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Abstract. A new efficient fingerprint identification algorithm combin-
ing a modification of the Delaunay triangulation minutiae-based hashing
technique for a model dataset, the Maltonian cylinder coding fingerprint
matching method, and MAP-classifier learning procedure is proposed.
Numerical experiments prove the robustness of the algorithm w.r.t. small
perturbations of minutiae data and the sufficiently high level of nat-
ural noising for query fingerprints. Also, performance analysis results
with comparison to state-of-the-art ‘Suprema’ identification algorithm
are presented.
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1 Introduction

For the last decades, the research and development activity in the area of
automatic biometric verification and identification systems is steady increasing.
A variety of biometric technologies have been proposed. Among them are finger-
prints, face, iris, and speech recognition algorithms. Each technology has its own
strength and shortcomings. The main criteria used for the comparative analy-
sis of several biometric technologies are universality, uniqueness (authenticity),
collectability, permanence etc.

The fingerprint biometric technology (also known as dactyloscopy) appears
to be the oldest and the most popular due to its several attractable properties,
among them are high personality and stability of fingerprint images. For a given
finger and a given person, fingerprint is just a digital gray-scale image obtained
from an optical scanner and containing a picture of papillary lines (‘ridges’ and
‘valleys’). Thus, fingerprint verification and identification are special machine
learning problems involving the development of specialized image processing,
segmentation, and analysis algorithms.

It seems that the verification problem has been investigated in details, whereas
the identification problem remains a great challenge for researchers and develop-
ers. Along with performance, scalability becomes one of the first-priority issues
in the development of fingerprint methods.
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Although, there are known several fingerprint verification systems, which
examine raw fingerprint images using the correlation analysis techniques only,
usually [1] the verification/identification stage is preceded by some feature extrac-
tion one.

Among other feature extraction methods, the minutiae-based technique is
most popular. From the geometrical viewpoint, a minutia is an irregularity point
on a fingerprint image (where termination, bifurcation, or crossover of papillary
lines are observed). The collection of such points on the image plane is called
a fingerprint template. Many different types of modern fingerprint analysis algo-
rithms [1–3] are based on such templates.

Unfortunately, a regular fingerprint image typically contains several dozens
of minutiae and the analysis of all their combinations appears to be computa-
tionally expensive. Several geometric techniques are developed [2] to reduce this
combinatorial complexity, and the the triangulation-based indexing algorithm
for the minutiae set is known as the most promising.

In the paper, a new fingerprint identification algorithm based on the Delau-
nay minutiae triangulation, special type of coding, and MAP-learning classifier
is presented. The main contribution is an original feature-space construction
technique based on partial invariants against some known image transformation
group. Performance of the proposed algorithm is compared with performance of
well-known proprietary ‘Suprema’ algorithm [4], which is supposed to be state-
of-the-art [5].

2 Problem Statement and Related Works

2.1 Verification and Identification Problems

The are two main problems associated with biometric data: verification and iden-
tification. Verification is an one-to-one (matching) problem. The goal is to answer
the question Whether this person is who he (or she) claims to be? Every verifi-
cation system implies two stages: enrollment and query. When a system enrolls
a person for the first time, in addition to the fingerprint images, some auxiliary
data (e.g. name, photo, passport or driver’s license id, etc.) are captured as well.
When a person returns, he (or she) should present these complementary data
along with the new fingerprint; the system just validates them. The verification
problem is well-known. Therefore, the main goal of any research in this field, is
to improve the performance of the algorithms in the following directions: finger-
print image enhancement and machine learning procedures based on detected
minutiae.

Image enhancement algorithms are designed to improve the overall qual-
ity of fingerprints, thereby simplifying further minutiae detection procedures.
The modern approach to fingerprint image enhancement is based on the gen-
eral scheme proposed in famous paper [6] and is followed by many researchers
[7–10]. According to this scheme, before the analysis, a fingerprint is segmented
into regions of three types: well-defined, where ridges and valleys are clearly
separable and minutiae can be easily detected; recoverable corrupted, where
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ridge-valley texture is corrupted but can be interpolated with a sufficiently
high accuracy on the basis of neighboring areas; and unrecoverable corrupted
regions. The goal is to improve the quality of recoverable regions and remove
all unrecoverables. The enhancement procedure consists of the following stages:
preprocessing (normalization, sharpening etc.), orientation field estimation, fre-
quency image constructing, region mask building, and adaptive filtering (using
several Gabor-like local filters).

