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Abstract Monogenic function theories are considered as generalizations of the
holomorphic function theory in the complex plane to higher dimensions and are
refinements of the harmonic analysis based on the Laplace operator’s factorizations.
The construction of spherical monogenic functions has been studied for decades
with different methods. Recently, orthogonal monogenic bases are developed for
spheroidal reference domains, first by J. Morais and later by others. This survey
will go through the construction of spheroidal monogenic functions and discuss up-
to-date results.
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1 Introduction

The theory of harmonic functions plays an important role in many fields, both in
pure and applied aspects. It can be seen, for example, in gravitational potential prob-
lems or approximation of the Earth’s gravity and magnetic fields (see [18, 23, 31]).
Spherical harmonic functions are used frequently because of their simple form and
easy calculation. It is preferred for (almost) symmetric geometries. For asymmet-
ric cases, it is inappropriate as shown in [31]. Simple generalizations of spherical
domains are ellipsoidal domains. Garabedian introduced in [14] sets of orthogo-
nal harmonic polynomials over prolate and oblate spheroids taken in several dif-
ferent norms. It is the root of the construction of orthogonal spheroidal monogenic
functions, since monogenic functions can be obtained by applying the hypercom-
plex derivative to harmonic functions. The construction of Green’s function for
the Laplace equation on an ellipsoid of revolution has been studied by means of
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ellipsoidal harmonic functions in several articles (see [12, 22]). As refinements of
harmonic functions, these spheroidal monogenic functions could play a role to solve
some Dirichlet problems in spheroids.

There are several methods to construct a complete system of monogenic func-
tions. Fueter variables zi = xi − x0ei (i = 1, . . . , n), named after R. Fueter [13],
were introduced as an idea to construct bases of homogeneous monogenic polyno-
mials (see [6, 15, 21]). The construction is completely independent of endowed inner
products. In general, the obtained sets of monogenic functions are not orthogonal.
For spherical domains, one can obtain a complete orthogonal system of monogenic
functions by the Gelfand–Tsetlin procedure which calculates functions by induc-
tion and then it costs time and memory. More information about the method can be
found in [5, 20]. The harmonic function approach was developed based on factor-
izations of the Laplace operator in terms of Cauchy–Riemann or Dirac operators. To
the best of our knowledge, I. Cação firstly used it to construct orthogonal bases for
L2-spaces of reduced quaternion (A)—or quaternion (H)-valued monogenic func-
tions which are solutions of Riesz or Moisil–Theodorescu systems on the unit ball
(cf. [7, 9]). The hypercomplex derivative and the monogenic primitive are also stud-
ied in [8, 10, 11]. Later on, S. Bock modified the H-valued elements of the basis
with respect to the Riesz system to obtain the Appell property. This property was
introduced by Appell [1] by generalizing d

dx
xn = nxn−1 to more general polyno-

mial systems. Also, S. Bock proved recurrence formulae, an explicit representation
formula for polynomials [2–4] and applied it to solve a boundary value problem
for the equations of linear elasticity in spherical domains. A-valued solutions of
the Riesz system were also researched by J. Morais in the quaternionic setting in
a similar way. Properties were investigated such as real part theorems, Bohr’s type
theorem and local mapping properties by means of spherical monogenic functions
(cf. [16, 17, 24]).

The aim of this paper is to give a brief survey about the construction of com-
plete orthogonal monogenic systems on spheroidal domains. In Sect. 3, inner pro-
late and oblate spheroidal monogenic functions will be revisited. The recurrence
formulae and the explicit presentation will be discussed therein. In applications, we
also need information on the exterior domain. That is the reason why in Sect. 4,
outer spheroidal monogenic functions in the exterior domain of a prolate spheroid
are described. Conclusions will be given in the last section.

2 Preliminaries

Let H be the algebra of real quaternions generated by the basis {1, e1, e2, e3} sub-
jected to the multiplication rules

eiej + ejei = −2δij , i, j = 1,2,3; e1e2 = e3.

