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Abstract The classical Lorenz system is considered. For many years, this system
has been the subject of study by numerous authors. However, until now the structure
of the Lorenz attractor is not clear completely yet, and the most important question
at present is to understand the bifurcation scenario of chaos transition in this system.
Using some numerical results and our bifurcational geometric approach, we present
a new scenario of chaos transition in the classical Lorenz system.
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1 Introduction

We consider a three-dimensional dynamical system

ẋ = σ(y − x), ẏ = x(r − z) − y, ż = xy − bz (1)

known as the Lorenz system. Historically, (1) was the first dynamical system for
which the existence of an irregular attractor (chaos) was proved for σ = 10, b = 8/3,
and 24,06 < r < 28. For many years, the Lorenz system has been the subject of
study by numerous authors; see, e.g., [1–8]. However, until now the structure of
the Lorenz attractor is not clear completely yet, and the most important question at
present is to understand the bifurcation scenario of chaos transition in system (1).

In Sect. 2 of this paper, we recall a relatively new scenario of chaos transition in
the Lorenz system (1) proposed by N.A. Magnitskii and S.V. Sidorov [6]. In Sect. 3,
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we revise this scenario and present a different bifurcation scenario of chaos transi-
tion in system (1), where σ = 10, b = 8/3, and r > 0, using numerical results of [6]
and our bifurcational geometric approach to the global qualitative analysis of three-
dimensional dynamical systems which we applied earlier in the planar case [9–15].

2 The Magnitskii–Sidorov Scenario

There exists a contemporary point of view on the structure of the Lorenz attractor
and chaos transition in system (1); see [1–8]. However, in [6], it is shown that ab-
solutely another scenario of chaos transition is realized in the Lorenz system (1).
It turns out that all cycles from infinite family of unstable cycles, generating the
Lorenz attractor [6], have crossing with an one-dimensional unstable not invariant
manifold V u of the origin of system (1) (do not confuse with the invariant unstable
manifold Wu of this point). This result follows from the theory of dynamical chaos
stated in [6]. After the derivation of analytic formulas for the manifold V u, it be-
comes possible to reduce the problem of establishing and proving the existence of
unstable cycles in the Lorenz system to the one-dimensional case, namely, to find-
ing stable points of the one-dimensional first return mapping defined on the unstable
manifold [6]. By this method, it is shown that some items of the classical scenario
of chaos transition in the Lorenz system (1) are invalid, while other require a more
detailed investigation. The Magnitskii–Sidorov scenario is the following.

1. The Lorenz system (1) is dissipative and symmetric with respect to the
z-axis. The origin O(0,0,0) is a singular point of system (1) for any σ , b, and r .
It is a stable node for r < 1. For r = 1, the origin becomes a triple singular
point, and then, for r > 1, there are two more singular points in the system:
O1(

√
b(r − 1),

√
b(r − 1), r − 1) and O2(−√

b(r − 1),−√
b(r − 1), r − 1) which

are stable up to the parameter value ra = σ(σ + b + 3)/(σ − b − 1) (ra ≈ 24,74
for σ = 10 and b = 8/3). For all r > 1, the point O is a saddle-node. It has a two-
dimensional stable manifold Ws and a one-dimensional unstable manifold Wu. If
1 < r < r1 ≈ 13,9, then separatrices Γ1 and Γ2 issuing from the point O along its
one-dimensional unstable manifold Wu are attracted by their nearest stable points
O1 and O2, respectively.

2. If r = r1 ≈ 13,9, then the separatrices Γ1 and Γ2 do not form two separate
homoclinic loops. Here we have a bifurcation with the generation of a single closed
contour surrounding both stationary points O1 and O2; the end of the separatrix Γ1
enters the beginning of the separatrix Γ2, and vice versa, the end of Γ2 enters the
beginning of Γ1. As r grows, from this contour, a closed cycle C0 appears there first.
It is an eight-shaped figure surrounding both points O1 and O2.