Most modern matching algorithms [1] are centered on the geometrical align-
ment between previously detected minutiae (from query and model fingerprints)
and constructing geometric (partial) invariants with respect to a given plane
transformation group.

On the other hand, biometric identification systems answer the question Who
is this person? The required answer should depend solely on the fingerprint
image presented. At first glance, this problem can be reduced to the appropriate
sequence of the verification problems. Indeed, at the enrollment stage, a hypo-
thetic identification system can just memorize fingerprint data obtained from
known people constructing so-called model database, and, at the query stage, it
can search this database for most similar entries to the fingerprint in question,
using some matching algorithm as a subroutine. But, this simple scheme has
several shortcomings, and its poor scalability seems to be the most important.

2.2 A Structure of Identification System

From conceptual point of view, any automated fingerprint identification system
(AFIS) consists of two main subsystems. First of them (we call it offline) is
used at the enrollment stage, when a model database is constructed. The second
subsystem identifies of query fingerprints on the basis of this database.

2.3 Geometric Indexing

To give a short description of the first subsystem, it is convenient to use the
well-known black box model. By virtue of any standard minutiae extraction algo-
rithm1, an offline subsystem maps the initial model fingerprint set

I = {Ij : j = 1, . . . , N}
into a family of finite subsets of Z

3
+ (cube of the set of nonnegative integer

numbers). Actually, any model image Ij ∈ I is mapped to the subset

T (Ij) = {(xi, yi, wi) ∈ Z
3
+ : i = 1, . . . , Nj}

that is called a template (see Fig. 1). For any triple, xi and yi coordinates define
a geometric location of the i-th minutia detected on the image plane, and wi is
equal to the confidence level of this detection. So, in the beginning of the first
stage, we have the set B = {Tj = T (Ij)} of templates of the initial images (which

1 We use the open-source algorithm provided by NBIS [14].
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Fig. 1. Fingerprint template based on minutiae extraction

is called a model database). Further, to each pair (Tj , q) we assign a minutiae
subset Tj,q = {(xi, yi, wi) ∈ Tj : wi ≥ q} ⊂ Tj consisting of minutiae filtered by
their accuracy level. In the sequel, we consider projections of these subsets onto
planes Hq = {(x, y, w) : w = q} which are parallel to the coordinate plane xOy.

On the second (online) stage, the query image I is processed (in general)
by the similar way, and the template T = T (I) is produced, after that the final
identification decision is made by the one-to-one matching T with corresponding
candidates subset BT ⊂ B of the model database. Time complexity of this
procedure (for a fixed template T ) is O(M |BT |), where M is the complexity
of the inner matching algorithm. So, the problem is to construct the reducing
algorithm R, which to any T assigns a subset R(T ) = BT satisfying the following
additional constraints.

1. |R(T )| � N = |B|.
2. Let some confidence level α ∈ (0, 1) be given, and let a fingerprint I producing

the query template T belong to some known person and the model database
contains templates produced by another his (or her) fingerprints. Denote the
subset of these templates by B′

T . Conditional probability PT of the event
B′

T ∩ R(T ) = ∅ should satisfy the inequality PT ≤ α.

Mathematically, this problem is equivalent to the construction problem of
the efficiently computable mostly powerful test statistic of the significance level
α for the null hypothesis ‘known person’. For any query template T , the test
produces a subset Rα(T ) of candidates for the subsequent one-to-one matching
(w.r.t. T ).

There are known several approaches to solve this problem. The approach
based on the preliminary clusterization of the model database by the core type
of the initial fingerprint images [1] seems to be the earliest. According to this
approach, at the online stage, the query template is previously classified on the
basis of its core, after that the search can be narrowed to the corresponding clus-
ter. Unfortunately, the number of known core types is small and the distribution
of the real fingerprints (among them) is far from the uniform one.
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Another approach is based on indexing the model database and is supposed
[2] to be more promising. Indexing procedures improve the classical two-stage
identification scheme at the both stages. At the offline stage, the model database
is indexed using some special hash function. At the online stage, the required
subset R(T ) is constructed from the models with the hash values that are most
similar to ones calculated from the query template T .

