quantities qi .

• Then, we use the results x̃1, . . ., x̃n of the measured quantities x1, . . ., xn to compute
the estimate ỹ for the desired future value y. We will denote the corresponding
algorithm by f , so that f̃ = f (̃x1, . . ., x̃n). This algorithm usually consists of two
parts:
– First, we use the values x̃j to estimate the quantities qi .
– Then, we use the estimated values of qi to predict the value y.

Computation of ỹ from x̃i constitutes data processing.

Need to Deal with Uncertainty in Data Processing Measurements are never ab-
solutely accurate. As a result, the measurement results x̃i are, in general, different
from the actual (unknown) values xi of the corresponding quantity. In other words,

in general, we have a nonzero measurement error �xi
def= x̃i − xi . Due to this differ-

ence, even when the model is exact, i.e., when the actual values y and xi satisfy the
condition y = f (x1, . . ., xn), the estimated value ỹ = f (̃x1, . . ., x̃n) is, in general,
different from the actual value y.

In some cases, the model itself is only approximate, in the sense that y is only
approximately equal to f (x1, . . ., xn). In this case, there is an additional model inac-

curacy �x0
def= f (x1, . . ., xn) − y, and hence, the estimate ỹ is even more different

from y.
To make a proper decision based on the estimate ỹ, it is important to know how

accurate is this estimate. For example, if the estimate for the amount of water is an
underground aquifer of 200 million tons, and it is 200± 10, then it is a good idea to
start digging and exploiting this water; on the other hand, if it is 200 ± 300, then it
may be that there is no water available at all—in which case, further measurements
may be needed before we invest money in exploiting this possible source of water.

In general, it is important to get some information about the estimation error

�y
def= ỹ − y.
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2 Processing Uncertainty: General Formulation of the Problem

Toward the General Formulation of the Problem We are interested in the
difference �y = ỹ − y.

• We know that ỹ = f (̃x1, . . ., x̃n).
• By definition of the model inaccuracy, we have y = f (x1, . . ., xn) − �x0. By

definition of the measurement error, we have xi = x̃i −�xi , so

y = f (̃x1 −�x1, . . ., x̃n −�xn)−�x0.

Substituting these expressions for ỹ and y into the above formula for�y, we conclude
that

�y = f (̃x1, . . ., x̃n)− f (̃x1 −�x1, . . ., x̃n −�xn)+�x0. (1)

Measurement Errors Are Usually Relatively Small The measurement errors are
usually relatively small; we may have measurement accuracy 10, 5, 1 %. In all
these cases, the squares of the measurement errors can be safely ignored: e.g., for
�xi ≈ 10 %, we have (�xi)2 ≈ 1 % � 10 %. Due to this, we can expand the formula
(1) in Taylor series in �xi and ignore terms which are quadratic (or of higher order)
in �xi . We thus get f (̃x1 − �x1, . . ., x̃n − �xn) = f (̃x1, . . ., x̃n) −∑n

i=1 ci · �xi ,

where ci
def= ∂f

∂xi
and therefore, we get a linear dependence:

�y =
n∑

i=1

ci ·�xi +�x0. (2)

Measurement Errors Corresponding to Different Measurements Are Usually
Independent. Measurement errors �xi corresponding to different measurements
are usually independent from each other—and from the model inaccuracy �x0.
Therefore, it makes sense to assume that all n + 1 random variables �x1, . . .,�xn,
and �x0 are independent.

What We Do in This Chapter? In this chapter, we describe how to estimate �y in
a general situation, when we may have a combination of probabilistic and interval
uncertainty. To provide this description, we need to first recall how uncertainty is
usually estimated—so that it will be clear what are the assumptions underlying the
usual techniques, and what needs to be modified when these assumptions are not
satisfied.

3 Traditional Engineering Approach to Processing Uncertainty:
Brief Reminder

Usual Assumptions: That All Distributions Are Normal with Zero Mean. In en-
gineering practice, it is usually assumed that all the measurement errors are normally
distributed with zero mean.
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The normality assumption comes from the fact that for each measurement, the
measurement error comes from many different sources. Usually, manufacturers of
the measuring instrument try their best to eliminate all major sources of measure-
ment errors. As a result, the remaining measurement error does not contain any large
components, it is a joint effort of numerous small error components coming from
different sources. According to the central limit theorem (see, e.g., [17]), the dis-
tribution of the sum of a large amount of small independent random components
is close to Gaussian—and the more components we have, the closer the resulting
distribution to Gaussian. Thus, it make sense to assume that the measurement errors
are normally distributed—and indeed, empirical analysis shows that more than half
of the measuring instruments have normal distribution [13, 14].

The zero mean assumption comes from the fact that the measuring instruments
are usually calibrated before their use; see, e.g., [15]. One of the purposes of the
calibration is to find the instrument’s bias—i.e., the mean value of the measurement
error—and to compensate for this bias. After the compensation, the mean is zero.

To describe a normal distribution, it is sufficient to describe the mean and the
standard deviation. Since the mean of the variable �xi is zero, all we need to do to
describe the measurement error is to provide the standard deviation σi . Similarly,
we can eliminate the main sources of the model inaccuracy, and we can delete the
model’s bias as well. As a result, we can conclude that the model’s inaccuracy �x0

is also normally distributed, with zero mean. We will denote its standard deviation
by σ0.

Estimating uncertainty under the usual assumptions: Derivation of the result-
ing formulas. According to the formula (2), the estimation error �y is a linear
combination of measurement errors �xi and of the model inaccuracy �x0. These
quantities are independent, and (under the above assumptions) normally distributed.
It is known that a linear combination of independent Gaussian random variables is
also normally distributed, so �y is also normally distributed.

To describe a normal distribution, it is sufficient to describe the mean and the
standard deviation. Since the means of all the variables �xi and �x0 are zeros, the
mean value of �y is also equal to 0. Thus, under the usual engineering assumptions,
to describe the probability distribution for �y, it is sufficient to describe its standard
deviation σ . The variance of the sum of independent random variables is equal to
the sum of the variances, so from (2), we conclude that

σ 2 =
n∑

i=1

c2
i · σ 2

i + σ 2
0 . (3)

How to Actually Estimate σ : Toward the First Algorithm How can we actually
estimate σ? To use this formula, we need to know the values ci . These values
are partial derivatives of the function f (x1, . . ., xn) describing the data-processing
algorithm. When this algorithm consists of a straightforward application of an explicit
formula, we can simply differentiate this formula and get an explicit expression for the
corresponding derivatives. However, in general, the function f (x1, . . ., xn) is given
as a complex algorithm, so it is not possible to perform an explicit differentiation.
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A reasonable alternative is to use numerical differentiation. Numerical differen-
tiation is based on the definition of the derivative as a limit:

∂f

∂xi
= lim

hi→0

f (x1, . . ., xi−1, xi + hi , xi+1, . . ., xn)− f (x1, . . ., xi−1, xi , xi+1, . . ., xn)

hi

.

By the definition of the limit, this means that for small h, we have

∂f

∂xi
≈ f (x1, . . ., xi−1, xi + hi , xi+1, . . ., xn)− f (x1, . . ., xi−1, xi , xi+1, . . ., xn)

hi

.

For small hi , we expand the expression f (x1, . . ., xi−1, xi+hi , xi+1, . . ., xn) in Taylor
series and keep only terms which are linear in h, getting

f (x1, . . ., xi−1, xi + hi , xi+1, . . ., xn) = f (x1, . . ., xi−1, xi , xi+1, . . ., xn)+ hi · ci .
From this formula, we can estimate ci as the ratio:

ci = f (x1, . . ., xi−1, xi + hi , xi+1, . . ., xn)− f (x1, . . ., xi−1, xi , xi+1, . . ., xn)

hi

. (4)

Substituting these expressions into the formula (3), we get

σ 2 =
n∑

i=1

(
f ( . . ., xi−1, xi + hi , xi+1, . . . )− f ( . . ., xi−1, xi , xi+1, . . . )

hi

)2

·σ 2
i +σ 2

0 .

Which values h1, . . .,hn should we use? Once we know the values of the function
f , this formula uses subtraction, addition, multiplication, and division to estimate
σ 2. In the computer, division is the most time-consuming operation, so ideally, we
should select hi so as to avoid divisions. Division can indeed be avoided if we take
hi = σi . In this case, the above formula takes the simplified form:

σ 2 =
n∑

i=1

(f ( . . ., xi−1, xi + σi , xi+1, . . . )− f ( . . ., xi−1, xi , xi+1, . . .))2 + σ 2
0 . (5)

Thus, we arrive at the following algorithm.

First Algorithm: Sensitivity Analysis We are given the values x̃1, . . ., x̃n, the
algorithm f , and the standard deviations σ1, . . ., σn, and σ0:

• First, we perform the original data processing, i.e., compute the value
ỹ = f (̃x1, . . ., x̃n).

• Then, for i = 1, . . ., n, we compute yi
def= f (̃x1, . . ., x̃i−1, x̃i + σi , x̃i+1, . . ., x̃n).

• Finally, we compute σ 2 =
n∑

i=1
(yi − ỹ)2 + σ 2

0 .

Comment. Our recommendation to use hi = σi differs from the usual numerical
methods recommendation to use hi ≈ √

ε, where ε is the machine epsilon. This
usual recommendation makes perfect sense in the situations in which:
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• The algorithm f provides very accurate computation of the corresponding
function f (x1, . . ., xn), and

• The objective is to find the most accurate estimate of the derivatives.

In our application, none of these two conditions are satisfied.
First, since the input data come from measurement and are, thus, only approxi-

mately known, the data processing algorithms provide only approximate computation
of the corresponding value—it makes no sense to compute, e.g., ln (x) with eight-
digit accuracy if we only know x with accuracy 1 % (which, by the way, means very
accurate measurements). Such an approximate algorithm f may not even take into
account the much smaller difference hi ≈ √ε between the values xi and xi+√ε, but
this algorithm will definitely react to the difference of order σi between the values xi
and xi + σi , since a difference of this order of magnitude corresponds to practically
distinguishable difference between data values.

Second, by applying linearization—i.e., by replacing the exact formula (1) with an
approximate formula (2)—we have already ignored quadratic terms in the expression
σ , terms which even for very accurate measurements, with accuracy 1 %, leads to
relative accuracy 10−4 of computing σ . Since the formula (3) is only valid with this
accuracy, it does not make sense to spend additional computation time on estimating
ci too accurately.

In this case, as we have mentioned, the need to save computation time leads to
hi = σi .

Limitations of the First Algorithm As we have mentioned, the data processing
algorithm f can be very time consuming. Thus, the more times we call this algo-
rithm, the longer our estimation of σ . The above algorithm requires n + 1 calls to
the algorithm f (n more calls than a simple data processing). In many practical
problems—e.g., in geosciences—we process thousands of data points, so n is in
thousands. If it takes several hours on a high-performance computer to estimate each
value of f , then, to compute σ , the above algorithm requires thousands time more
time—i.e., several months. This is not realistic, we need a faster method.

Towards a Second Algorithm The possibility to process uncertainty faster comes
from the fact that a similar expression for σ arises if we simulate normally distributed
random errors. Namely, if we add, to the original values x̃i , simulated random errors
δxi which are normally distributed with 0 mean and standard deviation σi , and use a
random variable δx0 which is normally distributed with mean 0 and standard deviation
σ0, then the difference:

f (̃x1 + δx1, . . ., x̃n + δxn)− f (̃x1, . . ., x̃n)+ δx0 =
n∑

i=1

ci · δxi + δx0

is also normally distributed with 0 mean and the desired standard deviation σ . We
can thus use the standard formulas for estimating standard deviation from a sample
to estimate σ . We therefore arrive at the following algorithm:
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Second Algorithms Monte Carlo Simulations We are given the values x̃1, . . ., x̃n,
the algorithm f , and the standard deviations σ1, . . ., σn, and σ0:

• First, we perform the original data processing, i.e., compute the value
ỹ = f (̃x1, . . ., x̃n).

• Then, we select the number of iterations N . For each k from 1 to N , we generate
n+ 1 random numbers rk1, . . ., rkn, rk0 each of which is normally distributed with
mean 0 and standard deviation 1.

• For each k, we compute yk = f (̃x1 + σ1 · rk1, . . ., x̃n + σn · rkn)+ σ0 · rk0.

• Finally, we estimate σ 2 = 1

N
·

N∑

k=1

(yk − ỹ)2.

Advantages and Limitations of the SecondAlgorithm The above method requires
N + 1 calls to the algorithm f . The number of iterations N depends on the accuracy
with which we want to estimate σ . In general, the relative standard deviation of

determining σ from a sample of size N is equal to

√
2

N
; so, e.g., to find σ with

accuracy 20 % and reliability 95 % (which corresponds to two standard deviations),

we need to make sure that 2 ·
√

2

N
≤ 0.2, i.e., N ≥ 200. For n& 1000, this is much

faster than the sensitivity analysis—this is the main advantage of this method.
The limitation is that, in contrast to the sensitivity analysis method, we do not get

the exact value σ , only an approximate value.

Possibility of Parallelization In both methods for estimating σ , the most time-
consuming step is calling the algorithm f . If we have at our disposal several
processors which can work in parallel, then we can make all these calls in parallel
and thus, drastically decrease the computation time.

Comment In situations when we know the actual step-by-step code of the data pro-
cessing algorithm f , there is another way to save computation time. Namely, we can
apply, to the known code, the procedure of reverse differentiation (also known as
backpropagation or adjoint methods) which allows us to compute the values xi of
all n partial derivatives ci in time which, theoretically, is no more than three times
longer than the time needed to compute the value f itself; see, e.g., [5, 18, 19]. Once
we have computed all the values ci of the gradient, we can use the formula (3) to
compute the desired standard deviation σ .

This method is indeed effectively used, e.g., in neural networks [18, 19]. However,
in many practical situations, the actual computational overhead of using reverse
differentiation is much higher to the extent than Monte Carlo methods are faster.

Besides, in some practical situations, data processing uses proprietary programs,
programs for which the code is not provided to the user. The only way to use these
programs is to treat the data processing algorithm as a “black box”: the only thing we
can compute are the output values f (x) corresponding to different inputs x. For such
programs, it is not possible to use reverse differentiation, and the only possibility to
reduce the computation time in comparison with sensitivity analysis is to use Monte
Carlo techniques.
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4 Case of Interval Uncertainty

Need for Interval Uncertainty The traditional approach is based on the assumption
that for each measuring instrument, we know the exact distribution of the corre-
sponding measurement error �xi . In practice, this probability distribution can be
established if we compare the results x̃

(k)
i produced by our measuring instrument

with the results x̃
(k)
i,st produced by a much more accurate (“standard”) measuring

instrument. As the standard measuring instrument is much more accurate, we can
ignore its measurement errors and assume that its measurement results are equal
to the exact values of the corresponding quantity: x̃(k)

i,st ≈ x
(k)
i . In this approxima-

tion, the differences x̃(k)
i − x̃

(k)
i,st are equal to the corresponding measurement errors

�x
(k)
i = x̃

(k)
i − x

(k)
i . By accumulating a sample of such values, we get a probability

distribution for �xi .
However, there are two situations when we cannot do it. First is the case of state-

of-the-art measurements. For example, it would be nice if near the Hubble telescope,
there would be another one, five times more accurate, which we could use to calibrate
the Hubble telescope—but the Hubble telescope is the best we have. Similarly, it
would be nice if we had geophysical methods which were five times more accurate
than the current ones—but our methods are the best we have. In such situations, at
best, we can have upper bounds �i on the corresponding measurement errors. We
know that |�xi | ≤ �i , i.e., that �xi is located on the interval [−�i ,�i], but we do
not have any information about which values from this interval are more probable
and which values are less probable. This situation is known as interval uncertainty;
see, e.g., [6, 11, 15].

Interval uncertainty also occurs in manufacturing, where, in principle, we can
calibrate every sensors, but since sensors are relatively cheap and their calibration
is very expensive, they are not calibrated—instead, we rely on the upper bounds �i

provided by the manufacturer.
Similarly, we only know a bound �0 on the model inaccuracy �x0: |�x0| ≤ �0.

Estimating Uncertainty Under Interval Uncertainty: Derivation of the Resulting
Formulas The sum (2) is the largest when each term ci · �xi attains its largest
possible value on the corresponding interval [−�i ,�i].

• When ci ≥ 0, the function ci · �xi is increasing, so its largest value is attained
for the largest possible value �xi = �i . This largest value is equal to ci ·�i .

• When ci ≤ 0, the function ci ·�xi is decreasing, so its largest value is attained for
the smallest possible value −�xi = �i . This largest value is equal to −ci ·�i .

In both cases, the largest possible value is |ci | · �i . Similarly, in both cases, the
smallest possible value is −|ci | · �i . Thus, the range of possible values of �y is
equal to [−�,�], where

� =
n∑

i=1

|ci | ·�i +�0. (6)
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Why Not Use Maximum Entropy Approach? In statistics, situations when we do
not know the exact probability distribution are frequent. In such case, if we have
several possible distributions consistent with our knowledge, a reasonable idea is to

select the distribution with the largest value of the entropyS
def= − ∫

ρ(x)·ln (ρ(x)) dx,
where ρ(x) is the probability density; see, e.g., [7]. If we only know that the random
variable is located on an interval, then this maximum entropy approach leads to a
uniform distribution on this interval. (For several variables, if we know nothing about
their correlation, the maximum entropy approach implies that they are independent.)

At first glance, this makes perfect sense—and this is how many practitioners deal
with interval uncertainty. However, we can show that this approach can drastically
underestimate the uncertainty �y. We can illustrate it on the example of the simplest
possible dependence, when f (x1, . . ., xn) = x1 + · · · + xn and therefore, �y =
�x1 + · · · + �xn. For simplicity, we can assume that all the upper bounds are the
same: �1 = · · · = �n. In this case, the formula (6) implies that � = n ·�1. This is
possible, e.g., if each measurement error is exactly equal to �1.

On the other hand, according to the maximum entropy approach, each value �xi
is uniformly distributed on the interval [ − �1,�1]. This distribution has mean 0

and variance
1

3
·�2

1. For large n, the sum �y of these independent random variables

is approximately normally distributed (the same central limit theorem that we cited
earlier). The mean of �y is equal to the sum of 0s, i.e., to 0, and its variance is equal

to the sum of the variances, i.e., σ 2 = n

3
·�2

1. For a normal distribution, the values

are located in the six-sigma interval with practically absolute certainty; thus, we can
take 6σ ∼ √n as an upper bound for �y. For large n, this is much smaller than the
above upper bound n ·�1. Thus, the maximum entropy approach is not applicable,
and we have to use the formula (6).

How to Actually Estimate �: Toward the First Algorithm How can we actually
estimate �? If we substitute the above numerical differentiation formula for ci into
the formula (6), we conclude that

� =
n∑

i=1

∣∣∣∣
f ( . . ., xi−1, xi + hi , xi+1, . . .)− f ( . . ., xi−1, xi , xi+1, . . .)

hi

∣∣∣∣ ·�i +�0.

Which values h1, . . .,hn should we use? Similarly to the traditional case, we select
the values hi for which we can avoid division and thus, speed up computations.
Division can indeed be avoided if we take hi = �i . In this case, the above formula
takes the simplified form:

σ 2 =
n∑

i=1

∣∣f ( . . ., xi−1, xi +�i , xi+1, . . .)− f ( . . ., xi−1, xi , xi+1, . . .)
∣∣+�0. (7)

Thus, we arrive at the following algorithm.

First Algorithm: Sensitivity Analysis We are given the values x̃1, . . ., x̃n, the
algorithm f , and the bounds deviations �1, . . .,�n, and δ:
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• First, we perform the original data processing, i.e., compute the value
ỹ = f (̃x1, . . ., x̃n).

• Then, for i = 1, . . ., n, we compute yi
def= f (̃x1, . . ., x̃i−1, x̃i +�i , x̃i+1, . . ., x̃n).

• Finally, we compute � =
n∑

i=1
|yi − ỹ| +�0.

Limitations of the First Algorithm Similarly to the traditional case, this algorithm
requires n+ 1 calls to the algorithm f and is, thus, often too slow.

Toward a Second Algorithm The possibility to process uncertainty faster comes
from the fact that for random variables distributed according to the Cauchy distri-

bution, with probability density ρ(x) = 1

π ·� · 1

(x/�)2 + 1
, a linear combination

(2) of variables �xi which are Cauchy distributed with parameters �i is Cauchy
distributed with parameter � determined by the formula (7). We therefore arrive at
the following algorithm [8, 9]:

Second Algorithm: Monte Carlo Simulations We are given the values x̃1, . . ., x̃n,
the algorithm f , and the bounds �1, . . .,�n, and sm:

• First, we perform the original data processing, i.e., compute the value
ỹ = f (̃x1, . . ., x̃n).

• Then, we select the number of iterations N . For each k from 1 to N , we generate
n+ 1 random numbers rk1, . . ., rkn each of which is uniformly distributed on the
interval [0, 1].

• Then, we compute Cauchy distributed values cki = tan (π · (rki − 0.5)).
• We compute the maximum Kk = maxi |cki | so that we will be able to normalize

the simulated approximation errors and apply f to the values that are within the
box of possible values.

• For each k, we compute:

�yk = Kk ·
(
f

(
x̃1 +�1 · ck1

Kk

, . . ., x̃n +�n · ckn
Kk

)
− ỹ

)
.

• We compute �′ by applying the bisection method to solve the equation:

1

1+
(
�y(1)

�′
)2 + · · · +

1

1+
(
�y(N )

�′
)2 =

N

2
.

• Finally, we return � = �′ +�0.

Advantages and Limitations of the SecondAlgorithm The above method requires
N + 1 calls to the algorithm f . Similarly to the usual Monte Carlo method, the
number of iterations N depends on the accuracy with which we want to estimate
σ . For n & 200, this is much faster than the sensitivity analysis—this is the main
advantage of this method. The limitation is that, in contrast to the sensitivity analysis
method, we do not get the exact value �, but only an approximate value.
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Possibility of Parallelization Similarly to the statistical case, in both methods for
estimating σ , the most time consuming step is calling the algorithm f . So, if we have
at our disposal several processors which can work in parallel, then we can make all
these calls in parallel and thus, drastically decrease the computation time.

Comment A numerical example of using this Cauchy-based Monte Carlo method
is given in [9].

5 Need to Go Beyond Traditional and Interval Cases

What We Have Considered So Far Up to now, we considered two extreme cases:

• The traditional case, when all measurement errors are normally distributed with
zero mean.

• The interval case, when we only know the upper bounds on the measurement
errors.

Need to Go Beyond These Cases In practice, we often have cases in between:

• In some cases, we know the distributions, and these distributions are non-
Gaussian. This is actually the case for almost half (40 %) of the measuring
instruments; see, e.g., [13, 14].

• In some other cases, we do not know the exact probability distributions—but
we have some partial information about these distributions which go beyond the
upper bounds.

What We Do in This Chapter In this chapter, we describe how to estimate
uncertainty in the general case.

6 Case of Known Non-Gaussian Distributions

Formulation of the Problem Let us first consider the case when we know the
probability distributions of all the measurement errors �xi , and the probability dis-
tribution of the model error �x0. For example, these probability distributions are
represented in terms of the probability density functions ρi(�xi) and ρ0(�x0).

We know that the corresponding variables are independent. Our goal is to find the
probability distribution of the quantity �y—as described by the formula (2).

Two Types of Algorithms Similarly to the above two cases, we will consider two
types of algorithms for solving this problem: algorithms which produce the ex-
act answer, and faster Monte Carlo-type algorithms which produce approximate
answers.
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Algorithm for Exact Computation: General Idea

• First, we use numerical differentiation (4) to estimate the coefficients ci .
• For each i, we can then compute the probability density functions corresponding

to ti
def= ci ·�xi as di(ti) = 1

ci
· ρi

(
ti

ci

)
.

• Then, we can apply several times the known convolution formula ρc(x) =∫
ρa(t) · ρb(x − t) dt for the probability density of the sum c = a + b of in-

dependent random variables to find the probability density corresponding to the
sum �y =∑n

i=1 ti +�x0:
– First, we combine the probability distributions of t1 and t2 to compute the

probability density of the sum t1 + t2.
– Then, we combine the probability distributions of t1+ t2 and t3 to compute the

probability density of the sum t1 + t2 + t3.
– . . .

– Finally, we combine the probability distributions of
∑n

i=1 ti and �x0 to
compute the probability density of �y =∑n

i=1 ti +�x0.

How to Compute Convolutions Faster One possibility to compute the probability
density function of the sum is to perform a straightforward computation of each
convolution integral ρc(x) = ∫

ρa(t) · ρb(x − t) dt . If we represent each of the
probability density functions by its values at M different points ρa(vk) and ρb(vk) for
vk = k ·�v, then each computation takes the form ρc(vk) =∑

$ ρa(v$) ·ρb(vk−$) ·�v.
This computation requires M2 computational steps: M steps for each value k.

It is known, however, that we can speed up the computation of convolution if we
use Fourier transforms, i.e., if instead of the original probability density functions
ρa(x) and ρb(x), we use the corresponding characteristic functions:

χa(ω)
def= E[ exp (i · ω · a)] =

∫
exp (i · x · ω) · ρa(x) dx

and

χb(ω)
def= E[ exp (i · ω · b)] =

∫
exp (i · x · ω) · ρb(x) dx.

Namely, it is known that the characteristic function of the sum is equal to the product
of the characteristic functions. Thus, we can compute the convolution as follows;
see, e.g., [1]:

• First, we the use the fast Fourier transform algorithm to compute the Fourier
transforms χa(ω) and χb(ω) of the corresponding probability density functions.
This computation takes O(M · log (M)) computational steps.

• Then, we multiply the corresponding values of the Fourier transform element by
element to compute χc(ω) = χa(ω) · χb(ω). To compute M values of this new
characteristic function, we need M computational steps.

• Finally, we apply the inverse fast Fourier transform algorithm to the functionχc(ω)
and thus, find the desired probability density function ρc(x). This computation
also takes O(M · log (M)) computational steps.
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Thus, overall, we need O(M · log (M))+O(M)+O(M · log (M)) = O(M · log (M))
computational steps to compute the convolution, which, for large M , is much smaller
than M2 steps needed for the straightforward computation of the convolution.

Faster Computation of the Convolution Can Speed Up the Computation of the
Probability Density Function ρ(�y) For the sum �y of n + 1 random variables
t1, . . ., tn, and �x0, the characteristic function χ (ω) is equal to the product of the
characteristic functions χi(ω) and χ0(ω) of these random variables. Thus:

• First, we the use the fast Fourier transform algorithm to compute the Fourier
transforms χi(ω) and xm(ω) of the corresponding probability density functions
di(ti) and ρ0(�x0). This computation takes (n+1) ·O(M · log (M)) computational
steps.

• Then, we multiply the corresponding values of the Fourier transform element-by-
element to compute χ (ω) = χ1(ω) · . . . χn(ω) · χ0(ω). To compute M values of
this new characteristic function, we need n ·M computational steps.

• Finally, we apply the inverse fast Fourier transform algorithm to the functionχ (ω)
and thus, find the desired probability density function corresponding to �y. This
computation takes O(M · log (M)) computational steps.

Overall, we thus need O(n ·M · log (M)) computational steps.

Possible use of Central Limit Theorem: Discussion The larger the number n of
inputs x1, . . ., xn, the more computation time we need. On the other hand, when n

is large, this means that most of the contributions ti = ci · �xi to the overall error
�y are relatively small. In this case, as we have mentioned earlier, we can invoke
the central limit theorem and conclude that the probability distribution for the sum
of these small contributions is close to Gaussian.

A Gaussian distribution is uniquely determined by its mean and standard devi-
ation (or, equivalently, variance), and the mean and variance of the sum of several
independent random variables is equal to the sum of the corresponding means and
variances. Thus, for the small components, there is no need to use their full probabil-
ity density functions: it is sufficient to estimate their means and variances, then add
them, and then add the resulting Gaussian sum to the few non-small components.

Thus, we arrive at the following algorithm.

Use of the Central Limit Theorem: Resulting algorithm This algorithm requires
that we know the list of non-small components. Without losing generality, let us
assume that the components t1, . . ., tk , k � n (and �x0) are non-small, and that all
the other components tk+1, . . ., tn are small.

For each small component ti , we use the probability distribution di(ti) to compute
the mean μi =

∫
x · di(x) dx and the variance σ 2

i =
∫

(x − μi)2 · di(x) dx. Then,
we compute the overall mean and variance of the sum of all the small components
as μ = ∑n

i=k+1 μi and σ 2 = ∑n
i=k+1 σ

2
i , and we form a probability distribution

function:

ρsm = 1√
π · σ · exp

(
− (x − μ)2

2σ 2

)
.
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This is a probability distribution for the sum
∑n

i=k+1 ti of all small components.
Then, we combine the probability distributions for t1, . . . , tk ,

∑n
i=k+1 ti , and �x0.

Monte Carlo-Type Algorithm To decrease the number of calls to the algorithm f

and thus, to speed up the computations, we can simulate the measurement errors.
To simulate a measurement error ti distributed according to the probability density
di(ti), we can perform the following preliminary computations:

• Form the cumulative distribution function (cdf) Fi(x) = ∫ x di(t) dt ,
• Form its inverse function F−1

i (p) – by computing, for every value p ∈ [0, 1], the
value x = F−1(p) for which Fi(x) = p.

After that, on each iteration k, we generate a random number rki which is uniformly
distributed on the interval [0, 1], and compute cki = F−1(rki). Similarly, we simu-
late a number ck0 which is distributed according to the probability density function
ρ0(�x0).

We then compute simulated values:

�y(k) = (f (̃x1 − ck1, . . ., x̃n − ckn)+ ck0)− ỹ.

Based on the sample of these values, we can now determine the probability
distribution for �y.

Use of the Central Limit Theorem Due to the central limit theorem, for small
components, instead of simulating their exact distributions, we can simulate normally
distributed random variables with the same values of mean and standard deviation.

Parallelization Can Lead to a Further Speed Up In all these methods, the most
time-consuming step is calling the algorithm f . If we have at our disposal several
processors which can work in parallel, then we can make all these calls in parallel
and thus, drastically decrease the computation time.

It is also possible to parallelize further processing of these values. For example,
in the algorithm using Fourier transforms, we can compute each of n + 1 Fourier
transforms in parallel—and if we have more than n+ 1 processors, then we can also
perform each fast Fourier transform in parallel. In the case of unlimited number of
processors, this can be done in time O( log (M)).

Similarly, each of the products χ (ω) can be computed in parallel, and, if needed,
each computation of a product can also be parallelized:

• First, we multiply all the neighboring pairs χ2i−1(ω) · χ2i(ω).
• Then, we multiply product of neighboring pairs into products of neighboring four

tuples,
• etc.

In this manner, in the ideal case of unlimited number of processors, we compute
all the products in time O( log (M))—and thus, finish all the computations in time
O( log (M)).
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7 Case of Partial Information about Probabilities: How to
Represent this Partial Information?

Need to Select a Representation In many real-life situations, we have only partial
information about the probability distribution of measurement errors. How can we
represent this partial information?

In principle, we can represent a probability distribution in many different forms:

• By its probability density function
• By its cdf
• By its moments, etc.

Which representation should we use?

To Select a Representation, We Need to Take into Account the Ultimate Goal of
Decision Making As we have mentioned, one of the main reasons why we need to
take into account uncertainty in data processing is that this uncertainty affects our
decisions. From the viewpoint of decision making, what is the best way to represent
partial information about the probabilities?

It is known that a consistent decision making can be described as optimizing an
expected value of a special function u(x) known as utility; see, e.g., [4, 10, 12, 16].
The utility function u(x) describes the user preferences. Thus, it makes sense to
select characteristics of the probability distribution which can help us compute this
expected utility

∫
ρ(x) · u(x) dx.

In particular, for measurement errors�xi = x̃i−xi , the loss of utility is caused by
the fact that while the only information that we can use about xi is the measurement
result x̃i , the actual value xi is, in general, different from x̃i . For example, if we want
to dress appropriately for the weather, we must know the exact temperature; if we
know it approximately, then there is a strong chance that we will dress either too warm
or too cold. In general, the expected utility has the form

∫
ρi(�xi) · u(�xi) d�xi .

Ideally, the perfect situation is when �xi = 0 and the actual value xi is exactly
equal to the measurement result x̃i . In this case, we prepare for exactly the proper
conditions, so the utility attains its maximum value.

It is, however, possible that we know that the measuring instrument has a bias, and
we know the approximate value of this bias b. In this case, when the measurement
result is x̃i , we prepare for the de-biased value xi = x̃i − b. So, even if �xi = 0, the
actual condition xi = x̃i is somewhat different from the value xi = x̃i − b for which
we are prepared.

Case of Smooth Utility Functions: Analysis of the Problem Let us first consider
the case when the utility function smoothly changes with �xi . We consider the case
when measurement errors are relatively small. This means that the values �xi are
close to 0, so we can expand the utility function u(�xi) in Taylor series and keep
only the first few terms in this expansion.

In Sect. 2, we made a similar statement about the function f , and for this function,
we decided to keep only linear terms, terms determined by its first derivatives ci taken
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at the point x̃i (i.e., at the point xi = x̃i −�xi corresponding to �xi = 0). For the
utility function, this is not always possible: As we have mentioned, for the unbiased
measuring instrument, the utility function attains its maximum when �xi = 0 and
thus, its first derivative is equal to 0. So, for the utility function, we also need to take
into account second-order terms: u(�xi) = u0 + u1 · �xi + u2 · (�xi)2 + . . . , for
some values u0 and u2.

Since the values�xi are assumed to be small, we can thus ignore cubic and higher-
order terms in this expansion, and conclude that u(�xi) = u0+u1 ·�xi+u2 · (�xi)2.

For this utility function, the expected utility has the form:
∫

ρi(�xi)·u(�xi) d�xi = u0+u1·
∫

�xi ·ρi(�xi) d�xi+u2·
∫

(�xi)
2·ρi(�xi) d�xi ,

i.e., the form u0+u1 ·μi+u2 ·Mi , whereμi is the expected value of the measurement
error (bias) and Mi is the second moment of the measurement error. So, in the case
of a smooth utility function, to describe the probability distribution, it is reasonable
to use its first two moments.

Our goal is not just to represent these measurement errors �xi , we also want to
use this information to characterize the linear combination (2) of these measurement
errors. From this viewpoint, it is more convenient, instead of the second moments
Mi , to use variances σ 2

i = Mi − μ2
i , since the variance is the easiest to process:

The variance of the sum of two independent random variables is equal to the sum of
the corresponding variances. Therefore, a reasonable representation of a probability
distribution should consist of the mean μi and the standard deviation σi . Similarly,
a reasonable way to describe the probability distribution of the model error �x0 is
to describe its mean μ0 and standard deviation σ0.

In terms of metrology (measurement theory and practice), μi is a systematic error
component, and σi is known as a standard deviation of the random error components;
see, e.g., [15].

Partial information means that we do not know the exact values of μi and σi .
Instead, we only know the bounds on these values, i.e., we know the intervals [μ

i
,μi]

and [σ i , σ i] that contain the actual (unknown) values of mean and standard deviation.
Which characteristics of �y should we compute based on these values? A similar

analysis shows that we want to know the values of the corresponding mean μ and
standard deviation σ .

Different possible values μi and σi from the corresponding intervals lead, in
general, to different values of μ and σ ; so, what we really want to compute are the
ranges of possible values of μ and σ . Thus, we arrive at the following problem.

Case of a Smooth Utility Function: Precise Formulation of the Resulting
Computational Problem We know:

• The intervals [μ
i
,μi] and [σ i , σ i] containing the means and standard deviations

of n+ 1 independent random variables �xi
• The algorithm f

We want to find the ranges [μ,μ] and [σ , σ ] of possible values of the mean μ and
standard deviation σ of the quantity �y described by the formulas (1) and (2).
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How to Compute the Range of Possible Values of μ: Analysis of the Problem
The mean of a linear combination is equal to the linear combination of the means,
so we have

μ =
n∑

i=1

ci · μi + μ0.

We want to use the above interval-computation formulas from Sect. 4 to find the
range of values of this linear function. For that purpose, we need to represent the
corresponding intervals in the form [μ̃i − �i ,μ̃i + �i]. By equating μ̃i − �i with
μ
i

and μ̃i + �i with μi , we get a system of two equations with two unknowns μ̃i

and �i , from which we can conclude that:

• The value μ̃i is equal to the midpoint.
• The value �i is equal to the half width of the corresponding interval:

μ̃i =
μ
i
+ μi

2
and �i =

μi − μ
i

2
.

For the differences �μi
def= μ̃i − μi , we have a limitation |�μi | ≤ �i . Thus, the

general formulas for the range of a function f (from Sect. 4) lead to a conclusion
that the range of possible values of μ is equal to [μ̃ − �, μ̃ + �], where μ̃ =∑n

i=1 ci · μ̃i + μ̃0 and � =∑n
i=1 |ci | ·�i +�0.

Due to the formulas (1) and (2), the value μ̃ can be computed simply as ỹ −
f (̃x1 − μ̃1, . . ., x̃n − μ̃n) + μ̃0. The value � can be computed by using one of the
two interval computations algorithms. Thus, we arrive at the following algorithms.

How to Compute the Range of Possible Values of μ: Algorithm

• First, we perform the original data processing, and compute the value
ỹ = f (̃x1, . . ., x̃n).

• Then, for all i, we compute μ̃i =
μ
i
+ μi

2
and �i =

μi − μ
i

2
.

• After that, we compute the value μ̃ = ỹ − f (̃x1 − μ̃1, . . ., x̃n − μ̃n) + μ̃0, and
we use one of the two interval computation algorithms from Sect. 4 to compute
� =∑n

i=1 |ci | ·�i +�0.

• Finally, we compute the desired range [μ̃−�, μ̃+�].

How to Compute the Range of Possible Values of σ : Analysis of the Problem
The variance of the sum is equal to the sum of the variances, so we have σ 2 =∑n

i=1 c
2
i · σ 2

i + σ 2
0 . This expression is increasing in σi , so:

• Its largest possible value σ is attained when each of the values σi attains its largest
possible value σ i , so we have (σ )2 =∑n

i=1 c
2
i · (σ i)2 + (σ 0)2.

• Its smallest possible value σ is attained when each of the values σi attains its
smallest possible value σ i , so we have (σ )2 =∑n

i=1 c
2
i · (σ i)

2 + (σ 0)2.

Each of these formulas is of type (3), so we can use the two algorithms from Sect. 3
to perform these computations. In other words, we arrive at the following algorithm.
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How to Compute the Range of Possible Values of σ : Algorithm

• First, we use one of the algorithms from Sect. 3 to compute the value σ from the
formula (σ )2 =∑n

i=1 c
2
i · (σ i)2 + (σ 0)2.

• Then, we use the same algorithm to compute the value σ from the formula (σ )2 =∑n
i=1 c

2
i · (σ i)

2 + (σ 0)2.

Case of Discontinuous Utility Function In some cases, the utility function is not
smooth, but discontinuous. For example, at a manufacturing plant, we want to make
sure that the possible pollution does not exceed a certain legal level. In such situations,
there are stiff penalties for exceeding the level.

The expected value of this utility function is thus proportional to the probability
of exceeding (or not exceeding) a certain level. For a random variable η, the corre-

sponding probabilities F (x)
def= Prob(η ≤ x) form a cdf. For such utility functions,

an appropriate representation of the probability distribution is thus the cdf F (x).
Partial information means that we may not know all the values F (x) of the cdf;

instead, we only know bounds [F (x),F (x)]. Such bounds are known as a probability
box, or a p-box, for short; see, e.g., [2, 3]. So, we arrive at the following problem.

Case of a Discontinuous Utility Function: Precise Formulation of the Resulting
Computational Problem We know:

• The p-boxes [F i(x),F i(x)] describing the probability distribution of n + 1
independent random variables �xi , and

• The algorithm f .

We want to find the ranges [F (x),F (x)] of possible values of the cdf F (x) for the
quantity �y described by the formulas (1) and (2).

How to Compute the Corresponding p-Box:Analysis of the Problem The desired
quantity � is the sum of several terms ti = ci · �xi and t0 = �x0. Thus, it makes
sense to first find the p-boxes [Gi(t),Gi(t)] which describe the range of possible
values of the cdf Gi(x) characterizing each term ti .

For ci > 0, the inequality ci ·�xi ≤ t is equivalent to �xi ≤ t

ci
, so,

Gi(t) = Prob(ti ≤ t) = Prob

(
�xi ≤ t

ci

)
= Fi

(
t

ci

)
.

In this case:

• The smallest possible value of Gi(t) corresponding to the smallest possible values
F i of Fi .

• The largest possible value of Gi(t) corresponding to the largest possible values
F i of Fi .

So, we have Gi(t) = F i(
t
ci

) and Gi(t) = F i( t
ci

).
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For ci < 0, the inequality ci ·�xi ≤ t is equivalent to �xi ≥ t

ci
, so

Gi(t) = Prob(ti ≤ t) = 1− Prob

(
�xi ≥ t

ci

)
= 1− Fi

(
t

ci

)
.

