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Preface

The 9th International ISAAC Congress was held in the period 5–9 August 2013 in
Krakow, Poland. The main organiser was the Krakow Pedagogical University. The
congress continued the successful series of biennial meetings previously held in
USA (1997), Japan (1999), Germany (2001), Canada (2003), Italy (2005), Turkey
(2007), UK (2009) and Russia (2011). The total number of participants of the
congress was 502 coming from 62 countries, including the special guests and the
Organising Committee from Krakow and Rzeszow. There were 12 plenary speakers
and 2 key speakers of the discussion group on applications. Totally, the congress
had 23 sessions spanned over 4 working days, while 1 day was assigned to excur-
sions. The congress was sponsored by industrial partners. When needed, the Polish
consulates over Europe issued free visas for participants of the congress.

One of the main features of the congress was the invitation of industrial special-
ists, especially engineers working in industry, whose activity is related to applied
mathematics (industrial mathematics) and computer sciences. The 9th International
ISAAC Congress was an important scientific event during which mathematicians
from different parts of the world had an opportunity to present new results and
ideas. It was also a great possibility for young mathematicians to contact experts in
a variety of fields.

The atmosphere during the Congress was warm and friendly at the sessions and
at the social events: banquet, excursions, football match followed by a barbeque. It
is impossible to give the final score of the football match because too many goals
were scored.

The dates of the Congress, namely 5–9 August, provided for an extremely hot
period in the history of Krakow that correlated well with hot and fruitful scientific
discussions during the Congress.

It is already a well-established tradition to award one or several outstanding
young researchers during the ISAAC congress. The ISAAC award of the 9th In-
ternational ISAAC Congress was presented to

Jasson Vindas
(University of Ghent, Belgium)
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vi Preface

for his outstanding results on the asymptotic behaviour of Schwartz distributions
and their pointwise values.

At the ISAAC board meeting during the congress Professor Luigi Rodino of the
University of Turin was elected as the new ISAAC President, and Professor Michael
Reissig of Freiberg University as the new Vice-President. The former president,
Professor Michael Ruzhansky of Imperial College London, UK, has finished his
4-year service. The election of the new vice-president and new rules concerning the
structure and functioning of the interest groups within ISAAC completed the work
on the new ISAAC constitution that took place in the year before the congress. The
new constitution was approved by the general electronic vote by ISAAC members
prior to the congress. Further information can be found on the ISAAC homepage

www.mathisaac.org

The ISAAC Board has decided the venue for the following 10th International
ISAAC Congress in 2015 to be the University of Macau.

The plenary and key lectures given at the congress appear not here but in the
independent volume:

Mityushev V., Ruzhansky M. (Eds.) Analytic Methods in Interdisciplinary Applications.
Springer Proceedings in Mathematics & Statistics, Vol. 116, Springer, 2015.

The present volume contains the texts of a selection of talks delivered at the
congress. As in the previous years, some of the sessions or interest groups decided
to publish their own volumes of proceedings and are therefore excluded from the
present collection. The work of the congress was spread over the following sessions:

• Complex variables and potential theory,
organised by T. Aliyev, A. Golberg, M. Lanza de Cristoforis, S. Plaksa

• Differential Equations: Complex and Functional Analytic Methods, Applications,
organised by H. Begehr

• Complex-analytic methods for applied sciences,
organised by S.V. Rogosin

• Clifford and Quaternion Analysis,
organised by S. Bernstein, U. Kähler, I. Sabadini and F. Sommen

• Fixed Point Theory and Applications,
organised by E. Karapınar

• Spaces of Differentiable Functions of Several Real Variables and Applications,
organised by V. Burenkov and S. Samko

• Generalized Functions,
organised by M. Oberguggenberger and S. Pilipović

• Qualitative Properties of Evolution Models,
organised by K. Yagdjian, F. Hirosawa and M. Reissig

• Nonlinear Infinite Dimensional Evolutions and Control Theory with Applications,
organised by I. Lasiecka, J. Webster and G. Avalos

• Nonlinear PDE,
organised by V. Georgiev and T. Ozawa

• Topological and Geometrical Methods of Analysis,
organised by A. Prykarpatskyi, Yu. Zelinskyi and K. Soltanov

www.mathisaac.org
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• Didactical Approaches to Mathematical Thinking,
organised by E. Swoboda and V. Mityushev

• Wavelet Theory And its Related Topics,
organised by K. Fujita and A. Morimoto

• Integral Transforms and Reproducing Kernels,
organised by S. Saitoh and Ju. Rappoport

• Pseudo differential operators,
organised by L. Rodino, J. Toft and M. W. Wong

• Medical Mathematics and Computing,
organised by R. Gilbert, Ju. Rappoport and V. Yakushev

• Toeplitz Operators and Their Applications,
organised by S. Grudsky and N. Vasilevski

• Approximation Theory and Fourier Analysis,
organised by S. Tikhonov and E. Liflyand

• Differential and Difference Equations with Applications,
organised by L. Berezansky, J. Diblik, A. Zafer and M. Zima

• Analytic Methods in Complex Geometry,
organised by A. Schmitt

• M-Frame Constructions,
organised by K. Rudol, H.G. Stark, A. Grybos and D. Onchis

• Applications of Queueing Theory in Modelling and Performance Evaluation of
Computer Networks,
organised by K. Grochla

• Applied Mathematics,
organised by S. Bosiakov

• Others containing other talks,
organised by the editors of this volume

We thank the organisers of all the sessions of the congress for their work. They
spent an enormous amount of time inviting participants, arranging their sessions,
providing chairmen and creating a familiar and workshop-like atmosphere within
their meetings. The session organisers were also responsible for collecting contri-
butions to this proceedings volume and for the refereeing process of the papers.

Vladimir Mityushev
Michael Ruzhansky

Krakow, Poland
London, UK
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A Tribute to the 70th Birthday of Prof Saburou
Saitoh

Tsutomu Matsuura
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Professor Saburou Saitoh participated in the ISAAC congresses since the first
congress was held at the University of Delaware in 1997. Every time he organized
the session on reproducing kernels during the congress, publishing two volumes of
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4 T. Matsuura

the proceedings with Kluwer Academic Publishers. He was also the Vice-President
of ISAAC for 6 years.

Prof. Saburou Saitoh is a unique mathematician—he is always considering ques-
tions beyond mathematics: what is the meaning of our whole life and what is the
meaning of mathematics. While his research group on the theory of reproducing
kernels is not so large, he brings to it his deep love of reproducing kernels. He is
teaching his students and colleagues about how fundamental and beautiful mathe-
matics is, and it good impact on human beings.

This led him to a range of results involving the fundamental theory of linear trans-
forms, generalizations of Pythagorean theorem, many beautiful norm inequalities,
representations of non-linear simultaneous equations and implicit functions, some
considerations of the Tikhonov regularization. A typical result of him is the success
of the numerical and real inversion formula of the Laplace transform co-authored
with Professors H. Fujiwara and T. Matsuura.

After his retirement from Gunma University at the age of 65 years, the University
of Aveiro invited him for a visiting position for 5 years as a researcher. Thus, he got
a very happy chance to realize his ideas further. He and his son published an essay
book on the universal problems beyond mathematics. In mathematics, he worked
on the development of the Aveiro discretization method, with colleagues Profes-
sors L.P. Castro, M.M. Rodrigues, and others, and he also presented Announcement
142: An Aveiro Dream in Mathematics. Roughly speaking, when we know some
eigenfunctions of a linear operator, we can consider the related partial differential
equation and we can solve the associated initial value problem; in this method, one
considers the reproducing kernel forms and related integral transforms (linear map-
pings), and one can discuss the existence problem and the construction problem of
the initial value problem. Furthermore, by using the theory of reproducing kernels
one can consider further properties of solutions. From this general method, one can
consider properties of many integral transforms and reproducing kernels in concrete
forms from the known eigenfunctions.

Prof. Saitoh published over 100 papers and 7 books by himself or jointly with
his colleagues. Now he is planning a publication of a new book on the theory of
reproducing kernels with the young colleague Professor Yoshihiro Sawano–we are
waiting for its publication. He is writing blogs on human beings and social prob-
lems, and his opinions are stated in Announcements of the Institute of Reproducing
Kernels: at this moment, this consists of more than 150 items. We hope his ideas
will be spread further and help making a beautiful world.
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Professor Sergei Rogosin is an international expert in the field of mathematical
analysis, complex variables and their applications. His main research interests are:
boundary value problems for analytic functions, integral equations, wavelet analy-
sis, nonlinear analysis, free boundary value problems, geometric functions theory,
approximation theory, mechanics of continuum media, Hele-Show flows, fluid dy-
namics, theory of composite materials, fractional analysis, special functions and
differential equations of fractional order. Sergei Rogosin is an author of many re-
search publications including three monographs (one published jointly with V. Mi-
tyushev, another with F. Mainardi and the third one with R. Gorenflo, A. Kilbas,
F. Mainardi). Clearly, his active international cooperation has contributed signifi-
cantly to broadening his scientific interests. He is also known as an author of the
history of mathematical study in the area of probability theory and rheology.

Sergei Rogosin is an outstanding representative of the scientific school created
by academician F.D. Gakhov in the Former Soviet Union. The schools impact on the
development of analytical methods for analyzing various boundary value problems
has been widely recognized. As a pupil of F.D. Gakhov, Sergei Rogosin has made
essential contributions to the schools achievements.

Since 2001, Sergei Rogosin has been an active participant in ISAAC Congresses.
In 2009 he became a Member of the ISAAC International Advisory Board. He has
organised special sessions at the 5th (July 25–30, 2005, Catania, Italy), 6th (Au-
gust 13–18, 2007, Ankara, Turkey), 7th (July 12–19, 2009, London, UK), 8th (Au-
gust 22–27, 2011, Moscow, Russia) and 9th (August 5–10, 2013, Krakow, Poland)
ISAAC Congresses. Sergei Rogosin contributed extensively to form the scientific
programs of these Congresses, to recruit new ISAAC members and to promote the
Societies activities. He was an editor of the collection of scientific papers from par-
ticipants of the 9th ISAAC Congress, accepted for publication at the publishing
house Cambridge Scientific Publishers.

Another important activity by Professor Rogosin has been the organization of a
series of AMADE international conferences in Minsk. It started in 1996, when pro-
fessor Anatoly Kilbas brought forward the idea of holding a conference dedicated to
the memory of academician F.D. Gakhov. Sergei Rogosin became a scientific secre-
tary of the organizing committee for the international conference “Boundary Value
problems, Special Functions and Fraction Calculus”.

Following the success of the previous conference, in 1999 the next conference
was organised with the title “Analytic Methods of Analysis and Differential Equa-
tions” (AMADE) proposed by Prof. A.P. Prudnikov. Since then the title has re-
mained the same while AMADE subject areas have consistently been extended at
the conferences held in Minsk in 2001, 2003, 2006, 2009, 2011, 2012.

After the untimely demise of professor Anatoly Kilbas in 2010, Sergei under-
took the main duties of organizing the conferences. AMADE-2011 was dedicated
to the memory of professor A. Kilbas. The next conference AMADE-2015 will be
organized in 2015 (September, 14–19) in Minsk as usual. All AMADE conferences
were held under the guidance of ISAAC.

Along with his scientific activity, professor Rogosin has also been a dedicated
teacher. He is an author of programs for courses in Real and Complex Analysis and
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has published several textbooks and lecture notes. His teaching experience includes
a broad spectrum of problems and methodologies following from his scientific inter-
ests and lecturing activities in his own country and abroad. Over a long career at the
Belarusian State University, Sergei Rogosin delivered lectures on Real and Com-
plex Analysis, Optimization Methods, Optimal Control Theory, Mathematical and
Economical Statistics, Econometrics as well as various aspects of teaching method-
ologies.

In 2009, Sergei Rogosin prepared and delivered lectures on modern prob-
lems of analysis and their applications for graduate and post-graduate students in
Druskininkai, Lithuania (organized by the Institute of Mathematics and Informat-
ics, Vilnius University). In January 2010, he became one of the organizers of the
International Winter School “Modern problems of Mathematics and Mechanics”
for young researchers and postgraduate students. Cycles of lectures were presented
by international experts in the area from the UK, Germany, Lithuania, Poland, Be-
larus and Ukraine. The success of the school was confirmed by the publication of
the lecture notes “Advances in Applied Analysis” in Birkhäuser Verlag.

Sergei Rogosin has a passion for working with the younger generation. He spares
no efforts to help earlier stage researchers in formulating new problems, discussing
their progress, and preparing their first research papers. His most successful post-
graduate students were: M. Dubatovskaya (Minsk, BSU, 1997), S. Makaruk (Minsk,
BSU, 2004), E. Pesetskaya (Minsk, BSU, 2006) and T. Vaitekhovich (Berlin, FU,
2008).

Professor Rogosin has created his own research groups in Belarusian State Uni-
versity and leads a number of projects within the framework of State Research Pro-
grams and the Belarusian Fund for Fundamental Research. He is also a coordinator
of European international scientific programs at the Belarusian State University.

Sergei Rogosin is a member of the Editorial Board of the international journals:
Mathematical Modelling and Analysis (Vilnius, Lithuania), Analysis (München,
Germany), Mathematics in Engineering, Science and Aerospace (Cambridge, UK),
Fractional Calculus and Applied Analysis (Sofia, Bulgaria) and the Siauliai Mathe-
matical Seminar (Siauliai, Lithuania). His expertise and enormous scientific erudi-
tion is highly demanded by the colleagues asking him for proofreading, reviewing
their books and papers.

And, yet, there are still so many exciting things for Sergei to do: he is intensively
developing several new scientific ideas and awaiting the further papers, books and
conference presentations to come. He is looking forward to meeting and communi-
cating with his old and new colleagues, helping his new and previous pupils. With-
out a doubt, he will continue contributing to new and exciting directions of research
and teaching.
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1 Introduction

This is a brief description of results of [1–3], which were presented at the 9th ISAAC
Congress. In these articles we have investigated the behavior of strong solutions to
the oblique degenerate derivative problem for the general second-order linear el-
liptic equation in a neighborhood of a conical boundary point of an n-dimensional
bounded domain (n≥ 2). The degeneracy of the problem stems from the term in the
boundary condition. We have found the precise exponent of the solution’s decreas-
ing rate under minimal assumptions on the coefficients of the problem.

Let G be an n-dimensional, n ≥ 2, bounded domain with a boundary that is a
smooth surface everywhere except at the origin O ∈ ∂G and near O it is a conical
surface.

We consider the oblique derivative problem for the elliptic second-order linear
equation:

⎧
⎪⎨

⎪⎩

L[u] ≡ aij (x)uxixj + ai(x)uxi + a(x)u= f (x), x ∈G,
B[u] ≡ ∂u

∂ �n + χ(ω)∂u
∂r

+ 1

|x|γ (ω)u= g(x), x ∈ ∂G\O, (L)
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Fig. 1 n-dimensional bounded domain with a conical boundary point

where �n denotes the unit exterior normal to ∂G\O, (r,ω) are spherical coordinates
in R

n with pole O; repeated indices are understood as summation from 1 to n.

2 Preliminaries

For a domain G we use the following notations:

• Ω :=G∩ Sn−1, where Sn−1 denotes the unit sphere in R
n;

• ∂Ω : the boundary of Ω ;
• Gba :=G∩ {(r,ω) : 0 ≤ a < r < b,ω ∈Ω}: a layer in R

n;
• Γ ba := ∂G∩ {(r,ω) : 0 ≤ a < r < b,ω ∈ ∂Ω}: the lateral surface of Gba ;

• Gd :=G\Gd0 , Γd := ∂G\Γ d0 , Ω� :=Gd0 ∩ {|x| = �}, � ≤ d .

Without loss of generality, we assume, that there exists d > 0, such that Gd0 is a
rotational cone (see Fig. 1) with vertex O and aperture ω0 ∈ (0,π), thus

Γ d0 =
{

(r,ω) : x2
1 = cot2

ω0

2

n∑

i=2

x2
1 , r ∈ (0, d), ω1 = ω0

2
, ω0 ∈ (0,π)

}

.

We use standard function spaces: Ck(G) with the norm |u|k,G; Lp(G) with

the norm ‖u‖p,G, p ≥ 1; Wk,p(G) with the norm ‖u‖Wk,p(G) for integer k ≥ 0;

the weighted Sobolev space
◦
W
k

α (G) for real α with the norm ‖u‖ ◦
W
k

α(G)
=
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(
∫

G

∑k
|β|=0 r

α+2(|β|−k)|Dβu|2dx) 1
2 and the space

◦
W
k− 1

2

α (∂G) denotes the space
of traces on ∂G.

Definition 2.1 A function u(x) is called a strong solution of problem (L) provided
that for any ε > 0 function u(x) ∈W 2,n

loc (G) ∩W 2,2(Gε) ∩ C0(G) and satisfies the
equation Lu= f for almost all x ∈Gε as well as the boundary condition Bu= g in
the sense of traces on Γε .

We assume that the following conditions are satisfied:

(a) the ellipticity condition

ν|ξ |2 ≤
n∑

i,j=1

aij (x)ξiξj ≤ μ|ξ |2, ∀ξ ∈R
n, x ∈G

with the ellipticity constants ν,μ > 0; aij (x)= aji(x); aij (0)= δji ;

(b) aij (x) ∈ C0(G), ai(x) ∈ Lp(G), p > n; a(x) and f (x) ∈ Ln(G) ∩ ◦
W

0

4−n (G),

g(x) ∈ ◦
W

1/2

4−n (∂G); there exists a monotonically increasing nonnegative function
A(r), continuous at zero, A(0)= 0, such that for x ∈G

(
n∑

i,j=1

∣
∣aij (x)− δji

∣
∣2

) 1
2

+ |x|
(
n∑

i=1

∣
∣ai(x)

∣
∣2

) 1
2

+ |x|2∣∣a(x)∣∣≤ A
(|x|);

(c) γ (ω),χ(ω) ∈ C1(Ω) and there exist numbers χ0 ≥ 0, γ0 > 0 such that γ (ω)≥
γ0 > 0, 0 ≤ χ(ω)≤ χ0;

(d) there exist numbers f1 ≥ 0, g1 ≥ 0, g0 ≥ 0, s > 0 such that

∣
∣f (x)

∣
∣≤ f1|x|s−2,

∣
∣g(x)

∣
∣≤ g1|x|s−1,

∫

G
�

0

r4−n|∇g|2dx ≤ g2
0�

2s , � ∈ (0,1).

Let χ(ω)≥ 0, γ (ω) > 0 be C0(∂Ω)-functions and �ν be the unit exterior normal
to G1

0 at the points of ∂Ω . We consider the eigenvalue problem for the Laplace–
Beltrami operator �ω on the unit sphere

⎧
⎨

⎩

�ωψ + λ(λ+ n− 2)ψ(ω)= 0, ω ∈Ω,
∂ψ

∂�ν + 〈λχ(ω)+ γ (ω)〉ψ(ω)= 0, ω ∈ ∂Ω, (EVP)

which consists of the determination of all values λ (eigenvalues), for which (EVP)
has a non-zero weak solutions ψ(ω) (eigenfunctions).
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Definition 2.2 A function ψ is called a weak solution of problem (EVP) provided
that ψ ∈W 1,2(Ω) and satisfies the integral identity
∫

Ω

(
1

qi

∂ψ

∂ωi

∂η

∂ωi
− λ(λ+ n− 2)ψη

)

dΩ +
∫

∂Ω

〈
λχ(ω)+ γ (ω)〉ψηdσ = 0 (2.1)

for all η(x) ∈W 1,2(Ω).

Remark 2.3 It is easy to see, that λ= 0 is not an eigenvalue.

3 Main Results

Theorem 3.1 ([1–3]) Let u(x) be a strong solution of problem (L) and assumptions
(a)–(d) are satisfied. Then there are d ∈ (0,1) and constants C1,C2,C3 > 0, cs > 0
depending only on f1, g1, g0, ν, μ, s, λ, γ0, χ0, ‖γ ‖C1(∂G), ‖χ‖C1(∂G), diamG,
measG, on the modulus of continuity of the leading coefficients and on the quantity
∫ 1

0
A(r)
r
dr , such that for all x ∈Gd0

•

∣
∣u(x)

∣
∣≤ C1

⎧
⎪⎪⎨

⎪⎪⎩

|x|λ, if s > λ,

|x|λ ln
1

|x| , if s = λ,
|x|s , if s < λ,

(3.1)

if the function A(r) is Dini-continuous at zero;
•

∣
∣u(x)

∣
∣≤ C

{ |x|λ−ε, if s ≥ λ,
|x|s−ε, if s < λ,

(3.2)

if the function A(r) is continuous at zero, but is not Dini continuous;
•

∣
∣u(x)

∣
∣≤ C lncs (λ)

(
1

|x|
)

·
{ |x|λ, if s ≥ λ,

|x|s , if s < λ,
(3.3)

if the function A(r)∼ 1
ln 1
r

.

Theorem 3.2 ([1, 2]) There exists the smallest positive eigenvalue λ of problem
(EVP), which satisfies the following inequalities

0< λ<

√
(
π

ω0

)2

+
(
n− 2

2

)2

− n− 2

2

for n≥ 3.



The Degenerate Second-Order Elliptic Oblique Derivative Problem 15

4 The Ideas of the Proofs of Theorems 3.1 and 3.2

The idea of the proof of Theorem 3.1 is based on the deduction of a new inequality of
Friedrichs–Wirtinger type (see Theorem 4.1 and Remark 4.2) with an exact constant
as well as some integral-differential inequalities adapted to our problem. The precise
exponent of the solution’s decrease rate depends on this exact constant.

Theorem 4.1 Let λ be the smallest positive eigenvalue of problem (EVP) and
χ(ω)≥ 0, γ (ω) > 0 be C0(∂Ω)-functions. Then the inequality

∫

Ω

u2dΩ ≤ 1

λ(λ+ n− 2)

[∫

Ω

|∇ωu|2dΩ +
∫

∂Ω

〈
λχ(ω)+ γ (ω)〉u2dσ

]

(FW)

holds for any u ∈W 1,2(Ω).

Remark 4.2 Inequality (FW) is the best possible, i.e. the estimating constant in this
inequality is exact. This is easy to see if we put u(ω) as a solution of problem (EVP).

Theorem 3.1 for the Dirichlet and Robin problems was proved in [4]. In our case
technical difficulties were related with the term χ(ω)∂u

∂r
in the boundary condition

of (L).
The existence of the smallest positive eigenvalue of problem (EVP) for n = 3

was proved in [1]. The ideas of the proof of this theorem are based on the Legendre
spherical harmonics (see [1]) and the Gegenbauer functions Cαλ . We have proved the
existence of the smallest positive solution λ of equation

(n− 2) sin
ω0

2
· C

n
2
λ−1

(

cos
ω0

2

)

= (λχ0 + γ0) · C
n−2

2
λ

(

cos
ω0

2

)

and that this solution is the smallest positive eigenvalue of (EVP).

5 Examples

We demonstrate our results by examples from [1] and [3].
Suppose n= 2 and the domain G lies inside the corner

G0 =
{

(r,ω) : r > 0, ω ∈
(

−ω0

2
,
ω0

2

)

, ω0 ∈ (0,π)
}

, O ∈ ∂G

and in some neighborhood of O the boundary ∂G coincides with the sides of the
corner ω= −ω0

2 and ω= ω0
2 .

We denote Γ± = {(r,ω) | r > 0; ω = ±ω0
2 } and we put γ (ω)|ω=± ω0

2
= γ± =

const> 0; χ(ω)|ω=± ω0
2

= χ± = const ≥ 0.



16 M. Bodzioch and M. Borsuk

In this case the eigenvalue problem (EVP) has the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′′(ω)+ λ2ψ(ω)= 0, ω ∈
(

−ω0

2
,
ω0

2

)

,

ψ ′
(
ω0

2

)

+ (λχ+ + γ+)ψ
(
ω0

2

)

= 0,

−ψ ′
(

−ω0

2

)

+ (λχ− + γ−)ψ
(

−ω0

2

)

= 0.

(5.1)

The smallest positive eigenvalue λ of this problem satisfies the inequality π
2ω0
< λ<

π
ω0

.

Example Let ω0 ∈ (0, π2 ) and (λ,ψ(ω)) be the solution of (5.1). Therefore we have

λ > 1. The function u(r,ω)= rλ(ln 1
r
)
λ−1
λ+1 ·ψ(ω) is the solution in the corner G0 of

the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2∑

i,j=1

aij (x)uxixj = 0, x ∈G0,

(
∂u

∂ �n + 1

r
γ±u+ χ±

∂u

∂�r
)∣
∣
∣
∣
Γ±

= g(r,ω)|Γ± ,

where

a11(x)= 1 − 2

λ+ 1
· x2

2

r2 ln 1/r
,

a12(x)= a21(x)= 2

λ+ 1
· x1x2

r2 ln 1/r
,

a22(x)= 1 − 2

λ+ 1
· x2

1

r2 ln 1/r
,

g(r,ω)|Γ± = −λ− 1

λ+ 1
χ±rλ−1

(

ln
1

r

)− 2
λ+1 ·ψ

(

±ω0

2

)

, r > 0.

If d < e−2, then μ= 1 and ν = 1 − 2
ln(1/d) . Furthermore, we have that the assump-

tion (b) is fulfilled with A(r) = 2
λ+1 · 1

ln( 1
r
)
, but the function A(r) does not sat-

isfy the Dini condition at zero. Moreover, aij (x) are continuous at the point O and
g(r,ω)|Γ± = O(rλ−1). This example shows that the assumption of Theorem 3.1
about the Dini-continuity of the leading coefficients of (L) and s > λ are essential
for u(x)=O(|x|λ). At the same time the example confirms the validity of (3.3) of
Theorem 3.1.
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Let the domain G⊂ R
3 lie inside the cone

G0 =
{

(r,ω1,ω2) : r > 0, ω1 ∈
(

0,
ω0

2

)

, ω2 ∈ (0,2π); ω0 ∈ (0,π)
}

,

O ∈ ∂G and in some neighborhood of O the boundary ∂G coincides with the lateral
surface of the cone G0. Denote

Γ0 =
{

(r,ω1,ω2) : r > 0, ω1 = ω0

2
, ω2 ∈ (0,2π); ω0 ∈ (0,π)

}

.

Let χ ≥ 0, γ > 0 be constants.

Example The function

u(r,ω1,ω2)= rλ ln
1

r
ψ(ω1)

is the solution of the problem
⎧
⎪⎪⎨

⎪⎪⎩

�u= −(2λ+ 1)rλ−2ψ(ω1), x ∈G0,

(
∂u

∂ �n + χ ∂u
∂r

+ 1

r
γ u

)∣
∣
∣
∣
ω1= ω0

2

= −χrλ−1ψ

(
ω0

2

)

.

Hence

f (x)=O(|x|λ−2), g(x)=O(|x|λ−1),

therefore in this case s = λ. Thus, this example confirms the validity of (3.1) of
Theorem 3.1 for s = λ.

Example The function

u(r,ω1,ω2)= rλ ln
1

r
ψ(ω1)

is the solution of the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u+ 2λ+ 1

r2 ln 1
r

u= 0, x ∈G0,

(
∂u

∂ �n + χ ∂u
∂r

+ 1

r
γ u

)∣
∣
∣
∣
ω1= ω0

2

= −χrλ−1ψ

(
ω0

2

)

.

In this case

A(r)= 2λ+ 1

ln 1
r

=⇒
∫ 1

0

A(r)
r
dr = +∞.

Therefore the assumption of Dini-continuity is not satisfied. Thus, this example con-
firms the validity of (3.3) of Theorem 3.1 for s = λ.
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On Locally Differentiable Solutions
of the Stationary Schrödinger Equation
with Discontinuous Coefficients

K.N. Ospanov

Abstract In this paper we study the binomial second order elliptic equation. The
coefficient and the right-hand side of this equation belong to some space M of
type F . We find necessary and sufficient conditions onM under which a generalized
solution of this equation is continuously differentiable. We find necessary and suf-
ficient conditions on M for continuous differentiability of the solution to the above
equation, whenM is a symmetric space, or one of the Lorentz spaces, a Sobolev or
a Besov space.

Keywords Elliptic equation · Differentiability of solution · Symmetric space

Mathematics Subject Classification (2010) 35J10

Let n ≥ 3 and Q be a bounded set in Rn with a smooth boundary and Ω be an
arbitrary open subset of Q. Let C(1)(Q) be the space of continuously differentiable
functions in Q and Ws

p(Ω) be the well-known Sobolev space.
We consider the following equation:

Lu≡ −�u+ q(x)u= f (x), (1)

where x = (x1, x2, . . . , xn) ∈Ω .
It is known that if p > n and q,f ∈ Lp(Ω), then there is a generalized solution

u ∈W 1
p(Ω) of (1) such that it has continuous partial derivatives inΩ (see [1], Ch. 3,

paragraph 15). This result can not be improved, since if at least one of q and f
belongs to Ln(Ω)\Lp(Ω) (p > n), then the solution u of (1) does not belong to

C
(1)
loc(Ω) (For a Banach space F(Q) of functions in Q, it is said that u belongs to
Floc(Ω), if ψ(x)u(x) ∈ F(Ω) for all ψ(x) ∈ C∞

0 (Ω).) So the following question
arises:

Question Are there other spaces such that the above precise result about differen-
tiable solutions of (1) holds for any q , f in this spaces?

K.N. Ospanov (B)
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The purpose of this work is to answer this question.
By a space of type F we mean a Banach space F(Q) of functions inQ satisfying

the following properties:

(a) F(Q) is embedded in L1(Q), i.e., there is a constant c > 0 such that

‖f ‖L1(Q) ≤ c‖f ‖F(Q), ∀f ∈ F(Q);
(b) the set C∞(Q) of infinitely differentiable functions in Q is dense in F(Q);
(c) if g ∈ F(Q) and ψ ∈ C∞(Q), then ψ · g ∈ F(Q);
(d) if g ∈ F(Q), then |g| ∈ F(Q) and ‖|g|‖F(Q) ≤ c1‖g‖F(Q).

For example, Lp(Q) and the Lorentz space Lp,r(Q) (1 < p, r < ∞) are
spaces of type F , where the norm of Lp,r (Q) is given in the following form
(see [2]):

‖u‖Lp,r (Q) =
(∫ +∞

0

{[
μ
(
x ∈Q : ∣∣f (x)∣∣≥ t)]1/pt}r dt

t

)1/r

.

Here μ is the Lebesgue measure.

Definition 1 LetM(Q) andM1(Q) be Banach spaces of functions inQ satisfying
the above conditions (a), (b) and (c). Assume that q(x), f (x) ∈M(Ω) and u(x) ∈
M1(Ω). If there is a sequence {um(x)}m≥1 of infinitely differentiable functions in
Ω such that for any ψ(x) ∈ C∞

0 (Ω)

‖ψum −ψu‖M1(Ω) → 0, ‖ψLum −ψf ‖M(Ω) → 0 (m→ ∞),
then u(x) is called a solution of (1).

Definition 2 Let M(Q) be a Banach space of functions in Q satisfying the above
conditions (a), (b) and (c). If for any q,f ∈Mloc(Ω) the solution u ∈W 1

p,loc(Ω)

(p > n
2 ) of (1) belongs to C(1)loc(Ω), thenM(Q) is called “{−�,C(1)} coordinated”.

Remark 1 From this definition it follows that if M(Q) is a “{−�,C(1)} coordi-
nated” space and M2(Q) ⊆M(Q) is a Banach space of functions in Q satisfying
the above conditions (a), (b) and (c), thenM2(Q) is also a “{−�,C(1)} coordinated”
space.

In order to answer the above question, we need to find a “{−�,C(1)} coordi-
nated” space of functions in Q.

Let α be an integer and 0 ≤ α < n. We denote by Pα(Q) the completion of
(C∞

0 (Q),‖.‖Pα(Q)), where

‖u‖Pα(Q) = sup
x∈Q

∫

Q

|u(y)|
|x − y|α dy.

It is easy to check that Pα(Q) is a space of type F .
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Theorem 1 LetM(Q) be a space of type F and n≥ 3. ThenM(Q) is “{−�,C(1)}
coordinated” if and only if

M(Ω)⊆ Pn−1(Ω).

In particular, Pn−1(Q) is a “{−�,C(1)} coordinated” space.

From Remark 1 and Theorem 1 it follows that Pn−1(Q) is the widest “{−�,C(1)}
coordinated” space of type F .

Theorem 2 Let M(Q) be a space of type F . Assume that there exits a constant
c2 > 0 such that for any u ∈M(Q) and any automorphism ϕ (one to one corre-
spondence preserving the measure) in Q, one has that

u
(
ϕ(x)

) ∈M(Q), ∥
∥u(ϕ)

∥
∥
M(Q)

≤ c2‖u‖M(Q).
ThenM(Q) is “{−�,C(1)} coordinated” if and only if

M(Q)⊆ Ln,1(Q). (2)

A Banach space M(Q) of functions in Q is called a symmetric space, if for any
u ∈M(Q) and any automorphism ϕ in Q, one has that

u
(
ϕ(x)

) ∈M(Q), ∥
∥u(ϕ)

∥
∥
M(Q)

= ‖u‖M(Q).
By Theorem 2 and Remark 1, we have that Ln,1(Q) is the widest “{−�,C(1)}
coordinated” symmetric space satisfying the above conditions (a), (b) and (c). From
Theorem 2 and Definition 2 we obtain the following result.

Corollary 1 Let 1 ≤ p, r <∞ and q(x), f (x) ∈ Lp,r,loc(Ω). Then the solution

u(x) ∈W 1
p,loc(Ω) (p >

n
2 ) of (1) belongs to C(1)loc(Ω) if and only if one of the fol-

lowing conditions holds

(i) r = 1, p ≥ n,
(ii) 1 ≤ r ≤ ∞, p > n.

By the inclusion (2) and Remark 1, we obtain the following results.

Corollary 2 Let 1 ≤ p <∞, 0 < s <∞ and q(x), f (x) ∈Ws
p,loc(Ω). Then the

solution u(x) ∈ W 1
p,loc(Ω) (p >

n
2 ) of (1) belongs to C(1)loc(Ω) if and only if s >

n
p

− 1.

Corollary 3 Let 1 ≤ p, θ <∞, 0< s <∞. If q(x) and f (x) belong to the Besov
space Bsp,θ,loc(Ω), then the solution u(x) ∈W 1

p,loc(Ω) (p >
n
2 ) of (1) belongs to

C
(1)
loc(Ω) if and only if one of the following conditions holds

(i) θ = 1, s ≥ n
p

− 1, 1<p < n,
(ii) θ ≥ 1, s > n

p
− 1, 1 ≤ p <∞.
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Polyanalytic Functions II

Wang Yufeng and Wang Yanjin

Abstract In this article, we obtain the explicit expression of the solution and the
conditions of solvability for the Riemann problem of single-periodic polyanalytic
function.
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1 Introduction

When a complex partial differential equation (PDE) couples with some boundary
conditions and growth conditions, a boundary-value problem (BVP) takes shape.
In recent years, the theory of BVPs for analytic functions has been generalized to
those of different classes of functions, including polyanalytic functions [1–3], poly-
harmonic functions [4], metaanalytic functions [2], and even the family defined by
other complex PDEs [5].

Let ω be a complex number different from 0. If the open set Ω on the complex
plane C satisfies the condition z± ω ∈Ω for ∀z ∈Ω , then ω is called a period of
the open setΩ . All the periods of the open setΩ form a set, denoted as PΩ . In what
follows, we assume that Ω is a periodic open set.
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Definition 1.1 Suppose f is a polyanalytic function [7] of order n on Ω , where Ω
is a periodic open set. If the following two conditions are fulfilled: (1) There exists
a complex constant ω ∈PΩ \ {0} such that

f (z+ω)= f (z), ∀z ∈Ω, (1.1)

(2) If two complex constants ω1,ω2 ∈ PΩ \ {0} satisfy (1.1), ω1
ω2

is real, then we say
that f is a single-periodic polyanalytic function of order n with period ω on Ω , or
simply single-periodic polyanalytic function. The collection of all single-periodic
polyanalytic functions on Ω is denoted as PHn(Ω).

For a fixed number ω ∈PΩ , we denote the subset of PHn(Ω) as

PHn(Ω;ω)= {f ∈ PHn(Ω) : f (z+ω)= f (z) for ∀z ∈Ω}.
Obviously, PHn(Ω;0) = PHn(Ω) and PHn(Ω;ω) ⊂ PHn(Ω;mω) for all m ∈ Z.
The following decomposition of single-periodic polyanalytic functions is equivalent
to Pokazeev’s decomposition given in [8].

Theorem 1.2 (see [6]) Let Ω be a periodic open set with period ω �= 0. Then

PHn(Ω;ω) = PH1(Ω;ω)⊕
(

z̄− ω̄

ω
z

)

PH1(Ω;ω)⊕ · · ·

⊕
(

z̄− ω̄

ω
z

)n−1

PH1(Ω;ω)

with (z̄− ω̄
ω
z)jPH1(Ω;ω)= {(z̄− ω̄

ω
z)j f (z) : f ∈ PH1(Ω;ω)}.

In [6], by the decomposition of single-periodic polyanalytic functions, the Rie-
mann problem of single-periodic polyanalytic functions has been discussed accord-
ing to two growth conditions of functions at infinity. Finally, we obtain the explicit
expression of the solution and the conditions of solvability in three cases. In this
article, we will discuss the Riemann BVP of single-periodic polyanalytic functions
in other cases.

2 Preliminaries

Let ω �= 0 in the following. We define the family of straight lines

lm : zm(t)=
(
m

2
+ it
)

ω, −∞< t <+∞, m ∈ 2Z+ 1, (2.1)

which cut the complex plane C into countable open strips

Ξm+1
2

=
{

z=
(
m

2
+ ξ + iη

)

ω : 0< ξ < 1, η ∈R

}

. (2.2)
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The special open strip Ξ0 defined in (2.2) is said to be the basic strip, and Ξm+1
2

=
m+1

2 ω+Ξ0, m ∈ 2Z+ 1. For a, b ∈R, we also define three subsets

⎧
⎪⎪⎨

⎪⎪⎩

Ξ+
0,b =

{

z= (ξ + iη)ω : −1

2
< ξ <

1

2
, η > b

}

,

Ξ−
0,a =

{

z= (ξ + iη)ω : −1

2
< ξ <

1

2
, η < a

} (2.3)

and �a,b =Ξ+
0,a ∩Ξ−

0,b . We assume that �a,b = ∅ if a ≥ b. Let

Ω+
b =

⋃

m∈Z

(
mω+Ξ+

0,b

)
, Ω−

a =
⋃

m∈Z

(
mω+Ξ−

0,a

)
, (2.4)

where Ξ+
0,b and Ξ−

0,a are defined in (2.3).

Definition 2.1 (see [6]) Suppose f ∈ PHn(Ω
+
R ;ω). If there exists an integerm such

that lim supz∈Ξ+
0,R,z→∞ |ei 2mπz

ω f (z)| = α, α ∈ (0,+∞), then we say that f pos-

sesses order m at +∞iω, denoted as Ord(f,+∞iω) = m. If

lim supz∈Ξ+
0,R,z→∞ |ei 2mπz

ω f (z)| = +∞ for any m ∈ Z, then we say that f has order

+∞ at +∞iω, denoted as Ord(f,+∞iω) = +∞. We assume Ord(f,+∞iω) =
−∞ if and only if f ≡ 0. Similarly, the growth order at −∞iω is defined.

Theorem 2.2 (see [6]) (1) If f ∈ PHn(Ω
+
R ;ω), then

Ord(f,+∞iω)= max
{

Ord(f0,+∞iω),Ord(fk,+∞iω)+ 1,

k = 1,2, . . . , n− 1
}
,

where fk is the kth-component of f ; (2) If f ∈ PHn(Ω
−
R ;ω), then

Ord(f,−∞iω)= max
{

Ord(f0,−∞iω), Ord(fk,−∞iω)+ 1,

k = 1,2, . . . , n− 1
}
,

where fk is the kth-component.

For m,� ∈ Z, we introduce the family of periodic Laurent-type polynomials

Π�,m =

⎧
⎪⎨

⎪⎩

{

q�,m(z)=
m∑

k=�
cke

i 2kπz
ω : ck ∈ C, k = �, �+ 1, . . . ,m

}

, m≥ �,

{0}, m < �.

(2.5)
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Obviously Π�,m ⊂ PH1(C;ω). Let

Πn�,m =
{

q0
�,m(z)+

n−1∑

j=1

(

z̄− ω̄

ω
z

)j

q
j

�+1,m−1(z) : qj�,m ∈Π�,m
}

. (2.6)

In particular, Πn�,m =Π�,m if n= 1. Clearly,

lim
z∈Ξ+

0,R, z→∞
tan
πz

ω
= i and lim

z∈Ξ−
0,R, z→∞

tan
πz

ω
= −i. (2.7)

Moreover, for every j ∈ N, one has the Fourier expansions
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tanj
πz

ω
= ij +

+∞∑

k=1

c+j,k · ei 2kπz
ω , z ∈Ω+

0 ,

tanj
πz

ω
= (−i)j +

+∞∑

k=1

c−j,k · e−i 2kπz
ω , z ∈Ω−

0 ,

(2.8)

where c±j,k is the Fourier coefficient.

Let L0 ⊂Ξ0 be a piecewise-smooth closed Jordan curve, oriented counterclock-
wise. The basic open strip Ξ0 is divided into two domains by the curve L0, denoted
as S+

0 and S−
0 , respectively. Without loss of generality, we always assume 0 ∈ S+

0 .

Let Lm = mω + L0 for m ∈ Z, S+ =⋃m∈Z(mω + S+
0 ), S

− = C \ S+ and we as-
sume thatLm has the same orientation asL0 for everym ∈ Z. We setL=⋃m∈ZLm.
Our problem is to find a function Φ ∈ PH1(S

+ ∪ S−;ω) satisfying a Riemann-type
boundary condition and two growth conditions

{
Φ+(t)=G(t)Φ−(t)+ g(t), t ∈ L,
Ord(Φ,+∞iω)≤ �, Ord(Φ,−∞iω)≤m, (2.9)

where the boundary data G,g are Hölder continuous on every curve Lm and
G(t) �= 0, t ∈ L. Moreover, G(t + ω) = G(t) and g(t + ω) = g(t) for t ∈ L. The
problem (2.9) is simply called PR�,m problem.

The index of the problem (2.9) is κ = 1
2π [G(t)]L0 . Introduce the periodic

Cauchy-type integral operator

Cω[g](z)= 1

2ωi

∫

L0

g(τ) cot
π(τ − z)
ω

dτ, z ∈ S+ ∪ S− (2.10)

with g ∈H(L0). As in [9], the canonical function is introduced as follows

X(z)=

⎧
⎪⎨

⎪⎩

eΓ (z), z ∈ S+,

cotκ
πz

ω
· eΓ (z), z ∈ S− (2.11)
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with Γ (z)= 1
2ωi

∫

L0
log[cotκ πt

ω
·G(t)] cot π(t−z)

ω
dt , z ∈ S+ ∪S−, where the branch

of the logarithm is arbitrarily chosen. In addition, the set Π0
k is defined by

Π0
k =
{{
pk(z)= dkzk + · · · + d1z : dj ∈C, j = 1,2, . . . , k

}
, k > 0,

{0}, k ≤ 0.
(2.12)

At some neighborhood of z = ω
2 , the function ei

2kπz
ω possesses the Lagrange–

Bürmann expansion [8]

ei
2kπz
ω = (−1)k +

∞∑

j=1

αj,k cotj
πz

ω
, k ∈ Z, (2.13)

where αj,k is a constant.

Theorem 2.3 (see [6]) For the PR�,m problem (2.9), there are four cases:
(1) If � ≥ 0 and m ≥ 0, the solution of the problem (2.9) can be represented as

Φ(z) = X(z) · {Cω[ gX+ ](z)+ q−�,m(z)+ pκ(tan πz
ω
)} with pκ =∑κ

j=1 dj z
j ∈Π0

κ

and q−�,m =∑m
j=−� cj ei

2jπz
ω ∈Π−�,m, where all the coefficients satisfy the system

of algebraic equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m∑

k=−�
(−1)kck − 1

2ωi

∫

L0

g

X+ (t) tan
πt

ω
dt = 0,

m∑

k=−�
αj,kck − 1

2ωi

∫

L0

g

X+ (t)
sinj−1 πt

ω

cosj+1 πt
ω

dt = 0, j = 1, . . . ,−κ − 1,

(2.14)

where αj,k is determined by (2.13).
(2) If � ≥ 0 and m < 0, the solution of the problem (2.9) can be expressed as

Φ(z) = X(z) · {Cω[ gX+ ](z) + q−�,0(z) + pκ(tan πz
ω
)} with q−�,0(z) =

∑0
j=−� cj ei

2jπz
ω ∈Π−�,0, pκ(z)=∑κ

j=1 dj z
j ∈Π0

κ , where all the coefficients sat-
isfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 +
κ∑

j=1

(−i)j · dj = 1

2ω

∫

L0

g

X+ (t)dt,

ck +
κ∑

j=1

c−j,−k · dj = 1

ω

∫

L0

g

X+ (t)e
−i 2kπt

ω dt, k = −�,−�+ 1, . . . ,−1,

κ∑

j=1

c−j,−k · dj = 1

ω

∫

L0

g

X+ (t)e
−i 2kπt

ω dt, k =m+ 1,m+ 2, . . . ,−�− 1

(2.15)
and (2.14) with m= 0.

(3) If � < 0 and m ≥ 0, the solution of the problem (2.9) can be expressed as

Φ(z)=X(z) · {Cω[ gX+ ](z)+q0,m(z)+pκ(tan πz
ω
)} with q0,m(z)=∑m

j=0 cj e
i

2jπz
ω ∈
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Π0,m, pκ(z)=∑κ
j=1 dj z

j ∈Π0
κ , where all the coefficients cj and dj satisfy (2.14)

with �= 0 and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 +
κ∑

j=1

ij · dj = − 1

2ω

∫

L0

g

X+ (t)dt,

ck +
κ∑

j=1

c+j,k · dj = − 1

ω

∫

L0

g

X+ (t)e
−i 2kπt

ω dt, k = 1,2, . . . ,m,

κ∑

j=1

c+j,k · dj = − 1

ω

∫

L0

g

X+ (t)e
−i 2kπt

ω dt, k =m+ 1,m+ 2, . . . ,−�− 1.

(2.16)
(4) If � < 0 andm< 0, the solution of the problem (2.9) can be written asΦ(z)=

X(z) · {Cω[ gX+ ](z)+ d0 + pκ(tan πz
ω
)} with d0 ∈ C and pκ(z)=∑κ

j=1 dj z
j ∈Π0

κ ,
where dj , j = 0,1, . . . , κ satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0 +
κ∑

j=1

(−i)j · dj = 1

2ω

∫

L0

g

X+ (t)dt,

d0 +
κ∑

j=1

ij · dj = − 1

2ω

∫

L0

g

X+ (t)dt,

κ∑

j=1

c+j,k · dj = − 1

ω

∫

L0

g

X+ (t)e
−i 2kπt

ω dt, k = 1,2, . . . ,−�− 1,

κ∑

j=1

c−j,−k · dj = 1

ω

∫

L0

g

X+ (t)e
−i 2kπt

ω dt, k =m+ 1,m+ 2, . . . ,−1.

(2.17)

3 Riemann BVP for Single-Periodic Polyanalytic Functions

Let L be a piecewise-smooth Jordan curves as in the preceding section. We will
consider the following BVP: find a function V ∈ PHn(S+ ∪ S−;ω) satisfying n
Riemann-type boundary conditions and two growth conditions
{(
∂
j−1
z̄ V

)+
(t)=G(t) · (∂j−1

z̄ V
)−
(t)+ gj (t), t ∈ L, j = 1,2, . . . , n,

Ord(V ,+∞iω)≤ �, Ord(V ,−∞iω)≤m,
(3.1)

where G and gj , j = 1,2, . . . , n are Hölder continuous on every curve Lm and
G(t) �= 0, t ∈ L. In addition, G(t +ω)=G(t), gj (t +ω)= gj (t), t ∈ L. The prob-
lem (3.1) is simply called PPR�,m problem.

Let the symbols be the same as before. By Theorem 1.2, let

V (z)=
n−1∑

j=0

(

z̄− ω̄

ω
z

)j

Vj+1(z), z ∈ S+ ∪ S−, (3.2)
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where Vj+1 is a single-periodic analytic function for all j ’s. By Theorem 2.2,
PPR�,m problem (3.1) is equivalent to n independent BVPs of single-periodic ana-
lytic functions discussed in the preceding section, respectively,

{
V +

1 (t)=G(t)V −
1 (t)+ g̃1(t), t ∈ L,

Ord(V1,+∞iω)≤ �, Ord(V1,−∞iω)≤m, (3.3)

{
V +
j (t)=G(t)V −

j (t)+ g̃j (t), t ∈ L,
Ord(Vj ,+∞iω)≤ �− 1, Ord(Vj ,−∞iω)≤m− 1,

j = 2,3, . . . , n− 1,

(3.4)

where g̃j (t)=∑n
k=j

(−1)k+j
(k−j)!(j−1)! (t̄ − ω̄

ω
t)k−j gk(t) for j = 1,2, . . . , n− 1.

In [6], when � > 0, the problem (3.1) has been discussed for m > 0,= 0,< 0.
Here we will discuss the problem (3.1) in the other cases. As in [6], the single-
periodic poly-Cauchy integral is defined by

W [f0, . . . , fn−1](z) =
n−1∑

j=0

(−1)j

j !
1

2ωi
·
∫

L0

[(

τ − ω

ω
τ

)

−
(

z− ω

ω
z

)]j

× cot
π(τ − z)
ω

fj (τ )dτ, (3.5)

where fj is Hölder-continuous on L for all j’s.

Theorem 3.1 If �= 0 andm> 0, PPR0,m problem (3.1) is solvable and its solution
can be expressed as

V (z)=X(z)
{

W

[
g1

X+ , . . . ,
gn

X+

]

(z)+
n−1∑

j=0

(

z̄− ω̄

ω
z

)j

pjκ

(

tan
πz

ω

)

+Qn0,m(z)
}

(3.6)
with pjκ ∈ Π0

κ and Qn0,m(z) ∈ Πn0,m, where all the coefficients and the free terms
gj (1 ≤ j ≤ n) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m∑

k=0

(−1)kc0
k − 1

2ωi

n∑

k=1

(−1)k+1

(k − 1)!
∫

L0

(

t̄ − ω̄

ω
t

)k−1
gk

X+ (t) tan
πt

ω
dt = 0,

m∑

k=0

αs,kc
0
k − 1

2ωi

n∑

k=1

(−1)k+1

(k − 1)!
∫

L0

(

t̄ − ω̄

ω
t

)k−1
gk

X+ (t)
sins−1 πt

ω

coss+1 πt
ω

dt = 0,

s = 1, . . . ,−κ − 1
(3.7)
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and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑

k=0

(−1)kcj−1
k − 1

2ωi

n∑

k=j

(−1)k+j

(k − j)!(j − 1)!

×
∫

L0

(

t̄ − ω̄

ω
t

)k−j
gk

X+ (t) tan
πt

ω
dt = 0,

m−1∑

k=0

αs,kc
j−1
k − 1

2ωi

n∑

k=j

(−1)k+j

(k − j)!(j − 1)!

×
∫

L0

(

t̄ − ω̄

ω
t

)k−j
gk

X+ (t)
sins−1 πt

ω

coss+1 πt
ω

dt = 0,

s = 1, . . . ,−κ − 1,

(3.8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 +
κ∑

k=1

ik · dk = − 1

2ω

n∑

k=j

(−1)k+j

(k − j)!(j − 1)!
∫

L0

(

t̄ − ω̄

ω
t

)k−j
gk

X+ (t)dt,

cs +
κ∑

k=1

c+k,s · dk = − 1

ω

n∑

k=j

(−1)k+j

(k − j)!(j − 1)!
∫

L0

(

t̄ − ω̄

ω
t

)k−j
gk

X+ (t)e
−i 2sπt

ω dt,

s = 1,2, . . . ,m,

κ∑

k=1

c+k,s · dk = − 1

ω

n∑

k=j

(−1)k+j

(k − j)!(j − 1)!
∫

L0

(

t̄ − ω̄

ω
t

)k−j
gk

X+ (t)e
−i 2sπt

ω dt,

s =m+ 1,m+ 2, . . . ,−�− 1,
(3.9)

for j = 2, . . . , n− 1.

Proof By case (1) in Theorem 2.2, the solution of PR0,m problem (3.3) can be
represented as V1(z) = X(z){Cω[ g̃1

X+ ](z) + q0
0,m(z) + p0

κ(tan πz
ω
)} with q0

0,m =
∑m
k=0 c

0
ke
i 2kπz
ω ∈Π0,m, p0

κ(z)=
∑κ
k=1 d

0
k z
k ∈Π0

κ , where all the coefficients satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

k=0

(−1)kc0
k − 1

2ωi

∫

L0

g̃1

X+ (t) tan
πt

ω
dt = 0,

m∑

k=0

αs,kc
0
k − 1

2ωi

∫

L0

g̃1

X+ (t)
sins−1 πt

ω

coss+1 πt
ω

dt = 0, s = 1, . . . ,−κ − 1.

(3.10)

Similarly, for j = 2,3, . . . , n − 1, from case (3) of Theorem 2.3, the solution
of problem (3.4) is Vj (z) = X(z){Cω[ g̃jX+ ](z) + qj−1

0,m−1(z) + pj−1
κ (tan πz

ω
)} with

q
j−1
0,m−1 =∑m−1

k=0 c
j−1
k ei

2kπz
ω ∈ Π0,m−1, pj−1

κ (z) =∑κ
k=1 d

j−1
k zk ∈ Π0

κ , where all
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the coefficients satisfy
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m−1∑

k=0

(−1)kcj−1
k − 1

2ωi

∫

L0

g̃j

X+ (t) tan
πt

ω
dt = 0,

m−1∑

k=0

αs,kc
j−1
k − 1

2ωi

∫

L0

g̃j

X+ (t)
sins−1 πt

ω

coss+1 πt
ω

dt = 0, s = 1, . . . ,−κ − 1

(3.11)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 +
κ∑

j=1

ij · dj = − 1

2ω

∫

L0

g̃j

X+ (t)dt,

ck +
κ∑

j=1

c+j,k · dj = − 1

ω

∫

L0

g̃j

X+ (t)e
−i 2kπt

ω dt, k = 1,2, . . . ,m,

κ∑

j=1

c+j,k · dj = − 1

ω

∫

L0

g̃j

X+ (t)e
−i 2kπt

ω dt, k =m+ 1,m+ 2, . . . ,−�− 1.

(3.12)
Therefore, the solution of PPR0,m problem (3.1) can be written as

V (z) = X(z)
{[

Cω

[
g̃1

X+

]

(z)+ q0
0,m(z)+ p0

κ

(

tan
πz

ω

)]

+
n−1∑

j=1

(

z̄− ω̄

ω
z

)j[

Cω

[
g̃j+1

X+

]

(z)+ qj1,m−1(z)+ pjκ
(

tan
πz

ω

)]}

,

where all the coefficients in qj0,m, qj1,m−1, pjκ satisfy (3.10), (3.11) and (3.12). Fur-
ther, by simple calculation, the desired conclusion is true. �
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Riemann–Hilbert Problem for Multiply
Connected Domains

Anna Tytuła

Abstract We discuss scalar Riemann–Hilbert problems for circular multiply con-
nected domains considered by Mityushev (Functional Equations in Mathematical
Analysis, pp. 599–632, 2012). The main attention is paid to the R-linear and the
Schwarz problems. Some details concerning applications of the metod of functional
equation, outlined in Functional Equations in Mathematical Analysis, pp. 599–632,
2012 are extended in the present paper.

Keywords Riemann–Hilbert problem · Functional equations

Mathematics Subject Classification (2010) 30E25

1 Riemann–Hilbert Problem

Let D be a multiply connected domain on the complex plane whose boundary ∂D
consists of n simple Jordan curves with positive orientation (∂D leaves D to the
left). The linear Riemann–Hilbert problem for D is stated as follows. For given
Hölder continuous functions λ(t) �= 0 and f (t) on ∂D, find a function φ(z) analytic
in D, continuous in the closure of D with the boundary condition

Re
(
λ(t)φ(t)

)= f (t), t ∈ ∂D. (1.1)

The above condition can be also written in the following form

φ(t)+G(t)φ(t)= g(t), t ∈ ∂D, (1.2)

where |G(t)| = 1. By the assumption that λ(t) �= 0 we can rewrite (1.1) as follows

φ(t)+ λ(t)

λ(t)
φ(t)= 2

f (t)

λ(t)
.
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Any multiply connected domainD can be conformally mapped onto a circular mul-
tiply connected domain. Hence, it is sufficient to solve the problem (1.1) for a cir-
cular domain and using conformal mapping again to transform the solvability con-
ditions and the solution.

The problem (1.1) had been completely solved for multiply connected domains
by Mityushev [1]. In the present paper, we follow [1] and extend explanations in
details concerning the spectral theory.

1.1 R-Linear Problem

Consider mutually disjoint disks

Dk := {z ∈C : |z− ak|< rk
}
, k = 1,2, . . . , n

in the complex plane C. Let D be the complement of the closed disks |z− ak| ≤ rk
to the extended complex plane Ĉ = C∪ {∞} i.e.

D := Ĉ\
n⋃

k=1

(Dk ∪ ∂Dk).

The circles Tk := {t ∈ C : |t − ak| = rk} leaves D to the left.
LetD be a multiply connected domain described above. LetDk (k = 1,2, . . . , n)

be simply connected domains complementingD to the extended complex plane. The
R-linear conjugation problem or simply R-linear problem is stated as follows. For
given Hölder continuous functions a(t) �= 0, b(t) and c(t) on ∂D, find a function
φ(z) analytic in

⋃n
k=1Dk ∪D, continuous in Dk ∪ ∂Dk and in D ∪ ∂D with the

conjugation condition

φ+(t)= a(t)φ−(t)+ b(t)φ−(t)+ c(t), t ∈ ∂D. (1.3)

Here, φ+(t) is the limit value of φ(z) when z ∈ D tends to t ∈ ∂D, φ−(t) is the
limit value of φ(z) when z ∈Dk tends to t ∈ ∂D.

In the case |a(t)| ≡ |b(t)|, the R-linear problem is reduced to the Riemann–
Hilbert problem (1.1). Since |a(t)| ≡ |b(t)| we have b(t)= a(t)eiθ(t), where θ(t) is
a real function on ∂D

φ+(t)= a(t)φ−(t)+ a(t)eiθ(t)φ−(t)+ c(t), t ∈ ∂D.
This can be rewritten in the form

Re
(
a(t)e−iθ(t)/2φ+(t)

)= Im

(
c(t)

a(t)eiθ(t)/2

)

, t ∈ ∂D,

i.e., as the Riemann–Hilbert problem (1.1) with λ(t) = a(t)e−iθ(t)/2 and f (t) =
Im( c(t)

a(t)eiθ(t)/2
).
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Let κk be the index of λ(t) along the curve Tk given by the formula

κk = windTk λ(t) :=
1

2πi

∫

Tk

d lnλ(t).

The value κ =∑n
k=1 κk is called the index of the problem.

Theorem 1.1 Let the coefficients of the problem (1.3) satisfy the inequality
∣
∣b(t)

∣
∣<
∣
∣a(t)

∣
∣. (1.4)

If κ = wind∂D a(t) ≥ 0, the problem (1.3) is solvable and the homogeneous prob-
lem (1.3) (f (t) = 0) has 2κR-linearly independent solutions vanishing at infinity.
If κ = wind∂D a(t) < 0, the problem (1.3) has a unique solution if and only if |2κ|
R-linearly independent conditions for f (t) are fulfilled.

1.2 Riemann–Hilbert Problem with Constant Coefficients

The Riemann–Hilbert problem (1.1) is a partial case of the R-linear problem.

Theorem 1.2 ([1]) The problem

Revkφ(t)= c(t), t ∈ ∂D, (1.5)

is equivalent to the problem

vkφ
+(t)= φ−(t)− φ−(t)+ c(t), t ∈ ∂D, (1.6)

i.e. the problem (1.5) is solvable if and only if (1.6) is solvable. If (1.5) has a solution
φ(z), this function is analytic in D and can be constructed in Dk in such a way
that (1.6) is fulfilled. It can be found from the following simple problem with respect
to the function 2 Imφ−(z) harmonic in Dk

2 Imφ−(t)= Imvkφ
+(t)− c(t), t ∈ ∂D. (1.7)

The problem (1.7) has a unique solution up to an arbitrary additive real constant.

2 Functional Equations

2.1 Reflection with Respect to the Circle Tk

Consider mutually disjoint disks Dk in the complex plane C. Let

z∗(k) =
r2
k

z− ak + ak
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be the reflection with respect to the circle Tk . Note that ifΦ(z) is analytic in the disk
|z− ak|< rk and continuous in its closure then Φ(z∗(k)) is analytic in the disk |z−
ak|> rk and continuous in |z− ak| ≥ rk . Introduce the compositions of successive
reflections with respect to the circles Tk1 ,Tk2 , . . . ,Tkp

z∗(kpkp−1···k1)
:= (z∗(kp−1···k1)

)∗
kp
. (2.1)

In the sequence k1, k2, . . . , kp , no two neighbouring numbers are equal. The umber
p is called the level of the mapping. When p is even, these are Möbius transforma-
tions. When p is odd, these are anti-Möbius transformations, i.e., Möbius transfor-
mations in z. Thus this mapping can be written in the form

γ (z)= ej z+ bj
cj z+ dj ,p ∈ 2Z, γ (z)= ej z+ bj

cj z+ dj , p ∈ 2Z+ 1. (2.2)

Where γ0 := z (identical mapping with the level p = 0), γ1(z) := z∗(n) (n simple re-

flections with level p = 1), γn+1(z) := z∗(12), . . . , γn2(z) := z∗(n−1,n) (n2 −n pairs on
reflections with level p = 2) and so on. The sets of the subscripts j of γj is ordered
in such a way that the level p is increasing. The functions (2.2) generate a Schottky
group K. Thus each element of K is represented in the form of the composition of
reflection (2.1) or in the form of linearly ordered functions (2.2).

2.2 Homogeneous Equation

Let G be a domain on the extended complex plane whose boundary ∂G consist of
simply closed Jordan curves. Introduce the Banach space C(∂G) of functions contin-
uous on the curves of ∂G with the norm ‖f ‖ = max1≤k≤nmax∂G |f (t)|. Consider
the closed subspace CA(G) consisting of all function analytically continued into G.
Introduce for brevity the designation CA = CA(

∑n
k=1 Dk). Let w be a fixed point

from D\{∞}.

Lemma 2.1 ([1]) Let vk = exp(−iμk) with μk ∈ R. Consider the system of func-
tional equations with respect to the function φk(z) analytic in Dk

φk(z)= −vk
∑

m �=k

[
φm
(
z∗(m)
)− φm

(
w∗
(m)

)]
,

|z− ak| ≤ rk, k = 1,2, . . . , n.

(2.3)

This system has only the trivial solution.

Proof We now give the detailed proof of this lemma following [1]. Let φm(z) (m=
1,2, . . . , n) be a solution of (2.3). Then the right-hand part of (2.3) implies that the
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function φk(z) is analytic in |z− ak| ≤ rk (k = 1,2, . . . , n). Introduce the function

ψ(z) := −
n∑

m=1

vm
[
φm
(
z∗
(m)

)− φm
(
w∗
(m)

)]
,

analytic in the closure of D. Then the functions ψ,φk satisfy the R-linear boundary
conditions

vkψ(t)= φk(t)− φk(t)+ φk
(
w∗
(k)

)
, |t − ak| = rk, k = 1, . . . , n, (2.4)

because

vkψ(t) = −vk
n∑

m=1

vm
[
φm
(
t∗(m)
)− φm

(
w∗
(m)

)]

= −vk
n∑

m=1,m �=k
vm
[
φm
(
t∗(m)
)− φm

(
w∗
(m)

)]− vkvkφk(t)+ vkvkφk
(
w∗
(k)

)

= φk(t)− φk(t)+ φk
(
w∗
(k)

)
,

where

t∗k = r2
k

t − ak + ak = r2
k

rkeiθ + ak − ak
+ ak = rkeiθ + ak = t.

Note that if φk(w∗
(k))= ck + idk then

vkψ(t) = Reφk(t)+ Imφk(t)− Reφk(t)+ Imφk(t)+ φk
(
w∗
(k)

)

= 2 Imφk(t)+ φk
(
w∗
(k)

)= 2 Imφk(t)+ ck + idk.
Hence, we can also rewrite the relation in the following form

Revkψ(t)= ck, |t − ak| = rk, k = 1, . . . , n, (2.5)

2 Imφk(t)= Imvkψ(t)+ dk, |t − ak| = rk, k = 1, . . . , n. (2.6)

One may consider equalities (2.5) as a boundary value problem with respect to the
function ψ(z) analytic in D and continuous in its closure, i.e., ψ ∈ CA(D). The
real constants ck have to be determined. The problem (2.5) has only constant solu-
tions [1]. �

2.3 Non-homogeneous Equation

Below the following lemma from [1] is proved in detail concerning the spectral
theory.
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Lemma 2.2 Let h ∈ CA and vk = exp(−iμk) with μk ∈ R. Consider the system of
functional equations

φk(z)= −vk
∑

m �=k

[
φm
(
z∗(m)
)− φm

(
w∗
(m)

)]+ hk(z),

|z− ak| ≤ rk, k = 1,2, . . . , n.

(2.7)

It has a unique solution Φ ∈ CA, where

Φ(z) := φk(z), |z− ak| ≤ rk, k = 1, . . . , n.

This solution can be found by the method of successive approximations. The approx-
imations are converging in CA.

Proof We can rewrite the system (2.7) on Tk in the form of the system of integral
equations valid on |t − ak| = rk (k = 1,2, . . . , n)

φk(t)= −vk
∑

m �=k
vm

1

2πi

∫

T
−
m

φm(τ)

(
1

τ − t∗(m)
− 1

τ −w∗
(m)

)

dτ + hk(t), (2.8)

The orientation on T
−
m leaves Dm to the left. The system (2.8) can be written as an

equation in the space C(
⋃n
k=1 Tk)

Φ =AΦ + h (2.9)

The integral operators from (2.8) are compact in C(Tk) [2], multiplication by vm
and complex conjugation are bounded operators in C. Then A is a compact operator
in C. Since Φ is a solution of (2.9) in C, we have Φ ∈ CA. This follows from the
properties of Cauchy integrals and the condition h ∈ CA. Therefore, (2.9) in CA and
(2.7) in CA are equivalent when h ∈ CA. By Lemma 2.1 the homogeneous equation
Φ =AΦ has only the trivial solution. Then the Fredholm theorems imply that (2.9)
or the system (2.7) has a unique solution.

Let us show the convergence of the method of successive approximations. By
virtue of The Successive Approximation Theorem [2] it is sufficient to prove the
inequality ρ(A) < 1, where ρ(A) is the spectral radius of the operatorA, i.e. ρ(A)=
supx∈σ(A) |x|, where σ(A) is the spectrum of A. Compactness of the operator A in
the Banach space implies that for every g there exist a nontrivial solution equation
Φ −AΦ = g. Hence, every non zero element of the spectrum of A is an eigenvalue
of A. Moreover, the eigenvalues can only accumulate at 0. Hence, there are finitely
many eigenvalues of A and ρ(A)= supx∈σ(A) |x| = maxx∈σ(A) |x|. If we have Φ =
λAΦ for non-zero λ then 1

λ
is an eigenvalues of A.

The inequality ρ(A) < 1 means that each eigenvalue is less than 1. Hence
ρ(A) < 1 is satisfied if for all complex numbers λ such that |λ| ≤ 1 equation

Φ = λAΦ
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has only the trivial solution, because then 1
|λ| > 1, hence λ is not an eigenvalues

of A.
Since Φ(z) := φk(z), |z − ak| ≤ rk , k = 1, . . . , n, equation Φ = λAΦ can be

rewritten in the form

φk(z)= −λvk
∑

m �=k

[
φm
(
z∗(m)
)− φm

(
w∗
(m)

)]
,

|z− ak| ≤ rk, k = 1,2, . . . , n.

(2.10)

Consider the case |λ|< 1. Introduce the function analytic in the closure of D

ψ(z)= −λ
n∑

m=1

vm
[
φ
(
z∗(m)
)− φ(w∗

(m)

)]
.

Then

vkψ(t) = −λvk
n∑

m=1

vm
[
φ
(
t∗(m)
)− φ(w∗

(m)

)]

= φk(t)− λφk
(
t∗(k)
)+ λφk

(
w∗
(k)

)= φk(t)− λφk(t)+ λφk
(
w∗
(k)

)
,

where |t − ak| = rk , k = 1,2, . . . , n. Hence ψ(z) and φk(z) satisfy the R-linear
problem

vkψ(t)= φk(t)− λφk(t)+ γk, |t − ak| = rk, k = 1,2, . . . , n

where γk = λφk(w∗
(k)).

Let ψ0(z)=ψ(z)−ψ(∞), then

vkψ(t)= vk
(
ψ0(t)+ψ(∞)

)= φk(t)− λφk(t)+ γk
and

vkψ0(t)= φk(t)− λφk(t)+ γk − vkψ(∞). (2.11)

Theorem 1.1 implies that the problem (2.11) has the unique solution ψ0(z)≡ 0 and
hence

vkψ0(t)= φk(t)− λφk(t)+ γk − vkψ(∞).
This gives

φk(z)= γk − vkψ(∞)+ λ(γk − vkψ(∞))
|λ|2 − 1

,

hence φk(z)≡ constant. Then (2.10) yields φk(z)≡ 0.
Consider the case |λ| = 1. Then, substituting ωk(z) = φk(z)/

√
λ we reduce the

system (2.10) to the same system with λ = 1. It follows from Lemma 2.1 that
ωk(z)= φk(z)= 0. Hence, ρ(A) < 1.

This inequality proves the lemma. �
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Abstract This paper describes the Schottky–Klein prime function. The classical
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prime function for arbitrary multiply connected circular domains.
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1 Schottky Groups

Consider mutually disjoint disks Dk = {z ∈ C : |z− αk|< rk} in the complex plane
C and the multiply connected domain D = Ĉ \⋃nk=1(Dk ∪ ∂Dk) to the extended
complex plane Ĉ := C∪ {∞}.
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Consider the reflection with respect to the circle |z− αk| = rk

z∗(k) =
r2
k

z− αk + αk.

Introduce the composition of successive reflections with respect to the circles:

z∗(kpkp−1···k1)
:= (z∗(kp−1···k1)

)∗
kp
. (1.1)

These mappings can be written in the form:

γj (z)= ej z+ bj
cj z+ dj , p ∈ 2Z,

γj (z)= ej z+ bj
cj z+ dj , p ∈ 2Z+ 1,

(1.2)

where ejdj − bj cj = 1, j = 0,1,2, . . . and p is called the level of the mapping.
Here, we introduce

γ0(z) := z,
(identical mapping,p = 0)

γ1(z) := z∗(1), γ2(z) := z∗(2), . . . , γn(z) := z∗(n),
(n simple reflections,p = 1)

γn+1(z) := z∗(1,2), γn+2(z) := z∗(1,3), . . . , γn2(z) := z∗(n,n−1),

(
n2 − n double reflections,p = 2

)

γn2+1(z) := z∗(1,2,1), γn2+2(z) := z∗(1,2,2), . . .

and so on. The functions (1.2) generate a Schottky group K. All elements γj of even
level generate a subgroup E . The set of the elements γj of odd K \E level is denoted
by O.

Let H(z) be a rational function.
The following series

θ2(z) :=
∑

γj∈E

H [γj (z)]
(ej z+ dj )2 (1.3)

is called the Poincaré θ2-series associated with the subgroup E .
Now, let us introduce the series:

θ
(1)
2 (z) = H(z)−

n∑

k=1

H
[
z∗(k)
](
z∗(k)
)′ +

n∑

k=1

∑

k1 �=k
H
[
z∗(k1,k)

](
z∗(k1,k)

)′
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−
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

H
[
z∗(k2,k1,k)

](
z∗(k2,k1,k)

)′

+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

H
[
z∗(k3,k2,k1,k)

](
z∗(k3,k2,k1,k)

)′ − · · · (1.4)

θ
(2)
2 (z) = H(z)+

n∑

k=1

H
[
z∗
(k)

](
z∗
(k)

)′ +
n∑

k=1

∑

k1 �=k
H
[
z∗(k1,k)

](
z∗(k1,k)

)′

+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

H
[
z∗(k2,k1,k)

](
z∗(k2,k1,k)

)′

+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

H
[
z∗(k3,k2,k1,k)

](
z∗(k3,k2,k1,k)

)′ + · · · (1.5)

The Poincaré θ2-series can be written in the form:

θ2(z)= 1

2

(
θ
(1)
2 (z)+ θ(2)2 (z)

)
. (1.6)

Let αk be real numbers from the range [0,2π). Introduce the multi-index α =
(α1, α2, . . . , αn) and, following [7], also the series:

θ
(1)
2 (z,α) = H(z)−

n∑

k=1

e2iαkH
[
z∗
(k)

](
z∗
(k)

)′

+
n∑

k=1

∑

k1 �=k
e2i(αk−αk1 )H

[
z∗(k1,k)

](
z∗(k1,k)

)′

−
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

e2i(αk−αk1 +αk2 )H
[
z∗(k2,k1,k)

](
z∗(k2,k1,k)

)′

+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

e2i(αk−αk1+αk2 −αk3 )

×H [z∗(k3,k2,k1,k)

](
z∗(k3,k2,k1,k)

)′ − · · · (1.7)

θ
(2)
2 (z,α) = H(z)+

n∑

k=1

e2iαkH
[
z∗
(k)

](
z∗
(k)

)′

+
n∑

k=1

∑

k1 �=k
e2i(αk−αk1 )H

[
z∗(k1,k)

](
z∗(k1,k)

)′
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+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

e2i(αk−αk1 +αk2 )H
[
z∗(k2,k1,k)

](
z∗(k2,k1,k)

)′

+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

e2i(αk−αk1+αk2 −αk3 )

×H [z∗(k3,k2,k1,k)

](
z∗(k3,k2,k1,k)

)′ + · · · (1.8)

θ2(z,α) = 1

2

(
θ
(1)
2 (z,α)+ θ(2)2 (z,α)

)
. (1.9)

The series (1.8)–(1.10) are called the Poincaré α-series. The Poincaré θ2-series and
the Poincaré α-series are [7] uniformly convergent in every compact subset not con-
taining the limit points of K and poles ofH [γj (z)]. Moreover, the Poincare θ2-series
is an automorphic function of the weight (−2) [4]:

θ2(z)= θ2[γj (z)]
(cj z+ dj )2 . (1.10)

2 The Schottky–Klein Prime Function

Let HA(
⋃n
k=1Dk) be the Banach space of functions analytic in

⋃n
k=1Dk and with

the norm ‖f ‖ = maxk=1,2,...,nmax∂Dk |f (t)|.

Theorem 2.1 ([1, 6]) Given f (z) ∈ HA(
⋃n
k=1Dk), the system of functional equa-

tions:

ψk(z)=
∑

m �=k

(
rm

z− am
)2

ψm
(
z∗(m)
)+ f (z),

|z− ak| ≤ rk, k = 1,2, . . . , n

(2.1)

has a unique solution for any circular multiply connected domain D. This solution
can be found by the method of successive approximations. The approximations con-
verge in HA(

⋃n
k=1Dk).

Let ζ and w be fixed points of (D ∪ ∂D) \ {∞} and introduce [7]:

ω(z)= −
n∑

m=1

[
ϕm
(
z∗(m)
)− ϕm

(
w∗
(m)

)]
. (2.2)

The function ω(z) belongs to HA(
⋃n
k=1Dk) and vanishes at z=w.
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Introduce the functions [7]:

ω0(z, ζ,w)= ln
∞∏

j=1

μj (z, ζ,w), (2.3)

where

μj (z, ζ,w)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ − γj (z)
ζ − γj (w) , if γj ∈ E,

ζ − γj (w)
ζ − γj (z)

, if γj ∈O.
(2.4)

The infinite product converges uniformly in the variable z in every compact subset
of (D ∪ ∂D) \ ({∞}, {ζ }, {w}). The justification of these assertions is based on the
application of Theorem 2.1 to the functional equations:

ϕk(z)= −
∑

m �=k

[
ϕm
(
z∗(m)
)− ϕm(w∗

(m)

]+ ln
z− ζ
w− ζ ,

|z− ak| ≤ rk, k = 1, . . . , n.

(2.5)

An application of the method of successive approximations to (2.5) yields the uni-
formly convergent series:

ϕk(z)= ln
z− ζ
w− ζ

−
∑

k1 �=k
ln
ζ − z∗(k1)

ζ −w∗
(k1)

(1st approximations)

+
∑

k1 �=k

∑

k2 �=k1

ln
ζ − z∗(k2k1)

ζ −w∗
(k2,k1)

(2nd approximations)

−
∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

ln
ζ − z∗(k3,k2,k1)

ζ −w∗
(k3,k2,k1)

(3rd approximations)

+
∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

∑

k4 �=k3

ln
ζ − z∗(k4,k3,k2,k1)

ζ −w∗
(k4,k3,k2,k1)

+ · · · , (4th approximations)

|z− ak| ≤ rk, k = 1, . . . , n. (2.6)

The function (2.2) can be written in the form on the uniformly convergent product:
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ω(z) = ln

(
n∏

k=1

ζw∗
(k)

ζ − z∗(k)

n∏

k=1

∏

k1 �=k

ζ z∗(k1,k)

ζ −w∗
(k1,k)

×
n∏

k=1

∏

k1 �=k

∏

k2 �=k1

ζ −w∗
(k2,k1,k)

ζ − z∗
(k2,k1,k)

×
n∏

k=1

∏

k1 �=k

∏

k2 �=k1

∏

k3 �=k2

ζz∗(k3,k2,k1,k)

ζ −w∗
(k3,k2,k1,k)

· · ·
)

.

Hence and [5] function ω0(z) can be represented in the form (2.4). Now, instead of
applying Theorem 2.1 to (2.6), we apply it to the following functional equations:

ϕk(z)=
∑

m �=k

[
ϕm
(
z∗(m)
)− ϕm

(
w∗
(m)

)]+ ln
z− ζ
w− ζ ,

|z− ak| ≤ rk, k = 1, . . . , n

(2.7)

and introduce the function:

ω1(z, ζ,w)= ln
∞∏

j=1

vj (z, ζ,w), (2.8)

where

vj (z, ζ,w)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ζ − γj (z)
ζ − γj (w) , if γj ∈ E,

ζ − γj (z)
ζ − γj (w)

, if γj ∈O.
(2.9)

Similarly to (1.9), introduce the function:

ω(z, ζ,w)= 1

2

[
ω0(z, ζ,w)+ω1(z, ζ,w)

]= 1

2
ln
∏

j∈E\{γ0}

ζ − γj (z)
ζ − γj (w) (2.10)

Hence, the following product

Ω(z, ζ,w)= ln
∏

j∈E\{γ0}

ζ − γj (z)
ζ − γj (w) (2.11)

is correctly defined for z �= ζ .
We can introduce the function of two variables:

S(z, ζ ) = (ζ − z)Ω(ζ, z, z)Ω(z, ζ, ζ )
= (ζ − z)

∏

j∈E\{γ0}

ζ − γj (z)
ζ − γj (w)

ζ − γj (z)
ζ − γj (w) . (2.12)
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This function is called the Schottky–Klein function presented in the form of a uni-
formly convergent product. The uniform convergence is proved forΩ(ζ, z, z) in the
variable ζ in every compact subset of (D ∪ ∂D) \ ({z}, {∞}) and for Ω(z, ζ, ζ ) in
the variable z in every compact subset of (D ∪ ∂D) \ ({ζ }, {∞}). A representation
of the Schottky–Klein function in the form of an absolutely convergent product was
given by Crowdy [2, 3] under geometrical restrictions on the disks Dk .

Similarly to (1.8)–(1.10) one can introduce the Schottky–Klein α–prime func-
tion:

S(z, ζ,α)= (ζ − z)
∏

j∈E\{γ0}
e2isj (α)

ζ − γj (z)
ζ − γj (w)

ζ − γj (z)
ζ − γj (w), (2.13)

where p is an odd number and sj (α)= αk − αk1 + · · · + αkp−1 − αkp .
The correspondence between j and (kp, kp−1, . . . , k1, k) is established via the

numeration of the elements of E , i.e., via the relation γj (z)= z∗(kpkp−1···k1)
.
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Abstract The aim of this work is to present a new definition of the Green function
of the Dirichlet problem for the Laplace equation prompted by the theory of ordinary
differential equations and investigate correctly solvable boundary value problems
for the Poisson equation in a punctured domain.
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1 Definition of the Green Function of the Dirichlet Problem for
the Laplace Operator

From the work of M.A. Naimark [1], we introduce the definition of the Green func-
tion for ordinary differential operators. Let an operatorL1, generated by the ordinary
differential expression with smooth coefficients on the interval (a, b)

l(y)= p0(x)
dnu

dxn
+ p1(x)

dn−1u

dxn−1
+ · · · + pn(x)u
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and some boundary conditions

Uν(u)= 0, ν = 1,2, . . . , n,

have an inverse L−1
1 the domain of which coincides with the range of values of

the operator L1. L−1
1 is an integral operator with a continuous kernel. This kernel

is called Green function of the operator L1. Let us formulate this definition more
precisely.

Definition 1.1 If a function Γ (x, ξ) satisfies the following conditions

(1) Γ (·, ξ) ∈ Cn([a, ξ)∪ (ξ, b]);
(2) l(Γ )= 0 on intervals (a, ξ) and (ξ, b);
(3) Uν(Γ )= 0, ν = 1,2, . . . , n;
(4) for i = 1,2, . . . , n− 2

lim
δ→+0

[
∂i

∂xi
Γ (ξ + δ, ξ)− ∂i

∂xi
Γ (ξ − δ, ξ)

]

= 0

and

lim
δ→+0

[
∂n−1

∂xn−1
Γ (ξ + δ, ξ)− ∂n−1

∂xn−1
Γ (ξ − δ, ξ)

]

= 1

p0(ξ)
,

then the function Γ (x, ξ) is called Green function of the operator L1.

There can be found the proof of the following Green function’s uniqueness theo-
rem.

Theorem 1.2 If the boundary value problem L1y = 0 has only the trivial solution,
then the operator L1 has a unique Green function.

Let an operator L2 be generated by the Laplacian −� and with the Dirichlet
boundary condition. In the standard textbooks (for instance [2]), in a case of the
Dirichlet problem for the Laplacian, a definition of the Green function is given as
follows.

Definition 1.3 The Green function of the Dirichlet problem for the Laplace op-
erator in the domain Ω ⊂ R

2 is the G(x, y), x ∈ Ω , y ∈ Ω , which satisfies the
properties:

(1) for all y ∈Ω
G(x, y)= 1

2π
ln |x − y| + g(x, y),

where g(x, y) is harmonic in the domain Ω and continuous on Ω respect to x;
(2) for any y ∈Ω

G(x, y)|x∈∂Ω = 0.
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Conditions (1) and (2) imply that G(x, y) is a harmonic function in Ω \ {y} and
continuous in Ω \ {y} with respect to x, vanishes on ∂Ω and approaches to ∞ for
x→ y.

In what follows, we present a new definition of the Green function of the Dirichlet
problem for the Laplace equation prompted by the theory of ordinary differential
equations. In the condition (1) of Definition 1.3 appears the fundamental solution of
the Laplace operator, which is defined by the Dirac delta function. At the same time,
in Definition 1.3 generalized functions are absent. It needs to have a definition of the
Green function of the Dirichlet problem for the Poisson equation without involving
generalized functions.

Consider the differential expression

�u := ∂2u

∂x2
+ ∂2u

∂y2

in Ω0 := Ω \ {M0}, where Ω is a bounded, simple-connected domain with suffi-
ciently smooth boundary ∂Ω in R

2, M0 = (x0, y0) is an inner fixed point of the
domain Ω .

Let us denote

Π0
δ = {(x, y) : −δ ≤ x − x0 ≤ δ, −δ ≤ y − y0 ≤ δ}.

Introduce a functional

α(h) = 1

2
lim
δ→+0

∫ x0+δ

x0−δ

[
∂h(ξ, y0 + δ)

∂η
− ∂h(ξ, y0 − δ)

∂η

]

dξ

+
∫ y0+δ

y0−δ

[
∂h(x0 + δ, η)

∂ξ
− ∂h(x0 − δ, η)

∂ξ

]

dη.

Note, the value of the functional α(·) for continuously differentiable functions h(·)
is equal to zero.

Definition 1.4 A function Γ defined on the set Ω0 is called Green function in the
classical sense of the Dirichlet problem for the Laplacian, if the following conditions
are valid

(1) Γ ∈ C2(Ω0);
(2) �Γ = 0 in the Ω0;
(3) for every (x0, y0) ∈Ω

Γ (x,y, x0, y0)|(x,y)∈∂Ω = 0;
(4) the functionals for Γ are equal to

I1(Γ )≡ lim
δ→+0

δ

∫

∂Π0
δ

∣
∣Γ (x, y, x0, y0)

∣
∣dSx,y = 0,
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I2(Γ )≡ lim
δ→+0

δ

∫

∂Π0
δ

∣
∣
∣
∣
∂Γ (x, y, x0, y0)

∂nx,y

∣
∣
∣
∣dSx,y = 0,

and

α(Γ )= 1.

Note, that the functional α(·) first was introduced in the work [3].
Let a functional space W̃ 2

2 (Ω0) be a subspace of the Sobolev space W 2
2 (Ω0)

and for elements W̃ 2
2 (Ω0) the functionals α(·), I1(·), I2(·) exist, and moreover, the

functionals I1(·) and I2(·) equal to zero.
The following theorem is the main result of this section.

Theorem 1.5 In the space W̃ 2
2 (Ω0) the Green function in the classical sense of the

Dirichlet problem for the Laplace operator exists and is uniquely determined.

We note, that the existence of the Green function in the classical sense was proved
in the work [4].

Denote by ε(x, y, x0, y0) the function

1

4π
ln
(
(x − x0)

2 + (y − y0)
2).

For this function we prove the following lemma.

Lemma 1.6 For the function ε(x, y, x0, y0) the relation

α(ε)= 1 (1.1)

holds.

Proof As

∂ ln((x − x0)
2 + (y − y0)

2)

∂x
= 2(x − x0)

(x − x0)2 + (y − y0)2
,

∂ ln((x − x0)
2 + (y − y0)

2)

∂y
= 2(y − y0)

(x − x0)2 + (y − y0)2

by simple calculations, we have

α(ε) = 1

4π
lim
δ→+0

∫ x0+δ

x0−δ

(
4δ

δ2 + (x0 − t)2
)

dt

+ 1

4π
lim
δ→+0

∫ y0+δ

y0−δ

(
4δ

δ2 + (x0 − t)2
)

dt = 1.

Lemma 1.6 is proved. �
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Proof of Theorem 1.5 At first, we prove the existence of the Green function in the
classical sense of the Dirichlet problem for the Laplace equation. Construct a func-
tion P(x, y, x0, y0) of the form

P(x, y, x0, y0)= ε(x, y, x0, y0)+ g(x, y),

where g(x, y) is a sufficiently smooth function and

(−�x,y)g(x, y)= 0, (x, y) ∈Ω ×Ω.

Also, we choose the function g(x, y) such that the values of the functions
ε(x, y, x0, y0) and −g(x, y) coincide on the boundary ∂Ω . Since g(x, y) is a con-
tinuously differentiable function, then α(g) = 0. Hence, we get α(P ) = 1. The
constructed function P(x, y, x0, y0) has a singularity only at the point (x0, y0), and
the singularity is logarithmic. Then the functionals I1(·) and I2(·) for P exist and are
equal to zero. Therefore, it is established that the function P(x, y, x0, y0) belongs to
the space W̃ 2

2 (Ω0). In addition the function P(x, y, x0, y0) satisfies all requirements
of Definition 1.4. Hence, the existence is proved. �

Now it remains to prove the uniqueness of the Green function in the classical
sense of the Dirichlet problem for the Laplace equation.

Problem 1 In the space W̃ 2
2 (Ω0) consider the Laplace equation

�u(x)= 0, x ∈Ω0,

with the Dirichlet boundary condition on the exterior boundary of the domain Ω0

u|∂Ω = 0

and with a condition on the “inner” boundary

α(u)= 0.

Our aim is to show that Problem 1 has only the trivial solution. Let (x, y) ∈Ω0.
By the Green formulae

∫

Ω\Π0
δ

∫
[
�u(ξ, η)G(x, y, ξ, η)− u(ξ, η)�G(x,y, ξ, η)]dξdη

=
∫

∂Ω

[
∂u(ξ, η)

∂nξ,η
G(x, y, ξ, η)− u(ξ, η)∂G(x, y, ξ, η)

∂nξ,η

]

dS

−
∫

∂Π0
δ

[
∂u(ξ, η)

∂nξ,η
G(x, y, ξ, η)− u(ξ, η)∂G(x, y, ξ, η)

∂nξ,η

]

dS,
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where δ > 0 is chosen such that (x, y) ∈Ω \Π0
δ . From properties of the ε, the taken

formulae can be written as

u(x, y)= −
∫

∂Π0
δ

[
∂u(ξ, η)

∂nξ,η
ε(x, y, ξ, η)− u(ξ, η)∂ε(x, y, ξ, η)

∂nξ,η

]

dS (1.2)

for any (x, y) ∈ Ω \ Π0
δ . Let us show, that the second integral in equality (1.2)

approaches to zero for δ → 0. Extend the function u(x) at (x0, y0) continuously,
i.e. get the function u(x) at the point (x0, y0) equal to the value of the first integral
of the right-hand side of equality (1.2). Hence, we get a harmonic function in Ω ,
which coincides with u(x) in Ω0.

Now, we show, that

lim
δ→0

∫

∂Π0
δ

[
∂u(ξ, η)

∂nξ,η
ε(x, y, ξ, η)− u(ξ, η)∂ε(x, y, ξ, η)

∂nξ,η

]

dS = 0. (1.3)

For this, we prove

lim
δ→0

∫

∂Π0
δ

∂u(ξ, η)

∂nξ,η
ε(x, y, ξ, η)dS = 0,

and the equality

lim
δ→0

∫

∂Π0
δ

u(ξ, η)
∂ε(x, y, ξ, η)

∂nξ,η
dS = 0

follows from the same calculations. Thus

lim
δ→0

∫

∂Π0
δ

∂u(ξ, η)

∂nξ,η
ε(x, y, ξ, η)dS

= lim
δ→0

∫ y0+δ

y0−δ

[
∂u(x0 + δ, η)

∂ξ
ε(x, y, x0 + δ, η)

− ∂u(x0 − δ, η)
∂ξ

ε(x, y, x0 − δ, η)
]

dS

+ lim
δ→0

∫ x0+δ

x0−δ

[
∂u(ξ, y0 + δ)

∂η
ε(x, y, ξ, y0 + δ)

− ∂u(ξ, y0 − δ)
∂η

ε(x, y, ξ, y0 − δ)
]

dS.

By virtue that all derivatives of the function ε(x, y, x0, y0) are bounded functions
for (x, y) ∈Π0

δ1
\Π0

δ by the last two arguments, then we get

lim
δ→0

∫

∂Π0
δ

∂u(ξ, η)

∂nξ,η
ε(x, y, ξ, η)dS
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= lim
δ→0

∫ y0+δ

y0−δ

[
∂u(x0 + δ, η)

∂ξ

(

ε(x, y, x0, y0)

+ δ ∂ε(x, y, x0, y0)

∂ξ
+ (η− y0)

∂ε(x, y, x0, y0)

∂η
+O(δ2)

)

− ∂u(x0 − δ, η)
∂ξ

(

ε(x, y, x0, y0)− δ ∂ε(x, y, x0, y0)

∂ξ

+ (η− y0)
∂ε(x, y, x0, y0)

∂η
+O(δ2)

)]

dS

+ lim
δ→0

∫ x0+δ

x0−δ

[
∂u(ξ, y0 + δ)

∂η

(

ε(x, y, x0, y0)

+ (ξ − x0)
∂ε(x, y, x0, y0)

∂ξ
+ δ ∂ε(x, y, x0, y0)

∂η
+O(δ2)

)

− ∂u(ξ, y0 − δ)
∂η

(

ε(x, y, x0, y0)+ (ξ − x0)
∂ε(x, y, x0, y0)

∂ξ

− δ ∂ε(x, y, x0, y0)

∂η
+O(δ2)

)]

dS.

Since u ∈ W̃ 2
2 (Ω0), the functionals I1(·) and I2(·) for the function u are equal to

zero. Finally, we have

lim
δ→0

∫

∂Π0
δ

∂u(ξ, η)

∂nξ,η
ε(x, y, ξ, η)dS = α(u)ε(x, y, x0, y0)= 0.

Whence limit (1.3) is valid. Thereby, it was established that the solution of Prob-
lem 1, i.e. the function u is a harmonic function in Ω . From the homogeneous
Dirichlet condition the function u is identically equal to zero in the domain Ω .
Hence, uniqueness of the Green function in the classical sense of the Dirichlet prob-
lem for the Laplacian is shown.

The proof of Theorem 1.5 is completed.

Proposition 1.7 In the proof of the main theorem of this section was shown that the
Green function in the classical sense coincides with the standard Green function.

2 Inhomogeneous Boundary Value Problems for the Poisson
Equation in a Punctured Domain

In the first part of this paper it was proved that for a fixed point (x0, y0) ∈ Ω the
function u(x, y) ≡G(x,y, x0, y0) is a solution of the boundary value problem for
the Laplace equation in the punctured domainΩ0 =Ω \{M0}, whereM0 = (x0, y0).
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According to Theorem 1.5 the function u(x, y) at first, belongs to the space W̃ 2
2 (Ω0)

and, secondly satisfies the equation

−�u(x, y)= 0, (x, y) ∈Ω0,

also the Dirichlet boundary condition

u |∂Ω= 0

and the additional condition at the pointM0

α(u)= 1.

The functional class W̃ 2
2 (Ω0) and the functional α(·) were introduced in the first

part of the work. Thus, the function u(x, y) ≡ G(x,y, x0, y0) is a solution for the
boundary value problem for the Laplace equation in the non simply connected do-
mainΩ0. In this section, we investigate correctly solvable boundary value problems
for the Poisson equation in the punctured domain Ω0.

Consider the Poisson equation

−�w(x,y)= f (x, y), (x, y) ∈Ω0 (2.1)

with the Dirichlet boundary condition

w |∂Ω= 0. (2.2)

We search for a solution w from the space W̃ 2
2 (Ω0). From the discussion of the first

section the solution of the problem (2.1)–(2.2) in the functional class W̃ 2
2 (Ω0) is not

unique, since for f ≡ 0 as w we can take the functions u(x, y) ≡ G(x,y, x0, y0)

and w(x,y)≡ 0.
Raises the question: what additional conditions at the pointM0 must be imposed

on the function w(x,y) such that the problem (2.1)–(2.2) for all f ∈ L2(Ω) has a
unique solution.

Theorem 2.1 In the space W̃ 2
2 (Ω0) the Poisson equation (2.1) with Dirichlet

boundary condition (2.2) and with non-local condition at the pointM0

α(w)−
∫

Ω

∫

K(ξ,η)
(−�w(ξ,η))dξdη= 0 (2.3)

has a unique solution, where K ∈ L2(Ω).

Proof Uniqueness of the solution of the problem (2.1)–(2.3) follows from the proof
of Theorem 1.5. Let us consider the function

v(x, y) ≡
∫

Ω

∫

G(x,y, ξ, η)f (ξ, η)dξdη
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+G(x,y, x0, y0)

∫

Ω

∫

K(ξ,η)f (ξ, η)dξdη.

It easy to see, that the introduced function v satisfies (2.1), the boundary condi-
tion (2.2) and the relation (2.3). Thereby, existence of the solution of the prob-
lem (2.1)–(2.3) is established.

Theorem 2.1 is proved. �

Denote by LK an operator, which corresponds to the problem (2.1)–(2.3). In-
deed, we get a class of operators. Every function K from L2(Ω) generates new
operator LK . For example, for a harmonic K in Ω , the condition (2.3) has the form

α(w)+
∫

∂Ω

K(ξ, η)
∂w(ξ, η)

∂nξ,η
dSξ,η = 0,

i.e. a connection between the “inner” and “exterior” data.
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of Reflection for Quarter Ring and Half Hexagon

B. Shupeyeva

Abstract On basis of the reflection principle, the boundary value problems of
Schwarz, Dirichlet and Neumann type are explicitly solved for two irregular do-
mains.
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hexagon
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1 Introduction

The basic boundary value problems for complex partial differential equations
have been considered by many authors for different particular domains e.g. [1–
14, 16, 17]. These problems for the inhomogeneous Cauchy–Riemann equation and
the Poisson equation are solved explicitly in regular and irregular domains. The
latter ones attract much attention since they entail the specific investigation of the
behavior of solutions in the neighborhood of the corner points e.g. half disc and
half ring [5], quarter disc [10], disc sectors [16], lenses and lunes [9]. For construct-
ing the Schwarz kernel and the Green and Neumann functions, which are essential
for solutions, a method described e.g in [7, 9] is used. The method uses reflection
of the domain at all parts of the boundary and it is applicable if the whole com-
plex plane can be covered by continuously repeated reflections. In this paper the
method is shown in application to two irregular domains such as quarter ring and
half hexagon. The boundary of the quarter ring consists of two straight segments and
two circular arcs. Reflections at the segments gives the covering of a ring domain
and continued reflections at the boundary circles of the ring produces a covering of
the punctured complex plane. Similarly, reflection of the half hexagon to the whole
hexagon leads to the whole covered plane. The reflection principle allows to use
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the Cauchy–Pompeiu representation formula to attain the Poisson kernel. It helps
to solve the boundary value problems for the Cauchy–Riemann equation. The har-
monic Green and ensuing Neumann functions obtained by this method form the
Green and Neumann representation formulas. They are needed for solutions of the
boundary value problems for the Poisson equation.

Here the main results for the domains mentioned above are presented in a short
form. The necessary calculations as well as the proofs of the theorems and lemmas
are fully described in [12, 13].

2 Some Results for the Quarter Ring Domain

The Cauchy–Pompeiu representation formula

w(z)= 1

2πi

∫

∂D

w(ζ )
dζ

ζ − z − 1

π

∫

D

wζ (ζ )
dξdη

ζ − z , z ∈D (2.1)

for any function w ∈ C1(D;C)∩C(D;C) in a bounded domainD of C with piece-
wise smooth boundary is complemented with the relation

0 = 1

2πi

∫

∂D

w(ζ )
dζ

ζ − z − 1

π

∫

D

wζ (ζ )
dξdη

ζ − z , z ∈C\D. (2.2)

Let R∗ be the upper right quarter ring domain in the complex plane C

R∗ = {z ∈C : r < |z|< 1, Re z > 0, Im z > 0
}
.

The boundary ∂R∗ is piecewise smooth and contains four corner points r , 1, i,
ir . A point z ∈ R∗ is reflected across the boundary parts. Continuing the reflection
process, the new points

± zr2n, ±zr2n, ± z

r2n
, ± z

r2n
,

± r2n

z
, ± r

2n

z
, ± 1

zr2n
, ± 1

zr2n
,

(2.3)

appear. Substituting them into formulas (2.1), (2.2) lead to the modified Cauchy–
Pompeiu formula.

Theorem 2.1 Any w ∈ C1(R∗;C)∩C(R∗,C) for the domain R∗ ⊂ C can be rep-
resented as

w(z)= 1

2πi

∫

∂R∗
w(ζ )

{
ζ

ζ − z +
∞∑

n=1

r2n
[

ζ

r2nζ − z + z

ζ − r2nz

]}
dζ

ζ
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− 1

π

∫

R∗
wζ (ζ )

{
1

ζ − z +
∞∑

n=1

r2n
[

1

r2nζ − z + z

ζ(ζ − r2nz)

]}

dξdη (2.4)

and

w(z)= 1

πi

∫

∂1R
∗

Rew(ζ )Λ1(ζ, z)dζ − 1

πi

∫

∂2R
∗

Rew(ζ )Λ1(ζ, z)dζ

+ 2

πi

∫

∂3R
∗

Rew(ζ )Λ2(ζ, z)dζ + 2

πi

∫

∂4R
∗

Rew(ζ )Λ2(ζ, z)dζ

+ 2

π

∫

∂1R
∗

Imw(ζ )
dζ

ζ
− 2

π

∫

R∗

{
wζ (ζ )Λ2(ζ, z)−wζ (ζ )Λ2(ζ , z)

}
dξdη,

(2.5)

where for ζ ∈ ∂R∗

Λ1(ζ, z)=
(
ζ 2 + z2

ζ 2 − z2
− ζ

2 + z2

ζ
2 − z2

+ 2
∞∑

n=1

r4n
[

ζ 2

r4nζ 2 − z2
− z2

r4nz2 − ζ 2

+ z2

r4nz2 − ζ 2
− ζ 2

r4nζ
2 − z2

])
1

ζ
, (2.6)

Λ2(ζ, z)=
(

ζ 2

ζ 2 − z2
− ζ 2z2

1 − ζ 2z2
+

∞∑

n=1

r4n
[

ζ 2

r4nζ 2 − z2
− z2

r4nz2 − ζ 2

+ z2ζ 2

r4nz2ζ 2 − 1
− 1

r4n − ζ 2z2

])
1

ζ
(2.7)

and the parts of the boundary are denoted as

∂1R
∗ = {|ζ | = 1, Re ζ ≥ 0, Im ζ ≥ 0

};
∂2R

∗ = {|ζ | = r, Re ζ ≥ 0, Im ζ ≥ 0
};

∂3R
∗ = {ζ = t : r ≤ t ≤ 1},

∂4R
∗ = {ζ = it : r ≤ t ≤ 1}.

To solve the related Schwarz problem, using Theorem 2.1, the boundary behavior
of the boundary integral is studied, see [13]. It is also shown that continuity in the
corner points holds.

Theorem 2.2 The Schwarz problem

wz = f in R∗, f ∈ Lp
(
R∗;C), p > 2, Rew = γ on ∂R∗, (2.8)

γ ∈ C(∂R∗;C), 2

π

∫ π
2

0
Imw

(
eiϕ
)
dϕ = c, c ∈ R (2.9)
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is uniquely solvable by

w(z) = 1

πi

∫

∂1R
∗
γ (ζ )Λ1(ζ, z)dζ − 1

πi

∫

∂2R
∗
γ (ζ )Λ1(ζ, z)dζ

+ 2

πi

∫

∂3R
∗
γ (ζ )Λ2(ζ, z)dζ + 2

πi

∫

∂4R
∗
γ (ζ )Λ2(ζ, z)dζ + ic

− 2

π

∫

R∗

{
f (ζ )Λ2(ζ, z)− f (ζ )Λ2(ζ , z)

}
dξdη

The Pompeiu-type operator [15] on the right-hand side provides a solution
of (2.8) in a weak sense.

The modified Cauchy–Pompeiu formula and a solvability condition provide the
solution of the Dirichlet and, hence, the Neumann problems, [13].

The harmonic Green function for R∗ is obtained on the basis of the Green func-
tion for the ring R [14] and the upper half ring R+ by observing the additional
points appeared within reflection process. Thus, for the quarter ring domain R∗ the
Green function G1(z, ζ ) equals to

log

∣
∣
∣
∣
(ζ

2 − z2)(ζ
2
z2 − 1)

(ζ 2 − z2)(ζ 2z2 − 1)

∞∏

n=1

× (ζ
2 − r4nz2)

(ζ 2 − r4nz2)

(ζ
2
r4n − z2)(ζ

2
z2 − r4n)(ζ

2
z2r4n − 1)

(ζ 2r4n − z2)(ζ 2z2 − r4n)(ζ 2z2r4n − 1)

∣
∣
∣
∣

2

(2.10)

and as it is shown in [12, 13], it satisfies the properties of the harmonic Green func-
tion [2].

Theorem 2.3 [3] Any w ∈ C2(D;C)∩C1(D;C) can be represented as

w(z)= − 1

4π

∫

∂D

w(ζ )∂νζ G1(z, ζ )dsζ − 1

π

∫

D

wζζ (ζ )G1(z, ζ )dξdη, (2.11)

where sζ is the arc length parameter on ∂D with respect to the variable ζ and
G(z, ζ )= 1

2G1(z, ζ ) is the harmonic Green function for D.

The Green representation formula provides a solution to the Dirichlet problem

wzz = f in R∗, w = γ on ∂R∗

for f ∈ L2
(
R∗;C)∩C(R∗;C), γ ∈ C(∂R∗;C).

Solution is given in [12, 13]. From the Green function the harmonic Neumann func-
tion for R∗ is obtained

N1(z, ζ ) = log
|zζ |8
r8

− log
∣
∣
(
ζ

2 − z2)(ζ 2 − z2)(ζ
2
z2 − 1

)(
ζ 2z2 − 1

)∣
∣2
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+
∞∑

n=1

(
log |zζ |16 − log

∣
∣
(
ζ

2 − r4nz2)(ζ 2 − r4nz2)(ζ
2
r4n − z2)

× (ζ 2r4n − z2)(ζ
2
z2 − r4n)(ζ 2z2 − r4n)

× (ζ 2
z2r4n − 1

)(
ζ 2z2r4n − 1

)∣
∣2
)

(2.12)

The Neumann representation formula

Theorem 2.4 Any w ∈ C2(R∗,C)∩C1(R∗,C) can be represented by

w(z) = − 1

4π

∫

∂R∗

[
w(ζ )∂νζ N1(z, ζ )− ∂νζ w(ζ )N1(z, ζ )

]
dsζ

− 1

π

∫

R∗
wζζ (ζ )N1(z, ζ )dξdη,

with N1 = 2N , where N is the harmonic Neumann function for R∗.

provides a solution to the Neumann problem, see [12, 13]

wzz = f in R∗, ∂νw = γ on ∂R∗, 2

π

∫ π
2

0
w
(
reiϕ
)
dϕ = c,

f ∈ L2
(
R∗;C)∩C(R∗;C), γ ∈ C(∂R∗;C), c ∈C

under condition
1

4π

∫

∂R∗
γ (ζ )dsζ = 1

π

∫

R∗
f (ζ )dξdη.

3 Some Results for the Half Hexagon

The half hexagon P+ contains 4 corner points: ±2, ±1 + i√3. A point z ∈ P+ is
reflected through the real axis, the entire set P+ is reflected to the whole hexagon P .
The points z, z are reflected across all the sides of P and the new reflection points
appear: − 1

2 (1 + i√3)z+ 3 + i√3, z± 2i
√

3, − 1
2 (1 − i√3)z− 3 + i√3, − 1

2 (1 +
i
√

3)z− 3 − i√3, − 1
2 (1 − i√3)z+ 3 − i√3.

Adding the main period ω = 3m+ i√3n, m+ n ∈ 2Z, all the reflection points
are described in general. Similarly, by substituting these reflection points into for-
mulas (2.1), (2.2), different representation formulas for H+ are obtained.

Theorem 3.1 Any w ∈ C1(P+;C) ∩C(P+;C) for the half hexagon P+ ⊂ C can
be represented as

w(z)= 1

2πi

∫

∂P+
w(ζ )

dζ

ζ − z − 1

π

∫

P+
wζ (ζ )

dξdη

ζ − z , z ∈ P+, (3.1)
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and for k = 1,2,3

w(z)= 1

2πi

{∫

∂P+
Rew(ζ )2

∑

m+n∈2Z

[
qkmn(ζ, z)− qkmn(ζ,0)

]
dζ

−
∫

∂1P
+

[

Rew(ζ )
2(2ξ − 3)

(2ξ − 3)2 + 3
+ Imw(ζ )

2
√

3

(2ξ − 3)2 + 3

]

dsζ

+
∫

∂2P
+

[

Rew(ζ )
2ξ

ξ2 + 3
+ Imw(ζ )

2
√

3

ξ2 + 3

]

dsζ

−
∫

∂3P
+

[

Rew(ζ )
2(2ξ + 3)

(2ξ + 3)2 + 3
+ Imw(ζ )

2
√

3

(2ξ + 3)2 + 3

]

dsζ

+
∫

∂4P
+

Rew(ζ )
2

ξ
dsζ

}

− 1

π

∫

P+

{

wζ (ζ )

( ∑

m+n∈2Z

[
qkmn(ζ, z)− qkmn(ζ,0)

]+ 1

ζ

)

−wζ (ζ )
( ∑

m+n∈2Z

[
qkmn(ζ , z)− qkmn(ζ ,0)

]+ 1

ζ

)}

dξdη,

ξ = Re ζ, (3.2)

where ∂kP+, k = 1,2,3,4, are the four boundary segments of P+ and

q1
mn(ζ, z)=

3(ζ −ωmn − 2)2

(ζ −ωmn − 2)3 − (z− 2)3
,

q3
mn(ζ, z)=

3(ζ −ωmn + 2)2

(ζ −ωmn + 2)3 − (z+ 2)3
,

q2
mn(ζ, z)=

3(ζ −ωmn + 1 − i√3)

(ζ −ωmn + 1 − i√3)3 − (z+ 1 − i√3)3
.

These formulas are equivalent and used for solving the Schwarz problem.

Theorem 3.2 The Schwarz problem

wz = f in P+, f ∈ Lp
(
P+;C), p > 2,

Rew = γ on ∂P+, γ ∈ C(∂P+;C), (3.3)

γ (ζ )= 0 for ζ ∈ {±2,±1 + i√3},

− 1

πi

∫

∂1P
+

Imw(ζ )

√
3

(2ξ − 3)2 + 3
dsζ + 1

πi

∫

∂2P
+

Imw(ζ )

√
3

ξ2 + 3
dsζ



Boundary Value Problems and Method of Reflection 65

− 1

πi

∫

∂3P
+

Imw(ζ )

√
3

(2ξ + 3)2 + 3
dsζ = c for c ∈R (3.4)

is uniquely solvable by

w(z)= 1

πi

{∫

∂P+
γ (ζ )

∑

m+n∈2Z

2
[
qkmn(ζ, z)− qkmn(ζ,0)

]
dζ

−
∫

∂1P
+
γ (ζ )

2ξ − 3

(2ξ − 3)2 + 3
dsζ +

∫

∂2P
+
γ (ζ )

ξ

ξ2 + 3
dsζ

−
∫

∂3P
+
γ (ζ )

2ξ + 3

(2ξ + 3)2 + 3
dsζ +

∫

∂4P
+
γ (ζ )

1

ξ
dsζ

}

+ ic

− 1

π

∫

P+

{

wζ (ζ )

( ∑

m+n∈2Z

[
qkmn(ζ, z)− qkmn(ζ,0)

]+ 1

ζ

)

−wζ (ζ )
( ∑

m+n∈2Z

[
qmn(ζ , z)− qmn(ζ ,0)

]+ 1

ζ

)}

dξdη

for k = 1,2,3. (3.5)

The proof and full explanation are given in [13].
The method allows to use the reflection points to construct the harmonic Green

function. It turns out, that for the half hexagon it has three forms and used according
to the boundary conditions.

G1(z, ζ )= log

∣
∣
∣
∣

∏

m+n∈2Z

(z−ωmn − 2)3 − (ζ − 2)3

(z−ωmn − 2)3 − (ζ − 2)3

∣
∣
∣
∣

2

for the right-hand side.

G1(z, ζ )= log

∣
∣
∣
∣

∏

m+n∈2Z

(z−ωmn + 2)3 − (ζ + 2)3

(z−ωmn + 2)3 − (ζ + 2)3

∣
∣
∣
∣

2

for the left-hand side.

For the upper boundary

G1(z, ζ )= log
∏

m+n∈2Z

∣
∣
∣
∣
(z−ωmn + 1 − i√3)3 − (ζ + 1 + i√3)3

(z−ωmn + 1 − i√3)3 − (ζ + 1 − √
3)3

∣
∣
∣
∣

2

. (3.6)

Applying the Green representation formula and observing the Poisson kernel, the
related harmonic Dirichlet problem is solved explicitly, see [13].

Theorem 3.3 The Dirichlet problem

wzz = f in P+, w = γ on ∂P+ for f ∈ Lp
(
P+;C),

2<p, γ ∈ C(∂P+;C)
(3.7)
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is uniquely solvable in the spaceW 2,p(P+;C)∩C(P+;C) by

w(z)= − 1

4π

∫

∂P+
γ (ζ )∂νζ G1(z, ζ )dsζ − 1

π

∫

P+
f (ζ )G1(z, ζ )dξdη (3.8)
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Harmonic Dirichlet Problem in a Ring Sector

Ying Wang and Jinyuan Du

Abstract In this paper, we construct a harmonic Green function by reflection
method in a general ring sector with angle θ = π

α
and α ≥ 1

2 , then the related har-
monic Dirichlet problem for the Poisson equation is discussed explicitly.

Keywords Green function · Dirichlet problem

Mathematics Subject Classification (2010) 31A30 · 30E25

1 Introduction

Many kinds of concrete applied problems led to the investigation of boundary
value problems for complex partial differential equations in different domains [1–
6]. In [2], the authors studied harmonic boundary value problems in half disc and
half ring. Also a harmonic Dirichlet problem was investigated in a quarter ring do-
main [3]. In this article, we extend some results to a general domain. Firstly we shall
give a harmonic Green function based on conformal mapping in a ring sector with
angle θ = π

α
, α ≥ 1

2 (when α = 1 or α = 2, it is the cases in [2, 3] respectively), and
then discuss a related Dirichlet problem for the Poisson equation explicitly.

Let Ω = {0 < r < |z| < 1, 0 < arg z < π
α
, α ≥ 1

2 } be a ring sector with angle
θ = π

α
(α ≥ 1

2 ), and its boundary ∂Ω = [r,1] ∪ l1 ∪ [!,ω] ∪ l2 is oriented counter-
clockwise, where r , 1,! = eiθ , ω= reiθ are corner points and the oriented circular
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arc l1, l2 are parameterized by, respectively

l1 : τ �−→ eiτ , τ ∈
[

0,
π

α

]

; l2 : τ �−→ reiτ , τ ∈
[
π

α
,0

]

.

From [2], the harmonic Green function for the upper half ring is

G1(z, ζ )= log

∣
∣
∣
∣
(1 − zζ )(ζ − z)
(ζ − z)(1 − zζ )

∞∏

n=1

(z− r2nζ )(zζ − r2n)(ζ − r2nz)(1 − r2nzζ )

(z− r2nζ )(zζ − r2n)(ζ − r2nz)(1 − r2nzζ )

∣
∣
∣
∣

2

Then the harmonic Green function for Ω can be expressed by

G(z, ζ ) = log

∣
∣
∣
∣
(1 − zαζα)(ζ α − zα)
(ζ α − zα)(1 − zαζα)

∞∏

n=1

(r2nαζ
α − zα)(zαζ α − r2nα)

(r2nαζ α − zα)(zαζ α − r2nα)

×
∞∏

n=1

(ζ
α − r2nαzα)(1 − r2nαzαζ

α
)

(ζ α − r2nαzα)(1 − r2nαzαζ α)

∣
∣
∣
∣

2

. (1.1)

Similarly in [3], the infinite product in (1.1) converges for z, ζ ∈ Ω . By simple
computation, we know the harmonic Green functionG(z, ζ ) also satisfiesG(z, ζ )=
0 for z ∈ ∂Ω .

The outward normal derivatives on the boundary ∂Ω are defined as

∂νz =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z∂z + z∂z, z ∈ l1,
−1

r
(z∂z + z∂z), z ∈ l2,

−i(∂z − ∂z), z ∈ (r,1),
i
(
eiθ ∂z − e−iθ ∂z

)
, z ∈ (!,ω).

(1.2)

2 Harmonic Dirichlet Problem

Define a new function

H(z, ζ )

= 1

ζ α − zα − 1

ζ α − zα + zα

1 − zαζα − zα

1 − zαζα

+
∞∑

n=1

[
r2αn

r2αnζ α − zα − r2αn

r2αnζ α − zα − zα

r2αn − zαζα + zα

r2αn − zαζα
]

−
∞∑

n=1

[
1

r2αnzα − ζ α − 1

r2αnzα − ζ α − r2αnzα

r2αnzαζ α − 1
+ r2αnzα

r2αnzαζ α − 1

]

.
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Then we have the following results.

Lemma 2.1 If γ ∈ C(∂Ω;C), then limz∈Ω,z→1
α

2πi

∫

∂Ω
γ (ζ )H(z, ζ )ζ α−1dζ =

γ (1).

Proof By simple computation,

lim
z∈Ω, z→1

α

2πi

∫

l1

[
γ (ζ )− γ (1)]H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→1

α

2πi

∫

l1

[
γ (ζ )− γ (1)]

×
[

ζ α

ζ α − zα − ζ α

ζ α − zα + zαζα

1 − zαζα − zαζα

1 − zαζα
]

dζ

ζ

= lim
z∈Ω,z→1

{
1

2πi

∫

L1

[
γ
(
ζ

1
α
)− γ (1)]

[
ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

+ 1

2πi

∫

L̃1

[
γ (1)− γ (ζ 1

α
)]
[

ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

}

= lim
z∈Ω,z→1

1

2πi

∫

|ζ |=1
Γ1(ζ,1)

[
ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

= 0,

where L1 = {|τ | = 1, Im τ > 0}, L̃1 = {τ : |τ | = 1, Im τ < 0} are oriented counter-
clockwise and

Γ1(ζ, z)=
⎧
⎨

⎩

γ
(
ζ

1
α
)− γ (z), ζ ∈ L1,

γ (z)− γ (ζ 1
α
)
, ζ ∈ L̃1.

The last equality of limitation is true from the continuity of Γ1(ζ,1) at ζ = 1 and
the property of Poisson operator on the unit circle. Similarly,

lim
z∈Ω,z→1

α

2πi

∫ 1

r

[
γ (ζ )− γ (1)]H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→1

α

2πi

∫ 1

r

[
γ (ζ )− γ (1)]

×
[
ζ α−1

ζ α − zα − ζ α−1

ζ α − zα + zαζα−1

1 − zαζα − zαζα−1

1 − zαζα
]

dζ

= lim
z∈Ω,z→1

1

2πi

∫ r−α

rα
Γ2(ζ,1)

[
1

ζ − zα − 1

ζ − zα
]

dζ = 0
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with the last equality above derives from the property of Poisson kernel and

Γ2(ζ, z)=
⎧
⎨

⎩

γ
(
ζ

1
α
)− γ (z), ζ ∈ (rα,1),

γ (z)− γ (ζ− 1
α
)
, ζ ∈ (1, r−α).

Additionally, H(z, ζ )= 0 for (z, ζ ) ∈ {1} × {(!,ω)∪ l2}, then

lim
z∈Ω,z→1

α

2πi

∫

(!,ω)∪l2

[
γ (ζ )− γ (1)]H(z, ζ )ζ α−1dζ = 0.

From the above discussion, we obtain

lim
z∈Ω,z→1

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→1

α

2πi

∫

∂Ω

{[
γ (ζ )− γ (1)]+ γ (1)}H(z, ζ )ζ α−1dζ

= γ (1)
(

by
α

2πi

∫

∂Ω

H(z, ζ )ζ α−1dζ ≡ 1 when z ∈Ω
)

.

Therefore, the lemma is true. �

Lemma 2.2 With γ (ζ ) ∈ C(∂Ω;C),

lim
z∈Ω, z→!

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (!).

Proof Obviously,

lim
z∈Ω,z→!

α

2πi

∫

l1

[
γ (ζ )− γ (!)]H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→!

α

2πi

∫

l1

[
γ (ζ )− γ (!)]

×
[
ζ α−1

ζ α − zα − ζ α−1

ζ α − zα + zαζα−1

1 − zαζα − zαζα−1

1 − zαζα
]

dζ

= lim
z∈Ω,z→!

1

2πi

∫

|ζ |=1
Γ1(ζ,!)

[
ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

= 0.

By the same way,

lim
z∈Ω,z→!

α

2πi

∫ ω

!

[
γ (ζ )− γ (!)]H(z, ζ )ζ α−1dζ
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= lim
z∈Ω,z→!

1

2πi

∫ −rα

−r−α
Γ3(ζ,!)

[
1

ζ − zα − 1

ζ − zα
]

dζ

= 0,

where

Γ3(ζ, z)=
⎧
⎨

⎩

γ
(
ζ

1
α
)− γ (z), ζ ∈ (−1,−rα),

γ (z)− γ (ζ− 1
α
)
, ζ ∈ (−r−α,−1

)
.

Moreover, for (z, ζ ) ∈ {! } × {(r,1)∪ l2}, H(z, ζ )= 0, then

lim
z∈Ω,z→!

α

2πi

∫

(r,1)∪l2

[
γ (ζ )− γ (!)]H(z, ζ )ζ α−1dζ = 0,

so,

lim
z∈Ω, z→!

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (!).

Now the proof is completed. �

Lemma 2.3 With γ (ζ ) ∈ C(∂Ω;C),

lim
z∈Ω, z→ω

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (ω).

Proof We see

lim
z∈Ω,z→ω

α

2πi

∫

l2

[
γ (ζ )− γ (ω)]H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→ω

α

2πi

∫

l2

[
γ (ζ )− γ (ω)]

×
[

ζ α

ζ α − zα − ζ α

ζ α − zα + r2α

r2α − zαζα − r2α

r2α − zαζα
]

dζ

ζ

= − lim
z∈Ω, z→ω

1

2πi

∫

|ζ |=rα
Γ4(ζ,ω)

[
ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

= 0,

where L2 = {z : |z| = rα, Im z > 0}, L̃2 = {z : |z| = rα, Im z < 0} are oriented
counter-clockwise and

Γ4(ζ, z)=
⎧
⎨

⎩

γ
(
ζ

1
α
)− γ (z), ζ ∈ L2,

γ (z)− γ (ζ 1
α
)
, ζ ∈ L̃2.
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Also, we have

lim
z∈Ω, z→ω

α

2πi

∫ ω

!

[
γ (ζ )− γ (ω)]H(z, ζ )ζ α−1dζ

= lim
z∈Ω, z→ω

1

2πi

∫ −rα

−r−α
Γ3(ζ,ω)

[
1

ζ − zα − 1

ζ − zα
]

dζ

= 0.

In addition, H(z, ζ )= 0 for (z, ζ ) ∈ {ω} × {(r,1)∪ l1}, then

lim
z∈Ω,z→ω

α

2πi

∫

(r,1)∪l1

[
γ (ζ )− γ (ω)]H(z, ζ )ζ α−1dζ = 0.

Similar as in Lemma 2.1, the result is true. �

Lemma 2.4 If γ ∈ C(∂Ω;C), then limz∈Ω,z→r
α

2πi

∫

∂Ω
γ (ζ )H(z, ζ )ζ α−1dζ =

γ (r).

Proof We have

lim
z∈Ω,z→r

α

2πi

∫

l2

[
γ (ζ )− γ (r)]H(z, ζ )ζ α−1dζ

= − lim
z∈Ω,z→r

1

2πi

∫

|ζ |=rα
Γ4(ζ, r)

[
ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

= 0,

and

lim
z∈Ω,z→r

α

2πi

∫ 1

r

[
γ (ζ )− γ (r)]H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→r

1

2πi

∫ 1

r2α
Γ5(ζ, r)

[
1

ζ − zα − 1

ζ − zα
]

dζ

= 0

with

Γ5(ζ, z)=
⎧
⎨

⎩

γ
(
ζ

1
α
)− γ (z), ζ ∈ (rα,1),

γ (z)− γ (r2ζ− 1
α
)
, ζ ∈ (r2α, rα

)
.

Moreover, for (z, ζ ) ∈ {r} × {(!,ω)∪ l1}, H(z, ζ )= 0, then

lim
z∈Ω, z→r

α

2πi

∫

(!,ω)∪l1

[
γ (ζ )− γ (r)]H(z, ζ )ζ α−1dζ = 0.

As the discussion in Lemma 2.1, the lemma is true. �
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Lemma 2.5 If γ ∈ C(∂Ω;C) and t ∈ l1\{!,1}, then

lim
z∈Ω,z→t

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (t).

Proof Let γ ∗(ζ ) = γ ∗(ζ ) (ζ ∈ L̃1) where γ ∗(ζ ) = γ (ζ
1
α ) (ζ ∈ L1). Since

H(z, ζ )= 0 for (z, ζ ) ∈ {l1\{!,1}} × {∂Ω\l1}, then

lim
z∈Ω,z→t

α

2πi

∫

l1

γ (ζ )H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→t

1

2πi

∫

L1

γ
(
ζ

1
α
) 1 − |z|2α
|ζ − zα|2

dζ

ζ
(by simple computation)

= lim
z∈Ω,z→t

1

2πi

∫

|ζ |=1
γ ∗(ζ )

[
ζ

ζ − zα + ζ

ζ − zα − 1

]
dζ

ζ

= γ (t) (by γ ∗(tα
)= γ (t) for t ∈ l1\{!,1}).

This proof is completed. �

Lemma 2.6 If γ ∈ C(∂Ω;C) and t ∈ l2\{ω, r}, then

lim
z∈Ω, z→t

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (t).

Proof By H(z, ζ )= 0 for (z, ζ ) ∈ {l2\{ω, r}} × {∂Ω\l2}, then

lim
z∈Ω,z→t

α

2πi

∫

l2

γ (ζ )H(z, ζ )ζ α−1dζ

= lim
z∈Ω,z→t

α

2πi

∫

l2

γ (ζ )
r2α − |zα|2
|ζ α − zα|2

dζ

ζ

= − lim
z∈Ω, z→t

1

2πi

∫

L2

γ
(
ζ

1
α
) r2α − |zα|2

|ζ − zα|2
dζ

ζ

= γ (t).
This proof is completed. �

Lemma 2.7 If γ (ζ ) ∈ C(∂Ω;C) and t ∈ (r,1), then

lim
z∈Ω,z→t

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (t).

Proof Because H(z, ζ )= 0 for (z, ζ ) ∈ (r,1)× {∂Ω\(r,1)},

lim
z∈Ω,z→t

α

2πi

∫ 1

r

γ (ζ )H(z, ζ )ζ α−1dζ
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= lim
z∈Ω,z→t

α

2πi

∫ 1

r

γ (ζ )
zα − zα

|ζ α − zα|2 ζ
α−1dζ

= lim
z∈Ω,z→t

1

2πi

∫ 1

rα
γ
(
ζ

1
α
) zα − zα
|ζ − zα|2 dζ

= γ (t).
This proof is completed. �

Lemma 2.8 If γ ∈ C(∂Ω;C) and t ∈ (!,ω), then

lim
z∈Ω, z→t

α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ = γ (t).

Proof Since H(z, ζ )= 0 for (z, ζ ) ∈ (!,ω)× {∂Ω\(!,ω)},

lim
z∈Ω, z→t

α

2πi

∫ ω

!

γ (ζ )H(z, ζ )ζ α−1dζ

= lim
z∈Ω, z→t

α

2πi

∫ ω

!

γ (ζ )
zα − zα

|ζ α − zα|2 ζ
α−1dζ

= lim
z∈Ω, z→t

1

2πi

∫ −rα

−1
γ
(
ζ

1
α
) zα − zα
|ζ − zα|2 dζ

= γ (t).
This proof is completed. �

Theorem 2.9 [4, 6] Any w ∈ C2(Ω;C)∩C1(Ω;C) can be represented as

w(z)= − 1

4π

∫

∂Ω

w(ζ )∂νζ G(z, ζ )dsζ − 1

π

∫

Ω

wζζ (ζ )G(z, ζ )dξdη, (2.1)

where sζ is the arc length parameter on ∂Ω with respect to the variable ζ and
G(z, ζ ) is the harmonic Green function for Ω .

Theorem 2.10 The Dirichlet problem

∂z∂z̄w = f in Ω, f ∈ Lp(Ω;C), p > 2, w = γ on ∂Ω, γ ∈ C(∂Ω;C)
is uniquely solvable by

w(z) = α

2πi

∫

∂Ω

γ (ζ )H(z, ζ )ζ α−1dζ

− 1

π

∫

Ω

f (ζ )G(z, ζ )dξdη, z ∈Ω, (2.2)

where G is given in (1.1).
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Proof By (1.2), Theorem 2.9 and simple computation, the expression (2.1) is just
(2.2) explicitly, thus we only need to verify that (2.2) is a solution. From (2.2) and
the property of G(z, ζ ), we easily obtain

∂z∂zw(z)= −∂z
{
α

π

∫

Ω

ζα−1f (ζ )

ζ α − zα dξdη

}

= −∂z
{

1

π

∫

Ω

f (ζ )

ζ − zdξdη

}

= f (z).

In addition, by Lemmas 2.1–2.8 and G(z, ζ ) vanishing for z on the boundary, we
get limz→ζ w(z)= γ (ζ ) for ζ ∈ ∂Ω . This completes the proof. �
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The Parqueting-Reflection Principle

Heinrich Begehr

Abstract For certain plane domains with boundaries composed by arcs from cir-
cles and straight lines the parqueting-reflection principle is used to construct the
Schwarz, Green, and Neumann kernels for solving the Schwarz, Dirichlet, and Neu-
mann boundary value problems for the inhomogeneous Cauchy–Riemann and the
Poisson equation, respectively.

Keywords Cauchy–Riemann equation · Poisson equation · Schwarz · Green ·
Neumann representations · Plane domains · Boundary value problems

Mathematics Subject Classification (2010) 35J08 · 31A10 · 31A25 · 30E25 ·
35J25 · 35C15

1 Admissible Domains

A domain D in the complex plane C is admissible for the parqueting-reflection
principle if its boundary consists of arcs from circles or straight lines, such that the
continued reflections of the domain at the boundary parts lead to a parqueting of C
or of several samples of C.

Circles and straight lines are represented by equations of the form

Γ = {αzz+ az+ az+ β = 0, 0< aa − αβ, a ∈C, α,β ∈ R} (1.1)

Definition For z ∈ C the point zr satisfying

αzrz+ azr + az+ β = 0, (1.2)

is called the reflection point of z at Γ .

Obviously a point from Γ is reflected onto itself while the reflection of a point
not on Γ lies on the opposite side of Γ .
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Simple examples for admissible domains are discs and half planes where just
one reflection provides a parqueting of C, see [3, 7]. Half discs need two reflections,
[4], cones of opening angle π

n
, n ∈ N, 2n reflections [1], disc sectors of opening

angle π
n

need 2n+ 1 reflections [17]. For rectangles and concentric rings [12–15] as
well as for certain triangles [5, 6, 8, 17], ring sectors [12–14, 16, 18], half hexagons
[12–14] countably many reflections have to be used. Reflecting cones with opening
angle m

n
π , m< 2n, m,n ∈ N, [9], 2n times leads to an m-fold covering of C.

In Sect. 3 a hyperbolic plane forming a certain lens [9, 10] is described. Four
reflections serve for a parqueting of the plane C. This is also true for the two com-
plementary lunes of this lens.

2 The Principle

Having achieved a parqueting of C through continued reflections out of an admis-
sible domain D, the Schwarz, Green, and Neumann representation formulas are
attained as follows.

1. For the Schwarz formulas expressing an analytic function in D through the
boundary values of its real part the Cauchy formula is used for a point z ∈ D and
its continued reflection points which are outside of D. Combining these Cauchy
formulas in a proper way avoiding integrals with z involved by complex conjugation
results in the representation formula aimed for. This method even works with the
Cauchy–Pompeiu representation formula related to the inhomogeneous Cauchy–
Riemann equation. The Schwarz kernel attained in this way may in cases countable
many reflections are involved in the parqueting of C turn out as an infinite sum
which has to be shown to converge.

2. In order to find the harmonic Green function the domains attained through the
continued reflection process out of D are divided into two subclasses, the pole and
the zero domains.D itself is determined to be a pole domain. Any direct reflection of
a pole domain becomes a zero domain and any direct reflection of a zero domain is a
pole domain. The point z ∈D is taken to be a simple pole of a meromorphic function
P in the plane C, the consecutive reflections of z ∈D lying in a zero domain is taken
to be a simple zero of P , the ones in a pole domain are simple poles for P . Let the
variable of P be ζ . P also depends on z as a parameter, P(ζ, z). If the reflection

point of a point ẑ on an arc of a circle (1.1), α �= 0 is ẑr given by ẑr = − âz+β
α̂z+a

then instead of ζ − ẑr in the definition of P(ζ, z) the term (α̂z + a)(ζ − ẑr ) =
(α̂z + a)ζ + (âz + β) is used. The reason is that the right-hand side of the last
equation is symmetric in the sense

αzζ + aζ + az+ β = αzζ + aζ + az+ β
for α,β ∈ R, a, z, ζ ∈ C. For the reflection on a straight line, i.e. α = 0 in (1.1),
ζ − ẑr = ζ + a

a
ẑ + β

a
. P(ζ, z) thus is given as an eventually infinite product of

appropriate quotients of linear polynomials in ζ with coefficients depending on the
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original point z ∈ D. Having asserted the absolute convergence of the product for
ζ ∈D then log |P(ζ, z)| is the harmonic Green function for D. It may happen, see
e.g. [15], that the repeated reflection of D does not perform a complete parqueting
of C when single points are left out. In these cases proper additional factors have to
be added to P in order to achieve a proper asymptotic behavior in these points.

3. The Neumann function is found through the same reflection points from z ∈D.
Here all reflected points are used as simple poles of a function meromorphic in
the entire plane C. The linear polynomial factors are just those from the Green
function. In case of an infinite product here additional proper factors have to be
added achieving convergence. These factors should be bounded and bounded away
from zero, see e.g. [11, 15].

3 An Example: A Hyperbolic Half Plane

The lens D = D ∩ Dm(r) is a hyperbolic half plane in the Poincaré disc D =
{|z| < 1}. It is the intersection of D with the disc Dm(r) = {|z−m| < r}, 0< r <
1<m, m2 = 1 + r2. Its boundary ∂D consists of the two arcs ∂1D = ∂D ∩Dm(r)
and = ∂Dm(r)∩D.

A reflections at a circle or a straight line is a combinations of a linear transforma-
tion with complex conjugation. Hence they preserve orthogonality and map circles
and straight lines onto circles and straight lines. Therefore the reflection of D at
∂1D gives the lune Lr =Dm(r) \D while the reflection of D at ∂rD results in the
lune L1 = D \D.

The point z ∈ D is reflected at ∂D to 1
z

∈ Dm(r) \D. Both these points z, 1
z

∈
Dm(r) are reflected at ∂Dm(r) to the points

m+ r2

z−m = zm− 1

z−m , m+ r2

1
z

−m = m− z
1 −mz,

respectively. They are outside the closure Dm(r) of Dm(r), in particular do not
belong to D. The reflection of D onto Lr and the reflection of Dm(r) achieves a
parqueting of C. The same points are attained if D is firstly reflected onto L1 and
then D onto its complement.

1. Applying the Cauchy–Pompeiu formula as mentioned in the preceding session
gives the Schwarz representation formula [10].

Theorem Any function w ∈ C1(D;C)∩C(D;C) is representable as

w(z) = 1

2πi

∫

∂D∩∂D
Rew(ζ )

[
2ζ

ζ − z − 1 + 2ζ(1 −mz)
ζ(1 −mz)+ z−m − 1

]
dζ

ζ

+ 1

2πi

∫

∂D∩∂Dm(r)
Rew(ζ )

[
2(ζ −m)
ζ − z − 1 + 2[ζ −m)(1 −mz)

(ζ −m)(1 −mz)− zr2
− 1

]



80 H. Begehr

× dζ

ζ −m
+ 1

π

∫

∂D∩∂D
Imw(ζ )

dζ

ζ
+ 1

π

∫

∂D∩∂Dm(r)
Imw(ζ )

dζ

ζ −m

− 1

π

∫

D

{

wζ (ζ )

[
1

ζ − z + 1 −mz
z−m+ ζ(1 −mz)

]

+wζ (ζ )
[

z

1 − zζ − z−m
ζ(z−m)+ 1 −mz

]}

dξdη.

Proof The Cauchy–Pompeiu formula

1

2πi

∫

∂D

w(ζ )
dζ

ζ − z − 1

π

∫

D

wζ (ζ )
dξdη

ζ − z =
{
w(z), z ∈D,
0, z /∈D,

applied to z ∈D, 1
z

∈Dm(r) \D, zm−1
z−m ,

m−z
1−mz /∈Dm(r), gives for z ∈D

1

2πi

∫

∂D

w(ζ )
dζ

ζ − z − 1

π

∫

D

wζ (ζ )
dξdη

ζ − z =w(z),
1

2πi

∫

∂D

w(ζ )
zdζ

1 − zζ − 1

π

∫

D

wζ (ζ )
zdξdη

1 − zζ = 0,

1

2πi

∫

∂D

w(ζ )
(1 −mz)dζ

ζ(1 −mz)−m+ z − 1

π

∫

D

wζ (ζ )
(1 −mz)dξdη

ζ(1 −mz)−m+ z = 0,

1

2πi

∫

∂D

w(ζ )
(z−m)dζ

ζ(z−m)+ 1 −mz − 1

π

∫

D

wζ (ζ )
(z−m)dξdη

ζ(z−m)+ 1 −mz = 0.

Taking the complex conjugate of the second and forth formula, where z appears and
adding the resulting four relations, leads to the claimed representation formula. �

This representation formula serves to solve the Schwarz boundary value problem
for the inhomogeneous Cauchy–Riemann equation in the lens D.

2. The function P(ζ, z) mentioned in Sect. 2 for constructing the Green function
for D is a rational function having simple zeroes at the points 1

z
, zm−1
z−m and simple

poles at z, m−z
1−mz , see [9]. Hence the harmonic Green function for D is

G(z, ζ )= log

∣
∣
∣
∣
1 − zζ
ζ − z

m((ζ + z)− (1 + zζ ))
ζ + z−m(1 + zζ )

∣
∣
∣
∣.

For the Poisson kernel on |z| = 1

2z∂zG(z, ζ )= z

ζ − z − zζ

1 − zζ − z−mzζ
ζ + z−m(1 + zζ ) + zζ −mz

1 + zζ −m(ζ + z)
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gives for the part ∂1D of ∂D

∂νzG(z, ζ )= Re

{
ζ + z
ζ − z + ζ − z−m(1 − zζ )

ζ + z−m(1 + zζ )
}

.

Similarly, for |z−m| = r

2(z−m)∂zG(z, ζ )

= z−m
ζ − z − (z−m)ζ

1 − zζ − z−m−m(z−m)ζ
ζ + z−m(1 + zζ ) + (z−m)ζ −m(z−m)

1 + zζ −m(ζ + z)
shows for the boundary curve ∂rD

∂νzG(z, ζ )= Re

{
ζ + z− 2m

ζ − z − 1 + zζ − 2mζ

1 − zζ
}

.

This can be seen by using the relation

1 −mz=mz− |z|2.

With these expressions the Poisson representation formula

w(z)= − 1

2π

∫

∂D

w(ζ )∂νζ G(z, ζ )dsζ + 2

π

∫

D

wζζ (ζ )G(z, ζ )dξdη,

generally valid for bounded domains with piecewise smooth boundary, holds for D
and proper functions w, see e.g. [2]. This representation formula serves to solve the
Dirichlet problem for the Poisson equation in D.

3. The Neumann function for the lens D is

N(z, ζ )= − log
∣
∣(ζ − z)(1 − zζ )(ζ + z−m(1 + zζ ))(1 + zζ −m(ζ + z))∣∣.

On its boundary part ∂1D from ∂D

∂νzN(z, ζ ) = 2 Re
{
z∂zN(z, ζ )

}

= Re

{
z

ζ − z + zζ

1 − zζ − z(1 −mζ)
ζ + z−m(1 + zζ ) − z(ζ −m)

1 + zζ −m(ζ + z)
}

= −2,

for ζ ∈D, while for ζ ∈ ∂1D

∂νzN(z, ζ )=
ζ

ζ − z + ζ

ζ − z − 3.
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Similarly, for the boundary part ∂rD on ∂Dm(r)

∂νzN(z, ζ )

= 2 Re
{
(z−m)∂zN(z, ζ )

}

= Re

{
z−m
ζ − z + (z−m)ζ

1 − zζ − (z−m)(1 −mζ)
ζ + z−m(1 + zζ ) − (z−m)(ζ −m)

1 + zζ −m(ζ + z)
}

= −2,

if ζ ∈D, and if ζ ∈ ∂rD

∂νzN(z, ζ )=
ζ −m
ζ − z + ζ −m

ζ − z − 3.

Remark If one starts with z in the lune L1 or Lr the process leads to the same
formula for the Schwarz, Green, and Neumann kernels. This phenomenon is well
known from the Euclidean half planes or from the inside and outside of discs.

Theorem For f ∈ Lp(D;C), 2<p, γ ∈ C(∂D;C), the Neumann problem

∂z∂zw = f in D, ∂νw = γ on ∂D,

is solvable if and only if

1

2π

∫

∂D

γ (ζ )dsζ = 2

π

∫

D

f (ζ )dξdη

the solution being then

w(z)= c+ 1

2π

∫

∂D

γ (ζ )N(ζ, z)dsζ − 2

π

∫

D

f (ζ )N(ζ, z)dξdη,

with

c= − 1

2π

∫

∂D

w(ζ )∂νζ N(ζ, z)dsζ = 1

π

∫

∂D

w(ζ )dsζ .

The proof follows from the Neumann representation formula [2]

w(z) = − 1

2π

∫

∂D

w(ζ )∂νζ N(ζ, z)dsζ + 1

2π

∫

∂D

∂νζ w(ζ )N(ζ, z)dsζ

− 2

π

∫

D

∂ζ ∂ζw(ζ )N(ζ, z)dξdη.

Let w(z) be the function defined by the formula in the theorem. On ∂1D then

∂νw(z) = 1

2π

∫

∂1D

γ (ζ )

[
ζ

ζ − z + ζ

ζ − z − 1

]

dsζ
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− 1

π

∫

∂D

γ (ζ )dsζ + 4

π

∫

D

f (ζ )dξdη

and on ∂rD

∂νw(z) = 1

2π

∫

∂rD

γ (ζ )

[
ζ −m
ζ − z + ζ −m

ζ − z − 1

]

dsζ

− 1

π

∫

∂D

γ (ζ )dsζ + 4

π

∫

D

f (ζ )dξdη.

From the properties of the Poisson kernels the boundary behavior is seen when
observing the solvability condition. For proving

1

π

∫

∂D

w(ζ )dsζ = c

the property
∫

∂D

N(z, ζ )dsζ = 0

would be needed.
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On Existence of the Resolvent and Discreteness
of the Spectrum of a Class of Differential
Operators of Hyperbolic Type

M.B. Muratbekov and M.M. Muratbekov

Abstract The existence and compactness of the resolvent and discreteness of the
spectrum of some hyperbolic differential operators are studied in this paper. One
of the main results is the criterion of discreteness of the spectrum of a hyperbolic
singular differential operator.

Keywords Spectrum · Resolvent · Singular differential operator · Hyperbolic type

Mathematics Subject Classification (2010) Primary 47A10 · Secondary 35L81

1 Problem Statement and the Main Results

Singular differential operators, for example operators defined in an unbounded do-
main, in general may have not only a discrete but also a continuous spectrum. There-
fore in general an arbitrary function cannot be decomposed into a series of eigen
functions. For this reason the most important problem in the study of the spectrum in
dependence of the behavior of the coefficients in the case of an unbounded domain
is the discreteness of the spectrum.

Spectral characteristics of singular elliptic differential operators are well studied
and the typical difficulties encountered in connection with bad behaving coefficients
clarified. An extensive literature is devoted to their study and we mention [1–3].

Review of the literature shows that such questions as: (1) the existence and
compactness of the resolvent, (2) the discreteness of the spectrum of hyper-
bolic differential operators defined in an unbounded domain are not well stud-
ied.
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We consider in the space L2(Ω) the differential operator of hyperbolic type

A0u= uxx − uyy + a(y)ux + c(y)u
with the domain D(A0) of infinitely differentiable functions satisfying the condi-
tions u(−π;y) = u(π;y), ux(−π;y) = ux(π;y) and compactly supported with
respect to the variable y, where

Ω = {(x, y) : −π < x < π, −∞< y <∞}.
Further, we assume that the coefficients a(y), c(y) satisfy the conditions:

(i) |a(y)| ≥ δ0 > 0, c(y)≥ δ > 0 are continuous functions in R = (−∞;∞).
It is easy to verify that the operator A0 admits a closure in the space L2(Ω),

which is denoted by A.
We note that the operator A corresponds to the problem of propagation of the

boundary regime (see [4], p. 106), i.e. the problem without initial conditions. Here
the term aux describes the friction force. The question of the existence of solutions
of the problem without initial conditions, in general, depends on the behavior of the
coefficients a and c. For example, when a = 0, a solution does not always exist.

The main results of this paper are the following theorems.

Theorem 1.1 Let the condition (i) be fulfilled. Then the operator A+ λI is contin-
uously invertible for λ≥ 0.

Theorem 1.2 Let the condition (i) be fulfilled. Then the resolvent of the operator
A is compact if and only if for any w > 0

lim|y|→∞

∫ y+w

y

c(t)dt = ∞. (∗)

The last theorem shows that the condition (∗) is a necessary and sufficient con-
dition for the discreetness of the spectrum of A.

The question of the existence of the resolvent and discreet spectrum in an un-
bounded domain with growing and oscillating coefficients was previously studied
only in the case of elliptic and pseudodifferential operators [1–3].

Assume that the coefficients of the operator A, in addition to conditions (i), sat-
isfy the condition

(ii)

μ0 = sup
|y−t |≤1

c(y)

c(t)
<∞, μ= sup

|y−t |≤1

a(y)

a(t)
<∞.

Then, Theorem 1.2 easily implies the following theorem.

Theorem 1.3 Let the conditions (i)–(ii) be fulfilled. Then the resolvent of the oper-
ator A is compact if and only if lim|y|→∞ c(y)= ∞.
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2 Auxiliary Lemmas and Inequalities

The following statements below are given without proofs, because computations
and arguments that have been used in [5] are similar for their proofs.

Lemma 2.1 Let the condition (i) be fulfilled and λ≥ 0. Then the inequality

∥
∥(A+ λI)u∥∥2 ≥ c‖u‖2, (2.1)

holds for all u ∈D(A), where c= c(δ, δ0) and ‖ · ‖2 is the norm in L2(Ω).

Let�j = (j−1, j+1) (j ∈Z), and γ be a constant such that γ a(y) > 0. Denote
by ln,j,γ + λI the closure in L2(�j ) of the differential expression (ln,j,γ + λI)u=
−u′′ + [−n2 + in(a(y)+ γ )+ c(y)+ λ]u, (n= 0,±1,±2, . . .) defined on the set
C2

0(�j ) of twice continuously differentiable functions u on �̄j which satisfy the
conditions u(j − 1)= u(j + 1)= 0.

Lemma 2.2 Let the condition (i) be fulfilled and λ≥ 0. Then the following inequal-
ities

(a)
∥
∥(ln,γ,j + λI)u∥∥

L2(�j )

≥ c1
(∥
∥u′∥∥

2 + ∥∥√c(y)+ λu∥∥
L2(�j )

+ ∥∥|n|
√(∣
∣a(y)

∣
∣+ |γ |)u∥∥

L2(�j )

)
,

n �= 0, u ∈D(ln,γ,j + λI);
(b)

∥
∥(ln,j,γ + λI)−1

∥
∥
L2(�j )→L2(�j )

≤ c0

(δ + λ)1/2 ;
(c)

∥
∥
∥
∥
d

dy
(ln,j,γ + λI)−1

∥
∥
∥
∥
L2(�j )→L2(�j )

≤ c2

(δ + λ)1/4
hold, where c0 = c0(δ), c1 = c1(δ), c2 = c2(δ).

Lemma 2.3 The operator ln,j,γ + λI is invertible for λ≥ 0 and the inverse oper-
ator (ln,j,γ + λI)−1 is defined in all L2(�j ), j ∈ Z, where Z is the set of entire
numbers.

By ln,γ + λI (n = 0,±1,±2, . . .) we denote the closure in L2(R) (R =
(−∞,∞)) of the differential expression (ln,γ + λI)u= −u′′ + (−n2 + in(a(y)+
γ )+c(y)+λ)u, defined on the set C∞

0 (R) of infinitely differentiable functions with
compact support.
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Lemma 2.4 Let λ ≥ 0 and condition (i) hold. Then for any u ∈D(ln,γ + λI) the
following estimates

∥
∥(l0,γ + λI)u∥∥

L2(R)
≥ √

δ + λ‖u‖L2(R),

∥
∥(ln,γ + λI)u∥∥

L2(R)
≥ |n|(δ0 + |γ |)‖u‖L2(R)

hold for n �= 0.

Lemma 2.4 is proved by transforming the expression 〈(ln,γ +λI)u,−inu〉, where
u ∈ C∞

0 (R).
Let {ϕj (y)}+∞

j=−∞ ⊂ C∞
0 (R) be a sequence of functions satisfying the conditions

ϕj ≥ 0, suppϕj ⊆�j(j ∈ Z),∑+∞
j=−∞ ϕ2

j (y)= 1. Assume

cKλ,γ f =
+∞∑

j=−∞
ϕj (ln,j,γ + λI)−1ϕjf,

Bλ,γ f =
+∞∑

j=−∞
ϕ′′
j (ln,j,γ + λI)−1ϕjf + 2

+∞∑

j=−∞
ϕ′
j

d

dy
(ln,j,γ + λI)−1ϕjf,

f ∈ C∞
0 (R), λ≥ 0.

Obviously,

(ln,γ + λI)Kλ,γ f = f −Bλ,γ f. (2.2)

Lemma 2.5 Let the condition (i) be fulfilled. Then there exists a number λ0 > 0
such that ‖Bλ,γ ‖L2(R)→L2(R) < 1 for all λ≥ λ0.

Lemma 2.6 Let the condition (i) be satisfied. Then the operator ln,γ + λI is con-
tinuously invertible for λ ≥ λ0 > 0, and for the inverse operator (ln,γ + λI)−1 the
following equality

(ln,γ + λI)−1 =Kλ,γ (I −Bλ,γ )−1 (2.3)

holds.

Lemma 2.6 follows from (2.2) and from Lemmas 2.5 and 2.4.

Lemma 2.7 Let the condition (i) be satisfied and ρ(y) be a continuous function
defined on R. Then for α = 0,1 and λ≥ λ0 the following estimate

∥
∥ρ(y)|n|α(ln,γ + λI)−1

∥
∥2
L2(R)→L2(R)

≤ c4(λ) sup
j∈Z
∥
∥ρ(y)|n|αϕj (ln,j,γ + λI)−1

∥
∥2
L2(�j )→L2(�j )

(2.4)

holds.
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The result below follows from Lemma 2.2 and the estimate (2.4).

Lemma 2.8 Let the condition (i) be satisfied and λ≥ λ0. Then

(a) ‖√c(y)+ λ(ln,γ + λI)−1‖L2(R)→L2(R) <∞ (n= 0,±1,±2, . . .);
(b) ‖in(ln,γ + λI)−1‖L2(R)→L2(R) <∞ (n �= 0);
(c) ‖ d

dy
(ln,γ + λI)−1‖L2(R)→L2(R) <∞ (n= 0,±1,±2, . . .).

Consider the equation

(ln + λI)u≡ −u′′ + (−n2 + ina(y)+ c(y)+ λ)u= f, (2.5)

where f ∈ L2(R).
The function u ∈ L2(R) is called a solution of (2.5) if there exists a sequence

{un}∞n=1 ⊂ C∞
0 (R) such that ‖un − u‖L2(R) → 0, ‖(ln + λI)un − f ‖L2(R) → 0 as

n→ ∞.

Lemma 2.9 The operator ln + λI (n= 0,±1,±2, . . .) is boundedly invertible for
λ≥ λ0, and for the inverse operator (ln + λI)−1the equality

(ln + λI)−1f = (ln,γ + λI)−1(I −Aλ,γ )−1f, f ∈ L2(R) (2.6)

holds, where ‖Aλ,γ ‖L2(R)→L2(R) < 1.

Lemma 2.8 and the equality (2.6) imply the following lemma.

Lemma 2.10 If λ≥ λ0, then the estimates

(a) ‖√c(y)+ λ(ln + λI)−1‖L2(R)→L2(R) <∞ (n= 0,±1,±2, . . .);
(b) ‖in(ln + λI)−1‖L2(R)→L2(R) <∞(n �= 0);
(c) ‖ d

dy
(ln + λI)−1‖L2(R)→L2(R) <∞ (n= 0,±1,±2, . . .) hold.

We will use also the following well-known lemma [6, p. 350].

Lemma 2.11 Let the operator A + λ0I (λ0 > 0) be boundedly invertible in
L2(R) and the estimate ‖(A + λI)u‖L2(R) ≥ c‖u‖L2(R), u ∈ D(A + λI) hold for
λ ∈ (0, λ0]. Then the operator A : L2(R)→ L2(R) is boundedly invertible also.

Lemma 2.12 Let the condition (i) be fulfilled and λ > 0. Then the inequality

∥
∥(ln + λI)−1

∥
∥
L2(R)→L2(R)

≤ 1

|n| · δ0 (2.7)

holds for all n (n= 0,±1,±2, . . .).

Lemma 2.13 Let the condition (i) be fulfilled and λ > 0. Then the operator (ln +
λI)−1 is completely continuous for all n (n= 0,±1,±2, . . .) if and only if for any
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ω > 0

lim|y|→∞

∫ y+ω

y

c(t)dt = ∞. (∗)

3 Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1 From Lemma 2.9 we obtain that

uk(x, y)=
k∑

n=−k
(ln + λI)−1fn(y)e

inx (3.1)

is a solution of the problem

(A+ λI)uk(x, y)= fk(x, y),
uk(−π,y)= uk(π, y), ukx(−π,y)= ukx(π, y),

where fk(x, y)
L2−→ f (x, y), fk(x, y) =∑k

n=−k fn(y)einx , (ln + λI)−1 is the in-
verse operator to the operator (ln + λI).

By virtue of (2.1) we have
∥
∥uk(x, y)

∥
∥

2 ≤ c∥∥fk(x, y)
∥
∥

2, (3.2)

where c > 0 is a constant independent of k.

Since fk
L2−→ f , then from (3.2) we find

‖uk − um‖2 ≤ c‖fk − fm‖2 → 0 as k,m→ ∞.
Hence, by virtue of the completeness of the space L2(Ω), it follows that there

exists a unique function u ∈ L2(Ω) such that

uk → u as k→ ∞. (3.3)

(3.3) implies that for any f ∈ L2(Ω)

u(x, y)= (A+ λI)−1f (x, y)=
∞∑

n=−∞
(ln + λI)−1fn(y)e

inx (3.4)

is a strong solution of the problem

(A+ λI)u= f (3.5)

u(−π,y)= u(π,y), ux(−π,y)= ux(π, y) (3.6)

Let us recall the definition of a strong solution.
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The function u ∈ L2(Ω) is called a strong solution of (3.5)–(3.6), if there exists a
sequence {uk}∞k=1 ⊂D(L0) such that ‖uk − u‖2 → 0 and ‖(A+ λI)uk − f ‖2 → 0
as k→ ∞.

Now, it is easy to see that (3.4) is the inverse operator to the closed operator
A+ λI . Lemma 2.1 implies that the last statement holds for all λ≥ 0. Theorem 1.1
is proved. �

Proof of Theorem 1.2 Using Lemma 2.12 it is easy to see that

lim|n|→∞
∥
∥(ln + λI)−1

∥
∥

2→2 = 0.

Therefore, and using the ε-net, from (3.4) we have that the operator (A+ λI)−1

is compact if and only if (ln + λI)−1 is continuous. Now, the proof of the theorem
follows from Lemma 2.13. �

Proof of Theorem 1.3 Without loss of generality we assume 0<w ≤ 1, then by the
condition (ii) we have

μ−1
0 ·w · c(y)≤

∫ y+w

y

c(t)dt ≤ μ0 ·w · c(y).

The proof of Theorem 1.3 follows from this inequality and Theorem 1.2. �

References

1. A.M. Molchanov, On conditions of the spectrum discreteness of self-adjoint second-order dif-
ferential equations. Tr. Mosk. Mat. Obŝ. 2, 169–P. 200 (1953) (in Russian)
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On the Singularities of the Emden–Fowler Type
Equations

Radosław Antoni Kycia and Galina Filipuk

Abstract We study the Emden–Fowler type equations and their analytic solutions
at the origin. We explain the structure of movable singularities of these solutions
and visualize them numerically.

Keywords Lane–Emden equation · Emden–Fowler equation · Movable
singularities · Nonlinear ODE

Mathematics Subject Classification (2010) Primary 34A34 · Secondary 34A25

1 Introduction

The Emden–Fowler equation

d2u(x)

dx2
+ α

x

du(x)

dx
+ δxnu(x)p = 0 (1.1)

has many application in physics [1, 2, 5, 8]. Throughout this paper we assume that
α > 0 and δ �= 0 are real parameters, n is an integer such that n >−2 and p > 1 is a
natural number. Note that when p = 1, (1.1) is linear and can be integrated using the
Bessel functions. When n = 0 and δ = 1 (1.1) is called the Lane–Emden equation
and it also has many important applications [2].

Equation (1.1) has two fixed singularities at x = 0 and x = ∞. In practice it is
important to know a solution for the prescribed initial data at x = 0 with high pre-
cision. As it will be shown below (see also [8] for the Lane–Emden equation), there
exists a power series solution at the origin which is convergent in a finite circle cen-
tred at the origin in the complex plane because of the existence of singularities on
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the boundary of this circle. These singularities move when we change the initial data
and/or the parameters of the equation. Such singularities are called movable singu-
larities (for the reference on singularities of ordinary differential equations (ODEs)
see [7, 9]). The generalized isothermal sphere equation (including the isothermal
sphere equation for n= 1)

d2u(x)

dx2
+ α

x

du(x)

dx
− δxne−u(x) = 0 (1.2)

possesses a similar structure of singularities. This equation can be regarded as a
limit of (1.1) as p tends to infinity.

The paper is organized as follows. In the next section we shall obtain an analytic
solution around x = 0 of (1.1) and discuss the relations and the symmetries of (1.1)
and (1.2). Then we shall prove, by generalizing the results from [8] for the Lane–
Emden equation, that movable singularities of the analytic solution of (1.1) exist in
the finite complex plane. We shall also visualize them using numerical methods.

2 Analytic Solutions of the Generalized Emden–Fowler Equation

It is straightforward to show that (1.1) has a local analytic solution near x = 0 of the
form

u(x)=
∞∑

k=0

akx
k, (2.1)

with

a0 = c, a1 = · · · = an+1 = 0,

ak+n+2 = − δck

(k + n+ 2)(k + n+ 1 + α), k ≥ 0,

where the coefficients {ck}∞k=0 are derived from {ak}∞k=0 using the known Cauchy
product formula [6]

( ∞∑

l=0

al(x − x0)
l

)p

=
∞∑

l=0

cl(x − x0)
l,

c0 = ap0 , cm = 1

ma0

m∑

l=1

(lp−m+ l)alcm−l , m > 0. (2.2)

Here c is an arbitrary parameter corresponding to the initial data u(0)= c.
To get the recurrence relation (2.1) for the coefficients in the series we substi-

tute it into (1.1) and use (2.2). The proof of the fact that this formal solution has a
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nonzero radius of convergence relies on Proposition 1 from [3] for the system

{
xu′ = xv
xv′ = −αv − xn+1δup,

(2.3)

which is equivalent to (1.1). The assumption α > 0 is essential in the application of
the Proposition 1 of [3].

We remark that we can study analytic solutions at x = ∞ of (1.1) and (1.2) using
the symmetry

x→ 1/x, n→ −(n+ 4), α→ 2 − α, δ→ δ. (2.4)

One can note that n= −2, α = 1 is a fixed point of this transformation. Moreover,
for n = −2 there is no non-trivial series solution. For n < −2 by duality (2.4) we
get an asymptotic series in powers of 1/x. In this sense one can imagine that by
changing n the singularities x = 0 and x = ∞ swap as we cross the value n= −2.

A similar study of analytic solutions can be performed for (1.2). This generalizes
results from [8] (see Eqs. (7) and (8) therein).

Equation (1.1) is invariant under the following change of variables:

u(x)= ak2u1(x1), x1 = ak1x, k2(p− 1)= k1(n+ 2), (2.5)

where a is arbitrary. In particular, we can scale the initial data from u(0) = c to
u(0)= 1.

The parameter δ is not essential in (1.1) and (1.2). For instance, by changing the
variable u(x)→ δ−1/(p−1)u(x) in (1.1), we get the same equation with δ = 1.

By using a linear transformation u(x)→Au(x)+pB , where A,B are constants
and then using rescaling (2.5) we can bring (1.1) to the form

d2u(x)

dx2
+ α

x

du(x)

dx
− xn

(

1 − u(x)

p

)p

= 0, (2.6)

which leads to (1.2) in the limit p→ ∞ (see [8]). Similarly, by shifting u→ u− c
in (1.2) and by using (2.5), we can change the arbitrary initial data u(0)= c to the
normalized ones u(0)= 0.

In the next section we shall study the radius of convergence of the power series,
or, alternatively, study the existence of movable singularities of the solutions.

3 Singularities in the Complex Plane

In this section we shall prove the existence of movable singularities of the solu-
tion (2.1) of (1.1). This result can be regarded as a generalization of the results from
[8] for the Lane–Emden equation.
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Theorem 3.1 A nonzero analytic solution (2.1) of (1.1) has n+ 2 singularities lo-
cated symmetrically with respect to the origin on the rays connecting the origin with
all (n+ 2) roots of −1 in the complex plane.

Proof Using (2.5) we can assume that u(0) = 1. Moreover, we can also assume
that δ = 1. The proof is as follows. First, using the change of variables z = xn+2,
we are interested in a singularity for z < 0. Next, by introducing new variables we
study a vector field of an autonomous system of equations and show that it gives a
singularity for a finite negative z̄, which is equivalent to the fact that the singularities
in the x variable are symmetric with respect to the origin and are located on the rays
connecting the origin with all (n+2) roots of −1 in the complex plane. The strategy
of the proof is similar to [8] for the Lane–Emden equation.