3. If r1 < r < r2 ≈ 24,06, then cycles L1 and L2 surrounding the points O1
and O2, respectively, do not appear; but with further growth of r , pairs of cy-
cles C+

n ,C−
n , n = 0,1, . . . , are successively generated. They determine the gen-

eration of the Lorenz attractor. The cycle C+
n makes n complete rotations in the

half-space containing the point O1 and one incomplete rotation around the point O2.
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Conversely, the cycle C−
n makes n complete rotations around the point O2 and one

incomplete rotation around the point O1.
For each r , r1 < r < r2, there exists the number n(r) (n(r) → ∞ as r → r2)

such that in the phase-space of (1), there are unstable cycles C0, C+
k , C−

k , k =
0, . . . , n, and cycles C+

km, C−
km, k,m < n, which make k rotations around the point

O1 and m rotations around the point O2 and are various combinations of the cycles
C+

n and C−
n , and many other cycles generated by bifurcations of the cycles C+

n

and C−
n [6]. Points of intersection of all these cycles with the manifold Vu have

the following arrangement on the curve Vu for 0 ≤ zmin ≤ z ≤ zmax < r − 1. The
point zmin corresponds to the right large single loop of the cycle C−

n . This loop is the
larger face of the right truncated cone of the set S. Further, the trajectory of the cycle
passes into the left half-plane and makes n clockwise rotations around the point O2.
The smallest first loop around the point O2 is the smaller face of the truncated cone
of the set S. The point zmax corresponds to the smallest loop of the cycle C+

n around
the point O1. This loop is the smaller face of the right truncated cone. Further, the
trajectory of this cycle makes n rotations around the point O1 clockwise, passes into
the left half-plane, and makes one large rotation around the point O2. This rotation
is the larger face of the left truncated cone. Between the points zmin and zmax there
is a point z0 corresponding to the main cycle C0.

Boundaries of the attraction domains of the stable points O1 and O2 are given by
the smallest loops of the cycles C+

n and C−
n , whose size decay as r grows. Therefore,

for some r = rm, the attraction domain of the set B no longer intersects the attraction
domains of points O1 and O2, and the set B becomes an attractor. Therefore, in
the Lorenz system (a = 10, b = 8/3), metastable chaos exists only in the interval
r1 < r < rm, and in the interval rm < r < r2, the system has three stable limit sets,
namely, O1 and O2 and the Lorenz attractor.

If r → r2, then the eye size decreases as the number of rotations of the cycles C+
n

and C−
n around the points O1 and O2, respectively, grows. The value zmax grows,

and zmin decays; moreover, zmin → 0 as r → r2. The lengths of generatrices of
truncated cones grow, since additional rotations are added to the cone vertex and
diminish the size of the smaller face. Conversely, the larger face grows. If r = r2,
then zmin = 0, but zmax < r − 1; thus, the larger face of each cone achieves its max-
imal size, while the smaller face is not contracted into a point, the cone vertex. The
following bifurcation takes place. In the limit as n → ∞, each set of cycles C+

n

(respectively, C−
n ) forms a point-cycle heteroclinic structure consisting of two sep-

aratrix contours of the point O . The first contour consists of a separatrix issuing
from the point O along its unstable manifold and spinning on the appearing (only
for r = r2) saddle cycle L1 (respectively, L2) of the point O1 (respectively, O1).
The second contour consists of the separatrix spinning out from the saddle cycle L1

(respectively, L2) and entering the point O along its stable manifold.
As mentioned above, the described bifurcation does not lead to generation of the

Lorenz attractor for r = r2. It is more correct to say that it is only a prerequisite of
destruction of the attractor as r decays. The attractor itself, existing in the system for
r = r2, is formed from finitely many stable cycles C±

k , k = 0, . . . , l, for r < 313. It
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contains neither separatrices Γ1 and Γ2 of the point O nor infinitely many unstable
cycles C±

n existing in the neighborhood of the point-cycle heteroclinic structure.
If r2 < r < r3 = ra , then points O1 and O2 are still stable, and their attraction