In this case:

• The smallest possible value of Gi(t) corresponding to the largest possible values
F i of Fi .

• The largest possible value of Gi(t) corresponding to the smallest possible values
F i of Fi .

So, we have Gi(t) = 1− F i( t
ci

) and Gi(t) = 1− F i(
t
ci

).
In general, the lower bound F (x) corresponds to the smallest possible probability

of smaller values—and thus, to the largest possible probability of larger values.
Similarly, the upper bound F (x) corresponds to the largest possible probability of
smaller values. Thus:

• To find the lower bound F (x) corresponding to �y, we must use probability
distributions Gi(�xi) for which the values ti are the largest, i.e., the values Gi(t).

• Similarly, to find the upper bound F (x), we must use probability distributions
Gi(�xi) for which the values ti are the smallest, i.e., the values Gi(t).

So, we arrive at the following algorithm.

Algorithm for Exact Computation of p-Box [F (x),F (x)]: General Idea

• First, we use numerical differentiation (4) to estimate the coefficients ci .
• For each i, we can then compute the p-boxes [Gi(t),Gi(t)] corresponding to

ti
def= ci ·�xi as follows:

– When ci > 0, we take Gi(t) = F i(
t
ci

) and Gi(t) = F i( t
ci

).

– When ci < 0, we take Gi(t) = 1− F i( t
ci

) and Gi(t) = 1− F i(
t
ci

).

• Then, to find the p-box [F (x),F (x)] corresponding to the sum �y =∑n
i=1 ti +

�x0, we do the following:
– To compute F (x), we apply the convolution formula:

ρc(x) =
∫

ρa(t) · ρb(x − t) dt ,

for the probability density of the sum c = a + b to independent random
variables with cdf’s Gi(t)

– To compute F (x), we apply the same convolution formula to independent
random variables with cdf’s Gi(t).

To compute convolutions, we use the above algorithm based on fast Fourier transform.

Possible Use of the Central Limit Theorem Similar to the case when we know
the exact non-Gaussian distributions, we can speed up computations if we know the
list of non-small components. In this case, we know the sum tk+1+ · · · + tn of small
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components is normally distributed. Normal distribution can be described by the
mean μ and standard deviation σ ; ranges [μ,μ] and [σ , σ ] for μ and σ can be found
by using the same methods as in the case of smooth utility function.

In general, cdf for a normal distribution has the formF (t) = F0( t−μ
σ

), whereF0(t)
is the cdf of the “standard” normal distribution, with mean 0 and standard deviation
1. The function F0(t) is increasing. Thus, if we know the bounds on μ and on σ :

• The smallest value of F (t) is attained when μ and σ are the largest.
• The largest value of F (t) is attained when μ and σ are the smallest.

In other words, F sm(x) = F0( t−μ
σ

) and F sm(x) = F0(
t−μ
σ

).
The p-box for �y can then be obtained by combining p-boxes corresponding to

t1, . . ., tk , t0, and the above Gaussian p-box [F sm(x),F sm(x)] for
∑n

i=k+1 ti .
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A Unified Approach to Piecewise Linear Hopf
and Hopf-Pitchfork Bifurcations

Enrique Ponce, Javier Ros and Elísabet Vela

Abstract We propose for symmetric three-dimensional piecewise linear systems
with three zones a unified approach to analyze both Hopf and Hopf-pitchfork bi-
furcations. For the equilibrium at the origin, the crossing of a complex eigenvalue
pair through the imaginary axis of complex plane, with the possible simultaneous
crossing of a real eigenvalue, is considered. Some results related to the bifurcation
of limit cycles are provided, and an illustrative example is included.

Keywords Piecewise linear systems · Hopf-pitchfork bifurcation · Limit cycles

1 Introduction

The class of piecewise linear differential (PWL) systems is very important within
the realm of nonlinear dynamical systems. In fact, this kind of models is frequent
in applications from electronic engineering and nonlinear control systems, where
piecewise linear models cannot be considered as idealized ones, see [5] and refer-
ences therein; they are used in mathematical biology as well, see [14, 15], where
they constitute approximate models. On the other hand, since piecewise linear char-
acteristics can be considered as the uniform limit of smooth nonlinearities, the global
dynamics of smooth models has been sometimes approximated by piecewise linear
models and viceversa, see [9, 16], obtaining a good qualitative agreement between
the two modeling approaches. In practice, nonlinear characteristics use to have a
saturated part, which is difficult to be approximated by polynomial functions but
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suitable to be modeled by linear pieces, leading to what we could call a “global
linearization.”

The pioneering investigation of piecewise linear systems in a rigorous way was
due to Andronov et al. [1]. Their book Theory of Oscillations remains nowadays
an obligated reference, still being a source of ideas. More recently, the analysis
of piecewise linear systems received growing attention due to the interest on PWL
chaotic systems, see for instance [10] and references therein.

While bifurcation theory is rather well established for smooth vector fields, the
nonsmooth case and the PWL case in particular are nowadays an area of active re-
search, see [2, 5, 8, 13] among others. It is in this context, where we want to advance
in the theory; more precisely, we consider three-dimensional symmetric continuous
piecewise linear systems with three zones paying special attention to the bifurcation
of limit cycles. Limit cycles are isolated periodic orbits that, after equilibrium points,
correspond with the most important solutions of dynamical systems. Their determi-
nation is a difficult task, so that new results in this direction are of great relevance
in real applications, see [7]. In the case of piecewise smooth systems, there are very
few known results about, see again [5].

We study the analogous situation to Hopf bifurcation in smooth systems, allowing
that such a bifurcation be simultaneous with a pitchfork bifurcation, and proposing
a unified approach for both settings.

To be more specific, we consider the following family of PWL systems written in
the Luré form:

ẋ = F(x) = ARx + b sat(x), (1)

where x = (x, y, z)T ∈ R
3, the saturation function is given by

sat(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if u > 1,

u if |u| ≤ 1,

−1 if u < −1,

the dot represents derivative with respect to the time τ. Under generic assumptions,
see [4], there is no loss of generality in assuming that

AR =

⎛

⎜⎜
⎝

t −1 0

m 0 −1

d 0 0

⎞

⎟⎟
⎠ and b =

⎛

⎜⎜
⎝

T − t

M −m

D − d

⎞

⎟⎟
⎠ , (2)

where the coefficients t, m, d and T, M , D are the linear invariants (trace, sum of
principal minors and determinant) of the matrices AR and AC , respectively. Note
that in the region with |x| � 1, it becomes the homogeneous system:

ẋ(τ) = ACx(τ) =

⎛

⎜⎜
⎝

T −1 0

M 0 −1

D 0 0

⎞

⎟⎟
⎠ x(τ). (3)
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We observe that AC = AR + beT1 , where e1 = (1, 0, 0)T , and that the considered
family of systems is in the generalized Liénard form. Thus, under generic conditions
for every system of the form (1) after some change of variables, we can get the
matrices in the form given in (2) and (3).

2 Statements of Main Results

In this work, we consider a more general structure of eigenvalues than the one
appeared in [6] and [12], which includes both the piecewise linear analogue of
Hopf bifurcation and the one of Hopf-pitchfork bifurcation, also called Hopf-zero
bifurcation. Let us take ε as the main bifurcation parameter and assume the following
expressions for the eigenvalues of the linear part at the origin AC ,

λ(ε), σ (ε)± iω(ε),

where,

λ(ε) = λ0 + λ1ε +O(ε2),

σ (ε) = σ1ε +O(ε2),

ω(ε) = ω0 + ω1ε +O(ε2),

with ω0 > 0. Here we will assume that both σ1 and λ1 do not vanish; these vanishing
cases, much more involved, are left for future work. Clearly, when ε passes from
negative values to positive ones, a pair of complex eigenvalues crosses the imaginary
axis, which is the usual requirement for a Hopf bifurcation.

With this choice of the eigenvalues, the trace, principal minor of order two and
determinant must have the following form:

T (ε) = λ(ε)+ 2σ (ε),

M(ε) = σ 2(ε)+ ω2(ε)+ 2λ(ε)σ (ε), (4)

D(ε) = λ(ε)(σ 2(ε)+ ω2(ε)),

where

T0 = T (0) = λ0,

M0 = M(0) = ω2
0,

D0 = D(0) = λ0ω
2
0,

so that D0 −M0T0 = 0.
When λ0 �= 0, by moving the parameter ε through zero, we reproduce the

piecewise linear Hopf or focus-center-limit cycle bifurcation analyzed in [6], by
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Fig. 1 Structure of periodic
orbits in the central zone for
λ0 �= 0 and ε = 0; the
periodic orbits determine a
center configuration located
at the focal plane
λ2

0x − λ0y + z = 0

considering M and D constant; thus, we require here less restricted assumptions.
Furthermore, when λ0 = 0, as it is assumed λ1 �= 0, by moving ε we have the
simultaneous crossing of a zero eigenvalue and a complex pair, a situation analogous
to the Hopf-zero bifurcation in smooth systems. Thus, our analysis unifies the study
done in [12], with the one in [6] allowing also to consider new degenerate cases, not
yet analyzed.

In particular, the current formulation allows to pave the way for analysing the
situations λ0 = λ1 = 0, or the case ω0 = 0, where we should get a more degenerate
case for the focus-center-limit cycle bifurcation or a triple-zero case, respectively;
the analysis of such degenerate cases is lacking and far from being solved.

To start with, we emphasize in the next result an invariant property of systems
(1)–(2), whose proof is direct and will be omitted.

Proposition 1 Systems (1)–(2) are invariant under the following transformation:

(x, y, z, τ , t ,m, d , ε) −→ (x,−y, z,−τ ,−t ,m,−d ,−ε).

This symmetry property is useful for simplifying the analysis of the family under
consideration.

First, we consider the bifurcation for ε = 0 under the hypothesis λ0 �= 0, ω0 > 0,
and σ1 �= 0. Under these conditions, it is very easy to show that in the focal plane
λ2

0x − λ0y + z = 0 there exists a center configuration when ε = 0, see Fig. 1. From
the periodic orbit of this center that is tangent to the planes x = ±1, we can assure
the bifurcation of one limit cycle as follows.

Theorem 1 Let us consider systems (1)–(2) under condition (4) where it is assumed
ω0 > 0, λ0 �= 0, σ1 �= 0. Thus, we have MT − D = 0 for ε = 0 with M0 > 0.
Assuming

δ = d − tω2
0 + λ0(ω2

0 −m) �= 0,
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Fig. 2 Structure of periodic
orbits in the central zone for
λ0 = 0 and ε = 0. The two
solid cones are completely
foliated by periodic orbits
surrounding the segment of
equilibrium points
{(x, 0, xω2

0)T : |x| � 1}

for ε = 0, the system undergoes a focus-center-limit cycle bifurcation, that is, from
the linear center configuration in the central zone, which exists for ε = 0, one limit
cycle appears for δσ1ε > 0 and |ε| sufficiently small.

The period P and the amplitude A (measured as the maximum of |x|) of the
periodic orbit are analytic functions at 0, in the variable ε1/3, namely

P =2π

ω0
+ 2π

ω3
0δ

[
λ0σ1(tω2

0 − d)+ ω2
0σ1(ω2

0 −m)− ω0ω1δ
]
ε +O(ε4/3),

A =1+ 1

2

(
3π

2

σ1(λ2
0 + ω2

0)

δ

)2/3

ε2/3 +O(ε4/3).

In particular, if λ0 < 0 and δ > 0, then the limit cycle bifurcates for σ1ε > 0 and
is orbitally asymptotically stable.

For sake of brevity, the proof of Theorem 1, being rather similar to the one given
in [6], will be omitted.

The case λ0 = 0 with λ1 �= 0 would lead to a richer structure of periodic orbits
when ε = 0, see Fig. 2, and then the following assertions about possible equilibrium
points of the family are relevant.

Proposition 2 For systems (1) and (2) under condition (4) with ω0 > 0, λ0 = 0,
and λ1 �= 0, the following statements hold:

(a) If dλ1ε > 0, then the unique equilibrium point is the origin.
(b) If dλ1ε < 0, then the equilibria are the origin and the two points

x+ε =
1

d
(d −D(ε), dT (ε)− tD(ε), dM(ε)−mD(ε))T , x−ε = −x+ε .
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(c) If ε = 0, then all the points of the segment

{(x, y, z)T ∈ R
3 : (x, y, z)T = μ(1, 0,ω2

0)T, |μ| � 1}
are equilibria for the system. If furthermore d �= 0, the above segment captures
all the equilibrium points.

For a proof of Proposition 2, see the similar result in [12]. From the above state-
ment (c), we see that at ε = 0 systems (1)–(2) have a degenerate pitchfork bifurcation.
Note that for dλ1ε > 0, the points x±ε are vanishing points for the vector field
corresponding to |x| > 1 but they are out of their corresponding zones. They do
not constitute real equilibria, although they still organize the dynamics of external
regions. This type of equilibrium is usually called a virtual equilibrium point.

Our first result when λ0 = 0 concerns the possible bifurcation of symmetrical
periodic orbits using the three zones. We note that ifλ0 = 0, we now have δ = d−tω2

0,
which characterizes the criticality of the bifurcation, in a similar way to what happens
in the cases considered in [3] and [6].

Theorem 2 Let us consider systems (1)–(2) under condition (4) where it is assumed
λ0 = 0, λ1 �= 0, ω0 > 0, and δ = d − tω2

0 �= 0. For ε = 0, the systems (1)–(2)
undergo a trizonal limit cycle bifurcation, that is, from the configuration of periodic
orbits that exists in the central zone for ε = 0, one limit cycle appears for δσ1ε > 0
and |ε| sufficiently small. It is symmetric with respect to the origin and bifurcates
from the ellipse {(x, y, z)T ∈ R

3 : ω2
0x

2 + y2 = ω2
0, z = 0}. This limit cycle has

period:

P = 2π

ω0
+ 2π

ω0σ1(ω2
0 −m)− ω1δ

ω2
0δ

ε +O(ε4/3),

and its amplitude in x measured as max{x} −min{x} is

A = 1+ 1

2

(
3π

2

ω2
0σ1

δ

)2/3

ε2/3 +O(ε4/3).

Furthermore, the bifurcating limit cycle is stable if and only if t < 0, d < 0, and
δ > 0.

By using Proposition 1, we could add a new assertion saying that the bifurcating
limit cycle is completely unstable (the two characteristic exponents have positive
real part) if and only if t > 0, d > 0, and δ < 0.

Our last result, which also assumes λ0 = 0, gives account of the bifurcation of a
symmetrical pair of limit cycles that only use two linearity zones. This result requires
extra assumptions, but when they are fulfilled allow us to assure the simultaneous
bifurcation of three limit cycles.

Theorem 3 Let us consider system 1–2 under conditions (4) where it is assumed
δ = d − tω2

0 �= 0, λ0 = 0, λ1 �= 0, and ω0 > 0 fixed. Thus, if we have σ1 �= 0,
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dσ1 − λ1δ �= 0, and

0 < ẑ = dσ1ω
2
0

dσ1 − λ1δ
< ω2

0

and fixed, a bifurcation takes place for the critical value ε = 0. Thereby, a symmet-
rical pair of limit cycles appears when δσ1ε > 0 and |ε| is sufficiently small. They
are stable if and only if t < 0 and λ1σ1 < 0, or t = 0 and dσ1(λ1 + 2σ1) < 0. Their
common period is

P = 2π

ω0
+ 2π

[
ω0σ1(ω2

0 −m)− ω1δ
]

ω2
0δ

ε +O(ε5/3),

and their common amplitude in x measured as max{x} −min{x} is

A = 2λ1δ

λ1δ − dσ1
− 2(3π )2/3

5

(
σ1

ω0δ

)2/3
dλ1σ1ω

2
0[2t(ω2

0 −m)− 3δ]

(λ1δ − dσ1)2
ε2/3 +O(ε).

For a proof of both Theorems 2 and 3, one can follow the procedure given in
[12]. The results included here are similar to the ones in such a quoted paper, but
we emphasize that here the number of auxiliary fixed parameters describing the
eigenvalue configuration has been increased from two (ρ and ω) to five (λ0, λ1, σ1,
ω0, andω1), allowing a unified approach that encompasses both referred bifurcations,
including cases not analyzed in [6] nor in [12] and paving the way for future analysis
of more degenerate situations.

3 An Illustrative Example: An Electronic Oscillator

In this section, as an illustrative example of the usefulness of above results, we
consider an extended Bonhoeffer–van der Pol (BVP) electronic oscillator, which
consists of two capacitors, an inductor, a linear resistor, and a nonlinear conductance,
as shown in Fig. 3.

To obtain more information about this circuit, see [11], where a smooth nonlin-
earity is assumed for the conductance and a rich variety of dynamical behaviors is
found. The circuit equations can be written as:

C
dv1

dt
= −i − g(v1), C

dv2

dt
= i − v2

r
, L

di

dt
= v1 − v2,

where v1 and v2 are the voltages across the capacitors, the symbol i stands for the
current through the inductanceL, and the v−i characteristics of the nonlinear resistor
is written as g(v) = −av − b sat (cv), where a, b, c > 0. Note that, here we adopt a
PWL version of the nonlinearity considered in [11].
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Fig. 3 The extended
Bonhoeffer–van der Pol
(BVP) oscillator proposed in
[11]

i
L

g

vu

C C

r

After some standard manipulations, the normalized equations of the extended
BVP oscillator become

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = −z + αx + sat (βx),

ẏ = z − γy,

ż = x − y,

where the dot represents derivative with respect to the new time τ, and

τ = 1√
LC

t , α = a

√
L

C
, β = bc

√
L

C
, γ = 1

r

√
L

C
,

x = v1

b

√
C

L
, y = v2

b

√
C

L
, z = i

b
.

Making now the change of variables X = βx, we obtain the system in its Luré
form,

ẋ =

⎛

⎜⎜
⎝

α 0 −β
0 −γ 1

1/β −1 0

⎞

⎟⎟
⎠ x +

⎛

⎜⎜
⎝

β

0

0

⎞

⎟⎟
⎠ sat (eT1 x), (5)

and we will renameX as x in the sequel, for convenience. Then, it can be written in the
form 1–2, and so we will try to apply Theorems 1, 2, and 3 under the corresponding
assumptions. Effectively, with a linear change of variables given by the matrix:

P = 1

β

⎛

⎜⎜
⎝

β 0 0

γ 2 − 1 γ 1

γ 1 0

⎞

⎟⎟
⎠ ,
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we can write system (5) in its Liénard form as

ẋ =

⎛

⎜⎜
⎝

α − γ −1 0

2− αγ 0 −1

α − γ 0 0

⎞

⎟⎟
⎠ x +

⎛

⎜⎜
⎝

β

−βγ
β

⎞

⎟⎟
⎠ sat(x), (6)

where now the trace, the sum of second-order principal minors, and the determinant
in the different zones are evident, namely

T = α + β − γ , t = α − γ ,

M = 2− γ (α + β), m = 2− αγ ,

D = α + β − γ , d = α − γ.

(7)

From (7), we observe that T andD are identically equal, what implies that an extra
condition for eigenvalues must be fulfilled. Thus, taking into account the structure
of T and D given in (4), we must impose for all values of ε,

T (ε)−D(ε) = λ0(1− ω2
0)+ (λ1 − λ1ω

2
0 + 2σ1 − 2λ0ω1)ε +O(ε2) = 0.

We will take γ as the only bifurcation parameter, keepingα andβ fixed. In looking for
the bifurcations analyzed in Sect. 2 to take place at ε = 0, we need first λ0(1−ω2

0) =
0. If we assume λ0 �= 0, then we must conclude the two conditions

ω0 = 1 and σ1 = λ0ω1.

Consequently, M(0) = ω2
0 = 1, and we get for the bifurcation parameter γ (ε) the

condition γ (0) = γ0, with

0 < γ0 = 1

α + β
�= 1, so that λ0 = 1− γ 2

0

γ0
.

To apply Theorem 1, we compute for ε = 0,

m = 2− α

α + β
, and so δ = λ0(1−m) �= 0.

From (7), writing γ = γ0 + ε, we also obtain

λ1 = −γ 4
0

1+ γ 2
0

1+ γ 6
0

, σ1 = γ 4
0 − 1

2(1+ γ 6
0 )

, and ω1 = −γ0(1+ γ 2
0 )

2(1+ γ 6
0 )

.

Thus, the following result is a direct consequence of Theorem 1.

Proposition 3 Let us consider system (5) or equivalently system (6) with α > 0,
β > 0, and γ0 = 1/(α+ β) fixed. For γ = γ0, the system undergoes a focus-center-
limit cycle bifurcation, that is, from the linear center configuration in the central
zone, which exists for γ = γ0, one limit cycle appears for γ −γ0 > 0 and sufficiently
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small. In particular, if α + β < 1, then γ0 > 1 and the bifurcating limit cycle is
asymptotically stable.

On the other hand, if we assume 0 < ω0 �= 1, then to get the consistency between
(4) and (7), we need λ0 = 0, and therefore,

σ1 = λ1

2
(ω2

0 − 1),

getting for the bifurcation parameter γ (ε) the condition γ (0) = γ0, with

0 < γ0 = α + β <
√

2,

with the additional requirement that α + β �= 1; otherwise, ω0 = 1 and σ1 = 0,
precluding the use of both Theorems 2 and 3. Note that ω2

0 = 2 − γ 2
0 and so when

γ0 < 1 we have ω0 > 1 and vice versa.
Using 7, we obtain for ε = 0 that t = d = −β and δ = β(ω2

0 − 1) �= 0. Writing
γ = γ0 + ε, we also obtain

λ1 = − 1

ω2
0

, σ1 = 1− ω2
0

2ω2
0

, and ω1 = − γ0

2ω0
.

We note that in Theorem 3,

ẑ = dσ1ω
2
0

dσ1 − λ1δ
= ω2

0

3
∈ (

0,ω2
0

)
.

Thus, from Theorems 2 and 3, we get the following result.

Proposition 4 Considering system (5) or equivalently system (6) withα > 0, β > 0
and 1 �= γ0 = α + β <

√
2 and fixed, the following statements hold:

(a) For γ > γ0, the origin is the only equilibrium of the system. Furthermore, if
γ γ0 < 1, then the origin is asymptotically stable.

(b) For γ = γ0, the system undergoes a PWL analogue of the Hopf-zero bifurcation;
from the periodic set existing at such critical situation, for γ − γ0 < 0 and
sufficiently small in absolute value, the bifurcation leads to the simultaneous
appearance of three limit cycles (one trizonal and two bizonal ones) along with
two additional equilibrium points.
Furthermore, if γ0 < 1 (1 < γ0 <

√
2), then the bifurcating trizonal limit cycle is

stable (unstable) while the bifurcating bizonal limit cycles are unstable (stable).
The bifurcating equilibrium points are stable whenever γ0 < 1 and, in the case
1 < γ0 <

√
2, when γ0 < 1/α.
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Fig. 4 Partial bifurcation set
of system (5), showing the
two main bifurcation surfaces
corresponding to the
piecewise linear Hopf and
Hopf-pitchfork bifurcations,
namely the surface
γ = 1/(α + β) and the plane
γ = α + β. It is also shown
the red straight-line
γ = α + β = √2, where
T = M = D = 0
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In Fig. 4, we show the two main bifurcation surfaces corresponding to the piece-
wise linear Hopf and Hopf-pitchfork bifurcations, namely the surface γ = 1/(α+β)
and the plane γ = α + β. It is also shown as the straight-line γ = α + β = √2,
where T = M = D = 0 and so, a triple-zero bifurcation is involved. The analysis
of such a bifurcation is left for future work.
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Optimal Decision Making for Breast Cancer
Treatment in the Presence of Cancer Regression
and Type II Error in Mammography Results

Sergio A. Vargas, Shengfan Zhang and Raha Akhavan-Tabatabaei

Abstract Breast cancer is the leading cause of cancer death among women world-
wide. While breast cancer-screening policies have been widely studied in order to
achieve early detection, not much research has been done to optimize treatment
decisions once a screening policy is established. In this chapter, we propose a dy-
namic decision model to determine optimal breast cancer treatment decisions that
consider both the impact of overtreatment and the potential delay in cancer detection;
these two failures are caused by spontaneous cancer regression and type II error in
mammography results, respectively. We measure the impact of medical treatment
by means of quality-adjusted life years (QALYs) and our goal is to maximize this
metric for a given patient.

Keywords Breast cancer ·Screening policies ·Dynamic treatment decisions ·Cancer
regression ·Mammography ·Markov decision processes · QALY

1 Introduction

Breast cancer is often defined as an uncontrolled growth of breast cells caused by a
genetic abnormality. In 2011, the American Cancer Society (ACS) estimated more
than 450,000 deaths caused by breast cancer and more than 1,000,000 new cases
worldwide [16]. The same year, according to the ACS, the lifetime risk of developing
invasive female breast cancer was about 12 %.
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Mammography is currently considered to be the most effective technology for
breast cancer screening [23, 33]. A mammogram is an X-ray image to examine fe-
male breast. The benefits of mammography include early detection of breast cancer
as it can identify problems before any symptoms (e.g., lumps) appear. There have
been randomized clinical trials indicating that mammography may reduce breast
cancer mortality by at least 24 % [13, 20]. However, there are two types of risk
that need to be considered when performing mammography. Similar to other binary
tests, mammography has two statistical measures of performance, sensitivity, and
specificity. Sensitivity is the probability of detecting breast cancer when it is truly
present while specificity is the probability of correctly identifying a patient as normal
when no cancer exists [15]. The possible failures generated by specificity and sen-
sitivity have raised the need to take into account this fact when developing optimal
mammography screening policies for various populations [2, 24, 25].

In most screening and treatment decision models, breast cancer is typically mod-
eled as a progressive disease, under the assumption that cancer does not disappear in
the absence of treatment. For example, the Markov chain model proposed by Chen
et al. [10] is often presented to describe the natural history of breast cancer, only
allowing an early state of cancer to transit to a more advanced cancer state, or to an
absorbing death state. However, there has been medical evidence suggesting that at
an early stage, breast cancer may actually spontaneously regress without treatment
[22]. While there has been a lot of debate in the medical community regarding cancer
regression, there has been limited research about the consequences of considering
this medical fact when determining treatment policies.

Schaefer et al. [32] discussed the fact that medical treatment decisions are often
sequential and uncertain. Therefore, Markov decision processes (MDPs) are an ade-
quate operations research tool to tackle this problem. They pointed out the advantages
of MDPs when modeling and solving problems where stochasticity is involved in
dynamic decisions such as the ones taken when treating a patient. Among those ad-
vantages, the authors mentioned the flexibility that allows a simple representation of
future states and possible transitions that may occur until a patient dies. The authors
also note that rather than evaluating a decision tree based on a one-time decision (as
is often the case in traditional decision trees and Markov models), MDPs allow the
“do-nothing” option in each time period and consider the “do-something” option at
any later decision epoch. Finally, one of the most important advantages of an MDP
approach for medical treatment is that the goal of this technique is to provide an
optimal policy, which is a decision strategy to optimize a particular criterion such as
maximizing a total discounted reward and it guarantees that no better policy exists.

Zhang and Ivy [41] proposed a finite-horizon MDP model to establish an optimal
treatment policy in the presence of breast cancer regression. Their model assumes
perfect information in screening results and fixes ACS recommendations reported in
[35] as the screening policy upon which treatment decisions are made. The objective
of their model is to minimize the loss of quality-adjusted life years (QALYs) due to
overtreatment. Finally, their results showed a significant participation of no-treatment
decisions in patients diagnosed with noninvasive breast cancer.
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We propose an extension of the model presented by Zhang and Ivy [41] that is
based on the relaxation of the assumption regarding perfect information in mam-
mography results; more specifically, we incorporate the impact of type II error in the
outcomes of the test. We define type II error as a false negative result caused by the
sensitivity of mammography and incorporate this risk and its subsequent failure in
our model. The rest of the chapter is organized as follows. In Sect. 2, we review med-
ical and operations research literature related to our problem. In Sect. 3, we describe
the model for optimal treatment policies. In Sect. 4, we present our computational
experiments and results. Finally, Sect. 5 concludes the chapter and outlines the future
work.

2 Literature Review

This section presents a summary of literature references considered relevant for
purposes of this study. First, we review research regarding cancer regression and
imperfection in mammography results. Then, analytical studies concerning screening
and treatment policies are presented.

2.1 Cancer Regression and Imperfection of Mammography

There is a heated discussion in the medical community regarding overdiagnosis of
cancer. Overdiagnosis may happen when the cancer never progresses, or in fact,
regresses. The literature review on the medical exploration of breast cancer spon-
taneous regression has been summarized by Zhang and Ivy [40]. Multiple sources
[7, 21, 22, 27, 39] have indicated that although the phenomenon is rare, there is
ample evidence to confirm that spontaneous regression of breast cancer does exist,
and it may lead to overdiagnosis if ignored. Since the current protocol recommends
women to seek treatment after diagnosis [36], it is difficult to observe the natural
history of breast cancer progression and regression. And thus, it is not easy to calcu-
late the probability of breast cancer regression directly. In this chapter, we explore
the impact of cancer regression on treatment decisions by varying the probability of
regression. We also present the results when regression is not incorporated. This can
facilitate treatment decisions based on the belief of regression.

The human intervention during mammographic interpretation (detection and clas-
sification) makes mammography results subject to possible failure when interpreting
mammographic images. Several studies have shown differences among radiologists
when interpreting mammograms [4, 18, 34]. Kerlikowske et al. [19] observed in-
terpretation differences among two radiologists with wide experience in reading
mammograms, finding the overall sensitivity ranging from 72.8 to 78.2 % in a study
that considered 71,713 screening examination. Elmore and Carney [12] claim that
there exists a clinical and significant variation among radiologists when interpreting
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mammograms. They suggested that such variation may be attributed to personal,
clinical, financial, and legal characteristics of the radiologists, and/or the charac-
teristics of the mammography facility. Beam et al. [3] tested 110 radiologists who
interpreted screening mammograms from the same 148 women. They found that
sensitivity in the sample of radiologists ranged from 59 to 100 %, and specificity
ranged from 35 to 98 %. In addition, they discussed how lack of skill maintenance or
improvement mechanisms may affect the interpretation of mammographic images.

2.2 Screening and Treatment Policies

The optima frequency to perform screening tests for breast cancer early detection is
a well-studied problem in the operations research literature. Ayer et al. [2] proposed
a partially observable MDP model to determine mammography screening decisions
based on personalized risk factors. Their model uses QALYs as the measure to be
maximized in the decision process and considers the effect of breastself-exam. They
concluded that age should not be the only risk factor to be taken into account for
screening recommendations and that personalized screening strategies may be more
beneficial in decreasing death rates.

Maillart et al. [24] used sample-path enumeration to assess a broad range of differ-
ent screening recommendations. They considered the imperfect nature of screening
in their models and their numerical experiments included mammography screening
policies with different starting ages, first screening interval, policy-switching age,
second screening interval, and end age; the measure used to compare the performance
of different policies is the lifetime breast cancer mortality risk. They developed effi-
cient frontiers for optimal policies considering a trade-off between lifetime mortality
risk and the expected number of mammograms.

Michaelson et al. [25] developed a simulation model to determine optimal screen-
ing intervals using biologically based data regarding tumor growth and spread. They
compared different screening frequencies and estimated the reduction in incidence
of distant metastases. As a conclusion of their study, they suggested that death rate
from breast cancer could be positively and significantly impacted by an increase in
the frequency of mammograms.

Chhatwal et al. [11] formulated a finite-horizon discrete-time MDP to determine
when a woman should be sent for biopsy based on her mammographic features and
demographic factors. They concluded that the decision to biopsy should take the age
of the patient into account with older women having a higher biopsy threshold than
younger women. Additionally, they concluded that false-positive interpretation of
mammography may lead to unnecessary invasive procedures causing complications
in older patients with comorbidities.

In the medical community, screening policies have been widely studied by means
of cost-effectiveness analysis [5, 26, 29, 38] in which various screening tests are
compared in order to establish their effectiveness and accuracy in reducing mortality
rates. On the other hand, although treatment decisions and techniques have had an
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Fig. 1 Four-state
discrete-time Markov chain
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important place in medical research [8, 17, 31], there are few studies in the operations
research literature regarding this topic. The inclusion of cancer regression as a fairly
new concept has led to studies such as [41] where treatment decisions are considered
dynamic and patients may benefit more from watchful waiting.

3 Methods

This section is devoted to describe our model for optimal breast cancer treatment.
Details of the model formulation and sources of input data are presented.

3.1 Model Formulation

In order to find the optimal treatment policy for breast cancer that considers the
medical facts discussed in Sects. 2.1 and 2.2, we formulate a discrete-time, finite-
horizon MDP model. The objective is to maximize the total expected QALYs of
a patient. QALY is the arithmetic product of life expectancy and a measure of the
quality of the remaining life- years. It is used to assess the extent of the benefits
gained from a variety of interventions in terms of health-related quality of life and
survival for the patient [28]. We model the natural history of breast cancer using
a discrete-time Markov chain with the following four states: cancer free, in situ
cancer, invasive cancer, and death. As seen in Fig. 1, we consider cancer progression
and steadiness for every cancer state. On the other hand, spontaneous breast cancer
regression is considered only from in situ cancer.

We propose a model from the patient’s perspective in the sense that treatment
or watchful waiting will directly affect a woman’s health. On the other hand, the
decision maker is assumed to be the doctor. In our model, at every decision epoch, a
woman undergoes a mammogram that is examined by a radiologist who determines
whether any abnormality is present or not. If the mammography result is negative
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Fig. 2 Decision process for breast cancer early diagnosis and treatment

and hence no abnormality is observed, no further tests are performed until the next
decision epoch. On the other hand, if the mammography result turns out to be positive,
a follow-up biopsy test is performed in order to confirm the existence of cancer. As
reported in the literature, breast biopsy sensitivity is very close to 100 % [14], and
therefore this test is assumed to be perfect.

We assume that whenever the observed state of a patient is cancer free, the decision
that will be made is to wait. In addition, if a patient is diagnosed with invasive cancer,
the decision maker will always decide to treat that patient. These assumptions have
been studied and established as optimal in medical guidelines regarding breast cancer
treatment [9]. However, when the observed state is in situ (noninvasive) cancer, unlike
the ACS recommendation, our model not only considers treatment but also evaluates
the possibility of waiting. This assumption differs from other existing models and is
based on the inclusion of cancer regression as an established medical fact. Figure 2
presents our model decision process for breast cancer detection.

It is worth mentioning that our model does not include type I error in mammogra-
phy results (false positive results). Therefore, a positive outcome in mammography
always implies the patient has either noninvasive or invasive cancer since perfect
biopsy tests are used to confirm the presence of the disease. On the contrary, type II
error is included in the model and hence a negative result in mammography does not
necessarily imply that the patient is healthy.

Given all the particularities above, we define an MDP model with the following
components:

• Set of decision epochs Υ = {40, 41, 42, ..., 100}. According to the ACS recom-
mendation, a woman should receive annual mammography screening from the
age of 40 [36]. We adopt this ACS recommendation as the screening schedule of
our model and define the upper boundary of life as 100 years in accordance with
the maximum life span reported in the US Life Table for 2012 [1].
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Fig. 3 Decision-making process for breast cancer treatment

• State space S = {1, 2, 3, 4}, where the cancer state of a patient at decision epoch
t is defined as st ∈ S ∀ t ∈ Υ . In particular, 1 represents a cancer-free patient, 2
represents a patient with in situ (noninvasive) cancer, 3 represents a patient with
invasive cancer, and 4 represents a death state.

• Postdiagnosis cancer distribution is denoted by Qt (S) ∀ t ∈ Υ . We define the
postdiagnosis cancer distribution as a discrete probability distribution once the
diagnosis procedure is finished. The element qt

s represents the probability that
the state of a patient is s at decision epoch t after the patient has undergone a
mammogram or a mammogram and a biopsy test and therefore, Qt (S) = {qt

s :
s ∈ S \ {4}}.

• Observed cancer state space Ω = {1, 2, 3}. After the diagnosis procedure is
finished the observed cancer state ot ∀ t ∈ Υ can be healthy (1), with in situ
cancer (2) or invasive cancer (3). Since we do not consider type I error, the
observed and the real cancer states are the same when malignant cells are present
in a patient. On the contrary, when the observed cancer state is healthy, we use
the postdiagnosis cancer distribution to describe the real cancer state of a patient.

• Actions spaceA = {W , T }, whereW and T represent wait and treat, respectively.
Our model assumes that the only feasible action is to wait when the cancer-free
state is observed; when invasive cancer is observed, the only feasible action is to
treat; and finally, the decision maker may suggest to wait or to treat for a patient
whose observed state is in situ cancer. Figure 3 presents the decision-making
process of our model.
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• Transition probability matrices P (at ) ∀ t ∈ Υ . We select a set of transition
probability matrices presented by Maillart et al. [24] that aim at quantitatively
describing the natural history of breast cancer. These matrices are divided into
5-year age groups and the element pij (at ) represents the probability that a woman
at age group at ∀ t ∈ Υ in state i transitions to state j within 1 year of no
treatment. We assume the matrices proposed by Maillart et al. [24] describe the
natural history of breast cancer with one-year transitions despite the fact they were
designed as 6-month transition probability matrices. This assumption is made due
to the lack of quantitative and detailed information regarding natural history of
breast cancer. An example of a transition probability matrix from Maillart et al.
[24] is presented below. Note that the following matrix has two different death
states which are combined to form the death state in our model.

P (at ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p11(at ) p12(at ) 0 0 p15(at )

0 p22(at ) p23(at ) 0 p25(at )

0 0 p33(at ) p34(at ) p35(at )

0 0 0 1 0

0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1)

where
1 → Cancer free
2 → In situ cancer
3 → Invasive cancer
4 → Death from breast cancer
5 → Death from other causes
It is worth mentioning that these matrices do not consider cancer regression. We
use an analytical methodology presented by Zhang and Ivy [40] in order to include
this medical fact. Zhang and Ivy [40] proposed the following modification to the
original matrix for including cancer regression:

P 	(at ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p11(at ) p12(at ) 0 0 p15(at )

p21(at ) p∗22(at ) p∗23(at ) 0 p25(at )

0 0 p33(at ) p34(at ) p35(at )

0 0 0 1 0

0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2a)

p21(at ) = u · p22(at )+ v · p23(at ) (2b)

p∗22(at ) = (1− u) · p22(at ) (2c)

p∗23(at ) = (1− v) · p23(at ) (2d)

0 ≤ u, v ≤ 1 (2e)
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where u and v are fractions of the self-loop and the progression transition prob-
abilities respectively; these proportions are used to extract information from the
existing probabilities and build the regression transition.

• Immediate rewards rt (s, a) ∀ st ∈ S, a ∈ A, t ∈ Υ . At every decision epoch, we
measure the impact of treatment in terms of QALYs as a function of the age, can-
cer state, and action. In this notation, rt (s, a) represents the total expected QALYs
accumulated at decision epoch t , when the cancer state of a patient is s and action
a is taken. We use the estimations done by Stout et al. [37] regarding QALYs at in
situ and invasive cancer states when the decision is wait. These estimations were
derived from EuroQol EQ-5D quality-of-life utility scores along with a series of
modifications to estimate the QALYs accrued for a woman with in situ or invasive
cancer. The EQ-5D is a standardized measure for general health developed by the
EuroQol Group [6].
On the other hand, when the decision is treat, our model uses a life expectancy
estimation after the necessary treatment is performed. Zhang and Ivy [41] pro-
posed a methodology to estimate age-specific 5-year QALYs for breast cancer
treatment and calculate the expected total QALYs taking into account different
survival probabilities depending on cancer state.

• Discount factor λ. We select a discount factor of 0.97 that has been previously
used in dynamic decisions models regarding medical treatment [11].

3.2 Type II Error in Mammography Results

Our model considers type II error of mammography results which means no abnor-
mality may be identified on the mammogram image when in fact such an abnormality
exists. This type of error generates uncertainty about the real cancer state of a patient
once the mammography result is negative. We model this uncertainty by means of
a discrete probability distribution that describes the cancer state after diagnosis. As
seen in Fig. 3, when the diagnosis includes a biopsy intervention the uncertainty
disappears, thanks to the high accuracy of this test. However, when a negative result
is given and no further tests are performed, there exists a positive probability that a
woman has in situ or invasive cancer.

As reported in the literature, mammography sensitivity depends on both the age
of the patient and the cancer state [15]. We define senst

s as the sensitivity at decision
epoch t when the cancer state of a woman is s. Therefore, Qt (S) is defined in terms
of the sensitivity as follows:

Qt (S) = [
qt

1 qt
2 qt

3

]
(3a)

qt
3 = 1− senst3 (3b)

qt
2 = 1− senst2 (3c)

qt
1 = 1− qt

2 − qt
3 (3d)
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The mammography sensitivity function is defined in [24]. Here, qt
1 is implicitly a

theoretical estimation of mammography specificity but as previously mentioned we
do not consider the error caused by this statistical measure of performance. Our
model also considers the potential misdiagnosis and consequent delay in cancer
detection caused by sensitivity. We propose a series of modifications to the transition
probability matrices to consider type II error in mammography. These modifications
are based on the idea that transitions occur between observed cancer states ot and
not between real cancer states st as proposed by [24, 40]. Below, we present the
modified transition probability matrix of P (at ), with the inclusion of breast cancer
regression and type II error in mammography results.