Introducing a new variable z= xn+2 in (1.1) gives

(n+ 2)2zu′′ + (n+ 2)(n+ 1 + α)u′ + up = 0, ′ = d/dz. (3.1)

Setting

k(z)= −up
(n+ 2)u′ , l(z)= −(n+ 2)zu′

u
, (3.2)

(3.1) can be written as follows

dl

dk
= l(l + k+ 1 − α)
k(n+ 1 + α − k − pl) . (3.3)

Using (3.2), the series solution (2.1) around z = 0 with u(0) = 1 corresponds
to the series expansions for k(z) and l(z) with k(0) = n + 1 + α, l(0) = 0. The
existence of a singularity (u→ ∞) for z < 0 means that u′′(z) > 0, i.e., the function
is convex. From the equation

u′′ = l(n+ 1 + α − k)u
(n+ 2)2z2

(3.4)

it occurs when l < 0 and k > n+ 1 + α (u > 0 and u′ < 0).
To prove that the singularity is located at finite z < 0 we employ the fact that the

flow of (3.3) keeps the solution which starts initially from the analytic solution (2.1)
below the critical line n+ 1 + α− k− pl = 0. See Fig. 1 for details. It follows that

k < n+ 1 + α − pl. (3.5)

Since l < 0, we obtain

k

−l <
n+ 1 + α

−l + p. (3.6)

As l → −∞ one can find such z∗ < 0 that for z < z∗ we have −l > n + 1 + α.
For such a z∗ the variable k is also finite. Moreover, from kl = up−1z and klp =
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Fig. 1 The vector field (3.3) for α = 4, δ = 1, p = 5 and n = 2. The lines l + k + 1 − α = 0,
n+ 1 +α− k−pl = 0 and the axes l = 0, k = 0 are the critical lines for the vector field (3.3). The
bold point represents the initial data at x = 0 (z = 0). The series solutions (2.1) for small z < 0
corresponds to the point slightly below this point in the region where the flow keeps the solution
below the line n+ 1 + α − k− pl = 0 and forces it to the limit k→ ∞, l→ −∞

(n+2)p−1(−z)p(u′)p−1 we see that we have no singularity at this point. Therefore,
from (3.2) we get

k

−l = up+1

(n+ 2)2(−z)(u′)2
<p+ 1. (3.7)

Integrating from z∗ (u(z∗) = u∗) to some z̄ < z∗ at which we assume that
limz→z̄ u(z)= ∞, we obtain a bound on z̄ (note that u′ < 0)

√−z̄ < (n+ 2)
√
p+ 1

p− 1
u
(1−p)/2∗ + √−z∗, (3.8)

from which we conclude that the singularities are located at n+ 2 finite points in
the complex plane (i.e., x = (−|z̄|)1/(n+2)). �

It is clear that the singular points move along the rays as the initial value u(0)= c
changes, which is obvious from the first equation in (2.5) when we set a = c.
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Fig. 2 The plots of |u(x)| of the analytic solution in the complex plane of (1.1) with α = 3, δ = 1,
p = 5 and c= 1.5 for the initial data in (2.1)

A similar proof can be given for (1.2) using

k(z)= e−u

(n+ 2)u′ , l(z)= (n+ 2)zu′ (3.9)

instead of (3.2). See also [8].
The plots of |u(x)| of the analytic solution (2.1) in the complex plane are pre-

sented in Fig. 2. Similar plots can be prepared for the analytic solutions of (1.2). One
can see a symmetry of the location of singularities, which is due to the transforma-
tion x→ x1/(n+2) mapping (3.1) with only one singularity on the negative axis into
(1.1).

The plots were obtained by integrating numerically the analytic initial data from
the vicinity of the origin along uniformly distributed (in angle) rays in the complex
plane emanating from the origin. The complex version of the classical (4th order)
Runge–Kutta method [9] was used. If the modulus of the solution is greater than a
prescribed constant value, then it is assumed that the singularity is in the proximity
of that point, the integration is stopped and the next ray is chosen until scans along
all directions are performed. In this example there was no danger of shadowing
singularities on the single ray by the first encountered singularity, however, in more
elaborated examples one should prepare the plots for different initial points and
check if there is some additional structure of singularities hidden by this shadowing.
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4 Discussion

In this paper we showed how to find analytic solutions of the Emden–Fowler type
equations. The singularities of these solutions are studied both analytically and nu-
merically.

We can see that when n→ ∞ in (1.1) we obtain the so-called natural boundary
phenomenon like for the series

∑∞
j=0 x

2j when |x| → 1− (e.g., see [4]), when the
series cannot be extended outside of its circle of convergence because the boundary
of this circle consists of an infinite number of singularities.

Equations (1.1) or (1.2) can also be used to construct equations with singularities
located at arbitrarily chosen points in the complex plane by choosing an appropriate
transformation. To this end one has to construct a mapping of the complex plane
which transforms the singular points of these equations into the points of an arbitrary
choice. A similar method was proposed for the generation of solutions for equations
which can be transformed into (1.1) or (1.2), see [1].
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Abstract The theory of Jordan chains for multiparameter operator-functionsA(λ) :
E1 → E2, λ ∈Λ, dimΛ= k, dimE1 = dimE2 = n is developed. Here A0 = A(0)
is a degenerated operator, dim KerA0 = 1, KerA0 = {ϕ}, KerA∗

0 = {ψ} and the
operator-function A(λ) is supposed to be linear in λ. Applications to degenerate
differential equations of the form [A0 +R(·, x)]x′ = Bx are given.
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1 Introduction

Below degenerated differential equations (DE) of the form
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dim KerA0 = dim KerA∗
0 = 1, KerA0 = N(A0) = {ϕ}, KerA∗

0 = N(A∗
0) = {ψ}.

The function G(x) is sufficiently smooth and G(0) = 0, G(x) = Bx − H(x),
H(0) = 0, H ′(0)= 0. Our aim here is first of all to determine under which condi-
tions the operator A(x) will be nondegenerated in some neighborhood of the point
x = 0, degenerated in some neighborhood of x = 0, or degenerated on some sub-
manifold in a neighborhood of x = 0. On this way the theory of Jordan chains for
the degenerated operator-functions will be developed (Sects. 2, 3) and applied to
DE of the form (4.1), Sect. 4. In the definition of the Jordan chain a slightly more
generic case will be studied when the operator-function is linear in the parameter λ.

A(λ)=A0 + DA(0)λ :E1 →E2, λ ∈Λ, dimΛ= k (1.2)

depends linearly on the parameter λ acting from Λ into E1 space.
The case of a polynomial (or analytical) operator-function A(λ) will be consid-

ered in an extended variant of the article. In the examples provided in Sect. 2 of this
article the case Λ=E1 will often be considered. Section 4 contains applications to
degenerated differential equations.

2 Jordan Chains of Multiparameter Operator-Functions

Let the function A(λ) be linear in λ, i.e. A(λ) = A0 + DA(0)λ, and DA(0) be a
mapping from a neighborhood of 0 ∈Λ to the space of square n× n-matrices. The
following construction defines a Jordan chain (further JCh) for the operator-function
(1.2).

Lemma 2.1 For the mapping (1.2) being non invertible in some neighborhood of
λ= 0 the existence of some function h(λ) : U(0)→ E1 defined in some neighbor-
hood of zero (or on a submanifold of U(0)) is necessary and sufficient, such that
[A0 + DA(0)λ]h(λ)= 0.

Proof For sufficiently smooth h(λ)= ϕ+Dh(0)λ+D2h(0)λ2 +· · ·+Dsh(0)λs+
· · · where Dsh(0) is an s-linear symmetric operator acting from Λ into E1
or, that is the same a linear operator acting from Λ ⊗ · · · ⊗ Λ = ⊗s Λ into
E1 one has 0 = A0ϕ + [A0Dh(0)λ + (DA(0)λ)(ϕ)] + · · · + [A0D

sh(0)λs +
(DA(0))λ(Ds−1h(0)λs−1)]+· · · DA(0) in the expressionA0Dh(0)λ+(DA(0)λ)(ϕ)
can be considered as a bilinear operator of two variables and since the second vari-
able has constant value ϕ, it presents some known operator acting on λ, B1λ, i.e.
A0Dh(0)λ+ (DA(0)λ)(ϕ)= [A0Dh(0)+B1]λ. Thus, since Dh(0) ∈ L{Λ→E1},
the operator A0 generates the operator B1 acting from the space L{Λ→ E1} into
the space L{Λ→E2} according to the rule: if S ∈ L{Λ→E1}, then B1S = −A0S.

In order that S ∈ KerB1 it is necessary and sufficient that ImS ∈ {ϕ}. Conse-
quently dim KerB1 = k, and since dimΛ = k, then there exist exactly k linearly
independent operators S such that ImS = {ϕ}. Let the vectors ξ1, . . . , ξk form a ba-
sis inΛ, then a basis in KerB1 is composed by the operators {Φi |Φiξs = δisϕ}. The
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equality dimL{Λ→ E1} = dimL{Λ→ E2} implies that dim coKerB1 = k. Since
the space L{Λ→ E1} is isomorphic to the space Λ∗ ⊗ E1 (designation L{Λ→
E1} ≈ Λ∗ ⊗ E1), then L{Λ → E2}∗ ≈ Λ ⊗ E∗

2 and the operators Ψi = ξi ⊗ ψ

in the space L{Λ→ E2}∗ form a basis in the space coKerB1. Thus for the solv-
ability of the equation A0Dh(0) = −B1 the realization of the following equalities
〈B1,Ψi〉 = 0, i = 1, . . . , n is necessary and sufficient.

In this case the operator Dh(0) is defined up to linear combinations of the oper-
ators Φi .

Suppose by induction that the operator Ds−1h(0) is determined and consider the
equation

A0D
sh(0)λs + (DA(0)λ

)(
Ds−1h(0)λs−1)= [A0D

sh(0)+Bs
]
λs. (2.1)

The operator A0 generates the operator Bs acting from the space L{Λ⊗ · · · ⊗
Λ→E1} = L{⊗sΛ→E1} into the space L{⊗s Λ→E2} according to the rule: if
S ∈ {⊗s Λ→E1}, thenBsS =A0S. Since the spaceL{⊗s Λ→E1} is isomorphic
to
⊗
s Λ

∗ ⊗ E1 (represented by the elements of the space), then dim KerBs = ks
and a basis in KerBs composed by the operators Φi1···is , can be constructed in the
following manner: let the vectors ξ1, . . . , ξk form the basis in Λ and ξ∗

1 , . . . , ξ
∗
k

be the biorthogonal basis in Λ∗, the vectors e1, . . . , en (u1, . . . , un) form the ba-
sis in E1 (resp. E2), where for definiteness e1 = ϕ (u∗

1 = ψ), then the vectors
Φi1···is are given by the formulae Φi1···is = ξ∗

i1
⊗ · · · ⊗ ξ∗

is
⊗ ϕ and BsΦi1···is = 0.

In an analogous manner define a basis of coKerBs ⊂ [L{⊗s Λ −→ E2}]∗ ≈⊗
s Λ ⊗ E∗

2 as linearly independent vectors Ψj1···js = ξj1 ⊗ · · · ⊗ ξjs ⊗ ψ form-
ing the space of dimension ks . In fact, since S ∈ L{⊗s Λ→ E1} ≈⊗s Λ

∗ ⊗ E1,
then S can be represented in the form S =∑aj1···js

⊗s
k=1 ξ

∗
jk

⊗ ej and therefore
BsS =∑aj1···js

⊗s
1 ξ

∗
jk

⊗ A0ej . As far as 〈BsS,Ψi1···is 〉 =∑aj1···js 〈
⊗s
k=1 ξ

∗
jk

⊗
A0ej ,

⊗s
k=1 ξik ⊗ ψ〉 =∑aj1···js 〈ξ∗

j1
, ξj1〉 · · · 〈A0ej ,ψ〉 = 0, then Ψj1···js form a

basis of the space coKerBs .
Thus for the solvability of (2.1) it is necessary and sufficient that the following

conditions hold:

〈Bs,Ψj1···js 〉 = 0, j1, . . . , js = 1, n (2.2)

�

Definition 2.2 The elements ϕ,Dh(0),D2h(0), . . . ,Dph(0), as far as they are de-
termined, form a Jordan chain of the zero-element ϕ for the operator-function
A0 + DA(0)λ.

Lemma 2.3 For the irreversibility of the operator-function A0 + DA(0)λ every-
where in the neighborhood of the point λ = 0 the existence of an infinite Jordan
chain is necessary and sufficient.

Sufficiency Let there exists an infinite JCh. For the simplification introduce
on every step Schmidt’s operator [1]. Then using accepted designations Ã0 =
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A0 + 〈·, e∗1〉u1 is the Schmidt’s operator for A0, Ã−1
0 = Γ [1]. Analogously, B̃1 =

B1 +∑k
i=1〈·, ξi ⊗ e∗1〉ξ∗

i ⊗ u1. For L{Λ→ E1} � S =∑m a1mξ
∗
m ⊗ e1 one has

B̃1S = B1S +∑k
i=1〈
∑
m a1mξ

∗
m ⊗ e1, ξi ⊗ e∗1〉ξ∗

i ⊗ u1 = B1S +∑k
i=1 a1iξ

∗
i ⊗

u1, and since 〈Sλ, e∗1〉 = 〈∑m a1,mλme1, e
∗
1〉 =∑m a1mλm =∑m a1mξ

∗
m(λ) then

B̃1S =A0S + 〈S·, e∗1〉u1 = Ã0S. If Γ1 = B̃−1
1 . From here it follows Γ1T = Γ T for

T ∈ L{Λ1 →E2}. For the proof it is sufficient to set S = Γ T ⇒ B̃1Γ T = Ã0Γ T =
T ⇒ Γ1B̃1Γ T = Γ1T ⇒ Γ T = Γ1T .

Analogously, if Bs : L{⊗s Λ→ E1} → L{⊗s Λ→ E2}, then B̃sS = Ã0S for
S ∈ L{⊗s Λ→E1}. In fact, B̃sS = BsS+∑〈·, ξj1 ⊗ . . .⊗ξjs ⊗e∗1〉ξ∗

j1
⊗· · ·⊗ξ∗

js
⊗

u1 and S =∑ai1···is ,iξ∗
i1

⊗ · · ·⊗ ξ∗
is

⊗ ei ⇒ B̃sS =AsS+∑〈∑〈ai1···is ,iξ∗
i1

⊗ · · ·⊗
ξ∗
is

⊗ ei, ξi1 ⊗ · · · ⊗ ξis ⊗ e∗1〉ξ∗
i1

⊗ · · · ⊗ ξ∗
is

⊗ u1〉 = A0S +∑ai1···is
⊗s
k=1 ξ

∗
ik

⊗
u1 = A0S + 〈S·, e∗1〉u1 = Ã0S, since 〈Sλ, e∗1〉 = 〈∑ai1···is ,iλi1 . . . λis ei , e∗1〉 =
∑
ai1···is ,1λi1 . . . λis =∑ai1···is ,1e∗i1(λ) ⊗ · · · ⊗ e∗is (λ). If now Γk = (Ãk)−1, then

ΓkT = Γ T , where T ∈ {⊗s Λ → E2}. From the last relation the inequality
‖Γk‖ ≤ ‖Γ ‖ follows.

In an analogous manner define the operator Ds acting from L{⊗s−1Λ→ E1}
into L{⊗s Λ→E2} according to the ruleDsSλ=R(Sλ,λ), for S ∈ L{⊗s−1Λ→
E1}. Note here, that D0 : E1 → L{Λ → E2}. Obviously ‖Ds‖ ≤ ‖R‖ holds.
The usage of the introduced notations implies the following formulae for Jordan
chain elements J s+1 = (ΓsDs−1) . . . (Γ1D0)ϕ, s = 1,2, . . . , J 1 = ϕ. The estimate
‖J s+1‖ ≤ (‖R‖‖Γ ‖)s‖ϕ‖ gives the convergence of the series h(λ) in some neigh-
borhood of λ= 0.

Necessity Let in some neighborhood of λ = 0 the operator-function A(λ) be ir-
reversible, i.e. there exists a function X(λ) :Dε(0)→ E1 such that A(λ)X(λ)= 0,
X(λ) �= 0, ‖X(λ)‖ = 1 or at the usage of accepted notations A0X(λ) +
R(X(λ),λ)= 0 ⇒ Ã0X(λ)+R(X(λ),λ)= 〈X(λ), e∗1〉u1 ⇒ [I+ΓR(·, λ)]X(λ)=
〈X(λ), e∗1〉e1 ⇒ X(λ) = 〈X(λ), e∗1〉(I + Γ R(·, λ))−1e1, since Γ = (Ã0)

−1 exists,
Γ u1 = e1, when λ is sufficiently small. Then 〈X(λ), e∗1〉 �= 0 at ‖X(λ)‖ = 1, and
by the application of the functional e∗1 one has 1 = 〈[I + Γ R(·, λ)]−1e1, e

∗
1〉 ⇒

〈Γ R(e1, λ), e
∗
1〉 − 〈Γ R(Γ R(e1, λ), λ), e

∗
1〉 + · · · = 0. Its realization for all suffi-

ciently smooth λ by using the relation Γ ∗e∗1 = u∗
1 gives

〈
R(e1, λ), u

∗
1

〉= 0,
〈
R
(
Γ R(e1, λ), λ

)
, u∗

1

〉= 0, . . . ,
〈
R
(
. . .
(
Γ R(e1, λ)

)
, . . . , λ

)
, u∗

1

〉= 0, . . .
(2.3)

From the first equality (2.3) follows that the operator D0ϕ (here D0ϕ = R(e1, ·))
is orthogonal to the operators Ψi = ξi ⊗ u∗

1, i = 1, . . . , k, since according to (2.1)
R(e1, ·) =∑ rσρξ∗

σ ⊗ uρ , ρ > 1. Thus the conditions for the existence of the ele-
ment J 2 are realized. Analogously the relation 〈R(· · · (Γ R(e1, λ)), . . . , λ), u

∗
1〉 = 0

means, that the polylinear function R(. . . (Γ R(e1, λ)), . . . , λ) is equal to∑
rσ1,...,σs ,ρξ

∗
σ1

⊗ · · · ⊗ ξ∗
σs

⊗ uρ , ρ > 1 and therefore is orthogonal to all
Ψσ1,...,σs ,1 = ξσ1 ⊗ · · · ⊗ ξσs ⊗ u1. Thus the conditions for the existence of any
elements J s+1 are fulfilled.
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Lemma 2.4 If λ = 0 is a simple eigenvalue of the operator-function (1.2), i.e. if
the Jordan chain consists of only one element ϕ, then in a small neighborhood of
λ = 0 the operator-function is invertible everywhere with the exception of some
hypersurface passing through zero.

Below the operator-functionA∗
0x+R∗(x,λ) is considered, where underR∗(x,λ)

one understands the conjugate to the matrix R(·, λ) with regard to the action
R(y,λ)=R(λ)y.

Lemma 2.5 If the operator-function A(λ) = A0 + R(·, λ) has zero as a simple
eigenvalue, then the operator-function A∗(λ) = A∗

0 + R∗(·, λ) also has zero as a
simple eigenvalue. It is non-invertible on the same hypersurface where A(λ) is. The
zero-element of A∗(λ) is determined by the formula Ψ (y)= (I +Γ ∗R∗(·, λ))−1u∗

1.

3 Jordan Chains Along Directions

For every point 0 �= λ = (λ1, . . . , λn) ∈ Λ let eλ = λ
‖λ‖ be the unit vector in the

direction of λ. Then the restriction of the operator-function A(·, λ)= A0 + R(·, λ)
on the straight line λ = εeλ depends now only on a one-dimensional parameter ε:
Aλ(x, ε)= [A0 + εR(·, eλ)]x. At the assumption R(·, eλ) �= 0 one can define JChs
of the operator-function Aλ(x, ε), which are called JChs of the operator-function
A(x,λ) along the direction λ. The relevant length of the JCh of Aλ(x, ε) is denoted
by p(λ).

Lemma 3.1 Let p be the length of the JCh of the multiparameter operator-function
A(x,λ). Then for any direction λ p ≤ p(λ) and for almost all directions λ with the
exception of an algebraic set p = p(λ).

Definition 3.2 The directions λ0 along which p(λ0) > p are called singular, all
other ones are nonsingular. A singular direction, along which the operator-function
A0 + εR(·, λ0) is non-invertible is called degenerated.

Remark 3.3 Let be p <∞. According to Theorem 30.1 [1] on the set of all non-
singular directions λ0 the operator-function A0 + R(·, λ0) is invertible in the ball
0< |ε|< ρ(λ0) for some ρ(λ0).

Remark 3.4 The following example shows that ρ(λ) cannot be chosen indepen-
dently of λ: A(λ)x = [( 0 0

0 1

)+ λ1
( 1 0

0 −1

)+ λ2
( 0 1

1 0

)]( x1
x2

)
, detA(λ)= λ1 − λ2

1 − λ2
2.

A(λ) is non-invertible on the curve (λ1 − 1
2 )

2 + λ2
2 = 1

4 . Here any direction
λ0 �= (0,1), except the vertical ones, is nonsingular and ρ(λ0) is equal to the dis-
tance between zero and the intersection point of the direction λ0 with the curve
λ1 − λ2

1 − λ2
2 = 0. Obviously, ρ(λ0)→ 0 for λ0 → (0,1). Along the singular direc-

tion (0,1) A(λ) is invertible everywhere except λ= 0.
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Remark 3.5 If along some direction λ0 A(λ) has a maximal JCh, then along this
direction it is invertible everywhere except λ= 0.

Corollary 3.6 The length of JCh is either equal to infinity, or is not exceeding the
space dimension.

Lemma 3.7 If for the operator-functionA(λ)=A0 +R(·, λ) the length of JCh is p,
then for any sufficiently small value λ �= 0, for which the direction λ0 = λ

‖λ‖ is non-
degenerated, the images of the JCh elements in the point λ are linearly independent.

Remark 3.8 The following example shows that the images of JCh elements in the
point λ0 can be linearly dependent, while the direction λ0 is degenerated

A(λ)=
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠+ λ1

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠+ λ2

⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ (3.1)

This operator-function has JCh consisting of two elements J 1 = ϕ = (1,0,0)T

and J 2(λ) = (0, λ1,0)T . This chain is non-prolongated, since R(J 2(λ), λ) =
(λ2

1, λ1λ2,0)T and therefore if Ψ = ξ1 ⊗ ξ2 ⊗ψ , then 〈R(J 2(λ), λ),Ψ 〉 �= 0. How-
ever, on the straight line corresponding to the degenerated direction (0,1) (or
(0,1,0) if dimΛ = 3) the images of JCh elements are linearly dependent since
there J 2(λ)= 0.

Lemma 3.9 If for n ≤ k and for A0 + R(·, λ) the length of JCh is p > 1, then
always there exists a direction λ0 along which A0 + εR(·, λ0) is degenerated.

Remark 3.10 When n > k the degenerated direction λ0 does not always exist as
shows the following example

A(λ)=
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠+ λ1

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠+ λ2

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠

JCh for this A(λ) consists of two elements (1,0,0) and (0, λ1, λ2). Obviously that
the square vector-function (λ2

1 + λ2
2,0,0) satisfied one of two conditions λ1(λ

2
1 +

λ2
2) �= 0 or λ2(λ

2
1 + λ2

2) �= 0 and along the directions (1,0) and (0,1) A(λ) is not

degenerated, since det
( 0 λ1 0
λ1 1 0
0 0 1

)
= −λ2

1 �= 0 and det
( 0 0 λ2

0 1 0
λ2 0 1

)
= −λ2

2 �= 0. For the

“intermediate” direction (1, a) one has det
( 0 ε εa
ε 1 0
εa 0 1

)
= −ε2 − ε2a2 �= 0. Thus, A(λ)

has no degenerated directions.

Remark 3.11 However, for more complicated, nonlinear A(λ) in λ Lemma 3.9 is
not valid, as the following example shows: A(x,λ)= ( 0 0

0 1

)( x1
x2

)− λ2
( 0 1

−1 0

)( x1
x2

)+
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λ2
1

( 1 0
0 0

)( x1
x2

)
. It has no degenerated direction, since detA(λ) = λ2

1 + λ2
2 �= 0 for

λ �= 0.

Remark 3.12 The following example shows, that when A(λ) has zero as sim-
ple eigenvalue, a degenerated direction for it can exist: A(x) = ( 0 0

0 1

)( x1
x2

) −
λ1
( 1 0

0 0

)( x1
x2

)
, R(e1, λ) = ξ∗

1 ⊗ u1 ⇒ 〈R(e1, ·),Ψ1〉 = 〈R(e1, ·), ξ1 ⊗ ψ〉 = 1 i.e.
p = 1, while the direction (0,1) is degenerated.

4 Degenerated Differential Equations

In this section the results of Sects. 2, 3 are applied to the questions on the existence
and uniqueness of the solutions of degenerated DE

[
A0 +R(·, x)]x′ = Bx (4.1)

Suppose that A0 + R(·, x) has zero as a simple eigenvalue, i.e. JCh con-
sists of only one zero-element. According to Lemma 2.4 in a neighborhood of
x = 0 there exists a hypersurface M , on which A0 + R(·, x) is degenerated,
i.e. it has the zero-element Φ(x) = [I + ΓR(·, x)]−1e1 satisfying the condition
〈Φ(x), e∗1〉 = 1. The hypersurface M is determined by the equation 〈R(·, x)(I +
Γ R(·, x))−1e1, e

∗
1〉 = 0 and the tangent space to it in the point x = 0 is given by the

equation x1〈R(e1, e1),Ψ 〉 + · · · + xn〈R(e1, en),Ψ 〉 = 0.
Outside ofM the Cauchy problem for (4.1) has a unique solution, while onM the

system (4.1) it can have solution nowhere (except at the point x = 0), can have solu-
tions everywhere onM or only on some sub-manifoldM1 ⊂M , as simple examples
show.

Definition 4.1 JCh of A0 + R(·, x) is breaking along the principal direction e1, if
〈R(e1, e1),Ψ 〉 �= 0.

Definition 4.2 The operator-function A0 + R(·, x) is non-degenerated along a hy-
persurfaceM , if it has no zeroes on the tangent stratification toM .

Lemma 4.3 If for the operator-function A(x) = A0 + R(·, x) the JCh is breaking
along the principal direction, then A(x) is non-degenerated along the hypersurface
M in a neighborhood of the point zero.

However the following example shows, that if the JCh of A(x) is breaking along
the non-principal direction 〈R(e1, e1),Ψ 〉 = 0, then A(x) can be degenerated along
the hypersurface M : A(x) = ( x2 0

0 1

)
. Here M is determined by the equation x2 = 0

and the zero-element e1 belongs to the tangent space toM in any point of the neigh-
borhood x = 0.
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Theorem 4.4 Let zero be a simple eigenvalue of A(x) and its JCh be breaking
along the principal direction. If in addition Bx ∈ ImA(x) for any x ∈M , then the
unique solution to (4.1) belonging toM passes through any point of a neighborhood
of x = 0 onM .

For the case when JCh of A(x) is breaking along a non-principal direction the
following analog of Theorem 4.4 is true.

Theorem 4.5 Let A(x) have a simple eigenvalue in zero and also its JCh be
breaking along a non-principal direction, but nevertheless A(x) be non-degenerate
along the hypersurface M in some particular neighborhood of zero. If in addition
Bx ∈ ImA(x) for any x ∈ M , then the unique solution to (4.1) belonging to M
passes through any point of this neighborhood inM .

In the following example
( x2 x1
x1 1

)( x′
1
x′

2

)= ( 0 1
1 0

)( x1
x2

)
,M is determined by the equa-

tion x2 = x2
1 and in a particular neighborhood of zero on M the operator-function

A(x) = ( x2
1 x1

x1 1

)
has the zero-element (−1, x1), not belonging to the tangent sub-

space toM in the point (x1, x
2
1). This system on the hypersurfaceM takes the form

( x2
1 x1

x1 1

)( x′
1

2x′
1

)= ( 0 1
1 0

)( x1

x2
1

)
, and when x1 �= 0 the obtained equation (x1 + 2)x′

1 = x1

is uniquely solvable.

Theorem 4.6 Let the operator-function A(x) have a simple eigenvalue in zero and
its JCh be breaking along a non-principal direction. Let in addition in some neigh-
borhood of x = 0 the zero-element Φ(x) of A(x) belong to the tangent stratification
TM . If also for any x ∈M , Bx ∈ Im(A(x)|TM(x)), then in this neighborhood of
x = 0 there exists an (n− 2)-dimensional submanifold N of the hypersurfaceM on
which (4.1) is uniquely solvable.

The conditionBx ∈ Im(A(x))|TM(x) cannot be replaced by the condition by The-

orem 4.4 condition:
( x2 0 0

0 1 0
0 0 1

)( x′
1
x′

2
x′

3

)
=
( 0 0 0

0 0 1
0 0 0

)( x1
x2
x3

)
from Theorem 4.4. The hypersur-

faceM here is {x ∈R
3|x2 = 0}, the system on it has the solution x1 = 0, x3 = 0.

Remark 4.7 There are examples showing that solutions to (4.1) beginning on the
hypersurfaceM can leaveM . Here the uniqueness of the solution with a given initial
point can be lost. In the assumptions of Theorem 4.4 the conditions are found, which
determine solutions beginning on the manifoldM and not belonging to it.
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1 Introduction

Let −∞< t1 < t2 <∞ and S[t1, t2] be the set of measurable, essentially bounded
functions f (t) in [t1, t2] with the norm

‖f ‖1 = esssupt∈[t1,t2]
∣
∣f (t)

∣
∣= lim

p→∞‖f ‖Lp[t1,t2].

Here Lp[t1, t2], 1 ≤ p ≤ ∞ is the set of functions, the p-th powers of which are

integrable on [t1, t2] with norm ‖f ‖Lp[t1,t2] = (∫ t2
t1

|f (t)|pdt)
1
p .

We consider the system

u′ = f (t)u+ g(t)v + h(t), v′ = g(t)u− f (t)v + q(t) (1.1)

in [t1, t2], where h(t), q(t) ∈ L1[t1, t2]; f (t), g(t) ∈ S[t1, t2].
E. Kamke in his reference book [1] gives a general solution for the system

u′ = f (t)u− g(t)v, v′ = g(t)u+ f (t)v,
but he does not consider the system (1.1). This is connected to the fact that the
methods used for the latter system are not applicable for (1.1). In the present work
we construct the general solution of the system (1.1) in the class
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W 1∞[t1, t2] ∩C[t1, t2], (1.2)

where W 1∞[t1, t2] is the class of function f (t) for which f
′
(t) ∈ S[t1, t2].

Let t0 ∈ [t1, t2]. We consider the Cauchy problem:

Problem K Find the solution of system (1.1) from the class (1.2) satisfying the
Cauchy conditions

u(t0)= α, v(t0)= β, (1.3)

where α and β are given real numbers.

2 Construction of the General Solution to (1.1)

For solving the system (1.1) by multiplying the second equation of this system by
i = √−1 and adding it to the first equation of this system we obtain

W ′ − b(t)W = a(t), (2.1)

where b(t)= f (t)+ ig(t), a(t)= h(t)+ iq(t), W = u+ iv.
Obviously b(t) ∈ S[t1, t2], a(t) ∈ L1[t1, t2] and W ∈W 1∞[t1, t2] ∩C[t1, t2].
By integrating (2.1) we have

W(t)= (BW)(t)+A0(t)+ c, (2.2)

where

(BW)(t)=
∫ t

t0

b(τ)W(τ)dτ, A0(t)=
∫ t

t0

a(τ)dτ,

c is an arbitrary complex number.
Applying the operator B to both sides of (2.2) we get

(BW)(t)= (B2W
)
(t)+A1(t)+ cI1(t), (2.3)

where

(
B2W

)
(t)= (B(BW)(t))(t), I1(t)=

∫ t

t0

b(τ)dτ,

A1(t)=
∫ t

t0

b(τ)A0(τ )dτ.

From (2.3) and (2.2) it follows

W(t)= (B2W
)
(t)+A0(t)+A1(t)+ cI1(t)+ c.
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Continuing this procedure n times we have

W(t)= (B2nW
)
(t)+

2n−1∑

j=0

Aj(t)+ c ·
n∑

j=1

I2j−1(t)+ c
(

1 +
n−1∑

j=1

I2j (t)

)

, (2.4)

where

(
BnW

)
(t)= (B(Bn−1W

)
(t)
)
(t), Ij (t)=

∫ t

t0

b(τ)Ij−1(τ )dτ,

Aj (t)=
∫ t

t0

b(τ)Aj−1(τ )dτ (j = 1,2, . . .),
(
B1W

)
(t)= (BW)(t).

Taking into consideration the definition of the operators (BnW)(t) and the func-
tions In(t), An(t) the following estimates are obtained:

∣
∣
(
BnW

)
(t)
∣
∣≤ |W |0 (|b|1|t − t0|)

n

n! ,
∣
∣In(t)

∣
∣≤ (|b|1|t − t0|)n

n! ,

∣
∣An(t)

∣
∣≤ |A0|0

(|b|1|t − t0|)n
n! (n= 1,2, . . .),

(2.5)

where

|f |0 = max
t∈[t1,t2]

∣
∣f (t)

∣
∣, |f |1 = esssupt∈[t1,t2]

∣
∣f (t)

∣
∣= lim

p→∞
∥
∥f (t)

∥
∥
Lp[t1,t2].

Passing to the limit with n→ ∞ in the representation (2.4) and taking estimates
(2.5) into account we receive

W(t)= cP1(t)+ cP2(t)+ P3(t), (2.6)

where

P1(t)=
∞∑

j=1

I2j−1(t), P2(t)= 1 +
∞∑

j=1

I2j (t), P3(t)=
∞∑

j=0

Aj(t).

Using inequalities (2.5) we obtain
∣
∣P1(t)

∣
∣≤ sinh

(|b|1|t − t0|
)
,

∣
∣P2(t)

∣
∣≤ cosh

(|b|1|t − t0|
)
,

∣
∣P3(t)

∣
∣≤ |A0|0 exp

(|b|1|t − t0|
)
.

(2.7)

From the forms of the functions P1(t), P2(t), P3(t) it follows

P ′
1(t)= b(t)P2(t), P ′

2(t)= b(t)P1(t), P ′
3(t)= b(t)P3(t)+ a(t). (2.8)

From (2.8) using the equalities P1(t0)= 0, P2(t0)= 1 we have the integral equa-
tions

P1(t)=
∫ t

t0

b(τ)P2(τ )dτ, P2(t)= 1 +
∫ t

t0

b(τ)P1(τ )dτ. (2.9)
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Integrating by parts n times the integral on the right -hand side of the second (2.9)
we obtain

P2(t)− 1 = P1(t) ·
n∑

k=1

I2k−1(t)− P2(t) ·
n∑

k=1

I2k(t)+
∫ t

t0

b(τ)I2n(τ ) · P1(τ )dτ.

Thus, passing to the limit with n→ ∞ and taking into account estimates (2.5)
and (2.7) in the last equality we obtain the identity

∣
∣P2(t)

∣
∣2 − ∣∣P1(t)

∣
∣2 ≡ 1

From the last identity and (2.8) it follows, that the Wronskian of the functions
P1(t) and P2(t) is equal to −b(t) �= 0. Therefore, the functions P1(t) and P2(t)

form a linearly independent system in [t1, t2]. Thus, the general solution of (2.1) is
found by the formula (2.6). Highlighting the real and imaginary parts of the equality
(2.6) we obtain the solution of the system (1.1):

u= c1R
(
P1(t)+ P2(t)

)+ c2I
(
P1(t)− P2(t)

)+RP3(t),

v = c1I
(
P1(t)+ P2(t)

)− c2R
(
P1(t)− P2(t)

)+ IP3(t),

where c1 and c2 are arbitrary real numbers.

3 Solving the Cauchy Problem

Now let us solve Problem K. To solve the Cauchy problem we use (2.6). From the
form of the functions P1(t), P2(t) and P3(t) it follows

P1(t0)= P3(t0)= 0, P2(t0)= 1.

Using these formulas from (2.6) we obtain

u(t0)+ iv(t0)= c1 + ic2, u(t0)= c1, v(t0)= c2.

Thus, due to (1.3) we get

c1 = α, c2 = β.
The obtained value c= c1 + ic2 is put in (2.6):

W(t)= (α − iβ)P1(t)+ (α + iβ)P2(t)+ P3(t).

Highlighting the real and imaginary parts of the last formula we finally obtain
the solution of the Cauchy problem:

u= αR(P1(t)+ P2(t)
)+ βI(P1(t)− P2(t)

)+RP3(t),

v = αI(P1(t)+ P2(t)
)− βR(P1(t)− P2(t)

)+ IP3(t).
(3.1)



Cauchy Problem for First Order System 113

Thus, the following theorem is proved.

Theorem 3.1 The Cauchy problem has the only solution which is given by the
formula (3.1).

Remark 3.2 The obtained results remain in force and in the case:

f (t), g(t), h(t), q(t) ∈ C[t1, t2];
u(t), v(t) ∈ C1[t1, t2].

4 Cauchy Problem for the Nonlinear First Order Ordinary
Differential System

Let −∞< t1 < t0 < t2 <∞. We consider the nonlinear system

u′ = f (t)u+ g(t)v + h(t, u, v), v′ = g(t)u− f (t)v + q(t, u, v), (4.1)

in the interval [t1, t2], where f (t), g(t) ∈ C[t1, t2] and the functions h(t, u, v),
q(t, u, v) are continuous in the set of variables in the domain |t − t0|< δ, |u− α|<
σ1, |v − β| < σ2. Here u(t0) = α, v(t0) = β; δ, α, β , σ1, σ2 are real numbers, so
that δ > 0, σ1 > 0, σ2 > 0, δ < t2 − t1. The connection between the numbers δ and
σ1, σ2 will be defined later. Multiplying the second equation of the system (4.1) by
i = √−1, then adding it to the first equation of (4.1) we get

W ′ − b(t)W = a(t,W), (4.2)

where W = u+ iv, b(t)= f (t)+ ig(t), a(t,W)= h(t, u, v)+ iq(t, u, v).
Obviously b(t) ∈ C[t1, t2] and the function a(t,W) is continuous in the set of

variables in the domain |t − t0| < δ, |W − γ | < σ , where γ = α + iβ , σ = σ1 +
σ2. We find the solution to (4.2) from the class C1[t1, t2] satisfying the following
condition

W(t0)= γ. (4.3)

Equality (4.3) follows from (1.3).
Using formula (2.6) we have

W(t)= c̄P1(t)+ cP2(t)+ P3(t,W), (4.4)

where

P3(t,W)=
∞∑

j=0

Aj(t,W), A0(t,W)=
∫ t

t0

a
(
τ,W(τ)

)
dτ,
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Aj(t,W)=
∫ t

t0

b(τ)Aj−1(τ,W)dτ, (j = 1,∞).

From (2.7), (2.9) it follows

∣
∣P1(t)

∣
∣≤ |b|1δ cosh δ1,

∣
∣P2(t)− 1

∣
∣≤ |b|1δ sinh δ1, (4.5)

∣
∣P1(t4)− P1(t3)

∣
∣≤ |b|1 sinh δ1 · (t4 − t3),

∣
∣P2(t4)− P2(t3)

∣
∣≤ |b|1 cosh δ1 · (t4 − t3),

(4.6)

where δ1 = |b|1 · δ, t1 ≤ t3 < t4 ≤ t2.
Let a1 be the maximum of the function |P3(t,W)| in the domain |t − t0| < δ,

|W − γ |< σ . From the form of the function P3(t,W) it follows
∣
∣P3(t,W)

∣
∣≤ a1(exp δ1 − 1), (4.7)

∣
∣P3(t4,W)− P3(t3,W)

∣
∣≤ a1

(
1 + |b|1(exp δ1 − 1)

)
(t4 − t3). (4.8)

From the form of the functions P1(t), P2(t), P3(t,W) and (2.8) it follows that
the right hand-side of the equality (4.4) belongs to the class C1[t1, t2]. If we take
the derivative of both sides of the equality (4.4) then we obtain (4.2). Therefore, the
following theorem holds.

Theorem 4.1 Any solution of (4.4) from the class C[t1, t2] is a solution to (4.2)
from the class C1[t1, t2].

We consider the solutions to (4.4) from the class C[t1, t2] satisfying initial con-
dition (4.3). We obtain c= γ from (4.4) by taking into account the equalities
P1(t0) = P3(t0,W) = 0, P2(t0) = 1. Thus, any solution from the class C[t1, t2]

of the equation

W(t)= (DW)(t), (4.9)

where

(DW)(t)= γP1(t)+ γP2(t)+ P3(t,W)

is the solution of the Cauchy problem for (4.2).
Let

|γ ||b|1δ exp δ1 + a1(exp δ1 − 1) < σ, (4.10)

where δ1 = δ|b|1, a1 is the maximum of the function |P3(t,W)| in the domain

|t − t0|< δ, |W − γ |< σ.
Inequality (4.10) always might be obtained for the small value of the number δ.

Let us prove the existence of continuous solutions to the system (4.1) in some neigh-
borhood of the point t0.



Cauchy Problem for First Order System 115

Theorem 4.2 Let f (t), g(t) ∈ C[t1, t2] and the functions h(t, u, v), q(t, u, v) be
continuous in the set of variables in the domain |t − t0|< δ, |u−α|< σ1, |v−β|<
σ2. Then on the interval [t0 − δ, t0 + δ], where the number δ satisfies the condition
(4.10) there exists at least one solution to the system (4.1) from the class C1[t1, t2]
satisfying the condition (1.3).

Proof If there exists a solution to (4.9) from the class C[t1, t2], then by highlighting
real and imaginary parts of it, we obtain the solution of the system (4.1) from the
class C1[t1, t2]. Therefore, by Theorem 4.2 it is sufficient to prove the existence of
solutions from the class C[t0 − δ, t0 + δ] of (4.9). Let ‖W‖ = max|t−t0|<δ |W(t)|.
We consider the operator D which is defined by the equality

(DW)(t)= γP1(t)+ γP2(t)+ P3(t,W)

on the sphere ‖W −γ ‖ ≤ σ of the space C[t0 − δ, t0 + δ]. Let us show that the oper-
ator D is continuous enough on this sphere. Obviously the operator D is continuous
on the sphere ‖W − γ ‖ ≤ σ . For any element W(t) of the sphere ‖W − γ ‖ ≤ σ in
force of the inequalities (2.7), (4.7) we get

∣
∣(DW)(t)

∣
∣≤ |γ | exp δ1 + a1(exp δ1 − 1). (4.11)

If t3 and t4 are two arbitrary points of the interval [t0 − δ, t0 + δ], then by in-
equalities (4.6), (4.8) we have

∣
∣(DW)(t4)− (DW)(t3)

∣
∣

≤ (|γ ||b|1 exp δ1 + a1
(
1 + |b|1(exp δ1 − 1)

))
(t4 − t3). (4.12)

By the Arzela–Ascoli theorem from inequalities (4.11), (4.12) it follows, that the
operatorD transforms the sphere ‖W−γ ‖ ≤ σ into a compact set. We show that the
operatorD transforms this sphere into itself. Indeed, inequalities (4.5), (4.7) give us

∣
∣(DW)(t)− γ ∣∣≤ |b|1δ|γ | exp δ1 + a1(exp δ1 − 1).

Finally, inequality (4.10) gives |(DW)(t) − γ | < σ . Therefore, the operator D
satisfies all the conditions of Schauder’s theorem. Hence, there exists a fixed point
of this operator, i.e. such a functionW(t), so that

W(t)= γ̄ P1(t)+ γP2(t)+ P3(t,W).

Therefore, by Theorem 4.2 there exists a solution to the Cauchy problem for the
system (4.1). The theorem is proved. �
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1 Introduction

Let −∞< x1 < x2 <∞. By S[x1, x2] we denote the class of measurable essentially
bounded functions on [x1, x2]. The norm of an element from S[x1, x2] is defined by
the formulas

‖f ‖S[x1,x2] = sup vraix∈[x1,x2]
∣
∣f (x)

∣
∣= lim

p→∞‖f ‖Lp[x1,x2].

We consider the equation

dnu

dxn
− p(x)u= f (x) (1.1)

on [x1, x2], where p(x), f (x) ∈ S[x1, x2].
The general solution of (1.1) and the solution of the Cauchy problem with the

initial problem in the point x0 ∈ [x1, x2) for this equation will be sought from the
class

C[x1, x2] ∩Wn∞[x1, x2], (1.2)

where Wn∞[x1, x2] is the class of functions f (x), for which dnf
dxn

∈ S[x1, x2].
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The general solution of (1.1) in the particular case n= 2 is given in [1, 2] and for
n= 3 in [3]. Note that in the mathematical literature one cannot find any represen-
tation of solutions to (1.1).

If p(x), f (x) ∈ C[x1, x2] the general solution is found in the present article in
the class Cn[x1, x2].

2 Construction of the General Solution to (1.1)

Let us choose x0 ∈ [x1, x2). Integrating (1.1) n times gives

u(x)= (Bu)(x)+
n∑

k=1

ck(x − x0)
k−1 + g(x), (2.1)

where c1, c2, . . . , cn are arbitrary real numbers,

(Bu)(x)=
∫ x

x0

∫ y1

x0

∫ y2

x0

· · ·
∫ yn−1

x0

p(t)u(t)dtdyn−1dyn−2 . . . dy1,

g(x)=
∫ x

x0

∫ y1

x0

∫ y2

x0

· · ·
∫ yn−1

x0

f (t)dtdyn−1dyn−2 . . . dy1.

Applying the operator B to (2.1) we get

(Bu)(x)= (B2u
)
(x)+ (Bg)(x)+

n∑

k=1

ckak,1(x), (2.2)

where

(
B2u
)
(x)= (B(Bu)(x))(x),

ak,1(x)=
∫ x

x0

∫ y1

x0

∫ y2

x0

· · ·
∫ yn−1

x0

(t − x0)
k−1p(t)dtdyn−1dyn−2 . . . dy1.

From (2.1) and (2.2) it follows

u(x)= (B2u
)
(x)+ (Bg)(x)+ g(x)+

n∑

k=1

ck
(
(x − x0)

k−1 + ak,1(x)
)
. (2.3)

In the following we use the formulas

(
Bkf

)
(x)= (B(Bk−1f

)
(x)
)
(x),

ak,l(x) =
(
Bak,l−1(x)

)
(x)
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=
∫ x

x0

∫ y1

x0

∫ y2

x0

· · ·
∫ yn−1

x0

p(t)ak,l−1(t)dtdyn−1dyn−2 . . . dy1.

Applying the operator B to both sides of (2.3) and using the previous formulas
imply

(Bu)(x)= (B3u
)
(x)+ (B2g

)
(x)+ (Bg)(x)+

n∑

k=1

ck
(
ak,1(x)+ ak,2(x)

)
(2.4)

From (2.1) and (2.4) it follows

u(x) = (B3u
)
(x)+ g(x)+ (Bg)(x)+ (B2g

)
(x)+ (B3g

)
(x)

+
n∑

k=1

ck
(
(x − x0)

k−1+ak,1(x)+ ak,2(x)
)
.

Continuing this procedure m times we obtain the following integral equation for
the solution of (1.1):

u(x) = (Bmu)(x)+ g(x)+
m−1∑

k=1

(
Bkg
)
(x)

+
n∑

k=1

ck

(

(x − x0)
k−1 +

m−1∑

l=1

ak,l(x)

)

. (2.5)

Let us choose u(x) ∈ C[x1, x2]. Taking the definition of the iterated operators
(Bkf )(x) and the iterated functions ak,l−1(x) into consideration the following esti-
mates are obtained without any difficulties:

∣
∣
(
Bmu

)
(x)
∣
∣≤ |u|1 (

n
√|p|0 · |x − x0|)nm

(mn)! ,

∣
∣
(
Bkg
)
(x)
∣
∣≤ |g|1 (

n
√|p|0 · |x − x0|)kn

(kn)! , (2.6)

∣
∣ak,l(x)

∣
∣≤ |p|l0

|x − x0|nl
(nl)! ,

where

|f |0 = sup vraix∈[x1,x2]
∣
∣f (x)

∣
∣, |f |1 = max

x∈[x1,x2]
∣
∣f (x)

∣
∣.

Passing to the limit m → ∞ in the representation (2.5), by virtue of (2), we
conclude

u(x)=
n∑

k=1

ck · Ik(x)+ F(x), (2.7)
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where

Ik(x)= (x − x0)
k−1 +

∞∑

m=1

ak,m(x), F (x)= g(x)+
∞∑

m=1

(
Bmg

)
(x).

Using the estimates (2) we get

∣
∣Ik(x)

∣
∣≤

∞∑

m=0

( n
√|p|0 · |x − x0|)nm

(mn)! (k = 1,2, . . . , n),

∣
∣F(x)

∣
∣≤ |g|1

∞∑

m=0

( n
√|p|0 · |x − x0|)mn

(mn)! .

The following relations for the functions I1(x), I2(x), . . . , In(x) and F(x) are of
importance:

dnIk

dxn
− p(x)Ik = 0 (k = 1,2, . . . , n),

dnF

dxn
− p(x)F (x)= f (x),

(2.8)

I l−1
k (x0)=

{
(l − 1)!, if k = 1,

0, if k �= 1,
Ik(x0)=

{
1, if k = 1,

0, if k �= 1.
(2.9)

The formulas (2.8) tell us that the functions I1(x), I2(x), . . . , In(x) are particular
solutions from the class (1.2) of the homogeneous equation

dnu

dxn
− p(x)u= 0

and the function F(x) is a particular solution of the inhomogeneous equation (1.1).
From (2.8) we see that the Wronskian W(x) is equal to 2! · 3! · . . . · (n− 1)! in

x = x0. Therefore the functions I1(x), I2(x), . . . , In(x) are linearly independent on
[x1, x2] and the general solution to (1.1) belonging to the class (1.2) is determined
by the formula (2.7).

Summarizing we have proved the following theorem.

Theorem 2.1 The general solution of (1.1) from the class (1.2) is given by for-
mula (2.7).

3 Cauchy Problem

Now we are going to solve the Cauchy problem.
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Cauchy problem Find a solution of (1.1) from the class (1.2), satisfying the
Cauchy conditions

α11u(x0)+ α12u
′
(x0)+ · · · + α1nu

n−1(x0)= β1,

α21u(x0)+ α22u
′
(x0)+ · · · + α2nu

n−1(x0)= β2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αn1u(x0)+ αn2u
′
(x0)+ · · · + αnnun−1(x0)= βn,

(3.1)

where αkj (k, j = 1,2, . . . , n), βk (k = 1,2, . . . , n) are given real numbers,

uk(x0)= dku

dxk

∣
∣
∣
∣
x=x0

(k = 1,2, . . . , n).

Solution of the Cauchy problem To solve the Cauchy problem we use the general
solution of (1.1) given by formula (2.7). Substituting the function u(x) given by
formula (2.7) into the initial problem (3.1), taking (2.9) into consideration we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α11 · c1 + 1! · α12 · c2 + · · · + (n− 1)! · α1n · cn = β1,

α21 · c1 + 1! · α22 · c2 + · · · + (n− 1)! · α2n · cn = β2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αn1 · c1 + 1! · αn2 · c2 + · · · + (n− 1)! · αnn · cn = βn.
(3.2)

In case |�| �= 0 we get from (3.2)

ck = |�k|
|�| (k = 1,2, . . . , n), (3.3)

where

�=

⎛

⎜
⎜
⎝

α11 1! · α12 . . . (n− 1)! · α1n
α21 1! · α22 . . . (n− 1)! · α2n
. . . . . . . . . . . .

αn1 1! · αn2 . . . (n− 1)! · αnn

⎞

⎟
⎟
⎠ ,

�k is the matrix which is received by replacing the k matrix column of the matrix
� by the column

β =

⎛

⎜
⎜
⎜
⎝

β1
β2
...

βn

⎞

⎟
⎟
⎟
⎠
.

If |�| = 0 for the solvability of the algebraic system (3.2) the conditions:

|�k| = 0 (k = 1,2, . . . , n) (3.4)

are necessary and sufficient.
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Theorem 3.1 (1) If |�| �= 0 then the Cauchy problem has a unique solution given
by the formulas (2.7) and (3.3). (2) If |�| = 0 then for the solvability of the Cauchy
problem it is necessary and sufficient that the equalities (3.4) are satisfied. In this
case the Cauchy problem has an infinite number of solutions, which are given by
formula (2.7), where the arbitrary constants c1, c2, . . . , cn are connected by the re-
lation (3.2).

References

1. A. Tungatarov, D.K. Akhmed-Zaki, Cauchy problem for one class of ordinary differential equa-
tions. Int. J. Math. Anal. 6(14), 695–699 (2012)

2. A. Tungatarov, D.K. Akhmed-Zaki, General solution of second order linear ordinary differ-
ential equations with variable coefficients. J. Inequal. Spec. Funct. 3(4), 42–49 (2012). ISSN:
2217-4303, www.ILIRIAS.com

3. A. Tungatarov, B. Omarbayeva, B. Yaisov, The Cauchy type problem for a third order ordinary
differential equation with variable coefficients. Mech. Infor. Ser. Math. 2(73), 49–55 (2012),
Vestnik al-Farabi Kazakh National University (Russian)

http://www.ILIRIAS.com


About a Class of Two Dimensional Volterra Type
Integral Equations with Singular Boundary
Lines

Lutfya Rajabova

Abstract We examine 2-dimensional integral equations of Volterra type with two
singular boundary lines corresponding to x = a and y = b. The non-homogeneous
integral equation that we can consider involves constantsA1,A2,B1,B2,C1,C2,C3,
C4. Given certain inequalities for A1, A2, B1, B2, it always has solutions on suitable
domains that contain arbitrary functions of one variable. With other hypotheses, the
equation has a unique solution in some domain.

Keywords Volterra type integral equation · Singular boundary lines

Mathematics Subject Classification (2010) Primary 45L10 · Secondary 45G05

1 Introduction and Preliminaries

Consider the rectangle D = {a < x < a1, b < y < b1}, and the straight lines Γ1 =
{a < x < a1, y = b}, Γ2 = {x = a, b < y < b1}, where a < x < a1, b < b < b1. In
the domain D, we consider the 2-dimensional integral equation

u(x, y)+A1

∫ x

a

u(t, y)

t − a dt +A2

∫ x

a

ln

(
x − a
t − a

)
u(t, y)

t − a dt

+B1

∫ y

b

u(x, s)

s − b ds +B2

∫ y

b

ln

(
y − b
s − b

)
u(x, s)

s − b ds

+C1

∫ x

a

dt

t − a
∫ y

b

u(t, s)

s − b ds

+C2

∫ x

a

dt

t − a
∫ y

b

ln

(
y − b
s − b

)
u(t, s)

s − b ds

+C3

∫ x

a

ln

(
x − a
t − a

)
dt

t − a
∫ y

b

u(t, s)

s − b ds

L. Rajabova (B)
Tajik Technical University, Rajabovs avenue 10, Dushanbe, Tajikistan
e-mail: lutfya62@mail.ru

© Springer International Publishing Switzerland 2015
V.V. Mityushev, M.V. Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-12577-0_17

123

mailto:lutfya62@mail.ru
http://dx.doi.org/10.1007/978-3-319-12577-0_17


124 L. Rajabova

+C4

∫ x

a

ln

(
x − a
t − a

)
dt

t − a
∫ y

b

ln

(
y − b
s − b

)
ds

s − b
= f (x, y), (1.1)

where Ai , Bi , Cj , i = 1,2, j = 1,4, are given constants, f (x, y) ∈ C(D).
The solution of (1.1) is sought in the class of functions u(x, y) ∈ C(D) which

are zero on the singular lines Γ1 and Γ2.
The solution of many problems having a significance in applications can be fig-

ured out by the help of integral equations in explicit from. For that reason, this article
is dedicated to this area.

Early problems concerning 2-dimensional Volterra-type integral equations of the
form

u(x, y)+ λ
∫ x

a

u(t, y)

(t − a)α dt −μ
∫ b

y

u(x, s)

(b− s)β ds

+ δ
∫ x

a

dt

(t − a)α
∫ b

y

u(t, s)

(b− s)β ds = f (x, y), (1.2)

with two singular and super-singular boundary lines in the domain

D1 = {a < x < a0, b0 < y < b},

are investigated in [1–3].
Integral equations of type

u(x, y)+
∫ x

a

A(t)u(t, y)

t − a dt −
∫ b

y

B(s)u(x, s)

b− s ds

+
∫ x

a

dt

t − a
∫ b

y

C(t, s)u(t, s)

b− s ds = f (x, y)

with singular and super-singular boundary and interior lines, in cases of α = 1,
β > 1; α > 1, β = 1; α < 1, β > 1 are investigated in [4, 5, 10].

References [6, 7] are dedicated to the problem of finding continuous solutions
of a second-order hyperbolic equation with two singular or super-singular boundary
lines Γ1 and Γ2, corresponding to the study of integral equations (1.2) in the domain
D1 with α ≥ 1 and β ≥ 1.

Finally, [8, 9] deals with the integral equation

u(x, y)+
∫ x

a

K1(x, y; t)u(t, y)
(t − a)α dt −

∫ b

y

K2(x, y; s)u(x, s)
(b− s)β ds+

+
∫ x

a

dt

(t − a)α
∫ b

y

K3(x, y; t, s)u(t, s)
(b− s)β ds = f (x, y)
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in D1 in the cases α = 1, β = 1 where

λ=K1(a, b;a), μ=K2(a, b;b), δ =K3(a, b;a, b)= −λμ.
For α > 1, β > 1 we set

A(t)=K1(a, b; t), B(s)=K2(a, b; s), C(t, s)=K3(a, b; t, s)
and require C1(t, s)= C(t, s)+A(t)B(s) not to be identically zero.

In this paper, we find the solution of the 2-dimensional Volterra type linear in-
tegral equation with boundary singularities, when C1 = A1B1, C2 = A1B2, C3 =
A2B1, C4 =A2B2.

In this case we shall prove that, whether parameters in the integral equation are
connected with one another in a certain from, dependent on the signs of these pa-
rameters and the roots of the characteristic equations the general solution of the
homogeneous equation contains a few arbitrary functions of one variable and in
some particular cases has a unique solution.

2 A First Theorem

Our first result is the following statement that deals with the case in which A1 > 0,
A2 < 0, B1 > 0, B2 < 0.

Theorem 2.1 Given (1), suppose that C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 =
A2B2 andA1 > 0,A2 < 0, B1 > 0, B2 < 0,A2

1 −4A2 > 0, B2
1 −4B2 > 0. Moreover,

suppose that f (x, y) is a continues function in D that satisfies f (a, b)= 0 and has
the following asymptotic behavior

f (x, y) = o[(x − a)δ1], δ1 > λ1 as x→ a,

f (x, y) = o[(y − b)γ1
]
, γ1 > ν1, as y→ b.

Then (1) always admits a solution with u(x, y) ∈ C(D) and u(x, y) → 0 as
(x, y)→ Γi for i = 1,2, and its general solution contains two arbitrary functions
each of one variable.

We claim that the solution is given by means of the following formula:

u(x, y) = (y − b)ν1ϕ1(x)+ (x − a)λ1

×
[

ψ1(y)− 1
√

B2
1 + 4|B2|

∫ y

b

[

ν2
2

(
s − b
y − b

)|ν2|
− ν2

1

(
y − b
s − b

)ν1
]

× ψ1(s)

s − b
]

ds + f (x, y)− 1
√

A2
1 + 4|A2|
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×
∫ x

a

[

λ2
2

(
t − a
x − a

)|λ2|
− λ2

1

(
x − a
t − a

)λ1
]
f (t, y)

t − a dt

− 1
√

B2
1 + 4|B2|

∫ y

b

[

ν2
2

(
s − b
y − b

)|ν2|
− ν2

1

(
y − b
s − b

)ν1
]

× f (x, s)

s − b ds + 1
√

A2
1 + 4|A2|

√

B2
1 + 4|B2|

×
∫ y

b

[

ν2
2

(
s − b
y − b

)|ν2|
− ν2

1

(
y − b
s − b

)ν1
]

1

s − b

×
∫ x

a

[

λ2
2

(
t − a
x − a

)|λ2|
− λ2

1

(
x − a
t − a

)λ1
]
f (t, s)

t − a dtds.

In this formula ϕ1(x), ψ1(y) are arbitrary continuous functions on Γ1 and Γ2,
satisfying ϕ1(x)→ 0 as x → a and ψ1(y)→ 0 as y → b and such that their be-
havior is governed by the following asymptotic formulas:

ϕ1(x)= o
[
(x − a)ε], as x→ 0,

ψ1(y)= o
[
(y − b)γ2

]
, γ2 > ν1 as y→ b,

λ1 =
√

A2
1 − 4A2 −A1

2
, λ2 =

−A1 −
√

A2
1 − 4A2

2

ν1 =
√

B2
1 − 4B2 −B1

2
, ν2 =

−B1 −
√

B2
1 − 4B2

2

3 Other Theorems

Theorem 3.1 In (1.1), let C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2 and
A1 < 0, A2 > 0, B1 < 0, B2 > 0, A2

1 − 4A2 > 0, B2
1 − 4B2 > 0. Moreover, let

f (x, y) ∈ C(D), f (a, b)= 0 with the following asymptotic behavior on the bound-
aries Γ1 and Γ2:

f (x, y)= o[(x − a)δ2], δ2 > λ3 as x→ a,

f (x, y)= o[(y − b)γ3
]
, γ3 > ν3, as y→ b.

Then the non-homogeneous integral equation (1.1) in the class C(D), approach-
ing zero at Γ1 and Γ2, is always solvable and its general solution contain four
arbitrary functions of one variable.
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The solution is in fact given by means of following formula

u(x, y) = (y − b)ν3ϕ1(x)+ (y − b)ν4ϕ2(x)+ (x − a)λ3

×
[

ψ1(y)− 1
√

B2
1 − 4B2

∫ y

b

[

ν2
4

(
y − b
s − b

)ν4

− ν2
3

(
y − b
s − b

)ν3
]
ψ1(s)

s − b ds
]

− (x − a)λ4

[

ψ2(y)− 1
√

B2
1 − 4B2

∫ y

b

[

ν2
4

(
y − b
s − b

)ν4

− ν2
3

(
y − b
s − b

)ν3
]

× ψ2(s)

s − b ds
]

+ f (x, y)− 1
√

A2
1 − 4A2

×
∫ x

a

[

λ2
4

(
x − a
t − a

)λ4

− λ2
3

(
x − a
t − a

)λ3
]
f (t, y)

t − a dt

− 1
√

B2
1 − 4B2

∫ y

b

[

ν2
4

(
y − b
s − b

)ν4

− ν2
3

(
y − b
s − b

)ν3
]
f (x, s)

s − b ds

+ 1
√

A2
1 − 4A2

√

B2
1 − 4B2

∫ y

b

[

ν2
4

(
y − b
s − b

)ν4

− ν2
3

(
y − b
s − b

)ν3
]

× 1

s − b
∫ x

a

[

λ2
4

(
x − a
t − a

)λ4

− λ2
3

(
x − a
t − a

)λ3
]
f (t, y)

t − a dtds.

Here ϕi(x), ψi(y), i = 1,2, are arbitrary continuous functions on Γ1 and Γ2
respectively. Moreover, as x→ a, y→ b ϕi(y) and ψi(y) approach zero and their
behavior is determined by the following asymptotic formula:

ϕ1(x)= o
[
(x − a)ε], ε > 0, as x→ a,

ϕ2(x)= o
[
(x − a)ε], ε > 0, as x→ a,

ψ1(y)= o
[
(y − b)γ4

]
, γ4 > ν3 as y→ b,

ψ2(y)= o
[
(y − b)γ5

]
, γ5 > ν3 as y→ b,

λ3 =
|A1| +

√

A2
1 − 4A2

2
, λ4 =

|A1| −
√

A2
1 − 4A2

2
,

ν3 =
|B1| +

√

B2
1 − 4B2

2
, ν4 =

|B1| −
√

B2
1 − 4B2

2
.

Theorem 3.2 In (1.1), let C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2 and
A1 < 0, A2 < 0, B1 < 0, B2 < 0, A2

1 > 4A2, B2
1 > 4B2. Moreover, let f (x, y) ∈

C(D), f (a, b) = 0 with the following asymptotic behavior at the boundaries Γ1
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and Γ2:

f (x, y)= o[(x − a)δ3], δ3 > λ5 as x→ a,

f (x, y)= o[(y − b)γ6
]
, γ6 > ν5, as y→ b.

Then the non-homogeneous integral equation (1.1) is always solvable in the class
of C(D)-functions approaching zero at Γ1 and Γ2, and its general solution contains
two arbitrary functions of one variable.

The solution is in fact given by means of the following formula

u(x, y) = (y − b)ν5ϕ(x)+ (x − a)λ5

×
[

ψ(y)− 1
√

B2
1 + 4|B2|

∫ y

b

[

ν2
6

(
s − b
y − b

)|ν6|
− ν2

5

(
y − b
s − b

)ν5
]

× ψ(s)

s − bds
]

+ f (x, y)− 1
√

A2
1 + 4|A2|

∫ x

a

[

λ2
6

(
t − a
x − a

)|λ6|

− λ2
5

(
x − a
t − a

)λ5
]
f (t, y)

t − a dt −
1

√

B2
1 + 4|B2|

×
∫ y

b

[

ν2
6

(
s − b
y − b

)|ν6|
− ν2

5

(
y − b
s − b

)ν5
]

× f (x, s)

s − b ds + 1
√

A2
1 + 4|A2|

√

B2
1 + 4|B2|

∫ y

b

[

ν2
6

(
s − b
y − b

)|ν6|

− ν2
5

(
y − b
s − b

)ν5
]

1

s − b
∫ x

a

[

λ2
6

(
t − a
x − a

)|λ6|

− λ2
5

(
x − a
t − a

)λ5
]
f (t, s)

t − a dtds.

Here ϕ(x), ψ(y) are arbitrary continuous functions on Γ1 and Γ2 respectively.
Moreover, at x → a, y → b ϕ(x) and ψ(y) approach zero and their behavior is
determined by the following asymptotic formulas:

ϕ(x)= o[(x − a)ε], ε > 0, as x→ a,

ψ(y)= o[(y − b)γ7
]
, γ7 > ν5 as y→ b,

λ5 =
|A1| +

√

A2
1 − 4A2

2
, λ6 =

|A1| −
√

A2
1 − 4A2

2
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ν5 =
|B1| +

√

B2
1 − 4B2

2
, ν6 =

|B1| −
√

B2
1 − 4B2

2
.

Theorem 3.3 In (1.1), let C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2 and
A1 > 0, A2 > 0, B1 > 0, B2 > 0, A2

1 − 4A2 > 0, B2
1 − 4B2 > 0. Moreover, let

f (x, y) ∈ C(D), f (a, b)= 0 with the following asymptotic behavior at the bound-
aries Γ1 and Γ2:

f (x, y)= o[(x − a)δ8], δ8 > λ8 as x→ a,

f (x, y)= o[(y − b)γ8
]
, γ8 > ν8, as y→ b.

Then the non-homogeneous integral equation (1.1) has a unique solution in the
class C(D), approaching zero at Γ1 and Γ2, and given by means of the following
formula

u(x, y) = f (x, y)− 1
√

A2
1 − 4A2

∫ x

a

[

λ2
8

(
t − a
x − a

)λ8

− λ2
7

(
t − a
x − a

)λ7
]
f (t, y)

t − a dt

− 1
√

B2
1 − 4B2

∫ y

b

[

γ 2
8

(
s − b
y − b

)γ8

− γ 2
7

(
s − b
y − b

)ν7
]
f (x, s)

s − b ds

+ 1
√

A2
1 − 4A2

√

B2
1 − 4B2

∫ y

b

[

γ 2
8

(
s − b
y − b

)γ8

− γ 2
7

(
s − b
y − b

)ν7
]

1

s − b

×
∫ x

a

[

λ2
8

(
t − a
x − a

)λ8

− λ2
7

(
t − a
x − a

)λ7
]
f (t, s)

t − a dtds.

Here

λ7 =
−A1 +

√

A2
1 − 4A2

2
, λ8 =

−A1 −
√

A2
1 − 4A2

2

ν7 =
−B1 +

√

B2
1 − 4B2

2
, ν8 =

−B1 −
√

B2
1 − 4B2

2
.

Theorem 3.4 In (1.1), let C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2 and
A1 < 0, B1 < 0, A2

1 = 4A2, B2
1 = 4B2. Moreover, let f (x, y) ∈ C(D), f (a, b)= 0

with the following asymptotic behavior at the boundaries Γ1 and Γ2:

f (x, y)= o[(x − a)δ8], δ8 >
|A1|

2
as x→ a,

f (x, y)= o[(y − b)γ9
]
, γ9 >

|B1|
2
, as y→ b.
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Then the non-homogeneous integral equation (1.1) is always solvable in the class
of C(D)-functions approaching zero at Γ1 and Γ2, and its general solution contains
two arbitrary functions of one variable.

The solution is in fact given by means the following formula:

u(x, y) = (x − a) |A1 |
2
[
ψ1(y)+ ln(x − a)ψ2(y)

]+ |A1|
2

∫ x

a

(
x − a
t − a

) |A1|
2

×
[

2 + |A1|
2

ln

(
x − a
t − a

)]
f (t, y)

t − a dt +
|B1|

2

∫ y

b

(
y − b
s − b

) |B1|
2

×
[

2 + |B1|
2

ln

(
y − b
s − b

)]
f (x, s)

s − b ds + |A1B1|
4

∫ y

b

(
y − b
s − b

) |B1|
2

×
[

2 + |B1|
2

ln

(
y − b
s − b

)]
1

s − b
∫ x

a

(
x − a
t − a

) |A1|
2

×
[

2 + |A1|
2

ln

(
x − a
t − a

)]
f (t, s)

t − a dtds.

Here ϕj (y), j = 1,2 are arbitrary continuous functions on Γ2. Moreover, as
y → b ϕj (y) approaches zero and its asymptotic behavior is determined by the
following asymptotic formula:

ϕj (y)= o
[
(y − b)ε], ε > 0, as y→ b, j = 1,2.

Theorem 3.5 In (1.1), let C1 = A1B1, C2 = A1B2, C3 = A2B1, C4 = A2B2 and
A1 > 0, B1 > 0, A2

1 = 4A2, B2
1 = 4B2. Moreover, let f (x, y) ∈ C(D), f (a, b)= 0

with the following asymptotic behavior at the boundaries Γ1 and Γ2:

f (x, y)= o[(x − a)ε], as x→ a,

f (x, y)= o[(y − b)ε], as y→ b.

Then the non-homogeneous integral equation (1.1) has a unique solution in the
class C(D) approaching zero at Γ1 and Γ2, and given by means of the following
formula:

u(x, y) = f (x, y)− A1

2

∫ x

a

(
t − a
x − a

)A1
2
[

2 − A1

2
ln

(
x − a
t − a

)]
f (t, y)

t − a dt

− B1

2

∫ y

b

(
s − b
y − b

)B1
2
[

2 − B1

2
ln

(
y − b
s − b

)]
f (x, s)

s − b ds

+ A1B1

4

∫ y

b

(
s − b
y − b

)B1
2
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×
[

2 − B1

2
ln

(
y − b
s − b

)]
1

s − b
∫ x

a

(
t − a
x − a

)A1
2

×
[

2 − A1

2
ln

(
x − a
t − a

)]
f (t, s)

t − a dtds.
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of Resources Productivity
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Abstract The paper is devoted to the optimal control problem which is based on
the model of optimization of resources productivity. Model analysis is implemented
within the framework of Pontryagin maximum principle for the problems with in-
finite time horizon. Qualitative analysis of the Hamiltonian system allows to for-
mulate necessary and sufficient conditions of existence of a steady state in terms
of the model parameters. Under these conditions and an assumption on the saddle
character of the steady state, we construct a nonlinear regulator which allows to ap-
proximate optimal trajectories by the solutions of the stabilized Hamiltonian system
at a vicinity of the steady state. Finally, comparative analysis of results of numerical
simulations is carried out.
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model is based on the economic growth theory [3, 5, 7, 12, 13] and inherits elements
of economic growth models introduced in [1, 2, 6, 9, 14, 16].

It is assumed that the investment in resources productivity stimulates its relative
growth. Output is represented as an exponential production function of the Cobb–
Douglas type, it depends on main production factor which is material use. Balance
relation takes into account three components: investment in raising resources pro-
ductivity, expenditures on natural resources and consumption. Quality of the control
process is valued by means of the integrated consumption index discounted on the
infinite time interval. The connection between expenditures on natural resources and
their rests is expressed with help of the price formation mechanism which supposes
inverse proportionality between stocks of materials and prices on them. Increasing
prices negatively influence the consumption index which should be maximized in
the model as the basic element of the utility function.

The problem is to find the optimal proportion of investment in the dynamic pro-
cess with maximization of the utility function given as the integrated consumption
index over trajectories of the economic system. The model is examined within the
framework of the Pontryagin maximum principle [11] with special characteristics
of infinite horizon [4]. Specific features of the corresponding Hamiltonian system
are examined within the qualitative theory of differential equations [8]. Particularly,
necessary and sufficient conditions of existence of a steady state are formulated.
Owing to the numerical calculations for the data by Chinese economy it is shown
that the steady state has a saddle character. Due to this fact the nonlinear regula-
tor [14] can be constructed, which allows to stabilize the Hamiltonian system at a
steady state neighborhood. Integration of the original Hamiltonian system is per-
formed using stabilized solutions in the backward time. Finally, the comparison of
the stabilized solutions and optimal trajectories at a steady state neighborhood is
carried out.

2 Model Description

The main phase variables of the model are presented by the resource use m=m(t),
the cumulative resource consumption, which is introduced as the integrated material
use M(t)= ∫ t0 m(s)ds ≤M0, where parameterM0 is the initial stock of the natural
resources, and the current production y = y(t). Resources productivity z = z(t) is
the ratio of the production y(t) to the used materials m(t)

z(t)= y(t)

m(t)
. (2.1)

The exponential production function of the Cobb–Douglas type is chosen for the
first version of the model

y(t)= aebtmα(t), a > 0, b ≥ 0, 0 ≤ α < 1. (2.2)



Optimal Control Problem on Optimization of Resources Productivity 135

Here the parameter a is a scale factor; the growth rate b indicates the growth process
of production y(t) due to development of basic production factors such as capital,
labor, technology, etc.; the symbol α denotes the elasticity coefficient of natural
resources.

2.1 Price Formation Mechanism

The price formation mechanism provides the growth of prices p(t) on nature re-
source in the case of their exhaustion. It is assumed that prices are growing accord-
ing to the inversely proportional rule of resource exhaustion

p = p(t)= p0

(

1 − M(t)

M0

)−1

. (2.3)

Here the symbol p0 denotes the initial price on natural resources. Formula (2.3)
envisages that price p(t) can grow rapidly to infinity according to the hyperbolic
law when the total material useM(t) reaches its limitationM0.

2.2 Balance Equation

In the balance equation it is taken into account that production y(t) in period t
is shared between consumption c(t), from the one hand, and the growing cost of
natural resources p(t)m(t) plus investment u(t)y(t) in improving the resource pro-
ductivity, from the other hand,

y(t)= c(t)+ p(t)m(t)+ u(t)y(t). (2.4)

Let us assume that there exists lower and upper bounds u, u for investment intensity
u(t), i.e. 0< u≤ u(t)≤ u < 1. Deducing the consumption intensity c(t)/y(t) from
(2.4) through the resource intensity m(t)/y(t) we obtain the following relation

c(t)

y(t)
= 1 − p(t)m(t)

y(t)
− u(t). (2.5)

Using representation of the consumption c(t) (2.5), we introduce an integrated log-
arithmic consumption index discounted with the discount rate ρ,ρ > 0, on the infi-
nite time interval

J =
∫ +∞

0
e−ρt ln c(t)dt =

∫ +∞

0
e−ρt ln

(
y(t)− p(t)m(t)− u(t)y(t))dt.
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2.3 Model Dynamics

Let assume that the relative raise in the resource productivity z(t) is proportional to
the portion of the assigned investment u(t) which can be interpreted as investment
in “green” technology (see [7, 16])

ż(t)

z(t)
= βu(t), β ≥ 0. (2.6)

Here the parameter β describes the effectiveness of investment u(t) in raising the
resources productivity. Taking into account the definition (2.1) of the resources pro-
ductivity z(t), its dynamic (2.6) and the production function (2.2) for the output y(t)
one can obtain the differential equation for the used materials m(t)

ṁ(t)= m(t)

1 − α
(
b− βu(t)). (2.7)

Equation (2.7) shows that the rate of the resource consumption is influenced by the
production growth rate b and can be reduced only by investment u(t) in raising the
resource productivity.

Let us introduce phase variables

x1(t)= m(t)

M0 −M(t) , x2(t)= p(t)m(t)

y(t)
,

x1(0)= x0
1 = m0

M0
, x2(0)= x0

2 = p0m
1−α
0

a
.

(2.8)

where the first variable x1(t) is the share of material use m(t) in the current stock
(M0 − M(t)) of natural resources, and second one is the ratio of expenditures
p(t)m(t) on natural resources to the production output y(t).

3 Optimal Control Problem

The problem is to maximize the utility function

J (·)=
∫ +∞

0
e−ρt
(
lnx1(t)− lnx2(t)+ ln

(
1 − x2(t)− u(t)

))
dt (3.1)

over the control process (x1(t), x2(t), u(t)) of the dynamic system

ẋ1(t)= x1(t)

(

x1(t)+ b− βu(t)
1 − α

)

, ẋ2(t)= x2(t)
(
x1(t)− βu(t)

)
(3.2)

satisfying initial conditions x1(0)= x0
1 , x2(0)= x0

2 (2.8) and subject to constraints
for the control variable

0< u≤ u(t)≤ u < 1.
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Remark 3.1 It is supposed that the following inequality is valid βu ≥ b + (1 −
α)
m0
M0
> 0.

3.1 Hamiltonian Function

Analysis of the optimal control problem is based on generalized Pontryagin maxi-
mum principle [4]

The stationary Hamiltonian function [16] for the optimal control problem (3.1)–
(3.2) has the following structure

Ĥ (x,ψ,u) = lnx1 − lnx2 + ln (1 − x2 − u)

+ψ1x1

(

x1 + b− βu
1 − α

)

+ψ2x2(x1 − βu)

where ψ = (ψ1,ψ2) and x = (x1, x2) are vectors of adjoint and phase variables
respectively.

Maximizing the Hamiltonian function Ĥ (x,ψ,u) with respect to the control
variable u, one can obtain the following structure of the control û

û=

⎧
⎪⎨

⎪⎩

u1 = u, D1 = {(x,ψ) : 1 − x2 − v(x,ψ)≤ u},
u2 = 1 − x2 − v(x,ψ), D2 = {(x,ψ) : u≤ 1 − x2 − v(x,ψ)≤ u},
u3 = u, D3 = {(x,ψ) : 1 − x2 − v(x,ψ)≥ u},

(3.3)
where symbol v(x,ψ) is defined as follows v(x,ψ)= − 1−α

β
1

ψ1x1+(1−α)ψ2x2
. Thus,

one can single out three domains Di (i = 1,2,3) of definition of the maximized
Hamiltonian function.

Hamiltonian systems in each domain can be found by formulas

ẋi (t)= ∂Hi(x,ψ)

∂ψi

∣
∣
∣
∣x=x(t),
ψ=ψ(t)

, ψ̇i(t)= ρψi(t)− ∂Hi(x,ψ)

∂xi

∣
∣
∣
∣x=x(t),
ψ=ψ(t)

, i = 1,2.

Let us introduce new adjoint variables zi = xiψi , i = 1,2. In these variables
x(t)= (x1(t), x2(t)), z(t)= (z1(t), z2(t)) Hamiltonian systems have the following
structures

In domains D1, D3 In the domain D2

ẋ1(t)= x1(t)(x1(t)+ b−βui
1−α ) ẋ1(t)= x1(t)(x1(t)+ β(x2(t)+v(z(t))−1)−b

1−α )

ẋ2(t)= x2(t)(x1(t)− βui) ẋ2(t)= x2(t)(x1(t)− β(x2(t)+ v(z(t))− 1))
ż1(t)= ρz1(t)− x1(t)(z1(t)+ z2(t))− 1 ż1(t)= ρz1(t)− x1(t)(z1(t)+ z2(t))− 1
ż2(t)= ρz2(t)+ 1−ui

1−ui−x2(t)
ż2(t)= ρz2(t)+ x2(t)

v(z(t))
+ 1
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Fig. 1 Area Ω of existence
of the steady state

3.2 Qualitative Analysis of the Hamiltonian System

First of all let us formulate necessary and sufficient conditions of existence of a
steady state in the domain D2 of the non-constant control u2.

Proposition 3.2 The Hamiltonian system in the domain D2 of the transient control
regime u2 has a steady state (x∗, z∗)= (x∗

1 , x
∗
2 , z

∗
1, z

∗
2) if and only if model param-

eters are located in the area Ω depicted in Fig. 1.

If the steady state exists then its coordinates can be found analytically by formu-
las

x∗
1 = b

α
, x∗

2 = (αρ − b)((1 − α)ρ + αβ − b)
αβρ

,

z∗1 = (1 − α)
(

1 − αρ

αβ − b
)

z∗2, z∗2 = − αβ − b
αρ(1 − α)(β − ρ)+ b(αβ − b) .

Numerical experiments which have been carried out for the statistical data by Chi-
nese economy [10] for the period from 1980 to 2010, show that the steady state has
the saddle character, i.e. Jacobi matrix, evaluated at the steady state, has four differ-
ent real eigenvalues, two of which are negative numbers and two others are positive
ones λ1 < λ2 < 0< λ3 < λ4. It allows to construct a nonlinear regulator (stabilizer)
which stabilizes Hamiltonian system at a neighborhood of the steady state.

4 Nonlinear Stabilizer

Let us formulate the theorem which summarizes conditions for constructing nonlin-
ear regulator and its properties.

Theorem 4.1 (Nonlinear stabilizer) Let the Hamiltonian system at the domain D2
of the transient control regime u2 has a steady state (x∗, z∗) satisfying following
conditions

A1. Jacobi matrix, evaluated at the steady state, has four different real eigenvalues,
two of which are negative numbers and two others are positive ones λ1 < λ2 <

0< λ3 < λ4;
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A2. Eigenvectors hi = (hi1, hi2, hi3, hi4) corresponding to negative eigenvalues λi
(i = 1,2) meet inequality: h11h22 �= h12h21.

Then there exists the nonlinear stabilizer with the following properties:

P1. the stabilized Hamiltonian system generated by the nonlinear regulator is
closed with respect to the phase variables x1, x2;

P2. the steady state of the stabilized system has coordinates x∗ = (x∗
1 , x

∗
2 ) which

coincide with the phase coordinates x∗ of the steady state (x∗, z∗) of the origi-
nal Hamiltonian system;

P3. the stabilized system has two negative eigenvalues which are equal to λ1, λ2;
P4. the eigenvectors of the linearized system generated by the stabilizer can be

evaluated by formulas

h1 =
(
h11
h12

)

, h2 =
(
h21
h22

)

.

4.1 Algorithm for Constructing Nonlinear Stabilizer

The algorithm for constructing nonlinear stabilizer can be applied if the assumptions
A1, A2 indicated at Theorem 4.1 are fulfilled.

1. The first step consists in constructing a plane by two eigenvectors h1, h2 corre-
sponding to negative eigenvalues λ1, λ2.

ν11x1 + ν12x2 + ν13z1 + ν14z2 = C1,

ν21x1 + ν22x2 + ν23z1 + ν24z2 = C2.
(4.1)

Let us call this flat surface as eigen-plane. Since the steady state is located in the
eigen-plane constants C1 and C2 can be uniquely found by substituting coordi-
nates (x∗

1 , x
∗
2 , z

∗
1, z

∗
2) of the steady state in equalities (4.1).

2. Using (4.1) of the eigen-plane one can derive adjoint variables through the phase
ones z1 = ẑ1(x), z2 = ẑ2(x).

ẑ1(x)= z∗1 + γ11
(
x1 − x∗

1

)+ γ12
(
x2 − x∗

2

)
,

ẑ2(x)= z∗2 + γ21
(
x1 − x∗

1

)+ γ22
(
x2 − x∗

2

)
,

(4.2)

where coefficients γij are found by formulas due to the condition A2 of Theo-
rem 4.1

γ11 = −
∣
∣ h12 h13
h22 h23

∣
∣

∣
∣ h11 h12
h21 h22

∣
∣
, γ12 =

∣
∣ h11 h13
h21 h23

∣
∣

∣
∣ h11 h12
h21 h22

∣
∣
,

γ21 = −
∣
∣ h12 h14
h22 h24

∣
∣

∣
∣ h11 h12
h21 h22

∣
∣
, γ22 =

∣
∣ h11 h14
h21 h24

∣
∣

∣
∣ h11 h12
h21 h22

∣
∣
.
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3. On this step the representation of adjoint variables (4.2) is substituted in the
relation for the control u2 (3.3) corresponding to the domain D2.

û(x)= 1 − x2 + 1 − α
β

1

ẑ1(x)+ (1 − α)̂z2(x)
= 1 − x2 − v(ẑ(x)). (4.3)

4. Stabilized Hamiltonian system in the domain D2 of the transient control regime
u2 can be obtained by replacing adjoint variables z1, z2 by their expressions
ẑ1(x), ẑ2(x) in the first two equations of the original Hamiltonian system.

ẋ1(t)= x1(t)

(

x1(t)+ β

1 − α
(
x2(t)+ v

(
ẑ
(
x(t)
))− 1

)+ b

1 − α
)

,

ẋ2(t)= x2(t)
(
x1(t)+ β

(
x2(t)+ v

(
ẑ
(
x(t)
))− 1

))
.

(4.4)

4.2 Construction of the Optimal Trajectories

Relying on the qualitative theory of differential equations [8], it is known that the
solution of ordinary differential equations converges to the saddle steady state by the
tangent plane built by two eigenvectors corresponding to negative eigenvalues. Due
to this fact, construction of the optimal trajectories is carried out by the following
way.

1. Algorithm for constructing optimal solutions is based on stabilized trajectories
(̂x1(t), x̂2(t)) obtained as a solution of the stabilized Hamiltonian system at the
steady state ε-vicinity [15].

2. Original Hamiltonian system is solved in backward time starting from points
located both at the steady state ε-vicinity (O∗

ε ) and in a δ-neighborhood (Ôδ) of
stabilized trajectories (̂x1(t), x̂2(t)).

3. Algorithm is stopped when the constructed trajectory reaches original initial po-
sition (x0

1 , x
0
2).

4. If the integrated trajectory does not achieve the original initial point (x0
1 , x

0
2),

then we exhaustively search for another initial position by looking through the
points from the intersection of neighborhoods O∗

ε and Ôδ .

4.3 Numerical Experiments

The calculations have been carried out on the basis of the data on Chinese economy
from 1980 to 2010, reduced to the values of 1980. The calibration of the param-
eters of the model has yielded the following values of the parameters p0 = 100,
M0 = 1.8121 · 106, β = 1.5226, a = 64.3348, α = 0.4091, b = 0.0686, ρ = 0.18,
m0 = 0.08565, u = 0.0451, u = 0.6360. Steady state of the Hamiltonian system
has coordinates x∗

1 = 0.1676, x∗
2 = 0.0296, z∗1 = 2.9449, z∗2 = −5.7473. Jacobi
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Fig. 2 Comparison of the optimal and stabilized solutions: (a) for the control variable u(t), (b),
(c) for the phase variables (x1(t), x2(t))

matrix evaluated at the steady state has the following eigenvalues λ1 = −1.457,
λ2 = −0.005, λ3 = 0.185, λ4 = 1.637. Eigen-plane equations (4.1) look as follows

ẑ1(x) = 2.945 − 2.17
(
x1 − x∗

1

)+ 2.5
(
x2 − x∗

2

)
,

ẑ2(x) = −5.747 + 0.44
(
x1 − x∗

1

)− 6.29
(
x2 − x∗

2

)
.

Figure 2(a) depicts optimal programming control u(t) in comparison with the
stabilizer û(̂x(t)) (4.3) at the ε-neighborhood of the steady state, where radius ε =
10−3. Graphs of the optimal solutions (x1(t), x2(t)) and corresponding trajectories
(̂x1(t), x̂2(t)) of the stabilized Hamiltonian system (4.4), constructed at the same
ε-neighborhood of the steady state, are shown at Fig. 2(b)–(c).

One can see that the stabilized system solution and original one are very close to
each other in the steady state neighborhood, moreover they have the similar behav-
ior.
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The Amalgam Spaces W(Lp(x), �{pn})
and Boundedness of Hardy–Littlewood
Maximal Operators

A. Turan Gürkanlı

Abstract Let Lq(x)(R) be variable exponent Lebesgue space and �{qn} be discrete
analog of this space. In this work we define the amalgam spaces W(Lp(x),Lq(x))
and W(Lp(x), �{qn}), and discuss some basic properties of these spaces. Since the
global components Lq(x)(R) and �{qn} are not translation invariant, these spaces
are not a Wiener amalgam space. But we show that there are similar properties of
these spaces to the Wiener amalgam spaces. We also show that there is a variable
exponent q(x) such that the sequence space �{qn} is the discrete space of Lq(x)(R).
By using this result we prove that W(Lp(x), �{pn}) = Lp(x)(R). We also study the
frame expansion in Lp(x)(R). At the end of this work we prove that the Hardy–
Littlewood maximal operator from W(Ls(x), �{tn}) into W(Lu(x), �{vn}) is bounded
under some assumptions.

Keywords Amalgam space · Variable exponent Lebesgue space ·
Hardy–Littlewood maximal operator

Mathematics Subject Classification (2010) 42B25 · 42B35

1 Introduction

The first appearance of amalgam can be traced to N. Wiener [20]. But the first sys-
tematic study of these spaces was undertaken by F. Holland [15]. A generalization of
Wiener’s definition was given by H.G. Feichtinger in [9]. Later a number of authors
worked on these spaces, for example [11, 12, 16]. Also J.J. Fournier and J.S. Stew-
ard gave a good historical background of amalgam space cite18. A.T. Gürkanlı and
I. Aydın was defined the weighted variable exponent amalgam space W(Lp(x), �pw)
by using variable exponent Lebesgue space Lp(x) as local component and investi-
gated some properties of these spaces, [2, 13].
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Also the function spaces with variable exponents have been studied in recent
years by a significant number of authors. But the modern development started by
O. Kovacik and J. Rakosnik [17]. The boundedness of the Maximal operator was
open problem in Lp(x) for long time. It was proved by L. Diening over bounded
domains in [5] and by D.C. Ulribe, A. Fiorenza and C.J. Neugebauer over open
domains in [3, 4].

In the present work we define the variable exponent amalgam spaces W(Lp(x),
Lq(x)) and W(Lp(x), �{qn}), and discuss some basic properties of these spaces,
where �{qn} is discrete analog of Lq(x)(R). Since the global components Lq(x)(R)
and �{qn} are not translation invariant, these amalgam spaces are not a Wiener
amalgam space. We also show that there is a variable exponent q(x) such that
the sequence space �{qn} is the discrete space of Lq(x)(R). By using this result
we prove that W(Lp(x), �{pn}) = Lp(x)(R). Later we study on the frame expan-
sion in Lp(x)(R) and boundedness of the Hardy–Littlewood maximal operator from
W(Ls(x), �{tn}) into W(Lu(x), �{vn}).

2 Notations

Let Ω ⊂ R be an open subset. For a measurable function p :Ω → [1,∞) (called
the variable exponent on Ω) put

p∗ = ess inf
x∈Ω p(x), p∗ = ess sup

x∈Ω
p(x).

Define P(Ω) to be the set of measurable functions p :Ω → [1,∞) such that 1<
p∗ ≤ p(x) ≤ p∗ <∞. Throughout this paper we will assume that p∗ <∞. The
generalized Lebesgue spaces (or Lebesgue space with variable exponent) Lp(x)(Ω)
is defined to be the space of all measurable functions (equivalent classes) f on Ω
for which

�p(f )=
∫

Ω

∣
∣f (x)

∣
∣p(x)dx <∞.

Equipped with the Luxemburg norm

‖f ‖Lp(x) = inf

{

λ > 0 : �p
(
f

λ

)

≤ 1

}

,

Lp(x)(Ω) is a Banach space. If p(x) = p is a constant function, then the norm
‖.‖Lp(x) coincides with the usual Lebesgue norm ‖.‖Lp , [6, 17]. It is also known that
if p∗ <∞ then Lp(x)(Ω) is solid, i.e if any measurable function g, for which there
exists f ∈ Lp(x)(Ω) such that |g(x)| ≤ |f (x)| locally almost everywhere, belongs
to Lp(x)(Ω), with ‖g‖Lp(x) ≤ ‖f ‖Lp(x) , [1].

Let M be the set of all mappings a : Z → R, a = {an}. Denote by

ε = {p ∈M : p ≥ 1 for all n ∈ Z},
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p∗ = sup{pn : n ∈ Z}
and

B = {p ∈ ε : p∗ <∞}.
Let p ∈ ε. Define the space �{pn} by

�{pn} = {a : ‖a‖{pn} <∞},
where

‖a‖{pn} = inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
an

λ

∣
∣
∣
∣

pn

≤ 1

}

. (2.1)

If the mapping r ∈ ε is a constant, then we use the usual symbol �r and,

‖a‖r =
(∑

n∈Z
|an|r

) 1
r

.

If p ∈ B, then by Lemma 2.5 in [18]

�{pn} =
{

a :
∑

n∈Z
|an|pn <∞

}

.

Let p,q ∈ ε and let T be a linear function from �{pn} into �{qn}. We say that T is
bounded if

‖T ‖ = sup
{‖T a‖{pn} : ‖a‖{pn} ≤ 1

}
<∞.

Let ε ∈M. We say that ε ∈P if there exists a real number C > 0 such that

∑

n∈P(ε)
εnC

1
εn <∞,

where

P(ε)= {n ∈ Z : εn > 0},
[7, 18].

A sequence space Xd is called a Banach coordinate space (or shortly BK space)
if it is a Banach space and the coordinate functions Pn : Xd → C are continu-
ous on Xd , i.e., the relations xn = (αnj ), x = (αj ) ∈ Xd , limn→∞ xn = x imply
limn→∞ αnj = αj (j = 1,2, . . .).

Given any neighbourhood U of 0 ∈ R, a family X = (xi)i∈I ⊂ R is called U -
dense if the family (xi + U)i∈I covers R. That is

⋃
i∈I (xi + U) = R. The family

X is called seperated if the sets (xi + U)i∈I are pairwise disjoint. The family X is
called relatively separated proved that it is a finite union of separated sets. We will
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call a familyX = (xi)i∈I ⊂ R is well-spread in R if it is both U -dense and relatively
separated.

A family of functions ψ = {ψi}i∈I on R is a bounded uniform partition of unity
(BUPU or U-BUPU) if the following properties hold:

(a)
∑
i∈I ψi ≡ 1;

(b) sup‖ψi‖L∞ <∞;
(c) There exists a compact set U ⊂ R with nonempty interior and X = (yi)i∈I ⊂ R

such that suppψi ⊂ yi +U for all i ∈ I ;
(d) For each compact K ⊂ R,

sup
x∈R
${i ∈ I : x ∈K + yi} = sup

i∈I
${j ∈ I :K + yi ∩K + yj �= φ}<∞

Let 1 ≤ r, s ≤ ∞. Fix a compactQ⊂ R with nonempty interior. Then the Wiener
amalgam space W(Lr,Ls)(R) with local component Lr(R) and global component
Ls(R) is defined as the space of all measurable functions (equivalent classess) f :
R →C such that f χK ∈ Lr(R) for each compact subsetK ⊂ R, for which the norm

‖f ‖W(Lr ,Ls) = ‖Ff ‖s = ∥∥‖f χQ+x‖r
∥
∥
s

is finite, where χK is the characteristic function of K and

Ff (x)= ‖f χQ+x‖r ∈ Ls(R).
It is known that if r1 ≥ r2 and s1 ≤ s2 then W(Lr1 ,Ls1)(R) ⊂W(Lr2,Ls2)(R). If
r = s then W(Lr,Lr)(R)= Lr(R), [9, 10, 14].

For f ∈ L1
loc(Ω), we define the (centered) Hardy–Littlewood maximal function

Mf of f by

Mf (x)= sup
r>0

1

|B̃(x, r)|
∫

B̃(x,r)

∣
∣f (y)

∣
∣dy, B̃(x, r)= B(x, r)∩Ω, (2.2)

where the supremum is taken over all balls B̃(x, r) and |.| denotes the volume of
B̃(x, r).

We will often need to assume that p(x) satisfies the following two log-Hölder
continuity conditions:

∣
∣p(x)− p(y)∣∣≤ C

− ln |x − y| , x, y ∈Ω, |x − y| ≤ 1

2
(2.3)

and
∣
∣p(x)− p(y)∣∣≤ C

ln(e+ |x|) , x, y ∈Ω, |y|> |x|. (2.4)

Condition (2.4) is the natural analogue of (2.3) at infinity. It implies that there is
some number p∞ such that p(x)→ p∞ as |x| → ∞, and this limit holds uniformly
in all directions.
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It is known that if Ω is open and bounded and (2.3) holds, then the Hardy–
Littlewood maximal operator is bounded on Lp(x)(Ω), [5]. It is also known that if
Ω is open and both (2.3) and (2.4) hold, then again the Hardy–Littlewood maximal
operator is bounded on Lp(x)(Ω), [3, 4]. Although the Hardy–Littlewood maximal
operator is bounded on Lp(x) under some conditions, it is not bounded on many of
the Wiener amalgam spaces.

3 The Amalgam Spaces W(Lp(x), �{pn}) and W(Lp(x),Lq(x))

In this section we will define the spaces W(Lp(x), �{pn}) and W(Lp(x),Lq(x)) like
the Wiener amalgam space in [2, 9, 10, 14] and investigate some properties. Later
we will compare these spaces with the Wiener amalgam spaces.

Suppose that (yi)i∈Z and U such that (U + i)i∈Z is a partition of R. Then (ψi)=
(χi+U)i∈Z is a BUPU.

Definition 3.1 Let p(x) be a variable exponent on R and (ψi)i∈Z is a BUPU as
above. Then the amalgam spaceW(Lp(x), �{qn}) consists of all (classes of) measur-
able functions f on R such that f χK ∈ Lp(x)(R) for each compact subset K ⊂ R,
and ‖f ‖W = ‖f ‖W(Lp(x),�{qn}) <∞, where

‖f ‖W = ‖f ‖W(Lp(x),�{qn}) = ∥∥{‖fψn‖Lp(x)
}

n∈Z
∥
∥{qn}.

= ∥∥{‖f χU+n‖Lp(x)
}

n∈Z
∥
∥{qn}. (3.1)

Remark 3.1 By the definition of Wiener amalgam space W(Lp,Lq), the global
component Lq (or in the discrete case W(Lp, �q) the global component �q ) is
translation invariant. Hence as a consequence of Theorem 1 in [9], the definition
of Wiener amalgam space W(Lp,Lq) is not depend on the particular choice of
compact subsetQ⊂ R. But in the amalgam spacesW(Lp(x), �{pn}), the global com-
ponents �{pn} is not translation invariant. We notice that the definition of the space
W(Lp(x), �{pn}) are depend on the choice of the subset U ⊂ R. Throughout this
work we will choice that U = (0,1].

Now we will discuss whether some known properties of Wiener amalgam space
true or not true for the spaceW(Lp(x), �{pn}).

Lemma 3.1 If p ∈ B, then �{pn} is a BK space under the norm

‖x‖{pn} = inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
xn

λ

∣
∣
∣
∣

pn

≤ 1

}

, x = (xn)n∈Z.

Proof It is known that �{pn} is a Banach function space by Lemma 2.5 in [8]. Hence
it is a Banach space. Now let x ∈ �{pn} and x = (xn)n∈Z. We have the inequality
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∣
∣Pn(x)

∣
∣ = |xn| ≤ inf

{
λ > 0 : |xn| ≤ λ

}

≤ inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
xn

λ

∣
∣
∣
∣

pn

≤ 1

}

= ‖x‖{pn}. (3.2)

That means the coordinate functions Pn are continuous for all n ∈ Z. Hence �{pn} is
a BK space. �

Proposition 3.1 Let 1 ≤ p(x) ≤ s(x) <∞ and q = {qn}, t = {tn}. If q, t ∈ B and
t − q ∈ P , then

W
(
Ls(x), �{tn}

)
↪→W

(
Lp(x), �{qn}

)
,

equivalently

‖f ‖W(Lp(x),�{qn}) ≤ C
(
μ(U)+ 1

)‖f ‖W(Lp(x),�{tn})
(
f ∈W (Ls(x), �{tn}))

for some constant C > 0 independent of f .

Proof Let f ∈ W(Ls(x), �{tn}) be given. Then {‖χU+nf ‖Ls(x)}n∈Z ∈ �{tn}. Since
p(x)≤ s(x), by Theorem 2.8 in [17] we have Ls(x)(U + n) ↪→ Lp(x)(U + n) and

‖χU+nf ‖Lp(x) ≤ (μ(U + n)+ 1
)‖χU+nf ‖Ls(x)

= (μ(U)+ 1
)‖χU+nf ‖Ls(x) , (3.3)

for all n ∈ Z, where μ is the Lebesgue measure of U . Hence by (3.3) and the solid-
ness of �{tn} one has {‖χU+nf ‖Lp(x)}n∈Z ∈ �{tn}. On the other hand since t − q ∈ ℘,
by Theorem 4.1 in [18] we have the continuous embedding �{tn} ↪→ �{qn} and there
exists C > 0 such that

‖.‖{qn} ≤ C‖.‖{tn} (3.4)

This implies {‖χU+nf ‖Lq(x)}n∈Z ∈ �{qn}. Thus f ∈ W(Lp(x), �{qn}). Also since
�{tn} ↪→ �{qn}, by using (3.4) we obtain

‖f ‖W(Lp(x),�{qn})

= ∥∥{‖f χU+n‖Lp(x)
}

n∈Z
∥
∥{qn} ≤ C∥∥{‖f χU+n‖Lp(x)

}

n∈Z
∥
∥{tn}

= C
[

inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
‖f χU+n‖Lp(x)

λ

∣
∣
∣
∣

tn

≤ 1

}]

≤ C
[

inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
(μ(U)+ 1)‖f χU+n‖Ls(x)

λ

∣
∣
∣
∣

tn

≤ 1

}]

= C
[

inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
‖f χU+n‖Ls(x)

λ
(μ(U)+1)

∣
∣
∣
∣

tn

≤ 1

}]
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= C(μ(U)+ 1
)
[

inf

{
λ

(μ(U)+ 1)
> 0 :

∑

n∈Z

∣
∣
∣
∣
‖fχU+n‖Ls(x)

λ
(μ()+1)

∣
∣
∣
∣

tn

≤ 1

}]

= C(μ(U)+ 1
)∥
∥
{‖f χU+n‖Ls(x)

}

n∈Z
∥
∥{tn}

= C(μ(U)+ 1
)‖f ‖W(Lp(x),�{tn})

Then W(Ls(x), �{tn}) ↪→W(Lp(x), �{qn}) and

‖f ‖W(Lp(x),�{qn}) ≤ C
(
μ(U)+ 1

)‖f ‖W(Lp(x),�{tn}). �

Corollary 3.1 Let 1 ≤ p(x) <∞, q = {qn}, t = {tn} and q, t ∈ B. If |t − q| ∈ P ,
then

W
(
Lp(x), �{tn}

)=W (Lp(x), �{qn}).

Proof Since |t − p| ∈ P , then by Theorem 4.3 in [14], �{qn} = �{tn}. The proof is
completed by Theorem 3.2. �

Theorem 3.1 If p ∈ B, then W(Lp(x), �{qn}) is a Banach space under the norm

‖f ‖W = ‖f ‖W(Lp(x),�{qn}) =
∥
∥
{‖f χU+n‖Lp(x)

}

n∈Z
∥
∥{qn}.

Proof Since q∗ ≥ qn for all n ∈ N, by Proposition 3.1 we have the inclusion
W(Lp(x), �{qn})⊂ W(Lp(x), �q∗

) and there exists C > 0 such that

‖.‖W(Lp(x),�q∗ ) ≤ C‖.‖W(Lp(x),�{qn}). (3.5)

Let (fi)i∈N be a Cauchy sequence of functions in W(Lp(x), �{qn}). Then by (3.5),
(fi)i∈N is also a Cauchy sequence in W(Lp(x), �q

∗
). Since W(Lp(x), �q

∗
) is com-

plete, (fi)i∈N converges to a function f0 ∈W(L(x), �q∗
). Thus

lim
i→∞‖fi−f0‖W(Lp(x),�q∗ ) = lim

i→∞
∥
∥
{∥
∥(fi−f0)χU+n

∥
∥
Lp(x)

}

n∈Z
∥
∥
�q

∗ = 0

for all n ∈ Z. Then by Lemma 3.1, for every fixed n ∈ Z,

lim
i→∞

∥
∥(fi−f0)χU+n

∥
∥
Lp(x)

= 0.

Now we will show that (fi)i∈N converges to f0 inW(Lp(x), �{qn}). For given any
ε > 0, choice any λ > ε. Since for fixed i ∈ N one has

lim inf
j→∞

∣
∣
∣
∣
‖(fi−f0)χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

= lim
j→∞

∣
∣
∣
∣
‖(fi−fj )χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

=
∣
∣
∣
∣
‖(fi−f0)χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

(3.6)
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then by the Fatou’s Lemma for series and (3.6),

lim inf
j→∞

∑

n∈Z

∣
∣
∣
∣
‖(fi−fj )χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≥
∑

n∈Z
lim inf

j→∞

∣
∣
∣
∣
‖(fi−f0)χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

=
∑

n∈Z

∣
∣
∣
∣
‖(fi−f0)χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

(3.7)

Also since (fi)i∈N is a Cauchy sequence inW(Lp(x), �{qn}), there exists k0 ∈N such
that for all i, j ≥ k0

‖fi−fj .‖W(Lp(x),�{qn}) = ∥∥{‖f χU+n‖Lp(x)
}

n∈Z
∥
∥{qn}

= inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
‖(fi−fj )χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≤ 1

}

< ε.

Thus if for fixed i ≥ k0 and for all j ≥ k0

∑

n∈Z

∣
∣
∣
∣
‖(fi−fj )χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≤ 1,

then

lim inf
j→∞

∑

n∈Z

∣
∣
∣
∣
‖(fi−fj )χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≤ 1.

Hence by (3.7), for all j ≥ k0

∑

n∈Z

∣
∣
∣
∣
‖(fi−f0)χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≤ 1.

Since these results are true for every λ > ε and for all j ≥ k0, we have

‖fi−f0‖W(Lp(x),�{qn}) = ∥∥{∥∥(fi−f0)χU+n
∥
∥
Lp(x)

}

n∈Z
∥
∥{qn}

= inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
‖(fi−f0)χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≤ 1

}

≤ inf

{

λ > 0 :
∑

n∈Z

∣
∣
∣
∣
‖(fi−fj )χU+n‖Lp(x)

λ

∣
∣
∣
∣

qn

≤ 1

}

= ‖fi−fj‖W(Lp(x),�{qn}) ≤ ε
for all i ≥ k0. Hence (fi)i∈N tends to f0 in W(Lp(x), �{qn}). To show that f0 ∈
W(Lp(x), �{qn}), take any ε > 0. Since (fi)i∈N tends to f0 there exists i0 ∈ N such
that

‖fi−f0‖W(Lp(x),�{qn}) < ε.
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On the other hand since (fi)i∈N is bounded, there exists a number M > 0 such that
‖fi‖W(Lp(x),�{qn}) <M . Hence we have

‖f0‖W(Lp(x),�{qn}) = ‖f0 + fi − fi‖W(Lp(x),�{qn})

= ‖fi−f0‖W(Lp(x),�{qn}) + ‖fi‖W(Lp(x),�{qn}) <M + ε.
This completes the proof. �

Definition 3.2 Let k ∈ Z. Define a shift operator Sk from M into itself by

(Ska)n = an−k, n ∈ Z, a ∈ M.

Set

D = sup
{‖Sk‖pn→pn : k ∈ Z

}
.

Proposition 3.2 Let 1 ≤ p(x) <∞, q = {qn} and q ∈ B. If D <∞, then there
exists r ∈ [1,∞) such that

W
(
Lp(x), �{qn}

)=W (Lp(x), �r)=W (Lp(x),Lr).

Proof Assume that D <∞. Then by Lemma 5.10 in [18] there exists r ∈ [1,∞)
such that the norms in �{qn} and �r are equivalent. Thus �{qn} = �r . Hence

W
(
Lp(x), �{qn}

)=W (Lp(x), �r). (3.8)

Also by Proposition 3 in [13]

W
(
Lp(x), �r

)=W (Lp(x),Lr). (3.9)

Finally by (3.8) and (3.9) we obtain

W
(
Lp(x), �{qn}

)=W (Lp(x), �r)=W (Lp(x),Lr). �

As a easy consequence of Proposition 3.2 and Corollary 3.1 we obtain the fol-
lowing corollary.

Corollary 3.2 Let 1 ≤ p(x) <∞, q = {qn}, t = {tn} and q, t ∈ B. If |t − q| ∈ P
and D <∞, then there exists r ∈ [1,∞) such that the norms in W(Lp(x), �{qn}),
W(Lp(x), �{tn}) and W(Lp(x), �r ) are equivalent.

Proposition 3.3 Let 1 ≤ p(x), s(x) <∞, q = {qn}, t = {tn} and q, t ∈ B. Also
assume that |t − q| ∈P and D <∞. Then there exists r ∈ [1,∞) such that

W
(
Lp(x), �{qn}

)=W (Ls(x), �{tn})=W (Lp(x), �r)

if and only if p(x)= s(x).
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Proof Assume that p(x)= s(x). Since |t − q| ∈ P , then by Corollary 3.1,

W
(
Lp(x), �{qn}

)=W (Ls(x), �{tn}). (3.10)

Also since D <∞, according to Corollary 3.2, there exists r ∈ [1,∞) such that

W
(
Lp(x), �{qn}

)=W (Lp(x), �r). (3.11)

Hence by (3.10) and (3.11) we obtain

W
(
Lp(x), �{qn}

)=W (Ls(x), �{tn})=W (Lp(x), �r).
Conversely assume that

W
(
Lp(x), �{qn}

)=W (Ls(x), �{tn}). (3.12)

Since |t − q| ∈ P , then �{qn} = �{tn}. Also since D <∞, by Lemma 5.10 in [18]
there exists r ∈ [1,∞) such that

�{qn} = �{tn} = �r .
Hence by (3.12)

W
(
Lp(x), �{qn}

)=W (Lp(x), �r)

and

W
(
Ls(x), �{tn}

)=W (Ls(x), �r).
Then

W
(
Lp(x), �r

)=W (Ls(x), �r).
Finally by Corollary 1 in [13] one has p(x)= s(x). �

Now we define the general case of amalgam space by taking Lq(x)(R) instead of
�{pn} and compare it with the Wiener amalgam space.

Definition 3.3 Let p(x) and q(x) be variable exponents on R. Fix a compact subset
U ⊂ R with nonempty interior. Then the amalgam space W(Lp(x)(R),Lq(x)(R)),
(shortlyW(Lp(x),Lq(x))) consists of all functions f ∈ Lp(x)loc (R) such that ‖f ‖W =
‖f ‖W(Lp(x),Lq(x)) <∞, where the norm of f is

‖f ‖W = ‖f ‖W(Lp(x),Lq(x)) =
∥
∥‖f χU+z‖Lp(x)

∥
∥
Lq(z)

, z ∈ Z.

Remark 3.2 Since the global component Lq(x) of the amalgam space W(Lp(x),
Lq(x)) is not translation invariant, we can not say that the definition is indepen-
dent of the choice of U . Hence the spaceW(Lp(x),Lq(x)) is not a Wiener amalgam
space.
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Definition 3.4 Let X = (xi)i∈I ⊂ R be well-spread family in R. For any variable
exponent Lebesgue space Lp(x), we define the associate discrete space (Lp(x))d as

(
Lp(x)

)

d
=
{

Λ :Λ= (λi)i∈I with
∑

i∈I
|λi |χxi+U ∈ Lp(x)

}

with the norm

‖Λ‖(Lp(x))d =
∥
∥
∥
∥

∑

i∈I
|λi |χxi+U

∥
∥
∥
∥
Lp(x)

.

Since Lp(x) is not translation invariant, (Lp(x))d is depend on the choice of U .

Theorem 3.2 Let q : Z → R, q = {pn} ∈ B and U = (0,1]. Define a function
p :R → [1,∞) as p(x)= pn if x ∈U + n for n ∈ Z. Then (Lp(x))d = �{pn}.

Proof If we get xi = i, i ∈ Z, then (xi)i∈I ⊂ R is a well spread family in R. De-
fine the associate discrete space (Lp(x))d as in Definition 3.4. Let λ = (λi)i∈Z ∈
(Lp(x))d . By the definition of (Lp(x))d ,

∑
i∈Z |λi |χU+i ∈ Lp(x). On the other hand

we have the equality

∫

R

∣
∣
∣
∣

∑

i∈Z
|λi |χU+i (x)

∣
∣
∣
∣

p(x)

dx =
∫

⋃
n∈Z(U+n)

∣
∣
∣
∣

∑

i∈Z
|λi |χU+i (x)

∣
∣
∣
∣

p(x)

dx

=
∑

n∈Z

∫

U+n

∣
∣
∣
∣

∑

i∈Z
|λi |χU+i (x)

∣
∣
∣
∣

p(x)

dx

=
∑

n∈Z

∫

U+n

∣
∣
∣
∣

∑

i∈Z
|λi |χU+i (x)

∣
∣
∣
∣

pn

dx

=
∑

i∈Z
|λi |pi (3.13)

Since the left side of the equality (3.13) is finite, then right side is also finite. Then
we have the inclusion

(
Lp(x)

)

d
⊂ �{pn} (3.14)

Conversely let λ= (λi)i∈Z ∈ �{pn}. Then
∑

i∈Z
|λi |pi <∞.

Thus again by (3.13),

∫

R

∣
∣
∣
∣

∑

i∈Z
|λi |χU+i (x)

∣
∣
∣
∣

p(x)

dx =
∑

i∈Z
|λi |pi <∞.
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This implies

�{pn} ⊂ (Lp(x))
d
. (3.15)

If we combine (3.14) and (3.15) obtain (Lp(x))d = �{pn}. �

Theorem 3.3 Let q = {qn}, q ∈ B. Define any function p : R → [1,∞) as p(x)=
qn if x ∈U + n for n ∈ Z. ThenW(Lp(x), �{qn})= Lp(x).

Proof By Definition 3.1, f ∈W(Lp(x), �{qn}) if and only if
{‖f χU+n‖Lp(x)

}

n∈Z = {‖f χU+n‖Lqn
}

n∈Z ∈ �{qn}.
Hence f ∈W(Lp(x), �{qn}) if and only if

∑

n∈Z
‖f χU+n‖qnLqn =

∑

n∈Z

[{∫

R

∣
∣f χU+n(x)

∣
∣qndx

} 1
qn
]qn

=
∑

n∈Z

∫

R

∣
∣f χU+n(x)

∣
∣qndx <∞ (3.16)

On the other hand for any f ∈ Lp(x) we have

ρp(f ) =
∫

R

∣
∣f (x)

∣
∣p(x)dx =

∑

n∈Z

∫

U+n
∣
∣f (x)

∣
∣p(x)dx

=
∑

n∈Z

∫

R

∣
∣f χU+n(x)

∣
∣p(x)dx =

∑

n∈Z

∫

R

∣
∣f χU+n(x)

∣
∣qndx. (3.17)

Since f ∈ Lp(x) if and only if ρp(f ) < ∞ and the right sides of (3.16) and
(3.17) are equal, then f ∈ W(Lp(x), �{qn}) if and only if f ∈ Lp(x). This implies
W(Lp(x), �{qn})= Lp(x). �

4 Frame Expansions in Lp(x)(R)

Definition 4.1 Let 1
p(x)

+ 1
s(x)

= 1. A countable family (gi)n∈Z ⊂ Ls(x)(R) is

called a p(x)-frame for Lp(x)(R) if (gi(f ))n∈Z ∈ �{qn} and there exist constants
A,B > 0 such that

A‖f ‖Lp(x) ≤
∥
∥
(
gi(f )

)

n∈Z
∥
∥
�{pn} ≤ B‖f ‖Lp(x)

for all f ∈ Lp(x)(R).

Theorem 4.1 Let q : Z → R, q = {pn} ∈ B and U = (0,1]. Define a function p :
R → [1,∞) as p(x)= pn if x ∈ In =U +n for n ∈ Z. Assume that 1

p(x)
+ 1
s(x)

= 1.
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1. Then (χIn)n∈Z ⊂ Ls(x)(R) is a p(x)-frame for Lp(x)(R).
2. Every f ∈ Lp(x)(R) has the expansions

f =
∑

n∈Z
〈f,χIn〉χIn .

Proof 1. By Lemma 3.1, �{pn} is a BK-space. It is easy to see that (χIn)n∈Z ⊂
Lp(x)(R) and (χIn)n∈Z ⊂ Ls(x)(R), where Ls(x)(R) is the dual of Lp(x)(R). By
Proposition 3.2,

W
(
Lp(x), �{pn}

)
↪→W

(
L1, �{pn}

)
(4.1)

and then by (4.1) and Theorem 3.3, there exists B > 0 such that

‖f ‖W(L1,�{pn}) ≤ B‖f ‖W(Lp(x),�{pn}) = B‖f ‖Lp(x) , f ∈ Lp(x)(R). (4.2)

On the other hand

‖f ‖W(L1,�{pn}) = ‖Ff ‖�{pn} = ∥∥(‖f χU+n‖L1

)

n∈Z
∥
∥
�{pn}

=
∥
∥
∥
∥

(∫

R

∣
∣f χU+n(x)

∣
∣dx

)

n∈Z

∥
∥
∥
∥
�{pn}

=
∥
∥
∥
∥

(∫

In

∣
∣f (x)

∣
∣dx

)

n∈Z

∥
∥
∥
∥
�{pn}

. (4.3)

Define the analysis operator C : Lp(x)(R)→ �{pn} by

f →
(∫

In

f (x)dx

)

n∈Z
= (〈f,χIn〉

)

n∈Z.

From (4.2) and (4.3) we have

∥
∥
(〈f,χIn〉

)

n∈Z
∥
∥
�{pn} =

∥
∥
∥
∥

∫

In

C(f )

∥
∥
∥
∥
�{pn}

=
∥
∥
∥
∥

(∫

In

f (x)dx

)

n∈Z

∥
∥
∥
∥
�{pn}

≤
∥
∥
∥
∥

(∫

In

∣
∣f (x)

∣
∣dx

)

n∈Z

∥
∥
∥
∥
�{pn}

= ‖f ‖W(L1,�{pn}) ≤ B‖f ‖Lp(x) . (4.4)

This implies that (〈f,χIn〉)n∈Z ∈ (Lp(x)(R))d = �{pn}. That means the analysis op-
erator C is well defined. Also by (4.4), it is bounded. It is easy to see that C is
injective. To show that C is surjective take any (an)n∈Z ∈ �{pn}. If we say

∑

n∈Z
anχIn = f,
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by the definition of (Lp(x)(R))d we have f ∈ Lp(x)(R). Also we write C(f ) =
(〈∑n∈Z anχIn,χIm〉)n∈Z = (an)n∈Z. Then C is surjective. Finally since C is bijec-
tive and bounded, then C−1 exits and bounded by Theorem 4.2.H in [19]. Since
C−1 is bounded, there existsM > 0 such that

‖f ‖Lp(x) = ∥∥C−1(Cf )
∥
∥
Lp(x)

≤M∥∥C(f )∥∥
�{pn}

=M∥∥(〈f,χIn〉
)

n∈Z
∥
∥
�{pn} , f ∈ Lp(x). (4.5)

Combining (4.4) and (4.5) we have

1

M
‖f ‖Lp(x) ≤

∥
∥
(〈f,χIn〉

)

n∈Z
∥
∥
�{pn} ≤ ‖f ‖Lp(x) .

Hence (〈f,χIn〉)n∈Z is a p(x)-frame for Lp(x)(R).
2. It is easy to show that (en)n∈Z is a Schauder basis of �{pn}, where en =

(0,0, . . . ,1n-th, . . .). Let fi = C−1(ei) for each i ∈ Z. Since C−1 is bounded and
linear, then for every f ∈ Lp(x)(R) we have

f = C−1(Cf )= C−1((〈f,χIn〉
)

n∈Z
)

= C−1
(∑

n∈Z
〈f,χIn〉en

)

=
∑

n∈Z
〈f,χIn〉C−1(en)=

∑

n∈Z
〈f,χIn〉fn. (4.6)

By the definition of fn we write

en = C(fn)=
(

. . . ,

∫

In−1

fn(x)dx,

∫

In

fn(x)dx,

∫

In+1

fn(x)dx · · ·
)

, ∀n ∈ N.

(4.7)
This implies ifm �= n,

∫

In
fm(x)dx = 0 and ifm= n,

∫

In
fm(x)dx = 1. On the other

hand

C(χIm)=
(∫

In

χIm(x)dx

)

n∈Z
= em. (4.8)

Since C is bijective, by (4.7) and (4.8) we have fm = χIm . Finally from (4.6) we
obtain

f =
∑

n∈Z
〈f,χIn〉fn =

∑

n∈Z
〈f,χIn〉χIn .

This completes the proof. �
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5 Boundedness of the Hardy–Littlewood Maximal Operator

Theorem 5.1 Let q = {qn} and q ∈ B. Define any function p : R → [1,∞) by
p(x) = qn if x ∈ U + n for n ∈ Z. Also let t = {tn}, v = {vn} and t, v ∈ B. If 1 ≤
u(x)≤ p(x) < s(x) <∞, t−q ∈P , q−v ∈ P and the Hardy–Littlewood maximal
operator

M : Lp(x)(R)→ Lp(x)(R)

is bounded, then the Hardy–Littlewood maximal operator

M :W (Ls(x), �{tn})→W
(
Lu(x), �{vn}

)

is bounded.

Proof By Theorem 3.3, we write

W
(
Lp(x), �{qn}

)= Lp(x).
Also by Proposition 3.2 we have

W
(
Ls(x), �{tn}

)
↪→W

(
Lp(x), �{qn}

)= Lp(x) ↪→W
(
Lu(x), �{vn}

)
. (5.1)

If we denote the unit maps from W(Ls(x), �{tn}) into Lp(x)(R) and from Lp(x)(R)

into W(Lu(x), �{vn}) by I1 and I2 respectively, then there exists C1 > 0 and C2 > 0
such that

∥
∥I1(f )

∥
∥
Lp(x)

≤ C1‖f ‖W(Ls(x),�{tn}) (5.2)

and
∥
∥I2(f )

∥
∥
W(Lu(x),�{vn}) ≤ C2‖f ‖Lp(x) . (5.3)

SinceM : Lp(x)(R)→ Lp(x)(R) is bounded there exists C3 > 0 such that

‖Mf ‖Lp(x) ≤ C3‖f ‖Lp(x) . (5.4)

Then combining (5.2), (5.3) and (5.4) we obtain

‖Mf ‖W(Lu(x),�{vn}) = ∥∥I2(Mf )
∥
∥
W(Lu(x),�{vn}) ≤ C2‖Mf ‖Lp(x)

≤ C2C3‖f ‖Lp(x) = C2C3
∥
∥I1(f )

∥
∥
Lp(x)

≤ C1C2C3‖f ‖W(Ls(x),�{tn}) =K‖f ‖W(Ls(x),�{tn}),

where K = C1C2C3. This completes the proof. �

Corollary 5.1 Let q = {qn} and q ∈ B. Define any function 1 ≤ p(x) < ∞ by
p(x) = qn if x ∈ U + n for n ∈ Z. Also let t = {tn}, v = {vn} and t, v ∈ B. If
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1 ≤ u(x) ≤ p(x) < s(x) <∞, t − q ∈ P , q − v ∈ P and p(x) satisfies the Log-
Hölder continuity conditions (2.3) and (2.4) then the Hardy–Littlewood maximal
operator

M :W (Ls(x), �{tn})→W
(
Lu(x), �{vn}

)

is bounded.

Proof Since p(x) satisfies Log-Hölder continuity conditions (2.3) and (2.4), then
the Hardy–Littlewood maximal operator

M : Lp(x) → Lp(x)

is bounded (see [4] and [3]). Hence by Theorem 5.1, the Hardy–Littlewood maximal
operator

M :W (Ls(x), �{tn})→W
(
Lu(x), �{vn}

)

is bounded. �
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of Spectral Decomposition
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Abstract We establish conditions for localization of generalised Riesz means of
spectral decomposition by system of fundamental functions of Laplace operator in
terms of belongingness of the decomposing function to the spaces of generalised
smoothness.
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1 Introduction

In spectral theory of differential operators one is often confronted with problems,
solutions of which are to be sought in terms of spaces of generalised smoothness.
The problem on conditions for localization of spectral decompositions for different
differential operators (in particular, for multiple Fourier series and Fourier integrals)
is among them. Such problems were investigated by several mathematicians. How-
ever, we shall restrict ourselves to works of Ilin and Alimov, particularly to the
results in [4]. Throughout the paper, we use the following notations:
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For n-dimensional Euclidean space R
n and for 1 ≤ p ≤ ∞, Lp(Rn) denotes the

Lebesgue space with the norm

‖f ‖Lp(Rn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[∫

Rn

∣
∣f (x)

∣
∣p

]1/p

, if 1 ≤ p <∞,

ess sup
x∈Rn
∣
∣f (x)

∣
∣, if p = ∞

whereas A ↪→ B denotes the topological inclusion of space A in space B and ob-
serve that A= B if and only if A ↪→ B ∩ B ↪→ A. The notation a # b means that
c ≤ a

b
≤ d with 0< c ≤ d depending on non significant parameters. For u > 0 and

function ϕ in R
1, the notations ϕ(u) al. ↓ and ϕ(u) al. ↑ are used to mean that ϕ(u)

is almost decreasing and ϕ(u) is almost increasing respectively.
In this paper, we establish conditions for localisation of Φ-means of spectral

decomposition by fundamental functions for Laplace operator in arbitrary multi-
dimensional domain. The result which is formulated in terms of Nikol’skii type
spaces of generalised smoothness generalises results in [4] and extends our publica-
tion [1].

2 Statement of the Problem

Let G⊂ R
n be an arbitrary domain, (−�̂) arbitrary self-adjoint nonnegative exten-

sion of Laplace operator in G, and u an ordered spectral representation of L2(G)

with respect to (−�̂), dρ(t) the corresponding spectral measure and {ui(x, t)}mi=1
fundamental function system with multiplicity m ≤ ∞. Moreover, for any fixed
t ≥ 0, the fundamental functions ui(x, t) belong to the class C∞(G) and satisfy
the differential equation:

�ui(x, t)+ t2ui(x, t)= 0, x ∈G. (2.1)

For a function f ∈ L2(G), define the Fourier transform

f̂ (t) := {f̂ (t)}m
i=1 and f̂i (t) :=

∫

G

f (x)ui(x, t)dx (2.2)

the spectral decomposition by the system u(x, t)= {ui(x, t)}mi=1

Sμ(f, x)=
∫ μ

0
f̂ (t)u(x, t)dρ(t), μ > 0 (2.3)

and Riesz means of spectral decomposition by

σ sμ(f, x)=
∫ μ

0
f̂ (t)u(x, t)

(

1 − t2

μ2

)s

dρ(t). (2.4)
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Now introduce Φ-means of spectral decomposition

σΦμ (f, x)=
∫ μ

0
f̂ (t)u(x, t)Φ

(

1 − t2

μ2

)

dρ(t) (2.5)

where Φ(u) is sth Reimann–Liouville integral.

Φ(u)= 1

Γ (s)

∫ u

0
(u− v)s−1ϕ(v)dv; u ∈ (0,1], (2.6)

with s > 0 and a function ϕ defined on R possessing properties: ϕ(u)≡ 0 for u < 0,
ϕ(u) > 0, ϕ(u) almost decreasing on (0,1] and ϕ(u)# ϕ(v) when u# v for u,v ∈
(0,1]. Moreover, for s > 0, set s0 = s if s < 1, s0 = 1 if s ≥ 1 and require that

1.

ϕs0(u)=
∫ u

0
vs0−1ϕ(v)dv <∞, u ∈ (0,1]

2.

ϕ ∈ C2(0,1),
∣
∣ϕ′(u)

∣
∣≤ cϕ(u)u−1,

∣
∣ϕ′′(u)

∣
∣≤ cϕ(u)u−2

3.
∫ 1

0
(1 − v)s−1ϕ(v)dv = Γ (s).

We observe thatΦ(1)= 1 and if we set ϕ(u)= Γ (s+1) for u ∈ (0,1], thenΦ(u)=
us and Φ-means reduce to Riesz means of spectral decomposition, σ sμ(f, x).

The problem consists in obtaining conditions for localisation of Φ-means of
spectral decomposition. For Riesz means a similar problem has been solved com-
pletely by Ilin and Alimov [4] in the framework of spaces of exponential order of
smoothness. The result, substantially, was due to the possibility of giving a two-
sided estimate of exponential type for Lebesgue function of Riesz means in spaces
with exponential order of smoothness.

For Φ-means of spectral decomposition such an estimate does not posses expo-
nential character. Thus, for multiple Fourier integral with assumption of convexity
on ϕ(u) , the following estimate for Lebesgue constant was established by Goldman
in [2].

∫

R1≤|x|≤R2

∣
∣DΦμ
∣
∣dx # 1

ω0(1/μ)
, ω0(u)= u(n−1)/2−s

ϕ(u)
(2.7)

Here 0 < R1 < R2 < ∞ are fixed and for x, ξ ∈ R
n, DΦμ (x) = F−1[Φ(1 −

|ξ |2/μ2)](x) is the Kernel of Φ-means.
This estimate hints that the results on conditions for localization of Φ-means of

spectral decomposition to be formulated in terms of spaces with generalised smooth-
ness.
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3 Formulation of the Result

Let Ω ⊂ R
n be a domain and Ω ⊂⊂ G, that is, Ω is compact and Ω ⊂ G. Let

ω(0)= 0, ω(u) is increasing and ω(u)u−k is almost decreasing for k ∈N.

Definition 3.1 The Nikol’skii type space with generalised smoothness Hω(.)p (Ω) is
defined as

Hω(.)p (Ω)= {f ∈ Lp(Ω) : ‖f ‖
H
ω(.)
p (Ω)

<∞}, (3.1)

where

‖f ‖
H
ω(.)
p (Ω)

= ‖f ‖Lp(Ω) + sup
0<u≤1

[
ωkp,Ω(f ;u)
ω(u)

]

(3.2)

and

ωkp,Ω(f ;u)= sup
|h|≤u

‖�kh,Ωf ‖Lp(Ω) , u > 0 (3.3)

is the modulus of continuity of order k for function f ∈ Lp(Ω) with

�kh,Ωf (x)=

⎧
⎪⎨

⎪⎩

�khf (x)=
k∑

m=0

(−1)k−mCmk f (x +mh), [x, x + kh] ⊂Ω,
0, [x, x + kh] ⊂Ωc.

Theorem 3.2 (Main Theorem) Let H̊ω(.)p (Ω) be the closure in Hω(.)p (Ω) of
C∞

0 (Ω) and s > 0, 0 ≤ α,β are such, that

n− 2

2
− s < α ≤ β <min

{

α + 3

2
,
n

2
+ 1

}

(3.4)

and function ω(u) satisfies the requirement

ω(u)u−α al. ↑, ω(u)u−β al. ↓ on (0,1], (3.5)

ω(u)≤ cω0(u), u ∈ (0,1], ω0(u)= u((n−1)/2)+s0 −s

ϕs0(u)
. (3.6)

Let D ⊂Ω ⊂⊂G and f ∈ H̊ω(.)p (Ω) be a function satisfying the condition f (x)≡
0 for all x in D. Then for each compact K ⊂D uniformly in x holds the relation:

lim
μ→∞σ

Φ
μ (f, x)= 0.

To prove the main theorem we require the following results which we state without
proof.
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Lemma 3.3 Let condition (3.6) be satisfied for α ≤ β < α + 3/2. Then for any
domain Ω ⊂⊂G and function f ∈ C∞

0 (Ω)

sup
μ≥1

{∫ 3μ

μ

∣
∣f̂ (t)

∣
∣2dρ(t)

}1/2

≤ c(Ω)‖f ‖
Hω2
ω
(
μ−1) (3.7)

The proof of the lemma is similar to that of Lemma 3.1 in [4], giving the estimate
for Hr2 .

Proposition 3.4 Let δ = ν+1
2 − s

1. For μ≥ 3
R

, 0< t < 1/R, δ ≤ 0 holds true the estimate

∣
∣�R(μ, t)

∣
∣≤ c1(μR)

δϕ1

(
1

μR

)

(3.8)

2. For μ≥ 1
R

, t > 1/R holds true the estimates

∣
∣�R(μ, t)

∣
∣ ≤ c2R

−sμδ+1ϕ1

(
1

μR

)

t−(ν+1/2)|μ− t |−1, |μ− t |> 1

R
(3.9)

∣
∣�R(μ, t)

∣
∣ ≤ c3R

s0−sμδ+s0ϕs0
(

1

μR

)

t−(ν+1/2), |μ− t | ≤ 1

R
(3.10)

where c1, c2, c3 do not depend on t , μ, R.

Proposition 3.5 Let s > 0, α, β and ω(u) be as stated in the theorem. Ω ⊂⊂ G,
x0 ∈Ω , 0<R < ρ(x0, ∂Ω),R ≤ 1, f ∈ C∞

0 (Ω), f (x)≡ 0 for |x − x0| ≤ R. Then
for all μ≥ 3/R, holds true the following inequality,

∣
∣σΦμ (f, x0)

∣
∣≤ c‖f ‖Hω2

{

(μR)s0−s−
1
2 ϕs0

(
1

μR

)

ω

(
1

μ

)

μ
n
2

+ (μR)δϕ1

(
1

μR

)

ω(R)Vβ(R)

}

. (3.11)

Here c does not depend on μ, R, f , x0

Vβ(R)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R− n
2 , β <

n

2

R− n
2 log2

(
1

R

)

β = n

2

R−β β >
n

2

and

δ ≤ min
{
0, (n+ 1)/2 − s − β}.
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Proof of Theorem 3.2 Let R = ρ(x, ∂D). Then for any function f ∈ C∞
0 (Ω), f ≡ 0

in D and any point x0 ∈K holds estimate (3.11) in which R = R(K) > 0 is fixed.
Then

∣
∣σΦμ (f, x0)

∣
∣≤ c(K)‖f ‖

H
ω(.)
2 (Ω)

[
ω(μ−1)

ω0(μ−1)
+μδϕ1

(
μ−1)

]

(3.12)

Since δ ≤ 0 and μδϕ1(μ
−1)→ 0 as μ→ ∞. Finally applying (3.6), we arrive at

∣
∣σΦμ (f, x0)

∣
∣≤ c(K)‖f ‖

H
ω(.)
2 (Ω)

(3.13)

for all x0 ∈K and for all μ≥ 1. Using denseness of C∞
0 (Ω) in H̊ω(.)p (Ω) and uni-

form convergence of spectral decomposition and hence Φ-means for f ∈ C∞
0 (Ω),

by standard scheme we obtain that σΦμ (f, x)→ f (x) as μ→ ∞ uniformly in x ∈K
for any function f ∈ H̊ω(.)p (Ω), f ≡ 0 in D. �

Remark 3.6 The theorem gives the conditions for localization of Φ-means of spec-
tral decomposition. In typical situations, when

ϕs0(u)# us0ϕ(u), ω0(u)# u
n−1

2 −s

ϕ(u)
, u ∈ (0,1], (3.14)

there appears a function ω0(u) of the form (2.7). In particular, for Riesz means of
spectral decomposition, that is, for ϕ(u)= Γ (s + 1) we obtain the requirement:

ω(u)≤ cun−1
2 −s (3.15)

which for s < n−1
2 reduces to the sharp condition of localization in terms of expo-

nential order of smoothness for f ∈ H̊ α2 (Ω) with α = n−1
2 − s, established by Ilin

and Alimov in [4]. Moreover, Goldman in [2] proved that this condition is sharp in
terms of spaces of generalised smoothness.

Namely, if

lim
u→+0

[
ω(u)us−

n−1
2
]= ∞ and 0 ≤ n− 1

2
, (3.16)

then for all x0 ∈ Ω , 1 ≤ p ≤ ∞, there exists a function f0 ∈ H̊ω(.)p (Ω), which is
equal to zero in some neighbourhood of x0, such that the Riesz means of spectral
decomposition σ sμ(f0, x0) is unbounded as μ→ ∞. To obtain these results, the gen-
eralised kernels of fractional order and corresponding integral operators in spaces
of generalised smoothness investigated by Goldman in [3] were implemented.
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Viewing the Steklov Eigenvalues
of the Laplace Operator
as Critical Neumann Eigenvalues

Pier Domenico Lamberti and Luigi Provenzano

Abstract We consider the Steklov eigenvalues of the Laplace operator as limiting
Neumann eigenvalues in a problem of boundary mass concentration. We discuss
the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that
the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study
the dependence of the eigenvalues of the Steklov problem upon perturbation of the
mass density and show that the Steklov eigenvalues violates a maximum principle
in spectral optimization problems.

Keywords Steklov boundary conditions · Eigenvalues · Optimization
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1 Introduction

Let Ω be a bounded domain (i.e. a bounded connected open set) of class C2 in R
N ,

N ≥ 2. We consider the Steklov eigenvalue problem for the Laplace operator
⎧
⎪⎨

⎪⎩

�u= 0, in Ω,

∂u

∂ν
= λρu, on ∂Ω,

(1.1)

in the unknowns λ (the eigenvalue) and u (the eigenfunction). Here ρ denotes a
positive function on ∂Ω bounded away from zero and infinity and ν the unit outer
normal to ∂Ω .
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Keeping in mind important problems in linear elasticity (see e.g. Courant and
Hilbert [4]), we shall think of the weight ρ as a mass density. In fact, for N = 2
problem (1.1) arises for example in the study of the vibration modes of a free elastic
membrane the total mass of which is concentrated at the boundary. Note that the total
mass is given by

∫

∂Ω
ρdσ . This mass concentration phenomenon can be described

as follows.
For any ε > 0 sufficiently small, we consider the ε-neighborhood of the boundary

Ωε = {x ∈Ω : d(x, ∂Ω) < ε} and for a fixed M > 0 we define a function ρε in the
whole of Ω as follows

ρε(x)=

⎧
⎪⎨

⎪⎩

ε, if x ∈Ω \Ωε,
M − ε|Ω \Ωε |

|Ωε | , if x ∈Ωε.
(1.2)

Note that for any x ∈ Ω we have ρε(x)→ 0 as ε → 0, and
∫

Ω
ρεdx =M for all

ε > 0. Then we consider the following eigenvalue problem for the Laplace operator
with Neumann boundary conditions

⎧
⎪⎨

⎪⎩

−�u= λρεu, in Ω,

∂u

∂ν
= 0, on ∂Ω.

(1.3)

We recall that for N = 2 problem (1.3) provides the vibration modes of a free elastic
membrane with mass density ρε and total massM . It is not difficult to prove that the
eigenvalues and eigenfunctions of problem (1.3) converge as ε goes to zero to the
eigenvalues and eigenfunctions of problem (1.1) with ρ = M

|∂Ω| . Thus the Steklov
problem can be considered as a limiting Neumann problem. We refer to [1, Arrieta,
Jiménez-Casas, Rodríguez-Bernal] for a general approach to this type of problems.

The aim of this paper is to highlight a few properties of the Steklov problem
which, compared to the Neumann problem, reveals a critical nature.

First, we study the asymptotic behavior of the eigenvalues of problem (1.3) as
ε → 0, when Ω is a ball. We prove that such eigenvalues are differentiable with
respect to ε ≥ 0 and establish formulas for the first order derivatives at ε = 0, see
Theorem 2.2. It turns our that such derivatives are positive, hence the Steklov eigen-
values minimize the Neumann eigenvalues of problem (1.3) for ε sufficiently small,
see Remark 2.3.

Second, we consider the problem of optimal mass distributions for problem (1.1)
under the condition that the total mass is fixed. This problem has been largely in-
vestigated in the case of Dirichlet boundary conditions, see e.g. Henrot [5] for refer-
ences. As for Steklov boundary conditions, we quote the classical paper by Bandle
and Hersch [3].

By following the approach developed in [6], we prove that simple eigenvalues
and the symmetric functions of the multiple eigenvalues of (1.1) depend real analyt-
ically on ρ and we characterize the corresponding critical mass densities under mass
constraint. See Theorem 3.1 and Corollary 3.2. Again, the Steklov problem exhibits
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a critical behavior and violates the maximum principle discussed in [10] for general
elliptic operators of arbitrary order subject to homogeneous boundary conditions of
Dirichlet, Neumann and intermediate type for which critical mass densities do not
exist. Indeed, it turns out that if Ω is a ball then the constant function is a criti-
cal mass density for the Steklov problem (1.1), see Corollary 3.3, Remark 3.4 and
Theorem 3.5.

2 Asymptotic Behavior of Neumann Eigenvalues

Given a bounded domain Ω in R
N of class C2 and M > 0 we denote by λj , j ∈

N, the eigenvalues of problem (1.1) corresponding to the constant surface density
ρ = M

|∂Ω| . Similarly, for ε > 0 sufficiently small, we denote by λj (ε), j ∈ N, the
eigenvalues of problem (1.3). Note that in this paper we always assume that N ≥ 2.
Moreover, by N we denote the set of natural numbers including zero, hence λ0(ε)=
λ0 = 0 for all ε > 0.

As is well-known, by the Min–Max Principle we get the following variational
characterization of the two sequences of eigenvalues:

λj (ε)= inf
E⊂H 1(Ω)
dimE=j+1

sup
0�=u∈E

∫

Ω
|∇u|2dx

∫

Ω
u2ρε dx

, j ∈N,

λj = inf
E⊂H 1(Ω)
dimE=j+1

sup
u∈E

Tru �=0

∫

Ω
|∇u|2dx

∫

∂Ω
(Tru)2 M

|∂Ω| dσ
, j ∈N.

Here H 1(Ω) denotes the standard Sobolev space of real-valued functions in L2(Ω)

with weak derivatives up to first order in L2(Ω) and Tru denotes the trace in ∂Ω of
a function u ∈H 1(Ω). We note that, for each fixed u ∈H 1(Ω) we have

lim
ε→0

∫

Ω
|∇u|2dx

∫

Ω
u2ρε dx

=
∫

Ω
|∇u|2dx

∫

∂Ω
(Tru)2 M

|∂Ω| dσ
. (2.1)

By looking at (2.1) one could expect the spectral convergence of the Neumann prob-
lems under consideration to the Steklov problem. In fact the following statement
holds.

Theorem 2.1 If Ω is bounded domain in R
N of class C2 then limε→0 λj (ε)= λj

for all j ∈N.

This theorem can be proved directly by using the notion of compact convergence
for the resolvent operators but can also be obtained as a consequence of the more
general results proved in [1, Arrieta, Jiménez-Casas, Rodríguez-Bernal].

By Theorem 2.1, it follows that the function λj (·) can be extended with conti-
nuity at ε = 0 by setting λj (0) = λj for all j ∈ N. This will be understood in the
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sequel. If Ω is a ball then we are able to establish the asymptotic behavior of λj (ε)
as ε → 0. Indeed, we can prove that λj (ε) is differentiable with respect to ε and
compute the derivative λ′

j (0) at ε = 0.

Theorem 2.2 If Ω is the unit ball in R
N then λj (ε) is differentiable for any ε ≥ 0

and

λ′
j (0)=

2Mλ2
j (0)

3N |Ω| + 2λ2
j (0)|Ω|

2Mλj(0)+N2|Ω| .

The proof of this theorem relies on the use of Bessel functions which allow to
recast the Neumann eigenvalue problem in the form of an equation F(λ, ε)= 0 in
the unknowns λ, ε. Then, after some preparatory work, it is possible to apply the
Implicit Function Theorem and conclude. We note that, despite the idea of the proof
is rather simple and used also in other contexts (see e.g. [9]), this method requires
standard but lengthy computations, suitable Taylor’s expansions and estimates on
the corresponding remainders, as well as recursive formulas for the cross-products
of Bessel functions and their derivatives. We refer to [12] for details.

Remark 2.3 By Theorem 2.2 it follows that for ε > 0 sufficiently small the func-
tions ε �→ λj (ε) are strictly increasing. In particular, it follows that for all ε > 0
sufficiently small, we have that λj (0) < λj (ε).

It is interesting to compare our result with the monotonicity result by Ni and
Wang [11] who have proved that if Ω is the unit disk in the plane then the first
positive eigenvalue of the Neumann Laplacian inΩε , i.e. the first positive eigenvalue
of the problem

⎧
⎪⎨

⎪⎩

−�u= λu, in Ωε,

∂u

∂ν
= 0, on ∂Ωε,

(2.2)

is a strictly increasing function of ε > 0.

3 Existence of Critical Mass Densities for the Steklov Problem

Given a bounded domain Ω in R
N of class C2, we denote by R the subset of

L∞(∂Ω) of those functions ρ ∈ L∞(∂Ω) such that ess inf∂Ω ρ > 0. For any ρ ∈R,
we denote by λj [ρ], j ∈ N, the eigenvalues of problem (1.1). By classical results
in perturbation theory, one can prove that λj [ρ] depends real-analytically on ρ as
long as ρ is such that λj [ρ] is a simple eigenvalue. This is no longer true if the
multiplicity of λj [ρ] varies. As it was pointed out in [6, 7], in the case of multiple
eigenvalues, analyticity can be proved for the symmetric functions of the eigenval-
ues. Namely, given a finite set of indexes F ⊂ N, one can consider the symmetric
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functions of the eigenvalues with indexes in F

ΛF,h[ρ] =
∑

j1,...,jh∈F
j1<···<jh

λj1[ρ] · · ·λjh[ρ], h= 1, . . . , |F |

and prove that such functions are real-analytic on

R[F ] ≡ {ρ ∈R : λj [ρ] �= λl[ρ], ∀j ∈ F, l ∈ N \ F}. (3.1)

In fact, we can prove the following theorem where in order to establish formulas for
the Frechét differentials, we find it convenient to set

Θ[F ] ≡ {ρ ∈ R[F ] : λj1[ρ] = λj2[ρ], ∀j1, j2 ∈ F}.

Theorem 3.1 LetΩ be a bounded domain in R
N of class C2 and F a finite subset

of N. Then R[F ] is an open set in L∞(∂Ω) and the functionsΛF,h are real-analytic
in R[F ]. Moreover, if F = ∪nk=1Fk and ρ ∈ ∩nk=1Θ[Fk] is such that for each k =
1, . . . , n the eigenvalues λj [ρ] assume the common value λFk [ρ] for all j ∈ Fk , then
the differentials of the functions ΛF,h at the point ρ are given by the formula

dΛF,h[ρ][ρ̇] = −
n∑

k=1

ck
∑

l∈Fk

∫

∂Ω

(Trul)
2ρ̇dσ, (3.2)

for all ρ̇ ∈ L∞(∂Ω), where

ck =
∑

0≤h1≤|F1|
......

0≤hn≤|Fn|
h1+···+hn=h

(|Fk| − 1

hk − 1

)

λ
hk
Fk

[ρ]
n∏

j=1
j �=k

(|Fj |
hj

)

λ
hj
Fj

[ρ],

and for each k = 1, . . . , n, {ul}l∈Fk is a basis of the eigenspace of λFk [ρ] normalized
by the condition

∫

∂Ω
Trui Trujρdσ = δij for all i, j ∈ Fk .

The proof of this theorem follows the lines of the corresponding result proved in
[10] for general elliptic operators subject to homogeneous boundary conditions of
Dirichlet, Neumann and intermediate type. In the same spirit of [10], we can use
formula (3.2) in order to investigate the existence of critical mass densities for the
eigenvalues of the Steklov problem subject to mass constraint. We note that a typical
optimization problem in the analysis of composite materials consists in finding mass
densities ρ, with given total mass, which minimize a cost functional F [ρ] associated
with the solutions of suitable partial differential equations depending on ρ. Namely,
in the case of Steklov boundary conditions one can consider the following problems

min∫

∂Ω ρdσ=const.
F [ρ] or max∫

∂Ω ρdσ=const.
F [ρ].
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More in general, setting M[ρ] = ∫
∂Ω
ρdσ one can consider the problem of finding

critical mass densities ρ under mass constraint, i.e. mass densities ρ which satisfy
the condition KerdM[ρ] ⊂ KerdF [ρ]. As in [10] we can give a characterization of
critical mass densities which immediately follows by formula (3.2) combined with
the Lagrange Multipliers Theorem.

Corollary 3.2 Let all assumptions of Theorem 3.1 hold. Then, ρ ∈ R is a critical
mass density for ΛF,h for some h = 1, . . . , |F |, subject to mass constraint if and
only if there exists c ≥ 0 such that

n∑

k=1

ck
∑

l∈Fk
(Trul)

2 = c, a.e. on ∂Ω. (3.3)

The analysis carried out in [10] has pointed out that for a large class of non-
negative elliptic operators subject to homogeneous boundary conditions of interme-
diate type (including the case of Dirichlet boundary conditions), there are no criti-
cal mass densities for simple eigenvalues and the symmetric functions of multiple
eigenvalues. For example, in the case of Dirichlet or Neumann boundary conditions,
(3.3) has to be replaced by

n∑

k=1

ck
∑

l∈Fk
u2
l = c, a.e. in Ω, (3.4)

which is clearly not satisfied in the Dirichlet case. As for Neumann boundary con-
ditions the same non existence result can be easily proved for simple eigenvalues in
which case only a summand appears in (3.4). The situation is not completely clear
for multiple eigenvalues. Under suitable regularity assumptions on the eigenfunc-
tions u1 and u2 associated with the same Neumann eigenvalue λ one can prove that
the condition u2

1 + u2
2 = c in Ω implies that λ = 0, but the proof in the case of

multiplicities higher than two seems not straightforward. However, well-known ex-
plicit formulas for the eigenfunctions of the Neumann Laplacian in the ball clearly
show that condition (3.4) is not satisfied, hence no critical mass densities exist for
the Neumann Laplacian in the ball. In the case of Steklov boundary conditions the
situation is much different. Indeed, if Ω is a ball then a critical mass density exists.

Corollary 3.3 Let Ω be the unit ball in R
N ,M > 0 and F ⊂ N be a finite set such

that the constant mass density ρ =M/|∂Ω| belongs to R[F ]. Then ρ =M/|∂Ω| is
critical for ΛF,h for all h= 1, . . . , |F | under the constraintM[ρ] =M .

The proof can be carried out as in [8]. Namely, assume that λ is an eigenvalue
of problem (1.1) with multiplicity m and consider a basis u1, . . . , um of the cor-
responding eigenspace. Assume that this basis is orthonormal in L2(∂Ω) with re-
spect to the scalar product defined by

∫

∂Ω
TruTrvρdσ . Then for any isometry R in

R
N also u1 ◦R, . . . , um ◦R is an orthonormal basis of the same eigenspace, hence∑m
i=1 u

2
i =∑m

i=1 u
2
i ◦R. It follows that

∑m
i=1 u

2
i is constant on ∂Ω .



Steklov Eigenvalues 177

Remark 3.4 It is interesting to compare Corollary 3.3 with a classical result proved
by Bandle and Hersch [2] in the case of a class of symmetric planar domains. For
the convenience of the reader we formulate such result assuming directly that Ω is
the unit disk in R

2 centered at zero. For any n ∈ N we set

Rn = {ρ ∈ R : ρ(e2πi/nz
)= ρ(z), ∀ z ∈ ∂Ω},

where the use of the complex variable z is clearly understood. Then we have the
following result

Theorem 3.5 (Bandle and Hersch) Let Ω be the unit disk in R
2 centered at zero,

M > 0, n ∈N. Then

λj [ρ] ≤ λj
[
M

2π

]

for all j = 0, . . . , n and ρ ∈ Rn such that M[ρ] =M . Equality holds only if ρ =
M/2π .

Thus in the case of a ball in R
2 the constant mass density is in fact a maximizer

among all mass densities satisfying the symmetry condition above. We refer to Ban-
dle [2] for further discussions.

Acknowledgements We acknowledge financial support by the research project “Singular per-
turbation problems for differential operators”, Progetto di Ateneo of the University of Padova.

References

1. J.M. Arrieta, A. Jiménez-Casas, A. Rodríguez-Bernal, Flux terms and Robin boundary con-
ditions as limit of reactions and potentials concentrating in the boundary. Rev. Mat. Iberoam.
24(1), 183–211 (2008)

2. C. Bandle, Isoperimetric Inequalities and Applications. Pitman Advanced Publishing Pro-
gram, Monographs and Studies in Mathematics, vol. 7 (1980)

3. C. Bandle, J. Hersch, Sur le problème de Stekloff: Quelques inégalités isopérimétriques pour
des domaines symètriques. C. R. Acad. Sci. Paris, Sér. A–B 265, A327–A328 (1967)

4. R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. I (Interscience, New York,
1953)

5. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathemat-
ics (Birkhäuser, Basel, 2006)

6. P.D. Lamberti, Absence of critical mass densities for a vibrating membrane. Appl. Math. Op-
tim. 59(3), 319–327 (2009)

7. P.D. Lamberti, M. Lanza de Cristoforis, A real analyticity result for symmetric functions of the
eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear
Convex Anal. 5(1), 19–42 (2004)

8. P.D. Lamberti, M. Lanza de Cristoforis, Critical points of the symmetric functions of the
eigenvalues of the Laplace operator and overdetermined problems. J. Math. Soc. Jpn. 58(1),
231–245 (2006)

9. P.D. Lamberti, M. Perin, On the sharpness of a certain spectral stability estimate for the Dirich-
let Laplacian. Eurasian Math. J. 1(1), 111–122 (2010)



178 P.D. Lamberti and L. Provenzano

10. P.D. Lamberti, L. Provenzano, A maximum principle in spectral optimization problems for
elliptic operators subject to mass density perturbations. Eurasian Math. J. 4(3), 69–82

11. W.-M. Ni, X. Wang, On the first positive Neumann eigenvalue. Discrete Contin. Dyn. Syst.
17(1), 1–19 (2007)

12. L. Provenzano. Ph.D. thesis, University of Padova, in preparation



Generalized Fractional Integrals on Central
Morrey Spaces and Generalized σ -Lipschitz
Spaces

Katsuo Matsuoka

Abstract For the generalized fractional integrals Ĩα,d , which were defined in Func-
tion Spaces X, to appear, when n/α ≤ p <∞, we will consider their boundedness
from the central Morrey spaces Bp,λ(Rn) to the generalized σ -Lipschitz spaces
Lip(d)β,σ (R

n).

Keywords Central Morrey space · λ-Central mean oscillation space · σ -Lipschitz
space · Generalized λ-central mean oscillation space · Generalized σ -Lipschitz
space · Fractional integral · Generalized fractional integral

Mathematics Subject Classification (2010) Primary 42B35 · Secondary 26A33 ·
46E30 · 46E35

1 Introduction

In 1964, the spaces Bp(Rn), 1 ≤ p < ∞, were introduced by A. Beurling [3],
together with their preduals Ap(Rn), so-called the Beurling algebras. Further, in
1989, the central mean oscillation spaces CMOp(Rn), 1 ≤ p <∞, which contain
the spaces Bp(Rn) modulo constants, were introduced by Y. Chen and K. Lau [6]
and J. García-Cuerva [9].

Later, in 2000, the non-homogeneous central Morrey spaces Bp,λ(Rn) and the
λ-central mean oscillation spaces CMOp,λ(Rn), 1 ≤ p <∞ and λ ∈ R, were in-
troduced by J. Alvarez, M. Guzmán-Partida and J. Lakey [1]. The spaces Bp,λ(Rn)
contain the spaces Bp,q(Rn), 1 ≤ p <∞ and 0 < q ≤ 1, which were defined by
J. García-Cuerva and M. J. Herrero [10] in 1994, as special cases. Here we note
that the spaces Bp,λ(Rn) are the non-homogeneous Herz spaces K−n/p−λ

p,∞ (Rn) (cf.
[7] and [13]). Moreover, in [18] (cf. [14, 15]), we defined the weak λ-central mean
oscillation spaces WCMOp,λ(Rn).
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Afterward, in 2011, we ([20]; cf. [16]) introduced the Bσ -function spaces, 0 ≤
σ <∞, in order to unify Bp,λ(Rn), CMOp,λ(Rn) and the usual Morrey–Campanato
spaces.

Recently, in [17, 19] (cf. [22]), we introduced the generalized λ-central mean os-
cillation spaces Λ(d)p,λ(R

n), the generalized weak λ-central mean oscillation spaces

WΛ
(d)
p,λ(R

n), 1 ≤ p <∞, d ∈ N ∪ {0} and λ ∈ R, in order to consider the further

boundedness of fractional integrals Iα for Bp,λ(Rn). The spacesΛ(d)p,λ(R
n) also con-

tain the spaces Λp,q(Rn), 1 ≤ p <∞ and 0 < q ≤ 1, which were defined in [10],
as special cases.

On the other hand, for the fractional integrals Iα and the modified fractional
integrals Ĩα , 0< α < n, which are defined by

Iαf (x)=
ˆ
Rn

f (y)

|x − y|n−α dy

and

Ĩαf (x)=
ˆ
Rn

f (y)

(
1

|x − y|n−α − 1 − χQ1(y)

|y|n−α
)

dy (1.1)

(for the notation χQ1 , see Sect. 2) respectively, the following boundedness results
are well-known: For 0< α < n, 1 ≤ p <∞ and 1/q = 1/p− α/n,

(i) Iα : Lp(Rn)→ Lq(Rn), 1<p < n/α;
(ii) Iα : L1(Rn)→WLq(Rn), p = 1;

(iii) Ĩα : Lp(Rn)→ Lipβ(R
n), 0< β = α − n/p < 1;

(iv) Ĩα : Ln/α(Rn)→ BMO(Rn), p = n/α.

Here (i) is due to G. H. Hardy and J. E. Littlewood [11, 12] for the 1-dimensional
case and S. L. Sobolev [28] for the n-dimensional case, (ii) belongs to A. Zygmund
[29], and (iii) and (iv) were proved by J. Peetre [24].

After that, for the fractional integrals Iα on Bp,λ(Rn), the following boundedness
result was obtained by Z. W. Fu, Y. Lin and S. Z. Lu [8]: For 0< α < n, 1< p <
n/α, −n/p+ α ≤ λ+ α = μ< 0 and 1/q = 1/p− α/n,

(i’) Iα : Bp,λ(Rn)→ Bq,μ(Rn).

Furthermore, in [16, 20] (cf. [15]), from several Bσ -Morrey–Campanato estimates
for Iα and Ĩα , the following boundedness results are obtained as the corollaries: For
0< α < n, −n+ α ≤ λ+ α = μ< 0 and 1/q = 1 − α/n,

(ii’) Iα : B1,λ(Rn)→WBq,μ(Rn).

Also for 0< α < n, 1 ≤ p <∞, −n/p+α ≤ λ+α = μ< 1, 1 ≤ q ≤ pn/(n−pα)
and σ = λ+ n/p,

(i”) Ĩα : Bp,λ(Rn)→ CMOq,μ(Rn), 1<p < n/α;
(ii”) Ĩα : B1,λ(Rn)→WCMOq,μ(Rn), p = 1;
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(iii’) Ĩα : Bp,λ(Rn)→ Lipβ,σ (R
n), 0< β = α − n/p < 1;

(iv’) Ĩα : Bn/α,λ(Rn)→ BMOσ (Rn), p = n/α.

As for the spaces Lipβ,σ (R
n) and BMOσ (Rn), refer to Remark 2.10 below.

Recently, as we stated above, for the whole of λ such that −n/p ≤ λ <∞, in
order to investigate the boundedness of Iα for Bp,λ(Rn), we introduced the “new”
modification of Iα , i.e., the generalized fractional integrals Ĩα,d , 0 < α < n and
d ∈ N ∪ {0}, and showed the following boundedness results: For 0 < α < n, 1 ≤
p < n/α, d ∈ N0, −n/p + α ≤ λ + α = μ < d + 1 and q = pn/(n − pα), i.e.,
1/q = 1/p− α/n,

(i”’) Ĩα,d : Bp,λ(Rn)→Λ
(d)
q,μ(R

n), 1<p < n/α;

(ii”’) Ĩα,d : B1,λ(Rn)→WΛ
(d)
q,μ(R

n), p = 1.

The above (i”’) and (ii”’) are the results for the whole of λ such that −n/p ≤
λ <∞ and further the condition 1 ≤ p < n/α. In this paper, therefore, under the
condition n/α ≤ p <∞, we investigate the boundedness of Ĩα,d for Bp,λ(Rn). In
order to do so, we shall use the generalized σ -Lipschitz spaces Lip(d)β,σ (R

n), the
special cases of which are Lipβ,σ (R

n) and BMOσ (Rn) (see Definition 2.8 below).
We note that the same results in this paper still hold for the homogeneous versions

of the function spaces.

2 Generalized σ -Lipschitz Spaces

First we explain the notations used in the present paper. We use the symbolA� B to
denote that there exists a constantC > 0 such thatA≤ CB . IfA� B andB �A, we
then write A∼ B . For r > 0, by Qr , we mean the following: Qr = {y ∈ R

n : |y|<
r} or Qr = {y = (y1, y2, . . . , yn) ∈ R

n : max1≤i≤n |yi |< r}. And for x ∈ R
n, we set

Q(x, r)= x +Qr = {x + y : y ∈Qr }. For a measurable set G⊂ R
n, we denote the

Lebesgue measure of G by |G| and the characteristic function of G by χG. Further,
for a function f ∈ L1

loc(R
n) and a measurable set G⊂ R

n with |G|> 0, let

fG =
 
G

f (y)dy = 1

|G|
ˆ
G

f (y)dy

and let N0 = N∪ {0}.
Next we state the definition of the non-homogeneous central Morrey space

Bp,λ(Rn) (see [1] and [8]).

Definition 2.1 For 1 ≤ p <∞ and −n/p ≤ λ <∞,

Bp,λ
(
R
n
)= {f ∈ Lploc

(
R
n
) : ‖f ‖Bp,λ <∞},

where

‖f ‖Bp,λ = sup
r≥1

1

rλ

( 
Qr

∣
∣f (y)

∣
∣p dy

)1/p

.
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Remark 2.2 The spaces Bp,λ(Rn) are the particular cases of local general
Morrey-type spaces LMpθ,w(·)(Rn) with θ = ∞ and w(r) = r−n/p−λ. In the
last decade there were many results on the boundedness of various operators of
real analysis from one local Morrey-type space LMp1θ1,w1(·)(Rn) to another one
LMp2θ2,w2(·)(Rn). A survey of these results is given in [4, 5].

Now we define the generalized σ -Lipschitz spaces Lip(d)β,σ (R
n) (see [17] and

[22]).

Definition 2.3 (Definition 8.1 of [22]; cf. [17]) Let U = R
n or U =Qr with r > 0.

For d ∈ N0 and 0 ≤ β ≤ 1, the continuous function f will be said to belong to the
generalized Lipschitz space on U , i.e., Lip(d)β (U) if and only if

‖f ‖
Lip(d)β (U)

= sup
x,x+h∈U,h�=0

1

|h|β
∣
∣�d+1
h f (x)

∣
∣<∞,

where �kh is a difference operator, which is defined inductively by

�0
hf = f, �1

hf =�hf = f (· + h)− f (·),
�khf =�k−1

h f (· + h)−�k−1
h f (·), k = 2,3, . . . .

In particular,

BMO(d)(U)= Lip(d)0 (U),

which we call the generalized BMO space on U .

Remark 2.4 For 0< β < 1, d ∈ N0 and β = 1, d ∈N the spaces Lip(d)β (U) concide

with Nikol’skiı̌ spaces hβ∞(U). For the well developed theory of Nikol’skiı̌ spaces
h
β
p(U) and their generalizations see books [2] and [23].

Remark 2.5 (Theorem 8.3 of [22]) Let U = R
n or U =Qr with r > 0. For 1 ≤ p <

∞, d ∈ N0, 0 ≤ β ≤ 1 and f ∈ Lploc(Rn), we have

‖f ‖
Lip(d)β (U)

∼ ‖f ‖L(d)p,β (U),

where L(d)p,β(U) is the generalized Campanato space on U defined in the following.