domains are bound by the appearing limit cycles L1 and L2 contracting to points
as r → r3. But the Lorenz attractor B is not a set of integral curves going from L1
to L2 and back, and separatrices Γ1 and Γ2 of the saddle point O do not belong
to the attractor. Cycles L1 and L2 have already made their job at r = r2 and no
longer have anything to do with the attractor. If r2 < r < r3, then, just as in the case
of r1 < r < r2, the cycles C+

n and C−
n appear again from separatrix contours. The

attractor is determined by finitely many such cycles [6].
4. For r = r3 = ra ≈ 24,74, the saddle cycles L1 and L2 disappear. In the system,

there is a unique limit set, namely, the Lorenz attractor.
5. There exist one more important value of the parameter r which affects the

formation of the Lorenz attractor. This is a point r4 ≈ 30,485. If r grows from r3
to r4, then the number of rotations of the cycles C+

n and C−
n first rapidly decays,

then grows again. In this case, eyes by separatrices of the point O are much smaller
than attractor eyes and begin to grow as r increases. Therefore, almost heteroclinic
and almost homoclinic contours exist in system (1) at the point r4.

The process of generation of the Lorenz attractor in system (1) as r decays from
the value 313 up to r4 is referred to as the incomplete double homoclinic cascade [6].
The complete cascade occurs if the r-axis passes exactly through the point of ex-
istence of two homoclinic contours. Note that in systems with a single homoclinic
contour, there can be a simple complete or incomplete homoclinic cascade of bifur-
cations of transition to chaos, and in [6], a detailed description of transition to chaos
through the double homoclinic (complete or incomplete) cascade of bifurcations is
given. Just as in item 6 of the classical scenario, if r > 313, then in the system,
there exists a unique stable limit cycle C0 surrounding both points. If r ≈ 313, then
the cycle C0 becomes unstable and generates two stable cycles C+

0 and C−
0 which

also surround the points O1 and O2 but have deflections in the direction of corre-
sponding halves of the unstable manifold V u of the point O . This is the point where
the double homoclinic cascade of bifurcations really begins. In case of an incom-
plete cascade, it consists of finitely many stages of appearance of stable cycles C±

k ,
k = 0, . . . , l, and their infinitely many further bifurcations. But in case of a complete
cascade, the number of stages is infinite, and at the limit of l → ∞, cycles tend to
homoclinic contours of the points O1 and O2, respectively. At the k-th stage of the
cascade, originally stable cycles C±

k undergo a subharmonic cascade of bifurcations
and form two band-form attractors that consist of infinitely many unstable limit cy-
cles intersecting the respective domains of the unstable manifold V u of the point O .
Then these two bands merge and form a single attractor surrounding both the points
O1 and O2, after which there is a cascade of bifurcations of cycles generated as
a result of the merger and making rotations separately around the points O1 and
O2 and simultaneously around both the points. The last cascade of bifurcations has
the property of self-organization, since it is characterized by simplification of the
structure of cycles and the generation of new stable cycles with a smaller number
of rotations around the points O1 and O2 as r decays. Each cycle of the cascade
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of self-organization bifurcations undergoes its own subharmonic cascade of bifur-
cations, after which all cycles formed during infinitely many bifurcations of all sub-
harmonic cascades and cascades of self-organization bifurcations of cycles become
unstable and form some set Bk . After an incomplete homoclinic cascade of bifur-
cations, we obtain a set B = ⋃

Bk consisting of infinitely many possible unstable
cycles appearing at all stages of the cascade. These cycles generate an incomplete
double homoclinic attractor, that is the classical Lorenz attractor.

6. If r > 313, then the unique stable limit cycle is an attractor in system (1).

3 The Bifurcational Geometric Scenario

Revising the above scenario, we present a new scenario of chaos transition in the
Lorenz system (1) for σ = 10, b = 8/3, and r > 0.

1. If r < 1, the unique singular point O of system (1) is a stable node. For
r = 1, it becomes a triple singular point, and then, for r > 1, there are two more
singular points in the system: O1 and O2 which are stable up to the parame-
ter value ra ≈ 24,74. For all r > 1, the point O is a saddle-node. It has a two-
dimensional stable manifold Ws and an one-dimensional unstable manifold Wu. If
1 < r < rl = r1 ≈ 13,9, then the separatrices Γ1 and Γ2 issuing from the point O

along its one-dimensional unstable manifold Wu are attracted by their nearest stable
points O1 and O2, respectively.