During the indexing substage, for any model template, several partial invari-
ants (which are values of the geometrical nature that are almost invariant to
a given transformation group on the plane) are computed and quantized. For
instance, if some numerical features f1, f2, . . . , fk of geometrical shapes of some
kind formed by the fingerprint minutiae are used as partial invariants, then for
any model Ti and for any shape S of interest, the record g1(S), . . . , gk(S), ri is
included into the indexing table. Here gj is the quantized value of the feature fj

and ri is a reference to the model Ti. Thus, any model template Ti is transformed
to some finite subset in the k-dimensional indexing space.

The second, query stage starts with computing the same partial invariants of
the template to be identified. The computed k-dimensional vectors are filtered
using some system of additional constraints, which are control parameters of the
algorithm. Further, the remaining vectors are used for searching in the index
table and estimating the posterior probabilities for the models Ti extracted. The
resulting ordered subset R(T ) is constructed from the most probable models
according to their posterior probabilities.

Performance of indexing algorithms is suggested [2] to estimate by correct
index power (CIP).

Suppose, for any respondent (from a given sample), we have a pair (Ti, T
′
i )

of fingerprints obtained from the same finger. Construct the model database B
from the first elements of each pair, and the test database C from the second
(|B| = |C| = N , by construction). The model Ti ∈ B is said to be correctly
indexed by the algorithm R if Ti ∈ R(T ′

i ). Let Nci(R) be the number of correctly
indexed models, then

CIP (R) =
Nci(R)

N
. (1)

It is clear that CIP (R) is a stochastic variable which depends, along with the
algorithm R in question, on the random choice of the initial sample and the pair
(B,C). Nevertheless, its population value can be estimated statistically on some
representative fingerprint sample. In this paper, the well-known ‘NIST Special
Fingerprint Database 4’ [15] is used for such an estimation.

3 Our Results

We start with the description of our partial invariant data structure.

3.1 Partial Invariants

The system of invariants constructed in this paper generalizes the system pro-
posed in [11] and extended in [12,13]. Our system contains quantities that are
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invariant to the rotation-translation-scaling subgroup of similarity transforma-
tion group (on the plane). For a fixed accuracy level q of detected minutiae, to
any template T , the projection Πq(T ) of the set

Tq = {(xi, yi, wi) ∈ T : wi ≥ q}

onto the plane Hq = {(w, y, w) : w = q} is assigned and the Delaunay tri-
angulation [16] of the set Πq(T ) is constructed. The choice of the Delaunay
triangulation method is due to the following reasons

(a) such a triangulation is unique for any nondegenerate finite set on the plane;
(b) the resulting triangulation consists of O(m) facets, which number is sub-

stantially smaller than the number O(m3) of all possible triangles with the
vertices of the given m-point set;

(c) this triangulation can be constructed efficiently, we use the algorithm [17]
with time-complexity O(m log m);

(d) the topological structure of the resulting triangulation is stable [18] w.r.t.
small perturbations of the initial data.

Suppose, a triangle Δ is a triangulation facet with edges a ≤ b ≤ c. To this
triangle, assign the vector ν(Δ) = [α, β, γ] by the formulas α = b/c, β = a/b, and
γ = cos C (here C is the angle opposite to the side c). This vector is invariant
to any translation, rotation and scaling transform on the plane and satisfies the
following inequalities

1
2

< α ≤ 1, 0 < β ≤ 1, −1 < γ ≤ 1
2
.

Suitable discretized (particularly, to distinguish automatically isomer triangles)
these parameters are used at both stages, offline and online.

3.2 Proposed Algorithm

Indexing Stage

Input.

1. Model database B = {Tj : j = 1, . . . , N}.
2. Minimum accuracy level q for detected minutiae.
3. Maximum index values n1, n2, n3.

Output. Set-valued map h : Z
3
q → 2B×D (index table) defined on integer lattice

[0, . . . , n1] × [0, . . . , n2] × [0, . . . , n3]

as follows: any triple (i, j, k) is assigned to the set of pairs (To,Δt), where Tp is
some model template and the triangle Δt is a facet of the Delaunay triangulation
of Πq(Tp) such that the discretized value of the vector ν(Δ) is equal to (i, j, k).
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Identification (Query) Stage

Input.