Definition 2.6 Let U = R
n or U = Qr with r > 0. For 1 ≤ p <∞, d ∈ N0 and

−n/p ≤ λ < d + 1, the function f ∈ Lploc(U) will be said to belong to the gener-

alized Campanato space on U , i.e., L(d)p,λ(U) if and only if for every Q(x, s) ⊂ U ,

there is a polynomial PdQ(x,s)f of degree at most d such that

‖f ‖L(d)p,λ(U) = sup
Q(x,s)⊂U

1

sλ

( 
Q(x,s)

∣
∣f (y)− PdQ(x,s)f (y)

∣
∣p dy

)1/p

<∞.
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Remark 2.7 (Remark 6.2 of [22]) Let U = R
n or U =Qr with r > 0. For 1 ≤ p <

∞, d ∈ N0, −n/p ≤ λ < d + 1 and f ∈ Lploc(U), we have

‖f ‖L(d)p,λ(U) ∼ sup
Q(x,s)⊂U

inf
P∈Pd (U)

1

sλ

( 
Q(x,s)

∣
∣f (y)− P(y)∣∣p dy

)1/p

where Pd(U) is the set of all polynomials of degree at most d .

Definition 2.8 (cf. Definition 11 of [17]) For d ∈ N0, 0 ≤ β ≤ 1 and 0 ≤ σ <∞,
the continuous function f will be said to belong to the generalized σ -Lipschitz (σ -
Lip) space, i.e., Lip(d)β,σ (R

n) if and only if

‖f ‖
Lip(d)β,σ

= sup
r≥1

1

rσ
‖f ‖

Lip(d)β (Qr )
<∞.

In particular,

BMO(d)σ
(
R
n
)= Lip(d)0,σ

(
R
n
)
,

which we call the generalized σ -BMO space.

Remark 2.9 Very close spaces to Lip(d)β,σ (R
n) are studied in much detail and gener-

ality in papers by T. Runst, W. Sickel and other mathematicians. See book [25] and
survey paper [26, 27].

Identifying functions which differ by a polynomial of degree at most d , a.e., we
see that Lip(d)β (R

n) and Lip(d)β,σ (R
n) are the Banach spaces (see [17] and [22]).

Remark 2.10 ([18]; cf. [15]) We note that particularly

Lip(0)β
(
R
n
)= Lipβ

(
R
n
)
, Lip(0)β,σ

(
R
n
)= Lipβ,σ

(
R
n
)

and

BMO(0)
(
R
n
)= BMO

(
R
n
)
, BMO(0)σ

(
R
n
)= BMOσ

(
R
n
)
.

Here, for 0 ≤ β ≤ 1 and 0 ≤ σ <∞, Lipβ,σ (R
n) and BMOσ (Rn)= Lip0,σ (R

n), so-
called the σ -Lipschitz (σ -Lip) space and the σ -BMO space respectively, are defined
by

‖f ‖Lipβ,σ = sup
r≥1

1

rσ
‖f ‖Lipβ(Qr ),

where

‖f ‖Lipβ(Qr ) = sup
Q(x,s)⊂Qr

1

sβ

( 
Q(x,s)

∣
∣f (y)− fQ(x,s)

∣
∣dy

)

.
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3 Generalized Fractional Integrals

In [19], in order to consider the boundedness of fractional integrals Iα on Bp,λ(Rn)
under the conditions 0 < α < n, 1 ≤ p <∞, −n/p ≤ λ <∞ and λ + α ≥ 1, we
introduced the following definition of generalized fractional integrals Ĩα,d .

Definition 3.1 (Definition 3.1 of [19]) For 0 < α < n and d ∈ N0, we define the
generalized fractional integral (of order α), i.e., Ĩα,d , as follows: For f ∈ L1

loc(R
n),

Ĩα,df (x)

=
ˆ
Rn

f (y)

{

Kα(x − y)−
( ∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)

)
(
1 − χQ1(y)

)
}

dy,

where

Kα(x)= 1

|x|n−α
and for x = (x1, x2, . . . , xn) ∈ R

n and l = (l1, l2, . . . , ln) ∈ N
n
0, |l| = l1 + l2 + · · · +

ln, xl = xl11 xl22 · · ·xlnn and Dl is the partial derivative of order l, i.e.,

Dl = (∂/∂x1)
l1(∂/∂x2)

l2 · · · (∂/∂xn)ln .

We note that particularly

Ĩα,0 = Ĩα
(see (1.1) above). For further details of Ĩα,d , refer to [19].

Then for a generalized fractional integral Ĩα,d , we can show the following esti-
mates on Bp,λ(Rn).

Theorem 3.2 Let 0 < α < n, n/α ≤ p <∞, d ∈ N0, −n/p + α + d ≤ λ+ α <
d + 1, β = α − n/p and σ = λ + n/p. Then Ĩα,d is bounded from Bp,λ(Rn) to

Lip(d)β,σ (R
n), that is, there exists a constant C > 0 such that

(iii”) when n/α < p <∞,

‖Ĩα,df ‖
Lip(d)β,σ

≤ C‖f ‖Bp,λ , f ∈ Bp,λ(Rn);

(iv”) when p = n/α, i.e., β = 0,

‖Ĩα,df ‖
BMO(d)σ

≤ C‖f ‖Bp,λ , f ∈ Bp,λ(Rn).

In the above theorem, if d = 0, then we obtain the following estimates for Ĩα (cf.
Sect. 1).
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Corollary 3.3 (cf. Theorem 2.3 of [20]) Let 0 < α < n, n/α ≤ p <∞, −n/p +
α ≤ λ+ α < 1, β = α− n/p and σ = λ+ n/p. Then Ĩα is bounded from Bp,λ(Rn)
to Lipβ,σ (R

n), that is, there exists a constant C > 0 such that

(iii’) when n/α < p <∞,

‖Ĩαf ‖Lipβ,σ ≤ C‖f ‖Bp,λ , f ∈ Bp,λ(Rn);

(iv’) when p = n/α, i.e., β = 0,

‖Ĩαf ‖BMOσ ≤ C‖f ‖Bp,λ , f ∈ Bp,λ(Rn).

4 Proof of Theorem 3.2

First of all, we state the following well-definedness of Ĩα,d for Bp,λ(Rn), which was
shown in [19].

Lemma 4.1 (Lemma 4.1 of [19]) Let 0< α < n, 1 ≤ p <∞, d ∈ N0 and −n/p+
α ≤ λ+ α < d + 1. Then for f ∈ Bp,λ(Rn), Ĩα,df is well-defined.

Also, in order to prove Theorem 3.2, it is necessary to use the following two
lemmas.

Lemma 4.2 (cf. Lemma 7.3 of [21]) Let x ∈ R
n, 0 < α < n and d ∈ N0. If y ∈

R
n \Q2|x|, then

∣
∣
∣
∣�
d+1
h

(

Kα(x − y)−
∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)

)∣
∣
∣
∣≤ C

|h|d+1

|y|n−α+d+1
.

Proof By Taylor’s theorem, there exists ξ ∈Q|x| \ {0} such that

Kα(x − y)−
∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)=

∑

{l:|l|=d+1}

xl

l!
(
DlKα

)
(ξ − y).

Thus

∣
∣
∣
∣�
d+1
h

(

Kα(x − y)−
∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)

)∣
∣
∣
∣

=
∣
∣
∣
∣

∑

{l:|l|≤d}
hl
(
DlKα

)
(ξ − y)

∣
∣
∣
∣�

|h|d+1

|y|n−α+d+1
.

�
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Lemma 4.3 (Lemma 4.3 of [19]) Let 1 ≤ p <∞ and λ ∈ R. If β + λ < 0, then
there exists a constant C > 0 such that

ˆ
Rn\Qr

|f (y)|
|y|n−β dy ≤ Crβ+λ‖f ‖Bp,λ for all f ∈ Bp,λ(Rn) and r ≥ 1.

Proof of Theorem 3.2 Let f ∈ Bp,λ(Rn), r ≥ 1 and x ∈Qr . Since Ĩα,df is well-
defined by Lemma 4.1, we prove only that

‖Ĩα,df ‖
Lip(d)β,σ

≤ C‖f ‖Bp,λ .

Now, we decompose Ĩα,df (x) as follows:

Ĩα,df (x)

= Ĩα,d (f χQ2r )(x)+ Ĩα,d
(
f (1 − χQ2r )

)
(x)

= Iα(f χQ2r )(x)−
∑

{l:|l|≤d}

xl

l!
ˆ
Q2r\Q1

f (y)
(
DlKα

)
(−y)dy

+
ˆ
Rn\Q2r

f (y)

(

Kα(x − y)−
∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)

)

dy. (4.1)

Here note that the second term is a polynomial of degree at most d (see the proof of
Lemma 4.1 of [19]). Consequently, in (4.1), letting

Rdr f (x)= −
∑

{l:|l|≤d}

xl

l!
ˆ
Q2r\Q1

f (y)
(
DlKα

)
(−y)dy

and

Jα,d,rf (x)=
ˆ
Rn\Q2r

f (y)

(

Kα(x − y)−
∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)

)

dy,

Rdr f ∈ Pd(Qr) and it follows from Remark 2.7 that

‖Ĩα,df ‖
Lip(d)β (Qr )

∼ ‖Ĩα,df ‖L(d)1,β (Qr )

∼ sup
Q(x,s)⊂Qr

inf
P∈Pd (Qr )

1

sβ

( 
Q(x,s)

∣
∣Ĩα,df (y)− P(y)

∣
∣dy

)

≤ ∥∥Iα(f χQ2r )
∥
∥

Lipβ(Qr )
+ ‖Jα,d,rf ‖L(d)1,β (Qr )

≡ I1 + I2.
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First we estimate I1. When n/α < p <∞, if we use the (Lp,Lipβ) boundedness
of Iα , then we obtain

I1 ≤ ∥∥Iα(f χQ2r )
∥
∥

Lipβ
� ‖f χQ2r‖Lp � rλ+n/p‖f ‖Bp,λ

= rσ‖f ‖Bp,λ .
Similarly, when p = n/α, by applying the (Ln/α,BMO) boundedness of Iα , we
have

I1 ≤ ∥∥Iα(f χQ2r )
∥
∥

BMO � rσ‖f ‖Bp,λ .
Next we estimate I2. By Remark 2.5 it follows that

I2 ∼ ‖Jα,d,rf ‖
Lip(d)β (Qr )

= sup
x,x+h∈Qr,h�=0

1

|h|β
∣
∣�d+1Jα,d,rf (x)

∣
∣.

In order to estimate�d+1Jα,d,rf (x), if we use Lemmas 4.2, 4.3 and the assumption
λ+ α < d + 1, then we get for x ∈Qr and y ∈R

n \Q2r ,
∣
∣�d+1Jα,d,rf (x)

∣
∣

=
∣
∣
∣
∣

ˆ
Rn\Q2r

f (y)

{

�d+1
h

(

Kα(x − y)−
∑

{l:|l|≤d}

xl

l!
(
DlKα

)
(−y)

)}

dy

∣
∣
∣
∣

� |h|d+1
ˆ
Rn\Q2r

|f (y)|
|y|n−α+d+1

� |h|d+1rα−d−1+λ‖f ‖Bp,λ .

Therefore

I2 � sup
x,x+h∈Qr,h�=0

1

|h|β · |h|d+1rα−d−1+λ‖f ‖Bp,λ

≤ rλ+α−β‖f ‖Bp,λ = rσ‖f ‖Bp,λ .
Thus we have

‖Ĩα,df ‖
Lip(d)β,σ

= sup
r≥1

1

rσ
‖Ĩα,df ‖

Lip(d)β (Qr )
� ‖f ‖Bp,λ .

This concludes the proof. �
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Well-Posedness for a Generalized Boussinesq
Equation

Alessia Ascanelli and Chiara Boiti

Abstract We consider a generalization of the Boussinesq equation obtained by
adding a term of the form a(t, x,u)∂3

xu. We prove local in time well-posedness
of the Cauchy problem in Sobolev spaces under a suitable decay condition on the
real part of the coefficient a(t, x,u), as x→ ∞.

Keywords Boussinesq equation · Non-linear evolution equations · Well-posedness
in Sobolev spaces

Mathematics Subject Classification (2010) Primary 35G25 · Secondary 35Q35

1 A Well-Posedness Result

In this paper we consider the equation

∂2
t u+ (u∂xu)x + a(t, x,u)∂3

xu+ ∂4
xu= 0,

with a ∈ C([0, T ];C∞(R × C)). This is the classical Boussinesq equation, widely
used in hydrodynamics and physics, if a ≡ 0.

It is well known that the Cauchy problem for the classical Boussinesq equation
is locally in time well-posed in Sobolev spaces. In this paper we show that the same
result holds also in the case a �= 0, under suitable decay conditions on the coefficient
a(t, x,u) (see condition (1.2)).

The Boussinesq equation describes the propagation of long waves with small
amplitude in shallow water of constant depth. The introduction of a term of the
third order with a coefficient that depends on x might be useful to take into account
irregular seabeds (e.g. presence of dunes); the condition that this coefficient vanishes
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for |x| → ∞ implies the assumption that for large |x| (e.g. closer to the beach) we
recover the ideal conditions of Boussinesq (shallow water and constant depth).

To state our result, let us write the equation in the form Pu(t, x)= 0, where

P(t, x,u,Dt ,Dx) :=D2
t −D4

x + ia(t, x,u)D3
x + uD2

x − i(∂xu)Dx (1.1)

for D = −i∂ . This is a semi-linear operator of 2-evolution order m = 2 with real
characteristics (in the sense of Petrowsky) τ = ±ξ2. We know, from the pioneering
paper [8], that to obtain well-posedness in Sobolev spaces of the Cauchy problem for
a 2-evolution equation with real characteristics, some decay conditions at infinity on
the lower order terms are necessary. These kind of conditions already appeared in [5]
for the vibrating beam equation (which has the same principal part as the Boussinesq
equation); a more general case of second order Schrödinger type equations with
decay conditions at infinity was considered in [6].

We are going to prove the following result:

Theorem 1.1 Consider P in (1.1) for a ∈ C([0, T ];C∞(R × C)) and a(t, ·, u) ∈
B∞(R), satisfying

∣
∣Rea(t, x,w)

∣
∣≤ C

〈x〉1+ε h(w) ∀(t, x,w) ∈ [0, T ] ×R×C, (1.2)

for some constants C,ε > 0 and a function h : C → R
+ bounded on compact sets,

where 〈x〉 := √
1 + x2.

Then the Cauchy problem
⎧
⎪⎨

⎪⎩

P
(
t, x, u(t, x),Dt ,Dx

)
u(t, x)= f (t, x)

u(0, x)= u0(x)

ut (0, x)= u1(x)

(1.3)

is locally in time well-posed in H∞. More precisely, for every s > 3/2 and for
all f ∈ C([0, T ];Hs(R)), u0 ∈ Hs+2(R) and u1 ∈ Hs(R), there exists 0 < T ∗ ≤
T and a unique solution u ∈ C([0, T ∗];Hs+2(R)) ∩ C1([0, T ∗];Hs(R)) of (1.3)
satisfying, for some σ > 0 depending on s,

∥
∥u(t, ·)∥∥2

s+2 + ∥∥Dtu(t, ·)
∥
∥2
s

≤ eσ t
(

‖u0‖2
s+2 + ‖u1‖2

s +
∫ t

0

∥
∥f (τ, ·)∥∥2

s
dτ

)

(1.4)

for all t ∈ [0, T ∗].

To prove Theorem 1.1 we linearize equation (1.1) as done in [4], reduce it to a
first order 2-evolution system following [2] and finally apply the results of [1, 3], in
the framework of pseudo-differential operators with symbol p(x, ξ) in the classical
class Sm defined by
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∣
∣∂αξ D

β
x p(x, ξ)

∣
∣≤ Cα,β,h〈ξ 〉m−α

h ∀α,β ∈N, h≥ 1,

for some Cα,β,h > 0, where 〈ξ 〉h :=√h2 + ξ2.
In the next section we shall use the notation op(p(x, ξ)) to denote a pseudo-

differential operator with symbol p(x, ξ).

2 Proof of Theorem 1.1

The first step is to linearize the operator P defined in (1.1). To this aim we
fix u ∈ C([0, T ];Hs+2(R)) ∩ C1([0, T ];Hs(R)) and look for a solution v ∈
C([0, T ];Hs+2(R))∩C1([0, T ];Hs(R)) of the linear Cauchy problem

⎧
⎪⎨

⎪⎩

P
(
t, x, u(t, x),Dt ,Dx

)
v(t, x)= f (t, x)

v(0, x)= u0(x)

vt (0, x)= u1(x).

(2.1)

In order to study well-posedness of (2.1) in Sobolev spaces, we follow [2] and
look for a factorization of the principal part of P (in the sense of Petrowsky) by
means of pseudo-differential operators: defining

μ(t, x,u,Dx) :=D2
x − i

2
a(t, x,u)Dx (2.2)

we have that

P(t, x,u,Dt ,Dx)= (Dt −μ)(Dt +μ)+ b2(t, x,u)D
2
x + b1(t, x,u)Dx

with

b2(t, x,u) := u− iDx
(
a(t, x,u)

)− 1

4
a2(t, x,u)

b1(t, x,u) := −i(∂xu)+ i

2
Dt
(
a(t, x,u)

)− i

2
D2
x

(
a(t, x,u)

)

− 1

4
a(t, x,u)Dx

(
a(t, x,u)

)
.

Now, following again [2] we perform a reduction to a first order system: we set
V = (v1, v2) with

{
v1 = 〈Dx〉2

hv

v2 = (Dt +μ)v (2.3)

and obtain that v is a solution of the equation Pv = f if and only if V is a solution
of the system

(Dt −A+R)V = F (2.4)
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where Dt is the matrix Dt · I , A= (−μ 〈Dx 〉2
h

0 μ

)
, F = t (0, f ) and R(t, x,u,Dx) is a

matrix of pseudo-differential operators of order 0.
We now diagonalize A (modulo terms of order 0) by means of the following

matrix of pseudo-differential operators of order 0:

K(t, x,u,Dx) :=
(

1 op(
〈ξ〉2

h

2μ(t,x,ξ) )

0 1

)

.

The operator K is invertible and the inverse operator

K−1(t, x,u,Dx)=
(

1 −op(
〈ξ〉2

h

2μ(t,x,ξ) )

0 1

)

coincides with the inverse matrix of K . We have that

K−1AK = Ã+ R̃ (2.5)

with Ã= (−μ 0
0 μ

)
and R̃ = ( 0 r̃12

0 0

)
of order 0 since r̃12 has symbol

σ(r̃12) = σ
(

−μop

( 〈ξ 〉2
h

2μ

)

+ 〈Dx〉2
h − op

( 〈ξ 〉2
h

2μ

)

μ

)

= −μ 〈ξ 〉2
h

2μ
+ 〈ξ 〉2

h − 〈ξ 〉2
h

2μ
μ−
∑

α≥1

1

α!
[

∂αξ μ ·Dαx
〈ξ 〉2

h

2μ
+ ∂αξ

〈ξ 〉2
h

2μ
Dαxμ

]

with principal part ∂ξμ ·Dx 〈ξ〉2
h

2μ + ∂ξ 〈ξ〉2
h

2μ Dxμ ∈ S0 by (2.2).

Applying then K−1 to (2.4) we obtain from (2.5) that V is a solution of (2.4) if
and only if W =K−1V is a solution of

(Dt − Ã+R0)W = F̃ , (2.6)

where F̃ =K−1F and R0 = −R̃ +K−1RK is a matrix of pseudo-differential op-
erators of order zero.

To study well-posedness of system (2.6), we follow [3, formula (2.4) and Remark
3.1] (see also [1, Remark 4.1]) and define

λ(x, ξ) :=Mω
(
ξ

h

)∫ x

0
〈y〉−1−εψ

( 〈y〉
〈ξ 〉h
)

dy

for M > 0 to be chosen in the following, ω ∈ C∞(R) and ψ ∈ C∞
0 (R) with 0 ≤

ω,ψ ≤ 1 such that

ω(y)=
{

0 |y| ≤ 1

sgny |y| ≥ 2,
ψ(y)=

{
1 |y| ≤ 1/2

0 |y| ≥ 1.
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Then, by Lemma 2.3 of [3] the operator eλ(x,Dx) with symbol eλ(x,ξ) ∈ S0 is invert-
ible, for h large enough, and

(
eλ
)−1 = e−λ(I +R−1)

for a pseudo-differential operator R−1 with principal symbol r−1(x, ξ) = ∂ξλ ·
Dxλ ∈ S−1.

We define then the matrix

EΛ(x,Dx) :=
(
eλ(x,Dx) 0

0 e−λ(x,Dx)
)

.

This is an invertible matrix and its inverse matrix is a the diagonal matrix with
entries (EΛ)−1

11 = (eλ)−1 and (EΛ)−1
22 = (e−λ)−1.

Defining then

LΛ := (EΛ)−1
(Dt − Ã+R0)E

Λ =Dt − iAΛ +RΛ

with

AΛ := −i(EΛ)−1
ÃEΛ, RΛ := (EΛ)−1

R0E
Λ

we have that W is solution of (2.6) if and only if Z := (EΛ)−1W is solution of
LΛZ = FΛ with FΛ := (EΛ)−1F̃ .

We are thus reduced to study well-posedness of the Cauchy problem

{
LΛZ(t, x)= FΛ(t, x), (t, x) ∈ [0, T ] ×R

Z(0, x)= Z0(x), x ∈R,
(2.7)

with Z0(x)= (EΛ)−1W(0, x)= (EΛ)−1K−1V (0, x).
This system satisfies all assumptions of Theorem 1.1 of [1], so that we have the

following energy estimate with no loss of derivatives (see also [1, Remark 1.3]):

∥
∥
∣
∣Z(t, ·)∥∥∣∣2

s
≤ Cs(u)

(

‖|Z0‖|2s +
∫ t

0

∥
∥
∣
∣FΛ(τ, ·)

∥
∥
∣
∣2
s
dτ

)

,

where ‖|Z‖|2s := ‖z1‖2
s + ‖z2‖2

s for Z = (z1, z2).
However, as in [4], we need to determine the constant Cs(u) in order to apply a

fixed point theorem.
To this aim we set 〈〈Z,Z′〉〉s = 〈z1, z

′
1〉s + 〈z2, z

′
2〉s for Z = (z1, z2) and Z′ =

(z′1, z′2), and we estimate:
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d

dt
‖|Z‖|20 = 2 Re

〈〈∂tZ,Z〉〉0 = 2 Re
〈〈iLΛZ,Z〉〉0

− 2 Re
〈〈AΛZ,Z〉〉0 − 2 Re

〈〈iRΛZ,Z〉〉0
≤ C(‖|LΛZ‖|20 + ‖|Z‖|20

)− 2 Re
〈〈AΛZ,Z〉〉0 (2.8)

for some C > 0 since RΛ has order zero.
Now,

Re
〈〈AΛZ,Z〉〉0 = Re

〈(
eλ
)−1
iμeλz1, z1

〉

0 − Re
〈(
e−λ
)−1
iμe−λz2, z2

〉

0

=: Re
〈
A1
Λz1, z1

〉

0 + Re
〈
A2
Λz2, z2

〉

0, (2.9)

and, for j = 1,2 and |ξ | ≥ 2h:

Reσ
(
A
j
Λ

) = 2ξ∂xλ± 1

2
Rea(t, x,u)ξ

= 2ξ
M

〈x〉1+ε ω
(
ξ

h

)

ψ

( 〈x〉
〈ξ 〉h
)

± 1

2
Rea(t, x,u)ξ

≥ 〈ξ 〉h
〈x〉1+ε

(
4√
5
M − 1

2
Ch(u)

)

ψ − C

2
h(u)

〈ξ 〉h
〈x〉1+ε (1 −ψ)

≥ 〈ξ 〉h
〈x〉1+ε

(
4√
5
M − 1

2
Ch(u)

)

ψ −Ch(u) (2.10)

since 〈ξ 〉h ≤ 2〈x〉 on supp(1 −ψ).
We now define

∥
∥
∥
∥u(t, ·)∥∥∥∥

s
:= ∥∥u(t, ·)∥∥

s+2 + ∥∥Dtu(t, ·)
∥
∥
s
,

Br :=
{
u ∈ C([0, T ];Hs+2)∩C1([0, T ];Hs) : sup

t∈[0,T ]

∥
∥
∥
∥u(t, ·)∥∥∥∥

s
≤ r
}

and

cr := sup
(t,x)∈[0,T ]×R

u∈Br

h(u).

We chooseM >
√

5Ccr/8 and obtain, from (2.10), that

Reσ
(
A
j
Λ

)≥ −Ccr, j = 1,2

and hence, by the sharp-Gårding inequality:
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Re
〈
A
j
Λzj , zj

〉

0 ≥ −c(1 + cr)‖zj‖2
0, j = 1,2

for some c > 0.
Substituting in (2.9) and (2.8) we have the estimate:

d

dt

∥
∥
∣
∣Z
∥
∥
∣
∣2
0 ≤ (4c+C)(1 + cr)‖|Z‖|20 +C‖|LΛZ‖|20;

this leads, by standard arguments, to the following energy estimate for the solution
of (2.7):

∥
∥
∣
∣Z(t, ·)∥∥∣∣2

s
≤ ec1(1+cr )t

(

‖|Z0‖|2s +
∫ t

0

∥
∥
∣
∣FΛ(τ, ·)

∥
∥
∣
∣2
s
dτ

)

for some c1 > 0 depending on s ∈R.
Since EΛ and K have order zero, then for V = KEΛZ and F = KEΛFΛ we

have:

∥
∥
∣
∣V (t, ·)∥∥∣∣2

s
≤ ec2(1+cr )t

(
∥
∥
∣
∣V (0)

∥
∥
∣
∣2
s
+
∫ t

0

∥
∥
∣
∣F(τ, ·)∥∥∣∣2

s
dτ

)

(2.11)

for some c2 > 0.
Now, ‖|F(τ, ·)‖|2s = ‖|f (τ, ·)‖|2s and moreover, by (2.3),

‖|V ‖|2s = ‖v1‖2
s + ‖v2‖2

s = ∥∥〈Dx〉2
hv
∥
∥2
s
+ ∥∥(Dt +μ)v

∥
∥2
s

≤ c3
(‖v‖2

s+2 + ‖Dtv‖2
s

)

and, vice versa,

‖v‖s+2 + ‖Dtv‖s = ∥∥〈Dx〉−2
h v1

∥
∥
s+2 + ∥∥v2 −μ〈Dx〉−2

h v1
∥
∥
s

≤ c4
(‖v1‖s + ‖v2‖s

)

for some c3, c4 > 0.
Therefore (2.11) is equivalent to

∥
∥v(t, ·)∥∥2

s+2 + ∥∥Dtv(t, ·)
∥
∥2
s

≤ ec5(1+cr )t
(
∥
∥v(0, ·)∥∥2

s+2 + ∥∥vt (0, ·)
∥
∥2
s

+
∫ t

0

∥
∥f (τ, ·)∥∥2

s
dτ

)

and hence
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∥
∥v(t, ·)∥∥

s+2 + ∥∥Dtv(t, ·)
∥
∥
s
≤ eC′(1+cr )t

(
‖u0‖s+2 + ‖u1‖s

+ √
t sup
t∈[0,T ]

∥
∥f (t, ·)∥∥

s

)
(2.12)

for some c5, C′ > 0.
We have thus defined a map

S : Br −→ C
([0, T ];Hs+2)∩C1([0, T ];Hs)

u �−→ v

which associates to each u ∈ Br the unique solution v ∈ C([0, T ];Hs+2) ∩
C1([0, T ];Hs) of the Cauchy problem (2.1) satisfying (2.12).

If we now choose

r > 2emax
{
‖u0‖s+2 + ‖u1‖s , sup

t∈[0,T ]

∥
∥f (t, ·)∥∥

s

}
,

then, from (2.12),

∥
∥
∥
∥v(t, ·)∥∥∥∥

s
≤ 1

2
reC

′(1+cr )t−1(1 + √
t) < r

if t ∈ [0, T0] for T0 sufficiently small.
Defining then

B0
r :=

{
v ∈ C([0, T0];Hs+2)∩C1([0, T0];Hs

) : sup
t∈[0,T0]

∥
∥
∥
∥v(t, ·)∥∥∥∥

s
≤ r
}

we have that S maps B0
r into itself.

We prove now that S is a contraction. To this aim we fix u, ũ ∈ B0
r and set v :=

S(u), ṽ := S(ũ), w := v − ṽ.
From

D2
t v−D4

xv+ ia(t, x,u)D3
xv+ uD2

xv− i(∂xu)Dxv = f
D2
t ṽ−D4

x ṽ+ ia(t, x, ũ)D3
x ṽ+ ũD2

x ṽ− i(∂xũ)Dxṽ = f
we have that

D2
t w−D4

xw+ ia(t, x,u)D3
xw+ uD2

xw− i(∂xu)Dxw
+ i(a(t, x,u)− a(t, x, ũ))D3

x ṽ+ (u− ũ)D2
x ṽ − i(∂xu− ∂xũ)Dxṽ = 0,

i.e.
⎧
⎪⎨

⎪⎩

P(t, x,u,Dt ,Dx)w = f̃ (t, x, u, ũ, ṽ)
w(0, x)= 0

wt(0, x)= 0

(2.13)
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with

f̃ (t, x, u, ũ, ṽ) := −i(a(t, x,u)− a(t, x, ũ))D3
x ṽ

− (u− ũ)D2
x ṽ+ i(∂xu− ∂xũ)Dxṽ.

Since u, ũ, ṽ ∈ C([0, T ];Hs+2)∩C1([0, T ];Hs) then f̃ ∈ C([0, T ];Hs−1) and,
applying (2.12) to (2.13) with s − 1 instead of s:

∥
∥w(t, ·)∥∥

s+1 + ∥∥Dtw(t, ·)
∥
∥
s−1 ≤ eC′(1+cr )t√t sup

t∈[0,T0]
∥
∥f̃ (t, ·)∥∥

s−1

for all t ∈ [0, T0]. Now, for s > 3/2:

∥
∥f̃ (t, ·)∥∥

s−1 ≤ ∥∥(a(t, x,u)− a(t, x, ũ))D3
x ṽ
∥
∥
s−1 + ∥∥(u− ũ)D2

x ṽ
∥
∥
s−1

+ ∥∥(∂xu− ∂xũ)Dxṽ
∥
∥
s−1

≤ ∥∥a(t, x,u)− a(t, x, ũ)∥∥
s−1 · ∥∥D3

x ṽ
∥
∥
s−1

+ ‖u− ũ‖s−1 · ∥∥D2
x ṽ
∥
∥
s−1 + ‖∂xu− ∂xũ‖s−1 · ‖Dxṽ‖s−1

≤ Cs,r‖u− ũ‖s
for some Cs,r > 0 depending on s and r .

Therefore

∥
∥w(t, ·)∥∥

s+1 + ∥∥Dtw(t, ·)
∥
∥
s−1 ≤ Cs,reC′(1+cr )t√t sup

t∈[0,T0]
‖u− ũ‖s

for all t ∈ [0, T0], i.e.

∥
∥
∥
∥S(u)− S(ũ)∥∥∥∥

s−1 ≤ Cs,reC′(1+cr )t√t sup
t∈[0,T0]

∥
∥‖u− ũ‖∥∥

s−1.

We now choose 0< T ∗ < T0 sufficiently small so that

Cs,re
C′(1+cr )T ∗√

T ∗ < 1

and hence

sup
t∈[0,T ∗]

∥
∥
∥
∥S(u)− S(ũ)∥∥∥∥

s−1 ≤ L sup
t∈[0,T0]

∥
∥‖u− ũ‖∥∥

s−1 (2.14)

for 0<L< 1. Setting

B∗
r :=

{
v ∈ C([0, T ∗];Hs+2)∩C1([0, T ∗];Hs) : sup

t∈[0,T ∗]
∥
∥‖v(t, ·)‖∥∥

s
≤ r
}
,

we have that S : B∗
r −→ B∗

r is a contraction with the norm ‖‖ · ‖‖s−1.
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Defining then recursively un+1 = S(un) we can prove, by the same fixed point
arguments used in [4], that un → u and S(un) → S(u) in C([0, T ∗];Hs+1) ∩
C1([0, T ∗];Hs−1). Moreover, u ∈ C([0, T ∗];Hs+2) ∩ C1([0, T ∗];Hs) and so the
fixed point u= S(u) is a solution of the Cauchy problem (1.3).

Finally, uniqueness follows from (2.14) and the proof is complete. �

Remark 2.1 Assumption (1.2) with ε > 0 is needed to obtain the energy estimate
(2.11) without loss of derivatives. This implies that the map S is a contraction (see
(2.14)) and hence allows us to apply a fixed point argument.

In the case ε = 0 the fixed point method fails because of the loss of derivatives.
However, this limit case could be probably treated by a different approach, based on
the Nash–Moser Theorem in the tame space H∞ (cf. [7]).

We would like to thank the referee for pointing out this possible future improve-
ment of our results.
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Energy Solutions for Nonlinear Klein–Gordon
Equations in de Sitter Spacetime

Makoto Nakamura

Abstract The Cauchy problem for nonlinear Klein–Gordon equations is considered
in de Sitter spacetime. The nonlinear terms are power type or exponential type. The
local and global solutions are shown in the energy class.

Keywords Klein–Gordon equation · De Sitter spacetime
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1 Introduction

We report some fundamental results of local and global energy solutions for the
Cauchy problem of semi-linear Klein–Gordon equations in de Sitter spacetime. Let
n≥ 1,M > 0, H > 0, c > 0, and let us consider the Cauchy problem given by

⎧
⎪⎨

⎪⎩

(
∂2
t − c2e−2Ht�+M2)u(t, x)+ c2enHt/2f

(
e−nHt/2u(t, x)

)= 0

for (t, x) ∈ [0, T )×R
n

u(0, ·)= u0(·) ∈H 1(
R
n
)
, ∂tu(0, ·)= u1(·) ∈ L2(

R
n
)
,

(1.1)

where u0, u1, f are real-valued functions,� :=∑n
j=1 ∂

2/∂x2
j , H 1(Rn) denotes the

Sobolev space and L2(Rn) denotes the Lebesgue space.
D’Ancona and Giuseppe have shown in [5] and [6] global classical solutions for

(∂2
t − a(t)�)u+ |u|p−1u = 0 with some additional conditions on a(t) ≥ 0 and p

when n = 1,2,3. Yagdjian has shown in [19] small global solutions for the first
equation in (1.1) when the nonlinear term f is of power type and the norm of initial
data ‖u0‖Hs(Rn) + ‖u1‖Hs(Rn) is sufficiently small for some s > n/2 ≥ 1 (see also
[20] for the system of the equations). Baskin has shown in [3] small global solution
for (�g + λ)u + f (u) = 0 when f (u) is a type of |u|p−1u, p = 1 + 4/(n − 1),

M. Nakamura (B)
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λ > n2/4, (u0, u1) ∈ H 1 ⊕ L2, where g gives the asymptotic de Sitter spacetime
(see also [2] for the cases p = 5 with n= 3, p = 3 with n= 4). Blow-up phenomena
are considered in [18]. See also the references in the summary [21] by Yagdjian.
The aim of this paper is to give some results for the well-posedness of the Cauchy
problem (1.1) with power type nonlinear terms in the energy space, and we also
consider exponential type nonlinear terms in two spatial dimensions for the limiting
case in terms of Sobolev embeddings.

To denote power type nonlinear terms of order p, we define the following set
N(p). We note that the nonlinear terms f (u) = λ|u|p−1u and f (u) = λ|u|p for
λ ∈ R satisfy f ∈ N(p). We remark that in [19–21], the nonlinear terms must be
Lipschitz continuous in the Sobolev spaceHs(Rn) of order s > n/2, which requires
additional regularity for initial data (see Condition L in the papers).

Definition 1.1 Let p ≥ 1. We denote by N(p) the set of functions f from R to R

which satisfies f (0)= 0 and

∣
∣f (u)− f (v)∣∣≤ C max

w=u,v |w|p−1|u− v| (1.2)

for any u and v ∈ R, where C > 0 is a constant independent of u and v.

For T > 0, we define a function space X(T ) := {u : ‖u‖X(T ) <∞}, where

‖u‖X(T ) := max
{
M‖u‖L∞((0,T ),L2(Rn)), ‖∂tu‖L∞((0,T ),L2(Rn)),

c
∥
∥e−Ht∇u∥∥

L∞((0,T ),L2(Rn))
,

c
√
H
∥
∥e−Ht∇u∥∥

L2((0,T )×Rn))

}
. (1.3)

We start from the Cauchy problem for power type nonlinear terms.

Theorem 1.2 Let p satisfy

1 ≤ p

⎧
⎪⎨

⎪⎩

<∞ if n= 1,2

≤ 1 + 2

n− 2
if n≥ 3.

(1.4)

Let f ∈N(p). Then we have the following results.
(1) For any u0 and u1, there exists T = T (‖u0‖H 1(Rn) + ‖u1‖L2(Rn)) > 0 such

that (1.1) has a unique solution u in C([0, T ),H 1(Rn))∩C1([0, T ),L2(Rn)). Here,
u satisfies u ∈ X(T ), and for any fixed p0 with 1 ≤ p0 < 1 + 4/n, there exists a
constant C > 0 dependent on p0 but independent of u0 and u1 such that T can be
estimated from below as

T ≥ C{‖u0‖H 1(Rn) + ‖u1‖L2(Rn)

}−(p−1)/{1−n(p0−1)/4}
.
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(2) Let n≤ 4. If ‖u0‖H 1(Rn) + ‖u1‖L2(Rn) is sufficiently small, and 1 + 4/n≤ p,
then (1.1) has a unique solution u in C([0,∞),H 1(Rn)) ∩ C1([0,∞),L2(Rn)).
And u satisfies u ∈X(∞).

Theorem 1.2 shows that any growth order p of polynomial type is subcritical
for n = 1,2. When n = 1, we are able to see that any growth order of C1 type is
also subcritical by the embedding H 1(R) ↪→ L∞(R). Namely, for any real-valued
function g ∈ C1(R), the result (1) of Theorem 1.2 is valid even if we replace f (u)
with f (u)g(u). This result shows the existence of time local solutions, while the
existence of time global solutions for small data, namely (2) of Theorem 1.2 could
not be shown for f (u)g(u) since the energy estimates are too weak to treat the non-
linear terms when n= 1. When n= 2, the embeddingH 1(R2) ↪→ L∞(R2) does not
hold and it is critical embedding. In this case, the next theorem shows that the expo-
nential growth order is also subcritical. We use the following Gagliardo–Nirenberg
interpolation inequality with asymptotic.

Lemma 1.3 Let n= 1,2. There exist β > 0 and q0 ≥ 2 such that

‖u‖Lq(Rn) ≤ βq1/2‖∇u‖n(1/2−1/q)
L2(Rn)

‖u‖1−n(1/2−1/q)
L2(Rn)

for any q with q0 ≤ q <∞ and nonconstant u. Here, β can be taken for any number
with β > (8πe)−1/2 when n= 2.

Indeed, this lemma easily follows from the Moser–Trudinger inequality

‖u‖Lq(Rn) ≤ βq1/2‖u‖1−2/q
Ḣ n/2(Rn)

‖u‖2/q
L2(Rn)

(see [10, Corollary 1.6], [11, Theorem 1.1] and the references therein) and the inter-
polation inequality

‖u‖Ḣ n/2(Rn) ≤ ‖u‖n/2
Ḣ 1(Rn)

‖u‖1−n/2
L2(Rn)

.

The exponential nonlinear terms have been considered for Schrödinger equations
in [4, 14], wave equations in [7, 15], Klein–Gordon equations in [9, 16], heat equa-
tions in [8], complex Ginzburg–Landau equations and dissipative wave equations in
[13], damped Klein–Gordon equations in [1]. We show the corresponding result for
Klein–Gordon equations in de Sitter spacetime. We note that the result (1) in the
next theorem is weaker than the aforementioned case for the time local solutions
when n= 1, however, we are able to consider time global solutions for small data
in (2).

Theorem 1.4 Let n = 1,2. Let λ ∈ R, α > 0, 0 < ν ≤ 2, j0 ≥ 0. Let f (u) =
λu(eα|u|ν −∑0≤j<j0

αj

j ! |u|νj ) for j0 ≥ 1, and f (u) = λueα|u|ν for j0 = 0. Put
D := ‖u0‖H 1(Rn) + ‖u1‖L2(Rn). Then we have the following results.
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(1) Let ν < 2. For any u0 and u1, there exists T > 0 such that (1.1) has a unique
time local solution u in C([0, T ),H 1(R2)) ∩ C1([0, T ),L2(R2)). Here, u satisfies
u ∈X(T ), and for any fixed p0 with j0 ≥ (p0 − 1)/ν and 1 ≤ p0 < 1 + 4/n, there
exists a constant C0 independent of D such that T can be estimated from below as

T ≥
(

2C0

∑

j≥j0
p(j)a(j)(2C0D)

p(j)−1
)−1/{1−n(p0−1)/4}

,

where p(j) := νj + 1, a(j) := αjβp(j)(2p(j))p(j)/2/j !, and β is any real number
by which Lemma 1.3 holds.

(2) If 4/nν ≤ j0 and D is sufficiently small, then (1.1) has a unique time global
solution u in C([0,∞),H 1(R2))∩C1([0,∞),L2(R2)). And u satisfies u ∈X(∞).

Remark 1.5 The assumption ν ≤ 2 seems to be optimal in the energy class H 1(R2)

in view of the Trudinger inequality (see [17]). A typical example for (2) is the case
ν = 2, f (u) = λu(eα|u|2 − 1 − α|u|2) when n = 1, f (u) = λu(eα|u|2 − 1) when
n= 2, where the lower order of f (u) are 5 when n= 1 and 3 when n= 2 which are
both critical in L2 theory.

We have considered the existence of solutions so far. Our solutions have the
continuous dependence on the initial data, and they have asymptotic profiles to free
solutions as follows.

Theorem 1.6 Let u be the solution obtained in the above theorems for initial data
u0 and u1, and let 0< T ≤ ∞ be the existence time of u there.

(1) Let v0 ∈H 1(Rn) and v1 ∈ L2(Rn), and let v be the solution obtained in the
above theorems for initial data v0 and v1. If v0 converges to u0 in H 1(Rn), and v1

converges to u1 in L2(Rn), then ‖u− v‖X(T ) tends to zero.
(2) If u is the time global solution given by (2) of Theorems 1.2 and 1.4, then

there exist v0 ∈ L2(Rn) and v1 ∈H−1(Rn) such that

lim
t→∞

{
e−Ht

∥
∥u(t)− v(t)∥∥

L2(Rn)
+ ∥∥∂tu(t)− ∂tv(t)

∥
∥
H−1(Rn)

}= 0,

where v is the free solution of (∂2
t − c2e−2Ht� + M2)v = 0, v(0, ·) = v0(·),

∂tv(0, ·)= v1(·).

Finally, we consider global solutions for large data when the nonlinear term f in
(1.1) has an energy conservative potential function.

Theorem 1.7 Let λ≥ 0. Let u0 ∈H 1(Rn) and u1 ∈ L2(Rn). Let f (u) be given by
the following (1) or (2).
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(1) We put f (u)= λ|u|p−1u, where p satisfies

1 ≤ p

⎧
⎪⎨

⎪⎩

<∞ if n= 1,2

≤ 1 + 2

n− 2
if n≥ 3.

(2) Let n = 2, 0 < α < ∞, 0 < ν ≤ 2, 0 ≤ j0 < ∞. Let f (u) = λu(eα|u|ν −
∑

0≤j<j0
αj

j ! |u|νj ) for j0 ≥ 1, and f (u) = λueα|u|ν for j0 = 0. When ν = 2, we
assume

1

2

∫

R2
c2
∣
∣∇u0(x)

∣
∣2 +M2u2

0(x)+
∣
∣u1(x)

∣
∣2

+ c2λ

∞∑

j≥j0

αj

j !2(j + 1)
|u0|2(j+1)dx ≤ c2π

α
. (1.5)

Then (1.1) has a unique global solution u in C([0,∞),H 1(Rn)) ∩ C1([0,∞),
L2(Rn)). And u satisfies u ∈X(∞).

We refer to [12] for the proofs of the above results.
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A Benefit from the L∞ Smallness of Initial Data
for the Semilinear Wave Equation
with Structural Damping

Marcello D’Abbicco

Abstract In this note, we prove the global existence of small data solutions for a
semilinear wave equation with structural damping,

utt −�u+μ(−�) 1
2 ut = |u|p,

for any n≥ 2 and p > 1 + 2/(n− 1). The damping term allows us to derive linear
Lq1 − Lq2 estimates, for 1 ≤ q1 ≤ q2 ≤ ∞, without loss of regularity, in any space
dimension. These estimates provide the basic tool to state our result, in which we
assume initial data to be small in (L1 ∩H 1 ∩L∞)× (L1 ∩Ln).

Keywords Semilinear equations · Global existence · Structural damping · Critical
exponent

Mathematics Subject Classification (2010) 35L71

We study the global existence of small data solutions to

⎧
⎪⎨

⎪⎩

utt −�u+μ(−�) 1
2 ut = f (u),

u(0, x)= u0(x),

ut (0, x)= u1(x),

(1)

where μ> 0, and f (u)= |u|p , or more in general,

f (0)= 0,
∣
∣f (u)− f (v)∣∣� |u− v|(|u|p−1 + |v|p−1), (2)

for some p > 1. The linear part of the model in (1), i.e.

utt −�u+μ(−�) 1
2 ut = 0, (3)
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is frequently used in the determination of lifespan for primary or rechargeable bat-
teries (see [8]). Equation (3) is a special case of a wave equation with structural
damping:

utt −�u+μ(−�)σut = 0, σ > 0. (4)

Different kind of estimates in Sobolev spaces for (4) with σ ∈ (0,1) have been
recently studied in [1, 11, 17]. In the limit case σ = 1, the damping is also called
visco-elastic and it has been studied in [13, 19] and, in abstract setting, in [10, 12].
Smoothing effects for (4) are studied in [9], including the case σ ≥ 1. Some L2 −L2

estimates have been derived in the case with time-dependent damping b(t)(−�)σut
in [14, 18].

The semilinear problem corresponding to (4) has been studied by the author and
M. Reissig in [6], for σ ∈ (0,1]. In particular, if σ = 1/2, by assuming small initial
data in the energy space and in L1, we proved global existence of energy solutions
for any p > 3 in space dimension n = 2 and for any p ∈ (2,3] in space dimen-
sion n = 3. We also proved the optimality of the critical exponent 1 + 2/(n− 1).
More precisely, for μ = 2, u0 ≡ 0 and u1 ≥ 0, nontrivial, global solutions to (1)
cannot exist if 1<p ≤ 1 + 2/(n− 1) (see later, Theorem 2).

In this note, we show how the smallness of initial data in

A := (L1 ∩H 1 ∩L∞)× (L1 ∩Ln)

may be used to prove global existence of small data solutions for any p > 1 + 2/
(n− 1), in any space dimension n≥ 2. The case n= 2 has been completely solved
in [6]. Indeed, in this case, the L∞ smallness assumption of u0 brings no benefit on
the range of admissible exponents p.

Our approach takes advantage of the special structure of linear Lq1 − Lq2 esti-
mates, 1 ≤ q1 ≤ q2 ≤ ∞, which can be obtained for (3). In particular, no loss of
regularity appears in high space dimension, a difficulty which occurs, for instance,
for the classical damped wave equation [16].

For any u ∈ C([0, T ],H 1)∩ C1([0, T ],L2), we define its energy as

E[u](t) := ∥∥∇u(t, ·)∥∥
L2 + ∥∥ut (t, ·)

∥
∥
L2 .

Theorem 1 Let n≥ 2 and p > 1 + 2/(n− 1). Then there exists ε > 0 such that for
any initial data (u0, u1) ∈A with

∥
∥(u0, u1)

∥
∥
A ≤ ε,

there exists a C([0,∞),L1 ∩H 1 ∩L∞)∩ C1([0,∞),L2) solution to (1). The solu-
tion satisfies the estimates

∥
∥u(t, ·)∥∥

Lq
≤ C(1 + t)1−n(1−1/q)

∥
∥(u0, u1)

∥
∥
A, for any q ∈ [1,∞], (5)

E[u](t)≤ C(1 + t)− n
2
∥
∥(u0, u1)

∥
∥
A. (6)
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Estimate (5) follows by interpolation, once we prove that
∥
∥u(t, ·)∥∥

L1 ≤ C(1 + t)∥∥(u0, u1)
∥
∥
A,

∥
∥u(t, ·)∥∥

L∞ ≤ C(1 + t)−(n−1)
∥
∥(u0, u1)

∥
∥
A.

From the linear estimates in [17] for the solution to
⎧
⎪⎨

⎪⎩

vtt −�v+μ(−�) 1
2 vt = 0,

v(0, x)= v0(x),

vt (0, x)= v1(x),

(7)

we may derive

∥
∥v(t, ·)∥∥

Lq
≤ t−n( 1

q0
− 1
q
)‖v0‖Lq0 + t1−n( 1

q1
− 1
q
)‖v1‖Lq1 , (8)

for any q0, q1 ≥ 1 and q ≥ max{q0, q1}. In particular, if q = 1, then (8) gives
∥
∥v(t, ·)∥∥

L1 ≤ ‖v0‖L1 + t‖v1‖L1 . (9)

Let q = ∞. Taking q0 = ∞, q1 = n for any t ≥ 0, from (8) it follows that
∥
∥v(t, ·)∥∥

L∞ ≤ ‖v0‖L∞ + ‖v1‖Ln. (10)

Combining (10) with (8) for q0 = q1 = 1 and t ≥ 1, we get
∥
∥v(t, ·)∥∥

L∞ ≤ (1 + t)−(n−1)(‖v0‖L1∩L∞ + ‖v1‖L1∩Ln
)
. (11)

The solution to (7) also satisfies the energy estimates (see [6]):

E[v](t)≤ (1 + t)− n
2
(‖v0‖L1∩H 1 + ‖v1‖L1∩L2

)
, (12)

E[v](t)≤ ‖v0‖H 1 + ‖v1‖L2 . (13)

We are now ready to prove our statement.

Proof of Theorem 1 For any T > 0, we introduce the space

X(T ) := C
([0, T ],L1 ∩H 1 ∩L∞)∩ C1([0, T ],L2), (14)

with norm given by

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−1

∥
∥w(t, ·)∥∥

L1

+ (1 + t)n−1
∥
∥w(t, ·)∥∥

L∞ + (1 + t) n2 E[w](t)}. (15)

If w ∈X(T ) then we derive that

E[w](t)≤ (1 + t)− n
2 ‖w‖X(T ), (16)
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and, by interpolation, that

∥
∥w(t, ·)∥∥

Lq
≤ (1 + t)1−n(1− 1

q
)‖w‖X(T ), for any q ∈ [1,∞]. (17)

We consider the operator N defined by

Nw := ulin(t, x)+Gw(t, x), with Gw :=
∫ t

0
E(t − τ, x) ∗(x) f (w)dτ, (18)

where ulin(t, x) is the solution to (7) with (v0, v1) = (u0, u1), and E(t, x) is the
fundamental solution to (7) for v0 ≡ 0 and v1 = δ. A functionw ∈X(T ) is a solution
to (1) for any t ∈ [0, T ] if, and only if, w =Nw in X(T ). If we prove that

‖Nw‖X(T ) ≤ C1
∥
∥(u0, u1)

∥
∥
A +C2‖w‖pX(T ), (19)

‖Nw−Nw̃‖X(T ) ≤ C‖w− w̃‖X(T )
(‖w‖p−1

X(T )
+ ‖w̃‖p−1

X(T )

)
, (20)

where C1, C2 and C do not depend on T , by standard arguments (see, for instance,
[5]), we may derive the existence of a unique fixed point of N in X(T ), and then
the existence of small data global solutions to (1), satisfying

‖u‖X(T ) ≤ C̃
∥
∥(u0, u1)

∥
∥
A, uniformly for any T > 0. (21)

By (21), estimates (5)–(6) for the solution follow.
Recalling the definition of A and setting u0 = v0, u1 = v1, in (9), (11) and (12),

we immediately derive that
∥
∥ulin

∥
∥
X(T )

≤ C1
∥
∥(u0, u1)

∥
∥
A,

and (19) follows once we prove that

‖Gw‖X(T ) ≤ C‖w‖pX(T ). (22)

On the other hand, it is clear that we may rewrite (20) as

‖Gw−Gw̃‖X(T ) ≤ C‖w− w̃‖X(T )
(‖w‖p−1

X(T ) + ‖w̃‖p−1
X(T )

)
. (23)

We first prove (22). Recalling the definition of the operator G in (18), thanks to (9)
and (17), we obtain

∥
∥Gw(t, ·)∥∥

L1 ≤ C
∫ t

0
(t − τ)∥∥f (w)(τ, ·)∥∥

L1dτ

≤ C1

∫ t

0
(t − τ)∥∥w(τ, ·)∥∥p

Lp
dτ

≤ C1‖w‖pX(T )
∫ t

0
(t − τ)(1 + τ)−(n−1)(p−1)+1dτ.
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We notice that (n− 1)(p− 1) > 2 if, and only if, p > 1 + 2/(n− 1). Therefore we
derive (see, for instance, [15]):

∥
∥Gw(t, ·)∥∥

L1 ≤ C(1 + t)‖w‖p
X(T )

.

In order to deal with the L∞ norm of Gw(t, ·) we need to modify our approach.
We split the interval [0, t] into [0, t/2] and [t/2, t]. In the first interval, we use (11),
whereas in the second one we use (10):

∥
∥Gw(t, ·)∥∥

L∞ ≤ C
∫ t/2

0
(1 + t − τ)−(n−1)

∥
∥f (w)(τ, ·)∥∥

L1∩Lndτ

+C
∫ t

t/2

∥
∥f (w)(τ, ·)∥∥

Ln
dτ.

Thanks to (17), and using

1 + t − τ ≥ (1 + t)/2 if τ ∈ [0, t/2], 1 + τ ≥ (1 + t)/2 if τ ∈ [t/2, t],
it follows that

∥
∥Gw(t, ·)∥∥

L∞ ≤ C‖w‖pX(T )(1 + t)−(n−1)
∫ t/2

0
(1 + τ)−(n−1)(p−1)+1dτ

+C‖w‖pX(T )(1 + t)−(n−1)−(n−1)(p−1)+1
∫ t

t/2
1dτ

≤ C1(1 + t)−(n−1)‖w‖p
X(T )

,

where we used (n − 1)(p − 1) > 2 to prove the last inequality. Thanks to (12)
and (13), we proceed similarly to estimate

E[w](t) ≤ C
∫ t/2

0
(1 + t − τ)− n

2
∥
∥f (w)(τ, ·)∥∥

L1∩L2dτ

+C
∫ t

t/2

∥
∥f (w)(τ, ·)∥∥

L2dτ

≤ C1‖w‖pX(T )(1 + t)− n
2

∫ t/2

0
(1 + τ)−(n−1)(p−1)+1dτ

+C‖w‖pX(T )(1 + t)− n
2 −(n−1)(p−1)+1

∫ t

t/2
1dτ

≤ C2(1 + t)− n
2 ‖w‖pX(T ).

Therefore we proved (22). To prove (23), it is sufficient to use (2) and Hölder in-
equality, to estimate

∥
∥f (w)− f (w̃)∥∥

Lq
≤ ‖w− w̃‖Lqp

(‖w‖p−1
Lqp + ‖w̃‖p−1

Lqp

)
,
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where needed, then we proceed as in the proof of (22). This concludes the proof of
the theorem. �

To motivate the sharpness of the critical exponent in Theorem 1, we present the
following.

Theorem 2 We consider the Cauchy problem

⎧
⎪⎨

⎪⎩

utt −�u+ 2(−�) 1
2 ut = up, t ≥ 0, x ∈R

n,

u(0, x)= 0,

ut (0, x)= u1(x).

(24)

Let us assume that the data u1 ∈ L1
loc is non-negative. If 1<p ≤ 1+2/(n−1), then

there exists no global nontrivial Lploc solution to (24).

Theorem 2 has been first proved in Theorem 9 in [6], with stronger assumptions
on the data and solution spaces. Our proof is also simpler.

An essential role in the proof of Theorem 2 is played by the fact that any local
or global solution to (24) with non-negative initial data u1, is non-negative. This
property is used to extend the test function method (see, for instance, [4, 7]) to the

operator in (24), which contains the nonlocal term (−�) 1
2 ut . The requirement of

non-negativity of the solution do not appear in the case of a classical damping [20].

Proof of Theorem 2 We assume by contradiction that u ∈ Lploc is a global solution
to (24). Therefore, for any test function ψ ∈ C∞

c ([0,∞)×R
n) it holds

∫ ∞

0

∫

Rn

u
(
ψtt −�ψ − 2(−�) 1

2ψt
)
dxdt

=
∫ ∞

0

∫

Rn

upψdxdt +
∫

Rn

u1(x)ψ(0, x)dx. (25)

Let φ ∈ C∞
c ([0,∞)) be a nontrivial, nonincreasing function, compactly supported

in [0,1], and let � > p′. First, we assume that 1<p < 1+2/(n−1). For any R > 1,
we set ψ(t, x)= φ(t/R)�φ(|x|/R)� in (25), for some � > p′ = p/(p − 1). Recall-
ing that φ, −φ′, and u1 are nonnegative and that (see [2])

(−�)θφ(|x|/R)� ≤ �φ(|x|/R)�−1
(−�)θφ(|x|/R)

for any θ ∈ (0,1] and � > 1, we may derive

IR :=
∫ ∞

0

∫

Rn

upψdxdt ≤R−2�

∫ ∞

0

∫

Rn

uψ
�−1
� h
(
t/R, |x|/R)dxdt,

h
(
t, |x|) = (φ′′(t)+ (�− 1)

(
φ′)2(t)/φ(t)

)
φ
(|x|)
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− φ(t)�φ(|x|)− 2�φ′(t)(−�) 1
2φ
(|x|)

We notice that ψε(t, x)h(t/R, |x|/R) is a bounded function with compact support
in [0,R] ×BR , for any ε > 0, since h is bounded.

Setting ε = (�− 1)/�− �/p, by Hölder’s inequality, we obtain:

IR �R−2I
1
p

R

(∫ R

0

∫

BR

(
ψε
∣
∣h
(
t/R, |x|/R)∣∣)p′

dxdt

) 1
p′
�R−2+ n+1

p′ I
1
p

R .

This gives IR � R−2p′+n+1, which vanishes as R → ∞. By Beppo–Levi conver-
gence theorem, it follows that u≡ 0.

Now let n ≥ 2 and p = 1 + 2/(n− 1), i.e. 2p′ = n+ 1. The previous approach
only gives a uniform bound for IR , that is, upψ ∈ L1. We now fix φ such that it also
satisfies φ(ρ)= 1 for any ρ ∈ [0,1/2], and we define ψ(t, x)= φ(t)�φ(|x|/(δR))�,
for some δ > 0. Following the reasoning above, we derive, in particular,

−
∫ ∞

0

∫

Rn

u�ψdxdt = −
∫ ∞

0

∫

|x|>δR/2
u�ψdxdt

� J
1
p

R ≡
(∫ ∞

0

∫

|x|>δR/2
upψdxdt

) 1
p → 0, as R→ ∞,

thanks to upψ ∈ L1, for any fixed δ > 0.
For the other two terms, we proceed as before, and taking into account of the

presence of δ > 0 in the definition of ψ , we obtain

IR � J
1
p

R + (δ np′ + δ np′ −1)
I

1
p

R .

Being δ arbitrarily small and n= 2p′ − 1>p′, we get again u≡ 0. �

Some ideas contained in this note have been employed in a forthcoming paper of
the author to study the influence of a nonlinear memory on (3), extending the results
in [3] for the classical damped wave equation.
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A Regularity Criterion for the Schrödinger Map

Jishan Fan and Tohru Ozawa

Abstract We prove a regularity criterion

∇u ∈ L2(0, T ;BMO
(
R
n
))

with 2 ≤ n ≤ 5 for the Schrödinger map. Here BMO is the space of functions with
bounded mean oscillations.

Keywords Landau–Lifshitz · Schrödinger map · Regularity criterion
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1 Introduction

In this paper, we consider the regularity criterion of the Schrödinger map:

ut = u×�u, (1.1)

u(·,0)= u0(·) in R
n, (1.2)

where u :Rn×R → S
2 is a three-dimensional vector field, representing the magne-

tization and × denotes the cross product in R
3.

By the standard stereographic projection S
2 → C ∪ {∞}, (1.1) can be rewritten

as the derivative Schrödinger equation
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iwt +�w+ 4
(∇w)2

1 + |w|2w = 0,

where w :Rn ×R → C.
The problem (1.1) and (1.2) has been studied by many authors [1–8, 10–17, 19–

25, 27–33]. In [32], Sulem, Sulem, and Bardos proved the well-posedness of local
smooth solutions for any n≥ 2. Guo and Han [10] show a regularity criterion

∇u ∈ L2(0, T ;L∞(
R
n
))

(1.3)

with n= 2,3 and 0< T <∞.
The aim of this paper is to refine (1.3) further. We will prove

Theorem 1.1 Let 2 ≤ n≤ 5 and let u0 : Rn → S
2 satisfy ∇u0 ∈H 3(Rn). Let u be

a local smooth solution of the problem (1.1) and (1.2). If u satisfies

∇u ∈ L2(0, T ;BMO
(
R
n
))

(1.4)

with 0< T <∞, then the solution u can be extended beyond T > 0.

Remark 1.2 It is an open problem to prove (1.4) for n≥ 6. In (2.10) and (2.11) we
need n≤ 5.

2 Proof of Theorem 1.1

We only need to prove a priori estimates.
First, testing (1.1) by −�u and using (a × b) · b = 0, we have the well-known

energy equality
d

dt

∫

|∇u|2dx = 0. (2.1)

Here it should be noted that (2.1) is an equality instead of an inequality because we
deal with the local strong solutions.

To prove further estimates, we derive a new equation from (1.1). Applying ∂t to
(1.1) and using the formula a × (b × c)= (a · c)b − (a · b)c, and |u| = 1, we find
that

utt = ut ×�u+ u×�ut
= (u×�u)×�u+ u×�(u×�u)
= −�u× (u×�u)+ u× (u×�2u

)+ 2
∑

i

u× (∂iu× ∂i�u)

= −u|�u|2 + (u ·�u)�u+ (u ·�2u
)
u−�2u

+ 2
∑

i

(u · ∂i�u)∂iu. (2.2)
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Now using |u| = 1 and the formulae

u ·�u = −|∇u|2, (2.3)

0 = 1

2
∂i�|u|2 = ∂i

(
u�u+ |∇u|2)

= u∂i�u+ ∂iu�u+ 2
∑

j

∂ju∂i∂ju, (2.4)

0 = 1

2
�2|u|2 =

∑

i

�(ui�ui + ∇ui∇ui)

=
∑

i

[

ui�
2ui + |�ui |2 + 4∇ui∇�ui + 2

∑

j

(∂j∇ui)2
]

,

we obtain

u�2u= −|�u|2 − 4
∑

i,j

∂jui∂j�ui − 2
∑

i,j

(∂j ∂iu)
2. (2.5)

Putting (2.3), (2.4) and (2.5) into (2.2), we arrive at:

utt +�2u = −2u|�u|2 − 4u
∑

i,j

∂jui∂j�ui − 2u
∑

i,j

(∂j ∂iu)
2

− |∇u|2�u− 2
∑

i

(∂iu ·�u)∂iu− 4
∑

i,j

(∂ju · ∂i∂ju)∂iu. (2.6)

The new (2.6) is similar to the biharmonic wave map introduced by the authors
[9].

In the following calculations, we will use the following bilinear product estimates
due to Kato and Ponce [18]:

∥
∥Λs(fg)

∥
∥
Lp

≤ C(∥∥Λsf ∥∥
Lp1 ‖g‖Lq1 + ‖f ‖Lp2

∥
∥Λsg

∥
∥
Lq2

)
(2.7)

with s > 0, Λ := (−�)1/2 and 1
p

= 1
p1

+ 1
q1

= 1
p2

+ 1
q2

.
We will also use the following formula

0 =�2(uut )= u�2ut + ut�2u+C1DutD
3u+C2D

2utD
2u+C3D

3utDu,

(2.8)

where C1, C2, C3 are suitable constant tensors.
Testing (2.6) by �2ut and using (2.8), we get

1

2

d

dt

∫
(|�ut |2 + |�2u|2)dx

= −
∫ [

2u|�u|2 + 2u
∑

i,j

(∂i∂ju)
2
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+ |∇u|2�u+ 2
∑

i

(∂iu ·�u)∂iu+ 4
∑

i,j

(∂ju · ∂i∂ju)∂iu
]

�2utdx

+ 4
∑

i,j

∫

∂jui∂j�ui
(
ut�

2u+C1DutD
3u+C2D

2utD
2u+C3D

3utDu
)
dx

=
∫ (

2|�u|2 + 2
∑

i,j

|∂i∂ju|2
)
(
ut�

2u+C2D
2utD

2u
)
dx

−
∫

2C1utD

[

D3u

(

|�u|2 +
∑

i,j

|∂i∂ju|2
)]

dx

−
∫

2C3D
2utD

[

Du

(

|�u|2 +
∑

i,j

|∂i∂ju|2
)]

dx

−
∫

�

[

|∇u|2�u+ 2
∑

i

(∂iu ·�u)∂iu+ 4
∑

i,j

(∂ju · ∂i∂ju)∂iu
]

�utdx

+ 4
∑

i,j

∫

∂jui∂j�ui
(
ut�

2u+C2D
2utD

2u
)
dx

− 4C1

∑

i,j

∫

utD
(
∂jui∂j�uiD

3u
)
dx

− 4C3

∑

i,j

∫

D2ut ·D(∂jui∂j�uiDu)dx

=: I1 + I2 + I3 + I4 + I5 + I6 + I7. (2.9)

We will use (1.1) to bounded ut by �u, we bound Ii (i = 1, . . . ,7) as follows.
We estimate I1 as

|I1| ≤ C‖�u‖3
L6

(‖�2u‖L2 + ‖�ut‖L2

)

≤ C‖∇u‖2
L∞
(‖�2u‖2

L2 + ‖�ut‖2
L2

)
,

where we have used the Gagliardo–Nirenberg inequality

‖�u‖L6 ≤ C‖∇u‖
2
3
L∞‖�2u‖

1
3
L2 . (2.10)

We estimate I2 as

|I2| ≤ C‖�u‖3
L6‖�2u‖L2 +C‖�u‖2

L6‖D3u‖2
L3

≤ C‖�u‖3
L6‖�2u‖L2

≤ C‖∇u‖2
L∞‖�2u‖2

L2,
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where we have used (2.10) and the Gagliardo–Nirenberg inequality

∥
∥D3u

∥
∥2
L3 ≤ C‖�u‖L6

∥
∥�2u

∥
∥
L2 ≤ C‖∇u‖

2
3
L∞
∥
∥�2u

∥
∥

4
3
L2 . (2.11)

We use (2.10) and (2.11) to bound

|I3| ≤ C‖�ut‖L2

(‖�u‖3
L6 +C‖∇u‖L∞‖�u‖L6

∥
∥D3u

∥
∥
L3

)

≤ C‖�ut‖L2‖∇u‖2
L∞
∥
∥�2u

∥
∥
L2

≤ C‖∇u‖2
L∞
(∥
∥�2u

∥
∥2
L2 + ‖�ut‖2

L2

)
,

|I5| ≤ C‖∇u‖L∞‖�u‖L6

∥
∥D3u

∥
∥
L3

(∥
∥�2u

∥
∥
L2 + ‖�ut‖L2

)

≤ C‖∇u‖2
L∞
(∥
∥�2u

∥
∥2
L2 + ‖�ut‖2

L2

)
,

|I6| ≤ C‖�u‖2
L6

∥
∥D3u

∥
∥2
L3 +C‖∇u‖L∞‖�u‖L6

∥
∥D3u

∥
∥
L3

∥
∥�2u

∥
∥
L2

≤ C‖∇u‖2
L∞
∥
∥�2u

∥
∥2
L2 ,

|I7| ≤ C‖�ut‖L2

(‖∇u‖2
L∞
∥
∥�2u

∥
∥
L2 + ‖∇u‖L∞‖�u‖L6

∥
∥D3u

∥
∥
L3

)

≤ C‖∇u‖2
L∞
(∥
∥�2u

∥
∥2
L2 + ‖�ut‖2

L2

)
.

Finally, we use (2.7), (2.10) and (2.11) to bound I4 as

|I4| ≤ C(‖∇u‖2
L∞
∥
∥�2u

∥
∥
L2 + ‖�u‖L6‖∇u‖L∞

∥
∥D3u

∥
∥
L3

)‖�ut‖L2

≤ C‖∇u‖2
L∞
∥
∥�2u

∥
∥
L2‖�ut‖L2

≤ C‖∇u‖2
L∞
(∥
∥�2u

∥
∥2
L2 + ‖�ut‖2

L2

)
.

Inserting the above estimates into (2.9) and using (2.1) and the logarithmic
Sobolev inequality [26]:

‖∇u‖2
L∞ ≤ C(1 + ‖∇u‖2

BMO log
(
e+ ‖∇u‖H 3

))
,

we arrive at

‖∇u‖L∞(0,T ;H 3) + ‖ut‖L∞(0,T ;H 2) ≤ C.
This completes the proof.
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Microlocal Analysis for Hyperbolic Equations
in Einstein-de Sitter Spacetime

Anahit Galstian

Abstract We consider the waves propagating in the Einstein-de Sitter spacetime,
which obey the covariant d’Alembert’s equation. We construct the parametrixes in
the terms of Fourier integral operators and discuss the propagation and reflection of
the singularities phenomena.

Keywords Einstein-de Sitter model · Parametrix · Propagation of singularities

Mathematics Subject Classification (2010) Primary 35Q75 · 35A21 · 58J47 ·
Secondary 83C05 · 35S30

1 Introduction

The current note is concerned with the wave propagating in the universe modeled
by the cosmological models with expansion.

The homogeneous and isotropic cosmological models possess highest symmetry,
which makes them more amenable to rigorous study. Among them, Friedmann–
Lemaître–Robertson–Walker (FLRW) models are mentioned. The metric of the
EdeS universe is a member of the FLRW metrics ds2 = −dt2 + a2(t)[ dr2

1−Kr2 +
r2dΩ2], where K = −1,0, or +1, for a hyperbolic, flat or spherical spatial geom-
etry, respectively. The time dependence of the function a(t) is determined by the
Einstein field equations for gravity Rμν − 1

2gμνR = 8πGTμν . For pressureless mat-
ter distributions and vanishing spatial curvature in the EdeS universe the solution
to the Einstein field equations is a(t) = a0t

2/3 [4]. The universe expands, and its
expansion decelerates since ä < 0. Even though the EdeS spacetime is conformally
flat, its causal structure is quite different from asymptotically flat geometries. In
particular, and unlike Minkowski or Schwarzschild, the past particle horizons exist.
The EdeS spacetime is a good approximation to the large scale structure of the uni-
verse during a matter dominated phase, when the averaged (over space and time)
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energy density evolves adiabatically and pressures are vanishingly small, as, e.g.,
immediately after inflation [4]. This justifies why such a metric is adopted to model
the collapse of overdensity perturbations in the early matter dominated phase that
followed inflation.

The solution a(t)= a0t
2/3 is singular at t = 0: at that moment the scale factor is

equal to zero, and the energy density is infinite. This is an example of the cosmo-
logical singularity, the moment of Big Bang. The EdeS model of the universe is the
simplest non-empty expanding model. It was first proposed jointly by Einstein and
de Sitter (the EdeS model) [1]. In the EdeS spacetime the covariant wave equation
with the source term f is

ψtt − t−4/3�ψ + 2t−1ψt = f, x ∈R
3. (1.1)

In this note we give the parametrix for the initial value problem for this equation
with x ∈R

n and the wave front sets WF(ψ) of the solution.
Equation (1.1) is strictly hyperbolic in the domain with t > 0. It is known that

the wave front set WF(ψ) \ WF(f ) is contained in the characteristic set p−1(0),
where p = p(t, x; τ, ξ) is the principal symbol, p(t, x; τ, ξ) = τ 2 − t−4/3|ξ |2,
(t, x) ∈ (0,∞) × R

n, (τ, ξ) ∈ R
1+n. The set WF(ψ) \ WF(f ) is invariant under

the flow defined by the Hamiltonian field Hp of the principal symbol p. On the hy-
persurface t = 0 its coefficients have singularities that make the study of the initial
value problem and the reflection of the singularities difficult.

In [2] have been used the approach suggested in [6], which reduces the problem
for (1.1) to the Cauchy problem for the free wave equation in Minkowski spacetime.
More precisely, in [2] have been utilized the solution v = v(x, t;b) to the Cauchy
problem

vtt −�v = 0, v(x,0)= ϕ(x, b), vt (x,0)= 0, t > 0, x ∈ R
n, (1.2)

with the parameter b ∈ R. Here � is the Laplace operator on the flat metric, � :=
∑n
i=1

∂2

∂x2
i

. We denote that solution by vϕ = vϕ(x, t;b). In the case of function ϕ

independent of parameter, we simply write vϕ = vϕ(x, t).
The straightforward application of the formulas obtained in [6] to the Cauchy

problem for (1.1) decidedly does not work, but it reveals a surprising link to the
EdeS spacetime. Indeed, we note that the “principal part” of (1.1) belongs to the
family of the Tricomi-type equations utt − t l�u= 0, where l ∈ N. According to [6]
the solution to the Cauchy problem utt − t l�u= f (x, t), u(x,0)= 0, ut (x,0)= 0,
with the smooth functions f , ϕ0, and ϕ1, can be represented as follows:

u(x, t)= 2ck

∫ t

0
db

∫ φ(t)−φ(b)

0
drE(r, t;0, b)vf (x, r;b), x ∈R

n, t > 0,

with the kernel E(r, t;0, b) containing F(γ, γ ;1; (φ(t)−φ(b))2−r2

(φ(t)+φ(b))2−r2 ), where γ :=
�

2(�+2) , φ(t) := t1+�/2
1+�/2 , and F(γ, γ ;1; ζ ) is the hypergeometric function. Suppose

now that we are looking for the simplest possible kernel E(r, t;0, b) of the last



Microlocal Analysis for Hyperbolic Equations in Einstein-de Sitter Spacetime 227

integral. In the hierarchy of the hypergeometric functions the simplest one, that is
different from the constant, is F(−1,−1;1; ζ )= 1 + ζ . The parameter l leading to
F(−1,−1;1; ζ ) is exactly the exponent l = −4/3 of the wave equation (and of the
metric tensor) in the EdeS spacetime.

Theorem 1.1 [2] shows how the “lower order term” of (1.1) affects the initial
value problem. More precisely, the initial conditions can be prescribed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ψtt − t−4/3�ψ + 2t−1ψt = f (x, t), t > 0, x ∈R
n,

lim
t→0

tψ(x, t)= ϕ0(x), x ∈R
n,

lim
t→0

(
tψt (x, t)+ψ(x, t)+ 3t−1/3�ϕ0(x)

)= ϕ1(x), x ∈R
n,

(1.3)

For the solutions of the problem(1.3) Theorem 1.1 [2] gives representation

ψ(x, t) = 3

2
t2
∫ 1

0
db

∫ 1−b1/3

0
dsbvf

(
x,3t1/3s; tb)(1 + b2/3 − s2)

+ t−1vϕ0

(
x,3t1/3

)− 3t−2/3(∂t vϕ0)
(
x,3t1/3

)

+ 3

2

∫ 1

0
vϕ1

(
x,3t1/3s

)(
1 − s2)ds. (1.4)

The initial conditions of (1.3) are the so-called weighted initial conditions. Theo-
rem 1.1 [2] has been used to obtain in [2] some important properties of the solutions
of the wave equation in E&deS spacetime. In particular, for the initial value problem
(1.3) the so-called Lp −Lq estimates are derived in [2].

In this present paper we supplement the results of [2] with the microlocal anal-
ysis, which, in particular, describes the wave front sets of solutions. Denote by
ϕ̂0(ξ) the Fourier transform of ϕ0(x) and by f̂ (t, ξ) the partial Fourier transform
of f (t, x). The main result of the present paper is the following theorem. Denote

φ(t, ξ) := 3t
1
3 |ξ | and set n≥ 3.

Theorem 1.1 The solution of the problem (1.3) is given by the Fourier integral
operators as follows:

ψ(t, x) =
∑

+,−

±1

(2π)n

∫

Rn

ei(x·ξ∓φ(t,ξ)) 1

2t

(
iφ(t, ξ)± 1

)
ϕ̂0(ξ)dξ

+
∑

+,−

1

(2π)n

∫

Rn

ei(x·ξ∓φ(t,ξ)) i

18t |ξ |3
(
iφ(t, ξ)± 1

)
ϕ̂1(ξ)dξ

+
∑

+,−

±1

(2π)n

∫ t

0

∫

Rn

eix·ξ e∓i(φ(τ,ξ)−φ(t,ξ)) iτ

18t |ξ |3

× (∓i[φ(τ, ξ)− φ(t, ξ)]− φ(τ, ξ)φ(t, ξ)− 1
)
f̂ (τ, ξ)dξdτ. (1.5)
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Thus, the wave front set of the solution, WF(ψ), of the waves without source,
f = 0, in the E & dS spacetime is the union of the bicharacteristics, that is curves in
the Hamilton foliation of zero set of the principal symbol, p−1(0), emanating from
the wave front sets of the initial data: WF(ψ)= Γ +

ϕ0
(t) ∪ Γ −

ϕ0
(t) ∪ Γ +

ϕ1
(t) ∪ Γ −

ϕ1
(t),

where with μ = +,−, is denoted Γ μϕ (t) := {(x, ξ) ∈ R
n × (Rnξ \ {0}); ∃(x0, ξ0) ∈

WF(ϕ), x = x0 + μ3t
1
3 ξ0/|ξ0|, ξ = ξ0}. To discuss a reflection of singularities we

note that the limits limt→0+ ψ and limt→0+ ψt for the solutions of (1.1), in general,
do not exist and we change the formulation of the known reflection of the singular-
ities theorems (see, e.g., [3, Sect. 9 Ch. 2]). Let ψ ∈ C2((0, T );E ′(Rn)) be a solu-
tion of the equation of (1.1) without source, f = 0. Then according to Lemma 2.2
limt→0+(tψ) ∈ E ′(Rn) and limt→0+(tψt + ψ + 3t−1/3� limt→0+(tψ)) ∈ E ′(Rn)
exist. The next theorem shows that the solutions obey the reflection of the singular-
ities phenomena. For (x0, ξ0) ∈ R

2n, ξ0 �= 0, denote

Γ μ(x0, ξ0) :=
{
(t, x; τ, ξ) ∈ R

2n+2;x = x0 +μ3t
1
3 ξ0/|ξ0|,

ξ = ξ0, τ = μt−2/3|ξ |, t ∈ [0,∞)},
μ = +,−, the bicharacteristics emanating from the point (x0, ξ0) and lying in the
half-space t ≥ 0. It is sufficient to consider the case of point x0 = 0.

Theorem 1.2 Let ψ ∈ C2((0, T );E ′(Rn)) be a solution of (1.1) with f ≡ 0. If
WF(limt→0+(tψ))∩ Γ +(0, ξ0)= ∅ and (0, ξ0) /∈ WF(limt→0+(tψ)), or (0, ξ0) /∈
WF(limt→0+(tψt +ψ + 3t−1/3� limt→0+(tψ))) then WF(ψ)∩Γ −(0, ξ0)= ∅ and

for every t > 0 the point (−3t
1
3 ξ0/|ξ0|, ξ0) does not belong to WF(ψ |t ). Similar

statement is true if we permute Γ +(0, ξ0) and Γ −(0, ξ0).

The EdeS model recently became a focus of interest for an increasing number of
authors. We believe that the microlocal analysis of the solution operators obtained
in the present paper fills the gap in the existing literature on the wave equation in the
EdeS spacetime. In this note we present only the outline of the proof; the complete
proof and further results will be published in the forthcoming paper.

2 The Microlocal Representation Formulas

If we denote L := ∂2
t − t− 4

3�+ 2t−1∂t ,S := ∂2
t − t− 4

3�, then we can easily check
for t �= 0 the following operator identity t−1 ◦ S ◦ t = L. The last equation suggests
a change of unknown function ψ with u such that ψ = t−1u. Then the problem for
u is as follows:
⎧
⎨

⎩

utt − t−4/3�u= g(x, t), t > 0, x ∈R
n,

lim
t→0

u(x, t)= ϕ0(x), lim
t→0

(
ut (x, t)+ 3t−

1
3�ϕ0(x)

)= ϕ1(x), x ∈R
n,

(2.1)
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where g(x, t) = tf (x, t). It is enough to consider the solution of the last problem.
We consider two cases: (ϕ0,ϕ1) with f = 0; (f ) with ϕ0 = ϕ1 = 0.

Consider the ordinary differential equation

y′′ + t 4
3 |ξ |2y = 0, (2.2)

with a parameter ξ ∈ R
n. Set τ = 3t1/3|ξ |. The next lemma is an extension to nega-

tive γ of the corresponding result from [5].

Lemma 2.1 The functions

V1
(
t, |ξ |) = e−3it1/3|ξ |(3it1/3|ξ | + 1

)
, (2.3)

V2
(
t, |ξ |) =

∑

+,−

i

18|ξ |3 e
∓3it

1
3 |ξ |(3it

1
3 |ξ | ± 1

)
, (2.4)

on Rt ×R
n
ξ , form the fundamental system for (2.2) such that

V1
(
0, |ξ |)= 1, lim

t→0+
(
V ′

1(t, |ξ |)− 3t−1/3|ξ |2e−3it1/3|ξ |)= 0, (2.5)

V2
(
0, |ξ |)= 0, lim

t→0+ V
′
2

(
t, |ξ |)= 1. (2.6)

Case of (ϕ0,ϕ1) The second relation of (2.5) generates the second initial condi-
tion from (2.2) [2]. In fact, any solution of the equation

utt − t−4/3�u= 0, t > 0, x ∈R
n, (2.7)

according to the next lemma has certain asymptotic behavior at t = 0, which allows
us to set up a proper weighted initial value problem.

Lemma 2.2 Let u ∈ C2((0, T );E ′(Rn)) be a solution of the equation of (2.7).
Then the limt→0 u ∈ E ′(Rn) exists. Moreover, if we denote u0 := limt→0 u, then
limt→0(ut (x, t)+ 3t−1/3�u0(x)) ∈ E ′(Rn) exists as well.

Thus, the following initial value problem
⎧
⎨

⎩

utt − t−4/3�u= 0, t > 0, x ∈R
n,

lim
t→0+ u(x, t)= ϕ0(x), lim

t→0+
(
ut (x, t)+ 3t−

1
3�ϕ0(x)

)= ϕ1(x).
(2.8)

has been justified by Lemma 2.2. After partial Fourier transform we obtain
⎧
⎨

⎩

ytt
(
t, |ξ |)+ t−4/3|ξ |2y(t, |ξ |)= 0, t > 0, ξ ∈ R

n,

lim
t→0+ y

(
t, |ξ |)= ϕ̂0(ξ), lim

t→0+
(
yt
(
t, |ξ |)− 3t−

1
3 |ξ |2ϕ̂0(ξ)

)= ϕ̂1(ξ).
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The solution y(t, |ξ |) of the last problem can be represented as

y(t, |ξ |) = p01
(|ξ |)V1(t, |ξ |)ϕ̂0(ξ)+ p02

(|ξ |)V2
(
t, |ξ |)ϕ̂0(ξ)

+ p11
(|ξ |)V1

(
t, |ξ |)ϕ̂1(ξ)+ p12

(|ξ |)V2
(
t, |ξ |)ϕ̂1(ξ). (2.9)

This allows us to prove the following microlocal representation theorem. The oper-
ator G : E ′(Rn)×E ′(Rn)−→ C2((0, T ];C∞(Rn)), is said to be a parametrix of the
problem (2.8), if G{ϕ0, ϕ1} ∈ C2((0, T ];C∞(Rn)) and
⎧
⎨

⎩

SG{ϕ0, ϕ1} ∈ C((0, T ];C∞(
R
n
))
, lim
t→0+

(
G{ϕ0, ϕ1} − ϕ0

) ∈ C∞(
R
n
)
,

lim
t→0+

((
G{ϕ0, ϕ1}

)

t
+ 3t−1/3�ϕ0 − ϕ1

) ∈ C∞(
R
n
)
,

for every ϕ0, ϕ1 ∈ E ′(Rn). Let χ ∈ C∞(Rn) be a cut-off function such that χ(ξ)= 0
if |ξ | ≤ 1 and χ(ξ)= 1 if |ξ | ≥ 2.

Theorem 2.3 The parametrix G of the problem (2.8) is given by the Fourier integral
operators as follows:

G{ϕ0, ϕ1}(t, x) =
∑

+,−

±1

(2π)n

∫

Rn

1

2
ei(x·ξ∓3t

1
3 |ξ |)(3it

1
3 |ξ | ± 1

)
χ(ξ)ϕ̂0(ξ)dξ

+
∑

+,−

±1

(2π)n

∫

Rn

ei(x·ξ∓3t
1
3 |ξ |) i

18|ξ |3
(
3it

1
3 |ξ | ± 1

)
χ(ξ)ϕ̂1(ξ)dξ.

Proof From (2.9) and the first initial condition we derive limt→0+ y(t, |ξ |) =
p01(|ξ |)ϕ̂0(ξ) + p11(|ξ |)ϕ̂1(ξ) and obtain for the coefficients p01(|ξ |) = 1,
p11(|ξ |)= 0. Consequently,

y
(
t, |ξ |)= V1

(
t, |ξ |)ϕ̂0(ξ)+ p02

(|ξ |)V2
(
t, |ξ |)ϕ̂0(ξ)+ p12

(|ξ |)V2
(
t, |ξ |)ϕ̂1(ξ).

It follows

lim
t→0+

(
yt
(
t, |ξ |)− 3t−

1
3 |ξ |2ϕ̂0(ξ)

)

= lim
t→0+

([
3t−

1
3 |ξ |2e−3it

1
3 |ξ | + p02

(|ξ |)− 3t−
1
3 |ξ |2]ϕ̂0(ξ)+ p12

(|ξ |)ϕ̂1(ξ)
)
.

We set p02(|ξ |)= 9i|ξ |3, p12(|ξ |)= 1 and obtain

lim
t→0+

([
3t−1/3|ξ |2e−3it1/3|ξ | + 9i|ξ |3 − 3t−1/3|ξ |2]ϕ̂0(ξ)

)= 0.

Thus,

y
(
t, |ξ |) =

∑

+,−

±1

2
e∓3it

1
3 |ξ |(3it

1
3 |ξ | ± 1

)
ϕ̂0(ξ)
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+
∑

+,−

i

18|ξ |3 e
∓3it

1
3 |ξ |(3it

1
3 |ξ | ± 1

)
ϕ̂1(ξ).

To complete the proof of the theorem we have to prove that the difference between
the exact solution uext of the problem (2.8) and the function u := G{ϕ0, ϕ1} of (2.10)
is the smooth function. �

Corollary 2.4 The wave front set of the solution, WF(u), is the union

WF
(
u(t)
)= Γ +

ϕ0
(t)∪ Γ −

ϕ0
(t)∪ Γ +

ϕ1
(t)∪ Γ −

ϕ1
(t),

where with μ = +,− is denoted Γ μϕ (t) := {(x, ξ) ∈ R
n × (Rnξ \ {0}); ∃(x0, ξ0) ∈

WF(ϕ), x = x0 +μ3t
1
3 ξ0/|ξ0|, ξ = ξ0}.

The corollary below shows that the problem obeys the reflection of the singularities
phenomena similar to the operators with the regular coefficients. For (x0, ξ0) ∈R

2n,

ξ0 �= 0, denote Γ μ(x0, ξ0) := {(t, x; τ, ξ) ∈ R
2n+2; x = x0 +μ3t

1
3 ξ0/|ξ0|, ξ = ξ0,

τ = μt−2/3|ξ |, t ∈ [0,∞)}, μ = +,−, the bicharacteristics emanating from the
point (x0, ξ0) and lying in the half-space t ≥ 0. It is sufficient to consider the case
of point x0 = 0 only, since the equation is invariant with respect to translations in x.

Corollary 2.5 Let u ∈ C2((0, T );E ′(Rn)) be a solution of (2.7). If WF(u) ∩
Γ +(0, ξ0) = ∅ and (0, ξ0) /∈ WF(limt→0+(ut + 3t−1/3� limt→0+ u)) or (0, ξ0) /∈
WF(limt→0+ u), then WF(u) ∩ Γ −(0, ξ0) = ∅ and for every t > 0 the point

(−3t
1
3 ξ0/|ξ0|, ξ0) does not belong to WF(u|t ). Similar statement is true if we per-

mute Γ +(0, ξ0) and Γ −(0, ξ0).

Case of (f ) We look for the solution of the Cauchy problem for the equation with
the source term,

{
utt − t−4/3�u= g(x, t), t > 0, x ∈ R

n,

lim
t→0+ u(x, t)= 0, lim

t→0+ ut (x, t)= 0, x ∈ R
n.

(2.10)

The operator Gs : C((0, T ];E ′(Rn)) −→ C2((0, T ];E ′(Rn)), is said to be a
parametrix of the problem (2.10), if Gsg ∈ C2((0, T ];E ′(Rn)) and

{
SGsg − g ∈ C((0, T ];C∞(

R
n
))
,

lim
t→0+ Gsg ∈ C∞(

R
n
)
, lim

t→0+(Gsg)t ∈ C
∞(

R
n
)
,

for every distribution-valued function g ∈ C([0, T ];E ′(Rn)).
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Theorem 2.6 Let φ(t, ξ)= 3t
1
3 |ξ |, then the parametrix Gs of the problem (2.10) is

given by

Gsg(t, x)=
∑

+,−

±1

(2π)n

∫ t

0

∫

Rn

eix·ξ e∓i(φ(τ,ξ)−φ(t,ξ)) i

18|ξ |3

× (∓i[φ(τ, ξ)− φ(t, ξ)]− φ(τ, ξ)φ(t, ξ)− 1
)
χ
(|ξ |)ĝ(τ, ξ)dξdτ.
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Nonlinear Evolution Equations with Strong
Dissipation and Proliferation

Akisato Kubo and Hiroki Hoshino

Abstract We investigate the global existence in time and asymptotic profile of the
solution of some nonlinear evolution equations with strong dissipation and prolifer-
ation arising in mathematical biology. We apply our result to mathematical models
of tumour angiogenesis and invasion with proliferation of tumour cells.

Keywords Nonlinear evolution equation · Mathematical biology

Mathematics Subject Classification (2010) Primary 35L53 · Secondary 35K15

1 Introduction

In this paper we consider the initial Neumann-boundary value problem of nonlinear
evolution equations arising from chemotaxis models with logistic term;

(NE)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

utt =D∇2ut + ∇ · (χ(ut , e−u
)
e−u∇u)+μ(1 − ut )ut

in Ω × (0, T ) (1.1)

∂

∂ν
u

∣
∣
∣
∣
∂Ω

= 0 on ∂Ω × (0, T ) (1.2)

u(x,0)= u0(x), ut (x,0)= u1(x) in Ω (1.3)

∂

∂t
= ∂t , ∂

∂xi
= ∂xi , i = 1, . . . , n,

∇u= gradxu= (∂x1u, . . . , ∂xnu) (1.4)
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∇2u= ∇ · ∇u=�u= ∂2
x1
u+ · · · + ∂2

xn
u

where the coefficient of the non-linear term χ(·, ·) will be specified later in (A),D is
a positive constant, Ω is a bounded domain in Rn and ∂Ω is a smooth boundary of
Ω and ν is the outer unit normal vector. We frequently denote different positive
constants on the same set of arguments, we use the same letter C.

Our purpose is to establish global in time existence of solutions to (NE). However
we first consider a special case (NE)′ where we put μ= 0 in (NE),

(NE)′

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt =D∇2ut + ∇ · (χ(ut , e−u)e−u∇u
)
,

∂

∂ν
u

∣
∣
∣
∣
∂Ω

= 0,

u(x,0)= u0(x), ut (x,0)= u1(x).

We deal with it in Sect. 2 and after that, applying the result about (NE)′, we will get
the desired result for (NE) in Sect. 3.

In order to discuss the existence of the solution and its asymptotic behaviour of
(NE)′ we seek the solution in the form of u(x, t) = a + bt + v(x, t) for positive
parameters a and b. Then (NE)′ is rewritten by

(RP)′

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q[v] = vtt −D∇2vt − ∇ · (χa,b(v)e−a−bt−v∇v
)= 0,

∂

∂ν
v

∣
∣
∣
∣
∂Ω

= 0,

v(x,0)= v0(x), vt (x,0)= v1(x),

(1.5)

where we donote χ(vt + b, e−a−bt−v) by χa,b(v). Levine and Sleeman [9] obtained
explicit solutions of the form: u= γ t + v (γ > 0) of a simplified equation of (1.5)
for n= 1 (cf. [11]). In this line the papers [5–8] showed the existence of the solution
in the same form as above of a special case of (NE)′ for any spatial dimensions,
which arises from mathematical biology and biomedicine (see [1, 10]).

Let Br+ = Br ∩ (R ×R+) where Br is a ball of radius r at 0 in R2. We assume
that for a constant r > 0 and (s1, s2) ∈ Br+ there exists a positive constant cr such
that for any integer m≥ [n/2] + 3

(A) : χ(s1 + b, s2) ∈ Cm(R×R+), m≥ [n/2] + 3,

χ(s1 + b, s2)≤ cr(b+ 1).

Remark 1.1 In the previous paper [4] additionally we need to assume that χ(s1 +
b, s2) is positive to obtain the global existence theorem in time of (NE)′. In this paper
without the additional condition we can get the same result as [4]. For example, this
assumption covers the case where χ(s1, s2)= sp1

1 s
p2
2 , p1 is a positive integer and p2

is a positive constant. Even if p1 < 0, it is admissible by taking b sufficiently large.
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Now let us introduce function spaces used in this paper. First, Hl(Ω) denotes
the usual Sobolev space Wl,2(Ω) of order l on Ω . For functions h(x, t) and k(x, t)
defined in Ω × [0,∞), we put

(h, k)(t)=
∫

Ω

h(x, t)k(x, t)dx, ‖h‖2
l (t)=

∑

|β|≤l

∣
∣∂βx h(·, t)

∣
∣2
L2(Ω)

(t)

and sometimes we write ‖h‖0(t) by ‖h‖(t) for simplicity where β is a multi-index
for β = (β1, . . . , βn).

The eigenvalues of −� with the homogeneous Neumann boundary conditions
are denoted by {λi | i = 0,1,2, . . .}, which are arranged as 0 = λ0 < λ1 ≤ · · · →
+∞ and ϕi = ϕi(x) indicates the L2 normalized eigenfunction corresponding to λi .
Then we put for h(x), k(x) ∈Hl(Ω), if l = 2j , for a non-negative integer l,

(h, k)l = (h, k)+
(
�jh,�jk

)
, |h|2l = (h,h)l

and if l = 2j + 1

(h, k)l = (h, k)+
(∇ ·�jh,∇ ·�jk), |h|2l = (h,h)l .

We set Wl(Ω) as a closure of {ϕ1, ϕ2, . . . , ϕn, . . .} in the functional space Hl(Ω).
Taking λ1 > 0 into account, it is noticed that we have

∫

Ω
h(x) = 0 for h(x) ∈

Wl(Ω), which enables us to use Poincare’s inequality. Since the trace operator γ
is continuous from H 1/2(Ω) to L2(∂Ω), it holds that γ (∇u) = 0 for u ∈Wm(Ω)

form≥ [n/2]+2. We know the equivalence of norms | · |l ,‖ · ‖l, which will be used
frequently.

2 Existence and Asymptotic Behaviour of Solutions

We prepare the following lemmas to derive energy estimates of (RP)′. Let v ∈
⋂2
i=0C

i([0,∞);Wm+1−i (Ω)) and let (vt , e−l−v) ∈ Br+ for l = a + bt . Lem-
mas 2.1 and 2.2 are obtained in [5].

Lemma 2.1 If u = u(x, t) satisfies the above regularity conditions, then it holds
that forM ≥ [n/2] + 1

‖u‖2
M(t)≤ 4t‖ut‖2

L2((0,∞);HM(Ω)) + 2‖u‖2
M(0)

for any t ∈ (0,∞).

Lemma 2.2 If u = u(x, t) satisfies the above regularity conditions with M ≥
[n/2] + 1, then it holds that
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(i) ‖e−u‖M(t)≤ C1 exp(C1
√
t)

(ii) for any constant 0< b′ < b

e−a−bt−u <
∥
∥e−a−bt−u

∥
∥
M
(t)≤ C2e

−b′t

where C2 → 0 as a→ ∞.

Lemma 2.3 Assume that u= u(x, t) satisfies the above inequality conditions. For
0< b′ < b, it holds that for i = 1,2, . . . , n

∥
∥e−b′t uxi

∥
∥2
(t)+

∫ t

0
e−2b′τ‖uxi‖2(τ )dτ

≤ C
(∫ t

0
e−2b′τ‖uxiτ‖2(τ )dτ + ‖uxi‖2(0)

)

.

The sketch of proof In the same way as Lemma 2.1 for any ε > 0, we have

∥
∥e−b′t uxi

∥
∥2
(t)+ 2b′

∫ t

0
e−2b′τ‖uxi‖2(τ )dτ

≤ C
(

1

ε

∫ t

0
e−2b′τ‖uxiτ‖2(τ )+ ε

∫ t

0
e−2b′τ‖uxi‖2(τ )dτ + ‖uxi‖2(0)

)

.

Taking ε sufficiently small, we have the desired result. �

Lemma 2.4 (Basic estimate of (RP)′) We have a basic energy estimate of (RP)′
under the same assumption for v = v(x, t) as above and sufficiently large a.

‖vt‖2(t)+
∫ t

0
D‖∇vt‖2dτ ≤ CE[v](0),

where E[v] = ‖vt‖2 + ‖∇v‖2.

The sketch of proof We consider (Q[v], vt )= 0 in order to obtain a basic estimate
of (RP)′. Then we have

2
(
∂2
t v−D�vt − ∇ · (χa,b(v)e−a−bt−v∇v, vt

))

by the integration by parts

= ∂

∂t
‖vt‖2 + 2D‖∇vt‖2 + 2

(
χa,b(v)e

−a−bt−v∇v,∇vt
)= 0. (2.1)

Since we have for any ε > 0 by using Dionne [3] for the estimate of nonlinear terms
and Lemma 2.2,
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∫ t

0

(
χa,b(v)e

−a−bt−v∇v,∇vt
)
dτ

≤ C
(

ε−1
∫ t

0

(
e−2a−2b′t∇v,∇v)dt + ε

∫ t

0
‖∇vτ‖2dτ

)

,

we get by integrating the equality (2.1) over (0, t) and using the above estimate

‖vt‖2(t)+
∫ t

0
2D‖∇vt‖2(τ )dτ

≤ CE[v](0)+C
(

ε−1
∫ t

0

(
e−2a−2b′t∇v,∇v)dτ + ε

∫ t

0
‖∇vτ‖2dτ

)

. (2.2)

Since the last term of the right hand side of (2.2) is negligible for sufficiently
small ε, we derive by using Lemma 2.3 for the second term of the right hand side
of (2.2)

‖vt‖2(t)+
∫ t

0
2D‖∇vt‖2(τ )dτ ≤ CE[v](0)+Ce−a

∫ t

0
‖∇vτ‖2dτ. (2.3)

Taking a sufficiently large the last term of (2.3) can be negligible. Hence we have a
basic energy estimate of (RP)′. �

Lemma 2.5 (Higher order estimate for (RP)′) Under the same assumption for
v = v(x, t) as above we have the result of higher order energy estimate (RP)′ for
sufficiently large a:

M+1∑

j=1

(
∥
∥∇j−1vt

∥
∥2
(t)+

∫ t

0
D
∥
∥∇j vt

∥
∥2
(τ )dτ

)

≤ CEM [v](0) (2.4)

where we denote for any non-negative integer k ≤M ≤m, Ek[v](t)=E[∇kv].

The sketch of proof Suppose that the estimate (2.4) holds for M = k − 1 ≥ 0. Con-
sidering ∇kv instead of v in (2.1), in the same way as in Lemma 2.4 we obtain (2.4)
for M = k. In fact, we used the following estimate for l = a + bt and a parameter
κ > 0

(∇k+1(χa,b(v)e
−l−v∇v)− χa,b(v)e−l−v∇k+1v,∇kvt

)

by using the above assumption

≤ C
(

κ−1
k+1∑

j=1

(
e−a−b′t∇j vt ,∇j vt

)+ κ|vt |2k +Ek−1[v](0)
)

(2.5)

where the first and second terms in (2.5) are negligible for sufficiently large a and
small κ > 0 respectively. Hence we obtain (2.4). �
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Now we state our result for (NE)′.

Theorem 2.6 Assume that (A) holds and (v0(x), v1(x)) ∈Wm+1(Ω) ×Wm(Ω)

for v0(x)= u0(x)−a and v1(x)= u1(x)−b. For sufficiently large a and r , there is
a solution u(x, t) = a + bt + v(x, t) ∈⋂1

i=0C
i([0,∞);Wm−i (Ω)) to (NE)′ such

that for u1 = |Ω|−1
∫

Ω u1(x)dx

lim
t→∞

∥
∥ut (x, t)− u1

∥
∥
m−1 = 0.

The sketch of proof The proof is given by the same way as used in [5]. Actually
we consider the following iteration scheme and derive the energy estimate of it by
using Lemma 2.5,

(i + 1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Qi[vi+1] = ∂2
t vi+1 − ∂t	vi+1

− ∇ · (e−a−btχ(uit , e−ui )e−vi∇vi+1
)= 0,

∂

∂ν
vi+1

∣
∣
∣
∣
∂Ω

= 0,

vi+1(x,0)= v0(x), vi+1t (x,0)= v1(x),

where vi = ∑∞
j=1 fij (t)ϕj (x), v0(x) = ∑∞

j=1 hjϕj (x), v1(x) = ∑∞
j=1 h

′
j ϕj (x).

The energy estimate (2.4) guarantees the uniform estimate of each (i + 1) for
i = 1,2, . . . . We determine fij (t) by the solution of the following system of or-
dinary equations with initial data. For j = 1,2, . . .

{(
Qi[vi+1], ϕj

)= 0,

fi+1j (0)= hi+1, fi+1j t (0)= h′
i+1.

It is not difficult to assure the local existence in time of fij (t) by the theory of
ordinary differential equations. Therefore, deriving the energy estimates, the global
existence in time of the solution {ui} satisfying the regularity assumption in Sect. 2
and justification of the limiting process are assured by the standard method. The
energy estimate enables us to get the solution by considering Qi[vi+1] −Qi−1[vi]
and standard argument of convergence for vi+1 − vi =wi . �

Remark 2.7 We can apply Theorem 2.6 to mathematical models of tumour angio-
genesis by Anderson and Chaplain [1] and Othmer and Stevens [10] (see [4–8]).

3 The Case of μ �= 0

Now let’s consider the case of μ �= 0 in (1.1). Putting u(x, t)= La(t)+ v(x, t) we
have in (1.1) for μ �= 0
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vtt = D∇2vt + ∇ · (χ(l(t)+ vt , e−La(t)−v
)
e−La(t)−v · ∇v)

+μvt (t)
(
1 − 2l(t)− vt

)

where La(t) = ∫ t0 l(τ )dτ + a, a is a positive parameter, l(t) satisfies 1 − 2l(0) <
0 and the logistic equation: lt (t) = μl(t)(1 − l(t)), l(0) = l0 > 1/2, then (NE) is
rewritten by

(RP)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P [v] = vtt −D∇2vt − ∇ · (χ(l(t)+ vt , e−La(t)−v
)
e−La(t)−v · ∇v)

−μvt (t)
(
1 − 2l(t)− vt

)= 0,

∂

∂ν
v

∣
∣
∣
∣
∂Ω

= 0,

v(x,0)= v0(x), vt (x,0)= v1(x).

In the same way as used in Sect. 2, we obtain the following result of (NE).

Theorem 3.1 Assume that (A) holds and (v0(x), v1(x)) ∈Wm+1(Ω) ×Wm(Ω)

for v0(x) = u0(x) − a, v1(x) = u1(x) − l0 and l0 > 1/2. For sufficiently large a
and r , there is a solution u(x, t) = La(t)+ v(x, t) ∈⋂1

i=0C
i([0,∞);Wm−i (Ω))

to (NE) such that

lim
t→∞

∥
∥ut (x, t)− l(t)

∥
∥
m−1 = 0.

Remark 3.2 In [5–8] our solution is in the form of u(x, t)= bt + v(x, t) for suffi-
ciently large b > 0, but in the previous paper [4] and Sect. 2 in this paper we can get
the solution in more general form u(x, t) = a + bt + v(x, t) for any b > 0, which
enables us to deal with (1.1) with proliferation term.

4 Application to a Mathematical Model

The following is a mathematical model of tumour invasion by the Chaplain–
Lolas [2].

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
= dn ∂

2n

∂x2
− γ ∂

∂x

(

n
∂f

∂x

)

+μ1n(1 − n− f ) (4.1)

∂f

∂t
= −ηmf +μ2f (1 − n− f ) (4.2)

∂m

∂t
= dm ∂

2m

∂x2
+ αn− βm (4.3)

where n := n(x, t) is the density of tumour cells, m := m(x, t) is degradation en-
zymes concentration and f := f (x, t) is the extra cellular matrix density and dn, γ ,
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μ1, η, μ2, dm, α and β are positive constants. In the below we consider only the
case of μ2 = 0 for our convenience. It is seen in (4.2) that f (x, t) is written by

f (x, t)= f0(x) · exp

(

−η
∫ t

0
mds

)

. (4.4)

Substituting f (x, t) by the right hand side of (4.4) and putting Ψ = ∫ t0 nds and
Φ = ∫ t0 mds, from (4.1) and (4.3) it follows that

Ψtt = dn∂2
xΨt + γ η∂x

(
f0(x)ΨtΦxe

−ηΦ)− γ ∂x
(
f0x(x)Ψte

−ηΦ)

+μ1Ψt
(
1 −Ψt − f0(x)e

−ηΦ) (4.5)

and

Φtt = dm∂2
xΦt + αΨt − βΦt , (4.6)

which are essentially regarded as the same type of equation as (1.1). From (2.4) the
energy estimates of (4.5) and (4.6) follow and combining these estimates we obtain
the desired estimate with respect to Ψ and Φ . Hence applying the same argument
as used for Theorem 3.1 to the above mathematical model, we have existence and
asymptotic behaviour of the solutions to our mathematical model.

Remark 4.1 The full proofs of our results obtained in this paper will be published
somewhere soon later.

Acknowledgement The authors thank the referee for fruitful suggestions, especially for sug-
gesting the better terms and sentences.
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A Note on Real Powers of Time Differentiation

Rainer Picard

Abstract A Hilbert space framework for fractional calculus is presented. The util-
ity of the approach is exemplified by applications to abstract ordinary fractional
differential equations with or without delay.

Keywords Fractional derivatives · Fractional integrals · Fractional calculus ·
Evolutionary equations · Causality

Mathematics Subject Classification (2010) Primary 34K37 · Secondary 34A08 ·
26A33

1 Introduction

The idea of considering fractional derivatives goes back to the beginnings of calcu-
lus and was first raised and discussed in a correspondence between L’Hôpital and
Leibniz in 1695. In 1823, Abel was the first to note the connection to a class of in-
tegral operators, an observation which dominated the ongoing development of this
field, see [9] for a detailed history. This observation also allowed to consider arbi-
trary real orders of differentiation, so that speaking of fractional, i.e. rational, orders
of differentiation actually turns out to be a misnomer. Nevertheless, labels such as
“fractional derivatives” and “fractional calculus” are retained in recognition of the
historical sources of this flourishing research field. Although there is a vast litera-
ture on the topic of fractional derivatives (see for example the monographs [3, 9]
and the references therein), this article is largely self-contained, so that there is no
much need to refer to classical statements on fractional derivatives to understand the
results in this work.

To the best of the author’s knowledge it has not been widely noted that ∂0 can be
established as a normal operator, see [5], which then comes with its own standard
function calculus via the spectral theorem for such operators, see e.g. [1]. Indeed,
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it turns out that a unitary variant of the Fourier–Laplace transformation yields a
spectral representation for Im ∂0 = 1

2i (∂0 − ∂∗
0 ) and Re ∂0 is just multiplication by

a number. This simplifies matters considerably and since we are staying in a Hilbert
space setting there is indeed no need to utilize more intricate results of fractional
calculus in other spaces. This approach was already successfully used for a large
class of evolutionary partial differential equation problems. Here we want to fo-
cus on fractional ordinary differential equations, which allows for far more general
right-hand sides. The approach relies on an observation discovered in [2].

2 Functional Analytic Framework

2.1 Fractional Calculus and Operator-Valued Functions of Time
Differentiation

As indicated in the introduction, we start by establishing time differentiation ∂0 as
a normal operator. We consider the weighted H -valued L2-type space Hρ,0(R,H),
generated by completion of C̊∞(R,H), the space of smooth H -valued functions
with compact support, with respect to the inner product 〈· | ·〉ρ,0 given by the
weighted integral

(ϕ,ψ) �→
∫

R

〈
ϕ(t)

∣
∣ψ(t)

〉

H
exp(−2ρt)dt,

where ρ ∈ R is a parameter. The associated norm will be denoted by | · |ρ,0. The
multiplication operator

C̊∞(R,H)⊆Hρ,0(R,H)→ C̊∞(R,H)⊆H0,0(R,H)= L2(R,H),

ϕ �→ (
t �→ exp(−ρt)ϕ(t)),

clearly has a unitary continuous extension, which we shall denote briefly by
exp(−ρm0). Its inverse (adjoint) is given by

H0,0(R,H)→Hρ,0(R,H),

ϕ �→ (
t �→ exp(ρt)ϕ(t)

)
.

By taking the closure of the operator

C̊∞(R,H)⊆Hρ,0(R,H)→Hρ,0(R,H)

φ �→ φ′,

the time-derivative ∂0 can be established as a normal operator on Hρ,0(R,H) with
real part ρ and so with 1

i
(∂0 − ρ) as imaginary part. The domain of ∂0 can be
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characterized by functions belonging to Hρ,0(R,H), whose weak derivatives also
lie in Hρ,0(R,H). For ρ ∈ R \ {0} we have the continuous invertibility of ∂0. The
inverse of the normal operator ∂0 is continuous and can be described by

(
∂−1

0 f
)
(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ t

−∞
f (s)ds if ρ > 0,

−
∞∫

t

f (s)ds if ρ < 0

for every f ∈Hρ,0(R,H) and almost every t ∈ R as a Bochner integral. Henceforth
we shall focus on the case ρ ∈]0,∞[, which is associated with (forward) causality.
The Fourier–Laplace transform Lρ := F exp(−ρm0) : Hρ,0(R,H) → L2(R,H),
given as a composition of the (temporal) Fourier transform F and the unitary weight
operator exp(−ρm0), is a spectral representation associated with ∂0. It is

∂0 = L∗
ρ(im0 + ρ)Lρ,

where m0 denotes the multiplication-by-argument operator given as the closure of

C̊∞(R,H)⊆ L2(R,H)→ L2(R,H)

ϕ �→ m0ϕ

with

(m0ϕ)(λ) := λϕ(λ) in H

for every λ ∈ R. This observation allows us to consistently define an operator func-
tion calculus associated with ∂0 in a standard way, [1]. Clearly, we can even extend
this calculus to operator-valued functions by letting

M
(
∂−1

0

) := L∗
ρM

(
1

im0 + ρ
)

Lρ.

Here the linear operatorM( 1
im0+ρ ) : L2(R,H)→ L2(R,H) is determined uniquely

via
(

M

(
1

im0 + ρ
)

ϕ

)

(λ) :=M
(

1

iλ+ ρ
)

ϕ(λ) in H

for every λ ∈ R, ϕ ∈ C̊∞(R,H) by an operator-valued function M . For a material
law the operator-valued function M needs to be bounded and an analytic function
z �→M(z) in an open ball BC(r, r) with some positive radius r centered at r . This
is not an artificial assumption, rather a necessary constraint enforced by the require-
ment of causality, see [7] or [10, Theorem 9.1].

In terms of the associated operator-valued function calculus we also know what

∂−α
0 , α ∈ [0,1[,
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means.1 With this we may define for γ ∈ R

∂
γ

0 := ∂(γ )
0 ∂

γ−(γ )
0 (2.1)

as a natural generalization of differentiation to arbitrary real orders. Here (α) de-
notes the smallest integer greater or equal to α. The fact that (∂γ0 )γ∈R is a family
of commuting operators appears to be useful in applications, see e.g. [4] and the
quoted literature. In contrast, the variant2

aD
γ
t := ∂γ0 χ]a,∞[(m0)= ∂(γ )

0

(
∂
γ−(γ )
0 χ]a,∞[(m0)

)

with an appropriate choice of domain, known as Riemann–Liouville fractional
derivative, a ∈ R a parameter, [3, 9], lacks this property. This is also true for the
frequently used alternative fractional derivative, the Caputo fractional derivative,
[3, 9]:

C
a D

γ
t := ∂γ−(γ )

0 χ]a,∞[(m0)∂
(γ )
0

with a suitable domain. With these fractional derivatives being mere variants of
limited usefulness in our context, we shall utilize only the above spectral definition
(2.1) for our fractional differentiation/integration.

Let us inspect more closely some properties of ∂α0 for α ∈]0,1[. We recall our
first lemma from [6, 8].

Lemma 2.1 For α ∈ [0,1] we have

Re ∂α0 ≥ ρα (2.2)

1It should be noted that ∂−α
0 is largely independent of the particular choice of ρ ∈]0,∞[. Indeed,

since

Lρχ]0,∞[ (m0)m
α−1
0 = 1√

2π

Γ (α)

(im+ ρ)α
we have for ϕ ∈ C̊∞(R,H)

1

Γ (α)
χ]0,∞[ (m0)m

α−1
0 ∗ ϕ = ∂−α

0 ϕ

and
(

1

Γ (α)
χ]0,∞[ (m0)m

α−1
0 ∗ ϕ

)

(t)= 1

Γ (α)

∫ t

−∞
1

(t − s)1−α ϕ(s)ds.

From this convolution integral representation we can also read off that ∂−α
0 is causal.

2In the limit a→ −∞ the spectral fractional derivative is formally recovered:

∂
γ

0 = −∞Dtγ = C−∞ Dt
γ
.

There is, however, a domain issue here. Whereas ∂γ0 is a well-defined closed operator, the operators

−∞Dtγ , C−∞ Dt
γ

are usually considered in terms of their integral representation leading to slightly
different constraints and different choices of underlying spaces.
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and for α ∈ [0,∞[
∥
∥∂−α

0

∥
∥
Hρ,0(R,H)

≤ ρ−α. (2.3)

2.2 Sobolev-Chains Associated with ∂0

For ρ > 0 the operator ∂0 : D(∂0) ⊆ Hρ,0(R,H)→ Hρ,0(R,H) is a densely de-
fined, normal operator. Moreover, since Re ∂0 = ρ, we have 0 ∈ ρ(∂0). Thus,
we can define the Sobolev-chain associated with the time-derivative, which is
the family of Hilbert spaces (Hρ,α(R,H))α∈R, where Hρ,α(R,H) is the comple-
tion of D(∂α0 ) with respect to the norm | · |ρ,α,0 induced by the inner product
〈u | v〉ρ,α,0 = 〈∂α0 u | ∂α0 v〉ρ,0, α ∈ R. Note that for α ∈ [0,∞[ the domain D(∂α0 )
is already complete D(∂α0 )=Hρ,α(R,H), so that the completion process is super-
fluous. For α ∈]−∞,0[, however, we obtain in this fashion larger spaces extending
D(∂α0 ) (extrapolation spaces). For example the Dirac-distribution δ which satisfies3

∂−1
0 δ = χ[0,∞[ ∈Hρ,0(R,H) lies in Hρ,α(R,H) for α ∈] − ∞,−1/2[.

The following observations are completely analogous to the integer index case
and will therefore be recorded without proof. It is for α ≤ β

Hρ,β(R,H) ↪→Hρ,α(R,H)

in the sense of continuous and dense embedding. Indeed, we have in this case with
Lemma 2.1

|u|ρ,α,0 ≤ 1

ρβ−α |u|ρ,β,0 (2.4)

for all u ∈ Hρ,β(R,H). If we consider ∂γ0 as a mapping from Hρ,α+γ (R,H) to
Hρ,α(R,H), i.e. we consider

Hρ,α+γ (R,H)→Hρ,α(R,H),

u �→ ∂
γ

0 u,

then this mapping is an isometry with dense range extending canonically to a unitary
mapping for which we shall retain the notation ∂γ0 . With these observations we have
established the basis for a—somewhat surprisingly powerful—solution theory for
ordinary differential equations (with or without delay).

3 Abstract Fractional Differential Equations

∂α0 u= f (u) (3.1)

3Here χM denotes the characteristic function or indicator function of the set M .
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Without loss of generality we shall assume that α ∈]0,1]. If α > 1 we utilize a vari-
ant of the re-formulation of higher order differential equations and consider instead

∂
α/N

0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u

∂
α/N

0 u
...
...

∂
(N−1)α/N
0 u

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u

∂
α/N

0 u
...
...

∂
(N−1)α/N
0 u

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
...
...

f (u)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where N := *α,. Note that at this point of our general discussion we do not exclude
that f (u) is actually of the form F(u, ∂α/N0 u, . . . , ∂

(N−1)α/N
0 u). For equations of the

form (3.1) with α ∈]0,1] we have the following Picard–Lindelöf type result.

Theorem 3.1 Let α,γ ∈R and let

f :Hρ,γ (R,H)→Hρ,−α+γ (R,H)

be Lipschitz continuous with best Lipschitz constant4|f |ρ,Lip < 1 for all sufficiently
large ρ ∈]0,∞[. Then (3.1) has a unique solution u ∈Hρ,γ (R,H).

Proof The result follows the familiar line of reasoning, observing that combining f
with the unitary mapping ∂−α

0 : Hρ,−α+γ (R,H)→ Hρ,γ (R,H) we get a contrac-
tion

∂−α
0 f :Hρ,γ (R,H)→Hρ,γ (R,H).

Indeed,
∣
∣∂−α

0 f (u)− ∂−α
0 f (v)

∣
∣
ρ,γ,0 = ∣∣f (u)− f (v)∣∣

ρ,−α+γ,0 ≤ |f |ρ,Lip|u− v|ρ,γ,0
for all u,v ∈Hρ,γ (R,H). As long as ρ ∈]0,∞[ is sufficiently large we have the de-
sired contraction property due to the assumption that lim infρ→∞ |f |ρ,Lip < 1. The
uniquely determined fixed point u ∈Hρ,γ (R,H) of the contraction ∂−α

0 f satisfies

u= ∂−α
0 f (u) (3.2)

and so, by applying the (inverse) ∂α0 as a unitary mapping from Hρ,γ (R,H) onto
Hρ,−α+γ (R,H) we regain

∂α0 u= f (u),

4That is

|f |ρ,Lip := inf
{
L ∈]0,∞[∣∣ ∣∣f (u)− f (v)∣∣

ρ,−α+γ,0 ≤L|u− v|ρ,γ,0
for all u,v ∈Hρ,γ (R,H)

}
.
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which is now an equality holding in Hρ,−α+γ (R,H). Since (3.1) and (3.2) are
equivalent, uniqueness of this solution is also clear. �

3.1 Two Simple Application Cases

For illustration purposes, we want to apply the abstract result of Theorem 3.1 to two
particular cases.

So, let first (βs)s=0,...,m ∈ [0,1]m+1 be a strictly monotone decreasing family of
numbers with α0 > β0 and consider an equation of the form

∂
α0
0 u=

m∑

s=0

∂
βs
0 Fs ◦ u,

where Fs : CN → C
N are Lipschitz continuous functions and u(t) ∈ H :=

L2(Ω,CN) for almost every t ∈ R. As a result u �→ Fs ◦ u generates a Lipschitz
continuous mapping (of Nemicky type) in Hρ,0(R,H), ρ ∈]0,∞[, with a uniform
Lipschitz constant Ls . This in turn yields that

f (u) :=
m∑

s=0

∂
βs
0 Fs(u)

induces a Lipschitz continuous mapping f : Hρ,0(R,H)→ Hρ,−β0(R,H), ε,ρ ∈
]0,∞[. Indeed, we have

∣
∣f (u)− f (v)∣∣

ρ,−α0

≤ ρβ0−α0
∣
∣f (u)− f (v)∣∣

ρ,−β0

≤ ρβ0−α0

m∑

s=0

ρβs−β0
∣
∣Fs(u)− Fs(v)

∣
∣
ρ,0,

≤ ρβ0−α0

√
√
√
√(m+ 1)

m∑

s=0

ρ2(βs−β0)L2
s |u− v|ρ,0.

We have a case of Theorem 3.1 with γ = 0.
As our second example we consider a class of neutral delay differential equations

of the form

∂
α0
0 u= F ((∂αk0 u

)

k=1,...,n,
(
τ−hk ∂

αk
0 u
)

k=0,...,n

)
,

where now (αk)k=0,...,n ∈ [0,1]n+1 is a strictly monotone decreasing family of num-
bers and (hk)k=0,...,n ∈]0,∞[n+1 and F : CN×n × C

N×(n+1) → C
N is Lipschitz
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continuous with Lipschitz constant L ∈]0,∞[ in the sense that for the canonical
matrix norms

∣
∣F(U0,U1)− F(V0,V1)

∣
∣≤ L

√

|U0 − V0|2 + |U1 − V1|2

for all U0,V0 ∈ C
N×n and U1,V1 ∈C

N×(n+1). Observing that

∣
∣
(
∂
αk
0 (u− v))

k=1,...,n

∣
∣2
ρ,0 + ∣∣(τ−hk ∂αk0 (u− v))

k=0,...,n

∣
∣2
ρ,0

≤ (ρ2(α1−α0)n+ (n+ 1)max
{
exp(−2hkρ)

∣
∣ k = 0, . . . , n

})|u− v|2ρ,α0

for all u,v ∈Hρ,α0(R,H) and ρ ∈]0,∞[ sufficiently large, we obtain that

f (u) := F ((∂αk0 u
)

k=1,...,n,
(
τ−hk ∂

αk
0 u
)

k=0,...,n

)

yields a Lipschitz continuous f : Hρ,α0(R,H) → Hρ,0(R,H). Indeed, with
U0 := (∂

αk
0 u)k=1,...,n,U1 := (τ−hk ∂

αk
0 u)k=0,...,n,V0 := (∂

αk
0 v)k=1,...,n and V1 :=

(τ−hk ∂
αk
0 v)k=0,...,n we obtain

∣
∣f (u)− f (v)∣∣

ρ,0

= ∣∣F(U0,U1)− F(V0,V1)
∣
∣
ρ,0

≤ L
√(
ρ2(α1−α0)n+ (n+ 1)max

{
exp(−2hkρ)

∣
∣ k = 0, . . . , n

})|u− v|ρ,α0 .

So, also in this situation we have an instance of Theorem 3.1 choosing γ = α0. More
general examples can be tailored in analogy of examples treated in [2].
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A Stationary Approach to the Scattering
on Noncompact Star Graphs Containing Finite
Rays

Kiyoshi Mochizuki and Igor Trooshin

Abstract In this paper we consider Schrödinger operators on noncompact star-
shaped graphs including some finite rays. We show that our spectral representation
formula provides the time dependent formulation of the scattering theory. The scat-
tering operator S is constructed in the configuration space, and then is related to the
scattering matrix S(λ) in the momentum space. Corresponding inverse scattering
problem is investigated.

Keywords Star graph · Schrödinger operator · Scattering

Mathematics Subject Classification (2010) 34L25 · 81Q35

1 Introduction

In this paper we consider Schrödinger operators on non-compact star-shaped graphs
including some finite rays. The origin of each ray is identified with the single vertex
of the graph. The potential is real valued and satisfies suitable decay conditions on
each infinite ray. To guarantee the selfadjointness of the operator we require the
Dirichlet condition at each end point of the finite ray and the natural Kirchhoff
conditions at the origin.

There are many works which generalize the classical results [1–3] on the half
line or the whole line. Among them in [5] is treated the star graph which consists
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Fig. 1 Star graph

of a finite number of half lines. These results are generalized in [10] to the star-
shaped graph which contains some finite rays. Note that we need precise low energy
estimates of resolvent kernel in this case.

In this paper we present that our spectral representation formula provides the
time dependent formulation of the scattering theory. The scattering operator S is
constructed in the configuration space, and then is related to the scattering matrix
S(λ) in the momentum space. Corresponding inverse scattering problem is investi-
gated.
S(λ) is originally defined based on the generalized eigenfunctions. So, it is inde-

pendent of the time dependent theory. Note that the main concern of [1, 4–7, 11] are
the stationary theory for inverse scattering problems, and there are no descriptions
of the time dependent theory there. Importance of the time dependent treatment in
the scattering theory is claimed by Faddeev [2, 3]. Faddeev’s approach is simply and
clearly described in [12].

2 Schrödinger Operators on a Star-Shaped Graph

Let Γ = γ1 × · · · × γp1 × γp1+1 · · · × γp be a star-shaped graph which consists of
p1 semi-infinite rays γj = R+ = {xj ∈ (0,∞)} (j = 1, . . . , p1) and p − p1 finite
rays γj = {xj ∈ (0,π)} (j = p1 + 1, . . . , p), with the origin of each ray identified
with the single vertex of the graph (Fig. 1).

For each function u(x) on x ∈ Γ , its restriction to the ray ej is denoted
by uj (xj ) = u(x)|ej . We identify u(x) = (uj (xj ))

p

j=1, and consider on Γ the
Schrödinger operator

Lu= −d
2u

dx2
+ q(x)u=

(

−d
2uj

dx2
j

+ qj (xj )uj
)p

j=1
, xj ∈ γj , (2.1)

defined for functions u satisfying the natural Kirchhoff boundary conditions on the
vertex:

u1(0)= u2(0)= · · · = up(0), (2.2)

u′
1(0)+ u′

2(0)+ · · · + u′
p(0)= 0, (2.3)
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where u′
j = duj/dxj . These represent the continuity and conservation of flux at

the origin. As for functions uj (xj ), j ≥ p1 + 1, we further require the Dirichlet
boundary conditions on the end point xj = π :

up1+1(π)= up1+2(π)= · · · = up(π)= 0. (2.4)

Each potential qj (x) (j = 1, . . . , p) is assumed to be real, continuous on γj (here-
after we simply write x for each xj since there are no possibility of confusion).
Moreover, we require for the first p1 components

∫

γj

(1 + x)∣∣qj (x)
∣
∣dx <∞ (j = 1, . . . , p1). (2.5)

Let H = L2(Γ ) be the Hilbert space with norm

‖f ‖Γ̃ =
(
p∑

j=1

‖fj‖2
γj

)1/2

, ‖fj‖2
γj

=
∫

γj

∣
∣fj (x)

∣
∣2dx.

Under the above conditions on qj (x) the operator

Lu= (−u′′
j + qj (x)uj

)p
j=1

restricted to the domain

D(L)=
{

u ∈
p∏

j=1

H 2
loc(γj ) satisfying (2.2)–(2.4),

(−u′′
j + qj (x)u

)p
j=1 ∈ H

}

forms a lower semi-bounded selfadjoint operator in H. Moreover, we see that the
essential spectrum of L fills the nonnegative half line [0,∞).

3 Expression of the Resolvent Kernel

For more study of spectral and scattering problems of L, we shall prepare precise
expressions of the resolvent kernel near the spectrum of L. For this aim we consider
on Γ the generalized eigenvalue problem

−u′′
j + {qj (x)− λ2}uj = 0, x ∈ γj , j = 1, . . . , p, (3.1)

with the Kirchhoff conditions (2.2), (2.3).
Here λ is a complex parameter in C+ = C+ ∪ R.
We put P = {1, . . . , p}, P1 = {1, . . . , p1} and P2 = {p1 + 1, . . . , p}.
Let ωj (x,λ), j ∈ P, be the regular solution ω(xj , λ) on γj , and a function

ej (x,λ), j ∈ P1 be the Jost solution e(xj , λ) on γj . Let ej (x,λ), j ∈ P2, be the
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regular solution of (3.1) satisfying the initial condition ej (π,λ)= 0, e′j (π,λ)= 1 at
x = π . Each Jost solution ej (x,λ) (j ∈ P1) of (3.1) is represented in the form

ej (x,λ)= eiλx +
∫ ∞

x

Kj (x, y)e
iλydy (3.2)

where the kernel Kj(x, y) is a real function of 0 ≤ x ≤ y <∞ satisfying the fol-
lowing conditions:

Kj(x, x)= 1

2

∫ ∞

x

qj (y)dy, x > 0. (3.3)

The function ej (0, λ) (j ∈ P2) has a countable number of simple zeros, a finite
number of which is on iR+, and the remainders are on the real line R.

Let Ke and KG be the sets defined respectively by

Ke =
{

λ ∈ C+;
p∏

j=1

ej (0, λ)= 0

}

, KG = {λ ∈ C+; G(λ)= 0
}
,

where G(λ)=∑p

j=1
e′j (0,λ)
ej (0,λ)

.

For each λ ∈ C+\{Ke ∪KG} the problem (3.1), (2.2), (2.3) has linearly indepen-
dent p solutions ϕk(x,λ)= (ϕkj (x,λ))pj=1 (k = 1, . . . , p):

ϕkk(x,λ)= 2iλ

ek(0, λ)

{

ωk(x,λ)− ek(x,λ)

ek(0, λ)G(λ)

}

,

ϕkj (x,λ)= 2iλej (x,λ)

ek(0, λ)ej (0, λ)G(λ)
(j �= k)

(3.4)

Theorem 3.1 For each λ ∈ C+\{KG ∪Ke}, the square λ2 is in the resolvent set of
L, and the resolvent R(λ2) = (L − λ2)−1 forms an integral operator with kernel
R(x, y;λ)= (Rkj (x, y;λ))pk,j=1 defined by

Rkk(x, y;λ)=

⎧
⎪⎪⎨

⎪⎪⎩

ek(x,λ)ϕkk(y,λ)

−2iλ
, 0 ≤ y ≤ x

ϕkk(x,λ)ek(y,λ)

−2iλ
, 0 ≤ x ≤ y,

Rkj (x, y;λ)= ek(x,λ)ϕkj (y,λ)

−2iλ
(j �= k).

(3.5)

To classify the singular points of the resolvent, we divide Ke =Ke(I)∪Ke(II)∪
Ke(III), where

Ke(I)=
{
λ; ej (0, λ)= 0 for at least two j ’s, among which ${j ∈ P2} ≤ 1

}
,
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Ke(II)=
{
λ; ej (0, λ)= 0 for at least two j ’s, among which ${j ∈ P2} ≥ 2

}
,

Ke(III)=
{
λ; ∃1j ∈ P verifying ej (0, λ)= 0

}
.

For μ ∈Ke we put P0(μ)= {j ∈ P; ej (0,μ)= 0}.
Lemma 3.2

(i) [KG ∪Ke] ∩ C+ is a finite set on upper half-imaginary axis iR+.
(ii) [KG ∪Ke(I)] ∩ R ⊂ {0}.

(iii) Ke(II) ∩ R is at most a countable set which is symmetric with respect to the
origin and has no accumulation points.

(iv) Ke(III) has removable singularities of R(x, y,λ).

In the following we put

K1 = [KG ∪Ke(I)∪Ke(II)
]∩ iR+, K2 =Ke(II)∩ R+,

K = K1 ∪K2.

Theorem 3.3

(i) The eigenvalues of L forms the set {μ2 : μ ∈K}.
(ii) The negative eigenvalues μ2, μ ∈ K1, are finite, and the dimension of the

corresponding eigenspaces are 1 if μ ∈ KG and are $P0(μ) − 1 if μ ∈
Ke(I)∪Ke(II).

(iii) Each μ2, μ ∈ K2, are eigenvalues contained in the essential spectrum of L.
The dimension of the corresponding eigenvalues are $P0(μ)− 1 if μ �= 0 and
are $P0(μ) ∩ P2 − 1 if μ = 0. The support of each eigenfunctions does not
exceed the finite rays Γ2 = γp1+1 × · · · × γp .

(iv) If 0 ∈Ke(I) ∪KG, then L has a resonance at this point: Namely, the equation
−u′′ + q(x)u = 0 has a non-trivial bounded solution satisfying the Kirchhoff
conditions (2.2), (2.3), and the Dirichlet condition (2.4) also. Its multiplicity is
$P0(0)− 1 if 0 ∈Ke(I), and is 1 if 0 ∈KG.

Later on we single out the following negative eigenvalues −λ2
n; n = 1, . . . ,N :

{μ = iλn; n = 1, . . . ,N} = [KG ∪ Ke(I) ∪ Ke(II1)]\{0}, where Ke(II1) = {μ ∈
Ke(II); P0(μ) ∩ P1 �= φ}. Such eigenvalues possess eigenfunctions with non-
compact support.

4 Spectral Representations of L

We put

Φ1(x,λ)= (ϕkj (x,λ)j=1,...,p1
k=1,...,p1

,

Φ2(x,λ)=
(
ϕkj (x,λ)

)j=p1+1,...,p
k=1,...,p1

,

(4.1)
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Ψ (x,λ)= (Φ1(x,λ)
∣
∣Φ2(x,λ)

)=
⎛

⎝
ϕ1(x,λ)

· · ·
ϕp1(x,λ)

⎞

⎠ . (4.2)

Lemma 4.1 K2 is of removable singularities of Ψ (x,λ) (λ ∈ R), and it is continu-
ously extended to R\{0}.

Remark 4.2 The continuity at λ= 0 of Ψ (x,λ) is not guaranteed when 0 ∈KG, but
we can show its integrability near λ= 0.

The following is a key proposition to obtain the spectral representations.

Proposition 4.3 For λ ∈ R\[K2 ∪ {0}] we have

R(x, y;λ)−R(x, y;−λ)= 1

−2iλ
tΨ (x,λ)Ψ (y,λ). (4.3)

Thus, 2λ{R(x, y,λ)− R(x, y;−λ)} is continuous in λ ∈ R\{0}, and is integrable
near λ= 0.

Note that each component of the above identity is given by

Rkj (x, y,λ)−Rkj (x, y;−λ)= 1

−2iλ

p1∑

l=1

ϕlk(x,λ)ϕlj (y,λ). (4.4)

Applying the Stone formula with Proposition 4.3, we obtain

Theorem 4.4

(i) For each f (x)= t (f1(x1), . . . , fp(xp)) ∈H, the spectral representation of L is
given by

f (x)=
∑

μ∈K

[
P(μ)f

]
(x)+ 1√

2π

∫ ∞

0

tΨ (x,±λ)[F±f ](λ)dλ, (4.5)

where P(μ) is the orthogonal projection onto the eigenspace corresponding to
the eigenvalue μ2, and

[F±f ](λ) = 1√
2π

∫

Γ

Ψ (y,±λ)f (y)dy

= 1√
2π

p∑

j=1

t

(∫

γj

ϕ1j (y,±λ)fj (y)dy, . . . ,
∫

γj

ϕp1j (y,±λ)fj (y)dy
)

. (4.6)
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(ii) Put P =∑μ∈K P(μ). Then

F∗±F± = I − P, F±F∗± = Iλ. (4.7)

Here I = Ix is the identity in configuration space H, and Iλ is the identity in
the momentum space Ĥ1 = {h(λ) ∈ [L2

λ(R+)]p1}.

Put Γ = Γ1 × Γ2, H = H1 ×H2, E(x,λ)= (E1(x,λ) 0
0 E2(x,λ)

)
, where

Γ1 = γ1 × · · · × γp1, Γ2 = γp1+1 × · · · × γp,
H1 = L2(Γ1), H2 = L2(Γ2),

E1(x,λ)= diag
(
ej (x,λ)

)p1
j=1, E2(x,λ)= diag

(
ej (x,λ)

)p
j=p1+1.

Proposition 4.5

(i) For λ ∈ R\{0}, Φ1(x,λ) is rewritten as

Φ1(x,λ)=E1(x,−λ)− S(λ)E1(x,λ). (4.8)

Here S(λ)= (skj (λ))p1
k,j=1 is given by

skk(λ)= ek(0,−λ)
ek(0, λ)

− 2iλ

e2
k(0, λ)G(λ)

,

skj (λ)= −2iλ

ek(0, λ)ej (0, λ)G(λ)
(j �= k).

(4.9)

(ii) S(λ) is a unitary matrix on Cp1 , and

S(λ)∗ = S(λ)= S(−λ), (4.10)

S(−λ)Ψ (x,λ)= −Ψ (x,−λ). (4.11)

(iii) Let 0 /∈KG. Then S(λ) is continuous on the whole R and

skj (0) = −ιkδkj

−

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, k or j /∈ P0(0), or P0(0)∩ P2 �= φ,
2i

ėk(0,0)ėj (0,0)

( ∑

j∈P0(0)

e′j (0,0)
ėj (0,0)

)−1

,

k, j ∈ P0(0) and P0(0)∩ P2 = φ.

where ιk = 1 if ek(0,0) �= 0, and = −1 if ek(0,0)= 0; ėj (0,0)= ∂ej (0,λ)
∂λ

|λ=0.
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(iv) Let 0 ∈ KG. Then S(λ) is also continuous on the whole line if each qj (x) is
required to satisfy the stronger condition

∫

γj
(1 + x)2|qj (x)|dx <∞, and in

this case we have

skj (0)= δkj − 2i

ek(0,0)ej (0,0)Ġ(0)
, Ġ(0)= ∂G(λ)

∂λ

∣
∣
∣
∣
λ=0
.

5 Møller’s Scattering Operator and Its Expression

Let L0 be the operator L with q(x)≡ 0. Corresponding to L0, we staff with super-
script 0.

We put P =∑μ∈K P(μ), P 0 =∑∞
n=1 P

0(n). Then

F± : (I − P)H → Ĥ1, F0 : (I − P 0)H → Ĥ1

are both unitary operators. With these operators, we define the stationary wave and
scattering operators as follows:

U+ = F∗+F0, U− = −F∗−S0(λ)F0, (5.1)

S = U∗+U− = −F0∗F+F∗−S0(λ)F0, (5.2)

where S0(λ)= (s0
kj (λ))

p1
k,j=1.

Now consider the Schrödinger evolution operators e−itL and e−itL0 . Choose f ∈
(I − P)H, f 0 ∈ (I − P 0)H. Then by use of the spectral representation formulae,
we have

e−itLf = 1√
2π

∫ ∞

0

tΨ (x,±λ)e−iλ2t [F±f ](λ)dλ, (5.3)

e−itL0f 0 = 1√
2π

∫ ∞

0

tΨ 0(x,λ)e−iλ2t
[
F0f 0](λ)dλ. (5.4)

By use of these expressions, we can prove the following theorem

Theorem 5.1

(i) The Møller wave operator exists and coincides with U±:

s − lim
t→±∞ e

itLe−itL0
(
I − P 0)=U±. (5.5)

Thus, the Møller scattering operator is given by S =U∗+U−.
(ii) The matrix function S(λ) represents the scattering operator in the momentum

space:
[
F0SF∗

0 f̂
]
(λ)= S(λ)S0(λ)f̂ (λ) for f̂ (λ) ∈ Ĥ1.
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6 Inverse Scattering Problem

The triplet of quantities {S(λ),−λ2
n,M1(iλn) : n = 1,2, . . . ,N} with M1(iλn) =

−iE−1
1 (x, iλn)Resλ=iλnΦ1(x,λ) defines the scattering data for the operator L. We

investigate the following inverse scattering problem : Given scattering data, recover
potential q(x), x ∈ γj , j ∈ P1.

For each j ∈ P1, let Kj(x, y) = Kj(xj , yj ) be the kernel of the transformation
operator on γj (see (3.2)–(3.3)).

Theorem 6.1 Each kernel Kj(x, y) satisfies the following integral equation:

Fj (x + y)+Kj(x, y)+
∫ ∞

x

Kj (x, z)Fj (z+ y)dz (0 ≤ x ≤ y <∞) (6.1)

with

Fj (x)=
N∑

n=1

e−λnxmjj (iλnx)+ 1

2π

∫ ∞

−∞
eiλx
{
s0,jj (λ)− sjj (λ)

}
dλ. (6.2)

Here S0(λ)= (s0,kj (λ))p1
k,j=1 is the scattering matrix corresponding to the operator

with q(x) ≡ 0, and the last integral is understood as the Fourier transform of the
L2-function.

Let Fj (x) be constructed by (6.2) in terms of the diagonal entry

{
sjj (λ),−λ2

n,mjj (iλn)
}

(6.3)

of the scattering data. Then the Marchenko equation (6.1) has a unique solution
Kj(x, y) for every x ≥ 0, and the potential qj (x) is uniquely recovered on γj by the
formula

−2
d

dx
Kj (x, x)= qj (x), x ∈ γj , j ∈ P1. (6.4)

Thus, the knowledge of the scattering data allows us to recover the potential on
the infinite rays γj , j ∈ P1.

Remark 6.2 Similar inverse scattering problem is investigated in the case of graph
which consists of a loop κ = {z | 0< z < 2π} and N half lines γi = {xi | 0< xi <
∞}, i = 1, . . . ,N , joined at the points {xi = 0} = {z = αi}, where 0 = α1 < α2 <

· · ·< αN < 2π . (See [8, 9] for the case N = 1. The case N ≥ 2 will be discussed in
forthcoming paper.)
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Integral Transform Approach to the Cauchy
Problem for the Evolution Equations

Karen Yagdjian

Abstract In this note we describe some integral transform that allows to write so-
lutions of the Cauchy problem for one partial differential equation via solution of
another one. It was suggested by author in J. Differ. Equ. 206:227–252, 2004 in the
case when the last equation is a wave equation, and then used in the series of arti-
cles (see, e.g., Yagdjian in J. Differ. Equ. 206:227–252, 2004, Yagdjian and Galstian
in J. Math. Anal. Appl. 346(2):501–520, 2008, Yagdjian and Galstian in Commun.
Math. Phys. 285:293–344, 2009, Yagdjian in Rend. Ist. Mat. Univ. Trieste 42:221–
243, 2010, Yagdjian in J. Math. Anal. Appl. 396(1):323–344, 2012, Yagdjian in
Commun. Partial Differ. Equ. 37(3):447–478, 2012, Yagdjian in Semilinear Hyper-
bolic Equations in Curved Spacetimepp, pp. 391–415, 2014 and Yagdjian in J. Math.
Phys. 54(9):091503, 2013) to investigate several well-known equations such as
Tricomi-type equation, the Klein–Gordon equation in the de Sitter and Einstein–
de Sitter spacetimes. The generalization given in this note allows us to consider also
evolution equations with x-dependent coefficients.

Keywords Klein–Gordon Equation · Representation of Solutions · Tricomi
Equation · De Sitter Spacetime · Fundamental Solution
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1 Introduction

A novel approach to study second order hyperbolic equations with variable coeffi-
cients was suggested in [1]. It was used in a series of papers [1–8] to investigate
in a unified way several equations such as the linear and semilinear Tricomi and
Tricomi-type equations, Gellerstedt equation, the wave equation in Einstein–de Sit-
ter (EdeS) spacetime, the wave and the Klein–Gordon equations in the de Sitter
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and anti-de Sitter spacetimes. The listed equations play an important role in the
gas dynamics, elementary particle physics, quantum field theory in curved spaces,
and cosmology. For all above mentioned equations, we have obtained among other
things, fundamental solutions, representation formulas for the initial-value problem,
Lp −Lq -estimates, local and global solutions for the semilinear equations, blow up
phenomena, sign-changing phenomena, Huygens’ principle, self-similar solutions
and number of other results.

Consider the solution v = v(x, t;b) to the Cauchy problem

vtt −�v = 0, (t, x) ∈ R
1+n,

v(x,0;b)= ϕ(x, b), vt (x,0)= 0, x ∈R
n,

(1.1)

with the parameter b ∈ B ⊆ R. Denote that solution by vϕ = vϕ(x, t;b); if ϕ is
independent of the second variable b, then we write vϕ(x, t). There are well-known
explicit representation formulas for the solution of the problem (1.1).

The starting point of the approach suggested in [1] is the Duhamel’s principle,
which is revised in order to prepare the ground for generalization. Our first obser-
vation is that we obtain the following representation

u(x, t)=
∫ t

t0

db

∫ t−b

0
wf (x, r;b)dr, (1.2)

of the solution of the Cauchy problem utt −�u= f (x, t) in R
n+1, and u(x, t0)= 0,

ut (x, t0)= 0 in R
n, where the function wf =wf (x; t;b) is the solution of the prob-

lem (1.2).
The second observation is that in (1.2) the upper limit t − b of the inner integral

is generated by the propagation phenomena with the speed which equals to one. In
fact, that is a distance function.

Our third observation is that the solution operator G : f �−→ u can be regarded
as a composition of two operators. The first one

WE : f �−→w

is a Fourier Integral Operator (FIO), which is a solution operator of the Cauchy
problem for wave equation in the Minkowski spacetime. The second operator

K :w �−→ u

is the integral operator given by (1.2). We regard the variable b in (1.2) as a “sub-
sidiary time”. Thus, G = K ◦WE and we arrive at the first diagram:

Based on the first diagram, we generated in [4] a class of operators for which we
obtained explicit representation formulas for the solutions. That means also that we
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have obtained representations for the fundamental solutions of the partial differen-
tial operator. In fact, this diagram brings into a single hierarchy several different
partial differential operators. Indeed, if we take into account the propagation cone
by introducing the distance function φ(t), and if we provide the integral operator
(1.2) with the kernel K(t; r, b) as follows:

K[w](x, t)= 2
∫ t

t0

db

∫ |φ(t)−φ(b)|

0
K(t; r, b)w(x, r;b)dr, x ∈ R

n, t > t0, (1.3)

then we actually generated new representations for the solutions of different well-
known equations with x-independent coefficients. (See, e.g., [4].)

In the present note we extend the class of the equations by allowing the first map-
ping be a resolving operator for the Cauchy problem for a wider class of equations,
which, of course, includes a wave equation itself, but which is not restricted to it.
More precisely, consider the second diagram where w =wA,ϕ(x, t;b) is a solution
to the Cauchy problem

vtt −A(x, ∂x)v = 0, v(x,0;b)= ϕ(x, b),
vt (x,0)= 0, t ∈R, x ∈ R

n,
(1.4)

with the parameter b ∈ B ⊆ R. If we have a resolving operator of the problem (1.4),
by applying (1.3) we can generate new representations for the solutions of different
equations. Thus, GA = K◦EEA. The new class contains operators with x-depending
coefficients, not necessarily hyperbolic, which allows to obtain more results, espe-
cially interesting in the applications.

Example (Tricomi-type equations.) This operator is generated by the kernel
K(t; r, b)= 2E(0, t; r, b), where the function E(x, t;y, b) [1] is defined by

E(x, t;y, b) := ck
((
φ(t)+ φ(b))2 − (x − y)2)−γ

× F
(

γ, γ ;1; (φ(t)− φ(b))
2 − (x − y)2

(φ(t)+ φ(b))2 − (x − y)2
)

, (1.5)

with γ := k/(2k + 2), ck = (k + 1)−k/(k+1)2−1/(k+1), k �= −1, k ∈ R, and the dis-
tance function is φ(t)= tk+1/(k + 1), while F(a, b; c; ζ ) is the Gauss’s hypergeo-
metric function. For the simplicity, in (1.5) we use the notation x2 = x · x = |x|2 if
x ∈R

n. We can prove that for the smooth function f = f (x, t), the function

u(x, t) = 2
∫ t

0
db

∫ φ(t)−φ(b)

0
E(0, t; r, b)wA,f (x, r;b)dr, t > 0,

solves the Tricomi-type equation (�= 2k ∈N)

utt − t�A(x, ∂x)u= f (x, t) in R
n+1+ := {(x, t) ∣∣ x ∈ R

n, t > 0
}
,
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and takes vanishing initial values

u(x,0)= 0, ut (x,0)= 0 in R
n. (1.6)

Example (The wave equation in the Friedmann–Lemaître–Roberson–Walker mod-
els: de Sitter spacetime.) In this exampleK(t; r, b)= 2E(0, t; r, b), where the func-
tion E(x, t;y, b) [3] is defined by

E(x, t;y, b) := ((e−b + e−t)2 − (x − y)2)− 1
2

× F
(

1

2
,

1

2
;1; (e

−t − e−b)2 − (x − y)2
(e−t + e−b)2 − (x − y)2

)

, (1.7)

and φ(t) := 1 − e−t . We can prove that, defined by the integral transform (1.3) with
the kernel (1.7) the function

u(x, t) = 2
∫ t

0
db

∫ e−b−e−t

0

((
e−b + e−t)2 − r2)− 1

2

×F
(

1

2
,

1

2
;1; (e

−t − e−b)2 − r2

(e−t + e−b)2 − r2

)

wA,f (x, r;b)dr

solves the wave equation in the Friedmann–Lemaître–Roberson–Walker (FLRW)
space arising in the de Sitter model of the universe,

utt − e−2tA(x, ∂x)u= f (x, t)

in R
n+1+ , and takes vanishing initial data (1.6).

Example (The wave equation in the FLRW-models: anti-de Sitter spacetime.) The
third example we obtain if we set K(t; r, b) = 2E(0, t; r, b), where the function
E(x, t; r, b) is defined by (see [2])

E(x, t; r, b) := ((eb + et)2 − (x − r)2)− 1
2

× F
(

1

2
,

1

2
;1; (e

t − eb)2 − (x − r)2
(et + eb)2 − (x − r)2

)

, (1.8)

while the distance function is φ(t) := et − 1. In that case the function u = u(x, t)
produced by the integral transform (1.3) with t0 = 0 and the kernel (1.8), solves the
wave equation in the FLRW space arising in the anti-de Sitter model of the universe,

utt − e2tA(x, ∂x)u= f (x, t) in R
n+1+ .

Moreover, it takes vanishing initial values (1.6).
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Example (The wave equation in the Einstein–de Sitter spacetime.) If we allow
negative k ∈ R in (1.5), then we obtain another way to get new operators of the
above described hierarchy. In fact, in the hierarchy of the hypergeometric functions
F(a, b; c; ζ ) the simplest non-constant function is F(−1,−1;1; ζ )= 1+ζ . The ex-
ponent l leading to F(−1,−1;1; ζ ) is exactly the exponent l = −4/3 of the wave
equation (and of the metric tensor) in the Einstein–de Sitter spacetime. In that case
the kernel is K(t; r, b)= 1

18 (9t
2/3 + 9b2/3 − r2). Consequently, the function

u(x, t)=
∫ t

0
db

∫ 3t1/3−3b1/3

0

1

18

((
3t1/3

)2 + (3b1/3)2 − r2)wA,f (x, r;b)dr,

x ∈R
n, t > 0, solves the equation

utt − t−4/3A(x, ∂x)u= f in R
n+1+ ,

and takes vanishing initial data (1.6) provided that wA,f = EEA(f ).

2 The Klein–Gordon Equation in the de Sitter Spacetime

We introduce the following notations. First, we define a chronological future
D+(x0, t0) and a chronological pastD−(x0, t0) of the point (x0, t0), x0 ∈R

n, t0 ∈R,
as follows: D±(x0, t0) := {(x, t) ∈ R

n+1; |x − x0| ≤ ±(e−t0 − e−t )}. Then, we de-
fine for (x0, t0) ∈R

n ×R the function

E(x, t;x0, t0;M) := 4−MeM(t0+t)
((
e−t + e−t0)2 − (x − x0)

2)− 1
2 +M

× F
(

1

2
−M, 1

2
−M;1; (e

−t0 − e−t )2 − (x − x0)
2

(e−t0 + e−t )2 − (x − x0)2

)

,

in D+(x0, t0)∪D−(x0, t0), where F(a, b; c; ζ ) is the hypergeometric function. The
kernels K0(z, t), K1(z, t), K0(z, t;M), and K0(z, t;M) are defined by

K0(z, t;M)

:= 4−MetM
((

1 + e−t)2 − z2)M 1

[(1 − e−t )2 − z2]√(1 + e−t )2 − z2

×
[
(
e−t − 1 +M(e−2t − 1 − z2))F

(
1

2
−M, 1

2
−M;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)

+ (1 − e−2t + z2)
(

1

2
+M

)

F

(

−1

2
−M, 1

2
−M;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)]

,

K1(z, t;M) := 4−MeMt
((

1 + e−t)2 − z2)− 1
2 +M



268 K. Yagdjian

× F
(

1

2
−M, 1

2
−M;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)

.

In the following theorem, the equation with mass M ∈ C, in the case of second or-
der elliptic operator A, can be derived from the covariant Klein–Gordon equation
by simple change of the unknown function (see, e.g., [3]). In order to avoid more
specific description of the order of the operator A(x, ∂x) and regularity of its coef-
ficients, the smoothness of all functions in the theorem is set frightfully redundant.
In general, it can be relaxed to the necessary smoothness. Let δik be the Kronecker
symbol.

Theorem 2.1 Assume that f ∈ C∞(Rn+1+ ), ϕ0, ϕ1 ∈ C∞
0 (R

n), and that the func-

tion vA,f (x, t;b) ∈ C∞(Rn+2++ ) is a solution to the Cauchy problem

vtt −A(x, ∂x)v = 0, v(x,0;b)= f (x, b), vt (x,0;b)= 0, t > 0,

while vA,ϕk (x, t) ∈ C∞(Rn+1+ ), is a solutions of the problem

vtt −A(x, ∂x)v = 0, v(x,0)= δ0kϕ0(x), vt (x,0)= δ1kϕ1(x),

k = 0,1. Then the function u= u(x, t) given by the integral transform

u(x, t) = 2
∫ t

0
db

∫ e−b−e−t

0
E(0, t; r, b;M)vA,f (x, r;b)dr

+ e t2 vA,ϕ0

(
x,1 − e−t)+ 2

∫ 1−e−t

0
K0(s, t;M)vA,ϕ0(x, s)ds

+ 2
∫ 1−e−t

0
K1(s, t;M)vA,ϕ1(x, s)ds, x ∈ R

n, t > 0, (2.1)

solves the Cauchy problem

utt − e−2tA(x, ∂x)u−M2u= f,
u(x,0)= ϕ0(x), ut (x,0)= ϕ1(x).

(2.2)

Outline of the proof The proof Theorem 2.1 is straightforward; we just substitute
the function u = u(t, x) of (2.1) into (2.2) and then check the initial conditions. It
is straightforward, but not short; the proof contains very long calculations. The full
proof of the results presented in the present note will be published soon later. �

Some Applications We mention here the Lp−Lq estimates, Strichartz estimates,
Huygens’ principle, global and local existence theorem for semilinear and quasilin-
ear equations. The applications of the above presented method to the second-order
hyperbolic equations with x-independent coefficients one can find in [1–8]. Below
we give examples of the equations with x-dependent coefficients those are amenable
to the integral transform method.
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Example The metric g in the Friedmann–Lemaître–Roberson–Walker spacetime
g00 = g00 = −1, g0j = g0j = 0, gij = a2(t)δij (x), |g| = a2n(t)|det δ(x)|, gij =
a−2(t)δij (x), i, j = 1,2, . . . , n, where δij (x)δjk(x)= δik , a(t)= et . The linear co-
variant Klein–Gordon equation in the coordinates is

ψtt − e−2t

√|det δ(x)|
n∑

i,j=1

∂

∂xi

(√∣
∣det δ(x)

∣
∣δij (x)

∂

∂xj
ψ

)

+ nψt +m2ψ = f.
This example includes also equations in the FLRW metric with hyperbolic or spher-
ical spatial geometry.

Example The degenerating at t = 0 equation

ψtt + t�
n∑

i,j=1

aij (x)
∂2

∂xi∂xj
ψ + t�

n∑

i=1

bi(x)
∂

∂xi
ψ = f

that is elliptic in the domain with t� > 0. Here
∑n
i,j=1 a

ij (x)ξiξj ≥ 0.

Example The Euler–Bernoulli beam equation with the variable coefficients

ψtt + a2(t)

n∑

i,j=1

aij (x)∂2
xi
∂2
xj
ψ = f,

where a(t) is one of the following functions t�, et , or e−t . Here
∑n
i,j=1 a

ij (x)ξiξj ≥
0.
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On Some Solutions of Certain Versions
of “Sigma” Model and Some Skyrme-Like
Models

Łukasz T. Stȩpień

Abstract Some results concerning certain versions of “sigma” model and some
Skyrme-like models, are presented.

Keywords “Sigma” model · O(3) model · Baby Skyrme model · Skyrme–Faddeev
model · Bogomolny decomposition
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1 Motivation

The nonlinear “sigma” (σ ) O(3) model was born by an inspiration in the late 50’s
of the 20th Century, by the development of high-energy physics, [9]. In [47] stable
soliton solutions for this model have been found. Some new class of O(3) mod-
els was studied in [49]. Its static (time independent) version describes Heisenberg
ferromagnet (static Heisenberg model), [50].

Baby Skyrme model is another very interesting model. It is an analogical model
on plane, to Skyrme model, which lagrangian includes, apart from the term of non-
linear O(3) sigma model also the quartic term—so-called Skyrme term, it is nec-
essary in order to overcome Derrick–Hobart theorem and the potential. Skyrme
model possesses solitonic solutions, useful for describing phenomena in world of
baryons, it provides good description of low-energy physics of strong interactions,
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[26]. The target space of Skyrme model is SU(2), [30–32], and the target space of
baby Skyrme model is S2. In these both models: Skyrme and baby Skyrme, static
field configurations can be classified topologically by their winding numbers. The
presence of the potential in the case of static field configurations with finite energy,
in baby Skyrme model, is necessary. However, the form of this potential—not re-
stricted, its different forms were investigated in [13, 24, 25, 29] and [1, 2, 22]. An
application of this model is the description of the quantum Hall efect, [3, 39, 48]. So-
called spinning baby Skyrmions in the restricted baby Skyrme model, were investi-
gated in [19]. In [2, 18], Bogomolny equations have been derived for some special
cases of the potential in restricted (without O(3) term) baby Skyrme model (some
more general results have been obtained in [40] and [45]). Some other interesting
Skyrme-like model is so called Skyrme–Faddeev model, [14, 20] (and other biblio-
graphical entries in [15]). In [15] some exact vortex solutions of CPN version of this
model have been found. In [16] exact vortex solutions for extended CP4N Skyrme–
Faddeev model, have been found and investigated. In this paper we present some
results concerning the models: extended CPN Skyrme–Faddeev, nonlinear “sigma”
(σ ) O(3) and restricted baby Skyrme one.

2 Decomposition (Non-Bogomolny) Method and Some Solutions

The main idea of this method was published in [43, 44]. Namely, we assume a pos-
sibility of a decomposition of an investigated NPDE for several smaller “pieces”,
which are characterized by a homogenity of the derivatives of the unknown func-
tion u (if it is possible). Next, we equal them to zero, and try to solve. The exact
meaning of the property “homogenity of the derivatives” was explained in [43, 44].
Here we say only that if given NPDE possesses this property, then we can change the
problem of solving of NPDE in the problem of solving of some system of nonlinear
algebraic equations. In this version of this method, the absence of free term (as a
constant term or a function g(u)—not multiplied by these derivatives) is required.
We use an ansatz:

u
(
xμ
)≡ ω(xμ)= β1 + f (aμxμ + β2, bμx

μ + β3, cμx
μ + β4, dμx

μ + β5
)
, (2.1)

where: f ∈ C2 and we work in Minkowski space-time with the signature: (−,+,
+,+). The fourth argument of f : dμxμ + β5, has been absent in [43, 44].

If we seek localized solutions, then we must assume asymptotic boundary condi-
tions: limx→±∞ f = const and analogical condition for energy density. We wish the
function was arbitrary. Such solutions are functionally invariant solutions. Some
methods for obtaining of such solutions and some special classes of them, were pub-
lished in: [6, 7, 10–12, 17, 27, 28, 33, 34, 41]. The decomposition method, described
in [43, 44], is just some method for finding such solutions (they were called there
as “classes of solutions”). Also enough general functionally invariant solutions of
some nonlinear equations, have been found in [43, 44].
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After applying decomposition method to the given equation(s), we have to solve
the corresponding algebraic system. The solutions of it, are the values of the coeffi-
cients aμ, bμ, . . . . The solutions of this system determine the shape of dependance
of the function f on xμ, μ= 0,1,2,3.

In [15] and [16], extended Skyrme–Faddeev model, and its CPN version (in
(3 + 1)-dimensions), correspondingly, have been investigated and so-called vortex
solutions, of the form:

ω(x, y, z, t)= f (x + iε1y, t + ε2z), f ∈ C, εk = ±1 (2.2)

have been found and studied. These solutions have been found by solving the equa-
tions: ∂μ∂μω = 0, ∂μω∂μω = 0, ω ∈ C, (of course, ω is twice differentiable func-
tion in complex sense). Owing to it, these solutions are simultaneously the solutions
of: “sigma” O(3) model (CP1 model) and extended CPN Skyrme–Faddeev model.
Namely, one can see, after looking at the idea of the decomposition method, that
it is possible owing to the fact that the field equations of these models are homo-
geneous with respect to the derivatives of the unknown function u and this is the
condition for applying of decomposition method. After applying it, three sets of
the functionally invariant solutions of the models: the models: nonlinear “sigma”
O(3) (CP1) model and extended Skyrme–Faddeev one, in (3 + 1)-dimensions,
have been found. These solutions are established by the values of the coefficients
aμ, bμ, cμ, dμ,μ = 0, . . . ,3, together with the ansatz (2.1). We present here three
sets of the values of the coefficients:

1. a0 = a2, a3 = −ia1, b0 = b2, b1 = ib3, c0 = c2, c1 = ic3 and a1, a2, b2, b3, c2,
c3—arbitrary (these values of the coefficients have been published in [43, 44]
(the first paper) and the coefficients dj , j = 0, . . . ,3, have been absent there),

2. a0 = −a1, a3 = −ia2, b0 = i b2d1
d3

, b1 = −i b2d1
d3

, b3 = −ib2, c0 = −c1, c2 = ic3,
d0 = −d1, d2 = id3 and a1, a2, b2, c1, c3, d1—arbitrary and d3 �= 0

3. a0 = a1d1+a2d2√

d2
1 +d2

2

, a3 = i a1d2−a2d1√

d2
1 +d2

2

, b0 = b1

√

d2
1 +d2

2

d1
, b2 = b1d2

d1
, b3 = 0, c0 =

c1

√

d2
1 +d2

2

d1
, c2 = c1d2

d1
, c3 = 0, d0 =

√

d2
1 + d2

2 , d3 = 0 and a1, a2, b1, c1, d2—
arbitrary and d1 �= 0, d1 �= ±id2.

If we look now at the first set, we can notice that after putting a1 = 0, a2 = 1,
b2 = 0, b3 = 1, c2 = 0, c3 = 0, we get a special case of the solution, established by
the ansatz (2.1) and the first set of the values of the coefficients (of course, βk = 0,
k = 1, . . . ,5):

ω(x, y, z, t)= f (t + y, ix + z) (2.3)

Hence, the solutions (2.2), with εn = 1, n= 1,2, obtained in [16], possess very
similar form to the solutions, which are special case of some solutions found in
[43, 44] (the first paper) and presented here in point 1 (for a1 = 0, a2 = 1, b2 = 0,
b3 = 1, c2 = 0, c3 = 0, βk = 0, k = 1, . . . ,5).
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Besides, if we look at the ansatz (2.1) and at these three sets of the values of the
coefficients, we notice that we can talk about superposition of the solutions for the
models: nonlinear “sigma” O(3) (CP1) model and extended Skyrme–Faddeev one,
in (3 + 1)-dimensions. We can see that there are two kinds of these superpositions:

1. I kind—i.e. each component solution is completely independent on the others
2. II kind—in this case, by using a coefficient(s) of one of the superposed solutions,

we can change the values of independent variables in the others superposed so-
lutions, especially, by putting a zero coefficient in one of superposed solutions,
we can make the other solution as time independent.