2. If r = rl , then each of the separatrices Γ1 and Γ2 becomes a closed homoclinic
loop. In this case, two unstable homoclinic loops, C+

0 and C−
0 , are formed around

the points O1 and O2, respectively. They are tangent to each other and the z-axis at
the point O and form together a homoclinic butterfly.

3. If rl < r < ra ≈ 24,74, then, unfortunately, neither the classical scenario nor
the Magnitskii–Sidorov scenario can be realized. The reason is that, in both cases,
trajectories of system (1) should intersect the two-dimensional stable manifold Ws

of the point O . Since this is impossible, the only way to overcome the contradiction
is to suppose that a cascade of period-doubling bifurcations [6] will begin imme-
diately in each of the half-spaces with respect to the manifold Ws , when r > rl .
In this case, each of the homoclinic loops C+

0 and C−
0 generates an unstable limit

cycle of period 2 which makes one rotation around the point O1 and one rotation
around the point O2 but in the corresponding half-spaces containing the points O1
and O2, respectively, and a stable limit cycle of period 1 lying between the coils
of the cycle of period 2. With further growth of r , each of the cycles of period 2
generates an unstable limit cycle of period 4 with a stable limit cycle of period 3
inside of it and each of the cycles of period 1 generates a stable limit cycle of pe-
riod 2 with an unstable limit cycle of period 1 inside of it. Then, after next doubling,
we will have in each of the half-spaces an unstable limit cycle of period 8 with an
inserted stable limit cycle of period 7 and a stable limit cycle of period 6 with an
inserted unstable limit cycle of period 5, and a stable limit cycle of period 4 with an
inserted unstable limit cycle of period 3, and an unstable limit cycle of period 2 with
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an inserted stable limit cycle of period 1. Continuing this process further, we will
obtain limit cycles of all periods from one to infinity, and the space between these
cycles will be filled by spirals issuing from unstable limit cycles and tending to sta-
ble limit cycles as t → +∞. These cycles are inserted into each other, they make
various combinations of rotation around the points O1 and O2 in the corresponding
half-spaces containing these points and form geometric constructions (limit periodic
sets) which look globally like very flat truncated cones described in item 3 of the
Magnitskii–Sidorov scenario [6].

4. For r = ra ≈ 24,74, the biggest unstable limit cycles of infinite period disap-
pear through the Andronov–Shilnikiv bifurcation [4, 5] in each of the half-spaces
containing the points O1 and O2 (the cone vertices are at these points), and these
points become unstable saddle-foci.

5. If ra < r < +∞, then a cascade of period-halving bifurcations [6] occurs in
each of the half-spaces with respect to the manifold Ws . We have got again two
symmetric with respect to the z-axis limit periodic sets consisting of limit cycles
of all periods which are inserted into each other and make various combinations
of rotation around the points O1 and O2 in the corresponding half-spaces contain-
ing these points, and the space between the cycles is filled by spirals issuing from
unstable limit cycles and tending to stable limit cycles as t → +∞. The biggest
limit cycles of these sets are stable now, and with further growth of r , the period-
halving process makes them and the whole limit periodic sets more and more flat.
The obtained geometric constructions are the only stable limit sets of system (1).
The spirals of the unstable saddle-foci O1 and O2 and the trajectories issuing from
infinity tend to these limit periodic sets (more precisely, to their stable limit cycles)
as t → +∞. Just these stable limit periodic sets form two symmetric parts of the
so-called Lorenz attractor, and this really looks very chaotic.

6. If r → +∞ (numerically, when r > 313), then the period-halving process will
be finishing and system (1) will have two stable limit cycles in two phase half-spaces
containing the unstable saddle-foci O1 and O2 of (1). This completes our scenario
of chaos transition in the Lorenz system (1).
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