Each quaternion can be represented in the form q = q0 + q1e1 + q2e2 + q3e3
where qj (j = 0, . . . ,3) are real numbers. Like in the complex case, the conju-
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gate of q is q = q0 − q1e1 − q2e2 − q3e3 and the norm |q| of q is defined by
|q|2 = qq = qq = ∑3

j=0(qj )
2. The real vector space R

3 will be embedded in

H by identifying the element x = (x0, x1, x2) ∈ R
3 with the reduced quaternion

x := x0 + x1e1 + x2e2. Denote by A the real space of all reduced quaternions. The
operator ∂ = ∂

∂x0
+ e1

∂
∂x1

+ e2
∂

∂x2
is called generalized Cauchy–Riemann (C–R)

operator. Given a domain Ω in R
3, a function f is called monogenic in Ω if sat-

isfying ∂f(x) = 0 for all x ∈ Ω . The hypercomplex derivative is simply denoted
by 1

2∂ , where ∂ is the conjugate C–R operator. M(Ω,A) and M(Ω,H) stand for
the Hilbert spaces of square integrable A—or H-valued monogenics in Ω respec-
tively, endowed with the inner products

〈f,g〉L2(Ω;R) =
∫

Ω

Sc(fg)dV ,

〈f,g〉L2(Ω;H) =
∫

Ω

fgdV .

(2.1)

The induced norm is in both cases ‖f‖L2(Ω) = 〈f, f〉
1
2
L2(Ω)

. In this paper, let Γ be a
spheroid with x0-axis as the symmetry axis. The equation of Γ is given by

x2
0

a2
+ x2

1 + x2
2

b2
= 1,

where a = c coshμ0, b = c sinhμ0 (prolate spheroid) or a = c sinhμ0, b =
c coshμ0 (oblate spheroid). For the sake of simplicity, it is assumed that c = 1.
We adopt the notations Ω+ and Ω− for the interior and exterior domains of Γ ,
respectively. In particular, x ∈ Ω− can be given by the spheroidal coordinate

x0 = coshμ cos θ, x1 = sinhμ sin θ cosϕ, x2 = sinhμ sin θ sinϕ,

for prolate cases or

x0 = sinhμ cos θ, x1 = coshμ sin θ cosϕ, x2 = coshμ sin θ sinϕ,

for oblate cases, with μ ∈ (μ0,∞), θ ∈ [0,π), ϕ ∈ [0,2π).

3 Inner Spheroidal Monogenics Revisited

Since 2010, J. Morais has intensively investigated sets of prolate spheroidal mono-
genic functions which play a role for constructing bases in L2-spaces of mono-
genic functions in a prolate spheroid over R and H in [25, 26] with applications
in [19, 27, 28]. An analogous monogenic system can be constructed for oblate
spheroids as shown in [30]. In general, spheroidal monogenic functions have the
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structure as follows:

Xn,m = n + m + 1

2
An,m(μ, θ) cos(mϕ)

+ δ

4(n − m + 1)
An,m+1(μ, θ)

{
cos

[
(m + 1)ϕ

]
e1 + sin

[
(m + 1)ϕ

]
e2

}

− δ(n + m + 1)(n + m)(n − m + 2)

4
An,m−1(μ, θ)

× {
cos

[
(m − 1)ϕ

]
e1 − sin

[
(m − 1)ϕ

]
e2

}

Yn,m = (n + m + 1)

2
An,m(μ, θ) sin(mϕ)

+ δ

4(n − m + 1)
An,m+1(μ, θ)

{
sin

[
(m + 1)ϕ

]
e1 − cos

[
(m + 1)ϕ

]
e2

}

− δ(n + m + 1)(n + m)(n − m + 2)

4
An,m−1(μ, θ)

× {
sin

[
(m − 1)ϕ

]
e1 + cos

[
(m − 1)ϕ

]
e2

}

where

An,m(μ, θ) =
[(n−m)/2]∑

k=0

δk+1 (2n + 1 − 4k)(n + m − 2k + 1)2k

(n − m − 2k + 1)2k+1
Un−2k,m,

with

An,−1(μ, θ) :=
{

− 1
n(n+1)2(n+2)

An,1(μ, θ), n = 1,2, . . .