3 Bogomolny Equations

3.1 Classical Approach

This is well-known fact that Euler–Lagrange equations of many models in physics
are nonlinear partial differential equations of second order. However, in [8] Bo-
gomolny derived the equations, called as Bogomolny equations (sometimes also,
as Bogomol’nyi equations), although historically, they were derived earlier in [4],
for another model—SU(2) Yang–Mills theory. Similar problem was considered by
Hosoya in [21], Hosoya’s paper was cited in [5]. Bogomolny made it for scalar
field theory so-called φ4 model, with spontaneous symmetry breaking. The en-
ergy functional of this model is E = ∫∞

−∞(
1
2 (
dφ
dx
)2 + λ

2 (φ
2 − γ 2)2)dx, φ(x) ∈ R,

limx→±∞ φ(x) = ±γ and Euler–Lagrange equations for this model are d2φ

dx2 =
2λφ(φ2 − γ 2). Bogomolny showed that by proper writing down the energy func-
tional of this model, one can avoid solving of Euler–Lagrange equations, namely:
E = ∫∞

−∞(
1
2 (
dφ
dx

+√
λ(φ2 −γ 2))2 −√

λ
dφ
dx
(φ2 −γ 2))dx. Next, we integrate the sec-

ond (non-quadratic) term in this functional and we require reaching the minimum by
the functional. Hence, the following equation must be satisfied: dφ

dx
= √

λ(γ 2 − φ2)

(Bogomolny equation) and the following inequality (Bogomolny bound) is satis-

fied E ≥ 2
√
λ

3 γ
2|Q|, where Q = φ(∞) − φ(−∞) is a topological charge. The

very well-known solution of this Bogomolny equation is so called “kink” φ(x) =
γ tanh (γ

√
λ(x − x0)), obtained in [8].

3.2 Variational Approach—the Concept of Strong Necessary
Conditions

From the extremum principle, applied to the functional Φ[u] = ∫
E2 F(u,u,x,

u,t )dxdt , follow the Euler–Lagrange equations

F,u − d

dx
F,u,x − d

dt
F,u,t = 0, (3.1)
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Instead of (3.1) we consider strong necessary conditions, we call them here
shortly as SNC (this method was first time described in [35] and it was developed
later in [36, 37])

F,u = 0, F,u,t = 0, F,u,x = 0, (3.2)

where F,u ≡ ∂F
∂u

, etc. Obviously, all solutions of the system of (3.2) satisfy the
Euler–Lagrange equation (3.1), but these solutions, if they exist, are very often triv-
ial. We may avoid it by making gauge transformation of the functional Φ[u]:

Φ→Φ + Inv, (3.3)

where Inv is such functional that its local variation with respect to u(x, t) vanishes:
δInv ≡ 0 =⇒ E.-L. equations are invariant with respect to the gauge transformation
(3.3). Non-invariance of the SNC (3.2), with respect to the gauge transformation
(3.3) =⇒ some non-trivial solutions are possible. Now, we apply the SNC (3.2) to
the gauged functional: Φ̃ =Φ+ Inv. We obtain so called dual equations. Some early
version of the variational approach for deriving Bogomolny equations was applied
in [23]. The application of SNC for deriving Bogomolny equations (decomposition)
was later developed in [38, 42, 46].

3.2.1 An Example: Bogomolny Decomposition for Ungauged Restricted Baby
Skyrme Model in (2 + 0)-Dimensions

We consider the energy functional for restricted baby Skyrme model in (2 + 0)
dimensions (the static σ term is absent), of the following form, [2, 45]: H =
1
2

∫
d2xH = 1

2

∫
d2x(

β
4 (εij ∂i

�S × ∂j �S)2 + γ 2V (�S)), where | �S|2 = 1 and we as-
sume nothing about the form of the potential V (of course, V ∈ C). After making
stereographic projection: �S = [ ω+ω∗

1+ωω∗ ,
−i(ω−ω∗)

1+ωω∗ , 1−ωω∗
1+ωω∗ ], where ω = ω(x, y) ∈ C

and x, y ∈ R, the density of the energy functional H has the form, [45]: H =
−4β

(ω,xω
∗
,y−ω,yω∗

,x )
2

(1+ωω∗)4 +V (ω,ω∗). Now, we make gauge transformation on the invari-

ants, [45]:
∑3
k=1 Ik , where Ik are the densities of the invariants: I1 =G1 · (ω,xω∗

,y−
ω,yω

∗
,x) is the density of topological invariant, I2 = DxG2, I3 = DyG3,Dx ≡

d
dx
,Dy ≡ d

dy
, ω = ω(x, y),ω∗ = ω∗(x, y) ∈ C2 and Gk =Gk(ω,ω∗) ∈ C2 (k = 1,

2,3), are some functions, which are to be determinated.
If we apply the concept of strong necessary conditions to H̃, we get six dual

equations [45]. One can see their form in [45]. We say here only that all these
equations include the derivatives of ω and ω∗ with respect to x and y, and addi-
tionally, two of them include the derivatives of the potential V , with respect to ω
and ω∗ (these last equations, we call here shortly as “A” equations and other dual
equations as “B” equations). In order to derive Bogomolny equations, making these
equations self-consistent is necessary. So, there is the necessity of the reduction of
the number of independent equations by an appropriate choice of the functions Gk
(k = 1,2,3). Usually, such ansatzes exist only for some special V (ω,ω∗), i.e. in
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most cases of V (ω,ω∗), for many nonlinear field models, the reduction of the sys-
tem of corresponding dual equations, to Bogomolny equations, is impossible. The
appropriate reduction of this system of dual equations, has been done in [45], for
G2(ω,ω

∗) = const, G3(ω,ω
∗) = const. Hence, after inserting these relations into

the “B” equations, we get, [45]:

ω,xω
∗
,y −ω,yω∗

,x = 1

8β
G1
(
ω,ω∗)(1 +ωω∗)4. (3.4)

Hence, all solutions of (3.4) satisfy the “B” equations. Now, we make the “A”
equations, consistent with the other dual equation: after eliminating ω,x , ω,y , ω∗

,x ,
ω∗
,y , from “A” equations and integrating obtained equations, we get the condition for

the potential:

V
(
ω,ω∗)= − 1

16β
G2

1

(
ω,ω∗)(1 +ωω∗)4 +C, C = const. (3.5)

This result (without integrating constant C) was obtained in [45], but by using
Hamilton–Jacobi equation. In this current paper we have not applied Hamilton–

Jacobi equation. Then of course, G1 = 4
√
β

(1+ωω∗)2
√
C − V (ω,ω∗). For some sim-

plicity, we put here C = 0. We insert this relation into (3.4) and we obtain Bogo-
molny decomposition for the given potential V (w,w∗), [45]: ω,xω∗

,y − ω,yω∗
,x =

i

2
√
β

√
V (ω,ω∗)(1 + ωω∗)2. Then, this last equation is Bogomolny decomposi-

tion (Bogomolny equation) for restricted baby Skyrme model in (2 + 0) dimen-
sions, for arbitrary potential. Because of the limit of number of pages, we present
here only the exact form of the solution of this Bogomolny equation, (here u =
-(ω), v = .(ω) and F1(x),F2(x)—are arbitrary functions), which we have found
for V (u, v)= 1

(1+u2+v2)4
:

u(x, y)= F1(x), v(x, y)= − 1

4
√
β

y

d
dx
F1(x)

+ F2(x) (3.6)

4 Summary

We have found some exact functionally invariant solutions for the models: “sigma”
O(3) and extended CPN Skyrme–Faddeev one, in (3 + 1)-dimensions, by apply-
ing decomposition (non-Bogomolny) method. One of special cases of the solutions
found in [43, 44] (the first paper) and presented also here, are very similar to the vor-
tex solutions, found in (2.2). Hence, one may say that one of the solutions, obtained
in this paper, as the special case of the solutions found in [43, 44] (the first paper), are
also vortex solutions. Besides, the general form of these solutions satisfies some su-
perposition principles. We can say about two kinds of these superpositions—I kind,
when each component solution is quite independent on the others and II kind—in
this case, by using a coefficient(s) of one of the superposed solutions, we have an
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impact on the values of independent variables in the others superposed solutions, es-
pecially, by putting a zero coefficient in one of superposed solutions, we can make
the other solution as time independent.

Besides, we have derived for ungauged restricted baby Skyrme model in (2 + 0)-
dimensions, the condition for the potential, necessary for exitence of Bogomolny
decomposition (Bogomolny equations) for this model, without applying Hamilton–
Jacobi equation. We have found also some exact solution of Bogomolny decomposi-
tion (Bogomolny equations). Further investigation of obtained results, is in progress.

Acknowledgement The author thanks Dr. hab. A. Wereszczyński for interesting discus-
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Sharp Sobolev–Strichartz Estimates
for the Free Schrödinger Propagator
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Abstract We consider gaussian extremisability of sharp linear Sobolev–Strichartz
estimates and closely related sharp bilinear Ozawa–Tsutsumi estimates for the free
Schrödinger equation.
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1 Introduction

For d ≥ 1 and s ∈ [0, d2 ), it is well-known that the solution u : R × R
d → C of the

free Schrödinger equation

i∂tu+�u= 0, u(0)= u0 ∈ Ḣ s(Rd) (1.1)

satisfies the global space-time estimate

‖u‖Lp(d,s) ≤ S(d, s)‖u0‖Ḣ s (1.2)

for some finite constant S(d, s), which we assume to be the optimal (i.e. smallest)
such constant. Here, p(d, s) = 2(d+2)

d−2s and, as usual, Ḣ s(Rd) denotes the homo-

geneous Sobolev space with norm ‖f ‖Ḣ s = ‖(−�)s/2f ‖L2 . This article will be
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concerned with optimal constants and extremisers, and we note immediately that
S(d, s) and the shape of corresponding extremisers are only known in the rather spe-
cial cases (d, s) ∈ {(1,0), (2,0)} (see Foschi [5] and also Hundertmark–Zharnitsky
[6]). In such cases, the isotropic gaussian initial data u0(x)= exp(−|x|2) is an ex-
tremiser.

Very closely related are the sharp bilinear estimates

∥
∥(−�) 2−d

4 (uv)
∥
∥
L2 ≤ OT(d)‖u0‖L2‖v0‖L2 (1.3)

due to Ozawa–Tsutsumi [7], where d ≥ 2 and

OT(d)= Γ ( d2
)− 1

2 2− d
2 π

2−d
4 .

In (1.3), u and v are solutions of (1.1) with square-integrable initial data u0 and v0.
The constant OT(d) is optimal and (u0, v0) is an extremising pair when u0(x) =
v0(x)= exp(−|x|2).

The sharp estimate (1.3) was motivated by the case of one spatial dimension, in
which case (1.3) is an identity

∥
∥(−�) 1

4 (uv)
∥
∥
L2 = OT(1)‖u0‖L2‖v0‖L2 . (1.4)

This basic tool was established and used in [7] to prove local-wellposedness for
certain nonlinear Schrödinger equations with nonlinearities including ∂(|u|2)u and
initial data in H 1/2. Thus, (1.4) gives control on the null gauge form ∂(uv) for the
one-dimensional Schrödinger equation, and (1.3) gives estimates for the null gauge
form in higher dimensions.

We remark that taking d = 2 and u0 = v0 in (1.3) immediately yields the optimal
constant S(2,0) and its gaussian extremisability (this was not explicitly observed in
[7]). The approach in [7] is different to the approaches in [5] and [6], so this provides
an alternative derivation of this optimal constant.

As far as we know, for the Sobolev–Strichartz estimate (1.1), no conjecture has
been made on the shape of extremising initial data in the case where s is strictly
positive. Extremising initial data certainly exist for all admissible d ≥ 1 and s ∈
[0, d2 ) (see, for example, [8]). In this direction, our first observation is the following.

Theorem 1.1 Only if s = 0 are gaussians u0 such that

û0(ξ)= exp
(
a|ξ |2 + ib · ξ + c)

for some a, c ∈ C, b ∈R
d,Re(a) < 0, critical points for the functional

u0 �→ ‖eit�u0‖Lp(d,s)
‖u0‖Ḣ s

. (1.5)

Theorem 1.1 of course implies that gaussians are not amongst the class of ex-
tremisers for (1.2) for any admissible s which are strictly positive; i.e. s ∈ (0, d2 ).
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We find this outcome particularly interesting when measured against the analogous
sharp estimates for the wave propagator eit

√−�. Here, it is known that if d ≥ 2 and
s ∈ [0, d−1

2 ) then

‖u‖Lp(d−1,s) ≤ W(d, s)‖u0‖
Ḣ
s+ 1

2
(1.6)

for all solutions of the (pseudo) wave equation

i∂tu+ √−�u= 0, u(0)= u0 ∈ Ḣ s+ 1
2
(
R
d
)
.

Again, we take W(d, s) to be the optimal constant, which is finite for the given
range of parameters (d, s). It is known that initial data u0 for which

û0(ξ)= |ξ |−1 exp
(−|ξ |) (1.7)

are extremisers for (1.6) when (d, s) ∈ {(2,0), (3,0), (5, 1
2 )} (uniquely, up to certain

transformations). The cases (2,0) and (3,0) were established by Foschi [5] and the
case (5, 1

2 ) was established in [2]. Thus, u0 satisfying (1.7) is an extremiser for
W(d, s) for two distinct values of s. Theorem 1.1 shows that this phenomena does
not occur for S(d, s) and gaussian u0.

The condition s = 0 is, in fact, necessary and sufficient for gaussians to be crit-
ical points for the functional in (1.5). The sufficiency part was demonstrated by
Hundertmark–Zharnitsky [6]. See also the work of Christ–Quilodrán [3] where
a closely related result to Theorem 1.1 was established in the context of adjoint
Fourier restriction estimates for the paraboloid; in fact, we prove Theorem 1.1 by
making small modifications to their argument.

For the cases (d, s) ∈ {(1,0), (2,0)}, it is known that the isotropic gaussian
u0(x) = exp(−|x|2) is, up to certain transformations, the only extremising initial
data for (1.1); see [5, 6]. Furthermore, it is conjectured ([5, 6]) that gaussians are
the only extremisers for S(d,0) for all d ≥ 1. Providing a full characterisation of
the set of extremisers often requires delicate arguments, and applications of sharp
estimates frequently demand that such a characterisation is established. For exam-
ple, recent work of Duyckaerts–Merle–Roudenko [4] considered extremisers for
the global Strichartz norm for solutions of the mass-critical nonlinear Schrödinger
equation

i∂tu+�u+ γ |u| 4
d u= 0, u(0)= u0 ∈ L2(

R
d
)
,

where γ = 1 in the focusing case and γ = −1 in the defocusing case. In particular,
it was shown in [4] that for δ > 0 sufficiently small,

I(δ) := sup
‖u0‖2=δ

‖u‖Lp(d,0)

is attained for some initial data u0(δ) ∈ L2(Rd) with ‖u0(δ)‖2 = δ. When d = 1,2
they prove significantly more; it is shown that, as δ→ 0,

I(δ)= S(d,0)δ + γΛ(d)δ1+ 4
d +O(δ1+ 8

d
)
,
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where Λ(d) is some positive constant, and that any extremising initial data u0(δ) is,
for δ sufficiently small and up to certain transformations, close to δG0, where G0 is
the isotropic centred gaussian which has been L2-normalised. For this additional in-
formation concerning I(δ)when d = 1,2, it was vital to know a full characterisation
of the extremisers for S(d,0).

Our next result establishes a full characterisation of extremisers for the bilinear
Sobolev–Strichartz estimate (1.3) of Ozawa–Tsutsumi; this question was left open
in [7] and the following theorem says that extremisers for (1.3) must be isotropic
centred gaussians, up to certain transformations.

Theorem 1.2 Let d ≥ 2. We have equality in the estimate (1.3) if and only if there
exist a, c, d ∈ C, b ∈ C

d , with Re(a) < 0, so that

u0(x)= exp
(
a|x|2 + b · x + c), v0(x)= exp

(
a|x|2 + b · x + d). (1.8)

2 Further Remarks and Proofs

For d ≥ 1, q ∈ (1, 2(d+1)
d
) and p = (d+2)q ′

d
, it was shown in [3] that gaussians are

critical points for the Lq(Pd ,dσ)→ Lp(Rd+1) adjoint Fourier restriction estimates
associated to the paraboloid

P
d = {(ξ, |ξ |2) : ξ ∈R

d
}⊂ R

d+1

if and only if q = 2. Here, dσ is the measure supported on P
d given by

∫

Pd
F dσ :=

∫

Rd
F (ξ, |ξ |2)dξ and dξ is Lebesgue measure on R

d . A mixed-norm generalisa-
tion of this is also established in [3] and we remark that Theorem 1.1 may also be
extended by measuring the solution in appropriate Lrt L

p
x (R

d+1) norms.
To prove Theorem 1.1 we make minor modifications to the argument in [3] asso-

ciated with replacing Lq(Pd ,dσ) by Ḣ s(Rd).

Proof of Theorem 1.1 We fix d ≥ 1, s ∈ (0, d2 ) and let p = p(d, s). If Ψ is the
functional

Ψ (u0)= ‖eit�u0‖pLp
‖u0‖pḢ s

,

defined for nonzero u0 ∈ Ḣ s(Rd), then u0 is a critical point if

lim
ε→0

1

ε

(
Ψ (u0 + εv0)−Ψ (u0)

)= 0

for any v0 ∈ Ḣ s(Rd), where ε is a complex parameter. For brevity, we write u(t, ·)=
eit�u0 and v(t, ·)= eit�v0.
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Using Lemma 2.3 of [3], which gives an expansion of ‖F + εG‖pLp as ε→ 0,
ε ∈C, we obtain some constant γ > 1 such that

‖u+ εv‖pLp = ‖u‖pLp + p
∫

Rd+1

∣
∣u(t, x)

∣
∣pRe

(

ε
v(t, x)

u(t, x)

)

dx dt +O(|ε|γ )

and

‖u0 + εv0‖pḢ s = ‖u0‖pḢ s + (2π)dp‖u0‖p−2
Ḣ s

Re

(

ε

∫

Rd

û0(ξ )̂v0(ξ)|ξ |2s dξ

)

+O(|ε|γ )

as ε→ 0. It then follows that u0 is a critical point if and only if there exists λ > 0
such that

∫

Rd+1

∣
∣u(t, x)

∣
∣p−2

u(t, x) exp
(−i(x · ξ − t |ξ |2))dx dt = λ|ξ |2s û0(ξ) (2.1)

for almost all ξ ∈ R
d . For Theorem 1.1, it suffices to show that u0 is not a critical

point, where u0(x) = exp(− 1
4 |x|2). This reduction follows because u0 such that

û0(ξ)= exp(a|ξ |2 + ib · ξ + c), with a, c ∈ C and b ∈ R
d , can be generated from a

centred isotropic gaussian under the action of the group generated by:

(1) space-time translations: u(t, x)→ u(t + t0, x + x0) with (t0, x0) ∈ R
d+1;

(2) parabolic dilations: u(t, x)→ u(μ2t,μx) with μ> 0;
(3) change of scale: u(t, x)→ μu(t, x) with μ> 0;
(4) phase shift: u(t, x)→ eiθu(t, x) with θ ∈R.

The Euler–Lagrange equation (2.1) is invariant under each of the above actions.
For u0(x)= exp(− 1

4 |x|2) we have û0(ξ)= Cd exp(−|ξ |2) and

u(t, x)= Cd 1

(1 + it) d2
exp

(

− |x|2
4(1 + it)

)

for some positive constants Cd (which may differ). Thus, (2.1) is equivalent to

I(a)= Cd,sas (2.2)

for all a ∈ [0,∞), where Cd,s is some positive constant,

I(a) :=
∫

R

H(t)

(1 + it) d4 (p−2)
exp

(

a
(p− 2)(1 + it)
p− 1 − it

)

dt

and

H(t) := (1 − it)− d
4 (p−4)(p− 1 − it)− d

2 .
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A power series expansion of the exponential term leads to

I(a)=
∞∑

j=0

(p− 2)j Ij
j ! aj , (2.3)

where

Ij :=
∫

R

(1 + it)j− d(s+1)
d−2s Hj (t)dt

and

Hj(t)= (1 − it)− d
4 (p−4)(p− 1 − it)− d

2 −j .

Since Hj is holomorphic in the upper half-plane and

∣
∣(1 + it)j− d(s+1)

d−2s Hj (t)
∣
∣≤ C|t |− 2d(s+1)

d−2s ,

with 2d(s+1)
d−2s > 1, it follows (using Lemma 4.1 of [3]) that for j > d(s+1)

d−2s − 1 we
have

Ij = −2 sin(γjπ)
∫ ∞

0
rγj Hj (i + ir)dr, (2.4)

where γj := j − d(s+1)
d−2s . Since Hj(i + ir) > 0 for all r ≥ 0, it is clear that Ij = 0 if

and only if γj ∈ Z.
In the case where s ∈ (0, d2 )∩N, using (2.2), (2.3) and a power series uniqueness

argument, it follows that Ij = 0 for all j �= s and Ij �= 0 for j = s. If, additionally,
d(s+1)
d−2s /∈N, then (2.4) implies Ij �= 0 for any j >max{ d(s+1)

d−2s − 1, s}, which gives a

contradiction. If, instead, d(s+1)
d−2s ∈N, then for j+ = d(s+1)

d−2s −1 we may use Cauchy’s
residue theorem to obtain

Ij+ =
∫

R

(1 + it)−1Hj+(t)dt = 2πHj+(i) �= 0.

Since s > 0 we have j+ �= s and so this is also a contradiction.
In the remaining case where s ∈ (0, d2 ) and s /∈ N, one can see that (2.2) cannot

hold for all a ∈ [0,∞) since (2.3) implies that I(a) is k times (right) differentiable
at a = 0 for each k ∈N, whereas a �→ as is not. �

Regarding Theorem 1.2, we begin with the observation that the proof of (1.3) in
[7], involving several well-chosen changes of variables, leads to the representation

∥
∥(−�) 2−d

4 (uv)
∥
∥2
L2 = Cd

∫

M

∣
∣
∣
∣

∫

Rd

û0
(
(r − p)ω− η)v̂0(η)dΣω,r(η)

∣
∣
∣
∣

2

dσ(ω)dr dp,

where M = S
d−1 ×R

2, dΣω,r(η)= δ(r−ω ·η)dη, δ is the Dirac measure on R sup-
ported at the origin, and dσ is the induced Lebesgue measure on S

d−1. The constant
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Cd is explicitly computable (and whose value depends on the chosen convention for
the Fourier transform).

An application of Cauchy–Schwarz with respect to the measure dΣr,ω for each
fixed (ω, r,p) ∈ M yields (1.3). Using the standard fact that equality holds in the
Cauchy–Schwarz inequality precisely when the constituent functions are linearly
dependent, we see that if (u0, v0) is an extremising pair, then there exists a scalar
function Λ such that

û0
(
(r − p)ω− η)=Λ(ω, r,p)̂v0(η) (2.5)

for almost all η ∈ R
d (with respect to dΣω,r ) in the support of the measure dΣω,r

and almost all (ω, r,p) ∈ M (with respect to the induced Lebesgue measure).
A complete justification that (u0, v0) satisfies the geometric functional equation in
(2.5) if and only if (u0, v0) have the gaussian form in (1.8) requires a multiple-stage
argument.

The strategy behind the characterisation is to first argue that u0 and v0 must be
equal (up to non-zero constants), and then establish that û0 must have a certain
amount of regularity. In fact, a delicate geometric argument shows that û0 must be
at least continuous. Once equipped with this information, and furthermore, that û0
never vanishes, it is possible to solve (2.5) by decomposing û0 = fg into a product
of logarithmically even and odd functions, where

f (η)= (û0(η)̂u0(−η)
) 1

2 and g(η)=
(
û0(η)

û0(−η)
) 1

2

.

The functional equation inherited by f and g, from û0, is the classical orthogonal
Cauchy functional equation

h(η1 + η2)= h(η1)h(η2)

whenever η1 and η2 are orthogonal vectors in R
d . If f and g are normalised so

that f (0)= g(0)= 1, this forces f (η)= exp(a|η|2) and g(η)= exp(b · η) for some
a ∈C and b ∈ C

d , and hence û0 has the desired form (1.8).
Full details of this argument can be found in [1] as part of a substantial analysis

of sharp bilinear estimates of Ozawa–Tsutsumi type.
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Nonlinear PDE as Immersions

Zhanat Zhunussova

Abstract Investigating of the nonlinear PDE including their geometric nature is
one of the topical problems. With geometric point of view the nonlinear PDE are
considered as immersions. We consider some aspects of the simplest soliton immer-
sions in multidimensional space in Fokas–Gelfand’s sense (Ceyhan et al. in J. Math.
Phys. 41:2551–2270, 2000). In (1+1)-dimensional case nonlinear PDE are given in
compatibility condition some system of linear equations (Lakshmanan and Myrza-
kulov in J. Math. Phys. 39:3765–3771, 1998). In this case there is a surface with
immersion function. We find the second quadratic form in Fokas–Gelfand’s sense
associated to one soliton solution of nonlinear Schrödinger equation.

Keywords Immersion · Soliton · Surface · Evolution equation

1 Introduction

Over the last twenty years in the field of mathematical physics a large number of
researches is devoted to the study of nonlinear equations. Some nonlinear wave
equations can occur in problems of the different physical nature [1, 2]. For exam-
ple, such equations are the well-known Korteweg de Vries equation, the nonlinear
Schrödinger equation, sin-Gordon equation.

Soliton theory is a powerful apparatus for studying nonlinear equations including
their geometrical nature. With a geometrical point of view soliton systems are con-
sidered as immersion of infinite-dimensional spaces. In other words, the hierarchy
of soliton equations considered as a system of defining immersion of a manifold
V n in space Vm, where n < m. Connection between theory of solitons and theory
of surfaces is set by introducing evolution equations that associated with algebra.
The relation (1 + 1)-dimensional soliton equations with the theory of surfaces are
given by the Gauss–Codazzi–Mainardi equation. In this case, the soliton equations
are considered as some integrable reductions of the Gauss–Codazzi–Mainardi equa-
tion.
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In this work, we would like to review the simplest aspects of soliton investments
in multi-dimensional space, in Fokas–Gelfand sense [1].

In (1 + 1)-dimensional case nonlinear partial differential equations are given as
a condition of zero curvature Ut − Vx + [U,V ] = 0, where [U,V ] = UV − VU ,
matrix U is given, and the matrix V is expressed in terms of elements of the ma-
trix U . Also the nonlinear partial differential equation is the compatibility condi-
tion the system of linear equations φx = Uφ, φt = V φ. In this case there is a
surface with immersion function P(x, t) defined by the formulas ∂P

∂x
= φ−1Xφ,

∂P
∂t

= φ−1Yφ. Surface defined by P(x, t) identified a surface in three-dimensional
space defined by the coordinates [1] xj = Pj (x, t), j = 1,2,3. Frame on the surface
is given by a triple [1] ∂P

∂x
= φ−1Xφ, ∂P

∂t
= φ−1Yφ,N = φ−1Jφ, where J = [X,Y ]

|[X,Y ]| ,
|X| = √〈X,X〉. Here, by definition, 〈X,Y 〉 = − 1

2 tr(XY), whereX, Y are some ma-
trixes. And the first and second quadratic forms of the surface are given by

I = 〈X,X〉dx2 + 2〈X,Y 〉dxdt + 〈Y,Y 〉dt2, (1.1)

II =
〈
∂X

∂x
+ [X,U ], J

〉

dx2 + 2

〈
∂X

∂t
+ [X,V ], J

〉

dxdt

+
〈
∂Y

∂t
+ [Y,V ], J

〉

dt2. (1.2)

As shown in [1] immersion function P can be defined as P = γ0φ
−1φλ +

φ−1M1φ =∑3
j=1Pjfj , where M1 is a matrix function, which depends on λ, x, t .

Here fj = − i
2σj is basis of the corresponding algebra, σj are Pauli matrices and

[fi, fj ] = fk . In this case, X, Y can be written as X = γ0Uλ +M1x + [M1,U ],
Y = γ0Vλ +M1t + [M1,V ].

2 Soliton Immersions in (1 + 1)-Dimension

Let the matrixes X, Y , J have the form

X =
(
a11 a12
a21 a22

)

, Y =
(
b11 b12
b21 b22

)

, J =
(
c11 c12
c21 c22

)

. (2.1)

In this case, the elements of the matrix J are expressed through the elements of the
matrix X and Y in accordance with the formulas

c11 = a12b21 − b12a21

|[X,Y ]| , c21 = a21(b11 − b22)+ b21(a22 − a11)

|[X,Y ]| , (2.2)

c12 = b12(a11 − a22)+ a12(b22 − b11)

|[X,Y ]| , c22 = a21b12 − b21a12

|[X,Y ]| . (2.3)
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Then the first fundamental form (1.1) of two-dimensional surface becomes I =
Edx2 + 2Fdxdt +Gdt2, where

E = −1

2

(
a2

11 + 2a12a21 + a2
22

)
,

F = −1

2
(a11b11 + a12b21 + a21b12 + a22b22),

(2.4)

G= −1

2

(
b2

11 + 2b12b21 + b2
22

)
. (2.5)

As an example of a soliton equation that yields such immersion we consider the
nonlinear Schrödinger equation iψt + ψxx + 2β|ψ |2ψ = 0, where β = +1, ψ is
complex function. In this case, the matrix U , V have the form [3]

U = λσ3

2i
+U0, U0 = i

(
0 q̄

q 0

)

,

V = iλ2

2
σ3 + i|q|2σ3 − iλ

(
0 q̄

q 0

)

+
(

0 q̄x
−qx 0

)

.

(2.6)

The theorem is held.

Theorem 2.1 Second quadratic form in the sense of Fokas–Gelfand corresponding
to soliton solution q of nonlinear Schrödinger equation has the form

II = Ldx2 + 2Mdxdt +Ndt2, (2.7)

where

L = −1

2

{
a11xc11 + a12xc21 + a21xc12 + a22xc22

− λi(a21c12 − a12c21)

+ iq(a12c11 + a22c12 − a11c12 − a12c22)

+ iq̄(a21c22 + a11c21 − a22c21 − a21c11)
}
, (2.8)

M = −1

2

{
a11t c11 + a12t c21 + a21t c12 + a22t c22

+ i(λ2 + 2|q|2)(a21c12 − a12c21)

+ (qx + λiq)(a11c12 + a12c22 − a12c11 − a22c12)

+ (q̄x − λiq̄)(a11c21 + a21c22 − a21c11 − a22c21)
}
, (2.9)

N = −1

2

{
b11t c11 + b12t c21 + b21t c12 + b22t c22

+ i(λ2 + 2|q|2)(b21c12 − b12c21)
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+ (qx + λiq)(b11c12 + b12c22 − b12c11 − b22c12)

+ (q̄x − λiq̄)(b11c21 + b21c22 − b21c11 − b22c21)
}
, (2.10)

Proof By direct substitution of the matrix (2.1), (2.6) to (1.2) we obtain (2.7), (2.8)–
(2.10). Theorem is proved. �

3 One-Soliton Solution of the Nonlinear Schrödinger Equation
Corresponding to the Surface

We consider the partial case of immersion at γ0 = 1,M1 = 0. For this case we have

X =Uλ = 1

2i

(
1 0
0 −1

)

, Y = Vλ = −i
(−λ q̄

q λ

)

,

J =
(

0 − q̄√
qq̄

q√
qq̄

0

)

,

(3.1)

and P = φ−1φλ. To calculate the explicit expressions for the functions of immersion
P we consider the one-soliton solution of the nonlinear Schrödinger equation, which
has the form

q(x, t)=Qexp{i(ϕ0 + vx
2 + (u2−v2)t

4 − π
2 )}

ch{u2 (x − vt − x0)} , (3.2)

where we put λ= u+iv
2 , Q is constant.

Theorem 3.1 (Main Theorem) One-soliton solution of the nonlinear Schrödinger
equation corresponds to the surface in the sense of Fokas–Gelfand with the corre-
sponding coefficients of the first and second quadratic form

E = Q2(u2 + v2)

(λ− λ̄1)4 ch2{u2 (x − vt − x0)}
,

F = − v(u2 + v2)Q2

2(λ− λ̄1)4 ch2{u2 (x − vt − x0)}
,

(3.3)

G= (u2 + v2)2Q2

4(λ− λ̄1)4 ch2{u2 (x − vt − x0)}
,

L= − u(u2 + v2)

4(λ− λ̄1)2 ch2{u2 (x − vt − x0)}
,

(3.4)
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M = uv(u2 + v2)

8(λ− λ̄1)2 ch2{u2 (x − vt − x0)}
,

N = − u(u2 + v2)

16(λ− λ̄1)2 ch2{u2 (x − vt − x0)}
,

(3.5)

where λ1 is constant.

Proof The solution of the linear system we find in the form

ψ = φe−( λσ3
2i x+ iλ2

2 σ3t). (3.6)

Taking into account (3.6), apply (2.6) we have

ψx =
(
λσ3

2i
+U0

)

ψ −ψ λσ3

2i
= λσ3

2i
ψ −ψ λσ3

2i
+U0ψ

=
[
λσ3

2i
,ψ

]

+U0ψ. (3.7)

We take

ψ = I − Ã

λ− λ∗
1
, where Ã=

(
ã b̃

c̃ d̃

)

, I =
(

1 0
0 1

)

, λ∗
1-const. (3.8)

We substitute (3.8) to (3.7)

ψx =U0 − U0Ã

λ− λ∗
1

− 1

2i
[σ3, Ã] − λ∗

1

2i(λ− λ∗
1)

[σ3, Ã]. (3.9)

On the other side of (3.8) follows

ψx = − Ãx

λ− λ∗
1
. (3.10)

From (3.9) and (3.10) we have

− Ãx

λ− λ∗
1

=U0 − U0Ã

λ− λ∗
1

− 1

2i
[σ3, Ã] − λ∗

1

2i(λ− λ∗
1)

[σ3, Ã]. (3.11)

Thus

Ãx =U0Ã+ λ∗
1

2i
[σ3, Ã], U0 = 1

2i
[σ3,A]. (3.12)

Note that

[σ3, Ã] = σ3Ã− Ãσ3 = 2

(
0 b̃

−c̃ 0

)

. (3.13)
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Then substituting (3.13) into (3.28), we have

U0 = 1

i

(
0 b̃

−c̃ 0

)

. (3.14)

Substituting (3.13) to (3.12), we have
(
ãx b̃x

c̃x d̃x

)

= 1

i

(
b̃c̃ b̃d̃

−c̃ã −c̃b̃
)

+ λ∗
1

i

(
0 b̃

−c̃ 0

)

. (3.15)

From (2.6) and (3.14) we have

i

(
0 q̄

q 0

)

= 1

i

(
0 b

−c 0

)

⇒

⎧
⎪⎨

⎪⎩

iq̄ = 1

i
b

iq = −1

i
c

⇒
{
b= −q̄
c= q. (3.16)

Thus we have found a matrix Ã implicitly, with components (3.15). From (3.15),
(3.16) follows ã = − ic̃x

c
− λ∗

1 ⇒ ã = − iqx
q

− λ∗
1. Using (3.2) we obtain

ã = iu

2
th

{
u

2
(x − vt − x0)

}

+ v

2
− λ∗

1. (3.17)

From (3.15) follows ãx = 1
i
b̃c̃⇒ ãx = 1

i
(−q̄)q,⇒ ã = − 1

i

∫
q̄qdx. Using (3.2)

we obtain

ã = −2|Q|2
iu

th

{
u

2
(x − vt − x0)

}

− 2|Q|2c1

iu
. (3.18)

From (3.17), (3.18) follows
⎧
⎪⎪⎨

⎪⎪⎩

−2|Q|2
iu

= iu

2
, ⇒ 2|Q|2

iu
= − iu

2
, ⇒ 4|Q|2 = u2, ⇒ |Q|2 = u2

4
,

(
v

2
− λ∗

1

)

= −c1
2|Q|2
iu

, ⇒ c1 = − iu

2|Q|2
(
v

2
− λ∗

1

)

.

(3.19)
From (3.15), (3.16) follows

d̃ = ib̃x

b̃
− λ∗

1 ⇒ d̃ = i(−q̄)x
(−q̄) − λ∗

1 ⇒ d̃ = iq̄x

q̄
− λ∗

1. (3.20)

Using (3.2) we have

d̃ = − iu
2

th

{
u

2
(x − vt − x0)

}

+
(
v

2
− λ∗

1

)

. (3.21)

From (3.15), (3.16) follows

d̃x = −1

i
c̃b̃ ⇒ d̃ = 1

i

∫

qq̄dx ⇒ d̃ = −ã. (3.22)
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We denote c= c1
2|Q|2
iu

. From (3.21), (3.22) follows

⎧
⎪⎪⎨

⎪⎪⎩

(
v

2
− λ∗

1

)

= c1
2|Q|2
iu

, ⇒ c1 = iu

2|Q|2
(
v

2
− λ∗

1

)

,

2|Q|2
iu

= − iu
2
, ⇒ 4|Q|2 = u2, ⇒ |Q|2 = u2

4

(3.23)

Taking into account c, (3.23), we obtain (3.18) in the form

ã = − u
2i

th

{
u

2
(x − vt − x0)

}

− c. (3.24)

Thus, the matrix Ã for one-soliton solution (3.2) of the nonlinear Schrödinger
equation takes the form

Ã=
⎛

⎜
⎝

− u
2i th{u2 (x − vt − x0)} − c −Q exp{−i(ϕ0+ vx

2 + (u2−v2)
4 t− π

2 )

ch{ u2 (x−vt−x0)}

Q
exp{i(ϕ0+ vx

2 + (u2−v2)
4 t− π

2 )

ch{ u2 (x−vt−x0)}
u
2i th{u2 (x − vt − x0)} + c

⎞

⎟
⎠ . (3.25)

Now we take φ = I − A

(λ−λ̄1)
2 , where λ1 is constants, then from (3.1) we have

P = φ−1φλ =
(

I + Ã

λ− λ1

)
Ã

(λ− λ̄1)2
(3.26)

On the other hand, we obtain

P =
3∑

j=1

Pjfj = − i
2

3∑

j=1

Pjσj =
( − i

2P3 − i
2P1 − 1

2P2

− i
2P1 + 1

2P2
i
2P3

)

. (3.27)

From (3.26), (3.27) by (3.22) we have P3 = 2iã
(λ−λ̄1)

2 . Now with the help of (3.24)
we find P3 explicitly for solution of the nonlinear Schrödinger equation

P3 = − 4|Q|2c1

u(λ− λ̄1)2
− u th{u2 (x − vt − x0)}

(λ− λ̄1)2
. (3.28)

From (3.26), (3.27) we have P2 = c̃−b̃
(λ−λ̄1)

2 . Thus P1 = i(c̃+b̃)
(λ−λ̄1)

2 , P2 = (c̃−b̃)
(λ−λ̄1)

2 , P3 =
2iã

(λ−λ̄1)
2 . From (3.26), (3.2) using the known formulas

sh ζ = eζ − e−ζ
2

; ch ζ = eζ + e−ζ
2

;

cos ζ = eiζ + e−iζ
2

; sin ζ = eiζ − e−iζ
2i

,

(3.29)
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where ζ = (ϕ0 + vx
2 + (u2−v2)

4 t − π
2 ) we obtain the explicit values of P1, P2, P3

matrix P

P1 = −2Q sin(ϕ0 + vx
2 + (u2−v2)

4 t − π
2 )

(λ− λ̄1)2 ch{u2 (x − vt − x0)} ,

P2 = 2Q cos(ϕ0 + vx
2 + (u2−v2)

4 t − π
2 )

(λ− λ̄1)2 ch{u2 (x − vt − x0)} ,

(3.30)

P3 = − 4|Q|2c1

u(λ− λ̄1)2
− u th{u2 (x − vt − x0)}

(λ− λ̄1)2
. (3.31)

Now we can calculate the coefficients on the first quadratic form i.e.

E = P 2
1x + P 2

2x + P 2
3x. (3.32)

For this, we compute P1x , P2x , P3x . Now the first derivatives are raised separately
to the 2nd power and substitute into (3.32), then

E = Q2(u2 + v2)

(λ− λ̄1)4 ch2{u2 (x − vt − x0)}
.

Similarly, according to the formulae F = P1xP1t + P2xP2t + P3xP3t , G = P 2
1t +

P 2
2t + P 2

3t we obtain the values

F = − v(u2 + v2)Q2

2(λ− λ̄1)4 ch2{u2 (x − vt − x0)}
,

G= Q2(u2 + v2)2

4(λ− λ̄1)4 ch2{u2 (x − vt − x0)}
.

(3.33)

Now, using (3.30), (3.31) we calculate coefficients of the second form L,M , N . For
this, we have to calculate

n = rx × rt√
Λ
,

√
Λ=

√
EG− F 2. (3.34)

Directly substituting the values of (3.30)–(3.31) to (3.34) we calculate the com-
ponents vector n. Here we present the calculation

n1 = −u
2(u2 + v2)Q sin(ϕ0 + vx

2 + (u2−v2)
4 t − π

2 )

4
√
Λ(λ− λ̄1)4 ch3{u2 (x − vt − x0)}

. (3.35)

n2 = u2(u2 + v2)Q cos(ϕ0 + vx
2 + (u2−v2)

4 t − π
2 )

4
√
Λ(λ− λ̄1)4 ch3{u2 (x − vt − x0)}

, (3.36)
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n3 = − Q2u(u2 + v2) sh{u2 (x − vt − x0)}
2
√
Λ(λ− λ̄1)4 ch3{u2 (x − vt − x0)}

. (3.37)

We calculate with the help of (3.33)

√
Λ= (EG− F 2) 1

2 =
{

Q4(u2 + v2)2u2

4(λ− λ̄1)8 ch4{u2 (x − vt − x0)}
} 1

2

. (3.38)

Now we find P1xx , P2xx , P3xx . Then we can find L. By the similar way we
calculate M , N . Now, using (3.38), (3.34) Gaussian and mean curvature K and H
can be calculated

K = 1

4u2

(
1 − v2)(λ− λ̄1)

4, H = 1

2u3

(
v2 − u2 − 1

)
(λ− λ̄1)

2. (3.39)

Now, from (2.4), (2.5) using (3.1) for the case γ0, M1 = 0 we have coefficients of
the first fundamental form corresponding to (3.2) as E = 1

4 , F = −λ
2 , G = λ2 +

q̄q . Respectively, from (2.8)–(2.10) using (3.1), we have coefficients of the second
quadratic form. Now we can calculateΛ=EG−F 2 = 1

4 q̄q . Theorem is proved. �

4 Conclusion

Thus, we have examined the soliton immersion in (1 + 1)-dimension and obtained
the corresponding formulae. As an example of such immersion we consider (1+1)-
dimensional nonlinear Schrodinger equation. It is found integrable surface corre-
sponding to the one-soliton solution of the nonlinear Schrödinger equation given by
the first and second quadratic forms with coefficients (3.3)–(3.5). We have calcu-
lated the Gaussian and mean curvature of found surface. We see, that the geomet-
ric equation describing the n-curvilinear coordinate systems in flat Euclidean and
pseudo-Euclidean space allow some integrable reductions. In addition, we have as-
sumed that immersion 3- and 4-dimensional manifolds arbitrarily embedded in Rμ

admit integrable cases.
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Blow-Up for Nonlinear Inequalities
with Singularities on Unbounded Sets

Evgeny Galakhov and Olga Salieva

Abstract Many physical phenomena are described by nonlinear equations and in-
equalities with singular coefficients, for which blow-up situation occurs. In this pa-
per we establish sufficient conditions of blow-up situation for some classes of non-
linear differential inequalities with singularities on unbounded sets.
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1 Introduction

A blow-up situation is growth of a solution of a differential equation or inequality
towards infinity in the neighborhood of finite values of the argument. The theory
of blow-up of solutions to nonlinear differential equations is used for prediction of
many disastrous events in physics and technology, such as crash of buildings [1] and
phase transitions in the Ginzburg–Landau–Allen–Cahn model [2].

Most known results in the blow-up theory have to do with differential equations
of the second order. A method for investigating blow-up for a wider class of prob-
lems by using asymptotic a priori estimates was developed by S. Pohozaev and
E. Mitidieri [1, 3].

In this paper we obtain sufficient conditions for a blow-up situation to occur
for several classes of equations and inequalities that have singular coefficients on
unbounded sets, such as lines, planes, smooth curves and surfaces in R
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2 Main Results

Let S ⊂ R
n be a closed unbounded set.

Let ε > 0, x ∈ R
n. Denote ρ(x) = dist(x, S) and Sε = {x ∈ R

n : ρ(x,S) < ε}.
Suppose that there exists a family of functions ξR ∈ C2k

0 (R
n \ S; [0,1]) such that

ξR(x)=
⎧
⎨

⎩

0
(
x ∈ S 1

2R ∪ (Rn \ S2R)),

1
(
x ∈ SR \ S 1

R
) (2.1)

and there exists a constant c > 0 such that
∣
∣DαξR(x)

∣
∣≤ cρ−|α| (

x ∈R
n
)
. (2.2)

Example As the set S we can consider a hyperplane S =Πn = {x = (x1, . . . , xn) ∈
R
n : xn = 0}. In that case we can choose ξR(x)= ξ̃R(xn), where

ξ̃ 1
R
(xn)=

⎧
⎪⎪⎨

⎪⎪⎩

0

(

|xn| ≤ 1

2R
or |xn| ≥ 2R

)

,

1

(
1

R
≤ |xn| ≤R

)

.

For definiteness, we formulate our results in special cases, namely for inequalities

(−�)ku≥ uqρ−α|x|β (
x ∈R

n \ S), (2.3)

(−�)ku≥ |Du|qρ−α|x|β (
x ∈ R

n \ S) (2.4)

with some k ∈N, q,β > 0.
Our main results for problems (2.3)–(2.4) can be formulated as follows.

Theorem 2.1 Let q > 1 and n+ |α−2kq|−β
q

≤ 0.

Then problem (2.3) has no nonnegative nontrivial solutions u ∈ Lqloc(R
n \ S).

Theorem 2.2 Let q > 1 and n+ |α−(2k−1)q|−β
q

≤ 0.

Then problem (2.4) has no nontrivial solutions u ∈W 1,q
loc (R

n \ S).

A nonexistence result also takes place for an evolution inequality

ut − (−�)ku≥ uqρ−α|x|β (
x ∈ R

n \ S; t ∈ R+
)

(2.5)

with an initial condition

u(x,0)= u0(x)≥ 0
(
x ∈R

n \ S). (2.6)

We assume that the initial function u0 ∈ L1
loc(R

n \ S).
A typical result for problem (2.5), (2.6) can be formulated as follows.
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Theorem 2.3 Let q > 1, α > 2kq and n+ 2k+ α−2kq−β
q

≤ 0.

Then problem (2.5), (2.6) has no nonnegative nontrivial solutions u ∈ Lqloc((R
n \

S)× [0, T ]) for any T > 0.

Remark 2.4 Nonexistence of solutions to (2.5), (2.6) is called instantaneous blow-
up.

3 Proof of Theorem 2.1

We introduce a family of test functions ϕ = ϕR ∈ C2k
0 (R

n \ S; [0,1]) of the form

ϕR(x)= ξκR(x)ψκR(x)

with κ > 2kq ′, ξR ∈ C2k
0 (R

n \ S; [0,1]) that satisfy (2.1) and (2.2), and ψR ∈
C2k

0 (R
n; [0,1]) such that

ψR(x)=
{

1
(|x| ≤R),

0
(|x| ≥ 2R

)
,

(3.1)

such that for some constant c > 0 one has

∣
∣DαψR(x)

∣
∣≤ cR−|α| (

x ∈ R
n
)

(3.2)

for all multi-indices α with 0 ≤ |α| ≤ 2k.
The structure of these test functions allows to get rid of singularities both on S

and at infinity.
Now suppose that a solution u of (2.3) does exist. Multiplying both sides of (2.3)

by ϕR and integrating by parts 2k times, we get

∫

suppϕR
uqρ−α|x|βϕR dx

≤
∫

suppϕR
u(−�)kϕR dx ≤

∫

suppϕR
u
∣
∣�kϕR

∣
∣dx

≤
(∫

suppϕR
uqρ−α|x|βϕR dx

) 1
q ·
(∫

suppϕR
ρ
αq′
q |x|− βq′

q
∣
∣�kϕR

∣
∣q

′
ϕ

1−q ′
R dx

) 1
q′
,

whence
∫

suppϕR
uqρ−α|x|βϕR dx ≤

∫

suppϕR
ρ
αq′
q |x|− βq′

q
∣
∣�kϕR

∣
∣q

′
ϕ

1−q ′
R dx.
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Denote AR = (SR \ S 1
R ) ∩ BR(0). Due to the choice of ϕR , we can restrict the

domains of integration on both sides of the inequality:

∫

AR

uqρ−α|x|βϕR dx ≤
∫

A2R

ρ
αq′
q |x|− βq′

q
∣
∣�kϕR

∣
∣q

′
ϕ

1−q ′
R dx.

Note that ϕR ≡ 1 in the whole domain of integration on the left-hand side. Using
conditions (2.2) and (3.2), we obtain

∫

AR

uqρ−α|x|β dx ≤ cRn+ |α−2kq|−β
q ,

which leads to a contradiction as R→ ∞, if the exponent on the right-hand side is
negative. The case of a zero exponent is considered in a standard way (see [1]).

Remark 3.1 This result can be extended to a wider class of stationary higher order
differential operators with constant or variable coefficients, including systems of the
form

{
(−�)ku≥ vqρ−α|x|β (

x ∈R
n \ S),

(−�)lv ≥ upρ−γ |x|δ (
x ∈R

n \ S)

with appropriate parameters k, l ∈N, p,q > 1, α,β, γ, δ ∈R.

4 Proof of Theorem 2.2

To prove Theorem 2.2, we take ϕ = ϕR ∈ C2k−1
0 (Rn \ S; [0,1]) of the same form

as in the previous section, with κ > (2k − 1)q ′, ξR ∈ C2k−1
0 (Rn \ S; [0,1]), which

satisfy (2.1) and (2.2), and ψR ∈ C2k−1
0 (Rn; [0,1]), which satisfy (3.1) and (3.2). It

suffices that estimates (2.2) and (3.2) hold for 0 ≤ |α| ≤ 2k − 1.
Assume that a nontrivial (not constant a.e.) solution u of (2.4) does exist. Multi-

plying both sides of (2.4) by ϕR and integrating by parts 2k− 1 times, we get

∫

suppϕR
|Du|qρ−α|x|βϕR dx

≤
∫

suppϕR

(
Du,D

(
(−�)k−1ϕR

))
dx

≤
∫

suppϕR
|Du| · ∣∣D(�k−1ϕR

)∣
∣dx ≤

(∫

suppϕR
|Du|qρ−α|x|βϕR dx

) 1
q

×
(∫

suppϕR
ρ
αq′
q |x|− βq′

q
∣
∣D
(
�k−1ϕR

)∣
∣q

′
ϕ

1−q ′
R dx

) 1
q′
,



Blow-Up for Nonlinear Inequalities with Singularities on Unbounded Sets 303

whence
∫

suppϕR
|Du|qρ−α|x|βϕR dx ≤

∫

suppϕR
ρ
αq′
q |x|− βq′

q
∣
∣D
(
�k−1ϕR

)∣
∣q

′
ϕ

1−q ′
R dx.

Due to the choice of ϕR , we can restrict the domains of integration on both sides
of the inequality:

∫

AR

|Du|qρ−α|x|βϕR dx ≤
∫

A2R

ρ
αq′
q |x|− βq′

q
∣
∣D
(
�k−1ϕR

)∣
∣q

′
ϕ

1−q ′
R dx.

Note that ϕR ≡ 1 in the whole domain of integration on the left-hand side. Using
conditions (2.2) and (3.2), we obtain

∫

AR

|Du|qρ−α|x|β dx ≤ cRn+ |α−(2k−1)q|−β
q ,

which leads to a contradiction as R→ ∞, if the exponent on the right-hand side is
negative. The case of a zero exponent is considered in a standard way.

Remark 4.1 This result can be extended to a wider class of stationary higher order
differential operators with constant or variable coefficients, including systems of the
form

{
(−�)ku≥ |Dv|qρ−α|x|β (

x ∈ R
n \ S),

(−�)lv ≥ |Du|pρ−γ |x|δ (
x ∈ R

n \ S)

with appropriate parameters k, l ∈N, p,q > 1, α,β, γ, δ ∈R.

5 Proof of Theorem 2.3

For the Cauchy problem (2.5), (2.6) we introduce two families of test functions,
namely ϕR(x) in space variables and Tτ (t) in time. Here ϕR(x) is defined as in the
previous sections, and Tτ ∈ C1([0, τ ]; [0,1]) with τ > 0 are such that

Tτ (t)=
{

1 (0 ≤ t ≤ τ/2),
0 (3τ/4 ≤ t ≤ τ)

and, moreover,
∫ 3τ/4

τ/2

|T ′
τ |q ′

|Tτ |q ′−1
dt ≤ cτ 1−q ′

(5.1)

with some constant c > 0.
Multiplying both sides of (2.5) by ϕR(x)Tτ (t) and integrating by parts, we get

∫

R+
Tτ dt

∫

Rn

uqρ−α|x|βϕRdx +
∫

Rn

u0ϕRdx
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≤
∫

R+
Tτ dt

∫

Rn

u(−�)kϕRdx −
∫

R+
T ′
τ dt

∫

Rn

uϕRdx

≤
∫

R+
Tτ dt

∫

Rn

u
∣
∣�kϕR

∣
∣dx +

∫

R+

∣
∣T ′
τ

∣
∣dt

∫

Rn

uϕRdx.

Applying the parametric Young inequality to both terms on the right, we get

1

2

∫

R+
Tτ dt

∫

Rn

uqρ−α|x|βϕRdx +
∫

Rn

u0ϕRdx

≤ c1

∫

R+
Tτ dt

∫

Rn

∣
∣�kϕR

∣
∣q

′
ρ

− αq′
q |x| βq

′
q ϕ

1−q ′
R dx

+ c2

∫

R+

∣
∣T ′
τ

∣
∣q

′
T 1−q ′
τ dt

∫

Rn

ρ
− αq′

q |x| βq
′
q ϕ

1−q ′
R dx

with some constants c1, c2 > 0.
Due to the choice of ϕR(x) and Tτ (t), we can restrict domains of integration on

both sides of the inequality:

1

2

∫ 2τ

0
Tτ dt

∫

AR

uqρ−α|x|βϕRdx +
∫

AR

u0ϕRdx

≤ c1

∫ 2τ

0
Tτ dt

∫

A2R

∣
∣�kϕR

∣
∣q

′
ρ

− αq′
q |x| βq

′
q ϕ

1−q ′
R dx

+ c2

∫ 2τ

τ

∣
∣T ′
τ

∣
∣q

′
T 1−q ′
τ dt

∫

A2R

ρ
− αq′

q |x| βq
′
q ϕ

1−q ′
R dx.

Note that the second term on the left-hand side of the inequality is nonnegative
and ϕR(x)≡ 1 in the whole domain of integration. Using conditions (2.2) and (5.1),
we obtain

∫ 2τ

0
Tτ dt

∫

AR

uqρ−α|x|β dx ≤ cRn+ β−α
q−1 τ

(
τ

− q
q−1 +R 2kq

q−1
)
. (5.2)

It is easily seen that the right-hand side of (5.2) attains its minimum at

τ = cR−2k. (5.3)

Substituting (5.3) into (5.2) and taking R→ ∞, we reach a contradiction.

6 Conclusion

We have proven the main results formulated in Sect. 2 on blow-up conditions for
stationary and evolutional semilinear differential inequalities of higher order with
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respect to the space variables, as well as for quasilinear elliptic differential inequal-
ities of the second order.

Similarly we can obtain blow-up conditions for other classes of differential in-
equalities, such as:

• Semilinear and quasilinear elliptic systems.
• Elliptic inequalities with gradient terms.
• More general evolutional differential inequalities, etc.
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Well-Posedness and Stability
of a Mindlin–Timoshenko Plate Model
with Damping and Sources

Pei Pei, Mohammad A. Rammaha, and Daniel Toundykov

Abstract This note gives a concise summary of results concerning the well-
posedness and long-time behavior of (Reissner)–Mindlin–Timoshenko plate equa-
tions as presented in Pei et al. (Local and global well-posedness for semilinear
Reissner–Mindlin–Timoshenko plate equations, 2013 and Global well-posedness
and stability of semilinear Mindlin–Timoshenko system, 2013). The main feature
of the considered model is the interplay between nonlinear viscous interior damp-
ing and nonlinear source terms. The results include Hadamard local well-posedness,
global existence, blow-up theorems, as well as estimates on the uniform energy de-
cay rates.
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1 Introduction

The classical Euler–Bernoulli beam theory and its Kirchhoff–Love plate counter-
part are of limited accuracy when describing high-frequency vibrations or when the
deflections are relatively large with respect to the thickness of the plate. A linear
refinement on the beam model was developed around 1920 by Timoshenko (see e.g.
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[11]) and accounts for shear deformations. About thirty years later Mindlin [5] de-
rived a generalization for plate models (an analogous though somewhat different
theory had also been proposed earlier by Reissner [10] in 1945). A large body of re-
search literature has been devoted to Reissner–Mindlin–Timoshenko (RMT) plates
(e.g. see [1, 2, 6] and the many references therein); however, the study of interaction
between nonlinear sources and damping, rather common to the research on wave
problems, has not been addressed so thoroughly in the context of the RMT plates.
These questions were recently investigated in [8, 9] and the purpose of this note is
to provide a concise summary of the new results.

1.1 The Model

Let the open bounded domain Ω ⊂ R
2 of class C2 represent the mid-surface of

a plate in the state of an equilibrium. The deformation is quantified by vector
u= (w,ψ,φ) dependent on the coordinate x = (x, y) ∈Ω and time t ≥ 0. The com-
ponent w =w(t,x) represents the out-of-plane displacement, whereas ψ = ψ(t,x)
and φ = φ(t,x) quantify shear deformations and are proportional to the angles of
the linearized filaments. At the principal level, the model is comprised of a scalar
wave equation for w and a 2D system of elasticity for (ψ,φ) (see e.g. [4, pp. 25–
26]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρhwtt −D�w−K(ψx + φy)+ g1(wt )= f1(w,ψ,φ),

inQT :=Ω × (0, T ),
ρhψtt −D

(

ψxx + 1 −μ
2
ψyy + 1 +μ

2
φxy

)

+K(ψ +wx)+ g2(ψt )

= f2(w,ψ,φ), inQT ,

ρhφtt −D
(

1 −μ
2
φxx + φyy + 1 +μ

2
ψxy

)

+K(φ +wy)+ g3(φt )

= f3(w,ψ,φ), inQT ,

w =ψ = φ = 0 on Γ × (0, T ), where 0<μ< 1/2.

(1.1)

The initial data (u(0), ut (0)) comes from the associated finite energy space de-
scribed later. The positive constants ρ, h, D, and K depend on the material of the
plate. We will set these parameters to 1 throughout the paper as their magnitude
does not affect the well-posedness analysis. The parameter 0< μ< 1/2 stands for
the Poisson’s ratio and its value will not be normalized since it plays a central role in
the positivity of the associated stress operator. The scalar feedback maps f1, f2, f3

represent the source terms, while feedbacks g1, g2, g3 could be regarded as viscous
damping or stabilizing interior controls.
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1.2 Function Spaces and Solutions

For scalar-valued functions on Ω we will use the following norms and inner prod-
ucts:

‖w‖s := ‖w‖Ls(Ω), (v,w)Ω := (v,w)L2(Ω).

Similarly, for u= (w,ψ,φ) and ũ= (w̃, ψ̃, φ̃) we will employ the notation:

(u, ũ)Ω := (w, w̃)Ω + (ψ, ψ̃)Ω + (φ, φ̃)Ω,

‖u‖s := (‖w‖ss + ‖ψ‖ss + ‖φ‖ss
) 1
s .

Let

V := (H 1
0 (Ω)

)3 and H := V × (L2(Ω)
)3
.

As a consequence of Korn’s inequality the space V is a Hilbert space equipped with
an with an equivalent inner product (e.g. see [9])

(u, ũ)V =
∫

Ω

(

(1 −μ)(ψxψ̃x + φyφ̃y)+μ(ψx + φy)(ψ̃x + φ̃y)

+ 1 −μ
2
(ψy + φx)(ψ̃y + φ̃x)

)

dx + (wx +ψ, w̃x + ψ̃)Ω

+ (wy + φ, w̃y + φ̃)Ω. (1.2)

We equip the finite energy space H with the corresponding graph norm and inner
product. In addition, define:

G (ut )=
(
g1(wt ), g2(ψt ), g3(φt )

)
, F (u)= (f1(u), f2(u), f3(u)

)
. (1.3)

We will also make use of the following concept:

Definition 1.1 (Linearly bounded) A function γ : R →R will be said to be linearly
bounded near the origin if there exist c1, c2 > 0 such that

c1|s| ≤
∣
∣γ (s)

∣
∣≤ c2|s| for all |s|< 1. (1.4)

Now we are ready to formulate the notion of a weak solution to our problem:

Definition 1.2 (Weak solution) A function u ∈ H 1(0, T ;V ) is said to be a weak
solution of (1.1) on [0, T ] if:

• (u,ut ) ∈ C([0, T ];H) and

ut ∈ Lm+1(QT )×Lr+1(QT )×Lq+1(QT );
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• in addition u satisfies

(
ut (t), θ(t)

)

Ω
− (ut (0), θ(0)

)

Ω
+
∫ t

0

(−(ut (τ ), θt (τ )
)

Ω
+ (u(τ), θ(τ ))

V

)
dτ

+
∫ t

0

(
G (ut ), θ

)

Ω
dτ =

∫ t

0

(
F (u), θ

)

Ω
dτ, (1.5)

for all t ∈ [0, T ] and all test functions θ in the space

Θ := {θ ∈ C([0, T ];V ), θt ∈ L1(0, T ; [L2(Ω)
]3)}

.

2 Assumptions and Preliminaries

2.1 Properties of the Nonlinear Terms

Assumption 2.1 (Well-posedness assumptions)

• Damping: gi : R →R, i = 1,2,3, are continuous, monotone increasing functions
with gi(0) = 0. In addition, there exist positive constants α and β such that for
all |s| ≥ 1,

α|s|pi+1 ≤ gi(s)s ≤ β|s|pi+1, (2.1)

with pi ≥ 1 where p1 =m, p2 = r , p3 = q .
• Sources: fj ∈ C1(R3), j = 1,2,3, and there are constants C > 0, p ≥ 1 such

that for all (w,ψ,φ) ∈R
3

∣
∣∇fj (w,ψ,φ)

∣
∣≤ C(|w|p−1 + |ψ |p−1 + |φ|p−1 + 1

)
.

Assumption 2.2 (Additional conditions for blow-up results) Suppose there exists
a nonnegative function F(w,ψ,φ) ∈ C2(R3) such that for some α0 > 0, c1 > 2 and
all u= (w,ψ,φ) ∈ R

3,

f1(u)= ∂wF(u), f2(u)= ∂ψF(u), f3(u)= ∂φF (u),
F (u)≥ α0

(|w|p+1 + |ψ |p+1 + |φ|p+1), (2.2)

u · ∇F(u)≥ c1F(u).

Remark 2.3 There is a large class of functions satisfying Assumption 2.2. For in-
stance, those of the form

F(w,ψ,φ)= a|w+ψ |p+1 + b|wψ | p+1
2 + c|φ|p+1, (2.3)

where a, b, c are positive constants and p ≥ 3.
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2.2 Potential Well

Here, we introduce the potential energy functional J and highlight its connections
with system (1.1) and the Mountain Pass Theorem. The potential well theory of
Payne and Sattinger [7] will then be formulated for the problem in question.

Assumption 2.4 (Potential well solutions) There exists a nonnegative function F ∈
C2(R3) that satisfies (2.2) and furthermore is homogeneous of order p+ 1, i.e.,

F(λu)= λp+1F(u), for all λ > 0, u ∈ R
3.

Remark 2.5 The function in (2.3) would be an example of such an F .

Define the potential energy functional J : V →R as

J (u) := 1

2
‖u‖2

V −
∫

Ω

F(u)dx. (2.4)

The total energy of the system (1.1) will be defined as follows

E (t) := 1

2

(‖u‖2
V + ‖ut‖2

2

)−
∫

Ω

F
(
u(t)
)
dx, (2.5)

and so, E (t)= 1
2‖ut (t)‖2

2 + J (u(t)). As [8] demonstrates, the Fréchet derivative of
J at u ∈ V is given by: DuJ(θ)= (u, θ)V − ∫

Ω
F (u) · θdx, for all θ ∈ V , (where

F is given in (1.3)), which implies that the critical points of the functional J are
the weak solutions to the elliptic problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�w− (ψx + φy)= f1(w,ψ,φ), inQT ,

−
(

ψxx + 1 −μ
2
ψyy

)

− 1 +μ
2
φxy + (ψ +wx)= f2(w,ψ,φ), inQT ,

−
(

1 −μ
2
φxx + φyy

)

− 1 +μ
2
ψxy + (φ +wy)= f3(w,ψ,φ), inQT .

(2.6)
Associated with the functional J is the Nehari manifold

N := {u ∈ V \ {0} :DuJ(u)= 0
}

=
{

u ∈ V \ {0} : ‖u‖2
V = (p+ 1)

∫

Ω

F(u)dx
}

.

It follows from [3, Lemma 4.2.1] that J fulfills the hypothesis of the Mountain Pass
Theorem, moreover, the mountain pass level d := infu∈N J (u) satisfies:

Lemma 2.6 In addition to Assumptions 2.1 and 2.4, further assume that p > 1
then

d := inf
u∈N

J (u)= inf
u∈V \{0} sup

λ≥0
J (λu) > 0.
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We also introduce the following sets:

W := {u ∈ V : J (u) < d};

W1 :=
{

u ∈ W : ‖u‖2
V > (p+ 1)

∫

Ω

F(u)dx
}

∪ {0}; (2.7)

W2 :=
{

u ∈ W : ‖u‖2
V < (p+ 1)

∫

Ω

F(u)dx
}

.

Clearly, W1 ∩ W2 = ∅, and W1 ∪ W2 = W . We refer to W as the potential well and
d as the depth of the well. The set W1 can be formally regarded as the “good” part of
the well, as it will be shown that every weak solution starting therein exists globally
provided initial energy is under the level d . On the other hand, if the initial data
are taken from W2 and the source exponents dominate those of the damping, then
solutions with nonnegative initial energy E (0) may blow up in finite time.

Due to some technicalities in the proofs, the following approximation of the
“good” part of the potential well is useful. Let G(s) := 1

2 s
2 −MRsp+1, where the

constant M > 0 only depends on F from Assumption 2.4. If p > 1, a straightfor-
ward calculation shows that G attains its absolute maximum on [0,∞) at the unique
critical point: s0 = ((p+ 1)MR)1/(1−p). For sufficiently small δ > 0, we can define
a closed subset of W1, given by

W̃ δ
1 := {u ∈ V : ‖u‖V ≤ s0 − δ, J (u)≤ G(s0 − δ)}. (2.8)

3 Theorems

Theorem 3.1 (Local well-posedness [9]) Suppose Assumption 2.1 holds, then for
any initial condition (u0, u1) ∈ H, there exists a unique local weak solution u to
(1.1) defined on [0, T ], for some T > 0 dependent on the initial quadratic energy
E(0) which is defined via E(t) := 1

2 (‖u‖2
V + ‖ut‖2

2)= 1
2‖(u,ut )‖2

H
. The solution u

satisfies the following energy identity for all t ∈ [0, T ]:

E(t)+
∫ t

0

(
G (ut ), ut

)

Ω
dτ =E(0)+

∫ t

0

(
F (u),ut

)

Ω
dτ. (3.1)

Furthermore, weak solutions depend continuously in C([0, T ];H) on the initial
data in H.

Theorem 3.2 (Global solution [9]) Assume the validity of Assumption 2.1. If, in
addition, p ≤ min{m,r, q}, then the said solution u in Theorem 3.1 is global in the
sense that T can be chosen arbitrarily large.

Theorem 3.3 (Blow-up in finite time [9]) Suppose Assumptions 2.1 and 2.2 hold.
If p > max{m,r, q} and E (0) < 0, then any weak solution u to (1.1) furnished by
Theorem 3.1 blows up in finite time in the sense that lim supt→T − E(t) = ∞ for
some T <∞.
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Theorem 3.4 (Global potential well Solutions [8]) In addition to Assumption 2.1
and Assumption 2.4, further assume u(0) ∈ W1 and E (0) < d . If p > 1, then the
unique weak solution u provided by Theorem 3.1 is a global solution. Furthermore,
if ρ = p+1

p−1 , then for all t ≥ 0 we have:

(i) J (u(t))≤ E (t)≤ E (0)
(ii) u(t) ∈ W1

(iii) E(t) < d · ρ
(iv) ρ−1E(t)≤ E (t)≤E(t)

Theorem 3.5 (Potential well blow-up [8]) Suppose Assumptions 2.1, 2.2, and 2.4
hold. Further assume p > max{m,r, q}, 0 ≤ E (0) < d , and u(0) ∈ W2, then any
weak solution u blows up in finite time.

Theorem 3.6 (Uniform stabilization rates [8]) In addition to Assumptions 2.1, 2.4
suppose that p > 1, u0 ∈ Lm+1(Ω)×Lr+1(Ω)×Lq+1(Ω),u0 ∈ W̃ δ

1 , as defined in
(2.8), and E (0) < G(s0 −δ) for some δ > 0. Let ϕj : [0,∞) �→ [0,∞) be continuous
strictly increasing concave functions vanishing at the origin such that

ϕj
(
gj (s)s

)≥ ∣∣gj (s)
∣
∣2 + s2 for |s|< 1, j = 1,2,3.

Define

Φ(s) := ϕ1(s)+ ϕ2(s)+ ϕ3(s)+ s, s ≥ 0. (3.2)

Then, for any T > 0 there exists a concave increasing mapH = (I + C̃Φ)−1, where
C̃ = C̃(T ,E (0)) (instead of dependence on E (0) one may use dependence on d · ρ)
such that ρ−1E(t) ≤ E (t) ≤ S(T −1t − 1) for all t ≥ T , where scalar function S
satisfies the nonlinear monotone ODE

S′(t)+H (S(t))= 0, S(0)= E (0). (3.3)

Here are some explicit examples of these energy decay rates:

Corollary 3.7 (Exponential decay [8]) Under the hypotheses of Theorem 3.6, if
g1, g2, and g3 are linearly bounded near the origin, then H(s) = ωs for some
ω = ω(T ,E (0)) > 0 and the total energy E (t) and quadratic energy E(t) decay
exponentially:

ρ−1E(t)≤ E (t)≤ CE (0)e−(ω/T )t , for some C > 0 and all t ≥ 0. (3.4)

Here ω= [1 +C2(1 + E (0)p−1)]−1 with C,C2 > 0 independent of E (0).

Corollary 3.8 (Algebraic decay [8]) Under the hypotheses of Theorem 3.6, if at
least one of the feedback mapping gi , i = 1,2,3 is not linearly bounded near the



314 P. Pei et al.

origin and instead for |s|< 1 is bounded above and below by functions of the form
ci |s|γi some ci > 0, γi > 0, then there exists t0 > 0 such that

E(t)≤ (E (0)−1/b +Ct)−b, for some C,b > 0 and all t ≥ t0, (3.5)

where b is independent of E (0), while C = ( C3
1+E (0)p−1 )

b+1
b
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On Deterministic and Stochastic Linear
Quadratic Control Problems

Tijana Levajković and Hermann Mena

Abstract The numerical treatment of linear quadratic regulator (LQR), linear
quadratic Gaussian (LQG) design and stochastic control problems of certain type
require solving Riccati equations. In the finite time horizon case, the Riccati differ-
ential equation (RDE) arises. We show that within a Galerkin projection framework
the solutions of the finite-dimensional RDEs converge in the strong operator topol-
ogy to the solutions of the infinite-dimensional RDEs. A discussion about LQG
design in the context of receding horizon control for nonlinear problems as well as
a brief discussion about stochastic control is also addressed. Numerical experiments
validate the proposed convergence result.
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1 Introduction

We consider optimal control problems for parabolic diffusion-convection and
diffusion-reaction systems which can be linearized. The variational formulation
leads to an abstract Cauchy problem for a linear evolution equation of the form

ẋ(t)= Ax(t)+ Bu(t), x(0)= x0 ∈H, t ∈ [0, T ] (1.1)

for linear operators A : dom(A) ⊂ H → H, B : U → H, C : H → Y , where the
state space H, the observation space Y , and the control space U are assumed to be
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separable Hilbert spaces. Additionally, U is assumed to be finite-dimensional, i.e.,
there is only a finite number of independent control inputs. Here, C maps the states
of the system into its outputs and y = Cx for x ∈ H. Moreover we consider the cost
functional to be given in a quadratic form

J(x,u)=
∫ T

0

{〈x,Qx〉H + 〈u,Ru〉U
}
dt + 〈xT ,GxT 〉H, (1.2)

where Q, G are self-adjoint operators on the state space H, R is a self-adjoint pos-
itive definitive operator on the control space U . We denote xT = x(T ) for fixed
0 ≤ T < ∞. Usually, only a few measurements of the state are available as the
outputs of the system. We assumed that operators Q := C∗C and G are in general
positive semidefinite. If A is the infinitesimal generator of a strongly continuous
semigroup T(t), B,C are linear bounded operators and for every initial value there
exists an admissible control u ∈ L2([0, T ];U) hold, then the solution of the abstract
LQR problem can be obtained, analogously to the finite-dimensional case, as a feed-
back control

u(t)= −R−1B∗Π(t)x(t), (1.3)

where Π(t) represents the unique nonnegative solution of the operator Riccati dif-
ferential equation

Π̇(t)= −(Q + A∗Π(t)+Π(t)A −Π(t)BR−1B∗Π(t)
)

(1.4)

with the terminal condition Π(T ) = G. Some of the required conditions, particu-
larly the restrictive assumption that B is bounded, can be weakened [8, 11, 12].

In this paper we present an approximation framework for the computation of the
Riccati operators (1.4), Sect. 2. Moreover, in Sect. 3 we consider nonlinear optimal
control problems in which LQG design is applied. There, linear problems have to be
solved in subintervals of the time horizon. These are the so called receding horizon
(RHC) and model predictive control (MPC) approaches. A brief discussion about
stochastic control is also addressed. A numerical example for a nonlinear control
problem is shown in Sect. 4.

2 Convergence Result

Numerical schemes for Riccati equations in infinite-dimensional spaces as well as
convergence rates for some types of control problems have been proposed in recent
years [3, 8, 10, 12, 13]. An approximation scheme in terms of differential Riccati
equations follows from the abstract theory developed by Gibson [8], and from the
ideas for the infinite-time horizon case presented in [3]. These results as well as
novel numerical methods for large-scale RDEs are proposed in [5]. We summarize
these results here and discuss the suboptimality behavior of the solution.
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We consider a control system in H given by (1.1) and the cost functional (1.2).
As in [7, 12], we assume that (1.1) has a unique solution. Moreover, Q,G ∈ L(H),
R ∈ L(U) are self-adjoint with R > 0, G ≥ 0. A function u ∈ L2([0, T ];U) is an
admissible control for the initial state x0 ∈ H if J (x0,u) in (1.2) is finite.

Note that any solution of (1.4) is self-adjoint, and that Π(.) is nonnegative oper-
ator as long as G is nonnegative. In order to solve numerically the operator Ric-
cati differential equation for practical problems, we have to find suitable finite-
dimension approximations of its solution. Therefore, let HN , N = 1,2, . . . , be a
sequence of finite-dimensional linear subspaces of H and PN : H → HN be the
canonical orthogonal projections. Assume that T N(t) is a sequence of strongly con-
tinuous semigroups on HN with infinitesimal generator AN ∈ L(HN). Given op-
erators BN ∈ L(U ,HN), GN,QN ∈ L(HN), GN ≥ 0, we consider the family of
linear-quadratic regulator problems on HN , denoted by (RN), associated to the cost
functional:

JN
(
xN0 ,u

) :=
∫ T

0

{〈
xN,QNxN

〉

HN + 〈u,Ru〉U
}
dt + 〈xNT ,GNxNT

〉

HN

and the state equation:

ẋN (t)=ANxN(t)+BNu(t), xN(0)= xN0 := PNx0, t ∈]0, T ].
(RN) is a linear regulator problem in the finite-dimensional state space HN . If
QN ≥ 0, R > 0, then the optimal control for (RN ) is given in a feedback form
by

u(t)N = −R−1BN∗ΠN(t)xN(t),

where xN(t) is the corresponding solution of the state equation with u(t)= u(t)N
and ΠN(t) ∈ L(HN) is the unique nonnegative self-adjoint solution of the Riccati
differential equation, see [1],

Π̇N(t)= −(QN +AN∗ΠN(t)+ΠN(t)AN −ΠN(t)BNR−1BN∗ΠN(t)
)
,

ΠN(T )=GN.
(2.1)

Similar to [3, (H2)], we assume for N → ∞:

(i) For all ϕ ∈ H it holds that T N(t)PNϕ→ T(t)ϕ uniformly
on any bounded subinterval of [0, T ].

(ii) For all ϕ ∈ H it holds that T N(t)∗PNφ→ T(t)∗ϕ uniformly
on any bounded subinterval of [0, T ].

(iii) For all v ∈ U it holds BNv→ Bv and for all ϕ ∈ H it holds
that BN∗PNϕ→ B∗ϕ.

(iv) For all ϕ ∈ H it holds thatQNPNϕ→ Qϕ.
(v) For all ϕ ∈ H it holds that GNPNϕ→ Gϕ.

(H)

Assumption (ii) implies that PNϕ → ϕ for all ϕ ∈ H, in this sense the subspaces
HN approximate H.



318 T. Levajković and H. Mena

Theorem 2.1 Let (H) hold, then for N → ∞ the sequences uN → u, uniformly on
[0, T ], xN → x uniformly on [0, T ], and for ϕ ∈H,

ΠN(t)PNϕ→Π(t)ϕ uniformly in t ∈ [0, T ]. (2.2)

Here uN , u, xN , x denote optimal controls and trajectories of the problems (RN)
and the infinite dimensional problem, respectively.

The proof follows from of the result proposed in [8, Theorem 5.1, p. 560]. This the-
orem can be extended for approximating schemes where HN �H, e.g., if boundary
elements are applied. Moreover, the result can be extended to the non-autonomous
case, for a detail explanation see [5]. This is particularly useful for solving nonlinear
problems in model predictive control and receding horizon context. There the LQG
approach is applied to a linearization around a reference trajectory. This requires
the solution of RDEs, in which the coefficient matrices are time dependent. We will
briefly review the later in next section.

Note that the solution of the RDE is suboptimal in terms of the optimal cost which
is of interest in applications. The optimal cost for the infinite and finite dimensional
control problems, can be found, respectively, as

J̄(x,u)= x0
∗Π(0)x0, J̄N (x,u)= xN0 ∗

ΠN(0)xN0 . (2.3)

3 LQG Design and Stochastic Control Problems

One of the most important classes of stochastic control problems is a class of LQG
problems. This approach represents an extension of the LQR which allows Gaussian
noise, see for instance [15]. We consider a nonlinear stochastic control system

ẋ(t)= f (x(t))+Bu(t)+ Fv(t), x(0)= x0 + η0, (3.1)

where v(t) is an unknown Gaussian disturbance process and η0 denotes the noise in
the initial condition. The observation process y(t)= Cx(t)+w(t) provides partial
observations of the state x(t), where w(t) is a measurement noise process which is
assumed to be Gaussian. If we linearize f around a reference trajectory x∗(t) we
obtain the time-varying system

ż(t)=A(t)z(t)+Bũ(t)+ Fv(t), z(0)= η0,

where z(t) = x(t) − x∗(t), A(t) = A(x∗(t)) = f ′(x∗(t)) and ũ(t) = u(t) − u∗(t)
and u∗ is the associated control to x∗.

LetQ ∈ R
n×n denote a positive definite matrix and consider the tracking problem

for the pair (x∗, u∗), with the functional cost

J (z0, ũ)=
∫ T

0

{
z(t)T CTQCz(t)+ ũ(t)T Rũ(t)}dt + z(T )T Gz(T )
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and the state and the output equations

ż(t)=A(t)z(t)+Bũ(t)+ Fv(t), z(0)= η0;
y(t)= Cx(t)+w(t), t ∈ [0, T ].

For the feedback law we use an estimated state of the process which is based on the
measured output ỹ, i.e., ũ(t) = −K(t)ẑ(t), where ẑ(t) denotes the estimated state
of the system. Applying a Kalman filter, [6], the estimated state ẑ(t) is given by

ẑ(t)=A(t)ẑ(t)+Bũ(t)+L(t)(y(t)−Cx̂(t)).
The feedback law can be represented as u(t)= u∗(t)+K(t)T (x̂(t)− x∗(t)), where
K(t) is the feedback matrix defined as K(t) = −X∗(t)BR−1 and X∗(t) is the
unique nonnegative self-adjoint solution of the RDE

Ẋ(t)= −(CTQC +A(t)T X(t)+X(t)A(t)−X(t)BR−1BTX(t)
)
. (3.2)

Moreover, the filter gain matrix L(t) is given by L(t)=Σ∗(t)CTW−1 and Σ∗(t) is
the symmetric solution of the filter RDE

Σ̇(t)= FT V F +A(t)Σ(t)+Σ(t)A(t)T −Σ(t)CTW−1CΣ(t). (3.3)

For a detail explanation we refer the reader to [15] and references therein.
The solution on [0, T ] is obtained by concatenation of the solutions on [Ti, Ti+1]

for i = 0,1, . . . . The optimal control for the problem on [Ti, Ti+1] is computed via
LQG applying (3.2) and (3.3). A similar to Theorem 2.1 is proved in [9].

We consider now an abstract stochastic Cauchy problem in a separable Hilbert
space H given by an Itô stochastic differential equation

dx(t)= [Ax(t)+ Bu(t)+ b
]
dt + [Cx(t)+ Du(t)+ d

]
dW(t),

x(0)= x0 ∈H,

for t ∈ [0, T ], where A is a linear closed operator in H, d ∈ L([0, T ],H), opera-
tors B,C,D,b are linear and bounded and {W(t), t ∈ [0, T ]} is an one dimensional
standard Brownian motion defined on a complete probability space (Ω,F ,P) over
t ∈ [0, T ], with W(0) = 0 a.e. and {Ft , t ∈ [0, T ]} is the filtration of the process
{W(t), t ∈ [0, T ]}. The aim of the stochastic linear quadratic problem (SLQ) is to
minimize the cost functional represented in terms of the mathematical expectation
with respect to the measure P

J(u)=E
[∫ T

0

{〈x,Qx〉H + 〈u,Ru〉U
}
dt + 〈xT ,GxT 〉H

]

,

over a set of square integrable controls u ∈ L2(Ω,U) which are adapted in the
filtration Ft . The operators Q,G are self adjoint on H. Following [2, 4, 17] one
can state and prove a theorem similar to Theorem 2.1 for stochastic case. Denote
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M = R + D∗PD and F = PB∗ + C∗PD. Let A be the generator of an exponen-
tially bounded semigroup in H and domA = H. If we assume that R > 0, D > 0,
Q > 0 and M > 0 and M has inverse a.e., then there exists a feedback control
u∗(t) = −M−1(B∗φ + D∗Pd)(x(t) + 1) where P represents the unique nonnega-
tive solution to the stochastic Riccati differential equation

Ṗ = −(Q + A∗P + PA∗ + C∗P∗C − FM−1F∗),

P(T )= G a.e. t ∈ [0, T ]

and φ is the solution of the backward SDE

φ̇ + (A∗ − FM−1B∗)φ + (C∗ − FM−1D∗)Pd + Pb = 0,

φ(T )= 0 a.e. t ∈ [0, T ].

If D = 0 then SRDE reduces to the deterministic one. In order to find numerically
the solution of the SRDE one needs also to consider the sequence of finite dimen-
sional subspaces of a Hilbert space of random variables L2(Ω,H), i.e., the finite
dimensional Wiener chaos spaces Hk , k ≥ 0, [14]. Note that all the coefficients ap-
pearing are not random. Assumption M > 0 ensures the existence of a solution of
finite-dimensional SRDE [2, 17]. Due to the presence of the control in the diffusion
term, some of SLQ problems could be well-posed even when R is negative definite
for almost all t ∈ [0, T ], which makes SLQ problem more difficult to solve than de-
terministic ones. A convergence result for the SLQ problem, similar to Theorem 2.1,
as well as other types of stochastic control problems will be reported somewhere
else.

4 Numerical Results

We consider the Burgers equation which is used as a model for description of basic
phenomena of flow problems

xt (t, ξ) = νxξξ (t, ξ)− x(t, ξ)xξ (t, ξ)+B(ξ)u(t)+ F(ξ)v(t),
x(t,0) = x(t,1)= 0, t > 0, (4.1)

x(0, ξ) = x0(ξ)+ η0(ξ), ξ ∈]0,1[

where t is the variable in time, ξ the variable in space, and ν is a viscosity parameter,
and the observation process y(t, ξ)= Cx(t, ξ)+w(t, ξ). The aim is to control the
state to 0. The initial condition is given in terms of sine function and parameters are
defined as in [16]. The state is shown in Fig. 1 as well as a plot of the convergence
of the cost functional (2.3) over the mesh size. This let us visualize the convergence
result, Theorem 2.1.
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Fig. 1 Burgers equation with noise in the initial condition (a) state for refined mesh and (b) func-
tional cost for different mesh sizes
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Abstract The arithmetic properties of generalized one-dimensional ergodic Boole
type transformations are studied in the framework of the operator-theoretic ap-
proach. Some invariant measure statements and ergodicity conjectures concerning
generalized multi-dimensional Boole-type transformations are formulated.
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1 Introduction

With its origins, going back several centuries, discrete analysis becomes now an in-
creasingly central methodology for many mathematical problems related to discrete
dynamical systems and algorithms, widely applied in modern science. Our theme,
being related with studying ergodic aspects and the related arithmetic properties of
discrete Boole type dynamical systems [3, 7], is of deep interest in many branches of
modern science and technology [6, 19], especially in discrete mathematics, numer-
ical analysis, statistics and probability theory as well as in electrical and electronic
engineering. But the important viewpoint is that this topic belongs to a much more
general realm of mathematics, namely, to calculus, differential equations and differ-
ential geometry, because of the remarkable analogy of the subject especially to these
branches of mathematics. Nonetheless, although the topic is discrete, our approach
to treating ergodicity and the related arithmetic properties of the generalized Boole
type discrete dynamical systems will be completely analytical.
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The generalized Boole transformation looks as

R � x→ ϕ(x) := αx + a −
N∑

j=1

βj

x − bj ∈ R, (1.1)

where a and bj ∈ R, j = 1,N , are some real and α,βj ∈ R+, j = 1,N , and was
analyzed in [3, 15]. It generalizes that classical [7] Boole transformation

R � x→ φ(x) := x − 1/x ∈R, (1.2)

which appeared to be ergodic [5] with respect to the invariant standard infinite
Lebesgue measure on R. This, in particular, means that the following Boole’s [7]
equalities

∫

R

f (x − 1/x)dx =
∫

R

f (x)dx, (1.3)

and

lim
n→∞

∑n−1
k=0 f (φ

nx)
∑n−1
k=0 g(φ

nx)
=
∫

R
f (x)dx

∫

R
g(x)dx

(1.4)

hold for any f ∈ L1(R;R) and g ∈ L1(R;R+). In the case α = 1, a = 0, a similar
ergodicity result was proved in [1–3] making use of a specially devised inner func-
tion method. The related spectral aspects of the mapping (1.1) were in part studied
also in [3]. In spite of these results the case α �= 1 still persists to be challenging as
the only relating result [4] concerns the following special case of (1.1):

R � x→ ϕ(x) := αx + a − β

x − b ∈R (1.5)

for 0< α < 1, and arbitrary a, b ∈ R and β ∈ R+. The ergodicity of the Boole type
mapping (1.5) can be easily enough stated. Really, concerning a general nonsingular
mapping ϕ : R → R, the problem of constructing the measure preserving ergodic
measures was analyzed [4, 12, 14] by means of studying the spectral properties
of the adjoint Frobenius–Perron operator T̂ϕρ : L2(R;R)→ L2(R;R), where, by
definition,

T̂ϕρ(x) :=
∑

y∈{ϕ−1(x)}
ρ(y)J−1

ϕ (y) (1.6)

for any ρ ∈ L2(R;R+) and J−1
ϕ (y) := | dϕ(y)

dy
|, y ∈ R. Then, if T̂ϕρ = ρ, ρ ∈

L2(R;R+), then the expression dμ(x) := ρ(x)dx, x ∈ R, will be invariant, in gen-
eral infinite, measure with respect to the mapping ϕ : R → R. Another way to find-
ing a general algorithm for finding such an invariant measure was devised in [15–
17], making use of the generating measure function method. (1.5) at α = 1/2 and
b = 2a ∈ R appears to be measure preserving and ergodic. Namely, the following
propositions [15] hold.
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Proposition 1.1 The Boole type transformation (1.5) at α = 1/2 and b= 2a ∈R is
measure preserving and ergodic with respect to the measure

dμ(x) := |γ |dx
π[(x − 2a)2 + γ 2] , (1.7)

where x ∈ R and γ 2 = 2β ∈ R+.

Proof (Sketch) A proof follows easily from the fact that the function

ρ(x) := γ

π[(x − 2a)2 + γ 2] (1.8)

satisfies for all x ∈ R the determining condition (1.6):

T̂ϕρ(x) :=
∑

I

ρ(y±)
∣
∣y′±(x)

∣
∣, (1.9)

where, by definition, ϕ(y±(x)) := x for any x ∈ R. The relationship (1.9) is, evi-
dently, equivalent to the next infinitesimal invariance condition

∑

±
dμ
(
y±(x), y±(x)+ dy

)= dμ(x) := μ(x, x + dx) (1.10)

for any infinitesimal subset [x, x + dx)⊂ R. �

Proposition 1.2 The measure (1.7) is ergodic with respect to the Boole type trans-
formation (1.5) at α = 1/2 and b = 2a ∈ R as it is equivalent to the canonical
ergodic mapping R/Z � s :→ψ(s) := 2s (mod Z) ∈R/Z with respect to the stan-
dard Lebesgue measure on R/Z.

Proof (Sketch) Put, by definition, R/Z � s :→ ξ(s)= y ∈R, where

ξ(s) := γ cotπs + 2a, (1.11)

Then transformation (1.5) at α = 1/2, b= 2a ∈ R and γ 2 := 2β ∈R+, owing to the
mapping (1.11), yields

ϕ(y) = ϕ(ξ(s))= γ

2
cotπs + 2a − γ

2
tanπs

= γ (cos2 πs − sin2 πs)

2 sinπs cosπs
+ 2a = γ cos 2πs

sin 2πs
+ 2a

= γ cot 2πs + 2a := ξ(2s) (1.12)

for any s ∈R/Z. The result (1.12) means that the transformation (1.5) is conjugated
[3, 12] to the transformation

R/Z � s :→ψ(s)= 2smod 1 ∈ R/Z, (1.13)
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that is the following diagram is commutative:

R/Z
ψ→ R/Z

ξ ↓ ↓ ξ
R

ϕ→ R

(1.14)

that is ξ · ψ = ϕ · ξ , where ξ : R/Z → R is the conjugation mapping defined by
(1.11). It is easy now to check that the measure (1.7) under the conjugation (1.11)
transforms into the standard normalized Lebesgue measure on R/Z:

dμ(x)|x=γ cotπs+2a = dsγ 2|d(cotπs)/ds|
(γ 2 cot2 πs + γ 2)

= sin2 πs · sin−2 πsds

cos2 πs + sin2 πs
= ds, (1.15)

where s ∈ R/Z. The infinitesimal measure ds on R/Z as well as the infinitesimal
measure (1.7) on R are normalized, being thus probabilistic. Now it is enough to
make use of the fact that the measure ds on R/Z on the interval [0,1) / R/Z is
ergodic [4, 12] with respect to the mapping ψ :R/Z → R/Z. �

It is important to mention that in the framework of the theory of inner func-
tions in [4] there was stated that there exists an invariant measure dμ(x), x ∈ R,
on the axis R, such that the generalized Boole type transformation (1.1) for any
N > 1, α = 1 and a = 0 is ergodic. If α = 1 and a �= 0, the transformation
(1.1) appears to be not ergodic, being totally dissipative, that is the wandering set
D(ϕ) :=⋃W(ϕ) = R, where W(ϕ) ⊂ R are such subsets that all sets ϕ−n(W),
n ∈ Z+, are disjoint. Similar the above statement can be also [1, 4] formulated for
the mostly generalized Boole type transformation

R � x→ ϕ(x) := αx + a +
∫

R

dν(s)

s − x ∈ R, (1.16)

where a ∈ R, α ∈ R+ and a measure ν on R has the compact support suppν ⊂ R,
being such that the following natural conditions

∫

R

dν(s)

1 + s2
= a,

∫

R

dν(s) <∞, (1.17)

hold.
Below we will analyze the related arithmetic aspects of the generalized ergodic

Boole type transformation (1.1), making use of the approaches recently initiated in
[8, 11, 13, 20–22] concerning the old general Baudet arithmetic progression conjec-
ture.
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2 The Generalized Boole Type Ergodic Transformations and
Their Arithmetic Properties

Consider the generalized Boole type transformation (1.1) and its right orbit
Or(ϕ;x0) := {ϕj (x0) ∈ R : x0 ∈ R, j ∈ Z+} for an arbitrary x0 ∈ R\{α ∈ R :
ϕ(α) = α}. Owing to the ergodicity of the mapping (1.1), one easily obtains that
the closure Or(ϕ;x0) = R̄. Thus, for any point α ∈ R one can find a convergent
subsequence {ϕnj (x0) ∈ R : nj := nj (α) ∈ Z+, j ∈ Z+} ⊂ Or(ϕ;x0), such that

lim
j→∞ϕ

nj (x0)= α. (2.1)

The corresponding integer subsequence

A(α) := {n1(α), n2(α), . . . , nj (α), . . .
}⊂ Z+, (2.2)

owing to the condition (2.1), a priori possesses, owing to the Weil theorem [9, 12,
14] the following upper density property:

d̄
(
A(α)

) := lim
m→∞$

(
A(α)∩ {0,1,2, . . . ,m})/(m+ 1) > 0. (2.3)

Consider now the left shift mapping

θ : l∞(Z+;R) � (c0, c1, . . . , cn, . . . )→ (c1, . . . , cn, . . . ) ∈ l∞(Z+;R) (2.4)

and put, by definition, the set

A(α) := {θn1A(α) ∈ l∞(Z+;R) : n ∈ Z+
}
, (2.5)

the closure with respect to the weak σ ∗-topology of l∞(Z+;R). The constructed set
(2.5) is, by definition, θ -invariant and σ ∗-weakly compact in l∞(Z+;R). Its subset

A0(α) :=
{
(c0, c1, . . . , cn, . . .) ∈A(α) : c0 := 1

}
, (2.6)

as well as its preimages θ−j (A0(α)), j ∈ N, are open-closed subsets of A(α). It is
easy to observe the following characteristic [8, 10] property of the set A0(α):

n ∈A(α) iff θn1A(α) ∈ A0(α). (2.7)

Following the classical Furstenberg scheme [10] one can construct an invariant
probabilistic measure ν on the compact set A(α). Namely, owing to the condition
(2.3) one can chose an infinite subsequence {mj ∈ Z+ : j ∈ Z}, such that there exists
the limit

lim
j→∞

1

mj + 1

mj∑

k=0

δk
(
A(α)

)= d̄(A(α)). (2.8)
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Now making use of the property (2.8) one can define an infinite sequence of proba-
bility measures {νj : j ∈ Z+} on A(α)

νj (B) := 1

mj + 1

mj∑

k=0

δ{θk1A(α)}(B) (2.9)

for any Borel subsets of A(α). In particular, one has

νj
(
A0(α)

) := 1

mj + 1

mj∑

k=0

δ{θk1A(α)}(B)
j→∞→ d̄

(
A(α)

)
. (2.10)

Based on the Banach–Alaoglu theorem and on the metrisability of the set A(α) ⊂
l∞(Z+;R) with respect to the weak σ ∗-topology one obtains that there exists a
convergent subsequence of measures (2.10) to some probability measure ν on A(α),
which can be re-denoted as {νj : j ∈ Z+}. It is important that the obtained above
measure ν on A(α) is θ -invariant:

ν(B)− ν(θ−1B
)

= lim
j→∞

1

mj + 1

( mj∑

k=0

δ{θk1A(α)}(B)− δ{θk+11A(α)}(B)
)

= lim
j→∞

1

mj + 1

( mj∑

k=0

δ{1A(α)}(B)− δ{θmj 1A(α)}(B)
)

= 0 (2.11)

for any Borel subset of B ⊂ A(α), as mj → ∞ if j → ∞. Thus, the constructed
measure-theoretic dynamical system (A(α), θ;ν) is characterized by the condition
ν(A0(α))= d̄(A(α)) > 0. Moreover, taking into account that the ergodic measures
are extreme points [9, 12, 14] of the set of invariant measures on A(α), one can
choose this limiting invariant measure ν on the set A = A(α) to be ergodic.

Define now for the mapping (1.1) a linear operator Tϕ : L(ν)2 (A;R) →
L
(ν)
2 (A;R), which satisfies for any f ∈ L(ν)2 (A;R) the shift property Tθf (c) :=
f (θ(c)), c ∈ A. Based on the existence of the invariant and ergodic measure ν on
A(α), one can state the following characteristic proposition.

Proposition 2.1 If the set A(α) ⊂ Z+ possesses a positive upper density
d̄(A(α)) > 0, then for any strongly positive function f ∈ L(ν)2 (A;R+)∩L(ν)∞ (A;R+)
and for arbitrary ergodic measure ν on the set A = A(α) there holds the following
strong inequality:

limN→∞
1

N + 1

N∑

n=0

∫

A

(
N∏

j=0

T
nj
θ f

)

dν > 0. (2.12)
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And conversely, if for a chosen subsequence A = {n1, n2, . . . , nj , . . .} ⊂ Z+ and

any strongly positive function f ∈ L(ν)2 (A;R+) ∩ L(ν)∞ (A;R+) on a compact set
A there holds the strong inequality (2.12), then the upper density d̄(A) > 0 and
there exists such a point x0 ∈ R and a real value α ∈ R that there exists the limit
limj→∞ ϕnj (x0)= α. Moreover, the corresponding sets A(α) and A coincide.

Proof (Sketch) We can easily observe, taking into account (2.7) that the following
one-to-one mapping holds between the setsA(α) and the subset {θn1 1A(α), θn2 1A(α),
. . . , θnj 1A(α), . . .} ⊂ A0(α). Thus, since each set θ−j (A0(α)) ⊂ A(α) is open and
the points θn1A(α), n ∈ Z+, are dense in A(α), one finds that the set A(α) is in
one-to-one correspondence to the condition that

⋂
j∈Z+ θ

−nj (A0(α)) �= ∅. The lat-

ter easily reduces to the relationship
∏N
j=0 T

nj
θ 1A0(α) �= 0 for any N ∈ Z+, which

allows to formulate a sufficient integral condition [10] in the form (2.12), thus prov-
ing the first part of the proposition. Having followed back by the reasonings above,
one can state that for every ergodic measure ν on a chosen weakly σ ∗-compact set
A ⊂ l∞(Z+;R) one can find a subset of integers A := {nj ∈ Z+ : j ∈ Z+} with a
nonzero upper density d̄(A) > 0, for which there exists the standard representation

A := {θn1A ∈ l∞(Z+;R) : n ∈ Z+
}
. (2.13)

Moreover, for the open subset

A0 := {(c0, c1, . . . , cn, . . .) ∈ A : c0 := 1
}

(2.14)

there holds the equality d̄(A) = ν(A0). Now making use of the condition∏N
j=0 T

nj
θ 1A0 �= 0, N ∈ Z+, one can find such a point x0 ∈ R that the correspond-

ing iterations {ϕnj (x0) ∈ R : nj ∈ A,j ∈ Z+} are convergent to some real value
α := limj→∞ ϕnj (x0) and, simultaneously, the whole orbit {ϕn(x0) ∈ R : n ∈ Z+}
is dense on the axis R. The letter proves the second part of the proposition. �

3 Conclusion

Recently in [18] there was proposed a set of multi-dimensional Boole type transfor-
mations ϕσ |η : Rn →R

n, where

ϕσ |η(x1, x2, . . . , xn)

:= (xη(1) − 1/xσ(1), xη(2) − 1/xσ(2), . . . , xη(n) − 1/xσ(n)) (3.1)

for any n ∈ N and arbitrary permutations σ and η ∈ Sn. For the case n = 2 one
obtains the following two-dimensional Boole type mappings:

ϕ1|1(x, y) := (x − 1/x, y − 1/y), (3.2)

ϕ2|2(x, y) := (y − 1/y, x − 1/x), (3.3)
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and

ϕ1|2(x, y) := (x − 1/y, y − 1/x), (3.4)

ϕ2|1(x, y) := (y − 1/x, x − 1/y) (3.5)

for all (x, y) ∈ R
2\{0,0}. It is easy to observe that the infinitesimal measure

dμ(x, y) := dxdy on the plane R2 is, by the Fubini theorem, invariant subject to the
mapping (3.2) as the tensor product of two one-dimensional measures dx and dy,
every one of which is invariant with respect to the corresponding true Boole transfor-
mation. The latter entails right away that the generalized Boole type transformation
(3.2) is also ergodic. In the case of the generalized two-dimensional transformation
(3.4) the infinitesimal invariance property of the measure dμ(x, y) := dxdy holds
owing to the following lemma, stated in [18].

Lemma 3.1 The mapping (3.4) subject to the measure dμ(x, y) on R
2 satisfies the

following infinitesimal invariance property:

μ
(
ψ−1

1|2
([x, x + dx] × [y, y + dy]))

= dxdy = μ([x, x + dx] × [y, y + dy]) (3.6)

for all (x, y) ∈R
2\{0,0}.

It is easy to check that a similar statement and the infinitesimal invariance prop-
erty like (3.6) hold also in the case of the two-dimensional Boole type transforma-
tions (3.3), (3.4) and (3.5). As the problem of ergodicity of the mappings (3.3)–(3.5)
is of great interest, we formulate the following conjecture, generalizing that from
[18].

The constructed above mappings (3.2)–(3.5) are ergodic with respect to the in-
variant infinitesimal measure dμ(x, y) := dxdy on R

2. Moreover, for any n ∈ N

the infinitesimal measure dμ(x1, x2, . . . , xn) :=∏nj=1 dxj is invariant and ergodic
with respect to generalized multi-dimensional Boole type transformations (3.1) for
arbitrary chosen permutations σ and η ∈ Sn.

Acknowledgements The author is cordially appreciated to professor D. Blackmore (NJ, USA)
for valuable discussions of the ergodic measure properties related with generalized Boole transfor-
mations.
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Fixed Points Theorems for Multivalued
Mappings

Yuri Zelinskii

Abstract In this article we discuss the solvability of some class of multivalued
inclusions in Euclidean spaces based on a generalization of the “conditions of an
acute angle”. As corollary we receive fixed-point theorems for multivalued map-
pings (continuous and non continuous).
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1 Introduction

We consider theorems on the existence of solutions of multivalued inclusions in Eu-
clidean spaces, including fixed point theorems for multivalued mappings, based on
some generalization of the “conditions of an acute angle” [1]. This approach ap-
peared in K.N. Soltanov’s papers [2–4], where he proposed to use the above method
for study of the fixed points for discontinuous mappings. Specificity of a disconti-
nuity of mappings is a reason why to use traditional technique of mapping degree is
impossible (cf., e.g., [5]).

Let En be n-dimensional Euclidean (real or complex) space, 〈·, ·〉 be a scalar
product in En, conv(A) be a convex hull of a set A, A be a closure of A. If A is a
closed domain of the Euclidean space En then we will say that A is a domain.

For any z in the complex plane by Re(z) we mean its real part, if z belongs to the
field of real numbers then Re(z)= z.

We will consider multivalued (continuous and non continuous) mappings of
subsets of Euclidean space. If F1 : X → Y and F2 : X → Y be two multivalued
mappings we will say that F2 is a restriction of F1 to the set K ⊂ X and denote
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F2 = F1|K if and only if F1(x) ⊃ F2(x) for every x ∈K (F2(x) can be empty for
some x).

We say that a mapping F satisfied conditions of (strong) acute angle if and only
if Re(〈x, y〉)(>)≥ 0 for every pair (x, y), x ∈X, y ∈ F(x). We denote

G= Id − F if and only if G(x)= {x − y : x ∈ F(x)}.

2 Main Results

By using the geometrical form of the Hahn–Banach theorems we prove the next
results (cf., e.g., [6]).

Theorem 2.1 Let D be a domain in Euclidean space En containing the ori-
gin 0. Let K ⊂ D be a subset of the closure of this domain and K has the fol-
lowing property (α): any ray, emanating from the origin, contains at least one
point belonging to K . Suppose that the restriction F |K of multivalued mapping
F : D → En satisfies the “acute angle condition” and conv(F (K)) is a compact
set. If conv(F (K))⊂ F(D) then 0 ∈ F(D).

It follows the following corollaries from Theorem 2.1.

Corollary 2.2 Let K ⊂ D be a subset of the domain D and K has the property
(α). Suppose that the restriction F |K of the multivalued mapping F :D→ En has
a restriction F1 �= ∅ and conv(F1(K)) is a compact set. Let conv(F1(K))⊂ F(D).
If 0 /∈ F(D) then there exists a pair of points (x, y), x ∈ K , y ∈ F(x), such that
Re(〈x, y〉) < 0.

Corollary 2.3 Let K ⊂ D be a subset of the domain D and K has the property
(α). Suppose that the restriction F |K of the multivalued mapping F :D→ En has
a restriction F1 which satisfies the “condition of acute angle” and conv(F1(K)) is
a compact. If F(D)⊃ conv(F1(K)) then 0 ∈ F(D).

Corollary 2.4 LetK ⊂D be a subset of the domainD andK has the property (α).
Suppose that the restrictionG|K of the multivalued mappingG= Id −F :D→En

has a restriction G1 satisfied the “condition of acute angle” and conv(G1(K)) is a
compact. If G(D)⊃ conv(G1(K)) then the mapping F has a fixed point x ∈ F(x).

Theorem 2.5 Let D be a domain in Euclidean space En containing the origin 0.
LetK ⊂D be a subset ofD andK has the property (α). Suppose that the restriction
F |K of the multivalued mapping F : D → En satisfying the “strict acute angle
condition”. If conv(F (K))⊂ F(D) then 0 ∈ F(D).

Corollary 2.6 Let K ⊂ D be a subset of the domain D and K has the property
(α). Suppose that the restriction F |K of multivalued mapping F :D→ En has the
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restriction F1 �= ∅ and conv(F1(K))⊂ F(D). If 0 /∈ F(D) then there exists a pair
of points (x, y), x ∈K , y ∈ F(x) such, that Re(〈x, y〉)≤ 0.

Let Y ∗ be dual (conjugated) space to the space Y . We say that a mapping F
satisfies the condition of (strong) coacute angle if and only if for every point y∗ ∈
Y ∗, y∗ �= 0, there exists a point x ∈X such, that Re(〈y, y∗〉)≥ 0 (Re(〈y, y∗〉) > 0)
for every point y ∈ F(x).

Theorem 2.7 Let K ⊂ D be a subset of the domain D ⊂ En. Suppose that the
restriction F |K of multivalued mapping F : D → En has a restriction F1 satisfy-
ing the “condition of coacute angle” and conv(F1(K)) is a compact. If F(D) ⊃
conv(F1(K)) then 0 ∈ F(D).

Proof We suppose that 0 /∈ F(D) then 0 /∈ conv(F1(K)). By the geometrical form
of the Hahn–Banach theorem, obtain that there exists a hyperplane L which sepa-
rates the origin 0 and F1(K). We chose the ray l, emanating from the origin, and per-
pendicular to the hyperplane L, which directed in the opposite side to conv(F1(K)).
For the Euclidean space a duality mapping I : Y → Y ∗ is a bijection. Fix any point
y∗ ∈ l. From the one hand, y∗ /∈ conv(F1(K)), but from the another one, according
to the condition of the coacute angle, there exists a point x ∈K , which image F1(x)

must be in the same hyperspace as the point y∗ with respect to the hyperplane L.
This contradiction completed the proof. �

Remark 1 If in previous results K ⊂ D (the subset K lies in the interior of the
domain D), that all stated results remain true if we replace the considered mapping
to a mapping of an open domain.

Remark 2 For the validity of the previous results it is enough an existence in the
space invariant for considered mappings F subspace En (i.e. F(T ) ⊂ T ) for the
restriction F |T on which conditions of the corresponding statements are fulfilled.

Theorem 2.8 Let D be a domain in Euclidean space X =En and let K ⊂D be a
subset of the closureD ofD. Suppose that there exists a restriction F1 of multivalued
mapping F :D→En = Y to the subset K which satisfies the condition of a strong
coacute angle. If F(D)⊃ convF1(K) then 0 ∈ F(D).

Proof We suppose that 0 /∈ F(D) then 0 /∈ conv(F1(K)). The interior
Int(conv(F1(K))) is an open convex set which does not contain the origin 0. If
Int(conv(F1(K)))= ∅ then the dimension of the set convF1(K) is not greater than
n− 1. Thus, this set is a subset of some hyperplane. If Int(conv(F1(K))) �= ∅ then
there exists a hyperplane L, which passes through the origin and does not inter-
sect the set Int(conv(F1(K))). In both cases, the set conv(F1(K)) is a subset of the
one closed half-space, on which the plane L divides the whole space En. Then the
proof of the theorem completed by similar statements as in the proof of the previous
theorem. �
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It is possible to intensify the obtained above results if to require performing con-
ditions of the type of the acute angle only for some directions chosen in a specific
way.

Consider conditions of a (strong) acute ε-angle:

Re
(〈x, y〉)(>)≥ ε‖x‖‖y‖ for every pair (x, y), x ∈X, y ∈ F(x).

Conditions of a (strong) coacute ε-angle means, that for every point y∗ ∈ Sn
exists a pair (x, y) of points x ∈En and y ∈ F(x) such, that Re(〈y, y∗〉)≥ (>)ε‖y‖.

Remark 3 Analogs of Theorems 2.1, 2.5, 2.8 are true, if in formulations of similar
statements to Theorems 2.1, 2.5 to require only, for any ray, emanating from the
origin, an existence a ray which crosses the set K such, that an angle between these
two rays did not exceed then ε/2. In Theorem 2.8 it is sufficiently to require only
the validity of the inequality Re(〈y, y∗〉)≥ 0 for some ε-net on a sphere.

Theorem 2.9 Let D be a domain in Euclidean space X =En and let K ⊂D be a
subset of the closure ofD. Suppose that there exists the restriction F1 of multivalued
mapping F :D→ En = Y on the subset K which satisfied conditions of a coacute
ε-angle for some δ/2-netΣ on the sphere S∗ = {y∗ ∈ Y ∗ : ‖y∗‖ = 1} in Y ∗, δ > ε/2.
If F(D)⊃ conv(F1(K)) then 0 ∈ F(D).

Proof Let y∗
1 ∈ S∗ ⊂ Y ∗ be arbitrary points. By conditions of the theorem there

exist points y∗ ∈ Σ ⊂ S∗ ⊂ Y ∗,‖y∗ − y∗
1‖ < ε/2 and x ∈ X such, that the fol-

lowing relations Re(〈y, y∗〉) = cos(∠y0y∗)‖y‖ > sin δ‖y‖ > ε‖y‖/2 are true for
all points y ∈ F1(x). Then, Re(〈 y

‖y‖ , y
∗
1 〉)= Re(〈 y

‖y‖ , y
∗〉)+ Re(〈 y

‖y‖ , y
∗
1 − y∗〉) >

ε/2 − ‖y∗
1 − y∗‖> 0.

Now the proof of the theorem is completed by virtue of Theorem 2.8. �

Example Let f : B2 → B2, ∂B2 = S1 = {z = eiϕ,0 ≤ ϕ < 2π}, be a non continu-
ous mapping of the unit ball, which expressed by the formula

f
(
eiϕ
)=

⎧
⎪⎪⎨

⎪⎪⎩

ei(ϕ−π/2), 0 ≤ ϕ ≤ π/2,
ei(ϕ+π/2), π/2< ϕ ≤ π,
eiϕ, π < ϕ < 2π

Let the mapping f on the interior of B be an arbitrary homeomorphism of
Int(B2) on the open half ball

B2− = {z ∈ IntB2, Im z < 0
}

Obviously, that image f (B2) coincides with the convex hull of the set f (S1) but
0 /∈ f (B2).

This example shows an importance of the restrictions on mappings made in
quoted theorems.
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Parametric Continuity of Choquet and Sugeno
Integrals
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Abstract For a probabilistic space (T ,T ,μ), a fixed measurable set A and a fixed
positive measurable function f , the continuity with respect to the real parameter
λ of the Choquet or Sugeno integral

∫

A
dm(λ,μ) is proved. Here m(λ,μ) are all

possible λ-Sugeno measures generated by μ. Asymptotical properties are studied
too.

Keywords Classical and generalized probability · Sugeno measure · Choquet
integral · Sugeno integral

Mathematics Subject Classification (2010) Primary 28A25 · 28E10 · Secondary
26E50

1 Introduction

Classical measure theory deals with additive measures. In the last period, general-
ized measure theory, dealing with (possibly) non-additive measures, became more
and more important and a huge number of research papers and monographs per-
taining to it appeared. The explanation of this phenomen is double, in our opinion:
on one hand appears the scientific tentation of a new theory, on the other hand ap-
pears the objective fact that many aspects of concrete life or of science are better
modelated by this new theory. A natural companion of the theory of non-additive
measures is the theory of the integrals built with these measures—the non-linear
integrals, especially the Choquet and Sugeno integrals.

From historical and scientifical point of view, the most important contribution
to the theory of non-additive measures and non-linear integrals is the work of the
distinguished Japanese scholar M. Sugeno who, in his Ph.D. Thesis [5] introduced
the concept of λ-additive measures or fuzzy measures (we call these last measures
Sugeno measures), together with his fuzzy integral (we call this integral Sugeno
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integral). For the sake of completeness, let us recall that a λ-additive measure (λ
real, subject to some restrictions) is a measure μ having the property that

μ(A∪B)= μ(A)+μ(B)+ λμ(A)μ(B),
for any disjoint sets A, B . The Sugeno measures are special normalized λ-additive
measures.

Subsequent developments are due to Z. Wang who showed (see [6]) that any
Sugeno measurem has the formm(λ,μ)= hλ ◦μ, where μ is a classical probability
and hλ is the canonical T -function (see the preliminary Part) and to D. Schmeidler
who formally introduced the Choquet integral using [1] (see [4]).

In the present paper we show that for any fixed A, f , μ, the function λ �→∫

A
f dm(λ,μ) is continuous (here the integral is either Choquet or Sugeno, see the

Preliminary Part). Besides, because λ ∈ (−1,∞), we study the marginal measures
m(−1,μ), m(∞,μ) and the asymptotic behaviour of the integral (with respect to
the marginal measures).

The main theoretical tool used throughout the paper is the monograph [7]. For
classical measure theory, see [2] and [3].

Note Because of the restricted volume of these Proceedings, proofs presented in
the present paper are short. Extended proofs will appear elsewhere.

2 Preliminary Part

Throughout the paper R = the real numbers, R+ = the positive real numbers, R+ =
R∪ {∞}, N = the natural numbers.

We shall consider a fixed probabilistic space (T .T ,μ), where: T is a nonempty
set, T is a σ -algebra of subsets of T and μ : T → [0,∞) is a (σ -additive) probabil-
ity. For any T -measurable function f : T → R+ and any α ∈R, we define

Fα(f )=
{
t ∈ T ∣∣ f (t)≥ α} ∈ T .

A generalized probability is a function m : T → [0,1] such that m(φ) = 0,
m(T )= 1,m is increasing (i.e.m(A)≤m(B) whenever A, B are in T , A⊂ B). For
any λ ∈ (−1,∞), the λ-Sugeno measure generated by μ is the generalized proba-
bilitym(λ,μ)= hλ ◦μ, where hλ : [0,1] → [0,1] is the canonical T -function given
via

hλ(t)=

⎧
⎪⎨

⎪⎩

t, if λ= 0

(λ+ 1)t − 1

λ
, if λ �= 0

(one knows that hλ(0)= 0, hλ(1)= 1, hλ is strictly increasing and continuous).
Supplementarily, it follows that m(λ,μ) is continuous (i.e. m(λ,μ)(limn An)=

limn m(λ,μ)(An), whenever (An)n ⊂ T is a monotone sequence).
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Let f : T → R+ be T -measurable, A ∈ T and m : T → [0,1] a generalized
probability. We define (write Fα instead of Fα(f ))

(a) The Choquet integral of f over A with respect to m (generalization of stan-
dard integral), namely

(C)

∫

A

f dm=
∫

m(Fα ∩A)dL(α) ∈R+

where L is the Lebesgue measure on [0,∞) (the function α �→ m(Fα ∩ A) is de-
creasing!).

(b) The Sugeno integral of f over A with respect to m, namely

(S)

∫

A

f dm= sup
α∈R+

α ∧m(Fα ∩A) ∈ [0,1].

In case A= T we write (C)
∫
f dm and (S)

∫
f dm. If (C)

∫
f dm <∞ we say

that f is Choquet integrable.

3 Results

Lemma 3.1 (Elementary fact) Let 0 ≤m≤ 1. Define ϕ : (−1,∞)→R+, via

ϕ(λ)=

⎧
⎪⎨

⎪⎩

m, if λ= 0

(λ+ 1)m − 1

λ
, if λ �= 0.

Then ϕ is continuously differentiable and decreasing. In case m = 0 or m = 1,
ϕ is constant. In case 0<m< 1, ϕ′(λ) < 0 and 0< ϕ(λ) < 1 for any λ ∈ [−1,∞).

In the sequel we shall always write Fα instead of Fα(f ). We shall also use
the fact that we always have (C)

∫

A
f dm = (C)

∫
f ϕAdm and (S)

∫

A
f dm =

(S)
∫
f ϕAdm, where ϕA is the characteristic (indicator) function of A.

Proposition 3.2 Assume f : T →R+ is μ-integrable. Then:

1. The function f is Choquet integrable with respect to m(λ,μ) for any λ ∈
(−1,∞).

2. For any A ∈ T , the function V : (−1,∞)→R+, given via

V (λ)= (C)
∫

A

f dm(λ,μ)

is continuous.
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Proof 1. Working in the non trivial cases λ �= 0 and μ(Fα) > 0 for any α ≥ 0, we
apply Cauchy’s integral criterion to the monotone function α �→ (λ+ 1)μ(Fα) − 1
and use the hypothesis.

2. One can work for A = T . Fixing λ0 ∈ (−1,∞), we must show that
limλ→λ0(C)

∫
f dm(λ,μ)= (C) ∫ f dm(λ0,μ). The idea is to prove that the func-

tion W : (−1,∞) → L1(L), given via W(λ) = h(λ) is continuous and to use
the continuous linear functional H : (−1,∞) → L1(L), H(ϕ) = ∫ ϕdL. Here
L1 is seminormed as usual with the seminorm ‖f ‖1 = ∫ |f |dL and h(λ)(α) =
m(λ,μ)(Fα) for any α ∈ R+.

The proof is done separately for λ0 �= 0 and λ0 = 0.

Case λ0 �= 0 For arbitrary ε > 0 we get δ > 0 such that if |λ − λ0| < δ one has
‖h(λ)− h(λ0)‖1 < ε. This can be done imposing some preliminary conditions on δ
and using the Mac Laurin expansion of the functions x �→ (λ+ 1)x = exp(x ln(λ+
1)) and x �→ (λ0 + 1)x = exp(x ln(λ0 + 1)), for x = μ(Fα) followed by term by
term integration.

Case λ0 = 0 For any α ∈ R+ and λ ∈ (−1,1), one expands λ �→ (λ + 1)μ(Fα) as
a binomial series and, after some other computations (especially term by term inte-
gration) we get an evaluation (for 0 �= λ ∈ (−1,1)) of the form

∣
∣m(λ,μ)(Fα)−μ(Fα)

∣
∣≤ μ(Fα)

∞∑

p=2

|λ|p−1 = μ(Fα) |λ|
1 − |λ| .

This leads to

∥
∥h(λ)− h(0)∥∥1 ≤ |λ|

1 − |λ|
∫

f dμ−−−→
λ→0

0. �

Proposition 3.3 For any A ∈ T , the function V (−1,∞)→ R+ given via

V (λ)= (S)
∫

A

f dm(λ,μ)

is continuous.

Proof Again we can work for A = T . Let us fix λ0 ∈ (−1,∞) and take a strictly
monotone sequence of numbers (λn)n with λ0 �= λn −→

n
λ0. According to the Trans-

formation Theorem (Theorem 9.13 from [7]) we have the equalities:

(S)

∫

f dm(λn,μ)= (S)
∫

hndL

(S)

∫

f dm(λ0,μ)= (S)
∫

hdL,
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where hn : R+ → R+, hn(α) = m(λn,μ)(Fα) and h : R+ → R+, h(α) =
m(λ0,μ)(Fα). We must prove that

lim
n
(S)

∫

hndL= (S)
∫

hdL. (3.1)

In case λn > λ0 ((λn)n strictly decreasing), we use Lemma 3.1 to deduce that
(hn)n is increasing with pointwise limit h. Equality (3.1) follows from Theorem 9.5
from [7].

In case λn < λ0 ((λn)n strictly increasing), Lemma 3.1 says that (hn)n is decreas-
ing with pointwise limit h. We have

C =
∫

hdL≤ 1<∞.

Define, for any n ∈N:

An = {α ∈R+
∣
∣ h(α) > C

}
.

According to the same Theorem 9.5 from [7], a sufficient condition for the val-
ability of (3.1) consists in the existence of n0 ∈ N such that L(An0) <∞. We shall
prove that this in the case.

Actually, we shall prove a stronger assertion, namely that L(An) <∞ for any n.
Indeed, assuming the existence of some n such that L(An)= ∞, we shall arrive at a
contradiction, as follows. Firstly,An is an interval with extremity 0, henceAn = R+,
which implies the fact that m(λn,μ)(Fα) > C for any α ∈ R+. Using a strictly
increasing (αp)p such that αp −→

p
∞ and the fact that μ is continuous, we infer that

all m(λn,μ) are continuous and get, for any n:

lim
p
m(λn,μ)(Fαp )=m(λn,μ)

(⋂

p

Fαp

)

≥ C,

contradiction, because
⋂
p Fαp = ∅ (f is finite). �

The remainder of our paper will be concerned with the asymptotic behaviour.
The pointwise limit measures of m(λ,μ) when λ→ −1 or λ→ ∞ exist:

Proposition 3.4 The marginal generalized probabilities m(−1,μ) : T → [0,1]
and m(∞,μ) : T → [0,1] exist. They are defined pointwise, for any A ∈ T , as
follows:

m(−1,μ)(A)= lim
λ→−1

m(λ,μ)(A)=
{

0, if μ(A)= 0
1, if μ(A) > 0.

m(∞,μ)(A)= lim
λ→−1

m(λ,μ)(A)=
{

0, if μ(A) < 1
1, if μ(A)= 1.
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Supplementarily: m(−1,μ) is countably subadditive and m(∞,μ) is countably
superadditive.

The “continuity” of the functions λ �→ (C)
∫

A
f dm(λ,μ), λ �→

(S)
∫

A
f dm(λ,μ) can be “extended” at the points −1 and ∞, as the following

results shows:

Proposition 3.5 Let A ∈ T .

1. Assume f : T → R+ is μ-integrable. Then one has

lim
λ→−1

(C)

∫

A

dm(λ,μ)= (C)
∫

A

f dm(−1,μ)

lim
λ→∞(C)

∫

A

f d(λ,μ)= (C)
∫

A

f dm(∞,μ).

2. One has

lim
λ→−1

(S)

∫

A

f dm(λ,μ)= (S)
∫

A

f dm(−1,μ)

lim
λ→∞(S)

∫

A

f dm(λ,μ)= (S)
∫

A

f dm(∞,μ).

Proof 1. We use Beppo Levi’s theorem or Lebesgue’s dominated convergence the-
orem, taking monotone sequences λn −→

n
λ0.

2. We use the fact that for two non empty sets and for a bounded from below
function g :A×B→R, one has

sup
a∈A

sup
b∈B
g(a, b)= sup

b∈B
sup
a∈A
g(a, b)= sup

(a,b)∈A×B
g(a, b)

sup
a∈A

inf
b∈B g(a, b)= inf

b∈B sup
a∈A
g(a, b). �
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Abstract In this article we discuss the solvability of some class of fully nonlinear
equations, and equations with p-Laplacian in more general conditions by using a
new approach given by Soltanov in Nonlinear Anal. 72:164–175, 2010 for studying
the nonlinear continuous operator. Moreover we reduce certain general results for
the continuous operators acting on Banach spaces, and investigate their image. Here
we also consider the existence of a fixed-point of the continuous operators under
various conditions.
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Solvability theorem · Nonlinear BVP
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1 Introduction

In the present paper we consider the boundary-value problem for the fully nonlinear
equation of the second order

F(x,u,Du,�u)= h(x), x ∈Ω, (1.1)

and also for the nonlinear equations with p-Laplacian that depend upon the param-
eters λ and ρ

−∇(|∇u|p−2∇u)+G(x,u,Du,λ,ρ)= h(x), x ∈Ω, (1.2)

on the smooth bounded domain Ω ⊂ R
n (n ≥ 1), where F(x, ξ, η, ζ ) and

G(x, ξ, η,λ,ρ) are Caratheodory functions. We deal with the properties of the non-
linear operators generated by the posed problems and study the solvability of these
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problems by using the general results of such type as in [1]. It should be noted that
equations of such type arise in the diffusion processes, reaction-diffusion processes
etc., in the steady-state case (see, for example [2–13] and their references). Further-
more we discuss of some nonlinear continuous mappings acting on Banach spaces
and an equation (inclusion) with mappings of such type. The problems of such type
were studied earlier under various conditions in the semilinear ([2, 3, 7–11, 13]
etc.) and in the fully nonlinear cases ([4, 12, 14] etc.). In the mentioned articles, the
known general results having such conditions that cannot be applicable to the prob-
lems considered here, were used, whereas in this article we want to investigate these
problems under more general conditions. Indeed, under here assumed conditions
not is possible to use a methods that require of the compactness of the operators
generated by the studied problems, since these operators here only are continuous.
Therefore we need to use a general result that will be applicable to the considered
problems here and consequently, the conditions of the general result differ from the
conditions of the known results. The results of [1] and the general results adduced
here allow us to study the imposed problem in more general conditions.

So for our goal we lead to a fixed-point theorem for nonlinear continuous map-
pings acting on Banach spaces and also a solvability theorem for nonlinear equations
involving continuous operators. These general results allow us to study various non-
linear mappings and also nonlinear problems under more general conditions. That is
demonstrated under study of the boundary value problems (BVP) for the nonlinear
differential equations of reduced here. Moreover we obtain the existence of the fixed
point for the operator associated with imposed problem. We would like also to note
that Theorem 2.1 of present article is a result of the type of Lax–Milgram theorem.

2 Some General Results on Solvability

Let X, Y be reflexive Banach spaces and X∗, Y ∗ be their dual spaces, moreover
let Y be reflexive with strictly convex norm together with Y ∗ (this condition is not
complementary condition; see, for example, [15]) and f :D(f ) ⊆ X −→ Y be an
operator.

So, we will conduct here the special case of the main result of [1]. Consider
the following conditions. Let the closed ball BXr0 (0) of X is contained in D(f ), i.e.
BXr0 (0)⊆D(f )⊂X and on BXr0 (0) are fulfilled the conditions:

(i) f : BXr0 (0) ⊆ D(f ) ⊆ X −→ Y be a continuous operator that bounded on
BXr0 (0), i.e.

∥
∥f (x)

∥
∥
Y

≤ μ(‖x‖X
)
, ∀x ∈ BXr0 (0);

(ii) there is a mapping g : D(g) ⊆ X −→ Y ∗ such that D(f ) ⊆ D(g), and
for any SXr (0) ⊂ BXr0 (0), 0 < r ≤ r0, clg(SXr (0)) = g(SXr (0)) ≡ SY ∗

r (0), S
X
r (0) ⊆

g−1(SY
∗
r (0))
〈
f (x), g(x)

〉≥ ν(‖x‖X
)‖x‖X, a.e.x ∈ BXr0 (0) & ν(r0)≥ δ0 > 0 (2.1)
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holds,1 where μ : R1+ −→ R1+ and ν : R1+ −→ R1 are continuous functions
(μ,ν ∈ C0), moreover ν is the nondecreasing function for τ ≥ τ0, r0 ≥ τ0 ≥ 0;
τ0, δ0 > 0 are constants;

(iii) almost each x̃ ∈ intBXr0 (0) possesses a neighborhood Vε(̃x), ε ≥ ε0 > 0 such
that the following inequality

∥
∥f (x2)− f (x1)

∥
∥
Y

≥Φ(‖x2 − x1‖X, x̃, ε
)
, (2.2)

holds for any ∀x1, x2 ∈ Vε(̃x) ∩ BXr0 (0), where Φ(τ, x̃, ε)≥ 0 is a continuous func-
tion at τ and Φ(τ, x̃, ε) = 0 ⇔ τ = 0 (in particular, x̃ = 0, ε = ε0 = r0 and
Vε(̃x)= Vr0(0)≡ BXr0 (0), consequently Φ(τ, x̃, ε)≡Φ(τ,0, r0) on BXr0 (0)),

Theorem 2.1 (Main Theorem) Let X, Y be Banach spaces such as above and f :
D(f )⊆X −→ Y be an operator. Assume that on the closed ball BXr0 (0)⊆D(f )⊂
X the conditions (i) and (ii) are fulfilled then the image f (BXr0 (0)) of the ball BXr0 (0)
contains an everywhere dense subset ofM that has the form

M ≡ {y ∈ Y ∣∣ 〈y,g(x)〉≤ 〈f (x), g(x)〉, ∀x ∈ SXr0 (0)
}
.

Furthermore if in addition the image f (BXr0 (0)) of the ball BXr0 (0) is closed or the

condition (iii) is fulfilled then the image f (BXr0 (0)) is a bodily subset of Y , moreover

f (BXr0 (0)) contains the above bodily subsetM .

The proof of this theorem is obtained from general result that was proven in [14]
(see also, [1]). (Theorem 2.1 is the generalization of theorem of such type from
[11].)

Remark 2.2 1. It is easy to see that the condition BXr0 (0) ⊆ D(f ) is not essen-
tial, because if D(f ) comprises a bounded closed subset U(x0) ⊆ X of some
element x0 ∈ D(f ) such that U(x0) is topologically equivalent to BX1 (0) and
U(x0)⊆D(f ) ∩D(g), then we can formulate the conditions and statement of this
theorem analogously, i.e. for this we determine the operator f̃ (x)= f (x)− f (x0)

and assume that
∥
∥f̃ (x)

∥
∥
X∗ ≤ μ(‖x − x0‖X

)
,

holds for any x ∈U(x0) and

〈
f̃ (x), g(x − x0)

〉≥ ν(‖x − x0‖X
)‖x − x0‖X (2.3)

holds for almost all x ∈ U(x0). Moreover ν(‖x − x0‖X) ≥ δ0 > 0 for any x ∈
∂U(x0), where g :D(g)⊆X −→ Y ∗ such thatD(f )⊆D(g) and g satisfies a claim

1In particular, the mapping g can be a linear bounded operator as g ≡ L : X −→ Y ∗ that satisfy
the conditions of (ii).
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analogously of the condition (ii) respect to U(x0). In this case, we define subset M̃x0

in the form

M̃x0 ≡ {y ∈ Y ∣∣ 0 ≤ 〈f (x)− y,g(x − x0)
〉
, ∀x ∈ ∂U(x0)

}
(2.4)

2. In the formulation of Theorem 2.1 we use the equality ‖g(x)‖Y ∗ ≡ ‖x‖X
that can be determined by the known way, i.e. g′(x) ≡ ‖x‖X‖g(x)‖Y∗ g(x) for any
x ∈D(g)⊆X.

Condition (iii) of Theorem 2.1 can be generalized, for example, as in the following
proposition.

Corollary 2.3 Let all conditions of Theorem 2.1 be fulfilled except inequality (2.2),
and instead of that, let the following inequality

∥
∥f (x2)− f (x1)

∥
∥
Y

≥Φ(‖x2 − x1‖X, x̃, ε
)+ψ(‖x1 − x2‖Z, x̃, ε

)
, (2.5)

be fulfilled for any x1, x2 ∈ Vε(̃x) ∩ BXr0 (0), where Φ(τ, x̃, ε) is a function such as
in the condition (iii), Z is a Banach space and the inclusion X ⊂ Z is compact, and
ψ(·, x̃, ε) : R1+ −→ R1 is a continuous function at τ and ψ(0, x̃, ε) = 0. Then the
statement of Theorem 2.1 is correct.

Note It should be noted that this result is a generalization of the known Lax–
Milgram theorem [16] to the nonlinear case in the class of Banach spaces when all
conditions of this theorem are fulfilled on whole space. Indeed, we can formulate
the Lax–Milgram theorem for the linear operator T acting on the real Hilbert space
X in the form:

(a) There exists a positive constant γ such that
∣
∣(T x, y)

∣
∣≤ γ ‖x‖X · ‖y‖X, ∀(x, y) ∈X×X;

that is equivalent to boundedness of operator T :X −→X.
(b) there exists a positive constant δ such that

(T x, x)≥ δ‖x‖2
X;

that is equivalent to the coerciveness of T : X −→ X, i.e. T satisfies the condition
(ii) for the special case (g ≡ id).

Then equation T x = y is solvable for any y ∈X.
From the condition b, it follows that

∥
∥T (x1 − x2)

∥
∥
X

≥ δ‖x1 − x2‖X;
i.e. inequality (2.2) holds for any x1, x2 ∈X.

Theorem 2.4 (Fixed-Point Theorem) Let X be a reflexive separable Banach space
and f1 :D(f1) ⊆ X −→ X be a bounded continuous operator. Moreover, let on a
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closed ball BXr0 (x0) ⊆D(f1), where x0 ∈ D(f1), operator f ≡ Id − f1 satisfy the
following conditions

∥
∥f1(x)− f1(x0)

∥
∥
X

≤ μ(‖x − x0‖X
)
, ∀x ∈ BXr0 (x0),

〈
f (x)− f (x0), g(x − x0)

〉≥ ν(‖x − x0‖X
)‖x − x0‖X, ∀x ∈ BXr0 (x0),

(2.6)

and almost each x̃ ∈ intBXr0 (x0) possesses a neighborhood Vε(̃x), ε ≥ ε0 > 0 such
that the following inequality

∥
∥f (x2)− f (x1)

∥
∥
X

≥ ϕ(‖x2 − x1‖X, x̃, ε
)
,

holds for any x1, x2 ∈ Vε(̃x) ∩ BXr0 (x0), where g : D(g) ⊆ X −→ X∗ such that

BXr0 (0)⊆D(g) and g satisfies condition (ii), μ and ν are such functions as in The-
orem 2.1, function ϕ(τ, x̃, ε) has such a form as the right hand side of inequality
(2.3)2 Then the operator f1 possesses a fixed-point on the ball BXr0 (x0).

Definition 2.5 We call that an operator f : D(f ) ⊆ X −→ Y possesses the P-
property iff any precompact subset M of Y from Imf has a (general) subsequence
M0 ⊂M such that there exists a precompact subset G of X that satisfies the inclu-
sions f−1(M0)⊆G and f (G∩D(f ))⊇M0.

Remark 2.6 We can take the following condition instead of condition (iii) of The-
orem 2.1: f possesses the P-property on the ball BXr0 (0). It should be noted that
an operator f :D(f ) ⊆ X −→ Y possesses of the P-property if f−1 is a lower or
upper semi-continuous mapping (cf. A-property [8]).

In the above results for the completeness of the image (Imf ) of the imposed
operator f , the condition (iii) and P-property (and also the generalizations of the
conditions (iii)) are used. But there are some other types of the complementary
conditions on f under which Imf will be a closed subset. These types of conditions
are described in [1, 12, 14]. Therefore we do not conduct them here again.

3 Fully Nonlinear Equations of Second Order

Now, we study some nonlinear BVP with using the general results. Let Ω ⊂ Rn
(n≥ 1) be an open bounded domain with sufficiently smooth boundary ∂Ω . Con-
sider the following problem

f (u)≡ −�u+ F(x,u,Du,�u)= 0, x ∈Ω, u|∂Ω = 0, (3.1)

2In particular, g ≡ J :X −→X∗, i.e. g be a duality mapping.
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where F(x, ξ, η, ζ ) is a Caratheodory function on Ω × R2 ×Rn as F :Ω ×R2 ×
Rn −→R1, D ≡ (D1,D2, . . . ,Dn), �≡∑n

i=1D
2
i (is Laplacian), Di ≡ ∂

∂xi
.

Let the following conditions be fulfilled
(i) there are Caratheodory functions F0(x, ξ), F1(x, ξ, η), F2(x, ξ, η, ζ ): F0,F1,

F2 :Ω ×Rn+2 −→ R1 such that F(x, ξ, η, ζ )= F0(x, ξ)+ F1(x, ξ, η)+ F2(x, ξ,

η, ζ ) for any (x, ξ, η, ζ ) ∈Ω ×R1 ×Rn ×R1, moreover
(a) there exist a Caratheodory function a1(x, ξ) and numbers m0, ν ≥ 0,

μ,M > 0, μ+ 2> 2ν such that

F0(x, ξ)≡M|ξ |μξ + a1(x, ξ),
∣
∣a1(x, ξ)

∣
∣≤m0|ξ |ν +ψ(x), ψ ∈ Lp(Ω), p > 2

(3.2)

hold for a.e. x ∈Ω and any ξ ∈R1, and
(b) there exist a number 2 ≥ ρ ≥ 0 and a nonnegative Caratheodory function

m1(x, ξ, η)≥ 0 such that
∣
∣F1(x, ξ, η)

∣
∣≤m1(x, ξ, η)|η|ρ + k(x), (3.3)

∀(x, ξ, η) ∈Ω × R1 × Rn holds, where m1(x, ξ, η) ≤M1(x), and 2(Ĉ(μ,ρ,n)×
‖M1‖2∞)2 ≤M , k ∈ Lp1(Ω), p1 > 2, Ĉ(μ,ρ,n) is the coefficient of Gagliardo–
Nirenberg–Sobolev (G-N-S) inequality (see, [16]).

(c) there exist a Caratheodory function, c(x, ξ, η, ζ ), F̃2(x, ξ, η) and continuous
function k(ζ ) such that the following inequalities

∣
∣F2(x, ξ, η, ζ )− F2(x, ξ, η, ζ1)

∣
∣≤ c(x, ξ, η, ζ(ζ, ζ1)

)|ζ − ζ1|, (3.4)
∣
∣F2(x, ξ, η, ζ )− F2(x, ξ1, η1, ζ )

∣
∣≤ k(ζ )∣∣F̃2(x, ξ, η)− F̃2(x, ξ1, η1)

∣
∣ (3.5)

hold for a.e. x ∈Ω and any (ξ, η), (ξ1, η1) ∈Rn+1, ∀ζ, ζ1 ∈R1, and F2(x, ξ, η,0)=
0, moreover there exists a functionψ1 ∈ L∞(Ω) such thatψ1(x)≥ 0, c(x, ξ, η, ζ )≤
ψ1(x) hold for a.e. x ∈ Ω and any (ξ, η, ζ ) ∈ RN , here ‖ψ1‖L∞(Ω) ≡ ‖ψ1‖∞ ≤
4−1.

Assume the following denotations: ‖u‖Lp(Ω) ≡ ‖u‖p for any p ∈ [1,∞], and
‖u‖Wl,p(Ω) ≡ ‖u‖l,p , for u ∈ Wl,p(Ω), l ≥ 1. So, we consider the operator f :
W 2,2(Ω)∩W 1,2

0 (Ω)−→ L2(Ω), which is generated by the imposed problem.

Theorem 3.1 Let conditions (i), (a), (b), (c) be fulfilled and parameters ρ0 and ρ
satisfy the following relations

1< ρ0 ≤ 4

n− 4
if n≥ 5 & 1< ρ0 <∞ if n= 2,3,4,

ρ ≥ (ρ0 + 2)n

2(n+ ρ0)
& ρ ≤ 1 + min

{
ρ0 + 2

n+ ρ0
; 2

n− 2
; ρ0

ρ0 + 2

}

.

Then problem (3.1) is solvable in W 2,2(Ω)∩W 1,2
0 (Ω).
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Proof For the proof, it is enough to show that operator f :W 2,2(Ω)∩W̊ 1,2(Ω)−→
L2(Ω) fulfills all conditions of Theorem 2.1. For this, we will estimate the following
dual form

〈
f (u), g(u)

〉= 〈−�u+ F(x,u,Du,�u),−�u〉

where the operator g is determined in the form g ≡ −� :W 2,2(Ω)∩ W̊ 1,2(Ω)−→
L2(Ω), then we have

〈−�u+ F(x,u,Du,�u),−�u〉= ‖�u‖2
2 + 〈F(x,u,Du,�u),−�u〉,

consequently we need to estimate the second term of this equation, i.e. the dual
form: 〈F(x,u,Du,�u),−�u〉.

Thus using conditions (i), (a), (b), (c) we obtain
〈
F(x,u,Du,�u),−�u〉

= −〈F0(x,u),�u
〉− 〈F1(x,u,Du),�u

〉

− 〈F2(x,u,Du,�u),�u
〉= −〈M|u|μu+ a1(x,u),�u

〉

− 〈F1(x,u,Du),�u
〉− 〈F2(x,u,Du,�u),�u

〉

≥ 〈M(μ+ 1)|u|μ∇u,∇u〉

− ∥∥m0|u|ν +ψ∥∥2‖�u‖2 − ∥∥m1(x,u,Du)|∇u|ρ + k(x)∥∥2‖�u‖2

− ∥∥c(x,u,Du,�u)|�u|∥∥2‖�u‖2 ≥M(μ+ 1)
∥
∥|u|μ2 ∇u∥∥2

2

− ε1
∥
∥|u|μ+2

2
∥
∥

2 − ‖M1‖2∞
∥
∥|∇u|ρ∥∥2

2 − (ε+ 4−1 + ‖ψ1‖∞
)‖�u‖2

2

−C(ε, ε1,m0,‖ψ‖p,‖k‖p
)
, ε, ε1 ∈ (0,1). (3.6)

Hence we need to estimate the term ‖|∇u|ρ‖2
2 with using ‖|u|μ2 u‖2

1,2 and ‖u‖2
2,2

for which we will use the known inequality (G-N-S). Using that we get
〈
F(x,u,Du,�u),−�u〉

≥ 〈M(ε1)(μ+ 1)|u|μ∇u,∇u〉− (ε+ 2−1)‖�u‖2
2

− Ĉ(μ,ρ,n)‖M1‖2∞‖�u‖θρ2 ‖u‖(1−θ)ρ
(μ+2)n
n−2

−C(ε, ε1,m0,‖ψ‖p,‖k‖p
)
,

where θ = [2ρ(n+μ)− (μ+ 2)n] · [4ρ(μ+ 1)− ρμn]−1 for the considered case,
and here Ĉ(μ,ρ,n) is the coefficient of the inequality G-N-S.

From here we obtain
〈
F(x,u,Du,�u),−�u〉

≥ 〈Mε1(μ+ 1)|u|μ∇u,∇u〉−
(

ε+ 3

4

)

‖�u‖2
2
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− (Ĉ(μ,ρ,n)‖M1‖2∞
)2‖u‖μ+2

(μ+2)n
n−2

−C(ε, ε1,m0,‖ψ‖p,‖k‖p
)
, (3.7)

where (Ĉ(μ,ρ,n)‖M1‖2∞)2 <M by the condition (b).
Now taking account (3.6) in (3.7) we get

〈
f (u), g(u)

〉 = 〈−�u+ F(x,u,Du,�u),−�u〉≥
(

1

4
− ε
)

‖�u‖2
2

+ M̃(μ+ 1)
∥
∥|u|μ2 ∇u∥∥2

2 −C(ε, ε1,m0,‖ψ‖p,‖k‖p
)
. (3.8)

So, condition (i) is fulfilled as the operator f :W 2,2(Ω)∩ W̊ 1,2(Ω)−→ L2(Ω)

is bounded that can be seen easily from its expression and the conditions of this
theorem.

Thus it follows that problem (3.1) is densely solvable in L2(Ω). Consequently,
it is remained to show that image f (W 2,2(Ω) ∩ W̊ 1,2(Ω)) of mapping f is closed
in the space L2(Ω).

Let h0 ∈ L2(Ω) then there is a sequence {hm} ⊂ Imf ⊆ L2(Ω) that converges to
the given h0 inL2(Ω), as cl Imf ≡ L2(Ω). For any hm we have the subset f−1(hm)

and as {hm} is a bounded subset in L2(Ω) then there is a bounded subset G of
W 2,2(Ω)∩ W̊ 1,2(Ω) such that G∩ f−1(hm) �= ∅. Then we can choose a sequence
{um} ⊂G such that f (um)= hm which belongs to the bounded subsetG. From here
using the reflexivity of the spaceW 2,2(Ω)∩ W̊ 1,2(Ω) we can select a subsequence
{umk } ⊆ {um} that is a weakly convergent sequence in W 2,2(Ω) ∩ W̊ 1,2(Ω), i.e.
there is an element u0 such that umk ⇀ u0 in W 2,2(Ω) ∩ W̊ 1,2(Ω) (may be after
the choice of a subsequence of {umk }), and consequently umk −→ u0 in W 1,p(Ω),
1 ≤ p < 2∗.

Thus we get F0(x,umk ) −→ F0(x,u0), F1(x,umk ,Dumk ) −→ F1(x,u0,Du0)

in L2(Ω) by the conditions of Theorem 3.1 that Fi : W 2,2(Ω) ∩ W̊ 1,2(Ω) −→
L2(Ω), i = 0,1, are continuous operators.

On the other hand for any ε > 0 there exist mk , ml ≥ mk(ε) ≥ 1 such that the
inequality

ε > ‖hmk − hml‖2 ≡ ∥∥f (umk )− f (uml )
∥
∥

2

≥ 3

4

∥
∥�(umk − uml )

∥
∥

2 + M̂‖umk − uml‖μ+1
2(μ+1)

− ∥∥F0(x,umk )− F0(x,uml )
∥
∥

2 − ∥∥F1(x,umk ,Dumk )− F1(x,uml ,Duml )
∥
∥

2

− k(‖�u0‖2
)∥
∥F̃2(x,umk ,Dumk )− F̃2(x,uml ,Duml )

∥
∥

2 (3.9)

holds, where umk −→ u0 in W 1,p(Ω), 1 ≤ p < 2∗ and umk ⇀ u0 in W 2,2(Ω).
Hence we obtain that the last terms of (3.9) converge to zero under mk ↗ ∞, then
we get

∥
∥�(umk − uml )

∥
∥

2 ↘ 0 if mk,ml ↗ ∞.
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Consequently�umk −→�u0 inL2(Ω), F2(x,umk ,Dumk ,�umk )−→ F2(x,u0,

Du0,�u0) in L2(Ω) and from the equality

〈−�umk + F(x,umk ,Dumk ,�umk ), v
〉

= 〈−�umk , v〉 + 〈F0(x,umk ), v
〉

− 〈F1(x,umk ,Dumk ), v
〉− 〈F2(x,umk ,Dumk ,�umk ), v

〉

= 〈hmk , v〉, ∀v ∈ L2(Ω) & ∀k ≥ 1

we obtain that

〈−�u0 + F(x,u0,Du0,�u0), v
〉= 〈h0, v〉, ∀v ∈ L2(Ω).

Hence it follows h0 ∈ Imf , i.e. Imf ≡ f (W 2,2(Ω)∩ W̊ 1,2(Ω))≡ L2(Ω). �

Remark 3.2 The result of this theorem shows that we can consider the following
problem

−�u+M|u|μu= −a1(x,u)− F1(x,u,Du)− F2(x,u,Du,�u)

let the operators G0 : W 2,2(Ω) ∩ W̊ 1,2(Ω) −→ L2(Ω) and G1 : W 2,2(Ω) ∩
W̊ 1,2(Ω)−→ L2(Ω) be defined by the expressions

G0(u)≡ −�u+M|u|μu,
G1(u)≡ −a1(x,u)− F1(x,u,Du)− F2(x,u,Du,�u)

respectively, then as known G−1
0 : L2(Ω) −→ W 2,2(Ω) ∩ W̊ 1,2(Ω) exists and is

a bounded continuous operator. Now we determine the operator G(u) ≡ (G−1
0 ◦

G1)(u) that acts fromW 2,2(Ω)∩ W̊ 1,2(Ω) toW 2,2(Ω)∩ W̊ 1,2(Ω) and is bounded
continuous operator under the conditions of Theorem 3.1. Hence we obtain, that the
operator G possesses a fixed point by virtue of Theorem 2.4, which allows us to
impose the problem G0(u)= λG1(u) on the existence of the eigenvalue of operator
G0 respective of operator G1. But in this case we can only conclude that λ will be
dependent of u.

Remark 3.3 From the proof of this theorem it follows that the result of such
type is true in the following case: let in problem (3.1) operator F(x,u,Du,�u)
be independent of �u, i.e. it has the representation F(x, ξ, η, ζ ) ≡ F(x, ξ, η) ≡
F0(x, ξ)+ F1(x, ξ, η) for (x, ξ, η) ∈Ω × -n+1.
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4 Nonlinear Equation with p-Laplacian

On the open bounded domain Ω ⊂ Rn with sufficiently smooth boundary ∂Ω con-
sider the following problem

f (u) ≡ −∇(|∇u|p−2∇u)

+G(x,u,Du,λ,ρ)= h(x), x ∈Ω ⊂Rn, (4.1)

u|∂Ω = 0, n≥ 1, Ω ∈ Lip, h ∈W−1,q (Ω). (4.2)

Assume that

G(x, ξ, η,λ)= ρG0(x, ξ)+ λG1(x, ξ, η), (4.3)

holds for a.e. x ∈ Ω and any (ξ, η) ∈ Rn+1, where G1(x, ξ, η) and G0(x, ξ) are
some Caratheodory functions, λ ∈R, μ≥ 0 are some parameters.

4.1 Dense Solvability

Let the following conditions

G0(x, ξ) · ξ ≥ a0(x)|ξ |p0 − a1(x), a0(x)≥A0 > 0; (4.4)
∣
∣G0(x, ξ)

∣
∣≤ ã0(x)|ξ |p0−1 + ã1(x), ã0(x), ã1(x)≥ 0,

∣
∣G1(x, ξ, η)

∣
∣≤ b0(x)|η|p1 + b1(x)|ξ |p2 + b2(x),

bj (x)≥ 0, j = 0,1,2,

(4.5)

hold for a.e. x ∈ Ω and any (ξ, η) ∈ Rn+1 where p0,p1,p2 ≥ 0, p > 1 are some
numbers, ak(x), ãk(x) and bj (x) are some functions, k = 0,1 and j = 0,1,2.

Here we study the solvability of problem (4.1)–(4.2) in the generalized sense, i.e.
a function u ∈W 1,p

0 (Ω) is called a solution of the problem (4.1), (4.2) if u satisfies
the equation

〈
f (u), v

〉= 〈h,v〉, v ∈W 1,p
0 (Ω),

for any v ∈W 1,p
0 (Ω).

Theorem 4.1 Let conditions (4.3)–(4.5) be fulfilled and p0 − 1 ≥ p2 ≥ 0, p >
1, p > p1 ≥ 0. Moreover, let ak(x), ãk(x), bj (x) be such functions that a0, ã0 ∈
L∞(Ω), a1, ã1 ∈ Lq(Ω) and b0, b1 ∈ L∞(Ω), b2 ∈ Lq(Ω). If p1, p0 satisfy the
inequalities p1 ≤ p− p

p0
, p0 ≤ p∗ ≡ pn

n−p , then there exist a subset M ⊆W−1,q (Ω)

and some numbers μ0 > 0, C0 > 0 such that MW−1,q ≡ W−1,q (Ω), q = p
p−1 ≡

p′, and ρ ≥ μ0 > 0, λ : |λ| ≤ C0, problem (4.1)–(4.2) is solvable in W 1,p
0 (Ω) for
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any h ∈ M; moreover if p̃ = p0 or p2 + 1 = p0 then C0 ≡ C0(A0, b0, b1, ρ) is
sufficiently small number.

Proof Let u ∈W 1,p
0 (Ω)∩Lp0(Ω) and consider the dual form

〈
f (u),u

〉 ≡ ‖∇u‖pp + 〈G(x,u,Du,λ),u〉

= ‖∇u‖pp + 〈ρG0(x,u),u
〉+ λ〈G1(x,u,Du),u

〉
,

then by using conditions (4.4) and (4.5), we get

〈
f (u),u

〉 ≥ ‖∇u‖pp + ρ〈a0(x)|u|p0−2u,u
〉− ρ‖a1‖1

− |λ|〈b0(x)|∇u|p1 , |u|〉− |λ|〈b1(x)|u|p2 , |u|〉− |λ|〈b2(x), |u|
〉
,

or

〈
f (u),u

〉 ≥ ‖∇u‖pp + ρA0‖u‖p0
p0 − ρ‖a1‖1

− |λ|
∫

Ω

b0(x)|∇u|p1 |u|dx − |λ|
∫

Ω

b1(x)|u|p2+1dx

− |λ|
∫

Ω

b2(x)|u|dx. (4.6)

Since bj ∈ L∞(Ω), j = 0,1, it is enough to estimate first integral of the right
side of inequality (4.6). For this, we have

|λ|
∫

Ω

b0(x)|∇u|p1 |u|dx ≤ |λ|‖b0‖∞
[
ε
∥
∥|∇u|∥∥p

p
+ c(ε)‖u‖p̃p̃

]
.

By using the last inequality in (4.6) and taking into account the condition on p1,
we obtain

〈
f (u),u

〉 ≥ (1 − ε|λ|‖b0‖∞
)∥
∥|∇u|∥∥p

p
+ (ρA0 − ε1)‖u‖p0

p0

− c(ε)|λ|‖b0‖∞‖u‖p̃p̃ − |λ|
∫

Ω

b1(x)|u|p2+1dx

−Cε1

(|λ|, ρ,‖a1‖q,‖b2‖q
)
.

since p1 ≤ p(1 − p−1
0 ) by the conditions p̃ ≤ p0. Hence either of these cases take

place: p̃ < p0 and p2 + 1<p0 or one of equations p̃ = p0 or p2 + 1 = p0 holds, if
p̃ < p0 and p2 +1<p0 then we can estimate it by second term from right side of the
previous inequality with using Young inequality, and if p̃ = p0 or p2 + 1 = p0 then
it is enough to choose number |λ| sufficiently small. Thus we obtain the following
inequality:
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〈
f (u),u

〉 ≥ (1 − ε|λ|‖b0‖∞
)∥
∥|∇u|∥∥p

p
+ (ρA0 − ε1 − ε2)‖u‖p0

p0

−Cε1

(|λ|, ρ, ε2,‖a1‖,‖b1‖,‖b2‖
)
.

Consequently, inequality (2.1) of Theorem 2.1 is fulfilled, |λ| must be sufficiently
small, i.e. the statement of Theorem 4.1 is true since the operator

f :W 1,p
0 (Ω)∩Lp0(Ω)−→W−1,q(Ω)+Lq0(Ω), q0 = p0

p0 − 1
,

is bounded by virtue of the obtained estimations here. �

4.2 Everywhere Solvability

Now we reduce the conditions under which imposed problem (4.1)–(4.2) is every-
where solvable. Let conditions (4.3)–(4.5) be fulfilled and consider the following
conditions

∣
∣G0(x, ξ)−G0(x, ξ1)

∣
∣≤ c0(x, ξ̃ )|ξ − ξ1|,

∣
∣G1(x, ξ, η)−G1(x, ξ1, η1)

∣
∣≤ c1(x, ξ̃ , η̃)|η− η1|,

(4.7)

hold for a.e. x ∈Ω , and any (ξ, η), (ξ1, η1) ∈ - × -n, where c0(x, ξ), c1(x, ξ, η)

are some Caratheodory functions such that ξ̃ = ξ̃ (ξ, ξ1), η̃ = η̃(η, η1) are con-
tinuous functions, and moreover c1(x, v,∇v), c0(x, v) are bounded operators
such that if v(x) belongs to a bounded subset D of W 1,p

0 (Ω) ∩ Lp0(Ω), i.e. if
‖v‖

W
1,p
0 (Ω)∩Lp0 (Ω)

≤K0, then

∥
∥c1(x, v,∇v)

∥
∥
L∞(Ω) ≤K1,

∥
∥c0(x, v)

∥
∥
L∞(Ω) ≤K2,

for some numbers K0,K1,K2 > 0, i.e.

cj (x, ·, ·) :W 1,p
0 (Ω)∩Lp0(Ω)−→ L∞(Ω), j = 0,1, (4.8)

are bounded operators.
Then

∣
∣
〈
G1(x,u,∇u)−G1(x, v,∇v),u− v〉∣∣
≤ ∥∥c1

(
x, ũ(u, v),∇ũ(∇u,∇v))∥∥∞‖∇u− ∇v‖p‖u− v‖q,

holds for any u,v ∈W 1,p
0 (Ω)∩Lp0(Ω). Hence we get
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〈
f (u)− f (v),u− v〉

≡ 〈|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)〉

+ ρ〈G0(x,u)−G0(x, v), u− v〉+ λ〈G1(x,u,Du)−G1(x, v,Dv),u− v〉

≥ Ĉ0
∥
∥∇(u− v)∥∥p

p
+ ρ〈a(x)(|u|p0−2u− |v|p0−2v

)
, u− v〉,

and we obtain the following inequality by using conditions (4.4), (4.7) and (4.8)
〈
f (u)− f (v),u− v〉

≥ Ĉ∥∥∇(u− v)∥∥p
p

+ Â0‖u− v‖p0
p0

− ∥∥c1(x,u,∇u,v,∇v)
∥
∥∞‖∇u− ∇v‖p‖u− v‖q .

Consequently, we have
∥
∥f (u)− f (v)∥∥

W−1
q (Ω)

· ∥∥∇(u− v)∥∥
p

≥ Ĉ∥∥∇(u− v)∥∥p
p

+ Â0‖u− v‖p0
p0

− ∥∥c1(x,u,∇u,v,∇v)
∥
∥∞
[
ε
∥
∥∇(u− v)∥∥p

p
+ c(ε)‖u− v‖qq

]
,

or
∥
∥f (u)− f (v)∥∥

W−1
q (Ω)

· ∥∥∇(u− v)∥∥
p

≥ Ĉ1
∥
∥∇(u− v)∥∥p−1

p
+ Â0‖u− v‖p0

p0 − c(ε)‖u− v‖qq .
Thus we get that the conditions of Corollary 2.3 are fulfilled, i.e. if we continue

this proof as in Sect. 3 then we obtain that the following result is true.

Theorem 4.2 Let conditions (4.3)–(4.5), (4.7) and (4.8) be fulfilled and the num-
bers λ, ρ satisfy the conditions of Theorem 4.1, then problem (4.1)–(4.2) is solvable
in W 1,p

0 (Ω)∩Lp0(Ω) for any h ∈W−1,q (Ω).

Remark 4.3 It should be noted that a remark similar to Remark 3.2 takes place for
the problem investigated here. Moreover, we can obtain the same conclusion for
the considered general case. Therefore, for the investigation of the spectrum of the
nonlinear operators by using the fixed-point theorem mentioned above, we need to
consider some particular cases of these problems.
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some new examples of asymptotically Hilbert or Chow semistable polarizations that
are not asymptotically Hilbert or Chow stable.

1 About Chow Stability, Hilbert Stability and K-Stability

In this section, we recall briefly some well known facts about Chow stability and K-
stability of a polarized scheme. We refer to [6, 7, 16, 21] for details and examples.

Consider (X,L) a polarized subscheme of complex dimension n and X ⊂
PH 0(X,Lk)∗ = PV the closed immersion associated to the complete linear sys-
tem |Lk|. Let ZX = {P ∈ Gr(V,n − 1) : P ∩ X �= ∅} which is a divisor of de-
gree d = degL in the Grassmannian G = Gr(V,n − 1). Thus there exists sX,V ∈
H 0(G,OG(d)), such that one has ZX = {sX,V = 0} and this induces a Chow point

Chow(X)= [sX,V ] ∈ PH 0(G,OG(d)
)

on which one can consider the action of SL(V ). The polarized scheme (X,Lk) is
said to be Chow stable (resp. Chow semistable) if the Chow point Chow(X) is G.I.T
stable (resp. G.I.T semistable).

We say that it is asymptotically Chow stable (resp. asymptotically Chow
semistable) if (X,Lk) is Chow stable (resp. Chow semistable) for k6 1.

Let us discuss now Hilbert stability. For X ⊂ PV a closed subscheme such that
the restriction map

ρ :H 0(
PV,O(m)

)→H 0(X,O(m)
)

is surjective, one sets

Wm =
h0(X,O(m))∧

H 0(
PV,O(m)

)∨
.

Thus, from the map ρ and taking the wedge product, one can consider them-Hilbert
point

[X]m =
[h0(X,O(m))∧

H 0(
PV,O(m)

)→
h0(X,O(m))∧

H 0(X,O(m)
)
]

∈ P(Wm).

Now, the polarized scheme (X,L) is said to be Hilbert stable (resp. Hilbert
semistable) if the induced m-Hilbert points [X]m defined by the closed immersion
associated to the complete linear system |Lm| are all G.I.T semistable (resp. G.I.T
stable) for m6 1.

The polarized scheme (X,L) is said to be asymptotically Hilbert stable (resp.
asymptotically Hilbert semistable) if (X,Lk) is Hilbert stable (resp. Hilbert
semistable) for k6 1.

We recall now the notion of test configuration [5, 6].
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Definition 1.1 A test configuration for a polarized scheme (X,L) is a polarized
scheme (X ,L) with:

• a C
× action and a proper flat morphism π : X → C which is C× equivariant for

the usual action on C,
• a C× equivariant line bundle L → X which is ample over all fibers of π such that

for z �= 0, (X,Ls) is isomorphic to (Xz,LXz ) for some positive integer s, called
the exponent.

A product test configuration is a test configuration with X /X×C. A test config-
uration is trivial in codimension 2 if it is C×-equivariantly isomorphic to a product
test configuration X×C, with trivial C×-action, away from a closed subscheme of
codimension at least 2.