P ′(at ) =

⎛

⎜⎜⎜⎜⎜
⎝

p11(at ) p12(at ) 0 p14(at )

p′21(at ) p′22(at ) p′23(at ) p24(at )

p′31(at ) 0 p′33(at ) p34(at )

0 0 0 1

⎞

⎟⎟⎟⎟⎟
⎠

(4a)

p′21(at ) = p21(at )︸ ︷︷ ︸
Natural transition

+

Type II error

p∗22(at ) ·
Type II error

︷ ︸︸ ︷
(1− senst2)+p∗23(at ) ·

︷ ︸︸ ︷
(1− senst3)

︸ ︷︷ ︸
Transitions due to imperfect mammography

(4b)

p′22(at ) = p∗22(at ) · senst2 (4c)

p′23(at ) = p∗23(at ) · senst3 (4d)

p′31(at ) = p33(at ) · (1− senst3) (4e)

p′33(at ) = p33(at ) · senst3 (4f)

3.3 Optimality Equations

We denote by Vt (o) the maximum total expected QALYs the patient can attain when
the current observed cancer state is o at decision epoch t . Then,

Vt (o) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

u∈S
qt

u

(
rt (u,W )+ λ

∑

s′∈Ω
pus′ (at )Vt+1(s ′)

)
ot = 1

max

⎧
⎨

⎩

rt (o,W )+ λ
∑

s′∈Ω
pos′ (at )Vt+1(s ′)

rt (o, T )
ot = 2

rt (o, T ) ot = 3

(5)

For the case when the observation is cancer free, we use the postdiagnosis cancer
distribution to calculate the immediate and discounted future QALYs that a patient
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Table 1 Sources of model
inputs Parameter Notation Data source

Cancer state
transition
probabilities

pij (at ) Maillart et al. [24]

Sensitivity and
specificity of
mammography

sensts Maillart et al. [24]

Immediate rewards rt (s,W ) Stout et al. [37]

Immediate rewards rt (s, T ) Zhang and Ivy [41]

may obtain. On the other hand, if in situ cancer is observed, the model will decide
either to wait or treat depending on the difference between the immediate, plus the
discounted future QALYs, and the estimation of expected QALYs for the remaining
life. Finally, when invasive cancer is observed, Vt (o) always equals the estimation
of expected QALYs for the remaining life. The terminal values at year 100 for the
decision-making process are defined below:

V100(o) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

u∈S
q100

u (r100(u,W )) ot = 1

max

{
r100(o,W )

r100(o, T )
ot = 2

r100(o, T ) ot = 3

(6)

3.4 Implementation and Sources of Model Inputs

Solving the optimality equations introduced in Sect. 3.3 can generate optimal deci-
sions at each decision epoch given an observed state. We implement these iterative
equations using MATLAB and solve the model to optimality using the backward in-
duction algorithm [30]. To do so, we use a series of input data obtained from different
sources which are listed in Table 1.

Maillart et al. [24] provided relevant input data regarding transition probability
matrices and functions of sensitivity and specificity described in Sects. 3.1 and 3.2,
respectively. The immediate rewards are directly calculated by Stout et al. [37] when
the decision is wait. Given the considerations described in Sect. 3.1, the estimations
by Zhang and Ivy [41] are adopted as our immediate rewards when treatment is
recommended.
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4 Results and Discussion

We defined four different scenarios in order to assess the optimal treatment policy if
a given patient is diagnosed with in situ cancer at a given age. In the first scenario, we
evaluate the performance of our model when none of the considerations discussed
in Sect. 3 regarding cancer regression and type II error in mammography results
are taken into account. The second scenario includes the modifications proposed by
Zhang and Ivy [41] related to cancer regression but does not consider type II error in
mammography results; in this scenario, u and v are assumed to be 0.2 and 0.2, which
results in an average regression rate of 20 %. This assumption is made due to lack of
evidence supporting a specific function or relation between u and v. To minimize bias,
we assume the probability of regression in the Markov model comes from self-loop
and progression probabilities with equal probability. The third scenario assesses the
optimal treatment policy when type II error in mammography results is taken into
account but cancer regression is not. Finally, our proposal is described by the fourth
scenario, which presents the optimal policy including all considerations discussed in
Sect. 3; this scenario considers the same u and v values as in the second scenario to
incorporate cancer regression. Table 2 presents the results obtained for each scenario.
From these results, we can conclude with respect to each scenario that:

Scenario 1. When cancer regression and type II error in mammography results are
ignored, a patient between the ages 40–60 (inclusive) who is diagnosed with in situ
breast cancer should always be treated. However, for patients older than 60, the
recommendation is to wait until the next screening period except at ages 65, 70,
75, 80, 85, and 100. This trend may be explained by the nature of the data, used to
describe the natural history of breast cancer. As discussed in Sect. 3.1, our model uses
age-specific transition probability matrices as input. Specifically, the information that
the algorithm uses iteratively is updated every 5 years and causes this behavior. Note
that between ages 85–100, there are only two information updates, since the matrix
that describes the natural history of breast cancer is the same for the past 15 years.

Scenario 2. The optimal policy proposed in this scenario clearly reflects the impact of
cancer regression in treatment decisions. As discussed in Sect. 2, if cancer regression
is ignored, treatment policies may lead to overtreatment and therefore, a decrease in
quality of life. Our model handles this undesirable situation by increasing the waiting
decisions along the decision horizon. The optimal results suggest that more waiting
decisions should be made, especially for older patients.

As the results shown, treatment is the optimal decision for a patient aged between
40–50 (inclusive) who is diagnosed with in situ cancer. On the other hand, patients
older than 50 with the same diagnosis should wait until the next screening period
except at age 55 and 60. This behavior is explained by the structure of the immediate
rewards rt (s, a) used to describe the impact of treatment in quality life. According
to the estimations proposed in [37] and [41], once a patient is diagnosed with in situ
cancer the impact of waiting decreases as the age at diagnosis increases. Clearly,
there is a trade-off between cancer regression and decrease in quality of life when
waiting.
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Scenario 3. In Sect. 3.2, we mentioned a potential delay in cancer detection as a
direct consequence of sensitivity of mammography results. When our model only
considers type II error in mammography results, the optimal policy shows how this
delay is avoided through an increase in treatment decisions. As shown in Table 2, the
optimal decisions include treatment till a later age (65) as opposed to 60 in Scenario
1, and 50 in Scenario 2. Here, a patient diagnosed with in situ breast cancer should be
treated if the diagnosis is done aged between 40–70 except at age 66 and 67. When
the age exceeds 70, a patient should wait until the next screening period unless the
age is 74, 75, 80, or 85. As in Scenario 1, this trend may be explained by the nature
of the data used to describe the natural history of breast cancer.

The clear increase in treatment decisions reveals the response of our model to type
II error in mammography results. In this case and given the uncertainty regarding
the real cancer state, our model handles the situation by suggesting more treatment
decisions which prevents patients from being diagnosed at a later cancer stage.

Scenario 4. This scenario considers the impact of both cancer regression and type II
error in mammography results. In Scenarios 2 and 3, we showed how the inclusion
of cancer regression and type II error in mammography results would lead to an
increase in waiting and treatment decisions, respectively. Therefore, the simultaneous
inclusion of these medical facts proposes a trade-off between unnecessary treatment
and delay in cancer detection. Our optimal treatment policy can be compared to
the current policy in which treatment is always recommended but only between age
40–70. In addition, our results suggest for patients 80 years and older, wait is always
the optimal decision if in situ cancer is diagnosed. As previously mentioned, this
is a significant difference between our model and the existing work that does not
consider no-treatment decisions for patients diagnosed of breast cancer.

In addition to the scenarios analysis, our model allowed us to assess how determi-
nant cancer regression might be in treatment decisions but taking into account that
our study is not aimed at robustly determining the rate at which this phenomenon
occurs. As mentioned in Sect. 2.1, breast cancer regression is a medical fact currently
considered rare but not improbable in the medical community. Unlike the way, type
II error in mammography results is included in our model; there are not statistical
measures currently available in the literature that provide a reliable estimation of the
rate at which cancer regresses, though analytical methodologies have been proposed
[40, 41] in order to include this medical fact into a dynamic decision process. That
said, we propose a sensitivity analysis on the cancer regression rate to assess its
impact on the optimal treatment policy for breast cancer.

Table 3 presents a sensitivity analysis on the regression rate for Scenario 4. The u
and v values are equally fixed in such a way that the average regression rate over all age
groups corresponds to the values presented at the column fields. As seen in Table 3,
the policies appear to be stable when varying the probability. This can be explained
by the inclusion of type II error which does not allow waiting decisions to sharply
increase due to the trade-off described in Scenario 4. The regression probability is
currently believed to be 22 % according to [39]. Considering a regression rate of 20 %
and once in situ breast cancer is diagnosed, the vast majority of decisions between
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Table 3 Sensitivity analysis on breast cancer regression rate

Age 0 % 5 % 10 % 15 % 20 % 25 % Age 0 % 5 % 10 % 15 % 20 % 25 %

40 T T T T T T 71 W W W W W W

41 T T T T T T 72 W W W W W T

42 T T T T T T 73 W W T T T T

43 T T T T T T 74 T T T T T T

44 T T T T T T 75 T T T T T T

45 T T T T T T 76 W W W W W W

46 T T T T T T 77 W W W W W W

47 T T T T T T 78 W W W W W W

48 T T T T T T 79 W W W T T T

49 T T T T T T 80 T T T T T T

50 T T T T T T 81 W W W W W W

51 T T T T T T 82 W W W W W W

52 T T T T T T 83 W W W W W W

53 T T T T T T 84 W W W W W W

54 T T T T T T 85 T T T T T T

55 T T T T T T 86 W W W W W W

56 T T T T T T 87 W W W W W W

57 T T T T T T 88 W W W W W W

58 T T T T T T 89 W W W W W W

59 T T T T T T 90 W W W W W W

60 T T T T T T 91 W W W W W W

61 T T T T T T 92 W W W W W W

62 T T T T T T 93 W W W W W W

63 T T T T T T 94 W W W W W W

64 T T T T T T 95 W W W W W W

65 T T T T T T 96 W W W W W W

66 W W T T T T 97 W W W W W W

67 W T T T T T 98 W W W W W W

68 T T T T T T 99 W W W W W W

69 T T T T T T 100 T T T T T T

70 T T T T T T

age 40–80 are treat while wait is the most common decision after age 80. The results
suggest that an average regression probability of 20 % allows treatment and waiting
decisions to be associated with specific age ranges.
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5 Conclusions and Future Work

We formulate an MDP model to determine the optimal treatment policies for breast
cancer treatment in the presence of two proven medical facts: cancer regression
and type II error in mammography results. We solve our model to optimality and
obtain results that give an insight about the complexity of this disease. Our study
suggests that optimal treatment policies for breast cancer might be different from the
common recommendations. Specifically, we show that when in situ breast cancer
is diagnosed, the quality of life may be negatively affected if treatment is always
recommended. Our results show that the optimal decisions between age 40–100
should be: to wait 40% of the times (mainly after age 80) and to treat 60 % of the
times. This contrasts to the current policy that always suggests treatment (100 %
of the times). The sensitivity analyses on cancer regression suggest that there is
little variation in the optimal treatment decisions when different cancer progression
probabilities are considered; regardless of how small the regression rate is, more
waiting decisions (on average 40 % of the times) are preferred.

In addition, we find a trade-off between overtreatment and late cancer detection
when we analyze different scenarios regarding cancer regression and type II error in
mammography results; we consider both factors and our results show that treatment
may be optimal only for patients younger than 80 if in situ cancer is diagnosed.
The decision not to treat may benefit patients older than 80 given the fact that these
women may have comorbidities, and treatment may decrease their qualify of life
significantly.

The contributions of our work include the handling of uncertainty in the real can-
cer state of a patient through the post-diagnosis cancer state and the modifications
proposed to incorporate the observed cancer state in a simple and intuitive way into a
dynamic decision model. Also, to the best of our knowledge, the study proposed by
Zhang and Ivy [41] is the first to consider no treatment decisions for cancer-diagnosed
patients and our study contributes to this work by adding factors that may influence
treatment policies. Finally, our study also contributes to the literature of analytical
studies for medical decision modeling of breast cancer that considers disease regres-
sion. Although the biological reasons behind regression are not fully known yet, this
work takes a first step to examine the impact of regression on breast cancer treatment
decisions. It shows how the decisions vary when different probabilities of cancer
regression are incorporated. However, as there is no study on the relations between
cancer progression and regression, the way we extract the regression probability in
the Markov model can create a bias.

An important step following this work is to improve both the transition probabil-
ity matrices used to describe the natural history of breast cancer and the estimations
regarding quality of life. As discussed in Sect. 3, the transition probability matri-
ces required by our approach are difficult to estimate and the information available
in the literature lacks a more detailed differentiation regarding age and population
dependency. A good contribution would be to estimate the natural history of breast
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cancer using shorter age ranges and to provide more accurate information regard-
ing sensitivity and specificity depending on the age and cancer state. Likewise, it is
important to include type I error in mammography results in order to obtain more
realistic results.
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On the Iterative Steering of a Rolling Robot
Actuated by Internal Rotors

Akihiro Morinaga, Mikhail Svinin and Motoji Yamamoto

Abstract This chapter deals with a motion planning problem for a spherical rolling
robot actuated by two internal rotors that are placed on orthogonal axes. The math-
ematical model of the robot, represented by a driftless control system, contains
a physical singularity corresponding to the motion of the contact point along the
equatorial line in the plane of the two rotors. It is shown that steering through the
singularity by finding a globally regular valid basis is not applicable to the system
under consideration. The solution of the motion planning problem employs the nilpo-
tent approximation of the originally non-nilpotent robot dynamics, and is based on
an iterative steering algorithm. At each iteration, the control inputs are constructed
with the use of geometric phases. To solve the state-to-state transfer problem, a
globally convergent steering algorithm with adjustable step size is implemented and
tested under simulation. It is shown that its steering efficiency is not superior to the
algorithm with constant iteration step size.

Keywords Motion planning · Rolling constraints · Non-holonomic systems

1 Introduction

In recent years, there is a growing interest in robotics research to spherical rolling
robots: a rolling robot actuated by internal rotors. Under a proper placement of the
rotors the center of mass of the robot is at the geometric center of the sphere and, as
a result, the gravity terms do not enter the motion equations [2, 5].
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The mathematical model of rolling robot with two rotors inherits the basic prop-
erties of that for the ball–plate system [1, 8, 11]. Since it is not differentially flat, not
nilpotent, and cannot be represented in a chained form, it belongs to a special class
of nonholonomic systems, the class for which conventional planning techniques are
not directly applicable.

One possible approach to control generic nonholonomic systems is to use itera-
tive steering based on the nilpotent approximation of the the non-nilpotent system
dynamics. Since the control problem for the nilpotent system can be solved exactly,
the control inputs found for the nilpotent system can be used for iterative steering of
the original non-nilpotent system. The idea was first proposed in [6] and later devel-
oped in [11], where an iterative algorithm with constant step size was developed and
applied to steering of the ball–plate system. In [9], this approach was used in motion
planning of a rolling robot with two rotors.

The further development in this research direction covered: the taking into con-
sideration of possible singularities of the mathematical model [13, 14] and the
development of globally convergent algorithms with adjustable step size [3, 4]. In this
technical note, we address these issues using the mathematical model of the rolling
robot with two rotors. Specifically, we are interested in the applicability of nonho-
mogeneous nilpotent approximation and in the efficiency of the steering algorithm
with adjustable step size.

The chapter is organized as follows. In Sect. 2, a summary of the mathematical
model established in [12] and [9] is given. In Sect. 3, an implementation of the
globally convergent algorithm [3, 4] with adjustable step size is described. The
steering algorithm is tested under simulation in Sect. 4. Finally, conclusions are
drawn in Sect. 5.

2 Mathematical Model

The actuation scheme of the rolling robot is shown in Fig. 1. Define the state vector
x = {x, y,ϑ ,ϕ,ψ}T, where x, y are the coordinates of the center of the sphere and
ϑ ,ϕ,ψ are special Euler angles describing the orientation of the sphere.

The mathematical model of the rolling robot can be represented by the following
five states-2 inputs driftless affine control system [9]:

ẋ = f1(x)q̇1 + f2(x)q̇2, (1)

where the rates of the rotors angles are considered as the control inputs, and the
vector fields h1 and h2 are defined as:
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f1 = γ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

sin ϑ tan ϕ

cosϑ

sin ϑ
sin2 ϕ+κ cos2 ϕ

cosϕ
R( cosϑ sinψ − sin ϑ sin ϕ cosψ)

R( cosϑ cosψ + sin ϑ sin ϕ sinψ)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, f2 = γ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1

0

(1−κ) sin ϕ

−R cosϕ cosψ

R cosϕ sinψ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (2)

The dimensionless constants κ and γ are defined as:

κ = 1+ MR2

2
3moR2 + 2Jp + Jr

, γ = Jr

MR2

κ − 1

κ
. (3)

where R is the radius of the sphere, mo is the mass of the spherical shell, M is the
total mass of the composite system (the shell and the rotors), Jr and Jp are the inertia
moments of the single rotor about,respectively, the axis of rotation and the plane
orthogonal to the axis of rotation.

The motion planning for the robot under consideration consists of finding a
trajectory x(t), t ∈ [0, T ], given the start state x(0) = xs and the final state x(T ) = xf .

Let L(f1, f2) be the Lie algebra generated by the vector fields f1 and f2. The first
eight elements of the P. Hall basis of L(f1, f2) are f1, f2, f3 = [f1, f2], f4 = [f1, f3],
f5 = [f2, f3], f6 = [f1, f4], f7 = [f2, f4], f8 = [f2, f5], where [·, ·] stands for the Lie
brackets of two vector fields. Define the distributionsBij = {f1, f2, f3, fi , fj }, i = 4, 5,
j = 5, 6, 7, 8.

One can find [12] that the distribution B45 has full rank outside of the singularity
set ϑ = ±π/2, where the contact point lies on the great circle in the equatorial plane
of the rotors axes (red line in Fig. 1). However, the distribution B46 has full rank at
ϑ = ±π/2 and therefore the system (1) is controllable.

Structurally, the driftless control system, describing the rolling robot with two
rotors, is similar to that describing a two trailer vehicle [14]. The degree on non-
holonomy and the grow vector outside the singular set are, 3 and {2, 3, 5}, respectively,
while on the singularity set they become 4 and {2, 3, 4, 5}. However, the nature of
the singularity is different. While for the two-trailer system it was possible to find a
globally valid P. Hall basis (the basis B46 in [13, 14]), for the rolling system such a
basis does not appear to exist. For example, the bases Bij , i = 4, 5, j = 6, 7, 8, are
not valid on the blue lines shown in Fig. 1. We have checked P. Hall bases with the
Lie brackets up to the length 6 and could not find a globally valid one. The nonexis-
tence of the globally valid basis is conjectured now; a formal proof of this statement
constitutes the subject of future research.

Assuming that globally valid basis does not exist, one can still employ the
technique of nonhomogeneous nilpotent approximations [13] with multiple ap-
proximations. A computational procedure, implementing such a technique, is
computationally expensive. In addition, to synthesize the control actions, one would
need to resort to generic techniques for steering of nilpotent systems, and this would
also add to the increase of the computational time. In this situation, the motion
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Fig. 1 Rolling system with orthogonal placement of rotors (left). Singular sets of different dis-
tributions (right). The red line represents the physical singularity at which det B45 = 0; on the
blue line corresponding to ϕ = 0,±π one has det B47 = det B56 = det B58 = 0; on the blue line
corresponding to ϑ = 0,±π one has det B46 = det B48 = det B57 = 0

planning strategy with decomposition into trivial and nontrivial maneuvers [9] is a
reasonable alternative. In this strategy, the nilpotent approximation is conducted only
at the south pole of the sphere ϑ0 = ϕ0 = 0, where, compared to the other contact
points, the calculations are considerably simpler.

Before approximating the original system (1), one converts it to a triangular form.
This can be done with the use of the following input transformation:

⎡

⎣ q̇1

q̇2

⎤

⎦ = 1

γ

⎡

⎣ 0 secϑ

1 − tan ϑ tan ϕ

⎤

⎦

⎡

⎣ u1

u2

⎤

⎦, (4)

where u1 and u2 are the new control inputs. This results in the following
representation:

ẋ = g1(x)u1 + g2(x)u2, (5)

where

g1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1

0

(1− κ) sin ϕ

−R cosϕ cosψ

R cosϕ sinψ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, g2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

1

κ secϕ tan ϑ

R sinψ

R cosψ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (6)
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In the neighborhood of the south pole of the sphere, where ϑ0 = ϕ0 = 0, the
transformation from the original to the privileged coordinates is constructed as [9]:

z1 = ϑ , (7)

z2 = ϕ, (8)

z3 = 1

2κ − 1
ψ , (9)

z4 = 1

3κ − 1
ϕ + sinψ0

R(1− 3κ)
x + cosψ0

R(1− 3κ)
y, (10)

z5 = 1

3κ − 1
ϑ + cosψ0

R(1− 3κ)
x − sinψ0

R(1− 3κ)
y. (11)

and the nilpotent approximation of the system (5) is obtained as:

ż = g̃1(z)u1 + g̃2(z)u2, (12)

where the vector fields g̃1 and g̃2 defined as:

g̃1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1

0
1− κ

2κ − 1
z2

cosψ0
2κ − 1

1− 3κ
z3 + sinψ0

1

2(1− 3κ)
z2

2

sinψ0
1− 2κ

1− 3κ
z3 + cosψ0

1

2(1− 3κ)
z2

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, g̃2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

1
κ

2κ − 1
z1

sinψ0
2κ − 1

1− 3κ
z3

cosψ0
2κ − 1

1− 3κ
z3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (13)

The approximate system is nilpotent, controllable, and has the same degree of non-
holonomy and the same grow vector as the original system [11, 13]. Also, the
approximate system is in triangular form. The latter property facilitates the integra-
tion of the approximate dynamics in closed form under some well-defined control
inputs.

3 Iterative Steering

Having constructed the nilpotent approximation (12), one can use it for the iterative
steering of the original system (5) from the initial xs to a desired state xf . For this
purpose, in [9] we used an algorithm with constant iteration step, implemented in
the spirit of [11]. In this chapter, we study the globally convergent algorithm with
variable iteration step [3, 4].

Define the pseudonorm of the vector of privileged coordinates z at point x̄:

‖z‖x̄ = |z1|1/w1 + · · · + |zn|1/wn (14)
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where the weights w1, w2, . . ., wn are defined as follows. Let Ls(x̄) be the vector
space generated at x̄ by the Lie brackets of g1 and g2 of length≤ s, s = 1, 2, . . . and
ns(x̄) = dimLs(x̄), s = 1, . . ., r , where r is smallest integer such that dimLr (x̄) = 5.
The weight wi of the coordinates xi is defined by setting wj = s if ns−1 < j ≤ ns ,
with ns = ns(x̄) and n0 = 0.

A formalized description of the algorithm with variable iteration step can be
summarized as follows:

1. Set i = j = k = 0, tj = 0 and let initial states and parameter be x0,0 = xs ,
η0 = ‖z(xs)‖xf .

2. Set k = k + 1 and ti+1 = ti + ΔT , where ΔT is the movement time allocated
for one iteration. Define the subgoal xd

j ,k = xj ,k + Hk(xf − xj ,k), where xj ,k is
initial state of each iteration, Hk = diag{h1

k , · · ·, h5
k} and hm

k are a sufficiently
small number defined as below,

hm
k = max

{
0,

(
1− kηj

‖z(xj ,0)‖xf

)wm
}

, m = 1, . . ., 5. (15)

where ηj is the adjustable step size and wm is the weight of the m-th coordinate.
3. Compute from (7) to (11) the image of the subgoal in the privileged coordinates,

zdi , and construct a controller ui that steers the approximate nilpotent system (12)
from the origin to zdi in the time interval t ∈ [ti , ti+1]. This control problem can be
solved exactly, and the control law found for the nilpotent system is then applied
to the original system (5).

4. If ‖z(x(ti + 1))‖xdi,j
> 1

2‖z(x(ti))‖xdi,j
, reduce step size by ηj+1 = ηj/2 and set

j = j + 1, k = 0 and xj ,0 = x(ti+1).
5. Set i = i + 1 and return to step 2. Repeat iterative process until state error
‖z(x(ti+1))‖xf becomes smaller than given tolerance e.

As in [9], the particular structure of the control law for steering the nilpotent system
(12) is constructed in the spirit of the geometric phase approach [7, 10] because
it results to simple calculations and has a clear geometric interpretation. As in
[11], the nontrivial maneuver in our construction is divided into two parts corre-
sponding to attaining, respectively, the desired orientation and translation. More
specifically, reconfiguring the initial state xs = [0, 0,ψs , xs , ys] to the final one
xf = [0, 0,ψf , xf , yf ] is described as follows.

3.1 Orientation Part

In the orientation part, we steer ψ to the desired values without changing ϑ ,ϕ and
regardless of the values of x and y. The computational procedure can be summarized
as follows:
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• Set i = 0, ti = 0, xi � [ϑi ,ϕi ,ψi , xi , yi] = [0, 0,ψs , xs , ys].
• For i-th iteration, set ti+1 = ti + ΔT and define the subgoal ψd

j ,k = ψj ,k +
h3
k(ψf − ψj ,k) for ψj ,k = ψ(ti), where h3

k is defined by (15). Then compute by
(9) its image in the privileged coordinates:

Ψ d
i = h3

k(ψf − ψj ,k)/(2κ − 1), (16)

where κ > 1 is the inertia ratio given by (3). Let ω = 2π/ΔT. Define the control
law by

u1(t) = ri cos σiω t , (17)

u2(t) = ri sin σiω t , (18)

where t ∈ [ti , ti+1] and σi = sign(ψf − ψj ,k). Geometrically, in the space of
the contact coordinates ϑ and ϕ this control law traces a circle of radius ri in the
direction defined by σi :

ϑ(t) = ri

σiω
sin σiω t , (19)

ϕ(t) = ri

σiω
(1− cos σiω t). (20)

Therefore, by the end of the iteration, the contact coordinates ϑ and ϕ remain
unchanged.
By direct integration of the approximate system (12,13) with the control (17,18),
it can be shown that

z1(ti+1) = z2(ti+1) = 0, z3(ti+1) = σiπr
2
i /ω

2. (21)

The free parameter ri is defined from the condition z3(ti+1) = Ψ d
i , which results

in

ri = ω

√
|Ψ d

i |/π. (22)

Thus, the control law defined by (17, 18) steers the privileged coordinates z1, z2,
and z3 from the origin to, respectively, 0, 0, and Ψ d

i . By checking the first three
equations of the system (5, 6), one can see that in the original coordinates we
have ϑ(ti+1) = ϕ(ti+1) = 0 but ψ(ti+1) does not necessarily reach ψd

i .
• Set xi = xi+1, increase the counter i = i + 1 and repeat the calculations until

ψ(ti+1) reaches a given vicinity of ψf .

It should be noted that, since the control law (17, 18) defines a circle in the space
of ϑ and ϕ, one has |ϑ(t)| ≤ ri/ω and |ϕ(t)| ≤ ri/ω. To guarantee that the contact
point does not leave the lower hemisphere, one must have

ri

ω
=

√
h3
k |ψf − ψj ,k|
(2κ − 1)π

≤
√

h3
k

2κ − 1
< π/2, (23)
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which gives the following estimate:

h3
k < (2κ − 1)π2/4. (24)

Thus, since the inertia ratio κ > 1, for any h3
k ∈ [0, 1] the control law (17, 18) keeps

the contact point away from the singular set ϑ = ±π/2.

3.2 Translation Part

In the translation part of the maneuver, we steer x, y to the desired values xf , yf with-
out changing (in the final configuration)ϑ = ϕ = 0 andψ = ψf . The computational
procedure can be summarized as follows:

• Set i = 0, ti = 0, xi = [0, 0,ψf , x̄s , ȳs], where x̄s , ȳs are the coordinates of the
contact point in the plane attained by the end of the first part of the maneuver.

• Set ti+1 = ti + 2ΔT . Define the subgoal in the contact plane xd
j ,k = xj ,k+

h4
k(xf − xj ,k) and yd

j ,k = yj ,k + h5
k(yf − yj ,k) for xi,j = x(ti) and yi,j = y(ti) and

compute the image of the subgoal in the privileged coordinates by (10, 11):

Xd
i =

hk

R(1− 3κ)

{
sinψf (xf − xj ,k)+ cosψf (yf − yj ,k)

}
, (25)

Y d
i =

hk

R(1− 3κ)

{
cosψf (xf − xj ,k)− sinψf (yf − yj ,k)

}
. (26)

where hk = h4
k = h5

k . Let ω = 2π/ΔT . Define the control law by

u1(t) = ri cos (θi + ω t), (27)

u2(t) = ri sin (θi + ω t), (28)

for t ∈ [2(i − 1)ΔT, (2i − 1)ΔT ] and

u1(t) = ri cos (θi − ω t), (29)

u2(t) = ri sin (θi − ω t), (30)

for t ∈ [(2i − 1)ΔT, 2iΔT ]. Geometrically, this control law defines two
symmetric circles in the space of the contact coordinates ϑ and ϕ:

ϑ(t) = ri

ω
{sin (θi + ω t)− sin θi}, (31)

ϕ(t) = ri

ω
{cos θi − sin (θi + ω t)}, (32)

for t ∈ [2(i − 1)ΔT , (2i−1)ΔT ] and

ϑ(t) = ri

ω
{sin θi − sin (θ + ω t)}, (33)
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ϕ(t) = ri

ω
{sin (θi + ω t)− cos θ}, (34)

for t ∈ [(2i−1)ΔT , 2iΔT ]. Therefore, the contact variables ϑ and ϕ are zero
at t = ti + (2i − 1)ΔT, and t = ti + 2iΔT. Next, since one circle is traced in
clockwise direction and the other in the counterclockwise direction, by the end
of the iteration the angle ψ remains unchanged.
By direct integration of the approximate system (12, 13) with the control (27, 28)
and (29, 30), it can be shown that

z1(ti+1) = z2(ti+1) = z3(ti+1) = 0, (35)

z4(ti+1) = 2πr3
i sin (ψf − θi)/ω

3, (36)

z5(ti+1) = 2πr3
i cos (ψf − θi)/ω

3. (37)

The free parameters ri and θi are defined from the conditions z4(ti+1) = Xd
i and

z5(ti+1) = Y d
i , which results to

ri = ω
6

√
(Xd

i )2 + (Y d
i )2

4π2
, (38)

θi = ψf − arctan (Xd
i /Y

d
i ). (39)

Thus, the control law defined by (27, 28) and (29, 30), steers the state vari-
ables of the approximate nilpotent system (12) from the origin to, respectively,
[0, 0, 0,Xd

i ,Y d
i ]. By the geometric construction, for the original state variables

we have ϑ(ti+1) = ϕ(ti+1) = 0 and ψ(ti+1) = ψf , but x(ti+1) and y(ti+1) do not
necessarily reach xd

j ,k and yd
j ,k .

• Set xi = xi+1, increase the counter i = i + 1 and repeat the calculations until
the coordinates of the contact point in the plane [x(ti+1), y(ti+1)] reach a given
vicinity of [xf , yf ].

Under the control law (27, 28) and (29, 30), the contact point in the space of the
contact coordinates ϑ and ϕ is always on the circle of radius ri/ω, with |ϑ(t)| ≤
ri/ω and |ϕ(t)| ≤ ri/ω. To ensure that the contact point does not leave the lower
hemisphere, one needs to have

ri

ω
= 6

√
(Xd

i )2 + (Y d
i )2

4π2
<

π

2
. (40)

By transforming this inequality with the use of (25, 26), one obtains the following
estimate:

hk < h̄k = π4R(3κ − 1)

32
√

(xf − xj ,k)2 + (yf − yj ,k)2
. (41)

Thus, if hk is selected in accordance with (41) the trajectory of the contact point on
the sphere is kept below the singular set ϑ = ±π/2. If hk defined by (15) happens
to be larger than h̄k , one needs to replace hk = h̄k − ε, where ε is a small constant.
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Fig. 2 Trajectory of the contact point on the plane (top) and on the sphere (bottom) during the
nontrivial maneuver for κ = 2.5. The first part of the maneuver is shown in green color, while the
second part is shown in red and blue colors

4 Simulation

The performance and effectiveness of the global steering algorithm are tested under
simulation. In the simulation example, as in [9], we drive the system from the initial
state x0 = {0, 0, 3π/4, 2.0, 2.0} to the final state xf = {0, 0, 0, 0, 0}, for κ = 2.5 and
κ = 10. The units of all the dimensional quantities are specified in the International
System of Units (SI) system.

For κ = 2.5, the simulation results (the trajectories of the contact point on the
plane and on the sphere) are shown in Fig. 2. In the orientation part of the maneuver,
where we drive ψ to zero regardless of the attained x and y, the error between the
current and target values of ψ becomes less than 0.001 after three iterations. By the
end of the orientation part of the maneuver the values of x and y change, respectively,
from 2.0 to 1.51 and from 2.0 to 2.85. In the translation part of the maneuver, where
x and y are driven to the origin, it takes 53 iterations for the error between the current
and target position of the contact point on the plane, defined by the Euclidian distance√

(x(t)− xf )2 + (y(t)− yf )2, to become less than 0.001.
For κ = 10, the simulation results are shown in Fig. 3. In the orientation part

of the maneuver, the error between the current and target values of ψ becomes less
than 0.001 after two iterations. By the end of the orientation part of the maneuver
the values of x and y change, respectively, from 2.0 to 1.84 and from 2.0 to 2.38.
In the translation part of the maneuver, it takes 64 iterations for the error between
the current and target position of the contact point on the plane to become less than
0.001.

It is interesting to compare the performance of the iterative algorithm with ad-
justable step size with that with the constant step size. For the exactly same simulation
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Fig. 3 Trajectory of the contact point on the plane (top) and on the sphere (bottom) during the
nontrivial maneuver for κ = 10. The first part of the maneuver is shown in green color, while the
second part is shown in red and blue colors

example in [9], for κ = 2.5 there were five iterations in the orientation part and ten
iterations in the translation part. As to κ = 10, there were 2 iterations in the orienta-
tion part and 29 iterations in the translation part. So, it appears that in the translation
part the algorithm with the constant step can be more efficient in terms of the number
of iterations necessary to reach the goal state.

It should be noted that the efficiency of the steering algorithms under consideration
depends not only on κ but also on the initial state x0. To illustrate this point, we
conduct another simulation where we set x0 = {0, 0,−π/2, 2.0, 2.0} while keeping
the target state at the origin. Simulation results for the algorithm with adjustable η

and with constant η = 0.6 are shown in, respectively, Figs. 4 and 5. The algorithm
with adjustable η produces 3 iterations in the orientation part and 12 iterations in the
translation part, while the algorithm with constant η does 3 in the orientation part
and 9 iterations in the translation part.

It should be pointed out that the algorithm with the adjustable step size converges
globally while in the algorithm with the constant step size η does not converge for
any η ∈ [0, 1], so η should be set as a sufficiently small number. Setting η is done
manually, and the smaller the η the larger the number of iterations. Finding optimal
value of η = η	, resulting to minimal number of iterations, is a very tedious and
computationally involving procedure that can be done only by tuning of η. If, instead
of tuning, one would juts set η within a safe margin it would decrease the steering
performance. For example, if in the last simulation one would set η = 0.1, the
number of iterations in the orientation part would increase to 15 and the number of
iterations in the translation part would increase to 76. The corresponding simulation
results for this case are shown in Fig. 6.

On the other hand, the algorithm with the adjustable step size does not require any
tuning and therefore is more convenient in use. However, the adjustment strategy
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Fig. 4 Trajectory of the contact point on the plane (top) and on the sphere (bottom) during the
nontrivial maneuver for κ = 2.5. The first part of the maneuver is shown in green color, while the
second part is shown in red and blue colors

Fig. 5 Trajectory of the contact point on the plane (top) and on the sphere (bottom) during the
nontrivial maneuver for κ = 2.5 produced by the algorithm with constant η = 0.6. The first part of
the maneuver is shown in green color, while the second part is shown in red and blue colors

does not necessarily results to efficient steering. While the thorough investigation
of the steering algorithms remains the subject of future work, it can be conjectured
that if, instead of setting η0 = ‖z(xs)‖xf , we select η0 = η	 the performance (the
convergence rate) of the two steering algorithms under comparison will be nearly
the same.
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Fig. 6 Trajectory of the contact point on the plane (top) and on the sphere (bottom) during the
nontrivial maneuver for κ = 2.5 produced by the algorithm with constant η = 0.1. The first part of
the maneuver is shown in green color, while the second part is shown in red and blue colors

5 Conclusions

Motion planning for a spherical rolling robot, actuated by two internal rotors that
are placed on orthogonal axes has been studied in this chapter. The mathematical
model of the robot, represented by a driftless control system, contains a physical
singularity corresponding to the motion of the contact point along the equatorial
line in the plane of the two rotors. It has been shown that the technique of steering
through the singularity by finding a globally regular valid basis is not applicable to
the driftless control system. To solve the state-to-state transfer problem, a globally
convergent steering algorithm has been implemented and tested. It has been shown in
simulation example that its convergence rate is not always superior to the algorithm
with constant iteration step size.
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Odontological Information Along Cone Splines

Cindy González and Marco Paluszny

Abstract Developable surfaces are a subset of ruled surfaces, which can be mapped
onto a plane without deformation. Due to this property, they have considerable
relevance in several applications. In the medical area, regarding information visu-
alization along sections of organs, they could be useful in clinical diagnosis. They
have also industrial applications, including footwear and clothing industries, where
three-dimensional (3D) designs are made from flat materials.

In this research, we consider the issue of approximating developable surfaces with
segments of circular cones, with the aim of constructing splines that model interesting
surfaces. Our emphasis will be in the odontological area. We present examples of
“panoramic views” of curved sections of human jaw which contain information about
all the dental pieces. Moreover, the process allows for the simultaneous display of
these pieces in a flat surface, without metric distortion.

Keywords Developable surface · DICOM volume · Segment of circular cone ·
Rational Bézier curve

1 Problem of Visualization from Volumes

The goal of the Visible Human Project [8] is to make detailed information about
human anatomy accessible to the scientific community. It is a database that consists
of 1871 horizontal plane sections from which “photos” of oblique slices—that can
be extracted from the data volume—can be reconstructed. This process is mathe-
matically well-known: it involves the trilinear interpolation [9]. In fact, the Visible
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Human portal offers a computational tool for extracting information along plane
slices of arbitrary three-dimensional (3D) position [4].

A more interesting problem is the information extraction along curved slices, for
instance, along an artery (in order to determine calcifications or other malformations),
or along a jaw bone (with the purpose of making visible the information of several
contiguous). The deployment of such information is potentially useful in surgical
planning. In general, when a surface is displayed in a plane, some of the areas of the
slice need to be stretched and this generates a distortion problem: The shape and/or
size of the original organ, along a particular section, can differ from the shape and/or
size when it is displayed in a plane screen. It is the same problem of deformation
that arises when building maps.

1.1 Preliminary Aspects

Developable surfaces are special case of ruled surfaces, which can be unfolded
or developed onto a plane without stretching or tearing. Mathematically speaking,
developable surfaces are surfaces characterized by the property of possessing the
same tangent plane at all points of the same ruling.

The ruled surfaces are defined by

s(u, v) = l(u)+ ve(u),

where l(u) is a curve on the surface, called the directrix and e(u) are unit vectors of
the generator lines.

Among developable surfaces are conical surfaces, cylindrical surfaces, and
tangent surfaces, we shall focus on circular cones. Due to the property can be
isometrically mapped into the plane, the developable surfaces are interesting for
visualization purposes.

Particularly, in the medical area, the problem of flattening a surface without
stretching was considered by Saroul in his PhD thesis [7] and in a series of articles in
scientific journals [3, 6]. Saroul minimizes the deformation in an area specified by the
user at the expense of other areas (which might be less relevant or interesting) where
the deformation is not controlled. Saroul’s proposal has an inherently local nature [7].
In a recent article, Figuereido and Hersch [3] propose the extraction of information
about 3D volumes contained in cylinders built on plane curves. The aforementioned
can be generalized to developable surfaces whose construction, from the computer
aided geometric design point of view, has been studied by Aumann [1]. The main dif-
ficulty with Aumann’s method is the numerical nature regarding the flat presentation
of the surface. Such difficulty disappears if we use cylinders and cones, instead of
general developable surfaces. In this work, we use techniques developed by Pottmann
and Leopoldseder [5], based on an article by Fuhs and Stachel [2], for construct-
ing curved slices with cone splines. Cone splines are splines constructed by joining
segments of cones with tangent continuity along common generators. For this con-
struction we must take care to exclude cone vertices. An illustrative example is shown
using a human jaw bone, and the slice is constructed with segments of circular cones.
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2 Circular Cones with Prescribed Contacts

Leopoldseder and Pottmann presented in [5] an algorithm for the approximation of a
given developable surface Γ by a cone spline surface and it depends on an adequate
choice of generators on this surface. The authors leave the problem of finding the best
choice of generators as an open question. The algorithm is described in Sects. 2.1
and 2.2.