0, n = 0,

m = 0, . . . , n + 1 and (a)r = a(a + 1)(a + 2) . . . (a + r − 1) with (a)0 = 1, de-
notes the Pochhammer symbol. The notations δ and Un−2k,m take values δ = 1,
Un−2k,m = P m

n−2k(coshμ)P m
n−2k(cos θ) in cases of prolate monogenic functions and

δ = −1, Un−2k,m = in−2k−mP m
n−2k(i sinhμ)P m

n−2k(cos θ) in cases of oblate mono-
genic functions. The first were studied in [25, 26] and the second were studied
in [30]. Spheroidal monogenic functions Xn,m and Yn,m are A-valued and they form
a complete orthogonal system in the space M(Ω+,A). A complete orthogonal sys-
tem of the space M(Ω+,H) of H-valued monogenic functions can be constructed
by functions of the form

Φm
n := Xn,m − Yn,me3,

with m = 0, . . . , n and n = 0,1, . . . That is similar to the spherical case, investigated
by I. Cação [8] and then by S. Bock [3].

A common property of those functions is that they are inhomogenous polynomi-
als. That fact can be seen in [30] as well as in the underlying theorems. That makes
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it difficult to calculate them numerically. In [30], the authors found several recur-
rence formulae and their explicit representation in terms of spherical monogenic
polynomials. Precisely, one has the following theorems.

Theorem 3.1 The four-step recurrence formula for Φm
n is given by

Φm
n+1 = − 2n + 3

2(n − m + 2)(n − m + 1)

[
(2n + 3)x + (2n + 1)x

]
Φm

n

− (2n + 3)(2n + 1)(n + m + 1)

(n − m + 2)(n − m + 1)2
xxΦm

n−1

+ (2n + 1)(n + m + 1)

2(n − m + 2)(n − m + 1)2

[

2n + 3 + (2m + 1)2

2n − 1

]

Φm
n−1

+ (2n + 3)(n + m + 1)(n + m)

2(n − m + 2)(n − m + 1)2(n − m)

[
(2n + 1)x + (2n − 1)x

]
Φm

n−2

− (2n + 3)(n + m + 1)(n + m)2(n + m − 1)

(2n − 1)(n − m + 2)(n − m + 1)2(n − m)
Φm

n−3.

Theorem 3.2 The relation between {Φm
n } and {Ãm

n } can be described as follows:

Φn
n+k = (−1)k+1

[k/2]∑

j=0

(2n + k − 2j + 1)!(2n + 1)!!
2n+j · (k + 1)!j !(n + k − 2j)!a

n
k,j Ã

n
n+k−2j ,

where

an
k,j := (2n + 2)2k−2j

2k−j (n + 1)k−j

· (2n + k + 2 − 2j)2j ,

and {Ãm
n } is the Appell system in [3].

Notice that the Appell functions for spherical domains {Ãm
n } are homogeneous

polynomials and they satisfy the two step recurrence formula (cf. [3])

Ãl
n+1 = n + 1

2(n − l + 1)(n + l + 2)

[(
(2n + 3)x + (2n + 1)x

)
Ãl

n − 2nxxÃl
n−1

]
,

with initial polynomials

Ãl
l+1 = 1

4

[
(2l + 3)x + (2l + 1)x

]
Ãl

l; Ãl
l = (x1 − x2e3)

l .

Theorem 3.1 shows the analogy between spherical and spheroidal cases. The other
terms in the formula express the asymmetry of oblate spheroids. These results help
to reduce computational time for those functions. Especially, it is shown in [30] that
there does not exist a complete system for spheroidal domains with respect to the
standard inner product satisfying both orthogonal and Appell properties.
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4 Outer Prolate Spheroidal Monogenics

Initially, inner spheroidal monogenic functions were described by means of asso-
ciated Legendre functions of the first kind. With the help of associated Legendre
functions of the second kind, J. Morais tried to construct a complete orthogonal
system for the exterior domain of a prolate spheroid. This work becomes more
complicated since the latter contains logarithmic functions so that a simple sub-
stitution is not enough. In [4], the Kelvin transform was applied for the construc-
tion of H-valued outer spherical monogenic functions from inner spherical mono-
genic functions. That keeps properties such as orthogonality invariant. However for
A-valued functions in a spheroid, the Kelvin transform is not directly applicable.
The method, based on the decomposition of a function space into subspaces of ho-
mogeneous functions to prove the completeness of a function system (see [2, 24]),
fails because of the appearance of logarithmic functions. To this end, we firstly pay
attention to the asymptotic behavior of the constructed functions compared with
spherical cases. The extra term in the coefficient function is dealt with to prove the
orthogonal property which will be discussed later. Finally, by using the harmonic
extension to the outer domain of a function defined on the boundary of a prolate
spheroid, one can prove the completeness of such a system. This research can be
found in [29]. Here it is summarized briefly.