From [18], we know that there is a correspondence between the data of a test
configuration (X ,L) of exponent s and the data of a 1-parameter subgroup of
GL(H 0(X,Ls)). Thus using the Hilbert–Mumford criterion, it is sufficient to con-
sider the weights of the C

× action to check the stability of (X,L). More precisely,
let us call w(Ks) the total weight of the induced action on π∗LK|0 = H 0

X0
(LK)

for K 6 0, for a test configuration associated to (X,LKs). Remark that w(Ks)
is a polynomial of degree n + 1 in the k = Ks variable. Let us denote P(k) =
dimH 0(X,Lk) which is equal to the Hilbert polynomial χ(X,Lk) for k large. The
normalized weight after taking the sP (s)-th power of the C

× action on π∗LK|0 is

w̃(s, k)=w(k)sP (s)−w(s)kP (k) (1.1)

which is a polynomial of degree n + 1 in the k variable. It is the Hilbert weight
of (X,Ls) and thus (X,L) is asymptotically Hilbert stable (resp. asymptotically
Hilbert semistable) if and only if w̃(s, k) > 0 (resp. w̃(s, k)≥ 0) for all k6 1 (k >
k0(s) large enough), s6 1.

One can decompose w̃(s, k) as

w̃(s, k)=
n+1∑

i=0

eik
i (1.2)

where ei =∑n+1
j=0 ei,j s

j are polynomials of degree n + 1 in the s variable with
en+1,n+1 = 0 due to the normalisation.

We refer to [16, Lemma 2.11] and [18, Theorem 3.9] for a proof of the next
result.

Lemma 1.1 The coefficient en+1(s)s
n+1(n + 1)! is the Chow weight of X ⊂

PH 0(X,Ls). In particular, (X,L) is asymptotically Chow stable (resp. asymptoti-
cally Chow semistable) if and only if en+1(s) > 0 (resp. ≥ 0) for all s 6 1. (X,L)
is asymptotically Chow polystable if it is asymptotically Chow semistable and any
not strictly stable test configuration is a product test configuration.
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The following definition is a refinement of Donaldson’s definition of K-stability [6]
and is due to Stoppa [20].

Definition 1.2 The polarized variety (X,L) is K-stable (resp. K-semistable) if for
any test configuration which is non trivial in codimension 2, the leading coeffi-
cient en+1,n of en+1(s) is positive (resp. ≥ 0). It is said to be K-polystable if it is
K-semistable and any not strictly stable test configuration is a product test configu-
ration.

Let us finish this section by recalling certain well-known relationships between
the various notions of stability that we shall use later (see [13, 21]):

Asymptotic Chow stability

⇔ Asymptotic Hilbert stability

⇒ Asymptotic Hilbert semistability

⇒ Asymptotic Chow semistability

⇒ K-semistability.

2 Rank 2 Vector Bundles over Surfaces and the Stability of
Their Projectivisation

Let us fix B a projective surface polarized by L and π :E→ B an indecomposable
holomorphic vector bundle on B . We shall compute in our setting the Donaldson–
Futaki invariant F1(T ) induced by the degeneration T to the normal cone of P(F )
where F is a subbundle of E and with respect to the polarization Lr,m. Let us give
now some explanations on this computation (we refer to [11, 17] for details of the
test configuration we construct).

We consider the family of bundles E → B × C → C with general fibre E and
central fibre F ⊕G over 0 ∈C where G is the quotient bundle. Then E admits a C

∗
action that covers the usual action on the base C, and whose restriction to F ⊕G
scales the fibres of F with weight 1 and acts trivially on G. Setting X = P(E)→C

and

Lr,m = OP(E)(r)⊗ π∗Lm

with (r,m) such that Lr,m is ample, we obtain a flat family of polarized varieties
with C

∗ action whose general fibre is the polarized ruled manifold (PE,Lr,m). It is
a non trivial test configuration that we shall denote by T .

Conventions If π : E→ B is a vector bundle then π : P(E)→ B shall denote the
space of complex hyperplanes in the fibres of E. Thus π∗OP(E)(r)= SrE for r ≥ 0.
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Notation 1 For L a line bundle (not necessarily ample) and F a coherent subsheaf
over B , one can define the slope of F by the normalised degree of F , i.e.

μL(F)= degL(F)
rk(F) = c1(L)c1(F)

rk(F) ,

and the normalised Hilbert polynomial by

PF (k)= χ(F ⊗Lk)
rk(F) .

We recall some well known definitions about stability of bundles.

Definition 2.1 Let L be an ample line bundle on the projective manifold B . A vec-
tor bundle E is said to be L-Mumford–Takemoto stable if for any proper coherent
subsheaf F of E one has the slope inequality μL(F) < μL(E).

We say that E is Gieseker stable (resp Gieseker semistable) with respect to L if
for all proper coherent subsheaves F ⊂ E one has the following inequality for the
normalized Hilbert polynomials

PF (k) <PE(k) for k6 0 (resp. ≤),
and strictly Gieseker semistability E is Gieseker semistable but not Gieseker stable.
A Gieseker semistable bundle is said to be Gieseker polystable if it is a direct sum
of Gieseker stable bundles with respect to the same polarization.

These stability notions are related; using that μL(F) is the leading order term in
k of PF (k) one sees immediately that

Mumford
stable

⇒ Gieseker
stable

⇒ Gieseker
semistable

⇒ Mumford
semistable.

For simplicity we will work in the sequel of the paper with rank 2 vector bundles
over surfaces.

Notation 2 Let us assume that the vector bundle E has rank rk(E)= 2 and B is a
surface. We set

δL = μL(E)−μL(F)

�= ch2(E)

2
− ch2(F )+ 1

2
δK∗

B

so that one can write PE(k)−PF (k)= kδL +�.

In the following proposition, we express the Donaldson–Futaki invariant for the
polarization Lr,m associated to the test configuration we have just described.
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Proposition 2.1 The Donaldson–Futaki invariant of the test configuration T for a
rank 2 vector bundle E over a polarized surface (B,L) induced by the deformation
to the normal cone of PF where F is a subbundle of E is given by

F1(T ) = r6

36
(δK∗

B
)2 − r4

72
Γ1δK∗

B
+ r3

24
Γ2(mδL + r�),

with

Γ1 = r2(c1(E)
2 − 4c1(F )

2)+ 3c1
(
F r ⊗Lm)2 + 4r2�+ 12rmδL

− 3rc1(B)c1
(
F r ⊗Lm),

Γ2 = (rc1(E)+ 2mc1(L)
)2 − 2rc1

(
F r ⊗Lm)c1(B).

Proof The proposition is a consequence of [11, Proposition 19–Corollary 21] where
it is proved by a direct computation that

e4,3(T )= F1(T )= C1r
3m3 +C2r

4m2 +C3r
5m+C4r

6 (2.1)

where

C1(E,F ) = c1(L)
2

6

(
μL(E)−μL(F)

)
,

C2(E,F ) = c1(L)
2

48

(
c1(E)− 2c1(F )

)
c1(B)

+ c1(L)
2

12

(
ch2(E)− 2 ch2(F )

)

+ 1

12

(
2c1(E)c1(L)− c1(B)c1(L)

)(
μL(E)−μL(F)

)
,

C3(E,F ) = − 1

12
degL(E)c1(F )

2 + 1

12
degL(E) ch2(E)

+ 1

48
degL(E)c1(E)

2 − 1

24
degL(F )c1(E)

2

+ 1

24
c1(L)c1(B) · c1(F )

2 − 1

24
c1(L)c1(B) · ch2(E)

+ 1

24
degL(F )c1(E)c1(B)− 1

24
degL(E)c1(B)c1(F ),

C4(E,F ) = 1

288
c1(E)

2 · c1(B)c1(E)− 1

144
c1(E)

2 · c1(B)c1(F )

+ 1

48
c1(F )

2 · c1(E)c1(B)

− 1

72

(
c1(B)c1(F )+ c1(E)c1(B)

)
ch2(E)
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+ 1

48
c1(E)

2(ch2(E)− c1(F )
2).

By a simple algebraic manipulation one obtains from (2.1) the expected result. �

Proposition 2.2 In the same setting as in Proposition 2.1 and with Notations 2, the
Chow weight associated to the test configuration T is given by

Chows(T )= e4(s) = sr4(rs − 1)(rs + 1)

36
δK∗

B

2

− sr2(rs + 1)

72
A1δK∗

B

+ sr2(rs + 1)

24
A2(mδL + r�)

with

A1 = srΓ1 −A′
1

A2 = sΓ2 − 4r Todd2(B),

where we set

A′
1 = Γ1 + 3c1

(
F r ⊗Lm)2 + 3rc1(B)c1

(
F r ⊗Lm)+ 6 Todd2(B).

Moreover,

Chows = s3F1(T )+ s2F2(T )+ sF3(T )

with higher Futaki invariants F2(T ),F3(T ) given by

F2(T ) =
(

1

r
F1(T )+ rF3(T )

)

,

F3(T ) = − 1

36
r4δK∗

B

2 + 1

72
r2A′

1δK∗
B

− 1

6
r3 Todd2(B)(mδL + r�),

with Todd2(B) the second Todd class of B .

Proof Writing the weight of the action as w(s)=∑n+1
l=0 bls

n+1−l and

P(s)= dimH 0(
PE,Lsr,m

)=
n∑

l=0

als
n−l

with n= 3 and s large enough (see Sect. 1), we get

e4(s)=
3∑

l=1

(b0al − a0bl)s
4−l − a0b4.
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In the case we are considering, we have

a0 = 1

2
rm2c1(L)

2 + 1

2
mr2 degL(E)+

1

6
r3 ch2(E)+ 1

12
r3c1(E)

2,

a1 = r2

4
c1(E)c1(B)+ m2

2
c1(L)

2 + rm

2

(
c1(L)c1(B)+ degL(E)

)+ r2

2
ch2(E),

a2 = − r

12
c1(E)

2 + r Todd2(B)+ r

4
c1(E)c1(B)+ m

2
c1(L)c1(B)+ r

3
ch2(E),

a3 = Todd2(B),

and

b0 = r4

24
c1(E)

2 + r4

12
c1(F )

2 + m2r2

4
c1(L)

2 + mr3

6

(
degL(E)+ degL(F )

)
,

b1 = r3

4
c1(F )

2 + r3

12
c1(F )c1(B)+ r3

12
c1(E)c1(B)+ rm2

4
c1(L)

2

+ mr2

4

(
c1(L)c1(B)+ 2 degL(F )

)
,

b2 = r2

2
Todd2(B)+ r2

6
c1(F )

2 − r2

24
c1(E)

2 + r2

4
c1(F )c1(B)

+ rm

3
degL(F )−

rm

6
degL(E)+

rm

4
c1(L)c1(B),

b3 = r

2
Todd2(B)+ r

6
c1(F )c1(B)− r

12
c1(E)c1(B),

b4 = 0.

We refer to [11, Proposition 20] and [3] for the details of computing the terms al, bl
where most of them have been explicitly identified using Hirzebruch–Riemann–
Roch theorem. �

We dress now some easy consequences of the two previous results. We get the
following theorem which strengthens [11, Proposition 21].

Theorem 2.1 Consider E an irreducible rank 2 holomorphic vector bundle on a
polarized surface (B,L) with c1(B) proportional to c1(L).

1. Assume that E is strictly Gieseker semistable and F is a subbundle of E with
PF = PE with respect to L. Then all the tensor powers of the polarization Lr,m
are not Chow polystable, Lr,m is not asymptotically Chow polystable and not
K-polystable.

2. Assume that E is not Gieseker semistable and F is a destabilizing subbundle.
Then Lr,m is not K-semistable and thus not asymptotically Chow semistable for
m6 0.



Some Remarks About Chow, Hilbert and K-stability of Ruled Threefolds 369

3. If Lr,m is K-stable (resp. K-polystable, resp. K-semistable) for all m6 0 then E
is Gieseker stable (resp. Gieseker polystable, resp. strictly Gieseker semistable)
with respect to L.

Proof For (1), we consider the test configuration T of the deformation to the nor-
mal cone of PF described as before. From our assumption of Gieseker semistability
we have δL = � = 0 while the assumption on the first Chern class gives δK∗

B
= 0

since c1(B) = 0 or c1(B) = λc1(L). Therefore from Propositions 2.1 and 2.2, one
has F1(T )= Chows(T )= 0 while the test configuration T is not a product test con-
figuration. The point (2) can be treated in a similar way using the proof of Proposi-
tion 2.1. Actually the destabilizing subbundle leads to C1 = 0 and C2 < 0 or C1 < 0
and thus F1(T ) < 0. Remark that (2) strengthens a result of [17, Theorem 5.12]
where it is shown that if E is not Mumford stable then Lr,m is not K-semistable.

Note that under the assumptions of (1) or (2), there is no Kähler metric with
constant scalar curvature in the class c1(Lr,m) as a consequence of [4, 14, 19].

Now let us assume that Lr,m is K-stable. Then C1 ≥ 0 in the proof of Proposi-
tion 2.1 for all subbundles F of E. If the inequality is strict for any subbundle then
E is Mumford stable. Actually, for a rank 2 bundle over a surface, it is sufficient
to test stability with respect to subbundles. For any rank 1 torsion free subsheaf
F of E, F∗∗ is a reflexive rank 1 sheaf on the surface B and thus a line bundle.
Now, if C1 = 0 for a subbundle F of E, one has necessarily C2 ≥ 0. If C2 > 0 then
PE > PF . Now given F rank 1 torsion free subsheaf of E, one has F = F ⊗ I
where F is a line bundle and I is an ideal sheaf with 0-dimensional support, the in-
equality PE >PF only improves if F is replaced by F since c2(F) is the length of
the support of I and thus is non-negative. Eventually if the inequality C2 > 0 holds
for all subbundles of E, then we have obtained that E is Gieseker stable. Consider
now that C2 = 0. Then we have δL = δK∗

B
=�= 0 and by Proposition 2.1, F1(T )

vanishes. But the test configuration is not trivial so this leads to a contradiction.
Therefore one has necessarily C2 > 0 and we obtain Gieseker stability. The case of
K-semistability is obtained by contraposition of (2).

In the case of K-polystability, the only case for which C2 = 0 is when the rank 2
bundle E splits as a direct sum of two line bundles of same slope so is necessarily
Mumford polystable. Since C3 ≥ 0, one has moreover Gieseker semistability. �

Remark that the case of K-unstability in (3) cannot be included since the base mani-
fold B may be K-unstable which would induce a destabilizing test configuration for
the projectivisation PE.

Non simple semi-homogeneous rank 2 vector bundles over an abelian surface
are Gieseker semistable and thus provide concrete examples of applications of our
theorem, see [15, Sect. 6].

Conjecture 1 Consider E an irreducible rank 2 holomorphic vector bundle on a
K-stable polarized surface (B,L) with c1(B) proportional to c1(L). Form6 0, the
polarization Lr,m is K-stable (resp. K-polystable, resp. K-semistable) if and only E
is Gieseker stable (resp. Gieseker polystable, resp. Gieseker semistable).
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The conjecture is wrong if one removes the assumption on the first Chern class
of B: in [11] it is constructed an example of a Gieseker stable bundle with L1,m
not K-semistable for m6 0. The hard sense of the conjecture is true under stronger
assumption: on a surface with a constant scalar curvature Kähler metric and no non
trivial holomorphic vector field, a Mumford stable bundle gives rise to a polarization
Lr,m that admits a constant scalar curvature Kähler metric and thus is K-stable, see
[8–10].

One can now wonder when the Futaki invariant as computed in Proposition 2.1
may vanish. We cannot say much for a fixed couple (r,m) but at the fiber or base
limit we obtain the following result.

Proposition 2.3 Let (B,L) be a polarized surface such that its first Chern class
satisfies c1(B) = 0 or c1(B)c1(L) �= 0 and E a rank 2 holomorphic vector bundle
on B . Then, for the test configuration as in Proposition 2.1,

• the Futaki invariant F1(T ) vanishes for allm6 0 (or all r 6 0) if and only if the
Chow weight Chows(T ) vanishes for all m6 0 and any fixed s > 0 (or all r 6 0
and s6 0).

• the Futaki invariant F1(T ) is positive for allm6 0 if and only if the Chow weight
Chows(T ) is positive for all m6 0 and s6 0.

Proof This comes from the computations of the Futaki invariant and Chow weight.
Imposing C1 = C2 = C3 = 0 in Proposition 2.1 implies firstly that δL = 0, then
� = 1

4δK∗
B

and finally δK∗
B
c1(L)c1(B) = 0. Under our assumptions one gets in all

the cases

δL = δK∗
B

=�= 0. (2.2)

This forces obviously the Chow weight to vanish, see Proposition 2.2.
Conversely, if the Chow weight vanishes seen as a polynomial in the variablesm,

one gets from Proposition 2.2 that �= kr−2
4kr δK∗

B
and δK∗

B
c1(L)c1(B)= 0 and thus

(2.2) holds which implies the vanishing of the Futaki invariant. Computations in the
variables r are similar but slightly more involved. The second part of the result is
using the same reasoning. �

Next we compute the Hilbert weight for the test configuration T for the defor-
mation to the normal cone of PF where F is a subbundle of E. We remark that the
Hilbert weight has a similar expression to the Chow weight and the Futaki invariant.

Proposition 2.4 In the same setting as in Proposition 2.1 and with Notations 2, the
Hilbert weight associated to the test configuration T is given by

Hilbs,k(T ) = r(rs − 1)(rk + 1)

36
β1(s, r)δ

2
K∗
B

+ 1

72

(
β1(s, r)B1 − β2(s, r)A1

)
δK∗

B
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+
(
β2(s, r)

24
A2 − (rk + 2)β1(s, r)

6
Todd2(B)

)

(mδL + r�)

with β1(s, r)= rks(rs + 1)(k − s)(rk + 1), β2(s, r)= rs3(rs + 1)2(k − s), and

B1 = kr2(c1(E)
2 + 2c1(F )

2 + 4�+ 6 Todd2(B)
)

+ 6krmdegL(E)+ 6km2c1(L)
2

+ r(−c1(E)
2 + 6 Todd2(B)+ 8�+ 6c1(F )c1(B)+ 4c1(F )

2)

+ 6mc1(L)c1(B)

Proof The result is obtained by a computation of the weight Hilbs,k(T ) = w̃(s, k)
using (1.1) and the computations of ai, bi in Proposition 2.2. �

Proposition 2.3 can also be extended to Hilbert weights. We have also another
obvious consequence.

Proposition 2.5 In the same setting as in Proposition 2.1, let us assume that
c1(B) = 0. Then the Chow weight Chows(T ) and the Hilbert weight Hilbs,k are
proportional to the Futaki invariant F1(T ), and have same sign when one takes
k, s > 0 large enough.

Proof This comes from the fact that when c1(B) = 0 one has δK∗
B

= 0 and both
quantities Γ2 and A2 do not depend on the bundle F . �

3 Strictly Semistable Examples

Inspired from [2], we construct a new example of a threefold which is Asymptoti-
cally Chow semistable and not Asymptotically Chow stable.

Let (B,L) be a polarized surface such that c1(L) admits a Kähler metric with
constant scalar curvature and Aut(B,L)/C× is trivial and assume that the torus
Pic0(B)=H 1(B,O)/H 1(B,Z) parametrizing line bundles with trivial first Chern
class is not trivial. Consider E0 =G1 ⊕G2 a direct sum of two line bundles with
c1(G1) = c1(G2) over B . Then E0 is Mumford polystable. On the polarized ruled
manifold

(
X0,L0

r,m

)= (PE0,OPE0(r)⊗ π∗
0L

m
)

there exists under our assumptions a Kähler metric with constant scalar curva-
ture for all m 6 0. Actually, the Futaki character associated to the Lie algebra
Lie(Aut(E0)/C

×) vanishes thanks to Proposition 2.1, and one can apply [9, Corol-
lary B]. Therefore, (X0,L0

r,m) is K-polystable for all m6 0 from the work of Don-
aldson, Stoppa and Mabuchi [4, 14, 19].
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Next, we do a small deformation of the trivial line bundle T0 = C × B in order
to obtain a line bundle T over B such that T 2 is non trivial. We can consider the
following induced extension

0 →G1 ⊗ T →E→G2 ⊗ T ∗ → 0. (3.1)

Using Riemann–Roch formula we have h0(B,G1 ⊗G∗
2 ⊗ T 2)− h1(B,G1 ⊗G∗

2 ⊗
T 2)+ h2(B,G1 ⊗G∗

2 ⊗ T 2) = Todd2(B) since c1(G1) = c1(G2). Now, if we as-
sume Todd2(B) < 0, the space Ext1(G2 ⊗ T ∗,G1 ⊗ T )=H 1(B,G1 ⊗G∗

2 ⊗ T 2)

has positive dimension and our extension (3.1) does not split. The ruled manifold

(X,Lr,m)=
(
PE,OPE(r)⊗ π∗Lm

)

is not K-polystable for m6 0. Actually for the choice F =G1 ⊗ T one checks that
the Futaki invariant F1(T ) associated to the test configuration to the normal cone of
PF vanishes for m6 0. Furthermore one obtains δL = δK∗

B
=� = 0. These rela-

tionships impose that the Chow weight Chows vanishes by Proposition 2.2. There-
fore, (X,Lr,m) cannot be asymptotically Chow stable.

On another hand, from the fact that all the higher Futaki invariants F2(T ), F3(T )
vanish simultaneously we can apply Mabuchi’s main result in [12] (see also [3,
Proposition 3.2, Theorem 3.5]). One concludes that (X0,L0

r,m) is asymptotically
Chow polystable. By openness of the semistability condition in G.I.T, its small
deformations are asymptotically Chow semistable and consequently (X,Lr,m) is
asymptotically Chow semistable.

Finally, in order to construct base manifolds that satisfy the assumptions as
above, it is sufficient to consider for B a ruled surface as the projectivisation of a
rank 2 Mumford stable bundle over a curve of genus > 1, see [11]. We have proved
the following result.

Corollary 3.1 There are some ruled threefolds (projectivisation of rank 2 bundles
over a surface endowed with a constant scalar curvature Kähler metric) that are
asymptotically Chow semistable, but not asymptotically Chow stable.

One can also compare Corollary 3.1 with [22, Sect. 5] where other examples of
non asymptotically Chow stable threefolds are discussed.

Since (X0,L0
r,m) is asymptotically Chow polystable, for the test configurations

that have positive Chow weight asymptotically, the main result of [13] shows that
they have also positive Hilbert weight asymptotically. Thanks to our assumptions
on B , the product test configurations that have vanishing Chow weight Chows for
s6 0 are associated to the splitting of E0 and the deformation to the normal cone of
PG1 or PG2. Thus one gets in both case for m6 0 that δL =�= δK∗

B
= 0. Propo-

sition 2.4 shows that the Hilbert weight also vanishes. Consequently, (X0,L0
r,m)

is asymptotically Hilbert polystable and thus its small deformation (X,Lr,m) is
also asymptotically Hilbert semistable. On another hand, considering the subbundle
F =G1 ⊗ T of E, one has for the test configuration associated to the deformation
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to the normal cone of PF that δL = δK∗
B

= � = 0 and so Hilbs,k = 0 for all s, k.
Finally, (X,Lr,m) for m6 0 cannot be asymptotically Hilbert stable since T is not
a product test configuration.

Corollary 3.2 There are some ruled threefolds (projectivisation of rank 2 bundles
over a surface endowed with a constant scalar curvature Kähler metric) that are
asymptotically Hilbert semistable, but not asymptotically Hilbert stable.

Note that using [3, Proposition 4.1 and Corollary 4.4] our reasoning could also be
applied to the case of Mumford semistable vector bundle over a curve of genus ≥ 2
to produce other similar examples to Corollaries 3.1 and 3.2. This will be discussed
in more details in a forthcoming paper since one can be a little bit more precise in
dimension one. For instance the following conjecture is true if the base manifold is
a curve of genus g > 1.

Conjecture 2 Consider E a holomorphic vector bundle on a base manifold B po-
larized by L with c1(B) = 0 or c1(B)c1(L) �= 0. Then for m6 0, the following
assertions are equivalent:

• the polarization Lr,m on PE is asymptotically Hilbert semistable,
• the polarization Lr,m on PE is asymptotically Chow semistable,
• the polarization Lr,m on PE is K-semistable.
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Atiyah Classes of Lie Algebroids

Francesco Bottacin

Abstract Given a smooth morphism of analytic spaces π : X→ Y , we introduce
the notion of a relative Lie algebroid (A, $) overX. By replacing the relative tangent
sheaf TX/Y with the Lie algebroid A, we define the notion of a relative (A, $)-
connection on a quasi-coherent OX-module E . Then, we define the (A, $)-Atiyah
class of E as the obstruction to the existence of a holomorphic (A, $)-connection
on E . Many results of the classical theory of connections can be restated in the
more general setting of Lie algebroid connections. As an application we prove the
following result.

Let X be a complex manifold and (A, $) a Lie algebroid over X. For any quasi-
coherent sheaf of commutative OX-algebras F , let us write gi =Hi−1(X,A⊗F).
The (A, $)-Atiyah class of A yields maps gi ⊗ gj → gi+j . These maps define a
graded Lie algebra structure on the graded vector space g• =⊕i gi . In a similar
way, for any holomorphic vector bundle E over X, let us write Vj =Hj−1(X,E ⊗
F). Then, for any i and j , the (A, $)-Atiyah class ofE yields a map gi⊗Vj → Vi+j ,
and these maps define a structure of graded module on the graded vector space V • =⊕
j Vj , over the graded Lie algebra g•. This generalizes a similar result proved by

Kapranov in Compos. Math. 115:71–113, 1999. Similar results have been obtained
by Chen, Stiénon and Xu in From Atiyah classes to homotopy Leibniz algebras
2012, by using different techniques.
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1 Introduction

The theory of connections is a central topic in differential geometry. A rather natural
generalization of the classical notion of connection on a vector or principal bundle
over a differentiable manifold X is obtained by replacing the tangent bundle of
X with a Lie algebroid (A, $) over X; this leads to the notion of a Lie algebroid
connection.

Most of the results of the classical theory of connections (e.g., the Chern–Weil
theory of characteristic classes) extend to Lie algebroid connections. We refer to
[10] for an introduction to Lie algebroids and to [5] for a detailed account on Lie
algebroid connections.

While Lie algebroid connections on a smooth vector bundle over a differentiable
manifoldX always exist (this is a consequence of the existence of partitions of unity
on X), when X is a complex manifold there is an obstruction to the existence of a
global holomorphic Lie algebroid connection on a holomorphic vector bundle E
over X. This obstruction is given by a cohomology class that is the analogue of the
Atiyah class of E; we call it the (A, $)-Atiyah class of E. As a special case, if we
take E =A, we may look at the (A, $)-Atiyah class of A itself.

As happens for their classical counterparts, the new Atiyah classes arising from
Lie algebroid connections present very interesting features.

In the classical case, i.e., when the Lie algebroid (A, $) is the tangent bundle
of a complex manifold X, M. Kapranov [8] (inspired by ideas of M. Kontsevich)
discovered the fundamental role played by the Atiyah class of TX in the construction
of the topological invariants of 3-dimensional manifolds, previously introduced by
L. Rozansky and E. Witten. One of the main results contained in Kapranov’s paper
may be restated as follows. Let TX[−1] denotes the shifted tangent sheaf of X,
considered as an object in the derived categoryD+(X) of bounded below complexes
of sheaves of OX-modules with coherent cohomology. Then the Atiyah class of the
tangent bundle of X determines a map TX[−1] ⊗ TX[−1] → TX[−1], which makes
TX[−1] into a Lie algebra object in D+(X).

As an application of the general theory of Lie algebroid connections, we prove
that similar results hold if we replace the tangent bundle of a complex manifold X
with a Lie algebroid A over X. In this case the role of the Atiyah class of TX is
played by the (A, $)-Atiyah class of A.

More precisely, we prove that, given a Lie algebroid (A, $) over X and a quasi-
coherent sheaf of commutative OX-algebras F , there is a map

Hi(X,A⊗F)⊗Hj(X,A⊗F)→Hi+j+1(X,A⊗F)

obtained by composing the cup-product of two cohomology classes with the (A, $)-
Atiyah class of A. If we set gi =Hi−1(X,A⊗F), the collection of maps gi⊗gj →
gi+j defines a graded Lie algebra structure on the graded vector space g• =⊕i gi .

In a similar way, for any holomorphic vector bundle E over X, we can define a
map

Hi(X,A⊗F)⊗Hj(X,E ⊗F)→Hi+j+1(X,E ⊗F),
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by using the (A, $)-Atiyah class of E. If we write Vj =Hj−1(X,E ⊗F), we get a
collection of maps gi ⊗ Vj → Vi+j , for any i and j , defining a structure of graded
module on the graded vector space V • =⊕j Vj , over the graded Lie algebra g•.

We remark that, in a recent paper, Z. Chen, M. Stiénon and P. Xu [4] developed
a general theory of Atiyah classes relative to pairs consisting of a Lie algebroid A
over X and a Lie subalgebroid of A, over the same base manifold. They also proved
a generalization of Kapranov’s results by using different techniques.

This paper is organized as follows. In Sect. 1 we develop the basic theory of
holomorphic Lie algebroids and Lie algebroid connections in a relative setting.
More precisely, we introduce the notion of a relative Lie algebroid over X, where
π : X→ Y is a smooth morphism of analytic spaces. Then we define relative (A, $)-
connections on a quasi-coherent sheaf of OX-modules E and study their basic prop-
erties.

In Sect. 2 we introduce the sheaf of first (A, $)-jets of E and define the (A, $)-
Atiyah class of E as the obstruction to the existence of a global holomorphic (A, $)-
connection on E . We also prove that the (A, $)-Atiyah class of A is symmetric.

In Sects. 3 and 4 we define the sheaves of higher (A, $)-jets and the sheaf of
(A, $)-differential operators. Then, in Sect. 5, we prove a version of the so-called
‘cohomological Bianchi identity,’ originally proved in [8] for the usual Atiyah class
of a vector bundle.

Finally, in the last section, we show how Kapranov’s results can be generalized to
the framework of Lie algebroid connections. The proofs are obtained by following
Kapranov’s original argument, with suitable modifications. Note that the basic tool
needed for proving that the composition with the (A, $)-Atiyah class of A defines a
graded Lie algebra structure on the graded vector space g• =⊕i H

i−1(X,A⊗F)
is precisely the cohomological Bianchi identity, which implies the graded Jacobi
identity for the graded Lie bracket.

2 Preliminaries

2.1 (A, �)-Connections

Let π : X → Y be a smooth morphism of analytic spaces (or a smooth mor-
phism of schemes, defined over a field of characteristic 0). We denote by TX/Y =
HomOX(Ω

1
X/Y ,OX) the relative tangent sheaf (which is locally free, since π is

smooth).

Definition 2.1 A relative Lie algebroid over X is a locally free sheaf of OX-
modules A, with a π−1OY -linear morphism [·, ·] : A ⊗ A → A which defines a
Lie algebra structure on the spaces of sections, together with a homomorphism of
OX-modules $ : A → TX/Y , called the anchor map, such that the induced map on
the spaces of sections $ : Γ (A)→ Γ (TX/Y ) is a homomorphism of Lie algebras,
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and for any sections a1, a2 ∈ Γ (A) and f ∈ Γ (OX), the following Leibniz identity
holds:

[a1, f a2] = f [a1, a2] + $a1(f )a2. (2.1)

Remark 2.2 Let us denote byXy the fiber of π : X→ Y over a point y ∈ Y . If (A, $)
is a relative Lie algebroid over X we shall denote by Ay the restriction of A to Xy
and by $y : Ay → TXy the map induced by $. The previous definition implies that,
for any y ∈ Y , (Ay, $y) is a Lie algebroid overXy . Thus a relative Lie algebroid over
X may be thought as a family of Lie algebroids over the fibers Xy , parametrized by
the points y ∈ Y .

Let 1 : Ω1
X/Y → A∗ = HomOX(A,OX) be the dual of the anchor map, and let

dA : OX → A∗ be the π−1OY -derivation defined by dA = 1 ◦ dX/Y

OX
dX/Y

dA

Ω1
X/Y

1

A∗

where dX/Y : OX →Ω1
X/Y is the usual relative differential.

Let now E be a quasi-coherent OX-module.

Definition 2.3 A relative (A, $)-connection on E is a π−1OY -linear morphism

∇ : E → E ⊗A∗

such that

∇(f s)= f∇(s)+ s ⊗ dA(f ),
for any local sections s of E and f of OX .

For any section a ∈ Γ (A), we define

∇a : E → E

by setting ∇a(s)= 〈∇s, a〉. The map ∇a is π−1OY -linear and satisfies the following
identity:

∇a(f s)= f∇a(s)+ $a(f )s.
We also have

∇f1a1+f2a2 = f1∇a1 + f2∇a2 .
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Remark 2.4 If ∇ and ∇′ are two relative (A, $)-connections on E , their difference
∇′ − ∇ is OX-linear, hence ∇′ − ∇ ∈ HomOX(E,E ⊗A∗). It follows that the space
Conn(A,$)(E) of relative (A, $)-connections on E is an affine space modeled on the
vector space HomOX(E,E ⊗A∗).

2.2 Extension of a Relative (A, �)-Connection

We can extend the π−1OY -derivation dA : OX →A∗ to an operator

dA : ∧p A∗ → ∧p+1A∗

by setting, for any section α of ∧pA∗,

(dAα)(a1, . . . , ap+1) =
p+1∑

i=1

(−1)i+1$aiα(a1, . . . , âi , . . . , ap+1)

+
∑

i<j

(−1)i+jα
([ai, aj ], a1, . . . , âi , . . . , âj , . . . , ap+1

)

where [·, ·] : A ⊗ A → A is the Lie bracket of the relative Lie algebroid A (the
Leibniz identity (2.1) implies that dA(α) is actually a section of ∧p+1A∗).

The fact that $ : A → TX/Y induces a homomorphism of Lie algebras, together
with the Jacobi identity for the Lie bracket on A, imply that dA ◦ dA = 0, hence we
have a complex

0 −→ OX
dA−→ A∗ dA−→ ∧2A∗ dA−→ · · · (2.2)

called the (A, $)-de Rham complex.
Let now ∇ : E → E ⊗ A∗ be a (A, $)-connection on E . As in the classical case,

we shall extend ∇ to an operator

∇ : E ⊗ ∧pA∗ → E ⊗ ∧p+1A∗

by requiring that

∇(s ⊗ α)= (∇s)∧ α + s ⊗ dA(α),
for any sections s of E and α of ∧pA∗.

Then we can define the (A, $)-curvature of ∇ by setting

R = ∇ ◦ ∇ : E → E ⊗ ∧2A∗.

It is immediate to check that R is OX-linear, hence it is a section of End(E) ⊗
∧2A∗. A (A, $)-connection is called flat if its (A, $)-curvature vanishes. The (A, $)-
curvature R satisfies an analogue of the classical Bianchi identity.
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3 (A, �)-Jets and Atiyah Classes

For a quasi-coherent OX-module E let us consider the standard 1-jet exact sequence
(also called Atiyah sequence)

0 −→ E ⊗Ω1
X/Y −→ J 1

X/Y (E)−→ E −→ 0 (3.1)

(which is split as a sequence of π−1OY -modules but not, in general, as a sequence
of OX-modules).

We can define the sheaf of first (A, $)-jets of E by pushing forward the previous
exact sequence via the map idE ⊗1 : E ⊗Ω1

X/Y → E ⊗A∗. Hence, by definition, we
have a commutative diagram (morphism of extensions)

0 E ⊗Ω1
X/Y J 1

X/Y (E) E 0

0 E ⊗A∗ J 1
(A,$)(E) E 0

(3.2)

Note that the exact sequence

0 −→ E ⊗A∗ −→ J 1
(A,$)(E)−→ E −→ 0 (3.3)

is split as a sequence of π−1OY -modules but not, in general, as a sequence of OX-
modules.

Remark 3.1 As sheaves of π−1OY -modules, we have

J 1
(A,$)(E)= E ⊕ (E ⊗A∗).

Note that J 1
(A,$)(E) has two structures of OX-module: one is given by

f · (s, σ )= (f s, f σ ),
for sections f ∈ Γ (OX), s ∈ Γ (E) and σ ∈ Γ (E ⊗ A∗); we shall call this the left
OX-module structure.

The other one is defined by setting

(s, σ ) · f = (f s, f σ + s ⊗ dAf ),
and is called the right OX-module structure.

Unless otherwise stated, we shall always consider J 1
(A,$)(E) as an OX-module

with its right module structure.

It is well known that the data of a relative connection on E is equivalent to
a splitting of the exact sequence (3.1). A similar result holds for relative (A, $)-
connections:
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Lemma 3.2 A splitting of the sequence (3.3) is equivalent to a relative (A, $)-
connection on E .

Proof As sheaves of π−1OY -modules, we have

J 1
(A,$)(E)= E ⊕ (E ⊗A∗),

hence a splitting of (3.3) is given by a homomorphism of OX-modules

φ : E → J 1
(A,$)(E), s �→ φ(s)= (s,∇(s)),

for some map ∇ : E → E ⊗ A∗. Since φ is OX-linear, we have φ(f s) = φ(s)f ,
for sections f ∈ Γ (OX) and s ∈ Γ (E). But φ(f s) = (f s,∇(f s)) and φ(s)f =
(s,∇(s))f = (f s, f∇(s)+ s ⊗ dA(f )), hence the map ∇ must satisfy the identity

∇(f s)= f∇(s)+ s ⊗ dA(f ).
So, requiring that φ be a homomorphism of OX-modules is equivalent to requiring
that ∇ be a (A, $)-connection on E . �

Definition 3.3 The (A, $)-Atiyah class of E is the class

a(A,$)(E) ∈ Ext1
(
E,E ⊗A∗)

corresponding to the extension (3.3).

From Lemma 3.2 we obtain the following result:

Corollary 3.4 A relative (A, $)-connection on E exists if and only if the (A, $)-
Atiyah class of E vanishes.

Remark 3.5 The construction of the relative Atiyah class, and its relation with the
usual notion of a relative connection, can be found in [7], where it is discussed in
great generality.

Let us now compare the (A, $)-Atiyah class of E with its usual Atiyah class. The
usual Atiyah class of E is the class a(E) ∈ Ext1(E,E ⊗Ω1

X/Y ) corresponding to the
extension (3.1). The morphism of extensions (3.2) induces a morphism

Ext1
(
E,E ⊗Ω1

X/Y

)→ Ext1
(
E,E ⊗A∗).

It is now immediate to verify that the (A, $)-Atiyah class of E is the image of the
usual Atiyah class a(E) under the previous map.

Remark 3.6 Exactly as the usual Atiyah class can be used to define the Chern
classes of E , we could use the (A, $)-Atiyah class to define what we may call (A, $)-
Chern classes.
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If we consider the morphism Ext1(E,E ⊗Ω1
X/Y )→ Ext1(E,E ⊗ A∗), induced

by the map 1 : Ω1
X/Y → A∗, and we apply the trace maps, we obtain a commutative

diagram

Ext1(E,E ⊗Ω1
X/Y )

idE ⊗1

tr

Ext1(E,E ⊗A∗)

tr

H 1(X,Ω1
X/Y )

1

H 1(X,A∗)

Since the first Chern class of E is given by c1(E)= tr(a(E)), we find that 1(c1(E))=
tr(a(A,$)(E)) (and a similar statement holds for all higher Chern classes). It follows
that the (A, $)-Chern classes that we could define using a (A, $)-connection on
E are not particularly interesting because they are the image of the usual Chern
classes of E under the maps Hi(X,ΩiX/Y )→ Hi(X,∧iA∗) induced by the mor-

phism 1 : Ω1
X/Y →A∗.

Remark 3.7 As we mentioned in the introduction, in [4] the authors introduced a
notion of Atiyah class of a vector bundle E over a smooth manifold M , relative to
a pair consisting of a Lie algebroid L over M and a Lie subalgebroid A⊂ L. More
precisely, given a pair (L,A) as above, we say that E is a vector bundle over (L,A)
if E is a vector bundle over M endowed with an A-module structure. Under these
assumptions, Chen, Stiénon and Xu defined the notion of a Lie algebroid connection
on E, relative to the Lie algebroid pair (L,A). When A= 0 this definition coincides
with the definition of a Lie algebroid connection we gave in Sect. 2.1.

The construction of the Atiyah class of E, relative to the pair (L,A), is carried
out as follows. Let ∇ be any smooth L-connection on E that extends the action
of A on E (E is assumed to be an A-module, as before). The curvature of such a
connection defines a section R ∈ Γ (A∗ ⊗ A⊥ ⊗ End(E)). This is a 1-cocycle for
the Lie algebroid A with values in the A-module A⊥ ⊗ End(E). The cohomology
class of this cocycle in H 1(A;A⊥ ⊗ End(E)) is the Atiyah class of the A-module
E. When A= 0 the Atiyah class of E defined in this way coincides with the one we
have introduced in Sect. 3, computed by using the Dolbeault model for cohomology.

3.1 (A, �)-Connections on A

Let us consider now the special case E = A. Let ∇ : A → A ⊗ A∗ be a (A, $)-
connection on A.

For any section a ∈ Γ (A) we define the derivation ∇a : A →A by setting

∇a(b)= 〈∇b, a〉.



Atiyah Classes of Lie Algebroids 383

Then we define the (A, $)-torsion of ∇ by setting

T (a, b)= ∇a(b)− ∇b(a)− [a, b],
for sections a, b of A. It is easy to see that T ∈ HomOX(∧2A,A). A (A, $)-
connection on A is said to be torsion-free if its (A, $)-torsion vanishes.

The following result, proved in [8], carries over into this more general setting
(with a similar proof).

Theorem 3.8 Let (A, $) be a relative Lie algebroid over X and let

a(A,$)(A) ∈ Ext1
(
A,A⊗A∗)= Ext1(A⊗A,A)

be its (A, $)-Atiyah class. Then a(A,$)(A) is symmetric, i.e., it belongs to Ext1(S2A,
A).

Proof Let Conn(A,$)(A) be the sheaf whose sections over U ⊂X are the holomor-
phic (A, $)-connections defined on A|U . As seen in Remark 2.4, this is an affine
space over Γ (U,End(A) ⊗ A∗). Then Conn(A,$)(A) is a sheaf of torsors over
End(A)⊗ A∗. Sheaves of torsors over End(A)⊗ A∗ are classified by elements of
H 1(X,End(A)⊗ A∗)= Ext1(A,A ⊗ A∗), and a(A,$)(A) is precisely the element
that classifies Conn(A,$)(A).

Similarly, let Conntf
(A,$)(A) be the sheaf whose sections over U ⊂ X are the

torsion free (A, $)-connections on A|U . Then Conntf
(A,$)(A) is a sheaf of tor-

sors over S2(A∗) ⊗ A. Since the sheaf of torsors Conn(A,$)(A) is obtained from
Conntf

(A,$)(A) by “change of scalars” (i.e., from S2(A∗) ⊗ A to A∗ ⊗ A∗ ⊗ A),

it follows that the classifying element a(A,$)(A) ∈ H 1(X,A∗ ⊗ A∗ ⊗ A) actually
belongs to the summand H 1(X,S2(A∗)⊗A)= Ext1(S2A,A). �

4 Higher (A, �)-Jets

In this section we shall briefly describe how it is possible to define sheaves of higher
order (A, $)-jets.

For a quasi-coherent OX-module E we have already seen that J 1
(A,$)(E) = E ⊕

(E ⊗A∗), with the structure of OX-module (on the right) given by

(s, σ ) · f = (f s, f σ + s ⊗ dAf ).
We can now define the sheaf of 2nd (A, $)-jets of E by setting

J 2
(A,$)(E)= J 1

(A,$)(E)⊕
(
E ⊗ S2A∗)= E ⊕ (E ⊗A∗)⊕ (E ⊗ S2A∗),

as π−1OY -modules, where S2A∗ denotes the symmetric square of A∗.
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Let d(2)X/Y : OX → S2Ω1
X/Y be the quadratic differential expressed, in suitable

local coordinates zi , by

d
(2)
X/Y f = 1

2!
∑

i,j

∂2f

∂zi∂zj
dzi 9 dzj ,

where 9 denotes the symmetric product.
Let us define the quadratic derivation d(2)A : OX → S2A∗ as the composition

d
(2)
A = (19 1) ◦ d(2)X/Y

OX
d
(2)
X/Y

d
(2)
A

S2Ω1
X/Y

191

S2A∗

The structure of (right) OX-module on J 2
(A,$)(E) is defined by setting

(s, σ, τ ) · f = (f s,f σ + s ⊗ dAf,f τ + σ ⊗ dAf + s ⊗ d(2)A f
)
,

for sections f ∈ Γ (OX), s ∈ Γ (E), σ ∈ Γ (E ⊗ A∗) and τ ∈ Γ (E ⊗ S2A∗) (here,
by σ ⊗ dAf we mean the image of σ ⊗ dAf ∈ E ⊗ A∗ ⊗ A∗ in E ⊗ S2A∗ under
the symmetrization map E ⊗A∗ ⊗A∗ → E ⊗ S2A∗).

There is an exact sequence of OX-modules

0 → E ⊗ S2A∗ → J 2
(A,$)(E)→ J 1

(A,$)(E)→ 0 (4.1)

(which is split as a sequence of π−1OY -modules but not, in general, as a sequence
of OX-modules).

More generally, for any r ≥ 1 we can define inductively the sheaf of r-th (A, $)-
jets of E by setting

J r(A,$)(E)= J r−1
(A,$)(E)⊕

(
E ⊗ SrA∗)=

r⊕

i=0

(
E ⊗ SiA∗),

as π−1OY -modules, where SiA∗ denotes the i-th symmetric power of A∗. The
(right) OX-module structure of J r

(A,$)(E) is defined as follows. For any j ≥ 0, let
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d
(j)

A : OX → SjA∗ be the composition d(j)A = (Sj 1) ◦ d(j)X/Y

OX
d
(j)
X/Y

d
(j)

A

SjΩ1
X/Y

Sj 1

SjA∗

where d(j)X/Y : OX → SjΩ1
X/Y is given locally by

d
(j)
X/Y f = 1

j !
∑

i1,...,ij

∂j f

∂zi1 · · · ∂zij
dzi1 9 · · · 9 dzij .

Let (s0, s1, . . . , sr ) be a section of J r
(A,$)(E), with si ∈ Γ (E ⊗ SiA∗). Then, for any

f ∈ Γ (OX), we set (s0, s1, . . . , sr ) ·f = (t0, t1, . . . , tr )where, for each h= 0, . . . , r ,
the section th ∈ Γ (E ⊗ ShA∗) is given by the following expression:

th =
h∑

j=0

sj ⊗ d(h−j)A f.

There is an exact sequence

0 → E ⊗ SrA∗ → J r(A,$)(E)→ J r−1
(A,$)(E)→ 0 (4.2)

(which is split as a sequence of π−1OY -modules but not, in general, as a sequence
of OX-modules).

Finally, note that, for any r , there is a homomorphism of sheaves of abelian
groups

dr(A,$),E : E → J r(A,$)(E)

that is OX-linear for the right OX-module structure of J r
(A,$)(E). All the verifica-

tions are left as exercises.

5 (A, �)-Differential Operators

Let us recall that D = DX/Y , the sheaf of rings of finite-order (holomorphic) differ-
ential operators on X over Y , is generated, as an algebra, by OX and by TX/Y .

In a similar way, we define D(A,$) to be the algebra generated by OX and A,
with the commutation relations given by

af = $(a)(f )+ f a and a1a2 = a2a1 + [a1, a2], (5.1)

where a, a1, a2 are sections of A and f is a section of OX .
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The sheaf of non-commutative rings D(A,$) is endowed with a filtration

0 ⊂ OX = D≤0
(A,$) ⊂ D≤1

(A,$) ⊂ · · · ⊂D≤r
(A,$) ⊂ · · · ⊂ D(A,$)

such that

D(A,$) =
⋃

r≥0

D≤r
(A,$),

where, for each r , the OX-module D≤r
(A,$) is the dual of the sheaf of r-th (A, $)-jets

J r
(A,$)(OX),

D≤r
(A,$) = HomOX

(
J r(A,$)(OX),OX

)
.

If D is the usual ring of differential operators on X over Y , the anchor map $ : A →
TX/Y induces a homomorphism of filtered rings

$ : D(A,$) →D.

The map σ : D≤r
(A,$) → SrA, that associates to a (A, $)-differential operator its high-

est order term, is well defined and is called the principal symbol map. For every
r > 0, there is an exact sequence

0 → D≤r−1
(A,$) → D≤r

(A,$) → SrA → 0

which is the dual of

0 → SrA∗ → J r(A,$)(OX)→ J r−1
(A,$)(OX)→ 0.

The associated graded ring of the filtered ring D(A,$) is isomorphic to the symmetric
algebra over A

gr(D(A,$))∼= S·(A).

Let us recall that a relative flat connection on a coherent sheaf of OX-modules E is
equivalent to a structure of D-module on E . In a similar way it is easy to prove that
a relative flat (A, $)-connection on E is equivalent to a structure of D(A,$)-module
on E .

To end this section let us recall that if X is a complex manifold (or a smooth
algebraic variety defined over a field of characteristic zero) and E is a coherent OX-
module endowed with a (usual) connection, then it is well known that E is actually
locally free, hence it is the sheaf of sections of a vector bundle E over X. This was
proved in [9], under the assumption that the connection is flat, and in [1] in general.

For Lie algebroid connections a similar result holds under the assumption that the
anchor map is surjective, as we shall now explain. The proof can be obtained by an
easy adaptation of the proof of Theorem 1.4.10 in [6]. For the reader’s convenience
we shall report the argument here.
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Theorem 5.1 Let X be a complex manifold, (A, $) be a Lie algebroid over X and
let E be a coherent OX-module endowed with a (A, $)-connection ∇ . Let us assume
that the anchor map $ : A→ TX is surjective. Then E is locally free.

Proof Since E is coherent, to prove that it is locally free it is enough to show that
the stalk Ex is a free OX,x -module, for any x ∈X.

Let us choose local coordinates {x1, . . . , xn} in X, so that the maximal ideal m of
the local ring OX,x is generated by x1, . . . , xn. From Nakayama’s lemma it follows
that there exist elements s1, . . . , sm ∈ Ex such that Ex is generated by s1, . . . , sm as
an OX,x -module and s̄1, . . . , s̄m ∈ Ex/mEx are free generators of the vector space
Ex/mEx over C = OX,x/m.

We shall now prove that {s1, . . . , sm} is a free set of generators of the OX,x -
module Ex .

Let us assume that there exists a non-trivial relation
∑m
i=1 fisi = 0, for some

fi ∈ OX,x . We define the order of fi at x ∈X by setting

ord(fi)= max
{
h
∣
∣ fi ∈m

h
}
.

For each j = 1, . . . , n let us set ∂j = ∂/∂xj and choose a local section aj ∈A such
that $aj = ∂j ∈ TX (this is possible because we are assuming $ : A→ TX to be
surjective). Now let us apply ∇aj to the above relation. We obtain a new relation

0 =
m∑

i=1

(∂jfi)si +
m∑

i=1

fi∇aj si =
m∑

i=1

gisi ,

for some gi ∈ OX,x .
Applying the operator ∂j to fi has the effect of lowering the order of fi at x,

hence we can choose a suitable j such that

min
{
ord(fi)

∣
∣ i = 1, . . . ,m

}
>min

{
ord(gi)

∣
∣ i = 1, . . . ,m

}
.

By repeating this procedure, after a finite number of steps we obtain a non-trivial
relation

∑m
i=1 hisi = 0, with some hi /∈ m. It follows that we get a non-trivial re-

lation
∑m
i=1 h̄i s̄i = 0, with h̄i ∈ OX,x/m = C, but this contradicts the choice of

s1, . . . , sm. �

6 Kapranov’s ‘Cohomological Bianchi Identity’

In this section we shall generalize the so-called ‘cohomological Bianchi identity,’
proved by Kapranov in [8], to the setting of Lie algebroid connections.

LetX be a complex manifold, (A, $) a Lie algebroid overX, and D(A,$) the sheaf
of rings of (A, $)-differential operators.
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Remark 6.1 Let E be a vector bundle over X and E∗ its dual bundle. The exact
sequence

0 −→E∗ ⊗A∗ −→ J 1
(A,$)

(
E∗)−→E∗ −→ 0

computes the (A, $)-Atiyah class of E∗, a(A,$)(E∗)= −a(A,$)(E).
By dualizing, we obtain the exact sequence

0 −→E −→ D≤1
(A,$)(E)−→E ⊗A−→ 0, (6.1)

where D≤1
(A,$)(E)= D≤1

(A,$) ⊗OX E, that also computes the class

−a(A,$)(E) ∈ Ext1(E ⊗A,E)= Ext1
(
E,E ⊗A∗).

Let M be a locally free left D(A,$)-module, endowed with a good filtration Mi
by vector bundles. The D(A,$)-module structure on M is equivalent to a flat (A, $)-
connection ∇ : M →M ⊗ A∗. It follows that, for any j , we have an induced map
∇j : Mj →Mj+1 ⊗A∗.

The following result is a generalization of a similar statement, proved in [2]:

Lemma 6.2 ([2], (4.1.2.3)) LetM be as before. Then:
(a) The class −a(A,$)(Mi) is given by the following composition of maps

Mi
πi−→Mi/Mi−1

∇i−→ (Mi+1/Mi)⊗A∗ αi⊗1A∗−−−−→Mi ⊗A∗[1],
where πi : Mi →Mi/Mi−1 is the projection, ∇i : Mi/Mi−1 → (Mi+1/Mi)⊗A∗ is
induced by the (A, $)-connection ∇ , and αi ∈ Ext1(Mi+1/Mi,Mi) is the element
that corresponds to the exact sequence

0 −→Mi −→Mi+1 −→Mi+1/Mi −→ 0.

(b) The class −a(A,$)(Mi/Mi−1) is equal to the difference between the composi-
tion of morphisms

Mi/Mi−1
∇i−→ (Mi+1/Mi)⊗A∗ αi⊗1A∗−−−−→Mi ⊗A∗[1] πi [1]−−→ (Mi/Mi−1)⊗A∗[1],

and the composition

Mi/Mi−1
αi−1−−→Mi−1[1] πi−1[1]−−−−→ (Mi−1/Mi−2)[1] ∇i−1[1]−−−−→ (Mi/Mi−1)⊗A∗[1].

Proof The proof is the same as in [2], since it follows from purely formal properties
of extension classes. �

Remark 6.3 The map ∇j : Mj/Mj−1 → Mj+1/Mj ⊗ A∗ induced by the (A, $)-
connection ∇ onM , corresponds to the so-called “symbol multiplication map”

μj : A⊗Mj/Mj−1 →Mj+1/Mj .
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If we denote by fi ∈ Ext1(Mi+1/Mi,Mi/Mi−1) the composition

Mi+1/Mi
αi−→Mi[1] πi [1]−−→ (Mi/Mi−1)[1],

then part (b) of the previous lemma can be restated by saying that the class
−a(A,$)(Mi/Mi−1) is given by the difference between the following two compo-
sitions of morphisms:

A⊗Mi/Mi−1
μi−→Mi+1/Mi

fi−→ (Mi/Mi−1)[1],
and

A⊗Mi/Mi−1
1A⊗fi−1−−−−−→A⊗ (Mi−1/Mi−2)[1] μi−1[1]−−−−→ (Mi/Mi−1)[1],

i.e., we can write

−a(A,$)(Mi/Mi−1)= fi ◦μi −μi−1[1] ◦ (1A ⊗ fi−1). (6.2)

If E is a vector bundle over X, we can consider the D(A,$)-module M =
D(A,$) ⊗OX E, with the filtration given byMi = D≤i

(A,$)
⊗E. The exact sequence

0 −→ M1

M0
−→ M2

M0
−→ M2

M1
−→ 0

becomes

0 −→A⊗E −→ D≤2
(A,$)

⊗E
E

−→ S2(A)⊗E −→ 0.

Let us denote by ξ ∈ Ext1(S2(A)⊗ E,A⊗ E) the corresponding extension class.
Let σ : A ⊗ A → S2(A) be the symmetrization map. From Lemma 6.2 and the
subsequent remark, it follows that:

Lemma 6.4 With the above notations, we have

a(A,$)(A⊗E)= −ξ ◦ (σ ⊗ 1)− 1 ⊗ a(A,$)(E).

Proof Since Mi = D≤i
(A,$) ⊗ E, we have M1/M0 = A ⊗ E and M2/M1 =

S2(A) ⊗ E. From (6.2) we know that −a(A,$)(M1/M0) = −a(A,$)(A ⊗ E) is the
difference between the following composition of morphisms:

A⊗A⊗E σ⊗1E−−−→ S2(A)⊗E ξ−→A⊗E[1]
and

A⊗A⊗E 1⊗a(A,$)(E)−−−−−−−→A⊗E[1] − id−−→A⊗E[1].
Hence −a(A,$)(A⊗E)= ξ ◦ (σ ⊗ 1)+ 1 ⊗ a(A,$)(E). �
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Now we introduce some notation in order to state the main result.
Let a, b ∈H 1(X,End(E)⊗A∗). Their cup-product is

a � b ∈H 2(X,End(E)⊗ End(E)⊗A∗ ⊗A∗).

Consider the map

End(E)⊗ End(E)⊗A∗ ⊗A∗ → End(E)⊗ S2(A∗)

φ ⊗ψ ⊗ α⊗ β �→ [φ,ψ] ⊗ (α9 β)

We denote by [a � b] ∈ H 2(X,End(E) ⊗ S2(A∗)) the image of a � b under the
induced map in cohomology.

Let a ∈ H 1(X,End(E) ⊗ A∗) = Ext1(E,E ⊗ A∗) = Ext1(A ⊗ E,E), and let
c ∈ Ext1(A⊗A,A). Let us consider the composition

S2(A)⊗E ↪→A⊗A⊗E c⊗1−→A⊗E[1] a−→E[2]
We denote by

a ∗ c ∈ Hom
(
S2(A)⊗E,E[2])= Ext2

(
S2(A)⊗E,E)

=H 2(X,End(E)⊗ S2(A∗))

the corresponding element.

Theorem 6.5 (Cohomological Bianchi identity) Let a(A,$)(E) ∈ Ext1(E,E ⊗
A∗) = H 1(X,End(E)⊗ A∗) be the (A, $)-Atiyah class of a vector bundle E. Let
a(A,$)(A) ∈ Ext1(A,A ⊗ A∗) = H 1(X,End(A) ⊗ A∗) be the (A, $)-Atiyah class
of A. Then we have the identity

2
[
a(A,$)(E)� a(A,$)(E)

]+ a(A,$)(E) ∗ a(A,$)(A)= 0

in H 2(X,End(E)⊗ S2(A∗)).

Proof LetM = D(A,$) ⊗E, with the filtration

0 ⊂M0 =E ⊂M1 = D≤1
(A,$) ⊗E ⊂M2 = D≤2

(A,$) ⊗E ⊂ . . .
The exact sequence 0 →M0 →M1 →M1/M0 → 0 is

0 →E→ D≤1
(A,$) ⊗E→A⊗E→ 0,

whose extension class is −a(A,$)(E) ∈ Ext1(A ⊗ E,A). The next exact sequence
0 →M1/M0 →M2/M0 →M2/M1 → 0 is

0 →A⊗E→M2/M0 → S2(A)⊗E→ 0,

whose extension class we have denoted by ξ .
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Standard results (cf., for instance, [3]) tell us that the composition (Yoneda prod-
uct) of these two extensions is zero: a(A,$)(E) ◦ ξ = 0

S2(A)⊗E ξ−→A⊗E[1] a(A,$)(E)−−−−−→E[2].
From Lemma 6.4 we have

a(A,$)(A⊗E)= −ξ ◦ (σ ⊗ 1)− 1 ⊗ a(A,$)(E).
The (A, $)-Atiyah class of a tensor product of vector bundles is given by

a(A,$)(A⊗E)= a(A,$)(A)⊗ 1 + 1 ⊗ a(A,$)(E),
hence

2
(
1 ⊗ a(A,$)(E)

)+ a(A,$)(A)⊗ 1 = −ξ ◦ (σ ⊗ 1).

Now we take the Yoneda product of the previous expression with a(A,$)(E) (on the
left), and we recall that a(A,$)(E) ◦ ξ = 0.

We get

2
[
a(A,$)(E)� a(A,$)(E)

]+ a(A,$)(E) ∗ a(A,$)(A)= 0. �

7 The Lie Algebra Structure

Let X and (A, $) be as before, and let F be a quasi-coherent sheaf of commutative
OX-algebras. We consider the composition of the following maps: first we take the
cup-product

Hi(X,A⊗F)⊗Hj(X,A⊗F)→Hi+j (X,A⊗A⊗F ⊗F)

followed by the map

Hi+j (X,A⊗A⊗F ⊗F)→Hi+j (X,A⊗A⊗F)

induced by the commutative multiplication F ⊗F → F . Then we take the Yoneda
product with a(A,$)(A) ∈H 1(X,Hom(S2(A),A)):

Hi+j (X,A⊗A⊗F)→Hi+j+1(X,A⊗F).

So, for any i and j , we obtain maps

Hi(X,A⊗F)⊗Hj(X,A⊗F)→Hi+j+1(X,A⊗F).

Let us set gi =Hi−1(X,A⊗F). Then we can rewrite the previous maps as follows:

gi ⊗ gj → gi+j .
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Theorem 7.1 The maps above define a graded Lie algebra structure on the graded
vector space g• =⊕i gi .

Proof Let αi ∈ gi , αj ∈ gj , and let us denote the bracket by [αi,αj ] ∈ gi+j . The
bilinearity of the bracket is obvious. The (graded) antisymmetry is given by the
following expression:

[αj ,αi] = −(−1)ij [αi,αj ].
This follows immediately from the graded commutativity of the cup-product. It re-
mains only to prove the (graded) Jacobi identity:

(−1)ik
[
αi, [αj ,αk]

]+ (−1)ij
[
αj , [αk,αi]

]+ (−1)jk
[
αk, [αi,αj ]

]= 0.

Let us denote the left-hand side by θ(αi, αj ,αk). This defines an element θ ∈
Hom(∧3g•,g•), and we can check that θ(αi, αj ,αk) is obtained by taking the cup-
product

αi � αj � αk ∈Hi+j+k−3(X,A⊗A⊗A⊗F)

followed by the composition with an element of H 2(X,Hom(S3(A),A)). This ele-
ment turns out to be the symmetrization of

[
a(A,$)(A)� a(A,$)(A)

] ∈H 2(X,Hom
(
A⊗ S2(A),A

))
.

Now we use the cohomological Bianchi identity (for E =A):

2
[
a(A,$)(A)� a(A,$)(A)

]+ a(A,$)(A) ∗ a(A,$)(A)= 0.

From the definition, it follows that the symmetrization of a(A,$)(A) ∗ a(A,$)(A) is 0,
hence the same is true for the symmetrization of [a(A,$)(A) � a(A,$)(A)]. This fi-
nally means that θ = 0, which proves the Jacobi identity. �

Let X, (A, $), F be as before, and let E be a holomorphic vector bundle over X.
We consider now the composition of the following maps: first we take the cup-
product

Hi(X,A⊗F)⊗Hj(X,E ⊗F)→Hi+j (X,A⊗E ⊗F)

(where we have used the multiplication F ⊗F → F , as before). Then we take the
Yoneda product with a(A,$)(E) ∈H 1(X,Hom(A⊗E,E)):

Hi+j (X,A⊗E ⊗F)→Hi+j+1(X,E ⊗F).

If we set gi = Hi−1(X,A⊗ F) and Vj = Hj−1(X,E ⊗ F), for any i and j , we
have maps gi ⊗ Vj → Vi+j . We can now prove the following result:

Theorem 7.2 The maps above define a structure of graded module on the graded
vector space V • =⊕j Vj , over the graded Lie algebra g•.
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Proof Let αi ∈ gi , αj ∈ gj and vk ∈ Vk . We must prove that

[αi,αj ]vk − αi(αj vk)+ (−1)ij αj (αivk)= 0.

The left-hand side defines an element φ ∈ Hom(∧2g• ⊗V •,V •), and we can check
that φ is obtained by taking the cup-product

αi � αj � vk ∈Hi+j+k−3(X,A⊗A⊗E ⊗F)

followed by the Yoneda composition with an element of H 2(X,Hom(S2(A) ⊗
E,E)). This element is precisely

2
[
a(A,$)(E)� a(A,$)(E)

]+ a(A,$)(E) ∗ a(A,$)(A),
which vanishes by the cohomological Bianchi identity. �
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Kähler Metrics with Cone Singularities
and Uniqueness Problem

Kai Zheng

Abstract The Kähler metric with cone singularities has been the main subject
which is being studied recently. In this expository note, we focus on the modular
space of the Kähler metric with cone singularities. We first summary our work on
the construction of the geodesic of the cone singularities. Then we apply the cone
geodesic to obtain a uniqueness theorem of the constant scalar curvature Kähler
metrics with cone singularities.

Keywords Kähler cone metrics

Mathematics Subject Classification (2010) Primary 32Q15 · Secondary 53C55

1 Introduction

Let X be a smooth n-dimensional compact Kähler manifold without boundary and
Ω be a Kähler class on X. We denote by ω0 a smooth Kähler metric in X, and
by H the space of Kähler metrics in Ω . In H, the famous L2 metric was defined
independently by Mabuchi [23], Donaldson [17] and Semmes [24]. Under which,
H becomes a non-positive curved infinite-dimensional symmetric space. Semmes
[24] pointed out that the geodesic equation in H is a homogeneous complex Monge–
Ampère (HCMA) equation,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

Ω0 +
√−1

2
∂∂̄Ψ

)n+1

= 0 in X×R,
∑

1≤i,j≤n

(

Ω0 +
√−1

2
∂∂̄Ψ

)

ij̄

dzi ∧ dzj̄ > 0 in X× {zn+1};
(1.1)

here R is a cylinder with boundary, and Ω0 is the pull-back metric of ω0 under the
natural projection to X.
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Geodesics are basic geometric objects in modular space H. The intensive rela-
tion between the geodesics of H and the existence and the uniqueness of the con-
stant scalar curvature Kähler (cscK) metrics or the extremal Kähler metrics in gen-
eral, was pointed out by Donaldson [17]. In the same paper, he conjectured that
H endowed with the L2 metric is geodesically convex and is a metric space. The
geodesic equation (1.1) is solved in Chen [13] under smooth Dirichlet conditions,
then the existence of C1,1 geodesic segments (of bounded mixed derivatives) is es-
tablished. Thus he verified that the space of Kähler metrics is a metric space. Later
in [11], Chen and Tian improved the partial regularity of the C1,1 geodesic, then
proved the uniqueness of the extremal metrics. In general, a C1,1 geodesic does not
need to be smooth that was showed by Donaldson [18], Darvas–Lempert [15] and
Lempert–Vivas [22].

The Kähler metrics with cone singularities (Kähler cone metrics for short) have
been extensively studied recently. They are the main objects in Donaldson’s pro-
gramme [19], in which a new continuity method is invented. The cone angle is used
as parameter of deforming the Kähler–Einstein cone metrics to the smooth ones.
There are many beautiful works around the Kähler cone metrics, while many new
articles are also coming out, it is impossible to make the list of the references of this
topic complete, however more references could be found in our paper [10].

In this expository paper, we focus on the geometry of the space of Kähler cone
metrics and the uniqueness problem of the cscK cone metrics. We will summary
the results in Calamai–Zheng [10], where we constructed the geodesics with cone
singularity in a proper subspace of the space of the Kähler cone metrics and further
proved that it is a metric space. Then we will apply the cone geodesic to prove a
uniqueness theorem of the cscK metrics with cone singularity.

2 Preliminary

In the local holomorphic coordinates (z1, z2, . . . , zn), the Kähler form ω0 is written
as

ω0 =
√−1

2

n∑

i=1

(g0)ij̄ dz
i ∧ dzj̄ .

The Riemannian metric corresponding to ω is given by g =
n∑

i=1
(g0)ij̄ dz

i ⊗ dzj̄ on

T C(M). Written in this form, the metric g0 is Kähler if and only if

(g0)ij = (g0)īj̄ = 0 and
∂(g0)ij̄

∂zk
= ∂(g0)kj̄

∂zi
.

The volume form is the (n,n) form

dV = ωn0

n! =
(√−1

2

)n

det
(
(g0)ij̄

)
dz1 ∧ dz1̄ ∧ · · · ∧ dzn ∧ dzn̄.
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The volume of M with respect different Kähler metrics within a fixed Kähler class
is a topological invariant. For each ω ∈Ω , the corresponding Ricci form

Ric =
√−1

2

n∑

i=1

Rij̄ dz
i ∧ dzj̄ =

√−1

2
∂̄∂ log det(g0)

is a closed form. The first Chern class is C1(M)= [Ric]
π

. The scalar curvature is the
contraction of the Ricci curvature

S = gij̄0 Rij̄ .
Furthermore, from the formulae

Sωn0 = nRic ∧ωn−1
0 ,

we obtain that the average of the scalar curvature is

S =
∫

M
SdV

V
= 1

(n− 1)!V
∫

M

Ric ∧ωn−1
0 = Ric ·Ωn−1

n ·Ωn = πC1(M)Ω
n−1

n ·Ωn .

Thus S is also a topological invariant. According to the ∂∂̄ lemma, the space of
Kähler potentials is formulated as

H =
{

ϕ ∈ C∞(M,R)
∣
∣
∣ ω0 +

√−1

2
∂∂̄ϕ > 0

}

/R.

In [8, 9], Calabi suggest minimizing the L2-norm of the scalar curvature in H,
∫

M

S2ωn0 ,

which is now known as Calabi functional. Its critical points are called the extremal
Kähler metrics which contain both the Kähler–Einstein metrics

Ric = lω,
in which, the constant l is the sign of the first Chern class and more general, the
constant scalar curvature Kähler (cscK) metrics

S = S.
In H, a Riemannian metric is defined in Donaldson [17], Mabuchi [23] and

Semmes [24] as

1

n!
∫

M

f1f2ω
n
ϕ (2.1)

for any f1, f2 ∈ TϕH. Under this metric, H becomes a non-positive curved infinite
dimensional symmetric space. The C1,1 geodesics with respect to this L2 metric are
constructed by Chen [13].
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Theorem 2.1 (Chen [13]) Any two points in H can be connected by a unique C1,1

geodesic and H is a metric space.

3 Space of Kähler Cone Metric

Let us detail now the concept of Kähler cone metric. Let

D =
m∑

i=1

(1 − βi)Vi

be a normal crossing, effective smooth divisor of X with 0< βi ≤ 1 for 1 ≤ i ≤m,
where Vi ⊂X are irreducible smooth hypersurfaces. Set β := (β1, . . . , βm) and call
the βi ’s the cone angles.

Definition 3.1 Given a point p in D, label a local chart (Up, zi) centered at p as
local cone chart when z1, . . . , zk are the local defining functions of the hypersur-
faces where p locates. A Kähler cone metric ω of cone angle 2πβi along Vi , for
1 ≤ i ≤ m, is a closed positive (1,1)-current and a smooth Kähler metric on the
regular partM :=X \D. In a local cone chart Up its Kähler form is quasi-isometric
to the cone flat metric, which is

ωcone :=
√−1

2

k∑

i=1

β2
i

∣
∣zi
∣
∣2(βi−1)

dzi ∧ dzī +
∑

k+1≤j≤n
dzj ∧ dzj̄ . (3.1)

Let Hβ be the space of Kähler cone metrics of cone angle 2πβi along Vi in the
cohomology classΩ . An example of the Kähler cone metric in Hβ is constructed in
Donaldson [20] as following. Let s be a global meromorphic section of [D]. Let h
be an Hermitian metric on [D]. It is shown in [20] that, for sufficiently small δ > 0,

ω= ω0 + δ
m∑

i=1

√−1

2
∂∂̄|si |2βihΛ (3.2)

is a Kähler cone metric. Moreover, ω is independent of the choices of ω0, hΛ, δ up
to quasi-isometry. We call it model metric in this paper.

We denote H2,α
β be the space of C2,α

β ω0-psh-functions (see next section for

details). In H2,α
β , we could also first define the L2 Riemannian metric like (2.1).

The delicate part is to verify the integral is well-defined by the integration by part.
Then we could compute the Levi–Civita connection and the geodesic equation.

ϕ′′ − (∂ϕ′, ∂ϕ′)
gϕ

= 0 onM. (3.3)

This part has been done in Calamai–Zheng [10].
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Let R = [0,1]× S1 be a cylinder and let zn+1 = t +√−1yn+1 be the coordinate
on R. We extend the functions on X to the product manifold X×R,

ϕ
(
z′, zn+1)= ϕ(z1, . . . , zn, t

)
.

Let π be the natural projection form X×R to X andΩ0 andΩ be the pulling-back
metrics of ω0 and ω respectively. We also denote

Ψ = ϕ(z1, . . . , zn, zn+1)− ∣∣zn+1
∣
∣2.

Using the definition of the determinant, one could show that a path ϕ(t) with end-
points ϕ0, ϕ1 satisfies the geodesic equation (3.3) on X if and only if Ψ satisfies the
following Dirichlet problem of a degenerate complex Monge–Ampère equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

det(Ωij̄ +Ψij̄ )= 0 inM ×R,
Ψ (z)= Ψ0 on X× ∂R,
∑

1≤i,j≤n
(Ωij̄ +Ψij̄ )dzidzj̄ > 0 in X× {zn+1}.

(3.4)

4 Weighted Hölder Spaces

Let Up a local cone chart as in Definition 3.1. Let W : Up \D → Up \D be the
quasi-isometric mapping given by

W
(
z1, . . . , zn

) := (w1 = ∣∣z1
∣
∣β1−1

z1, . . . ,wk = ∣∣zk∣∣βk−1
zk, zk+1, . . . , zn

)
. (4.1)

We also denote

εi := dri +
√−1βiridθi = βi

∣
∣wi
∣
∣1−μi (wi

)−1
dzi

= βi

[(

1 + μi

2

)
∣
∣wi
∣
∣
(
wi
)−1
dwi + μi

2

∣
∣wi
∣
∣−1
widwī

]

and notice that it is not a holomorphic 1-form. The weighted Hölder spaces C2,α
β

is introduced in Donaldson [20]. We need more preparation before this space is de-
fined. A function is said to be in Cαβ if it is Hölder continuous with respect to a
Kähler cone metric. While, Cαβ,0 denotes the subspace of Cαβ for which the limit of
functions is zero along each component Vi for any 1 ≤ i ≤m. The Hölder continu-
ous (1,0)-forms, in the local cone chart Up , is of the shape

ξ = fiεi + fjdzj , (4.2)

where fi ∈ Cα0 and fj ∈ Cα . Meanwhile, a Hölder (1,1)-form η in the local cone
chart Up is expressed as

η= fi1 ī2εi1εī2 + fij̄ εidzj̄ + fīj εīdzj + fj1j̄2dzj1dzj̄2; (4.3)
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here the coefficients satisfy fij̄ , fīj ∈ Cα0 and fi1 ī2, fj1j̄2 ∈ Cα .

Definition 4.1 (Donaldson [20]) The Hölder space C2,α
β is defined by

C
2,α
β = {f ∣∣ f, ∂f, ∂∂̄f ∈ Cαβ

}
.

Note that the C2,α
β space, since it concerns only the mixed derivatives, is different

from the usual C2,α space. The definitions of the higher order space Ck,αβ require the
covariant derivatives of the background metrics which result in the restriction of the
cone angle. In order to overcome this difficulty, in Calamai–Zheng [10], we choose
the flat cone metric ωcone (3.1) to define Ck,αβ . Notice that under the quasi-isometric

mapping W , ∂∂̄f ∈ Cαβ is equivalent to ∂2

∂wi∂wj̄
∈ Cα for any 1 ≤ i, j ≤ n under the

coordinate {wi}. So a nature way define the third derivative of a function belongs to
Cαβ is to require

∂3

∂wk∂wi∂wj̄
f ∈ Cα

for any 1 ≤ i, j, k ≤ n. In particular,

Definition 4.2 (Calamai–Zheng [10]) The Hölder space C3 is defined by

C3
β = {f ∣∣ f ∈ C2,α

β and the third derivative of f w.r.t ωcone is bounded
}
.

Following the same spirit, the higher order spaces are defined by induction on the
index k.

In order to solve the geodesic equation (3.4), we need a weighted Hölder space
on the whole product manifold X =X×R. In the interior of X, we could define the
same as the ones above. On the boundary of the product manifold, it is sufficient to
defined a weighted Hölder space in the cone coordinates which contain the points
of the divisor. We first note that the solution of geodesic equation is independent of
the variable yn+1, so the partial derivative on the variable xn+1 is the same to the
one on the variable zn+1. Next, the quasi-isometric mapping W is still well defined
in U+

p as follows,

W
(
z1, . . . , zn+1) := (w1 = ∣∣z1

∣
∣β1−1

z1, . . . ,wk = ∣∣zk∣∣βk−1
zk, zk+1, . . . , zn+1).

So we could define the Hölder space Cαβ (U
+
p ) to be the set of functions which

are Hölder continuous under {zi}n+1
i=1 with respect to a Kähler cone metric. Also,

Cαβ,0(U
+
p ) denotes the subspace of those functions in Cαβ (U

+
p ) for which their limit

is zero along Vi for any 1 ≤ i ≤ m. The Hölder continuous (1,0)-forms, in local
boundary cone coordinates U+

p , can be expressed as (4.2), in which the coefficients
fi ∈ Cα0 (U+

p ) and fj ∈ Cα(U+
p ). Meanwhile, a Hölder (1,1)-form η in local bound-

ary cone coordinates U+
p is of the shape as (4.3) with the coefficients satisfying
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fij̄ , fīj ∈ Cα0 (U+
p ) and fi1 ī2, fj1j̄2 ∈ Cα(U+

p ). The Hölder space C2,α
β (U+

p ) is par-
allelly defined by

C
2,α
β

(
U+
p

)= {f ∣∣ f, ∂f, ∂∂̄f ∈ Cαβ
(
U+
p

)}
.

Then we use the flat cone metric ωcone (3.1) to define the higher order space
C
k,α
β (U+

p ). The boundary C3
β space is defined in the same manner.

Definition 4.3 (Calamai–Zheng [10]) The Hölder space C3
β(U

+
p ) is defined by

C3
β

(
U+
p

)= {f ∣∣ f ∈ C2,α
β

(
U+
p

)
and the 3nd derivative of f w.r.t ωcone is bounded

}
.

Thus the higher order spaces are also defined by induction on the index k in the
same way.

5 Geodesics with Cone Singularities

When the ω0-plurisubharmonic potentials of the geodesic equation are not smooth,
which are merely bounded. The weak solution was constructed by Berndtsson.

Theorem 5.1 (Berndtsson [3]) Given two bounded ω0-plurisubharmonic poten-
tials, there is a bounded geodesic connecting them.

The cone geodesic we construct in Calamai–Zheng [10] has more regularity
across the divisor in a subspace HC (see the Definition 5.3 below) which still con-
tains the critical metrics. The regularity of the cone geodesic across the divisor are
not only important to prove the metric structure, but also to our further application
on existence and uniqueness of cscK cone metrics.

We first explain the construct of the background metric and its geometric prop-
erties. Let Ψ̃0 = tϕ1 + (1 − t)ϕ0 be the linear combination of the two boundary
potentials. After choosing a sufficient convex function Φ which depends only on
zn+1 and vanishing on the end point, we denote

Ψ1 := Ψ̃0 +mΦ.
It is verified directly that the corresponding Kähler metric

Ω1 :=Ω +
√−1

2

n+1∑

i,j=1

∂i∂j̄Ψ1

is a Kähler cone metric with the same cone angle to Ω on the product manifold X.
In general, the Kähler cone metrics do not have bounded geometry. The following
estimates are computed in Calamai–Zheng [10].
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Proposition 5.2 (Calamai–Zheng [10]) The following estimates hold.

• The connection of ω is bounded for 0< β < 2
3 under the coordinate chart {wi}.

So is the connection of Ω .
• When 0< β < 2

3 and ϕ0, ϕ1 ∈ C3
β , the connection of Ω1 is bounded.

• Suppose that ϕ0, ϕ1 ∈ C3
β have curvature lower (upper) bound. Then Ω1 has also

curvature lower (resp. upper) bound.
• Suppose that 0 < β < 2

3 , ϕ0, ϕ1 ∈ C3
β and their Ricci curvature have lower (up-

per) bound. Then the Ricci curvature of Ω1 also has lower (resp. upper) bound.

Definition 5.3 (Calamai–Zheng [10]) AssumeD are disjoint smooth hypersurfaces
and the cone angles β belong to the interval (0, 1

2 ). Then, we denote as H3
β the space

of C3
β ω0-plurisubharmonic potentials. Moreover, we label as HC ⊂ H3

β one of the
following spaces;

I1 = {ϕ ∈H3
β such that sup Ric(ωϕ) is bounded

};
I2 = {ϕ ∈H3

β such that inf Ric(ωϕ) is bounded
}
.

In particular, when the cone angle is 1, i.e., the potentials are smooth. The geo-
metric conditions of the endpoints of the geodesic which we require is the Ricci
curvature. That improved Chen’s theorem, where the uniform C1,1 norm of the
geodesic depends on the lower bound of the bisectional curvature of the endpoints
(c.f. [5, 13, 14]). This advantage makes HC contain more critical metrics with cone
singularities. For example, the Kähler–Einstein cone metrics with cone angle less
than 1

2 are included in HC . This is specified in the last section.
In general, we could approximate the geodesic equation (3.4) by replacing the

right hand side by a function F(ε) with a parameter ε and limε→0F(ε) = 0. We
denote

Ψ̃ = Ψ −Ψ1.

In Calamai–Zheng [10], we considered the family of equations with parameter a ∈
R as

{

det(Ω1ij̄ + Ψ̃ij̄ )= ε · eaΨ̃ det(Ω1ij̄ ) in M,

Ψ̃ (z)= 0 on ∂X.
(5.1)

We solved the approximation equation (5.1) with the boundary potentials in HC . In
the following proposition we still use the particular family considered by Chen [13]
with a = 0.

Proposition 5.4 (Calamai–Zheng [10]) Let HC ⊂ H2,α
β be as in Definition 5.3.

Also, let Ci := ϕi(s) : [0,1] →H2,α
β , for i = 1,2, be two smooth curves. Then, for a

small enough ε0, there is a two-parameter family of curves

C(s, ε) : ϕ(t, s, ε) : [0,1] × [0,1] × (0, ε0] → H
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such that the following properties hold:

1. Fixed s, ε, then C(s, ε) ∈ C2,α
β is an ε-approximate geodesic from ϕ1(s) to ϕ2(s).

2. There exists a uniform constant C such that

|ϕ| +
∣
∣
∣
∣
∂ϕ

∂t

∣
∣
∣
∣+
∣
∣
∣
∣
∂ϕ

∂s

∣
∣
∣
∣<C; 0 ≤ ∂2ϕ

∂t2
<C; ∂2ϕ

∂s2
<C.

3. Fixed any s, the limit in C1,1
β of C(s, ε) as ε→ 0 is the unique geodesic arc from

ϕ1(s) to ϕ2(s).
4. There exists an uniform constant C such that, about the energy E(t, s, ε) along

the curve C(s, ε), there holds

sup
t,s

∣
∣
∣
∣
∂E

∂t

∣
∣
∣
∣≤ ε ·C · Vol.

In which, E is the energy defined by E := ∫ 1
0

∫

M
|ϕ′(t)|2ωnϕ(t)dt .

Theorem 5.5 (Calamai–Zheng [10]) Any two Kähler cone metrics in HC are con-
nected by a unique C1,1

β cone geodesic. More precisely, it is the limit under the

C
1,1
β -norm by a sequence of C2,α

β approximate geodesics.

As an application, we prove the following structure theorem of HC .

Theorem 5.6 (Calamai–Zheng [10]) HC is a metric space.

6 Uniqueness of the cscK Metrics with Cone Singularities

In the smooth situation, Calabi [7] first proved the uniqueness of the Kähler–Einstein
metrics when C1(X) < 0 or = 0. When C1(X) > 0, Bando–Mabuchi [1] proved that
the Kähler–Einstein metrics are unique up to holomorphic diffeomorphisms.

On Fano manifold, a generalization of the Kähler–Einstein metric is the Kähler–
Ricci soliton. A Kähler metric ω is called Kähler–Ricci soliton, if there is a holo-
morphic vector field X such that

LXω= Ric −ω. (6.1)

Bando–Mabuchi’s method was generalized to prove the uniqueness of Kähler–Ricci
soliton.

Theorem 6.1 (Tian–Zhu [26]) If (ω,X) and (ω′,X′) are two Kähler–Ricci soli-
tons, then there is a holomorphic transformation group σ ∈ Aut0(M) such that
ω= σ ∗ω′ and X = σ−1∗ X′.
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In a general Kähler class, the (modified) K-energy plays an important role. It is
discovered in Donaldson [17] that if there is a smooth geodesic between two ex-
tremal Kähler metrics, the convexity of the modified K-energy along this geodesic
implies the uniqueness of the extremal Kähler metrics. Chen’s C1,1 geodesic is not
enough for the computation of the convexity of the modified K-energy. After im-
proving the partial regularity of theC1,1 geodesic, Chen–Tian [11] prove the unique-
ness of the extremal metric.

Theorem 6.2 (Chen–Tian [11]) There is at most one extremal Kähler metric with
Kähler classΩ modulo holomorphic transformations. Namely, if ω1 and ω2 are two
extremal Kähler metrics with the same Kähler class, then there is a holomorphic
transformation σ such that ω1 = σ ∗ω2.

Now we turn to the Kähler cone metrics. A Kähler–Einstein cone metric is de-
fined to be a Kähler cone metric which satisfies

Ric(ω)= λω+ 2π[D],
for a real number λ. In which, [D] is the current defined by the divisor D. Let LD
be the associated line bundle of D. The necessary topological condition is

2πλ
(
C1(X)−C1(LD)

)
> 0.

When λ < 0, the uniqueness of the Kähler–Einstein cone metrics are proved by
Jeffres [21] by using the maximum principle for the Kähler cone metrics.

In the canonical Kähler class, Ding [16] defined a functional which is the Euler–
Lagrangian function of the Kähler–Einstein equation. Compared with theK-energy,
the Ding functional requires less regularity of the Kähler potentials. Moreover,
Berndtsson [4] observed that the Ding functional is convex along the bounded
geodesic. This is used to prove the uniqueness of twisted Kähler–Einstein metrics
including the Kähler–Ricci solitons (Theorem 6.1) and also the Kähler–Einstein
cone metrics. Berndtsson’s method was further generalized to Kähler–Einstien met-
rics on a Q-Fano variety with log terminal singularities in Berman–Boucksom–
Eyssidieux–Guedj–Zeriahi [2].

Generally, the uniqueness of the cscK cone metrics is not well understood yet.
We considered this problem by using the convexity of the K-energy of the Kähler
cone metrics. So we constructed the geodesic segment with cone singularities and
applied it to obtain the uniqueness of the cscK cone metrics. From the following
definition of the cscK cone metrics, we see that the Kähler–Einstein cone metrics are
also included. Unaware of Berndtsson’s method, we developed the cone geodesic
to study the uniqueness problem of the Kähler–Einstein cone metrics. However, it
would be more interesting to understand how to apply Berndtsson’s method to the
cscK cone metrics. Now we explain a natural definition of the cscK metrics with
cone singularities and apply our cone geodesic to obtain a uniqueness theorem.

Definition 6.3 A Kähler cone metric in Hβ is called a cscK metric with cone angle
2πβ if its scalar curvature S(ω)= const outside D.
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The constant appearing in the definition could be computed explicitly and depends
on the Kähler class and the divisor, i.e.

Sβ = S − Vol(D)

Vol(X)
.

The Futaki invariant and the K-energy for the Kähler cone metrics were both intro-
duced in Donaldson [20]. Assume X carries a circle action. Let H be the Hamil-
tonian of the circle action and D is invariant under the circle action. The Futaki
invariant for the Kähler cone metrics is defined to be

Fut(X,D)= Fut(X)+
∫

D

Hωn−1 − Vol(D)

Vol(X)

∫

X

Hωn.

While, the corresponding K-energy is its integral

ν(ϕ)=Eω(ϕ)+ Sβ ·Dω(ϕ)+ jω(ϕ)+ n

V

∫ 1

0

∫

D

ϕ̇ωn−1
ϕ dt.

Here we use the decomposition formulae of the K-energy, which was discovered in
[12, 25] in smooth case. In which, the first functional is the entropy of the Kähler
metrics

Eω(ϕ)= 1

V

∫

X

log
ωnϕ

ωn
ωnϕ.

Recall Aubin’s J -functional

Jω(ϕ)= 1

V

n−1∑

i=0

i + 1

n+ 1

∫

X

∂ϕ ∧ ∂̄ϕ ∧ωi ∧ωn−1−i
ϕ .

Then the second term is the Lagrangian functional of the Monge–Ampère operator
which was defined in Ding [16],

Dω(ϕ)= 1

V

∫

X

ϕωn − Jω(ϕ).

The third term is the j -functional given by

jω(ϕ)= − 1

V

n−1∑

i=0

n!
(i + 1)!(n− i − 1)!

∫

X

ϕRic(ω)∧ωn−1−i ∧
(√−1

2
∂∂̄ϕ

)i

.

The appropriate asymptotic behavior of the Kähler cone metrics is required to make
all these formulas well-defined. In particular, we could choose ϕ ∈H1,1

β with appro-
priate Ric(ω). Meanwhile, when applying our cone geodesic, we also need to spec-
ify the appropriate asymptotic behavior of the ending points of the cone geodesic.
This is our space HC . Here we restrict ourself to a special situation in order to
illustrate the mechanism.
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Theorem 6.4 Suppose that the divisor is disjoint smooth hypersurfaces and the
cone angle stay in (0, 1

2 ). When C1(X) = C1(LD), the Cαβ cscK cone metrics (if
exist) is unique.

Proof The proof is divided into five steps.
Step 1: We first need to prove the asymptotic behavior of the Cαβ cscK cone

metrics. We decompose the equation of the cscK cone metrics into a second order
system,

⎧
⎨

⎩

detωϕ = eP detω,

<ϕP = gij̄ϕ Rij̄ (ω)− Sβ.
From the second equation, applying Donaldson’s Schauder estimate (Theorem 1 in
[20]), we obtain that P belongs to C2,α

β . Then we use the first equation to prove

that ϕ ∈ C3,α
β and have bounded Riemannian curvature, then thus it lies in HC .

The proof follows close to the argument in Brendle [6]. The estimate of the tangent
direction holds by differentiating the first equation directly and using Theorem 1 in
[20] repeatedly. The estimate along the normal direction follows from differentiating
the equation in this direction and using the tangent estimates.

Step 2: Assume that ϕ0 and ϕ1 are two C2,α
β cscK cone potentials. According to

the Step 1, we apply Theorem 5.5 and connect them by our cone geodesic. Thus
we have a family of the C2,α

β approximation geodesic from Lemma 5.4. We also
need to know the asymptotic behavior of this approximation geodesic. That is used
in the computation of the convexity of the K-energy in the next step. Recall the
approximation equation

{
det(Ω1ij̄ + Ψ̃ij̄ )= ε det(Ω1ij̄ ) in M,

Ψ̃ (z)= 0 on ∂X.

The proof of the asymptotic behavior in the interior of X×R follows the same line
to the first equation in Step 1. The boundary asymptotic behavior need Proposition
5.18 from Calamai–Zheng [10].

Step 3: According to Brendle [6], there exists a Ricci flat Kähler cone metrics
when D is disjoint smooth and 0< β < 1

2 . Choose hij̄ be the Ricci flat Kähler cone
metric, so from its equation

Ric(h)= [D]
we simplify the third term jω(ϕ)= − n

V

∫ 1
0

∫

D
ϕ̇ωn−1

ϕ dt which cancels the last term
in the formula of the K-energy. With the asymptotic behavior in the second step,
using a lemma of the integration by part (Lemma 2.1 in Calamai–Zheng [10]), we
could write down the second derivative of the K-energy along the approximation
geodesic.

ν′′ =
∫

X

∣
∣Dϕ′∣∣2ωnϕ −

∫

X

S
(
ϕ′′ − ∣∣∂ϕ′∣∣2)ωnϕ + Sβ

V

∫

X

(
ϕ′′ − ∣∣∂ϕ′∣∣2)ωnϕ.
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Here the operator D is defined by Du= u,ij in the local holomorphic coordinate.
Step 4: Let f = ϕ′′ − |∂ϕ′|2, the second term becomes by integration by part

∫

X

(|∂ logf |2 − gij̄Ric(h)ij̄
)
fωnϕ.

Since hij̄ is the Ricci flat Kähler cone metric, so the second term vanishes as ε→ 0.
Then integrating along the geodesic, using the fact that the end points of the cone
geodesic are cscK cone metrics and taking ε→ 0, we arrive at

∫ 1

0

∫

X

(∣
∣Dϕ′∣∣2 + |∂f |2f−1)ωnϕdt = 0.

That implies that gij̄ϕ ∂j̄ ϕ
′∂i is a holomorphic vector field onM . We remark that the

local formula of D involves the gradient of the gϕ which is bounded w.r.t itself by
Step 2.

Step 5: We need to prove when C1(X)= C1(LD), there exists only trivial holo-
morphic vector field. We first choose a ε-neighborhood Dε of D and let Mε =
X \Dε . OnMε , we have the Ricci identity,

ϕ′
ij ī

= ϕ′
iīj

+R(h)j īϕ′
i .

Since h is a Ricci flat Kähler cone metric, the second term on the right hand side
vanishes. Multiplying the both sides of the formula above with ϕ ′̄

j
, we have by

integration by part

−
∫

Mε

∣
∣ϕ′
ij

∣
∣2 +

∫

∂Mε

ϕ′
ij ϕ

′̄
j

= −
∫

Mε

∣
∣ϕ′
ij̄

∣
∣2 +

∫

∂Mε

ϕ′
iī
ϕ ′̄
j
.

Then from Step 2, we have ϕ′ ∈ C2,α
β , therefore, both the boundary terms vanish

when ε → 0. Furthermore, from Step 4, the first term on the left hand side also
vanishes. This forces ϕ′ to be zero. �
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Teaching of Mathematics in Vocational Schools
Upon 1951 Reorganisation

Ryszard Ślęczka

Abstract The radical reform in 1951 of organisation and policy in the vocational
schooling in Poland is analyzed. The conclusive points for such a deep transforma-
tion of the vocational schooling were political and economical reasons discussed in
the paper.

The radical reform of organisation and policy in the vocational schooling in Poland
was conducted in 1951. It was prepared and carried out by Central Department of
Professional Training which had been established in 1949. Solutions assumed in that
time outlasted almost half a century, until the early nineties.1 The conclusive points
for such a deep transformation of the vocational schooling were political and eco-
nomical reasons. Deep changes in many realms of life started when Polish Labour
Party and Polish Socialist Party took over power in 1948. In the vocational school-
ing pre-war organisational structure, i.e. continuation and elementary schools (lower
schools, professional junior high schools and professional secondary schools) and
professional training schools, was abandoned. The new organisation included only
three types of schools: six-month professional training schools, two-year elementary
vocational schools and mostly three-year vocational technical colleges.2 New solu-
tion was to base qualified workers education (elementary vocational schools) and
technicians (vocational technical colleges) on programme fundamentals of seven-
year primary school. Dynamical industrial development and new industry branches
extorted shortening of the education cycle for the period between six months and
three years. It was a time of great demand for high qualified employees. Profes-
sional education, by preparing adequate staff, was supposed to play significant role

1Polish vocational schooling based on two acts: Statute on Education System of 7th of September
1991 (Journal of Laws of the Republic of Poland 1991, No. 95, Ref. 425) and Regulations Intro-
ducing School System Reform of 08/01/1991 (Journal of Laws of the Republic of Poland 1999,
No. 12, Ref. 96).
2Resolution of the Government Presiding Board of 23rd of June 1951 On Vocational Schooling
System (Official Journal of the Republic of Poland 1951, No. A-59, Ref. 776).
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Table 1 One year learning plan in the 6.5-month professional training school. Source: Appendix
to the President of the Central Department of Professional Training of 25th of February 1952 [in:]
Zbiór przepisów prawnych, p. 223

No. Subjects Weeks Total number of hours

1–14 15–27

Number of hours

1. Practicals 32 40 968

2. Information on Production 8 4 164

3. Study on Poland 2 2 54

4. Polish Language 4 2 82

5. Physical Education 2 0 28

6. Total 48 48 1296

7. Optionally

8. Sports 2 2 54

in industrialisation of the country, modernisation of agriculture and communication
system building.

Discussion on other vocational schooling solutions, especially on its pro-
grammes, started however much earlier. Ministry of Education and 3rd Depart-
ment of Vocational Schooling started working on the new form of vocational school
organisation in March 1945. Their proposals assumed creating of a common pro-
gramme and organisation base for all schools in order to provide unobstructed sys-
tem of professional education. The Section for the Vocational Schools of Polish
Teaching Society took significant part in a discussion on the future of the vocational
schooling as well. The opinions of its members were diversified: some of them were
for existent solutions, while the group with Jerzy Witkowski considered that the
necessary solution was to establish three-year elementary vocational schools for all
comprehensive school graduates. The conclusions of The Comission for the Voca-
tional Schools in the frame of The Polish Education Convention in March 1945 in
Łódź were of the most importance for the future of Polish vocational schooling.
The Comission proposed organisational and programme unification of eight-class
elementary school for the three-, four-, and five-year vocational schools which were
supposed to prepare pupils to the future employment and enable them to learn in
higher schools. The vocational schooling network basing on such standards was ex-
pected to take into consideration industrial and craft development needs as well as
to facilitate each pupil to change the course of their education.3

In the professional training schools teaching plan subjects as: Practicals, Infor-
mation on Production, Study on Poland, Polish Language, Physical Education and
optionally Sports were introduced (see Tables 1 and 2).4 In these plans mathematics

3The Polish Education Convention, Łódź, 18th–22nd of June 1945, Warsaw 1945, pp. 173–195.
4Appendix to the President of the Central Department of Professional Training of 25th of Febru-
ary 1952 [in:] Zbiór przepisów prawnych obowiązujących w szkolnictwie zawodowym w zakre-
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Table 2 Frame teaching plan for elementary vocational schools. Source: C. Siwiński, Zmiany
strukturalno-organizacyjne w szkolnictwie zawodowym PRL, p. 107

Subjects Classes Total

I II

A. Practicals 18 21 39

B. Professional and supporting

Professional Technology 3 4 7

Study on Material 2 0 2

Professional Design 2 2 4

Physics 2 2 4

Mathematics 4 2 6

Total B 13 10 23

C. Comprehensive

Polish Language 3 3 6

Study on Poland and Contemporary World 2 2 4

Russian Language 2 2 4

Physical Education 2 2 4

Total C 9 9 18

D. Religious Study 1 1 2

Total 41 41 82

as a distinct subject was not taken into account. Elementary mathematical contents
related with physics, chemistry, geography and natural science were introduced in
the frame of Information on Production.

For the elementary vocational school unified frame teaching plans were prepared
at the beginning of 1952. It was considered as a model while creating teaching
plans for various professional courses and specializations.5 All of the subjects were
divided into three groups: practicals, professional and supporting subjects and com-
prehensive subjects. Religious study was an optional subject.

In the frame teaching plan for elementary vocational schools 39 hours were de-
voted to practicals. Professional and supporting subjects, among which there was
mathematics, were taught for 23 hours. It was presumed that 4 hours in the first and
2 in the second class would be sufficient. It is worth to emphasize that professional
and supporting subjects were free of propaganda content according to practical and
utilitary principles, as knowledge gained during the lesson was supposed to be used
by performing some production assignments. The aim of teaching mathematics was

sie organizacji i administracji szkolnictwa zawodowego, organizacji wychowania i nauczania w
szkolnictwie zawodowym oraz stosunków służbowych nauczycieli, J. Wójcie (ed.), Warszawa 1953,
p. 223.
5C. Siwiński, Zmiany strukturalno-organizacyjne w szkolnictwie zawodowym PRL, Poznań 1981,
p. 107.
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to broaden and deepen information gained in primary school. Integers, decimal frac-
tions, proportions, percentage, involutions, fractions and equations were taught. De-
pending on the teaching profile, mathematics was deliberately oriented. In economic
schools the greatest attention was paid to proficient counting, addition, subtracting
and the simple mathematics operations as well as cash register accounting, strik-
ing a day-, month- and year-balance. An integral part of mathematics was geometry
with information on lines, triangles, squares, rectangles and figures. Accountancy
exercises on calculating of figures area were also important part of teaching.6

New programmes and teaching plans for the technical colleges were introduced
in the school year 1951/1952. In the teaching plans, in the elementary vocational
schools likewise, all subjects were divided into three groups: professional and sup-
porting subjects, comprehensive and optional subjects. In those schools the pro-
gramme basis were professional and supporting subjects which had the crucial
influence on the type of education. In economical technical colleges for instance
such subjects were as follows: trade organisation and technique, commodity com-
petence, planning, accountancy, political economy, construction organisation and
economics, legal aspects of building industry. In this group of subjects, apart from
Russian language, chemistry and physics, mathematics was also mentioned.7 The
fact that mathematics did not belong to the group of comprehensive subjects led
in effect to the lowering of its meaning in the whole process of education in the
technical colleges of different profiles and specialisations. The numbers of teaching
hours of this subject was also diversified, for instance in the technical colleges there
were 15 hours total per week and construction schools—18 hours total per week.
Transferring mathematics from one group of subjects to another was also a common
practice. In the teaching plans for the technical colleges for example mathematics
belonged to the group of supporting, not professional subjects. Mathematics, the
other teaching subjects alike, was strongly embedded in current social and political
issues. Its role was to provide pupils with knowledge and skills which would allow
them to understand organisation and techniques of work in an enterprise as well as
to recognize modern industrial technologies. Mathematics content, as an universal
matter, played a significant role during qualifying exams, as they allowed to verify
various knowledge.

Analysis of the vocational schools teaching plans and programmes from 1951
to 1955 shows that mathematics was not included to the main teaching subjects
at that time.8 In the elementary vocational schools teaching was concentrated on
practical skills. It emerged from the development of specialisation of production
and diversification of production plants. For that reason education should have been

6Instruction on applying of the teaching hours plans and programmes in elementary vocational
schools in the school year 1952/53, No. VIII PT, 4062/52.
7Schedule No. 445 from 1951, submitted and introduced by the Central Department of Professional
Training.
8Conclusions based on analysis of the vocational schools teaching programmes and plans from
1951 to 1955.



Teaching of Mathematics in Vocational Schools 415

strongly connected with narrow professional specialisation and oriented to practi-
cal knowledge. The principle of unobstructed education system which could have
been supported by mathematics teaching however was forgotten. Similar situation
was observed in the technical colleges. Teaching content was connected with social,
political and economical reality. Great importance was attached to the detailed as-
signments which led new profiles and professional specialisations come into being.
A number of the new teaching subjects was singled out and mathematics role was
being decreased. In the teaching plans of different specialisations there were over
thirty subjects. The professional profile of the graduate was more important than
their education. In the technical colleges where the medium level technical staff
was educated, mathematics had lower importance in the process of education. Great
attention was paid to the professional subjects and practical training necessary for
work in the fields of industry, trade and services, according to the education profile.
The aim of technical college education in that period was not to prepare to aca-
demic level study but to precipitate education of the medium technical supervising
staff according to the current economical needs.



Arithmetic in Polish Parish Schools in the Period
of the Commission of National Education

Ryszard Ślęczka and Jan Ryś

Abstract The paper is devoted to historical description and analysis of the Polish
primers in 16th–18th centuries and arithmetic in Polish primers until 1795. Concep-
tions of various schools and famous educators are discussed.

1 Introduction

The purpose of school education and preparation of the pupil acknowledged by the
Commission of National Education was so as to he was well and was well with
him. Education was about to make the ward happy and useful for others. This could
be done through practical preparation for life and by providing knowledge appro-
priate for each state. It could not therefore lack in school teaching mathematical
and natural sciences among which mathematics was in the first place. Members of
the Commission of Education unanimously emphasized that learning this subject
is needed at all levels of education, due to its usability and capacity of develop-
ing reasoning. Everyone agreed that it must be taught in a way so that the theory is
closely associated with the practice. The Commission paid particular attention to the
study of mathematics in secondary schools for which special textbook was devel-
oped. The subject was not neglected in parochial schools either where it was taught
as arithmetic. This was reflected in the legislation of the Commission of National
Education. The problem of teaching arithmetic was already widely reflected in the
Teacher’s duties of G. Piramowicz which became the official guide for parochial
school teachers. Piramowicz advised teachers of arithmetic to start reckoning from
things belonging to senses and express it in signs afterwards. He was supposed to
use examples taken from rural or urban life. Studies should be conducted system-
atically and thoroughly. The teacher should not move to the new party of material
if students have not mastered the current material. Teaching should avoid formal-
ism and should be done in a manner so that the student comprehends in rational
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way and notices the relationship between one truth and another. He also warned
a teacher against ambitions and desire to teach mathematics at a higher level than
is intended for parochial schools.1 The second document regulating the teaching of
arithmetic in the parish schools were Acts of the Commission from 1783.2 Chap-
ter XXII contains a record that the programs of parochial schools should include
accounts, introduction to the sizes with the information on measures, weights and
coins.

Acts of Commission officially carried into effect what had already been practised
in the Polish school. That included teaching arithmetic at the elementary level. Its
scope and methodological solutions found place in Primer for the national parochial
schools (1775) based on which we will present the substantive scope of teaching
this subject and methodological solutions which were applied in it.

2 Polish Primers 16th–18th Century

Documented origins of Polish primers date back to the end of the first half of the
16th century. Several prints containing teaching reading have survived from this pe-
riod which however does not exclude the possibility of existence the earlier period
works of similar content. The first preserved Polish “primer” is considered to be
the work of the Lutheran theologian John Seklucjan Catechism is the finest teach-
ing and necessary for salvation about the Christian faith released in Königsberg in
1547. The title itself suggests that little work of Seklucjan was used to study the
truths of faith and at the occasion reading as well to which the author devoted a
few cards only. In the next edition of the Catechism already in the title there was
a reference to the attached guidance on reading which indicates that the purpose of
his was twofold.3 Seklucjan joined these hints to his works of theological content
in order to propagate the art of reading at least among his co-religionists.4 Rela-
tively late information about primers we get from the center of Polish science and
education which in the 16th century was Krakow. However there are reasonable
suspicions that such prints could have come out here in the early 16th century.5

1G. Piramowicz, Duties of the teacher in parish schools and methods of their completion. /in:/G. Pi-
ramowicz. Duties of the teacher and selection of speeches and letters, coll. and introduction
K. Mrozowska, Wrocław 1959, 77–78.
2Acts of the Commission of National Education written for academic state and for schools in Polish
Republic, /in:/Commission of National Education (Commission writings and about the Commis-
sion) coll. S. Tync, Wrocław 1954, 700.
3J. Seklucjan, Catechismus. . . , Who needs short Writing and Reading course, Königsberg 1549.
4J. Seklucjan, First Part of the New Testament, Königsberg 1551; J. Seklucjan, New Testament
Complete, Königsberg 1553; J. Seklucjan, Holy Gospel of Jesus Christ according to Saint Matthew,
Königsberg 1555.
5J. Pirożyński, About Poznan’s printer Peter Sextilis of Oborzyck and Polish primers from 16th
century, Historical Studies, XXVIII, nr 1, 8.
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Noteworthy is the fact that in 1549 Hungarian6 primer was released in Krakow.
In 1550 Polish–Latin Primer appeared preserved unfortunately only in a few cards
likewise Short learning towards reading Polish handwriting released at about the
same time. Primer entirely preserved to our times entitled Teaching toddlers how to
read Polish handwriting was released in Poznan in 1556.7 It is small because only
a four-page little book containing patterns of different typeface. Noteworthy is the
primer of Krakow’s printer and publisher Maciej Wirzbięta which was issued in his
own print shop.8 This bilingual primer was also used for religious education as ev-
idenced by its extensive part of the catechism. The last Polish primer from the 16th
century is Learning to reading published in Lviv with some interesting woodcuts of
the content of the Bible.9 The same content and layout has a primer released at the
beginning of the 17th century in Krakow. It is however more diligent and graphically
more elaborated.10 The 17th century also brought several Polish–German primers.11

Also Vilnius12 got its first primer and interestingly appeared a primer for girls which
unfortunately has not survived to our times.13 The turning point in the history of ed-
ucation was the appearance of the work of J.A. Komeński JanuaLinguarumreserata
and Orbissensualiumpictus.14 These works as well as minor part of his writings had
a great influence on the development of European teaching.15

In the first half of the 18th century primers were pressed in Poland only ten times.
The most common primer was at that time Elementapuerilis issued four times.16

This manual was used to teach reading in Polish and Latin. In the second half of
this century, there are also bilingual Polish–German and Polish–French primers.17

The most perfect work in the history of Polish primers to the end of the 18th cen-

6F. Pilarczyk, Elementarze polskie od ich XVI—wiecznych początków do II wojny światowej,
Zielona Góra 2003, s. 71.
7See. J. Pirożyński, op. cit.
8M. Wirzbięta, Elementaria institutio latini sermonis et pietatis Christianae, Cracoviae 1575.
9Learning reading Polish writing with figures. Are applied devotional prayers and psalms, Lviv
1599.
10For little children teaching Polish writing, Kraków 1611.
11P. Glodius, Catechism is a summa of Christian faith shortly in German and Polish collected for
the exercise of young children, Wrocław 1605, 167, 1615.
12For little children teaching Polish writing, Wilno 1633.
13Studies to read Polish writing for young girls, Kraków 1657.
14Works of Komeński were printed very often. The first edition of Janua. . . was in Leszno in 1631.
During Komeński lifetime it was issued approximately 100 times similarly as Orbissensualium. . . ,
first edition in Nuremberg in 1658.
15See. Last edition: A. Fijałkowski, Tradition and novelty in Orbissensualiumpictus of Jan Amos
Komeński, Warszawa 2012.
16Elementa puerilis institutionis oluribus in locis reformata piisque orationibus Ac doctrina Chris-
tiana recenteraucta, Cracoviae 1713.
17New book to syllabify and read in Polish and German. NeuesBuchstabier Und Lesebuchleinpol-
nischunddeutsch. Warszawa 1770; New book to syllabify and read in Polish and French, Warszawa
1770.
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tury was already mentioned Primer for the national parochial schools containing:
I Teaching reading and writing; II Catechism; III Citizen Science; IV Teaching ac-
counts, Kraków 1875. Work was created under the patronage and at the request of
the Commission of National Education. To the end of the Republic had eight re-
leases. It was collective elaboration in which the teaching of reading expounded
Onufry Kopczyński, Andrze Gawroński expounded bills, and the other two parts
were the work of Gregory Piramowicz. On the background of contemporary teach-
ing it was the work at European level.

One of the most entertaining elaborations from the end of the period which in-
terests us should be mentioned the work of F. Paprocki, Primer for male laid in a
new useful way (Łowicz 1777). The author, a follower of physiocratism, posted in
his work outside of teaching reading a number of practical information useful in hu-
man life. In the same year appeared in Krakow work of M.D. Krajewski Games
of sciences for children. Although this handbook contained a lot of interesting
methodological solutions did not found wider recognition and went into oblivion.
In contrast a reference to the sixteenth-century primers was Primer białogşowski
or information for learners to read the catechism of prayers for femalechildren
(Łowicz 1789). More progressive and innovative was the primer of S. Stawski de-
signed for St. Elizabeth Secondary School in Wroclaw.18 The primer contains a lot
of practical information and a number of moralizing stories. The final primer is-
sued prior to the third partition of Poland was primer of A.M. Prokopowicz.19 The
novelty in this work was to fit methodological guidelines for female teachers.

3 Arithmetic in Polish Primers Until 1795

Elementary school, regardless the historical period was supposed to teach how to
read, write and count. This program was usually accompanied by religion classes.
In the period of antiquity and the early Middle Ages the study of reading was taking
place on literary texts which teacher had. In the course of time in school practice spe-
cial school textbooks—primers (Latin.elementarius-initial) appeared. Primers were
written mainly for purpose of teaching reading. Reading did not have to be related
to the art of writing hence the first primers contained only typefaces. The closer
to our time the more often there were tips in primers on how to write correctly.
Even exercise books to learn calligraphy were introduced. Most primers also func-
tioned as a catechism and a small prayer book hence the religious texts were occu-
pying the greater part of the printing and could be used as material for exercises in
reading. Nevertheless first primers lack tips in terms of arithmetic. We know cer-
tainly that the subject was taught from the beginning since schools existed. It was

18S. Stawski, Booklet to syllabify and read for Polish class in St. Elizabeth Secondary School in
Wroclaw, Wrocław 1790.
19A.M. Prokopowicz, The new easiest way to write and read together for the girls with footnotes
for female teachers, Kraków 1790.
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taught in Greek schools and Plato made it the basis of teaching in the ideal state.
It was taught in Rome where in the 3rd century BC appeared special teacher of the
subject—calculator. It was taught in medieval schools often under the name kom-
putu understood as bills and the art of Church calendar calculation.20 The level of
teaching this subject was variant. Italian schools usually hired a second teacher of
mathematics called abbachista or maestro d’abbaco.21 In Polish medieval schools
arithmetic was often ignored or reduced to four mathematical operations.22 We do
not know what learning of arithmetic in Polish medieval schools looked like. We
do not have information on whether teachers used some methodological materi-
als, whether apart from traditional abacus and blackboard other teaching aids were
used. It seems that they based on their own creativity and knowledge. This may
be shown by the fact that none of mentioned primers published until the end of
17th century included guidance on teaching arithmetic. J.A. Komeński didn’t post
it either in Janua Linguarum. In Orbis Sensualium Pictus in part LXXIII he con-
fined himself to the calculation of the benefits of learning arithmetic and geometry.
Only in released in 1710 in Königsberg Primer or the beginnings of science there
were Latin and Arabic numbers on the last card. The same solution contains El-
ementa puerilis Institutionum from 1713. Whereas mentioned Polish German and
Polish French primers contain multiplication table on the last page.23 Modest chap-
ter About the number included F. Paprocki in his primer but given information does
not go beyond the four basic operations. Dymitr M. Krajewski identified small chap-
ter (13 pages) in his primer—Arithmetic games. The substantive scope of the subject
also does not go beyond the four basic operations. Krajewski most of the chapter de-
voted to the reflection on ways of enjoyable learning. Learning arithmetic has to be
fun. He therefore proposes to engrave arithmetic letters (numbers) on the ankles and
assemble numbers from them creating rows of unity tens, hundreds and thousands.

Teaching of arithmetic was only treated wider by A.M. Prokopowicz24 who cer-
tainly knew Primer for national parochial schools and adopted solutions. In his
primer of arithmetic he devoted a chapter Accounting for the ladies. It starts with an
explanation of accounting science thus numerical reaching into Greek word arith-
mein—count. Then shows record of numbers in Arabic and Roman system and the
method of reading numbers consisting of several digits. Devotes separate place to
each of four mathematical operations. Addition and subtraction in written system is
supported by simple writing exercises in the form of word problems. In multiplica-
tion he distinguishes multiplicand, multiplier and ratio. He explains multiplication
on the example of adding as it was explained in the primer for the national parochial

20O. Kanfer, Teaching accounts in collegiate and convent schools /in:/Report of Private Secondary
E. Orzeszkowa School in Brody for 1930/1931, 4.
21P.F. Grendler, Schooling in Renaissance Italy, Literacy and Learning 1300–1600, Baltimore
1989, 22.
22J. Ryś, Parish education in the cities of Little Poland in the 15th century, Warszawa 1995, 69.
23See. Footnote 15.
24See. Footnote 17.
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schools. After examples of written multiplication he goes to the Pythagoras plate
so multiplication table. In division he distinguishes dividend, divisor and quotient.
He publishes a table of division until the number 1118, much more difficult to use
than multiplication. On the occasion of division he also discusses fractions aris-
ing as a result of division sharing with the remainder going further than it was in
the aforementioned primer of the Commission of National Education. Closing the
mathematical part of the primer is the discussion over the rule of three or the golden
rule which was introduced to the practice of merchants in Europe between 15th and
16th century.

4 Arithmetic in Primer for National Parochial Schools

Primer issued under the patronage of the Commission of National Education was
one of the best Polish primers therefore some more attention should be paid to him.
Primer in the section of reading was based on analytic-synthetic method which in
elementary education has been popularized by J.H. Pestalozzi. The fourth part of
the primer on arithmetic by A. Gawroński is most extensive and consists of six
chapters relating respectively to counting, addition, subtraction, multiplication, di-
vision, and the rule of three. The chapter on counting has been divided into four
formulas. Formula I for counting is based on the principle of sight. The author rec-
ommended the use of peas, cereals and other items in counting. Students also had
sets of dots from 1–9 in the primer. Under each set the appropriate digit was given.
When they mastered the art of counting to nine the teacher walked to the formula II
and introduced ten units of the order explaining that if each of the numbers will
add up “circle” to the right then its value will increase ten times. Students should
understand it using the tens of peas or corn. Subsequently the teacher discussed the
mechanism of number formation consisting of tens and units based on illustrative
material and writing numbers on the board. Further mathematic formulas relate to
the creation of hundreds and thousands of rows and their multiplication. Chapters
about adding and subtracting numbers are constructed similarly. Understanding the
nature of these activities was based on the use in teaching already mentioned peas
or corn. After the appropriate recording exercises the teacher walked to the written
action, first using complex numbers consisting of tens later on adding units. In the
following formulas he introduced a record of adding a few numbers composed of
units, tens, hundreds and thousands. The next chapter concerns the multiplication
of numbers. Explanation of the whole mechanism of multiplication is based on the
addition. The teacher had to provide a written record of adding the same number,
e.g. 5 + 5 + 5 + 5 and then explain that this is equivalent to multiplying number five
four times and immediately present it in written way. Once the basics of multiplica-
tion are mastered they are followed by the examples of written multiplication where
the number of multiplying is initially in the form of unit then it takes more com-
plex form. Gawroński does not use the term multiplier and multiplicand but only
the number of multiplying and ratio. Also publishes a simple multiplication table
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in the text. At the end of the chapter provides a number of practical information on
the various systems of weights, measures and currency. Chapter V about dividing
the number is more complicated. Division is explained by subtraction that is what
is happening by subtracting one number from another as many times as may be
deducted. Next the author explains that in order to understand how many times the
smaller number is located in the greater one we would have to subtract it as many
times as possible. This would be a very bothersome and lengthy process and there-
fore the action of division was introduced. As in the case of multiplication sharing
plate with a detailed description on how to use it is provided. Further examples con-
cerned the division of more complex numbers after which students had to move to
“share with the remainder” and write the remainder of the division created using a
numerical mark or fraction number line. The author however does not introduce the
concept of fractions. The last chapter was devoted to the rule of three and is very
short. The rule of three, as Gawroñski explains, is the ability to search fourth number
out of three obvious numbers. As he says: Judgement of human nature itself gave
way to conduct yourself in this action.25 He explains the method for calculating the
proportion on practical examples from real life.

Primer as a whole met with positive response of the Commission and G. Pi-
ramowicz emphasized its practicality and affordability which was supposed to be
aimed at the true enlightenment of the people and help them realize their obliga-
tions towards lords, peasants and themselves. As for arithmetic part he emphasized
its clarity and accessibility for children by selecting appropriate formula26 to their
level. In Polish literature this work is not explicitly evaluated. Favorable opinions
about it were expressed by M. Baraniecki, the author of several successful textbooks
in mathematics in the 19th century.27 It was negatively assessed by Z. Iwaszkiewic-
zowa28 and T. Mizia.29 However, as rightly pointed Cz. Majorek Primer has good
and bad sides and its assessment should be centered.30 Reservations can be aroused
by graphic side of the study. An example might be the first chapter in which a
small space has accumulated too many characters and images to organize for the
child easily and accordingly.31 In this case the transfer of individual images on the
school board which was suggested by Gawroñski was necessary and could facil-
itate the pupils to master the material. Primer was also written with a view of a
teacher and was supposed to suggest him some methodological solutions. Whereas

25Primer for national parochial schools, 118.
26G. Piramowicz, Mowy miane w Towarzystwie do Ksiąg Elementarnych. . . , wyd. W. Wisłocki,
Kraków 1889, 141.
27M. Baraniecki, Arithmetic, Warszawa 1884.
28Z. Iwaszkiewiczowa, Teaching arithmetic in schools of the Commission of National Education,
/in:/The great reform epoch, edited by S. Łempicki, Lviv 1923, 53–55.
29T. Mizia, Parish education in the times of the Commission of National Education, Wrocław 1964,
126–129.
30Cz. Majorek, School books of the Commission of National Education, Warszawa 1975, 152–153.
31Cz. Majorek, School books. . . , Warszawa 1975, 152–153.
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students used it mainly as homework. It is not known whether it is typesetter’s or
Gawroński’s fault that in case of unity multiplication unities are not under unities
and tens are not under tens. Also the chapter about division is chaotically arranged
and the rule of three is not supported by any examples of specific solutions. It is
worth emphasizing the visual method, grading difficulties and Gawroński’s aspira-
tions to eliminate formalizing from arithmetic studies as well as rules avoidance and
basing it instead on the natural rational child premises. The positive side of this part
of the Primer was also an appropriate choice of tasks that involved the practice of
everyday life and thus had to encourage children to learn arithmetic as extremely
useful science in every area of life.

5 Conclusion

Above presented substantive range and ways of teaching elementary arithmetic dur-
ing the times of the Commission of National Education are based on the Primer. . .
and are rather visionary. We cannot say anything closer on school practice in this
regard. Inspectors’ reports are extremely scarce and conventional. Parochial schools
were on the margin of CNE’s activities although Acts. . . confirmed its authority over
all the schools. Because of lack of funds they stayed under superiority and mainte-
nance of Church. Introduction of Ordinal Commissions in 1789 did not change any-
thing here as they were focusing on quantitative development of parochial schools
instead of improving their educational level. Taking into account the fact that level
of teaching mathematics in secondary schools especially in the early years of CNE
was not the best, we cannot be too optimistic about the teaching of this subject in el-
ementary schools. On the other hand if we consider the attempts to give the teaching
useful form and elementary arithmetic knowledge, which did not require any special
preparation to be taught, we can draw a conclusion about universality of teaching
this subject in the Polish parochial schools.
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Sergey Mikhailovich was born in Zavod Talitsa of Perm Governorate (now, the
district center Talitsa of Yekaterinburg Oblast) 30 April 1905. His father, Mikhail
Dmitrievich Nikolskij was a forester, a member of the Russian forest nomenclature.
By bureaucratic report card, forester is a court counselor. In 1906 M.D. Nikolskij got
a boost; he was nominated by a forester of Schebro-Olshansky forestry of Suwalki
Province on the border with Prussia (now it belongs to Poland) where Sergei spent
his childhood.

At age 14, S.M. Nikolskij and his family moved to the Voronezh region and he
had to work. At the same time, he continued his education under the guidance of his
father, who taught him mathematics, physics and natural sciences.

In 1921, the family of S.M. Nikolskij returned to Chernigov, where S.M. Nikol-
skij worked in Gubpolitprosvet and studied in college.

In 1925, he entered Ekaterynoslavsky University of Education at the Faculty of
Mathematics and Physics. Soon, having went to come to a technical university con-
sidered more prestigious, he was so imbued creative atmosphere at the faculty that
unconditionally decided to become a mathematician.

After graduation of the Faculty of Physics and Mathematics of the Ekateri-
noslavskij University of National Education in 1930, Sergey Nikolskij got the as-
sistant position. As the best lecturer, since 1932 he was the Head of the Department
of Mathematics of the Transport Institute. He also worked in the Mine, pharmaceu-
tical Institutions of Dnepropetrovsk.
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Andrei Nikolaevich Kolmogorov1 involved Sergey Nikolskij into the scientific
work. A.N. Kolmogorov came from Moscow to give lectures with Academician
Pavel Sergeevich Alexandrov and Ivan Georgievich Petrovsky. Sergey Nikolskij was
a PhD student at Moscow State University named after M.V. Lomonosov in 1934–
1935 (MGU) and defended his thesis titled “Linear equations in Banach spaces”.

In 1940, S.M. Nikolskij entered the doctoral study of the Steklov Institute of
Mathematics of the USSR Academy of Sciences and at the beginning of 1942 suc-
cessfully defended his doctoral thesis (habilitation) on the theory of approximation
of functions by polynomials. After, he was a senior fellow of the Institute of Math-
ematics. In 1947 he became a professor in the Department of Mathematics at the
same institute, and from 1950 to 1954 he was the Head of the Department. From
1953 to 1961, he was deputy Head and from 1961 to 1989 Head of the Department
of the theory of functions. In 1968, S.M. Nikolskij was elected a corresponding
member of the Academy of Sciences of the USSR, and a full member in 1972.

The first studies of S.M. Nikolskij on the theory of linear operators (criterion
discrete and continuous spectra, conditions for the Fredholm alternative, singular
integral equations) were made at that time when the functional analysis of the Soviet
Union only started to develop.

He established criteria for discrete and continuous spectra of the linear operator
through the expansion of the resolvent operator corresponding to the sum of invert-
ible and completely continuous operator, proved the presentation of such sums as a
sum of the reversible and finite operators, found the necessary and sufficient con-
ditions for the Fredholm alternative of the resolvent operator. These results due to
Nikolskij had significant applications in the theory of singular integral equations,
and subsequently served as the basis for the development of a branch of functional
analysis for many other authors.

The Rector of MGU Academician V.A. Sadovnichij said in his report at the con-
ference devoted to the 100th anniversary of Sergei Mikhailovich, that he completed
a series of studies (which began back in the PhD thesis) related to linear equations in
Banach spaces. Nikolskij generalized the theory of Banach equation X− λBX = Y
to completely continuous linear operators. Banach’s theory is a generalization of the
theory for continuous functions due to Riesz (1918) to arbitrary Banach spaces.

1Great Scientist of Russia, one of the greatest mathematicians of the twentieth century, recog-
nized by almost all reputable scientific communities of the world, member of the US National
Academy of Sciences and the American Academy of Arts and Sciences, a member of the Royal
Netherlands Academy of Sciences and the Academy of Finland, member of the French Academy
of Sciences and the German Academy of Naturalists “Leopoldina”, member of the International
Academy of the History of Sciences and the National Academy of Romania, Hungary and Poland,
an honorary member of the Royal Statistical Society of Great Britain and the London Mathemat-
ical Society, an honorary member of the International Statistical Institute and the Mathematical
Society of India, a foreign member of the American Philosophical and the American Meteorolog-
ical Society; winner of the most respected science prizes: Prize Chebyshev and N.I. Lobachevskij
of the USSR Academy of Sciences, the International Balzan Prize Foundation International Award
and the Wolf Foundation, as well as State and Lenin prizes, awarded seven Orders of Lenin and the
Gold Medal of the Hero of Socialist Labor, Academician Andrei Nikolaevich Kolmogorov himself
simply called professor at Moscow University.
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S.M. Nikolskij set himself the task to carry out such a transfer from the space
C in the framework of the theory due to Radon to the Banach spaces. It was done
immediately when a space has a basis. These results were included in his PhD the-
sis. An analogous proof met difficulties when a space has no basis. S.M. Nikolskij
overcame these difficulties later in 1940. Because of the World War II these results
were published in 1943.

It is easily proved that every compact linear operator V in the Banach space with
basis can be approximated by the norm with an arbitrary accuracy by a finite-rank
operator K . This yields the representation

A+ V =A′ +K, (0.1)

where A and A′ are linear invertible operators.
Sergey Mikhailovich had masterly removed the additional condition about the

basis and proved that any sum of the operators A + V , where A is invertible and
V is compact, can be represented in the form (0.1). This Nikolskij’s theorem (about
Fredholm type operators) was published in Izvestia Akademii Nauk SSSR in 1943
in time of the World War II. Subtlety and significance of this result can be con-
firmed by a counterexample due to Per Enflo (live goose award in 1972) that there
exists a compact operator not approximated by a limit of finite-rank operators.
Nikolskij’s theorem has a lucky continuation. It yielded a new approach on gen-
eralized Fredholm elements in operator rings in functional analysis (F.V. Atkinson
and I.C. Gokhberg) and in the structural theory of rings with applications in the
theory of elasticity.

Nikolskij’s theorem took its place in handbooks on functional analysis. In 1959,
L.V. Kantorovich and G.P. Akilov includes it in the handbook “Functional analy-
sis in normed spaces” and after in “Functional analysis”, Moscow, Nauka, 1977.
Nikolskij’s theorem beautifies modern courses on functional analysis (see for exam-
ple A.Ya. Khelemskij “Lectures on functional analysis”, Moscow, MCNMO, 2004).

Other cycle of the deep works by Nikolskij on the theory of approximations
(from forties to the present time) contains solution to difficult problems concern-
ing asymptotic exact estimations for function approximations by trigonometric and
algebraic polynomials.

The third cycle of his works is addressed to the theory of differentiable func-
tions of several variables and their applications to partial differential equations.
S.M. Nikolskij was first who obtained exact direct and inverse embedding theorems.

S.M. Nikolskij justified the variational method to solve the first boundary value
problem for a class of equations generalizing (hypo) elliptic type equations. He had
created the best quadrature formulas for some classes of functions and obtained
exact estimations in certain cases.

S.M. Nikolskij also found conditions to continue continuously differentiable
functions from sets to the whole space. Many such results were summarised in his
monograph “Approximation of functions of several variables and imbedding theo-
rems” Nauka, Moscow, 1969. The second edition was in 1975 and it was translated
by Springer.
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Fig. 1 Nikolskij’s book from the series “Heritage of national sciences of the 20th century”

In recognition of the outstanding contributions to mathematics by S.M. Nikol-
skij (see Figs. 1–2 and works [1–5]), its objects, studied them, named after him.
Mathematics all over the world are exploring space and inequality by Nikolskij.

In 2006, the three volumes of works by Nikolskij were published by the Academy
of Sciences in the series “Heritage of national sciences of the 20th century”. The
most significant his results in the fundamental mathematics are selected in his
three monographs “Approximations theory” (2006), “Functional spaces” (2007) and
“Equations in functional spaces” (2009).

S.M. Nikolskij “There are theorems, people said that Nikolskij proved them. I re-
member that an idea how to prove it flashed during a ski trip or near Dnepr, or on
the island where I swum, rested and thought.”

S.M. Nikolskij prepared about fifty candidates physical and mathematical sci-
ences, fifteen of his pupils became the doctor of physical and mathematical sciences
(habilitation). Among his students there are such famous scientists as Correspond-
ing Member of the Russian Academy of Sciences (RAS), member of the European
Academy of Sciences O.V. Besov; Corresponding Member of the RAS, full member
of the European Academy of Sciences L.D. Kudryavtsev, who was nominated in his
30 years by the Head of the Department of Mathematics of the leading university of
the country, MFTI, due to the bold decision of his teacher justified by Kudryavtsev’s
seminal works (The example of Kudryavtsev demonstrates the power of the scien-
tific school by S.M. Nikolskij); Prof. A.F. Timman, Corresponding Member of the
Academy of Sciences of the USSR; V.K. Dzyadyk, NAS academician; N.P. Korne-
jchuk, Corresponding Member of NAS; V.P. Motornyj, Corresponding Member of
the Academy of Sciences of the Kazakh SSR; T.I. Omanov, Professor S.V. Uspen-
skij; Professor V.I. Burenkov; emeritus professor of the Moscow State University,
M.K. Potapov and others.
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Fig. 2 Academician
S.M. Nikolskij

PUPILS
of the Adviser of the Russian Academy of Sciences, Chief Scientific

Researcher of the Mathematical Institute of the Russian Academy of Sciences
Academician Sergey Nikolskij

Valentina Alkhimova, Dr., Dnepropetrovskiy gosuniversitet
Tyuleubay Amanov, Corresponding Member of the Academy of Sciences Kaza-
khstan, Dr., Professor of Institute of Mathematics and Mechanics, Semipalatinsk
Andrey Bezlyudnyy, Dr., associate professor of the Dnepropetrovsk Technology
University
Oleg Besov, Corresponding Member of RAN, Head of the Theory of Functions
division of the Mathematical Institute named after V.A. Steklov of the RAN
Yuriy Bessonov, Dr., associate professor of the Moscow Aviation University
Bugayets, Dr., Dnepropetrovsk University
Yakov Bugrov, Dr., Professor of the Moscow University of Electronic Technology
Viktor Burenkov, Dr., Professor of the L.N. Gumilyov Eurasian National Univer-
sity
Aleksandr Vasharin, Dr., associate professor of the Moscow Physical-Technical
Institute
Verbitskiy, Dr., Dnepropetrovskiy University
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A. Vol’pert, Dr., associate professor of the Slavic Pedagogical University
A. Gazar’yants, Dr., associate professor of the Baku University
I. Ginzburg, Dr., associate professor of the Dnepropetrovskiy University
I. Globenko, Dr., Novosibirsk
Gurevich, Dr., Moscow Automobile University
Vladislav Dzyadyk, Dr., Corresponding Member of the NAS of Ukraine, Head of
the Institute of Mathematics of the NAS
Yuriy Doronin, Dr., associate professor of the Dnepropetrovsk Building Univer-
sity
Yuriy Kashchenko, Dr., associate professor of the Moscow Power Engineering
University
Kiselev, Dr., associate professor of the Moscow University of Railway Engineers
A. Konyushkov, Dr., associate professor of the Moscow Engineering Physics Uni-
versity
Vladimir Kopchenov, Dr., associate professor of the Moscow Forestry University
Nicholas Kornejchuk, Dr., Prof., Academician of the NAS of Ukraine, Kiev
Lev Kudryavtsev, Corresponding Member of RAS
Ivan Matveev, Dr., associate professor of Moscow State University
Nina Mozzherova, Dr., associate professor of the Moscow Engineering Physics
University
Vitaly Motor, Dr., Professor of Dnepropetrovsk State University
Kabduzh Nazryzbaev, Dr., Professor, Almaty
Victor Olovyanishnikov, Dr., associate professor of the Moscow Automobile and
Road University
Petr Pilika, Dr., Head of Department at the University of Albania
V. Pinkevich, Dr., associate professor of Dnepropetrovsk State University
Mikhail Potapov, Dr., Professor of Moscow State University
Yusif Salmanov, Dr., Professor of Baku Pedagogical Institute
S. Selivanova, Dr., associate professor of the Moscow Engineering Physics Uni-
versity
Alexander Timman, Dr., Prof. Dnepropetrovsk State University
Stanislav Uspenskij, Dr., Prof., Head of the Moscow State University of Environ-
mental Engineering
Alexander Foht Dr., associate professor of the Moscow Physical-Technical Insti-
tute
Vladimir Fufaev, Dr., associate Professor of the Moscow Physical-Technical In-
stitute
Vladimir Shan’kov, Dr., associate professor of the Moscow Physical-Technical
Institute
Shcherbin Alexander, Dr., Head of Dnepropetrovsk Medical University
Vladimir Yanchak, Dr., associate professor of the Lviv State University

Scientific achievements and activity of S.M. Nikolskij were highly recognised by
the state. He was awarded orders and medals and state awards. S.M. Nikolskij was
awarded by a gold medal named after Vinoradov of the USSR Academy of Sciences
(1991), by the Chebyshev Prize of the USSR (1972), by Kolmogorov Prize of the



Life Like an Example 431

Fig. 3 School handbooks by S.M. Nikolskij

RAS (2000), by Gold Medal of the Bolzano Czech Academy of Sciences (1978),
Medal, by Copernicus Polish Academy of Sciences (1992), by the Ostrogradskij
Prize of the National Academy of Sciences of Ukraine (2000). He was a foreign
member of the Hungarian and Polish Academy of Sciences, Honorary Member of
the Moscow Mathematical and Kiev Mathematical Societies, professor emeritus of
the MGU, professor emeritus of the Moscow Physical-Technical Institute.

Sergei Mikhailovich Nikolskij payed great interest in the problems of school
education in mathematics and informatics. Last years, S.M. Nikolskij was actively
engaged into development of school teaching. Great discussions took place after his
talk at the International mathematical Congress on Mathematical Education in 2004
in Copenhagen.

Sergei Mikhailovich believed that good mathematics in schools can be based
only on a solid foundation of freely use of arithmetic; that arithmetic is the basic of
the logical science, and that its proper study forms not only to calculate, but also the
ability to think logically, and thus gives perspective to other disciplines, algebra and
geometry.

His is an author of many handbooks for secondary and high school (see Fig. 3).
It was unexpected to hear the words: “April 30, 2005 Sergei Mikhailovich has 100

years.” In his congratulatory speech devoted to Sergei Mikhailovich, the President
of the Polish Academy of Sciences Andrzej B. Legocki said: “You, in particular,
supported new ideas developed by Stefan Banach, and had the opportunity to meet
with him until his death. It was lucky that you played a remarkable role in the cre-
ation of an International Center in Warsaw named after Stefan Banach, well-known
today in the world mathematics. It was also your personal achievement. You were
undoubtedly many years a central figure in the Scientific Council of the Centre Ba-
nach. I can assure you that the Polish Academy of Sciences is proud that you are
its foreign member. Hundredth anniversary of the birth, this is quite an exceptional
event, the privilege of those who, like you enthralls environment unprecedented
vigor, cheerfulness and kindness. Sure, it’s a big celebration not only for you, I as-
sure you, that also for our Academy. We are happy that you are a foreign member of
our Academy. We are well aware of your scientific achievements in mathematical
analysis and its applications. On the occasion of your hundredth anniversary of the
birth we want to stress your contribution to the teaching of mathematics in recent
years. Teaching for you is so important as research.”

Accuracy and commitment in his work were motor force of Sergei Mikhailovich,
which give freedom and freshness of his thoughts. His organization, allow him to
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carry out clear and accurate generalization. It should be added that the S.M. Nikol-
skij was a man with a strong character; the power of his spirit never leaves him. His
characteristic feature was ability to give himself to the affair that he intended and
performed.

We touch here few events of the century way of life of Sergei Mikhailovich. We
always astonished his active life position, unbending character, personal charm.

With him, we were much younger.
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The Area Method and Proving Plane Geometry
Theorems

Martin Billich

Abstract The process of proving, deriving and discovering theorems is important
in mathematics investigation. In this paper, we will use the elimination technique
which is based on the theory of the area method. The main idea of this method
will be illustrated through an example from plane geometry. In addition, we look at
the application possibilities of using GCLC geometry system with built-in theorem
prover in verification and proving constructive geometric statements.

Keywords Area method · Theorem proving · Geometric constructions

Mathematics Subject Classification (2010) Primary 03F99 · Secondary 97N80

1 Introduction

The unique feature that sets mathematics apart from other sciences, from philoso-
phy, and indeed from all other forms of intellectual discourse, is the use of rigorous
proof. It is the proof concept that makes the subject coheres, and that gives it its
timelessness. There is relatively clear definition of what a proof is. A proof of a
theorem is a finite sequence of claims, each claim being derived logically (i.e. by
substituting in some tautology) from the previous claims, as well as theorems whose
truth has been already established. The last claim in the sequence is the statement of
the theorem, or a statement that clearly implies the theorem (see for example [2]).

In this paper we will look at the application possibilities of the area method, an
efficient synthetic (semi-algebraic) method for a fragment of Euclidean geometry in
proving of constructive geometric statements.

2 The Area Method and Constructive Geometric Statements

The area method for plane geometry was developed by Chou, Gao, and Zhang [1].
The basic idea of the method is to express hypotheses of a theorem using a set of
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Table 1 Common geometric
notions

Properties Formalizations

Points A,B,C are collinear ‖ABC‖ = 0

AB is parallel to CD ‖ACD‖ = ‖BCD‖
M is the midpoint of AB ‖ABC‖ = 0 ∧ ‖AB‖

‖AM‖ = 2

Points A,B,C,D are harmonic ‖AC‖
‖CB‖ = ‖DA‖

‖DB‖

constructive statements, each of them introducing a new point (as intersection of
lines, etc.), and to express a conclusion by an equality of arithmetic expressions,
without considering Cartesian coordinates, using only three geometric quantities:
the ratio of directed segments, the signed area of a triangle and the Pythagoras
difference (for details see [5, 6]). In the rest of the paper, we denote by ‖AB‖ the
signed length of a segment AB (the length |AB|, endowed by the sign + or −, i.e.
‖AB‖ = −‖BA‖) and we denote by ‖ABC‖ the signed area1 of a triangle ABC.
Expressing some common geometric notions using ratios and signed area is given
in Table 1.

2.1 Geometric Constructions

The area method is used for proving constructive geometry conjectures, i.e. for
statements about properties of objects constructed by some fixed set of elemen-
tary constructions, which have a specific form (C1,C2, . . . ,Cm;G), where Ci , for
1 ≤ i ≤m, are elementary construction steps, and the conclusion G of statements is
of the form E1 =E2, where E1 and E2 are arithmetical expressions containing only
geometric quantities (signed areas and ratios) [6]. For each constructed point there
is some construction Ci stating how it has been constructed.

Then the proof is based on eliminating (in reverse order) the points introduced
before from the goal using a set of appropriate elimination lemmas. After eliminat-
ing all introduced points (and changing the goal into an expression containing only
independent geometric quantities), the current goal becomes a trivial equality that
can be simply tested for validity.

2.2 Basic Lemmas

Here we present only two lemmas those are the base for the area method and will
be used in the next section of the paper (see, for instance, [1, 6] for a survey).

Lemma 2.1 Let A,B , and C be three collinear points such that ‖AB‖ = r‖AC‖
(r ∈ R). Then for any point P , we have ‖PAB‖ = r‖PAC‖.

1The signed area of a triangle is the area of a triangle with a sign depending on its orientation in
the plane. We have anticlockwise, positive sign, and clockwise, negative sign.
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Remark The signed area of a quadrilateral ABCD can be defined in the following
way:

‖ABCD‖ = ‖ABC‖ + ‖ACD‖.
Lemma 2.2 (The Co-side Theorem) LetM be the intersection of two non-parallel
lines AB and PQ andM �=Q. Then it holds that

‖PM‖
‖QM‖ = ‖PAB‖

‖QAB‖; ‖PM‖
‖PQ‖ = ‖PAB‖

‖PAQB‖ . (EL1)

The Co-side Theorem is one of the most important elimination lemmas for the
area method. From (EL1) it follows that the point M can by eliminated by the sub-
stitution from the ratio of directed parallel segments by ratio of two signed areas,
not involvingM .

3 Computer Proof Checking

There is a range of geometry software tools, covering different geometries and ge-
ometry problems. Dynamic geometry software (DGS) visualizes geometric objects
and link formal, axiomatic nature of geometry with its standard models (e.g., Carte-
sian model) and corresponding illustrations. Ones can use it to construct geometric
objects, observe their changes by moving free points or applying Euclidean trans-
formations, and then discover some conjectures. We can see with our own eyes that
this or that geometrical theorem is true.

Some DGS provide proof feature by combining with automated geometry the-
orem proving (AGTP), allow users to verify conjectures. They relies on several
efficient automatic proof methods, such as Gröbner bases method, Wu’s method,
Area method and Full-angles method (see [1, 4, 7]). The first two ones are algebraic
methods which use polynomials to solve problems, that is, they first transform ge-
ometric properties into equations in coordinates of the related points and then deal
with these equations. The last two ones can produce human-readable proofs, that is,
each step of the generated proof has clear geometric meanings.

We will not give an overview of AGTP here, instead we present only some in-
formations of the GCLC system as a tool for visualizing geometrical (and not only
geometrical) objects and notions, and for producing traditional proofs with the ge-
ometry theorem prover (GCLCprover) which is built in GCLC and based on the area
method. For more details about the prover and GCLC system, see [3, 5].

3.1 GCLC System

GCLC is a tool for visualizing objects and notions of geometry. GCLC uses the
specific GC language for describing figures. GC language consists of the follow-
ing groups of commands: definitions, basic constructions, transformations, drawing
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commands, marking and printing commands, low level commands, Cartesian com-
mands, commands for describing animations, commands for the geometry theorem
prover. These descriptions are compiled by the processor and can be exported to dif-
ferent output formats. There is also support for symbolic expressions, for parametric
curves and surfaces, for drawing functions, graphs, and trees.

3.2 GCLCprover

The GCLCprover, as an integral part of GCLC system, can be very useful in testing
conjectures. This means that one can use the prover to reason about objects intro-
duced in GCLC construction, without changing for verification, i.e. we need to add
only the conclusion that will be proved.

The theorem prover can prove any geometry theorem expressed in terms of
geometry quantities, and involving only points introduced by using the com-
mands: point, line, intersec, midpoint, med, perp, foot, parallel,
translate, towards, online.

4 Worked Example

In this section we give a detailed description of how the elimination technique for
area method works on the following example:

Example Show that the line joining the point of intersection of the extension of the
non-parallel sides of a trapezoid to the point of intersection of its diagonals bisects
the base of the trapezoid.

Construction Let ABCD be a trapezoid with the parallel sides AB and CD
(Fig. 1). The points A,B , and C are free points (points not defined by construc-
tion steps) and D is the point on the line passing through C and parallel to AB . The
point P is the intersection of the extension of sides BC and AD and Q is the inter-
section of AC and BD. LetM be the intersection of the line PQ with the side AB .
The GCLC code for our construction is shown in Fig. 2. We need to show thatM is
the midpoint of AB , that is equivalent to the condition

‖AM‖
‖BM‖ = −1. (4.1)

Proof We can eliminate the constructed points P,Q andM (in reverse order), using
for that purpose the properties of the geometric quantities, until an equality in only
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Fig. 1 Trapezoid ABCD

the pointsA,B,C, andD is reached. We first eliminateM using the co-side theorem
(Lemma 2.2):

‖AM‖
‖BM‖ = ‖APQ‖

‖BPQ‖ .
By the same theorem, we can eliminate the point Q:

‖APQ‖
‖APC‖ = ‖AQ‖

‖AC‖ = ‖ABD‖
‖ABCD‖

⇒ ‖APQ‖ = ‖APC‖ · ‖ABD‖
‖ABCD‖

and

‖BPQ‖
‖BPD‖ = ‖BQ‖

‖BD‖ = ‖BCA‖
‖BCDA‖ = ‖ABC‖

‖ABCD‖
⇒ ‖BPQ‖ = ‖BPD‖ · ‖ABC‖

‖ABCD‖ .

The new goal is
‖AM‖
‖BM‖ = ‖APC‖

‖BPD‖ · ‖ABD‖
‖ABC‖ .

Applying Lemma 2.1, we can eliminate P :

‖APC‖
‖ADC‖ = ‖AP ‖

‖AD‖ = ‖BP ‖
‖BC‖ = ‖BPD‖

‖BCD‖
⇒ ‖APC‖

‖BPD‖ = ‖ADC‖
‖BCD‖ .

It obvious, that ‖ABD‖ = ‖ABC‖ (from AB‖CD) and ‖ADC‖ = −‖BCD‖, and
we have the goal in the form

‖AM‖
‖BM‖ = −‖BCD‖

‖BCD‖ · ‖ABC‖
‖ABC‖ = −1

and the proof is completed. �
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Fig. 2 GCLC code for the
example with trapezoid

Theorem Prover It can be checked (with GCLCprover) that M is the midpoint
of AB . This statement can be given to the prover by adding line

prove { equal { sratio A M B M } {-1} }
to the code given in Fig. 2. The prover produced a short report of information on
number of steps performed, on CPU time spent and whether or not the conjecture
has been proved (Fig. 3).

The prover generate also proof in LaTEX form and in XML format. We can con-
trol the level of details given in generated proof. The proof consists of proof steps.
For each step, there is an explanation and its semantic counterpart. This semantic
information is calculated for concrete points used in the construction. In addition, at
the end of the main proof all non-degenerative conditions are listed.

5 Conclusion

Theorems with their proofs are at the core of mathematics and play an important
role in the working of mathematicians. The area method is a synthetic method pro-
viding short and human-readable proofs for one class of geometry statements. This
method works for constructive geometric statements and is one of the most success-
ful methods for automated geometry theorem proving. We presented some advan-
tages of the area method and GC language for explicit describing construction in
Euclidean plane. The theorem prover which is implemented in GCLC system, can

Fig. 3 Report for the example with trapezoid
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automatically prove a number of geometry theorems in plane geometry. This system
provides an environment for modern ways of studying and teaching geometry.
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6. P. Quaresma, P. Janičić, The area method, rigorous proofs of lemmas in Hilbert’s style axioms
systems. Technical Report TR2009/001, Center for Informatics and Systems of the University
of Coimbra (2009)

7. W.T. Wu, Using Gröbner bases to reason about geometry problems. Sci. Sin. 21, 157–179
(1978)



Part VIII
Clifford, Quaternion and Wavelet Analysis

Organizers: Keiko Fujita, Akira Morimoto, Swanhild Bernstein, Uwe Kahler, Irene
Sabadini, Frank Sommen



Redundant Multiscale Haar Wavelet Transforms

Kensuke Fujinoki

Abstract We consider a redundant lifting scheme for Haar wavelet transform that
does not use the polyphase decomposition. We also extend the method to a two-
dimensional triangular lattice, and define a nonseparable two-dimensional redun-
dant Haar wavelet transform on the lattice.

Keywords Wavelets · Lifting scheme · Redundant transform
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1 Introduction

The lifting scheme of Sweldens [1, 2] has been widely used in a range of applica-
tions, as it can provide a particularly easy way to construct perfect reconstruction
filters that are defined even on general domains such as irregular grids over arbitrary
surfaces [3, 4]. In particular, any discrete wavelet transform with finite impulse re-
sponse filters can be decomposed into a finite sequence of simple lifting steps [5].
The computation of the wavelet decomposition or reconstruction implemented via
the lifting is efficient and thus fast, because it uses the polyphase decomposition
that divides a one-dimensional discrete signal into even and odd components, which
is also called decimation or downsampling by a factor of two [6]. However, due to
the nature of the polyphase decomposition, this leads to a large number of artifacts
when the signal is reconstructed after modification of its wavelet coefficients. In this
paper, we consider a redundant lifting scheme for Haar wavelet transform that does
not use the polyphase decomposition in both one and two dimensions.

2 Haar Wavelet Transform with Lifting

For a discrete one-dimensional signal cj [k], k, j ∈ Z with a resolution level j ≥ 0,
the lifting first splits the signal into even indexed samples cj [2k] and odd indexed
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samples cj [2k+ 1], which are completely disjoint components each other. The odd
indexed component cj [2k+ 1] is predicted by the constant prediction that only uses
the even indexed component cj [2k], and cj [2k+1] is replaced as a detail component
dj+1[k] which is the error of the prediction:

cj [2k + 1] → dj+1[k] = cj [2k + 1] − cj [2k]. (2.1)

Then the even indexed component cj [2k] is updated to a coarse component cj+1[k]
by using cj [2k] and results of the prediction dj+1[k]:

cj [2k] → cj+1[k] = cj [2k] + dj+1[k]
2

. (2.2)

Finally the outputs cj+1[k] and dj+1[k] are rescaled by
√

2 and 1/
√

2 respectively,
if we need the energy normalization of the coefficients ‖cj‖2 = ‖cj+1‖2 +‖dj+1‖2.

These lifting steps are easily inverted by undoing each update and predict step
with flipping the sign:

cj [2k] = cj+1[k] − dj+1[k]
2

,

cj [2k + 1] = dj+1[k] + cj [2k].
(2.3)

One can see the efficiency of the lifting against the direct implementation by the
Mallat algorithm [7],

cj+1[k] =
∑

l

h[l − 2k]cj [l],

dj+1[k] =
∑

l

g[l − 2k]cj [l],
(2.4)

cj [k] =
∑

l

(
h̃[k − 2l]cj+1[l] + g̃[k − 2l]dj+1[l]

)
, (2.5)

with filters h[k] = h̃[k] = { 1√
2
, 1√

2
} and g[k] = g̃[k] = {− 1√

2
, 1√

2
}.

3 Redundant Haar Lifting

The redundant lifting scheme that we consider here does not use the split step, which
means that there is no distinction between even and odd indexed components. In our
redundant scheme, the cj [k] is treated as an even-like component and cj [k+ 2j ] as
an odd-like component, in stead of the even cj [2k] and the odd cj [2k + 1]. The
redundant version of the constant prediction (2.1) now becomes simply

dj+1[k] = cj
[
k+ 2j

]− cj [k], (3.1)
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Fig. 1 A schematic
illustration of constant
prediction steps of (a) normal
lifting and (b) redundant
lifting

where j starts from 0. Note that the index of the odd component cj [k + 2j ] varies
depending on the resolution level j . A similar setting that we use here for the odd
component cj [k + 2j ] can also be seen in the à trous algorithm [8, 9] that realizes
the undecimated Mallat transform. The redundant lilting described here is different
from that of [10], which apply twice the step of predict and update to implement the
redundant transform.

The update step (2.2) is then written as

cj+1[k] = cj [k] + dj+1[k]
2

. (3.2)

In the case of the normal lifting, undoing each lifting step (2.3) yields the original
signal of cj [2k] and cj [2k+ 1]. However, in the redundant case, since the even-like
component cj [k] also contains the odd-like component cj [k + 2j ], we can recover
the original signal cj [k] only reverting the update step:

cj [k] = cj+1[k] − dj+1[k]
2

, (3.3)

which implies that we have a higher degree of freedom when designing the synthesis
filters.

Figure 1 shows the redundant lifting for the constant prediction compared with
the standard lifting. Unlike in the standard prediction, one can recognize that the
resolution of each decomposed signal cj+1[k] and dj+1[k] is maintained in the re-
dundant lifting. Furthermore, this redundancy enables to build the discrete wavelet
transform with translation-invariant property. It also makes the reconstruction ro-
bust to the ringing artifact, which can be very important in some applications such
as feature analysis [11].
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4 Haar Lifting on the Triangular Lattice

The triangular wavelets [12, 13] are defined on a triangular lattice Λ generated by a

linear combination of two vectors t1 = (1 0)T and t2 = (− 1
2

√
3

2 )
T . The reciprocal

lattice Λ̃ that corresponds to the Fourier domain is similarly generated with vectors
λ1 = (0 2√

3
)T and λ2 = (1 1√

3
)T . We also define t0 = 0, t3 = −t1 − t2, and λ3 =

λ1 − λ2 for notational convenience.
A discrete signal, cj [t], t ∈Λ defined on the lattice, is represented with its four

polyphase components in the Fourier domain as

ĉm,j (ω)=
∑

t∈Λ
cj [2t + tm]e−iω·t , m= 0,1,2,3, ω ∈R

2.

This implies that we have one even component cj [2t] and three odd components
cj [2t + tk], k = 1,2,3. Note that in one dimension there only exist one even cj [2k]
and one odd cj [2k+ 1] components.

Correspondingly, a straightforward generalization of the wavelet transform
shows that a signal cj [t] is decomposed into a coarse component cj+1[t] and three
detail components dk,j+1[t], k = 1,2,3, of half a resolution. This can be written
via the lifting form generalized to two dimension; in the Haar case, three detail
components are obtained using three constant predictions for each direction tk :

dk,j+1[t] = cj [2t + tk] − cj [2t], k = 1,2,3, (4.1)

and a coarse component is given by using the results of each prediction:

cj+1[t] = cj [2t] + 1

4

3∑

k=1

dk,j+1[t], (4.2)

which preserves the average of a two-dimensional signal. Finally the normalization
steps are applied for energy normalization. Repeating the procedures of the predict
(4.1) and the update (4.2) steps up to a resolution level L> j produces the following
multiscale coefficients

cj [t] → {
dk,j+1[t], dk,j+2[t], . . . , dk,L[t], cL[t]}, k = 1,2,3.

Analogous to the one-dimensional case, we can also build the update and predict
for the inverse transform, which can be written respectively as

cj [2t] = cj+1[t] − 1

4

3∑

k=1

dk,j+1[t],

and

cj [2t + tk] = dk,j+1[t] + cj [2t], k = 1,2,3.
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This lifting representation of the two-dimensional wavelet decomposition on the
lattice Λ corresponds to the Mallat algorithm (2.4) and (2.5) generalized to two
dimension, which is the convolutions with four filters followed by downsampling:

cj+1[t] =
∑

s∈Λ
h[s − 2t]cj [s],

dk,j+1[t] =
∑

s∈Λ
gk[s − 2t]cj [s].

The reconstruction of the signal is

cj [t] =
∑

s∈Λ

(

h̃[t − 2s]cj+1[s] +
3∑

k=1

g̃k[t − 2s]dk,j+1[s]
)

,

where the filter coefficients of the system (h, gk, h̃, g̃k), k = 1,2,3 are given in [12].

5 Redundant Haar Lifting on the Lattice

The original lifting on the lattice, which is described before, uses the polyphase
decomposition that classifies a signal cj [t] into even cj [2t] and three odd compo-
nents cj [2t + tk], k = 1,2,3. As a result, each polyphase component has half a
resolution compared with the original signal. As we see in one dimension, the re-
dundant lifting does not use the polyphase decomposition, or decimation. We now
define an even-like component cj [t] and three odd-like components cj [t + 2j tk],
k = 1,2,3, in a similar manner to the one dimensional case. Thus, in the case of the
two-dimensional redundant Haar transform on the latticeΛ, which uses the constant
prediction, the steps can be rewritten in a straightforward way:

dk,j+1[t] = cj
[
t + 2j tk

]− cj [t], k = 1,2,3. (5.1)

The update is similarly written as

cj+1[t] = cj [t] + 1

4

3∑

k=1

dk,j+1[t]. (5.2)

In the one-dimensional redundant lifting, the nature of the lifting has not changed
without dropping the split operation that decomposes a signal into even and odd
components. Due to the redundancy, the reconstruction of the signal becomes much
more easier as in (3.3). Thus, we can still build the inverse transform in two dimen-
sion by undoing the update lifting steps:

cj [t] = cj+1[t] − 1

4

3∑

k=1

dk,j+1[t].

Here we describe how the redundant lifting decomposes an image. Note that the
original squared sampled image data has been mapped to the triangular lattice Λ by
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Fig. 2 Decomposed images of Cameraman with the redundant Haar lifting on the triangular lat-
tice Λ. From the left, detail components d1,j , d2,j , and d3,j are shown. Images on the upper row
have resolution level j + 1, and middle and lower ones have j + 2 and j + 3, respectively, while
all of the images have the same resolution density

using the half-shift pixel method [14]. By the redundant lifting, the original image
has been decomposed into a coarse approximation cj+1[t] and three oriented detail
components dk,j+1[t], k = 1,2,3 at each resolution level. Due to the nature of the
redundant transform, all the decomposed images have the same resolution density.
This redundancy would offer several advantages against the conventional wavelet
decomposition for some applications such as edge detection or feature analysis of
an image, where translation-invariant property plays a key role (Fig. 2).
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Gabor Transform of Analytic Functional
on the Sphere

Keiko Fujita

Abstract We studied the Fourier–Borel transform of analytic functional on the
complex sphere. In this paper, we will consider the Gabor transformation which is a
windowed Fourier transformation whose window function is the Gaussian function.
Following our previous results we will represent the Gabor transform of analytic
functional on the sphere using a series expansion by means of the Bessel functions.

Keywords Series expansion · Analytic functional on the sphere ·
Gabor transformation
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1 Introduction

We denote by L2(X) the space of square integrable functions on X. The Fourier
transform of f ∈ L2(Rn+1) is defined by

f̂ (ω)=
∫

Rn+1
e−ix·ωf (x)dx,

where x · y = x1y1 + · · · + xn+1yn+1 for x, y ∈ Rn+1. Let w be a window function
on Rn+1; that is,w(t), tw(t),ωŵ(ω) ∈ L2(Rn+1). The windowed Fourier transform
with respect to w is defined by

WFf (y,ω)=
∫

Rn+1
w(x − y)e−ix·ωf (x)dx.

This work was partially supported by JSPS KAKENHI Grant Numbers (C)23540146.

K. Fujita (B)
Department of Mathematics, University of Toyama, Toyama 930-8555, Japan
e-mail: keiko@sci.u-toyama.ac.jp

© Springer International Publishing Switzerland 2015
V.V. Mityushev, M.V. Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-12577-0_50

451

mailto:keiko@sci.u-toyama.ac.jp
http://dx.doi.org/10.1007/978-3-319-12577-0_50


452 K. Fujita

We denote by x2 = x · x. Take w(x)= e−x2/2, then we call

WGFf (y,ω)=
∫

Rn+1
e−(x−y)2/2e−ix·ωf (x)dx

the Gabor transform of f .
Let R+ = {x ∈ R;x > 0}. Put Gω0(x)= e−x2/2e−ix·ω0 for ω0 ∈ Rn+1 \ {0}. For

a ∈ R+, we define the Gabor wavelet transform by

Gω0f (y, a)= a−(n+1)/2
∫

Rn+1
Gω0

(
x − y
a

)

f (x)dx.

Let Sn be the unit sphere in Rn+1. For f ∈ L2(Sn), we define the Fourier trans-
form by

Ff (ω)=
∫

Sn
e−ix·ωf (x)dΩ,

where dΩ is the normalized invariant measure on Sn, and define the Gabor trans-
form by

WGFf (y,ω)=
∫

Sn
e−(x−y)2/2e−ix·ωf (x)dΩ.

Similarly we define the Gabor wavelet transform of f ∈ L2(Sn) by

Gω0f (y, a)= a−n/2
∫

Sn
Gω0

(
x − y
a

)

f (x)dΩ.

We remark that in [2], for a wavelet function g, which is a summable function on
(0,∞) and satisfies

∫ ∞

0
g(t)dt = 0,

∫ ∞

0

∣
∣g(t) log t

∣
∣dt <∞,

the “spherical” wavelet transform of f generated by g is defined by

Wf (y, a)= 2(1−n/2)

a

∫

Sn
(1 − y · x)(1−n/2)g

(
1 − y · x
a

)

f (x)dx.

In this paper, we will represent WGFf (y,ω) or Gω0f (y, a) using a series expan-
sion by means of the Bessel functions following our previous results summarized in
the book [1], and references can be found in [1].

2 Gabor Transform of Analytic Functional on the Sphere

We denote by A(Sn) the space of real analytic functions on Sn, by A′(Sn) the
space of analytic functionals (or hyperfunctions) on Sn. Let 〈T ,g〉 be the canonical
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bilinear form of duality on A′(Sn) × A(Sn). For continuous functions f and g
on Sn, we define a sesquilinear form (g, f )Sn by

(g, f )Sn ≡
∫

Sn
g(ω)f (ω)dΩ.

We know the volume of Sn; vol(Sn)= 2π(n+1)/2/Γ ((n+ 1)/2), where Γ (·) is the
Gamma function.

From now on, L2(Sn) denotes the space of square integrable functions on
Sn with the inner product (f, g)L2(Sn) = (f, g)Sn and we introduce the norm by
‖f ‖L2(Sn) = √

(f,f )Sn . Since A(Sn) ⊂ L2(Sn) ⊂ A′(Sn), for f ∈ L2(Sn) we de-
fine Tf ∈A′(Sn) by

〈Tf , g〉 = (g, f )Sn =
∫

Sn
g(x)f (x)dΩ, g ∈A

(
Sn
)
. (2.1)

Note the mapping f �→ Tf is a continuous antilinear injection.

2.1 Gabor Transformation

Let T ∈A′(Sn). We will define the Fourier–Borel transform of T by

FT (ω)= 〈Tx, exp(−ix ·ω)〉, ω ∈ Cn+1.

Note that we defined FT (ω)= 〈Tx, exp(x ·ω)〉 in [1].
For ω,τ ∈ Cn+1, we define the Gabor transformation WGF by

WGF : T �→WGFT (τ,ω) =
〈
Tx, exp

(−(x − τ)2/2) exp(−ix ·ω)〉.