Our problem is different, we have “in principle”1 a fixed sequence of line/plane
pairs as given contacts, one for each tooth. This sequence is extracted from the
maxillary tomography. We use the technique from [5] to build a cone spline with
these or most of these planes/lines. The spline exhibits all neighboring teeth in a
given jaw region.

2.1 Contact Elements

Given a developable surface, we select a sequence of generators ei ofΓ and calculate
its tangent planes τi . We refer to (ei , τi) as contact elements. From a sequence of
contact elements, we want to build cone segments to model surfaces that interpolate
the given information. We will interpolate a couple of consecutive contact elements
with two circular cone segments, which have the same tangent plane along a common
generator.

For each (ei , τi), i = 1, 2, there is an orthonormal basis coherent with Γ . For each
contact element (ei , τi) abusing notation, we use ei to refer to the unit director along
the generator ei . Let (ei , pi) be the orthonormal basis for τi such that ni = ei × pi is
the unit normal of Γ .

2.2 General Algorithm

Given two consecutive contact elements (e1, τ1) and (e2, τ2), we want to find two cones
of revolutionΔ1, Δ2, with different vertices v1, v2, that have a common generator and
the same tangent plane along this generator. Each Δi must also contain the generator
ei , and its tangent plane along ei must match up with τi . The axes of a pair of cones
in this position either intersect in a point m or are parallel. We consider the case in
which the axes intersect in m (see Fig. 1).

1 Actually for multiple root teeth, there might be more than one plane choices. These stem from the
fact the best plane for clinical inspection could approximate any of the root pairs.



222 C. González and M. Paluszny

Fig. 1 Circular cones with a
comun generator and their
axes intersect at a point m

It can be shown [5] that the pair of cones described in the previous paragraph have
an inscribed sphere Σ , whose center is the point m. This sphere touches both cones
along two circles: c1 and c2 (see Fig. 2). The sphere Σ is determined from the two
consecutive contact elements (ei , τi). If m1 and m2 are points of the generators e1

and e2, the point m is the intersection of the normal planes:

γi : (x−mi) · pi = 0, i = 1, 2, (1)

with the bisector plane of the two tangent planes:

σ : x · (n1 − n2)−m1 · n1 +m2 · n1 = 0. (2)

Each one of the cones Δ1, Δ2, will touch the sphere Σ along a circle, and these
circles will be tangentially connected at the point c. The circles c1 and c2 allow us
to construct a biarc which connects, with tangential continuity in c, a segment of the
circle c1 with a segment of the circle c2 (see Fig. 3). This joins generator e1 with
generator e2.

Given a set of n + 1 control points b0, . . ., bn, each one associated with a scalar
ωi called weight, a degree-n rational Bézier curve is defined by

c(t) = ω0B
n
0 (t)b0 + . . .+ ωnB

n
n (t)bn

ω0B
n
0 (t)+ . . .+ ωnBn

n (t)
,

where Bn
i (t) are well-known Bernstein polynomials.

For a rational Bézier representation for the biarc, we will denote its control points
by a1, b1, c, b2, a2, (Fig. 3). Let b1 = a1 + λ1p1 and b2 = a2 − λ2p2.

The point ai is the intersection point between the sphere Σ and the generator ei ,
such that the vector pi is the vector tangent to the spherical biarc at this point.
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Fig. 2 Two-sphere Σ

inscribed in the circular cones
Δ1 and Δ2

The control polygon of a circle has the shape of an isosceles triangle; the segment
of the internal control points, b1, b2, satisfy the condition:

‖b2 − b1‖2 = (λ1 + λ2)2. (3)

This is equivalent to

(a2 − a1)2 − 2λ1(a2 − a1) · p1 − 2λ2(a2 − a1) · p2 + 2λ1λ2(e1 · e2 − 1) = 0. (4)

Thus, if we choose λ1 using Eq. 4 we can calculate λ2. For the construction of the
biarc, the contact point c is given by

c = λ2b1 + λ1b2

λ1 + λ2
. (5)

So, setting the weights at the end points of the two arcs to 1, we can express the
Bézier rational quadratic form of each circular arc as follows:

c1(t) = a1(1− t)2 + ω11b12t(1− t)+ ct2

(1− t)2 + ω112t(1− t)+ t2
, (6)

c2(t) = c(1− t)2 + ω12b22t(1− t)+ a2t
2

(1− t)2 + ω122t(1− t)+ t2
, (7)

where the weights ω1i associated to the internal control points are given by:

ω1i = |(bi − ai)(c− ai)|
‖bi − ai‖ ‖c− ai‖ . (8)
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Fig. 3 Biarc with its control
polygon

Fig. 4 Example of a cone
pair with sharp edges

If λi is positive, the arc with control points ai , bi , c and weights ω1i > 0 are used.
On the contrary, the complementary arc and a negative weight ω1i may be used.

Finally, once found the biarc as was described above, we can compute the vertices
vi of the two cone segments. These are calculated as the intersection of the tangent
plane to the sphere Σ at point c with generators ei . The axes of the cone pair are the
lines that pass through vi and center m of Σ , respectively.

In order to calculate a cone pair within the one parameter set of solutions, we
may choose λ1 and compute λ2 as explained above. The parameter λ1 allows for the
adjustment of each pair of cone segments according to visualization needs.

Since sometimes the cones of a pair lie locally on different sides of their common
tangent plane, this might lead either to sharp edges in the cone spline (Fig. 4) or to
an s-shaped cone pair (Fig. 5). In the first case the complementary arc has to be used,
which is obtained by changing the sign of the weight of the control point bi . This
guarantees a smooth surface but produces sharp edges in the biarc.

In the last case, the solution that works well is “to jump over”2 the offending
contact element.

3 Curved Slices Constructed with Segments of Circular Cones

Medical images are produced with various techniques. Especially interesting are
those yielding sequences of parallel slices of a 3D volume. Examples of these are
sequences of Digital Imaging and Communications in Medicine (DICOM) files

2 If we have two adjacent contact elements (ei , τi ) and (ei+1, τi+1), “jumping over a contact element”
means omitting (ei+1, τi+1) and considering instead (ei , τi ) and (ei+2, τi+2).
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Fig. 5 Example of an
s-shaped cone pair

generated by computed tomography (CT), positron emission tomography (PET),
and magnetic resonance imaging (MRI). Figure 6 shows two slices, of RMI and
CT, see https://mri.radiology.uiowa.edu/visible_human_datasets.html for additional
examples.

DICOM format includes a file with image and patient data, also it contains a
network communications protocol that allows its exchange with the data and quality
necessary for clinical use. In this work, we used the Matlab platform, which allows
for DICOM file reading.

In this section, we consider a medical volume, which stores information about the
internal and external structure of the 16 dental pieces of a human upper jaw bone. The
volume is assembled from a sequence of DICOM files acquired through computer
axial tomography.

For each tooth, we find a contact element displaying the information of clinical
interest. Given the segmentation of a tooth the choice of the plane depends on the
position of the roots that need to be visualized.

The line joins the center point of the tooth enamel surface with a midpoint of the
two chosen roots.

We will apply the aforementioned construction of circular cones from biarcs to
modeling a curved slice that contains information about the internal structure of a
sequence of neighboring teeth in a jaw bone. Figure 7 shows the selected plane of a
tooth which has been texturized with the corresponding information extracted from
the volume, using the trilinear interpolation process [9].

Figure 8 illustrates pairs of segments of cones for different values of λ1, which
were built for the same pair of contiguous contact elements.

Figure 9a illustrates a curved slice constructed with a sequence of segments of
cones, manually choosing parameter values λ1 to allow a good overall view of the
teeth of the upper jaw bone. Figure 9b displays its flattened version.
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Fig. 6 Risk of malignancy
index (RMI) slice of the body
of a man and computed
tomography (CT) slice of the
head of a woman
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Fig. 7 Texturized plane of a
dental piece from the upper
jaw bone

4 Analysis and Conclusions

We present a technique for extracting information along curved slices (which can
be flattened without deformation) from dental data volumes. Figure 10 illustrates
three views of the curved slice of Fig. 9a, which also shows the generators used to
construct the cone spline.

The illustrations in Figs. 11 and 12 show the information relating to the same
dental pieces, using the technique of Aumann and cone splines, respectively. Un-
der visual inspection both techniques yield results of comparable quality. The main
advantage of the approach with circular cones is its mathematical simplicity as com-
pared to developable surfaces technique of Aumann [1]: the flattening process is
simpler for circular cones than for general developable surfaces. One limitation of
the cone splines technique of approximation with circular cones is that special care
is necessary to avoid the possible presence of cone vertices within the approximating
curved slice, which would then be singular points of the cone spline. Singularities
might also pop up in the case of developable surfaces, but in this case they are easier
to avoid because this family of surfaces is larger. One way to handle the problem is
to allow noncircular cones or cylinders when there is not a good approximation with
circular cones. Another, easier and possibly sufficient way in many applications is
to jump a generator where the cones constructed are not acceptable (see Fig. 10).

Paluszny [6] uses a technique of a generalization of the Aumann [1] to construct
a developable surface cutting the 16 teeth of the upper human jaw bone.

Let b0, . . ., bn be the contact points of the polynomial Bézier curve b(t).
Aumann’s algorithm produces a Bézier curve c(t), with control points c0, . . ., cn

such that the ruled surface obtained by joining b(t) and c(t) is developable.
The point c0 is arbitrary but b0, b1, and c0 are not collinear and for i = 0, . . . n−1,

ci+1 = bi + λ(bi+1 − bi)+ μ(ci − bi),

where λ and μ are arbitrary parameters.
In [6], one of the authors extends Aumann’s construction for polynomial Bézier

curves to Catmull–Rom–Overhauser interpolary tangent continous splines.
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Fig. 8 Pairs of segments of
cones, which correspond to
values λ1 = 10, 16, and 23,
respectively
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Fig. 9 a Three-dimensional
(3D) view of the construction
of a curved slice with
segments of cone splines for
some dental pieces of the
upper jaw, b view of
development without
distortion on the slice

The main differences between Aumann-based approach and the technique of cone
splines are:

• Aumann’s developable is built along a prescribed interpolatory curve and de-
pends globally on five parameters (the positions of c0, λ, and μ). The cone spline
interpolates a sequence of contact elements (plane/line) and each segment can
be adjusted independently while preserving the tangent continuity property at
common generators. In other words: provides local control.

• Both surfaces can be unfolded isometrically onto the plane. This process is simpler
for cone splines.

• The cone spline may contain segments which are not faithful to the teeth sequence,
hence the “jumping over” technique will provide a solution. Aumann technique
does not allow this solution of such a problem because given the Bézier curve b(t),
the point c0 and the parameters λ and μ, the developable surface is completely
determined.

Within the medical field other possible fields of application of the technique
include the construction of curved sections of veins (to study valve function) and
arteries (for detecting calcifications). Within industry we envision applications in the
field of study of fractures in volumes.
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Fig. 10 Three-dimensional
(3D) views of the curved slice
constructed with cone splines
“jumping over” some dental
pieces of upper jaw bone
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Fig. 11 Examples of teeth
using the technique of
Aumann
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Fig. 12 Examples of dental
pieces using segments of
circular cones
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Modeling Cell Decisions in Bone Formation

Rodrigo Assar, Alejandro Maass, Joaquín Fernández, Ernesto Kofman
and Martín A. Montecino

Abstract The process of bone formation involves several mechanisms, which can
manifest dysfunctions such as osteoporosis in case of imbalances between them. In
basic terms, osteo-adipo progenitors derive from the bone marrow, and depending
on multiple stimulus signals, can stay in their progenitor state (preosteoblast) or can
differentiate to form bone and fat tissue [3]. We point to model the dynamics of the
cell decisions to differentiate from preosteoblasts to osteoblasts, considering stim-
ulatory signals, and the important role of epigenetics. Given a cell, the presence of
specific epigenetic marks favors the expression of biomarker genes and the posterior
differentiation into osteoblasts. Starting with a group of marked cells, we model
in silico the proliferation of such cells and the epigenetic inheritance. We consider
a hybrid system [2, 8] in which each cell grows continuously over time until be-
ing ready to divide, and the success in division and epigenetic inheritance includes
randomness. Stimulating the proliferation of marked cells, the model predicts the
dynamics to increase the number of osteoblasts helping in testing medical treatments
and production in vitro.

Keywords Cell decisions · Bone formation · Hybrid systems
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1 Introduction

The aim of this work is to model the dynamics of bone formation by considering
the cells decisions leading to bone formation. The process of bone tissue formation
is given by the delicate interaction between bone formation and resorption. At the
cellular level, at any time the cells have to decide whether to proliferate, to differenti-
ate, or to perform apoptosis. Many stimulatory signals affect such cell decisions, and
small variations in their conditions provoke important changes in the dynamics. With
accurate models of the bone formation dynamics, we want to find and validate new
treatments for bone mass disorders such as osteoporosis. We aim to obtain treatments
with less limitations, less side effects, and more suited to patient-specific conditions.

Bone formation connects multiple-level processes, which go from tissues to cells
and genes. Understanding the interaction of these processes and how to control them
is an important contribution to find new treatments for bone mass disorders such
as osteoporosis. Bone formation is the result of preosteoblasts differentiation into
osteoblasts, which then turn into osteocytes and lining cells constituting the bone
tissue. Osteoclasts are responsible for bone resorption through osteoblasts apoptosis.

Our approach is based on hybrid systems [8]. This modeling theory is adapted
to integrate different type of stimulatory signals, considering continuous dynamics
which interact with discrete changes. The resulting hybrid models are implemented
by two frameworks: BioRica [2] and QSS solver [13].

Here, we consider two hybrid models. The first one is based on switching a
gene regulatory network (GRN), which models the differentiation from progenitor
cells (we call them preosteoblasts) into osteoblasts and adipocytes depending on the
condition of stimulatory signals [3]. However, the dynamics of preosteoblasts is,
in fact, more complex. An important element to consider is the cellular phenotype
and culture conditions. Consequently, in the second model we consider a culture
with cells predisposed to osteoblast differentiation. This higher predisposition is
given by the presence of epigenetic marks [7, 15]. In addition, we consider that the
population size affects the division rate due to space and nutrient limitations [6]. To
our knowledge, this study is the first attempt to model bone formation using hybrid
systems and including epigenetic inheritance.

1.1 The Problem: Cells Decisions in Bone Formation

In general, every cell has to decide between maintaining its stage, or changing by
division, death, or differentiation. Going to one or another commitment depends on
cell maturation, signals, and other environmental characteristics such as nutrients,
and the cell phenotype (see Fig. 1). The proliferation and apoptosis rates of each cell
lineage are regulated by many stimulatory signals. Preosteoblasts going to differen-
tiate have to decide between osteoblasts or adipocytes depending on the condition of
such stimulatory signals. The signals we consider are the activation of the Wnt path-
way (favoring bone cells [14]), the increase in homocysteine (favoring preosteoblasts
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Fig. 1 The cell decisions. At any time, the cell cannot only stay in its stage but also it can change
its stage deciding to divide, die (do apoptosis), or differentiate. The stage change event is affected
by the conditions of maturation, signals, environment, and phenotype

and osteoblasts apoptosis [10]), and the stimulation of PPARγ (favoring adipocytes
[5]).

Effects associated to environment and phenotypic characteristic of preosteoblasts
are also considered. In particular, the predisposition of preosteoblasts to differentiate
into osteoblasts is included through the presence of specific epigenetic marks [7, 15].
For example, in mammal cells, the presence of H3K9Ac, acetylation of the lysine 9
of the histone 3, or the tri-methylation H3K4me3 in combination with H3K27Ac is
strongly associated with active gene expression [7, 15] favoring the associated cell
lineage.

2 Methods

Our approach is based on the hybrid systems modeling. The basic idea of hybrid
systems is connecting continuous and discrete dynamics. Hybrid models consider
state variables (continuous) and mode variables (discrete). The state variables evolve
over time according to behavior laws, but at any time these laws are modified by
mode changes [8].

Using hybrid systems in biology is supported in systems biology paradigm [12].
The system behaviors are the result of the interaction of the single models. Some
examples of hybrid models in biomedicine are shown in [1] and were the main focus
in recent conferences.1

1 HSCB 2009: http://www.eziobartocci.com/hscb, HSB 2012: http://hsb2012.units.it and HSCC
2013: http://2013.hscc-conference.org
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The hybrid systems approach allows modeling acclimatization [4]. That is, the
dynamics of behavior changes of biological entities as adaptation response to envi-
ronmental changes. In our case, stimulus signals are the changes in external factors
which affect the dynamics of preosteoblasts, osteoblasts, and adipocytes.

Herein, we describe the cell decisions involved in bone tissue formation by two
hybrid models. The first model [3] describes the differentiation from presoteoblasts
into osteoblasts and adipocytes, and the second model focuses on the proliferation
of preosteoblasts and the inheritance of epigenetic marks favoring bone formation.

We implement and simulate the resulting models with BioRica2 [2] and QSS
solver3 [13]. Our implementation allows reusing systems biology markup language
(SBML) models [9] and including stochastic transitions, with good computation
times on stiff components.

2.1 First Model: Switching a Differentiation GRN

We consider that the cellular lineage are limited to preosteoblasts, osteoblasts, and
adipocytes, whose dynamics we describe by three state variables: xP, xO, xA. They
correspond to the concentration of preosteoblasts, osteoblasts, and adipocytes, re-
spectively. The mode variables connecting stimulus signals with the dynamics of
cell lineages are the values of the parameters zD, zO, zA, kP, kO. The first three modes
describe if the differentiation, the osteoblast lineage, or the adipocyte lineage were
stimulated. In particular, for modeling zO we reuse a SBML model of theWnt pathway
activation. The mode coefficients kP and kO are the apoptosis rate of preosteoblasts
and osteoblasts (Fig. 2). More details in [3].

As shown in Fig. 2, the interaction between these three lineages is described
by a GRN in which each lineage is associated with a specific biomarker gene
(PROGENITOR, RUNX2, and PPARγ , respectively). The mode changes are trig-
gered by four stimulatory signals: the activation of the differentiation, the activation
of the Wnt pathway which stimulates the osteoblast lineage [11], the activation
of PPARγ , and the increase of homocysteine [10] affecting the apoptosis rate of
preosteoblasts and osteoblasts.

The pass from a generic cell to the population is given by associating biomarker
genes with cell lineage concentrations. That is to say, the activation/inhibition rela-
tions in the GRN are translated into a system of ordinary differential equations for
xP, xO, and xA. Thus, we build a switched GRN in which the switches of the mode
variables are controlled by deterministic and stochastic stimulatory signals with dif-
ferent levels of complexity. In Fig. 2, we show more details about the mode changes
and system equations.

2 http://biorica.gforge.inria.fr
3 http://sourceforge.net/projects/qssengine/
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2.2 Second Model: Considering Preosteoblast Cells as Agents

Now, we focus on modeling the dynamics of preosteoblasts proliferation. The
previous approach assumes that every preosteoblast cell has the same division, dif-
ferentiation, and death rate. However, it is known that not all the cells have the same
behavior, in particular to decide differentiation lineages. We include this element
considering the phenotype, through epigenetics, as a factor of lineage predisposition.

Epigenetic mechanisms operate at cell lineage key regulatory genes. Epigenetic
marks correspond to patrons not in the DNA which imply states of the chromatin
structure to favor transcription factor bindings and the consequent gene expression.
Consequently, these marks contribute to control the expression of target genes, and
with that, generate variably intermediate states in the predisposition to differentiate
into a specific cell lineage. In particular for osteoblasts [7, 15],RUNX2 is considered
as the target gene, whose expression is associated to osteoblast lineage.

As in our previous approach, the system is first modeled at the cellular level.
However, in the pass from a cell to the population, we do not assume a generic
cell behavior. We consider cells as agents separately modeled, and the population
is described by the dynamics of all the individual cells and their interactions. As
shown in Fig. 3, the dynamics of every cell is given by its cell cycle over time,
but the maturation process is not the same for all the cells. The cell decisions are
regulated by such maturation level M and the cell phenotype e (the configuration
of the epigenetic marks). The cell phenotype is characterized as the presence of
epigenetic marks in the cell which provoke predisposition to the osteoblast lineage
(e = 1 if the mark is present, e = 0 if it is absent).

Within the cell cycle, after the Gap 1, the cell begins the synthesis coming to the
reaching Gap 2 and after that undergoes mitosis (the action of dividing). We introduce
the option to enlarge the division time by entering the Gap 0 [6], increasing this event
probability in function of the number of cells . In addition, reaching a maturation high
enough, at the mitosis time, the success of the division is also randomly modeled.
Other possibilities we introduce are cell death, apoptosis, and aberrant result (cancer).
We consider that, after the cell division, every daughter cell inherits the epigenetic
mark separately and randomly. Thus, if the mother cell presents the mark, it can be
inherited or not by each daughter cell. The case in which the inheritance is different
between daughter cells is called asymmetric division, and it is considered as the cause
of final differentiation between cells after stimulus signals [7, 15].

3 Results

In Fig. 4, we show the simulated dynamics of the concentrations of preosteoblasts,
osteoblasts, and adipocytes, together with the effect of some stimulus signals over
them. It is appreciated how this first model achieves to predict the positive effect that
Wnt pathway activation has in the formation of osteoblasts. However, consistently
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Fig. 3 The cell cycle and cell decisions. The cell maturation is regulated by the cell cycle and
depends on the phenotype. The cell begins the synthesis after Gap 1, reaching Gap 2, and after that
undergoes mitosis (division). The division time can be enlarged by entering the Gap 0, with bigger
probability if the number of cells increases. In addition, reaching a maturation high enough, the
success of the division is also randomly modeled. Other possibilities we introduce are cell death,
apoptosis, and aberrant result (cancer)

with experimental results, this effect is too weak and nonpermanent. In opposition,
the formation of adipocytes is highly sensitive to signals.

As we explained in the previous section, at the second model the dynamics is
characterized by the number of cells (N) and the number of those cells with the epi-
genetic predisposition to the osteoblast lineage (E). In Fig. 5, we show an example of
population dynamics depending of individual cell decisions to divide (symmetrically
or not) and to die over time. We also show the effect of stimulating the proliferation
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Fig. 4 Results of the first
model: the dynamics of the
concentrations of
preosteoblasts (xP),
osteoblasts (xO), and
adipocytes (xA). Depending
on the stimulus signals the
cells receive over time, the
preosteoblast, osteoblast, or
adipocyte lineages are
favored. We show simulation
results for different
consecutive stimulus signals.
The Wnt pathway activation
in general allows a weak
increment in the
concentration of osteoblasts

of epigenetically marked cells by the Wnt pathway (according to [14]) at early and
late times. As expected, the effect is better if the culture is stimulated early, at the
phase of exponential growth (see Fig. 5).

4 Conclusions and Discussion

The approach by hybrid systems, as shown through this chapter, allows including
stimulus signals and the interaction of different types of dynamics in bone formation.
With that, the limitations of choosing only one kind of model (continuous or discrete,
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determinist or stochastic or nondeterministic) are avoided. As we have shown, hybrid
systems implemented by BioRica and QSS, allow building more realistic models and
reusing SBML models.

Through the combination of stimulus signals, and including other factors, we
expect to contribute to discover in silico how to increase significantly the formation
of osteoblasts. Our final goal is having good models at each level and defining the
mechanisms to connect them. With both models we introduced here, we point to
find treatment with less side effects and more adapted to patient-specific conditions.
Here, we provide insights on the cellular level and describe the two ways to pass to
the cells’ population level. However, we have a long way to go to obtain complete
models for bone formation. It is necessary to integrate many levels, from tissues to
genes, and many regulatory processes.

Our first model allows obtaining predictions on the concentration of each lineage
(preosteoblast, osteoblast, and adipocyte) over time and the effect of combining stim-
ulus signals. This model succeeds in predicting a weak and nonpermanent increase
of osteoblasts by activating the Wnt pathway. Although only few signals were con-
sidered, the modeling scheme is flexible enough to include more stimuli. This first
model of osteo-adipo differentiation fails in assuming mean cell behaviors in cell
decisions without incorporating the phenotypic characteristics of the cells, which is
covered by the second model.

The second model for preosteoblasts proliferation points to a more realistic de-
scription. With this model, we estimate the effect of low and short stimulus signals
(the activation of the Wnt pathway in this case) to increase the number of epigeneti-
cally bone-predisposed cells. The model structure allows one to specify it for different
phenotypic conditions. The initial predisposition to the formation of osteoblasts is
chosen deciding the number of epigenetically marked cells. In addition, the model
of cell maturation and parameters, such as the probability of success division and
epigenetic inheritance, allows calibrating different culture conditions.

Acknowledgement This work was partially supported by ICBM, Fondecyt 3130762, and Project
CIRIC-INRIA Chile.
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Biodiversity and its Role on Diseases
Transmission Cycles

Juan Manuel Cordovez and Camilo Sanabria

Abstract Recently, most notably after the appearance of the article by Keesing
et al., Impacts of biodiversity on the emergence and transmission of infectious dis-
eases in Nature in 2010, there has been a growing interest in understanding the
relationship between biodiversity and epidemiology. On the one hand, regions with
high biodiversity may be sources of new pathogens; on the other hand, biodiverse
ecological communities may buffer the transmission by “diluting” the disease. Using
mathematical epidemiology, we provide a framework to measure and interpret how
a change in the abundance and richness of species of an ecosystem could affect the
prevalence and the incidence of a disease. Moreover, we are able to quantify the
effect of such a change on the incidence of an infectious disease in a specific species
of the ecosystem, making this framework highly relevant for assessing the impact
on humans.

Keywords Biodiversity ·Virulence · Epidemiological network · Cycles

1 Introduction

With the current trends in land use, great changes in ecosystem biodiversity are ex-
pected [13, 22]. More precisely, as the habitat is degraded, species composition and
abundance will change to accommodate for an environment that offers less shelters,
hiding places, and varied diets. Furthermore, because species form an intricate net-
work that supports life, including parasitic forms, alteration to this network might
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have deeper impacts than the normal loss in biodiversity. Indeed, species exhibit
different competence for parasite development and transmission; a shift in species
composition can potentially alter the presence of the parasite in the network, mea-
sured in terms of number of species infected and parasite abundance [17, 18, 20].
Some studies have suggested that mid-size predators, usually more competent para-
site hosts, replace top-level predators because the latter are highly sensitive to habitat
disturbance [13].

The dilution effect hypothesis, suggested in the literature about 15 years ago,
proposes that as species diversity increases the individual risk of any member of the
network to become infected diminishes [13, 21–23]. If we take into consideration the
multiple hosts vector-borne diseases that include humans, the dilution effect implies
that as habitats become degraded the probability to have human cases of a wide sort
of parasitic diseases increases. However, as sound this idea might be, the hypothesis
has been proven hard to be validated experimentally [14, 15]. Field studies have
the challenges of measuring biodiversity while controlling for species competence
in degraded habitats that often do not provide enough resolution. Thus, it is not
surprising that some reports have supported the hypothesis of an inverse relation
between biodiversity and parasite infection risk [8] while others have suggested that
the relation is not apparent [18].

If we consider the environment as a network where nodes correspond to species
and the edges represent relationships between species (i.e., who eats who), it is clear
that changes in the environment can remove some nodes (while may add others) and
change the overall connection between the nodes. One can imagine a situation in
which removing several nodes of the incompetent species produces an increase in
abundance of a competent species and thus an increase in network infection (taken
as the proportion of infected individuals in the network). But similarly a change in
the environment that produces the disappearance of a competent species can produce
the opposite effect. Thus, in theory, the dilution effect could take place only under
certain circumstances [13].

In this study, we propose a theoretical approach to study dilution from an epidemi-
ological perspective. We are interested in determining the key aspects of the network
architecture that can lead to the dilution effect. To this end, we propose a general
framework mathematical model of susceptible and infective subjects from different
species that are interconnected. In the model, the species competence is captured by
the force of infection that states the probability of a susceptible becoming infected
after interaction with an infected individual. By computing the next-generation ma-
trix (NGM) of the system and the associated basic reproductive number on a network
scheme, we compute the virulence of each cycle (i.e., geometric mean of the NGM
entries of all the nodes involved in every possible circuit) and based on this scale we
identify critical cycles of disease transmission.

Mathematical epidemiological models are a specific type of dynamical population
models. Those models aim at describing or predicting the average dynamics of the
transmission of a disease among members of a particular population. The literature
detailing with the methods and tools of mathematical epidemiology is plentiful,
for example one could consider [1, 4, 5, 19]. An important quantity associated to
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these models is the abovementioned basic reproductive number: a threshold value
which indicates whether a disease is going to invade the population. Although, given
an specific model, obtaining this number is straighforward (cf. [10]), since it is
generally computed as the spectral radius of a matrix, it is rather involved to measure
its sensibility to the different parameters in the model.

In this chapter, we propose an alternative quantity, the critical virulence, which
bounds the basic reproductive number (sometimes they even coincide), and, being
easier to compute, it is more malleable. Especially when many different species carry-
ing a common pathogen are involved in the transmission of the disease. Furthermore,
as with the basic reproductive number, which measures the secondary infections aris-
ing by introducing an infected individual into a population of susceptible, the critical
virulence also has a biological interpretation.

We think this approach is highly relevant to study the disease transmission risk of
some highly prevalent vector-borne diseases that include multiple hosts, including
humans, such as chagas, malaria, or leishmaniasis [6, 9, 13].

2 The Model

To model the transmission of a disease in an environment with the organisms of
different type, we use the following assumptions and parameters:

• There are N different types of organisms in our environment; we denote by xi the
abundance of i-organisms (i.e., organisms of type i) susceptible of acquiring the
disease, and by yi the abundance of infected i-organisms, i = 1, . . .,N .

• The probability of i-organisms getting infected by j -organisms, in a unit of time,
will be denoted by βij .

• The natural mortality rate of the i-organisms will be denoted by μi .
• The mortality rate of the i-organisms infected by the disease will be denoted by

μi + di .
• The recruitment of the i-organisms will be denoted by Λi . We assume no newly

recruited organism comes with the disease, i.e., there is no vertical transmission.

Our model is summarized by the following system of equations:

dxi
dt
= Λi − xi

⎛

⎝μi +
N∑

j=1

βij yj

⎞

⎠ (1)

dyi
dt
= xi

⎛

⎝
N∑

j=1

βij yj

⎞

⎠− yi(μi + di) (2)

where i = 1, . . .,N .
For simplicity, we eliminate any vital dynamics assuming that the abundance of

each organism ni = xi + yi is constant (i.e., Λi = μini + diyi). This way, we may
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disregard the susceptible state variables by putting xi = ni − yi , so that Eqs. (1) and
(2) collapse into:

dyi
dt
= (ni − yi)

⎛

⎝
N∑

j=1

βij yj

⎞

⎠− yi(μi + di) (3)

for i = 1, . . .,N .
Note that here we do not explicitly distinguish vectors from hosts. In our model,

vectors are the i-organisms with βii = 0 (i.e., organisms not capable of transmitting
the disease to other organisms of the same type).

2.1 The NGM

The capacity a disease has for invading the environment will be measured using the
spectral radius of the NGM G [7, 10]. To get G, we use the influx in (3) of new
infected i-organisms:

Fi(y1, . . ., yN ) = (ni − yi)

⎛

⎝
N∑

j=1

βij yj

⎞

⎠

and the outflux:

Vi(y1, . . ., yN ) = yi(μi + di).

The NGM is then given by

G = FV −1

where F and V are the Jacobians of F = (F1, . . .,FN ) and V = (V1, . . .,VN ),
respectively, evaluated at the disease-free equilibrium:

(y1, . . ., yN ) = (0, . . ., 0).

Whence, if gij denotes the ij -entry in G,

gij = niβij

μj + dj
. (4)

Indeed, the ij th entry of F is

∂Fi

∂yj
(0, . . ., 0) = niβij

and V is the diagonal matrix with diagonal entries μ1 + d1, . . .,μN + dN .
The NGM is telling us that if we consider our environment in a disease-free state

and introduce y1 1-organisms, y2 2-organisms, . . ., yN N -organism, all of these
infected, then we can expect

∑
j gij yj newly infected i-organisms.
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2.2 Basic Reproductive Number

The invading capacity of a disease is given by the basic reproductive number R0

defined as the spectral radius of G:

R0 = ρ(G).

Recall that ρ(G) is defined as the greatest module of the eigenvalues of G. This
number is a threshold value telling us whether the disease could eventually disappear
by itself [10, Theorem 2]: if R0 < 1 it could, but if R0 >, 1 it will not. Intuitively,
this number can be thought as the expected number of secondary cases arising from
introducing a single infected organism into our disease-free environment.

The NGM is nonnegative (gij ≥ 0 for every i, j ), so we use the Perron–Frobenius
theory to study R0; or more precisely, its max version [2]. To G, we associate a
weighted-directed graph Γ (G) with vertices 1, 2, . . ., N and with an edge from i to
j of weight gij , if and only if, gij> 0 [3, Sect. 1.1]. A path in Γ (G) of length k is a
sequence of vertices:

i1 → i2 → · · · → ik → ik+1

such that there is an edge from ij to ij+1 for j = 1, . . ., k; and, its path geometric
mean is the geometric mean of the weight of the edges:

⎛

⎝
k∏

j=1

gij ij+1

⎞

⎠

1
k

.

A circuit of length k is a path in Γ (G) of length k with ik+1 = i1 and not crossing
any vertex more than once; and, the circuit geometric mean is the path geometric
mean of a circuit. The greatest circuit geometric mean in Γ (G) will be denoted by
μ(G); it is commonly known as limit eigenvalue of G [12, 16]. A circuit is critical if
its circuit geometric mean is equal to μ(G). Finally, the subgraph of Γ (G) spanned
by the vertices of a critical circuit is called critical subgraph.

Using the limit eigenvalue μ(G), we can get bounds on R0= ρ(G) [12,
Inequality (6) and Theorem 2]:

μ(G) ≤ ρ(G) ≤ ρ(S(G))μ(G) (5)

where S(G) is the matrix whose ij -entry is signum(gij ):

signum(gij ) =
⎧
⎨

⎩
0 if gij = 0

1 if gij > 0.

Note that S(G) is a matrix with zeroes and ones, so it follows from the Perron–
Frobenius theorem that its spectral radius ρ(S(G)) in (5) can vary from 0 to N , and
may not be an integer.
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3 Biological Interpretation

In the NGM G, the ij -term gij tells us that if into a disease-free environment we
introduce a j -organism, it will result in gij infected i-organism. We think of our
environment as the weighted-directed graph associated to G, Γ (G), with vertices
1, 2, . . ., N (i.e., each node represents an organism type) and with an edge from i to
j of weight gij whenever gij > 0.

We include two examples to illustrate the results from the previous section.

Example 1 We take an environment with only two organisms: a vector and a host.
We consider a slight modification of the vector–host model in [11]:

dSv

dt
= μNv − βIhSv − μSv

dIv

dt
= βIhSv − μIv

dSh
dt
= mNh − bIvSh −mSh

dIh
dt
= bIvSh −mIh

where Nv, Sv, Iv (respectively Nh, Sh, Ih) is the abundance of vectors, susceptible
vectors and infected vectors (respectively of hosts), μ (respectively m) their death
rate, and, β and b are the probabilities that a vector will get the disease from a
host and vice versa. Having no vital dynamics, assuming Nv = Nh = 1, we can
summarize the model by

dIv

dt
= βIh(1− Iv)− μIv

dIh
dt
= bIv(1− Ih)−mih.

In such case the NGM is

G =
⎛

⎝0 β/m

b/μ 0

⎞

⎠.

The values g12 = β/m, which can be thought as the infectability of the vector
and we denote by R0v, measures the number of infected hosts arising from the
introduction of an infected vector in an otherwise disease-free system. It is obtained
by combining the life expectancy of a vector m−1 and its probability of infecting
a host β. Similarly, the value g21 = R0h = b/μ measures the infectability of the
host. For G, its associated weighted-directed graph is displayed in Fig. 1. The limit
eigenvalue is obtained by taking the circuit 1 → 2 → 1:

μ(G) = √g12g21 =
√

bβ

mμ
= ρ(G).
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Fig. 1 Directed graph
associated to the vector–host
model

V H

β /m

b/ μ

Note that in this case ρ(S(G)) = 1. So, regardless of the value of infectability of the
vector R0v = β/m, the disease will not invade the environment whenever the host
can contain the disease, i.e., whenever R0h = b/μ < m/β = R−1

0v .
Based on this vector–host model our associated directed graph has two vertices,

labeled V and H ; and two directed edges, one from V to H , with weight β/m, and
another from H to V , weight b/μ. See Fig. 1.

The limit eigenvalue μ(G) is the greatest circuit geometric mean in Γ (G). Given
a circuit, we will call its circuit geometric mean the virulence, and μ(G) the critical
virulence. From (5), the critical virulence bounds the reproductive number R0 of the
disease.

Example 2 As a generalization of the previous example, we may consider an en-
vironment with two host, H1 and H2, capable of transmitting the disease among
themselves, and a vector V which can infect both organisms H1 and H2 but can-
not infect other vectors and acquires the disease from infected hosts. This model is
summarized in graph of Fig. 2.

The parameter βi corresponds to the probability of the vector infecting host Hi ,
i = 1, 2, μi to the mortality rate of Hi , bi is the probability that a vector will get
infected by a host of type i, and m is the mortality of V . The circuits are:

H1 → H1

H2 → H2

H1 → V → H1

H2 → V → H2

H1 → V → H2 → V → H1.

V H2H1

β2/m

b2/ μ2

βH2
μ2

β1/m

b1/ μ1

βH1
μ1

Fig. 2 Directed graph associated to the host–vector–host model
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The one with the greatest virulence will determine the critical virulence μ(G) of the
system. For this model:

S(G) =

⎛

⎜⎜
⎝

1 1 0

1 0 1

0 1 1

⎞

⎟⎟
⎠,

so that ρ(S(G)) = 2, and we have μ(G) ≤ R0 ≤ 2μ(G).
The advantage of working with the critical virulence, rather than with the re-

productive number, as a way of measuring the invading capacity of a disease in a
biodiverse environment, lies on the fact that measuring the sensibility and the elas-
ticity to the parameters of the model of the latter is considerably harder than that
of the former. Furthermore, the critical virulence is telling us that the reproductive
capacity of a disease is concentrated on the critical circuit.

4 Discussion

As the risk of human infection can be stated in terms of the abundance of competent
species, the number of encounters between humans and infected subjects, and vector-
feeding preferences; habitat destruction can either increase or decrease the risk of
infection depending on what species remain and their relative contribution to parasite
flow. Here, we presented a novel approach to identify critical cycles in the network as
those that are dominant when describing the ultimate risk of human infection. In this
chapter, we propose that the cycle with the maximum virulence for one particular
node is called a critical cycle and is such because it explains the maximum amount
of secondary infections of that type.

As very often the introduction of an infected organisms does not directly pro-
duces the infection of a particular type, but involves infection of multiple types in
between, it is important to consider the chain of species involved in a specific parasite
transmission network. The NGM provides a framework to establish the number of
secondary cases after the introduction of any infected type in every other type in the
network by averaging the contribution via different pathways. In this sense, removal
of one node can be tested in terms of infection level in another but one would never
know how this change came about. With the proposed critical cycle, we can tease
apart the effect of one node into another by its paths and compare the virulence of
each one. In this way, control programs could target more efficiently some privileged
paths because of their ability to host the parasite.

This might be of importance in chagas disease. In chagas, Didelphis marsupialis
has been proposed to be the main host of Trypanosome cruzi in great parts of South
and Central America, it has been suggested that this mammal becomes infected via
insect (vector) biting while searching for food or shelter in palm trees, the natural
habitat of many vectors [13]. The mammal, because of its peridomicilary habits,
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can support big insect populations close to human dwellings. Therefore, this host
could be playing the role of moving the parasite from sylvatic populations to insect
population close to humans. Other hosts include birds and reptiles that do not host
the parasite but provide meals for insects. Habitat deforestation might increase the
abundance of D. marsupialis while reducing other host types, what would be the
effect of this land use change on human chagas disease risk? We believe that for
diseases with complex parasite transmission networks such as Chagas the notion of
critical cycle can provide answer to some of these questions; the challenge resides
in measuring disease transmission parameters accurately.
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Simulation Model for AIDS Dynamics and
Optimal Control Through Antiviral Treatment

Carlos Andrés Trujillo-Salazar and Hernán Darío Toro-Zapata

Abstract A mathematical model based on ordinary differential equations to study
AIDS dynamics at a population level and giving importance to diagnosis of infected is
proposed. Five populations are considered: susceptibles, healthy diagnosed, healthy
undiagnosed HIV positives, sick diagnosed, and undiagnosed HIV positives. The
number R0 is analytically calculated and used in numerical results interpretation
to determine the long-term population behavior and which parameters are the most
influential on the dynamics. Subsequently, antiviral treatment is incorporated into
the model as a control strategy and the Pontryagin maximum principle is used to
find out an optimal control function. Finally, different simulations are performed
and interpreted.