4.1 A System of Outer Prolate Spheroidal Monogenics

A system of outer prolate spheroidal monogenic functions is obtained by applying
1
2∂ to outer spheroidal harmonic functions

Vn,l(μ, θ) cos(lϕ), Vn,l(μ, θ) sin(lϕ),

where Vn,l(μ, θ) := Ql
n(coshμ)P l

n(cos θ), (n = 0,1, . . . ; l = 0, . . . , n). Denote

Ên−1,l := 1
2∂[Vn,l(μ, θ) cos(lϕ)] and F̂n−1,l := 1

2∂[Vn,l(μ, θ) sin(lϕ)], one gets

Ê−1,0(μ, θ,ϕ) := − sinhμ cos θ + coshμ sin θ(cosϕe1 + sinϕe2)

sinhμ(sin2 θ + sinh2 μ)
, (4.1)

Ê0,0(μ, θ,ϕ) := 1

4
ln

(
coshμ + 1

coshμ − 1

)

− 1

2

coshμ

sin2 θ + sinh2 μ

+ 1

2

sin θ cos θ

sinhμ(sin2 θ + sinh2 μ)
(cosϕe1 + sinϕe2), (4.2)

Ên,l(μ, θ,ϕ) := (n + l + 1)

2
Bn,l(μ, θ) cos(lϕ)

+ 1

4(n − l + 1)
Bn,l+1(μ, θ)

[
cos

(
(l + 1)ϕ

)
e1 + sin

(
(l + 1)ϕ

)
e2

]
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+ 1

4
(n + 1 + l)(n + l)(n − l + 2)Bn,l−1(μ, θ)

× [− cos
(
(l − 1)ϕ

)
e1 + sin

(
(l − 1)φ

)
e2

]
, (4.3)

F̂n,l(μ, θ,ϕ) := (n + l + 1)

2
Bn,l(μ, θ) sin(lϕ)

+ 1

4(n − l + 1)
Bn,l+1(μ, θ)

[
sin

(
(l + 1)φ

)
e1 − cos

(
(l + 1)ϕ

)
e2

]

− 1

4
(n + 1 + l)(n + l)(n − l + 2)Bn,l−1(μ, θ)

[
sin

(
(l − 1)ϕ

)
e1

+ cos
(
(l − 1)ϕ

)
e2

]
, (4.4)

(for l = 0, . . . , n; n = 1,2, . . . )

Ên,n+1(μ, θ,ϕ) := (n + 1)Bn,n+1(μ, θ) cos
(
(n + 1)ϕ

)

− coshμP n+2
n+2 (cos θ)Qn+2

n+1(coshμ)

4(2n + 3)(sin2 θ + sinh2 μ)

× [
cos

(
(n + 2)φ

)
e1 + sin

(
(n + 2)ϕ

)
e2

]

+ (2n + 2)(2n + 1)

4
Bn,n(μ, θ)

[− cos(nϕ)e1 + sin(nφ)e2
]
,

(4.5)

F̂n,n+1(μ, θ,ϕ) := (n + 1)Bn,n+1(μ, θ) sin
(
(n + 1)ϕ

)

− coshμP n+2
n+2 (cos θ)Qn+2

n+1(coshμ)

4(2n + 3)(sin2 θ + sinh2 μ)

× [
sin

(
(n + 2)φ

)
e1 − cos

(
(n + 2)ϕ

)
e2

]

− (2n + 2)(2n + 1)

4
Bn,n(μ, θ)

[
sin(nϕ)e1 + cos(nφ)e2

]
,

(4.6)

(for n = 0,1, . . . ). The coefficients are given by

Bn,l(μ, θ) := 1

sin2 θ + sinh2 μ

[
coshμP l

n(cos θ)Ql
n+1(coshμ)