Since T ∈A′(Sn),

WGFT (τ,ω) = exp
((−1 − τ 2)/2

)〈
Tx, exp

(
x · (τ − iω))〉 (2.2)

= exp
((−1 − τ 2)/2

)〈
ex·τ Tx, exp(−ix ·ω)〉. (2.3)

As a function in ω, WGFT (τ,ω) satisfies the following differential equation:

(�ω + 1)WGFT (τ,ω)= 0,

where�z = ∂2/∂z2
1 +· · ·+ ∂2/∂z2

n+1 for z= (z1, . . . , zn+1) ∈ Cn+1 is the complex
Laplacian. Similarly, as a function in τ ,

(�τ − 1)
(
e(1+τ 2)/2WGFT (τ,ω)

)= 0.
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We denote by F−1
S (resp., (WGF)−1

S ) the inverse mapping of F (resp., WGF )
for A′(Sn). Then we have

e(1+τ 2)/2F−1
S

(
WGFT (τ,ω)

)
(x)= ex·τ Tx.

Therefore we have

(WGF)−1
S

(
WGFT (τ,ω)

)
(x)= e−x·τ+(1+τ 2)/2F−1

S

(
WGFT (τ,ω)

)
(x).

That is, the inverse Gabor transformation on Sn is given by

(WGF)−1
S : WGFT (τ,ω) �→ e−x·τ+(1+τ 2)/2(F−1

S

(
WGFT (τ, ·)

)
(x)
)
, x ∈ Sn.

3 Expansion Formula

Let Pk,n(t) be the Legendre polynomial of degree k and of dimension n+ 1:

Pk,n(t)=
(−1

2

)2
Γ (n/2)

Γ (k + n/2)
(
1 − t2)(2−n)/2 dk

dtk

(
1 − t2)k+(n−2)/2

.

Note that Pk,1(t)= cos(k cos−1 t) is the Chebyshev polynomial of degree k.
We define the extended Legendre polynomial by

Pk,n(z,w)=
(√
z2
)k(
√
w2
)k
Pk,n

(
z√
z2

· w√
w2

)

, z,w ∈ Cn+1.

Pk,n(z,w) is a homogeneous harmonic polynomial of degree k in z and in w.
Thus �zPk,n(z,w) = �wPk,n(z,w) = 0. The dimension N(k,n) of the space of
k-homogeneous harmonic polynomials is given by

N(k,n)= (2k+ n− 1)(k + n− 2)!
k!(n− 1)! .

For f ∈ L2(Sn), define

fk(x)=N(k,n)
∫

Sn
f (ω)Pk,n(ω, x)dω. (3.1)

Then we have

f (x)=
∞∑

k=0

fk(x), (3.2)

in the sense of L2(Sn). If f ∈ A(Sn), then the convergence of the right-hand side of
(3.2) is in the sense of A(Sn).
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Let g ∈A(Sn) and define gk of g by (3.1). For T ∈ A′(Sn) we consider

〈T ,g〉 =
〈

T ,

∞∑

k=0

gk

〉

=
∞∑

k=0

〈T ,gk〉. (3.3)

By (3.1), we have

〈T ,gk〉 =
〈

Tζ ,N(k,n)

∫

Sn
g(ω)Pk,n(ω, ζ )dω

〉

= N(k,n)
∫

Sn

〈
Tζ ,Pk,n(ω, ζ )

〉
g(ω)dΩ

=
∫

Sn
g(ω)Sk(T ;ω)dΩ, (3.4)

where we put

Sk(T ;ω)=N(k,n)〈Tζ ,Pk,n(ω, ζ )
〉
.

For f ∈ L2(Sn), by (2.1) we have

Sk(Tf ;ω) = N(k,n)
∫

Sn
Pk,n(ω, x)f (x)dΩ

= N(k,n)
∫

Sn
Pk,n(ω, x)f (x)dΩ = fk(ω).

Note that Sk(T ;ω) is a homogeneous harmonic polynomial of degree k. By (3.3)
and (3.4), we have

〈T ,g〉 =
∞∑

k=0

∫

Sn
g(ω)Sk(T ;ω)dΩ;

that is,

Tω =
∞∑

k=0

Sk(T ;ω)=
∞∑

k=0

N(k,n)
〈
Tζ ,Pk,n(ω, ζ )

〉

in the sense of A′(Sn).

3.1 Expansion Formula of the Exponential Function

For ν �= −1,−2, . . . , we define the Bessel function of order ν by

Jν(t)=
(
t

2

)ν ∞∑

l=0

1

l!Γ (ν + l + 1)

(
it

2

)2l

.
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We put

J̃ν(t)= Γ (ν + 1)

(
t

2

)−ν
Jν(t), j̃k(t)= J̃k+(n−1)/2(t),

C(k,n)= Γ (n+1
2 )

2kΓ (k + n+1
2 )
.

Using these notation we have

exp(z ·w)=
∞∑

k=0

C(k,n)N(k,n)j̃k
(
i
√
z2
√
w2
)
Pk,n(z,w). (3.5)

Thus for T ∈A′(Sn), we have

FT (ω)= 〈Tx, exp(−ix ·ω)〉=
∞∑

k=0

C(k,n)(−i)k j̃k
(√
ω2
)
Sk(T ;ω). (3.6)

3.2 Expansion Formula of Gabor Transform

By (2.3) and (3.6), for T ∈ A′(Sn) we have

WGFT (τ,ω)= e(−1−τ 2)/2
∞∑

k=0

C(k,n)(−i)k j̃k
(√
ω2
)
Sk
(
ex·τ T ;ω). (3.7)

On the other hand, by (2.2) and (3.5), we also have

WGFT (τ,ω)= e−1−τ2
2

∞∑

k=0

C(k,n)(−i)k j̃k
(√
(τ − iω)2)Sk(T ; τ − iω). (3.8)

For f ∈ L2(Sn), we have

WGFTf (τ,ω)= e−1−τ2
2

∞∑

k=0

C(k,n)(−i)k j̃k
(√
(τ − iω)2)fk(τ − iω). (3.9)

Put
(
ex·τ f (x)

)

k
(ω)=N(k,n)

∫

Sn
ex·τ f (x)Pk,n(ω, x)dΩ.

Then we also have

WGFTf (τ,ω)= e−1−τ2
2

∞∑

k=0

C(k,n)(−i)k j̃k
(√
ω2
)(
ex·τ f (x)

)

k
(ω). (3.10)



Gabor Transform of Analytic Functional on the Sphere 457

Thus (3.7)–(3.10) give series expansions of Gabor transform of analytic functional
on Sn by means of the Bessel functions.

For example, consider the case that fζ0(x)= eix·ζ0 ∈ L2(Sn). Then

FTfζ0 (ω)

=
∫

Sn
exp(−ix ·ω)exp(ix · ζ0)dΩ

=
∞∑

k=0

C(k,n)2(−1)kN(k,n)j̃k
(√
ω2
)
j̃k

(√

ζ 2
0

)
Pk,n(ζ0,ω),

WGFTfζ0 (τ,ω)

= e(−1−τ 2)/2
∫

Sn
exp(x ·ω) exp(x · τ)exp(x · ζ0)dΩ

= e−1−τ2
2

∞∑

k=0

C(k,n)2N(k,n)j̃k
(
i
√
ω2
)
j̃k
(
i

√

τ + ζ02)
Pk,n(τ + ζ0,ω).

3.3 Gabor Wavelet Transformation and Expansion Formula

Let ω0 �= 0 ∈ Rn+1 be fixed. For T ∈ A′(Sn), a ∈ R+ and τ ∈ Rn+1, we define a
modified Gabor transformation Gω0 by

Gω0 : T �→ Gω0T (τ, a)

=
〈

Tx, a
− n

2Gω0

(
x − τ
a

)〉

=
〈

Tx, a
− n

2 exp

(

−iω0 · x − τ
a

)

exp

(

−1

2

(
x − τ
a

)2)〉

.

Since T ∈A′(Sn), we have

Gω0T (τ, a) = a− n
2 exp

(

−1 + τ 2 − 2aiτ ·ω0

2a2

)〈

Tx, exp

(
x

a
· τ − aiω0

a

)〉

= a− n
2 exp

(

−τ
2 − 2aiτ ·ω0 + 1

2a2

)〈

exp

(
x

a
· τ
a

)

Tx, exp

(−ix ·ω0

a

)〉

.

By (3.5), we have

Gω0T (a, τ ) = a− n
2 exp

(

−1 + τ 2 − 2aiτ ·ω0

2a2

)

×
∞∑

k=0

(−i)kC(k,n)
ak

j̃k

(
√

ω2
0

a2

)

Sk
(
ex·τ/a2

Tx;ω0
)
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= a− n
2 exp

(

−1 + τ 2 − 2aiτ ·ω0

2a2

)

×
∞∑

k=0

C(k,n)

a2k
j̃k

(
i
√
(τ − aiω0)2

a2

)

Sk(Tx; τ − iaω0).

For f ∈ L2(Sn), we call

Gω0Tf (τ, a)= a− n
2 e−(1+τ 2−2aiτ ·ω0)/(2a2)

∫

Sn
exp

(
x

a
· τ − aiω0

a

)

f (x)dΩ

the Gabor wavelet transform of f . Then we have

Gω0Tf (a, τ ) = a− n
2 exp

(

−1 + τ 2 − 2aiτ ·ω0

2a2

)

×
∞∑

k=0

C(k,n)

a2k
j̃k

(
i
√
(τ − aiω0)2

a2

)

fk(τ − iaω0).

This is the series expansions of the Gabor wavelet transform of f ∈ L2(Sn) by
means of the Bessel functions.
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On the Interpolation of Orthonormal Wavelets
with Compact Support

Naohiro Fukuda and Tamotu Kinoshita

Abstract The N -th order Daubechies wavelet is obtained with the spectral de-
composition method from modulus of associated low-pass filtersM(ξ)= |m0(ξ)|2.
Meanwhile, we can denote M(ξ) with the integration. In this paper, we focus on
integrands and construct some wavelets by changing them. Moreover, we construct
some kind of fractional order wavelets and give regularity estimates of them.

Keywords Wavelets · B-splines · Fractional order
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1 Introduction

The wavelet theory is applied in many areas such as signal or image process-
ing. Completion of the multiresolution analysis (MRA) makes the construction of
wavelets easy and yields wavelets with good properties.

The compact support property of wavelets is very important for some applica-
tions. If a wavelet ψ has a compact support (i.e., associated filter {hn}n is finite), we
can perform computations with high accuracy. The simplest type of such a wavelet
is the Haar wavelet. Ingrid Daubechies [1] constructed a family of compactly sup-
ported waveletsψDn , which are called the Daubechies wavelets and have n vanishing
moments. A wavelet whose scaling function also has vanishing moments is called
coiflet.

There are two approaches for constructing orthonormal wavelets: start with a
low-pass filter m0, or start with a scaling function ϕ. In particular, the Daubechies
family (including coiflet or symlet) is constructed fromM(ξ)= |m0(ξ)|2, andm0(ξ)
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are derived from M(ξ) by using the spectral decomposition. In the case when N -th
order Daubechies wavelet,M(ξ)=MN(ξ) is given by

MN(ξ)=
(

cos2 ξ

2

)N

LN(ξ), (1.1)

where LN(ξ)= PN(sin2 ξ/2) with

PN(y)=
N−1∑

k=0

(
N − 1 + k

k

)

yk.

There are several ways for the spectral decomposition to get a low-pass filter m0.
Especially, Daubechies wavelets have minimum-phase filters. In this paper, we treat
another expression ofM(ξ) and construct various wavelets.

2 Construction Through the Integration

For the construction of Daubechies wavelets, (1.1) has the simpler form

MN(ξ)=
∫ cos ξ
−1 (1 − t2)N−1dt
∫ 1
−1(1 − t2)N−1dt

. (2.1)

Now we shall deal with a more general form. We set function M(ξ) with a real-
valued function p(t) ∈ L1(−1,1) by

M(ξ)=
∫ cos ξ
−1 p(t)dt
∫ 1
−1 p(t)dt

. (2.2)

Then, the next proposition shows that M(ξ) is a “good candidate” for a low-pass
filter m0 such that |m0(ξ)|2 =M(ξ).

Proposition 2.1 M(ξ) defined by (2.2) with a real-valued even function p ∈
L1(−1,1) satisfies

M(0)= 1 (2.3)

and

M(ξ)+M(ξ + π)= 1. (2.4)

Proof Equation (2.3) is obvious. Noting that p(t) is even, we see that

M(ξ)+M(ξ + π)=
∫ cos ξ
−1 p(t)dt + ∫ − cos ξ

−1 p(t)dt
∫ 1
−1 p(t)dt

=
∫ cos ξ
−1 p(t)dt + ∫ 1

cos ξ p(t)dt
∫ 1
−1 p(t)dt

= 1.
�



On the Interpolation of Orthonormal Wavelets 461

Proposition 2.1 means that a function m0 such that |m0(ξ)|2 =M(ξ) satisfies
|m0(0)| = 1 and |m0(ξ)|2 + |m0(ξ + π)|2 = 1 which are necessary conditions for
an orthonormal wavelet. To construct an orthonormal wavelet, m0(ξ) should satisfy
an additional condition as the next lemma [5].

Lemma 2.2 Assume that m0(ξ) ∈ C1(R) is a 2π -periodic function and satisfies
m0(0)= 1 and |m0(ξ)|2 + |m0(ξ +π)|2 = 1. If m0(ξ) �= 0 for all ξ ∈ [−π/3,π/3],
then m0 is a low-pass filter for an orthonormal wavelet.

For instance, in the case when
∫ 1
−1 p(t)dt > 0, if p(t) ≥ 0 for all t ∈ [1/2,1],

M(ξ) satisfies all the conditions of Lemma 2.2.

Example 1 The simplest choice p(t)= 1 gives the Haar wavelet. This corresponds
to first order Daubechies wavelet (i.e., N = 1 in (2.1)).

Example 2 Let us set p(t)= cos(π2 t). We then obtain M(ξ)= cos2(π2 sin2 ξ
2 ). Re-

sulting low-pass filter m0(ξ)= cos(π2 sin2 ξ
2 ) is a low-pass filter for an orthonormal

wavelet. Reference [3] derived this wavelet by another idea.

3 Fractional Order Wavelets

Let p1,p2 ∈ L1(−1,1) be integrands forM1 andM2, respectively, i.e., we put

M1(ξ)=
∫ cos ξ
−1 p1(t)dt
∫ 1
−1 p1(t)dt

and M2(ξ)=
∫ cos ξ
−1 p2(t)dt
∫ 1
−1 p2(t)dt

.

It is easy to check that for a, b ∈ R such that a+ b �= 0,M(ξ)= aM1(ξ)+bM2(ξ)
a+b also

satisfies (2.3) and (2.4). Putting a = 1 − α and b= α for 0< α < 1 and define

M = (1 − α)M1 + αM2. (3.1)

In some sense,M can be regarded to divide internallyM1 andM2 in ratio α : 1 −α.

3.1 Fractional Order Daubechies Wavelets

As we already noted that the integrand p(t) = (1 − t)N−1 gives the Daubechies
wavelet of order N . We therefore define for N ∈N and 0< α < 1

MD
N+α(ξ)= (1 − α)

∫ cos ξ
−1 (1 − t2)N−1dt
∫ 1
−1(1 − t2)N−1dt

+ α
∫ cos ξ
−1 (1 − t2)Ndt
∫ 1
−1(1 − t2)Ndt

.
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Fig. 1 The fractional order
Daubechies scaling functions
(1 ≤N + α ≤ 5)

Similarly as the standard Daubechies wavelets, MD
N+α(ξ) is a finite-degree poly-

nomial of cos ξ . This means that it is possible to apply the Riesz lemma for the
spectral decomposition. In the same way as the standard Daubechies wavelets, we
obtain an appropriate low-pass filter and call it the low-pass filter associated with
the (N + α)-th fractional order Daubechies wavelet.

Generally, the order of vanishing moments of a wavelet ψ can be calculated
from its low-pass filter m0. If m0(ξ + π) = O(ξn), then ψ has n vanishing mo-
ments. Since d

dξ

∫ cos(ξ+π)
−1 (1 − t2)N−1dt = sin2N−2 ξ , (N + α)-th fractional order

Daubechies wavelet has N vanishing moments. In addition, M(ξ) is a (2N + 1)-th
degree polynomial of cos ξ and thus the support of the scaling function is equal to
[0,2N + 1]. We show the graphs of fractional order Daubechies scaling functions
in Fig. 1.

3.2 Fractional Order B-Splines

B-spline functions having simple structures are often applied to numerical analysis.
Let us denote Nn the n-th order B-spline, i.e., N1 = χ[0,1) and Nm = Nm−1 ∗ N1
for m ≥ 2. They have many good properties such as the convolution property
Nk1 ∗ Nk2 = Nk1+k2 , k1, k2 ∈ Z, compact support, and positivity (Nm(x) ≥ 0 for
all m ∈N, x ∈R).

Uncer et al. [6] generalized the conventional B-splines Nn and constructed frac-
tional order B-splines φB-sp

α for α ≥ 1. They succeeded to keep the convolution
property, i.e., it holds that φB-sp

α ∗ φB-sp
β = φB-sp

α+β for α,β ≥ 1. Meanwhile, φB-sp
α ,

α /∈ N does not have a compact support and positivity. In this section, we introduce
another version of fractional order B-spline functions by using (3.1).

For n ∈N, the low-pass filter corresponding to the n-th order B-splineNn is given

by m0(ξ) = ( 1+e−iξ
2 )n and therefore Mn(ξ) = |m0(ξ)|2 = ( 1+cos ξ

2 )n. This leads to

the definition ofMB-sp
N+α by

M
B-sp
N+α(ξ)= (1 − α)MN(ξ)+ αMN+1(ξ)

=
(

1 + cos ξ

2

)N(

1 − α

2
+ α

2
cos ξ

)

.
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Fig. 2 The fractional order
B-splines ϕB-sp

N+α
(1 ≤N + α ≤ 5)

By using Riesz lemma, we obtain a low-pass filter

m0(ξ)=
(

1 + √
1 − α

2

)(
1 + e−iξ

2

)N(

1 + 2 − α − 2
√

1 − α
α

e−iξ
)

. (3.2)

We call resulting scaling function ϕB-sp
α defined by ϕ̂B-sp

α (ξ) = ∏∞
j=1m0(2−j ξ)

(N + α)-th order fractional order B-spline function. The graphs of fractional order
B-spline function ϕB-sp

α with 1 ≤N + α ≤ 5 are shown in Fig. 2.

Remark 3.1 The integral expression of n-th order B-spline Nn is given by

Mn(ξ)=
∫ cos ξ
−1 (1 + t)n−1dt
∫ 1
−1(1 + t)n−1dt

.

In this case, sinceNn is not an orthonormal scaling function, the integrand (1+ t)n−1

is not an even function andMn does not satisfy (2.4).

Here we note that fractional order B-splines of our scheme do not keep the con-
volution property. However, for allN+α, ϕB-sp

N+α has a compact support with support
size N + 1 for α �= 0. Moreover, the positivity is also valid, since all filter coeffi-
cients corresponding to ϕB-sp

N+α are positive (see (3.2)) and ϕB-sp
N+α is the limit function

of the cascade algorithm. Fractional order B-splines φB-sp
N+α in [6] are in the opposite

situation; φB-sp
N+α has the convolution property, but fails to have a compact support

and the positivity.
There are a few types of wavelets derived from B-splines ϕn =Nn. Setting a dual

scaling function ϕ̃n as

̂̃ϕn(ξ)= ϕ̂n(ξ)
∑∞
k=−∞ |ϕ̂n(ξ + 2kπ)|2

forms a semi-orthogonal wavelet, and

φ̂BT
n (ξ)=

ϕ̂n(ξ)
√∑∞

k=−∞ |ϕ̂n(ξ + 2kπ)|2
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Fig. 3 Fractional order Battle–Lemarié (a) and Strömberg scaling (b) scaling functions
(1 ≤N + α ≤ 5)

gives an orthonormal (Battle–Lemarié) wavelet. Moreover, by a suitable choice of
A(ξ) such that |An(ξ)|2 =∑∞

k=−∞ |ϕ̂n(ξ+2kπ)|2, we are able to get the n-th order
Strömberg scaling function φSt

n as

φ̂St
n (ξ)=

ϕ̂n(ξ)

An(ξ)
.

For the choice of A(ξ), refer to [4].
With a natural generalization, we can define fractional order semi-orthogonal

wavelets, Battle–Lemarié wavelets φBL
N+α and Strömberg wavelets φSt

N+α in a uni-
form manner. We show in Fig. 3 fractional order Battle–Lemarié and Strömberg
scaling functions.

4 Regularity Estimate of Fractional Order Wavelets

There are some wavelet families with an order parameter n. In most cases, the
smoothness of resulting wavelet increases with increasing n. It is well-known
that Daubechies wavelets and Battle–Lemarié wavelets converge to the Shan-
non wavelet as order n tends to infinity. Daubechies [2] derived that n-th order
Daubechies wavelet ψD

n belongs to C0.2n, asymptotically. Moreover, sharp regular-
ity estimates give ψD

1 ∈ C0.5500, ψD
2 ∈ C1.0878, ψD

3 ∈ C1.6179, and so on. These
regularity estimate methods can also be applied to the case of fractional order
wavelets. Figure 4(a) shows the regularity estimates for fractional order Daubechies
wavelets. Additionally, in the case of fractional order B-splines, it is possible to
obtain the Hölder exponents for any 1 ≤ N + α; ϕB-sp

N+α has the Hölder exponents
N − 1 − log2(1 + √

1 − α) (see Fig. 4(b)).

5 Conclusion

In this paper, we introduced the construction of wavelets with integral expressions.
If we set an integrand p(t) as a polynomial, resulting scaling function and wavelet



On the Interpolation of Orthonormal Wavelets 465

Fig. 4 Regularity of (N + α)-th order scaling functions

have a compact support. Moreover, by changing p(t), various types of wavelets are
constructed. By interpolating two functions M1 and M2, and using the spectral de-
composition, we can construct fractional order wavelets. As an example, we treated
fractional order Daubechies wavelets and B-spline wavelets. In the same way as
conventional B-splines, from fractional order B-spline ϕB-sp

α , we can also obtain
dual, Battle–Lemarié, Strömberg scaling functions. Furthermore, we have seen that
the smoothness of fractional order wavelets interpolates that of standard wavelets.

From these observations, we ensure that new wavelets are also useful for appli-
cations.
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in Image Separation Problem

Ryuichi Ashino, Takeshi Mandai, and Akira Morimoto

Abstract The simplest spatio-temporal mixing model of blind source separation for
images is discussed. Shift parameters are estimated by total correlation functions of
continuous wavelet transforms. An image separation algorithm using an annular
sector multiwavelet is proposed.
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parameter
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1 Introduction

The cocktail party effect [1] is a challenging problem in auditory perception, it
is also called blind source separation in engineering. A mathematical background
for the blind source separation by the quotient signal decomposition was discussed
in [2]. Generalizations of the quotient signal decomposition for speech signals and
for images were given in [3] and [4, 5], respectively. We dealt with the simplest
spatio-temporal mixing model of blind source separation for speech signals in [6].
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Fig. 1 An example of
observed images

In this paper, we consider the simplest spatio-temporal mixing model of blind
source separation for images. Images are supposed to be real-valued square inte-
grable functions on R

2. Let N be the number of sources and J , J ≥N , be the num-
ber of observed images. In the simplest spatio-temporal mixing model, we assume
that observed images xj (t), j = 1, . . . , J , are the following mixtures of original
source images sn(t) ∈ L2(R2), n= 1, . . . ,N :

xj (t)=
N∑

n=1

dj,nsn(t − cj,n), (1.1)

where dj,n ∈ R are mixing coefficients and cj,n ∈ R
2 are shift parameters. An ex-

ample of observed images is illustrated in Fig. 1. In this paper, we focus on a new
estimating method of shift parameters.

2 Estimation by Total Correlation Functions

We use an annular sector multiwavelet Ψ = (ψ1, . . . ,ψP )
T ∈ (L2(R2))P , P ∈ N,

P ≥ 2, generated by annular sector tiling in the Fourier domain [4]. We illustrate
ψ̂p(aξ) in the middle column of Fig. 2. A continuous wavelet transformWψpf (b, a)
of an image f ∈ L2(R2) with respect to wavelet functions ψp(t), p = 1, . . . ,P is
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Fig. 2 An example of annular sector multiwavelet transform (P = 20). Top left: image f , bottom

left: the Fourier transform f̂ . Top middle: aψ̂2(aξ), a = 1, bottom middle: aψ̂3(aξ), a = 1.5. Top
right: Wψ2f (b,1), bottom right: Wψ3f (b,1.5)

defined by

Wψpf (b, a)=
∫

R2
f (t)a−1ψp

(
t − b
a

)

dt

= (2π)−2
∫

R2
f̂ (ξ)aψ̂p(aξ)e−ib·ξ dξ = F−1

ξ→b

[
f̂ (ξ)aψ̂p(aξ)

]
(b),

where b ∈ R
2 and a ∈ R+ := {a ∈ R | a > 0} are called position and scale param-

eters, respectively. An example of Wψpf (b, a) is sketched in the right column of
Fig. 2.

For simplicity, the continuous wavelet transforms of an observed image xj (t)
and the original image sn(t) with respect to a wavelet function ψp(t) are denoted
by

X
p
j (t, a)=Wψpxj (t, a), S

p
n (t, a)=Wψpsn(t, a),

respectively. Since a continuous wavelet transform is linear and commutes with a
translation operator, from the model equation (1.1), we have

X
p
j (t, a)=

N∑

n=1

dj,nS
p
n (t − cj,n, a), j = 1, . . . , J.
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For fixed j and k, we define the complex-valued correlation function Rpj,k(y, a)
between xj (t) and xk(t) with respect to ψp by

R
p
j,k(y, a)=

1

‖Xpj (·, a)‖‖Xpk (·, a)‖
∫

R2
X
p
j (t, a)X

p
k (t − y, a)dt.

Fix a scale parameter a. In order to calculate Rpj,k(y, a) numerically, let us calculate

the correlation function Rpj,k(y, a) in the Fourier domain. By Parseval’s theorem,
we have

R
p
j,k(y, a)=

1

(2π)2‖Xpj (·, a)‖‖Xpk (·, a)‖
∫

R2
X̂
p
j (ξ, a)X̂

p
k (ξ, a)e

−iy·ξ dξ

= 1

(2π)2‖Xpj (·, a)‖‖Xpk (·, a)‖
∫

R2
x̂j (ξ)aψ̂p(aξ)x̂k(ξ)aψ̂p(aξ)e−iy·ξ dξ

= a2

(2π)2‖Xpj (·, a)‖‖Xpk (·, a)‖
∫

R2
x̂j (ξ)x̂k(ξ)

∣
∣ψ̂p(aξ)

∣
∣2eiy·ξ dξ

= a2

‖Xpj (·, a)‖‖Xpk (·, a)‖
F−1[x̂j (ξ)x̂k(ξ)

∣
∣ψ̂p(aξ)

∣
∣2
]
(y).

Recall that the observed images xj (t) and xk(t − y) are

xj (t)=
N∑

n=1

dj,nsn(t − cj,n),

xk(t − y)=
N∑

n=1

dk,nsn(t − y − ck,n).

If we choose y = cj,q − ck,q , then the shift parameter of the original image sq in
xk(t − y) coincides with the shift parameter cj,q of sq in xj (t). Moreover, if the
original image sq contains edges which can be accessed by a wavelet ψp with a
scale a, then |Rpj,k(y, a)| is large. Let us discretize a and denote by A the set of
discretized scales. For fixed j and k, we define the total correlation function Rj,k(y)
by

Rj,k(y)=
∑

a∈A

P∑

p=1

√∣
∣R
p
j,k(y, a)

∣
∣. (2.1)

Here we take the square root of |Rpj,k(y, a)| in (2.1) to enhance the sensitivity. For

P = 20 and A = {2−1/2,1,21/2}, we illustrate total correlation functions R1,2(y),
R2,3(y), R3,4(y) and R4,1(y) in Fig. 3. Note that the square roots enhance contrast
of peaks.



Shift Parameters in Image Separation 471

Fig. 3 Total correlation functions of the observed images in Fig. 1. Top left: R1,2, top right: R2,3,
bottom left: R3,4, bottom right: R4,1. P = 20, A= {2−1/2,1,21/2}

We estimate the number of sources, Ñ , by the number of peaks in Fig. 3. Then,
we have Ñ = 4. The coordinates where Rj,k(y) attain peaks correspond to relative
shift parameters {cj,q − ck,q}q=1,...,4.

3 Image Separation Algorithm

We propose Algorithm 3.1 with the annular sector multiwavelets [4].

Algorithm 3.1 We estimate model parameters using the following five steps.

1. Illustrate total correlation functions Rj,j+1(y), j = 1, . . . , J − 1 and RJ,1(y).
The number of sources, N , is estimated by the number of peaks, Ñ , in each total
correlation function.

2. Take sets of coordinates where Rj,j+1(y) and RJ,1(y) attain peaks. These coor-
dinates correspond to relative shift parameters

Vj = {vqj ≈ cj,q − cj+1,q
}

q=1,...,Ñ , j = 1, . . . , J − 1,

VJ = {vqJ ≈ cJ,q − c1,q
}

q=1,...,Ñ .

3. Since
∑J−1
j=1 (cj,q − cj+1,q )+ (cJ,q − c1,q )= 0, select the vector of relative shift

parameters associated with each source image s̃q
{

�vq := (vq1 , . . . , vqJ
) ∈ V1 × · · · × VJ

∣
∣
∣

J∑

j=1

v
q
j = 0

}

q=1,...,Ñ

.



472 R. Ashino et al.

4. It is enough to estimate the relative shift parameters cj+1,q − c1,q with respect to
the source image s̃q by

c̃j+1,q = −
j∑

k=1

v
q
k , j = 1, . . . , J − 1, q = 1, . . . , Ñ,

where c̃j+1,q ≈ cj+1,q − c1,q . Set c̃1,q = (0,0), q = 1, . . . , Ñ .
5. For the set of shifted observed images

{
x1(t + c̃1,q), x2(t + c̃2,q), . . . , xJ (t + c̃J,q)

}
,

use the algorithm [4, Algorithm 12, §6] and take the J -dimensional vector,
(d̃1,q , . . . , d̃J,q)

T , corresponding to the highest peak. Estimate the mixing ma-

trix by D̃ = (d̃j,q)1≤j≤J,1≤q≤Ñ .

In the step 5 of Algorithm 3.1, the source image s̃q lies in the same position in
each shifted observed image of

{
x1(t + c̃1,q ), x2(t + c̃2,q ), . . . , xJ (t + c̃J,q)

}
.

Therefore, we can apply the algorithm [4, Algorithm 12, §6], which solves the blind
source separation problem with temporal mixing model, that is, all cj,n = 0, to the
set of shifted observed images.

After estimating all model parameters, we have

xj (t)=
Ñ∑

n=1

d̃j,ñsn(t − c̃j,n), j = 1, . . . , J. (3.1)

Taking the Fourier transform of (3.1), we have the following linear system:

�̂x(ξ)=D(ξ)�̃̂s(ξ), (3.2)

where

�̂x(ξ)= (x̂1(ξ), . . . , x̂J (ξ)
)T
,

�̃̂s(ξ)= (̂̃s1(ξ), . . . ,̂̃sÑ (ξ)
)T
,

D(ξ)= (d̃j,ne−ic̃j,n·ξ
)

j=1,...,J,n=1,...,Ñ .

When D(ξ) is invertible for each ξ , we can solve (3.2) for each ξ . Taking the in-

verse Fourier transform of �̃̂s(ξ), we have estimated original images. We separate the
observed images in Fig. 1 into the estimated source images in Fig. 4.
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Fig. 4 The estimated original
images
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Hilbert Spaces
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Abstract We propose a continuous functional calculus in quaternionic Hilbert
spaces. The class of continuous functions considered is the one of slice quaternionic
functions. Slice functions generalize the concept of slice regular function, which
comprises power series with quaternionic coefficients on one side and that can
be seen a generalization to quaternions of holomorphic functions of one complex
variable. The notion of slice function allows to introduce suitable classes of real,
complex and quaternionic C∗-algebras and to define, on each of these C∗-algebras,
a functional calculus for quaternionic normal operators.

Keywords Quaternionic Hilbert space · Functional calculus · Slice functions ·
Spectral map theorem
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1 Introduction

We start from basic issues regarding the general notion of spherical spectrum of an
operator on a (right) quaternionic Hilbert space. For the definition of the spectrum
we follow the viewpoint adopted in [3] for quaternionic Banach modules. A pivotal
tool in our investigation is the notion of slice function [8]. That notion allows one
to introduce suitable classes of real, complex and quaternionic C∗-algebras of func-
tions and to define, on each of these C∗-algebras, a functional calculus for normal
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operators. In particular, we establish several versions of the spectral map theorem.
For quaternionic Hilbert spaces, a formulation of the spectral theorem already ex-
ists [9] without any systematic investigation of the continuous functional calculus.
We also show that our continuous functional calculus, when restricted to slice reg-
ular functions, coincides with the functional calculus developed in [3] as a general-
ization of the classical holomorphic functional calculus. We refer to [6] for complete
proofs of the stated result.

2 Quaternionic Hilbert Spaces

We recall some basic notions about quaternionic Hilbert spaces (see e.g. [1]). Let
H denote the skew field of quaternions. Let H be a right H-module. H is called a
quaternionic pre-Hilbert space if there exists a Hermitian quaternionic scalar prod-
uct H × H � (u, v) �→ 〈u|v〉 ∈ H satisfying the following three properties:

• Right linearity: 〈u|vp+wq〉 = 〈u|v〉p+ 〈u|w〉q if p,q ∈ H and u,v,w ∈ H.
• Quaternionic Hermiticity: 〈u|v〉 = 〈v|u〉 if u,v ∈ H.
• Positivity: If u ∈ H, then 〈u|u〉 ∈ R

+ and u= 0 if 〈u|u〉 = 0.

We can define the quaternionic norm by setting

‖u‖ :=√〈u|u〉 ∈R
+ if u ∈ H.

Definition 2.1 A quaternionic pre-Hilbert space H is said to be a quaternionic
Hilbert space if it is complete with respect to its natural distance d(u, v) := ‖u−v‖.

Example The space H
n with scalar product 〈u,v〉 =∑n

i=1 ūivi is a finite-dimen-
sional quaternionic Hilbert space.

Definition 2.2 A right H-linear operator is a map T :D(T )−→ H such that:

T (ua + vb)= (T u)a + (T v)b if u,v ∈D(T ) and a, b ∈ H,

where the domain D(T ) of T is a (not necessarily closed) right H-linear subspace
of H.

It can be shown that an operator T :D(T )−→ H is continuous if and only if it is
bounded, i.e. there exists K ≥ 0 such that

‖T u‖ ≤K‖u‖ for each u ∈D(T ).
The set B(H) of all bounded operators T : H −→ H is a complete metric space w.r.t.
the metric D(T ,S) := ‖T − S‖, where ‖T ‖ := supu∈D(T )\{0}

‖T u‖
‖u‖ = inf{K ∈ R |

‖T u‖ ≤K‖u‖ ∀u ∈D(T )}.
Many assertions that are valid in the complex Hilbert spaces case, continue to

hold for quaternionic operators. We mention the uniform boundedness principle,
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the open map theorem, the closed graph theorem, the Riesz representation theorem
and the polar decomposition of operators.

Left Scalar Multiplications It is possible to equip a (right) quaternionic Hilbert
space H with a left multiplication by quaternions. It is a non-canonical operation
relying upon a choice of a preferred Hilbert basis. So, pick out a Hilbert basis N of
H and define the left scalar multiplication of H induced by N as the map H × H �
(q,u) �→ qu ∈ H given by

qu :=
∑

z∈N
zq〈z|u〉 if u ∈ H and q ∈H.

For every q ∈ H, the map Lq : u �→ qu belongs to B(H). Moreover, the map LN :
H −→ B(H), defined by setting LN (q) := Lq is a norm-preserving real algebra
homomorphism.

The set B(H) is always a real Banach C∗-algebra with unity. It suffices to con-
sider the right scalar multiplication (T r)(u) = T (u)r for real r and the adjunction
T �→ T ∗ as ∗-involution. By means of a left scalar multiplication, it can be given the
richer structure of quaternionic Banach C∗-algebra.

Theorem 2.1 Let H be a quaternionic Hilbert space equipped with a left scalar
multiplication. Then the set B(H), equipped with the pointwise sum, with the scalar
multiplications defined by

(qT )u := q(T u) and (T q)(u) := T (qu),
with the composition as product, with T �→ T ∗ as ∗-involution, is a quaternionic
two-sided Banach C∗-algebra with unity.

Observe that the map LN gives a ∗-representation of H in B(H).

3 Resolvent and Spectrum

It is not clear how to extend the definitions of spectrum and resolvent in quaternionic
Hilbert spaces. Let us focus on the simpler case of eigenvalues of a bounded right
H-linear operator T . Without fixing any left scalar multiplication of H, the equation
determining the eigenvalues reads as follows:

T u= uq.
Here a drawback arises: if q ∈H \R is fixed, the map u �→ uq is not right H-linear.
Consequently, the eigenspace of q cannot be a right H-linear subspace. Indeed, if
λ �= 0, uλ is an eigenvector of λ−1qλ instead of q itself. As a second guess, one
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could decide to deal with quaternionic Hilbert spaces equipped with a left scalar
multiplication and require that

T u= qu.
Now both sides are right H-linear. However, this approach is not suitable for phys-
ical applications, where self-adjoint operators should have real spectrum. We come
back to the former approach and accept that each eigenvalue q brings a whole con-
jugation class of the quaternions, the eigensphere

Sq := {λ−1qλ ∈H
∣
∣ λ ∈ H \ {0}}.

We adopt the viewpoint introduced in [3] for quaternionic two-sided Banach
modules. Given an operator T :D(T )−→ H and q ∈H, let

�q(T ) := T 2 − T (q + q)+ I|q|2.

Definition 3.1 The spherical resolvent set of T is the set ρS(T ) of q ∈ H such
that:

(a) Ker(�q(T ))= {0}.
(b) Range(�q(T )) is dense in H.
(c) �q(T )−1 : Range(�q(T ))−→D(T 2) is bounded.

The spherical spectrum σS(T ) of T is defined by σS(T ) := H \ρS(T ). It decom-
poses into three disjoint circular (i.e. invariant by conjugation) subsets:

(i) The spherical point spectrum of T (the set of eigenvalues):

σpS(T ) :=
{
q ∈ H

∣
∣ Ker

(
�q(T )

) �= {0}}.

(ii) The spherical residual spectrum of T :

σrS(T ) :=
{
q ∈H

∣
∣ Ker

(
�q(T )

)= {0}, Range
(
�q(T )

) �= H
}
.

(iii) The spherical continuous spectrum of T :

σcS(T ) :=
{
q ∈H

∣
∣�q(T )

−1 is densely defined but not bounded
}
.

The spherical spectral radius of T is defined as

rS(T ) := sup
{|q| ∣∣ q ∈ σS(T )

} ∈R
+ ∪ {+∞}.

In our context, the subspace Ker(�q(T )) has the role of an “eigenspace”. In partic-
ular, Ker(�q(T )) �= {0} if and only if Sq is an eigensphere of T .
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3.1 Spectral Properties

The spherical resolvent and the spherical spectrum can be defined for bounded right
H-linear operators on quaternionic two-sided Banach modules in a form similar to
that introduced above (see [3]). Several spectral properties of bounded operators on
complex Banach or Hilbert spaces remain valid in that general context. Here we
recall some of these properties in the quaternionic Hilbert setting.

Theorem 3.1 Let H be a quaternionic Hilbert space and let T ∈ B(H). Then

(a) rS(T )≤ ‖T ‖.
(b) σS(T ) is a non-empty compact subset of H.
(c) Let P ∈ R[X]. Then, if T is self-adjoint, the following spectral map property

holds:

σS
(
P(T )

)= P (σS(T )
)
.

(d) Gelfand’s spectral radius formula holds:

rS(T )= lim
n→+∞

∥
∥T n
∥
∥1/n

.

In particular, if T is normal (i.e. T T ∗ = T ∗T ), then rS(T )= ‖T ‖.

Regardless different definitions with respect to the complex Hilbert space case,
the notions of spherical spectrum and resolvent set enjoy some properties which
are quite similar to those for complex Hilbert spaces. Other features, conversely,
are proper to the quaternionic Hilbert space case. First of all, it turns out that the
spherical point spectrum coincides with the set of eigenvalues of T .

Proposition 3.2 Let H be a quaternionic Hilbert space and let T :D(T )−→ H be
an operator. Then σpS(T ) coincides with the set of all eigenvalues of T .

Theorem 3.2 Let T be an operator with dense domain on a quaternionic Hilbert
space H.

(a) σS(T )= σS(T ∗).
(b) If T ∈ B(H) is normal, then

(i) σpS(T )= σpS(T
∗).

(ii) σrS(T )= σrS(T
∗)= ∅.

(iii) σcS(T )= σcS(T
∗).

(c) If T is self-adjoint, then σS(T )⊂ R and σrS(T ) is empty.
(d) If T is anti self-adjoint, then σS(T )⊂ Im(H) and σrS(T ) is empty.
(e) If T ∈ B(H) is unitary, then σS(T )⊂ {q ∈ H | |q| = 1}.
(f) If T ∈ B(H) is anti self-adjoint and unitary, then σS(T ) = σpS(T ) = S

(the sphere of quaternionic imaginary units).
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It can be shown that, differently from operators on complex Hilbert spaces, a nor-
mal operator T on a quaternionic space is unitarily equivalent to T ∗.

4 Slice Functions

The concept of slice regularity has been introduced by Gentili and Struppa [4, 5]
for functions of one quaternionic variable and then extended to other real ∗-algebras
(e.g. Clifford algebras [2] and alternative ∗-algebras [7, 8]). This function theory
comprises polynomials and power series with quaternionic coefficients on one side.
At the base of the definition there is the “slice” character of H:

• H =⋃j∈SCj where Cj is the real subalgebra 〈j 〉 / C.
• Cj ∩Cκ = R for every j, κ ∈ S with j �= ±κ .

The original definition requires that, for every j ∈ S, the restriction f|Cj is holo-
morphic with respect to the complex structures given by left multiplication by j .
Another approach (see [7, 8]) starts from the embedding of the space of slice reg-
ular functions into a larger class, that of continuous slice functions. Given K ⊂ C,
consider the circular set ΩK defined by

ΩK = {α+ jβ ∈H | α,β ∈R, α + iβ ∈ K, j ∈ S}.
Let H ⊗R C = {x + iy | x, y ∈ H}, with complex conjugation w = x + iy �→ w =
x − iy. A function F : K −→ H ⊗R C satisfying F(z) = F(z) for every z ∈ K,
is called a stem function on K. Any stem function induces a (left) slice function
f = I(F ) :ΩK → H: if q = α + jβ ∈ΩK ∩Cj , with j ∈ S, we set

f (q) := F1(α + iβ)+ jF2(α + iβ)
where F1,F2 are the two H-valued components of F . A quaternionic function f
turns out to be slice regular if and only if it is the slice function induced by a holo-
morphic stem function F .

4.1 C∗-Algebras of Slice Functions

Given two slice functions f = I(F ) and g = I(G) on ΩK, their pointwise product
is not necessarily a slice function. However, we can define their slice product by
means of the multiplication in H⊗C:

f · g = I(FG)= I
(
(F1G1 − F2G2)+ i(F1G2 + F2G1)

)
.

Theorem 4.1 The set S(ΩK,H) of continuous slice functions on ΩK is a quater-
nionic two-sided Banach C∗-algebra with unity the constant function 1ΩK w.r.t. the
slice product, the ∗-involution defined by f ∗ := I(F1 − iF2) and the supremum
norm.
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Remark 4.1 The scalar multiplications on S(ΩK,H) are defined by f · q := f · cq
and q · f := cq · f , where cq denotes the constant slice function with value q on
ΩK. f · q coincides with the pointwise scalar multiplication f q for every q ∈H. If
q ∈R, then also q · f is equal to the pointwise scalar multiplication qf . Otherwise,
qf is not, in general, a slice function and hence is different from q · f .

5 Slice Functional Calculus

5.1 Slice Nature of Normal Operators

The definition of a continuous slice function of a normal operator on a quaternionic
Hilbert space is based on the “operatorial” counterpart of the slice character of H.

Theorem 5.1 Given any normal operator T ∈ B(H), there exist three operators
A,B,J ∈ B(H) such that:

(i) T =A+ JB .
(ii) A is self-adjoint and B is positive.

(iii) J is anti self-adjoint and unitary.
(iv) A, B and J commute mutually.

Furthermore, it holds:

• A and B are uniquely determined by T : A= (T + T ∗) 1
2 and B = |T − T ∗| 1

2 .
• J is uniquely determined by T on Ker(T − T ∗)⊥.

(where for S ∈ B(H), |S| denotes the operator defined as the square root of the
positive operator S∗S).

This parallelism suggests a natural way to define the operator f (T ) for the class
of H-intrinsic continuous slice functions, i.e. functions satisfying f (q̄) = f (q)

for every q ∈ ΩK or, equivalently, f (ΩK ∩ Cj ) ⊂ Cj ∀j ∈ S. If f = I(F ) =
I(F1 + iF2) is a polynomial slice function, with components F1, F2 ∈ R[X,Y ],
we define the normal operator f (T ) ∈B(H) by setting

f (T ) := F1(A,B)+ JF2(A,B)

and then extend the definition to H-intrinsic continuous slice functions on σS(T ) by
density.

Remark 5.1

(i) f is H-intrinsic if and only if the components F1,F2 of the stem function F are
real valued.

(ii) Even when J is not uniquely determined, f (T ) does not depend on the choice
of the operator J .
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Continuous Slice Functional Calculus for Normal Operators: The H-Intrinsic
Functions Case Consider the commutative real Banach C∗-subalgebra
SR(σS(T ),H) of S(σS(T ),H) consisting of H-intrinsic slice functions. The func-
tional calculus f �→ f (T ) defined above has the following properties.

Theorem 5.2 The mapping f �→ f (T ) is the unique continuous ∗-homomorphism

ΨR,T : SR

(
σS(T ),H

)→B(H)

of real Banach unital C∗-algebras such that:

(i) ΨR,T is unity-preserving; that is, ΨR,T (1σS(T ))= I.
(ii) ΨR,T (id)= T .

Moreover, the following facts hold true:

(a) f (T ) is normal.
(b) ΨR,T is isometric: ‖f (T )‖ = ‖f ‖∞ for every f ∈ SR(σS(T ),H).
(c) The spectral map property σS(f (T ))= f (σS(T )) holds.

Continuous Slice Functional Calculus for Normal Operators: The Cj -Slice
Functions Case The definition of f (T ) can be extended to other classes of con-
tinuous slice functions. The set SCj

(ΩK,H) of functions which leave only one
slice Cj invariant is a commutative Cj -Banach unital C∗-subalgebra of S(ΩK,H).
The space B(H) has a similar structure of complex C∗-algebra depending on the
choice of the anti self-adjoint operator J such that T = A+ JB and J commutes
with T ,T ∗.

Theorem 5.3 There exists a unique continuous ∗-homomorphism

ΨCj ,T : SCj

(
σS(T ),H

)→B(H)

of Cj -Banach C∗-algebras such that

(i) ΨCj ,T is unity-preserving; that is, ΨR,T (1σS(T ))= I.
(ii) ΨCj ,T (id)= T .

Moreover, the following facts hold true:

(a) f (T ) is normal.
(b) For every f ∈ SCj

(σS(T ),H), the following Cj -slice spectral map property
holds:

σS
(
f (T )

)=Ωf(σS(T )∩C+
j )
.

(c) ΨCj ,T is norm decreasing: ‖f (T )‖ ≤ ‖f ‖∞ if f ∈ SCj
(σS(T ),H). More pre-

cisely, it holds:
∥
∥f (T )

∥
∥= ‖f |σS(T )∩C+

j
‖∞

for every f ∈ SCj
(σS(T ),H).
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Continuous Slice Functional Calculus for Normal Operators: The Circular
Case Fix an anti self-adjoint and unitary operator J ∈ B(H) such that T =A+JB
and J commutes with T ,T ∗. Choose j ∈ S and a left scalar multiplication q �→ Lq
with Lj = J and LqA = ALq and LqB = BLq for each q ∈ H. Then B(H) get a
structure of quaternionic two-sided Banach unital C∗-algebra.

The set Sc(ΩK,H) of circular slice functions, those which satisfy the condition
f (q̄)= f (q) for every q , is a non-commutative quaternionic Banach C∗-subalgebra
of S(ΩK,H).

Theorem 5.4 There exists a unique continuous (isometric) ∗-homomorphism

Ψc,T : Sc
(
σS(T ),H

)→ B(H)

of quaternionic Banach C∗-algebras such that

(i) Ψc,T is unity-preserving; that is, ΨR,T (1σS(T ))= I.
(ii) Ψc,T (id)= T .

Continuous Slice Functional Calculus for Normal Operators: The General
Case The previous definitions of f (T ) can be extended to a generic continuous
slice function f ∈ S(σS(T ),H). We get a map f �→ f (T ) that is R-linear and con-
tinuous: there exists C > 0 such that

∥
∥f (T )

∥
∥≤ C‖f ‖∞

for every f ∈ S(σS(T ),H). In the general case the ∗-homomorphism property is
necessarily lost. However, if e.g. f ∈ SCj

(σS(T ),H) or g ∈ Sc(σS(T ),H), then the
multiplicative property

(f · g)(T )= f (T )g(T )
remains true.

5.2 The Slice Regular Case

A functional calculus for slice regular functions of a bounded operator T on a
quaternionic two-sided Banach module V has been developed in [3] as a gener-
alization of the holomorphic functional calculus. Let S−1

L (s, x) denote the Cauchy
kernel for slice regular functions (cf. [3] or [8]).

Definition 5.2 [3, Definition 4.10.4] Let f be slice regular on ΩD ⊃ σS(T ). Fix
any j ∈ S and define

f (T )reg := 1

2π

∫

∂(U∩Cj )
S−1
L (s, T )dsj

−1f (s) ∈B(V ).
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It can be shown that on slice regular functions our continuous calculus for nor-
mal operators on a quaternionic Hulbert space H coincides with the one defined by
means of the Cauchy integral.

Proposition 5.3 Let T ∈ B(H) be normal and let f : U −→ H be a slice regular
function defined on a circular open neighborhood of σS(T ) in H. Then f (T )reg =
f |σS(T )(T ), that is, the two functional calculi coincide if T is normal and f is slice
regular.
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Recent Progress on Spheroidal Monogenic
Functions

Hung Manh Nguyen

Abstract Monogenic function theories are considered as generalizations of the
holomorphic function theory in the complex plane to higher dimensions and are
refinements of the harmonic analysis based on the Laplace operator’s factorizations.
The construction of spherical monogenic functions has been studied for decades
with different methods. Recently, orthogonal monogenic bases are developed for
spheroidal reference domains, first by J. Morais and later by others. This survey
will go through the construction of spheroidal monogenic functions and discuss up-
to-date results.

Keywords Harmonic functions · Monogenic functions · Quaternion analysis ·
Spheroidal functions
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1 Introduction

The theory of harmonic functions plays an important role in many fields, both in
pure and applied aspects. It can be seen, for example, in gravitational potential prob-
lems or approximation of the Earth’s gravity and magnetic fields (see [18, 23, 31]).
Spherical harmonic functions are used frequently because of their simple form and
easy calculation. It is preferred for (almost) symmetric geometries. For asymmet-
ric cases, it is inappropriate as shown in [31]. Simple generalizations of spherical
domains are ellipsoidal domains. Garabedian introduced in [14] sets of orthogo-
nal harmonic polynomials over prolate and oblate spheroids taken in several dif-
ferent norms. It is the root of the construction of orthogonal spheroidal monogenic
functions, since monogenic functions can be obtained by applying the hypercom-
plex derivative to harmonic functions. The construction of Green’s function for
the Laplace equation on an ellipsoid of revolution has been studied by means of
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ellipsoidal harmonic functions in several articles (see [12, 22]). As refinements of
harmonic functions, these spheroidal monogenic functions could play a role to solve
some Dirichlet problems in spheroids.

There are several methods to construct a complete system of monogenic func-
tions. Fueter variables zi = xi − x0ei (i = 1, . . . , n), named after R. Fueter [13],
were introduced as an idea to construct bases of homogeneous monogenic polyno-
mials (see [6, 15, 21]). The construction is completely independent of endowed inner
products. In general, the obtained sets of monogenic functions are not orthogonal.
For spherical domains, one can obtain a complete orthogonal system of monogenic
functions by the Gelfand–Tsetlin procedure which calculates functions by induc-
tion and then it costs time and memory. More information about the method can be
found in [5, 20]. The harmonic function approach was developed based on factor-
izations of the Laplace operator in terms of Cauchy–Riemann or Dirac operators. To
the best of our knowledge, I. Cação firstly used it to construct orthogonal bases for
L2-spaces of reduced quaternion (A)—or quaternion (H)-valued monogenic func-
tions which are solutions of Riesz or Moisil–Theodorescu systems on the unit ball
(cf. [7, 9]). The hypercomplex derivative and the monogenic primitive are also stud-
ied in [8, 10, 11]. Later on, S. Bock modified the H-valued elements of the basis
with respect to the Riesz system to obtain the Appell property. This property was
introduced by Appell [1] by generalizing d

dx
xn = nxn−1 to more general polyno-

mial systems. Also, S. Bock proved recurrence formulae, an explicit representation
formula for polynomials [2–4] and applied it to solve a boundary value problem
for the equations of linear elasticity in spherical domains. A-valued solutions of
the Riesz system were also researched by J. Morais in the quaternionic setting in
a similar way. Properties were investigated such as real part theorems, Bohr’s type
theorem and local mapping properties by means of spherical monogenic functions
(cf. [16, 17, 24]).

The aim of this paper is to give a brief survey about the construction of com-
plete orthogonal monogenic systems on spheroidal domains. In Sect. 3, inner pro-
late and oblate spheroidal monogenic functions will be revisited. The recurrence
formulae and the explicit presentation will be discussed therein. In applications, we
also need information on the exterior domain. That is the reason why in Sect. 4,
outer spheroidal monogenic functions in the exterior domain of a prolate spheroid
are described. Conclusions will be given in the last section.

2 Preliminaries

Let H be the algebra of real quaternions generated by the basis {1, e1, e2, e3} sub-
jected to the multiplication rules

eiej + ejei = −2δij , i, j = 1,2,3; e1e2 = e3.

Each quaternion can be represented in the form q = q0 + q1e1 + q2e2 + q3e3
where qj (j = 0, . . . ,3) are real numbers. Like in the complex case, the conju-
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gate of q is q = q0 − q1e1 − q2e2 − q3e3 and the norm |q| of q is defined by
|q|2 = qq = qq = ∑3

j=0(qj )
2. The real vector space R

3 will be embedded in

H by identifying the element x = (x0, x1, x2) ∈ R
3 with the reduced quaternion

x := x0 + x1e1 + x2e2. Denote by A the real space of all reduced quaternions. The
operator ∂ = ∂

∂x0
+ e1

∂
∂x1

+ e2
∂
∂x2

is called generalized Cauchy–Riemann (C–R)

operator. Given a domain Ω in R
3, a function f is called monogenic in Ω if sat-

isfying ∂f(x) = 0 for all x ∈ Ω . The hypercomplex derivative is simply denoted
by 1

2∂ , where ∂ is the conjugate C–R operator. M(Ω,A) and M(Ω,H) stand for
the Hilbert spaces of square integrable A—or H-valued monogenics in Ω respec-
tively, endowed with the inner products

〈f,g〉L2(Ω;R) =
∫

Ω

Sc(fg)dV ,

〈f,g〉L2(Ω;H) =
∫

Ω

fgdV .

(2.1)

The induced norm is in both cases ‖f‖L2(Ω) = 〈f, f〉
1
2
L2(Ω)

. In this paper, let Γ be a
spheroid with x0-axis as the symmetry axis. The equation of Γ is given by

x2
0

a2
+ x2

1 + x2
2

b2
= 1,

where a = c coshμ0, b = c sinhμ0 (prolate spheroid) or a = c sinhμ0, b =
c coshμ0 (oblate spheroid). For the sake of simplicity, it is assumed that c = 1.
We adopt the notations Ω+ and Ω− for the interior and exterior domains of Γ ,
respectively. In particular, x ∈Ω− can be given by the spheroidal coordinate

x0 = coshμ cos θ, x1 = sinhμ sin θ cosϕ, x2 = sinhμ sin θ sinϕ,

for prolate cases or

x0 = sinhμ cos θ, x1 = coshμ sin θ cosϕ, x2 = coshμ sin θ sinϕ,

for oblate cases, with μ ∈ (μ0,∞), θ ∈ [0,π), ϕ ∈ [0,2π).

3 Inner Spheroidal Monogenics Revisited

Since 2010, J. Morais has intensively investigated sets of prolate spheroidal mono-
genic functions which play a role for constructing bases in L2-spaces of mono-
genic functions in a prolate spheroid over R and H in [25, 26] with applications
in [19, 27, 28]. An analogous monogenic system can be constructed for oblate
spheroids as shown in [30]. In general, spheroidal monogenic functions have the
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structure as follows:

Xn,m = n+m+ 1

2
An,m(μ, θ) cos(mϕ)

+ δ

4(n−m+ 1)
An,m+1(μ, θ)

{
cos
[
(m+ 1)ϕ

]
e1 + sin

[
(m+ 1)ϕ

]
e2
}

− δ(n+m+ 1)(n+m)(n−m+ 2)

4
An,m−1(μ, θ)

× {cos
[
(m− 1)ϕ

]
e1 − sin

[
(m− 1)ϕ

]
e2
}

Yn,m = (n+m+ 1)

2
An,m(μ, θ) sin(mϕ)

+ δ

4(n−m+ 1)
An,m+1(μ, θ)

{
sin
[
(m+ 1)ϕ

]
e1 − cos

[
(m+ 1)ϕ

]
e2
}

− δ(n+m+ 1)(n+m)(n−m+ 2)

4
An,m−1(μ, θ)

× {sin
[
(m− 1)ϕ

]
e1 + cos

[
(m− 1)ϕ

]
e2
}

where

An,m(μ, θ)=
[(n−m)/2]∑

k=0

δk+1 (2n+ 1 − 4k)(n+m− 2k+ 1)2k
(n−m− 2k+ 1)2k+1

Un−2k,m,

with

An,−1(μ, θ) :=
{

− 1
n(n+1)2(n+2)

An,1(μ, θ), n= 1,2, . . .

0, n= 0,

m = 0, . . . , n + 1 and (a)r = a(a + 1)(a + 2) . . . (a + r − 1) with (a)0 = 1, de-
notes the Pochhammer symbol. The notations δ and Un−2k,m take values δ = 1,
Un−2k,m = Pmn−2k(coshμ)Pmn−2k(cos θ) in cases of prolate monogenic functions and
δ = −1, Un−2k,m = in−2k−mPmn−2k(i sinhμ)Pmn−2k(cos θ) in cases of oblate mono-
genic functions. The first were studied in [25, 26] and the second were studied
in [30]. Spheroidal monogenic functionsXn,m and Yn,m are A-valued and they form
a complete orthogonal system in the space M(Ω+,A). A complete orthogonal sys-
tem of the space M(Ω+,H) of H-valued monogenic functions can be constructed
by functions of the form

Φmn :=Xn,m − Yn,me3,

withm= 0, . . . , n and n= 0,1, . . . That is similar to the spherical case, investigated
by I. Cação [8] and then by S. Bock [3].

A common property of those functions is that they are inhomogenous polynomi-
als. That fact can be seen in [30] as well as in the underlying theorems. That makes
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it difficult to calculate them numerically. In [30], the authors found several recur-
rence formulae and their explicit representation in terms of spherical monogenic
polynomials. Precisely, one has the following theorems.

Theorem 3.1 The four-step recurrence formula for Φmn is given by

Φmn+1 = − 2n+ 3

2(n−m+ 2)(n−m+ 1)

[
(2n+ 3)x + (2n+ 1)x

]
Φmn

− (2n+ 3)(2n+ 1)(n+m+ 1)

(n−m+ 2)(n−m+ 1)2
xxΦmn−1

+ (2n+ 1)(n+m+ 1)

2(n−m+ 2)(n−m+ 1)2

[

2n+ 3 + (2m+ 1)2

2n− 1

]

Φmn−1

+ (2n+ 3)(n+m+ 1)(n+m)
2(n−m+ 2)(n−m+ 1)2(n−m)

[
(2n+ 1)x + (2n− 1)x

]
Φmn−2

− (2n+ 3)(n+m+ 1)(n+m)2(n+m− 1)

(2n− 1)(n−m+ 2)(n−m+ 1)2(n−m)Φ
m
n−3.

Theorem 3.2 The relation between {Φmn } and {Ãmn } can be described as follows:

Φnn+k = (−1)k+1
[k/2]∑

j=0

(2n+ k − 2j + 1)!(2n+ 1)!!
2n+j · (k + 1)!j !(n+ k − 2j)!a

n
k,j Ã

n
n+k−2j ,

where

ank,j := (2n+ 2)2k−2j

2k−j (n+ 1)k−j
· (2n+ k + 2 − 2j)2j ,

and {Ãmn } is the Appell system in [3].

Notice that the Appell functions for spherical domains {Ãmn } are homogeneous
polynomials and they satisfy the two step recurrence formula (cf. [3])

Ãln+1 = n+ 1

2(n− l + 1)(n+ l + 2)

[(
(2n+ 3)x + (2n+ 1)x

)
Ãln − 2nxxÃln−1

]
,

with initial polynomials

Ãll+1 = 1

4

[
(2l + 3)x + (2l + 1)x

]
Ãll; Ãll = (x1 − x2e3)

l .

Theorem 3.1 shows the analogy between spherical and spheroidal cases. The other
terms in the formula express the asymmetry of oblate spheroids. These results help
to reduce computational time for those functions. Especially, it is shown in [30] that
there does not exist a complete system for spheroidal domains with respect to the
standard inner product satisfying both orthogonal and Appell properties.
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4 Outer Prolate Spheroidal Monogenics

Initially, inner spheroidal monogenic functions were described by means of asso-
ciated Legendre functions of the first kind. With the help of associated Legendre
functions of the second kind, J. Morais tried to construct a complete orthogonal
system for the exterior domain of a prolate spheroid. This work becomes more
complicated since the latter contains logarithmic functions so that a simple sub-
stitution is not enough. In [4], the Kelvin transform was applied for the construc-
tion of H-valued outer spherical monogenic functions from inner spherical mono-
genic functions. That keeps properties such as orthogonality invariant. However for
A-valued functions in a spheroid, the Kelvin transform is not directly applicable.
The method, based on the decomposition of a function space into subspaces of ho-
mogeneous functions to prove the completeness of a function system (see [2, 24]),
fails because of the appearance of logarithmic functions. To this end, we firstly pay
attention to the asymptotic behavior of the constructed functions compared with
spherical cases. The extra term in the coefficient function is dealt with to prove the
orthogonal property which will be discussed later. Finally, by using the harmonic
extension to the outer domain of a function defined on the boundary of a prolate
spheroid, one can prove the completeness of such a system. This research can be
found in [29]. Here it is summarized briefly.

4.1 A System of Outer Prolate Spheroidal Monogenics

A system of outer prolate spheroidal monogenic functions is obtained by applying
1
2∂ to outer spheroidal harmonic functions

Vn,l(μ, θ) cos(lϕ), Vn,l(μ, θ) sin(lϕ),

where Vn,l(μ, θ) := Qln(coshμ)P ln(cos θ), (n = 0,1, . . . ; l = 0, . . . , n). Denote

Ên−1,l := 1
2∂[Vn,l(μ, θ) cos(lϕ)] and F̂n−1,l := 1

2∂[Vn,l(μ, θ) sin(lϕ)], one gets

Ê−1,0(μ, θ,ϕ) := − sinhμ cos θ + coshμ sin θ(cosϕe1 + sinϕe2)

sinhμ(sin2 θ + sinh2μ)
, (4.1)

Ê0,0(μ, θ,ϕ) := 1

4
ln

(
coshμ+ 1

coshμ− 1

)

− 1

2

coshμ

sin2 θ + sinh2μ

+ 1

2

sin θ cos θ

sinhμ(sin2 θ + sinh2μ)
(cosϕe1 + sinϕe2), (4.2)

Ên,l(μ, θ,ϕ) := (n+ l + 1)

2
Bn,l(μ, θ) cos(lϕ)

+ 1

4(n− l + 1)
Bn,l+1(μ, θ)

[
cos
(
(l + 1)ϕ

)
e1 + sin

(
(l + 1)ϕ

)
e2
]
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+ 1

4
(n+ 1 + l)(n+ l)(n− l + 2)Bn,l−1(μ, θ)

× [− cos
(
(l − 1)ϕ

)
e1 + sin

(
(l − 1)φ

)
e2
]
, (4.3)

F̂n,l(μ, θ,ϕ) := (n+ l + 1)

2
Bn,l(μ, θ) sin(lϕ)

+ 1

4(n− l + 1)
Bn,l+1(μ, θ)

[
sin
(
(l + 1)φ

)
e1 − cos

(
(l + 1)ϕ

)
e2
]

− 1

4
(n+ 1 + l)(n+ l)(n− l + 2)Bn,l−1(μ, θ)

[
sin
(
(l − 1)ϕ

)
e1

+ cos
(
(l − 1)ϕ

)
e2
]
, (4.4)

(for l = 0, . . . , n; n= 1,2, . . . )

Ên,n+1(μ, θ,ϕ) := (n+ 1)Bn,n+1(μ, θ) cos
(
(n+ 1)ϕ

)

− coshμPn+2
n+2 (cos θ)Qn+2

n+1(coshμ)

4(2n+ 3)(sin2 θ + sinh2μ)

× [cos
(
(n+ 2)φ

)
e1 + sin

(
(n+ 2)ϕ

)
e2
]

+ (2n+ 2)(2n+ 1)

4
Bn,n(μ, θ)

[− cos(nϕ)e1 + sin(nφ)e2
]
,

(4.5)

F̂n,n+1(μ, θ,ϕ) := (n+ 1)Bn,n+1(μ, θ) sin
(
(n+ 1)ϕ

)

− coshμPn+2
n+2 (cos θ)Qn+2

n+1(coshμ)

4(2n+ 3)(sin2 θ + sinh2μ)

× [sin
(
(n+ 2)φ

)
e1 − cos

(
(n+ 2)ϕ

)
e2
]

− (2n+ 2)(2n+ 1)

4
Bn,n(μ, θ)

[
sin(nϕ)e1 + cos(nφ)e2

]
,

(4.6)

(for n= 0,1, . . . ). The coefficients are given by

Bn,l(μ, θ) := 1

sin2 θ + sinh2μ

[
coshμP ln(cos θ)Qln+1(coshμ)

− cos θP ln+1(cos θ)Qln(coshμ)
]
, (4.7)

where

Bn,−1(μ, θ) := − 1

n(n+ 1)2(n+ 2)
Bn,1(μ, θ) for n= 1,2, . . .
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It can be proved that Bn,l(μ, θ) has the explicit presentation

Bn,l(μ, θ)=
[ n−l2 ]−1
∑

k=0

(2n+ 1 − 4k)(n+ l − 2k+ 1)2k
(n− l − 2k+ 1)2k+1

P ln−2k(cos θ)Qln−2k(coshμ)

+
⎧
⎨

⎩

(2l+1)n−l
(n−l+1)! Bl,l(μ, θ) if n− l even
2(2l+2)n−l−1
(n−l+1)! Bl+1,l(μ, θ) if n− l odd.

Because the termsQln+1(coshμ) contain logarithmic functions, the question of their
behavior at infinity arises and we will see that they are completely similar to the
outer spherical monogenic functions.

4.2 Outer Spherical Monogenics Revisited

To compare, we firstly revisit the spherical case. The construction of outer spheri-
cal monogenic functions has been studied in parallel with the construction of inner
spherical monogenics. In [6], they are constructed based on the Cauchy kernel func-
tion and its derivatives. Spherical monogenics can be obtained also by applying the
Kelvin transform as in [4]. Different methods we apply, different representations
we get. For A-valued monogenic functions, these methods do not lead directly to
what we need. Hence, the harmonic function approach is again used together with
spherical harmonic functions. Let B(R) be a ball with radius R > 0. Denote by
H(R3\B(R),−(n+ 1)) the space of real-valued homogeneous harmonic functions
of degree −(n+ 1) in R

3\B(R) with n ≥ 0. A basis of H(R3\B(R),−(n+ 1)) is
given by

{
1

rn+1
Pn(cos θ),

1

rn+1
Pmn (cos θ) cos(mϕ),

1

rn+1
Pmn (cos θ) sin(mϕ)

}

where m = 1, . . . , n. By applying the hypercomplex derivative 1
2∂ , one obtains a

system of monogenic functions defined in R
3\B(R) as follows:

X0
−(n+2) = −n+ 1

2

Pn+1(cos θ)

rn+2
− 1

2

P 1
n+1(cos θ)

rn+2
[cosϕe1 + sinϕe2]

Xm−(n+2) = −n−m+ 1

2

Pmn+1(cos θ)

rn+2
cos(mϕ)

− 1

4

Pm+1
n+1 (cos θ)

rn+2

[
cos
(
(m+ 1)ϕ

)
e1 + sin

(
(m+ 1)ϕ

)
e2
]

+ (n−m+ 1)(n−m+ 2)

4

Pm−1
n+1 (cos θ)

rn+2

× [cos
(
(m− 1)ϕ

)
e1 − sin

(
(m− 1)ϕ

)
e2
]



Recent Progress on Spheroidal Monogenic Functions 493

Ym−(n+2) = −n−m+ 1

2

Pmn+1(cos θ)

rn+2
sin(mϕ)

− 1

4

Pm+1
n+1 (cos θ)

rn+2

[
sin
(
(m+ 1)ϕ

)
e1 − cos

(
(m+ 1)ϕ

)
e2
]

+ (n−m+ 1)(n−m+ 2)

4

Pm−1
n+1 (cos θ)

rn+2

× [sin
(
(m− 1)ϕ

)
e1 + cos

(
(m− 1)ϕ

)
e2
]
.

Note that 1
2∂ establishes an isomorphism between H(R3\B(R),−(n + 1)) and

M(R3\B(R),A,−(n + 2)). The latter consists of all homogeneous monogenic
polynomials of degree −(n+ 2). Due to the orthogonal decomposition

M
(
R

3\B(R),A)=
∞⊕

n=0

M
(
R

3\B(R),A,−(n+ 2)
)
,

the system {X0
−(n+2),X

m
−(n+2), Y

m
−(n+2)}n=0,1,...;m=1,...,n forms an orthogonal basis

of M(R3\B(R),A).

4.3 Asymptotic Behavior

The behavior at infinity of outer spheroidal monogenic functions is related closely
to the behavior of Qln(z). When z tends to infinity

Qln(z)=
(n+ l)!
(2n+ 1)!!

1

zn+1
+O
(

1

zn+3

)

.

Now let z= coshμ/ sinhμ/ r = |x| if μ is large enough, it leads to

Bn,l(μ, θ)= − (n− l + 2)(n+ l)!
(2n+ 3)!!

P ln+2(cos θ)

rn+3
+O
(

1

rn+5

)

.

As a result, we obtain the asymptotic behavior of Ên,l and F̂n,l for l = 0, . . . , n+1;
n= 0,1, . . .

Ên,l = (n+ l + 1)!
(2n+ 3)!! X

l
−(n+3) +O

(
1

|x|n+5

)

,

F̂n,l = (n+ l + 1)!
(2n+ 3)!! Y

l
−(n+3) +O

(
1

|x|n+5

)

.

Particularly, when |x| → ∞
Ê−1,0 = − x

|x|3 +O
(

1

|x|4
)

,

and it behaves like the Cauchy kernel in a neighborhood of infinity.
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4.4 Orthogonality

It could be easy to see that each following pair of functions is orthogonal with
respect to the inner product (2.1) whenever l1 �= l2
• {Ên1,l1 , Ên2,l2}.
• {F̂n1,l1 , F̂n2,l2}.
• {Ên1,l1 , F̂n2,l2}.
The assertion is based on the orthogonalities of sin(lϕ) and cos(kϕ) on [0,2π]. In
the other cases, one can decompose coefficient functions Bn,l(μ, θ) into summands
of the form

Qln−2k(coshμ)P ln−2k(cos θ), (4.8)

except one extra term

coshμP ll (cos θ)Qll−1(coshμ)

sin2 θ + sinh2μ
or

cos θP ll (cos θ)Qll−1(coshμ)

sin2 θ + sinh2μ
. (4.9)

Consequently, orthogonality holds for the terms of the form (4.8) according to equal-
ities

∫ π

0
P ln(cos θ)P ls (cos θ) sin θdθ = 0,

∫ π

0
P ln+1(cos θ) cos θP ls (cos θ) sin θdθ = 0

for s < n. Besides, we can prove by induction the following proposition.

Proposition 4.1 Let Bn,l(μ, θ) be functions as in (4.7), then with l = 0,1, . . . the
following equalities hold when n, k are equal to l or l + 1

∫ π

0
Bn,l(μ, θ)P

l
k(cos θ) sin θdθ = 0.

The proposition is applied to deal with the extra term (4.9) in expansions of
Bn,l(μ, θ) and it results in the following theorem.

Theorem 4.2 The constructed functions (4.1)–(4.6) form an orthogonal system in
M(Ω−,A) with respect to the inner product (2.1).

The proof can be found in [29].
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4.5 Completeness

Any function f ∈ M(Ω−,A) has a Fourier series expansion related to the function
system (4.1)–(4.6). The question is whether the Fourier series expansion converges
to f in L2-norm. In order to find the answer, one needs the following result.

Theorem 4.3 Let f be a function in M(Ω−,A)∩C1(Ω− ∪ Γ ). Then the Fourier
series expansion of f converges to f in the sense of the L2(Ω−)-norm.

Notice that Theorem 4.3 considers only the case of smooth functions in
M(Ω−,A). For the L2-case, the analogous result is obtained by applying the fol-
lowing corollary.

Corollary 4.4 Any outer spherical monogenic functions
{
X0

−(n+2),X
m
−(n+2), Y

m
−(n+2)

}

n≥0;m=1,...,n

can be presented by its Fourier series expansion with respect to the system
(4.1)–(4.6).

To this end, we give the completeness theorem.

Theorem 4.5 The function system (4.1)–(4.6) forms a complete orthogonal system
of the space M(Ω−,A) with respect to the inner product (2.1) in the exterior do-
main Ω−.

Details can be found in [29].

5 Conclusion

Ellipsoidal harmonic functions have attracted the attention of several researchers
and shown their importance in many fields. By means of the hypercomplex deriva-
tive, ellipsoidal monogenic functions are currently being developed. In accordance
with advantages of Clifford analysis, it will become a helpful tool for solving prob-
lems in ellipsoidal domains. Further applications of such systems hopefully will be
announced in the near future.
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Clifford Algebras with Induced
(Semi)-Riemannian Structures and Their
Compactifications

Craig A. Nolder and John A. Emanuello

Abstract Identifying the Clifford algebra C�r,s with the semi-Riemannian mani-
fold R

p,q , one is afforded an opportunity to examine the conformal geometry of the
associated compact manifold, in a manner similar to the case of the Riemann sphere
in complex analysis. In this work we consider some low-dimensional examples and
provide conjectures to inspire further research.
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1 Introduction

In 1878, famed geometer William Kingdon Clifford introduced geometric algebras,
which are special cases of what are now called Clifford algebras [3]. In many ways,
Clifford algebras may be thought as higher dimensional analogues of the complex
numbers.

A great deal of work has been done to develop a theory of functions of a Clifford
variable. However, there is still much to be done to fully generalize the results of
many analogues from complex analysis.

One of the great results from complex variables is the development of the Rie-
mann sphere, which proved to have some advantages as a domain for functions of
a complex variable. As a compact space, it possesses some desirable topological
properties. In terms of the analysis, one finds that many nice results are true on
the sphere which are not true in the plane. For example the class of meromorphic
functions on the sphere are merely the rational functions, while in the plane the
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meromorphic functions are a larger class of functions. Also, the sphere has a rich
conformal geometry.

A natural question arises: Can these ideas be extended to the general Clifford
case? The literature demonstrates that this question may be answered in the affir-
mative, at least in low dimensions, [4–6, 9–12]. In this paper, we provide some
explanation of the literature and motivating examples which we believe will inspire
further research in this area.

2 Induced (Semi)-Riemannian Structure on a Clifford Algebra

We write R
p,q for the quadratic space with (the possibly definite) semi-Riemannian

metric gp,q , which is defined at each a ∈R
p+q and X,Y ∈ TaRp+q by

gp,q(X,Y )=
p∑

i=1

XiYi −
p+q∑

i=p+1

XiYi.

We shall denote the corresponding quadratic form by 〈·, ·〉p,q = ∑p

i=1 x
2
i −

∑p+q
i=p+1 x

2
i .

Some attention has been paid toward compactifying R
p,q and their conformal

mappings. In particular, Schottenloher describes the following compactification.
First, we embed R

p,q in projective space:

φ : Rp,q → Pp+q+1(R)

ζ = (x1, . . . , xp+q) �→
(

1 − 〈ζ, ζ 〉p,q
2

: x1 : . . . : xp+q : 1 + 〈ζ, ζ 〉p,q
2

)

.

It is easy to check that φ is a conformal mapping.
To borrow notation from Schottenloher, we define the compactification of Rp,q

by

Np,q := φ(Rp,q).
It is important to note that the product of spheres Sp × Sq ⊆ R

p+1,q+1 is a
2-to-1 covering of Np,q , whose covering map is the restriction of quotient map
π :Rp+q+2 \ {0} → Pp+q+1(R) [12].

We consider the real Clifford algebra C�r,s . We write n= r + s. This is an asso-
ciative algebra of dimension 2n generated over R by {1, e1, e2, . . . , en} and is subject
to relations

e2
j = 1 if j = 1, . . . , r and e2

j = −1 if j = r + 1, . . . , n

eiej + ej ei = 2δi,j .
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In general elements of the algebra are of the form

ζ =
∑

A

xAeA,

where A= {i1, . . . , ik} ⊆ {1,2, . . . , n} and eA = ei1ei2 · · · eik . By convention e0 = 1.
A conjugation is defined by e0 = e0, ej = −ej , j = 1, . . . , n. We define an invo-

lution which is an analogue of complex conjugation:

ζ = x0 +
∑

A�=0

xAeA.

Here eAeB = eBeA.
We are now interested in classifying the Möbius transformations on a compact-

ification of C�r,s (that is compositions of dilations, translations, rotations, and re-
flections) as in the complex case. We assume throughout the rest of this section that
r+ s ≤ 2. Then the product ζ ζ̄ defines a quadratic form with corresponding bilinear
form ζ ω̄. Identifying C�r,s with R

2n , this bilinear form is the standard bilinear form
of signature (p, q), where p+ q = 2n.

Passing this form to the tangent spaces of the manifold R
2n , means we can then

identify C�r,s with the semi-Riemannian manifold R
p,q . In the course of our inves-

tigation we have strong evidence to suggest the following.

Conjecture 2.1 In the case that r + s ≤ 2, the group of orientation preserving
Möbius transformations on C�r,s is isomorphic to SOo(p + 1, q + 1), which is the
connected component containing the identity of the Lie group SO(p+ 1, q + 1).

This conjecture is supported by results appearing in the literature, see [1, 5, 6].
Finding Lie group homomorphisms is usually a non-trivial task. The associated Lie
algebras tend to be easier objects to understand. Under certain circumstances, a
Lie algebra isomorphism determines an isomorphism between the associated Lie
groups [7].

In the next section we shall provide examples where the conjecture is true.

3 Examples

3.1 Example 1: The Real Line

By convention, the Clifford algebra C�0,0 is identified with the real line R. Using
the standard Riemannian structure we think of R as R1,0.

We know that S1 × S0 = S1 × {−1,1} forms a 2-to-1 cover of N1,0. Of course,
this means thatN1,0 is homeomorphic to S1, which is the one point compactification
of R. The conformal mappings here are the diffeomorphisms of the circle.
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An important subclass of these mappings are the real Möbius transformations

x �→ ax + b
cx + d ,

which can be described as PGL(2,R) acting on R. If we consider the Möbius
transformations induced by PSL(2,R), we find that we see that Conjecture 2.1 is
true for R:

PSL(2,R)∼= SOo(2,1),

see [1]. Incidentally, we have the isomorphism of Lie algebras [8]:

sl(2,R)∼= so(2,1).

3.2 Example 2: The Complex Plane

Recall, that the Riemann sphere was our motivating example. It is prudent to check
that our construction coincides with the Riemann sphere.

The complex plane is identified with the Clifford algebra C�0,1. Of course the bi-
linear form on R

2 is the one induced from ζω as above. Hence we identify C ∼ R
2,0.

Since S2 × {−1,1} is a double cover of N2,0, we know that

N2,0 ∼= S2,

which is the Riemann sphere.
Results from complex analysis tell us that the conformal mappings S2 → S2 are

the usual orientation preserving Möbius transformations

z �→ az+ b
cz+ d ,

where ad − bc= 1.
The orientation preserving transformations are isomorphic to PSL(2,C). It so

happens that

PSL(2,C)∼= SOo(3,1),

as needed [1]. Again, the associated Lie algebras are isomorphic [8]:

sl(2,C)∼= so(3,1).

3.3 Example 3: The Minkowski Plane

The case of the Minkowski plane is considered in our previous work, whose bibli-
ography contains several resources outlining the historical significance of this semi-
Riemannian manifold [4].
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The Clifford algebra we consider in this case is C�1,0, which we also refer to as
the split complex numbers and is associated with the quadratic space R1,1. Unlike C,
this algebra has zero divisors.

In our previous work, we show that Möbius transformations

ζ �→ aζ + b
cζ + d ,

where a, b, c, d ∈ C�1,0 and ad − bc is an invertible element, form a subclass of
the conformal mappings on N1,1. For reasons made clear in our paper, the Möbius
transformations are isomorphic to PSL(2,R)× PSL(2,R) [4]. In this case we have

PSL(2,R)× PSL(2,R)∼= SOo(2,1)× SOo(2,1)∼= SOo(2,2).

Moreover, sl(2,R)× sl(2,R)∼= so(2,2) [8].

3.4 Example 4: Quaternions

The quaternions H are the Clifford algebra C�0,2. The corresponding quadratic
space is R

4,0 which is embedded as above into S4 × S0 in R
5,1. The Lie algebra

here is sl(2,H) consisting of 2 × 2 traceless matrices with entries from H. By con-
sidering the fundamental representation of this Lie algebra as real linear operators
on H

2 one finds that PSL(2,H) is isomorphic to SO0(5,1). See [1, 5, 6].

3.5 Example 5: Split Quaternions

The Clifford algebra C�1,1, often referred to as the split quaternions, induce the
semi-Riemannian structure R

2,2. Here SL(2,C�1,1) is isomorphic to SL(4,R),
see [5, 6]. We have the local isomorphism sl(4,R) ∼= so(3,3) [8]. As such it is
likely that PSL(4,R) is isomorphic to SO0(3,3). We remark that C�2,0 is isomor-
phic to C�1,1.

3.6 Example 6: C�0,3

This Clifford algebra is generated over R by generators {e1, e2, e3} with a basis
{e0, e1, e2, e3, e4, e5, e6, e7} satisfying the relations

e0ei = eie0 = ei, i = 0,1, . . . ,7,

e1e2 = e4, e1e3 = e5, e2e3 = e6, e1e6 = e7,
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e2
i = −e0, e2

7 = e0, i = 1, . . . ,6,

eiej + ej ei = 0, i �= j, i, j = 1,2, . . . ,6, i + j �= 7,

eiej = ej ei, i = 0,1, . . . ,7, i �= j, i + j = 7.

Here ζ =∑7
i=0 xiei with conjugate ζ = x0e0 −∑6

i=1 xiei + x7e7. Hence in
this case ζ ζ = (∑7

i=0 x
2
i )e0 + (x0x7 − x1x6 + x2x5 − x3x4)e7 which is an element

of C�1,0. For more details in this case, see [2].
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Generalized Shift Operators Generated
by Convolutions of Integral Transforms
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Abstract In this work we discuss a problem of the equivalence of two main ap-
proaches to introducing of generalized convolution operators. The first of them is
based on the constructing of a generalized shift operator. The idea of the second ap-
proach is based on the works by Valentin Kakichev. On this problem we demonstrate
on the examples of classical and nonclassical convolution constructions of integral
transforms. In particular, we consider the shift operators defined by the convolutions
for Hankel integral transform with the function jν(xt) = (2xt)νΓ (ν + 1)Jν(xt)
in the kernel. Here Jν(xt) is the Bessel function of the first kind of order ν,
Reν >−1/2.

Keywords Shift (translation) operator · Convolution · Fourier integral transform ·
Hankel integral transform
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1 Convolutions and Generalized Shift Operators

Nowadays, there are two main approaches to the constructing and generalizing of
convolutions for integral transforms.

The first of them is based on the constructing of a generalized shift operator (also
called generalized translation operator, or generalized displacement operator). Then
the classical translation operator (ordinary translation) into convolution is replaced
on the generalized shift operator, and we get a generalized convolution. Usually, the
generalized translation operators of the Delsarte–Levitan–Povzner type are used in
these constructions.

In 1938 Jean Delsarte [1] (see also [2, 3]) formulated an entirely new generaliza-
tion of the notion of translation operator. He had been interested in finding a formal
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generalization of the Taylor expansion formula. This research allowed him to obtain
the first results in the theory of generalized translation operator.

Generalized translation in the sense of Jean Delsarte has later been considered
from various points of view by many authors. An important step in the direction of
the Delsarte’s works has been made by Aleksandr Povzner [4]. He determined the
translation operators by the Riemann’s method for solving the hyperbolic equation.
It makes possible to define the translation operators over a very large family of
functions.

The main results in the theory of generalized translation operators belong to Boris
Levitan [5, 6]. He gave an axiomatic definition of generalized translation operators,
studied their structure, considered the application of spectral analysis of generalized
translation operators. The operators associating with Sturm–Liouville differential
operators have been studied by him in detail.

Later S. Bochner, N. Weinberger, I.I. Hirschman, N. Leblanc, N. Dunford and
J.T. Schwartz, V. Hutson and J.S. Pym, B. Fishel and others authors have discussed
generalized translation operators.

The idea of the second approach is based on the works by Valentin Kakichev [7].
In 1967 he introduced the definition of polyconvolution, or generalized convolution.

Definition 1.1 Let Ai , i = 1,2,3 be linear operators mapping linear spaces Ui(Ti)
to an algebra W(X). The polyconvolution (generalized convolution) of function
f (t) and g(t) generated by these operators with weighted function α(x), is the func-

tion h(t) denoted by (fA1

α∗ gA2)A3(t) for which the following factorization property
is valid:

(A3h)(x)=A3
[
(fA1

α∗ gA2)A3

]
(x)= α(x) · (A1f )(x) · (A2g)(x). (1.1)

Here the sympol “·” denotes a multiplication in the algebraW(X).

Using this definition we can construct the polyconvolutions generated by various
linear operators, in particular we can construct the convolutions for integral trans-
forms. And these convolutions define translation operators.

Now we discuss a problem of the equivalence of these approaches to introducing
of generalized convolution operators. We take the Levitan’s definition of generalized
translation operator (see his paper [5, 6]).

We will deal throughout the paper with weighted Lebesgue spaces
Lp(R+;ω(t)dt), 1 ≤ p <∞ with respect to a positive measure ω(t)dt equipped
with the norm for which

‖f ‖ω =
(∫ ∞

0

∣
∣f (t)

∣
∣pω(t)dt

)1/p

<∞.

Let T τ be a family of operators depending on the parametre τ ∈R+.
Thus, to every function f (t) ⊂ Lp(R+;ω(t)dt) there corresponds a function

T τt f (t) of two variable points.
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Denote by T̃ τt f (t) the adjoined operator which is defined by the relation
∫

T τt f (t)g(t)ω(t)dt =
∫

f (t)T̃ τt g(t)ω(t)dt.

Definition 1.2 Let then the operators T τ satisfy the following conditions, which
we will call the conditions of generalized translation:

I. Linearity:

T τt
[
af (t)+ bg(t)]= aT τt f (t)+ bT τt g(t),

a, b are real numbers.
II. The single element e ∈R+ exists such that

T et f (t)= f (t), T τe f (t)= f (τ).
III. Associativity:

T τs T
s
t f (t)= T st T τt f (t).

IV. Boundedness:
[∫
∣
∣T τt f (t)

∣
∣pω(t)dt

]1/p

≤Ap(τ)
[∫
∣
∣f (t)

∣
∣pω(t)dt

]1/p

,

[∫
∣
∣T̃ τt f (t)

∣
∣pω(t)dt

]1/p

≤A∗
p(τ)

[∫
∣
∣f (t)

∣
∣pω(t)dt

]1/p

,

where Ap(τ),A∗
p(τ) are positive functions bounded on every compact set

T ⊂ R+.
V. Continuity: if f (t)⊂ Lp then for each ε > 0 there is the neighborhood U such

that if s, r ∈U then
∫
∣
∣T st f (t)− T rt f (t)

∣
∣pω(t)dt < εp,

∫
∣
∣T̃ st f (t)− T̃ rt f (t)

∣
∣pω(t)dt < εp.

In the next section we consider certain convolution operators and translation op-
erators which are generated by them.

2 Examples of Convolutions and Generalized Shift Operators

2.1 The Convolutions of the Fourier Cosine and Sine Transforms

Polyconvolutions which are associated with the Fourier cosine and sine transforma-
tions are well studied. It is widely known, that the Fourier transform is well-defined
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on the space L1(R+;dt)

V{ c
s
}[f ](x)=

∫ ∞

0
f (t)

{
cosxt

sinxt

}

dt, f (t) ∈ L1(R+). (2.1)

Moreover, if g(x)= (Fcf )(x) ∈ L1(R+;dx) we have the reciprocal inversion for-
mula f (x)= (Fcg)(x).

In the case of L2(R+;dt)-space we should define the cosine Fourier transform
in the mean-square convergence sense, namely

V{ c
s
}[f ](x)= lim

N→∞

∫ N

1/N
f (t)

{
cosxt

sinxt

}

dt, f (t) ∈ L2(R+), (2.2)

and familiar Plancherel’s theorem says that Fc : L2(R+;dt)→ L2(R+;dt) is an
isometric isomorphism and Parseval’s equality

‖Fcf ‖L2(R+;dt) = ‖f ‖L2(R+;dt). (2.3)

In these function spaces we can introduce various convolutions which are gen-
erated by the Fourier cosine and sine transforms. For example, the following con-
structions without weight functions [8–10]

(fc ∗ gc)c(t)= 1

2

∫ ∞

0
f (τ)

[
g(t + τ)+ g(|t − τ |)]dτ, (2.4)

Vc
[
(fc ∗ gc)c(t)

]
(x)= Vc[f ](x)Vc[g](x); (2.5)

(fc ∗ gs)s(t)= 1

2

∫ ∞

0
g(τ)
[
f
(|t − τ |)− f (t + τ)]dτ (2.6)

= 1

2

∫ ∞

0
f (τ)

[
g(t + τ)+ sign(t − τ)g(|t − τ |)]dτ, (2.7)

Vs
[
(fc ∗ gs)s(t)

]
(x)= Vc[f ](x)Vs[g](x); (2.8)

(fs ∗ gs)c(t)= 1

2

∫ ∞

0
f (τ)

[
g(t + τ)− sign(t − τ)g(|t − τ |)]dτ, (2.9)

Vc
[
(fs ∗ gs)c(t)

]
(x)= Vs[f ](x)Vs[g](x). (2.10)

The convolutions (2.4), (2.6), (2.7) and (2.9) generate the following translation
operators:

1T
τ
t f (t)=

1

2

[
f (t + τ)+ f (|t − τ |)],

1T
0
t f (t)= f (t), 1T

τ
0 f (t)= f (τ),

∂

∂τ
1T
τ
t f (t)

∣
∣
∣
∣
τ=0

= 3T
0
t f

′(t)= 0,

∂

∂t
1T
τ
t f (t)

∣
∣
∣
∣
t=0

= 2T̃
τ

0f
′(t)= 0, (2.11)
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2T
τ
t f (t)=

1

2

[
f
(|t − τ |)− f (t + τ)],

2T
0
t f (t)= 0, 2T

τ
0 f (t)= 0,

∂

∂τ
2T
τ
t f (t)

∣
∣
∣
∣
τ=0

= −2T̃
0
t f

′(t)= −f ′(t),

∂

∂t
2T
τ
t f (t)

∣
∣
∣
∣
t=0

= −3T
τ
0f

′(t)= −f ′(τ ), (2.12)

2T̃
τ
t f (t)=

1

2

[
f (t + τ)+ sign(t − τ)f (|t − τ |)],

2T̃
0
t f (t)= f (t), 2T̃

τ
0 f (t)= 0,

∂

∂τ
2T̃
τ

t f (t)

∣
∣
∣
∣
τ=0

= −2T
0
t f

′(t)= 0,

∂

∂t
2T̃
τ

t f (t)

∣
∣
∣
∣
t=0

= 1T
τ
0f

′(t)= f ′(τ ), (2.13)

3T
τ
t f (t)=

1

2

[
f (t + τ)− sign(t − τ)f (|t − τ |)],

3T
0
t f (t)= 0, 3T

τ
0 f (t)= f (τ),

∂

∂τ
3T
τ
t f (t)

∣
∣
∣
∣
τ=0

= 1T
0
t f

′(t)= f ′(t),

∂

∂t
3T
τ
t f (t)

∣
∣
∣
∣
t=0

= −2T
τ
0f

′(t)= 0. (2.14)

The translation operator (2.11) is well known. It is the operator of the Levitan’s
type. The other operators (2.12)–(2.14) and polyconvolutions with weight functions
for the Fourier cosine and sine transforms are not the operators of Levitan’s type
because they do not satisfy the conditions II and III, in particular.

2.2 The Convolutions of the Hankel Transform

The Hankel integral transform is defined by

hν(f )(s)= f̃ (s)=
∫ ∞

0
f (t)jν(st)t

2ν+1dt, ν >−1/2, (2.15)

where the function

jν(st)= 2νΓ (ν + 1)

(st)ν
Jν(st)=

∞∑

m=0

(−1)mΓ (ν + 1)(st)2m

22mm!Γ (m+ ν + 1)
(2.16)

is associated with the Bessel function Jν of the first kind of order ν.
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The function jν(st) is the solution of the equation

d2y

dt2
+ 2ν + 1

t

dy

dt
+ s2t = 0 (2.17)

under conditions y(0)= 1 and y′(0)= 0.
The inversion formula for (2.15) is given by

h−1
ν (f̃ )(t)= f (t)=

[
22νΓ 2(ν + 1)

]−1
∫ ∞

0
f̃ (s)jν(st)s

2ν+1ds. (2.18)

The classical convolution for the Hankel transform (2.15) is well studied and is
defined by

(fν ∗ gν)ν(t)= Γ (ν + 1)

Γ (ν + 1
2 )Γ (

1
2 )

∫ π

0
sin2ν ϕ

×
∫ ∞

0
f (τ)g

(
√

t2 + τ 2 − 2tτ cosϕ
)
τ 2ν+1dτdϕ. (2.19)

This convolution can be rewritten as

(fν ∗ gν)ν(t)=
∫ ∞

0
f (τ)0T

τ
t g(t)τ

2ν+1dτ (2.20)

if we introduce the translation operator:

0T
τ
t f (t)=

Γ (ν + 1)

Γ (ν + 1
2 )Γ (

1
2 )

∫ π

0
f
(
√

t2 + τ 2 − 2tτ cosϕ
)

sin2ν ϕdϕ,

0T
0
t f (t)= f (t), 0T

τ
0 f (t)= f (τ). (2.21)

This translation operator is the generalized translation operator of the Levitan’s
type. It was first introduced and studied by B.M. Levitan in 1949 [5] (see also [11]).
In 1955 Ya.I. Zhitomirskii [12] constructed the convolution for the Hankel trans-
form using the translation operator and its properties. Also this classical convo-
lution and corresponding translation operator were introduced and investigated by
I.I. Hirschman, D.T. Haimo, F.M. Cholowinski, V.A. Kakichev, Vu Kim Tuan and
Megumi Saigo [7, 13–16].

The Kakichev’s approach allows us to introduce some convolutions for the Han-
kel transform. For example, we can construct the following convolution

(fν+m ∗ gν)ν+m(t)= 22ν−1m!Γ (ν + 1)Γ (ν)

πΓ (2ν +m)tm
∫ π

0
Cνm(cosϕ) sin2ν ϕ

×
∫ ∞

0
f (τ)g

(
√

t2 + τ 2 − 2tτ cosϕ
)
τ 2ν+m+1dτdϕ (2.22)
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which generate the translation operator

mT
τ
t f (t)=

cν,m

(tτ )m

∫ π

0
f
(
√

t2 + τ 2 − 2tτ cosϕ
)
Cνm(cosϕ) sin2ν ϕdϕ,

τmmT
τ
t f (t)

∣
∣
τ=0 = 0, m > 0, tmmT

τ
t f (t)

∣
∣
t=0 = 0, m > 0, (2.23)

where

cν,m = 22(ν+m)−1m!Γ 2(ν +m+ 1)Γ (ν)

πΓ (2ν +m)Γ (ν + 1)
. (2.24)

The convolution (2.22) can be rewritten as

(fν+m ∗ gν)ν+m(t)= Γ 2(ν + 1)

22mΓ 2(ν +m+ 1)

∫ ∞

0
f (τ)mT

τ
t g(t)τ

2(ν+m)+1dτ. (2.25)

Ifm= 0 then we get the classical convolution (2.19) and the corresponding trans-
lation operator.

The translation operator (2.23) is not the operator of the Levitan’s type.
If we will consider the other polyconvolutions for integral transforms, for exam-

ple, the various convolution constructions for Hankel transform [17–20] then only
convolutions generated by one linear operator without weight function can get the
translation operators of the Levitan’s type.

The presented examples show us that these two approaches are not equivalent if
we use the Levitan’s notion for translation operator.
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An Approach for Developing Fourier
Convolutions and Applications

Nguyen Minh Tuan

Abstract Based on the papers published recently, this talk presents a concept of
convolution so-called pair-convolution which is a generalization of known convolu-
tions, and considers applications for solving integral equations.

Keywords Generalized convolution · Integral equation of convolution type ·
Banach algebra
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1 Introduction

It is well-known that the transform

(f ∗
F
g)(x)= 1

(2π)
d
2

∫

Rd

f (x − y)g(y)dy (1.1)

is called the Fourier convolution of two functions g and f , and the following fac-
torization identity holds

F(f ∗
F
g)(x)= (Ff )(x)(Fg)(x).

The above-mentioned convolution was found most early, and nowadays it has been
applying widely in both theoretical and practical problems.

We can say that many convolutions, generalized convolutions, and polycon-
volutions of the well-known integral transforms as Fourier’s, Hankel’s, Mellin’s,
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Laplace’s and their applications have been published. Loosely speaking, the theory
of convolutions has been strongly developing and vigorously discussing in many
research groups (see [1, 2, 4, 5, 7, 10, 11, 14, 15], and references therein).

In fact, convolutions are considered as a powerful tool in many fields of mathe-
matics such as numerical computing, digital, image and signal processing, partial-
differential equations, and other fields of mathematics (see [3, 6–16, 20]). Other
reason for which the theory of convolutions attracts attention of many mathemati-
cians is that each of convolutions is a new integral transform, therefore it could be a
new object of study.

1.1 Present Studies of Convolution Operators

It is easy to show a long list of authors and their works concerning convolution op-
erators such as: A. Böttcher, L.E. Britvina, Yu. Brychkov, L. Castro, I. Feldman,
H.J. Glaeske, I. Gohberg, N. Krupnik, O.I. Marichev, S. Saitoh, B. Silbermann,
H.M. Srivastava, V.K. Tuan, S.B. Yakubovich. . . Among those listed, there are many
mathematicians leading the potential and strong groups in the worldwide, they have
been creating significant discoveries, namely: A. Böttcher (Germany), L.E. Britv-
ina (Ukraina), Yu. Brychkov (Russia), L. Castro and S. Saitoh (Aveiro-Portugal
and Gunma-Japan), I. Gohberg (Israel), B. Silbermann (Germany), H.M. Srivastava
(Canada), V.K. Tuan (USA), S.B. Yakubovich (Porto, Portugal).

2 An Approach to Developing Convolutions

The nice idea of convolution focuses on the factorization identity. We now deal with
the concept of convolutions. Let U1, U2, U3 be the linear spaces on the field of
scalars K, and let V be a commutative algebra on K. Suppose that K1 ∈ L(U1,V ),
K2 ∈ L(U2,V ), K3 ∈ L(U3,V ) are linear operators from U1, U2, U3 to V respec-
tively. Let δ denote an element in algebra V . We recall the definition of convolutions.

Definition 2.1 (see also [4]) A bilinear map ∗ : U1 × U2 :−→ U3 is called a con-
volution associated with K3, K1, K2 (in that order) if the following identity holds

K3
(∗(f, g))= δK1(f )K2(g),

for any f ∈ U1, g ∈ U2. Above identity is called the factorization identity of the
convolution.

We now deal with several approaches to developing convolutions.
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2.1 Using Eigenfunctions

Let Φα denote the Hermite function (see [14]).

Theorem 2.2 ([18, 19]) The following transform defines a convolution

(f
Φα∗
F
g)(x)= i|α|

(2π)d

∫

Rd

∫

Rd

f (u)g(v)Φα(x − u− v)dudv.

Let r0 ∈ {0,1,2,3} be given, and let

Ψ (x)=
∑

|α|=r0 (mod 4)

aαΦα(x) (aα ∈C) (2.1)

be a finite linear combination of the Hermite functions (|α| ≤ N for some N ∈ N).
The following theorem is an immediate consequence of Theorem 2.2.

Theorem 2.3 The following transform defines a convolution

(f
Ψ∗
F
g)(x)= 1

(2π)d

∫

Rd

∫

Rd

f (u)g(v)Ψ (x − u− v)dudv.

2.2 Trigonometric Weight Functions

Let Tc, Ts denote the Fourier-cosine and Fourier-sine integral transforms. Let
h ∈ R

d be fixed. Put θ1(x) = cosxh := cos(〈x,h〉), θ2(x) = sinxh := sin(〈x,h〉)
as there is no danger of confusion.

Theorem 2.4 (see [9, 18, 19]) Each of the integral transforms (2.2)–(2.5) below
defines a convolution:

(f
θ1∗
Tc
g)(x)= 1

4(2π)
d
2

∫

Rd

[
f (x − u+ h)+ f (x − u− h)

+ f (x + u+ h)+ f (x + u− h)]g(u)du, (2.2)

(f
θ1∗

Tc,Ts ,T s
g)(x)= 1

4(2π)
d
2

∫

Rd

[−f (x − u+ h)− f (x − u− h)

+ f (x + u+ h)+ f (x + u− h)]g(u)du, (2.3)

(f
θ2∗

Tc,Ts ,Tc
g)(x)= 1

4(2π)
d
2

∫

Rd

[
f (x − u+ h)− f (x − u− h)

+ f (x + u+ h)− f (x + u− h)]g(u)du, (2.4)
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(f
θ2∗

Tc,Tc,Ts
g)(x)= 1

4(2π)
d
2

∫

Rd

[
f (x − u+ h)− f (x − u− h)

− f (x + u+ h)+ f (x + u− h)]g(u)du. (2.5)

Comparison 2.5 Different from the convolutions presented by other authors, what
above does not require the invertibility of associated transforms. Indeed, according
to our point of view as showed in Definition 2.1 the condition about the invertibility
of transforms is not needed for constructing convolutions; namely, three operators
K1, K2, K3 may be un-injective. As we know that the Fourier-cosine and Fourier-
sine transforms Tc and Ts are not injective, but there are still many infinitely many
convolutions associated with them as presented in [9, 17–19]. In our point of view,
that is a main reason why no convolution for un-invertible transforms appears until
this moment. Most of convolution multiplications published are not commutative
and not associative.

3 New Concept: Pair-Convolution

In this section we propose a new concept so-called pair-convolution which is a con-
siderable generalization of convolution and generalized convolutions.

For any given multi-index α ∈ N
d , consider the transform

D1(f, g)(x)= 1

(2π)d

∫

Rd

∫

Rd

Φα(x + u+ v)f (u)g(v)dudv.

Using the convolutions in [18] we get

• The case |α| = 0 (mod 4):

Tc
(
D1(f, g)

)
(x)=Φα(x)

(
(Tcf )(x)(Tcg)(x)− (Tsf )(x)(Tsg)(x)

)
,

Ts
(
D1(f, g)

)
(x)= −Φα(x)

(
(Tcf )(x)(Tsg)(x)+ (Tsf )(x)(Tcg)(x)

)
.

• The case |α| = 1 (mod 4):

Tc
(
D1(f, g)

)
(x)=Φα(x)

(
(Tcf )(x)(Tsg)(x)+ (Tsf )(x)(Tcg)(x)

)
,

Ts
(
D1(f, g)

)
(x)=Φα(x)

(
(Tcf )(x)(Tcg)(x)− (Tsf )(x)(Tsg)(x)

)
.

• The case |α| = 2 (mod 4):

Tc
(
D1(f, g)(x)

)=Φα(x)
(
(Tsf )(x)(Tsg)(x)− (Tcf )(x)(Tcg)(x)

)
,

Ts
(
D1(f, g)

)
(x)=Φα(x)

(
(Tcf )(x)(Tsg)(x)+ (Tsf )(x)(Tcg)(x)

)
.

• The case |α| = 3 (mod 4):

Tc
(
D1(f, g)

)
(x)= −Φα(x)

(
(Tcf )(x)(Tsg)(x)+ (Tsf )(x)(Tcg)(x)

)
,

Ts
(
D1(f, g)

)
(x)=Φα(x)

(
(Tsf )(x)(Tsg)(x)− (Tcf )(x)(Tcg)(x)

)
.
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Motivated by the operational identities above, we introduce the following concept.
Let U be a linear space, and let V be a commutative algebra on the complex field C.
Let T1, T2 ∈ L(U,V ) be the linear operators from U to V .

Definition 3.1 A bilinear map ∗ : U × U :−→ U is called a pair-convolution
associated with T1, T2, if there exist eight elements δk ∈ V , k = 1, . . . ,8 so that the
following identities hold for any f,g ∈U :

T1
(∗(f, g))= δ1T1f T1g + δ2T1f T2g+ δ3T2f T1g+ δ4T2f T2g,

T2
(∗(f, g))= δ5T1f T1g + δ6T1f T2g+ δ7T2f T1g+ δ8T2f T2g.

Example 3.2 The above-mentioned bilinear transform D1( , ) is the pair-convolu-
tion for Tc, Ts . Note that this transform is not the generalized convolution associated
with Tc, Ts .

Example 3.3 Consider the transform

D2(f, g)(x) := 1

4(2π)d

∫

Rd

∫

Rd

[
aΦα(x + u+ v)+ bΦβ(x + u− v)

+ cΦγ (x − u+ v)+ dΦδ(x − u− v)]f (u)g(v)dudv,
where a, b, c, d ∈ C, and α,β, γ, δ are the multi-indexes. As (2.2), D2( , ) is a pair-
convolution associated with F ,F−1.

Example 3.4 Let Ψ be the Hermite-type function as defined by (2.1). Write

Ψ (x) :=
∑

|α|=0 (mod 4)

aαΦα(x)+
∑

|α|=1 (mod 4)

aαΦα(x)

+
∑

|α|=2 (mod 4)

aαΦα(x)+
∑

|α|=3 (mod 4)

aαΦα(x). (3.1)

Using the operational identities of D1( , ), we can prove that the transform

D3(f, g)(x) := 1

(2π)d

∫

Rd

∫

Rd

Ψ (x ± u± v)f (u)g(v)dudv (3.2)

is a pair-convolution associated with Tc, Ts .

Example 3.5 Suppose that a1, a2, a3, a4 are any complex numbers. By Theorem 2.4
we can prove that the transform

D4(f, g)(x) := 1

4(2π)
d
2

∫

Rd

[
a1f (x − u+ h)+ a2f (x − u− h)

+ a3f (x + u+ h)+ a4f (x + u− h)]g(u)du
defines a pair-convolution associated with the transforms Tc, Ts .
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We now consider the general integral equation

λϕ(x)+
∫

E

K(x, y)ϕ(y)dy = f (x). (3.3)

We suppose that, by way of decomposing the kernel as

K(x,y)=
N∑

n=1

kn(x, y) (3.4)

such that each one of the transforms

(Knϕ)(x)=
∫

E

kn(x, y)ϕ(y)dy (3.5)

is a pair-convolution for specific operators T1, T2, then (3.3) may be solved by con-
volution approach. The main key of this approach is that we can reduce integral
equations to a linear algebraic system of functional equations, and then apply an
inverse transform of the transform aT1 + bT2 for some a, b ∈ C. Thanks to pair-
convolutions this approach could be more flexible, and realizable for a larger class
of equations.

4 Final Remarks

To summary Sect. 3, we can interpret in other words as: the generalized convolu-
tion transforms, and the pair-convolution transforms might be called the factoris-
able integrals, and pair-factorisable integrals respectively by means of two specific
transforms.

Problems for Further Studying Construct more pair-convolutions for the well-
known integral transforms such as Hilbert, Mellin, Laplace, . . . , and look for their
applications.

Finally, since the set of all Hermite functions is a normally orthogonal basic of
L2(Rd), and thanks to the infinitely many pair-convolutions concerning the Hermite
functions as presented, we propose the following conjecture.

Conjecture 4.1 For any function k ∈ L2(Rd), there exists a function f ∈ L2(Rd)

sufficiently closed to k such that each one of the transforms

∫

E

∫

E

k(x ± u± v)f (u)g(v)dudv

is either convolution or pair-convolution for specific operators K1,K2.
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If this fact would be proved, we would have an approximately solvable manner
called convolution one which could be different from that of the Galerkin method
for Fredholm integral equations.

Acknowledgements This talk is based on the works joint with P.K. Anh, L.P. Castro, B.T. Giang,
N.T.T. Huyen, S. Saitoh, P.T. Thao, and P.D. Tuan. This work was supported partially by the Viet
Nam National Foundation for Science and Technology Development.
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Abstract In this paper, by using the theory of reproducing kernels, we investigate
integral transforms with kernels related to the solutions of the initial Whittaker heat
problem.
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1 Introduction

The Whittaker functions are closely related to the confluent hypergeometric func-
tions which play an important role in various branches of applied mathematics and
theoretical physics, for instance, fluid mechanics scalar and electromagnetic diffrac-
tion theory, atomic structure theory, input–output situations and storage consump-
tion situations in economic problems, and so on. Moreover, they have acquired an
ever increasing significance due to their frequent use in applications of mathemat-
ics to physical and technical problems [3, 4]. This justifies the continuous effort in
studying properties of these functions and in gathering information about them.

Let consider the general method given in [6] for the existence and construction
of the solution of the following initial problem

(∂t +Lx)uf (t, x)= 0, t > 0 (1.1)
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satisfying the initial value condition

uf (0, x)= f (x), (1.2)

for some general linear operator Lx on some function space, and on some domain,
by using the theory of reproducing kernels.

We shall investigate the integral transforms with kernels related to the solutions
of the equations by using the theory of reproducing kernels, for the Whittaker heat
equations.

The Whittaker functions denoted by Mμ,ν(x), Wμ,ν(x) arise as solutions to the
Whittaker differential equation, i.e., they are solutions of the linear homogeneous
ordinary differential equation of the second order

d2W

dx2
+
(

−1

4
+ μ

x
+

1
4 − ν2

x2

)

W = 0. (1.3)

Here, we will deal with the Whittaker functionWiτ,k−1/2 which is an eigenfunc-
tion of a second order differential operator

AxWiτ,k−1/2(x)= τWiτ,k−1/2(x) (1.4)

with an eigenvalue τ , and where

Ax = ix d
2

dx2
− ix

4
− i(k2 − k)

4x
. (1.5)

We shall consider the case that τ are reals and positive, and then the functions

exp(−τ t)Wiτ,k−1/2(x) (1.6)

are the solutions of the operator equation

(∂t +Ax)u(t, x)= 0. (1.7)

We shall consider some general solutions of (1.7) by a suitable sum of the solu-
tions (1.6). In order to consider a fully general sum, we shall consider the kernel
form for a nonnegative continuous function ρ,

Kt (x, y;ρ)=
∫ +∞

0
exp{−τ t}Wiτ,k−1/2(x)Wiτ,k−1/2(y)ρ(τ)dτ. (1.8)

Of course, here, we are considering the integral with absolutely convergence for the
kernel form.

The fully general solutions of (1.7) may be represented in the integral form

u(t, x)=
∫ +∞

0
exp{−τ t}Wiτ,k−1/2(x)F (τ)ρ(τ)dτ, (1.9)
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for the functions F satisfying
∫ +∞

0
exp{−τ t}∣∣F(τ)∣∣2ρ(τ)dτ <∞. (1.10)

Then, the solution u(t, x) of (1.7) satisfying the initial condition

u(0, x)= F(x) (1.11)

will be obtained by t → 0 in (1.9) with a natural meaning. However, this point will
be very delicate and we will need to consider some deep and beautiful structure.
Here, (1.8) is a reproducing kernel and in order to analyze the logic above, we will
need the theory of reproducing kernels, essentially and beautiful ways. Indeed, in
order to construct natural solutions (1.8) we will need a new framework and function
space.

2 Main Results

In order to analyze the integral transform (1.9), we will need the essence of the the-
ory of reproducing kernels. We are interesting in the integral transforms (1.9) in the
framework of Hilbert spaces. Of course, we are interesting in the characterization of
the image functions, the isometric identity like the Parseval identity and the inver-
sion formula, basically. For these general and fundamental problems, we have a uni-
fied and fundamental method and concept in the general situation in [8–10], where
we can find the general theory for linear mappings in the framework of Hilbert
spaces.

Moreover, recently, we obtained a very general image identification method and
inversion formula based on the Aveiro Discretization Method in Mathematics [5] by
using the ultimate realization of reproducing kernel Hilbert spaces. Following the
general theory, we shall build our results.

We form the reproducing kernel

K(x, y;ρ)=
∫ +∞

0
W
iτ,k− 1

2
(x)W

iτ,k− 1
2
(y)ρ(τ)dτ, t > 0, (2.1)

and consider the reproducing kernel Hilbert space HK(ρ)(R+) admitting the kernel
K(x, y;ρ). In particular, note that

Kt (x, y;ρ) ∈HK(ρ)
(
R

+), y > 0.

Then, we obtain the main theorem in this paper:

Theorem 2.1 (Main Theorem) For any member f ∈ HK(ρ)(R+), the solution
uf (t, x) of the initial value problem, for t > 0

(∂t +Ax)uf (t, x)= 0 (2.2)
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satisfying the initial value condition

uf (0, x)= f (x), (2.3)

exists and it is given by

uf (t, x)=
(
f (·),Kt (·, x;ρ)

)

HK(ρ)(R+). (2.4)

Here, the meaning of the initial value (2.3) is given by

lim
t→+0

uf (t, x) = lim
t→+0

(
f (·),Kt (·, x;ρ)

)

HK(ρ)(R+)

= (f (·),K(·, x;ρ))
HK(ρ)(R+)

= f (x), (2.5)

whose existence is, in general, ensured and the limit is the uniformly convergence
on any subset of R+ such that K(x, x;ρ) is bounded.

The uniqueness property of the initial value problem is valid.

In our theorem, the complete property of the solutions uf (t, x) of (2.2) and (2.3)
satisfying the initial value f may be derived by the reproducing kernel Hilbert space
admitting the kernel

k(x, t;y, τ ;ρ) := (Kτ (·, y;ρ),Kt (·, x;ρ)
)

HK(ρ)(R+). (2.6)

In our method, we see that the existence problem of the initial value problem is
based on the eigenfunctions and we are constructing the desired solution satisfying
the desired initial condition. For a larger knowledge for the eigenfunctions we can
consider a more general initial value problem.

Furthermore, by considering the linear mapping of (2.4) with various situations,
we will be able to obtain various inverse problems looking for the initial values f
from the various out put data of uf (t, x).

3 Proof of the Main Theorem

The first, note that the kernel Kt (x, y;ρ) satisfies the operator equation (2.2) for any
fixed y, because the functions

exp(−τ t)Wiτ,k−1/2(x)

satisfy the operator equation and it is the summation. Similarly, the function uf (t, x)
defined by (2.4) is the solution of the operator equation (2.2).
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In order to see the initial value problem, we note the important general properties

Kt (x, y;ρ)>K(x, y;ρ); (3.1)

that is, K(x, y;ρ)− Kt (x, y;ρ) is a positive definite quadratic form function and
we have

HKt (ρ) ⊂HK(ρ)
(
R

+)

and for any function f ∈HKt (ρ)

‖f ‖HK(ρ)(R+) = lim
t→+0

‖f ‖HKt (ρ)

in the sense of non-decreasing norm convergence [2]. In order to see the crucial
point in (2.5), note that

∥
∥K(x, y;ρ)−Kt (x, y;ρ)

∥
∥2
HK(ρ)(R+)

= K(y, y;ρ)− 2Kt (y, y;ρ)+
∥
∥Kt (x, y;ρ)

∥
∥2
HK(ρ)(R+)

≤ K(y, y;ρ)− 2Kt (y, y;ρ)+
∥
∥Kt (x, y;ρ)

∥
∥2
HKt (ρ)

= K(y, y;ρ)−Kt (y, y;ρ),
that converses to zero as t → +0. We thus obtain the desired limit property in the
theorem.

The uniqueness property of the initial value problem follows from (2.4) easily,
by using the below completeness Theorem 4.2.

In the main theorem, the realization of the reproducing kernel Hilbert space
HK(ρ)(R+) is a crucial point, for this purpose, we are interested in the calculation
of the kernel K(x, y;ρ).

4 Realizations of the Reproducing Kernel Hilbert Spaces

As the theory of reproducing kernels, their realizations will give interesting research
topics that are requested separate papers. So, here, we shall discuss the following
concrete form of the reproducing kernels. From [3], we have

∫ +∞

0

∣
∣Γ (k + iτ )∣∣2W

iτ,k− 1
2
(x)W

iτ,k− 1
2
(y)dτ

= √
πΓ (2k)(xy)k(x + y)−2k+1K2k− 1

2

(
x + y

2

)

, (4.1)

where K2k− 1
2
(z) denotes the modified Bessel function. For the realization of the

reproducing kernel Hilbert space HK admitting the kernel (4.1), we can use the
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following representations for the modified Bessel function:

Kα(x) =
√
π

Γ (α + 1/2)

(
x

2

)α ∫ +∞

1
e−xt
(
t2 − 1

)α−1/2
dt, x > 0, (4.2)

Kα(x) = 2αΓ (α + 1/2)

xα
√
π

∫ +∞

0

cosxt

(1 + t2)α+1/2
dt, x > 0, α >−1

2
, (4.3)

and

Kα(x)= 1

2

(
x

2

)α ∫ +∞

0
e−t−x2/(4t)t−α−1dt, | argx|< π

4
. (4.4)

See [1], pp. 236–347, for example. By using the structure theorems and tech-
niques of reproducing kernels, we can realize the space HK , however, in this case,
the realizations are not so simple. See, [9].

However, we can apply quite general formula by the Aveiro discretization method
in the sense of numerical in [5]. In the method, numerical experiments were also
given.

Proposition 4.1 (Ultimate realization of reproducing kernel Hilbert spaces) In our
general situation and for a uniqueness set {pj } for the reproducing kernel Hilbert
spaceHK of the set E satisfying the linearly independence ofK(·,pj ) for any finite
number of the points pj , we obtain

‖f ‖2
HK

= lim
n→∞

n∑

j=1

n∑

j ′=1

f (pj )ãjj ′f (pj ′). (4.5)

Here, ãjj ′ is the element of the complex conjugate inverse of the positive definite
Hermitian matrix formed by

ajj ′ =K(pj ,pj ′).

For applying Proposition 4.1, we need only—see [5] for the details:

Theorem 4.2 In the integral transform induced from (4.1),
{
Wiτ,k−1/2(x);x ∈ R

+}

is complete in L2(R+, |Γ (k + iτ )|2dτ). For any different points {xj }nj=1(xj > 0),

{
Wiτ,k−1/2(xj )

}n
j=1

are linearly independent.

First we recall the identity for the Whittaker function

Wk,m(x)= e−x/2xk

Γ ( 1
2 − k+m)

∫ +∞

0
e−t t−k−(1/2)+m(1 + t/x)k−(1/2)+mdt
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for

-(k− (1/2)+m)< 0, x > 0

([1], p. 197, (4.4.3)). By the transform t/x = ξ and in our notation, we have

Wiτ,k−1/2(x) = e−x/2xk

Γ (−iτ + k)

×
∫ +∞

0
e−xξ ξ iτ+k−1(1 + ξ)iτ+k−1dξ.

By using this formula, we can derive the completeness.
Meanwhile, by using the asymptotic expansion

Wλ,μ(z)∼ −
(

4z

λ

) 1
4

e−λ+λ logλ
(

sin 2
√
λz− λπ − π

4

)

([7], p. 1075), we can see the linearly independence.
In Proposition 4.1, for the uniqueness set of the space, if the reproducing kernel

is analytical as in the present case, then, the criteria will be very simple by the iden-
tity theorem of analytic functions. For the Sobolev space cases, we have to consider
some dense subset of E for the uniqueness set. Meanwhile, the linearly indepen-
dence will be easily derived from the integral representations of the kernels.

We can realize the important reproducing kernel Hilbert space concretely and
analytically. Meanwhile, we are also interested in the kernel forms Kt and k. These
calculations will create a new and large field in integral formulas.
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Recovery of Holomorphic Functions and Taylor
Coefficients by Sampling

Vu Kim Tuan and Amin Boumenir

Abstract We introduce an interpolation formula for holomorphic functions and
prove its convergence pointwise under very general condition. We obtain also a
recovery formula for Taylor coefficients from discrete samples.

1 Problems

Let f be a holomorphic function on a connected domain Ω ⊂ C, and z0 ∈Ω . Then
if Dz0 ⊂Ω is a disk with center at z0, then f (z) has a Taylor series

f (z)=
∞∑

m=0

Fm(z− z0)
m,

that converges, at least inside Dz0 . Let {zn}∞1 be a sequence of distinct points in
Ω that converges to some w0 ∈ Dz0 . The classical interior uniqueness theorem for
holomorphic functions says that f is uniquely determined by its values at {zn}∞1 .
However, to our best knowledge, in the general case there is no formula to recover
f (z) from {f (zn)}∞1 . Also, no practical formula to determine the Taylor coefficients
{Fm}∞0 from {f (zn)}∞1 is known. For recovery of holomorphic functions from spe-
cial sampling sequences see [1, 4, 5]. In this paper we introduce a formula, that
recovers f (z) from {f (zn)}∞1 , and another formula that determines its Taylor coef-
ficients {Fm}∞0 from {f (zn)}∞1 . We will discuss also the problem what would be a
necessary and sufficient condition on a sequence of complex pairs {(zk, uk)}∞1 such
that there exists a holomorphic function f with f (zk)= uk for any k ≥ 1. The tools
to be used here are the Hardy space and the reproducing kernel Hilbert spaces.
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2 Interpolation Formula in Hardy Space H2(DDD)

The Hardy space H2(D) is defined as the space of all holomorphic functions f in
the open unit disk D = {z ∈C, |z|< 1} for which the norm

‖f ‖H2 = sup
0≤r<1

√

1

2π

∫ 2π

0

∣
∣f
(
reit
)∣
∣2dt

is finite. Consider the MacLaurin series for f

f (z)=
∞∑

m=0

Fmz
m, z ∈ D,

it is well-known that f ∈ H2(D) if, and only if, the sequence of its MacLaurin
coefficients {Fm}∞0 belongs to the space of square summable sequences l2(N0)

F := {Fm}∞0 ∈ l2(N0) if ‖F‖l2 =
√
√
√
√

∞∑

m=0

|Fm|2 <∞.

With the endowed inner product

〈f,g〉 =
∞∑

m=0

FmGm, g(z)=
∞∑

m=0

Gmz
m ∈H2(D),

H2(D) becomes a Hilbert space and the transform L : l2(N0)→H2(D) defined by

L(F)= f (z)=
∞∑

m=0

Fmz
m

is a linear inner product preserving isomorphism. H2(D) is also a reproducing kernel
Hilbert space (RKHS) with the reproducing kernel

K(z,w)= 1

1 −wz.

We recall the following general result for interpolation in RKHS, [2].

Theorem 2.1 Let H be a RKHS on X with reproducing kernel, K , and let
Γ = {x1, . . . , xn} ⊂ X be distinct. If the matrix (K(xi, xj )) is invertible, then for
any {λ1, . . . , λn} ⊂ C there exists a function interpolating these values, and the
unique interpolating function of minimum norm is given by the formula g(x) =
∑n
j=1 αjK(x, xj ), where w = (α1, . . . , αn)

T is given by w = (K(xi, xj ))−1v, with

v = (λ1, . . . , λn)
T .
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Let {zk}nk=1 be n arbitrary distinct complex points in D. The following theorem
is a practical interpolation formula for functions in H2(D).

Theorem 2.2 Let

fn(z)=
n∑

k,l=1

∏n
j=1[(1 − zkzj )(1 − zlzj )]

(1 − zkzl)∏nj=1,j �=k(zk − zj )∏nj=1,j �=l (zl − zj )
f (zk)

1 − zzl . (2.1)

Then fn(z) ∈ H2(D), and fn(zk)= f (zk) for k = 1, . . . , n. Moreover, the function
fn(z) is the minimal approximation of f (z) in the sense that among all functions in
the Hardy space H2(D) that take the values f (zk) at zk , k = 1,2, . . . , n, it has the
minimal norm in H2(D).

Proof Let

ãlk =
∏n
j=1[(1 − zkzj )(1 − zlzj )]

(1 − zkzl)∏nj=1,j �=k(zk − zj )∏nj=1,j �=l (zl − zj )
. (2.2)

Then formula (2.1) can be rewritten in the form

fn(z)=
n∑

k,l=1

f (zk)
ãlk

1 − zzl . (2.3)

Let A be the matrix

A= (akl)n×n :=
(

1

1 − zkzl
)

n×n
.

Since K(z,w) = 1
1−wz is the reproducing kernel of the RKHS H2(D), and akl =

K(pk,pl), then the matrix A is positive definite. Since 1
1−zzl ∈ H2(D), then fn(z),

as a linear combination of functions 1
1−zzl from H2(D), belongs to H2(D).

Now we prove that B = (̃akl)n×n with ãlk being defined by (2.2) is the in-
verse of A. Consider the matrix C = (ckl)n×n = ( 1

1−xkyl )n×n. It is well-known that
(see [3], Problem 1.9)

det(C)= det

(
1

1 − xkyl
)

n×n
=
∏

1≤j<i≤n[(xi − xj )(yi − yj )]
∏

1≤i,j≤n(1 − xiyj ) . (2.4)

Moreover, the entry c̃kl of the inverse matrix C−1 = (c̃kl)n×n of C is defined by

c̃kl = (−1)k+l det(Clk)

det(C)
, (2.5)
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here Clk is the (n− 1)× (n− 1) submatrix of A obtained by deleting the lth row
and the kth column of A. Since Clk has the same structure as C, we have

det(Clk)=
∏

1≤j<i≤n
i,j �=l

(xi − xj )∏ 1≤j<i≤n
i,j �=k

(yi − yj )
∏

1≤j<i≤n
i �=l,j �=k

(1 − xiyj ) . (2.6)

Consequently, from (2.4), (2.5) and (2.6) we obtain

c̃kl =
(−1)k+l

∏n
j=1(1 − xlyj )∏ni=1(1 − xiyk)

(1 − xlyk)∏l−1
j=1(xl − xj )

∏n
i=l+1(xi − xl)

∏k−1
j=1(yk − yj )∏ni=k+1(yi − yk)

=
∏n
j=1[(1 − xlyj )(1 − xjyk)]

(1 − xlyk)∏nj=1,j �=l (xl − xj )
∏n
j=1,j �=k(yk − yj ) . (2.7)

Let xk = yk = zk , k = 1,2, . . . , n. Then C = A, and comparing (2.7) with (2.2) we
see c̃kl = ãkl . Hence, A−1 = (ãkl)n×n. In particular,

n∑

l=1

ãlkajl = δkj ,

where δkj = 0 if k �= j , and δkj = 1 if k = j . We have

fn(zj )=
n∑

k,l=1

f (zk)
ãlk

1 − zj zl =
n∑

k=1

f (zk)

n∑

l=1

ãlk

1 − zj zl

=
n∑

k=1

f (zk)

n∑

l=1

ãlkajl =
n∑

k=1

f (zk)δkj = f (zj ). (2.8)

Hence, fn(z) interpolates f (z) at z1, z2, . . . , zn. From RKHS theory (see Corol-
lary 4.5 from [2]) it follows that fn(z) is the orthogonal projection of f on the
subspace spanned by the functions { 1

1−zz1
, . . . , 1

1−zzn }, and therefore, is the unique
interpolation function of minimum norm. Theorem is proved. �

3 Convergence

The following theorem deals with the convergence of the interpolation formula.

Theorem 3.1 Let {zk}∞k=1 be a sequence of distinct complex numbers on D, that
converges to w0 ∈ D. Then

lim
n→∞fn(z)= f (z), z ∈D, (3.1)

where the convergence is both pointwise and in H2(D) norm.
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Proof Let F = {Fm}∞0 be the sequence of MacLaurin coefficients of f (z). Denote

Fn = {Fn,m}∞m=0, where Fn,m =
n∑

k,l=1

f (zk)̃alkz
m
l . (3.2)

Then

∞∑

m=0

Fn,mz
m =

n∑

k,l=1

f (zk)̃alk

∞∑

m=0

zmzml

=
n∑

k,l=1

f (zk)
ãlk

1 − zzl = fn(z). (3.3)

Hence, Fn is the sequence of MacLaurin coefficients of fn(z) and so
∥
∥fn(z)

∥
∥
H2 = ‖Fn‖l2 .

Since function fn(z) is the minimal approximation of f (z) in the sense that among
functions of the space H2(D) that interpolates f (z) at z1, z2, . . . , zn, fn(z) has the
minimal norm in H2(D), then the sequence Fn is the minimal approximation of
the sequence F in the sense that among sequences of the space l2(N0) whose L
transform is f (zk) at zk , k = 1,2, . . . , n, it has the minimal norm in l2(N0). As both
Fk with k > n > 0 and F also have L transforms f (zk) at zk , k = 1,2, . . . , n, the
minimal norm property of Fn yields

‖Fn‖l2 ≤ ‖Fk‖l2 , if 0< n< k,

and

‖Fn‖l2 ≤ ‖F‖l2, if n > 0.

The sequence {Fn}∞n=0 is uniformly bounded in norm by ‖F‖l2 in the Hilbert
space l2(N0), therefore, there exists a subsequence {Fnj }∞j=0 that converges weakly

to some F∗ ∈ l2(N0) and ‖F∗‖l2 ≤ lim infj→∞ ‖Fnj ‖l2 . Let

Gz = {zm}∞
m=0, z ∈D.

Then Gz ∈ l2(N0), and the weak convergence yields

lim
j→∞〈Fnj ,Gz〉 = 〈F∗,Gz

〉
,

for any z ∈ D. We have

〈Fn,Gz〉 =
∞∑

m=0

Fn,mz
m = fn(z).
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Denote f ∗(z)= 〈F∗,Gz〉, then f ∗ ∈ H2(D), and

f ∗(z)= lim
j→∞fnj (z), z ∈D.

In particular, since fnj (zk)= f (zk) when nj ≥ k, we have

f ∗(zk)= lim
j→∞fnj (zk)= f (zk), k > 0.

If the sequence {zk} has a limit w0 ∈ D, then by the classical interior uniqueness
theorem f ∗(z)= f (z).

The sequence {‖Fnj ‖l2}∞j=0 is monotone increasing, and bounded above by
‖F‖l2 , hence,

‖F‖l2 = ∥∥F∗∥∥
l2 ≤ lim inf

j→∞ ‖Fnj ‖l2 ≤ ‖F‖l2 .

Consequently,

lim
j→∞‖Fnj ‖l2 = ‖F‖l2 .

The sequence {Fnj }∞j=0 converges weakly to F , and the sequence of their norms
{‖Fnj ‖l2}∞j=0 converges to ‖F‖l2 , therefore, the subsequence {Fnj }∞j=0 converges
strongly to F .

We claim now that the whole sequence {Fn}∞n=0 converges strongly to F . If not,
there would exist an ε > 0 and a subsequence {Fns }∞s=0 such that

‖F −Fns‖l2 ≥ ε, s > 0.

By the same techniques as above, from the sequence {Fns }∞s=0 one can choose a
subsequence convergent strongly to F , that is a contradiction. Hence, Fn converges
in norm to F , and therefore, fn converges in norm to f . Moreover, Fn converges
weakly to F , then fn(z), as inner product of Fn with Gz, converges pointwise to
f (z) in D. �

Theorem 3.2 The MacLaurin coefficients Fm of f (z) can be determined from
{f (zk)}∞1 by formula

Fm = lim
n→∞

n∑

k,l=1

f (zk)̃alkz
m
l , m= 0,1,2, . . . .

Proof In fact, as n→ ∞
∣
∣
∣
∣
∣
Fm −

n∑

k,l=1

f (zk)̃alkz
m
l

∣
∣
∣
∣
∣
= |Fm − Fn,m|

≤
√
√
√
√

∞∑

j=0

|Fj − Fn,j |2 = ‖F −Fn‖l2 → 0.
�
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4 General Case

Let h(w) be a holomorphic function in the domain Ω , and {pn}∞1 be a sequence
in Ω that has a limit point p0 ∈ Ω . We will explain how to recover h(w) from
{h(pn)}∞1 . Let DR(w0) be a disc inside Ω , that contains p0

p0 ∈DR(w0)=
{
w, |w−w0|<R

}⊂Ω.
The Taylor series

h(w) :=
∞∑

m=0

Hm(w−w0)
m

converges in DR(w0), therefore, for any 0<R1 <R,

|Hm|Rm1 → 0, as m→ ∞.
Consequently,

{
Hmr

m
}∞

0 ∈ l2(N0) for 0< r < R1 <R.

Thus,

f (z) :=
∞∑

m=0

(
Hmr

m
)
zm ∈ H2(D), z ∈D.

Let {wk}∞1 be a subsequence of {pn}∞1 , that is inside Dr (w0) and convergent to p0.
Then

f (z)= h(w), f (zk)= h(wk), z= w−w0

r
, zk = wk −w0

r
.

Consequently, the function

hn(w)=
n∑

k,l=1

h(wk)

r2 − (w−w0)(wl −w0)

×
∏n
j=1[(r2 − (wk −w0)(wj −w0))(r

2 − (wl −w0)(wj −w0))]
(r2 − (wk −w0)(wl −w0))

∏n
j=1,j �=k(wk −wj)∏nj=1,j �=l (wl −wj)

,

(4.1)

converges pointwise to h(w) for any w ∈ Dr (w0). Its Taylor coefficients Hm at w0
can be found by formula for m= 0,1, . . . ,

Hm = lim
n→∞

n∑

k,l=1

h(wk)

r2m+2
(wl −w0)

m

×
∏n
j=1[(r2 − (wk −w0)(wj −w0))(r

2 − (wl −w0)(wj −w0))]
(r2 − (wk −w0)(wl −w0))

∏n
j=1,j �=k(wk −wj)∏nj=1,j �=l (wl −wj)

.

(4.2)
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Let w′ be any point ofΩ at which we want to determine the value of h, as well as its
Taylor coefficients. Since Ω is connected, there is a chain of disks D1,D2, . . . ,Dt ,
with the following properties:

(a) All Dj , j = 1, . . . , t , are inside Ω .
(b) Two consecutive discs have no empty intersection Dj ∩Dj+1 �= ∅.
(c) D1 contains p0.
(d) Dk is centered at w′.
Function h is given on a sequence in D1, therefore, h can be determined in the whole
disc D1. In particular, h can be recovered at a sequence of points in D1 ∩D2 ⊂ D2,
that is convergent inside D2. Once h is found at a convergent sequence in D2, it can
be found on a convergent sequence in D3. By the end we can recover the function
and its Taylor coefficients in Dt , in particular, at w′.

5 Characterization of the Holomorphic Functions

It is well-known (Sect. 2) that to determine whether a function belongs to the Hardy
space H2(D) or not, we need the values of the function in the whole disc D, or all
its MacLaurin coefficients. In this section first we will determine whether a function
belongs to the Hardy space H2(D) based on its values at a sequence of points. Let
{zk}∞k=1 be a sequence of distinct complex numbers on D, that converges to w0 ∈D,
and let {uk}∞k=1 be a sequence of complex numbers. The following theorem answers
the question under which conditions there exists a Hardy function f ∈ H2(D) such
that f (zk)= uk for any k = 1,2, . . . .

Theorem 5.1 The necessary and sufficient condition for existence of a Hardy func-
tion f ∈H2(D) such that f (zk)= uk for any k = 1,2, . . . , is

sup
n≥1

∞∑

m=0

∣
∣
∣
∣
∣

n∑

k,l=1

ukãlkz
m
l

∣
∣
∣
∣
∣

2

<∞. (5.1)

Proof Let condition (5.1) hold. Denote

fn(z)=
n∑

k,l=1

uk
ãlk

1 − zzl . (5.2)

Since 1
1−zzl ∈ H2(D), then fn(z), defined by (5.2), is a linear combination of func-

tions 1
1−zzl from H2(D), and therefore belongs to H2(D). We have

fn(zj )=
n∑

k,l=1

uk
ãlk

1 − zj zl =
n∑

k=1

uk

n∑

l=1

ãlk

1 − zj zl

=
n∑

k=1

uk

n∑

l=1

ãlkajl =
n∑

k=1

ukδkj = uj , j = 1,2, . . . , n. (5.3)
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Denote

Fn = {Fn,m}∞m=0, where Fn,m =
n∑

k,l=1

ukãlkz
m
l . (5.4)

The condition (5.1) yields that the sequence {‖Fn‖l2}∞n=1 is bounded. Moreover,

∞∑

m=0

Fn,mz
m =

n∑

k,l=1

ukãlk

∞∑

m=0

zmzml

=
n∑

k,l=1

uk
ãlk

1 − zzl = fn(z). (5.5)

Hence, Fn is the sequence of MacLaurin coefficients of fn(z) and so

∥
∥fn(z)

∥
∥
H2 = ‖Fn‖l2 .

Since the sequence {‖Fn‖l2}∞n=1 is bounded, therefore, there exists a subse-
quence {Fnj }∞j=1 that converges weakly to some F ∈ l2(N0) and ‖F‖l2 ≤
lim infj→∞ ‖Fnj ‖l2 . Let

Gz = {zm}∞
m=0, z ∈D.

Then Gz ∈ l2(N0), and the weak convergence yields

lim
j→∞〈Fnj ,Gz〉 = 〈F ,Gz〉,

for any z ∈ D. We have

〈Fn,Gz〉 =
∞∑

m=0

Fn,mz
m = fn(z).

Denote f (z)= 〈F ,Gz〉, then f ∈H2(D), and

f (z)= lim
j→∞fnj (z), z ∈ D.

In particular, since fnj (zk)= uk when nj ≥ k, we have

f (zk)= lim
j→∞fnj (zk)= uk, k > 0.

Conversely, suppose there exists a function f ∈H2(D) such that f (zk)= uk for any
k = 1,2, . . . . Then {‖fn‖H2}∞n=1 is bounded, therefore, {‖Fn‖l2}∞n=1 is bounded,
that is equivalent to (5.1). The theorem is proved. �
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Now we consider the general case. Let {pn}∞1 be a sequence of distinct complex
numbers in the disc DR(w0) that has a limit point p0 ∈ DR(w0), and let {un}∞1 be a
sequence of complex numbers. Denote

R2 = sup
n≥1

|pn −w0|,

then 0 < R2 < R. Suppose there exists a function h(w) holomorphic in the disc
DR(w0), such that h(pn)= un for all n≥ 1. Then, for R2 < r < R, the sequence of
Taylor coefficients {Hm}∞0 satisfies the condition

{
Hmr

m
}∞

0 ∈ l2(N0), (5.6)

where Hm is defined by, for m= 0,1, . . . ,

Hm = lim
n→∞Hn,m, where

Hn,m =
n∑

k,l=1

uk

r2m+2
(wl −w0)

m

×
∏n
j=1[(r2 − (wk −w0)(wj −w0))(r

2 − (wl −w0)(wj −w0))]
(r2 − (wk −w0)(wl −w0))

∏n
j=1,j �=k(wk −wj)∏nj=1,j �=l (wl −wj)

.

(5.7)

Condition (5.6) can be rewritten in the form, for 0<R2 < r < R,

∞∑

m=0

∣
∣
∣
∣
∣

n∑

k,l=1

uk

rm
(wl −w0)

m

×
∏n
j=1[(r2 − (wk −w0)(wj −w0))(r

2 − (wl −w0)(wj −w0))]
(r2 − (wk −w0)(wl −w0))

∏n
j=1,j �=k(wk −wj)∏nj=1,j �=l (wl −wj)

∣
∣
∣
∣
∣

2

<∞.
(5.8)

Thus, the necessary and sufficient condition for existence of a holomorphic function
h in DR(w0) with h(pn) = un for all n ≥ 1 is (5.8) for an arbitrary, but fixed r on
the interval (R2,R).

6 Special Cases

For certain choices of the sequence zk , we can simplify the sums in (2.1) to obtain
computable approximations for the interpolated function. Recall that as n→ ∞,
fn(z) converges to f (z) for any z ∈ D, and also its MacLaurin coefficients Fn,m
converges to Fm for any m ∈ N0.
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Example 1 Let f ∈ H2(D), and zk = qk , k = 1,2, . . . ,0 < q < 1. Using the
q-Pochhammer symbol

(a;q)n =
n−1∏

j=0

(
1 − aqj ),

we obtain

fn(z)=
n∑

k,l=1

f
(
qk
) q(k+l)n+k(k+1)/2+l(l+1)/2(qk+1;q)n(ql+1;q)n
(1 − qk+l )(q;q)k−1(q;q)n−k(q;q)l−1(q;q)n−l

(−1)k+l

1 − zql

and

Fn,m =
n∑

k,l=1

f
(
qk
) (−1)k+lq(k+l)n+k(k+1)/2+l(l+1)/2+lm(qk+1;q)n(ql+1;q)n

(1 − qk+l )(q;q)k−1(q;q)n−k(q;q)l−1(q;q)n−l .

(6.1)

Example 2 Let f ∈ H2(D), and zk = 1
k+1 , k = 1,2, . . . . Using the Pochhammer

symbol

[a]n =
n∏

j=1

(a + j − 1),

we obtain

fn(z)=
n∑

k,l=1

f

(
1

k+ 1

)
(−1)k+l (k + 1)n−1(l + 1)n−1[ k+2

k+1 ]n[ l+2
l+1 ]n

(kl + k+ l)(k − 1)!(n− k)!(l − 1)!(n− l)!
1

1 − z
l+1

,

(6.2)
and

Fn,m =
n∑

k,l=1

f

(
1

k + 1

)
(−1)k+l (k + 1)n−1(l + 1)n−1[ k+2

k+1 ]n[ l+2
l+1 ]n

(kl + k + l)(k − 1)!(n− k)!(l − 1)!(n− l)!
1

(l + 1)m
.

(6.3)

Example 3 Let f ∈ H2(D), and zk = a + b
k

, k = 1,2, . . . where a, b ∈ C and
|a| + |b|< 1, so all zk ∈ D. If we denote the product

p(k,n)=
n∏

j=1

[
kj − (ak + b)(aj + b)]

then

fn(z) =
n∑

k,l=1

f

(

a + b

k

)
(−1)k+lp(k, n)p(l, n)kl

(kl − (ak+ b)(al + b))l!k!(n− l)!(n− k)!
l

l − (al + b)z ,

Fn,m =
n∑

k,l=1

f

(

a + b

k

)
(−1)k+lp(k, n)p(l, n)kl

(kl − (ak+ b)(al + b))l!k!(n− l)!(n− k)!
(

a + b

k

)m

.
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Numerical Tests:
On the numerical side we can use formula (6.2) to interpolate few values of the

holomorphic function

f (z)= 1

4 + z2
.

Observe that since fn(x) is a finite sum, it can be computed in an exact manner,
with no round off error. In what follows, we use = to mean exact and / to mean
approximation.

We first check the interpolation formula (6.2) at the interpolation point x = 1/30.
The formula fn(1/30) should give us the exact value f (1/30) = 900/3601, for
n ≥ k = 29 since there is no interpolation in (6.2). For example the interpolated
values are

f10(1/30)/ 0.2499305748402793976

f28(1/30)/ 0.2499305748403221327

f29(1/30)= 900/3601

f35(1/30)= 900/3601.

The values f10(1/30) and f28(1/30) cannot be exact because they are extrapola-
tions. Note that f29(1/30) and f35(1/30) the series terminates and contains only 29
terms and so the values are exact as expected.

Next we check the formula outside sampling points, and so the series in (6.2)
does not terminates before the nth term. We use formula (6.2) to interpolate the
values f (0)= 1

4 , f ( i
2 ), f (

1
2 + i

2 ) where i = √−1

f (0)= 1

4

f10(0)= 695457128012177047

2781828512056818000
/ 0.2499999999992711797

f20(0)= 1185704574962857335754290817260302446524101668657

4742818299851429343017163487385512210078496160000
/ 0.249999999999999999999999988491.

Next

f

(
i

2

)

= 4/15

f35

(
i

2

)

/ 0.2666666666666666667 + 0.3283497872982402614 10−21i

f

(
1

2
+ i

2

)

= 16

65
− 2

65
i

f35

(
1

2
+ i

2

)

/ 0.2461538461538461560 − 0.03076923076923079497i
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which compares well with the exact values

16

65
= 0.246153846153 and

2

65
= 0.3076923.

As for the Taylor coefficients we have for

F20,6 / −0.0039062500000007548185

and similarly

F20,8 / 0.00097656249974880250533.

The exact values are

1

6!f
(6)(0)= −1

256
= −0.003 906 250

1

8!f
(8)(0)= 1

1024
= 0.000 976 562 500.

Note that because the formula (6.2) mainly uses integers, the results shown above
are free from roundoff error.
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On Approximation of Lebedev Type Transforms

Juri Rappoport

Abstract New modification of KONTOROVITCH–LEBEDEV and LEBEDEV–SKAL-
SKAYA integral transforms was introduced by YAKUBOVICH. These transforms
contain modified BESSEL functions K 1

4 +iτ (x) and K 3
4 +iτ (x) and their real and

imaginary parts as kernels. The vector Tau method approach is used for the approx-
imation and calculation of these functions. This approach is based on the general
Tau method’s computational scheme and canonical vector-polynomial notion. We
obtain the system of two differential equations and then the system of two Volterra
integral equations for the determination of the polynomial approximation of the ker-
nels. These results may be used for the application of YAKUBOVICH transforms to
the solution of boundary value problems of mathematical physics.

Keywords KONTOROVITCH–LEBEDEV integral transform ·
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1 Some Properties of the Functions ReKα+iβ(x)
and ImKα+iβ(x)

It is possible to write the modified BESSEL functions in the form ReKα+iβ(x) =
Kα+iβ (x)+Kα−iβ (x)

2 and ImKα+iβ(x) = Kα+iβ (x)−Kα−iβ (x)
2i , where Kν(x) is the modi-

fied BESSEL function of the second kind (also called MACDONALD function).
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The functions Kiβ(x), ReKα+iβ(x) and ImKα+iβ(x) have integral representa-
tions [1, 2]

Kiβ(x)=
∫ ∞

0
e−x cosh t cos(βt)dt,

ReKα+iβ(x)=
∫ ∞

0
e−x cosh t cosh(αt) cos(βt)dt, (1.1)

ImKα+iβ(x)=
∫ ∞

0
e−x cosh t sinh(αt) sin(βt)dt. (1.2)

It follows from (1.1)–(1.2) that it is possible to write ReKα+iβ(x) in the form of
the FOURIER cosinus-transform

ReKα+iβ(x)=
(
π

2

) 1
2

FC
[
e−x cosh t cosh(αt); t → β

]
, (1.3)

and ImKα+iβ(x) in the form of the FOURIER sinus-transform

ImKα+iβ(x)=
(
π

2

) 1
2

FS
[
e−x cosh t sinh(αt); t → β

]
. (1.4)

The inversion formulas have the respective forms

FC
[
ReKα+iβ(x);β→ t

]=
(
π

2

) 1
2

e−x cosh t cosh(αt),

FS
[
ImKα+iβ(x);β→ t

]=
(
π

2

) 1
2

e−x cosh t sinh(αt)

(1.5)

or, in integral form,
∫ ∞

0
ReKα+iβ(x) cos(tβ)dβ = π

2
e−x cosh t cosh(αt), (1.6)

∫ ∞

0
ImKα+iβ(x) sin(tβ)dβ = π

2
e−x cosh t sinh(αt). (1.7)

For the computation of certain integrals of the functions ReK 1
2 +iβ(x) and

ImK 1
2 +iβ(x) integral identities are useful which reduce this problem to the com-

putation of some other integrals over elementary functions.

Proposition 1.1 If f is absolutely integrable on [0,∞), then the following identi-
ties hold,

∫ ∞

0
ReKα+iβ(x)f (β)dβ =

(
π

2

) 1
2
∫ ∞

0
e−x cosh t cosh(αt)FC(t)dt, (1.8)
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∫ ∞

0
ImKα+iβ(x)f (β)dβ =

(
π

2

) 1
2
∫ ∞

0
e−x cosh t sinh(αt)FS(t)dt, (1.9)

where FC(t) is the FOURIER cosinus-transform of f (β), and FS(t) the FOURIER

sinus-transform of f (β).

Proposition 1.2 If f is absolutely integrable on [0,∞), then the following identi-
ties hold

∫ ∞

0
ReKα+iβ(x)FC(β)dβ =

(
π

2

) 1
2
∫ ∞

0
e−x cosh t cosh(αt)f (t)dt, (1.10)

∫ ∞

0
ImKα+iβ(x)FS(β)dβ =

(
π

2

) 1
2
∫ ∞

0
e−x cosh t sinh(αt)f (t)dt. (1.11)

Equations (1.8)–(1.11) are useful for the simplification and the calculation of
different integrals containing ReKα+iβ(x) and ImKα+iβ(x).

It follows from (1.1) that for all β ∈ [0,∞)
∣
∣ReKα+iβ(x)

∣
∣≤Kα(x),

∣
∣ReK 1

2 +iβ(x)
∣
∣≤K 1

2
(x)=

(
π

2x

) 1
2

e−x, (1.12)

and it follows from (1.2) that for all β ∈ [0,∞)
∣
∣ImK 1

2 +iβ(x)
∣
∣≤
∫ ∞

0
e−x cosh t sinh

t

2
dt =

(
π

2x

) 1
2

ex
[
1 − φ((2x) 1

2
)]≤ B e

−x

x
,

(1.13)
where B is some positive constant.

2 Yakubovich Integral Transforms

Integral transforms containing integration with respect to the index of the BESSEL

function play an important role for the solution of some classes of the problems
in mathematical physics [3–5]. In particular, for the solution of mixed boundary
value problems for the HELMHOLTZ equation in wedge-shaped and conic domains,
the KONTOROVITCH–LEBEDEV and LEBEDEV–SKALSKAYA transforms [1, 2] are
used.

The proofs of the inversion formulas and PARSEVAL equalities for these trans-
forms are investigated by the author in [6–11]. The problem of the evaluation of
the KONTOROVITCH–LEBEDEV integral transforms is simplified by means of their
decompositions in the form of compositions of simpler integral transformations, in
particular, FOURIER and LAPLACE transforms.

The KONTOROVITCH–LEBEDEV integral transforms may be expressed in terms
of general MEYER integral transforms of special index and argument.



548 J. Rappoport

YAKUBOVICH [12] considered the LEBEDEV type integral transforms with ar-
bitrary complex order, i.e. with ReKα+iβ(x) and ImKα+iβ(x) in the kernel. The
inversion formulas were obtained for the general case. But they have the more sim-
plest form for the case α = 1

4 . Let’s rewrite these formulas for the real parts [12]

F 1
4 +(β)=

∫ ∞

0
ReK 1

4 +iβ(x)f (x)dx,

f (x)= 2
√

2

π2

∫ ∞

0

[
cosh(πβ)Re

(
K 3

4 +iβ(x)−K 1
4 +iβ(x)

)

+ sinh(πβ) Im
(
K 3

4 +iβ(x)+K 1
4 +iβ(x)

)]
F 1

4 +(β)dβ.

3 Tau Method Approximation

The questions of the approximation of the solutions of the linear differential equa-
tions with polynomial coefficients by means of polynomials and construction of
approximations of the KONTOROVITCH–LEBEDEV integral transforms kernels are
considered.

The numerical scheme of the Tau method application is proposed for the solu-
tion of the second order linear differential equations systems with the second order
polynomial coefficients of the following kind:

(
a
(j)

0 y2 + a(j)1 y
)
v′′
j (y)+

k∑

i=1

[(
a
(j)

3i−1y − a(j)3i

)
v′
i (y)+ a(j)3i+1vi(y)

]= 0,

vj (0)= a(j)3k+2, j = 1, . . . , k, y ∈ [0,1],

in the unknown vector-function v(y) = (v1(y), . . . , vk(y)). It is assumed to have
only one solution. Integrating twice and carrying an addition in the right part in
the kind of the vector-polynomial Pn(y), we derive for the determination of the
n-th approximation of the solution v(y)= (v1(y), . . . , vk(y)) the system of Volterra
integral equations with polynomial kernels

(
b
(j)

0 y2 + b(j)1 y
)
vj (y)=

∫ y

0

[
k∑

i=1

(
b
(j)

3i−1x + b(j)3i y + b(j)3i+1

)
vi(x)

]

dx + Pjn+2(y),

j = 1, . . . , k,

where coefficients b(j)i and a(j)i , i = 0, . . . ,3k + 2 and j = 1, . . . , k, are connected
in definite way and Pjn+2(y), j = 1, . . . , k—n+ 2-th degree polynomials. The dif-
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ferent variables of the vector residue choice and its minimization are analyzed. The
recurrent formulas for the canonical vector-polynomials coefficients convenient for
calculations are given.

Consider the system of two second order differential equations (k = 2) in more
detail. This case contain differential equations with complex coefficients.

The scheme of the integral form of the Tau Method described in this paper can
be used for deriving polynomial approximations of hypergeometric and confluent
hypergeometric functions of the first kind with complex parameters.

We find it necessary to compute ReKα+iβ(x) and ImKα+iβ(x) to use
YAKUBOVICH transform in practice. Therefore we consider the second kind modi-
fied BESSEL function Kα+iβ(x) in more detail.

We have a system of two second order differential equations

y2v′′
1 + 2(y + 1)v′

1 +
(

1

4
− α2 + β2

)

v1 + 2αβv2 = 0,

y2v′′
2 + 2(y + 1)v′

2 − 2αβv1 +
(

1

4
− α2 + β2

)

v2 = 0,

v1(0)= 1, v2(0)= 0,

or the system of VOLTERRA integral equations

y2v1(y)=
∫ y

0

((
9

4
− α2 + β2

)

x −
(

2 +
(

1

4
− α2 + β2

)

y

))

v1(x)dx

+ 2αβ
∫ y

0
(x − y)v2(x)dx + 2y,

y2v2(y)= 2αβ
∫ y

0
(y − x)v1(x)dx

+
∫ y

0

((
9

4
− α2 + β2

)

x −
(

2 +
(

1

4
− α2 + β2

)

y

))

v2(x)dx,

Kα+iβ(x)=
(
π/(2x)

)1/2
e−x
(
v1(1/x)+ iv2(1/x)

)
, x ≥ 1.

By means of computations is shown that the choice of the residue in the form
Pjn+2(y)= τjn+2Tn+2[(1 −αn+2)y+αn+2], j = 1,2, is optimal as compared with
other known variants in this case too. Here αn+2 = sin2(π/(4(n+ 2)))—the most
left root of the shifted Chebyshev polynomial of the n+ 2-th degree T ∗

n+2(y) in the
interval [0,1], τn+2-undefined coefficient.

Application of the integral form of the Tau method for the construction of the
approximate solution of the system consists in the following: We seek n-th approx-
imation of the solution in the form of pair of polynomials n-th degree v1n(y) and
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v2n(y), which are the solutions of (3.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2v1(y)=
∫ y

0

((
9

4
− α2 + β2

)

x −
(

2 +
(

1

4
− α2 + β2

)

y

))

v1(x)dx

+ 2αβ
∫ y

0
(x − y)v2(x)dx

+ 2y + τ1T ∗
n+1(y)+ τ2T ∗

n+2(y),

y2v2(y)= 2αβ
∫ y

0
(y − x)v1(x)dx

+
∫ y

0

((
9

4
− α2 + β2

)

x −
(

2 +
(

1

4
− α2 + β2

)

y

))

v2(x)dx

+ τ3T ∗
n+1(y)+ τ4T ∗

n+2(y),

(3.1)
T ∗
n+i (y), i = 1,2—shifted CHEBYSHEV polynomials n + i-th degree, τi , i =

1, . . . ,4—undefined coefficients.
The use of canonical polynomials may lead in this case to additional computa-

tional difficulties connected with renormalization of big and small values. So let’s
describe the methods based on the direct solution (3.1).

Let’s explain the process of the determination of v1n(y) and v2n(y). Method
of undefined coefficients is used for the determination of undefined coefficients
by means of substitution into the system (3.1) v1n(y) =∑n

k=0 a1ky
k , v2n(y) =

∑n
k=0 a2ky

k and equating coefficients under the identical degrees y. We obtain the
system from n+ 3 pair of equations according 2n+ 6 unknowns

a1k, k = 0, . . . , n, a2k, k = 0, . . . , n, τi, i = 1, . . . ,4.

We find from the last pair of equations

τ1 = −c(0, n+ 2)

c(0, n+ 1)
τ2 = τ2,

τ3 = −c(0, n+ 2)

c(0, n+ 1)
τ4 = τ4

and substitute derived expression in all other equations.
We find consequently a1k , a2k , k = n, . . . ,0 in the form of linear combinations

and recurrent relations. It’s possible to obtain that for every fixed β the number
N exists that for n > N denominator’s values are different from zero. Conducted
computations show that denominators are different from zero for 0.1 ≤ β ≤ 10,
n= 16.
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Further by formulas (3.1) we find values a1k , a2k , k = 0, . . . , n, and by GORNER

scheme compute expressions

v1n(y) =
n∑

k=0

a1ky
k,

v2n(y) =
n∑

k=0

a2ky
k.

We obtain on the interval (1 ≤ x <∞) convenient for computations for small β
expansions

ReKα+iβ(x) =
(
π

2x

) 1
2

e−x
(

n∑

m=0

a1m

(
1

x

)m

+R1n

)

,

ImKα+iβ(x) =
(
π

2x

) 1
2

e−x
(

n∑

m=0

a2m

(
1

x

)m

+R2n

)

,

where R1n and R2n—reminder terms.
The applications for the solution of mixed boundary value problems in wedge do-

mains, dual integral equations, numerical algorithms, approximation and computa-
tion of the kernels of the modified LEBEDEV type integral transforms are described
in [13–17].
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Reproducing Kernels and Discretization

L.P. Castro, H. Fujiwara, M.M. Rodrigues, S. Saitoh, and V.K. Tuan

Abstract We give a short survey of a general discretization method based on the
theory of reproducing kernels. We believe our method will become the next genera-
tion method for solving analytical problems by computers. For example, for solving
linear PDEs with general boundary or initial value conditions, independently of the
domains. Furthermore, we give an ultimate sampling formula and a realization of
reproducing kernel Hilbert spaces.

Keywords Reproducing kernel · Aveiro discretization · Linear operator equation ·
Approximate solution · Numerical problem
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1 The Inverse by Using a Finite Number of Data

Let H be a Hilbert (possibly finite-dimensional) space, and consider E to be an
abstract set and h a Hilbert H-valued function on E. Then, we consider the linear
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transform

f (p)= (f,h(p))H, f ∈H, (1.1)

from H into the linear space F(E) comprising all the complex valued functions
onE. We form a positive definite quadratic form functionK(p,q) onE×E defined
by

K(p,q)= (h(q),h(p))H on E×E. (1.2)

Proposition 1.1

(I) The range of the linear mapping (1.1) on H is characterized as the reproducing
kernel Hilbert space HK admitting the reproducing kernel K(p,q).

(II) In general, we have the inequality ‖f ‖HK ≤ ‖f‖H. Here, for any member f of
HK there exists a uniquely determined f∗ ∈ H satisfying f (p)= (f∗,h(p))H
on E and

‖f ‖HK = ∥∥f∗∥∥H. (1.3)

(III) In general, we have the inversion formula in (1.1) in the form

f �→ f∗ (1.4)

in (II) by using the reproducing kernel Hilbert space HK .

The typical ill-posed problem (1.1) in H will become a well-posed problem
in HK , see the details [7–9].

Our idea is based on the approximate realization of the abstract Hilbert space
HK by taking a finite number of points of E. This is done because, in general, the
reproducing kernel Hilbert space HK has a complicated structure.

By taking a finite number of points {pj }nj=1, we set

K(pj ,pj ′) := ajj ′ . (1.5)

Then, if the matrix An := ‖ajj ′ ‖ is positive definite, then, the corresponding norm
in HAn comprising the vectors x = (x1, x2, . . . , xn)

T is determined by ‖x‖2
HAn

=
x∗Ãnx, where Ãn =A−1

n = ‖ãjj ′ ‖ (see [8], p. 250).

Proposition 1.2 In the linear mapping

f (p)= (f,h(p))H, f ∈ H (1.6)

for An, the minimum norm inverse f∗An satisfying

f (pj )=
(
f,h(pj )

)

H, f ∈ H (1.7)
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is given by

f∗An =
∑

j

∑

j ′
f (pj )ãjj ′h(pj ′), (1.8)

where ãjj ′ are assumed the elements of the complex conjugate inverse of the positive
definite Hermitian matrix An constituted by the elements ajj ′ = (h(pj ′),h(pj ))H.
Here, the positive definiteness of An is a basic assumption.

2 Convergence of the Approximate Inverses

The following proposition deals with the convergence of our approximate inverses
in Proposition 1.2. See [1, 2] for the details.

Proposition 2.1 Let {pj }∞j=1 be a sequence of distinct points on E, that is the
positive definiteness of An for any n and a uniqueness set for the space HK . Then,
in the space H

lim
n→∞ f∗An = f∗. (2.1)

Proposition 2.2 (Ultimate realization of reproducing kernel Hilbert spaces) In our
general situation and for a uniqueness set {pj } of the set E satisfying the linearly
independence in Proposition 1.2, we obtain

‖f ‖2
HK

= ∥∥f∗∥∥2
H = lim

n→∞
∑

j

∑

j ′
f (pj )ãjj ′f (pj ′). (2.2)

Proposition 2.3 (Ultimate sampling theory) In our general situation and for a
uniqueness set {pj } of the set E satisfying the linearly independence, we obtain

f (p) = lim
n→∞

(
f∗An,h(p)

)

H = lim
n→∞

(∑

j

∑

j ′
f (pj )ãjj ′h(pj ′),h(p)

)

H

= lim
n→∞

∑

j

∑

j ′
f (pj )ãjj ′K(p,pj ′). (2.3)

3 Ordinary Linear Differential Equations

In view to have a concrete exemplification of the method, let us consider a prototype
differential operator

Ly := αy′′ + βy′ + γy. (3.1)
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Here, we shall consider a very general situation that the coefficients are arbitrary
functions (no continuity requirement) and on a general interval I . We wish to con-
struct some natural solution of

Ly = g (3.2)

for a very general function g on a general interval I .