Keywords AIDS · Antiviral treatment · Diagnosis · Dynamic system · Optimal
control

1 Introduction

AIDS study does not require additional motivation, the importance of research around
this problem is sufficiently illustrated with numbers. In the Report on the global AIDS
epidemic 2013 from the United Nations (UN) [7], it is said that in 2012, 35.3 million
people were living with HIV worldwide, and 1.6 million people have died fromAIDS.
Not surprisingly fighting this disease is a generalized slogan of most governments and
ongoing research on several fronts; most of them include prevention and treatment.

In regard to prevention, the UN reveals that the annual number of new HIV
infections in adults and adolescents decreased by 50 % or more in 26 countries
between 2001 and 2012, a goal that was set for 2015. However, other countries are
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failing to halve sexual HIV transmission, highlighting the importance of intensifying
prevention efforts [7].

Antiviral therapy, is a reactive strategy against disease, although it improves HIV
positives quality of life, does not prevent disease transmission. Indeed, rapid expan-
sion of access to treatment has helped reduce the number of AIDS-related deaths
but also contributes to the increased HIV prevalence. This increase has been docu-
mented in sex workers (SW) in populations of men who have sex with men (MSM),
and confined populations, as is the case of inmates in prisons. Given the current dis-
ease status at a global scale, it is necessary to develop theoretical studies to provide
scientific basis for decision making in the HIV and AIDS treatment [3, 8–10, 14, 16].

The UN also reports that the first-line antiviral therapy cost in some low- and
middle-income countries has been reduced approximately to $140 per year per per-
son, a significative number, taking into account that in the mid-1990s, the cost was
about $ 10,000 per year per person. Accompanied by other policies, reduction of
treatment cost has allowed 9.7 million people in low- and middle-income countries
to have access to antiviral therapy in late 2012 [13]. This represents 61 % of those
who were eligible under the guidelines of HIV treatment established by the World
Health Organization (WHO) in 2010 [7].

Recent scientific evidence, based on clinical trials, has shown that early access
to treatment can save lives. In 2013, the WHO revised its guidelines in the light of
this new evidence and began to recommend treatment to be started long before and
immediately in some cases. This means that 28.6 million people were eligible for
treatment in 2013. Science has also shown that if HIV-positive pregnant women have
access to antiviral drugs, risk of transmitting the virus to her child can be reduced to
below 5 %. In 2012, about 62 % of these women had access to antiviral drugs and in
many countries coverage levels exceeded 80 % [13].

According to the above, it is evident that the treatment is a very important aspect
to be considered in AIDS research. This chapter presents an ordinary differential
equations system based on AIDS dynamics, studied from a numerical perspective
and subsequently control strategies based on treatment.

2 Basic Model

Three terms are defined from the medical point of view, as a simplification of the most
precise definitions given in [15]. The defined terms are very important throughout
the chapter:

• HIV positive: patient having antibodies to HIV.
• Healthy HIV positive: HIV positive with no symptoms of disease associated with

infection. It is classified as diagnosed and undiagnosed.
• Sick HIV positive: HIV positive with symptoms of disease associated with

infection. It is classified as diagnosed and undiagnosed.
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Human population is divided into five well-differentiated categories: x= x(t) de-
notes the average number of healthy people susceptible to get infected, y1= y1(t)
denotes the average number of healthy undiagnosed HIV positives, y2= y2(t) denotes
the average number of healthy diagnosed HIV positives, z1= z1(t) denotes the aver-
age number of sick undiagnosed HIV positives, and z2= z2(t) denotes the average
number of sick diagnosed HIV positives.

Growth rate is assumed constant. It is considered only sexual transmission be-
tween healthy and infected HIV positives in a mixed population, i.e., no difference
in age, gender, or sexual orientation is made. It is assumed that susceptible indi-
viduals acquire the virus through sexual contact with healthy and sick undiagnosed
HIV positives, with transmission rate β1, i.e., terms β1xy1 and β1xz1 are the average
number of susceptibles that get infected. Infection rate is the same because there is
no change in sexual behavior due to ignorance of their HIV status.

It is assumed that despite the diagnosis, it is still possible that susceptible peo-
ple acquire HIV from healthy and sick diagnosed HIV positives, with transmission
rates β2 and β3, respectively, i.e., terms β2xy2 and β3xz2 represent the average of
susceptibles that get infected. This is a somewhat delicate consideration, because
diagnosed HIV positives irresponsible sexual behavior is assumed. However, when
simulating, an additional consideration made was β1 greater than β2 and β3.

Healthy HIV positives evolve to sick HIV positives, preserving their diagnosed
condition in which they are located. In this case, γ1y1 and γ2y2 are the average
number of healthy HIV positives that evolve to sick HIV positives, diagnosed and
undiagnosed, respectively. Sick HIV positives, diagnosed and undiagnosed, die by
infection-related causes at rates ω1 and ω2, so the terms ω1z1 is the average of sick
diagnosed HIV positives who dies and ω2z2 is the average of sick undiagnosed HIV
positives who dies. Healthy HIV positives and sick HIV positives are diagnosed at
rates δ1 and δ2; in this case, δ1y1 is the average of healthy HIV positives who gets
diagnosed and δ2z1 is the average of sick HIV positives who gets diagnosed.

Taking into account definitions, variables, and assumptions above, a mathematical
model based on ordinary differential equations arises, which describe, at least in
theory, the interaction between the populations considered. The dot on each of the
variables represents derivative, i.e., variation respect to time. The model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Λ− β1xy1 − β2xy2 − β1xz1 − β3xz2 − μx

ẏ1 = β1xy1 + β2xy2 + β1xz1 + β3xz2 − δ1y1 − θy1

ẏ2 = δ1y1 − φy2

ż1 = γ1y1 − δ2z1 − ρz1

ż2 = γ2y2 + δ2z1 − ηz2,

(1)

where θ = γ1 + μ, φ = γ2 + μ, ρ = ω1 + μ, η = ω2 + μ and initial conditions:

x(0) = x0, y1(0) = y10, y2(0) = y20, z1(0) = z10, z2(0) = z20. (2)



260 C. A. Trujillo-Salazar and H. D. Toro-Zapata

Proposition 1 System (1) is defined in the positively invariant region,

Ω =
{

(x, y1, y2, z1, z2) ∈ R
5 : 0 < x + y1 + y2 + z1 + z2 ≤ Λ

μ

}
.

The region defined in Proposition 1 is important because it guarantees nonnegativity
of the solutions and that they will remain in Ω as t →∞.

2.1 Disease-Free Equilibrium and R0

System (1) has a trivial equilibrium given by E0 =
(
Λ
μ

, 0, 0, 0, 0
)

, which represents

the equilibrium state in the absence of infection, i.e., without disease, one would ex-
pect the susceptible population to reach the equilibrium value ofΛ/μ, corresponding
to the total population. It is known that the stability of the equilibrium points de-
termines the future behavior of the infection, the study is done from the sign of the
eigenvalues of the Jacobian matrix of the system, evaluated at such points. In the
particular case of E0, the characteristic equation is given by

− 1

μ
(λ+ μ)(p0λ

4 + p1λ
3 + p2λ

2 + p3λ+ p4) = 0.

Obviously, one of the eigenvalues is λ = −μ, but the other four eigenvalues are very
uncomfortable to handle explicitly, since the coefficients pi , i = 0, . . ., 4 correspond
to very large algebraic expressions. Therefore, stability analysis is omitted.

One way to study the disease behavior is to analyze the basic reproduction num-
ber, R0, which represents the number of secondary cases that are produced by an
infected individual in an entirely susceptible population. Using the method of the
next-generation matrix, this number is obtained

Proposition 2 The basic reproduction number R0 for the system (1) is

R0 = β1x
∗

δ1 + θ
+ β2x

∗δ1

φ(δ1 + θ )
+ β1x

∗γ1

(δ2 + ρ)(δ1 + θ )
+ β3x

∗(γ2δ1δ2 + γ2δ1ρ + δ2γ1φ)

φη(δ1 + θ )(δ2 + ρ)
,

where x∗ = Λ
μ

.

2.2 Basic Model Numerical Results

Numerical simulations were performed to visualize the long-term behavior of model
(1); in order to obtain different settings, 21 simulations for each parameter were
made. It was considered a baseline value (ad hoc) for each parameter, and randomly
20 other values were assigned using a uniform probability distribution. These values
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Table 1 Baseline values considered in numerical simulations

Parameters Description Value +100%

Λ Constant growth rate 10

β1 Transmission rate by contact with an undiagnosed HIV+ 0.0002 0.0004

β2 Transmission rate by contact with a healthy diagnosed HIV+ 0.00002 0.00004

β3 Transmission rate by contact with an sick diagnosed HIV+ 0.00001 0.00002

μ Natural death rate 0.01 0.02

γ1 Evolution from healthy undiagnosed HIV+ to sick
undiagnosed HIV+

0.01 0.02

γ2 Evolution from healthy diagnosed HIV+ to sick diagnosed
HIV+

0.001 0.002

ω1 Death rate of sick undiagnosed HIV+ 0.01 0.02

ω2 Death rate of sick diagnosed HIV+ 0,001 0.002

δ1 Diagnostic rate of healthy HIV+ 0,5 1

δ2 Diagnostic rate of sick HIV+ 0,5 1

did not exceed 100 % of the baseline value, both by default or excess. In Table 1 are
shown the baseline values considered and the maximum value for each one.

It is noteworthy that the simulations were made up to 1500 months, which is
equivalent to 125 years, as shown in Fig. 1. This time scale is not unusual if taken
as reference works like [1, 4, 6], where simulations at 100, 60, and 80 years, re-
spectively, were made. Moreover, in [11], the simulation was performed up to 1000
years.

Another goal of simulations was to see which parameters were most influential
in the dynamic. It was then determined that the transmission rate by contact with a
healthy diagnosed HIV positive, denoted by β2, was the parameter that generated
major changes in the populations behavior, situation reflected in Fig. 1. In this case,
the minimum value of β2 was 0.00000444, associated to the curve drawn with black
solid line, which is not seen in the graph, since the value of R0 is 0.8768, less than 1,
and makes no infected populations thrive. The maximum value of β2 is 0.00003919
and has an associated graph drawn with green dots, in this case the value of R0 is
3.9140.

3 Control Model

3.1 Background

In a previous work, one of the authors studied the model (1) incorporating optimal
control strategies based on diagnosis solely [12]. In terms of structure, the model
is the same, but an important assumption do change: the diagnosis rate of healthy
and sick HIV positives corresponds to the control functions. That is, δ1 and δ2 were
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denoted by u1 = u1(t) and u2 = u2(t), respectively. The model (3) describes the
above consideration:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Λ− β1xy1 − β2xy2 − β1xz1 − β3xz2 − μx

ẏ1 = β1xy1 + β2xy2 + β1xz1 + β3xz2 − u1y1 − θy1

ẏ2 = u1y1 − φy2

ż1 = γ1y1 − u2z1 − ρz1

ż2 = γ2y2 + u2z1 − ηz2.

(3)

Optimal control theory and the Pontryagin maximum principle were used to study
the effect of diagnosis on HIV control. Model (3) analysis left very important lessons,
including:

1. The diagnostic strategy alone was not sufficient to significantly reduce the disease.
2. Control based solely on HIV diagnosis is not effective in controlling the transmis-

sion of the disease and on the contrary, it is necessary to resort to other strategies
such as prophylaxis or treatment.

3.2 Model with Antiviral Treatment

Primary goal of treatment is to reduce morbidity and mortality associated with HIV,
which is achieved by focusing on inhibiting virus replication. During the past 20
years, the “Panel on Antiretroviral Guidelines for Adults and Adolescents” has made
changes in recommendations about when to start therapy based on clinical trials,
cohort data, and therapeutic options available at the time of each review. The standard
procedure of the panel is to make recommendations when there is an agreement
among two-thirds of the members; however, for the 2011 version of the guidelines
for the use of antiretroviral agents in HIV-1-infected adults and adolescents [9], it
has not been possible to reach an agreement about when to start therapy. According
to the panel, controlled trials provide evidence that applying treatment in patients
with CD4 counts <350 cells/mm3 brings benefits. The panel recommends treatment
for patients with cell counts between 350 and 500 cells/mm3. Finally, for patients
with cell counts >500 cells/mm3, the panel members are divided; out of this, 50 %
favor starting therapy at early stages, while the other 50 % consider it optional [9].

Considering the last part of Sect. 3.1, and the system (1), it is proposed as a
control problem which takes into account antiviral treatment that corresponds to the
inclusion of a control function which varies with time. The goal is to find an optimal
function in terms of reducing the impact of disease. Next assumptions are made:

• The control function u = u(t), with 0 ≤ u ≤ 1 models treatment application in
diagnosed HIV positives. Thus, u = 0 means no treatment and u = 1 indicates
full treatment is applied, i.e., the probability of infecting a healthy person is zero.
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• Viral load decreases in the diagnosed population under antiretroviral treatment,
resulting in a reduction of transmission rates.

• The reduction factors (1−f1u) and (1−f2u) denote the effectiveness of antiretro-
viral treatment in healthy and sick diagnosed HIV positives, where f1 and f2 are
related to antiviral dose administration [2].

Under the above assumptions, the model (1) takes the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Λ− β1xy1 − β2(1− f1u)xy2 − β1xz1 − β3(1− f2u)xz2 − μx

ẏ1 = β1xy1 + β2(1− f1u)xy2 + β1xz1 + β3(1− f2u)xz2 − δ1y1 − θy1

ẏ2 = δ1y1 − φy2

ż1 = γ1y1 − δ2z1 − ρz1

ż2 = γ2y2 + δ2z1 − ηz2.

(4)

The idea now is to formulate an optimal control problem with model (4), that allows to
determine an optimal function u∗ = u∗(t) to be the most effective treatment scheme
to reduce disease transmission. For this, it is considered a cost functional to be
minimized, denoted by J , which collects information of antiviral treatment and
treated diagnosed populations. Such functional arises as follows:

J (u) =
∫ τ

0

(
A1y2 + A2z2 + A3

2
u2

)
dt. (5)

Functional (5) is subject to the initial value problem consisting of system (4) and
initial conditions (2). The goal is to find an optimal function u∗ ∈ Γ such that
J (u∗) ≤ J (u), for all u ∈ Γ and where Γ is the set of accessibility, given by

Γ = {u : u ∈ L2([0, τ ]), 0 ≤ u ≤ 1}.
To find this function, the Pontryagin maximum principle is used, whereby minimizing
the functional J is equivalent to minimizing the Hamiltonian function H , given by

H (x) = I + L · F(x),

where x is the vector of state variables, I is the integrand in J , F is the vector field
in (4), and L is a vector of adjoint variables. Explicitly,

H (·) = A1y2 + A2z2 + A3
2 u2 + L1(Λ− β1xy1 − β2(1− f1u)xy2 − β1xz1

− β3(1− f2u)xz2 − μx)+ L2(β1xy1 + β2(1− f1u)xy2 + β1xz1

+ β3(1− f2u)xz2 − δ1y1 − θy1)+ L3(δ1y1 − φy2)+ L4(γ1y1

− δ2z1 − ρz1)+ L5(γ2y2 + δ2z1 − ηz2)+M1u+M2(1− u)

where M1,2 are nonnegative penalty multipliers satisfying the following conditions:

M1u = 0 and M2(1− u) = 0, (6)
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Used to guarantee that 0 ≤ u ≤ 1. In addition, the variables Li , for i = 1, . . ., 5, are
adjoint variables that satisfy the final-value problem consisting of the system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̇1 = (L1 − L2)(β1(y1 + z1)+ β2(1− f1u)y2 + β3(1− f2u)z2)+ μL1

L̇2 = (L1 − L2)β1x + (δ1 + θ )L2 − δ1L3 − γ1L4

L̇3 = (L1 − L2)(1− f1u)β2x + φL3 − γ2L5 − A1

L̇4 = (L1 − L2)β1x + (δ2 + ρ)L4 − δ2L5

L̇5 = (L1 − L2)(1− f2u)β3x + ηL5 − A2,

(7)

and the final conditions Li(τ ) = 0, for i = 1, . . ., 5. To characterize the optimal
control, it is solved the first-order condition ∂H

∂u = 0 to have,

u = (L2 − L1)(β2f1y2 + β3f2z2)−M1 +M2

A3
.

Using the penalty conditions given in (6), it follows that an appropriate way to
characterize u∗ is

u∗ = max

(
0, min

(
(L2 − L1)(β2f1y2 + β3f2z2)

A3
, 1

))
. (8)

The described process is developed based on control theory applied to epidemics,
described by several authors such as [5].

3.3 Control Model Numerical Results

The effect of optimal treatment schemes u∗ on the dynamic is shown in the Figs. 2–4,
which are the result of simulating the boundary value problem formed by (4), (7),
and (8) with initial conditions (2) and final conditions Li(τ ) = 0, for i = 1, . . ., 5.
Parameter baseline values are used according to Table 1, variations are performed
on the weighting A3, which is the denominator of the optimal control (8) and the
cost-related parameter. Twenty random values were assigned to A3, generated using
a uniform probability distribution. In all cases, the smaller A3 values correspond to
the black line, whereas the green lines are associated with large values.

Preliminary simulations were made varying the values of A3 between 0 and
10,000, while f1 and f2 effectiveness were set at 1. It was noted that to perceive
dynamic changes such high weighting values for A3 were not necessary. Thus, from
the numerical results, the variation to A3 was made between 0 and 4500, retaining
effectiveness f1 and f2 in 1. It was obtained in Fig. 2, in which it is observed that
HIV positives do not prosper (black solid line), while control levels remain between
50 and 70 %. However, when the value of A3 decreases (green dotted line), so do
the control and the susceptible population, while increases the HIV positives. It is
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important to say that at the end of the time scale, black curves give the feeling of ap-
parent prosperity for the HIV positives, but this is because the treatment is no longer
applied. It is also important to remember that final conditions for adjoint variables
are zero, i.e., Li( τ ) = 0.

In Fig. 2, a change of concavity in the graphs of the five populations was observed.
From another perspective, a kind of jump was seen between some curves. This
situation is then studied with another simulation, in which the variation now for A3

is given between 2100 and 2400 to obtain Fig. 3, in which no news were found; it just
happened that by decreasing the range of variation of the values of A3, the curves
were closer together. Of course, infected populations prosper because the application
of the control did not exceed 50 % .

Finally, Fig. 4 shows that even the high values of A3 reduces both the control
and the susceptible, whereas infected populations thrive. However, an interesting
situation with the solid black curve, which is obtained for the smallest random value
of A3 is presented; it is seen, despite a permanent application of control by nearly
1200 months, that the infected populations are on the rise. This is undoubtedly due
to the value of one of the effectiveness was reduced, as it was considered f1 = 0.5,
while it remained f2 = 1. Simulation to f1 = 1 and f2 = 0.5 was also performed,
but the results were similar to those observed in Fig. 2.

4 Conclusions

After making different simulations of model (1), assigning to each parameter multiple
values, it was concluded that β2, the transmission rate by contact with a healthy
diagnosed HIV positives, proved to be the parameter that caused major alterations
in the population behavior. It is worthwhile to mention that this situation is not
influenced by high numerical values; indeed, in Table 1 precisely β2 is one of the
parameters of lesser value and has not been giving special priority in the model;
even in this order of ideas, β1 was expected to be the one which would generate
this behavior. Therefore, the influence of β2 indicates that diagnosed HIV positives
plays an important role on HIV/AIDS epidemics, and prevention strategies should
be strengthened on this population.

Incorporation of dose parameters in optimal control models, as illustrated with f1

and f2 in the model (8) strengthen the numerical results. Compared with previous
studies of the authors, they had just explored simulations as shown in Figs. 2 and 3.
This results could help physicians and health services to improve their decision
making on antiviral treatment schemes.

This study allows to understand how diagnosis and antiviral treatment consid-
ered together is an important issue on HIV transmission and evolution to AIDS.
Researchers should incorporate this assumptions into their studies to provide more
accurate interpretations on the phenomenon. Further studies should be focused on
how individual antiviral schemes impact disease’s behavior when generalized into
populations with similar characteristics, and evaluate alternate (suboptimal) schemes
as a way to improve patients’ quality of life and reduce interventions cost.
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Orbital Relative Movement Applied the
Formation Flight of Artificial Satellites Around
the Earth

Jorge Soliz and Daniel Molano

Abstract In the past years, space missions have become a difficult task due to the
ambition of the experiments. For this reason, the techniques needed to achieve the
objectives are becoming more complex, as the needs of autonomy, accuracy, flexibil-
ity, etc., are very important. One solution found to accomplish these requirements is
to send a formation of multiple satellites. This is a good solution because it lets us to
make different measurements simultaneously, improving the accuracy and reliabil-
ity, and also it us lets to build cheaper and smaller satellites, which not only improves
the performance of each satellite but also the flexibility of the entire mission. There
has been a considerable interest in distributing the functions of a single large satellite
among several small cooperative units. Many potential applications of this enabling
technology exist, one of which is to improve the performance of the Earth obser-
vation. A cluster of satellites will be able to synthesize a much larger aperture than
can be achieved with a single platform, thus providing significant increases in image
resolution through interferometry.

Keywords Formation flight · Dynamical systems · Celestial mechanics · Relative
movement

1 Introduction

This work was inspired by the research of Koon et al. [4]. The research developed
dynamical systems techniques appropriate to the near Earth case and found a family
of candidate reference orbits whose nearby orbits may support formation flight.

Two important predecessors in the formation flying field are the European Space
Agency (ESA) and the National Aeronautics and Space Administration (NASA).
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Both, with their missions of multiple satellites are contributed to the development of
this concept and the improvement of the necessary technology.

The first mission of this type was Deep Space 1 (DS1), launched in 1999 by
NASA. The DS1 developed different important technologies for future missions of
multiple satellites, like an autonomous agent architecture, on-board deduction and
search, and goal-directed closed-loop commanding.

The orbital relative movement and the formation flight was studied in past years
as it is seen in refs. [5–8]. We have used Routh reduction and Poincaré section
techniques where a procedure was developed for locating orbits such that the cluster
of satellites remains close for many years, with very little dispersing, even with no
controls. Rather than using orbital elements, our analysis is done directly in physical
space which makes the connection with physical requirements more direct. These
orbits are called quasi-periodic orbits and are obtained due to Poincaré’s map where
one can find a fixed stable point for which passes the desired orbit. This methodology
of finding dynamically favorable orbits, if coupled with control and optimal control,
may provide an effective way to deal with the maintenance and reconfiguration of
formation flight of near Earth satellites.

In the satellite motion, the first perturbation which will be considered is the so-
called J2 effect. This is due to the fact that the Earth is not an homogeneous perfect
sphere, but its a geoid. This means that our planet has an irregular shape which
is characteristic of the Earth alone. The most evident difference from the spherical
shape is the flattening at the poles. Therefore, the Earth can be modeled not as a
sphere, but as a spheroid (an ellipsoid of revolution). This is the cause of the J2

perturbation, which results to be the most important perturbation at almost every
altitude.

2 Movement Equations

The Routh reduction technique was used to rewrite the equations of motion of the
full system in a simpler form. This procedure will enable us to study first the reduced
dynamics in the meridian plane of the satellite before dealing with the dynamics in
the longitudinal direction [4].

Recall that in spherical coordinates (ρ, θ ,φ), distance from the origin to a given
point (satellite), latitude, longitude, respectively. The potential energy including the
J2 effect is given by

U = −μ

ρ
+ μR2

eJ2

ρ3

(
3

2
cos2 θ − 1

2

)
,

where μ is the gravitational constant of the Earth, Re is the radius of the Earth
(μ = GMe = 3.986005 × 1014 m3/s2), (Re = 6378140 m), and J2 is the second
zonal harmonic coefficient due to the oblateness of the Earth (J2 = 0.00108263).
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The potential energy equation with J2 in U (r , z),

U (r , z) = − μ

(r2 + z2)1/2
+ μR2

e J2

(r2 + z2)3/2

(
3

2

z2

r2 + z2
− 1

2

)
,

following [1],

R = 1

2
(ρ̇2 + ρ2θ̇2)− H 2

z

2ρ2 sin2 θ
− U (ρ, θ ).

In the rectangular coordinates (r , z), Routhian function becomes

R = 1

2
(ṙ2 + ż2)− H 2

z

2r2
−

[
− μ

(r2 + z2)1/2
+ μR2

e J2

(r2 + z2)3/2

(
3

2

z2

r2 + z2
− 1

2

)]
,

where ρ2 = r2 + z2 and cos θ = z/ρ. The reduced equation are then given by

d

dt

(
∂R

∂ṙ

)
= ∂R

∂r
,

d

dt

(
∂R

∂ ż

)
= ∂R

∂z
.

Equivalently, these equations are given by [4]:

r̈ = H 2
z

1

r3
− μ

r

(r2 + z2)3/2
− 3μR2

e J2

2

r

(r2 + z2)5/2
+ 15μR2

e J2

2

rz2

(r2 + z2)7/2
,

z̈ = −μ z

(r2 + z2)3/2
− 3μR2

e J2

2

z

(r2 + z2)5/2
+ 3μR2

e J2

2

(3z2 − 2r2)z

(r2 + z2)7/2
,

where

r̈ = f (r , z), z̈ = g(r , z), φ̈ = Hz

r2
,

and the energy is given by

E = 1

2
(ṙ2 + ż2)+ H 2

z

2r2
+ U (r , z).

2.1 The Poincaré Map

The most basic tool for studying the stability and bifurcations of periodic orbits is
the Poincaré map or first return map. The idea of the Poincaré map is quite simple:
If Γ is a periodic orbit of the system:

ẋ = f (x),
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Fig. 1 The Poincaré map [4]

through the point x0 and & is a hyperplane perpendicular to Γ at x0, then for any
x ∈ & sufficiently near x0, the solution of the last equation through x at t = 0, φt (x),
will cross & again at a point P(x) near x0. The mapping x → P(x) is called the
Poincaré map (Fig. 1).

The Poincaré map can also be defined when & is a smooth surface, through a
point x0 ∈ Γ , which is not tangent to Γ at x0. In this case, the surface & is said to
intersect the curve Γ transversally at x0.

After performing Routh reduction, we can use the method of Poincaré section to
find the initial conditions for orbits that are dynamically favorable to the formation
flight.

According to [4] the energy E is conserved (in the meridian variables (r , z)),
the constant energy surface for the reduced system is three-dimensional and the
hyperplane z = 0 can be used as the transversal plane to obtain the two-dimensional
Poincare section, (Fig. 2). Notice that the plane z = 0 is the plane of the Earth’s
equator.

By studying this Poincaré section (Fig. 2) and looking for the stable fixed point,
we can find the pseudo-circular orbit (which corresponds to the fixed point in the
middle of Fig. 2) whose nearby orbits can be used for formation flight.

3 Simulation

Due to the reduced equations, we can fix values and obtain (r , ṙ) of the Poincaré
section that gives the initial conditions (r , z,φ, ṙ , ż, φ̇) for an orbit of the full system.
This is because z = 0 and ż = ż(r , z,φ, ṙ , ż, φ̇) (where ż > 0) and φ̇ = Hz/r

2

can be computed from the fixed energy E and the fixed z-component of the angular
momentum Hz once (r , ṙ) are known. Also, since φ is ignorable, it can be chosen
arbitrary. For convenience sake, we can set φ = 0 at t = 0. Hence, (r , ṙ) (or
more fully (r , 0,φ, ṙ ,E,Hz)) provides all the initial conditions for an orbit of the full
system.
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Fig. 2 Poincaré section of (r , ṙ) at z = 0, E = −0.45, H 2
z = 0.3

Table 1 Initial conditions for the cluster of satellites

Sat r (DU ) ṙ (DU/TU ) φ t (T U )

1 1.11133496883 0.0 1×10−5 1× 10−5

2 1.11134196883 0.0 0.0 1× 10−5

3 1.11133496883 0.0 −1× 10−5 1× 10−5

3.1 Triangular Cluster Near the Pseudo-Circular Orbit

By using the stable fixed point and the points nearby as well as making slight changes
in the longitudinal angle φ (and possibly in the time t), we can construct differ-
ent kinds of cluster which will remain together after many years (corresponding to
thousands of revolutions around the Earth).

For example, if we fix E = −0.45, H 2
z = 0.3 (for example), the fixed point for

the Poincaré section at z = 0 will be (rf , 0), where rf = 1.11133496883 fixed point
this is about 710 km above the Earth.

The following initial conditions give a triangular cluster (isosceles triangle, with
sides 80, 80, and 140 m approximately; Tables 1 and 2).

Recall that the length units have been chosen to make the radius of the Earth
6.4× 106 m equal to 1DU and 1T U is equivalent to 806.810 s.

The evolution of these three satellites in a triangular cluster were plotted in a frame
whose origin is at their instantaneous barycenter, with the yz-plane orthogonal to the
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ẋ
(D

U
/
T
U

)
ẏ
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Table 3 Initial conditions in rectangular coordinates

Sat x (DU ) y (DU ) z (DU ) ẋ (DU/TU ) ẏ (DU/TU ) ż (DU/TU )

1 1.1113349 0 0 0 0.492851 0.746675

Table 4 Maximum and minimum value of the orbital elements mains for the fixed point

r Altitude (km) Eccentricity Inclination (degree)

1.11133496883 703.632–717.350 0.00031–0.000929 58.678–58.712

line of sight, the x-axis pointing toward the center of the Earth, and the y-axis and
the z-axis pointing toward the (instantaneous) west and north, respectively.

Figure 3 (left side) shows the trajectories of these three satellites projected onto
the yz-plane for 100 revolutions around the Earth (about a week). Figure 3 (right
side) shows the trajectories of the same cluster of satellites cluster in the yz-plane for
5000 revolutions around the Earth (about a year), notice how small the dispersion is
during a year (see Fig. 3).

3.2 Orbital Elements Range

By having the initial condition (x, y, z, ẋ, ẏ, ż) of the stable fixed point (see Table 3),
the orbital elements are calculated for a longtime (5000 revolutions around the Earth).

As one can see, the mean orbital elements do not show large variations (Table 4).

4 Method of Monitoring the Formation of Satellites

In this section, we studied the behavior of the cluster of satellites. First, we made an
area analysis of the triangle that forms the three satellites. Second, we studied the
behavior of the relative distances between the satellites.

4.1 Area

The triangle’s area formed by the cluster of satellites will be calculated for knowing
how the area changes along time. In Fig. 4, we can see the change of the triangular
area in four revolutions. The area changes between 16 and 3445 m2, approximately.
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Fig. 3 The trajectories of three satellites in the yz-plane for 100 (left) and 5000 revolutions around
the Earth (right)
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Fig. 5 Relative distance between the satellites 1 and 2, 1 and 3, 2 and 3 respectively, for four
revolutions

4.2 Relative Distances

In this section, we realized the analysis of the relative distances between satellites
and their performance along the time. The relative distance for four revolutions is
plotted in the following figure (Fig. 5).

Briefly, the maximum and minimum variation are given in Table 5:
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Table 5 Values of the
maximum and minimum
distance between two
satellites

Satellites Max. distance (m) Min. distance (m)

1 and 2 126.5 52.6

2 and 3 126.5 52.6

1 and 3 142.2 73.9
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Fig. 6 Area formed by the cluster

4.3 Statistical Analysis

By making an statistical analysis for understanding the behavior of the cluster’s area
in the next revolutions of Fig. 4, we will get the mean area “Ā” (black line) and
the standard deviations “σ” (red line for maximun value and blue line for minimun
value). These were calculated each 50 revolutions (total time of simulation, 5000
revolutions). The result gives a qualitative behavior of the areas as we can see in
Fig. 6.

We made the same qualitative analysis but in this case for the relative distances,
see Fig. 7. Here, we have no dispersion between relative distances and this is a proof
that the method works so well. However, in some applications we need that the
distance between satellites be constant. For this reason, in our next chapter, we will
analyze several control methods like [3] and [2].

5 Conclusions

By mean Routh reduction and Poincaré section, a procedure was developed for
locating orbits such that the cluster of satellites remains close for many years, with
very little dispersion [4]. The fixed points in the Poincaré section has provided
periodic orbits around invariant tori. The satellites trajectories have a little dispersion
on the tori very close to periodic orbit. Figures 6 and 7 have demonstrated the little
dispersion already mentioned for many years.
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Some Mathematical Aspects in the Expanding
Universe

Daniel Molano and Leonardo Castañeda

Abstract Recent astronomical observations of supernovae (SNIa) and barionic
acoustic oscilations (BAO) indicate that the Universe is in an accelerated expansion
period. Interpreted within the framework of general relativity (GR), the acceleration
is explained by a positive cosmological constant or exotic matter models known
in the literature as dark energy. However, there is an alternative approach to ex-
plain the acceleration without exotic matter models. Modifications of GR such as
scalar–tensor gravity and high-order derivative gravity theories, naturally offer the
explanation for the accelerated phase coming from the geometrical side. One of this
higher-order theories is f (R) modified gravity. In this work, we use some mathe-
matical results concerning to the Taylor expansions of tensor fields under the action
of one-parameter families of diffeomorphism in the context of f (R) theories in
the expanding universe. We mean gauge invariant in the sense of the second-kind
gauge following the work exposed in Nakamura (Adv. Astr. 2010(576273):2010).
We obtain the general gauge invariant at first-order equations in f (R) gravity. As
an example, we write these first-order equations in f (R) gravity for a perturbed
Friedmann–Lemaître–Robertson–Walker (FLRW) space-time. The gauge invariant
scalar perturbations equations for perturbed FLRW are obtained explicitly in f (R)
gravity.
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1 Introduction

Recent high-precision observations [1, 6, 15, 17, 18] have provided strong evidence
that the Universe is in a phase of accelerated expansion. In the cosmological standard
model with theory of gravity as general relativity (GR), this accelerating phase can
be explained with a component of negative pressure called dark energy. However,
we do not have direct evidence of dark energy until now. It has motivated alternative
models [4]. The models are modifications to the Einstein–Hilbert action. An impor-
tant subset of these models are called generalized gravity theories, and they are based
on nonlinear Lagrangians written in the generic form f (R), where f is a general
differentiable function of the Ricci scalar R.

On the other hand, the cosmological perturbation theory (CPT) in GR and ex-
tended theories is a very active field of research. One of the main goals in CPT is
to clarify the relation between scenarios of the early universe from probes designed
with the cosmological data sets. One of the most important field to reach this ob-
jective is the cosmic microwave background (CMB) and its anisotropy temperature
power spectrum [8]. The CPT is the tool to investigate the phenomenology in the
CMB power spectrum and the link with the galactic correlation function, in order
to understand the structure formation in the universe. CPT is a very sophisticated
theory with deep consequences in applied mathematics [10, 13, 21].

2 Field Equations in the Metric Formalism

The action in the metric formalism for f (R) gravity is:

S = 1

2k2

∫
d4x
√−gf (R)+

∫
d4xLM (gμν ,ΨM ), (1)

where k2 = 8πG, g is the determinant of the metric gμν , and LM is the Lagrangian
for matter fields which depends on gμν and the matter fields ΨM . The Ricci scalar
R is defined by the contraction of the Ricci tensor, i.e., R = gμνRμν , and the Ricci
tensor is defined by Rμν = Rμαν

α where the Riemann tensor is

Rμνρ
σ = Γ σ

μρ,ν − Γ σ
νρ,μ + Γ α

μρΓ
σ
αν − Γ α

νρΓ
σ
αμ. (2)

In the case of the torsion free, the connectionsΓ α
βλ are the usual Christoffel symbols

defined in terms of the metric tensor gμν , as:

Γ α
βγ = 1

2
gαλ(gγλ,β + gλβ,γ − gβγ ,λ). (3)

The field equations are derived by varying the action (1) with respect to gμν , or
equivalently δS/δgμν = 0,
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Σμν ≡ f ′(R)Rμν − 1

2
f (R)gμν − ∇μ∇νf

′(R)+ gμν�f ′(R) = κ2Tμν , (4)

where f ′(R) ≡ ∂f/∂R and � ≡ ∇μ∇μ. Tμν is the energy–momentum tensor of the
matter fields defined by the variational derivative of LM with respect to gμν . Einstein
gravity corresponds to f (R) = R − 2Λ [7]. We can add a boundary term in the
action (1), for details see [9] and for physical interpretations see [14].

3 Perturbation Theory

There are a few exact solutions of physical interest in GR theory (and at the most
physical theories). Einstein equations are a complicated coupled system of nonlinear
partial differential equations, and we do not have a general method to solve it. In
our case, we want to know how “small” inhomogeneities in the Robertson–Walker
Universe evolve in time. We have an exact solution (FLRW, see Sect. 5) and we want
to quantify how “small” deviations in the metric field are properly described in f (R)
theories of gravity.

3.1 Taylor Expansion of Tensors on a Manifold

Considering the Einstein’s equation:

E(g, τ ) = 0, (5)

where g is the space-time metric and τ is the matter distribution. Suppose that an
exact solution, g0, is known. From this, we build a one-parameter family gλ of exact
solutions,

E(gλ, τλ) = 0. (6)

We regard that gλ and τλ depend smoothly on the parameter λ. The parameter λ is
a measure of the amount by which a specific (M, gλ, τλ) differs from the idealized
background solution. In some cases, λ is a formal parameter and for convenience one
can set λ = 1 at the end1 for the physical space-time. In other cases, λ is a parameter
that depends of the physical problem [3, 21]. Sometimes, depending on the physical
problem, it is more convenient to introduce two or more parameters [20]. In our case,
we choose one parameter and it is purely formal.

In this case, we introduce a (4 + 1)-dimensional manifold N , foliated by sub-
manifolds diffemorphic to M so that N = R×M [3]. We now want to define the
perturbation in any tensor T , therefore, we must find a way to compare Tλ with T0.

1 like perturbation theory in quantum mechanics.
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Being T0(p) and Tλ(q) where p ∈ M× {0} and q ∈ M× {λ}. T0 and Tλ “live” in
different points on N and for this reason we cannot compare them directly. For this,
we define a diffeomorphism:

X : N −→ N
p �−→ Xp = q.

The diffeomorphism X generates a vector field Xa on M. We assume that Xa is
transversal to each Mλ. Now considering the pullback X ∗ of Tλ on T0, the tensor
can be Taylor expanded as [19]:

X ∗
λ Tλ = T0 + λLXT + λ2

2
L2

XT + · · ·

= (0)
T +λ (1)

T +λ2

2

(2)
T + · · · (7)

We denote the pulled-back X ∗
λ Tλ on M0 by T̄ and

(0)
T ≡ T0,

(1)
T ≡ LXT ,

(2)
T ≡ L2

XT .
Thus, we have a representation of Tλ in p and by this way we can compare it with T0,
see Fig. 1. This defines a function between Mλ and M0 and such a correspondence
is called gauge choice (of second kind).

3.2 Gauge Degree of Freedom in GR

There are two kinds of gauge transformations. The first kind of gauge transformation
is intrinsic of the manifold definition, i.e., a change of coordinate transformation.
The second kind of gauge transformation is a change between correspondences Mλ

and M0. Let X and Y be two gauge choices with the above restrictions [13]. The
gauge transformations Xλ → Yλ are given by the diffeomorphism Ψλ ≡ X−1

λ ◦ Yλ.
Now,

YT = Y∗λT|M0
= (

Y∗λ
(
Xλ ◦ X−1

λ

)∗
T
)
T|M0

= (
X−1

λ ◦ Yλ

)∗(X ∗
λ T

)|M0
= Ψ ∗

λ X T,. (8)

where X T ≡ X ∗
λ Tλ and YT ≡ Y∗λTλ. And finally using the Taylor expansion (7) we

have

YTλ =X Tλ + λLξ(1) X Tλ +O(λ2). (9)

In Fig. 2, we can see a gauge transformation between two different gauge choices X
and Y .
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Fig. 1 The (4+1)-dimensional manifold N . M0 is called background space-time

3.3 Gauge Invariant Variables

We assume that (Mλ, gλ) is our physical space-time. All experiments and obser-
vations are done in Mλ. The space-time background M0 is fictitious. Thus, our
observations do not depend of the gauge choice, i.e., the gauge choice is not a phys-
ical degree of freedom, but we can notice from Eq. (7) that the pulled-back tensor
field depends on the gauge choice. In this section, we are going to decompose the
tensorial quantities in a gauge invariant component and a gauge variant component.