1. A query template T and minimum accuracy level q for detected minutiae.
2. Index (hash) table h.
3. Length L of the previously constructed hypothesis sample.
4. Threshold values η1, and η2.
5. Discretization parameters σ, n1, n2 . . . for similarity transformations.

Output. A triple (Tp, Pp, Sp), where Tp is extracted model (identification hypoth-
esis), Pp ≥ η2 is posterior probability of its matching with T , and Sp is affine
similarity transform assigning T to Tp. If there is no model satisfying Pp ≥ η2,
then the query template T is rejected.

Scheme. The algorithm consists of two substages: pre-sampling of L most likely
(to the query template) models and the final recognition.

1. Pre-sampling substage
(a) Similar to the considerations above, to any triangulation facet Δt of the

projection Πq(T ) (for the query template T ), an appropriate index cell
(it, jt, kt) and the set h(it, jt, kt) are assigned.

(b) For any triangle δv ∈ h(it, jt, kt), an appropriate similarity transforma-
tion Stv (mapping the vertices of Δt into corresponding vertices of δv) is
computed. The scaling parameter λtv, the cosine cos ϕtv of the rotation
angle, and the translation vector btv are discretized and the correspond-
ing model template Tv is added as an entry to the secondary index table
along with its score. To compute this score we use the angles αi and βi

of papillary lines (w.r.t. cores of the initial fingerprints) at vertices of the
both triangles Δt and δv previously corrected by the angle of their mutual
rotation. The resulting score

Vv =
3∏

i=1

e−(ϕ(αi,βi))
2/σ2

,

where ϕ(α, β) = min{α − β mod 2π, β − α mod 2π}.
(c) Top L (according to gathered cumulative scores) hypotheses are extracted

and ordered by decreasing of their scores (Fig. 2). If first two scores satisfy
the condition V1/V2 > η1, then the query template is accepted and is
assigned to the first hypothesis. Otherwise the algorithm passes to the
second substage.

2. Recognition substage
(a) Let T1, . . . , TL be hypotheses extracted at the previous step. For each pair

(T, Ti), we apply the matching algorithm [19] and compute its matching
score Mi. Thus, we obtain the finite sequence

L = ((Vi,Mi) : i = 1, . . . , L).
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Fig. 2. Query fingerprint S1678 and the most valuable hypothesis F1678

(b) The sequence L is considered as an input to the previously learned MAP
classifier, which searches for the hypothesis T ∗ being a maximizer of the
estimated posterior matching probability η∗. Further, if η∗ ≥ η1, then
the query template T is accepted and is assigned to the hypothesis T ∗;
otherwise it is rejected.

3.3 Learning and Testing

Training (tuning control parameters) and testing of the algorithm were made
on the well-known NIST-4 Special Fingerprint Database, the respectable
testing source for modern fingerprint verification/identification heuristics. By
structure, this dataset consists of 2 K fingerprint pairs, for each of them both
images (denoted by ‘fD1D2D3D4’ and ‘sD1D2D3D4’ for some positive integer
D1D2D3D4) are obtained twice from the same finger.

We use this dataset for solving the following additional problems.

1. Proving the stability of the proposed indexing scheme w.r.t. small perturba-
tions of the initial data, such as addition (deletion) of minutiae and modifi-
cations of their geometrical locations.

2. Discretization parameters tuning for primal and secondary indexing tables.

According to statistical reasons, the accuracy level for detected minutiae is
fixed to q = 64. In both problems, the subset the initial dataset consisting of
1923 (96 %) (f-image, s-image) pairs, where f-image produces a template with at
least 50 minutiae, is chosen.

Proving the Stability. This kind of testing proceeds on the special synthetic
dataset obtained from the mentioned above NIST-4 database. According to the
well-known “white noise” model, to any f-image from the initial dataset, several
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Fig. 3. CIP-index for σ = 3 and r = 1.5

perturbed models are assigned. For each perturbed model, the geometrical loca-
tions of the minutiae are modified by the rule x′

i = xi + ξi, y′
i = yi +ηi, where ξi

and ηi are i.i.d. N(0, σ2) random variables. For an additional parameter r ∈ [1, 2],
a minutiae (x′

i, y
′
i, wi) is included to perturbed template iif ξ2i +η2

i ≤ r2σ2. Thus,
to any initial model template a 20-element perturbed sample is assigned.

