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Abstract. An approach to the study of different types of treatments in
subgroups is proposed. This approach is based on matching algorithms
and decision trees. An application to the data on children with acute
lymphoblastic leukaemia is considered.

Keywords: Medical informatics · Decision trees · Optimal therapy ·
Machine learning for medicine

1 Introduction

Nowadays one of the most promising way of therapy optimization, especially in
pediatric haematology, is conforming a therapy to various subgroups of patients
which are described by patients’ physiological features. Usually, the number of
possible subgroup descriptions is large, and often physicians are able to chose
subgroups for analysis relying just on their experience and observations. There-
fore, in statistical terms any subgroup analysis which is aimed at showing the
superiority in efficiency of one treatment strategy over one or several others
seems doubtful as a rule. In the present paper the approach of finding subgroups
with significantly different or equivalent response to two treatment strategies
is proposed. Obtained hypotheses can underlie subgroup analysis with better
choice of subgroups.

The analysis is carried out for the database on children with acute lym-
phoblastic leukemia (ALL) [1] who underwent a course of one of two types of
induction therapy. The first step consists in finding the largest set of pairs of
similar patients who took different drugs with the help of the Gale-Shapley algo-
rithm [2–4] for computing optimal stable matching. This algorithm is based on
the concept of physiological “similarity” between two patients; therefore, the def-
inition of “distance” between two patients is introduced. After that the derived
matching is examined for the existence of the classes in which treatment strat-
egy strongly affects or does not affect treatment response. At the second step
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we attempt to describe extracted classes by applying decision trees with various
parameters [5,6]. It appears that decision trees are not able to describe every
class on the whole. However, some subgroups of patients for whom one drug is
more appropriate than another one can be selected from the results of classi-
fication. Moreover, decision trees allow us to formulate hypotheses about com-
parison of therapy efficiencies in subgroups in form suitable for haematologists.
And finally, results are approved or disapproved by classical medical statistical
methods.

The rest of the paper is organized as follows. In Sect. 2 the dataset is described.
In Sect. 3 the steps of proposed approach are presented in detail. In Sect. 4 the
application to the initial dataset and its results are shown. Section 5 concludes
the paper.

2 Dataset

The dataset consists of 1946 patients up to 19 years old of age with newly diag-
nosed acute lymphoblastic leukaemia (ALL). This dataset is stored as a database
containing the following data fields: sex (male or female), age (in years), initial
white blood count (per nl) (WBC), immuno-phaenotype (8 types), CNS status (3
types), palpable liver size (in cm), palpable spleen size (in cm), mediastinum sta-
tus (3 types), date of allocation to treatment, last status report (alive, no infor-
mation, death), date of the latest follow up visit, treatment strategy (2 types).

The analysis was based on the comparison of the efficiency of two treatment
strategies: under DEXA 6 mg/m2/d and MePRED 60 mg/m2/d [1], which we
call S1 and S2. To find relations between initial characteristics and survival rate
all physiological features presented above were chosen: sex, age, initial WBC,
immuno-phaenotype, CNS, palpable liver size, palpable spleen size, mediastinum
status. To evaluate the therapy efficiency overall survival [7] was calculated with
death as the event. Survival time was calculated from diagnosing until the date of
last status report. If the value of one patient’s characteristic was not determined,
this patient was not included in analysis. Consequently, we obtained data on
1535 appropriate patients: 939 of them were assigned S1, and 596 of them were
assigned S2.

3 Proposed Approach

Our procedure is intended to find subgroups where differences between two com-
peting treatment strategies are noticeable or do not exist. The input data consist
of two sets of patients corresponding to the strategies. All patients are described
by several initial features each could be either numerical or categorical. The num-
ber of features can be reduced applying selection feature techniques, or relying
on expert views. In the current research we were provided with information on 8
features which are the most influential in haematologists’ sight, therefore feature
selection techniques were not required. Nevertheless it can surprisingly appear
that unprovided features affect intensively the survival time. So, as for medical
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data, we believe that results of feature selection and expert views should be
combined. Let us now move on to the steps of the proposed procedure.

3.1 Patient Distance

First of all, the procedure suggests defining distance between two patients (the
inverse concept to “physiological similarity”). If all physiological features are
numerical, it is possible to use one of the classical distance measures [8–10].
However, there are likely several categorical features in patient descriptions.
Therefore it is required to modify classical definitions of the distance. It is con-
sidered that there is no sense to measure distance between two patients that
cannot be compared. For this purpose it is necessary to give a definition of
“comparability” of two patients.

Definition 1. Two patients are comparable if the values of all their categorical
physiological features coincide. If they differ in just one categorical feature, they
are incomparable. So, if all initial features of patients are numerical, any two
patients are comparable.

Before computing distance between comparable patients, numerical features need
to be normalized to make all feature impacts equivalent. Therefore all of them
are centered by subtracting the mean value and then scaled by dividing by
the range of values [11]. So, the distance between two comparable patients is
computed based on the normalized values of their numerical features.