Consider the metric perturbation,

X ∗
λ gαβ ≡ gαβ = gαβ + λhαβ + λ2

2
lαβ +O(λ3), (10)
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Fig. 2 The second kind of gauge is a point identification between the physical space-time Mλ

on the extended manifold N . We assume the existence of a point identification map between Mλ

and M0. However, this point identification is not unique by virtue of the general covariance in the
theory [3, 13]

Our starting point to construct gauge invariant variables is the assumption that we
already know the procedure for finding gauge invariant variables for the linear metric
perturbations. Then a linear metric perturbation hab is decomposed as [13]:

hab := Hab + LXgab, (11)

where Hab and LXgab are the gauge invariant and variant parts, respectively.
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4 Perturbations of the Field Equations in f (R) Gravity

Consider the equation:

E ′(g, τ ) = 0,

similar to Eq. (5), but in this case E ′ are the f (R)-modified gravity field equations.
Again suppose an exact solution, g0, is known. We build a one-parameter family gλ
of exact solutions,

E ′(gλ, τλ) = 0 (12)

and we want to know how to change gλ.
We consider a manifold N like in Sect. 3 but in this case each geometrical tensor

fields must satisfy the modified equation for each λ. Now, being f a scalar function
like in Sect. 2. We regard that this scalar function admits a Taylor expansion like (7),
thus

X ∗
λ fλ ≡ f̄ =

(0)
f +λ

(1)
f +λ2

2

(2)
f + · · · , (13)

X ∗
λ f

′
λ ≡ f̄ ′ =

(0)

f ′ +λ
(1)

f ′ +λ2

2

(2)

f ′ + · · · . (14)

(15)

And for the Ricci tensor and the Ricci scalar:

X ∗
λ (Rμν)λ ≡ R̄μν =

(0)
Rμν +λ

(1)
Rμν +λ2

2

(2)
Rμν + · · · (16)

X ∗
λ Rλ ≡ R̄ = (0)

Rμν +λ
(1)
Rμν +λ2

2

(2)
Rμν + · · · (17)

(18)

The covariant derivative operator [13, 23]:

(X ∗
λ (∇α)λ)ωβ ≡ ∇αωβ = ∇αωβ − C

γ

αβωγ , (19)

where

C
γ

αβ =
1

2
gγ δ(∇αgβδ + ∇βgαδ − ∇δgαβ). (20)

thus

Cμν
δ =

(0)

Cμν
δ +λ

(1)

Cμν
δ +λ2

2

(2)

Cμν
δ + · · · , (21)

and for the f (R) field equation we have

Σ̄μν =
(0)
Σμν +λ

(1)
Σμν +λ2

2

(2)
Σμν + · · · . (22)
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One can see that replacing Eqs. (13)–(21) in f (R) field Eqs. (4) and comparing with
(22) we have,

(1)
Σμν =

(1)
Gμν +

(1)

f ′ Rμν + (f ′− 1)
(1)
Rμν −1

2
[(

(1)
f − (1)

R )gμν

+ (f − R)hμν]− ∇μ∇ν

(1)

f ′ +
(1)
Cα

μν ∇αf
′ + gμν�

(1)

f ′

− gμνg
αβ

(1)

Cδ
αβ ∇δf

′ − gμνh
αβ∇α∇βf

′ + hμν�f ′.

Now, if we use (11), we can decompose the first-order perturbation of the Ricci
tensor and the Ricci scalar by [13]

(1)
Rab =

(1)
Rab + LX

(0)
Rab,

(1)
R = (1)

R+LX

(0)
R , (23)

and we assume that we can decompose f , f ′
(1)
Gab, and

(1)
Σab in a part gauge invariant

and gauge variant, i.e.,

(1)
f = (1)

F +LX

(0)
f ,

(1)

f ′ =
(1)

F ′ +LX

(0)

f ′,
(1)
Gab =

(1)
G ab + LX

(0)
Gab,

(1)
Σab =

(1)
S ab + LX

(0)
Σab

and after some calculations we get [12]:

(1)
Σμν =

(1)
Gμν +

(1)

F ′ Rμν + (f ′− 1)
(1)

Rμν −1

2
[(

(1)
F − (1)

R )gμν

+ (f− R)Hμν]− ∇μ∇ν

(1)

F ′ +Hα
μν[H]∇αf

′ (24)

+ gμν�
(1)

F ′ −gμνgαβHδ
αβ[H]∇δf

′

− gμνHαβ∇α∇βf
′ +Hμν�f ′ + LX

(0)
Σμν.

where Hα
μν[g] = (0)

Cα
μν . This is a general result. We can consider any background

space-time with the condition that we can perform the gauge invariant and gauge
variant decomposition. This is one of the most important results of this chapter and
it will be used for cosmology in the next section.
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5 Cosmological Background Space-Time and Field Equations

The background space-time M0 considered in CPT is a homogeneous and isotropic
universe. The space-time metric of this universe is given by

(0)
g ab = a2(η)(− (dη)a(dη)b + γij (dxi)a(dxj )b), (25)

with η the conformal time.

6 Equations for the First-Order Cosmological Perturbations

6.1 Gauge Invariant Metric Perturbation

If we consider a 3+1 decomposition, for the linear-order metric perturbation, we
have

hab = hηη(dη)a(dη)b + 2hηi(dη)(a(dxi)b) + hij (dxi)a(dxj )b. (26)

Also, considering the decomposition in scalar–vector–tensor of the linear-order
metric perturbation hab, thus we decompose hηi and hij [22]:

hηi = Dih(VL) + h(V )i , Dih(V )i = 0

hij = a2(h(L)γij + h(T )ij ), hi
(T )i

≡ γ ijh(T )ij = 0

h(T )ij = (DiDj − 1

3
γijΔ)h(TL) + 2D(ih(T V )j ) + h(T T )ij ,

Dih(TV )i = 0, Dih(T T )ij = 0.

Now, subtracting gauge variant part LXgab from hab, we have the gauge variant part
Hab in Eq. (11):

Hab = a2
[
−2

(1)
Φ (dη)a(dη)b + 2

(1)
ν i(dη)(a(dxi)b)

+ (− 2
(1)
Ψ γij +

(1)
χ ij )(dxi)a(dxj )b

]
, (27)

with the following properties Di
(1)
ν i := γ ijDi

(1)
ν j =

(1)

χi
i := γ ij

(1)
χ ij = Di

(1)
χ ij = 0

[11]. The quantities (27) are defined by

Hηη ≡ −2a2
(1)
Φ = hηη − 2(∂η −H )X̄η,

Hηi ≡ a2 (1)
νi = h(V )i − a2∂ηh(T V )i ,



292 D. Molano and L. Castañeda

Hij ≡ −2a2
(1)
Ψ γij + a2

(1)
χ ij = a2(h(L) − 1

3
Δh(T L))+ 2HX̄η + a2h(T T )ij ,

with H = ∂ηa/a, and

X̄η ≡ h(VL) − 1

2
(∂η − 2H )(a2h(T L) = h(VL) − 1

2
a2∂ηh(T L).

6.2 First-Order f (R) Field Equations

Now, we derive the linear-order f (R) gravity Eqs. (4), where we consider the invari-
ant part of the perturbed metric tensor (27) and the result (24). Also, we will consider
the decomposition of the first-order perturbed field equations for f (R) in the gauge
invariant part and gauge variant part:

(1)
Σab =

(1)
S ab + LX

(0)
Σab. (28)

Finally, taking the scalar part equations. Thus, the η − η component:

−a2
(1)
S η

η

= f ′[(6Ḣ + 3H∂η +Δ)
(1)
Φ +(3H∂η + 3∂2

η )
(1)
Ψ ]+ a2

2

(1)
F

− (3∂ηH +Δ− 3H∂η)
(1)

F ′ −(6H
(1)
Φ +3∂η

(1)
Ψ )∂ηf

′, (29)

here Δ ≡ DiDi . The i − η component:

a2
(1)
S i

η

=−f ′(2HDi

(1)
Φ +2∂ηDi

(1)
Ψ )

+ (∂ηDi −HDi)
(1)

F ′ −(Di

(1)
Φ )∂ηf

′, (30)
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the i − i component:

a2

3

(1)
S i

i

= f ′[(− 4H 2 − 2∂ηH −H∂η − 1

3
Δ)

(1)
Φ

+ (4K − 5H∂η − ∂2
η +

4

3
Δ)

(1)
Ψ ] (31)

− a2

2

(1)
F +(2H 2 + ∂ηH + 2K − ∂2

η +
2

3
Δ−H∂η)

(1)

F ′

+[(∂η + 2H )
(1)
Φ +2(∂η −H )

(1)
Ψ +2

(1)
Φ ∂η]∂ηf

′,

and the i − j , i �= j component:

a2
(1)
S i

j

=DiD
j [f ′(

(1)
Ψ − (1)

Φ )−
(1)

F ′]. (32)

7 Conclusions and Future Work

In this work, we use the Taylor expansion on a manifold to obtain the first-order
perturbed field equations in f (R) gravity in the general case. We regard the first-
order function f (R) can be decomposed in a gauge invariant part and gauge variant
part exist. We use such decomposition to obtain the first-order f (R) gravity in the
general case. This is one of the most important results of this chapter (24). Then we
apply it in the cosmological scenario (29)–(32). Our results agree with refs. [2, 5, 16]
where the particular case of Newtonian gauge is chosen (29), (30), and (32). We stress
that the Nakamura formalism [13] is in principle naturally extended to f (R) gravity.
We found the scalar perturbation equations in the cosmological case and in our next
chapter we will show the scalar, vector, and tensor perturbations equations in f (R)
gravity for an universe filled of a perfect fluid.
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Liouvillian Propagators and Degenerate
Parametric Amplification with Time-Dependent
Pump Amplitude and Phase

Primitivo B. Acosta-Humánez and Erwin Suazo

Abstract This chapter is complementary to previous work of the authors, see
(Acosta-Humánez et al., http://arxiv.org/abs/1311.2479, 2013; J. Phys. A Math.
Theor. 46(45):455203–455219, 2013). We present in detail missed computations
using differential Galois theory dealing with the construction of one-dimensional
propagators for the degenerate parametric amplification with time-dependent pump
amplitude and phase ϕ = 0 and ϕ = π/2. Also presented is a generalization of
Liouvillian propagators for the n-dimensional case, which concerns to the study of
explicit solutions for the Cauchy problem of the Schrödinger equation in R

d:

i
∂ψ

∂t
= −1

2
Δψ +

d∑

j=1

bj (t)

2
x2
j ψ−fj (t)xjψ+ igj (t)

∂ψ

∂xj
− i

cj (t)

2

(
2xj

∂ψ

∂xj
+ ψ

)

using differential Galois theory.

Keywords Cauchy initial value problem · Degenerate harmonic oscillator · Differ-
ential Galois theory · Mehler’s formula · Linear Schrödinger equation · Liouvillian
propagator

1 Introduction

In this work, we assemble some results on Liouvillian propagators [1] and generalized
Huygens–Fresnel integral in several dimensions with the purpose of unifying the
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Table 1 Some quadratic Hamiltonians having Liouvillian propagators (we assume E, k constants)

Hamiltonian H (t) Fundamental solution (propagator)

Free particle

H0(t)ψ = − 1
2
∂2ψ

∂x2

G0(x, y, t) = 1√
2πit

ei|x−y|2/2t

Constant electric field

H1(t)ψ = − 1
2
∂2ψ

∂x2 + E · xψ
G1 (x, y, t) = 1√

2πi sin t
exp

(
i(x−y)2

2t

)

× exp
(

iE(x+y)
2 t − iE2

24 t3
)

Isotropic oscillator

H2(t)ψ = − 1
2
∂2ψ

∂x2 + 1
2x

2ψ

G2(x, y, t) = 1√
2π i sin t

× exp
(

i 1
4sin (t)

((
x2 + y2

)
cos t − 2xy

))

Repulsive harmonic potential

H3(t)ψ = − 1
2
∂2ψ

∂x2 − 1
2x

2ψ

G3(x, y, t) = 1√
2πi sinh t

× exp
(
i 1

4sinh t

((
x2 + y2

)
cosh t − 2xy

))

Anisotropic oscillator

H4(t)ψ = − 1
2
∂2ψ

∂x2 + 1
2ω

2x2ψ

G4(x, y, t) = ω√
2π i sinωt

× exp
(

i ω
4sin (ωt)

((
x2 + y2

)
cosωt − 2xy

))

Parametric oscillator

H6(t)ψ = − cos2 t
∂2ψ

∂x2 + sin2 tx2ψ

− i sin 2t
2

(
2x ∂

∂x
− 1

)
ψ

G6 (x, y, t) = 1√
2π i(cos t sinh t+sin t cosh t)

× exp
(
(x2−y2) sin t sinh t+2xy−(x2+y2) cos t cosh t

2i(cos t sinh t+sin t cosh t)

)

Damped harmonic oscillator

H7(t)ψ = − ω0
2

∂2ψ

∂x2 + ω0
2 x2ψ

+ i λ2
(
2x ∂

∂x
+ 1

)
ψ

G7 (x, y, t) =
√

ω
2π iω0 sinωt

× exp
(

iω
2ω0 sinωt

((
x2 + y2

)
cosωt − 2xy

))

× exp
(

iλ
2ω0

(
x2 − y2

))
,ω =

√
ω2

0 − λ2 > 0

Analog of heat equation
with Linear drift

H8(t)ψ = − ∂2ψ

∂x2 − ikx ∂ψ

∂x
, k > 0

G8(x, y, t) =
√
kekt/2√

2π i sinh (kt)
exp

(
ikekt

[
e−kt x−ekt y

]2

4 sinh (kt)

)

results of the authors with the idea of creating a criterium for Galoisian integrability
in several dimensions for partial differential equations. In this note, we first show
the power of this combination dealing with the construction of one-dimensional
propagators for the degenerate parametric amplification with time-dependent pump
amplitude and phase ϕ = 0 and ϕ = π/2, we present in detail missed computations
in [3] using differential Galois theory, see Sect. 3. We also present the bases, see
Proposition 1, to establish the integrability of Liouvillian propagators in several
dimensions extending the results presented in [1].

2 Quadratic Hamiltonians in Quantum Mechanics

In [1], Liouvillian propagators (fundamental explicit solutions) of the linear
Schrödinger equation (LSE) were studied:

i∂tψ = Hψ , H = a(t)p2 + b(t)x2 + d(t)(px + xp), p = −i∂x. (1)
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Liouvillian propagators are obtained through Liouvillian functions giving a Galoisian
formulation for this kind of integrability: LSE (1) is integrable in Galoisian sense
(Galois integrable), when it has a Liouvillian propagator. We construct models of
propagators of the form:

G(x, y, t) = 1√
2π iμ (t)

ei(α(t)x2+β(t)xy+γ (t)y2+δ(t)x+ε(t)y+κ(t)), (2)

for time-dependent Schrödinger equations inspired by solvable Riccati equations:

dα

dt
+ b (t)+ 2c (t) α + 4a (t) α2 = 0. (3)

In this work, we will consider a Hamiltonian more general [14]:

H (t) = a(t)p2 + d (t)

2
(p · x + x · p)+ b (t)

2
x2 − g(t)p − f (t)x + ζ (t). (4)

and in several dimensions too (see 36). The expert would recognize (4) as a quan-
tum mechanical self-adjoint Hamiltonian, which is a quadratic polynomial in x and
p = −i∂/∂x with time-dependent coefficients. As pointed out before [14], one
can assume ζ (t) = 0 since it causes a trivial phase factor in the propagator. We
have also assumed in (4) the coefficient of the Laplacian constant, a(t), because we
can disregard it after substitution. Table 1 reviews the most popular one-dimensional
quadratic Hamiltonians with Liouvillian propagators that can be found by the method
presented in this note. However, important examples where a(t) is not constant are
covered by our approach. In this section we review briefly two of them and we leave
degenerate parametric harmonic oscillators for Sects. 3 and 4 to be solved in detail
using differential Galois theory.

Caldirola–Kanai Hamiltonian. The Caldirola–Kanai Hamiltonian [4, 16] was
introduced more than 60 years ago:

HCK(t)ψ = −ω0e−λt

2

∂2ψ

∂x2
+ ω0eλt

2
x2ψ. (Caldirola–Kanai Hamiltonian)

In [7], the authors did not know about this case and called it “third model”; it was
one of the models of the damped harmonic oscillator with an explicit propagator
considered in that publication. The fundamental solution for the Caldirola–Kanai’s
Hamiltonian is given by

GCK (x, y, t) =
√

ωeλt

2π iω0 sinωt
ei(α(t)x2+β(t)xy+γ (t)y2), (5)

where

α(t) = ω cosωt − λ sinωt

2ω0 sinωt
e2λt , β(t) = − ω

ω0 sinωt
eλt , (6)

γ (t) = ω cosωt + λ sinωt

2ω0 sinωt
. (7)
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Oscillator with a(t) NonConstant Another example with a(t) nonconstant that can
be solved using the same ideas presented in this work and has been studied before is

H10(t)ψ = −a(t)
∂2ψ

∂x2
+ b(t)

2
x2ψ , (8)

a(t) =
(
Ω2 cos (Ωt)− γ sin (Ωt) tanh (γ t)

)

cosh (γ t)(cos (γ t) cosh (γ t)− 2γ )
, b(t) = − ω2

4a(t)
, (9)

Ω =
√
ω2 − γ 2, (10)

and its fundamental solution is given by

G10(x, y, t) =
√
m0Ω cosh γ t

2π i sin (Ωt)
ei(α(t)x2+β(t)xy+γ (t)y2), (11)

with

α(t) = cosh (γ t) (m0Ω cosh (γ t) cos (Ωt)− γ )

2 sin (Ωt)
, β(t) = −m0Ω cosh γ t

2πi sin (Ωt)
,

(12)

γ (t) = m0Ω cos (Ωt)

2 sin (Ωt)
. (13)

Suslov et al. in [8] studied the quantum integrals of motion for these last two examples
between other models.

3 Differential Galois Theory and a Generalized Ince’s Equation

Following [1], we define Liouvillian propagators in terms of differential Galois
theory. An effective algorithm to solve second-order linear differential equations with
rational coefficients using differential Galois theory is Kovacic algorithm. When the
coefficients are not rational functions, this problem can be solved using Hamiltonian
algebrization procedure developed by the first author and used in [1, 3]. We say that
τ = τ (t) is a Hamiltonian change of variable if (τ , ∂tτ ) is a solution curve of the
Hamiltonian:

H = p2

2
+ V (τ ), ∂tτ = ∂pH = p, ∂tp = −∂τH = −∂τV (τ ), V (τ ) ∈ C(τ ).

We choose to write

α = 2H − 2V (τ ) = (∂tτ )2, ∂tτ = √α.
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Thus, we can transform differential equations:

∂2
t μ+ p∂tμ+ qμ = 0 � ∂̂2

τ μ̂+ p̂∂̂τ μ̂+ q̂μ̂ = 0,

where ∂̂τ = √α∂τ , μ̂ ◦ τ = μ, p̂ ◦ τ = p, q̂ ◦ τ = q. Moreover, the differential

equation ∂̂2
τ μ̂+ p̂∂̂τ μ̂+ q̂μ̂ = 0 can be explicitly written as:

∂2
τ μ̂+

(
1

2
∂τ ( ln α)+ p̂√

α

)
∂τ μ̂+

(
q̂

α

)
μ̂ = 0. (14)

In case that
√
α, p̂, and q̂ are rational functions in τ, Eq. 14 is the algebraic form of

the first one, i.e., the equation ∂2
t μ+ p∂tμ+ qμ = 0 has been algebrized through a

Hamiltonian change of variable. This procedure is called Hamiltonian algebrization.
It was studied in [1] the solution of the Ince’s equation:

∂2
t μ+

2λω sin (2ω t)

ω + λ cos (2ω t)
∂tμ+ ω3 − 3ω λ2 − (

ω2λ+ λ3
)

cos (2ω t)

ω + λ cos (2ω t)
μ = 0 (15)

by means of a Galoisian approach to LSE, which is summarized in Theorem 1 of the
next section.

Recently, in [3], a variation of degenerate parametric oscillator and Ince’s equation
was studied by a Galoisian approach to study explicit solutions, statistic, means and
variances related with squeezed photons. The Ince’s equation considered there is
given by

∂2
t μ+

2λω sin
(
2ωt + π

2

)

ω + λ cos
(
2ωt + π

2

)∂tμ+ ω3 − 3ωλ2 − (
ω2λ+ λ3

)
cos

(
2ωt + π

2

)

ω + λ cos
(
2ωt + π

2

) μ = 0,

(16)

The procedure to arrive to the solution of the characteristic equation (16) is missing
in [3] and as motivation to the readers, we present here such computations using
Hamiltonian algebrization and Kovacic algorithm as in [1].

Owing to the trigonometrical relations:

sin
(

2ωt + π

2

)
= cos (2ωt) and cos

(
2ωt + π

2

)
= − sin (2ωt),

Equation 16 corresponds to

∂2
t μ+

2λω cos (2ω t)

ω − λ sin (2ω t)
∂tμ+ ω3 − 3ω λ2 + (

ω2λ+ λ3
)

sin (2ω t)

ω − λ sin (2ω t)
μ = 0 (17)

For the Ince’s equation (15), using the Hamiltonian algebrization procedure and
the Kovacic algorithm and by properties of double angle, we can write Eq. 15 in
terms of tan (ωt), we can consider the differential field to K = C(tanωt). After the
Hamiltonian change of variable τ = tanωt , we obtain α = ω2(1+ τ 2)2, and by the
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Hamiltonian algebrization procedure, we get as an algebraic form of Eqs. 16 and 17
to be

∂2
τ μ̂+ ϕ1(τ )∂τ μ̂+ ϕ0(τ )μ̂ = 0, ϕ1(τ ) = 2ωτ 3 − 6λτ 2 + 2ωτ + 2λ

(
1+ τ 2

) (
ωτ 2 − 2λτ + ω

) ,

ϕ0(τ ) =
(
ω3 − 3ωλ2

)
τ 2 + (

2λ3 + 2ω2λ
)
τ + ω3 − 3ωλ2

ω2
(
1+ τ 2

)2 (
ωτ 2 − 2λτ + ω

) .

We can eliminate one parameter through the change λ = κω; thus, our algebraic
form becomes

∂2
τ μ̂+ ϕ1(τ )∂τ μ̂+ ϕ0(τ )μ̂ = 0, ϕ1(τ ) = 2τ 3 − 6κτ 2 + 2τ + 2κ

(
1+ τ 2

)(
τ 2 − 2κτ + 1

) ,

ϕ0(τ ) =
(
1− 3κ2

)
τ 2 + (

2κ3 + 2κ
)
τ + 1− 3κ2

(
1+ τ 2

)2 (
τ 2 − 2κτ + 1

) .

(18)

The general solution for Eq. 18 is given by

μ̂(τ ) = C1
τe−κ arctan τ

√
1+ τ 2

+ C2
eκ arctan τ

√
1+ τ 2

;

Recalling that τ = tanωt and κ = λ/ω, we get the general solution of the
characteristic equation:

μ(t) = C1e−λt sinωt + C2eλt cosωt.

Alternatively, after the Hamiltonian algebrization process over Eq. 17, we use the
command kovacicsols over Eq. 18 to obtain

⎡

⎣
(

i+τ
−τ+i

) 1
2 iκ

√
1+ τ 2

,

(−τ+i
i+τ

) 1
2 iκ

τ√
1+ τ 2

⎤

⎦;

therefore, we can write the general solution as:

μ̂ = C1

(
i+τ
−τ+i

) 1
2 iκ

√
1+ τ 2

+ C2

(−τ+i
i+τ

) 1
2 iκ

τ√
1+ τ 2

. (19)

Now, using the relations above, we get that Eq. (19) becomes

μ̂(τ ) = C1eκ arctan τ cos (arctanτ )+ C2e−κ arctan τ sin (arctanτ ).

Now, recalling τ = tanωt and κ = λ/ω, we obtain

μ(t) = C1eλt cosωt + C2e−λt sinωt.

we can summarize the results of this section as:

Lemma 1 The fundamental solution of Eq. (16) is given by

μ(t) = C1eλt cosωt + C2e−λt sinωt. (20)
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4 Degenerate Parametric Amplification with
Phase ϕ = 0 and ϕ = π/2

In Schrödinger picture, the time evolution of degenerate parametric amplifier is
governed by the time-dependent Schrödinger equation for the state vector | ψ(t)〉
[3]:

i
d

dt
| ψ(t)〉 = Ĥ (t) | ψ(t)〉. (21)

The degenerate parametric amplification with time-dependent amplitude and phase
has a corresponding Hamiltonian [see 3, 18] in terms of annihilation and creation
operators, â = √1/2ω

(
ωq̂ + ip̂

)
, â+ = √1/2ω(ωq̂− ip̂) with ââ+− â+â = 1,

of the form:

H (t) = ω

2

(
ââ+ + â+â

)− λ(t)

2

(
ei(2ωt+ϕ(t))â2 + e−i(2ωt+ϕ(t))(â+)2

)
. (22)

ω is a given mode, λ(t) describes the strength of the interaction between the quantized
signal of frequency ω and the classical pump of frequency 2ω, and the pump phase
ϕ(t) are functions of time. The Hamiltonian (22) can be written as:

Ĥ (t) = 1

2

(
1+ λ(t)

ω
cos (2ωt + ϕ(t))

)
p̂2

− ω2

2

(
1− λ(t)

ω
cos (2ωt + ϕ(t))

)
q̂2

+ λ(t)

2
sin (2ωt + ϕ(t))

(
p̂q̂ + q̂p̂

)
(23)

and the corresponding characteristic equation (classical equation of motion [5–7])
takes the form

∂2
t μ+

λ sin (2ω t + ϕ) (2ω + ϕ′)− λ′ cos (2ω t + ϕ)

ω + λ cos (2ω t + ϕ)
∂tμ (24)

+ ω(ω2−3λ2)−λϕ′−λ(ω2 + λ2+ωϕ′) cos (2ωt+ϕ)−λ′ω sin (2ω t + ϕ)

ω + λ cos (2ω t + ϕ)
μ = 0.

It was part of the first goal of this note to solve the equation above for the case ϕ =
π/2 using differential Galois theory, see Sect. 3. For the case ϕ = 0, see Theorem 1
below, we also find the propagator of a Schrödinger equation associated.

Theorem 1 [1]. The fundamental solution of Ince’s characteristic equation (15) is
given by

μ(t) = C1(sinωt + cosωt)eλt + C2(sinωt − cosωt)e−λt . (25)
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Furthermore, the propagator of its associated Schrödinger equation (21) with
Hamiltonian:

H (t) = 1

2m

(
1+ λ

ω
cos (2ωt)

)
p2 + mω2

2

(
1− λ

ω
cos (2ωt)

)
x2

+ λ

2
sin (2ωt)(px + xp), p = −i∂x ,

is Galois integrable and its propagator is given by

G(x, y, t) = 1√
2π i(cos ωt sinh λt + sinωt cosh λt)

(26)

× exp

[
(ωx2 − y2) sinωt sinh λt + 2xy − (ωx2 + y2) cosωt cosh λt

2i(cos ωt sinh λt + sinωt cosh λt)

]

which is a Liouvillian propagator.
The main tools applied to prove the previous theorem were Kovacic algorithm

and Hamiltonian algebrization procedure, see [2]. Details and proofs can be found
in [1]. We have also used the following Lemma.

Lemma 1 [5, 6]. If the second-order differential equation:

μ′′ −
(
a′

a
− 2c

)
μ′ + 4abμ = 0 (27)

has two solutions μ0 and μ1 satisfying

μ0 (0) = 0, μ′0 (0) = 2a (0) �= 0
(28)

μ1 (0) �= 0, μ′1 (0) = 0, (29)

then the explicit propagator for the LSE:

i
∂ψ

∂t
= −a (t) ∂

2ψ

∂x2
+ b (t) x2ψ − ic (t) x

∂ψ

∂x
− id (t) ψ , (30)

is given by (2) with

α (t) = 1

4a (t)

μ′0 (t)
μ0 (t)

− c(t)

2a(t)
, (31)

β (t) = − 1

μ0 (t)
exp

(
−

∫ t

0
c (τ ) dτ

)
, (32)

γ (t) = μ1(t)

2μ1(0)μ0 (t)
+ c(0)

2a(0)
. (33)



Liouvillian Propagators and Degenerate Parametric . . . 303

Furthermore, α is the solution of (3), and (27) can be obtained from (3) by the
substituting (31).

We finish this section presenting the propagator for the Schrödinger equation
associated to Ince’s equation (17)

Theorem 2 The fundamental solution of Ince’s characteristic equation (17) given
by (20) together with Lemma 1 allow us to find the propagator for the Schrödinger
equation with Hamiltonian:

H (t) = 1

2

(
1− λ

ω
sin (2ωt)

)
p2 + ω2

2

(
1+ λ

ω
sin (2ωt)

)
x2

+ λ

2
cos (2ωt)(px + xp), p = −i∂x

is Galois integrable and its propagator is given by

G(x, y, t) =
√
ω√

2π ie−λt sinωt
(34)

× exp

[
ω cosωt

2
x2 − ω

e−λt sinωt
xy + ω cosωt

2e−2λt
x2

]
,

which is a Liouvillian propagator.

5 Generalized Huygens–Fresnel Integrals

For the second goal, we follow the same approach and theoretical framework of
[1, and references therein], we consider the LSE in R

d with time-dependent quadratic
Hamiltonian having the following form:

i
∂ψ

∂t
=

d∑

j=1

Hj (t) ψ , ψ(x, 0) = ϕ (35)

with1

d∑

j=1

Hj (t)ψ =
d∑

j=1

−1

2

∂2ψ

∂x2
j

+ bj (t)

2
x2
j ψ − fj (t)xjψ + igj (t)

∂ψ

∂xj
− i

cj (t)

2

(
2xj

∂ψ

∂xj
+ ψ

)
.

(36)

1 Where bj , fj , gj , cj ∈ C1 (bj , fj , gj could be piecewise continuous functions) and ϕ ∈ S(Rn)
(S(Rn) is the Schwartz space) to simplify the discussion.
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We derive an explicit formula for the time evolution operator of (35) and (36) in
the form:

ψ (x, t) = UH (t , 0)ϕ (x) =
∫

Rn

GH (x, y, t) ϕ (y) dy. (37)

In Lemma 2, for the convenience of the reader, we extend the explicit formula found
in [6], see also Lemma 1, for the one-dimensional case to several variables. The
study of the best formulation has been of great interest by his general applications on
mathematical physics [9–13, 15, 17, and references therein]. Our approach gives the
time evolution operator explicitly in terms of the original coefficients. As a conse-
quence, uniqueness of the solution for (35) and (36) and its continuous dependence
on the initial data and smoothness of the solution (well-posedness) is obtained. In
Lemma 3, we also obtain estimates (48) and (49) that will be used for the study of
the well-posedness of the nonlinear case.

In this section, we also present the analysis of the dynamics of the propaga-
tors (Corollary 1) and convenient inequalities to establish the well-posedness of the
Cauchy initial value problem. A list of popular propagators that can be solved ex-
plicitly by lemma is listed in Table 1, they can be combined as a tensor product in
order to have propagators of several dimensions.

Formula (47) is a generalization of Mehler’s formula and it is a consequence of
the following result:

Lemma 2 (Fundamental solution) 1. The Cauchy initial value problem (35) and
(36) has the following fundamental solution:

GH (x, y, t) =
n∏

j=1

1

2πiμj (t)
e

i
(∑

αj (t)x
2
j+βj (t)xj yj+γj (t)y2

j+δj (t)xj+εj (t)yj+κj (t)
)

. (38)

μj satisfies

μ′′j + 4σj (t) μj = 0, (39)

with σj (t) = bj (t)/2−c2
j (t)/4−c′j (t)/4, which must be solved subject toμj (0) = 0,

μ′j (0) = 1. Furthermore, αj (t), βj (t), γj (t), δj (t), εj (t), κj (t) are differentiable
in time t only and are given explicitly by

αj (t) = 1

2

μ′j (t)
μj (t)

− cj (t)

2
,

(40)

βj (t) = − 1

μj (t)
, (41)

γj (t) = 1

2μj (t) μ
′
j (t)

− 2
∫ t

0

σj (τ )
(
μ′j (τ )

)2 dτ + cj (0)

2
(42)
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δj (t) = 1

μj (t)

∫ t

0

(
fj (τ )− cj (τ ) gj (τ )

)
μj (τ)+ gj (τ ) μ

′
j (τ ) dτ , (43)

εj (t) = − δj (t)

μ′j (t)
+ 4

∫ t

0

μj (τ) δj (τ ) σj (τ )
(
μ′j (τ )

)2 dτ (44)

+
∫ t

0

1

μ′ (τ )
(
fj (τ )− cj (τ ) gj (τ )

)
dτ ,

κj (t) = μj (t)

2μ′j (t)
δ2
j (t)− 2

∫ t

0

σj (τ )
(
μ′j (τ )

)2

(
μj (τ) δj (τ )

)2
dτ (45)

−
∫ t

0

μj (τ) δj (τ )

μ′j (τ )
(
fj (τ )− cj (τ ) gj (τ )

)
dτ

with

δj (0) = gj (0), εj (0) = −δj (0), κj (0) = 0. (46)

Thus, the fundamental solution (propagator) is explicitly given by (38) in terms of the
characteristic function (39) with (40)–(45). The fundamental solution GH includes
several well-known examples see Table 1.

Lemma 3

1. Let ϕ ∈ S(Rn) (Schwartz space), then the Cauchy initial value problem for (35)
and (36) has the following unitary evolution operator:

UH (t)ϕ ≡
n∏

j=1

1

2π iμj (t)

∫

Rn

e
i
(∑n

j=1 αj (t)x
2
j+βj (t)xj yj+γj (t)y2

j+δj (t)xj+εj (t)yj+κj (t)
)

ϕ(y)dy. (47)

2. If ϕ ∈ S(Rn), then UH (t)ϕ ∈ S(Rn).
If ψ satisfies (35) and (36) and it is smooth, then:

3. The following estimates hold:

‖UH (t)ϕ‖L2(Rn) = ‖ϕ‖L2(Rn), (48)

‖UH (t , s) ϕ‖L∞(Rn) ≤
d∏

j=1

1
√

4π iμj (t) μj (s)
(
γj (s)− γj (t)

) ‖ϕ‖L1(Rn) . (49)

The following properties for UH (t , s) are fundamental to describe the dynamics of
the evolution operator.
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Corollary 1 The evolution operator associated to (35) and (36) satisfies the
following properties:

1. UH (t , s) = UH (t)U−1
H (s).

2. UH (t , t) = Id.

3. The map (t , s) → UH (t , s) is strongly continuous.
4. UH (t , τ )UH (τ , s) = UH (t , s).

We finish our presentation with results on Galoisian integrabilty.

Theorem 3 (Galoisian approach to LSE, [1]) LSE (1) is Galois integrable if and
only if the differential Galois group of the characteristic equation associated to (1)
is virtually2 solvable.

Using this theorem and previous lemmas in this section, we arrive to our main
result.

Proposition 1 The equation:

i
∂ψ

∂t
= −1

2
Δψ+

d∑

j=1

bj (t)

2
x2
j ψ−fj (t)xjψ+igj (t)

∂ψ

∂xj
− i

cj (t)

2

(
2xj

∂ψ

∂xj
+ ψ

)

has a Liouvillian propagator, if and only if, DGal(Lj | K) (associated to μ′′j +
σjμj = 0) is virtually solvable for all j ∈ {1, ..., n}.
Proof As we have n decoupled characteristic equations, we obtain a differential
Galois group for each one. Therefore, the differential Galois group for the system of
characteristic equations has a faithful representation as a subgroup of block matrices.
Thus, the differential Galois for the system is virtually solvable if and only if the
differential Galois group for each characteristic equation is virtually solvable. By
the previous theorem, we have a Liouvillian propagator built through the solutions
of the characteristic equations and therefore we obtain a Liouvillian propagator con-
structed with the system of characteristic equations, i.e., n-dimensional Liouvillian
propagator.
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Construction of Shear Wave Models
by Applying Multi-Objective Optimization
to Multiple Geophysical Data Sets

Lennox Thompson, Aaron A. Velasco and Vladik Kreinovich

Abstract For this work, our main purpose is to obtain a better understanding of the
Earth’s tectonic processes in the Texas region, which requires us to analyze the Earth
structure. We expand on a constrained optimization approach for a joint inversion
least-squares (LSQ) algorithm to characterize a Earth’s structure of Texas with the
use of multiple geophysical data sets. We employed a joint inversion scheme using
multiple geophysical data sets for the sole purpose of obtaining a three-dimensional
velocity structure of Texas in order to identify an ancient rift system within Texas.
In particular, we use data from the USArray, which is part of the EarthScope ex-
periment, a 15-year program to place a dense network of permanent and portable
seismographs across the continental USA. Utilizing the USArray data has provided
us with the ability to image the crust and upper mantle structure of Texas. We
prove through numerical and experimental testing that our multiobjective optimiza-
tion problem (MOP) scheme performs inversion in a more robust, and flexible matter
than traditional inversion approaches.

Keywords Teleseismic · Receiver functions · Seismographs · Body waves · Multi-
objective optimization · Primal-dual interior point method

1 Introduction

For this chapter, we propose to combine multiple geophysical data sets for the pur-
pose of assisting us in better determining physical properties of the Earth structure.
By simultaneously inverting multiple data sets, we obtain a better estimate of the
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true Earth structure. In general, there are two reasons why the estimated Earth struc-
ture model differs from the true Earth structure. The first reason is the inherent
nonuniqueness of the inverse problem that causes several (usually infinitely many)
models to satisfy the data. The second reason is that real geophysical data are al-
ways affected by noise, which introduces error associated with the estimation of
the Earth structure model after inversion. By jointly inverting multiple geophysical
data sets, we reduce the inherent nonuniqueness typical for the geophysical data sets
(e.g., receiver functions, surface wave dispersion, teleseismic delay travel times, and
gravity) individually [6, 35]. For this research, we use receiver functions, surface
wave dispersion measurements, and P wave travel times to characterize the crust and
upper mantle structure of the Texas region.

In general, geophysical data sets such as receiver functions are suited to constrain
the depth of discontinuities and are sensitive to relative changes in S wave velocities
in different layers. Surface wave measurements, on the other hand, constrain the ab-
solute shear velocities between discontinuities whereas receiver functions are unable
to do that [14, 21, 29, 30, 32]. Seismic first-arrival travel times and gravity data are
complementary to each other because one can recover the causative slowness and
density distributions of the Earth structure [18]. The complementary information
provided by the following data sets reduces the inherent ambiguity or nonuniquess
of performing inversion (e.g., [4, 6, 9, 19, 22, 23]). By jointly inverting seismic data
along with gravity data, we will be able to overcome the difficulties of nonuniqueness
and be able to facilitate the construction of the true Earth model.

When we process a single data set (e.g., surface wave dispersion), we use the
least-squares (LSQ) method to find the best-fit model. For multiple data sets (e.g.,
surface wave dispersion and receiver functions), if we knew the variance (uncertainty
of data) of the different measurements of the multiple data sets, we could still use
the LSQ approach to find the model space. In practice, we only have an approximate
knowledge of the variances. So, instead of producing a single model, we want to
generate several models corresponding to different possible variances. Once several
models corresponding to different possible variances are computed, we can then
proceed to select the most geophysical meaningful model from the Pareto Front [15].
The reason we use an optimization technique is to find the best possible solution
for our nonlinear geophysics inverse problem. For example, in geophysics, most
inverse problems require finding some minimization and that is why we will use
an optimization technique called multi-objective optimization problem (MOP). The
MOP technique generates several possible models. This is what sets it apart from
other various joint inversion techniques. We will be able to select the final solution
from a population of alternative solutions from the model space. Such methods are
described in [15, 27, 28].

There are two types of seismic waves that travel through the Earth: body waves and
surface waves. Both types of waves give us different sensitivities and information
about the Earth structure, since they are sampling the interior and surface of the
medium with different velocities and directions. The information collected from
the body waves travels deeper into the Earth and translates into teleseismic P wave
receiver functions. In order to obtain information about the Earth surface, surface
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waves are analyzed, in our case, by means of surface waves dispersion. On one
hand we have receiver functions, which resolve discontinuities (impedance contrasts)
in seismic velocities, and provide good measurement of crustal thickness, without
providing a good average of shear wave velocity. On the other hand, we have surface
(Love and Rayleigh) waves whose energy is concentrated near the Earth’s surface,
and provide good average of absolute shear wave velocity, without good shear wave
velocity contrasts in layered structures [5, 14, 21, 25, 29, 32]. Therefore, these two
data sets can be considered as complimentary and consistent, as long as we sample
the same medium. Hence, we expect a mutually consistent estimate of the Earth’s
structure. Since both data sets are sensitive to shear wave velocity structure [14],
we can assume a forward operator F depending nonlinearly on our model parameter
x ∈ Rn that represents the different shear velocities of a half space with n horizontal
layers (a standard way of modeling Earth’s structure). In the next subsections, we
explain in more detail the nonlinear relationship with respect to shear wave velocities
of this operator and the techniques used to compute each synthetic data set.