− cos θP l
n+1(cos θ)Ql

n(coshμ)
]
, (4.7)

where

Bn,−1(μ, θ) := − 1

n(n + 1)2(n + 2)
Bn,1(μ, θ) for n = 1,2, . . .
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It can be proved that Bn,l(μ, θ) has the explicit presentation

Bn,l(μ, θ) =
[ n−l

2 ]−1∑

k=0

(2n + 1 − 4k)(n + l − 2k + 1)2k

(n − l − 2k + 1)2k+1
P l

n−2k(cos θ)Ql
n−2k(coshμ)

+
⎧
⎨

⎩

(2l+1)n−l

(n−l+1)! Bl,l(μ, θ) if n − l even
2(2l+2)n−l−1

(n−l+1)! Bl+1,l(μ, θ) if n − l odd.

Because the terms Ql
n+1(coshμ) contain logarithmic functions, the question of their

behavior at infinity arises and we will see that they are completely similar to the
outer spherical monogenic functions.

4.2 Outer Spherical Monogenics Revisited

To compare, we firstly revisit the spherical case. The construction of outer spheri-
cal monogenic functions has been studied in parallel with the construction of inner
spherical monogenics. In [6], they are constructed based on the Cauchy kernel func-
tion and its derivatives. Spherical monogenics can be obtained also by applying the
Kelvin transform as in [4]. Different methods we apply, different representations
we get. For A-valued monogenic functions, these methods do not lead directly to
what we need. Hence, the harmonic function approach is again used together with
spherical harmonic functions. Let B(R) be a ball with radius R > 0. Denote by
H(R3\B(R),−(n + 1)) the space of real-valued homogeneous harmonic functions
of degree −(n + 1) in R

3\B(R) with n ≥ 0. A basis of H(R3\B(R),−(n + 1)) is
given by

{
1

rn+1
Pn(cos θ),

1

rn+1
P m

n (cos θ) cos(mϕ),
1

rn+1
P m

n (cos θ) sin(mϕ)

}

where m = 1, . . . , n. By applying the hypercomplex derivative 1
2∂ , one obtains a

system of monogenic functions defined in R
3\B(R) as follows:

X0
−(n+2) = −n + 1

2

Pn+1(cos θ)

rn+2
− 1

2

P 1
n+1(cos θ)

rn+2
[cosϕe1 + sinϕe2]

Xm
−(n+2) = −n − m + 1

2

P m
n+1(cos θ)

rn+2
cos(mϕ)

− 1

4

P m+1
n+1 (cos θ)

rn+2

[
cos

(
(m + 1)ϕ

)
e1 + sin

(
(m + 1)ϕ

)
e2

]

+ (n − m + 1)(n − m + 2)

4

P m−1
n+1 (cos θ)

rn+2

× [
cos

(
(m − 1)ϕ

)
e1 − sin

(
(m − 1)ϕ

)
e2

]
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Ym
−(n+2) = −n − m + 1

2

P m
n+1(cos θ)

rn+2
sin(mϕ)

− 1

4

P m+1
n+1 (cos θ)

rn+2

[
sin

(
(m + 1)ϕ

)
e1 − cos

(
(m + 1)ϕ

)
e2

]

+ (n − m + 1)(n − m + 2)

4

P m−1
n+1 (cos θ)

rn+2

× [
sin

(
(m − 1)ϕ

)
e1 + cos

(
(m − 1)ϕ

)
e2

]
.

Note that 1
2∂ establishes an isomorphism between H(R3\B(R),−(n + 1)) and

M(R3\B(R),A,−(n + 2)). The latter consists of all homogeneous monogenic
polynomials of degree −(n + 2). Due to the orthogonal decomposition

M
(
R

3\B(R),A
) =

∞⊕

n=0

M
(
R

3\B(R),A,−(n + 2)
)
,

the system {X0
−(n+2),X

m
−(n+2), Y

m
−(n+2)}n=0,1,...;m=1,...,n forms an orthogonal basis

of M(R3\B(R),A).

4.3 Asymptotic Behavior

The behavior at infinity of outer spheroidal monogenic functions is related closely
to the behavior of Ql

n(z). When z tends to infinity

Ql
n(z) = (n + l)!