3.2 Pairs of Similar Patients

The distances between all pairs of patients where the first one is from the first set
and the other one is from the second set are computed. To find pairs of similar
patients the deferred acceptance procedure [2–4] is applied for two sets of patients
who underwent different courses of treatment. This algorithm was developed to
solve the marriage problem, i.e. the problem of finding stable matching. It is
applicable to two sets of instances which are often referred to as men and women.
Every man ranks women and every woman ranks men in accordance with their
preferences. Thereupon each man proposes to his favourite woman, and each
woman rejects all but her favourite, who becomes her marriage nominee. The
rejected men propose to their next choices, and each woman chooses her favourite
among the new proposers and the nominee rejecting all the rest, and so on. As
soon as no men are rejected or they have no more choices each woman accepts
her nominee. Eventually, we get the pairs consisting of one man and one woman.
In other words, every pair includes two instances from different sets. The result
of the algorithm application is stable, and optimal if preferences are complete.
In case of one-to-one matching completeness also accounts for uniqueness of the
provided matching. Before applying this algorithm to medical data definitions
of preference and completeness should be given.
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Definition 2. Patient p prefers patient q1 to patient q2 if the distance between
p and q1 is less than the distance between p and q2. Patient p is indifferent
between patients q1 and q2 if the distances between p and q1 and between p and
q2 are equal.

Definition 3. Preferences are complete if for every x, y from one set and for
every z from the other one, z prefers x to y, or y to x, or it is indifferent between
them.

Some patients may be incomparable w.r.t preference. However, it results from
the definition of comparability that all patients can be partitioned into subsets
where all patients are comparable with each other. Consequently, in these subsets
patients preferences are complete, and the result of the deferred acceptance pro-
cedure application to every such subset is unique, stable and optimal [4], which
means that the constructed matching is unique, stable and optimal in total.

3.3 Separation into Classes in Terms of Efficiency (Overall Survival)

Using the matching and patients? survival times we can determine classes of
patients with quite clear or without any dissimilarities in survival time under
treatment strategies. The simplest approach is to visualize the matching in any
way and attempt to mark boundaries of such classes. Therefore, it is proposed
to consider the coordinate plane where X-axis is survival time under the first
curing strategy and Y-axis is survival time under the second one. Every pair
in the matching is associated with a point on the plane. The first coordinate
of the point is the survival time of the patient who has received the first kind
of treatment, and the second one is the survival time of the patient who has
received the other one.

All points (pairs of patients) are partitioned into several classes according to
sensitivity to treatment strategies (e.g., survival time under treatment strategy
1 is superior to that under treatment strategy 2, survival time under treat-
ment strategy 2 is superior to treatment strategy 1, short survival time under
both treatment strategies, and long survival time under both of them). Further
manipulations are carried out on data about individual patients.

3.4 Hypotheses Generation and Verification

It is insufficient to separate patients into classes in which survival times under dif-
ferent strategies differ or do not differ. It is more essential to obtain descriptions
of these classes, so the classification problem arises. In the case of comparing
treatment strategy efficiencies decision trees with various parameters [5,6] seem
appropriate because, in general, the accuracy of the other well-known methods is
lower on the initial data. Moreover, the form of hypotheses generated by decision
trees is comprehensible for physicians. So, in our computer experiments we used
information gain, information gain ratio and Gini index as attribute selection
criteria [12,13]. Also, minimum number of instances in leaves, maximal allowable
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tree depth and sufficient percent of majority class for nonspliting were varied.
The approach evaluation was conducted by means of 10-fold cross-validation.

Decision trees output data are descriptions of classes in terms of characteris-
tics of the patients belonging to these classes. Those descriptions may be trans-
formed into hypotheses about the existence or the absence of the difference in
treatment strategy efficiencies. To show how it works, assume that any descrip-
tion of the class with the superiority of the first treatment strategy has been
received. This assumption can be transformed into the following hypothesis: for
the patients who fall under obtained description overall survival under the first
strategy is higher than that under the second one. This sort of hypotheses are
put forward on the basis of the most evident subgroups output by decision trees.

All formed hypotheses are tested by classical medical statistical tools. The
first of them is Kaplan-Meier survival curves [14–16] which estimate sample sur-
vival rate functions for censored data. The second one is log-rank test [16,17],
a nonparametric hypothesis test to compare the survival distribution of two
samples with no-difference null hypothesis and standard normally distributed
statistics. In contrast to log-rank, the equivalence test [18–20] is applied to con-
firm that survival rates of two samples do not differ, and usually used if log-rank
null hypothesis has not been rejected. Also for each hypothesis false negative
error (type II error) is computed [21]. It is important to mention that hypothe-
ses are tested on the set of patients that consists not only of those who have
been included in classification, but also of those who have not been matched
with anybody or have not been labeled with any class mark. If a hypothesis is
confirmed by the tests and false negative error is not very large, then it can be
analysed by physicians in further random trials. The necessity of new trials is
specified by the worldwide statistical principles of clinical trials. According to
the notes of European Medicines Agency [22], any clinical trials may have two
aspects: confirmatory and exploratory ones. For the first of them the hypothe-
ses are pre-defined, and are tested when the trial is complete, while the second
aspect allows of the data dependent choice of hypotheses, and the ability of
changes in response to accumulating results. Obviously, the proposed procedure
is intended for the exploratory aspect of trials, therefore its results “cannot be
the basis of the formal proof of efficacy” [22]. However, the exploratory investi-
gations can serve “for suggesting further hypotheses for later research” [22]. The
last statement clearly explains the main purpose of the proposed approach.