1.1 Receiver Functions

A receiver function is simply a time series representation of the Earth’s response rela-
tive to an incoming P wave propagating near a recording station. Positive or negative
spike amplitudes represent positive or negative seismic velocity contrasts. A receiver
function technique can model the structure of the Earth by using seismograms from
three component (vertical, north, and east) seismic stations from teleseismic earth-
quakes. The receiver function technique takes advantage of the fact that part of the
energy of seismic P waves is converted into S waves at discontinuities along the ray
path [2, 7], and has been utilized in many studies (e.g., [3, 11, 37, 38]). For data
collection and processing, we use the standing order for data (SOD) [3, 26] to request
three component seismograms for P wave arrivals and for events with a minimum
magnitude 5.5, depth in the range of 1–600 km, and an epicentral distance ranging
from 30◦ to 95◦ (e.g., [3]).

Receiver functions were first applied in the late 1970s at solitary stations to ob-
tain local one-dimensional (1D) structural estimates [16]. Since then, there was an
increase in the number of stations deployed for seismic experiments. It is now pos-
sible to generate detailed two- (2D) or three-dimensional (3D) images of structures,
such as the moho and the upper mantle transition zone discontinuities near 410 and
670 km depths using receiver functions (e.g., [36]).

Receiver functions are derived using deconvolution, a mathematical method used
to filter a signal and isolate the superimposed harmonic waves. Specially, receiver
functions are calculated by deconvolving the vertical component of a seismogram
from the radial component, resulting in the identification of converted phases where
there is an impedance contrast (crustal–mantle boundary; Fig. 1) [29].
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Fig. 1 Left Illustration of a simplified ray diagram, which identifies the Ps, converted phases,
which comprise the receiver function for a single layer. Right Vertical and radial seismograms and
the corresponding receiver function resulting from the deconvolution of the vertical component
from the radial component

1.2 Receiver Function Stacking

We used the receiver function stacking technique introduced by Zhu and Kanamori
[39], which estimates the crustal thickness and a Vp/Vs ratio based on the radial
receiver function. This technique is the standard approach used by EarthScope Au-
tomated Receiver Survey (EARS). Assuming that no lateral velocity heterogeneities
exist, the time separation between the Ps converted wave and the direct P wave ob-
tained from receiver functions (tPs) can then be used to estimate crustal thickness
(H ), given the average crustal velocities V and a Vp/Vs ratio (κ), and the constant
ray parameter p of the incident wave (e.g., [8]). The trade-off between the thickness
and the crustal velocities presents an ambiguity that can be reduced by using the
later multiple phases tppps and tpsps + ppss, which provide additional constraints
to both Vp/Vs and the crustal thickness (e.g., [8, 39]). Using and stacking multiple
events helps to increase the signal-to-noise ratio (SNR), which may be caused by
background noise, scattering from crustal heterogeneities, and P-to-S multiple con-
versions from other velocity discontinuities [20]. The H-κ domain stacking weights
each phase and plots the stacked phases as a gridded image s(H , κ),which reaches
a maximum when all three phases (tps, tppps, tpsps + ppss) are stacked coherently
with the correct H and κ [39]. The main advantage of this grid-search-based tech-
nique is that (1) large amounts of receiver functions can be processed without the
need of picking Ps arrival times, and (2) the stacking results in an enhancement of
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Fig. 2 This is a receiver function stack of station 219A, Vp/Vs vs. H (km). The black dot with the
white circle around it represents the preferred value. Note the multiple shaded regions might result
in a poor choice of crustal thickness

the signal/noise ratio and a suppression of lateral variations in the vicinity of the
recording station [20]. We will use this technique to derive an average crustal model
including H and Vp/Vs (κ). An example of this technique is shown in Fig. 2 for one
of the EarthScope USArray stations, 219A. The dark dot with the white circle around
the dot represents the possible solution in H and Vp/Vs space (Fig. 2).

1.3 Surface Wave Dispersion

Surface waves in general differ from body waves in many respects—they travel
slower, lower frequencies, largest amplitudes, and their velocities are in fact de-
pendent on frequency [29]. The surface wave velocities vary with respect to depth
being sampled by each period of the surface wave. The sampling by each period of
the surface wave is known as dispersion [31]. Valuable information can be inferred
by measuring surface wave dispersion because it will allow you to be able to better
understand the Earth’s crustal and mantle velocity structure [17, 25, 31]. In partic-
ular, Love and Rayleigh wave group dispersion observations generally account for
average velocity structure as a function of depth [14, 21]. The dispersion curves for
surface waves are extracted from station records of three component seismograms
for different frequencies and distances, by using reduction algorithms that rely on
spectral analysis techniques. The important fact here is that, based on Rayleigh’s
principle, surface wave velocities are more sensitive to S wave velocity, although
they are also theoretically sensitive to P wave velocity and density. The Rayleigh’s
principle states that the phase velocity perturbation, denoted by δc

c
, can be viewed as
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Fig. 3 Surface wave dispersion curves (Love and Rayleigh) for station ABTX using real data

a function of (Kα ,Kβ ,Kρ), the sensitivity coefficients for P wave velocity, S wave
velocity, and density, respectively, i.e., (Fig. 3)

δc(T )

c(T )
=

∫(
Kα

δα(z)

α(z)
+Kβ

δβ(z)

β(z)
+Kρ

δρ(z)

ρ(z)

)
, (1)

whereT is the period and z is the depth. By investigating sensitivity function variation
in depth, the relative contribution of each property to dispersion can be shown. This
subject is beyond the scope of our work, thus we just mention here that such analysis
allows geophysicists to show that the relative contribution of P wave velocity, and
density to dispersion is smaller than the one for S wave velocity [14]. That is, surface
wave dispersion is much more sensitive with respect to S wave velocity, and therefore
we have established the dependence of this data set on shear wave velocity.

1.4 Delay Travel Times

The travel time T between a source and receiver along a ray L is given in integral
form for a velocity field as:

T =
∫

L

ds

v(s)
(2)
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where s is the position vector in 2D or 3D media. Travel times are considered a
nonlinear inverse problem given the relationship between the measured data (travel
times) and the unknown model parameters (the velocity field). However, by trans-
forming variables to use slowness, the reciprocal of velocity, instead of velocity as
the unknown, a seemingly linear inversion problem is created:

∫

L

�u(s)ds = �T = Tobs − Tpred (3)

However, the ray is also dependent on the velocity (or slowness) model, thus making
the inverse problem nonlinear regardless of what form of model variable or param-
eterization is used. If the medium is subdivided into blocks, the path length lj in the
j th block and can be discretized to

�T =
∑

j

lj�uj (4)

The model can be parameterized any number of ways using velocity or slowness, and
cells, nodes, or splines, since the problems’nonlinearity must be dealt with regardless
of the parameterization. Most often a linearized gradient approach is applied in which
a starting model is used and both the model and rays are updated over a series of
iterations with the hope that there will be convergence to an acceptable model (the
final model). The model is almost always discretized using cells, nodes, or other
interpolating functions; in the latter two cases, the discrete model parameters are the
coefficients of the interpolating functions. For the formulation of travel times for a
tomography problem, the model is parameterized using constant slowness cells, in
which case the equation for the ith data becomes

�Ti =
∑

j

lij�uj (5)

where lij is the length of the ith ray in the j th model cell and �uj is the slowness
in the j th cell. In this case, the path length of each ray in a block, lij is the partial
derivative, ∂Ti/∂uj of the travel time with respect to the slowness of that block
(Fig. 4) [32].

1.5 Gravity Anomalies

In geophysics, gravity anomalies are generally defined as the difference between
observed gravity field and the field of a reference model. Depending on the reference
gravity model, two different types of anomaly variations are considered: gravity
anomalies and gravity disturbances. The geodetic gravity anomaly is defined as the
difference between gravity on the geoid and normal gravity on the reference ellipsoid
[13]. On the other hand, the gravity disturbance is defined as the difference of the
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PKP
P Mantle

Outer

S SKP

Source

Fig. 4 Left Half-space showing different P and S waves created within the Earth. Right Different
seismic phases within the Earth. Travel times are from the Array Network Facility (ANF) seismic
catalog [1]

fields at the same point on the reference ellipisoid. It has been demonstrated that
the gravity disturbances are more appropriate for geophysical purposes (e.g., [12]).
In any case, its necessary to take into account the difference in the interpretation
(Fig. 5).

The observed gravity anomalies reflect the effect of density variations relative to
the homogeneous reference model. Interpretation of the gravity anomalies implies
an estimation of the density heterogeneities. The density model should reproduce the
observed gravity field, taking into account that the observations may be affected by
measurement errors. Density heterogeneity of the Earth, associated with thermal and
compositional variations or with deflected boundaries separating layers of different
density, is one of the main factors that control dynamic processes and deformations
at both shallow and deep levels. Therefore, interpretation of the gravity anomalies
or gravity modeling is one of the principal methods, which help to understand the
nature and origin of the tectonic processes and the Earth’s dynamics.

2 Forward Problem

If we know the layered shear velocity distribution x = (x1, . . . , xn) at n different
horizontal layers, then we can evaluate the measured quantities y = (y1, . . . , ym)
(e.g., the travel times) by applying an appropriate nonlinear operator F (x) that uses
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Fig. 5 Bouguer gravity anomaly map of the Texas region and surrounding area. High-amplitude
gravity anomaly observed in Texas

the velocities x to predict the Earth’s response y = F (x),

F (x) = (F1(x), . . . ,Fm(x)) ∈ Rm, x = (x1, . . . , xn) ∈ Rn (m& n) (6)

The operator F relates the data space and the model space. In other words, if we
know the velocity model x, then we can predict the Earth’s response based on the
velocity model.

3 Inverse Problem

Given an observed data vector y ∈ Rm, we want to find the unknown model x
such that F (x) approximates y as much as possible. For each specific type T of
observations, this means that we are minimizing:

min
x

∥∥FT (x)− yT
∥∥2 = min

x

(
FT
i (x)− yT

i

)2
(7)

to match measurements of different types, researchers traditionally use weighted
nonlinear LSQ method. For example, to simultaneously match the teleseismic re-
ceiver functions (RF), surface wave dispersion velocities (SW), travel times (TT),
and gravity (GR), we minimize min

x
J, where

J = w2
RF

∥∥FRF(x)− yRF
∥∥2 + w2

SW

∥∥F SW(x)− ySW
∥∥2 + w2

TT

∥∥F TT(x)− yTT
∥∥2+
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w2
GR

∥∥FGR(x)− yGR
∥∥2
. (8)

This minimization problem can be reformulated as:

min
x
‖F (x)− y‖2, (9)

where

F (x) = W

⎛

⎜⎜⎜⎜⎜
⎝

F SW(x)

F RF(x)

F TT(x)

FGR(x)

⎞

⎟⎟⎟⎟⎟
⎠
∈ Rm,

y = W

⎛

⎜⎜⎜⎜⎜
⎝

ySW

yRF

yTT

yGR

⎞

⎟⎟⎟⎟⎟
⎠
∈ Rn

and

W = diag(wi), wi =
√

η1

σ 2
i p

, i = 1, . . . ,p, wi =
√

η2

σ 2
i q

, i = p + 1, . . . ,p + q,

wi =
√

η3

σ 2
i r

i = p + q + 1, . . . ,p + q + r , (10)

wi =
√

1− η1 − η2 − η3

σ 2
i s

, i = p + q + r + 1, . . . ,m = p + q + r + s,

with W a weighted diagonal matrix used to equalize the contribution of each data
set with respect to physical units and number of data points, ηi ∈ [0, 1] are influence
parameters that measures the reliability of each data set used for the inversion, σ 2

i is
the approximate standard deviation of each point, and p, q, r , and s are the number
of RF, SW, TT, and GR observations [31].

4 Need for Multiobjective Optimization

In practice, we do not know the exact values of the influence parameters. For different
values of the influence parameters, we get, in general, different velocity distributions
x; some of these velocity models are geophysically meaningful, some are not (e.g.,
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some models x predict higher velocities in the crust and lower velocities in the mantle
contrary to geophysics).

Traditionally, researchers avoid nonphysical nonsmooth velocity models by
adding a regularization term λ||Lx||2 to the minimized function [33]. The prob-
lem with this term is that it is not clear how to select λ, and different values of λ lead
to different solutions; see, e.g., [10] and [34].

In this work, instead of using regularization, we explicitly formulate constraints
that need to be satisfied, for example, the desired smoothness can be described as
a bound on |xi − xj | ≤ � on the difference between velocities xi and xj at nearby
locations. Then, we find the model x for which J (x) is the smallest under these
constraints. Additionally, we include bounds a ≤ x ≤ b on the velocities at different
depths. In geophysical applications, it is crucial to keep the physical parameters
within appropriate bounds.

So, instead of selecting a single combination of influence parameters (and thus,
of weights), we propose to use multiobjective optimization; namely, we generate all
possible models corresponding to different combinations of weights, and then we
use one of the MOP criteria to select the most promising model [15, 27, 28].

In this case, we want to mimimize the four criteria f1(x) = ||F RF(x) − yRF||2,
f2(x) = ||F SW(x)−ySW||2, f3(x) = ||F TT(x)−yTT||2, f4(x) = ||FGR(x)−yGR||2.
First, we find the Pareto optimal set P ∗, i.e., the set of all feasible solutions x for
which there is no other feasible solution x ′ which is better with respect to all criteria
f1(x ′) < f1(x), . . . , fk(x ′) < fk(x) (Fig. 6).

Definition (Pareto Optimal Set) For a given multiobjective problem F (x) =
(f1(x), . . . , fk(x)), the Pareto optimal set P ∗ �, is defined as:

P � {x ∈ Ω|¬∃x ′ ∈ Ω(F (x ′) ≤ F (x))} (11)

It is known that elements of the Pareto set can be obtained by solving the one-
objective (scalar) optimization problem:

min
x∈Xf (x) =

k∑

i=1

wifi(x), (12)

where w = (w1, . . . , wk) ≥ 0 is the vector of weighting coefficients assigned prior to
the solution of the problem. So, in our computations, we try all possible combinations
of weights, and we find all solutions x corresponding to different combinations. For
each criterion fi , we then find the smallest value f min

i and the largest value f max
i .

The smallest values form an “ideal point” f min = (f min
1 , . . . , f min

4 ). We then select
a solution x which is the closest to this ideal point. Specifically, we normalize each
differences fi(x)−f min

i (x) to the interval (0,1) by dividing it by f max
i (x)−f min

i (x),
and then we minimize the corresponding normalized distance. In other terms, we
select a solution x for which the distance

d2(f min, f (x)) =
k∑

i=1

(
fi(x)− f min

i (x)

f max
i (x)− f min

i (x)

)2

(13)



320 L. Thompson et al.

0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295 0.3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

f1

f2
Pareto front

 

 

F=w1F1+w2F2

min(w1F1+w2F2)

solution closest to “ideal point”

set of feasible solutions

“ideal point”

Pareto set

Fig. 6 Illustration of the solution set or Pareto front, which is, defined as the weights times the
perspective objective functions

5 Numerical Algorithm

First, we use a first-order Taylor approximation of the operator F around some
suitable model xk :

F (x) ∼= F (xk)+ F ′(xk)�x = F (xk)+ F ′(xk)(x − xk), (14)

where F ′(xk) is the matrix formed by the partial derivatives of F . Therefore, we
rewrite the problem (9) as:

minx

1

2

∥∥F ′(xk)x + r(xk)
∥∥2

s.t. g(xk) ≥ 0 (15)

g(xk) =
⎛

⎝xk − a

b − xk

⎞

⎠
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where r(xk) = F (xk)− y−F ′(xk)xk , and g(xk) is a vector of constraints, including
constraints xi − ai ≥ 0 and bi − xi ≥ 0 that describe the bounds ai ≤ xi ≤ bi on
velocities xi at different layers.

6 Primal-Dual Interior-Point Method

To implement the primal-dual interior-point (PDIP) method [24, 31], we first rewrite
our problem in a standard form as follows:

minx

1

2

∥∥F ′(xk)x + r(xk)
∥∥2

s.t. g(xk)− s = 0 (16)

s ≥ 0

where s ∈ R2n is a slack variable. Then we define the Lagrange function associated
to problem (16) as:

l(xk , z, s, w) = 1

2
||F ′(xk)x + r(xk)||2 − (g(xk)− s)T z − sT w (17)

with the Lagrangian multipliers z, w ∈ R2n, (z, w) ≥ 0. For a given perturbation pa-
rameter μ > 0, the perturbed Karush–Kuhn–Tucker (KKT) or necessary conditions
are given by

F̂ (xk , z, s, w) =

⎛

⎜⎜⎜⎜⎜
⎝

F ′(xk)T (F ′(xk)x + r(xk))− ∇gT (xk)z

g(xk)− s

z − w

SWe − μe

⎞

⎟⎟⎟⎟⎟
⎠
= 0 (18)

where

F̂ : Rn+2n+2n −→ Rn+2n+2n
S = diag(s1, . . . , s2n), W = diag(w1, . . . , w2n)

and e = (1, . . . , 1) ∈ R2n. It is easy to see that z = w, hence the perturbed KKT
system (18) is rewritten as:

F̂ (x, z, s, w) =

⎛

⎜⎜
⎝

F ′(xk)T (F ′(xk)x + r(xk))− ∇gT (xk)z

g(xk)− s

SZe − μe

⎞

⎟⎟
⎠ = 0, (19)
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Fig. 7 3D shear wave model utilizing three geophysical data sets using multiobjective optimization
(MOP) technique. Blue represents high velocities and red represents low velocities

thus the Jacobian associated to (19) is then computed as:

F ′

⎛

⎜⎜
⎝

x

z

s

⎞

⎟⎟
⎠ =

⎡

⎢⎢
⎣

F ′(xk)T F ′(xk) −∇gT (xk) 0nxn

∇g(xk) 0nxm −Imxm

0mxn S Z

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

�x

�z

�s

⎤

⎥⎥
⎦ = −

⎡

⎢⎢
⎣

∇xl(x, z, s)

g(xk)− s

SZe − μe

⎤

⎥⎥
⎦

(20)

System (20) can be reduced further by eliminating the third block of equations as
follows. From the last block of equation in (20) we have

S�z + Z�s = −SZe + μe,

therefore

Z�s = −SZe + μe − S�z

�s = −s + μZ−1e − Z−1S�z,

and then

∇gT (xk)�x −�s = ∇gT (xk)�x + s − μZ−1e + Z−1e + Z−1S�z

= −∇gT (xk)x + s

∇gT (xk)�x + Z−1S�z = μZ−1e − g(xk)

which allow us to write the reduced linear system:
⎡

⎣−F ′(xk)T F ′(xk) ∇gT (xk)

∇g(xk) Z−1S

⎤

⎦

⎡

⎣�x

�z

⎤

⎦ =
⎡

⎣∇xl(x, z, s)

Z−1μe − g(xk)

⎤

⎦ (21)

An example of a 3-D model using multiple geophysical datasets is shown in Fig. 7.
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7 Conclusion

In summary, for this study we propose to utilize the MOP technique to perform joint
inversion of multiple data sets (e.g., receiver functions, surface wave dispersion, and
etc). We will incorporate different weights in the MOP inversion scheme in order to
map the Pareto set (solution space) of receiver functions and surface wave dispersion
measurements. We used the MOP technique to help characterize the crust and upper
mantle of an ancient rift system in Texas using seismic data from USArray and Earth-
Scope network. We will extend the PDIP algorithm with the MOP scheme in order
to obtain high-resolution 3D imagery of Texas using teleseismic receiver functions,
surface wave dispersion measurements, delay travel times, and gravity. We chose
this optimization approach because we want to find the best possible solution for
our nonlinear geophysics inverse problem. In geophysics, most inversion problems
require finding some minimization. The optimization technique that we chose to
solve our nonlinear inverse problem requires the search of the global minimum and
this technique will be able to define the entire solution based from using different
weights to map the Pareto set. From the Pareto set, the MOP technique performs a
direct search method that basically selects the final solution from a set of alternative
solutions from the model space [15, 27, 28]. For future work, we plan to incorporate
gravity into our 3D model to be able to obtain a more constrained earth structure
model of Texas, which will allow us to help answer questions such as if the rift
system is still actively deforming and how does the rift influence the evolution of
adjacent areas within the North American Plate.
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Multiobjective Semi-infinite Optimization:
Convexification and Properly Efficient Points
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Abstract This chapter deals with nonconvex semi-infinite optimization problems
that are defined by finitely many objective functions and infinitely many inequality
constraints in a finite-dimensional space. Under the reduction approach, it is shown
that locally around an efficient point this problem can be transformed equivalently in
such a way that the Lagrangian of the transformed weighted sum optimization prob-
lem becomes locally convex. Consequently, local duality theory and corresponding
solution methods can be used after applying this convexification procedure. Further-
more, the strong relationship between properly efficient points of both the original
and the transformed problems is discussed.

Keywords Semi-infinite optimization · Multiobjective optimization · Reduction
approach · Convexification procedures · Properly efficient points

1 Introduction

In this chapter, we consider nonlinear multiobjective semi-infinite optimization prob-
lems (MOSIPs). Semi-infinite means that we have infinitely many constraints and
finitely many objective functions defined on a finite-dimensional space. Semi-infinite
optimization became a very vivid area of research over the past two decades; we refer
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to some recent books and monographs [6, 24, 25, 27] as well as to the standard book
[3] on multiobjective optimization.

As a starting point of this chapter, we define an MOSIP as follows:

MOSIP “min” f (x) s.t. x ∈ M ,

where f = (f1, . . ., fq)� is the vector of objective functions fi ∈C2(Rn, R),
i = 1, . . ., q (Ck(Rn, R) denotes the space of k-times continuously differentiable
real-valued functions defined on R

n) and

M = {
x ∈ R

n | g(x, y) ≤ 0, y ∈ Y
}

is the feasible set. Here, g ∈ C2(Rn × R
m, R) and Y ⊂ R

m is a compact—and,
in general, infinite—index set. Note that each y ∈ Y represents a corresponding
constraint g(x, y) ≤ 0.

Given a feasible point x ∈ M , we define the set of active inequality constraints at
x as:

Y0(x) = {y ∈ Y | g(x, y) = 0}.
In order to recall the well-known notations of solutions for MOSIP, let the vector
c ∈ R

n denote its components by ci , i = 1, . . ., n and for c, e ∈ R
n let:

• c � e, if ci ≤ ei , i = 1, . . . , n
• c < e, if ci < ei , i = 1, . . ., n
• c ≤ e, if ci ≤ ei , i = 1, . . ., n and c �= e

Definition 1
(i) A point x ∈ M is called efficient (for the problem MOSIP) if there does not exist

any x ∈ M with f (x) ≤ f (x).
(ii) A point x ∈ M is called locally efficient (for the problem MOSIP) on B(x, ε) if

there is a real number ε > 0 and if there does not exist any x ∈ B(x, ε) ∩M

with f (x) ≤ f (x) (here, B(x, ε) = {x ∈ R
n | ‖x − x‖ < ε} and ‖·‖ denotes

the Euclidean norm).

In this chapter, we will assume that at a point under consideration, say x ∈ M , the so-
called reduction approach (RA) holds. The basic definition of this generic property
will be reviewed in Sect. 3; for more details we refer to [9, 11, 12, 14, 15, 28]. In
particular, the RA implies that locally around x the feasible set can be described by
finitely many C2-inequality constraints g̃j (x) (= g(x, yj (x)) in (9)), j = 1, . . ., s as

M ∩ U = {x ∈ U | g̃j (x) ≤ 0, j = 1, . . ., s}
where U ⊂ R

n is an appropriate neighbourhood of x. Then, we define locally on
U the Lagrangian for the so-called weighted sumoptimization problem associated to
MOSIP as

L(x, λ,μ) =
q∑

i=1

λifi(x)+
s∑

j=1

μj g̃j (x), (1)
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where λi > 0 are the positive weights for fi , i = 1, . . ., q and μ ≥ 0s (where 0s

denotes the origin in R
s).

Frequently, primal/dual solution methods and propositions within local duality
theory use the assumption that the partial Hessian with respect to x of the Lagrangian
(1) is positive definite. This is a very strong assumption which, in general, is not
fulfilled for nonconvex problems. In this chapter, we apply the so-called p-power
transformation to MOSIP where the functions of the original problem are substituted
by their pth power; e.g. fi by (fi)p, i = 1, . . ., q. This technique was applied to
standard optimization problems in [8, 18–20, 29].

The objective of this chapter is twofold. First, we will show that thep-power trans-
formation is a convexification procedure for the Lagrangian associated to MOSIP.
More precisely, assuming that the RA, an appropriate constraint qualification and an
appropriate second-order condition hold at x, we will show that for any sufficiently
large powerp the Lagrangian of thep-power transformation becomes convex locally
around x. Note that the original problem and the transformed problem have the same
feasible set and several solution properties remain unchanged as well. Second, in
multiobjective optimization, an efficient point can be further qualified as properly
efficient point (in the sense of Geoffrion [5] or in the sense of Kuhn and Tucker
[17]; see Sect. 2 for definitions). We will show that the property of being a properly
efficient point is invariant under p-power transformation.

This chapter is organized as follows. Section 2 provides some basic results on
locally properly efficient points and constraint qualifications. In Sect. 3, we recall
the idea of the RA. Section 4 contains the main results on the relationship between
the original problem and its p-power transformation locally around a particular point
under consideration. An illustrating example is presented in Sect. 5, and Sect. 6 yields
some conclusions.

Finally, we explain some notations. For a function h ∈ C1(Rn, R), denote by the
row vector Dh(x) (Dx1h(x)) the gradient of h (partial gradient of h with respect to
the subvector x1 of x) at x ∈ R

n. For h ∈ C2(Rn, R), the second derivatives are
analogously defined.

2 Some Basic Results

In this section we recall some basic properties of a standard multiobjective optimiza-
tion problem (MOP); here, standard means that it has only finitely many inequality
constraints. In particular, we recall definitions on properly efficient points as well as
some constraint qualifications. Throughout this section, consider a standard MOP of
the form

MOP “min”f (x) s.t. x ∈ X

where f = (f1, . . ., fq)� is defined as in Sect. 1 and

X = {
x ∈ R

n | gj (x) ≤ 0, j = 1, . . ., s
}
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with gj ∈C1 (Rn, R), j = 1, . . ., s. For x ∈X define the set of active indices at x as

J0 (x) =
{
j ∈ {1, . . ., s} | gj (x) = 0

}
.

Locally Properly Efficient Points In the following definition of two kinds of locally
properly efficient points, we assume that the points under consideration are locally
efficient for the problem MOP where the notation is analogously defined as in Defi-
nition 1 for the problem MOSIP. The following definitions refer to properly efficient
points that where introduced by Geoffrion in [5] as well as by Kuhn and Tucker in [17].

Definition 2 (See e.g. [3, 5, 17]).
(i) A point x ∈ X is called locally properly efficient (for the problem MOP) in the

sense of Geoffrion (shortly: G-locally properly efficient) if there exists a real
number ε > 0 such that
• x is locally efficient (for the problem MOP) on B(x, ε).
• There exists a real number K > 0 such that for each index i ∈ {1, . . ., q} and

any x ∈ B(x, ε) ∩X with fi(x) < fi(x), there exists an index j ∈ {1, . . ., q}
such that fj (x) > fj (x) and

fi(x)− fi(x)

fj (x)− fj (x)
≤ K.

(ii) A point x ∈ X is called locally properly efficient (for the problem MOP) in the
sense of Kuhn and Tucker (shortly: KT-locally properly efficient) if there exists
a real number ε > 0 such that
• x is locally efficient (for the problem MOP) on B(x, ε).
• The following system has no solution d ∈ R

n :

Dfi(x)d ≤ 0, i = 1, . . ., q,

Dfk(x)d < 0, for some k ∈ {1, . . ., q},
Dgj (x)d ≤ 0, j ∈ J0(x).

The role of K > 0 in Definition 2 can be interpreted as follows. The ratio (which is
also called trade-off, see e.g. [3]) between the improvement of one objective function
(fi(x) < fi(x)) and the decrease of another objective function (fj (x) > fj (x)) is
bounded by the finite number K > 0. Note that in Definition 2 for any such index
i ∈ {1, . . ., q} and point x with fi(x) < fi(x), there has to exist a corresponding
index j ∈ {1, . . ., q} with fj (x) > fj (x) since x is locally efficient.

The difference between these two concepts of locally properly efficient points can
be characterized by the fact whether or not a corresponding constraint qualification
is fulfilled, see for example the next lemma or, more general, [7]. We also refer to the
(longer) Example 4.2 in [7] where both concepts are illustrated for several particular
problems.

Constraint Qualifications We recall the following two well-known constraint
qualifications:
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The Mangasarian–Fromovitz constraint qualification (MFCQ; cf. [21, 22]) is said
to hold at x ∈ X if there exists a vector d ∈ R

n such that

Dgj (x)d < 0, j ∈ J0(x). (2)

The Kuhn–Tucker constraint qualification (KTCQ; cf. [17]) is said to hold at x ∈ X

if for any vector d ∈ R
n\{0n} satisfying

Dgj (x)d ≤ 0, j ∈ J0(x),

there exist real numbers t > 0, α > 0 and a continuously differentiable path

ϑ : t ∈ [0, t] �→ ϑ(t) ∈ R
n

such that ϑ(0) = x, ϑ ′(0) = αd and ϑ(t) ∈ X for all t ∈ [0, t].
The next lemma summarizes some known results.

Lemma 1
(i) If MFCQ holds at x ∈ X, then KTCQ holds at x ∈ X as well.

(ii) If KTCQ holds at x ∈ X and x is G-locally properly efficient, then x is KT-
locally properly efficient.

(iii) If x ∈ X is KT-locally properly efficient, then there exist λ > 0q and μ � 0s

such that

q∑

i=1

λiDfi(x)+
s∑

j=1

μjDgj (x) = 0n,
s∑

j=1

μjgj (x) = 0. (3)

(iv) If x ∈ X is G-locally properly efficient and MFCQ holds at x, then there exist
λ > 0q and μ � 0s satisfying (3).

Proof

(i) See [1, Lemma 5.2.1]
(ii) See [3, Theorem 2.51]

(iii) See [3, Theorem 3.25]
(iv) Consequence of (i), (ii) and (iii) �
The following lemma is related to the local convexity of the Lagrange function. For
the sake of completeness, we present its proof that contains parts of the proof of
Theorem 3.11 in [3].

Lemma 2 (see [3, Theorem 3.11]). Let x ∈ X and let λ > 0q and μ � 0s such
that (3) is fulfilled. If the Lagrange function

L(·, λ,μ) =
q∑

i=1

λifi(·)+
s∑

j=1

μjgj (·)

is convex on B(x, ε) for some ε > 0, then x is G-locally properly efficient.
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Proof Since L(·, λ,μ) is convex on B(x, ε), we get from (3) that x is a global
minimizer of L(·, λ,μ)|B(x,ε), that is

L(x, λ,μ) ≤ L(x, λ,μ) for all x ∈ B(x, ε). (4)

In order to prove that x is locally efficient, assume the contrary. Assume that there
exists x̂ ∈ B(x, ε) ∩X such that f (̂x) ≤ f (x). Then, by λ̂ > 0q , we obtain:

q∑

i=1

λifi (̂x) <
q∑

i=1

λifi(x) and

s∑

j=1

μjgj (̂x) ≤
s∑

j=1

μjgj (x) (=0),

which contradicts (4).
In order to prove thatx isG-locally properly efficient, assume the contrary. Choose

K = (q − 1)max
i,j

λj

λi
.

Then, there exist an index i0 ∈ {1, . . ., q} and a point x0 ∈ B(x, ε) ∩X such that

fi0 (x0) < fi0 (x)

and for each j ∈ {1, . . ., q} with fj (x0) > fj (x), we have

fi0 (x)− fi0 (x0) > K
(
fj (x0)− fj (x)

)
.

The latter inequality yields for all j ∈ {1, . . ., q}\{i0} that

fi0 (x)− fi0 (x0) > (q − 1)
λj

λi0

(
fj (x0)− fj (x)

)

and, hence

1

q − 1
λi0

(
fi0 (x)− fi0 (x0)

)
> λj

(
fj (x0)− fj (x)

)
, j ∈ {1, . . ., q}\{i0}. (5)

After summing up the (q − 1) inequalities in (5), we obtain

q∑

i=1

λifi(x) >
q∑

i=1

λifi(x
0)

and, therefore

L(x, λ,μ) > L(x0, λ,μ)

which contradicts (4). This completes the proof. �
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In our previous chapter [7], we presented two approximation problems as applica-
tions of MOSIPs. As a motivation for this chapter, we quote one of these applications
in the following.

Example 1 Simultaneous Chebyshev best approximation.
This example is completely taken from [7] including the terminology. The fol-

lowing simultaneous Chebyshev best approximation problem can be derived from
an abstract characterization theory of efficiency and is a useful model for many
practical applications (for more details and, in particular, necessary conditions, see
[2]). Consider an interval [a, b] ⊂ R and a set of p (p > 1) continuous real-valued
functions:

ψi
0 : [a, b] → R, i = 1, . . .,p

as well as for each index i0 ∈ {1, . . .,p} a corresponding family of n continuous
real-valued functions:

ψ
i0
k : [a, b] → R, k = 1, . . ., n.

Define the difference between ψi
0 and a linear combination of the (approximation)

functions ψi
k , k = 1, . . ., n as:

fi(x) = max
y∈[a,b]

∣∣∣∣∣
ψi

0(y)−
n∑

k=1

xkψ
i
k(y)

∣∣∣∣∣
, i = 1, . . .,p,

where x ∈ R
n is varying in a given (feasible) set M1 ⊆ R

n. Then, the simultaneous
Chebyshev best approximation problem is to solve the following non-differentiable
MOP:

“min”
(
f1(x), . . ., fp(x)

)�
s.t. x ∈ M1.

A standard epigraph reformulation of the latter problem provides (with auxiliary
variables q ∈ R

p)

“min”
(
q1, . . ., qp

)�
s.t.

maxy∈[a,b]

∣∣∣∣ψ
i
0(y)−

n∑

k=1
xkψ

i
k(y)

∣∣∣∣ ≤ qi , i = 1, . . .,p.

The latter problem can be rewritten as a differentiable MOSIP with Y = [a, b] as
follows:

“min”
(x,q)∈M1×Rp

(
q1, . . ., qp

)�
s.t.

ψi
0(y)−

n∑

k=1
xkψ

i
k(y) ≤ qi , i = 1, . . .,p, y ∈ Y,

−ψi
0(y)+

n∑

k=1
xkψ

i
k(y) ≤ qi , i = 1, . . .,p, y ∈ Y.
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Note that this problem has a more general form than MOSIP since it contains more
than one (but finitely many) inequality constraints of the form g(x, y) ≤ 0, y ∈ Y.

However, all results presented in this chapter can be generalized straightforwardly
to this more general case. This completes this example.

3 The Reduction Approach

In this section, we return to the MOSIP. We will recall the so-called RA; if this
approach holds at a point x ∈ M , then the problem MOSIP can, locally around
x, be described by finitely many continuously differentiable constraints. This latter
property refers to an important feature of solution methods for semi-infinite problems
where the original problem with infinitely many constraints has to be transformed
(locally or as an approximation) into one with finitelymany constraints. We will
mention at the end of this section that the RA is a generic property; for a detailed
study on this topic, see e.g. [9, 11, 12, 14, 15, 28]. Consider MOSIP and assume that
the index set Y ⊂ R

m is given as

Y = {y ∈ R
m | ul(y) = 0, l ∈ A, vk(y) ≤ 0, k ∈ B}

where A = {1, . . ., a}, a < m, B = {1, . . ., b} and ul , vk ∈ C2(Rm, R), l ∈ A,
k ∈ B. Furthermore, assume throughout this section the generic property that the
linear independence constraint qualification (LICQ) holds at each y ∈ Y, that is, the
gradients Dul(y), Dvk(y), l ∈ A, k ∈ B0(y) are linearly independent where

B0(y) = {k ∈ B | vk(y) = 0}.
Obviously, for x ∈ M , each index y ∈ Y0(x) is a global maximizer of the so-called
lower level problem (which depends on the parameter x)

LL(x) max g(x, y) s.t. y ∈ Y (6)

and, by LICQ, there exist uniquely determined multipliers αl , l ∈ A, δk ≥ 0,
k ∈ B0(y) such that

Dyg(x, y)−
∑

l∈A
αlDul(y)−

∑

k∈B0(y)

δkDvk(y) = 0m. (7)

We recall that the strong second-order sufficient condition (SSOSC) is said to hold
at the global maximizer y ∈ Y0(x) of (6) if the matrix V �HV is positive definite
where

H = −D2
yg(x, y)+

∑

l∈A
αlD

2ul(y)+
∑

k∈B0(y)

δkD
2vk(y)

and V is a matrix whose columns form a basis of the subspace

{y ∈ R
m | Dul(y)y = 0, Dvk(y)y = 0, l ∈ A, k ∈ B+(y)}
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with

B+(y) = {k ∈ B0(y) | δk > 0}.
If the latter tangent space is trivial (that is, {0}), then SSOSC is, by definition,
fulfilled as well. The following lemma is a straightforward conclusion from the
implicit function theorem.

Lemma 3 (cf. e.g. [9, 10]). Let x ∈ M and y ∈ Y0(x). Assume that SSOSC holds
at y such that B0(y) = B+(y). Then, there exist an open neighbourhood U of x and
a uniquely determined continuously differentiable function

ỹ : x ∈ U �→ ỹ(x) ∈ R
m

such that ỹ(x) = y, the point ỹ(x) is a local maximizer of LL(x) for each x ∈ U ,
g(·, ỹ(·)) ∈ C2(U , R), and ỹ(x) is a locally unique maximizer of LL(x) around y. �

Now, we are able to recall the following. The RA is said to hold at x ∈ M

if B0(y) = B+(y) for all y ∈ Y0(x) and SSOSC holds at all y ∈ Y0(x). As a
consequence of the compactness of the index set Y and Lemma 3, we obtain the
following corollary:

Corollary 1 Let x ∈ M and assume that RA holds at x. Then, we have:

• Y0(x) is a finite set, say Y0(x) = {y1, . . ., ys}.
• There exist an open neighbourhood U of x and uniquely determined continuously

differentiable functions

yj : x ∈ U �→ yj (x) ∈ R
m, j = 1, . . ., s (8)

such that yj (x) = yj , g(·, yj (·)) ∈ C2(U , R), j = 1, . . ., s and

M ∩ U = {x ∈ U | g(x, yj (x)) ≤ 0, j = 1, . . . , s}. (9)

�
Assuming that RA holds at x ∈ M , the statement (9) means that the feasible set
M of MOSIP can be described locally around x by finitely many continuously dif-
ferentiable inequality constraints. Although the functions in (8) are only implicitly
known, a short calculation shows that for x ∈ U , we have

Dg(x, yj (x)) = Dxg(x, y)|y=yj (x), j = 1, . . . , s. (10)

In the following, we will assume that RA holds at our point under consideration.

4 Main Results

4.1 The Setting

In the remainder of this chapter, let x ∈ M be our point under consideration and
assume the following:
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• RA holds atx; we will use the notations from Corollary 1 which means in particular
that locally around x , the feasible set M can be described as stated in (9).

• The extended MFCQ (EMFCQ; (cf. [13]) holds at x, that is, there exists d ∈ R
n

satisfying

Dxg(x, y)d < 0, y ∈ Y0(x).

• There exist (fixed) λ > 0q as well as multipliers μj ≥ 0, j = 1, . . ., s such that

q∑

i=1

λiDfi(x)+
s∑

j=1

μjDxg(x, yj ) = 0n, μ ≥ 0s . (11)

Then, by EMFCQ, the set

M = {μ ∈ R
s | μ is a solution of (11)}

is compact (cf. [4, 16]).
• The following extended SSOSC (ESSOSC; cf. [26]) holds at x: For each μ ∈M

the matrix
q∑

i=1

λiD
2fi(x)+

s∑

j=1

μjD
2g(x, yj (x))

is positive definite on the subspace

T (μ) = {w ∈ R
n | Dxg(x, yj )w = 0, j ∈ {ν ∈ {1, . . . s} | μν > 0}}.

By [26], these assumptions imply thatx is a local minimizer of the—locally defined—
problem

min
x∈U

q∑

i=1

λifi(x) s.t. g(x, yj (x)) ≤ 0, j = 1, . . ., s.

Furthermore, as a consequence of Lemma 2, we obtain the following.