Further, at the indexing stage, the initial templates are used as models
and each perturbed template is identified by the algorithm proposed. Obtained
numerical data confirm the known theoretically proved [18] stability result. Par-
ticularly, for σ = 1 and r ∈ [1.5, 2] (from 33 % to 13 % of excluded minutiae
in average), 100 % perturbed templates are classified correctly within L = 1.
Increasing σ leads to increasing of the L-value, as expected. But the stability
of the entire algorithm remains high. For instance, for σ = 3 and r = 1.5, the
CIP-value for L = 1 is 77 %, and for L = 10 (0.5 % of the initial database), the
more then 89 % (Fig. 3).

3.4 Tuning and Final Testing

For training (parameter tuning) a subset of 430 (21%) fingerprint pairs is used,
where f-image possesses at least 100 minutiae of accuracy level 64, while the
complement of this subset (to the entire dataset) is taken as a test sample. At
the training stage, the parameters are tuned by several local search heuristics.
The optimal values of parameters are 8× 8× 8 for the primal index table (hash)
and 17 × 17 × 17 × 47 for the secondary (Fig. 4). To learn the MAP-classifier,
the well-known k-fold cross-validation heuristic was applied.

To estimate the overall performance of the proposed algorithm, we conduct
a comparative numerical experiment on the real fingerprint dataset provided by
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Fig. 4. CIP-analysis of several local search heuristics

Prosoft Ltd. [20]. The performance results measured for ‘Suprema’ algorithm
(on the same dataset) are taken as a baseline (Table 1). Following the well-
known approach [1] to the comparative performance evaluation of identification
algorithms, for each quality level q of query fingerprint images, parameters of
both algorithms are tuned so that they have the same level of False Accept Rate
(FAR). Further, the value of False Reject Rate (FRR) is used as an assessment
of the algorithm’s performance (for a given q).

Table 1. Comparative analysis of the proposed (the first line) and Suprema (the
second) algorithms w.r.t. the quality level q of model and query fingerprints

q > 0% q > 60 % q > 70% q > 80 % q > 90%

FAR FRR (%) FAR FRR (%) FAR FRR (%) FAR FRR (%) FAR FRR (%)

0,00 35,41 0,00 33,10 0,00 27,02 0,00 18,52 0,00 11,48

35,80 30,70 26,08 22,40 18,72

0,06 33,30 0,19 30,85 0,14 26,03 0,10 18,11 0,26 10,97

32,75 28,47 25,33 20,321 16,97

0,17 32,35 0,25 30,17 0,21 25,82 0,21 17,90 0,77 10,46

30,20 27,69 24,53 18,47 15,54

0,35 31,76 0,43 29,80 0,28 25,32 0,31 17,49 1,02 10,20

28,32 26,12 23,17 16,99 14,92

0,41 31,18 0,56 29,42 0,50 24,54 0,41 17,28

26,13 25,37 22,76 16,12

0,94 30,12 0,99 27,31 0,64 23,97 1,03 16,36

25,02 24,23 20,98 15,39
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4 Discussion

A comprehensive comparative analysis of several known indexing techniques for
fingerprint identification problem is presented in [2]. The algorithm with 85 %
CIP value for L = 0.1N is recognized the optimal among them. The index-
ing scheme used in this algorithm is based on considering all possible triangles
with vertexes in minutiae locations, and time-complexity of its online stage is
O(Nm3). Our method has CIP value of 82 ± 5% for the same L, while its time-
complexity is O(Nm log m) thanks to the Delaunay triangulation technique.

As shown in Table 1 for poor quality fingerprints, the identification perfor-
mance of the algorithm ‘Suprema’ exceeds the performance of the proposed
algorithm. At the same time, the proposed algorithm is essentially better when
identifying fingerprints of good quality.

5 Conclusions

A new fingerprint identification algorithm combining the Delaunay triangula-
tion indexing, cylinder minutiae coding, and MAP-learning is presented. By the
numerical evaluation it is proved that performance of the proposed algorithm
is similar to ‘Suprema’ algorithm, which is recognized as state-of-the-art in the
fingerprint identification. ‘Suprema’ exceeds the proposed algorithm on finger-
prints of low-level quality. Therefore, it seems possible that integration of the
proposed algorithm with the more advanced image enhancement techniques can
improve its overall performance.
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