4 Analysis and Results

According to the proposed approach it is necessary to distinguish between numer-
ical and categorical physiological features. The initial dataset contains four
numerical features: age, initial WBC, palpable liver size, palpable spleen size;
and four categorical features: sex, immuno-phaenotype, CNS, mediastinum sta-
tus. The second ones determine the comparability of patients. However, immuno-
phaenotype has two levels of categorization: B- or T-ALL (nominal values), and
each of these types has four ordinal subcategories. Therefore, the condition of
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Table 1. Numerical values of immuno-phaenotype.

B −1

pre-B −0.75

common-B −0.5

pre-pre-B −0.25

early-T 0.25

intermediate-T 0.5

mature-T 0.75

hybrid 1

comparability was weakened for this feature. Thus, two patients were compara-
ble if both of them had B- or T-ALL and values of all other categorical features
coincided.

To take into account the second level of immuno-phaenotype categorization,
its values were transformed into numerical values according to Table 1.

So, for child-ALL data distance was computed using normalized values of
numerical characteristics and numerical values of immuno-phaenotype. As it is
mentioned before, any standard definition of distance can be chosen. Therefore,
Manhattan [8,9], Euclidean [8,9], Minkowski [8,10] with factor 3, Minkowski
with factor 100 and Chebyshev [8] distances were used in computer experiments.
We found out that there was no meaningful difference between these measures,
so for further analysis and method specification Euclidean distance was used.

After that the deferred acceptance procedure was applied, the scatter plot
of the derived matching is shown in Fig. 1. There were about 5 most evident
isolated classes of points (Fig. 2). As for classes 1 and 2 survival time under
both strategies was not long. However, it was slightly longer under S1 in class
1 and slightly longer under S2 in class 2. We can also say that for class 3 the
survival time under S1 was longer than under S2 and vice versa for class 4.
The survival time for class 5 was long under both strategies. We attempted
formalizing boundaries in the way shown in Fig. 3. It is important to mention
that the 4-years boundary was not selected randomly. There are about 4 years
between the latest diagnosing date and the latest last status report date. In other
words, if survival time of any patient was shorter than 4 years this patient was
certainly dead or escaped from the observation. For the sake of clear separation
of the classes the points between dashed lines were excluded from the analysis.

By applying decision trees to all presented partitions we obtained several
hypotheses, one of the most reliable hypothesis is presented below.

The hypothesis is “MePRED is more efficient than DEXA for patients who
are equal to or more than 6.6 years old, with palpable spleen size not smaller
than 3.5 cm, and pre-pre- or pre-B immuno-phaenotype”. There were 39 patients
of that kind for classification and 47 such patients at all. This subgroup is not
numerous, but, at first, Kaplan-Meier curves (Fig. 4) seem to confirm the hypoth-
esis. The value of log-rang statistics is equal to 2.12 which allows one to reject
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Fig. 1. Scatter plot of all matching pairs.

Fig. 2. Scatter plot of all matching pairs with outlined classes.

the hypothesis about no difference at confidence level of 0.95. The false negative
error amounts to 0.31. This is quite good, so, we can propose this hypothesis to
test in further clinical random confirmatory trials.
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Fig. 3. Scatter plot of all pairs with partition into 5 classes.

Fig. 4. Kaplan-Meier curves for the case of 6.6 years old and older patients with pal-
pable spleen size not smaller than 3.5 cm and pre-pre- or pre-B immuno-phaenotype.
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5 Conclusion

In this paper we introduced a novel approach to solving the problem of determin-
ing relevant subgroups of patients for therapy optimization. Getting the dataset
of patients described by their physiological characteristics, dates of diagnosing
and last status report, the procedure constructs the optimal stable matching
between patients who took different drugs and attempted to describe subgroups
in which the efficiency of these drugs are different or approximately equal. In
further studies other learning techniques will be used, in particular, those based
on closed descriptions [23–25].

The proposed procedure can also be applied in other studies of subgroup
analysis. Moreover, all parts of the procedure are flexible to changes and can
be adapted to other practical problems of subgroup analysis. The main idea of
this work consists in proposing the order in which data analysis techniques can
be applied, and how they can influence any therapy optimization. Hopefully, the
obtained hypotheses will be successfully used in Russian ALL-treatment studies.
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