Corollary 2 If the (Lagrange) function

q∑

i=1

λifi(x)+
s∑

j=1

μjg(x, yj (x)) (12)

is convex on B(x, ε) for some ε > 0 with B(x, ε) ⊂ U and some μ ∈ M, then x is
G-locally properly efficient for the problem

“min
x∈U ”f (x) s.t. g(x, yj (x)) ≤ 0, j = 1, . . ., s. (13)

However, in general, ESSOSC does not imply that the Lagrange function (12) is
convex on a neighbourhood of x. In the following, we will show how the so-called
p-power transformation can overcome this disadvantage.
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4.2 The p-Power Transformation

In the remainder of this section we assume for all x ∈ cl U (where cl denotes closure)
that

fi(x) > 0, i = 1, . . ., q

and that g(x, y) can be written as the difference of a C2-function and a positive
constant as

g(x, y) = G(x, y)− r

with G(x, y) > 0, r > 0 for all (x, y) ∈ cl U × Y. This can be assumed without
loss of generality since it can be fulfilled by an equivalence transformation, e.g. by
exponential transformation

(
fi(x) → efi (x)

)
or by adding a sufficiently large constant

(fi(x) → fi(x)+ c, c > 0). Thus, our problem (13) can be written as

“min
x∈U ”(f1(x), . . ., fq(x)) s.t. G(x, yj (x)) ≤ r , j = 1, . . ., s. (14)

For a real number p > 0, we define now the so-called p-power transformation of
(14) by substituting the original functions by their pth power (we write f

p

1 (x) for
(f1(x))p)

“min
x∈U ”(f p

1 (x), . . ., f p
q (x)) s.t. Gp(x, yj (x)) ≤ rp, j = 1, . . ., s. (15)

In the subsequent two theorems we will show:

• that the feasible sets of the problems (14) and (15) are identic.
• that efficient and (KT- and G-) properly efficient points for (14) and (15) are

closely related.
• that for sufficiently large powers p in (15), the corresponding Lagrange function

is convex locally around x.

For more details on p-power transformations for standard finite and semi-infinite
optimization problems, we refer to [8, 18–20, 29].

Theorem 1

(i) The feasible sets of the problems (14) and (15) are identic.
(ii) A point x̃ ∈ U is locally efficient for (14) if and only if x̃ ∈ U is locally efficient

for (15).
(iii) A point x̃ ∈ U is G-locally properly efficient for (14) if and only if x̃ ∈ U is

G-locally properly efficient for (15).
(iv) A point x̃ ∈ U is KT-locally properly efficient for (14) if and only if x̃ ∈ U is

KT-locally properly efficient for (15).

Proof The statements (i) and (ii) follow immediately from the positivity of p (and,
thus, of 1/p) and the positivity of the functions fi , i = 1, . . ., q, G(·, yj (·)), j =
1, . . ., s for all x ∈ U .
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(iii) Let x ∈ U be G-locally properly efficient for (14) but not G-locally properly
efficient for (15). Then, there exist infinite sequences of positive numbers {εν},
{Kν} (the index ν is always varying in the whole set N of natural numbers) with
εν → 0, Kν → ∞, an index sequence {iν} ⊂ {1, . . ., q}—let, after shrinking to a
subsequence, iν = 1, ∀ν ∈ N—and a sequence of points {xν} ⊂ U with xν → x̃

(xν ∈ B (̃x, εν)),

f
p

1 (xν) < f
p

1 (̃x) (16)

such that for each ν ∈ N, we have

f
p

1 (̃x)− f
p

1 (xν)

f
p

jν (xν)− f
p

jν (̃x)
> Kν (17)

for all indices jν ∈ {1, . . ., q} with

f
p

jν (xν) > f
p

jν (̃x). (18)

Since x̃ is G-locally properly efficient for (14), we get, from (16), that for each
ν ∈ N, there exists an index lν ∈ {1, . . ., q}—let, after shrinking to a subsequence
lν = 2, ∀ν ∈ N—with

f2(xν) > f2(̃x) (19)

such that for some K > 0, we get

f1(̃x)− f1(xν)

f2(xν)− f2(̃x)
≤ K. (20)

In particular, (17), (18) and (19) yield

f
p

1 (̃x)− f
p

1 (xν)

f
p

2 (xν)− f
p

2 (̃x)
> Kν. (21)

By the mean value theorem, there exist

Δν
1, Δν

2 ∈ {ρx̃ + (1− ρ)xν | ρ ∈ [0, 1]}
such that (21) implies

−pf p−1
1 (Δν

1)Df1(Δν
1)(xν − x̃)

pf
p−1
2 (Δν

2)Df2(Δν
2)(xν − x̃)

> Kν.

Since Δν
1 → x̃, Δν

2 → x̃ and f1(x) > 0, f2(x) > 0 for all x ∈ cl U , the latter
inequality and Kν →∞ yield

‖xν − x̃‖
‖xν − x̃‖

(−Df1(Δν
1)(xν − x̃))

Df2(Δν
2)(xν − x̃)

→∞ as ν →∞. (22)
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Perhaps after shrinking to a subsequence, let

xν − x̃

‖xν − x̃‖ → x0 as ν →∞.

Then, (22) implies after taking the limit that

Df2(̃x)x0 = 0. (23)

By using an analogous argument, the mean value theorem and (20) deliver for
υ →∞ that

−Df1(̃x)x0

Df2(̃x)x0
≤ K

which contradicts (23). Therefore, x̃ ∈ U is G-locally properly efficient for (15).
The other direction is proved analogously by considering the power 1/p.
(iv) Let x̃ ∈ U be KT-locally properly efficient for (14); that is, the following system
has no solution d ∈ R

n (where, for sake of simplicity, we shorten the notations and
substitute fi (̃x) by fi and G(̃x, yj (̃x)) by Gj )

Dfid ≤ 0, i = 1, . . ., q,

Dfkd < 0, for some k ∈ {1, . . ., q},
D(Gj − r)d ≤ 0, j = 1, . . ., s.

For the derivatives of the functions from (15), we get:
⎧
⎨

⎩
D(f p

i ) = pf
p−1
i Dfi , i = 1, . . ., q.

D((Gj )p − rp) = p(Gj )p−1DGj , j = 1, . . ., s.
(24)

Since pf
p−1
i > 0, i = 1, . . ., q and p(Gj )p−1 > 0, j = 1, . . ., s, we obtain from

(24) for any d ∈ R
n that:

Dfid ≤ 0 ←→ D(f p

i )d ≤ 0, i = 1, . . ., q,

Dfid < 0 ←→ D(f p

i )d < 0, i = 1, . . ., q,

D(Gj − r)d ≤ 0 ←→ D((Gj )p − rp)d ≤ 0, j = 1, . . ., s.

Consequently, x̃ ∈ U is KT-locally properly efficient for (15). This completes the
proof of Theorem 1. �

We recall the Lagrangian of the problem (14) with the fixed λ > 0q as well as the
compact set M representing the solution set of (11) (here (10) comes into play). In
the next theorem, we will show that for a sufficiently large power p, the Lagrangian
of the problem (15) that corresponds to λ is convex on a neighbourhood of x. This
Lagrangian is given for x ∈ U as follows:

Lp(x,β, γ ) =
q∑

i=1

βif
p

i (x)+
s∑

j=1

γj (Gp(x, yj (x))− rp),
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where γ ∈ R
s and β ∈ R

q are fixed with

βi =
λi

f
p−1
i (x)

, i = 1, . . ., q. (25)

Note that it is β > 0q and that β depends on p. By (11), a short calculation shows
that the compact set of solutions γ ∈ R

s satisfying

DxLp(x,β, γ ) = 0, γ ≥ 0s ,

is

Γp =
{
γ ∈ R

s | γj = μj

Gp−1(x, yj (x))
, j = 1, . . ., s, μ ∈M

}
. (26)

Now, we will show that D2
xLp(x,β, γ ) is positive definite for all sufficiently large

chosen powers p and all γ ∈ Γp where β > 0q is chosen as in (25).

Theorem 2 There exists a power p > 0 such that the Hessian D2
xLp(x,β, γ ) is

positive definite for all γ ∈ Γp wheneverp > p.

Proof Throughout this proof we substitute fi(x) by fi , i = 1, . . ., q and G(x, yj (x))
by Gj , j = 1, . . ., s. We obtain for fi (and analogously for Gj ):

Df
p

i = pf
p−1
i Dfi and

D2f
p

i = p(p − 1)f p−2
i Df �i Dfi + pf

p−1
i D2fi.

Then, the Hessian D2
xLp(x,β, γ ) with β > 0q satisfying (25) and γ ∈ Γp is

D2
xLp(x,β, γ ) =

q∑

i=1

βiD
2f

p

i +
s∑

j=1

γjD
2((Gj )p − rp)

=
q∑

i=1

(

p(p− 1)
λi

fi
Df �i Dfi +pλiD

2fi

)

+
s∑

j=1

(
p(p− 1)

μj

Gj
(DGj )�DGj +pμjD

2Gj
)

= pD2
xL(x, λ,μ)+p(p− 1)

(
q∑

i=1

λi

fi
Df �i Dfi

+
s∑

j=1

μj

Gj
(DGj )�DGj

)

(27)

(γ and μ are related according to (26)).
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Now assume that the statement of Theorem 2 would not be true. Then, there exist
sequences {pν} ⊂ R, {γ ν} ⊂ Γpν , {wν} ⊂ R

n such that:

• pν > 0, pν →∞.

• γ ν
j =

μν
j

(Gj )pν−1 (as in (26)), μν → μ (M is a compact set).
• ‖wν‖ = 1, wν → w and

(wν)�D2
xLpν (x,β, γ ν)wν ≤ 0. (28)

After dividing (27) by p, we get from (28) that

(wν)�D2
xL(x, λ,μν)wν +

(pν − 1)(wν)�
⎡

⎣
q∑

i=1

λi

fi
Df �i Dfi +

s∑

j=1

μν
j

Gj
(DGj )�DGj

⎤

⎦wν ≤ 0. (29)

Dividing (29) by (pν−1) (pν > 1 for ν sufficiently large) and taking the limit yields

w�
⎡

⎣
q∑

i=1

λi

fi
Df �i Dfi +

s∑

j=1

μj

Gj
(DGj )�DGj

⎤

⎦w ≤ 0.

Since λi
fi

> 0,
μj

Gj ≥ 0, i = 1, . . ., q, j = 1, . . ., s we obtain w ∈ T (μ) and, by
ESSOSC,

w�D2
xL(x, λ,μ)w > 0

and, therefore for sufficiently large ν, we get

(wν)�D2
xL(x, λ,μν)wν > 0.

The latter inequality and

(pν − 1)(wν)�
[

q∑

i=1

λi

fi
Df �i Dfi +

s∑

j=1

μν
j

Gj
(DGj )�DGj

]
wν ≥ 0

provide for sufficiently large ν a contradiction with (29). This completes the
proof. �

As a consequence of the latter theorem, we get the following two corollaries.

Corollary 3 There exists p > 0 such that x is G-locally properly efficient and
KT-locally properly efficient for (15) for all p ≥ p.

Proof According to Theorem 2, there exists p > 0 such that the Hessian
D2

xLp(x,β, γ ) of (15) is positive definite for all γ ∈ Γp whenever p > p. Let
p̃ > p be arbitrarily chosen and fixed. By continuity, for a fixed γ ∈ Γp̃, there exists
ε > 0 such that D2

xLp̃(x,β, γ ) is positive definite for all x ∈ B(x, ε) and, therefore,
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Lp̃(·,β, γ ) is convex on B(x, ε). Then, Lemma 2 yields that x is G-locally properly
efficient for (15) (withp = p̃) and, by EMFCQ and Lemma 1 (i), (ii), x is KT-locally
properly efficient for (15) (with p = p̃). �

The next corollary is an immediate consequence of Theorem 1 and Corollary 3
and it uses the properties of p-power transformation only in its proof. Since it has its
own significance (as explained in the subsequent remark), we recall all assumptions
on the point x in this corollary.

Corollary 4 Let x ∈ M and assume that the following assumptions are fulfilled at
x (as described in more details in the beginning of this section):

• RA holds at x.
• EMFCQ holds at x.
• The condition (11) holds with corresponding multipliers, and
• ESSOSC holds at x.

Then, the point x is G-locally properly efficient and KT-locally properly efficient for
(14).

Proof This follows directly from Theorem 1 (iii), (iv) and Corollary 3. �
Remark 1 The important message of the latter corollary is that the property that
x is G-locally properly efficient and KT-locally properly efficient for (14) holds
without assuming that the Lagrange function related to (14) is locally convex. In
other words, if a feasible point x ∈ M fulfills the assumptions defined in Sect. 4.1,
then x is G-locally properly efficient and KT-locally properly efficient for (14). In
particular, under the assumptions of this corollary and having in mind that under RA
a semi-infinite problem can be described locally as a finite problem, the basic result
for finite optimization problems as stated in Lemma 2 holds without assuming that
its Lagrange function is locally convex.

5 An Illustrating Example

In this section, we present an illustrating example of the p-power transformation of
MOSIP locally around a G-locally properly efficient feasible point.

Example 2 Let n = 2, q = 2, m = 1 and

f1(x) = 1
90

[(
x1 − 2x2 + 5x2

1 − x2
1x2 − 13

)2 + (
x1 − 14x2 + x2

2 + x3
2 − 29

)2
]
,

f2(x) = 4 (x1 − 2)2 − 16 (x1 − 2) (x2 − 2)+ 11,

g(x, y) = (
1− x2

1y
2
)2 − x1y

2 − x2
2 + x2,

Y = [0, 1] and let the feasible set be given as

M = {x ∈ R
2 | g(x, y) ≤ 0, y ∈ Y , −1.1 ≤ x1 ≤ −0.5, 1.6 ≤ x2 ≤ 1.7}.



Multiobjective Semi-infinite Optimization: Convexification and Properly Efficient Points 343

Fig. 1 Level lines of f1, f2, g, the feasible set M and the efficient point x∗

For the sake of illustration in Fig. 1, we added box constraints for x1 and x2 to the
description of M . The functions f1 and g are taken from [23]. In Fig. 1, level lines
of f1 and f2 are shown. Furthermore, it contains curves corresponding to g(x, y) for
several values of y ∈ Y. The feasible point x∗ = (−0.8, 1.618)� is efficient.

Since

max

{
f1(x∗)− f1(x)

f2(x)− f2(x∗)

∣∣∣∣ f1(x) < f1(x∗), x1 ≥ −0.9, x ∈ M

}
= 516

and

max

{
f2(x∗)− f2(x)

f1(x)− f1(x∗)

∣∣∣∣ f2(x) < f2(x∗), x1 ≤ −0.7, x ∈ M

}
= 4887,

the point x∗ is G-locally properly efficient. The following can easily be obtained:

• Y0(x∗) = {0}.
• Dxg(x∗, 0) = (3.2,−2.236).
• y1(x) = 0 for x near x∗.
• RA holds at x∗.

In the remainder of this section, we will use the following notation from multiob-
jective optimization: If x∗ is a (G-locally) properly efficient solution, then f (x∗) is
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Fig. 2 z∗ = f (x∗) is properly nondominated in the objective space f (M)

properly nondominated in the objective space f (M) = {f (x) | x ∈ M}. For the
Lagrangian

L(x, λ,μ) = λ1f1(x)+ λ2f2(x)+ μg(x, y1(x)),

we obtain for any choice λ > 02, μ ≥ 0 satisfying (11) (with x = x∗) that the
Hessian D2

xL(x∗, λ,μ) has at least one negative eigenvalue. Figure 2 illustrates this
situation geometrically in the objective space f (M). There we have sketched for two
different pairs of positive weights, a corresponding level line of λ1f1(x) + λ2f2(x)
(and λ′1f1(x)+ λ′2f2(x)). Although z∗ = f (x∗) is properly nondominated in f (M),
none of its preimages can be a minimizer of

min λ1f1(x)+ λ2f2(x) s.t. x ∈ M

for any choice λ1 > 0, λ2 > 0.
For applying the p-power transformation, we add a constant to g(x, y) and obtain

as new constraint

G(x, y) = g(x, y)+ 7, r = 7.
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Fig. 3 The objective space after p-power transformation

Note that f1(x) and f2(x) are positive for all x ∈ M. Then, the p-power transfor-
mation of the original problem becomes

“min”
(
f

p

1 (x), f p

2 (x)
)

s.t.
(
g(x, y1(x))+ 7

)p ≤ 7p

and it can easily be seen that the corresponding Hessian of the Lagrangian is positive
definite for p > 7.7 and an appropriate choice of λ > 02 (respectively, β > 02

according to (25)). Figure 3 (appropriately scaled) illustrates for p = 8 the existence
of appropriate β1 > 0, β2 > 0 such that x∗ is a local minimizer of the problem

min β1f
p

1 (x)+ β2f
p

2 (x) s.t. x ∈ M.

In particular, we get β1 = 1 and β2 = 0.03.

6 Conclusions

In this chapter, we applied a convexification procedure, called p-power transfor-
mation, to the setting of a nonconvex MOSIP. Under the assumptions presented in
Sect. 4.1, we have seen that for sufficiently large powers p, the Lagrangian of a
transformed weighted sum optimization problem becomes convex locally around
the efficient point under consideration. Since convexity of the Lagrangian is an es-
sential requirement for the application of duality theory and corresponding solution
methods, the results in this chapter allow the use of these solution methods to a
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broader class of optimization problems. We also have shown that the property of
being a locally properly efficient point (in the sense of Geoffrion or in the sense of
Kuhn and Tucker) is invariant under this convexification procedure.

Acknowledgement The authors thank both referees for their careful reading and substantial critical
remarks which improved essentially the quality of this chapter.
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Qualitative Analysis of Climate Seasonality
Effects in a Model of National Electricity Market

Johnny Valencia, Gerard Olivar, Carlos Jaime Franco and Isaac Dyner

Abstract In the following chapter, we present a model for the supply and demand of
electricity in a domestic market based on system dynamics. Additionally, the model
shows piecewise smooth differential equations arising from the diagram of flows and
levels, using dynamical systems theory for the study of stability of the equilibrium
points that have such a system. We also present simulations, nonlinear numerical
analysis, and qualitative analysis to the system of differential equations obtained,
which is characterized by dynamics not smooth, due to the way decisions are made
in that market. Using the software package Vensim and event-based scheme im-
plementation in Matlab are verified as different saturation phenomena, oscillations,
fixed points, among others, and the relationship between leverage points and stability
of equilibrium points. Finally, we conclude the effects of climate seasonality in the
market. Furthermore, we show that the system becomes periodically forced due to
the external variable.
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1 Introduction

Many research efforts have, focused on the analysis and classification of modeling
and simulation schema [3, 16, 20]. Some models, might be more appropriate than
others for decision-making purposes within a particular framework in society [12].
In the case of this chapter, an electricity market is studied based on system dynamics
(SD) [10, 11, 15]. We present the role of mathematical analysis that arises in dynamic
systems.

The concept of quality, has had different connotations in the field. One would
expect that the information contained in the causal diagrams has this nature [3].
The qualitative term refers to various phenomena which the system exhibits, i.e.,
its dynamic trends of flow over time, for example, when the system-level variable
increases, decreases, or has oscillations reaching a point of equilibrium. It is deter-
mined by a parameter (leverage points) or a set of decision rules [9]. SD is structured
so that it has a part of mathematical modeling and numerical simulation methods. A
model based on SD, is a mathematical object [4], SD is a mathematical technique, re-
quires a mathematical analysis of its dynamics. J. Redondo [19] shows that SD model
may be often represented as a model by a piecewise smooth system. The Colom-
bian electricity market explores the model equations. We reinforce this approach.
It is potential to see other fields like social systems, such as hybrid and piecewise
smooth dynamical systems are increasingly used [13, 17], economic systems, social
systems, more generally all devices and systems whose dynamics is affected by the
occurrence of discrete events on a microscopic time scale [2, 5].

It has been noted that the piecewise smooth systems can exhibit a wide range of
nonlinear phenomena, including bifurcations and chaos. Under parameter variation,
classical bifurcations can occur, such as bending, Hopf bifurcation, among others.
Besides, discontinuity induces bifurcations [6]. When this occurs, the system may
show a dramatic transition attractor to another, often including sudden transitions,
experimentally demonstrated only for physical systems [7, 8]. The literature has not
reported analysis for an electricity market model such as the one discussed in this
chapter. Bifurcation analysis can be used to get models of real physical systems
with specific characteristics and the best they can offer other designs. Besides, it
is possible to implement innovative control strategies for defining paths for certain
values of parameters in a dynamic system [1, 21].

Thus, it is possible to use nonlinear modeling schemes, piecewise smooth or
batch systems, a high degree representing phenomena present in real models. Conse-
quently, SD allows high level of aggregation substantially studying complex systems,
which ultimately are sets of piecewise smooth systems, carefully interconnected by
functions or mathematical laws. Models based on SD translate a type of mental
model in the language of dynamical systems [3].

This chapter is developed as follows: in section 2, we show the Forrester diagram
and the equations. We show in subsection 3 the numerical results. In subsection 4,
we show the stability analysis. In section 3, we add an external variable that disturbs
the system similar to the seasonal climate. We perform numerical analysis again with
the effects of weather. Finally, we conclude about the dynamics of the market.
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Fig. 1 Stock and flows diagram for a national electricity market

2 National Electricity Market Model

2.1 SD Model

The complementarity between SD and mathematical analysis, with the help of the
modern theory of nonlinear dynamical systems allows establishing the qualitative
behavior. However, it is difficult to distinguish between qualitative and quantitative.
Therefore, starting from a mindset that is basically the root of the SD, it is clearly
possible to achieve quantitative models describing the system. In Fig. 1, the electrical
market model is shown. Figure 1 shows the main elements of the SD model, using
stocks and flows as this is the standard in the SD literature, where the level variables
are given by the power demand, the consumer price, generation capacity under
construction, and installed generation capacity. This can be easily translated into a
set of differential equations.

2.2 Mathematical Model

For the study of piecewise smooth dynamical systems, different analytical, there are
numerical and experimental tools [21]. Hence, the verification and comparison of
results between each of the strategies are necessary.
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Table 1 Variables and parameters description

Equivalence Units Name

x1 GI MW Installed generation capacity

x2 GC MW Generation capacity under
construction

x3 D MW Power demand

x4 Pc
$

KWh Consumer price

r frac1VU years Generation plant life

q 1
TEC years Construction plant time

s 1
TAP years Price delay

a ΔPmax
$

KWh Maximum generation price

Pref
$

KWh Reference consumer price

Cf v $
KWh Fixed cost variability

Cv $
KWh Fixed cost

I $
KWh Incentives

ε % Elasticity of demand

b Pmin
$

KWh Minimum generation price

k 1
year Grow rate of demand

It is very common to use continuous models to describe discontinuous dynamical
systems. However, such continuous models cannot provide adequate predictions of
discontinuous dynamics. To better understand discontinuous systems, you should be
aware that discontinuous models provide adequate and actual prediction. Therefore,
consider that a global system is discontinuous having several continuous subsystems
in different domains. Each continuous subsystem has different dynamic properties,
i.e., rules for each adjacent continuous evolution subsystem. The laws of transition
between the borders should be studied in more detail. Such variations can lead
to dramatic changes in the dynamic behavior of the system. It has been shown,
for example, that the transition to chaos is often due to bifurcations induced by
discontinuities (abrupt changes) on the borders with which the system is modeled.

According to the data of Table 1 and Fig. 1, by algebraic manipulation it can reach
the system of equations shown in (1):

ẋ1 = −rx1 + qx2

ẋ2 = −qx2 + B

ẋ3 = kAx3

ẋ4 = s
((

a

1+eMR + b
)
− x4

)
,

(1)
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where B is the construction capacity and it is given by (2).

B =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Dinv ≤ 0

500 if 0 < Dinv ≤ 0.1

2500 if Dinv > 0.1,

(2)

the investment decision Dinv is defined as Dinv = max{0, ROI} and the return over
investment ROI is given by the nonlinear function shown in (3).

ROI =
((

a

1+eMR

)
−Cv+I

)

Cf v × 100. (3)

MR is known as a reserve margin given by (4).

MR =
⎧
⎨

⎩
10 if x3 = 0
x1−x3
x3

if x3 �= 0.
(4)

Finally, the price effect on demand is shown in (5).

A =
⎧
⎨

⎩
1 if P = 0(
x1−x3
x3

)ε
if P �= 0.

(5)

A given piecewise smooth system can be classified according to its degree of discon-
tinuity through the set of discontinuities, which divide a boundary of another. That
is, you may have dashed paths through staple varieties as in the case of systems with
impacts, but discontinuous or continuous state vector fields as in the case of so-called
Filippov systems. In addition, a system can be continuous piecewise smooth, in the
sense that its continuous states and vector fields through the borders of the state
space, but with a possible discontinuous Jacobian [5, 6].

According to the classification mentioned above, we note that the model has two
types of discontinuities. Equations 4 and 5 show a piecewise smooth continuous
system, while Eq. 2 is a Fillipov discontinuity, because vector fields associated with
each of the conditions are different.

2.3 Stability Analysis

From a mathematical point of view, it is necessary to analyze the possible scenarios
that the system of equations presented. This allows you to set the operating range
and robustness of the model, this being a fundamental part of the validation.

The system of equations (1) allows us to analyze the following cases:
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2.3.1 Case 1: if P = 0 and x3 = 0

This case only allows us to assess the robustness of the model, since the reference
price and demand do not reach zero in the real market. Then, we find the equilibrium
point associated with these conditions and perform stability analysis as follows:

x∗ =
(
B
r

, B
q

, 0, a

1+e10 + b
)
. (6)

After linearizing the system, we find the eigenvalues that determine the stability of
the equilibrium point as:

λ1 = k

λ2 = −q
λ3 = −r
λ4 = −s

2.3.2 Case 2: if P = 0 and x3 �= 0

There is no explicit solution that allows us to find a real equilibrium point.

2.3.3 Case 3: if P �= 0 and x3 = 0

In this case, the reference price is different and greater than zero, while the power
demand is zero. Then, we can consider the hypothetical case that there is no demand
at any given time in the market. This ensures that the model and the system of
equations representing much of the market dynamics:

x∗ =
(
B
r

, B
q

, 0, a

1+e10 + b
)
. (7)

with the eigenvalues:

λ1 = k

(
b + a

1+e10

P

)ε

λ2 = −q
λ3 = −r
λ4 = −s
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2.3.4 Case 4: if P �= 0 and x3 �= 0

Finally, this case represents the real market. Considering the above cases, we can
have a recognition of present or not on the market dynamics. We find the equilibrium
point and similarly in previous cases analytically determine the stability of the point:

x∗ =
(
B
r

, B
q

, 0, b
)

, (8)

with the eigenvalues:

λ1 = k

(
b

P

)ε

λ2 = −q
λ3 = −r
λ4 = −s

Now let us look at the results, it looks like for each of the cases the eigenvalue
associated with the power demand, λ1, changes, and depends on the growth rate of
demand.

From the classical theory of dynamical systems, it can be said that if all the
eigenvalues are negative, the system is stable, but on the contrary, only one of the
eigenvalues is positive the system is unstable [14]. Note that for the cases studied
above, the stability depends on the growth rate of demand k. The first results are
shown in Fig. 2, in which the behavior of each of the level variables seen with
k = 0.03. The system is oscillatory. On the other hand, if k = 0.08 demand is
growing fast, and the market is unstable. See Fig. 3. Finally, we show in Fig. 4, what
happens when k < 0, the system is stable and tends to the fixed point.

3 Climate Seasonality Effects

Due to the Colombian topography and abundant water resources, hydropower has
been the most attractive way to meet the demand for electricity in the country. Hence,
the generation in Colombian market is characterized by being highly conditional on
water resources, being referred to by some authors as dependent on hydroelectricity
or a hydro-dominated market [18].

For this case, we perturb the market affecting the price of generation. We model
the seasonality of climate as a parameter that emulates sine periods of rain and sunny
periods. Periods of sun and rain affect the price of generation in the market; see
Fig. 5.

As shown in Fig. 6, it is possible to see the effects of seasonality on the market.
The generation price perturbed by an external variable tends to behave according to
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Fig. 5 Exogenous climate
perturbation

the dynamics of the disturbance. The dynamics of the electricity market is preserved.
The stability is not affected. The perturbed system is a periodically forced system.

Moreover, in Fig. 6, you can see how the oscillations are stronger for generation
capacity under construction and consumer prices. Therefore, using the sensitivity
analysis Vensim toolbox, is achieved demonstrate the oscillations of these variables
for a specific range of the rate of demand growth. See the results of this analysis
in Fig. 7. Finally, we see what the dynamic tendency and the range of solutions.
Furthermore, we see that the perturbed dynamics is preserved.

4 Conclusions

Specifically, we have studied the model of a national electricity market, making
this nonlinear analysis and simulation. We conclude that the nonlinear analysis is
a useful tool in characterizing the various phenomena that such systems may ex-
hibit. The scheme under which the numerical integration of solutions is performed
is appropriate.

The mathematical analysis that sheds the study of market models, to determine
what are the leverage points of the system, and find the reasons for some parameter
values the dynamics of the system is unstable. Clearly evidenced as making system-
atic use of SD to extract and represent mental models using differential equations,
gains access to the root of the dynamic behavior of the system.

Finally, it has been shown that by using a set of numerical and analytical tools
used in this chapter, can be studied systems that model the supply and demand of
electricity in a national market. Combining numerical, analytical tools and classi-
fying nonsmooth phenomena, we can identify the most important behaviors in the
system.
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Fig. 7 Sensibility analysis results for a grow rate demand−0.03 to 0.03 with a climate perturbation
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Numerical Simulation Analysis of a Traffic
Model

Mónica Jhoana Mesa Mazo, Johnny Valencia and Gerard Olivar Tost

Abstract In this chapter, we present an overview of the piecewise smooth model
and simulation of a traffic system, characterized by a single vehicle traveling through
a sequence of traffic lights that turn “on” and “off” with a specific frequency and a
phase. The model includes three main dynamical modes: accelerated, decelerated,
and null state. We show the description of the mathematical modeling used to sim-
ulate the system. The simulation was developed under an event-driven strategy and
implemented in Matlab. Regarding the numerical analysis, we built a bifurcation di-
agram where the parameter under variation is the cycle of traffic lights. As a principal
result, we evidence the effects of the cycle of traffic light in the dynamical behavior
of the system.

Keywords Piecewise smooth dynamical systems · Vehicular traffic · Nonlinear
numerical analysis · Bifurcations · Chaos

1 Introduction

In recent decades, large cities have faced many difficulties; among them, we can
highlight traffic congestion. The book El Libro Verde [1] by The Commission of
European Communities addresses the impact of transport on the environment. In
this book, traffic congestion is defined as a temporary phenomenon, which occurs
frequently with variable duration. This effect is caused by the imbalance between
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supply, demand, and the capacity of transport infrastructure. In addition, traffic
congestion appears in a place and in a given time, where traffic demand exceeds the
capacity of the roads.

Population and number of vehicles are dramatically increasing in the cities of
Colombia, which generate huge difficulties to its inhabitants and the environment.
For instance, it is estimated that by 2015, urban areas will cause 80 % of CO2

emissions [3]. There are numerous researchers and different traffic studies devoted
to creating a model that would help to control and analyze urban traffic [2, 4, 6].

Toledo’s model [5] is used to study the vehicular traffic in this research proposal.
This model considers the dynamics of one vehicle moving through a sequence of
traffic lights. The separation between the nth and (n+1)th traffic light is Ln. The nth
light is green if sin(ωnt + ϕn) > 0, otherwise the light will be red, where ωn is the
change frequency of the light and ϕn is the phase at the nth traffic light. These two
parameters are important because they propose different control strategies based on
system performance and improve the flow of traffic in the city.

2 Model Description

A car in this sequence of traffic lights can have the following situations:

• A positive acceleration a+ until its velocity reaches the cruising speed vmax.
• A constant speed vmax with zero acceleration.
• A negative acceleration a− until either the car stops or the car accelerates again.
• A zero velocity when the car is stopped in the red-light traffic.

Therefore, we can summarize the equations of motion for the vehicle as:

Accelerated State This state is when the driver increases speed constantly, i.e., the
car has a constant acceleration and positive a+ until the car reaches cruising speed
vmax allowed on the road. In this way, the system is as follows:

⎧
⎨

⎩
ẋ1 = x2

ẋ2 = a+
(1)

Null State This mode can occur in two situations. The first is when the vehicle
reaches the speed limit on the road. Therefore, the car must maintain this speed then
its acceleration is zero. Next, the system of equations is determined as follows:

⎧
⎨

⎩
ẋ1 = x2

ẋ2 = 0
(2)

The second case is when the vehicle is at rest in the position of a traffic light, waiting
for it to turn green. Under these conditions, the system of equations is as follows:

⎧
⎨

⎩
ẋ1 = 0

ẋ2 = 0
(3)
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Table 1 Normalized variables Name Variables

Velocity u = x2

vmax

Distance y = x1

L

Time τ = t

Tc

Cruise time Tc = L

vmax

Cycle Ts = ωnTc

Decelerated State In this mode, the vehicle is forced to slow down its velocity,
because the traffic light is on red. Then, the vehicle has a negative acceleration−a−.
After that, the equations associated with this state are:

⎧
⎨

⎩
ẋ1 = x2

ẋ2 = −a−
(4)

Under the conditions above, when the car approaches the nth traffic light with velocity
vmax, the driver must decide depending on what sign the traffic light is showing (to
step on the brakes or not) at the distance d = v2

max/2a− (the last stopping point to
arrive with null velocity at the traffic light).

Also, if sin(ωnt + ϕn) > 0, the driver continues through the traffic light at speed
vmax. If sin(ωn + ϕn) ≤ 0, the driver starts braking with a− until the car reaches the
traffic light with speed v = 0 and waits for the next green light, or until the light
turns green again with v �= 0, at which point it starts accelerating with a+.

It is very important to know that it is convenient to normalize the previous model
so that the parameters are reduced, and the system units are removed.

To find the normalized model it is necessary to define new variables. Those
variables shown in Table 1.

3 First Model

It is very important to understand the dynamics of a single vehicle because this will
aid in the comprehension of the complex problem of the interaction between several
cars traveling through a sequence of traffic lights.

In this section, we present a first model, characterized by a single vehicle traveling
through a sequence of traffic lights that turn on and off where all lights have equal
frequency ωn = ω, null phase ϕn = 0. Also, the separation between the nth and
(n + 1)th traffic light is Ln. The nth light is green if sin(ωnt + ϕn) > 0, otherwise
the light will be red.
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Table 2 Parameters Name

Change frequency ωn = ω

Cycle Tn = 2πL
Tsvmax

Phase ϕn = 0

Cruising speed vmax = 14 m/s

Positive acceleration a+ = 2 m/s2

Negative acceleration a− = 6 m/s2

3.1 Numerical Simulation Analysis

The main strategies for numerical integration of solutions of piecewise smooth sys-
tems are event-based schemes [7] and fixed time step. The first is based on a hybrid
formulation, while the second is based on problem solving with complementary
variables. For the event-based scheme, under which the numerical integration is
performed for this case study, there are three main dynamic states, mentioned above:

To know about this dynamic behavior, many numeric simulations were made,
and the subsequent suppositions were assumed. In addition, the following data were
collected from secondary sources [8]. The values of these parameters are shown in
Table 2.

Additionally, the distances between traffic lights were measured at the 19th Street
of Armenia in Colombia. These are shown in Table 3).

In the bifurcation diagram shown in Fig. 1, the normalized cycle of traffic light
Ts is taken as a parameter of bifurcation and is shown on the horizontal axis. On the
other hand, the vertical axis shows the normalized distance of the car.

Within the values between 0.95 and 1.0, there are accumulation lines. Further-
more, it is shown that there is a period doubling to chaos. This behavior is truncated
because of the appearance of an orbit of 3T-periodic, and finally, we can see an orbit
of 2T-periodic.

In Figs. 2 and 3, the time and number of traffic lights are shown on the horizontal
axis simultaneously. In these figures, the following data are shown: the traffic light
signal as a thin line, the normalized speed of the car as a dark line, and the module
of the distance as a dashed line.

In Fig. 2, the traffic light normalized cycle is Ts = 1.5. If we observe the bifur-
cation diagram Fig. 1 when the parameter Ts = 1.5, the orbit of period three can be
found. Therefore, it can be seen in Fig. 2 that the values of the normalized speed and
distance module are the same in every three traffic lights or three periods as shown
by the green circle.

In Figs. 3 and 4, we can see the increase of the period as the traffic light normalized
cycle Ts approaches one. Therefore, it can be seen in Fig. 1 due to the accumulated

Table 3 Distance between semaphores

200 200 100 100 100 100 200 100 100 200
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Fig. 1 Bifurcation diagram
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Fig. 2 Diagram for standardized state variables vs. time and Ts = 1.5

lines. In addition, we observe that when Ts is the nearest to 1, 0; then the vehicle
crosses more green lights with its maximum speed, reducing the travel time through
the traffic light sequence is less.

4 Second Model

In this section, we consider a second model characterized by a single vehicle traveling
through a sequence of traffic lights. The lights turn on and off where all lights have
equal frequency ωn = ω and phase ϕn �= 0.
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Fig. 4 Diagram for standardized state variables vs. time. Ts = 1.0

Toledo proposes to model the offset of traffic light as follows:

ϕn = −
n∑

m=1

Lmωn

vola
, (5)

where Lm is the distance between traffic lights, ωn is the frequency of nth traffic light
and vola is the change velocity at the green light.
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Fig. 5 Diagram for standardized state variables vs. time. Model II, Ts = 1.0 and vola = 1.0

4.1 Additional Numerical Simulation Results

Many numeric simulations were made to understand vehicle dynamic behavior com-
paring The first with the second model. The purpose of comparing these two models
is to observe how the phase ϕn influences vehicle behavior.

To make a simulation of model II, we used Tables 2, 3, and Eq. (5).
In Fig. 5 the normalized time and number of traffic lights are shown on the

horizontal axis simultaneously. Additionally, in this figure, the following data are
shown: the traffic light signal as a thin line, the normalized speed of the car as a dark
line, and the module of the distance as a dashed line.

In model I, it is observed that when the traffic light normalized cycle is Ts = 1.0,
a green wave is obtained. This is guaranteed due to velocity being zero only once,
indicating that the driver stopped before passing the second traffic light, see Fig. 4.
After that, the driver crossed the entire sequence with the speed limit. In Fig. 5,
corresponding to model II, we found that the vehicle is forced to stop on three
occasions. In addition, the vehicle travels through the route at varying its speeds,
which did not occur in model I.

It was observed that the velocity of the wave vola and the normalized cycle
semaphore Ts have a great influence on vehicle dynamic. In practice, it is useful
to synchronize traffic lights to obtain a green wave that could reduce travel time.

The graph shown in Fig. 6 allows us to know the number of times the vehicle
stops along the way, due to the configuration of the parameters vola and Ts. These
parameters make the traffic light change to red. Fig. 6 shows the wave speed vola on
the X axis, the normalized cycle Ts on the Y axis, and the number of vehicle stops
on Z axis.

The ellipse in Fig. 6 highlights the point P1 = (0.9, 1.2, 6) , which indicates that
when vola = 0.9 and Ts = 1.2, the vehicle stops six times throughout the way. This
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Fig. 6 Number of stops the vehicle. Model II

is not beneficial to the driver because the entire sequence has ten lights. The box on
the same figure indicates that if vola = 0.7 and Ts = 0.8, the vehicle is forced to
stop only once. This is more beneficial for the driver because he can cross the entire
sequence of traffic lights stopping the least number of times, which may reduce the
travel time and fuel consumption during the journey.

5 Conclusions

We have presented the numerical scheme to simulate piecewise smooth dynamic
systems. Furthermore, we have shown exhaustive numerical simulations for char-
acterizing all phenomena that these kind of systems can exhibit. To simulate these
systems it is necessary to know the equations that describe their flow in every state
and the conditions in the boundaries to transition between the dynamical states. With
this information and the bifurcation diagram, it is possible to simulate a wide range
of phenomena that these kind of systems can exhibit. From the bifurcation theory
point of view, the results presented in this chapter can be a useful tool to obtain a
better model of the systems of interest.

We chose an adequate framework to model and simulate the systems. The cycle of
traffic lights is a very important parameter of bifurcation as evident in the bifurcation
diagram. Additionally, when the cycle of traffic lights is close one, the green wave
appears; then travel time is the smallest.

We show that an appropriate configuration of the traffic lights optimizes the
travel time of a vehicle, where a reduction in the number of stops could reduce
fuel consumption and thus their environmental impacts.

Additionally, we propose that knowing the value of the semaphore parameters is
very useful to minimize the number of stops a vehicle makes while driving. Syn-
chronizing traffic lights by generating a green wave minimizes the number of stops
a vehicle makes.
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The numerical simulation analysis has allowed us to see the effects of the phase of
the traffic lights. This phase is a representative system parameter which approximates
the actual dynamic models used in traffic systems in cities. In addition, the proper
configuration of this parameter generates or deletes sections of green wave.

Starting from the bifurcation diagrams, a study of the parameter Ts (standard
cycle) was performed, showing complex behaviors associated with it. Our work
was conducted around the normalized cycle light, which is a control parameter, in
addition to Villalobos and Toledo. Robust control theory teaches us that the param-
eters influencing microscopic systems are the same that determine the dynamics of
microscopic systems.
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