Proposition 3.1 ([1, 3]) Let us fix a positive number h and take a finite number of
points {tj }nj=1 of I such that |α(tj )|2 + |β(tj )|2 + |γ (tj )|2 �= 0 for each j . Then, the

optimal solution yAnh of (3.2) is given by

y
An
h (t)=

1

2π

∫ π/h

−π/h
F
An
h (ξ)e

−itξ dξ

in terms of the function FAnh ∈ L2(−π/h,+π/h) in the sense that FAnh has the
minimum norm in L2(−π/h,+π/h) among the functions F ∈ L2(−π/h,+π/h)
satisfying, for the characteristic function χh(t) of the interval (−π/h,+π/h):

1

2π

∫

R

F(ξ)
[
α(t)
(−ξ2)+ β(t)(−iξ)+ γ (t)]χh(ξ) exp(−itξ )dξ = g(t) (3.3)

for all t = tj and for the function space L2(−π/h,+π/h).
The minimal norm function FAnh is given by

F
An
h (ξ)=

n∑

j,j ′=1

g(tj )ãjj ′
(
α(tj ′)

(−ξ2
)+ β(tj ′)(−iξ)+ γ (tj ′)

)
exp(itj ′ξ).

Here, the matrix An = {ajj ′ }n
j,j ′=1 formed by the elements ajj ′ =Khh(tj , tj ′) with

Khh
(
t, t ′
)

= 1

2π

∫

R

[
α(t)
(−ξ2)+ β(t)(−iξ)+ γ (t)][α(t ′)(−ξ2

)+ β(t ′)(−iξ)+ γ (t ′)]

× χh(ξ) exp
(−i(t − t ′)ξ)dξ

is positive definite and the ãjj ′ are the elements of the inverse of An (the complex
conjugate of An).

The minimal norm solution yAnh of (3.2) is given by

y
An
h (t) =

n∑

j,j ′=1

g(tj )ãjj ′
1

2π

[

−α(tj ′)
∫ π

h

− π
h

ξ2e
−i(t−tj ′ )ξ dξ

+ iβ(tj ′)
∫ π

h

− π
h

ξe
−i(t−tj ′ )ξ dξ + γ (tj ′)

∫ π
h

− π
h

e
−i(t−tj ′ )ξ dξ

]

.
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Fig. 1 Numerical results for
the initial value problem for
n= 25 with 100 decimal
digits. Maximum error is
approximately 10−13

As about general linear operator equations, we consider the equations in some
reproducing kernel Hilbert spaces. These spaces can be considered as the images
of some Hilbert spaces as in Proposition 1.1 (see [8, 9]). Then, the linear operator
equation may be reduced to Proposition 1.2 by the backward transformation as in
Proposition 3.1. So, we will be able to consider our method as a fundamental theory
for linear operator equations in the framework of Hilbert spaces.

4 Numerical Examples

We set h = 1; we seek our solution in the Paley–Wiener space W(π) with equi-
spaced collocation points.

Example We consider an initial value problem

t3y′′(t)+ ty′(t)= −25t3 sin(5t)+ 5t cos(5t) (−1< t ≤ 1),

y(−1)= sin(5), y′(−1)= 5 cos(5),

and we set collocation points to tj = −1 + 2j/(n− 2), j = 1,2, . . . , n− 2.

Numerical results shown in Fig. 1 have a good coincide with the exact solution
y(t)= sin(5t).

Example We consider an initial value problem

y′′(t)= g(t) (−1< t ≤ 1), y(−1)= y′(−1)= 0,

where

g(t)=
{

0, t < 0;
t, t ≥ 0.



558 L.P. Castro et al.

Fig. 2 Numerical results by 500 decimal digits precision, h= 1

We know that there exists a unique solution

y(t)=
{

0, t < 0;
t3

6 , t ≥ 0.

The proposed method assumes that the solution belongs to the Paley–Wiener
space W(π

h
), where h is an approximation parameter. Our numerical results

(Figs. 2–3) imply that the Paley–Wiener space seems to show the need of appli-
cation of suitable Sobolev spaces as basic approximate function spaces.

In our new discretization method we will need the precision in some deep way
and huge computer resources. However, these both requirements were prepared by
Fujiwara already (e.g., recall the case of the inverse Laplace transform). See [4–6]
for the details.

We are looking for some optimal solutions satisfying the differential equations
at the given discrete points and so, we are free from important restrictions on the
domains which occur on ordinary methods. For instance, this is not the case of the
Finite Element Method and the Difference Method which are depending seriously
on the domains. In our case, we can consider the problems on any domains. See
[1, 2] for the details.

Anyhow, error estimates for our approximate solutions are entirely new open
problems.
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Fig. 3 Numerical results by 500 decimal digits precision, n= 20
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Abstract In this paper we shall give practical and numerical solutions of the
Laplace equation on multidimensional spaces and show their numerical experiments
by using computers. Our method is based on the Dirichlet principle by combinations
with generalized inverses, Tikhonov’s regularization and the theory of reproducing
kernels.
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1 Introduction

Depending on the power of computers, we shall propose a new algorithm for con-
structing of approximate solutions for the Laplace equation

�u= 0 (1.1)

on a regular domain D on Rn satisfying a boundary condition on ∂D in the class of
the functions of the s order Sobolev Hilbert space Hs on the whole real space Rn

(n ≥ 1, s ≥ 2, s > n/2). Our method and approach are new and general concepts,
but we are interested in numerical experiments by using computers and so, we shall
restrict our problems to this prototype case as the first step.
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We shall use the m order Sobolev Hilbert space Hm comprising functions F on
Rn with the norm

‖F‖2
Hm =

m∑

ν=0

mCν

ν∑

r1,r2,...,rn≥0

ν!
r1!r2! · · · rn!

∫

Rn

(
∂νF (x)

∂x
r1
1 ∂x

r2
2 · · · ∂xrnn

)2

dx. (1.2)

Here, of course, r1 + r2 + · · · + rn = ν.
This Hilbert space admits the reproducing kernel

K(x,y)= 1

(2π)n

∫

Rn

1

(1 + |ξ |2)m e
i(x−y)·ξ dξ (1.3)

as we see easily by using Fourier’s transform (cf. [3], p. 58).
We shall recall the Dirichlet principle that the harmonic function u(x) satisfying

the boundary condition

u(x)= g(x) on ∂D (1.4)

is the extremal function minimizing the Dirichlet integral on D among a class of
functions on D satisfying the boundary condition (1.4). Here, the famous histori-
cal fact is the existence problem of the extremal function. Now, we would like to
clear the Dirichlet principle by modifying and simplifying it from the viewpoint of
numerical analysis as follows:

In order to use the theory of Hilbert spaces, as a function space we shall use the
Sobolev Hilbert space Hs and we shall consider the extremal problem

inf
F∈Hs

∫

D

|�F |2dx, (1.5)

satisfying the boundary condition (1.4).
Intuitively, we can see that the harmonic function u(x) satisfying the boundary

condition (1.4) will be the extremal function of this extremal problem.
We wish to discuss clearly and simply the existence of the extremal functions and

furthermore, we wish to obtain some good representation of the extremal functions
when they exist. For this purpose, we shall apply the Tikhonov regularization and
the theory of reproducing kernels based on the recent methods in [1, 2, 4] as follows:

We shall consider the extremal problem, for fixed λ > 0 and for any g ∈ L2(∂D)

inf
F∈Hs

{
λ‖F‖2

Hs + ‖�F‖2
L2(Rn) + ‖F − g‖2

L2(∂D)

}
. (1.6)

In order to simplify the problem, we consider here as follows:

(1) As a function space, we use the Sobolev Hilbert space on the whole space; in
this case the space admits the reproducing kernel (1.3). In the extremal problem,
for the flexibility of the Sobolev space, we will be able to use the Sobolev space.
In this case the reproducing kernel which is used essentially in our method is
extremely simple.
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(2) For the integral of the �F , we shall consider it on the whole space, not on the
domain D. Then, the extremal problem will become very simple. Furthermore,
by this setting we can consider the inner Dirichlet problem on D and the outer
Dirichlet problem on D

c
at the same time.

For these simplifications, we see that the reproducing kernel Kλ(x, y) of the
Hilbert space HKλ with the norm square

λ‖F‖2
Hs + ‖�F‖2

L2(Rn) (1.7)

is given by

Kλ(x, y)= 1

(2π)n

∫

Rn

eip·(x−y)

λ(|p|2 + 1)s + |p|4 dp. (1.8)

2 Boundary Conditions

Our strategy is first to represent the extremal function F ∗
s,λ,g(x) in (1.6) in an explicit

form and second to consider the limit of this extremal function as λ→ 0. Exactly,
these procedures are given as follows:

We look for the reproducing kernel Ks,λ,�(x, y) for the Hilbert space HKs,λ,�
with the norm square, for F ∈Hs

{
λ‖F‖2

Hs + ‖�F‖2
L2(Rn) + ‖F‖2

L2(∂D)

}
. (2.1)

The reproducing kernel Ks,λ,�(x, y) is determined by the functional equation

Kλ(x, y)=
(
λI +L∗L

)
Ks,λ,�(x, y), (2.2)

where L is the bounded linear operator from HKλ into L2(∂D) and L∗ is its adjoint
operator.

In this case, the functional equation is the Fredholm integral equation of the
second kind containing the reproducing kernelKλ(x, y). Then the extremal function
is represented by g directly as follows [1, 2, 4]:

F ∗
s,λ,g(x)=

(
g,LKs,λ,�(·, x)

)

L2(∂D)
. (2.3)

Indeed, in general, if the functional equation of type (2.2) may be solved effec-
tively, then we can solve many problems in our situation.

Later, we let λ tend to zero, and so, we cannot apply the Neumann expansion for
the equation, because we need the assumption ‖L∗L‖< λ in the Neumann expan-
sion.

When the operator L is compact, we apply the spectral theory to solve the func-
tional equation (2.2) and we must look for singular values and singular functions of
the operator L∗L.

They will be abstract in a sense for a general domain D. So, in this paper, we
would like to propose a new approach for the present problem based on the power
of computers.
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3 New Algorithm

In order to consider the boundary value problem in (1.4), we shall consider it in
(1.6) as follows:

For any fixed points {xj }Nj=1 of the boundary ∂D and for any given values

{Aj }Nj=1, we consider the extremal problem, for any fixed {λj }Nj=1 (λj > 0)

inf
F∈Hs

{

λ‖F‖2
Hs + ‖�F‖2

L2(Rn) +
N∑

j=1

λj
∣
∣F(xj )−Aj

∣
∣2

}

; (3.1)

that is, we approximate the integral in (1.6) by the summation.
This translation will be reasonable in the sense: ‖F − g‖2

L2(∂D)
is replaced by

∑N
j=1 λj |F(xj )−Aj |2.
Then, the reproducing kernel Kλj (x, y) of the Hilbert space HKλj with the norm

square

λ‖F‖2
Hs + ‖�F‖2

L2(Rn) +
N∑

j=1

λj
∣
∣F(xj )

∣
∣2 (3.2)

is given in terms of Kλ(x, y) as follows:

Kλj (x, y)=Kλ(x, y)−
N∑

j,j ′=1

λjKλ(x, xj )Ajj ′Kλ(xj ′ , y), (3.3)

where ‖Ajj ′ ‖ is the inverse of the positive matrix ‖δjj ′ + λjKλ(xj ′ , xj )‖ [3].
For this direct representation of the reproducing kernelKλj (x, y)which we need,

for many points {xj }Nj=1 of the boundary ∂D, the size of the matrix ‖Ajj ′ ‖ is a large
one and so, this direct representation will not be effective.

In order to overcome this difficulty, we shall propose a new approach.
First we shall start with one point.
The reproducing kernel K(1)λ (x, y) of the Hilbert space with the norm square

λ‖F‖2
Hs + ‖�F‖2

L2(Rn) +
1∑

j=1

λj
∣
∣F(xj )

∣
∣2 (3.4)

is given by

K
(1)
λ (x, y)=Kλ(x, y)−

λ1Kλ(x, x1)Kλ(x1, y)

1 + λ1Kλ(x1, x1)
. (3.5)
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For two points x1, x2, the reproducing kernelK(2)λ (x, y) of the Hilbert space with
the norm square

λ‖F‖2
Hs + ‖�F‖2

L2(Rn) +
2∑

j=1

λj
∣
∣F(xj )

∣
∣2 (3.6)

is given by

K
(2)
λ (x, y)=K(1)λ (x, y)−

λ2K
(1)
λ (x, x2)K

(1)
λ (x2, y)

1 + λ2K
(1)
λ (x2, x2)

(3.7)

by using the reproducing kernel K(1)λ (x, y).
In this way, we can proceed many steps, by the similar calculation. For this pro-

cedure, to write the computer program is very easy

λ‖F‖2
Hs + ‖�F‖2

L2(Rn) +
k∑

j=1

λj
∣
∣F(xj )

∣
∣2 (3.8)

is given by

K
(k)
λ (x, y)=K(k−1)

λ (x, y)− λkK
(k−1)
λ (x, xk)K

(k−1)
λ (xk, y)

1 + λkK(k−1)
λ (xk, xk)

(3.9)

by using the reproducing kernel K(k−1)
λ (x, y).

When we have the N -th kernel K(N)λ (x, y), it is the reproducing kernel of the
Hilbert space with the norm square (3.2) and it coincides with Kλj (x, y).

The extremal function in the minimum problem in (3.1) is given by

F ∗
λ,s,xj ,Aj

(x)=
N∑

j=1

AjλjK
(N)
λ (x, xj ). (3.10)

By taking a small λ, we will be able to obtain the approximate solution of the prob-
lem:

�u∼ 0, (3.11)

and

u(xj )∼Aj j = 1,2,3, . . . ,N. (3.12)

Letting λ tend to zero, we obtain mathematically the solution u of the problem:

�u= 0 (3.13)

and

u(xj )=Aj j = 1,2,3, . . . ,N, (3.14)

for any finite points {xj }Nj=1 and for any values {Aj }Nj=1.
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We considered a general extremal problem in (3.1) by considering a gen-
eral weight {λj }. This means that for a larger λj0 , the speed of the convergence
u(xj0)→Aj0 is higher.

If the power of our computers is great, then our algorithm seems to be effective
and we will be able to solve many concrete problems by using computers by our
algorithm.

Note that analytical theory depends seriously on the domainD—for example, re-
call the Poisson integral formula—however, our method does essentially not depend
on the domain D.

4 Numerical Experiments

At first we calculate the kernel Kλ(x, y) in (1.8) for n= 2 and s = 2. It is a function
in x− y and so we set y = 0 and further we set x2 = 0. Then, by integrating (1.8) in
p2 we obtain

Kλ(x1,0;0,0) = 1

4
√
λπ

∫

R

(
1 + λ

p2
1 + λ(1 + p2

1)
2

)1/4

cos(p1x1)

· sin

(
1

2
arctan

( √
λ

(λ+ 1)p2
1 + λ

))

dp1. (4.1)

In the following numerical experiments in Figs. 1(b)–(f), we calculate in (3.10) on
the boundary of the square [−1,1] × [−1,1] with 0.05 span.

For the 160 points of the boundary of the square, first, we put the numbers from
0 to 159 from the point (1,0) to (1,−0.05) in a counterclockwise direction on the
boundary with span 0.05.

Then, in order to take the boundary points uniformly over the boundary, we take
the sequence of the points {xj }160

j=1 in (3.14) as follows:
0, 80, 40, 120, 20, 60, 100, 140, 10, 30, 50, 70, 90, 110, 130, 150, 5, 15, 25, 35,

45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 2, 7, 12, 17, 22, 27, 32, 37, 42,
47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137,
142, 147, 152, 157, 1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, 31, 33, 36, 38, 41, 43,
46, 48, 51, 53, 56, 58, 61, 63, 66, 68, 71, 73, 76, 78, 81, 83, 86, 88, 91, 93, 96, 98,
101, 103, 106, 108, 111, 113, 116, 118, 121, 123, 126, 128, 131, 133, 136, 138, 141,
143, 146, 148, 151, 153, 156, 158, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69,
74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 154, 159.

From these numerical experiments, we see that in order to adjust the boundary
conditions, to take large weights λj is very effective for a small λ.

In these calculations we used 2825761(= 414) data for each kernel on [−1,1]4

with 0.05 span. Therefore, for a large domain or a domain in a higher dimensional
space, we need a computer with a great power.

However, we hope we will be able to have such supper computers, soon. Then,
may we say that we can solve the Dirichlet problem using computers?
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Fig. 1 For g(x1, x2) = cosh(2x1x2) sin(x2
1 − x2

2 ) on the boundary of χ[−1,1](x1) × χ[−1,1](x2)

in R2
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Abstract We construct a Fredholm symbol calculus for the C∗-algebra B gener-
ated by the C∗-algebra A of two-dimensional singular integral operators with con-
tinuous coefficients on a bounded closed simply connected domain U ⊂ R

2 with
Liapunov boundary and by all unitary shift operators Wg where g runs through a
discrete solvable group G= F �H of diffeomorphisms of U onto itself, where F
is a commutative group of conformal mappings, H = {e, γ } and γ is similar to the
shift z �→ z. As a result, we establish a Fredholm criterion for the operators B ∈B.
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1 Introduction

Given a domain U ⊂ R
2, let B := B(L2(U)) be the C∗-algebra of all bounded linear

operators on the Hilbert space L2(U) with Lebesgue area measure dA(z)= dxdy,
let K := K(L2(U)) be the closed two-sided ideal of all compact operators in B, and
let Bπ := B/K denote the quotient C∗-algebra consisting of the cosetsAπ :=A+K
(A ∈ B).
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Suppose now that U is a bounded simply connected domain in C with Lia-
punov boundary Γ , U = U ∪ Γ , G = F � H is a solvable group of diffeomor-
phisms g : U → U , which is the semidirect product of F and H , where F is a
commutative group of conformal mappings similar, respectively, to elliptic, hyper-
bolic or parabolic maps of the closed unit disc D = {z ∈ C : |z| ≤ 1} onto itself,
H = {e, γ }, e is the unit of G, γ is similar to the shift z �→ z, and (g1h1)(g2h2)=
(g1(h1g2h

−1
1 ))(h1h2) for all g1, g2 ∈ F and all h1, h2 ∈H , where γ ◦ g ◦ γ = g−1

for all g ∈ F and g1g2 = g2 ◦ g1 for all g1, g2 ∈ G. By the Kellogg–Warschawski
theorem (see, e.g., [10, Theorem 3.6]), for all g ∈G the partial derivatives

∂g

∂z
= 1

2

(
∂g

∂x
− i ∂g
∂y

)

,
∂g

∂z
= 1

2

(
∂g

∂x
+ i ∂g
∂y

)

satisfy a Hölder condition on U . Such group G acts on U topologically freely (see
Sect. 3), and the set Φg of all fixed points of g on U has empty interior for every
shift g ∈G \ {e}. With every g ∈G we associate a unitary weighted shift operator
Wg acting on the Lebesgue space L2(U) by

Wgf = |Jg|1/2(f ◦ g) for all f ∈ L2(U), (1.1)

where Jg(z)= | ∂g
∂z

|2 − | ∂g
∂z

|2 is the Jacobian of g.
Let SU , S∗

U be the two-dimensional singular integral operators given by

(SUf )(z)= − 1

π

∫

U

f (w)

(w− z)2 dA(w),
(
S∗
Uf
)
(z)= − 1

π

∫

U

f (w)

(w− z)2 dA(w)

for all z ∈U and bounded on the space L2(U). We denote by

A := alg
{
cI, SU ,S

∗
U : c ∈ C(U)} (1.2)

the C∗-subalgebra of B(L2(U)) generated by all multiplication operators cI with
c ∈ C(U) and by the operators SU and S∗

U .
The aim of this paper is to study the Fredholmness of operators B (equivalently,

the invertibility of cosets Bπ = B +K) in the C∗-algebra

B := C∗(A,WG)⊂ B
(
L2(U)

)
(1.3)

generated by all operators A ∈ A and all shift operators Wg (g ∈ G). By [8,
Lemma 2.6], which remains valid for arbitrary domains U ⊂ C, the C∗-algebras
A and B contain the ideal K of all compact operators in B(L2(U)).

Applying results of [6], where the C∗-algebra B was studied for discrete
amenable groups of quasiconformal shifts g :U →U , and using the local-trajectory
method elaborated in [4, 5], in the present paper we construct a Fredholm symbol
calculus for the C∗-algebra B and establish a Fredholm criterion for the operators
B ∈ B provided that G= F �H is a solvable group containing analytic and anti-
analytic shifts, and F consists, respectively, of elliptic, hyperbolic and parabolic
conformal maps g :U →U .
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2 Solvable Groups of Shifts on U

As is known (see, e.g., [2, Chap. 2]), any non-identical conformal map of the ex-
tended complex plane onto itself has two fixed points different or coincident. Con-
sider now conformal mappings of the open unit disc D onto itself. They have the
form

w = θ z− z0

1 − z0z
for z ∈C, (2.1)

where z0 ∈ D, θ ∈ T, and T = {z ∈ C : |z| = 1} is the unit circle. If z1, z2 are fixed
points of the conformal map (2.1), then either z0 = 0 and then z1 = 0 and z2 = ∞,
or z0 �= 0 and then

z1 + z2 = (1 − θ)/z0, z1z2 = −θz0/z0. (2.2)

In the latter case |z1z2| = 1. Thus, either |z1|< 1< |z2| or |z1| = |z2| = 1.
Consider the shift λ :D → D given by λ(z)= z for all z ∈D.
Given a bounded simply connected domain U in C with Liapunov boundary

Γ = ∂U , we now define three solvable groups of the form G= F �H mentioned
in the introduction.

Let F1 be the group of conformal mappings of the closed domain U onto itself
with a common fixed point z1 ∈U . Fix a conformal mapping ϕ1 : D →U such that
ϕ1(0) = z1. Then any g ∈ F1 is of the form g = ϕ1 ◦ fθ ◦ ϕ−1

1 where θ ∈ T and
fθ (z) = θz for z ∈ D. Rotations fθ are elliptic maps of D onto itself. Thus F1 is a
commutative one-parameter group that is similar to the group of rotations fθ of the
closed unit disc D.

Let F2 be the group of conformal mappings of the closed domain U onto itself
with two different common fixed point z1, z2 ∈ Γ . Fix a conformal mapping ϕ2 :
D →U such that ϕ2(i)= z1 and ϕ2(−i)= z2. Hence for any g ∈ F2 the conformal
map ϕ−1

2 ◦ g ◦ ϕ2 : D → D has two fixed points ±i ∈ T. Then from (2.2) it follows
that θ = 1 and z0 = −z0. Hence any g ∈ F2 is of the form g = ϕ2 ◦ fx ◦ ϕ−1

2 where
x ∈ (−1,1) ⊂ R and fx is a hyperbolic map of D onto itself given by fx(z) =
(z− ix)/(1 + ixz) for z ∈ D. It is easily seen [7] that for every x, y ∈ (−1,1) we
have fx ◦ fy = fy ◦ fx = fx◦y where

x ◦ y = (x + y)/(1 + xy) (2.3)

is a group operation on the interval (−1,1). Hence (−1,1) becomes a commutative
group with operation (2.3), unit 0 and the inverse −x for x ∈ (−1,1). Thus F2 is
a commutative one-parameter group that is similar to the group of hyperbolic maps
fx of the closed unit disc D onto itself.

Let F3 be the group of conformal mappings of the closed domain U onto itself
with a common double fixed point z1 ∈ Γ . Fix a conformal mapping ϕ3 : D → U

such that ϕ3(1)= z1. Hence for any g ∈ F3 the conformal map ϕ−1
3 ◦g ◦ϕ3 : D →D

has the double fixed point 1 ∈ T. Writing this map in the form (2.1), we infer from
(2.2) that 1 is a double fixed point of this map if and only if z0 = (1 − θ)/2. Since
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|z0|< 1, we need to exclude θ = −1. For every θ ∈ T \ {−1}, we consider parabolic
maps ψθ of D onto itself given by

ψθ(z)= θ z− (1 − θ)/2
1 − z(1 − θ)/2 = 2θz+ 1 − θ

2 − (1 − θ)z for z ∈ D. (2.4)

On the set T \ {−1} we introduce the new multiplication (see [7]) by

θ ◦ ϑ = θϑ 4 − (1 − θ)(1 − ϑ)
4 − (1 − θ)(1 − ϑ) for θ,ϑ ∈ T \ {−1}. (2.5)

Then T \ {−1} becomes a commutative group with operation (2.5), unit 1 and the
inverse θ−1 = θ for θ ∈ T \ {−1}, and

ψθ ◦ψϑ =ψϑ ◦ψθ =ψθ◦ϑ for every θ,ϑ ∈ T \ {−1}.

Thus any g ∈ F3 is of the form g = ϕ3 ◦ψθ ◦ ϕ−1
3 where θ ∈ T \ {−1} and ψθ is a

parabolic map of the form (2.4). Hence F3 is a commutative one-parameter group
that is similar to the group of parabolic maps ψθ of the closed unit disc D onto itself.

For every j = 1,2,3, let Hj = {e, γj }, where γj = ϕj ◦ λ ◦ ϕ−1
j and λ(z)= z for

all z ∈D. Consider the solvable groups Gj = Fj �Hj being the semidirect product
of groups Fj and Hj . Then Gj = {g,gγj : g ∈ Fj } and γjg = g−1γj for all g ∈ Fj
and all j = 1,2,3.

Let Φg be the set of all fixed points for the shift g on U . Then Φg = {z1} if
g ∈ F1 \ {e}, Φγ1 = ϕ1([−1,1]) and Φgγ1 = {z1} for g ∈ F1 \ {e}; Φg = {z1, z2}
if g ∈ F2 \ {e}, Φγ2 = ϕ2([−1,1]) and Φgγ2 = ∅ for g ∈ F2 \ {e}; Φg = {z1} if
g ∈ F3 \ {e}, Φγ3 = ϕ3([−1,1]) and Φgγ3 = {z1} for g ∈ F3 \ {e}. Thus, for each
j = 1,2,3 and each g ∈Gj \ {e} the set Φg has empty interior.

Let G ∈ {Gj : j = 1,2,3} and let γ ∈G mean that γ = γj if G=Gj .
For every g ∈ G we consider unitary weighted shift operators Wg ∈ B(L2(U))

defined by (1.1). Observe that if g ∈ G is a conformal map of U onto itself, then
Jg = |g′|2, while Jgγ = −|g′|2.

Lemma 2.1 If U is a bounded simply connected domain in C with Liapunov
boundary Γ , G ∈ {Gj : j = 1,2,3} and g ∈G is a conformal mapping of U onto
itself, then the operators

WgSUW
−1
g − (g′/g′)SU , WgS

∗
UW

−1
g − (g′/g′)S∗

U , (2.6)

Wgγ SUW
−1
gγ − (g′/g′)S∗

U , Wgγ S
∗
UW

−1
gγ − (g′/g′)SU (2.7)

are compact on the space L2(U).

Proof The compactness of operators (2.6) follows from [6, Corollary 4.2 and Re-
mark 4.3]. Consider the operator Wλ : L2(D) → L2(D) given by Wλf = f ◦ λ,
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where λ(z) = z for z ∈ D. Since WλSDW
−1
λ = S∗

D
and WλS∗

D
W−1
λ = SD, we infer

from [6, Corollary 4.2] that the operators

WγSUW
−1
γ − S∗

U , Wγ S
∗
UW

−1
γ − SU (2.8)

are compact on the space L2(U). Applying then (2.8) and (2.6), we obtain the com-
pactness of operators (2.7) on the space L2(U). �

3 The Local-Trajectory Method

Let A be a unital C∗-algebra, Z a central C∗-subalgebra of A with the same unit I ,
G a discrete group with unit e, U : g �→Ug a homomorphism of the group G onto a
groupUG = {Ug : g ∈G} of unitary elements such thatUg1g2 =Ug1Ug2 andUe = I .
Suppose A and UG are contained in a C∗-algebra D and assume that

(A1) for every g ∈G the mappings αg : a �→ Ug aU
∗
g are ∗-automorphisms of the

C∗-algebras A and Z ;
(A2) G is an amenable [3, § 1.2] discrete group.

Let B := C∗(A,UG) be the minimal C∗-subalgebra of D containing the unital
C∗-algebra A and the group UG. LetM :=M(Z) be the maximal ideal space of the
(commutative) C∗-algebra Z . Under assumption (A1), identifying characters ϕm of
the algebra Z ∼= C(M) and the maximal ideals m = Kerϕm ∈ M , we obtain the
homomorphism g �→ βg(·) of the group G into the homeomorphism group of M
according to the rule

z
(
βg(m)

)= (αg(z)
)
(m), z ∈Z, m ∈M, g ∈G, (3.1)

where z(·) ∈ C(M) is the Gelfand transform of the element z ∈Z .
Let PA be the set of all pure states [9] on the C∗-algebra A equipped with the

induced weak∗ topology, and let the following version of topologically free action
of the group G hold (see [1, 5]):

(A3) there is a set M0 ⊂M such that for every finite set G0 ⊂ G \ {e} and every
nonempty open set V ⊂ PA there exists a state ν ∈ V such that βg(mν) �=mν
for all g ∈G0, where the point mν := Z ∩ Kerν ∈M belongs to the G-orbit
G(M0) := {βg(m) : g ∈G,m ∈M0} ofM0.

For every m ∈M , let Jm be the closed two-sided ideal of the algebra A gener-
ated by the maximal ideal m of the algebra Z , and let Hm be the Hilbert space of
an isometric representation π̃m : A/Jm → B(Hm). We also consider the canonical
∗-homomorphism �m :A →A/Jm and the representation

π ′
m : A → B(Hm), a �→ (π̃m ◦ �m)(a).

Since αg(Jβg(m)) = Jm for all g ∈ G and all m ∈M in view of (A1), the quotient
algebras A/Jβg(m) and A/Jm are ∗-isomorphic. Then the spaces Hβg(m) can be
chosen equal for all g ∈G.
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Given X ⊂M , letΩ(X) be the set ofG-orbits of all points m ∈X, let Hω = Hm
where m =mω is any point of an orbit ω ∈Ω and Ω =Ω(M), and let l2(G,Hω)
be the Hilbert space of all functions f : G �→ Hω such that f (g) �= 0 for at most
countable set of g ∈ G and

∑‖f (g)‖2
Hω
<∞. For every ω ∈ Ω we consider the

representation πω : B → B(l2(G,Hω)) defined by

[
πω(a)f

]
(g)= π ′

m

(
αg(a)

)
f (g),

[
πω(Uh)f

]
(g)= f (gh) (3.2)

for all a ∈A, all g,h ∈G, and all f ∈ l2(G,Hω).

Theorem 3.1 [5, Theorem 4.1] If assumptions (A1)–(A3) are satisfied, then an
element b ∈ B is invertible in B if and only if for every orbit ω ∈ Ω the operator
πω(b) is invertible on the space l2(G,Hω) and, for infinite Ω ,

sup
{∥
∥
(
πω(b)

)−1∥∥
B(l2(G,Hω)) : ω ∈Ω}<∞. (3.3)

The next result following from [5, Theorems 4.8, 4.2] gives a sufficient condition
that allows us to remove the uniform boundedness condition (3.3) for norms of
inverse operators. Let ω be the closure of an orbit ω ∈Ω , and let ω′ be the set of all
limit points of ω.

Theorem 3.2 [6, Theorem 2.2] If conditions (A1)–(A3) are satisfied, the C∗-alge-
bra Z is separable, and

⋂
m∈ω Jm =⋂m∈ω Jm for every G-orbit ω ∈Ω such that

ω= ω′, then an element b ∈ B is invertible in B if and only if for every orbit ω ∈Ω
the operator πω(b) is invertible on the space l2(G,Hω).

4 C∗-Algebra A of Two-Dimensional Singular Integral
Operators

Given a C∗-algebra S, let Ŝ be the spectrum of S, i.e., the compact topological
space of all unitary equivalence classes of non-zero irreducible representations of S
in Hilbert spaces (see, e.g., [9, Sect. 5.4]).

Consider the orthogonal projection P = (I + ST)/2 on the Lebesgue space
L2(T), where I is the identity operator and ST is the Cauchy singular integral oper-
ator on the unit circle T,

(STϕ)(t)= lim
ε→0

1

2π

∫

{z∈T:|z−t |≥ε}
f (τ)

τ − t dτ, t ∈ T.

As is well known, the Toeplitz operators Ta := PaP with symbols a ∈ L∞(T) are
bounded on the Hilbert space H 2(T) := PL2(T).

Below we use the following result from [11, Theorem 5] (cf. also [6, Theo-
rem 5.7]). In our notations it says
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Theorem 4.1 Let U be a bounded simply connected domain in C with Liapunov
boundary Γ . Then the spectrum Âπ of the quotient C∗-algebra Aπ can be param-
eterized by the points (w, z) ∈ (U × T) ∪ (Γ × {±2}) where the one-dimensional
non-zero irreducible representations πw,z : Aπ → C for every (w, z) ∈ U × T and
infinite dimensional non-zero irreducible representations πw,z : Aπ → B(H 2(T))

for every (w, z) ∈ Γ × {±2} are given on the generators of the C∗-algebra Aπ by

πw,z
([cI ]π )= c(w), πw,z

([SU ]π )= z, πw,z
([
S∗
U

]π )= z
if (w, z) ∈U ×T,

πw,z
([cI ]π )= c(w)I, πw,z

([SU ]π )= Tz, πw,z
([
S∗
U

]π )= Tz
if (w, z) ∈ Γ × {2},

πw,z
([cI ]π )= c(w)I, πw,z

([SU ]π )= Tz, πw,z
([
S∗
U

]π )= Tz
if (w, z) ∈ Γ × {−2},

where Tz and Tz are Toeplitz operators with symbols z and z on H 2(T).

Identifying numbers b ∈C with multiplication operators bI acting on the Hilbert
space H = C and using Theorem 4.1, we obtain the continuity of the functions

ηA :U ×T → C, (w, z) �→ πw,z
(
Aπ
)
, (4.1)

η±
A : Γ → B

(
H 2(T)

)
, w �→ πw,±2

(
Aπ
)
, (4.2)

for every A ∈A, where ηA(w, z)= πw,z(Aπ),
πw,2
(
Aπ
)= ηA(w,Tz)= TηA(w,z) +K1,

πw,−2
(
Aπ
)= ηA(w,Tz)= TηA(w,z) +K2,

(4.3)

and K1, K2 are compact operators on the space H 2(T).

5 C∗-Algebra B := C∗(A,WG)

Let U be a bounded simply connected domain in C with Liapunov boundary Γ , and
let G ∈ {Gj : j = 1,2,3} be a discrete solvable (and therefore amenable) group of
diffeomorphisms g :U →U , with Gj = {g,gγ : g ∈ Fj }.

Consider the C∗-subalgebra B := C∗(A,WG) of B(L2(U)) generated by all op-
erators A ∈A and all operatorsWg (g ∈G) given by (1.1), where the C∗-algebra A

is defined by (1.2). Then Zπ = {cI + K : c ∈ C(U)} is a central subalgebra of the
C∗-algebra Aπ = A/K, andM(Zπ )= C(U).

By Lemma 2.1, for every g ∈ G the mappings αg : A �→ Wg AW
∗
g are

∗-automorphisms of the C∗-algebras Aπ and Zπ . Thus, assumptions (A1) and (A2)
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of Sect. 3 are satisfied. The set PAπ of all pure states of the C∗-algebra Aπ consists
of all functionals πw,z(Aπ) for (w, z) ∈ U × T (these functionals simultaneously
are one-dimensional representations of Aπ ) and all vector states (πw,z(Aπ)ξ, ξ) for
(w, z) ∈ Γ × {±2} where ξ ∈H 2(T) are vectors of norm 1.

Since the interior of each set Φg (g ∈G \ {e}) is empty, we infer from the con-
tinuity of the functions ηA : U × T → C given by (4.1) that for every finite set
G0 ⊂G \ {e} and every open neighborhood Vw0,z0 ⊂U ×T of any point (w0, z0) ∈
(
⋃
g∈G0

Φg) × T there exists a point (w, z0) ∈ Vw0,z0 such that g(w) �= w for all

g ∈G0. In that caseM0 =U , and for every ε > 0, every (w0, z0) ∈ (⋃g∈G0
Φg)×T

and every A ∈A there is a δ > 0 such that
∣
∣πw,z0

(
Aπ
)− πw0,z0

(
Aπ
)∣
∣= ∣∣ηA(w, z0)− ηA(w0, z0)

∣
∣< ε if |w−w0|< δ.

On the other hand, from the continuity of functions η±
A : Γ → B(H 2(T)) given

by (4.2) it follows that for every finite set G0 ⊂ G \ {e} and every open neigh-
borhood Vw0 ⊂ Γ of any point w0 ∈⋃g∈G0

Φg there exists a point w ∈ Vw0 such

that g(w) �=w for all g ∈G0. In that case againM0 =U , and for every ε > 0, every
w0 ∈⋃g∈G0

Φg and everyA ∈A there is a δ > 0 such that for any vector ξ ∈H 2(T)

of norm 1,
∣
∣
(
πw,2
(
Aπ
)
ξ, ξ
)− (πw0,2

(
Aπ
)
ξ, ξ
)∣
∣≤ ∥∥ηA(w,Tz)− ηA(w0, Tz)

∥
∥
B(H 2(T))

< ε,

∣
∣
(
πw,−2

(
Aπ
)
ξ, ξ
)− (πw0,−2

(
Aπ
)
ξ, ξ
)∣
∣≤ ∥∥ηA(w,Tz)− ηA(w0, Tz)

∥
∥
B(H 2(T))

< ε

if |w−w0|< δ. Thus, condition (A3) is also fulfilled along with (A1)–(A2).
Hence, we can obtain an invertibility criterion for the cosets Bπ ∈ Bπ on the

basis of Theorem 3.1.
Since Zπ ∼= C(U), we conclude from (3.1) that βg = g for every g ∈ G. With

each point w ∈ U we associate its G-orbit G(w) = {g(w) : g ∈ G} ⊂ U . Con-
sider the representations π ′

w :=⊕z∈T πw,z : Aπ → B(Hw) for w ∈ U and π ′
w :=

(
⊕
z∈T πw,z)⊕ πw,2 ⊕ πw,−2 : Aπ → B(Hw) for w ∈ Γ , where Hw =⊕z∈TC if

w ∈U , and Hw = (⊕z∈TC)⊕H 2(T)⊕H 2(T) if w ∈ Γ .
Let Ω :=Ω(U) be the set of all G-orbits of points w ∈ U . Fix a point w = wω

on every G-orbit ω ∈Ω and put Hω = Hw . For every ω ∈Ω we consider the rep-
resentation πω : B→ B(l2(G,Hω)) defined in view of (3.2) by
[
πω
(
Aπ
)
f
]
(g)= π ′

w

([
αg(A)

]π )
f (g),

[
πω
([Wh]π

)
f
]
(g)= f (gh) (5.1)

for all A ∈ A, all g,h ∈G, and all f ∈ l2(G,Hω).
We infer from Lemma 2.1 that
[
αg(aI)

]π
w

= [a(g(w))I ]π
w
,

[
αgγ (aI)

]π
w

= [a((gγ )(w))I ]π
w

(
a ∈ C(U)),

[
αg(SU )

]π
w

= [(g′(w)/g′(w)
)
SU
]π
w
,

[
αgγ (SU )

]π
w

= [(g′(w)/g′(w)
)
S∗
U

]π
w
,

[
αg
(
S∗
U

)]π
w

= [(g′(w)/g′(w)
)
S∗
U

]π
w
,

[
αgγ
(
S∗
U

)]π
w

= [(g′(w)/g′(w)
)
SU
]π
w
,
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where g ∈ F . Hence, setting

σg(w, z) :=
(
g′(w)/g′(w)

)
z, σg(w,Tz) :=

(
g′(w)/g′(w)

)
Tz,

σgγ (w, z) :=
(
g′(w)/g′(w)

)
z, σgγ (w,Tz) :=

(
g′(w)/g′(w)

)
Tz,

(5.2)

we conclude from (5.2) that

σgγ (w, z)=
(
g′(w)/g′(w)

)
z= σg(w, z),

σgγ (w,Tz)=
(
g′(w)/g′(w)

)
Tz = [σg(w,Tz)

]∗
,

and therefore, taking into account (4.1) and (4.3), for all g ∈G we obtain

πw,z
([
αg(A)

]π )= ηA
(
g(w),σg(w, z)

)
if (w, z) ∈U ×T, (5.3)

πw,2
([
αg(A)

]π )= ηA
(
g(w),σg(w,Tz)

)
if w ∈ Γ, (5.4)

πw,−2
([
αg(A)

]π )= ηA
(
g(w),

[
σg(w,Tz)

]∗) if w ∈ Γ. (5.5)

Thus every ∗-automorphism αg (g ∈G) of the C∗-algebra Aπ induces the homeo-
morphism λg of the compact U ×T onto itself by the rule:

λg(w, z)=
(
g(w),σg(w, z)

)
for all (w, z) ∈U ×T.

It is easily seen that if G acts topologically freely on M = U , then the group
{λg : g ∈G} acts topologically freely on U ×T.

Setting ΩU := {G(w) : w ∈ U}, ΩΓ := {G(w) : w ∈ Γ }, taking points w = wω
on each G-orbit ω ∈Ω and representing the spaces l2(G,Hω) (to within isometric
isomorphisms) as l2(G,Hω)=⊕z∈T l2(G) if ω ∈ΩU , and

l2(G,Hω)=
(⊕

z∈T
l2(G)

)
⊕ l2(G,H 2(T)

)⊕ l2(G,H 2(T)
)

if ω ∈ΩΓ ,

we infer from (5.1) that the representation πω : Bπ → B(l2(G,Hω)) can be given
by πω =⊕z∈T π̃ω,z if ω⊂U , and

πω =
(⊕

z∈T
π̃ω,z

)
⊕ π̃ω,2 ⊕ π̃ω,−2 if ω⊂ Γ,

where the representations π̃ω,z : Bπ → l2(G) for ω ⊂ U and z ∈ T are defined for
all A ∈A, all g,h ∈G and all f ∈ l2(G) in view of (5.3) by

[
π̃ω,z
(
Aπ
)
f
]
(g)= πw,z

([
αg(A)

]π )
f (g)= ηA

(
g(w),σg(w, z)

)
f (g),

[
π̃ω,z
([Wh]π

)
f
]
(g)= f (gh);

(5.6)
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and the representations π̃ω,±2 : Bπ → l2(G,H 2(T)) for ω ⊂ Γ are defined for all
A ∈ A, all g,h ∈G and all f ∈ l2(G,H 2(T)) in view of (5.4)–(5.5) by

[
π̃ω,2
(
Aπ
)
f
]
(g)= πw,2

([
αg(A)

]π )
f (g)= ηA

(
g(w),σg(w,Tz)

)
f (g),

[
π̃ω,−2

(
Aπ
)
f
]
(g)= πw,−2

([
αg(A)

]π )
f (g)= ηA

(
g(w),

[
σg(w,Tz)

]∗)
f (g),

[
π̃ω,±2

([Wh]π
)
f
]
(g)= f (gh).

(5.7)

Theorem 5.1 Let U be a bounded simply connected domain in C with Liapunov
boundary Γ and let G ∈ {Gj : j = 1,2,3}. Then an operator B ∈ B is Fredholm
on the space L2(U) if and only if for every (ω, z) ∈Ω ×T the operators π̃ω,z(Bπ)
are invertible on the space l2(G), for every ω ∈ΩΓ the operators π̃ω,±2(B

π) are
invertible on the space l2(G,H 2(T)), and

sup
(ω,z)∈Ω×T

∥
∥
(
π̃ω,z
(
Bπ
))−1∥∥

B(l2(G)) <∞,

sup
(ω,z)∈ΩΓ×{±2}

∥
∥
(
π̃ω,z
(
Bπ
))−1∥∥

B(l2(G,H 2(T)))
<∞.

Note that Theorem 5.1 remains valid under the replacement ofΩ×T byΩU ×T.
Indeed, for every (w, z) ∈ Γ ×T, the maps

ν+
w,z : πw,2

(
Aπ
)= ηA(w,Tz) �→ πw,z

(
Aπ
)= ηA(w, z),

ν−
w,z : πw,−2

(
Aπ
)= ηA(w,Tz) �→ πw,z

(
Aπ
)= ηA(w, z)

are C∗-algebra homomorphisms of the C∗-algebra πw,±2(A
π )⊂ B(H 2(T)) onto C,

respectively. Consequently, for every (ω, z) ∈ΩΓ ×T, the maps

μ±
ω,z : B(l2(G,H 2(T)

))→ B
(
l2(G)

)
, π̃ω,±2

(
Bπ
) �→ π̃ω,z

(
Bπ
)

are ∗-homomorphisms of the C∗-algebra π̃ω,±2(B
π ) ⊂ B(l2(G,H 2(T))) onto the

C∗-algebra π̃ω,z(Bπ )⊂ B(l2(G)), whence the invertibility of operators π̃ω,±2(B
π )

on the space l2(G,H 2(T)) for all ω ∈ ΩΓ implies the invertibility of operators
π̃ω,z(B

π) on the space l2(G) for all (ω, z) ∈ΩΓ ×T.
Taking this into account and since ω ∩ T = ∅ for every G1-orbit ω ∈ ΩU , we

infer the following from Theorem 3.2 by analogy with [6, Theorem 6.1].

Theorem 5.2 Let U be a bounded simply connected domain in C with Liapunov
boundary Γ and let G = G1. Then an operator B ∈ B is Fredholm on the space
L2(U) if and only if for every ω ∈ΩU and every z ∈ T the operators π̃ω,z(Bπ) are
invertible on the space l2(G) and for every ω ∈ΩΓ the operators π̃ω,±2(B

π) are
invertible on the space l2(G,H 2(T)).
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By Theorem 5.1, the operator function Ψ̃ (B) : (ω, z) �→ π̃ω,z(B
π) given for

(ω, z) ∈ (Ω ×T)∪ (ΩΓ × {±2}) by (5.6)–(5.7) and equipped with the norm

max
{

sup
(ω,z)∈Ω×T

∥
∥π̃ω,z

(
Bπ
)∥
∥
B(l2(G)), sup

(ω,z)∈ΩΓ×{±2}

∥
∥π̃ω,z

(
Bπ
)∥
∥
B(l2(G,H 2(T)))

}

can be considered as a Fredholm symbol for operators B ∈ B. Thus, the map
Ψ̃ : B → Ψ̃ (B) gives a Fredholm symbol calculus for the C∗-algebra B defined
by (1.3), because the Fredholmness of an operator B ∈ B is equivalent to the invert-
ibility of its Fredholm symbol.
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Uncertainty and Analyticity

Vladimir V. Kisil

Abstract We describe a connection between minimal uncertainty states and
holomorphy-type conditions on the images of the respective wavelet transforms.
The most familiar example is the Fock–Segal–Bargmann transform generated by
the Gaussian, however, this also occurs under more general assumptions.

Keywords Quantum mechanics · Classical mechanics · Heisenberg commutation
relations · Observables · Heisenberg group · Fock–Segal–Bargmann space ·
SU(1,1) · Hardy space
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1 Introduction

There are two and a half main examples of reproducing kernel spaces of analytic
function. One is the Fock–Segal–Bargmann (FSB) space and others (one and a
half)—the Bergman and Hardy spaces. The first space is generated by the Heisen-
berg group [2, § 1.6; 5, § 7.3], two others—by the group SU(1,1) [5, § 4.2] (this
explains our way of counting).

Those spaces have the following properties, which make their study particularly
pleasant and fruitful:

i. There is a group, which acts transitively on functions’ domain.
ii. There is a reproducing kernel.

iii. The space consists of holomorphic functions.

Furthermore, for FSB space there is the following property:

iv. The reproducing kernel is generated by a function, which minimises the uncer-
tainty for coordinate and momentum observables.

On leave from Odessa University.

V.V. Kisil (B)
School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
e-mail: kisilv@maths.leeds.ac.uk
url: http://www.maths.leeds.ac.uk/~kisilv/

© Springer International Publishing Switzerland 2015
V.V. Mityushev, M.V. Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-12577-0_64

583

mailto:kisilv@maths.leeds.ac.uk
http://www.maths.leeds.ac.uk/~kisilv/
http://dx.doi.org/10.1007/978-3-319-12577-0_64


584 V.V. Kisil

It is known, that a transformation group is responsible for the appearance of the
reproducing kernel [1, Theorem 8.1.3]. This paper shows that the last two properties
are equivalent and connected to the group as well.

2 The Uncertainty Relation

In quantum mechanics [2, § 1.1], an observable (self-adjoint operator on a Hilbert
space H) A produces the expectation value Ā on a state (a unit vector) φ ∈ H by
Ā= 〈Aφ,φ〉. Then, the dispersion is evaluated as follow:

�2
φ(A)=

〈
(A− Ā)2φ,φ〉= 〈(A− Ā)φ, (A− Ā)φ〉= ∥∥(A− Ā)φ∥∥2

. (1)

The next theorem links obstructions of exact simultaneous measurements with non-
commutativity of observables.

Theorem 1 (The uncertainty relation) If A and B are self-adjoint operators on a
Hilbert space H, then

∥
∥(A− a)u∥∥∥∥(B − b)u∥∥≥ 1

2

∣
∣
〈
(AB −BA)u,u〉∣∣, (2)

for any u ∈ H from the domains of AB and BA and a, b ∈ R. Equality holds pre-
cisely when u is a solution of ((A− a)+ ir(B − b))u= 0 for some real r .

Proof The proof is well-known [2, § 1.3], but it is short, instructive and relevant for
the following discussion, thus we include it in full. We start from simple algebraic
transformations:

〈
(AB −BA)u,u〉 = 〈(A− a)(B − b)− (B − b)(A− a)u,u〉

= 〈(B − b)u, (A− a)u〉− 〈(A− a)u, (B − b)u〉

= 2i.〈(B − b)u, (A− a)u〉. (3)

Then by the Cauchy–Schwartz inequality:

1

2

〈
(AB −BA)u,u〉≤ ∣∣〈(B − b)u, (A− a)u〉∣∣≤ ∥∥(B − b)u∥∥∥∥(A− a)u∥∥.

The equality holds if and only if (B−b)u and (A−a)u are proportional by a purely
imaginary scalar. �

The famous application of the above theorem is the following fundamental rela-
tion in quantum mechanics. Recall [2, § 1.2], that the one-dimensional Heisenberg
group H

1 consists of points (s, x, y) ∈R
3, with the group law:

(s, x, y) ∗ (s′, x′, y′)=
(

s + s′ + 1

2

(
xy′ − x′y

)
, x + x′, y + y′

)

. (4)
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This is a nilpotent step two Lie group. By the Stone–von Neumann theorem
[2, § 1.5], any infinite-dimensional unitary irreducible representation of H1 is uni-
tary equivalent to the Schrödinger representation ρ� in L2(R) parametrised by the
Planck constant � ∈R \ {0}. A physically consistent form of ρ� is [6, (3.5)]:

[
ρ�(s, x, y)f

]
(q)= e−2π i�(s+xy/2)−2π ixqf (q + �y). (5)

Elements of the Lie algebra h1, corresponding to the infinitesimal generators X and
Y of one-parameters subgroups (0, t/(2π),0) and (0,0, t) in H

1, are represented
in (5) by the (unbounded) operatorsM and D on L2(R):

M = −iq, D = �
d

dq
, with the commutator [M,D] = i�I. (6)

In the Schrödinger model of quantum mechanics, f (q) ∈ L2(R) is interpreted as
a wave function (a state) of a particle, with M and D are the observables of its
coordinate and momentum.

Corollary 2 (Heisenberg–Kennard uncertainty relation) For the coordinate M and
momentum D observables we have the Heisenberg–Kennard uncertainty relation:

�φ(M) ·�φ(D)≥ h

2
. (7)

The equality holds if and only if φ(q) = e−cq2
, c ∈ R+ is the vacuum state in the

Schrödinger model.

Proof The relation follows from the commutator [M,D] = i�I , which, in turn, is
the representation of the Lie algebra h1 of the Heisenberg group. The minimal un-
certainty state in the Schrodinger representation is a solution of the differential equa-
tion: (M − irD)φ = 0 for some r ∈R, or, explicitly:

(M − irD)φ = −i

(

q + r� d
dq

)

φ(q)= 0. (8)

The solution is the Gaussian φ(q) = e−cq2
, c = 1

2r� . For c > 0, this function is in
the state space L2(R). �

It is common to say that the Gaussian φ(q)= e−cq2
represents the ground state,

which minimises the uncertainty of coordinate and momentum.
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3 Wavelet Transform and Analyticity

3.1 Induced Wavelet Transform

The following object is common in quantum mechanics [4], signal processing, har-
monic analysis [8], operator theory [7, 9] and many other areas [5]. Therefore, it has
various names [1]: coherent states, wavelets, matrix coefficients, etc. In the most
fundamental situation [1, Chap. 8], we start from an irreducible unitary representa-
tion ρ of a Lie group G in a Hilbert space H. For a vector f ∈ H (called mother
wavelet, vacuum state, etc.), we define the map Wf from H to a space of functions
on G by:

[Wf v](g)= ṽ(g) :=
〈
v,ρ(g)f

〉
. (9)

Under the above assumptions, ṽ(g) is a bounded continuous function on G. The
map Wf intertwines ρ(g) with the left shifts on G:

Wf ◦ ρ(g)=Λ(g) ◦Wf , where Λ(g) : ṽ(g′) �→ ṽ
(
g−1g′). (10)

Thus, the image WfH is invariant under the left shifts onG. If ρ is square integrable
and f is admissible [1, § 8.1], then ṽ(g) is square-integrable with respect to the
Haar measure onG. At this point, none of admissible vectors has an advantage over
others.

It is common [5, § 5.1], that there exists a closed subgroup H ⊂G and a respec-
tive f ∈ H such that ρ(h)f = χ(h)f for some character χ of H . In this case, it
is enough to know values of ṽ(s(x)), for any continuous section s from the homo-
geneous space X = G/H to G. The map v �→ ṽ(x) = ṽ(s(x)) intertwines ρ with
the representation ρχ in a certain function space on X induced by the character
χ of H [3, § 13.2]. We call the map Wf : v �→ ṽ(x) the induced wavelet trans-
form [5, § 5.1].

For example, if G = H
1, H = {(s,0,0) ∈ H

1 : s ∈ R} and its character
χ�(s,0,0)= e2π i�s , then any vector f ∈ L2(R) satisfies ρ�(s,0,0)f = χ�(s)f for
the representation (5). Thus, we still do not have a reason to prefer any admissible
vector to others.

3.2 Right Shifts and Analyticity

To discover some preferable mother wavelets, we use the following a general result
from [5, § 5]. Let G be a locally compact group and ρ be its representation in a
Hilbert space H. Let [Wf v](g) = 〈v,ρ(g)f 〉 be the wavelet transform defined by
a vacuum state f ∈ H. Then, the right shift R(g) : [Wf v](g′) �→ [Wf v](g′g) for
g ∈G coincides with the wavelet transform [Wfgv](g′)= 〈v,ρ(g′)fg〉 defined by
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the vacuum state fg = ρ(g)f . In other words, the covariant transform intertwines
right shifts on the group G with the associated action ρ on vacuum states, cf. (10):

R(g) ◦Wf = Wρ(g)f . (11)

Although, the above observation is almost trivial, applications of the following
corollary are not.

Corollary 3 (Analyticity of the wavelet transform, [5, § 5]) Let G be a group
and dg be a measure on G. Let ρ be a unitary representation of G, which can be
extended by integration to a vector space V of functions or distributions on G. Let
a mother wavelet f ∈ H satisfy the equation

∫

G

a(g)ρ(g)f dg = 0,

for a fixed distribution a(g) ∈ V . Then any wavelet transform ṽ(g) = 〈v,ρ(g)f 〉
obeys the condition:

Dṽ = 0, where D =
∫

G

ā(g)R(g)dg, (12)

with R being the right regular representation of G.

Some applications (including discrete one) produced by the ax+ b group can be
found in [8, § 6]. We turn to the Heisenberg group now.

Example 4 (Gaussian and FSB transform) The Gaussian φ(x)= e−cq2/2 is a null-
solution of the operator �cM − iD. For the centre Z = {(s,0,0) : s ∈ R} ⊂ H

1, we
define the section s : H1/Z→ H

1 by s(x, y) = (0, x, y). Then, the corresponding
induced wavelet transform is:

ṽ(x, y)= 〈v,ρ(s(x, y))f 〉=
∫

R

v(q)eπ i�xy−2π ixqe−c(q+�y)2/2dq. (13)

The infinitesimal generators X and Y of one-parameters subgroups (0, t/(2π),0)
and (0,0, t) are represented through the right shift in (4) by

R∗(X)= − 1

4π
y∂s + 1

2π
∂x, R∗(Y )= 1

2
x∂s + ∂y.

For the representation induced by the character χ�(s,0,0) = e2π i�s we have ∂s =
2π i�I . Corollary 3 ensures that the operator

�c ·R∗(X)+ i ·R∗(Y )= −�

2
(2πx + i�cy)+ �c

2π
∂x + i∂y (14)

annihilate any ṽ(x, y) from (13). The integral (13) is known as Fock–Segal–
Bargmann (FSB) transform and in the most common case the values � = 1 and
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c= 2π are used. For these, operator (14) becomes −π(x+ iy)+(∂x+ i∂y)= −πz+
2∂z̄ with z= x + iy. Then the function V (z)= eπzz̄/2ṽ(z)= eπ(x2+y2)/2ṽ(x, y) sat-
isfies the Cauchy–Riemann equation ∂z̄V (z)= 0.

This example shows, that the Gaussian is a preferred vacuum state (as pro-
ducing analytic functions through FSB transform) exactly for the same reason
as being the minimal uncertainty state: the both are derived from the identity
(�cM + iD)e−cq2/2 = 0.

3.3 Uncertainty and Analyticity

The main result of this paper is a generalisation of the previous observation, which
bridges together Corollary 3 and Theorem 1. Let G, H , ρ and H be as before.
Assume, that the homogeneous space X = G/H has a (quasi-)invariant measure
dμ(x) [3, § 13.2]. Then, for a function (or a suitable distribution) k on X we can
define the integrated representation:

ρ(k)=
∫

X

k(x)ρ
(
s(x)
)
dμ(x), (15)

which is (possibly, unbounded) operators on (possibly, dense subspace of) H. In
particular, R(k) denotes the integrated right shifts, for H = {e}.

Theorem 5 Let k1 and k2 be two distributions on X with the respective integrated
representations ρ(k1) and ρ(k2). The following are equivalent:

i. A vector f ∈H satisfies the identity

�f
(
ρ(k1)

) ·�f
(
ρ(k2)

)= ∣∣〈[ρ(k1), ρ(k1)
]
f,f
〉∣
∣.

ii. The image of the wavelet transform Wf : v �→ ṽ(g) = 〈v,ρ(g)f 〉 consists of
functions satisfying the equation R(k1 + irk2)ṽ = 0 for some r ∈ R, where R is
the integrated form (15) of the right regular representation on G.

Proof This is an immediate consequence of a combination of Theorem 1 and Corol-
lary 3. �

Example 4 is a particular case of this theorem with k1(x, y) = δ′x(x, y) and
k2(x, y)= δ′y(x, y) (partial derivatives of the delta function), which represent vec-
tors X and Y from the Lie algebra h1. The next example will be of this type as
well.



Uncertainty and Analyticity 589

3.4 Hardy Space

Let SU(1,1) be the group of 2×2 complex matrices of the form
( α β
β̄ ᾱ

)
with the unit

determinant |α|2 − |β|2 = 1. A standard basis in the Lie algebra su1,1 is

A= 1

2

(
0 −i
i 0

)

, B = 1

2

(
0 1
1 0

)

, Z =
(

i 0
0 −i

)

.

The respective one-dimensional subgroups consist of matrices:

etA =
(

cosh t2 −i sinh t2
i sinh t2 cosh t2

)

, etB =
(

cosh t2 sinh t2
sinh t2 cosh t2

)

, etZ =
(
eit 0
0 e−it

)

.

The last subgroup—the maximal compact subgroup of SU(1,1)—is usually denoted
by K . The commutators of the su1,1 basis elements are

[Z,A] = 2B, [Z,B] = −2A, [A,B] = −1

2
Z. (16)

Let T denote the unit circle in C with the rotation-invariant measure. The mock
discrete representation of SU(1,1) [10, § VI.6] acts on L2(T) by unitary transfor-
mations

[
ρ1(g)f

]
(z)= 1

(β̄z+ ᾱ)f
(
αz+ β
β̄z+ ᾱ

)

, g−1 =
(
α β

β̄ ᾱ

)

. (17)

The respective derived representation ρ1∗ of the su1,1 basis is:

ρA1∗ = i

2

(
z+ (z2 + 1

)
∂z
)
, ρB1∗ = 1

2

(
z+ (z2 − 1

)
∂z
)
, ρZ1∗ = −iI − 2iz∂z.

Thus, ρB+iA
1∗ = −∂z and the function f+(z) ≡ 1 satisfies ρB+iA

1∗ f+ = 0. Recalling
the commutator [A,B] = − 1

2Z we note that ρ1(e
tZ)f+ = eit f+. Therefore, there is

the following identity for dispersions on this state:

�f+
(
ρA1∗
) ·�f+

(
ρB1∗
)= 1

2
,

with the minimal value of uncertainty among all eigenvectors of the operator
ρ1(e

tZ).
Furthermore, the vacuum state f+ generates the induced wavelet transform for

the subgroup K = {etZ | t ∈ R}. We identify SU(1,1)/K with the open unit disk
D = {w ∈C | |w|< 1} [5, § 5.5; 9]. The map s : SU(1,1)/K → SU(1,1) is defined
as s(w)= 1√

1−|w|2
( 1 w
w̄ 1

)
. Then, the induced wavelet transform is:

ṽ(w)= 〈v,ρ1
(
s(w)

)
f+
〉= 1

2π
√

1 − |w|2
∫

T

v(eiθ )dθ

1 −we−iθ

= 1

2π i
√

1 − |w|2
∫

T

v(eiθ )deiθ

eiθ −w .
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Clearly, this is the Cauchy integral up to the factor 1√
1−|w|2 , which presents

the conformal metric on the unit disk. Similarly, we can consider the operator
ρB−iA

1∗ = z+ z2∂z and the function f−(z)= 1
z

simultaneously solving the equations

ρB−iA
1∗ f− = 0 and ρ1(e

tZ)f− = e−it f−. It produces the integral with the conjugated
Cauchy kernel.

Finally, we can calculate the operator (12) annihilating the image of the wavelet
transform. In the coordinates (w, t) ∈ (SU(1,1)/K)×K , the restriction to the in-
duced subrepresentation is, cf. [10, § IX.5]:

L
B−iA = e2it

(

−1

2
w+ (1 − |w|2)∂w̄

)

.

Furthermore, if LB−iAṽ(w) = 0, then ∂w̄(
√

1 −ww̄ · ṽ(w)) = 0. That is, V (w) =√
1 −ww̄ · ṽ(w) is a holomorphic function on the unit disk.
Similarly, we can treat representations of SU(1,1) in the space of square inte-

grable functions on the unit disk. The irreducible components of this representation
are isometrically isomorphic [5, § 4–5] to the weighted Bergman spaces of (purely
poly-)analytic functions on the unit, cf. [11].
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Toeplitz Operators on the Harmonic Bergman
Space with Pseudodifferential Defining Symbols

Maribel Loaiza and Nikolai Vasilevski

Abstract We study the C∗-algebra T (R(C(D);SD, S∗
D
)) generated by Toeplitz op-

erators acting on the harmonic Bergman space on the unit disk whose pseudodiffer-
ential defining symbols belong to the algebra R= R(C(D);SD, S∗

D
). The algebra R

is generated by the multiplication operators aI , where a ∈ C(D), and the following
two operators

SD(ϕ)(z)= −1

π

∫

D

ϕ(ζ )

(ζ − z)2 dν(ζ ) and S∗
D
(ϕ)(z)= −1

π

∫

D

ϕ(ζ )

(ζ − z)2 dν(ζ ).

We describe the Fredholm symbol algebra of T (R(C(D);SD, S∗
D
)) and the index

formula for its Fredholm elements.

Keywords Harmonic function · Bergman space · Bergman projection ·
Anti-Bergman projection · Algebras of Toeplitz operators

Mathematics Subject Classification (2010) 31A05 · 32A36 · 32A99 · 47L80

1 Introduction

Denote by D the complex unit disk with the area measure dν(z)= dxdy, z= x+ iy.
As usual, L2(D) denotes the space of all measurable and square integrable functions
defined in D. The harmonic Bergman space b2(D) is the closed subspace of L2(D)

consisting of all complex-valued functions f (z)= u(z)+ iv(z), such that u(z), v(z)
are real-valued harmonic functions. The harmonic Bergman space is the (non direct)
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sum of the Bergman and the anti-Bergman spaces. The orthogonal projection from
L2(D) onto b2(D), denoted by Q, has the form

Q= BD + B̃D +K,

where BD is the Bergman projection, B̃D is the anti-Bergman projection, and K is a
one-dimensional operator.

Toeplitz operators, acting on b2(D), have some properties that are just analo-
gous to those for the Bergman space case. For example, the Calkin algebra of the
C∗-algebra T̂ (C(D)), generated by Toeplitz operators with continuous symbols, is
isomorphic to C(T), where T is the boundary of D. At the same time every Fred-
holm Toeplitz operator with continuous symbol has index zero (see [3] for details).
Moreover, M. Loaiza and C. Lozano proved [5] that Fredholm Toeplitz operators
with piecewise continuous symbols also have index zero.

Another substantial difference between Toeplitz operators acting on the Bergman
space and Toeplitz operators acting on the harmonic Bergman space is that the spec-
trum of a Toeplitz operator with piecewise constant symbol, acting on the Bergman
space, is always connected and it does not depend on the angles related to this dis-
continuity (see [11] for details) while for Toeplitz operators acting on the harmonic
Bergman space the spectrum of such kind of operators is not necessarily connected,
and it does depend on the angles between the curves supporting the symbol discon-
tinuities (see [5]).

Denote by R = R(C(D);SD, S∗
D
) the C∗-algebra which is generated by the mul-

tiplication operators a(z)I , where a(z) ∈ C(D), and the following two singular in-
tegral (pseudodifferential) operators

(SDϕ)(z)= − 1

π

∫

D

ϕ(ζ )

(ζ − z)2 dν(ζ ) and
(
S∗
D
ϕ
)
(z)= − 1

π

∫

D

ϕ(ζ )

(ζ − z)2 dν(ζ ),
(1.1)

and let T (C(D)) be the C∗-algebra generated by Toeplitz operators Ta with defining
symbols a(z) ∈ C(D).

A. Sánchez-Nungaray and N. Vasilevski studied [7] the C∗-algebra generated
by Toeplitz operators acting on the Bergman over the unit disk, whose pseudodif-
ferential defining symbols belong to R = R(C(D);SD, S∗

D
), and showed that both

algebras T (C(D)) and T (R(C(D);SD, S∗
D
)), which is generated by Toeplitz opera-

tors TA with defining symbols A ∈R(C(D);SD, S∗
D
), are, in fact, the same; and that

the Fredholm symbol algebra for both of them is isomorphic and isometric to C(T).
In this paper we show that, for the harmonic Bergman space, the C∗-algebra

generated by Toeplitz operators T̂A with A ∈ R(C(D);SD, S∗
D
) is not anymore iso-

morphic to the algebra generated by all Toeplitz operators with symbol in C(D). We
give a complete characterization of this algebra as well as the index formula for its
Fredholm operators.
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2 Preliminaries

Let T̂ (C(D)) be the C∗-algebra generated by all Toeplitz operators with continuous
symbols acting on the harmonic Bergman space, and denote by K the closed ideal of
all compact operators on the space L2(D). It is known [3] that the quotient algebra
T̂ (C(D))/K is ∗-isometrically isomorphic to C(T), and that this isomorphism is
given by Tφ +K �→ φ|T.

Recall also that the singular integral operators

(SDϕ)(z)= − 1

π

∫

D

ϕ(ζ )

(ζ − z)2 dν(ζ ) and
(
S∗
D
ϕ
)
(z)= − 1

π

∫

D

ϕ(ζ )

(ζ − z)2 dν(ζ )

are bounded on L2(D) and mutually adjoint. It is known as well that, for each
a(z) ∈ C(D), both commutators [SD, a(z)I ] and [S∗

D
, a(z)I ] are compact, and being

considered in the whole complex plane, these operators obey the relation S∗
C

= S−1
C

.
The description of the Fredholm symbol (Calkin) algebra SymR =

R(C(D), SD, S∗
D
)/K of the algebra R(C(D), SD, S∗

D
) is well known. Following [7]

we recall here this description.
Denote by T (C(T)) the C∗-algebra generated by all Toeplitz operators Ta ,

a ∈ C(T), acting on the Hardy space H 2(T). Let M = D × T ? T × {0,∞}, and
denote by S the set of all vector functions σ , continuous on M and having the form

σ(m)=

⎧
⎪⎨

⎪⎩

c(z, t) ∈ C, if m= (z, t) ∈ D×T,

Tc(z,t) +K0(z) ∈ T (C(T)), if m= (z,0) ∈ T× {0,∞},
Tc(z,t) +K∞(z) ∈ T (C(T)), if m= (z,∞) ∈ T× {0,∞},

where K0 and K∞ are compact operators.

Theorem 2.1 The Fredholm symbol algebra SymR of the algebra R =
R(C(D), SD, S∗

D
) is isomorphic and isometric to the algebra S. Under their identi-

fication, the symbol homomorphism

sym :R → SymR= S

is generated by the following mapping: if A = a1(z)I + a2(z)SD + a3(z)S
∗
D

and
c(z, t)= a1(z)+ a2(z)t + a3(z)t , then

(symA)(m)=

⎧
⎪⎨

⎪⎩

c(z, t) ∈C, if m= (z, t) ∈D×T,

Tc(z,t) ∈ T (C(T)), if m= (z,0) ∈ T× {0,∞},
Tc(z,t)(z) ∈ T (C(T)), if m= (z,∞) ∈ T× {0,∞}.
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3 The Bergman Type Spaces on the Upper Half Plane
and the Action of the Operators SΠ and S∗

Π

Denote byΠ the upper half plane with the area measure dν(z)= dxdy, z= x+ iy,
and denote by L2(Π) the space of all measurable and square integrable functions
defined in Π . The Bergman space A2(Π) is the closed subspace of L2(Π) consist-
ing of all analytic functions. The orthogonal Bergman projection BΠ from L2(Π)

onto A2(Π) has the following integral form

BΠf (z)= − 1

π

∫

Π

f (w)

(z− w̄)2 dν(w).

The anti-Bergman space is the closed subspace of L2(Π), denoted by Ã2(Π), con-
sisting of all measurable and anti-analytic functions. The orthogonal projection from
L2(Π) onto Ã2(Π) is called the anti-Bergman projection, is denoted by B̃Π , and
its integral form is as follows

B̃Πf (z)= − 1

π

∫

Π

f (w)

(z̄−w)2 dν(w).

The space Ã2
n(Π) of n-anti-analytic functions is the subspace of L2(Π) consisting

of all functions ϕ(z, z)= ϕ(x, y), which satisfy the equation
(
∂

∂z

)n

ϕ = 1

2n

(
∂

∂x
− i ∂
∂y

)n

ϕ = 0.

The space A2
n(Π) of n-analytic functions is the subspace of L2(Π) consisting of all

functions ϕ(z, z)= ϕ(x, y), which satisfy the equation
(
∂

∂z

)n

ϕ = 1

2n

(
∂

∂x
+ i ∂
∂y

)n

ϕ = 0.

The space A2
(n)(Π) of true-n-analytic functions is the subspace of L2(Π) consisting

of all functions in the set

A2
(n)(Π)= A2

n(Π)@A2
n−1(Π), for n > 1, and A2

(1)(Π)= A2
1(Π).

Analogously, the space of Ã2
(n)(Π) of true-n-anti-analytic functions is the subspace

of L2(Π) consisting of all functions in the set

Ã2
(n)(Π)= Ã2

n(Π)@ Ã2
n−1(Π), for n > 1, and Ã2

(1)(Π)= Ã2
1(Π).

It is well known, see for example [9], that the Hilbert space L2(Π) admits the fol-
lowing direct sum decomposition

L2(Π)=
∞⊕

k=1

A2
(k)(Π)⊕

∞⊕

k=1

Ã2
(k)(Π).
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Theorem 3.1 ([4, 10]) For all admissible indexes, we have

(SΠ)
k
∣
∣
A2
(n)
(Π)

:A2
(n)(Π)→ A2

(n+k)(Π),
(
S∗
Π

)k∣∣
A2
(n)
(Π)

:A2
(n)(Π)→ A2

(n−k)(Π),

(SΠ)
k
∣
∣
Ã2
(n)
(Π)

: Ã2
(n)(Π)→ Ã2

(n−k)(Π),
(
S∗
Π

)k∣∣
Ã2
(n)
(Π)

: Ã2
(n)(Π)→ Ã2

(n+k)(Π).

These operators are unitary and the corresponding adjoint operators are the
restrictions of the adjoint operators to the corresponding spaces. Besides
(SΠ)

k(Ã2
(j))= {0}, (S∗

Π)
k(A2

(j))= {0} if k ≥ j .
Furthermore, for all n ∈N we have

(SΠ)
n
(
S∗
Π

)n
(SΠ)

n = (SΠ)n and
(
S∗
Π

)n
(SΠ)

n
(
S∗
Π

)n = (S∗
Π

)n
.

The relations between the Bergman projection, anti-Bergman projection, and the
powers of the singular integral operators SΠ and S∗

Π are given in the next corollary.

Corollary 3.2 For n,m ∈ Z+ we have

BΠ
(
S∗
Π

)m
(SΠ)

nBΠ =
{
BΠ, if m= n,
0, if m �= n,

B̃Π(SΠ)
m
(
S∗
Π

)n
B̃Π =

{
B̃Π , if m= n,
0, if m �= n,

(3.1)

while for n,m ∈N, BΠ(SΠ)m(S∗
Π)
nBΠ = 0, B̃Π(S∗

Π)
m(SΠ)

nB̃Π = 0.
Furthermore, for n,m ∈ Z+

1. B̃Π (SΠ)
m
(
S∗
Π

)n
BΠ = 0, 2. BΠ(SΠ)

m
(
S∗
Π

)n
B̃Π = 0,

3. B̃Π
(
S∗
Π

)m
(SΠ)

nBΠ = 0, 4. BΠ
(
S∗
Π

)m
(SΠ)

nB̃Π = 0.

Proof To prove (3.1) we use Theorem 3.1 and the representation B̃Π = I − S∗
ΠSΠ .

Then, for n > 0:

B̃Π
(
S∗
Π

)m
(SΠ)

nB̃Π = B̃Π
(
S∗
Π

)m
(SΠ)

n
(
I − S∗

ΠSΠ
)

= B̃Π
((
S∗
Π

)m
(SΠ)

n − (S∗
Π

)m
(SΠ)

n−1SΠS
∗
ΠSΠ

)

= B̃Π
((
S∗
Π

)m
(SΠ)

n − (S∗
Π

)m
(SΠ)

n−1SΠ
)= 0.

If n= 0 and m> 0, we have

B̃Π
(
S∗
Π

)m
B̃Π = (I − S∗

ΠSΠ
)(
S∗
Π

)m
B̃Π = ((S∗

Π

)m − S∗
ΠSΠS

∗
Π

(
S∗
Π

)m−1)
B̃Π = 0.
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On the other hand if m> n

B̃Π(SΠ)
m
(
S∗
Π

)n
B̃Π = B̃Π(SΠ)m−n(SΠ)n

(
S∗
Π

)n
B̃Π .

According to Theorem 3.1, (SΠ)n(S∗
Π)
n = I when it is restricted to Ã2(Π). Then,

B̃Π(SΠ)
m
(
S∗
Π

)n
B̃Π = B̃Π(SΠ)m−nB̃Π = B̃Π(SΠ)m−n(I − S∗

ΠSΠ
)

= B̃Π
(
(SΠ)

m−n − (SΠ)m−n−1SΠS
∗
ΠSΠ

)

= B̃Π
(
(SΠ)

m−n − (SΠ)m−n−1SΠ
)= 0.

If m= n, then B̃Π(SΠ)n(S∗
Π)
nB̃Π = B̃ΠI B̃Π = B̃Π .

The proofs of (1), (2), (3) and (4) are quite similar. We prove here only (1). To do
so we use Theorem 3.1 and the representations BΠ = I − SΠS∗

Π, B̃Π = I − S∗
ΠSΠ

to get, in the case n > 0:

B̃Π(SΠ)
m
(
S∗
Π

)n
BΠ = B̃Π(SΠ)m

(
S∗
Π

)n(
I − SΠS∗

Π

)

= B̃Π(SΠ)m
((
S∗
Π

)n − (S∗
Π

)n−1
S∗
ΠSΠS

∗
Π

)

= B̃Π(SΠ)m
((
S∗
Π

)n − (S∗
Π

)n)= 0.

For n= 0 it is enough to observe that the image of the operator (SΠ)mBΠ is con-
tained in A2

(m+1)(Π), which is orthogonal to Ã2(Π). �

4 Toeplitz Operators on the Harmonic Bergman Space
on the Upper Half Plane

The harmonic Bergman space b2(Π) is the closed subspace of L2(Π) which con-
sists of all complex-valued functions f (z)= u(z)+ iv(z), with u and v being real-
valued harmonic functions.

Since A2(Π) and Ã2(Π) are mutually orthogonal spaces, we have that b2(Π)=
A2(Π) ⊕ Ã2(Π) (see [6] for details), and that the orthogonal projection Q from
L2(Π) onto b2(Π) is of the form

Q= BΠ + B̃Π .
A Toeplitz operator T̂A, with symbol A ∈ R(C, SΠ,S∗

Π), is defined on b2(Π) by
the standard formula,

T̂A =QΠAQΠ = (BΠ + B̃Π)A(BΠ + B̃Π).
Thus, with respect to the decomposition b2(Π)= A2(Π)⊕ Ã2(Π), it has the fol-
lowing matrix form

T̂A =
(
BΠABΠ BΠAB̃Π
B̃ΠABΠ B̃ΠAB̃Π

)

.
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4.1 Toeplitz Operators on the Harmonic Bergman Space
on the Upper Half Plane with Defining Symbol
in R(CCC,SΠ,S∗

Π)

In this section we analyze the interaction between SΠ,S∗
Π and the harmonic

Bergman space on the upper half plane.

Lemma 4.1 Given k1, . . . , kN ,n1, . . . , nN ∈ Z+ such that

m∑

i=1

ni ≤
m∑

i=1

ki for m= 1, . . . ,N − 1, (4.1)

N∑

i=1

ni =
N∑

i=1

ki, (4.2)

then

1. there exists s ∈ Z+ such that

(
S∗
Π

)nN (SΠ)
kN . . .

(
S∗
Π

)n1(SΠ)
k1 = (S∗

Π

)s
(SΠ)

s,

2. there exists s ∈ Z+ such that

(SΠ)
nN
(
S∗
Π

)kN . . . (SΠ)
n1
(
S∗
Π

)k1 = (SΠ)s
(
S∗
Π

)s
.

Proof The proof of (1) was already done in [7]. To prove (2) observe that,
for n1, . . . , nN and k1, . . . , kN such that (4.1) and (4.2) hold, there exists j ∈
{1, . . . ,N − 1} such that

(a) kj ≥ nj and kj+1 ≥ nj or
(b) nj ≥ kj+1 and nj+1 ≥ kj+1.

If (a) holds then

(SΠ)
nN
(
S∗
Π

)kN . . . (SΠ)
n1
(
S∗
Π

)k1

= (SΠ)nN
(
S∗
Π

)kN . . . (SΠ)
nj+1
(
S∗
Π

)kj+1

(SΠ)
nj
(
S∗
Π

)kj . . . (SΠ)
n1
(
S∗
Π

)k1

= (SΠ)nN
(
S∗
Π

)kN . . . (SΠ)
nj+1
(
S∗
Π

)kj+1−nj
(
S∗
Π

)nj (SΠ)
nj
(
S∗
Π

)nj (S∗
Π

)kj−nj . . . (SΠ)n1
(
S∗
Π

)k1

= (SΠ)nN
(
S∗
Π

)kN . . . (SΠ)
nj+1
(
S∗
Π

)kj+1+kj−nj

(SΠ)
nj−1
(
S∗
Π

)kj−1 . . . (SΠ)
n1
(
S∗
Π

)k1 .
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If (b) holds then

(SΠ)
nN
(
S∗
Π

)kN . . . (SΠ)
n1
(
S∗
Π

)k1

= (SΠ)nN
(
S∗
Π

)kN . . . (SΠ)
nj+1
(
S∗
Π

)kj+1(SΠ)
nj
(
S∗
Π

)kj . . . (SΠ)
n1
(
S∗
Π

)k1

= (SΠ)nN
(
S∗
Π

)kN . . . (SΠ)
nj+1−kj+1(SΠ)

kj+1
(
S∗
Π

)kj+1(SΠ)
kj+1

(SΠ)
nj−kj+1 . . . (SΠ)

n1
(
S∗
Π

)k1

= (SΠ)nN
(
S∗
Π

)kN . . . (SΠ)
nj+1+nj−kj+1

(
S∗
Π

)kj . . . (SΠ)
n1
(
S∗
Π

)k1 .

Observe that in both cases, (a) and (b), we can apply the above argument induc-
tively N − 1 times. In each step we use the new family of indexes gotten in the
preceding step. �

Given a multi-index J = (n1, k1, . . . , nN , kN), where ni, ki ∈ Z+, the non-
commutative monomial mJ (x, y) is defined by

mJ (x, y)= ynN xkN . . . yn1xk1,

and set its degree by

degmJ = |J | = nN + kN + · · · + n1 + k1.

Denote by I0,0 the set of indexes J = (n1, k1, . . . , nN , kN) that satisfy conditions
(4.1) and (4.2) and such that the monomial mJ (SΠ,S∗

Π) starts with SΠ . Denote
by I ∗

0,0 the set of indexes J = (n1, k1, . . . , nN , kN) that satisfy conditions (4.1) and
(4.2) and such that the monomial mJ (SΠ,S∗

Π) starts with S∗
Π .

Corollary 4.2 Let mJ (x, y) be a non-commutative monomial, then

BΠmJ
(
SΠ,S

∗
Π

)
BΠ =

{
BΠ, if J ∈ I ∗

0,0,

0, otherwise,

B̃ΠmJ
(
SΠ,S

∗
Π

)
B̃Π =

{
B̃Π , if J ∈ I0,0,
0, otherwise.

Furthermore,

BΠmJ
(
SΠ,S

∗
Π

)
B̃Π = 0, B̃ΠmJ

(
SΠ,S

∗
Π

)
BΠ = 0.

Proof Follows from Lemma 4.1 and Corollary 3.2. �

The following lemma is an immediate consequence of last corollary.
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Lemma 4.3 Let P(x, y) be a non-commutative polynomial of degree k

P (x, y)=
∑

|J |≤k
aJmJ (x, y),

where aJ ∈ C. Then

BΠP
(
SΠ,S

∗
Π

)
BΠ = bpBΠ,

where bp =∑|J |≤k,J∈I∗
0,0
aJ .

Analogously,

B̃ΠP
(
SΠ,S

∗
Π

)
B̃Π = b̃pB̃Π ,

where b̃p =∑|J |≤k,J∈I0,0 aJ .
Furthermore,

BΠP
(
SΠ,S

∗
Π

)
B̃Π = 0, B̃ΠP

(
SΠ,S

∗
Π

)
BΠ = 0.

Theorem 4.4 Let A be an element of R(C, SΠ,S∗
Π). Then the Toeplitz opera-

tor T̂A, acting on b2(Π), is equal to

bABΠ + b̃AB̃Π ,
where bA = 〈Af0, f0〉, b̃A = 〈Af1, f1〉, and f0 ∈A2(Π),f1 ∈ Ã2(Π) are such that
‖f0‖ = ‖f1‖ = 1.

Proof The set of noncommutative polynomials P(SΠ,S∗
Π) is dense in the algebra

R(C, SΠ,S∗
Π). Then

T̂P (SΠ ,S∗
Π)

= (BΠ + B̃Π)P
(
SΠ,S

∗
Π

)
(BΠ + B̃Π)

= BΠP
(
SΠ,S

∗
Π

)
BΠ +BΠP

(
SΠ,S

∗
Π

)
B̃Π

+ B̃ΠP
(
SΠ,S

∗
Π

)
B̃Π + B̃ΠP

(
SΠ,S

∗
Π

)
BΠ.

Using Lemma 4.3 we get

T̂P (SΠ ,S∗
Π)

= bpBΠ + b̃pB̃Π .
On the other hand

bp = 〈bpBΠf0, f0〉 = 〈TP(SΠ ,S∗
Π)
f0, f0〉 = 〈BΠP

(
SΠ,S

∗
Π

)
BΠf0, f0

〉

= 〈P (SΠ,S∗
Π

)
f0, f0

〉
.

Analogously,

b̃p = 〈P (SΠ,S∗
Π

)
f1, f1

〉
.
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Since the functionals

A �−→ 〈Af0, f0〉 and A �−→ 〈Af1, f1〉
are continuous on R(C, SΠ,S∗

Π), the result follows. �

The next theorem is the main result of this section.

Theorem 4.5 Given a symbol A ∈R(C, SΠ,S∗
Π), the Toeplitz operator T̂A, acting

on the harmonic Bergman space b2(Π), is represented, with respect to the decom-
position b2(Π)= A2(Π)⊕ Ã2(Π), by the diagonal operator

T̂A =
(
TA 0
0 T̃A

)

=
(
bAI 0

0 b̃AI

)

.

Here TA : A2(Π)→ A2(Π) is the Toeplitz operator with pseudodifferential sym-
bol A and T̃A : Ã2(Π)→ Ã2(Π) is the corresponding Toeplitz operator acting on
the anti-Bergman space Ã2(Π).

Proof Recall that the harmonic Bergman projection has the form QΠ = BΠ + B̃Π ,
thus

T̂A =QΠAQΠ = (BΠ + B̃Π)A(BΠ + B̃Π)
= BΠABΠ + B̃ΠAB̃Π +BΠAB̃Π + B̃ΠABΠ.

Using Corollary 3.2, we get the result for every polynomial P(SΠ,S∗
Π). For a gen-

eral case we only need to approximate each element in R(C, SΠ,S∗
Π) by noncom-

mutative polynomials. �

Corollary 4.6 The C∗-algebra T̂ (R(C, SΠ,S∗
Π)) is isomorphic to C⊕C with the

isomorphism defined on the generators by:

T̂A → (bA, b̃A).

To give alternative, to those of Theorem 4.4, formulas for bA and b̃A we proceed
as follows. Theorems 3.1, 3.2, and Remark 3.3 of [10] stay that both operators SΠ
and S∗

Π are unitary equivalent to the direct sum of two unilateral shifts, forward and
backward, both taken with the infinite multiplicity. This implies [1] the isometric
isomorphism of the next C∗-algebras

κ :R(C, SΠ,S∗
Π

)−→ T
(
C(T)

)⊕ T
(
C(T)

)
,

which is generated by the following assignment

κ(SΠ)= (Tt , Tt ), κ
(
S∗
Π

)= (Tt , Tt ).
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Recall, that T (C(T)) denotes the C∗-algebra generated by all Toeplitz opera-
tors Ta with continuous defining symbols a(t) ∈ C(T) and acting on the Hardy
space H 2(T). We use the standard normalized measure on T, so that the system of
functions {tk}k∈Z+ forms an orthonormal basis in H 2(T).

The Bergman projection BΠ = I − SΠS
∗
Π and the anti-Bergman projection

B̃Π = I − S∗
ΠSΠ belong to the algebra R(C, SΠ,S∗

Π), and

κ(BΠ)= (I − TtTt ,0), κ(B̃Π)= (0, I − TtTt ),
with I − TtTt being the one-dimensional projection of H 2(T) onto the subspace
generated by 1. The next alternative formulas for bA and b̃A thus follow

bA = 〈σ0(A)1,1
〉
, b̃A = 〈σ∞(A)1,1

〉
,

where (σ0(A),σ∞(A))= κ(A).

5 The Algebra ̂T (R(C(DDD);SDDD,S∗
DDD
))

Consider now the C∗-algebra T̂ (R(C(D), SD, S∗
D
)) generated by Toeplitz opera-

tors T̂A, with A ∈ R(C(D), SD, S∗
D
), and acting on the harmonic Bergman space

b2(D) on the unit disk.
Given an operator A ∈ R(C(D), SD, S∗

D
), consider its Fredholm symbol (see

Theorem 2.1)

symA=

⎧
⎪⎨

⎪⎩

c(z, t) ∈ C, (z, t) ∈ D× S1,

σ0(A, z)= Tc(z,t) +K0(z) ∈ T (C(S1)), (z,0) ∈ S1 × {0,∞},
σ∞(A, z)= Tc(z,t) +K∞(z) ∈ T (C(S1)), (z,∞) ∈ S1 × {0,∞}.

Theorem 5.1 The Fredholm symbol algebra

Sym T̂
(
R
(
C(D), SD, S

∗
D

))= T̂
(
R
(
C(D), SD, S

∗
D

))
/K

of the algebra T̂ (R(C(D), SD, S∗
D
)) is isomorphic and isometric to C(T)⊕ C(T).

The isomorphism is given on the generators by the following formula: for any A ∈
R(C(D), SD, S∗

D
),

sym T̂A = (bA(z), b̃A(z)
)

= (〈σ0(A, z)1,1
〉

H 2(T)
,
〈
σ∞(A, z)1,1

〉

H 2(T)

)
. (5.1)

Proof The algebra T̂ (R(C(D), SD, S∗
D
)) contains the ideal K of all compact op-

erators. To describe its Calkin algebra we use the standard Douglas–Varela local
principle [2, 8] with T̂ (C(D))/K ∼= C(T) as a central commutative subalgebra of
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T̂ (R(C(D), SD, S∗
D
))/K. We localize thus by points z0 ∈ T. Given z0 ∈ T, introduce

the unitary operator Vz0 : L2(Π)→ L2(D),

(Vz0ϕ)(z)=
2iz0

(z0 + z)2 ϕ
(

i
z0 − z
z0 + z

)

.

It is easy to check that

V −1
z0
SDVz0 = (iz0)

2SΠh(w)I, V −1
z0
S∗
D
Vz0 = (iz0)

2h(w)S∗
Π,

where h(w) = (i+w)4
|i+w|4 . As h(0) = 1 we have that V −1

z0
SDVz0 is locally equivalent

at the point 0 to (iz0)
2SΠ and V −1

z0
S∗
D
Vz0 is locally equivalent at the point 0 to

(iz0)
2S∗
Π . The operator V −1

z0
a(z)Vz0 is locally equivalent at the point 0, to the oper-

ator a(z0)I . By Corollary 2.3 of [7] the operators (iz0)
2SΠ and (iz0)

2S∗
Π are also

unitary equivalent to the direct sum of two unilateral shifts, forward and backward,
both taken with the infinite multiplicity. Thus the arguments of the last part of the
previous section imply the theorem assertion. �

Let T be an arbitrary operator from T̂ (R(C(D), SD, S∗
D
)), and let symT =

(b(z), b̃(z)) ∈ C(T) ⊕ C(T) be its Fredholm symbol. In particular, if T = T̂A for
some A ∈ R(C(D), SD, S∗

D
), then its Fredholm symbol is given by (5.1). We ex-

tend then the functions b(z) and b̃(z), being continuous on T, to functions b#(z)

and b̃#(z) that are continuous on the closed unit disk D. Then, with respect to the
representation b2(D)= A2(D)+ Ã2(D), we have

T =
(
Tb# 0
0 T̃b̃#

)

+K,

where K is a compact operator.

Corollary 5.2 With respect to the representation b2(D)= A2(D)+ Ã2(D), the al-
gebra T̂ (R(C(D), SD, S∗

D
)) coincides with the next matrix algebra

(
T (C(D)) K1,2

K2,1 T̃ (C(D))

)

.

Here T (C(D)) denotes the C∗-algebra generated by all Toeplitz operators with
continuous symbol acting on A2(D), T̃ (C(D)) denotes the C∗-algebra generated
by all Toeplitz operators with continuous symbol acting on Ã2(D), K1,2 is a set of
compact operators from Ã2(D) to A2(D), and K2,1 is a set of compact operators
from A2(D) to Ã2(D).

The proof of the next corollary follows from the formula for the index of a
Fredholm Toeplitz operator acting on the Bergman space and from the fact that
every Fredholm Toeplitz operator with continuous symbol, acting on the harmonic
Bergman space, has index equal to zero.
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Corollary 5.3 An operator T ∈ T̂ (R(C(D), SD, S∗
D
)) is Fredholm if and only if its

Fredholm symbol symT = (b(z), b̃(z)) does not vanish, i.e., b(z) �= 0, b̃(z) �= 0, for
all z ∈ T. The index of a Fredholm operator T is given by

IndT = 1

2π
arg

{
b̃(z)

b(z)

}

T

.
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of Polyanalytic Functions
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Abstract We prove Paley–Wiener theorems for the true poly-Bergman and poly-
Bergman spaces based on properties of the compression of the Beurling–Ahlfors
transform to the upper half-plane. An isometric isomorphism between j copies of
the Hardy space and the poly-Bergman space of order j is constructed.

Keywords Beurling–Ahlfors transform · Paley–Wiener theorems · Polyanalytic
functions · Poly-Bergman space

Mathematics Subject Classification (2010) Primary 46E22 · 32A25 · Secondary
31A10

1 Introduction

The so-called classical Paley–Wiener Theorem states that the complex Fourier trans-
form defines an isometric isomorphism between the L2 Lebesgue space on the pos-
itive real line L2(R+) and the Hardy space over the upper half-plane. N. Vasilevski
in [11, Theorem 2.4] proved a Paley–Wiener type theorem for the Bergman space by
showing that the composition of the complex Fourier transform and the multiplica-
tion operator by the square root defined on R

+ gives a unitary operator from L2(R+)
onto the Bergman space over the upper half-plane. More recently, in [2, Theorem 1]
P. Duren et al. proved a Paley–Wiener theorem for weighted Bergman spaces, and
L. Abreu in [1] showed that the poly-Bergman space of order j over the upper half-
plane is isometrically isomorphic to j copies of the Hardy space. This last result
could be easily obtained from [11, Theorem 4.5], even if the fruitful techniques of
this paper were not applied to construct isometric isomorphisms between L2(R+)
and true poly-Bergman or poly-Bergman spaces.
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In the present paper, we will establish Paley–Wiener theorems for the true poly-
Bergman and poly-Bergman spaces based on properties of the compression SΠ of
the Beurling–Ahlfors transform to the upper half-plane. We will prove that the ac-
tion of the singular integral operator SΠ on the Bergman space coincides with a
differential operator. This allows us to construct an isometric isomorphism from
L2(R+) onto the true poly-Bergman and onto the poly-Bergman spaces, where its
images can be represented as sums of both yk and Laguerre polynomials Lk(y), for
y := Im z and k = 0,1, . . . , with analytic coefficients given in terms of the complex
Fourier transform. From the classical Paley–Wiener theorem it then follows that the
poly-Bergman space of order j is isometrically isomorphic to j copies of the Hardy
space.

2 The Paley–Wiener Theorem for Bergman Spaces

The Hardy space over the upper half-plane Π := {z : Im z > 0} is a Hilbert space
of functions denoted here by A2

∂ (Π), that consists of those analytic functions on Π
which have finite norm given by

‖f ‖2
∂ = sup

y>0

∫

R

∣
∣f (x + iy)∣∣2dx.

The classical isomorphism between the one-dimensional Lebesgue space and the
Hardy space over Π is given by the complex Fourier transform

Fc : L2(
R

+, dt
)→ A2

∂ (Π), F cf (z)= 1√
2π

∫ +∞

0
f (t)eizt dt. (2.1)

Here, L2(R+, dt) or simpler L2(R+) denote the one-dimensional Lebesgue space
on the positive real line R

+. The unitary character of the operator in (2.1) is usually
known as the Paley–Wiener theorem for Hardy spaces.

The Bergman space A2(Π,dAα) consists of those analytic functions on Π
which also belong to the Lebesgue space L2(Π,dAα) endowed with the weighted
measure dAα(z) := yαdA(z), where z := x + iy are Cartesian coordinates and
dA(z) := dxdy denotes the area Lebesgue measure. In the case α = 0, the un-
weighted Bergman space is usually denoted by A2(Π). In this paper, the space
Ā2(Π) represents the unweighted anti-Bergman space of integrable anti-analytic
functions on Π . It is well known that A2(Π,dAα), for α >−1, is a Hilbert space
endowed with the inner product induced by that of L2(Π,dAα). The following re-
sult can be called a Paley–Wiener type theorem for the weighted Bergman space.

Theorem 2.1 [2, Theorem 1] For α >−1, the complex Fourier transform

Fcαf (z)=
2α/2√

πΓ (α + 1)

∫ +∞

0
f (t)eizt dt, z ∈Π,

defines an isometric isomorphism from L2(R+, dt/tα+1) onto A2(Π,dAα).
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It is clear that the following operator is a unitary operator

T : L2(
R

+, dt
)→ L2(

R
+, dt/t

)
, T g(t)= √

tg(t).

Hence, from this fact and Theorem 2.1, we prove that two related operators, one for
the Bergman (see, also [11, Theorem 2.4]) and the other for the anti-Bergman case,
are unitary.

Theorem 2.2 (see, also [11, Theorem 2.4]) The following operators are unitary
operators

R : L2(
R

+, dt
)→ A2(Π), Rf (z)= 1√

π

∫ +∞

0

√
tf (t)eizt dt, (2.2)

R̃ : L2(
R

+, dt
)→ Ā2(Π), R̃f (z)= 1√

π

∫ +∞

0

√
tf (t)e−izt dt. (2.3)

Proof It is clear that R = Fc0 T . Then the fact that the operator (2.2) is unitary fol-
lows straightforward. On the other hand, observe that the unitary operator

V : L2(Π)→ L2(Π), Vf (z)= f (−z) (2.4)

transforms A2(Π) onto Ā2(Π). Since R̃ = VR, this concludes the proof. �

3 A Paley–Wiener Theorem for the True Poly-Bergman Space

Let j be a nonzero integer. Then a complex smooth function f defined on a domain
U ⊂ C (non-empty, bounded and connected) and satisfying

∂
j

z f = 0, j > 0 or ∂
−j
z f = 0, j < 0,

respectively, is said to be a j -analytic function on U . The poly-Bergman space
A2
j (U) consists of j -analytic functions on U which also belong to the Lebesgue

space L2(U,dA). It is clear that f ∈A2−j (U) if and only if f̄ ∈A2
j (U). Therefore,

the space A2−j (U) will also here be denoted by Ā2
j (U). It is known that evalua-

tion functionals on A2
j (U) are uniformly bounded within U (see, e.g. [5, 7]). Then,

it easily follows that poly-Bergman spaces are Hilbert spaces. Moreover, based
on [7, Proposition 2.3] we know that, for n,m= 0,1, . . . and z ∈U , one has

∣
∣∂nz ∂

m
z f (z)

∣
∣≤ M

dn+m+1
z

‖f ‖, f ∈A2
j (U), (3.1)

where M > 0 is a constant only depending on n,m and j , and dz is defined as the
distance dz = dist(z, ∂U).
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Let S denote the (unitary) Beurling–Ahlfors transform (see, e.g. [6]), i.e. S is
defined to be the following two-dimensional singular integral operator

Sf (z) := − 1

π

∫

C

f (w)

(w− z)2 dA(w), f ∈ L2(C).

The compression of the Beurling–Ahlfors transform to L2(Π) is denoted by SΠ ,
i.e. SΠ := χΠSχΠI , where χΠI is the multiplication operator by the characteristic
function χΠ of Π . It is known that the poly-Bergman projection, which is defined
to be the orthogonal projection of L2(Π) onto A2

j (Π), is related to the singular in-
tegral operator SΠ through the so-called Dzhuraev’s formulas. More precisely, if j
is a positive integer, then we know (see [8] and [12]) that (SΠ)j is a partial isometry
with initial and final spaces given by the orthogonal spaces of Ā2

j (Π) and of A2
j (Π),

respectively. Based on this fact, the following result (see Theorem 3.1 below) on uni-
tary operators acting between the Bergman and the true poly-Bergman spaces was
established in [3] by the first author jointly with Yu.I. Karlovich. N. Vasilevski gave
a different proof in [12] based on methods that can be found in [11] (see also [10]).
The true poly-Bergman spaces A2

(j)
(Π) were introduced by N. Vasilevski in [11]

and are defined by

A2
(±1)(Π) := A2±1(Π) and A2

(j)(Π) := A2
j (Π)@A2

j−sgn j (Π), |j |> 1.

Clearly f ∈ A2
(−j)(U) if and only if f̄ ∈ A2

(j)(U). Hence, as for the poly-Bergman

space, the space A2
(−j)(U) will also here be denoted by Ā2

(j)(U).

Theorem 3.1 [3, Theorem 2.4] (see also [12, Theorem 3.5] and [13]) Let j be a
positive integer. Then the following operators are isometric isomorphisms

(SΠ)
j−1 : A2(Π)→A2

(j)(Π) and
(
S∗
Π

)j−1 : Ā2(Π)→ Ā2
(j)(Π).

In the following result we will prove that the natural powers of SΠ acting on the
Bergman space coincide with a nice differential operator. For this propose we will
use a special property of Π according to which the iterations of SΠ can be given
as a singular integral operator with an explicit kernel. For a domain U ⊂ C and for
a nonzero integer j , we consider the following two-dimensional singular integral
operator acting on L2(U,dA)

SU,jf (z) := (−1)j |j |
π

∫

U

(w− z)j−1

(w− z)j+1
f (w)dA(w).

From [8] (see also [4, Corollary 2.4]) we know that:

SΠ,j = (S∗
Π

)j and SΠ,−j = (SΠ)j (j = 1,2, . . .). (3.2)

Lemma 3.2 The set of functions which satisfy the following conditions

ψ ∈ C∞(Π)∩A2(Π) and ψ(z)= O
(
1/|z|2), as |z| → +∞ (3.3)

is dense in A2(Π), where Π denotes the closure of the upper half-plane Π .
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Proof Nonzero analytic functions do not admit a zero set with cluster points
withinΠ . From the reproducing property of the Bergman kernel functionKΠ(z,w)
it follows that the orthogonal space to the set {KΠ,iy : y > 1} is the trivial space.
Hence, its linear span is dense in A2(Π). Since

KΠ,w(z) :=KΠ(z,w)= − 1

π

1

(z−w)2 ,

for y > 1, the functions KΠ,iy(z) satisfy the conditions in (3.3). �

Theorem 3.3 Let j be a positive integer. Then it holds that

(SΠ)
j−1ψ(z)= ∂

j−1
z [(z− z)j−1ψ(z)]

(j − 1)! , ψ ∈A2(Π), (3.4)

(
S∗
Π

)j−1
ψ(z)= ∂

j−1
z [(z− z)j−1ψ(z)]

(j − 1)! , ψ ∈ Ā2(Π). (3.5)

Proof If j = 1, then the assertions are evident. Then, first we assume that j = 2, . . .
and that ψ ∈ A2(Π) satisfies conditions (3.3). Let us define

D(z, r, ε) :=D(z, r)\D(z, ε) and Π(z, r) :=Π ∩D(z, r,1/r),
where 0< ε < r and D(z, r) denotes the disc centered at z ∈Π with radius r > 0.
It is easily seen that the following equalities hold:

lim
ε→0+

∫

|z−w|=ε
(w− z)j−1

(w− z)j ψ(w)dw = lim
r→+∞

∫

Π∩∂D(z,r)
(w− z)j−1

(w− z)j ψ(w)dw = 0.

Hence, from (3.2) together with the well known Green’s formula
∫

U

∂wu(w)dA(w)= 1

2i

∫

∂U

u(w)dw, u ∈ C1(U),

where U is a bounded finitely connected domain with piecewise smooth boundary,
we obtain

(SΠ)
j−1ψ(z)= (−1)j−1

π
lim

r→+∞

∫

Π(z,r)

∂w

[
(w− z)j−1ψ(w)

(w− z)j
]

dA(w)

= 1

2πi

∫

R

(z− t)j−1ψ(t)

(t − z)j dt = ∂
j−1
z [(z− z)j−1ψ(z)]

(j − 1)! . (3.6)

Let now ψ ∈ A2(Π) be arbitrary. From Lemma 3.2 we know that there exists a
sequence of functions ψn ∈ A2(Π) that satisfy conditions (3.3) and such that ψn
converges in the norm of L2(Π) to ψ . Convergence in the norm implies weak con-
vergence, and by (3.1) we know that the latter implies the uniform convergence of
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all derivatives withinΠ . Now, we just apply the last equality in (3.6) to the sequence
of functions ψn, and easily obtain that

(SΠ)
j−1ψ(z)= lim

n
(SΠ)

j−1ψn(z)= lim
n

∂
j−1
z [(z− z)j−1ψn(z)]

(j − 1)!

= ∂
j−1
z [(z− z)j−1ψ(z)]

(j − 1)! .

We have proved (3.4). For the remaining part we note the following relations

(
S∗
Π

)j−1 = V (SΠ)j−1V and ∂
j−1
z V ϕ = (−1)j−1V ∂

j−1
z ϕ,

where V is the unitary operator defined by (2.4) and ϕ is a smooth function. Since,
the operator V transforms Ā2(Π) onto A2(Π), then (3.5) follows straightforwardly
from (3.4) and the above relations. �

In the next result we state a Paley–Wiener theorem for the true poly-Bergman
spaces. In essence we will show that the operators

R(j) := (SΠ)j−1R and R̃(j) :=
(
S∗
Π

)j−1
R̃ (j = 1,2, . . .)

are unitary operators from L2(R+) onto A2
(j)(Π) and onto Ā2

(j)(Π), respectively.
We will manage this with the help of the Laguerre polynomials

Ln(z) :=
n∑

k=0

(
n

k

)
(−1)k

k! zk, n= 0,1, . . . .

Theorem 3.4 Let j be a positive integer. Then the following operators

R(j) : L2(
R

+)→ A2
(j)(Π), R(j)f (z)= ∂

j−1
z [(z− z)j−1Rf (z)]

(j − 1)! , (3.7)

R̃(j) : L2(
R

+)→ Ā2
(j)(Π), R̃(j)f (z)=

∂
j−1
z [(z− z)j−1R̃f (z)]

(j − 1)! (3.8)

are isometric isomorphisms. Furthermore, if y := (z− z)/(2i) then

R(j)f (z)=
j−1∑

k=0

ykϕk(z)=
j−1∑

k=0

Lk(y)φk(z), (3.9)

R̃(j)f (z)=
j−1∑

k=0

ykϕk(−z)=
j−1∑

k=0

Lk(y)φk(−z), (3.10)
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where the analytic components ϕk and φk satisfy the following conditions

ϕk = Fc2kfk ∈A2(Π,dA2k) and φk = Fc2j−2hk ∈ A2(Π,dA2j−2), (3.11)

and, for k = 0, . . . , j − 1, the functions fk and hk are respectively given by

fk(t) := (−1)j−1+k
(
j − 1

k

)√
(2k)!
k!

√
t2k+1f (t), (3.12)

hk(t) := (−1)k
(
j − 1

k

)
√
(2j − 2)!

√
t2k+1(t − 1/2)j−1−kf (t). (3.13)

Proof The assertion that the operators defined by (3.7) and (3.8) are unitary oper-
ators follows from Theorems 2.2, 3.1 and 3.3. Moreover, from (3.7), (2.2) and the
derivative of the parametric integral, we obtain

R(j)f (z)= 1√
π

∫ +∞

0

√
tf (t)

∂
j−1
z [(z− z)j−1eizt ]

(j − 1)! dt. (3.14)

Then, since we can compute straightforwardly

∂
j−1
z [(z− z)j−1eizt ]

(j − 1)! = eizt
j−1∑

k=0

(
j − 1

k

)
(−1)j+k−1

k!
[
it (z− z)]k (3.15)

= (−1)j−1eiztLj−1
(
it (z− z)), (3.16)

where Lj−1 is the Laguerre polynomial of degree j − 1, the first equality at (3.9),
the relations on the left of (3.11) and (3.12) follow from (3.15) together with (3.14).
Moreover, based on the following special case of generating relations for Laguerre
polynomials (see, e.g. [9, Chap. 12])

Ln(λz)=
n∑

k=0

(
n

k

)

(1 − λ)n−kλkLk(z), λ �= 0,

we can conclude that the second equality at (3.9), the relations on the right of (3.11)
and (3.13) follow from (3.16) together with (3.14). The case when j is negative
follows from the above and from the following operator equalities

R̃(j) =
(
S∗
Π

)j−1
R̃ = (S∗

Π

)j−1
VR = V (SΠ)j−1R = VR(j). �

4 Paley–Wiener Type Theorems for the Poly-Bergman Space

Let j be a positive integer, H be a Hilbert space and [H]j denote the Hilbert space of
all j × 1 matrices (fk)k with entries in H. Since the poly-Bergman space coincides
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with the direct sum of its true poly-Bergman spaces, i.e.

A2
j (Π)=

j⊕

k=1

A2
(k)(Π) and Ā2

j (Π)=
j⊕

k=1

Ā2
(k)(Π),

then the next result is a straightforward consequence of Theorem 3.4.

Theorem 4.1 For j = 1,2, . . . , the following operators are unitary operators

Rj : [L2(
R

+)]
j

→ A2
j (Π), Rj (fk)k(z)=

j∑

k=1

R(k)fk(z),

R̃j : [L2(
R

+)]
j

→ Ā2
j (Π), R̃j (fk)k(z)=

j∑

k=1

R̃(k)fk(z).

It is well known that a function defined in A2
∂ (Π) admits non-tangential limits

almost at every point t ∈R, i.e. the following function of real variable

f (t) := lim
z→t

f (z) whenever Π � z→ t ∈ R nontangentially

is well defined, for almost every t ∈ R, and f (t) ∈ L2(R). Moreover, the real Fourier
transform F ∈ B(L2(R)) defined in the following way

Ff (x)= 1√
2π

∫

R

f (t)e−ixt dt, x ∈R

is isometric from A2
∂ (Π) onto L2(R+), i.e. the following operator is unitary

F : A2
∂ (Π)→ L2(

R
+).

Thus, from Theorem 4.1 we can conclude the following result.

Theorem 4.2 For j = 1,2, . . . , the following operators are unitary operators

Wj : [A2
∂ (Π)

]

j
→ A2

j (Π), Wj (fk)k(z)=
j∑

k=1

R(k)Ffk(z),

W̃j : [A2
∂ (Π)

]

j
→ Ā2

j (Π), W̃j (fk)k(z)=
j∑

k=1

R̃(k)Ffk(z).
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Fredholm Theory of Pseudodifferential
Operators Acting in Variable Exponent Spaces
of Bessel Potentials on Smooth Manifolds

Vladimir Rabinovich

Abstract The paper is devoted to the of Fredholm property of pseudodifferential
operators acting in the spaces of Bessel potentials connected with variable exponent
Lebesgue spaces on smooth compact manifolds and non compact manifolds with
conical structure at infinity.

1 Introduction

The paper is devoted to an overview of some results of the papers [10, 11] concern-
ing the local and global Fredholmness of pseudodifferential operators on R

n act-
ing in the spaces of Bessel potentials connected with variable exponent Lebesgue
spaces, and applications of these results to the investigation of the Fredholm prop-
erty of pseudodifferential operators acting in the spaces of Bessel potentials with
variable exponents on smooth compact and noncompact manifolds.

It should be noted that the last decade there arose a big interest to investigations
of the classical operators of the analysis: singular and maximal operators, Hardy
operators, pseudodifferential operators in the variable exponent Lebesgue spaces.
See for instance the book [3], papers [4–7] and references cited there. See also the
paper [10] devoted to boundedness and compactness of pseudodifferential operators
in the L. Hörmander class OPS0

1,0(R
n) and their Fredholm properties in weighted

variable exponent Lebesgue spaces Lp(·)w (Rn) where w is an exponential weight,
and the paper [11] where the results of [10] where applied to investigations of the
Fredholm property of singular integral operators on composed Carleson curves Γ
acting in weighted variable exponent Lebesgue spaces Lp(·)w (Γ ).

Our aim here is to show that the Fredholm theory of pseudodifferential operators
on R

n obtained in [10] can be extended on pseudodifferential operators acting in
Bessel potential spaces Hs,p(·)(M) where M are compact smooth manifolds or a
non compact smooth manifolds of conical structure at infinity.
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2 Pseudodifferential Operators

• We will use the standard notations: C∞(Rn) ⊃ C∞
b (R

n) ⊃ S(Rn) ⊃ C∞
0 (R

n)

for spaces of infinitely differentiable functions, infinitely differentiable functions
bounded with all derivatives, infinitely differentiable functions decreasing at in-
finity rapidly than every function |x|−N , N ∈ N with all derivatives, and for in-
finitely differentiable functions with compact supports on R

n, respectively. We
denote by SO∞(Rn) the subspace of C∞

b (R
n) of slowly oscillating functions,

that is functions u ∈ C∞
b (R

n) such that

lim
x→∞ ∂xj u(x)= 0, j = 1, . . . , n.

• If X,Y are Banach spaces, we denote by B(X,Y ) the space of all bounded linear
operators acting from X into Y , and by K(X,Y ) the subspace of B(X,Y ) of all
compact operators. If X = Y we will write B(X),K(X), respectively.

• We say that a function a is a symbol in the L. Hörmander class Sm1,0(R
n) if

a ∈ C∞(Rnx ×R
n
ξ ), and

|a|r,t = max|α|≤r,|β|≤t sup
Rn×Rn

∣
∣∂αξ ∂

β
x a(x, ξ)

∣
∣〈ξ 〉−(m−|α|) <∞ (1)

for all r, t ∈ N∪0. As usual, we associate with a symbol a ∈ Sm1,0(Rn) a pseudod-
ifferential operator defined on the space C∞

0 (R
n) by the formula

Op(a)u(x)= (2π)−n
∫

Rn

dξ

∫

Rn

a(x, ξ)u(y)ei(x−y,ξ)dy (2)

and we denote the class of such operators byOPSm1,0(R
n). For the standard prop-

erty of pseudodifferential operators see for instance the book [12].
• A symbol a ∈ Sm1,0(Rn) is called slowly oscillating at infinity if for all multiinde-

ces α,β
∣
∣∂αξ ∂

β
x a(x, ξ)

∣
∣≤ Cαβ(x)〈ξ 〉m−|α|, (3)

where limx→∞Cαβ(x) = 0 for every α and β �= 0. We denote by SOm1,0(R
n),

the class of slowly oscillating symbols, and by S̊m1,0(R
n) the class of sym-

bols for which conditions (3) hold for all multiindices α,β . We use the nota-
tions OPSOm1,0(R

n),OP S̊m1,0(R
n) for the classes of operators with symbols in

SOm1,0(R
n), S̊m1,0(R

n), respectively.
• Let p be a measurable function on R

n such that p : Rn → (1,∞). The general-
ized Lebesgue space with variable exponent is defined via the modular

Ip(f ) :=
∫

Rn

∣
∣f (x)

∣
∣p(x)dx (4)

by the norm

‖f ‖p(·) = inf

{

λ > 0 : Ip
(
f

λ

)

≤ 1

}

.
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In what follows we assume that p satisfies the conditions

1<p− := inf
x∈Rn p(x)≤ sup

x∈Rn
p(x)=: p+ <∞,

∣
∣p(x)− p(y)∣∣≤ A

log 1
|x−y|

, x, y ∈ R
n, |x − y| ≤ 1

2
,

∣
∣p(x)− p(∞)∣∣≤ A

log 1
1+|x|

, x ∈ R
n.

The class of p(·) satisfying these properties is denoted by P(Rn), and we set
p′(x)= p(x)

p(x)−1 .

Definition 1 We say that a distribution u ∈ S′(Rn) belongs to Hs,p(·)(Rn), s ∈ R,
p ∈P(Rn) if

‖u‖Hs,p(·)(Rn) =
∥
∥〈D〉su∥∥

Lp(·)(Rn) <∞,
where 〈D〉s =Op(〈ξ 〉s), 〈ξ 〉 = (1 + |ξ |2)1/2.

There are other definitions of the spaceHs,p(·)(Rn) (see for instance the book [3],
and the papers [1, 2]).

Theorem 2 [10] Let p ∈ P(Rn). Then: (i) An operator Op(a) ∈ OPSm1,0 is

bounded fromHs,p(·)(Rn) intoHs−m,p(·)(Rn); (ii) An operatorOp(a) ∈OP S̊m−ε
1,0 ,

ε > 0 is a compact operator from Hs,p(·)(Rn) into Hs−m,p(·)(Rn).

3 Local and Global Fredholm Property of Operators
in OPSm

1,0(RRR
n) Acting at the Spaces Hs,p(·)(RRRn)

3.1 Local Fredholmness

• Let U be a neighborhood of the point x0 ∈ R
n. We say that φ ∈ C∞

0 (R
n) is a

smooth characteristic function of a neighborhood U , if there exists a neigbour-
hood U ′ of the point x0 such that Ū ′ ⊂ U , 0 ≤ φ(x) ≤ 1, and φ(x) = 1 for all
x ∈ Ū ′.

• We say that an operator A ∈ B(Hs,p(·)(Rn),H s−m,p(·)(Rn)) is locally Fredholm
at the point x0 ∈ R

n if there exists a neighborhood Ux0 of the point x0, a smooth
characteristic function φ of a neighborhood Ux0 and operators Rx0 ,Lx0 ∈
B(Hs−m,p(·)(Rn),H s,p(·)(Rn)) such that

Lx0AφI = φI + T ′
x0
, φARx0 = φI + T ′′

x0
, (5)

where T ′
x0

∈ K(Hs,p(·)(Rn)), T ′′
x0

∈K(Hs−m,p(·)(Rn)).
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Theorem 3 An operator Op(a) ∈ OPSm1,0(Rn) acting from Hs,p(·)(Rn) into

Hs−m,p(·)(Rn) is locally Fredhom at the point x0 ∈R
n if and only if

lim inf
ξ→∞

∣
∣a(x0, ξ)

∣
∣〈ξ 〉−m > 0. (6)

• We denote by R̃
n the compactification of the space R

n obtained by joining an
infinitely distant point ηω to every ray {x ∈ R

n : x = tω, t > 0,ω ∈ Sn−1}. The
fundamental system of neighborhoods at an infinitely distant point ηω forms the
conical neighborhoods

Uηω = {x ∈ R
n : x = rθ : r > a > 0, θ ∈Ωω

}
(7)

where Ωω is a neighborhood of the point ω on the unit sphere. We denote by
M = R̃

n
�R

n the set of all infinitely distant point of R̃n.
• Let Uηω be a neighborhood of the infinitely distant point ηω. We say that
φ ∈ C∞

b (R
n) is a smooth characteristic function of a neighborhood Uηω , if there

exists a neighborhood U ′
ηω

of the point ηω such that Ū ′
ηω

⊂ Uηω , 0 ≤ φ(x) ≤ 1,
and φ(x) = 1 for all x ∈ Ū ′. As above we define the local Fredholmness of the
operator A ∈ B(Hs,p(·)(Rn),H s−m,p(·)(Rn)) at the infinitely distant point ηω.

Theorem 4 An operator Op(a) ∈ OPSOm1,0(Rn) acting from Hs,p(·)(Rn) into

Hs−m,p(·)(Rn) is locally Fredholm at infinitly distant point ηω if and only if

lim inf
x→ηω

inf
ξ∈Rn
∣
∣a(x, ξ)

∣
∣〈ξ 〉−m > 0. (8)

The main result on the Fredholmness of pseudodifferential operators in the class
OPSOm1,0(R

n) on the variable exponent Bessel potential spaces is:

Theorem 5 Let Op(a) ∈ OPSOm1,0(R
n). Then Op(a) : Hs,p(·)(Rn) →

Hs−m,p(·)(Rn) is a Fredholm operator if and only if:

(i) for every point x0 ∈ R
n condition (6) holds;

(ii) for every point ηω ∈M condition (8) holds.

If conditions (6), (8) hold then

ker
(
Op(a) :Hs,p(·)(Rn)→Hs−m,p(·)

(
R
n
))⊂ S(Rn), (9)

ker
(
Op(a)∗ :H−s,p′(·)(

R
n
)→H−s−m,p′(·)(

R
n
))⊂ S(Rn). (10)

Hence the Fredholm index Op(a) :Hs,p(·)(Rn)→Hs−m,p(·)(Rn) coincides with a
Fredholm index of Op(a) :Hs,2(Rn)→Hs−m,2(Rn).

Remark 6 LetOp(a) ∈OPSOm1,0(Rn) be a differential operator and conditions (6),
(8) hold. Then the functions u ∈ ker(Op(a)) have subexponential decreasing at in-
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finity, that is, for every δ > 0, r ∈ (0,1), and for every multiindex α
∣
∣∂αu(x)

∣
∣≤ Cα exp

(−δ|x|r).

4 Pseudodifferential Operators on Smooth Manifolds

4.1 Compact Manifolds

Let M be a C∞ compact closed n-dimensional manifold. We denote by C∞(M),
C∞

0 (M) the spaces of all smooth functions onM and a subspace of all smooth func-
tions with compact supports. If X is some chart inM and κ :X→X′ ⊂ R

n is a dif-
feomorphism then κ

∗ : C∞
0 (X

′)→ C∞
0 (X), κ

∗ : C∞(X′)→ C∞(X) are blow-up
of the diffeomorphism κ. We introduce also the operators of the natural embedding
iX : C∞

0 (X)→ C∞
0 (M) and natural restrictions rX : C∞(M)→ C∞(X).

An operatorA : C∞
0 (M)→ C∞(M) is called a pseudodifferential operator of the

classOPSm1,0(M) if for every chart diffeomorphism κ :X→X′ (X is not necessary

connected set) the operator κ∗−1rXAiXκ
∗ : C∞

0 (X
′)→ C∞(X′) is a restriction on

X′ by a pseudodifferential operator in the class OPSm1,0(R
n) (see for instance [12],

p. 36). The theorem of the change of variable for pseudodifferential operators al-
lows to define the main symbol σA of A ∈OPSm1,0(M) as a function on the cotan-

gent bundle T ∗(M). Let {ηj }Nj=1 be a partition of unity on M corresponding to a

covering of M by the system {Xj }Nj=1 of charts κj : Xj → X
′
j ⊂ R

n. By means

of the partition of unity {ηj }Nj=1, ηj ∈ C∞
0 (M) on M one can introduce the spaces

Hs,p(·)(M):

‖u‖Hs,p(·)(M) =
N∑

j=1

∥
∥(ηju) ◦κ−1

j

∥
∥
Hs,p(·)(Rn) <∞.

Note that the different partitions of unity lead to equivalent norms.

Theorem 7 An operator A ∈ OPSm1,0(M) is Fredholm from Hs,p(·)(M) into

Hs−m,p(·)(M) if and only if

σA(x, ξ) �= 0 for all (x, ξ) ∈ T ∗(M)\(M × {0}).
If the previous condition holds, then

ker
(
A :Hs,p(·)(M)→Hs−m,p(·)(M)

)⊂ C∞(M),

ker
(
A∗ :H−s,p′(·)(M)→H−s−m,p′(·)(M)

)⊂ C∞(M).

Hence the classical theory of pseudodifferential operators on compact smooth
manifolds is transferred on pseudodifferential operators acting in Hs,p(·)(M).
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The proof of Theorem 7 is based on a finite partition of unity, coordinate diffeo-
morphisms, and the local Fredholmness condition given in Theorem 3.

4.2 Non Compact Manifolds

Non compact manifolds and pseudodifferential operators on them considered below
were introduced in [8] (see also [9]) where their Fredhom theory in the spacesHs,p ,
p ∈ (1,∞) has been constructed.

• We say that a C∞ manifoldM belongs to the class N(n) ifM admits a compact-
ification M̃ =M ∪M∞ by a setM∞ of infinitely distant points. We suppose that
a fundamental system of neighborhoods of an infinitely distant point ζ ∈M∞ is
given by open sets Ũ ⊂ M̃ such that there exists a homeomorphism κ : Ũ → Ũ ′
where U ′ is an open conical set (U ′ = {x ∈ R

n : x = tω, t > R > 0,ω ∈ Ω}),
Ω is an open set on the unit sphere Sn ⊂ R

n+1, and Ũ ′ is the closure of U ′ in R̃
n.

• We say that a homeomorphism κ̃ : X̃→ X̃′ ⊂ R̃
n is anM∞-chart if X̃∩M∞ �= ∅,

and X̃′ is a closure of an open conic set in R̃
n, and κ̃ |X= κ :X→X′ are diffeo-

morphisms with the following property: if κ1 :X1 →X′
1, κ2 :X2 →X′

2, where
X′

1 ∩X′
2 �= ∅ then

d
(
κ1 ◦κ−1

2

) ∈ SO∞(X′
1 ∩X′

2

)⊗B
(
R
n
)
,

d
(
κ2 ◦κ−1

1

) ∈ SO∞(X′
1 ∩X′

2

)⊗B
(
R
n
)
.

(11)

One can see that M̃ is a Hausdorf compact space. By the definition of the
manifolds M ∈ N(n) there exists a finite covering of M̃ by charts of two types:
(i) κ :X→X′, where X′ ⊂ R

n is a bounded open set; (ii) κ :X→X′, where X′ is
an open conical set in R

n (not necessary connected).
A typical example of such manifold is a smooth n-dimensional surfaceM ⊂ R

n+1

with a conical structure at infinity, that is such thatM ∩ {x ∈R
n+1 : |x|>R > 0} =

{x ∈ R
n+1 : x = tω, t > R,ω ∈Ω} for some R > 0, where Ω is a C∞ closed n− 1

dimensional surface on the unit sphere Sn ⊂ R
n+1.

Definition 8 We say that A is a pseudodifferential operator of the class
OPSOm1,0(M),M ∈N(n) if for every above defined charts κ :X→X′ the operator

κ
∗−1rXAiXκ

∗ : C∞
0 (X

′)→ C∞(X′) is a restriction on X′ of a pseudodifferential
operator in the class OPSOm1,0(R

n).

Theorem 9 Let A ∈ OPSOm1,0(M). Then A : Hs,p(·)(M)→ Hs−m,p(·)(M) is a
Fredholm operator if and only if:

(i) The main symbol σA(x, ξ) �= 0 for every points (x, ξ) ∈ T ∗(M)\(M × {0});
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(ii) Let ζ ∈M∞, X̃ be a coordinate neighborhood of ζ , κ̃ : X̃→ X̃′ be a coordinate
homomorphism, κ̃(ζ )= η ∈ R̃

n, and

κ
∗−1rXAiXκ

∗ =Op(aκ),
aκ ∈ SOm1,0(Rn).

Then for every point ζ ∈M∞

lim inf
x→η

inf
ξ∈Rn
∣
∣aκ(x, ξ)

∣
∣> 0. (12)

Remark 10 One can proof that condition (12) independent of a choice of the chart.

The proof of Theorem 9 is based on the finite partition of unity and the local
Fredholmness criteria of Theorems 3, 4.

Remark 11 Of course the results of Theorems 7, 9 are extended on pseudodifferen-
tial operators acting in sections of smooth vector bundles belonging to the variable
exponent spaces of Bessel potentials over manifoldsM .
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Boundary Value Problems for the Radiative
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Abstract The paper contains a brief description of some new results about the
boundary value problems for the radiative transfer equation with the reflection and
refraction conditions.
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1 Introduction

We consider the monochromatic radiative transfer in the system G =⋃mj=1Gj of
semitransparent bodies Gj separated by the vacuum. Each body Gj is a bounded
domain in R

3 with boundary ∂Gj ∈ C1. We assume that Gi and Gj are pairwise
disjoint, whereas their boundaries can intersect for some i �= j . Let Ω = {ω ∈ R

3 |
|ω| = 1} be a sphere of directions. The sought function I (ω,x) is defined on the set
D =Ω ×G and is interpreted as the radiation intensity at a point x ∈G when the
radiation propagates along the direction ω ∈Ω . Assume that each Gj is occupied
by a medium with constant absorption κj > 0 and scattering sj ≥ 0 coefficients
and the refraction exponent kj > 1. We set κ(x)= κj , s(x)= sj and k(x)= kj for
x ∈ Gj . To describe the radiation propagation in G, we use the radiative transfer
equation

ω · ∇I + (κ + s)I = sS(I )+ k2F, (ω,x) ∈D,
where ω · ∇I denotes the derivative of a function I along the direction ω and S
denotes the scattering operator

S(I )(ω, x)= 1

4π

∫

Ω

θj
(
ω ·ω′)I

(
ω′, x

)
dω′, (ω, x) ∈Dj =Ω ×Gj, 1 ≤ j ≤m,
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with the scattering indicatrix possessing the following properties:

θj ∈ L1(−1,1), θj ≥ 0,
1

2

∫ 1

−1
θj (μ)dμ= 1.

The mathematical properties of the radiative transfer equation were studied by
many authors; see for example [1–3]. The most studied problems in this relation
are boundary value problems for this equation with the continuity condition for
the radiation intensity imposed on the interface between media with different optic
properties. In this case, the radiation passes through the interface without changing
direction and intensity. In some applications (for example, the theory of neutron
transfer), such conditions are justified from the physical point of view. However, in
many applications (for example, optics, tomography, thermal physics), the reflec-
tion and refraction of radiation at the interface between media should be taken into
account. The boundary value problems for the radiative transfer equation with the
reflection and refraction conditions are still studied unsatisfactory, in spite of their
importance. Some problems of such type were treated in [2, 4]. Problems for the ra-
diative transfer equation with the reflection and refraction conditions in accordance
with the Fresnel laws were first studied in [5, 6].

This paper contains a brief description of some new results [7–9] about the
boundary value problems for the radiative transfer equation with the reflection and
refraction conditions.

2 Notations and Function Spaces

Let x · y =∑3
i=1 xiyi be the inner product in R

3 and let nj be the outward normal
to the boundary ∂Gj of the domain Gj . We set

Γ =Ω × ∂G=
m⋃

j=1

Γj , Γj =Ω × ∂Gj , 1 ≤ j ≤m,

Γ − =
m⋃

j=1

Γ −
j , Γ −

j = {(ω, x) ∈ Γj
∣
∣ ω · nj (x) < 0

}
, 1 ≤ j ≤m,

Γ + =
m⋃

j=1

Γ +
j , Γ +

j = {(ω, x) ∈ Γj
∣
∣ ω · nj (x) > 0

}
, 1 ≤ j ≤m.

Assume that the measure dΓ (ω,x) = dωdσ(x) is introduced on Γ . Here dω
and dσ(x) are the measures induced by the Lebesgue measure in R

3 on Ω and ∂G
respectively.

Let 1 ≤ p ≤ ∞ and E± be a subset of Γ ±, measurable with respect to the mea-
sure dΓ . We denote by L̂p(E±) and L̂1,p(E±) the Banach spaces of functions g
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defined on E±, measurable with respect to the measure dΓ and (after extending
them by zero to Γ ± \E±) possess the finite norms

‖g‖L̂p(E±) =
{
(
∑m
j=1

∫

Γ ±
j

|g(ω,x)|p|ω · nj (x)|dωdσ(x))1/p, 1 ≤ p <∞,
ess sup(ω,x)∈E |g(ω,x)|, p = ∞,

‖g‖L̂1,p(E±) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
∑m
j=1

∫

∂Gj
[∫
Ω±
j (x)

|g(ω,x)||ω · nj (x)|dω]pdσ(x))1/p,
1 ≤ p <∞,

max1≤j≤m ess supx∈∂Gj
∫

Ω±
j (x)

|g(ω,x)||ω · nj (x)|dω,
p = ∞.

Hereinafter,

Ω+
j (x)=

{
ω ∈Ω ∣∣ ω · nj (x) > 0

}
, Ω−

j (x)=
{
ω ∈Ω ∣∣ ω · nj (x) < 0

}
.

We denote by Lp(D) the Banach space of functions f defined on D and mea-
surable with respect to the measure dωdx with the finite norm

‖f ‖Lp(D) =
{
(
∫

D
|f (ω,x)|pdωdx)1/p, 1 ≤ p <∞,

ess sup(ω,x)∈D |f (ω,x)|, p = ∞.
We denote by Wp(D) the Banach space of functions f ∈ Lp(D) possessing the

weak derivative ω · ∇f ∈ Lp(D) equipped with the norm

‖f ‖Wp(D) =
{
(‖f ‖pLp(D) + ‖ω · ∇f ‖pLp(D))1/p, 1 ≤ p <∞,
max{‖f ‖L∞(D),‖ω · ∇f ‖L∞(D)}, p = ∞.

We will denote by f |Γ ± and f |Γ ±
j

the traces of function f ∈ Wp(D) on Γ ± and

Γ ±
j respectively. It is known that the traces f |Γ ± of a function f ∈ Wp(D) with

1 ≤ p <∞ do not necessarily belong to L̂p(Γ ±). We introduce

Ŵp(D)= {f ∈ Wp(D)
∣
∣ f |Γ − ∈ L̂p(Γ −), f |Γ + ∈ L̂p(Γ +)}.

3 Boundary Value Problem for the Radiative Transfer Equation
with Specular Reflection and Refraction Conditions
in Accordance with the Fresnel Laws

3.1 Reflection and Refraction Laws

Remind that under our assumption, each body Gj is occupied by a homogeneous
material with refraction exponent kj > 1. We assume that the radiation is nonpo-
larized. We denote by J (ω′, x) the intensity of radiation propagating in the vacuum
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and falling to a point x of the surface ∂Gj in the direction ω′ under the incidence
angle ϕ′ with cosϕ′ = μ′

j = ω′ ·nj (x) < 0. The incident radiation is partially mirror
reflected by the surface ∂Gj in the direction

ω= ω′ − 2μ′
j nj (x) (3.1)

under reflection angle ϕ with cosϕ = μj = ω · nj (x) = −μ′
j and is partially re-

fracted, entering the body Gj in the direction

ω̂= μ̂j nj (x)+ 1

kj

(
ω′ −μ′

j nj (x)
)

(3.2)

under the reflection angle ψ with cosψ = μ̂j = ω̂ · nj (x) = −ν−
j (μ

′
j ), where

ν−
j (μ

′
j )=

√

1 − k−2
j (1 − (μ′

j )
2). Note that −1 ≤ μ̂j ≤ μ̂j,lim =

√
1 − 1/k2

j .

The reflected radiation has intensity r+j (μj )J (ω′, x), whereas the refracted radi-

ation has intensity (1 − r+j (μj ))k2
j J (ω

′, x). Here, r+j and r−j are coefficients of the
outer and inner reflections connected by

r−j (μ̂j )= r+j
(
ν+
j (μj )

)
, r+j (μj )= r−j

(−ν−
j (μj )

)
,

where ν+
j (μ̂j )=

√
1 − k2

j (1 − (μ̂j )2).
In the classical geometric optics, according to the Fresnel formulas, the coeffi-

cient of the outer reflection for nonpolarized radiation has the form

r+j (μj )=
1

2

[(
μj − kj ν−

j (μj )

μj + kj ν−
j (μj )

)

+
(
kjμj − ν−

j (μj )

kjμj + ν−
j (μj )

)]

, 0 ≤ μj ≤ 1.

From (3.1) we can find the value ω′ = ω−2μjnj (x) for the direction of the inci-
dent radiation from the vacuum which is reflected in a given direction ω. From (3.2),
where the direction of the refracted radiation is denoted by ω, we obtain the formula
ωP−

j
(ω, x)= −ν+

j (μj )nj (x)+kj (ω−μjnj (x)) for the direction ω′ of the incident

radiation which is refracted in a prescribed direction ω.
Let I |Γ +

j
(ω′, x) be an intensity of the radiation propagating inside the domain

Gj and falling to a point x ∈ ∂Gj in the direction ω′ under the incidence angle
ϕ′ with cosϕ′ = μ′

j = ω′ · nj (x) > 0. If μ′
j ≤ μ̂j,lim, then the effect of complete

inner reflection holds: the radiation is completely reflected and propagates in the
direction (3.1) under the reflection angle ϕ with cosϕ = μj = ω ·nj (x)= −μj < 0.
If μ̂lim,j < μ

′
j , then the radiation is partially reflected by the surface in the direction

(3.1) and is partially refracted and goes from the body Gj to the vacuum along the
direction

ω̂= μ̂j nj (x)+ kj
(
ω′ −μ′

j nj (x)
)

(3.3)

under the refraction angle ψ with cosψ = μ̂j = ω̂ · nj (x)= ν+
j (μ

′
j ) The intensity

of the reflected radiation is equal to r−j (μj )I |Γ +
j
(ω′, x), whereas the intensity of the
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refracted radiation is equal to (1 − r−j (μj )) 1
k2
j

I |Γ +
j
(ω′, x). From (3.1) we find the

value ω′ = ω−μjnj (x) for the direction of the incident radiation which is reflected
in a given direction ω. From (3.3), where the direction of the refracted radiation is
denoted by ω, we have the direction ωP+

j
(ω, x)= ν−

j (μj )nj (x)+ 1
kj
(ω−μjnj (x))

of the incident radiation refracted in a prescribed direction ω.

3.2 Boundary Operators

Let μj = ω · nj (x) for (ω, x) ∈ Γj , 1 ≤ j ≤m. We introduce the sets

Γ̂ −
j = {(ω, x) ∈ Γ −

j

∣
∣−μ̂j,lim ≤ μj < 0

}
,

∨
Γ −
j = {(ω, x) ∈ Γ −

j

∣
∣ μj <−μ̂j,lim

}

and define the operators R− and R+ of outer and inner reflections by

R−(I |Γ +)(ω, x)= r−j (μj )I |Γ +
j

(
ω− 2μjnj (x), x

)
, (ω, x) ∈ Γ −

j , 1 ≤ j ≤m,
R+(J )(ω,x)= r+j (μj )J

(
ω− 2μjnj (x), x

)
, (ω, x) ∈ Γ +

j , 1 ≤ j ≤m.

Note that r−j (μj )= 1 for (ω, x) ∈ Γ̂ −
j and, consequently,

R−(I |Γ +)(ω, x)= I |Γ +
j

(
ω− 2μjnj (x), x

)
, (ω, x) ∈ Γ̂ −

j , 1 ≤ j ≤m.

We introduce the refraction operators P− and P+ inside G and outside G by the
formulas

P−(J )(ω,x)=
⎧
⎨

⎩

(1 − r−j (μj ))k2
j J (ωP−

j
(ω, x), x), (ω, x) ∈ ∨

Γ −
j ,

0, (ω, x) ∈ Γ̂ −
j ,

1 ≤ j ≤m,

P+(I |Γ +)(ω, x)= (1 − r+j (μj )
) 1

k2
j

I |Γ +
j

(
ωP+

j
(ω, x), x

)
,

(ω, x) ∈ Γ +
j , 1 ≤ j ≤m.

Introduce the sets

S−
j =
{

(ω, x) ∈ Γ −
j

∣
∣
∣ x ∈ ∂Gj

∖⋃

i �=j
∂Gi

}

, S− =
m⋃

j=1

S−
j ,

∗
S

−
j = {(ω, x) ∈ S−

j

∣
∣ {x − tω | t > 0} ∩G= ∅}, ∗

S− =
m⋃

j=1

∗
S−
j ,
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S̃− = {(ω, x) ∈ S− \ ∗
S− ∣∣ (ω,X−(ω, x)

) ∈ Γ +},

where X−(ω, x)= x − τ−(ω, x)ω, τ−(ω, x)= inf{t > 0 | x − tω ∈G}.
We define the translation operator T by the formula

T ϕ(ω,x)= ϕ(ω,X−(ω, x)
)
, (ω, x) ∈ S̃−.

Let ∂Gj ∩ ∂Gj �= ∅ for some i �= j . We introduce Γ −
ij = Γ −

i ∩ Γ +
j and define

the operators R−
ij and P−

ij by the formulas

R−
ij (I |Γ +

i
)(ω, x)= r−ij (μi)I |Γ +

i

(
ω− 2μini(x), x

)
, (ω, x) ∈ Γ −

ij ,

P−
ij (I |Γ +

j
)(ω, x)=

⎧
⎨

⎩

(1 − r−ij (μi)) k
2
i

k2
j

I |Γ +
j
(ωP−

ij
(ω, x), x), (ω, x) ∈ ∨

Γ −
i ∩ Γ +

j ,

0, (ω, x) ∈ Γ̂ −
i ∩ Γ +

j ,

where

ωP−
ij
(ω, x)= −ν+

ij (μi)ni(x)+
ki

kj

(
ω−μini(x)

)
,

ν+
ij (μi)=

√

1 − k2
i /k

2
j

(
1 −μ2

i

)
.

If the surfaces ∂Gi and ∂Gj are separated by an infinitely thin vacuum layer at
the points of tangency, then

r−ij (μi)=
⎧
⎨

⎩

r−i (μi)+r+j (ν+
i (μi ))−2r−i (μi)r

+
j (ν

+
i (μi))

1−r−i (μi)r+j (ν+
i (μi ))

, −1 ≤ μi <−μ̂i,lim,
1, −μ̂i,lim ≤ μi ≤ 0.

In the general case, it is assumed that the reflection coefficients r−ij are continuous
functions on [−1,0] possessing the following properties:

r−ij (μi)= 1 for − μ̂i,lim ≤ μi ≤ 0, 0 ≤ r−ij (μi) < 1 for − 1 ≤ μi <−μ̂i,lim,
r−ji
(−η+

ij (μi)
)= r−ij (μi) for μi ∈ [−1,−μ̂i,lim].

3.3 Statement of the Boundary Conditions

For (ω, x) ∈ S̃− the radiation J falling on ∂G from the vacuum goes from a point
X−(ω, x) ∈ ∂G. This radiation is composed of the reflected and refracted radiations
at the point X−(ω, x):

J = TR+(J )+ TP+(I |Γ +), (ω, x) ∈ S̃−.
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For (ω, x) ∈ ∗
S− the radiation J goes from outside, and we can assume that it is

prescribed:

J = J∗, (ω, x) ∈ ∗
S−.

For (ω, x) ∈ S− the radiation I |Γ − entering the body G is composed of the re-
flected and refracted radiations:

I |Γ − = R−(I |Γ +)+P−(J ), (ω, x) ∈ S−.

Finally, for (ω, x) ∈ Γ −
ij the following condition is imposed:

I |Γ −
i

= R−
ij (I |Γ +

i
)+P−

ij (I |Γ +
j
), (ω, x) ∈ Γ −

ij .

3.4 Main Results

We consider the boundary value problem

ω · ∇I + (κ + s)I = sS(I )+κk2F, (ω,x) ∈D, (3.4)

I |Γ − = R−(I |Γ +)+P−(J ), (ω, x) ∈ S−, (3.5)

I |Γ −
i

= R−
ij (I |Γ +

i
)+P−

ij (I |Γ +
j
), (ω, x) ∈ Γ −

ij , i �= j, (3.6)

J = TR+(J )+ TP+(I |Γ +), (ω, x) ∈ S̃−, (3.7)

J = J∗, (ω, x) ∈ ∗
S−, (3.8)

describing the radiative transfer in the system of semitransparent bodies with taking
into account reflection and refraction on their boundaries.

By a solution to the problem (3.4)–(3.8) we mean a function I ∈ W1(D) that
satisfies (3.4) almost everywhere (a.e.) on D and the conditions (3.5), (3.6) a.e.
on S−,

⋃
i �=j Γ

−
ij respectively. Moreover, the function J such that (1 − r+)J ∈

L̂1(S−) satisfies the conditions (3.7) and (3.8) a.e. on S̃− and
∗
S− respectively.

Theorem 3.1 [7] Let F ∈ Lp(D), J∗ ∈ L̂p(∗S−) with some p ∈ [1,∞]. Then the
problem (3.4)–(3.8) has a unique solution I ∈ Wp(D). Moreover, the solution sat-
isfies the estimates (where 1/q = 1 − 1/p)

∥
∥κ1/pk−2/qI

∥
∥
Lp(D)

≤ (∥∥κ1/pk2/pF
∥
∥p
Lp(D)

+ ‖J∗‖p
L̂p(

∗
S−)

)1/p
,

∥
∥κ−1/qk−2/qω · ∇I∥∥

Lp(D)
≤ 2

1 −!max

(∥
∥κ1/pk2/pF

∥
∥p
Lp(D)

+ ‖J∗‖p
L̂p(

∗
S−)

)1/p
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for 1 ≤ p <∞ and the estimates
∥
∥k−2I

∥
∥
L∞(D) ≤ max

{‖F‖L∞(D),‖J∗‖
L∞(

∗
S−)

}
,

∥
∥κ−1k−2ω · ∇I∥∥

L∞(D) ≤
2

1 −!max
max
{‖F‖L∞(D),‖J∗‖

L∞(
∗
S−)

}

for p = ∞. Here !max = max1≤j≤m
sj

κj+sj .

The result about continuous dependence in W1(D) norm of solutions of the prob-
lem (3.4)–(3.8) on the data is proved in [9]. Moreover it is shown that if k→ 1 then
the solutions of the problem (3.4)–(3.8) tend to the solution of the following problem
with “shooting conditions”:

ω · ∇I + (κ + s)I = sS(I )+κF, (ω,x) ∈D,
I |Γ − = T (I |Γ +), (ω, x) ∈ S̃−,

I |Γ − = J∗, (ω, x) ∈ ∗
S−,

I |Γ −
i

= I |Γ +
j
, (ω, x) ∈ Γ −

ij , i �= j.

4 Boundary Value Problem for the Radiation Transfer Equation
with Diffuse Reflection and Refraction Conditions

4.1 Diffuse Reflection and Diffuse Refraction Laws. Boundary
Operators

Let J (ω′, x) be the intensity of the radiation propagating in the vacuum and falling
on the surface ∂Gj at a point x in a direction ω′ ∈Ω−

j . This radiation is partially

diffusely reflected (i.e., it has the same intensity in all directions ω ∈Ω+
j (x)) by the

surface and partially diffusely refracted (i.e., it has the same intensity in all direc-
tions ω ∈Ω−

j (x)), entering the body Gj . The intensities of reflected and refracted
radiations are independent of the propagation direction and are equal, respectively,

R+
d (J )(ω,x)≡

ρ+
j (x)

π

∫

Ω−
j (x)

J
(
ω′, x

)∣
∣ω′ · nj (x)

∣
∣dω,

(ω,x) ∈ Γ +
j , 1 ≤ j ≤m,

P−
d (J )(ω,x)≡

1 − ρ+
j (x)

π

∫

Ω−
j (x)

J
(
ω′, x

)∣
∣ω′ · nj (x)

∣
∣dω,

(ω,x) ∈ Γ −
j , 1 ≤ j ≤m,
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where ρ+
j > 0 is the reflective ability of the surface ∂Gj . We assume that ρ+

j ∈
L∞(∂Gj ) and ‖ρ+

j ‖L∞(∂Gj ) < 1 for all 1 ≤ j ≤m.
Let I |Γ +

j
(ω′, x) be an intensity of the radiation propagating in Gj and falling on

the surface ∂Gj at a point x in a direction ω′ ∈Ω+
j (x). This radiation is partially dif-

fusely reflected (i.e., it has the same intensity in all directions ω ∈Ω−
j (x)) and par-

tially diffusely refracted (i.e., it has the same intensity in all directions ω ∈Ω+
j (x)),

going out from the body to the vacuum. The intensities of the reflected and refracted
radiations are given by

R−
d (I |Γ +)(ω, x)≡ ρ−

j (x)

π

∫

Ω+
j (x)

I |Γ +
j

(
ω′, x

)
ω′ · nj (x)dω,

(ω,x) ∈ Γ −
j , 1 ≤ j ≤m,

P+
d (I |Γ +)(ω, x)≡ 1 − ρ−

j (x)

π

∫

Ω+
j (x)

I |Γ +
j

(
ω′, x

)
ω′ · nj (x)dω,

(ω,x) ∈ Γ +
j , 1 ≤ j ≤m.

Here, ρ−
j (x)= 1 − 1

k2
j

(1 − ρ+
j (x)).

Let x be a point of tangency of ∂Gi and ∂Gj for some i �= j . Let I |Γ −
i

be the

intensity of the radiation entering into Gi in a direction ω ∈Ω−
i (x). This radiation

is composed of diffusely reflected and refracted radiations:

I |Γ −
i
(ω, x)= R−

d,ij (I |Γ +
i
)(ω, x)+P−

d,ij (I |Γ +
j
)(ω, x), (4.1)

where

R−
d,ij (I |Γ +

i
)(ω, x)= ρ−

ij (x)

π

∫

Ω+
i (x)

I |Γ +
i

(
ω′, x

)
ω · ni(x)dω, (ω,x) ∈ Γ −

ij ,

P−
d,ij (I |Γ +

j
)(ω, x)= 1 − ρ−

ij (x)

π

∫

Ω+
j (x)

I |Γ +
j

(
ω′, x

)
ω · nj (x)dω, (ω,x) ∈ Γ −

ij ,

ρ−
ij (x)= 1 − (1 − ρ−

i (x))(1 − ρ+
j (x))

1 − ρ+
i (x)ρ

+
j (x)

.

4.2 Statement of the Boundary Conditions

For (ω, x) ∈ S− the radiation entering into G is composed of the diffusely reflected
and diffusely refracted radiations:

I |Γ − = R−
d (I |Γ +)+P−

d (J ), (ω, x) ∈ S−.
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For (ω, x) ∈ ∗
S− the radiation J goes from outside, and we can assume that it is

prescribed:

J = J∗, (ω, x) ∈ ∗
S−.

For (ω, x) ∈ S̃− the radiation J falling on ∂G from the vacuum comes from a
point X−(ω, x) ∈ ∂G. It is composed of the diffusely reflected and diffusely re-
fracted radiations:

J = TR+
d (J )+ TP+

d (I |Γ +), (ω, x) ∈ S̃−.

Finally, for (ω, x) ∈ Γ −
ij the following condition is imposed:

I |Γ −
i

= R−
d,ij (I |Γ −

i
)+P−

d,ij (I |Γ −
j
). (4.2)

4.3 Main Results

We consider the boundary value problem

ω · ∇I + (κ + s)I = sS(I )+κk2F, (ω,x) ∈D, (4.3)

I |Γ − = R−
d (I |Γ +)+P−

d (J ), (ω, x) ∈ S−, (4.4)

I |Γ −
i

= R−
d,ij (I |Γ +

i
)+P−

d,ij (I |Γ +
j
), (ω, x) ∈ Γ −

ij , (4.5)

J = TR+
d (J )+ TP+

d (I |Γ +), (ω, x) ∈ S̃−, (4.6)

J = J∗, (ω, x) ∈ ∗
S−, (4.7)

describing the radiation transfer in the system of semitransparent bodies with taking
into account diffuse reflection and diffuse refraction on their boundaries.

By a solution to the problem (4.3)–(4.7) we mean a function I ∈ Ŵ1(D) that
satisfies (4.3) a.e. onD and the conditions (4.4), (4.5) a.e. on S−, Γ

i �=j
−
ij

respectively.

Moreover, the function J ∈ L̂1(S−) satisfies the conditions (4.6) and (4.7) a.e. on

S̃− and
∗
S− respectively.

Theorem 4.1 [8] Let F ∈ L∞(D), J∗ ∈ L̂1,∞(
∗
S−). Then the problem (4.3)–(4.7)

has a unique solution I ∈ W∞(D) Moreover, it satisfies the estimates

∥
∥k−2I

∥
∥
L∞(D) ≤ max

{‖F‖L∞(D),‖J∗‖
L̂1,∞(

∗
S−)

}
,

∥
∥κ−1k−2ω · ∇I∥∥

L∞(D) ≤
2

1 −!max
max
{‖F‖L∞(D),‖J∗‖

L̂1,∞(
∗
S−)

}
.
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Theorem 4.2 [8] Let ∂Gj ∈ C1+λ for all 1 ≤ j ≤m with some λ ∈ (0,1). Suppose

that F ∈ Lp(D) and J∗ ∈ L1,p(
∗
S−), where p ∈ (1 + (2λ)−1,∞). Then the problem

(4.3)–(4.7) has a unique solution I ∈ Ŵp(D). Moreover, it satisfies the estimates

∥
∥κ1/pk−2/qI

∥
∥
Lp(D)

≤ (∥∥κ1/pk2/pF
∥
∥p
Lp(D)

+ ‖J∗‖p
L̂1,p(

∗
S−)

)1/p
,

∥
∥κ−1/qk−2/qω · ∇I∥∥

Lp(D)
≤ 2

1 −!max

(∥
∥κ1/pk2/pF

∥
∥p
Lp(D)

+ ‖J∗‖p
L̂1,p(

∗
S−)

)1/p
.

Theorem 4.2 does not cover the case p = 1. We note that this case is mathemat-
ically difficult, but is important from the physical point of view. We consider this
case under two additional assumptions.

Theorem 4.3 [8] Let meas(∂Gi ∩ ∂Gj ;dσ) = 0 for all i �= j and there exists
α ∈ [0,1) such that 1

π

∫

Ω−
i (x)

χS̃−(ω, x)|ω · n(x)|dω ≤ α for a.e. x ∈ ∂Gj and all

1 ≤ j ≤m, where χS̃− is the characteristic function of the set S̃−.

Let F ∈ Lp(D), J∗ ∈ L̂1,p(
∗
S−), 1 ≤ p <∞. Then the problem (4.3)–(4.7) has

a unique solution I ∈ Ŵp(D). Moreover, it satisfies the same estimates as in Theo-
rem 4.2.
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the dimension of a 3D linear elasticity boundary value problem with Robin bound-
ary condition is asymptotically reduced. Assumption 1.4 in Bare et al. (Appl. Anal.,
2013, doi:10.1080/00036811.2013.823481), leads to a 1D system in which the
bending and tensile components are decoupled. With a generalization in this contri-
bution, we obtain a coupled 1D system. We prove that the asymptotic error estimate
in Bare et al. (Appl. Anal., 2013, doi:10.1080/00036811.2013.823481) remains true
and illustrate the influence of the tension and torsion on the bending by a numerical
example.
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was estimated as

∥
∥uε − uK

∥
∥
H 1(Ωε)

≤ CεK+1
√∣
∣Ωε
∣
∣, (1.1)

for a constant C > 0 independent of ε. The construction of uK deals with a recursive
chain of 1D limit systems of equations and with a recursive chain of boundary value
problems in dilated domains, independent of ε. In [2], the Robin parameters and the
Robin boundary condition were assumed in such a way that the recursive 1D limit
consisted of decoupled problems, up to a unilateral coupling of the angle of twist
and the bending, tangential to Robin condition surface. In this contribution, we show
that with an alternative scaling we obtain a coupled 1D limit, generalizing certain
assumptions in [2] (see I–II). We prove that the estimate (1.1) remains true. The
main effort in this proof is to show that the coupled limit 1D problem is solvable.
For a coupled 1D limit due to large deformations, non-symmetric cross-sections or
anisotropic materials we refer the reader to [6].

We construct the asymptotic approximation for the following 3D problem: Find
uε ∈ (H 1(Ωε, ∂ΩεU ))

3 := {v ∈ (H 1(Ωε))3 : v|∂ΩεU = 0} s.t. ∀v ∈ (H 1(Ωε, ∂ΩεU ))
3

3∑

i,j=1

∫

Ωε
Aij
∂uε

∂xj

∂v

∂xi
dx +

3∑

k=1

sεk

∫

SεC

uεkvk dσ =
∫

Ωε
Ψ εv dx, (1.2)

with sε1 = s1 ≥ 0, sεj = ε2sj ≥ 0, j = 2,3, see [2, 3], A = (aklij )i,j,k,l=1,2,3 and aklij =
(δij δkl + δilδjk)μ+ λ(δikδjl), λ,μ > 0,

Ψ ε = Φ

(
x2

ε
,
x3

ε

)

Πεf ε, (1.3)

let f ε = (f1, ε
2f2, ε

2f3, f4)
T , fi ∈ R, i = 1,2,3,4, be constants

Φ

(
x2

ε
,
x3

ε

)

=
⎛

⎜
⎝

1 0 0 0

0 1 0 −( 1
|ω|Ip)

− 1
2
x3
ε

0 0 1 ( 1
|ω|Ip)

− 1
2 x2
ε

⎞

⎟
⎠ , Πε =

⎛

⎜
⎜
⎝

ε 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

Ip =
∫

ω

((
x2

ε

)2

+
(
x3

ε

)2)

d

(
x̃

ε

)

.

ω ∈ R
2 is an open, connected and symmetric (in the x2, x3-axes) polygon with

non zero measure whose boundary ∂ω decomposes into two disjoint subsets, ∂ω =
∂ωN ∪ ∂ωR , where ∂ωR = { x̃

ε
∈ ∂ω : x3

ε
= min x̃

ε
∈∂ω

x3
ε

} is a segment. Let the beam

be given by Ωε = {x ∈ R
3 : x̃ ∈ εω,x1 ∈ (0,1)}, ε > 0 denotes the relative thick-

ness ofΩε . The beam is fixed on ∂ΩεU = {x ∈Ωε : x1 = 0} and the Robin boundary
is denoted as SεC = {x ∈Ωε : x1 ∈ [1 − ε,1], x̃

ε
∈ ∂ωR}. The free boundary is de-

noted by ∂ΩεN = ∂Ωε\(SεC ∪ ∂ΩεU ), the coordinate system is chosen in such a way,
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Fig. 1 Geometry

that on SεC the outward unit normal ν = (n1, n2, n3)
T takes the form ν = −e3 (see

Fig. 1).
In [2], we considered another scaling corresponding to Πε replaced by Id in

(1.3), with an additional assumption, [2, Assumption 1.4], that either

I s1 = 0, or
II SεC = {x ∈Ωε : x1 = 1, x̃

ε
∈ ω}, i.e. the Robin boundary condition is at the right

extremity of the beam.

Then, estimate (1.1) was proven. In the present paper, we drop these assumptions
and point out the modifications in the procedure of construction of the asymptotic
expansion. Namely, now we seek an asymptotic solution in the form of the ansatz
similar to [1, 2, 5], differing to the ansatz in [2] by the factor Πε below

uK = Φ(ỹ)u(x1)+
K+1∑

k+s=1

εk+sNk,s(y)
∂ku(x1)

∂xk1

+ Φ̂

(

0,
x̃

ε

)

(1 − x1)ρK+1(x1)

(1.4)

u(x1)= Πε

K∑

i=0

εiui (x1), (1.5)

with y = ( x1
ε
, x2
ε
,
x3
ε
), ỹ = ( x2

ε
,
x3
ε
), y = y + ( 1

ε
,0,0), Nk,s(y) =

N inner
k,s (ỹ) + χ(x1)N

+
k,s(y) + χ(1 − x1)N

−
k,s(y), N inner

k,s ,N
±
k,s , are matrix val-

ued functions with values in R
3×4 (vanishing by convention if s or k is neg-

ative) and N inner
k,s , N+

k,s = 0 for s �= 0, χ ∈ CK+2([0,1]) is a cut-off function

χ(x1) =
{

1 if x1∈[0, 1
3 ]

0 if x1∈[ 2
3 ,1] , see [2, 3]. Φ̂(0, ỹ)(1 − x1)ρK+1(x1) is a remainder that

guarantees that uK ∈ (H 1(Ωε, ∂ΩεU ))
3. Φ̂(y) =

⎛

⎝

1 0 0 0 −y2 −y3

0 1 0 −( 1
|ω| Ip)

− 1
2 y3 y1 0

0 0 1 ( 1
|ω| Ip)

− 1
2 y2 0 y1

⎞

⎠

is the extended matrix of rigid displacements, see [5, p. 66], ρK+1(x1) =
∑2K+1
l=K+1 ε

l
∑

0≤i≤K,i+k=l,0≤k≤K+1 hN+
k,0 ∂

kui

∂xk1
, where hN+

k,0 are standard R
6×4 ma-

trices which can be computed as in [5]. It is reminded that a scaling of the ten-
sile force and the bending forces f εi , i = 2,3, as in (1.3) and the corresponding
scaling of the tensile and bending components of the ansatz (1.5) is also chosen
in [6, p. 517].
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We obtain a recursive chain of coupled 1D problems in [0,1], for the components
of the functions ui , (1.5), following [2, 5]. We briefly remind that an important step
of the construction of the recursive problems is the following requirement.

Requirement 1 (Key of the procedure) For

H (·k,s ) = −
3∑

i,j=1

∂

∂yi

(

Aij
∂·k,s
∂yj

)

−
3∑

i=1

(Ai1 +A1i )
∂·k−1,s

∂yi
−A11·k−2,s ,

G(·k,s ) =
3∑

j=1

(
3∑

i=1

Aji
∂·k,s
∂yi

)

nj +
3∑

i=1

Ai1(·k−1,s )ni,

require HN inner
k,s (ỹ) = Φ(ỹ)hN inner

k,s in ω, Nk,s(y) = Φ̂(0, ỹ)hN+
k,s on {+0} × ω,

GNk,s (y) = Φ̂(0, ỹ)hN−
k,s on {−0} × ω, HN±

k,s (y) = 0 in Ω , GN inner
k,s (ỹ) = 0 on

∂ω, GN+
k,s (y) = 0 on (((−∞,0) ∪ (0,∞)) × ∂ω), GN−

k,s (y) = 0 on (((−∞,0) ∪
(0,∞)) × ∂ω)\SC , GN−

k,s (y) + S0Nk,s−1(y) + S2Nk,s−3(y) = 0 on SC , where

S1 = diag(s1,0,0), S2 = diag(0, s2, s3) and hN inner
k,s ∈ R

4×4, hN+
k,s ,hN−

k,s ∈ R
6×4

are constant matrices.