(2n + 1)!!
1

zn+1
+ O

(
1

zn+3

)

.

Now let z = coshμ � sinhμ � r = |x| if μ is large enough, it leads to

Bn,l(μ, θ) = − (n − l + 2)(n + l)!
(2n + 3)!!

P l
n+2(cos θ)

rn+3
+ O

(
1

rn+5

)

.

As a result, we obtain the asymptotic behavior of Ên,l and F̂n,l for l = 0, . . . , n+1;
n = 0,1, . . .

Ên,l = (n + l + 1)!
(2n + 3)!! Xl

−(n+3) + O

(
1

|x|n+5

)

,

F̂n,l = (n + l + 1)!
(2n + 3)!! Y l

−(n+3) + O

(
1

|x|n+5

)

.

Particularly, when |x| → ∞
Ê−1,0 = − x

|x|3 + O

(
1

|x|4
)

,

and it behaves like the Cauchy kernel in a neighborhood of infinity.
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4.4 Orthogonality

It could be easy to see that each following pair of functions is orthogonal with
respect to the inner product (2.1) whenever l1 
= l2

• {Ên1,l1 , Ên2,l2}.
• {F̂n1,l1 , F̂n2,l2}.
• {Ên1,l1 , F̂n2,l2}.
The assertion is based on the orthogonalities of sin(lϕ) and cos(kϕ) on [0,2π]. In
the other cases, one can decompose coefficient functions Bn,l(μ, θ) into summands
of the form

Ql
n−2k(coshμ)P l

n−2k(cos θ), (4.8)

except one extra term

coshμP l
l (cos θ)Ql

l−1(coshμ)

sin2 θ + sinh2 μ
or

cos θP l
l (cos θ)Ql

l−1(coshμ)

sin2 θ + sinh2 μ
. (4.9)

Consequently, orthogonality holds for the terms of the form (4.8) according to equal-
ities

∫ π

0
P l

n(cos θ)P l
s (cos θ) sin θdθ = 0,

∫ π

0
P l

n+1(cos θ) cos θP l
s (cos θ) sin θdθ = 0

for s < n. Besides, we can prove by induction the following proposition.

Proposition 4.1 Let Bn,l(μ, θ) be functions as in (4.7), then with l = 0,1, . . . the
following equalities hold when n, k are equal to l or l + 1

∫ π

0
Bn,l(μ, θ)P l

k(cos θ) sin θdθ = 0.

The proposition is applied to deal with the extra term (4.9) in expansions of
Bn,l(μ, θ) and it results in the following theorem.

Theorem 4.2 The constructed functions (4.1)–(4.6) form an orthogonal system in
M(Ω−,A) with respect to the inner product (2.1).

The proof can be found in [29].
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4.5 Completeness

Any function f ∈ M(Ω−,A) has a Fourier series expansion related to the function
system (4.1)–(4.6). The question is whether the Fourier series expansion converges
to f in L2-norm. In order to find the answer, one needs the following result.

Theorem 4.3 Let f be a function in M(Ω−,A) ∩ C1(Ω− ∪ Γ ). Then the Fourier
series expansion of f converges to f in the sense of the L2(Ω−)-norm.

Notice that Theorem 4.3 considers only the case of smooth functions in
M(Ω−,A). For the L2-case, the analogous result is obtained by applying the fol-
lowing corollary.

Corollary 4.4 Any outer spherical monogenic functions
{
X0

−(n+2),X
m
−(n+2), Y

m
−(n+2)

}
n≥0;m=1,...,n

can be presented by its Fourier series expansion with respect to the system
(4.1)–(4.6).

To this end, we give the completeness theorem.

Theorem 4.5 The function system (4.1)–(4.6) forms a complete orthogonal system
of the space M(Ω−,A) with respect to the inner product (2.1) in the exterior do-
main Ω−.

Details can be found in [29].

5 Conclusion

Ellipsoidal harmonic functions have attracted the attention of several researchers
and shown their importance in many fields. By means of the hypercomplex deriva-
tive, ellipsoidal monogenic functions are currently being developed. In accordance
with advantages of Clifford analysis, it will become a helpful tool for solving prob-
lems in ellipsoidal domains. Further applications of such systems hopefully will be
announced in the near future.
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