The recursive chain of coupled 1D problems is obtained substituting the ansatz

(1.4) into the problem (1.2) and calculating hN inner
k,s , hN+

k,s ,hN−
k,s from solvability

and decay conditions in auxiliary problems for N inner
k,s ,N

±
k,s resulting from Require-

ment 1. The problem for the fourth component, the angle of twist ui4, can be solved
independently from the other components, then it enters the right hand side of the
problem for ui2, see [2, Theorem 1.6]. At the left end of the interval [0,1] all the four
components satisfy generally non-homogeneous Dirichlet conditions. For the vari-
ational formulation of these 1D problems, as usual we subtract the right handside
and change the unknown functions uk for zk

zki = uki + grec(k)
i2 i = 1,4 (1.6)

zkj = ukj + x1g
rec(k)
j3 + grec(k)

j4 j = 2,3, (1.7)

where

g
rec(k)
i2 =

k−1∑

l=0

(

hN+
k−l,0 ∂

k−lurec(l)

∂xk−l1

)

i

∣
∣
∣
∣
x1=0

,

g
rec(k)
j3 =

k−1∑

l=0

(

hN+
k−l,0 ∂

k−lurec(l)

∂xk−l1

)

j

∣
∣
∣
∣
x1=0

,

g
rec(k)
j4 =

k−1∑

l=0

(

hN+
k−l+1,0

∂k−l+1urec(l)

∂xk−l+1
1

)

j+3

∣
∣
∣
∣
x1=0

, urec(l) = (zl1, zl2, zl3, zl4
)T
.
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The variational formulation of the recursive coupled 1D system is, find zk4 ∈
V := {u ∈ H 1((0,1)) : u(0) = 0} and zk ∈ H := {u = (u1, u2, u3)

T : u1 ∈ V,
uj ∈ W, j = 2,3}, W = {z ∈ H 2((0,1)) : z(0) = ∂z(0)

∂x1
= 0}, s.t. ∀v4 ∈ V and

∀v ∈H

a4
(
zk4, v4

)= �k4(v4), (1.8)

a1D
(
zk,v

)= �k(v), (1.9)

where a4(·, ·)= μJ
∫ 1

0
∂·
∂x1

∂·
∂x1

dx1, �k4(v4)=
∫ 1

0 (f̂4 − f̂ rec(k)
4 )v4 dx1 − ĝrec(k)

4 v4|x1=1,

J = (A − ∫
ω
(
∂(ninner

1,0 )14(ỹ)

∂y2
)2 + ( ∂(n

inner
1,0 )14(ỹ)

∂y3
)2dỹ) is the torsional constant, where

A= |ω| and the warping function or St. Venants function (ninner
1,0 )14 satisfies

−�(ninner
1,0

)14
(ỹ)= 0 in ω

∂(ninner
1,0 )14(ỹ)

∂ ν̃
=
(

1

|ω|Ip
)− 1

2

y2n3 −
(

1

|ω|Ip
)− 1

2

y3n2 on ∂ω, (1.10)

∫

ω

(
ninner

1,0

)14 dỹ = 0.

f
rec(k)
4 =

k−1∑

l=0

(

hN inner
k−l+2,0

∂k−l+2urec(l)

∂xk−l+2
1

)

4

and

g
rec(k)
41 =

k−1∑

l=0

k−l+1∑

i+j=k−l+1

(

h
N−
i,j
∂iurec(l)

∂xi1

)

4

∣
∣
∣
∣
x1=1

,

f̂i , ĝαβ , ŝi denote normalized values |ω|fi , |ω|gαβ , |ω|si , a1D(z
k,v) =

∑3
i=1 ai(z

k
i , vi)+

∑3
i=1 bi(z

k
i , vi)+ c(zk3, v1)+ c(v3, z

k
1) with

a1
(
zk1, v1

) :=
∫ 1

0
EA

∂zk1

∂x1

∂v1

∂x1
dx1, aj

(
zkj , vj

) :=
∫ 1

0
EIj

∂2zkj

∂x2
1

∂2vj

∂x2
1

dx1,

(1.11)

b1
(
zk1, v1

) := ŝ1 |SC |
|ω| z

k
1v1|x1=1, c

(
zk3, v1

) := −ŝ1 1

|ω|
∫

SC

y3 dσy
∂zk3

∂x1
v1

∣
∣
∣
∣
x1=1

,

(1.12)

bj
(
zkj , vj

) := ŝj |SC |
|ω| z

k
j vj |x1=1 + s1

∫

SC

y2
j dσy

∂zkj

∂x1

∂vj

∂x1

∣
∣
∣
∣
x1=1

, (1.13)
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Ij = ∫
ω
y2
j dỹ, j = 2,3, E = μ 3λ+2μ

λ+μ , SC = [−1,0] × ∂ωR and

�k(v)=
3∑

i=1

(∫ 1

0

(
f̂i − f̂ rec(k)

i

)
vi dx1 − ĝrec(k)

i1 vi |x1=1

)

(1.14)

+ s1
3∑

q=2

∫

SC

yq
(
ninner

1,0

)14 dσy
∂vq

∂x1

∂zk4

∂x1

∣
∣
∣
∣
x1=1

− Iqgrec(k)
q2

∂vq

∂x1

∣
∣
∣
∣
x1=1

(1.15)

+ ŝ2
(

1

|ω|Ip
)− 1

2 1

|ω|
∫

SC

y3 dσyz
k
4v2|x1=1, (1.16)

with

f
rec(k)
1 =

k−1∑

l=0

(

hN inner
k−l+2,0

∂k−l+2urec(l)

∂xk−l+2
1

)

1
,

f
rec(k)
j =

k−1∑

l=0

(

hN inner
k−l+4,0

∂k−l+4urec(l)

∂xi−l+4
1

)

j

,

g
rec(k)
11 =

k−1∑

l=0

k−l+1∑

i+j=k−l+1

(

h
N−
i,j
∂i ǔrec(l)

∂xi1

)

1

∣
∣
∣
∣
x1=1

+
k−1∑

l=0

(
k−l+2∑

i+j=k−l+2

h
N−
i,j
∂i ûrec(l)

∂xi1

)

1

∣
∣
∣
∣
x1=1

,

g
rec(k)
j1 =

k−1∑

l=0

k−l+3∑

i+j=k−l+3

(

h
N−
i,j
∂iurec(l)

∂xi1

)

j

∣
∣
∣
∣
x1=1

,

g
rec(k)
32 =

k−1∑

l=0

k−l+1∑

i+j=k−l+1

(

h
N−
i,j
∂i ǔrec(l)

∂xi1

)

6

∣
∣
∣
∣
x1=1

+
k−1∑

l=0

(
k−l+2∑

i+j=k−l+2

h
N−
i,j
∂i ûrec(l)

∂xi1

)

6

∣
∣
∣
∣
x1=1

,

g
rec(k)
22 =

k−1∑

l=0

(
k−l+2∑

i+j=k−l+2

h
N−
i,j
∂i ûrec(l)

∂xi1

)

5

∣
∣
∣
∣
x1=1

,

j = 2,3, ûrec(i) = (0, zi2, zi3, zi4)T and ǔrec(i) = (zi1,0,0,0)T .



Asymptotic Approximations of a Thin Elastic Beam 643

2 Statement of the Results

Theorem 2.1 Let uε be the exact solution to the 3D problem (1.2) and let zki ,
i = 1,2,3,4, be solutions to (1.8)–(1.9) and let Nk,s be computed from the recursive
problems deduced from Requirement 1. Then the estimate (1.1) holds.

Let us note, that the exact solution, uε , converges to the leading term of the series
(1.4)–(1.5), for ε→ 0, in the sense

∥
∥uε − Φ(ỹ)Πεu0(x1)

∥
∥
L2(Ωε)

≤ Cε
√∣
∣Ωε
∣
∣, (2.1)

for a constant C > 0 independent of ε. The 1D system for u0, is stated in (4.2)–(4.8),
Sect. 4 (in the interval (−1,0) ∪ (0,1), with Robin boundary condition at x1 = 0).
The proof of Theorem 2.1 is analogous to the proof of [2, Proposition 3.2] and (2.1)
follows from an analog on of the proof of [2, Theorem 1.7]. The step that needs
to be revisited, is the solvability of the coupled 1D system (1.9). The solvability of
(1.8) is clear, since the angle of twist zk4 is independent of the other components.

Proposition 2.2 Let (1.8) be solved for k ∈ [0,K]. Then for k ∈ [0,K] the recur-
sive problem (1.9) has a unique solution.

3 Proof of the Results

The proof of Theorem 2.1 is a consequence of [2, Proposition 3.2] and Proposi-
tion 2.2. The proof of Proposition 2.2 is based on the fact that the coupled recursive
1D system has constant right handsides and we can seek polynomial solutions. This
permits us to obtain a linear algebraic system that is equivalent to (1.9). We show
that the matrix in that system is regular.

Since the load fi , i = 1,2,3,4, is constant, see Sect. 1, following [2, p. 14],
potential solutions z to (1.9) have a polynomial form, second order for z1 and fourth
order for zi , i = 2,3. Since z ∈H we can write

z1(x1)= az1x
2
1 + bz1x1 (3.1)

zi(x1)= azix4
1 + bzix3

1 + czix2
1 (3.2)

or

z = Mηz, (3.3)

ηz = (az1, bz1, az2, bz2, cz2, az3, bz3, cz3)
T , M =

(
x2

1 x1 0 0 0 0 0 0

0 0 x4
1 x

3
1 x

2
1 0 0 0

0 0 0 0 0 x4
1 x

3
1 x

2
1

)

.



644 Z. Bare et al.

Lemma 3.1 (On the stiffness matrix) Let z = Mηz and v = Mηv with M as
in (3.3). Then the bilinear form a1D(z,v) can be written as

a1D(z,v)= ηTz Kηv, (3.4)

where K ∈ R
8×8, K =

(K11 02,3 K13
03,2 K22 03,3
K31 03,3 K33

)

, 0i,j = (0)l=1..i,k=1..j and

K11 =EA
(

4
3 1
1 1

)

+ s1|SC |
(

1 1
1 1

)

, (3.5)

K22 =EI2
⎛

⎝

144
5 18 8

18 12 6
8 6 4

⎞

⎠+ s2|SC |
⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠

+ s1
∫

SC

y2
2 dσy

⎛

⎝
16 12 8
12 9 6
8 6 4

⎞

⎠ , (3.6)

K33 =EI3
⎛

⎝

144
5 18 8

18 12 6
8 6 4

⎞

⎠+ s3|SC |
⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠

+ s1
∫

SC

y2
3 dσy

⎛

⎝
16 12 8
12 9 6
8 6 4

⎞

⎠ , (3.7)

K13 = s1
∣
∣
∣
∣

∫

SC

y3 dσy

∣
∣
∣
∣

(
4 3 2
4 3 2

)

, K31 = KT
31. (3.8)

Proof Following (3.3), substitute z = Mηz and v = Mηv into a1D(z,v), then a
straight forward computation yields (3.4). �

Lemma 3.2 (On the symmetry and regularity of the stiffness matrix) The matrix K

form Lemma 3.1 is symmetric and regular.

Proof From Lemma 3.1, we know that K ii , i = 1,2,3, are symmetric and that
K31 = KT

13, obviously 03,2 = 0T3,2, hence K = KT . A direct computation gives

det(K)= 16

75
E4AI3

(

12EAs1

∫

SC

y2
3 dσy |SC |I3 +As1

∫

SC

y2
3 dσy |SC |2s3 (3.9)

+ 12E2AI 2
3 + 4EAI3s3|SC | + 12Es1|SC |I 2

3 + 4s1|SC |2I3s3
)

factor,

(3.10)
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factor = I2(12s1
∫

SC
y2

2 dσyEI2 + s1
∫

SC
y2

2 dσys2|SC | + 12E2I 2
2 + 4EI2s2|SC |).

Since all the summands in det(K) are positive and E,A, I2, I3 are strictly positive
det(K) is strictly positive. �

Note, that for the classical case si = 0, i = 1,2,3, we get det(K)= 768
25 E

8A2I 3
2 I

3
3 .

Lemma 3.3 (On an equivalent linear algebraic system) Problem (1.9) is equivalent
to the linear system

Kηz = Λk, (3.11)

where Λk ∈R
8 is known.

Proof Substitute z = Mηz and v = Mηv into a1D(z,v), then with Lemma 3.1 (1.9)
reads as

ηTz Kηv = χkηv, ∀ηv ∈R
8, (3.12)

χk ∈ R
1×8 is obtained from the factorization of �k . Since by Lemma 3.2, K is

symmetric (3.12) is equivalent to

Kηz = Λk, (3.13)

with Λk = (χk)T . �

Proof of Proposition 2.2 By Lemmata 3.1 and 3.2, (1.9) is equivalent to a linear
algebraic system with regular matrix. �

Proof With Proposition 2.2, the proof of Theorem 2.1 is analogous to the proof of
[2, Proposition 3.2]. �

4 Numerical Example

We illustrate the coupling in the 1D system by a numerical example. We compare
the leading term of the series (1.4), to a solution uε to the 3D problem (1.2), for a
fixed small ε. Following [5, Sect. 2.3.5], [2, Remark 2, p. 4] we adapt the results of
the previous sections to the geometryΩε = {x ∈ R

3 : x1 ∈ (−1,0)∪ (0,1), x̃ ∈ εω}
(see Fig. 2). The beam is fixed on ∂ΩεU = {x ∈Ωε : x1 = −1} and the Robin condi-
tion surface is denoted as SεC = {x ∈Ωε : x1 ∈ [−ε, ε], x̃

ε
∈ ∂ωR}. Σε = {x ∈Ωε :

x1 = 0, x̃ ∈ εω\∂ωR} denotes an interface and ∂ΩεN = ∂Ωε\(SεC ∪ ∂ΩεU ) denotes a
free boundary. To compute the leading term of the series (1.4),

uLead(x)=

⎛

⎜
⎜
⎝

εu0
1(x1)− x2

∂u0
2

∂x1
− x3

∂u0
3

∂x1
+ ε(ninner

1,0 )
14( x̃

ε
)
∂u0

4
∂x1

u0
2 − x3

ε
( 1
|ω|Ip)

− 1
2 u0

4

u0
3 + x2

ε
( 1
|ω|Ip)

− 1
2 u0

4

⎞

⎟
⎟
⎠ , (4.1)
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Fig. 2 Geometry with Robin
boundary condition in the
middle

we need to solve only the 1D system for k = 0 in the recursion (1.8)–(1.9). In par-
ticular, for k = 0, z0

i = u0
i , i = 1,2,3,4. Adapted to the geometry of this section,

(1.8)–(1.9) read as find u0
4 ∈ V and (u0

1, u
0
2, u

0
3)
T ∈ H, s.t. ∀v4 ∈ V and ∀v ∈H

a4
(
u0

4, v4
)= �0

4(v4), (4.2)

a1D
((
u0

1, u
0
2, u

0
3

)T
,v
)= �0(v), (4.3)

where a4(·, ·)= μJ
∫ 1
−1

∂·
∂x1

∂·
∂x1

dx1, �0
4(v4)=

∫ 1
−1 f̂4v4 dx1, a1D((u

0
1, u

0
2, u

0
3)
T ,v)=

∑3
i=1 ai(u

0
i , vi)+

∑3
i=1 bi(u

0
i , vi)+ c(u0

3, v1)+ c(v3, u
0
1),

a1
(
u0

1, v1
)=
∫ 1

−1
EA

∂u0
1

∂x1

∂v1

∂x1
dx1, aj

(
u0
j , vj
)=
∫ 1

−1
EIj

∂2u0
j

∂x2
1

∂2vj

∂x2
1

dx1,

(4.4)

b1
(
u0

1, v1
)= ŝ1 |SC |

|ω| u
0
1v1|x1=0, c

(
u0

3, v1
)= −ŝ1 1

|ω|
∫

SC

y3 dσy
∂u0

3

∂x1
v1

∣
∣
∣
∣
x1=0

,

(4.5)

bj
(
u0
j , vj
)= ŝj |SC |

|ω| u
0
j vj |x1=1 + s1

∫

SC

y2
j dσy

∂u0
j

∂x1

∂vj

∂x1

∣
∣
∣
∣
x1=0

, (4.6)

�0(v)=
3∑

i=1

∫ 1

−1
f̂ivi dx1 + s1

3∑

q=2

∫

SC

yq
(
ninner

1,0

)14
dσy

∂vq

∂x1

∂u0
4

∂x1

∣
∣
∣
∣
x1=0

(4.7)

+ ŝ2
(

1

|ω|Ip
)− 1

2 1

|ω|
∫

SC

y3 dσyu
0
4v2|x1=0, j = 2,3. (4.8)

Let ω = (− 1
2 ,

1
2 )

2, then the explicit geometric constants read as |SC | = 2,
∫

SC
y3 dσy = −1, Ij = 1

12 , j = 2,3, Ip = 1
6 , A = 1,

∫

SC
y2

3 dσy = 1
2 . Following
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Fig. 3 3D–1D comparison along the edge (x1,− ε
2 ,
ε
2 ), ε = 0.001

[4, pp. 311–312], we approximate (ninner
1,0 )14 as

(
ninner

1,0

)14 (4.9)

≈
(

1

|ω|Ip
)− 1

2
(

−y2y3 + 4b2
(

2

π

)3 10∑

k=0

(−1)k

(2k + 1)3

× sin

(
(2k+ 1)π

2b
y3

)
sinh( (2k+1)π

2b y2)

cosh( (2k+1)πa
2b )

)

, (4.10)
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a = b = 1
2 , with (4.10) we get J ≈ 0.14057 · 6,

∫

SC
y2

2 dσy = 2I2,
∫

SC
y2(n

inner
1,0 )

14(ỹ)dσy ≈ 0.01598,
∫

SC
y3(n

inner
1,0 )

14(ỹ)dσy = 0.

For ε = 0.001, E = 2 · 105, λ
2(λ+μ) = 0.33, f4 = −9.86, f1 = 7.86, f2 = f3 = 0

and si = 107, i = 1,2,3, the relative error
‖uε−Φ(ỹ)Πεu0(x1)‖L2(Ωε)

|uε‖
L2(Ωε)

is smaller

than 10−4. The components of uLead and u0.001 are plotted against each other along
the edge (x1,− 0.001

2 , 0.001
2 ) in Fig. 3. We see numerically that the 3D problem does

not decouple in the limit and that a tensile force f1 and a torsional moment f4 cause
bending in x3- and x2-direction respectively, even if no bending forces fi , i = 2,3,
act.
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Smooth Solution of an Initial Value Problem
for a Mixed-Type Differential Difference
Equation

Valentina Iakovleva and Judith Vanegas

Abstract In this paper, we show the construction of the solution to the mixed type
differential difference equation:

x′(t)=Ax(t + a)+Bx(t − a)+Cx(t),
where A,B,C ∈ C \ {0}, a > 0 and t ∈ R. We use a step derivative method and
a certain condition on the initial function ϕ ∈ C∞[−a, a] to assure the existence,
uniqueness and smoothness of the solution in R.

Keywords Differential difference equations · Initial value problems

Mathematics Subject Classification (2010) Primary 34A12 · Secondary 34K05

1 Goal of This Article

Mixed functional differential equations (MFDE) are a class of functional differential
equations where the time derivative depends on both past and future values of the
variable. They are also known as forward-backward equations. At the end of the
eighties appeared interesting papers on applications of these equations, such as the
work of H. Chi et al. in nerve conduction [5], and the works of A. Rustichini in the
context of optimal control problems [14] and economic dynamics [15]. These works
helped to increase the study of these equations. From the beginning of this century,
other applications of MFDE in Physics [1, 4] and Economy [11] and the study of
other problems [3, 6–8, 12] have been developed. Topics like controllability [10, 13]
and spectral analysis [9] on MFDE have been treated in this decade.
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MFDE are, in general, ill-posed as initial value problems (see for exam-
ple [7, 14]), but there are also cases [6, 8, 12] where a unique solution exists.

In this work we show the construction of the solution to the mixed type differen-
tial difference equation:

x′(t)=Ax(t + a)+Bx(t − a)+Cx(t), (1.1)

where A,B,C ∈ C \ {0}, a > 0 and t ∈R.
We use a step derivative method (an analog to the step integration method [2]) so

that the following condition

ϕ(n+1)(0)=Aϕ(n)(a)+Bϕ(n)(−a)+Cϕ(n)(0), n= 0,1,2, . . .

on the initial function ϕ ∈ C∞[−a, a] assures the existence, uniqueness and smooth-
ness of the solution of (1.1) in R.

2 Construction of the Solution

In this section we construct the solution of the differential difference equation (1.1),
using the step derivative method.

We start rewriting (1.1) in the form:

x(t + a)= 1

A
x′(t)− B

A
x(t − a)− C

A
x(t). (2.1)

Taking t + a =: τ , then from (2.1) we get

x(τ)= 1

A
x′(τ − a)− B

A
x(τ − 2a)− C

A
x(τ − a). (2.2)

Now we follow an induction process to construct the solution of (1.1) on the
interval [a,na], n ∈N. For n= 2, if τ ∈ [a,2a], then (τ −a) ∈ [0, a] and (τ −2a) ∈
[−a,0]. On the interval [−a, a] the function x(t) is known. In (2.2) the right side is
determined uniquely for τ ∈ [a,2a]. Therefore the values of x(t) are found for τ ∈
[a,2a]. Now suppose that we know x(τ) on [a,ma], for an arbitrary fixed number
m ∈ N. Then in (2.2) the right side is determined for τ ∈ [ma, (m+ 1)a]. Hence the
values of x(τ) are determined on the interval [a, (m+ 1)a]. Therefore the function
x(t) is determined for all τ ≥ a starting from the function ϕ = x|[−a,a].

Similarly, we rewrite (1.1) as

x(t − a)= 1

B
x′(t)− A

B
x(t + a)− C

B
x(t) (2.3)

and changing the variable s := t − a we obtain

x(s)= 1

B
x′(s + a)− A

B
x(s + 2a)− C

B
x(s + a). (2.4)
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Applying the above procedure to (2.4) we construct the function x(s) for all s ≤ −a,
starting from the function ϕ = x|[−a,a].

Therefore the function x ∈ C∞(ma, (m + 1)a), m ∈ Z, is constructed satisfy-
ing (1.1), i.e., we have constructed the smooth solution of (1.1) only in each open
interval (ma, (m + 1)a), m ∈ Z. However in the points t = ka, k ∈ Z \ {0}, the
function x(t) and its derivatives can be discontinuous.

Since the solution constructed by this method contains the linear combination of
the initial function and its derivatives, then the solution is unique in the intervals
(ma, (m+ 1)a), m ∈ Z.

3 The Smoothness of the Solution

In this section we give necessary and sufficient conditions to assure the smoothness
of the solution of (1.1) in R with the function ϕ ∈ C∞[−a, a] as initial condition.

Theorem 3.1 Let ϕ ∈ C∞[−a, a]. The solution x(t) of (1.1) satisfying the initial
condition x|[−a,a] = ϕ and constructed using the former step derivative method,
belongs to C∞(R) if and only if the following condition

ϕ(n+1)(0)=Aϕ(n)(a)+Bϕ(n)(−a)+Cϕ(n)(0), n= 0,1,2, . . . (3.1)

is satisfied.

Proof The necessary condition: Let x ∈ C∞(R) be the solution of (1.1) and
x(t) = ϕ(t) for t ∈ [−a, a]. Taking the derivative of order n of (1.1) in t = 0, we
obtain

x(n+1)(0)=Ax(n)(a)+Bx(n)(−a)+Cx(n)(0). (3.2)

Since x|[−a,a] = ϕ, (3.2) is exactly the condition (3.1).
The sufficient condition: We assume that (3.1) is satisfied. From (2.2) it follows

x(n)(τ )= 1

A
x(n+1)(τ − a)− B

A
x(n)(τ − 2a)− C

A
x(n)(τ − a) (3.3)

or equivalently

x(n)
(
a+)= 1

A
ϕ(n+1)(0)− B

A
ϕ(n)(−a)− C

A
ϕ(n)(0), (3.4)

where x(n)(a±) := limε→0,ε>0 x
(n)(a ± ε). Hence the equality x(n)(a+) = ϕ(n)(a)

follows from (3.4) and condition (3.1). On the other hand, x(n)(a−) = ϕ(n)(a) be-
cause x coincides with ϕ on [−a, a]. Therefore, we have the continuity condition
x(n)(a+) = x(n)(a−). Similarly from (2.4) the continuity of x(n)(t) in t = −a is
given.
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We finish the proof using mathematical induction on k. Suppose that for
all n ∈ N0 := N ∪ {0} the identities x(n)(ka+) = x(n)(ka−) are true for k =
±1,±2, . . . ,±m. Then for (3.3) for any n ∈ N0 we have

x(n)
(
(m+ 1)a+)= 1

A
x(n+1)(ma+)− B

A
x(n)
(
(m− 1)a+)− C

A
x(n)(ma) (3.5)

and also

x(n)
(
(m+ 1)a−)= 1

A
x(n+1)(ma−)− B

A
x(n)
(
(m− 1)a−)− C

A
x(n)(ma). (3.6)

From the induction hypothesis x(n+1)(ma+) = x(n+1)(ma−) and
x(n)((m − 1)a+) = x(n)((m − 1)a−). Hence the right sides of (3.5) and (3.6) are
the same. Then x(n)((m+ 1)a+)= x(n)((m+ 1)a−) for any n ∈ N0.

Similarly from (2.4), we have x(n)(−(m+ 1)a−) = x(n)(−(m+ 1)a+) for any
n ∈N0.

Therefore, for any n ∈ N0 the equality x(n)(ka+)= x(n)(ka−) is also correct for
k = ±(m+ 1). It means that x(n)(ka+)= x(n)(ka−) is correct for k ∈ Z. Then it is
proved that x(t) and all of its derivatives are continuous in all t = ka, k ∈ Z. Hence,
x ∈ C∞(R). �

Remark 3.2 Theorem 3.1 and the step derivative method applied in the former sec-
tion give the existence and uniqueness of the solution of (1.1) with the initial condi-
tion ϕ in R.

Remark 3.3 The functions xλ(t)= eλt , λ ∈ C are the solutions of (1.1) if and only
if λ ∈Λ, where

Λ= {λ ∈ C : λ=Aeλa +Be−λa +C}. (3.7)

4 Outlook to Further Results

We might expect more general equations than (1.1) to be studied. We can suppose
the coefficients A, B and C in (1.1) to be piecewise smooth and find conditions
for the existence of the solution. Also a spectral theory, controllability theory or
numerical solutions could be researched for these type of equations.

Mathematical models containing these equations could be used to study the effect
of drugs as therapies. Radioactive therapies could also be modeled.
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On the Classical Lorenz System

Valery A. Gaiko

Abstract The classical Lorenz system is considered. For many years, this system
has been the subject of study by numerous authors. However, until now the structure
of the Lorenz attractor is not clear completely yet, and the most important question
at present is to understand the bifurcation scenario of chaos transition in this system.
Using some numerical results and our bifurcational geometric approach, we present
a new scenario of chaos transition in the classical Lorenz system.

Keywords Lorenz system · Bifurcation · Singular point · Limit cycle · Chaos

Mathematics Subject Classification (2010) Primary 34C28 · Secondary 37D45 ·
37G35

1 Introduction

We consider a three-dimensional dynamical system

ẋ = σ(y − x), ẏ = x(r − z)− y, ż= xy − bz (1)

known as the Lorenz system. Historically, (1) was the first dynamical system for
which the existence of an irregular attractor (chaos) was proved for σ = 10, b= 8/3,
and 24,06 < r < 28. For many years, the Lorenz system has been the subject of
study by numerous authors; see, e.g., [1–8]. However, until now the structure of
the Lorenz attractor is not clear completely yet, and the most important question at
present is to understand the bifurcation scenario of chaos transition in system (1).

In Sect. 2 of this paper, we recall a relatively new scenario of chaos transition in
the Lorenz system (1) proposed by N.A. Magnitskii and S.V. Sidorov [6]. In Sect. 3,
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we revise this scenario and present a different bifurcation scenario of chaos transi-
tion in system (1), where σ = 10, b= 8/3, and r > 0, using numerical results of [6]
and our bifurcational geometric approach to the global qualitative analysis of three-
dimensional dynamical systems which we applied earlier in the planar case [9–15].

2 The Magnitskii–Sidorov Scenario

There exists a contemporary point of view on the structure of the Lorenz attractor
and chaos transition in system (1); see [1–8]. However, in [6], it is shown that ab-
solutely another scenario of chaos transition is realized in the Lorenz system (1).
It turns out that all cycles from infinite family of unstable cycles, generating the
Lorenz attractor [6], have crossing with an one-dimensional unstable not invariant
manifold V u of the origin of system (1) (do not confuse with the invariant unstable
manifold Wu of this point). This result follows from the theory of dynamical chaos
stated in [6]. After the derivation of analytic formulas for the manifold V u, it be-
comes possible to reduce the problem of establishing and proving the existence of
unstable cycles in the Lorenz system to the one-dimensional case, namely, to find-
ing stable points of the one-dimensional first return mapping defined on the unstable
manifold [6]. By this method, it is shown that some items of the classical scenario
of chaos transition in the Lorenz system (1) are invalid, while other require a more
detailed investigation. The Magnitskii–Sidorov scenario is the following.

1. The Lorenz system (1) is dissipative and symmetric with respect to the
z-axis. The origin O(0,0,0) is a singular point of system (1) for any σ , b, and r .
It is a stable node for r < 1. For r = 1, the origin becomes a triple singular
point, and then, for r > 1, there are two more singular points in the system:
O1(

√
b(r − 1),

√
b(r − 1), r − 1) and O2(−√

b(r − 1),−√
b(r − 1), r − 1) which

are stable up to the parameter value ra = σ(σ + b + 3)/(σ − b − 1) (ra ≈ 24,74
for σ = 10 and b = 8/3). For all r > 1, the point O is a saddle-node. It has a two-
dimensional stable manifold Ws and a one-dimensional unstable manifold Wu. If
1< r < r1 ≈ 13,9, then separatrices Γ1 and Γ2 issuing from the point O along its
one-dimensional unstable manifold Wu are attracted by their nearest stable points
O1 and O2, respectively.

2. If r = r1 ≈ 13,9, then the separatrices Γ1 and Γ2 do not form two separate
homoclinic loops. Here we have a bifurcation with the generation of a single closed
contour surrounding both stationary points O1 and O2; the end of the separatrix Γ1
enters the beginning of the separatrix Γ2, and vice versa, the end of Γ2 enters the
beginning of Γ1. As r grows, from this contour, a closed cycle C0 appears there first.
It is an eight-shaped figure surrounding both points O1 and O2.

3. If r1 < r < r2 ≈ 24,06, then cycles L1 and L2 surrounding the points O1
and O2, respectively, do not appear; but with further growth of r , pairs of cy-
cles C+

n ,C
−
n , n = 0,1, . . . , are successively generated. They determine the gen-

eration of the Lorenz attractor. The cycle C+
n makes n complete rotations in the

half-space containing the pointO1 and one incomplete rotation around the pointO2.
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Conversely, the cycle C−
n makes n complete rotations around the point O2 and one

incomplete rotation around the point O1.
For each r , r1 < r < r2, there exists the number n(r) (n(r)→ ∞ as r → r2)

such that in the phase-space of (1), there are unstable cycles C0, C+
k , C−

k , k =
0, . . . , n, and cycles C+

km, C−
km, k,m < n, which make k rotations around the point

O1 and m rotations around the point O2 and are various combinations of the cycles
C+
n and C−

n , and many other cycles generated by bifurcations of the cycles C+
n

and C−
n [6]. Points of intersection of all these cycles with the manifold Vu have

the following arrangement on the curve Vu for 0 ≤ zmin ≤ z ≤ zmax < r − 1. The
point zmin corresponds to the right large single loop of the cycle C−

n . This loop is the
larger face of the right truncated cone of the set S. Further, the trajectory of the cycle
passes into the left half-plane and makes n clockwise rotations around the pointO2.
The smallest first loop around the point O2 is the smaller face of the truncated cone
of the set S. The point zmax corresponds to the smallest loop of the cycle C+

n around
the point O1. This loop is the smaller face of the right truncated cone. Further, the
trajectory of this cycle makes n rotations around the pointO1 clockwise, passes into
the left half-plane, and makes one large rotation around the point O2. This rotation
is the larger face of the left truncated cone. Between the points zmin and zmax there
is a point z0 corresponding to the main cycle C0.

Boundaries of the attraction domains of the stable pointsO1 andO2 are given by
the smallest loops of the cyclesC+

n andC−
n , whose size decay as r grows. Therefore,

for some r = rm, the attraction domain of the set B no longer intersects the attraction
domains of points O1 and O2, and the set B becomes an attractor. Therefore, in
the Lorenz system (a = 10, b = 8/3), metastable chaos exists only in the interval
r1 < r < rm, and in the interval rm < r < r2, the system has three stable limit sets,
namely, O1 and O2 and the Lorenz attractor.

If r → r2, then the eye size decreases as the number of rotations of the cycles C+
n

and C−
n around the points O1 and O2, respectively, grows. The value zmax grows,

and zmin decays; moreover, zmin → 0 as r → r2. The lengths of generatrices of
truncated cones grow, since additional rotations are added to the cone vertex and
diminish the size of the smaller face. Conversely, the larger face grows. If r = r2,
then zmin = 0, but zmax < r − 1; thus, the larger face of each cone achieves its max-
imal size, while the smaller face is not contracted into a point, the cone vertex. The
following bifurcation takes place. In the limit as n→ ∞, each set of cycles C+

n

(respectively, C−
n ) forms a point-cycle heteroclinic structure consisting of two sep-

aratrix contours of the point O . The first contour consists of a separatrix issuing
from the point O along its unstable manifold and spinning on the appearing (only
for r = r2) saddle cycle L1 (respectively, L2) of the point O1 (respectively, O1).
The second contour consists of the separatrix spinning out from the saddle cycle L1

(respectively, L2) and entering the point O along its stable manifold.
As mentioned above, the described bifurcation does not lead to generation of the

Lorenz attractor for r = r2. It is more correct to say that it is only a prerequisite of
destruction of the attractor as r decays. The attractor itself, existing in the system for
r = r2, is formed from finitely many stable cycles C±

k , k = 0, . . . , l, for r < 313. It
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contains neither separatrices Γ1 and Γ2 of the point O nor infinitely many unstable
cycles C±

n existing in the neighborhood of the point-cycle heteroclinic structure.
If r2 < r < r3 = ra , then points O1 and O2 are still stable, and their attraction

domains are bound by the appearing limit cycles L1 and L2 contracting to points
as r → r3. But the Lorenz attractor B is not a set of integral curves going from L1
to L2 and back, and separatrices Γ1 and Γ2 of the saddle point O do not belong
to the attractor. Cycles L1 and L2 have already made their job at r = r2 and no
longer have anything to do with the attractor. If r2 < r < r3, then, just as in the case
of r1 < r < r2, the cycles C+

n and C−
n appear again from separatrix contours. The

attractor is determined by finitely many such cycles [6].
4. For r = r3 = ra ≈ 24,74, the saddle cycles L1 and L2 disappear. In the system,

there is a unique limit set, namely, the Lorenz attractor.
5. There exist one more important value of the parameter r which affects the

formation of the Lorenz attractor. This is a point r4 ≈ 30,485. If r grows from r3
to r4, then the number of rotations of the cycles C+

n and C−
n first rapidly decays,

then grows again. In this case, eyes by separatrices of the point O are much smaller
than attractor eyes and begin to grow as r increases. Therefore, almost heteroclinic
and almost homoclinic contours exist in system (1) at the point r4.

The process of generation of the Lorenz attractor in system (1) as r decays from
the value 313 up to r4 is referred to as the incomplete double homoclinic cascade [6].
The complete cascade occurs if the r-axis passes exactly through the point of ex-
istence of two homoclinic contours. Note that in systems with a single homoclinic
contour, there can be a simple complete or incomplete homoclinic cascade of bifur-
cations of transition to chaos, and in [6], a detailed description of transition to chaos
through the double homoclinic (complete or incomplete) cascade of bifurcations is
given. Just as in item 6 of the classical scenario, if r > 313, then in the system,
there exists a unique stable limit cycle C0 surrounding both points. If r ≈ 313, then
the cycle C0 becomes unstable and generates two stable cycles C+

0 and C−
0 which

also surround the points O1 and O2 but have deflections in the direction of corre-
sponding halves of the unstable manifold V u of the pointO . This is the point where
the double homoclinic cascade of bifurcations really begins. In case of an incom-
plete cascade, it consists of finitely many stages of appearance of stable cycles C±

k ,
k = 0, . . . , l, and their infinitely many further bifurcations. But in case of a complete
cascade, the number of stages is infinite, and at the limit of l→ ∞, cycles tend to
homoclinic contours of the points O1 and O2, respectively. At the k-th stage of the
cascade, originally stable cycles C±

k undergo a subharmonic cascade of bifurcations
and form two band-form attractors that consist of infinitely many unstable limit cy-
cles intersecting the respective domains of the unstable manifold V u of the pointO .
Then these two bands merge and form a single attractor surrounding both the points
O1 and O2, after which there is a cascade of bifurcations of cycles generated as
a result of the merger and making rotations separately around the points O1 and
O2 and simultaneously around both the points. The last cascade of bifurcations has
the property of self-organization, since it is characterized by simplification of the
structure of cycles and the generation of new stable cycles with a smaller number
of rotations around the points O1 and O2 as r decays. Each cycle of the cascade
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of self-organization bifurcations undergoes its own subharmonic cascade of bifur-
cations, after which all cycles formed during infinitely many bifurcations of all sub-
harmonic cascades and cascades of self-organization bifurcations of cycles become
unstable and form some set Bk . After an incomplete homoclinic cascade of bifur-
cations, we obtain a set B =⋃ Bk consisting of infinitely many possible unstable
cycles appearing at all stages of the cascade. These cycles generate an incomplete
double homoclinic attractor, that is the classical Lorenz attractor.

6. If r > 313, then the unique stable limit cycle is an attractor in system (1).

3 The Bifurcational Geometric Scenario

Revising the above scenario, we present a new scenario of chaos transition in the
Lorenz system (1) for σ = 10, b= 8/3, and r > 0.

1. If r < 1, the unique singular point O of system (1) is a stable node. For
r = 1, it becomes a triple singular point, and then, for r > 1, there are two more
singular points in the system: O1 and O2 which are stable up to the parame-
ter value ra ≈ 24,74. For all r > 1, the point O is a saddle-node. It has a two-
dimensional stable manifold Ws and an one-dimensional unstable manifold Wu. If
1 < r < rl = r1 ≈ 13,9, then the separatrices Γ1 and Γ2 issuing from the point O
along its one-dimensional unstable manifoldWu are attracted by their nearest stable
points O1 and O2, respectively.

2. If r = rl , then each of the separatrices Γ1 and Γ2 becomes a closed homoclinic
loop. In this case, two unstable homoclinic loops, C+

0 and C−
0 , are formed around

the points O1 and O2, respectively. They are tangent to each other and the z-axis at
the point O and form together a homoclinic butterfly.

3. If rl < r < ra ≈ 24,74, then, unfortunately, neither the classical scenario nor
the Magnitskii–Sidorov scenario can be realized. The reason is that, in both cases,
trajectories of system (1) should intersect the two-dimensional stable manifold Ws

of the point O . Since this is impossible, the only way to overcome the contradiction
is to suppose that a cascade of period-doubling bifurcations [6] will begin imme-
diately in each of the half-spaces with respect to the manifold Ws , when r > rl .
In this case, each of the homoclinic loops C+

0 and C−
0 generates an unstable limit

cycle of period 2 which makes one rotation around the point O1 and one rotation
around the point O2 but in the corresponding half-spaces containing the points O1
and O2, respectively, and a stable limit cycle of period 1 lying between the coils
of the cycle of period 2. With further growth of r , each of the cycles of period 2
generates an unstable limit cycle of period 4 with a stable limit cycle of period 3
inside of it and each of the cycles of period 1 generates a stable limit cycle of pe-
riod 2 with an unstable limit cycle of period 1 inside of it. Then, after next doubling,
we will have in each of the half-spaces an unstable limit cycle of period 8 with an
inserted stable limit cycle of period 7 and a stable limit cycle of period 6 with an
inserted unstable limit cycle of period 5, and a stable limit cycle of period 4 with an
inserted unstable limit cycle of period 3, and an unstable limit cycle of period 2 with
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an inserted stable limit cycle of period 1. Continuing this process further, we will
obtain limit cycles of all periods from one to infinity, and the space between these
cycles will be filled by spirals issuing from unstable limit cycles and tending to sta-
ble limit cycles as t → +∞. These cycles are inserted into each other, they make
various combinations of rotation around the points O1 and O2 in the corresponding
half-spaces containing these points and form geometric constructions (limit periodic
sets) which look globally like very flat truncated cones described in item 3 of the
Magnitskii–Sidorov scenario [6].

4. For r = ra ≈ 24,74, the biggest unstable limit cycles of infinite period disap-
pear through the Andronov–Shilnikiv bifurcation [4, 5] in each of the half-spaces
containing the points O1 and O2 (the cone vertices are at these points), and these
points become unstable saddle-foci.

5. If ra < r < +∞, then a cascade of period-halving bifurcations [6] occurs in
each of the half-spaces with respect to the manifold Ws . We have got again two
symmetric with respect to the z-axis limit periodic sets consisting of limit cycles
of all periods which are inserted into each other and make various combinations
of rotation around the points O1 and O2 in the corresponding half-spaces contain-
ing these points, and the space between the cycles is filled by spirals issuing from
unstable limit cycles and tending to stable limit cycles as t → +∞. The biggest
limit cycles of these sets are stable now, and with further growth of r , the period-
halving process makes them and the whole limit periodic sets more and more flat.
The obtained geometric constructions are the only stable limit sets of system (1).
The spirals of the unstable saddle-foci O1 and O2 and the trajectories issuing from
infinity tend to these limit periodic sets (more precisely, to their stable limit cycles)
as t → +∞. Just these stable limit periodic sets form two symmetric parts of the
so-called Lorenz attractor, and this really looks very chaotic.

6. If r → +∞ (numerically, when r > 313), then the period-halving process will
be finishing and system (1) will have two stable limit cycles in two phase half-spaces
containing the unstable saddle-foci O1 and O2 of (1). This completes our scenario
of chaos transition in the Lorenz system (1).
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Abstract We consider Calderon–Zygmund singular integral in the discrete half-
space hZm+, where Zm is entire lattice (h > 0) in Rm, and prove, that the discrete
singular integral operator is invertible in L2(hZm+) iff such is its continual analogue.
The key point for this consideration takes solvability theory of so-called periodic
Riemann boundary problem, which is constructed by authors.
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1 Introduction

We consider simplest Calderon–Zygmund operators of convolution type

v.p.

∫

Rm
K(x − y)u(y)dy = lim

ε→0
N→+∞

∫

ε<|x−y|<N
K(x − y)u(y)dy,

where the kernel K(x) satisfies the following conditions:

(1) K(tx)= t−mK(x), ∀x �= 0, t > 0;
(2)
∫

Sm−1 K(θ)dθ = 0, Sm−1 is unit sphere in Rm;
(3) K(x) is differentiable on Rm \ {0}.
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Let us consider a discrete operator generated by the Calderon–Zygmund ker-
nel K(x), and defined on functions uh(x̃), x̃ ∈ hZm, where Zm is entire lattice
(h > 0) in Rm, and the corresponding equation

auh(x̃)+
∑

ỹ∈hZm+

K(x̃ − ỹ)uh(ỹ)hm = vh(x̃), x̃ ∈ hZm+, (1.1)

a is certain constant, in the discrete half-space hZm+ = {x̃ ∈ hZm : x̃m > 0},
uh, vh ∈ L2(hZm+).

By definition we put K(0)= 0, and for the operator

uh(x̃) �→ au(x̃)+
∑

ỹ∈hZm
K(x̃ − ỹ)uh(ỹ)hm, x̃ ∈ hZm,

we introduce its symbol by the formula

σh(ξ)= a +
∑

x̃∈hZm
e−iξ x̃K(x̃)hm;

it is periodic function with basic cube period [−πh−1; πh−1]m.
The sum for σh(ξ) is defined as a limit of partial sums over cubes QN

lim
N→∞

∑

x̃∈QN
e−iξ x̃K(x̃)hm,

QN =
{
x̃ ∈ hZm : |x̃| ≤N, |x̃| = max

1≤k≤m
|x̃k|
}
.

It is very similar classical symbol of Calderon–Zygmund operator [4], which is
defined as Fourier transform of the kernel K(x) in principal value sense

σ(ξ)= lim
N→∞
ε→0

∫

ε<|x|<N
K(x)eiξxdx.

Key point of our study is theorem proved in [6], asserting that images of σ and
σh are the same.

We also introduce continual equation in a half-space

au(x)+
∫

Rm+
K(x − y)u(y)dy = v(x), x ∈ Rm+, (1.2)

and we’ll prove, that (1.1) and (1.2) are uniquely solvable or unsolvable simultane-
ously for all h > 0 in corresponding spaces.
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2 Discrete Calderon–Zygmund Operators

2.1 Symbol Properties

We recall some properties of symbols σ(ξ) and σh(ξ), which are needed for us [6].

Lemma 2.1 limh→0 σh(ξ)= σ(ξ), ∀ξ �= 0.

Proof Indeed, if we fix ξ �= 0, then by definition of integral as a limit of integral
sums, we finish the proof. �

Lemma 2.2 σh(ξ)= σ1(hξ), ∀h > 0, ξ ∈ [−πh−1,πh−1]m.

Proof

σh(ξ) =
∑

x̃∈hZm
K(x̃)e−ix̃·ξ hm

=
∑

ỹ∈Zm
K(hỹ)e−iỹ·hξhm =

∑

ỹ∈Zm
K(ỹ)e−iỹ·hξ = σ1(hξ).

�

Lemma 2.3 The images of σ and σh are the same, and their values are constant for
any ray from origin.

Proof It follows from previous lemmas immediately, because if we fix ξ , then
σ1(0)= σ(ξ)=⇒ σh(0)= σ(ξ). �

2.2 Symbols and Operators

We consider more general in whole space Rm

(M1P+ +M2P−)U = V,
taking into account thatM1,M2 are operators of type (1.2), and P+,P− are restric-
tion operators on Rm± = {x = (x1, . . . , xm), ±xm > 0}. It is easily verified that (1.2)
is a special case for such equation, whenM2 ≡ I, I is identity operator.

If we’ll denote the Fourier transform by letter F , and use the notations [3]

FP+ =Qξ ′F, FP− = Pξ ′F,

Pξ ′ = 1/2(I +Hξ ′), Qξ ′ = 1/2(I −Hξ ′),

where Hξ ′ is Hilbert transform on variable ξm for fixed ξ ′ = (ξ1, . . . , ξm−1) [1]:

(Hξ ′u)
(
ξ ′, ξm

)≡ 1

πi
v.p.

∫ +∞

−∞
u(ξ ′, τ )
τ − ξm dτ,
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then the equation mentioned after applying the Fourier transform will be the follow-
ing equation with the parameter ξ ′:

σM1(ξ
′, ξm)+ σM2(ξ

′, ξm)
2

Ũ (ξ)

+ σM1(ξ
′, ξm)− σM2(ξ

′, ξm)
2πi

v.p.

∫ +∞

−∞
Ũ (ξ ′, η)
η− ξm dη= Ṽ (ξ)

( ˜ denotes the Fourier transform).
This equation is closely related to boundary Riemann problem with the parame-

ter ξ ′ with coefficient [2, 5]

G
(
ξ ′, ξm

)= σM1

(
ξ ′, ξm

)
σ−1
M2

(
ξ ′, ξm

)
.

3 Periodic Riemann Boundary Problem

The theory of periodic Riemann boundary problem was constructed by authors [8]
(see also forthcoming paper with the same name in Differential Equations) with full
details, and now we will use its general consequences.

Let’s denote Z+ = 0,1,2, . . . ,Z− = R \ Z+. The Fourier transform for function
of discrete variable is the series

(Fu)(ξ)=
+∞∑

k=−∞
u(k)e−ikξ , ξ ∈ [−π,π]. (3.1)

Let’s consider the Fourier transform (3.1) for the indicator of Z+:

χZ+(x)=
{

1, x ∈ Z+
0, x /∈ Z+.

For summable functions their product transforms to convolution of their Fourier
images on the segment [−π,π] but for our case F(χZ+ · u) one of functions χZ+
is not summable. Thus, first we introduce some regularizing multiplier and evaluate
the following Fourier transform

F
(
e−τk · χZ+

)
(ξ) = 1

2π

∑

k∈Z+
e−τke−ikξ = 1

2π

∑

k∈Z+
e−τk−ikξ = 1

2π

∑

k∈Z+
e−ik(ξ+iτ )

= 1

2π

∑

k∈Z+
e−ikz, τ → 0, z= ξ + iτ, τ > 0.
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The Fourier transform for the function u(n) we’ll denote û(ξ), it is left to find
the sum for e−ikz,

1

2π

∑

k∈Z+
e−ikz = 1

2π

(
1 + e−iz + e−2iz + · · · )= 1

2π

1

1 − e−iz .

After some transformations:

F(χZ+ · u)(ξ)= lim
τ→0+

(
û(ξ)

4π
+ 1

4πi

∫ π

−π
û(t) cot

z− t
2
dt

)

, z= ξ + iτ.

According to Sokhotskii formulas (these are almost same for periodic kernel
cot(x)) (see also classical books [2, 5])

F(χZ+ · u)(ξ)= û(ξ)

4π
+ 1

4πi

∫ π

−π
û(t) cot

ξ − t
2
dt + û(ξ)

2
.

If we introduce the function χZ−(x) and consider the Fourier transform for the
product F(χZ− · u) with preliminary regularization, then we have

F
(
e−τk · χZ−

) = 1

2π

−1∑

−∞
eτke−ikξ = 1

2π

−1∑

−∞
eτk−ikξ

= 1

2π

−1∑

−∞
e−ik(ξ+iτ ) = 1

2π

−1∑

−∞
e−ikz, τ → 0, z= ξ + iτ, τ < 0.

Further,

1

2π

−1∑

−∞
e−ikz = 1

2π

(−1 + 1 + eiz + e2iz + · · · )= − 1

2π
+ 1

2π

1

1 − eiz .

With the help of some elementary calculations:

F(χZ− · u)=n→ξ lim
τ→0

(

− û(ξ)
4π

− 1

4πi

∫ π

−π
û(t) cot

z− t
2
dt

)

, z= ξ + iτ.

Applying Sokhotskii formulas, we have:

F(χZ− · u)(ξ)= û(ξ)

4π
+ 1

4πi

∫ π

−π
û(t) cot

ξ − t
2
dt + û(ξ)

2
.

To verify one can find the sum for F(χZ+ · u), F(χZ− · u) and obtain:

F(χZ+ · u)+ F(χZ− · u) = û(ξ)

4π
+ 1

4πi

∫ π

−π
û(t) cot

ξ − t
2
dt + û(ξ)

2

− û(ξ)

4π
− 1

4πi

∫ π

−π
û(t) cot

ξ − t
2
dt + û(ξ)

2
= û(ξ).
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These calculations lead to certain periodic Riemann boundary value problem,
for which the solvability conditions are defined by the index of its coefficient. The
problem is formulated as following way: finding two functions Φ±(t) which admit
an analytical continuation into upper and lower half-strip in the complex plane C,
real part is the segment [−π,π], and their boundary values satisfy the relation

Φ+(t)=G(t)Φ−(t)+ g(t), t ∈ [−π,π],

G(t), g(t) are given functions on [−π,π], and such that G(−π) = G(π),
g(−π)= g(π).

Index for such problem is called the integer number

æ = 1

2π

∫ π

−π
d argG(t).

4 Solvability Conditions

Here we suppose additionally, that the symbol σ(ξ ′, ξm) satisfies the condition

σ(0, . . . ,0,−1)= σ(0, . . . ,0,+1).

Theorem 4.1 (Main Theorem) Equations (1.1) and (1.2) are uniquely solvable or
unsolvable simultaneously for all h > 0.

Proof We need to look our symbols σ(ξ) and σh(ξ) more exactly. We’ll illustrate
our consideration with the help of Fig. 1.

If we fix ξ ′ in the cube [−π,π]m, then under varying ξm on [−π,π] the argument
of σ1(ξ) will vary along the curve on cubical surface of [−π,π]m, which unites the
points C1 and C2 (for the casem≥ 3 all such curves are homotopic, and for the case
m= 2 there are two curves left and right one).

This varying corresponds to the varying of the argument of function σ(ξ) along
the curve from point A1 to point A2 on the unit sphere. Further, if we consider the
symbol σh(ξ) now on the cube [−h−1π,h−1π]m, then according to Lemma 2.2
hξm will be varied on [−π,π] also under fixed hξ ′. In other words, the argument of
σh(ξ) for fixed ξ ′ (we consider small h > 0) will be varied along curve on cubical
surface of [−h−1π,h−1π]m, which unites the points D1 and D2. It corresponds
to varying argument of function σ(ξ) from point B1 to point B2 on unit sphere.
Obviously, under decreasing h the sequence A1,B1, . . . will be convergent to south
pole of the unit sphere (0, . . . ,0,−1), and the sequence A2,B2, . . . to north pole
(0, . . . ,0,+1). Thus, because the variation of argument of σh(ξ) on ξm under fixed
ξ ′ is 2πk (σh is periodic function), then under additional assumption

σ(0, . . . ,0,−1)= σ(0, . . . ,0,+1)
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Fig. 1 Illustration to the
proof of Theorem 4.1

(this property is usually called the transmission property) we’ll obtain that variation
of argument for the function σ(ξ) under varying ξm from −∞ to +∞ under fixed ξ ′
(this variation of σ(ξ)moves along the arc of big half-circumference on unit sphere)
is also 2πk. According to our assumptions on continuity of σ(ξ) on the unit sphere,
it will be the same number 2πk, k ∈ Z,

lim
h→0

∫ πh−1

−πh−1
d argσh

(
ξ ′, ξm

)=
∫ +∞

−∞
d argσ

(
ξ ′, ξm

)
, ∀ξ ′ �= 0.

So, both for (1.1) and (1.2) the uniquely solvability condition is defined by the
same number. This completes the proof. �

5 Conclusion

We see that both continual and discrete equations are solvable or unsolvable simul-
taneously, and then we need to find good finite approximation for infinite system
of linear algebraic equations for computer calculations. First steps in this direction
were done in the paper [7], where the authors suggested to use fast Fourier trans-
form.

Acknowledgement Many thanks to DAAD and Herr Prof. Dr. Volker Bach for their support.
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Geometrical Features of the Soliton Solution

Zhanat Zhunussova

Abstract It is well known, that integrable equations are solvable by the inverse
scattering method (Ablowitz and Clarkson in Solitons, Non-linear Evolution Equa-
tions and Inverse Scattering, 1992). Investigating of the integrable spin equations
in (1 + 1), (2 + 1) dimensions are topical both from the mathematical and physi-
cal points of view (Lakshmanan and Myrzakulov in J. Math. Phys. 39:3765–3771,
1998; Gardner et al. in Phys. Rev. Lett. 19(19):1095–1097, 1967). Integrable equa-
tions admit different kinds of physically interesting solutions as solitons, vortices,
dromions etc. We consider an integrable spin M-I equation (Myrzakulov and Vi-
jayalakshmi in Phys. Lett. A 233:391–396, 1997). There is a corresponding Lax
representation. And the equation allows an infinite number of integrals of motion.
We construct a surface corresponding to soliton solution of the equation. Further,
we investigate some geometrical features of the surface.

Keywords Surface · Soliton · Nonlinear equation

1 Introduction

We consider the connection between the surface and the soliton equation M-I which
has the form [2],

St = (S × Sy + uS)x, (1.1)

ux = −(S, (Sx × Sy)
)
, (1.2)

where S is spin vector, S2
1 +S2

2 +S2
3 = 1, × is vector product, u is a scalar function.

We identify the spin vector S and vector rx according to [2]

S ≡ rx. (1.3)
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Then (1.1), (1.2) take the form

rxt = (rx × rxy + urx)x, (1.4)

ux = −(rx, (rxx × rxy)
)
. (1.5)

If we integrate (1.4) by x, then it takes the form

rt = rx × rxy + urx. (1.6)

Taking into account Gauss–Weingarten equation and E = r2
x = 1 the system is de-

fined as

rt =
(

u+ MF√
Λ

)

rx − M√
Λ

ry + Γ 2
12

√
Λn, (1.7)

ux = √
Λ
(
LΓ 2

12 −MΓ 2
11

)
, (1.8)

where

Γ 2
11 = 2EFx −EEt − FEx

2Λ
, (1.9)

Γ 2
12 = EGx − FEt

2Λ
, (1.10)

Λ=EG− F 2. M-I equation is integrable equation and has soliton solutions.

2 Construction of Surface Corresponding to Soliton Solution

Here we present the one-soliton solution of (1.1), (1.2) [2],

S3(x, y, t)= 1 − 2η2

η2 + ξ2
sech2(χ1R), (2.1)

S+(x, y, t)= 2η

η2 + ξ2

[
iξ − ηth(χ1R)

]
sech(χ1R), (2.2)

χ1 = χ1R + iχ1I , λ1 = η+ iξ, (2.3)

m1 =m1R(ρ)+ im1I (ρ), mj (y, t)=mj(ρ), (2.4)

χ1R = ηx +m1R(ρ)+ c1R, ρ = y + iλj t, (2.5)

χ1I = ξx +m1I (ρ)+ c1I , c= ln
(
2η/λ∗

1

)
, (2.6)

m1R(ρ)= Re
[
m1(ρ)

]
, m1I (ρ)= Im

[
m1(ρ)

]
, (2.7)

which we use in the following theorem.



Geometrical Features of the Soliton Solution 673

Theorem 2.1 (Main Theorem) One-soliton solution (2.1)–(2.7) of the spin system
M-I can be represented as components of the vector rx , where

r1 = 2η

(η2 + ξ2)chχ1R
+ c1, (2.8)

r2 = 2ξ

η2 + ξ2
arctg(shχ1R)+ c2, (2.9)

r3 = x − 2η

η2 + ξ2
thχ1R + c3, (2.10)

c1, c2, c3 are constants. Solution of the form (2.8)–(2.10) corresponds to the surface
with the following coefficients of the first and second fundamental forms

E = 1, G= 4m2
1Ry

(η2 + ξ2)ch2χ1R
, (2.11)

F = 2ηm1Ry

(η2 + ξ2)ch2χ1R
, L= 4η3ξm1Ry√

g(η2 + ξ2)2ch4χ1R
, (2.12)

M = 4η2ξm2
1Ry√

g(η2 + ξ2)2ch4χ1R
, N = 4ηξm3

1Ry√
g(η2 + ξ2)2ch4χ1R

. (2.13)

Proof From (1.3) we have

(S1, S2, S3)= (r1x, r2x, r3x), (2.14)

i.e.

r1x = S1, r2x = S2, r3x = S3. (2.15)

Hence

r1 =
∫

S1dx + c1, (2.16)

r2 =
∫

S2dx + c2, (2.17)

r3 =
∫

S3dx + c3, (2.18)

where c1, c2, c3 are constants of integration. Note

S+ = S1 + iS2 = r+x , (2.19)

then

r+ = r1 + ir2 =
∫

S+dx + c+, (2.20)



674 Z. Zhunussova

where c+ is constant of integration. Substituting (2.1) in (2.18), we have

r3 =
∫

S3dx + c3 =
∫ [

1 − 2η2

η2 + ξ2
sech2(χ1R)

]

dx + c3

= x − 2η

(η2 + ξ2)
th(χ1R)+ c∗3, (2.21)

where c∗3 = c3 + c′3. c3 ≡ c∗3 , then

r3 = x − 2η

(η2 + xi2) th(χ1R)+ c3. (2.22)

Substituting (2.2) into (2.20) we have

r+ = r1 + ir2 =
∫

S+dx + c+

=
∫

2η

η2 + ξ2

[
iξ − ηth(χ1R)

]
sech(χ1R)dx + c+

= 2iξ

η2 + ξ2
arctg(shχ1R)+ 2η

η2 + ξ2

1

chχ1R
+ c′′ + c+ + c′′′. (2.23)

We denote c1 = c′′, c2 = c+ + c′′′, then

r+ = 2η

(η2 + ξ2)chχ1R
+ c1 + i

(
2ξ

η2 + ξ2
arctg(shχ1R)+ c2

)

, (2.24)

i.e. we have obtained

r1 = 2η

(η2 + ξ2)chχ1R
+ c1, r2 = 2ξ

η2 + ξ2
arctg(shχ1R)+ c2. (2.25)

Thus, (2.22), (2.25) give us (2.8)–(2.10).
We proceed to prove the second part of the theorem. From (2.22) and (2.25) we

have

r1x = − 2η2shχ1R

(η2 + ξ2)ch2χ1R
, r2x = 2ηξ

(η2 + ξ2)chχ1R
, (2.26)

r3x = 1 − 2η2

(η2 + ξ2)ch2χ1R
, r1y = − 2ηshχ1Rm1Ry

(η2 + ξ2)ch2χ1R
, (2.27)

r2y = 2ξm1Ry

(η2 + ξ2)chχ1Ry
, r3y = − 2ηm1Ry

(η2 + ξ2)ch2χ1Ry
. (2.28)
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Then we can calculate

E = r2
x = r2

1x + r2
2x + r2

3x

= 4η4sh2χ1R

(η2 + ξ2)2ch4χ1R
+ 4η2ξ2

(η2 + ξ2)2ch2χ1R

+ 1 − 4η2

(η2 + ξ2)ch2χ1R
+ 4η4

(η2 + ξ2)2ch4χ1R
≡ 1. (2.29)

Similarly, using (2.25) and (2.28) we obtain

G= r2
y = r2

1y + r2
2y + r2

3y = 4m2
1Ry

(η2 + ξ2)ch2χ1R
≡ 1, (2.30)

F = (rx, ry)= r1xr1y + r2xr2y + r3xr3y = 2ηm1Ry

(η2 + ξ2)ch2χ1R
. (2.31)

Formulas (2.29)–(2.31) give us the first three equations (2.11)–(2.13). Using (2.29)–
(2.31) we compute

Λ=EG− F 2 = 4m2
1Ry(η

2sh2χ1R + ξ2ch2χ1R)

(η2 + ξ2)2ch4χ1R
. (2.32)

We calculate the components of the vector n

n = rx × ry
|rx × ry | = rx × ry√

Λ
= 1√

Λ
(n1, n2, n3), (2.33)

n1 = 1√
Λ
(r2xr3y − r3xr2y)= − 2ξm1Ry√

Λ(η2 + ξ2)chχ1R
. (2.34)

Similarly, for the components

n2 = 1√
Λ
(r3xr1y − r1xr3y)= − 2ηshχ1Rm1Ry√

Λ(η2 + ξ2)ch2χ1R
, (2.35)

n3 = 1√
Λ
(r1xr2y − r2xr1y)= 0. (2.36)

Now, from (2.26), (2.28) we have

r1xx = −2η3chχ1R(ch
2χ1R − 2sh2χ1R)

(η2 + ξ2)ch4χ1R
= −2η3(1 − sh2χ1R)

(η2 + ξ2)ch3χ1R
, (2.37)

r2xx = − 2η2ξshχ1R

(η2 + ξ2)ch2χ1R
, (2.38)

r3xx = 4η3shχ1R

(η2 + ξ2)ch3χ1R
. (2.39)
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Thus, using (2.34)–(2.39) we can compute

r3xx = 4η3shχ1R

(η2 + ξ2)ch3χ1R
. (2.40)

Taking into account, that n3 = 0,

L= 4η3ξm1Ry√
Λ(η2 + ξ2)2ch4χ1R

. (2.41)

Similarly, we calculate

M = 4η2ξm2
1Ry√

Λ(η2 + ξ2)2ch4χ1R
, (2.42)

N = 4ηξm3
1Ry√

Λ(η2 + ξ2)2ch4χ1R
. (2.43)

The formulas (2.41)–(2.43) give us the last three equations (2.11)–(2.13). Using
(2.11)–(2.13), for example, the Gaussian curvature can be calculated

K = LN −M2

Λ

= 1

Λ

(
4η3ξm1Ry√

Λ(η2 + ξ2)2ch4χ1R

4ηξm3
1Ry√

Λ(η2 + ξ2)2ch4χ1R
− 16η4ξ2m4

1Ry

Λ(η2 + ξ2)4ch8χ1R

)

= 1

Λ

( 16η4ξ2m4
1Ry

Λ(η2 + ξ2)4ch8χ1R
− 16η4ξ2m4

1Ry

Λ(η2 + ξ2)4ch8χ1R

)

≡ 0. (2.44)

We see that for the surface Gaussian curvature is equal to zero. Theorem is proved. �

3 Conclusion

Based on the results of work [2], where Gauss–Codazzi–Mainardi equation consid-
ered in multidimensional space, we have studied equation M-I and built the surface
corresponding to soliton solution. Thus, this work fully reveals the meaning of the
geometric approach [2] in (2 + 1)-dimensions.
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Approximate Dual M-Frames Constructions:
The Gabor Case

Darian M. Onchis and Anna Grybos

Abstract The aim of this work is to provide an efficient method to realize construc-
tively approximate duals of Gabor frames with multivariate atoms. The proposed
method is independent of the number of atoms needed and it is applicable also in
the case of non-separable atoms. Due to the small number of atoms used in the
construction the method is computationally inexpensive.

Keywords Frames · Approximate dual constructions · Multivariate atoms ·
Gabor frames

Mathematics Subject Classification (2010) Primary 42C15 · Secondary 65D99

1 Introduction

Gabor analysis is concerned with the representation of signals using series of time-
frequency shifted copies of a given atom. If the set of shifts used to build the Gabor
family is a lattice Λ, one can use the so-called canonical dual Gabor atom (with re-
spect to the same lattice Λ) in order to find the coefficients for such non-orthogonal
expansions. Classically mostly separable Gabor lattices are used, which are de-
scribed by a time shift a and a frequency shift b (resp. the number of channels).
In contrast to this classical setting the general non-separable case has found only
little attention in the literature.

In the paper [4], the authors have proposed a method to compute good approx-
imations to the dual Gabor atom, using only a few neighbours from an adjoint lat-
tice Λ◦. In the current contribution we are extending that method to M-frames con-
structed using multivariate atoms.
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Existing work on approximating the inverse frame operator can be found in [2].
The frame operator has in general no bounded inverse. It is however possible to find
a subspace, such that the projection is boundedly invertible.

The proposed computational procedure is intended to be used in applications
when the signal must be reconstructed from the coefficients.

Frames (gi)i∈I generalize the idea of a basis in a Hilbert space H and consist of
the indexed families such that the so-called frame operator S

Sf =
∑

i∈I
〈f,gi〉gi (1)

is invertible. Hence every element f ∈ H has an expansion of the form [2]:

f = SS−1f =
∑

i∈I

〈
S−1f,gi

〉
gi =

∑

i∈I

〈
f,S−1gi

〉
gi. (2)

The family (g̃i)i∈I = (S−1gi)i∈I is again a frame and is called the canonical dual
frame. It is not the only dual frame unless the frame is a basis. In general, any frame
(γi)i∈I that allows the expansion of any f ∈ H as follow:

f =
∑

i∈I
〈f,gi〉γi =

∑

i∈I
〈f,γi〉gi (3)

is called a dual frame. However, the canonical dual (g̃i)i∈I provides the coefficients
(〈f, g̃i〉)i∈I of minimal l2-norm.

The main tool for time-frequency analysis is the Short-Time Fourier Trans-
form, defined for functions f,g ∈ L2(Rd) at λ= (α,β) ∈ R

2d by

Vgf (λ)= Vgf (α,β)= 〈f,MβTαg〉 = 〈f,π(λ)g〉 (4)

where Tαf (t)= f (t − α) is the translation (time shift) and Mβf (t)= e2πiβ·t f (t)
is the modulation (frequency shift). The operators π(λ) :=MβTα are called time-
frequency shifts and the set Λ= {λ;λ= (α,β) ∈R

d × R̂
d} is a lattice.

A sequence (hi)i∈I in a separable Hilbert space H is a Riesz basic sequence
(RBS) resp. Riesz basis for its closed linear span if there are two constants 0 <
C ≤D <∞ with

C‖c‖2
l2

≤
∥
∥
∥
∥

∑

i

cihi

∥
∥
∥
∥

2

H

≤D‖c‖2
l2
, ∀c ∈ l2(I ). (5)

The Gabor system G(g,Λ)= {π(λ)g;λ ∈Λ} over the latticeΛ consisting of the
translated and modulated versions of one atom g, is a frame for the space L2(Rd),
if and only if there exist 0<A≤ B <∞ (frame bounds) with

A‖f ‖2 ≤
∑

λ∈Λ

∣
∣
〈
f,π(λ)g

〉∣
∣2 ≤ B‖f ‖2 for every f ∈ L2(

R
d
)
. (6)
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Theorem 1.1 (Dual Gabor Frames [5]) If G(g,Λ) is a Gabor frame for L2(Rd), for
some lattice Λ� R

d × R̂
d , then the canonical dual frame takes the form G(γ,Λ)

for γ = S−1g.
The frame G(g̃,Λ) for g̃ = S−1g is again a Gabor frame with respect to the same

lattice.

For two Gabor systems we can write the frame operator (1) in the generalized
form:

Sg,γ,Λf :=
∑

λ∈Λ

〈
f,π(λ)g

〉
π(λ)γ . (7)

In particular, if G(g,Λ) is a frame and G(g̃,Λ) is its canonical dual frame, then
Sg,̃g,Λ is an identity operator. Note that then S = Sg,g,Λ and S−1 = Sg̃,̃g,Λ.

2 Multivariate M-Frames

We recall that Lyubarskii [6] and Seip and Wallstén [8] have proven that:

Proposition 2.1 Let g1(x)= 21/4e−πx2
, x ∈ R and Λab = aZ× bZ. Then the Ga-

bor system G(g1,Λab) is a frame for L2(R) if and only if ab < 1.

In order to construct M-frames, we need the following extension of Proposi-
tion 2.1, due to Bourouihiya [1]:

Lemma 2.2 Let g = g1 ⊗ · · · ⊗ g1 (d factors) and Λab = (a1Z × · · · × adZ) ×
(b1Z×· · ·× bdZ). Then G(g,Λab) is a frame if and only if ajbj < 1 for 1 ≤ j ≤ d .

The proof of this extension is straightforward using tensor products of Gabor
systems.

Based on this result, another extension to non-separable lattices of the form
NΛa,b is possible [7], which besides a multi-variate sampling in each dimension,
gives us a better packing of the time-frequency plane by using a (non-separable)
hexagonal lattice that matches with the circular contour lines of the Gaussian. The
representation of the non-separable lattice is based on the rectangular lattice via a
shear operation denoted by N .

To construct multivariate M-frames, we will use generalized Gaussians.
Let M = X + iY be a complex symmetric matrix of size d , we assume that

X = ReM is positive-definite (hence M is invertible). We define the generalized
Gaussian gγM = gγX,Y by

g
γ

M(x)= 2d/4eγ (detX)1/4e−π〈Mx,x〉; (8)
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where γ is an arbitrary (real) phase. The function gγM is normalized: ‖gγM‖L2 = 1.
When M is the identity matrix and γ = 0 one gets the standard (normalized) Gaus-
sian

g0
I (x)= 2d/4e−π |x|2 . (9)

The theoretical results open the way for numerical constructions far beyond the
standard Gabor processing on regular lattices. They gives us the freedom of gener-
alizing both the lattice and the Gaussian window in a multi-variate way. The added
flexibility will allow to find the most appropriate representation in the Gabor domain
for different features identifications (e.g. 3D plane waves).

The numerical construction of multivariate Gaussian Gabor systems for multiple
dimensions is possible as an extension of the 1D case. Using tensor products, it is
well understood the potential of Gabor frames for analyzing nD-objects but also the
numerical hurdles coming with their numerical implementation made it less feasible
in practice.

In order to overcome these numerical hurdles, we will use the local construction
of the dual system and we will extend it to the multidimensional setting. Basically,
we apply the computationally inexpensive procedure in each dimension and then as
a tensor product it gives the final approximate dual.

In these conditions it is feasible to perform a Gabor analysis followed by a Gabor
synthesis at level of the constituting vectors, and therefore reducing the case of ap-
plying nD matrices to the fast case of applying the transform over each dimension.
In this way, once we have the transform coefficients, we can approximate the nD
object via the dual Gabor frame recovery.

3 Approximate Dual Gabor Frames

For the non-separable case we could still use the Janssen representation of the frame
operator [5]:

Sg,Λ = CΛ
∑

λ◦∈Λ◦
Vgg
(
λ◦)π

(
λ◦),

where Λ◦ is the adjoint group (a symplectic variant of the orthogonal group).
As a consequence, for the M-frames constructions proposed in this contribution,

we could use a sufficient condition given in [3]:

Theorem 3.1 A pair (g,Λ) with g ∈ S0(R
d) or g ∈ L2(Rd), g �= 0 is a frame if the

following Janssen-like condition is satisfied:

s2 := ‖g‖2
−1
∑

λ◦∈Λ◦

∣
∣Vgg

(
λ0)∣∣≤ 2 − δ, δ > 0. (10)

The state of the art for the calculation of the dual Gabor frames is that there exist
many efficient algorithms for dual Gabor atoms in the separable case, already imple-
mented and available in toolboxes. However, in the non-separable case the existing
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solutions are very time-consuming, hence an extension to multivariate atoms is nec-
essary. The local approximation of the canonical dual atom for the Gabor frame
relies on the following theorem and its consequences:

Theorem 3.2 (Wexler–Raz Identity) LetΛ be a lattice in R×R̂ with adjoint lattice
Λ◦ and a pair (g, γ ) in L2 × L2(Rd). Assume that the synthesis operator c �→
∑
λ∈Λ cλπ(λ)g and c �→∑

λ∈Λ cλπ(λ)γ are bounded on �2(Λ). Then the following
conditions are equivalent:

(i)

Sg,γ,Λf = Sγ,g,Λ = Id on L2(
R
d
)
.

(ii)
〈
γ,π
(
λ◦)g

〉= red(Λ)δλ◦,0 for λ◦ ∈Λ◦.

We introduce the following notation [4]: let (hi)i∈I be a Riesz basic sequence
in a Hilbert space H with the biorthogonal family (h̃i )i∈I . For J ⊆ I , we write
(hJi )i∈J for the local Riesz basis which spans the closed subspace H J . We de-
note by (h̃Ji )i∈J the local biorthogonal family to the local Riesz basis (hJi )i∈J .
It is obtained by forming linear combinations of the vectors in (hi)i∈J , using as
coefficients the entries of the i-th column of the inverse local Gramian matrix
GJ = (〈hj ,hj ′ 〉)j,j ′∈J .

Theorem 3.3 ([4]) Assume that a symmetric resp. Hermitian matrixG= (gi,j )i,j∈I
satisfying gi,i = 1 for all i ∈ I is diagonal dominant, i.e.:

sup
i∈I

∑

j �=i
|gi,j | ≤ s1 < 1. (11)

Additionally, for any subset J ⊆ I let VJ denotes the pseudo-inverse of the matrix
obtained fromG by setting all the rows and columns with indices from I \J to zero,
or equivalently by inverting the submatrix GJ = (gj,j ′)j,j ′∈J .

Then G is invertible and the inverse can be approximated by local inverse ma-
trices VJ as J ↗ I in the sense that for each fixed index i ∈ I the columns of VJ
converge to the corresponding column of VI =G−1 in the norm of �1(I ).

The simulations presented in [4] show a good rate of approximation of the canon-
ical dual atom by only a few elements of the adjoint Riesz basis. In order to de-
fine the subregions J ⊆ I in the lattice Λ◦ the masks of the square block shape
were considered in the tests. In the examples (Figs. 1 and 2) the size of the block
changed from 3 × 3, 5 × 5 to 7 × 7, hence the number of used elements of the
frame G increased from 9, 25, to 49 (see Fig. 1). In the case of a Gabor frame gen-
erated by a Gaussian window g of length n = 240 and time-frequency parameters
(a, b)= (12,12), it constituted 2.25 %, 6.25 %, 12.25 % of all frame elements.
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Fig. 1 The masks applied to
the regular lattice give the
areas of 3 × 3, 5 × 5 and
7 × 7 elements around the
center

Fig. 2 The masks applied to
the quincunx lattice give the
areas of 3 × 3, 5 × 5 and
7 × 7 elements around the
center

4 Conclusions

The computational efficiency of the new approach is based on the Wexler–Raz iden-
tity transferring the problem to the adjoint lattice and the convergence of Neumann
series corresponding to the small Gramians GJ . Thus, the proposed procedure uses
only a reduced number of time-frequency shifted atoms from the adjoint lattice to
approximate the dual atom.

The proposed method is independent of the number of atoms and works in the
multivariate case. It is applicable in the non-separable case (e.g. quincunx lattice)
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and it is computationally inexpensive due to the small number of atoms used. For
the further developments the idea of intrinsic localization of the frame is necessary.
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Matrices of Operators on Some Function Spaces

Wojciech Mikołajczyk and Krzysztof Rudol

Abstract Some matrix representations for Hilbert space operators are considered.
The corresponding matrices are related to frames and appear in a quite natural way
especially in the case of reproducing kernel spaces. The membership in Schatten
classes is discussed in terms of a discrete set of points, where the corresponding
symbols are evaluated.

Keywords Schatten classes · Frames · Reproducing kernel · Berezin symbol
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1 Matrices with Respect to Frames

In order to study properties of frames in a Hilbert space H one needs to apply some
operator theory. Even the very definition can be phrased as a statement concerning
two basic operators of analysis and synthesis. Namely, a sequence G = (gj )j∈N in
H defines the analysis operator C = CG assigning to x ∈H the sequence (〈x,gj 〉).
Its range space will be denoted by R(C).

Definition 1.1 We say that the above sequence is

• a Bessel sequence if C maps boundedly H into �2, i.e. ‖C‖<∞;
• a frame if ‖C‖<∞ and C−1 : R(C)→H is bounded in �2-norm.
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The synthesis operator D = DG := C∗
G : �2 → H sends scalar, square summable

sequences (λj ) to
∑
j λjgj . The constants κ2 = ‖C‖2, κ1 = ‖(C|R(C))−1‖−2—are

the upper (= Bessel), resp. lower frame bounds are optimal in the following frame
condition, usually taken as the definition of a frame:

κ1‖x‖2 ≤
∞∑

j=1

∣
∣〈x,gj 〉

∣
∣2 ≤ κ2‖x‖2, x ∈H. (1.1)

The canonical dual frame, G̃ = (g̃j ) is defined by g̃j = (DC)−1gj and it appears in
the reconstruction formulae: x =∑j 〈x, g̃j 〉gj and x =∑j 〈x,gj 〉g̃j .

Basic operator theory is also involved in several frame constructions. It was quite
recently that a converse attitude has been taken to apply frames (instead of orthonor-
mal bases) in matrix representation of operators.

In [2] Peter Balazs has considered a pair of frames (G,H) in Hilbert spaces
H1,H2 and defined the matrix MG,H(T )= MatrG,H(T ) corresponding in the fol-
lowing natural way to a bounded linear operator T :H1 →H2:

Definition 1.2 Let MG,H(T ) = CG ◦ T ◦DH—which as an operator on �2 is the
matrix with entries (Tmn) given by the inner products:

Tnm = 〈T hm,gn〉 if G = (gm)∞m=1, H = (hn)∞n=1.

Conversely, the operator OG,H(A)=DG ◦A ◦ CH associated to an infinite matrix
A= (ajn) bounded as an operator on �2 is given by

OG,H(A)x =
∞∑

j=1

∞∑

n=1

ajn〈x,hn〉gj , x ∈H

with the sum absolutely convergent.

If H1 = H2 = H and H = G̃ is the canonical dual (its frame bounds being

κ−1
2 , κ−1

1 , its dual ˜̃G = G), some regularity is achieved for the functor M(·) :=
MG,G̃(·)—it becomes a Banach algebra homomorphism: it depends on T ∈ B(H)
in both linear and multiplicative manner. The operator norms satisfy ‖M(T )‖ ≤
(κ−1

1 κ2)
1
2 ‖T ‖ and similarly, the norm of ‖OG,H(A)‖ is estimated by ‖A‖ times

the geometric mean of the respective Bessel bounds. Analogous results hold for
the Schatten–von-Neumann classes Sp and their norms. The Reconstruction For-

mula holds only in one direction—in the form OG,H(MG̃,H̃(T ))= T . But although
OG,G̃(I�2) = IH , MG,G̃ sends the identity operator IH to the Gram matrix of G,
which is noninvertible for frames that fail to be Riesz bases. These results of [2]
were extended in [1], where it was shown that MG,G̃ preserves the hermitian con-
jugation iff the frame G is tight, i.e. MG,G̃(T ∗) is the adjoint for MG,G̃(T ) for any
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T ∈ B(H) iff κ1 = κ2. Analysis of the spectrum of M := MG,G̃(T ) (and its parts)
in terms of the spectrum of T , carried in [1] resulted in the following

Theorem 1.3 The nonzero parts of the spectra: σ(T ) \ {0} and σ(M) \ {0} are
equal. The same is true for the point spectra: σp(T ) \ {0} = σp(M) \ {0}.

For the continuous spectrum σc(T ) := {λ ∈ σ(T ) \ σp(T ) : λ̄ /∈ σp(T ∗)} and for
λ �= 0 we have λ ∈ σc(T ) iff

λ /∈ σp(M), R(M − λI) �⊃ R(C) and R(M − λI)⊃ R(C)

the essential spectra can be described using the orthogonal differences of the ranges
and nullspaces (with D̃ denoting the adjoint of the analysis operator C̃ for G̃) as
follows: λ /∈ σess(T )∪{0} iff the range ofM−λI is closed and dim(ker(M−λI)@
ker(D̃)) <∞ and dim(R(C)@R(M − λI)) <∞.

2 Frames from Reproducing Kernels

One instance when frames appear in a quite natural way is the case of reproduc-
ing kernel Hilbert spaces (RKH spaces—for short). Then H is a function space
over some domain Ω , where for any z ∈ Ω there exists Kz ∈ H representing the
functional of evaluation at the point z so that f (z) = 〈f,Kz〉 for any f ∈ H .

Then K(z,w) := Kz(w) is called the kernel function and kz := KzK(z, z)− 1
2 is

the normalised reproducing kernel at z, since ‖kz‖ = 1. These normalised ker-
nels span a dense subspace in H and in most RKH spaces there are natural con-
ditions (in terms of the Bergman metrics) for lattices Γ = {γn : n ∈ N} of points
in Ω , under which the sequence G = {kγn : n ∈ N} of normalised kernels forms
a frame in H . We call such sequences sampling sequences for H . In [6] a gen-
eral atomic decomposition is given in Theorem 8.2 (not only for Hilbert, but for
the associated scale of Banach spaces, which for p = 2 give frames). In the case
of Bergman spaces Chap. 5 of [5] seems the best source. The Segal–Bargmann
space Fα of entire functions on C

n square—integrable w.r. to the Gaussian mea-
sure dμα(z)= ( απ )n exp(−α|z|2)dm(z), where dm is the Lebesgue measure is also
called the Fock space. Here frames were constructed by Grossman with Daubechies,
Lyubarski and Seip, using the normalised kernels kz(w)= exp(αz̄w− α

2 |z|2). In par-
ticular, the Euclidean metric lattices of sufficient density work. A recent treatment
can be found in the book [8] by Kehe Zhu in the chapter on sampling sequences.

Definition 2.1 The Berezin symbol for a bounded linear operator T :H →H on a
RKHS H is the function

T̃ (z,w)= 〈T κz, κw〉, z,w ∈Ω
Its diagonal restriction is defined as T̃ (z)= T̃ (z, z).
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In [7] the following corollary is obtained in the case when p = 2.

Proposition 2.2 The matrix of T w.r. to the frame κzn has entries equal to Berezin
symbol’s values at the lattice points: Tn,j = T̃ (zj , zn). Moreover, T ∈ Sp(H) iff
this infinite matrix as an operator on �2 belongs to the Schatten class Sp(�

2). If
0<p ≤ 2 the latter holds if

∑
n,j |T̃ (zj , zn)|p <∞.

Proof The first statement comes as a direct consequence of the definitions. The
equivalence for the Sp-condition for an operator and its matrix in any frame is
established in [1], Corollary 4.1. Its proof can actually avoid the assumption that
G be a tight frame (in which case the matrix functor M satisfies M(|T | p2 ) =
|M(T )| p2 ). Indeed, it follows directly from the ideal property of Sp , since M(T )=
CG̃ ◦T ◦DG . It is in some contrast with the results of [3], showing the dependence of
the summability of ‖Tfn‖p (and the related quantities) on the choice of the frame se-
quence (fn in H ). The last claim follows from Lemma 11 and Theorem 17 in [3]. �

Remark 2.3 Note that for nonnegative selfadjoint operators the latter condition is
satisfied if

∑
n |T̃ (zn)|p <∞. Indeed, then the Berezin symbol is a positive definite

kernel and Schwarz inequality applies.

For p > 2 a similar sufficient condition requires the summability of p-th
powers—but with respect to all orthonormal bases, or all frames, not just the con-
sidered ones. A partial remedy is provided by the following result in [4].

Let ∂HΩ be the set of these boundary points z0 ∈ ∂Ω for which the normalised
kernels κz weakly tend to zero as z→ z0, z ∈Ω .

Theorem 2.4 Assume that ∂HΩ is nonempty. (i) For a bounded linear T :H →H

its compactness is then equivalent to the Berezin transform Ũ−1T U(z) tending to
zero as z tends to an arbitrary (equivalently, for some) point z0 ∈ ∂HΩ for any
unitary operator U on H .

(ii) If p ≥ 1 and T is a compact operator on a RKHS H , then it belongs to the
ideal Sp iff for some point z0 ∈ ∂HΩ there exists a sequence (zn) in Ω converging
to z0 and such that for all unitary operators U : H → H the sequence of values

Ũ−1T U(zn) is in �p . The supremum of the �p-norms taken over all unitaries U is
equivalent to the Sp norm of T .
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Rank-M Frame Multipliers and Optimality
Criterions for Density Operators of Rank M

Daniel Lantzberg

Abstract Ever since the introduction of frames in Duffin and Schaeffer (Trans. Am.
Math. Soc. 72:341–366, 1952), the connection between frame theory and decompo-
sitions of certain operators, particularly the identity operator, into rank-ones began
to be elaborated. Abandoning the idea of restricting to tight frame-like expansions,
with respect to systems arising from a single template function, one is led to the
concept of resolutions of the identity, with respect to more general systems than the
usual rank-one expansions of the identity.

In this study, we will investigate various notions of possible generalizations of
optimality criterions for rank-M frames and corresponding multipliers. Explicitly,
we will lay stress on continuous M-frames, arising from irreducible group represen-
tations of locally compact groups, have a look at its connection to time-frequency
analysis and comment on adequate notions of optimality.

Keywords Frames · Multipliers · Operator approximation · Locally compact
groups
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1 Introduction

When considering rank-one expansions of the identity, one usually considers frame-
like sets of vectors as well as corresponding duals in order to decompose the identity
operator into (usually non-orthogonal) projections onto one-dimensional subspaces.
By replacing the arising rank-ones, indexed by some measure space (X,μ), with
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suitable positive rank-M operators over the Hilbert space H of the form

Px :=
M∑

i=1

λi
〈•, ϕix

〉
ϕix, λ ∈R

M, x ∈X and ϕix ∈ H, ∀i, x,

which still retains the (weak) decomposition property of the identity,∫

X
Pxdμ(x) = 1H, we gain more flexibility regarding operator decompositions,

without loosing too much of the well-established theory.
We will investigate the connection of frame-like families of rank-M operators to

multipliers of the form

f �−→
∫

X

m(x)Pxf dμ(x), with Pxf =
M∑

i=1

λi
〈
f,ϕix

〉
ϕix as above,

where we will concentrate on measure spaces (X,μ), arising from locally compact
groups.

At first, we will sum up some mathematical preliminaries needed, in order to
follow our arguments below. Afterwards, we’ll introduce the not-so-standard topic
of group multipliers before moving to our definition of a “Q-multiplier”. In order
to keep things on a fairly concrete level, we will conclude with a concretization to
time-frequency analysis and make a brief comment on optimality criterions.

2 Notation and Preliminaries

Operators, Tensors and Its Relatives We’ll denote the tensor product (f, g) ∈
V ×W by f ⊗ g ∈ V ⊗W and represent the—unique—dual element of f ∈H, via
Riesz’ representation theorem, by

f ∗ : g �→ f ∗(g) := 〈g,f 〉, f, g ∈ H.

Consequently, rank-one operators H1 → H2 are written as f ⊗ g∗ ∈ H2 ⊗ H∗
1,

where f ⊗ g∗ : h �→ f 〈h,g〉. On the operator level, S ⊗ T ∗ is an action on the left
resp. right factor, i.e., S⊗T ∗(f ⊗ g∗)= (Sf )⊗ (T g)∗. For compact operators, this
amounts to a composition from the left and right, i.e., (S ⊗ T ∗)O := S ◦O ◦ T ∗,
with T ∗ denoting the adjoint to T .

HS(V ) will be the Hilbert–Schmidt operators over V and tr[·] will denote the
trace functional. Moreover, 1X , δG and χE will be the identity on X, the Dirac
distribution onG and the indicator function of the set E, respectively. H will always
denote a Hilbert space and 〈·, ·〉 an inner product.

Groups, Representations and Co. Let us be given a—not necessarily unimodu-
lar—locally compact group (LCG) (G,μ), with left Haar measure μ, modular func-
tion �G, left resp. right regular representation

(
λ(x)f

)
(y)= f (x−1y

)
and

(
ρ(x)f

)
(y)=�1/2

G (x)f (yx),

x, y ∈G, f ∈ L2(G,μ),
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convolution being indicated by ∗ and its unitary dual Ĝ, consisting of (equiva-
lence classes of) unitary and irreducible representations (UIR). We will not make
use of this unitary dual in general, we rather restrict ourselfs to a single equiva-
lence class and work with some arbitrary representative of it. Denoting this rep-
resentative by π , acting on Hπ , we may employ the (strongly) continuous map
G � x �→ π(x)ϕ ∈ Hπ , for some arbitrary cyclic vector ϕ ∈ Hπ , to assemble frames
for Hπ . Recall that

Recall 2.1 (Cyclicity [8]) A vector ϕ ∈ Hπ is cyclic for (π,Hπ ) iff the closure of
the linear span of its orbit under the group action is all of Hπ , i.e., if

span
{
π(x)ϕ

∣
∣ x ∈G} is dense in Hπ .

Recall 2.2 (Frame [1]) With 0<A≤ B <∞, the family of vectors {ϕi | i ∈ I } ⊆ V
is called a frame for the vector space V iff

A‖f ‖ ≤
∑

i∈I

∣
∣〈f,ϕi〉

∣
∣2 ≤ B‖f ‖, for all f ∈ V.

And moreover that

Recall 2.3 (Irreducibility [8]) A representation (π,Hπ ) is irreducible, iff the only
non-trivial subspace that is invariant under π is Hπ .

Concerning UIRs, there’s a neverending list of theorems and lemmata, one of
which is the following, stated in a way that fits our needs the best.

Lemma 2.4 (Schur’s Lemma) Let (π,Hπ ) be an UIR of the LCG (G,μ), then its
commutant is trivial, i.e., consists only of multiples of the identity

π(G)′ := {c · 1Hπ

∣
∣ c ∈C

}
.

We’ll further denote (the inverse square-root of) the Duflo–Moore operator [5, 9]
on Hπ , which is unbounded, but densely defined and has densely defined inverses,
by Kπ and make excessive use of the shorthand ϕx := π(x)K−1

π ϕ. As the family
{ϕx | x ∈ G} is a proper subset of Hπ , we may define the inner product 〈f,ϕx〉,
which is well defined for arbitrary f ∈Hπ and x ∈G. Consequently, the map

x �→ 〈f,ϕx〉 =: (Vϕf )(x), x ∈G, f ∈ Hπ ,

is a bounded function on the group.

Definition 2.5 With (π,Hπ ), (G,μ), Kπ as before, the map Vϕ : f �−→ 〈f,ϕ•〉,
f ∈ Hπ , is the ‖ϕ‖Hπ

-multiple of an isometry and can therefore be inverted on its
range by its adjoint

V ∗
ϕ : F �−→

∫

G

F(x)ϕxdμ(x), F ∈ L2(G,μ).



698 D. Lantzberg

The generalized wavelet transform above—as well as its inverse—may be lifted
to the operator level.

Definition 2.6 Let (π,Hπ ), (G,μ) and Kπ be as before, then the integrated rep-
resentation

F �−→
∫

G

F(x)π(x)K−1
π dμ(x)=:Π(F), F ∈ L1(G,μ), (2.1)

is an *-algebra representation of L1(G,μ), may be extended to an isometry
L2(G,μ)→ HS(Hπ ) by continuity and thus its inverse, a.k.a. the spreading map η,
is given by its adjoint and maps HS(Hπ ) to L2(G,μ).

Remark 2.7 Note that from this it follows that (i) V ∗
ϕ F = Π(F)ϕ and Vϕf =

η(f ⊗ ϕ∗), (ii) η(T ) = tr[T π∗(·)] and (iii) composition of UIRs from the left
resp. right are intertwined with left resp. right regular representations onG and vice
versa, i.e.,

Π ◦ (λ× ρ) ◦ η= (π ⊗ π∗).

Let now all ϕ• be normalized, i.e., ‖ϕx‖ = 1, for all x ∈ G, then, the family
of rank-one projectors {ϕx ⊗ ϕ∗

x | x ∈ G} induce an integral operator of the very
familiar form

Sf =
∫

G

〈f,ϕx〉ϕxdμ(x).

Unfortunately, by now, it is not even clear whether this integral converges with re-
spect to any interesting topology and may thus not by defined at all. However, since
π(y)S = Sπ(y), it follows—by Schur’s lemma above—that S is a multiple of the
identity, S may—using the definitions above—be factorized into S := V ∗

ϕ Vϕ and,

with A≤ ‖ϕ‖2
Hπ

≤ B , we find that

A‖f ‖2 ≤ 〈Sf,f 〉 =
∫

G

∣
∣〈f,ϕx〉

∣
∣2dμ(x)≤ B‖f ‖2, for all f ∈ Hπ .

Thus, the family {ϕx | x ∈G} can be interpreted as a “continuous frame” [10], in-
dexed by the measure space (G,μ). We take this one step further and define

Definition 2.8 With (π,Hπ ), (G,μ), A and B as before, a family of normalized
and cyclic vectors {ϕi | i ∈ I } and corresponding weights {λi ≥ 0 | i ∈ I }, with
|I | :=M and

∑
i∈I λi = 1, we define a (continuous and normalized) rank M-frame

{(λi, ϕix) | i ∈ I, x ∈G} by

A‖f ‖2 ≤
∫

G

∑

i∈I
λi
∣
∣
〈
f,ϕix

〉∣
∣2dμ(x)≤ B‖f ‖2, for all f ∈ Hπ . (2.2)
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Writing Q :=∑i∈I λi(ϕi ⊗ (ϕi)∗) and Qx = (π ⊗ π∗)(x)Q, the above may be
rephrased as

A‖f ‖2 ≤
∫

G

〈Qxf,f 〉dμ(x)≤ B‖f ‖2, for all f ∈Hπ ,

which is a notation, we will frequently make use of.

3 Group Multipliers of Rank M

Having the above in mind, one is confronted with the possibility to put a “weight”
on the generalized wavelet transform, before resynthesizing the transform, in com-
plete analogy to the well-known Fourier multipliers, i.e., the bounded operators on
L1(Rn) that are diagonalized by the Fourier transform.

Theorem 3.1 With (π,Hπ ) and (G,μ) as before and the multiplication operator
Mm : F �→ m · F , the group multiplier Mm,ϕ , defined by the integral

Mm,ϕf := (V ∗
ϕMmVϕ

)
f =

∫

G

m(x)〈f,ϕx〉ϕxdμ(x), f ∈Hπ ,

converges

(i) w.r.t. norm topology, with ‖Mm,ϕ‖OP ≤ ‖m‖L1(G,μ)‖ϕ‖2
Hπ

, iff m ∈ L1(G,μ),
(ii) only weakly, whenever m ∈ L∞(G,μ).
Moreover, it is trace-class if m ∈ L1(G,μ).

Proof (i) Dividing ‖Mm,ϕf ‖ ≤ ∫
G

|m(x)|‖f ‖‖ϕx‖2dμ by ‖f ‖, f ∈ Hπ , taking
supremum, using the unitarity of π and the claim follows. The proof of (ii) follows
from |〈Mm,ϕf, g〉| ≤ ‖m‖L∞

∫

G
|VϕfVϕg|dμ, f,g ∈ Hπ , the isometrical property

of Vϕ and Cauchy–Schwarz’s inequality. And lastly, Mm,ϕ is trace-class, because
|tr[Mm,ϕ]| ≤ ‖m‖L1(G,μ)‖ϕ‖2

Hπ
. �

Corollary 3.2 From Theorem 3.1, and in the notation thereof, we find that for the
Q-Multiplier

Mm,Qf :=
∫

G

m(x)Qxf dμ(x), f ∈ Hπ ,

the obvious analogues of (i) and (ii) of Theorem 3.1, as well as its traceability, hold,
too.

Proof The proofs carry over almost unaltered, as soon as one realizes that linearity
supplies us with

Mm,Q =
∑

i∈I
λiMm,ϕi .



700 D. Lantzberg

(i) From ‖Mm,Q‖OP ≤ ∑
i∈I λi‖Mm,ϕi‖OP , the arguments above and

the inequality
∑
i λi‖ϕi‖ ≤ supi∈I‖ϕi‖2

Hπ
, the proof follows. (ii) The proof

of Theorem 3.1 and the arguments of i show that |〈Mm,Qf,g〉| ≤ ‖m‖L∞‖f ‖‖g‖×
supi∈I‖ϕi‖2

Hπ
. Finally, it is traceable since |tr[Mm,ϕ]| ≤ ‖m‖L1(G,μ) ×

supi∈I‖ϕi‖2
Hπ

. �

We will henceforth concentrate on Q-Multipliers only, since in the very special
case of “classical” rank-one multiplier, that is, Q = ϕ ⊗ ϕ∗, the results carry over
immediately.

Theorem 3.3 In the notation above, whenever we can find a—not necessarily
bounded or compact—operator P , such that tr[PxP∗

y ] = δG(x−1y) (to be inter-
preted in the sense of distributions), where Px = (π ⊗ π∗)(x)P , we may introduce
the invertible map,

σ : T �→ tr
[
TP∗•

]=: σ(T ), (3.1)

which assigns to each operator T its symbol σ(T ). The inverse map, Φ , is defined
by the weakly converging integral

Φ : s �−→
∫

G

s(x)PxdμG(x). (3.2)

Corollary 3.4 With all notations as before, we conclude this section with the fol-
lowing implications.

(i) σ(Mm,Q)(y)= (m ∗ σ(Q))(y), y ∈G, and thus Mm,Q =Φ(m ∗ σ(Q)).
(ii) Combining Definition 2.6 and Theorem 3.3 we end up with a useful connection

between a symbol and the spreading function of an operator, namely, (η ◦Φ),
formally given by

(η ◦Φ)(s)=
∫

G

s(x)(λ× ρ)(x)η(P )dμG(x),

and mapping an operator’s symbol to its spreading function, as well as its in-
verse, (σ ◦Π), defined by the integral operator

(σ ◦Π)(F)=
∫

G

F(x)(λ× ρ)(x)η(P )dμG(x).

4 Concrete Examples of Group Multipliers of Rank M

Although examples of rank M group multipliers of locally compact groups other
than the (reduced) Heisenberg group exist, we will stick to the time-frequency case.
More general examples, e.g. for the affine “ax + b”-group, will be presented else-
where.
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The Reduced Heisenberg Group Introducing the symmetric time-frequency shift
operator
(
π̃s(t,ω)ϕ

)
(x) := eiπ〈ω,t〉ei2π〈ω,x〉ϕ(x − t), x ∈ R

n, (t,ω) ∈R
2n, n ∈N,

as well as the asymmetric one, π̃a(t,ω) := e−iπ〈ω,t〉π̃s(t,ω), we find that the
composition of two such time-frequency shifts lead to another one, along with
a certain phaseshift. Thus, one needs to introduce another toral parameter, say,
τ ∈ T, in order for the shifts to constitute a group (representation). The underly-
ing group structures of the emerging representations, πs(t,ω, τ ) := τ · π̃s(t,ω) and
πa(t,ω, τ ) := τ · π̃a(t,ω), are usually called the reduced resp. reduced and polar-
ized Heisenberg group, which will be our starting point for concrete realizations of
(3.1) and (3.2).

Remark 4.1 The reader should be aware of the fact that—at least for the symbol-
to-operator correspondences, we are considering—the Heisenberg group constitutes
a very special case. Its unique role arises from one very simple but consequential
equality, namely

(λ× ρ)(t,ω, τ )F (x, y)= ei2π(〈ω,x〉−〈t,y〉)F (x, y),

(x, y) ∈ R
2n, (t,ω, τ ) ∈R

2n+1, (4.1)

that is, conjugation, with both the reduced as well as the reduced and polarized
group, boils down to a phase-shift (a “symplectic homomorphism”, R2n×R

2n → T,
to be more precise)—note the absence of τ on the RHS!—and thus the conjuga-
tion action on functions, (λ × ρ), as well as operators, (π ⊗ π∗), may both be
interpreted as a (unitary and irreducible) representation of the locally compact and
abelian group R

2n (and as such we will henceforth refrain from referring to the toral
parameter τ ).

Definition 4.2 There are two well-known symbol to operator correspondences,
both related to time-frequency analysis as well as pseudodifferential theory (Fs de-
notes the symplectic Fourier transform).

• The Wigner–Weyl correspondence, Φw , weakly defined by

〈
Φw(s)f,f

〉 :=
∫∫

R2
s(t,ω)Wf (t,ω)dωdt, for all f ∈Hπ ,

with Wf (t,ω) := 〈f,Pw(t,ω)f 〉 = Fs(〈f, π̃s(t,ω)f 〉) denoting Wigner’s distribu-
tion.

• The Kohn–Nirenberg correspondence, Φkn, weakly defined by

〈
Φkn(s)f,f

〉 :=
∫∫

R2
s(t,ω)Rf (t,ω)dωdt, for all f ∈Hπ ,

with Rf (t,ω) := 〈f,P kn(t,ω)f 〉 = Fs(〈f, π̃a(t,ω)f 〉) being Rihaczek’s distribu-
tion.
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Lemma 4.3 With all notations as above, we summarize that, as far as time-
frequency analysis is concerned, we have (i) (η ◦Φ) as well as (σ ◦Π) each boil
down to a symplectic Fourier transform, that is,

(η ◦Φ)(s)=
∫∫

R2
s(t,ω) (λ× ρ)(t,ω)dωdt = ŝ and (σ ◦Π)(F) := F̂ ,

(4.2)

and (ii) a rank M time-frequency multiplier Mm,Q is best described via its spread-
ing representation

Mm,Q =
∫∫

R2
m̂(t,ω)η(Q)(t,ω)
︸ ︷︷ ︸

η(Mm,Q)(t,ω)

π̃a(t,ω)dωdt (4.3)

=
∫∫

R2
m̂(t,ω)

(∑

i

λiVϕi ϕ
i(t,ω)

)

π̃a(t,ω)dωdt (4.4)

Proof (i) follows from (3.2) and (4.1) (see also Remark 2.7), and (ii) from utiliz-
ing (4.2), Corollary 3.4 and the fact that (abelian) convolution is diagonalized by the
(symplectic) Fourier transform. �

Theorem 4.4 An operator, T , can be represented properly as a Q-Multiplier, when-
ever there exists a Q with supp(η(T )) ⊂ supp(η(Q)) and may only be approxi-
mated, if supp(η(T )) �⊂ supp(η(Q)).

Proof We will indicate the support-sets of spreading functions by |η(T )| and |η(Q)|
and F |E is the restriction of a function to a subsetE ⊂Dom(F). If |η(T )| ⊂ |η(Q)|,
then

T =
∫∫

R2
η(T )(t,ω)χ|η(T )|(t,ω)χ|η(Q)|(t,ω)π(t,ω)dωdt (4.5)

=
∫∫

R2
η(T )(t,ω)χ|η(T )|(t,ω)

η(Q)(t,ω)

η(Q)(t,ω)

∣
∣
∣
∣|η(Q)|

π(t,ω)dωdt

=
∫∫

R2

η(T )(t,ω)

η(Q)(t,ω)

∣
∣
∣
∣|η(T )|

χ|η(T )|(t,ω)η(Q)(t,ω)π(t,ω)dωdt (4.6)

=
∫∫

R2
m
(
t ′,ω′)Q(t ′,ω′)dω

′dt ′, (4.7)

where m̂ = η(T )
η(Q)

· χ|η(T )|. The above calculation is valid, since (4.5) follows from
η(T ) = η(T ) · χ|η(T )| and |η(T )| ⊂ |η(Q)|, (4.6) holds as η(Q) is non-zero on
|η(T )| and finally (4.7) is due to Lemma 4.3.

If |η(T )| �⊂ |η(Q)| the conditions are not as convenient as before, since one is
constrained to restrict the support of η(T ) to |η(Q)|, that is,

m̂appr = η(T )

η(Q)
· χ|η(Q)|,
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which clearly purges information and thus entails an operator, Mmappr ,Q, approxi-
mating T only up to a certain degree. �

Remark 4.5 It is worth noting that, in the special case of time-frequency analysis,
we have

(i) whenever T can only be approximated, that is, supp(η(Q)) �⊂ supp(η(T )),
this is related to (multi-window) spline-type spaces [7], via finding Q and its
“dual”, and in general to Wiener’s Tauberian Theorem, a.k.a. the invertibility
problem;

(ii) although in the time-frequency case, this in essence overlaps with the theory
of coadjoint orbits [11], this does not hold in general, i.e., is not an alternative
approach to Kirillov’s orbit method;

(iii) this is connected to the approach of operator approximation by multiple Ga-
bor multiplier [3] and related approaches to “C-frames of subspaces”—with
different emphasis—is taken in [6];

(iv) another approach to find mappr for the operator T would be to minimize

arg min
mappr

‖T −Mmappr ,Q‖Lp

subject to some adequate constraint;
(v) the symbol-to-operator correspondences referred to in Definition 4.2 are two

very special cases, since, in fact, there is a continuously R-indexed family of
correspondences. The majority of scientific investigations, however, only deals
with the ones stated above and so did we.

Comment 4.6 (Optimality Criterions) It is clear that there is no definite optimum,
considering the various areas of application. One needs to find the most adequate
one, when fixing the application. Nonetheless, there are a few basic criterions which
in the majority of cases should lead to nice results.

• The more localized the symbol of Q, the least “smeared”, the information about
T becomes, since σ(Q) is the convolution kernel, mapping the multiplier symbol
m to σ(T ). Localization could be measured via L1 norm, ‖σ(Q)‖1, via a second-
moment, “variance-like” uncertainty of the form

∫∫

R2n

(
t2 +ω2)σ(Q)(t,ω)dω=

∑

i∈I
λi
(‖xgi‖2

2 + ‖xĝi‖2
2

)

or minimal essential support of σ(Q) in the sense of Donoho and Stark [2], among
others.

• Or, optimality in the sense of a minimal number of non-zero λi , while still repre-
senting T properly, since this will most likely lead to faster algorithms (as well
as easier calculations).
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5 Summary

With the notion of a rank-M group multiplier, we have introduced a generaliza-
tion of multiple Gabor multiplier to other locally compact groups, without the need
to combine several individual Gabor multiplier into a MGM—when doing time-
frequency analysis—but with the convenient feature of having to deal with only one
operator Q, and as such constructing an MGM-like operator from a rank-M frame,
considered as a collective of operators {Qx | x ∈G}.

For numerical reasons, the connection to the individual frames must not be lost
and for that very reason, a decomposition into a set of (λi -weighted) “classical”
multiplier is available at any time. This is worth striving for, especially when fast
numerical algorithms are needed and are already available for the individual frames,
making up the rank-M frame as a whole.

And finally, for the sake of classification, we have listed connections, parallels
and differences to other publications as well as pointed towards desirable criterions,
in order to assist the fellow researches in its quest for optimality.

Acknowledgement The author gratefully acknowledges the suggested improvements by the ref-
eree. This research has been (partially) supported by EU FET Open grant UNLocX (255931).
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Audio Inpainting Using M-Frames

Florian Lieb

Abstract Classical short-time Fourier constructions lead to a signal decomposition
with a fixed time-frequency resolution. However, having signals with varying fea-
tures, such time-frequency decompositions are very restrictive. A more flexible and
adaptive sampling of the time-frequency plane is achieved by the nonstationary Ga-
bor transform. Here, the resolution can evolve over time or frequency, respectively,
by using different windows for the different sampling positions in the time or fre-
quency domain (Multiwindow-frames). This adaptivity in the time-frequency plane
leads to a sparser signal representation.

In terms of audio inpainting, i.e., filling in blanks of a depleted audio signal,
sparsity in some representation space profoundly influences the quality of the re-
constructed signal. We will compare this quality using different nonstationary Gabor
transforms and the regular Gabor transform with different types of audio signals.

Keywords Audio inpainting · Convex optimization · Nonstationary Gabor
frames · ERBlet Transform · Constant-Q transform

Mathematics Subject Classification (2010) Primary 42C15 · Secondary 42C40 ·
65K10 · 94A12

1 Introduction

1.1 Audio Inpainting

Let x ∈ R
N be an audio signal, which is depleted by a degradation matrix

A ∈ R
N×N , randomly setting values of x to zero (e.g. 66 %), such that the resulting

depleted audio signal is b = Ax. Audio inpainting can then be considered as the
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following optimization problem

arg min
x

‖Ax − b‖2
2 + τ∥∥Ψ (x)∥∥1, (1.1)

where τ ∈ R
+ is a regularization parameter for the L1-norm of some sparse sig-

nal representation of x and Ψ a linear operator, transforming x to such a sparse
representation.

This sparse representation is crucial to the performance of the optimization prob-
lem. The recently introduced concept of nonstationary Gabor frames provide an
even sparser time frequency representation than regular Gabor frames. Hence, the
question arises, if these nonstationary Gabor frames have an advantage over regular
Gabor frames when doing audio inpainting. In the following we will consider the
operator Ψ to be either a regular Gabor transform or a nonstationary Gabor trans-
form (Wavelet transform, ERBlet Transform or Constant-Q transform).

The optimization problem is then solved using the Douglas–Rachford algorithm
from [3], which is implemented in the UNLocBox [1].

1.2 Nonstationary Gabor Frames

Given a unique window function g, the regular Gabor transform of a signal f is
given by the inner product 〈f,gτ,ω〉 of f with time-frequency atoms gτ,ω(t) =
g(t − τ)e2πitω , yielding a fixed time-frequency resolution. In a discrete setting, the
set of time frequency shifts of g, i.e.,

gm,n(t)= g(t −mb)e2πitan m,n ∈ Z

and parameters a, b > 0, is called a Gabor frame if it satisfies the frame condition,
i.e., the lower and upper frame bounds A,B > 0 exist

A‖f ‖2 ≤
∑

m,n∈Z

∣
∣〈f,gm,n〉

∣
∣2 ≤ B‖f ‖2 ∀f ∈ L2(R). (1.2)

The following definitions for nonstationary frames are extracted from [2].

Definition 1.1 Let {gm}m∈Z be a set of window functions in L2(R), which are well
localized and centered around time points bm. With am ∈R the frequency sampling
step for the corresponding window gm, the frame elements of a nonstationary Gabor
frame are defined as

gm,n(t)= gm(t)e2πinamt , (1.3)

for (m,n) ∈ Z
2. Then, the analysis coefficients may then be written as cm,n =

〈f,gm,n〉.
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Fig. 1 Irregular sampling of
the time-frequency plane

This allows to vary the window functions at each time sampling point mb. An
example of such an irregular sampling grid can be seen in Fig. 1, where the analysis
window, and hence, the resolution, changes over time.

Definition 1.2 Analogously, one can define a nonstationary Gabor frame where the
resolution changes over frequency, i.e.,

hm,n(t)= hn(t −mbn), (1.4)

for a set of functions {hn}n∈Z in L2(R) (with center frequencies an) and for
(m,n) ∈ Z

2.

This construction is a generalization of regular Gabor frames and if certain con-
ditions of gm,n(t) or hm,n(t) are satisfied, perfect and efficient reconstruction is
possible:

Definition 1.3 The frame operator

Sf =
∑

m

∑

n

〈f,gm,n〉gm,n, (1.5)

is bounded and invertible if the following conditions are satisfied (cf. [2]):

• compactly supported windows gm,
• sufficiently dense frequency sampling points for each gm,
• controlled overlap of adjacent windows.

The equivalent holds for hm,n.

The concept of nonstationary Gabor frames allows implementations of wavelet,
constant-Q, ERBlet as well as regular Gabor transforms.
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1.2.1 Wavelet Transform

Frame elements for a wavelet transform in a discrete subset of the upper half-plane
are defined as

ψm,n(t)= α−n/2ψ
(
α−n(t −mβ)) m,n ∈ Z, (1.6)

with some parameters α,β > 0. To obtain a nonstationary Gabor frame with res-
olution changing over frequency as in (1.4) we set hn(t) = α−n/2ψ(α−nt) and
bn = α−nβ .

Considering a logarithmic frequency scaling, the dilates of the mother wavelet,
which is in our case a exponentially warped Hanning window, will turn into trans-
lates in the frequency domain. Hence, the controlled overlap of wavelets can be
controlled by the dilation parameter. We have chosen the mother wavelet because it
is closely related to the uncertainty minimizer for the affine group mentioned in [4],
but still has compact support.

1.2.2 Constant-Q Transform

The constant-Q transform provides a frequency resolution that depends on the cen-
ter frequencies of the analysis windows. In particular, the ratio of center frequency
to bandwidth of each analysis window is constant, hence the name constant-Q trans-
form. This will lead to a finer frequency resolution at low frequencies and a better
time resolution at higher frequencies. In [6] Dörfler et al. developed an algorithm
for an invertible constant-Q transform based on nonstationary Gabor frames. The
window function we used for the signal decomposition is a plain Hanning window.

1.2.3 ERBlet Transform

The ERB (equivalent rectangular bandwidth) frequency scale is adapted to human
auditory perception, which is somehow linear in low frequencies and logarithmic
in high frequencies (cf. [5]). The bandwidth of the filter centered at frequency F
satisfies

ERB(F )= 24.7 + F

9.265
. (1.7)

If the center frequencies of the analysis windows (again, we used a Hanning win-
dow) are well chosen, they constitute a nonstationary Gabor frame, with resolution
changing over frequency.

2 Problem

We will consider several different audio signals x (noisy, synthetic, speech,. . . ) and
randomly set 66 % of their coefficients to zero. Using (1.1) to reconstruct the orig-
inal signal from the depleted versions, we will compare the signal-to-noise ratio



Audio Inpainting Using M-Frames 709

Fig. 2 Gabor and ERBlet transform of the glockenspiel signal

Fig. 3 Signal-to-noise ratios
of the glockenspiel signal

(SNR) when using the different time-frequency representations mentioned above.
The SNR is defined as

SNRdB = 20 × log10
σ(x)

σ (xrec − x) , (2.1)

where σ is the standard deviation and xrec the reconstructed audio signal. For each
of the transforms the SNR is plotted against the constraint parameter τ in (1.1),
ranging from 10−5 to 1.

Remark 2.1 Steadily increasing the parameter τ in (1.1) will eventually result in a
point where the Douglas–Rachford algorithm simply does not converge anymore. In
this case the output of the algorithm is equal to its input, which can be observed in
some cases in the following results where the SNR suddenly drops to a low value.
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Fig. 4 Gabor and ERBlet transform of the speech signal

Fig. 5 Signal-to-noise ratios
of the speech signal

3 Results

3.1 Audio Signal

The first audio signal is the famous glockenspiel, which has a wide range of transient
frequencies, but no prominent features in low frequencies as can be seen by its
Gabor transform and its ERBlet transform in Fig. 2. The noise level is relatively
low.

Solving the inpainting problem will result in the signal-to-noise ratios plotted
in Fig. 3. It can be seen, that all of the nonstationary frame implementations yield
slightly better results than the regular Gabor transform. Of course, in the range of τ ,
where the algorithm converges.
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Fig. 6 Gabor and ERBlet transform of the noisy helicopter signal

Fig. 7 Signal-to-noise ratios
of the helicopter signal

3.2 Speech Signal

The speech signal is a native British speaker saying: “The cocktail party effect refers
to the ability to focus on a single talker among a mixture of conversations in back-
ground noises”, which was recorded at an anechoic environment and is therefore
almost free of noise. Figure 4 shows its Gabor and ERBlet transform.

Nevertheless, when doing inpainting the regular Gabor transform yields the best
SNR, as can be seen in Fig. 5.

3.3 Helicopter Sound with Noise

The following signal is a recording of a helicopter with a relative high level of back-
ground noise, which can easily be verified from its time-frequency representations
in Fig. 6.

Due to the high noise level, the SNR values are relatively low compared to the
rest of the test signals (cf. Figure 7). All of the nonstationary frame approaches yield
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Fig. 8 Gabor and ERBlet transform of a synthetically generated RPM raise

Fig. 9 Signal-to-noise ratios
of the synthetic signal

better reconstructed results than doing the inpainting with a fixed time-frequency
resolution.

3.4 Synthetic Signal

The last test audio signal consists of a synthetic generated signal, inspired by an
exponential RPM raise of an engine with 10 harmonics.

The ERBlet transform also gives the highest SNR directly followed by the regular
Gabor transform, whereas the other two nonstationary approaches are significantly
worse (Figs. 8–9).

4 Summary

Apart from the recorded voice signal, the nonstationary Gabor frame approaches
yield the better reconstruction results, and hence, a better (sparser) time-frequency
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representation of the above test signals. For the speech signal it seems, that the
old-fashioned time-frequency representation is still the best choice in terms of the
inpainting problem. A generalization to other speech signals can, of course, not be
made without further research.

Furthermore, it seems nonstationary Gabor frames bring out the important fea-
tures better, even if the signal has a high level of noise (see helicopter example). For
the synthetic RPM Raise the nonstationary frames give even a better time-frequency
resolution at low frequencies during the first seconds.

Acknowledgements This research has been (partially) supported by EU FET Open grant UN-
LocX (255931).
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Wavelet Frames to Optimally Learn Functions
on Diffusion Measure Spaces

Martin Ehler and Frank Filbir

Abstract Based on the theory of wavelets on data defined manifolds we study the
Kolmogorov metric entropy and related measures of complexity of certain function
spaces. We also develop constructive algorithms to represent those functions within
a prescribed accuracy that is asymptotically optimal up to a logarithmic factor.

Keywords Data-defined manifold · Diffusion measure space

Mathematics Subject Classification (2010) Primary 41A46 · Secondary 42C40

1 Introduction

A common problem in computational mathematics is the approximation of functions
from few sample values under certain smoothness assumptions. In other words, we
aim to learn a function from few observations. Accuracy does not only depend on
the sampling set in general but also on the complexity of the underlying smoothness
space. In the present note we shall study the metric entropy [5, 9] as a measure of
complexity of function spaces on manifolds. We shall also consider related mea-
sures of complexity, so-called n-widths [4], which were studied for some classical
function spaces in [7, 8]. Both concepts, metric entropy and n-widths, are impor-
tant complexity measures for the analysis of functions on high-dimensional datasets
occurring in biology, medicine, and related areas.
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The metric entropy and n-widths can be considered as optimality criteria for
approximation schemes. We will use wavelet frame expansions for approximation
and observe that our scheme is asymptotically optimal up to a logarithmic factor
in the sense of the metric entropy. The approximation error is measured in the Lp
norm, 1 < p ≤ ∞, so that the presented results generalize findings in [3], where
p = ∞ was considered exclusively. We refer to [2] for an extended version of the
present manuscript including proofs and further results.

2 Sobolev Spaces and Their Metric Entropy and n-Widths

2.1 Diffusion Measure Space

Let (X, ρ) be a quasi-metric space endowed with a Borel probability measureμ. The
system {ϕk}∞k=0 ⊂ L2(X,μ) is supposed to be an orthonormal basis of continuous
functions with ϕ0 ≡ 1 and our results also involve a sequence of nondecreasing real
numbers {λk}∞k=0 such that λ0 = 0 and λk → ∞ as k → ∞. Let N be a positive
integer and we shall restrict us to N = 2n, where n is some nonnegative integer.
The space of diffusion polynomials up to degree N isΠN := span{ϕk : λk ≤N}. We
assume that the strong product assumption holds, i.e., there is a constant a > 0 such
that P ·Q ∈ ΠaN for all P,Q ∈ ΠN . Moreover, we make use of the generalized
heat kernel

Gt(x, y)=
∞∑

k=0

exp
(−λ2

kt
)
ϕk(x)ϕk(y), t > 0. (2.1)

Let us write � if the left-hand-side is bounded by a generic constant times the right-
hand-side, and if both hold, � and �, then we write #. Recall that a quasi-metric
satisfies the standard requirements of a metric but the triangle inequality only needs
to hold up to a constant factor. We also summarize the technical assumptions that
are related to so-called upper and lower Gaussian bounds on the generalized heat
kernel:

Definition 2.1 ([1]) Under the above notation, a quasi-metric space X is called a
diffusion measure space if each of the following properties is satisfied:

(i) For each x ∈X and t > 0, the closed ball Bt(x) of radius t at x is compact, and
there is α > 0 such that

μ
(
Bt(x)

)
� tα, x ∈ X, t > 0.

(ii) There is c > 0 such that

∣
∣Gt(x, y)

∣
∣� t−α/2 exp

(

−cρ(x, y)
2

t

)

, x, y ∈X, 0< t ≤ 1.

(iii) We have t−α/2 �Gt(x, x), x ∈ X, 0< t < 1.
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From here on, we suppose that X is a diffusion measure space throughout the
present paper. Given an arbitrary normed space X and a subset Y ⊂ X, we define,
for f ∈X,

E(f,Y,X) := inf
g∈Y ‖f − g‖X. (2.2)

We can now introduce some function spaces. For a nontrivial ball B ⊂ X and 1 ≤
p ≤ ∞, the Sobolev space of order s > 0 is

Ws
(
Lp(B)

)= {f ∈ Lp(B) : ‖f ‖Ws(Lp(B)) <∞}, (2.3)

where the Sobolev norm is given by

‖f ‖Ws(Lp(B)) := ‖f ‖Lp(B) + sup
N≥1

NsE
(
f,ΠN,Lp(B)

)
.

The ball of radius r > 0 in Ws(Lp(B)) is denoted by

Ws
r

(
Lp(B)

) := {f ∈ Lp(B) : ‖f ‖Ws(Lp(B)) ≤ r
}
. (2.4)

2.2 Kolmogorov Metric Entropy and n-Widths

Let Y be a compact subset of a metric space (X,�) and, for ε > 0, let Nε(Y ) be the
ε-covering number of Y in X. Then

Hε(Y,X) := log2
(
Nε(Y )

)
(2.5)

is called the metric entropy of Y in X and is the minimal number of bits necessary
to represent any f with precision ε, cf. [5]. Let us also introduce some alternative
notions of complexity. Let Y be a subset of a linear normed space (X,‖ · ‖) and let
n≥ 1 be an integer.

(i) The Kolmogorov n-width of Y in X is

Kn(Y,X) := inf
Ln

sup
y∈Y

inf
x∈Ln

‖x − y‖,

where the infimum is taken over all n-dimensional linear subspaces Ln in X.
(ii) The linear n-width of Y in X is

Ln(Y,X) := inf
Fn

sup
x∈Y
∥
∥x − Fn(x)

∥
∥,

where the infimum is taken over all bounded linear operators Fn on X whose
range is of dimension at most n.
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(iii) The Gelfand n-width of Y in X is

Gn(Y,X) := inf
Ln

sup
x∈Y∩Ln

‖x‖,

where the infimum is taken over all closed subspaces Ln of X of codimension
at most n.

(iv) The Bernstein n-width of Y in X is

Bn(Y,X) := sup
Xn+1

sup{λ≥ 0 : λXn+1 ⊂ Y }

where the supremum is taken over all subspaces Xn+1 of X of dimension at
least n+ 1 and Xn+1 denotes the unit ball in Xn+1.

The following result extends findings in [6] from the sphere to balls in diffusion
measure spaces:

Theorem 2.2 If s > 0 is fixed, B is a nontrivial ball in X, and 0< ε ≤ r , then

Hε
(
Ws
r

(
Lp(B)

)
,Lp(B)

)# (r/ε)α/s (2.6)

holds, where the generic constants neither depend on ε nor on r , and α is the con-
stant in Definition 2.1.

We also determine the n-widths for the global Sobolev space:

Theorem 2.3 The n-widths of Ws
r (Lp(X)) in Lp(X) satisfy

rn−s/α # Kn # Ln # Gn # Bn.

3 Approximation Schemes Using Scattered Data

This section is dedicated to introduce our approximation scheme. A signed Borel
measure ν on X is called a quadrature measure of order N if

∫

X

P(x)dμ(x)=
∫

X

P(x)dν(x), for all P ∈ΠaN.

For fixed 1 ≤ p ≤ ∞, a signed Borel measure ν on X is called a Marcinkiewicz–
Zygmund measure of order N if the Lp-norm ‖P ‖|ν|,Lp(X) of P with respect to |ν|
satisfies

‖P ‖|ν|,Lp(X) # ‖P ‖Lp(X), for all P ∈ΠaN, (3.1)

and |ν| denotes the total variation measure of ν. A signed Borel measure is called a
Marcinkiewicz–Zygmund quadrature measure of order N if it is both, a quadrature
and a Marcinkiewicz–Zygmund measure of order N .
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For fixed 1 ≤ p ≤ ∞, a family (νN)∞N=1 of Marcinkiewicz–Zygmund (quadra-
ture) measures, each of order N , respectively, is called uniform if the generic con-
stants in (3.1) can be chosen independently of N .

Definition 3.1 We call an infinitely often differentiable function H : R≥0 → R a
low-pass filter if it is non-increasing and H(t) = 1 for t ≤ 1/2 and H(t) = 0 for
t ≥ 1.

For some signed Borel measure ν on X and f ∈ L1(X, |ν|), we can define, for
N = 2n, n= 0,1,2, . . . ,

σN(f, ν) :=
∞∑

k=0

H

(
λk

N

)∫

X

f (y)ϕ∗
k (y)dν(y)ϕk. (3.2)

4 Bit Representation in Global Sobolev Spaces

This section is dedicated to verify that linear quantization of the approximation
scheme σN(f,μN) enables bit representations matching the optimality bounds de-
rived in Theorem 2.2 up to a logarithmic factor. First, we recall the formula (3.2),

σN(f,μN)=
∞∑

k=0

H

(
λk

N

)∫

X

f (y)ϕ∗
k (y)dμN(y)ϕk,

where (μN)∞N=1 is a uniform family of Marcinkiewicz–Zygmund quadrature mea-
sures, each of order N , respectively, provided that p = ∞. Again, if 1 ≤ p <∞,
then we choose μN = μ, N = 1,2,4, . . . . Since H(t) = 1, for t ∈ [0,1/2] and
H(t)= 0, for t > 1, we observe thatH(λk

N
)H(

λk
2N )=H(λkN ). If (νN)∞N=1 is a family

of quadrature measures of order N , respectively, then a straight-forward calculation
using the strong product assumption yields

σN(f,μN)=
∫

X

σN(f,μN,y)

∞∑

k=0

H

(
λk

2N

)

ϕ∗
k (y)dνN(y)ϕk. (4.1)

Hence, the scheme (4.1) involves the quadrature measure νN and the Marcinkiewicz–
Zygmund quadrature measure μN . To design the final approximation scheme, we
fix some S > 1 and apply the quantization

IN(f,μN,y)=
⌊
NSσN(f,μN,y)

⌋
, (4.2)

and define the actual approximation by

σ ◦
N(f,μN, νN) :=N−S

∫

X

IN(f,μN,y)

∞∑

k=0

H

(
λk

2N

)

ϕ∗
k (y)dνN(y)ϕk. (4.3)

In other words, we replace σN(f,μN,y) in (4.1) with a number on the grid 1
NS

Z.
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We have the following result for the ball Ws
r (Lp(X)) of radius r of the global

Sobolev space given by (2.3). It extends results in [3] from compact Rieman-
nian manifolds and p = ∞ to diffusion measure spaces and to the entire range
1 ≤ p ≤ ∞:

Theorem 4.1 Suppose that (μN)∞N=1 is a uniform family of Marcinkiewicz–
Zygmund quadrature measures, each of orderN , respectively, provided that p = ∞.
For 1 ≤ p <∞ we choose μN = μ, N = 1,2,4, . . . . Assume further that H is a
low-pass filter as defined above. We also suppose that (νN)∞N=1 are Marcinkiewicz–
Zygmund quadrature measures with # supp(νN) � Nα . For fixed s > 0 and S >
max(1, s), we apply the discretizations (4.2) and (4.3). Then there is a constant
c > 0 such that, for all f ∈Ws

r (Lp,X),
∥
∥f − σ ◦

N(f,μN, νN)
∥
∥
Lp(X)

≤ crN−s (4.4)

holds. For crN−s = ε ≤ 1 and ε ≤ r , the number of bits needed to represent all
integers {IN(f,μN,y) : y ∈ supp(νN)} does not exceed a positive constant (inde-
pendent of ε and r) times

(r/ε)α/s
(
1 + log2(r/ε)

)
. (4.5)

For proofs and an extended version of the present paper, we refer to [2], where
also approximation schemes for local smoothness spaces are studied.
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A Study on Ateb Transform as a Generalization
of Fourier Transform

Ivanna Dronjuk and Maria Nazarkevich

Abstract The aim of this work is to construct the Ateb transforms based on Ateb-
functions as a generalization of orthogonal Fourier transform. It was proved that
these transforms satisfy the properties of linearity, symmetry and similarity. The
Hartley transform is a real linear operator, and symmetric and self-inverse prop-
erties for Hartley Ateb-transform were proved. The one-dimensional discrete and
two-dimensional discrete Ateb transforms were represented. Discrete transforms
were used for construction digital watermark for the information security aim in
the computer networks.

Keywords Ateb-transform · Fourier transform · Ateb-function · Digital watermark

Mathematics Subject Classification (2010) Primary 42B10 · Secondary 94A08

1 Introduction

Methods, based on mathematical apparatus of orthogonal trigonometric transforms,
are widely used while designing and developing the digital signal processing and
the information protection systems [1]. On the other hand, methods of wavelet trans-
forms as modern and advanced methods of data processing also are widely used [2].
Unlike conventional spectral transform, wavelet analysis provides approximation
with the same accuracy both for smooth functions, as well as for functions of the
rapid changes in slope. Different types of wavelets are considered. Among them
wavelets, which are described analytically, comprise a short list. However, most
types of wavelets, which are used in data processing problems, have no analytical
description in the form of a formula, and are described like iterative expressions,

I. Dronjuk (B) · M. Nazarkevich
Institute of Computer Science and Information Technology, Bandery Str. 28A, Lviv 79013,
Ukraine
e-mail: idronjuk@polynet.edu.ua

M. Nazarkevich
e-mail: nazarkevych@polynet.edu.ua

© Springer International Publishing Switzerland 2015
V.V. Mityushev, M.V. Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-12577-0_79

723

mailto:idronjuk@polynet.edu.ua
mailto:nazarkevych@polynet.edu.ua
http://dx.doi.org/10.1007/978-3-319-12577-0_79


724 I. Dronjuk and M. Nazarkevich

which are easily calculated by computers. Daubechies wavelets are examples of
such functions, one of which (db4) is built into Mathcad [3].

The method of orthogonal transforms based on periodic Ateb-functions was pro-
posed. Wel call it orthogonal Ateb-transform (OAT). The ability to build an OAT
is based on the following provisions. First, in [4] it was shown that the Ateb-
functions are a generalized case of the ordinary trigonometric functions. Second,
in the work [5] orthonormality of system of periodic Ateb-functions is proved. In
the work [6] methods and algorithms for computing Ateb-functions, depending on
the parameter, that allows to successful using the proposed OAT method, similar to
the functions of Daubechies, were developed.

2 Trigonometric Orthogonal Transforms

Denote i = √−1 and suppose that x(t) is a real function. Then its Fourier transform
is written as

V (ω)=A(ω)− iB(ω), (2.1)

(see [1]), where

A(ω) =
∫ ∞

−∞
x(t) cos(ωt)dt, (2.2)

B(ω) =
∫ ∞

−∞
x(t) sin(ωt)dt. (2.3)

Consider the function of the form

cas(t)= cos(t)+ sin(t), (2.4)

then the Hartley transform is given by

H(ω)=
∫ ∞

−∞
x(t)cas(ωt)dt, (2.5)

(see [1]). It is known [4] that the Ateb-functions are generalizations of the usual
trigonometric functions. Therefore, similarly to the formulas (2.1)–(2.5), we intro-
duce construction of the transform, based on the periodic Ateb-functions.

3 Construction of the Orthogonal Ateb-Transforms

3.1 OAT with a Single Parameter

We introduce the Ateb-sine and cosine functions [4] depending on the one parameter
and having the form sa(n,1, t) and ca(1, n, t). Suppose that x(t) is a real function,
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then its Ateb-transform is written as

X(n,ω)=A(n,ω)− iB(n,ω), (3.1)

where

A(n,ω) =
∫ ∞

−∞
x(t)ca(1, n,ωt)dt, (3.2)

B(n,ω) =
∫ ∞

−∞
x(t)san(n,1,ωt)dt. (3.3)

Since the Ateb-sine and Ateb-cosine are odd even functions, respectively, we write
the inverse Ateb-transform

x(t)= 1

Π

∫ ∞

−∞
(
A(n,ω)ca(1, n,ωt)−B(n,ω)sa(n,1,ωt))dω, (3.4)

where Π(1, n) is the period of the Ateb-functions. The right side of formula (3.4)
depends on the parameter n. For each value of n the graph of the function x(t) will
be different. Nature, i.e. the steepness, of the period of Ateb-functions ca(1, n, t)
and sa(n,1, t) will vary from n. Dependence of Ateb-function on the parameter n
makes it possible to choose the appropriate x(t) form of ca(1, n, t) and sa(n,1, t),
that fits the computation algorithms.

We introduce the function casa(1, n, t) as follows

casa(1, n, t)= ca(1, n, t)+ san(n,1, t). (3.5)

We introduce the direct and inverse Hartley Ateb-transforms using formulas

H(n,ω) =
∫ ∞

−∞
x(t)casa(1, n,ωt)dt, (3.6)

x(t) = 1

Π

∫ ∞

−∞
H(n,ω)casa(1, n,ωt)dω. (3.7)

When n = 1 Ateb-transforms introduced by formulas (3.1)–(3.4), (3.6), (3.7) will
be known like the orthogonal Fourier and Hartley transforms. For the existence
of Ateb-transform of function x(t), it is sufficient to perform the same conditions
which are sufficient for the existence of orthogonal Fourier transform.

3.2 OAT with Two Parameters

Let Ateb-functions depend on two parameters. Suppose that x(t) is a real function,
then the analog of the Fourier transform [1], an Ateb-transform, is written as

X(m,n,ω)=A(m,n,ω)− iB(n,m,ω) (3.8)
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where

A(m,n,ω) =
∫ ∞

−∞
x(t)cam(m,n,ωt)dt, (3.9)

B(n,m,ω) =
∫ ∞

−∞
x(t)san(n,m,ωt)dt (3.10)

where ca(m,n,ω) is the Ateb-cosine function, sa(n,m,ω) the Ateb-sine function.
Taking into account the identity cam+1(m,n,ω)+ san+1(n,m,ω)= 1 [4], we ob-
tain an expression for the inverse transform:

x(m,n, t)= 1

Π

∫ ∞

−∞
(
A(m,n,ω)ca(m,n,ωt)+B(n,m,ω)sa(n,m,ωt))dω,

(3.11)
where Π(m,n) is the period of the Ateb-functions. Let us introduce

casa(m,n, t)= cam(m,n, t)+ san(n,m, t). (3.12)

Then, according to formula (2.5), the direct Hartley Ateb-transform can be written
as

H(m,n,ω)=
∫ ∞

−∞
x(t)casa(m,n,ωt)dt. (3.13)

When n = 1,m = 1, Ateb-transforms introduced by formulas (3.8)–(3.11), (3.13)
are known as the orthogonal Fourier and Hartley transforms [1]. The validity of
linearity, symmetry and similarity are proved: which are similar to the properties of
the trigonometric Fourier and Hartley transforms.

3.3 Properties of Orthogonal Ateb-Transforms

Similarly to the properties presented for Fourier and Hartley transforms we derive
some properties of orthogonal Ateb-transforms.

1. Linearity. Let a function x(t) be a linear combination of any two functions x(t)=
ax1(t)+ bx2(t). Then

X(m,n,ω)= aX1(m,n,ω)+ bX2(m,n,ω) (3.14)

where X(m,n,ω) is the image of this function x(t) and X1(m,n,ω),
X2(m,n,ω)—are the images of the functions x1(t) and x2(t), respectively con-
structed according to formula (3.8). The proof follows directly from the linearity
of the integral.

A similar property holds for the Hartley Ateb-transform

H(m,n,ω)= aH1(m,n,ω)+ bH2(m,n,ω), (3.15)
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whereH(m,n,ω) is the image of the function x(t), andH1(m,n,ω),H2(m,n,ω)

are the images of the functions x1(t), x2(t), respectively, for the Hartley Ateb-
transform, constructed according to formula (3.13).

2. Symmetry. The image of the function x(−t) isX(n,−ω) andH(n,−ω), respec-
tively.

The proof follows from the fact that the Ateb-sine and Ateb-cosine are odd
even functions, respectively [4].

3. Similarity. Consider the function x( t
T
). Then the image of this function is

|T | ·H(m,n,T ω).

3.4 Orthogonal Trigonometric Transform for Ateb-Functions

For identification and reproduction of information mathematical apparatus of or-
thogonal trigonometric transforms, including Fourier transform is widely used.
To solve the problem of identification information, which is protected with Ateb-
functions, we use orthogonal trigonometric Fourier transform.

Considering the fact that the Ateb-sine sa(n,m,ω) is the odd function, it can be
represented as the direct Fourier sine-transform B(n,m,x) [2]

B(n,m,x)=
∫ ∞

−∞
sa(n,m,ωt) sin(x,ω)dω. (3.16)

Then Ateb-sine is represented like the inverse Fourier sine-transform by the formula

sa(n,m,ω)= 1

Π

∫ ∞

0
B(n,m,x) sin(xω)dx. (3.17)

Using the fact that Ateb-cosine ca(m,n,ω) is even function, we represent it as a
direct cosine Fourier transform A(m,n,x)

A(m,n, x)=
∫ ∞

−∞
ca(m,n,ω) cos(xω)dω. (3.18)

Then the Ateb-cosine is represented like the inverse Fourier cosine-transform by the
formula

ca(m,n,ω)= 1

Π

∫ ∞

0
A(m,n,x) cos(xω)dx. (3.19)

The cosine and sine Fourier transforms are used for continuous functions. Formu-
las (3.16), (3.18) are used to construct a continuous spectrum of Fourier-images of
functions. However, for problems which are associated with information technology
more expedient is the usage of discrete functions and transforms. In this case, the
discrete Fourier transform is applied.
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4 Constructing of Discrete Ateb-Transform

4.1 One-Dimensional DAT

Introduce the discrete Ateb-transform (DAT). Let a signal be given in the form of
a discrete sequence S(p). We introduce the functions A(m,n, k) and B(n,m,k) by
the formulas

A(m,n, k) =
N−1∑

p=1

S(p)cam
(

m,n,−i 2Πpk
N

)

, k = 1, . . . ,N, (4.1)

B(n,m,k) =
N−1∑

p=1

S(p)san
(

n,m,−i 2Πpk
N

)

, k = 1, . . . ,N, (4.2)

where p is the number of harmonics,N the sample size, ca(m,n,ω) the Ateb-cosine
function, sa(n,m,ω) the Ateb-sine function.

Then direct DAT is defined by the formula

X(m,n, k)=A(m,n, k)− iB(n,m,k). (4.3)

Hence we obtain an expression for the inverse transform as

S(m,n,p) = 1

N

N−1∑

k=1

{

A(m,n, k)cam
(

m,n,−i 2Πpk
N

)

+B(n,m,k)san
(

n,m,−i 2Πpk
N

)}

, k = 1, . . . ,N. (4.4)

The input signal S(p) is formally under the action of the direct and inverse DAT
transformed into the signal S(m,n,p). However, for fixed values of the parameters
m,n the value of the signal S(p) can be reproduced. This representation allows for
using the proposed transforms for creating a digital watermark (DWM) and person-
alized security in electronic documents.

4.2 Two-Dimensional DAT

Introduce the two-dimensional discrete Ateb-transform. Consider the document set
as a two-dimensional discrete sequence S(p,q) where (p, q) is the running pixel
image of size N × N . We introduce the functions A(m,n, k, g) and B(m,n, k, g)
by the formulas

A(m,n, k, g)=
N−1∑

p=1

N−1∑

q=1

S(p,q)cam
(

n,m,−i 2Πpk
N

,−i 2Πgq
N

)

,

k, g = 1, . . . ,N, (4.5)
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B(n,m,k, g)=
N−1∑

p=1

N−1∑

q=1

S(p,q)san
(

m,n,−i 2Πpk
N

,−i 2Πgq
N

)

,

k, g = 1, . . . ,N, (4.6)

where p,q are the numbers of harmonics, ca() the Ateb-cosine function, sa() the
Ateb-sine function, Π() the period of the Ateb-function.

Direct DAT can be defined by the formula

X(m,n, k, g)=A(m,n, k, g)− iB(n,m,k, g). (4.7)

We will obtain an expression for the inverse transform as

S(m,n,p, q)

= 1

N

N−1∑

k=1

N−1∑

g=1

{

A(m,n, k, g)cam
(

m,n,−i 2Πpk
N

,−i 2Πgq
N

)

+B(n,m,k, g)san
(

n,m,−i 2Πpk
N

,−i 2Πgq
N

)}

, p, q = 1, . . . ,N.

(4.8)

The input image of the document in the form of a matrix S(p,q) formally under
the action of direct and inverse DAT is transformed into a matrix S(m,n,p, q). The
parameters m,n of the Ateb-functions can be used to personalize documents. For
fixed values of the parameters m,n a pixel value of image S(p,q) can be repro-
duced. This representation allows for using the proposed transforms for creation of
embedded hidden messages and personalized protection of the documents.

5 The Digital Watermark Embedding

Consider the digital image Z. We transform this image with formula (4.8) to Zp .
For the digital watermark embedding we used the formula (5.1) for r maximum
values in Zp

Zwp = Zp + αw, (5.1)

where Zwp is the image transformed with watermark, Zp is the transformed image,
α is the embedding coefficient, w is the watermark of size r .

Figure 1 represents embedding watermark algorithm. It is impossible to detect
watermark visually as images with a watermark and without the one look identical.
For detecting a watermark specific methods of image processing have to be used. In
particular we use a correlation criterion K , calculated according to formula

K = 1

r − 1

r∑

i=1

(cwi − c̄wi )(wi − w̄)
σcσw

(5.2)
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Fig. 1 Embedding and
detecting watermark
algorithm

where cwi is an image element number i, wi is a watermark element number i,
c̄wi is an image element average value, w̄ is a watermark average value, σc is an
image with watermark standard deviation, σw is a watermark standard deviation. If
calculated criterion K is greater than given critical criterial value Kkr , we decided
that watermark is detected.

6 Conclusions

The method of generalized trigonometric transforms based on periodic Ateb-
functions was proposed. Properties of orthogonal Ateb-transforms Fourier and Hart-
ley were introduced and proved. Properties of linearity, symmetry and similarity of
the introduced orthogonal Ateb-transform were proved. The one-dimensional and
two-dimensional discret Ateb-transforms are constructed. The algorithm of embed-
ding a digital watermark into the image was implemented. Formulas of discrete Ateb
transforms shall be applied to the image. For the transformed image, the well-known
additive algorithm of embedding the digital watermark in the frequency domain
shall be applied.
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Queue-Size Distribution in Energy-Saving
Model Based on Multiple Vacation Policy

Wojciech M. Kempa

Abstract An energy-saving model based on the M/G/1/N-type finite-buffer
queue with independent and generally distributed repeated vacations is considered.
Using the formula of total probability and the idea of embedded Markov chain,
a system of integral equations for conditional transient queue-size distributions is
found. A closed-form representation for the solution of the corresponding system
built for Laplace transforms is obtained. Numerical example is attached as well.

Keywords Energy saving · Finite-buffer queue · Multiple vacation policy ·
Queue-size · Transient distribution

Mathematics Subject Classification (2010) Primary 60K25 · Secondary 90B22

1 Introduction

The problems of power saving and minimization of energy consumption are fun-
damental ones in wireless sensor networks (WSNs) or mobile stations of WiMAX.
Typically, majority of sensor nodes are equipped with non-rechargeable batteries.
So, in practice, for elongation the lifetime of the battery, a mechanism based on
cyclic succession of sleep and listening modes of the node radio adapter/receiver is
being usually implemented. The IEEE 802.16e standard of mobile WiMAX defines
three different classes of power-saving mechanisms (see e.g. [3, 12]). Since, during
the sleep-mode operation, the energy consumption is much smaller than in the lis-
tening mode, the key problem is the efficient reduction the wake mode duration. In
the literature different solutions are being proposed for this issue. In [4] a threshold-
type discipline is considered in which the accumulation of N packets in the buffer
queue is necessary to activate the radio (server) after the idle period (N -policy).
An infinite-buffer M/G/1-type queue with repeated (multiple) server vacations is

W.M. Kempa (B)
Institute of Mathematics, Silesian University of Technology, 23 Kaszubska Str., 44-100 Gliwice,
Poland
e-mail: wojciech.kempa@polsl.pl

© Springer International Publishing Switzerland 2015
V.V. Mityushev, M.V. Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-12577-0_80

733

mailto:wojciech.kempa@polsl.pl
http://dx.doi.org/10.1007/978-3-319-12577-0_80


734 W.M. Kempa

proposed in [11] as a model of Type I power-saving mode in IEEE 802.16e standard,
and some performance measures are derived there.

In the article we investigate the transient queue-size distribution in the model
of power saving mechanism based on the M/G/1/N -type finite-buffer queue with
multiple vacation policy. After each busy period (listening mode) of the system
(every time when the system empties) the server takes successive (repeated) inde-
pendent and generally distributed vacations until, at the end of one of them, the
buffer queue contains at least one packet waiting for service (sleep mode). Then,
after completion of this vacation, a new busy period (listening mode) begins imme-
diately, during which the queue empties and so on. In [5] and [6] a similar model but
with infinite buffer capacity is being considered, and the formulae for transforms of
the queue-size distribution and departure process are obtained there, respectively.

In the next Sect. 2, after the mathematical description of the model, for the tran-
sient queue-size distributions conditioned by the numbers of packets present in the
buffer queue initially (at the opening of the system), we build a system of integral
equations, by virtue of the idea of embedded Markov chain and the formula of to-
tal probability. Using the approach introduced in [10] (applied also e.g. in [7–9]),
we obtain in Sect. 3 the general solution of the corresponding system written for
Laplace transforms in a compact form. The last Sect. 4 contains numerical example.

2 System of Equations for Conditional Queue-Size Distributions

Consider the M/G/1/N -type queuing model in which packets arrive according to
a Poisson process with intensity λ and are being served with a distribution function
(d.f.) F(·). The maximal system capacity equals N i.e. we have N − 1 places in
the buffer queue and one place for service. Every time when the system becomes
empty the server begins a multiple vacation period (MVP), consisting of a number
of independent single vacations, generally distributed with a d.f. G(·).

Denote by X(t) the number of packets present in the system at time t , and intro-
duce the conditional transient queue-size distribution as follows:

Pn(t,m)= P
{
X(t)=m ∣∣X(0)= n}, t > 0, 0 ≤m,n≤N. (2.1)

Assume firstly that the system is empty before the opening and starts its operation
at time t = 0 with a MVP. The formula of total probability gives

P0(t,m)=
∞∑

i=0

∫ t

u=0
dGi∗(u)

∫ t

y=u
λe−λydy

×
{∫ t−u

v=y−u

[
N−2∑

k=0

[λ(u+ v− y)]k
k! e−λ(u+v−y)Pk+1(t − u− v,m)

+ PN(t − u− v,m)
∞∑

k=N−1

[λ(u+ v− y)]k
k! e−λ(u+v−y)

]

dG(v)
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+ I {1 ≤m≤N − 1} [λ(t − y)]
m−1

(m− 1)! e−λ(t−y)G(t − u)

+ δm,N
∞∑

k=N−1

[λ(t − y)]k
k! e−λ(t−y)G(t − u)

}

+ δm,0e−λt , (2.2)

where δi,j is the Kronecker delta function and the notation H(·) stands for the tail
of arbitrary d.f. H(·). Indeed, if the MVP ends before t and during it the buffer
does not become saturated (1st summand on the right side of (2.2)), then at the
completion epoch of the MVP (at the time u + v) the system starts the operation
with the number of packets which have arrived during the server vacation. If the
buffer becomes saturated before the MVP completion epoch (2nd summand), the
service begins with N packets present, exactly. If the MVP ends after t and at least
one arrival occurs before t , then X(t)=m if and only if the number of arrivals till
t equals m, if only m ≤ N − 1 (3rd summand on the right side of (2.2)), or equals
at least N if m=N (4th summand). If the first packet arrives after time t , then the
random event {X(t)=m} is equivalent to {m= 0} (5th summand).

As it is well known, service completion epochs in the M/G/1-type queue are
Markov moments (see e.g. [2]). If X(0)= n, where 1 ≤ n ≤ N , then, applying the
formula of total probability with respect to the first service completion epoch after
t = 0, we obtain

Pn(t,m)=
∫ t

0

[
N−n−1∑

k=0

(λy)k

k! e−λyPn+k−1(t − y,m)

+ PN−1(t − y,m)
∞∑

k=N−n

(λy)k

k! e−λy
]

dF(y)

+
(

I {n≤m≤N − 1} (λt)
m−n

(m− n)! + δm,N
∞∑

k=N−n

(λt)k

k!

)

e−λtF (t),

(2.3)

where I {A} is the indicator of the random event A. The interpretation of the right
side of (2.3) is similar to that in (2.2).

Introduce the Laplace transform of Pn(t,m) as

P̂n(s,m)=
∫ ∞

0
e−stPn(t,m)dt, Re(s) > 0, (2.4)

and define the following functions:

ak(s)=
∫ ∞

0
e−(s+λ)y (λy)

k

k! dF(y), (2.5)

bk(s)=
(
1 − g(s + λ))−1

∫ ∞

0
e−(s+λ)y (λy)

k

k! dG(y), (2.6)
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d(s,m)= (1 − g(s + λ))−1

(

I {1 ≤m≤N − 1}ϕG,m(s)

+ δm,N
∞∑

k=N−1

ϕG,k+1

)

(s), (2.7)

hk(s,m)= I {k ≤m≤N − 1}ϕF,m−k(s)

+ δm,N
∞∑

i=N−k
ϕF,i(s), (2.8)

where

ϕH,k(s)=
∫ ∞

0
e−(s+λ)t (λt)

k

k! H(t)dt (2.9)

for any distribution functionH(·) and g(·) stands for the Laplace–Stieltjes transform
of the d.f. G(·).

Now, the system (2.2)–(2.3) can be rewritten in the following form:

P̂0(s,m)=
N−1∑

k=1

bk(s)P̂k(s,m)+ P̂N (s,m)
∞∑

k=N
bk(s)+ d(s,m)+ δm,0

s + λ (2.10)

and

P̂n(s,m)=
N−n−1∑

k=0

ak(s)P̂n+k−1(s,m)+ P̂N−1(s,m)

∞∑

k=N−n
ak(s)+ hn(s,m),

(2.11)

where 1 ≤ n≤N .
Applying, additionally, to (2.10)–(2.11) the following substitution:

Q̂n(s,m)= P̂N−n(s,m), 0 ≤ n≤N, (2.12)

we obtain

n∑

k=−1

ak+1(s)Q̂n−k(s,m)− Q̂n(s,m)=ψn(s,m), 0 ≤ n≤N − 1, (2.13)

and

Q̂N(s,m)=
N−1∑

k=1

bk(s)Q̂N−k(s,m)+ Q̂0(s,m)

∞∑

k=N
bk(s)+ d(s,m)+ δm,0

s + λ,
(2.14)
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where

ψn(s,m)= an+1(s)Q̂0(s,m)− Q̂1(s,m)

∞∑

k=n+1

ak(s)− hN−n(s,m). (2.15)

3 Main Result

In this section we prove the following main theorem:

Theorem 3.1 In theM/G/1/N -type system with multiple vacation policy the rep-
resentation for the Laplace transform P̂n(s,m) of the conditional transient queue-
size distribution is following:

P̂n(s,m)

=ΦN−n(s,m)

+
∑N−1
k=1 bN−k(s)Φk(s,m)+ d(s,m)+ δm,0(s + λ)−1 −ΦN(s,m)

ΘN(s)−∑N−1
k=1 bN−k(s)Θk(s)−∑∞

k=N bk(s)
ΘN−n(s),

(3.1)

where

Θn(s)= a0(s)Rn+1(s)+
n∑

k=0

Rn−k(s)
(

ak+1(s)− f−1(s)

∞∑

i=k+1

ai(s)

)

, (3.2)

Φn(s,m)=
n∑

k=0

Rn−k(s)
(

hN(s,m)f
−1(s)

∞∑

i=k+1

ai(s)− hN−k(s,m)
)

, (3.3)

the formulae for ak(s), bk(s), d(s,m), hk(s,m) are given in (2.5), (2.6), (2.7), (2.8),
respectively, and the sequence (Rk(s)) is defined recursively as follows:

R0(s)= 0, R1(s)= 1

a0(s)
,

Rk+1(s)=R1(s)

(

Rk(s)−
k∑

i=0

ai+1(s)Rk−i (s)
)

,

(3.4)

where k ≥ 1.

Proof There is proved in [10] that each solution of the infinite-sized system of type
(2.13), written for n≥ 0, can be stated as

Q̂n(s,m)= C(s,m)Rn+1(s)+
n∑

k=0

Rn−k(s)ψk(s,m), n≥ 0, (3.5)
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where C(s,m) is independent on n. Since (2.13) has finite number of equations,
then the formula (2.14) can be treated as a boundary condition which allows for
finding C(s,m) explicitly. Indeed, substituting n= 0 into (3.5) we get

C(s,m)= a0(s)Q̂0(s,m). (3.6)

Similarly, substituting n= 0 into (2.13), we obtain

a0(s)Q̂1(s,m)+ a1(s)Q̂0(s,m)− Q̂0(s,m)=ψ0(s,m). (3.7)

Hence, since
∑∞
k=0 ak(s)= f (s), we have

Q̂1(s,m)= Q̂0(s,m)− hN(s,m)
f (s)

. (3.8)

Substituting now (3.6) and (3.7) into (3.5) we obtain

Q̂n(s,m)

= a0(s)Rn+1(s)Q̂0(s,m)

+
n∑

k=0

Rn−k(s)
[

ak+1(s)Q̂0(s,m)− Q̂1(s,m)

∞∑

i=k+1

ai(s)− hN−k(s,m)
]

= Q̂0(s,m)Θn(s)+Φn(s,m), (3.9)

where Θn(s) and Φn(s,m) are defined in (3.2) and (3.3), respectively.
Now we must find the representation for Q̂0(s,m) to derive Q̂1(s,m) and

C(s,m).
After substituting (3.9) into (2.14), we eliminate Q̂0(s,m) as follows:

Q̂0(s,m)=
∑N−1
k=1 bn−k(s)Φk(s)+ d(s,m)+ δm,0(s + λ)−1 −ΦN(s,m)

ΘN(s)−∑N−1
k=1 bN−k(s)Θk(s)−∑∞

k=N bk(s)
. (3.10)

Now, (3.9) and (3.10), after taking into consideration (2.12), lead to (3.1). �

4 Numerical Example

Let packets of average sizes 100 B arrive at the node of the WSN with intensity
400 kb/s, and let the throughput of the output link equals 480 kb/s, so the link uti-
lization is ρ = 0.833. Assuming that the arrival stream is described by the Poisson
process, we have λ= 500 packets/s. Similarly, comparing to the given transmission
rate, the service time can be described by the following 2-order hyperexponential
distribution function:

F(t)= 0.5
(
2 − e−500t − e−750t ), t > 0.
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Fig. 1 Probabilities
P{X(t)= 1 |X(0)= n} for
ρ = 0.833

Fig. 2 Probabilities
P{X(t)= 1 |X(0)= n} for
ρ = 0.417

Moreover, assume that the energy-saving mechanism of the node is described by
the multiple vacation policy in which successive single vacations have exponential
distributions with means 0.002 [s]. Let us investigate the behavior of transient con-
ditional distributions P{X(t) = 1 | X(0) = n} in dependence on the initial buffer
state for n = 0,5 and 10, where the maximal system capacity equals N = 10. To
obtain the results we use directly the formula (3.1) for m = 1 and n= 0, 5 and 10
to obtain explicit representations for Laplace transforms of conditional queue-size
distributions. Next we use the algorithm of numerical Laplace transform inversion,
based on the Bromwich integral and Euler’s summation formula, proposed by Abate
et al. in [1]. The results are visualized in Fig. 1. As one can observe the relaxation
time (time of reaching the stationary state) equals approximately 0.05 [s]. In Fig. 2
we present results for the low input stream intensity, namely for the flow of packets
arriving with speed 200 kb/s (that gives λ= 250 packets/s and ρ = 0.417) and the
remaining traffic characteristic being the same.

5 Conclusion

In the paper an energy-saving model based on the M/G/1/N -type finite-buffer
queue with multiple vacation policy is investigated. The explicit representation for
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the Laplace transform of the conditional queue-size distribution is obtained via the
approach using the formula of total probability, the idea of embedded Markov chain
and the solution of a specific-type system of linear equations. Applicability of theo-
retical formulae is illustrated by numerical examples motivated by real-life IP traffic
in wireless sensor networks.
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Automobile System Safety Based on the Model
for Stochastic Networks with Dependent Service
Times

Vladimir Vishnevsky and Vladimir Rykov

Abstract Broadband wireless data transmission network for providing of au-
tomobile transport system safety is considered. The network operates under
IEEE802.11n-2012 protocol that guarantees high-speed transmission of multime-
dia information from stationary and mobile automatic systems of traffic control.
The model of stochastic network with dependent service time and processor shar-
ing discipline for the problem solution is used. Product-form representation for the
model steady-state probabilities is presented.

1 Introduction and Motivation

The Stochastic Networks (SN) have a wide spectrum of applications, including com-
puter, data transmission and telecommunication network. Nowadays telecommuni-
cation technologies give extremely wide possibilities for information interchange.
However exponentially growth of the number of Internet users and local and corpo-
rative networks create the problems of needed quality of service (QoS) providing.
To guarantee it in the networks it is necessary to rationalize the using of the network
resources, which need to invoke the mathematical models and methods.

Most of really applicable network characteristics are macro-state characteristics
such as queue length in buffers, mean time message transmission etc. are usually
represented in terms of its steady-state probabilities (SSP). Therefore their calcu-
lation is one of very important problems in this topic. Network decomposition and
the product form representation of the SSP is a real way for the problem solution.
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There are vast bibliography devoted to both precision and approximate methods of
decomposition.

The first strong result that have been proposed by J. Jackson deals with open
exponential networks. It was shown in the papers [1, 2] that the equilibrium prob-
abilities for these kind of networks have a product form. For the closed networks
analogous result have been obtained by Gordon and Newell [3]. Baskett et al. [4]
spread out Jackson’s results to the network, which service times cumulative distri-
bution functions (c.d.f.) have fractional rational Laplace–Stiltjes transform. Kelly
[5, 6] introduce new principle of routing and propose the general concept for prod-
uct form representation of the network steady state probability distributions. Latest
generalizations and other aspects of queueing networks analysis one can find in re-
views [7, 8] and special monographs of R. Boucherie [9] and N. van Dijk [10].
The results of these investigations have been summarized in an excellent book of
R. Serfozo [11]. For applications of SN to data transmission systems see [12].

However in most of all these publications it is assumed that the service times
in different nodes are independent random variables (r.v.). But, this assumption
is not adequate for real data transmission systems such as tele- and computer-
communication networks. Indeed, the same message (call) during its transmission
through the network has the same size (work requirement, workload), but may be
transmitted with different rates by different channels. It is necessary to take into ac-
count that in data transmission and telecommunication networks the role of nodes
(service stations) usually play the links, while the stations (terminals) are usually
considered as buffers. That is, the service times in different nodes of the message
route must be dependent.

The models with invariable service times along the route was considered in
[13, 14], and the models with generally dependent service times but for the special
case of infinity servers nodes have been presented in [15]. Product form of steady
state probabilities for network with regenerative service mechanism and Kelly’s ser-
vice disciplines, which are determined by some collection of service rates in nodes
was obtained in [16]. Product form for equilibrium probabilities of the open hierar-
chical networks with dependent service times was obtained in [17]. In [18] another
approach to decomposition of the complex hierarchical stochastic networks was pro-
posed. In the paper [19] it was shown that the macro-state stationary probabilities
for the network with Poisson input, infinite-servers nodes and processor sharing dis-
cipline have a product form. These results has been generalized for open and closed
queueing networks with dependent service times in [20–22] that includes and gen-
eralize almost all previously considered models where waist bibliography has been
also presented.

In this paper this approach will be used for investigation of the broadband wire-
less data transmission network aimed automobile transport system safety. The paper
is organized as follows. In the next section a special model of the automobile trans-
port system safety will be proposed. In the third section an appropriate mathematical
model will be propose and analyzed. The paper closes with conclusion and the bib-
liography.
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Fig. 1 A system of automatic RRV fixing and transmission

2 The Problem Setting

Accidents on roads is one of serious problems over all the world. Accordingly to
the International Public Health Service Organization about 1.2 mln peoples died at
the roads over all the world (including 27000 in Russia). It looks like a war in the
piece time.

As a fighting tools against accidents at the roads the Automobile System Safety
(ASS) is usually used (see, for example, [23]). It represents a system of automatic
fixing the Road Rules Violation (RRV) and the information transmission to the ap-
propriate Police Center as it is shown in Fig. 1.

It consists of fixing system located on Stationary or/and Mobile Modules an ap-
propriate transmission system. The last one is a broadband wireless data transmis-
sion network along the road. The system usually uses a radar tool for the velocity
measuring and optic camera for the vehicle sign fixing. However, this system has
two defects:

• Impossibility of recognition of too dirty signs, and
• Too long transmission of the information to the Central Police Office (CPO)

that decrease the system efficiency up to 40 %. In the another approach the RFID-
technology that uses special Radio Fixing Identification Marc at the vehicle sign is
applied.

3 The Model

The system is modelled as a tandem-type network with r nodes of infinity-size
buffers and processor sharing discipline as it is presented in Fig. 2. This means that
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Fig. 2 The model of
automobile safety system

all calls are served simultaneously and transferred from k-th node to the k + 1-th
one, and from the last node they go out of the system.

Over all the paper the following assumption and notations will be used:

n = (n1, . . . , nk, . . . , nr ) is the system state vectors, where nk is number of calls
at the k-th node;
λk is the intensity of input Poisson flow to the k-th node from the outside and
therefore the summary flow to k-th node is

Λk = λ1 + · · · + λk;
The sizes of all calls are independent r.vs. Y with the same c.d.f.

G(y)= P{Y ≤ y}
and they are the same along all the system;
ck is the capacity of k-th channel, and the service discipline is supposed to be
processor sharing discipline, which allows to be served all calls simultaneously
with the rate ck

nk
for k-th node.

Therefore the conditional c.d.fs. of service times on each stage of service given
call volume y are

Bk(x|y)= P{Xk ≤ x | Y = y} =Θ
(

x − ynk

ck

)

(k = 1, r).

This means that the unconditional service time c.d.f. is

Bk(x) = P{Xk ≤ x} =
∫ ∞

0
Θ

(

x − ynk

ck

)

dG(y)

=
∫ ∞

0
Θ

(
ckx

nk
− y
)

dG(y)=G
(
ckx

nk

)

(k = 1, r), (3.1)

and therefore the joint service times c.p.d. for the calls are

B(x)= P{Xk ≤ xk, k = 1, r} =
∏

1≤k≤r
G

(
ckx

nk

)

.

4 The Model Investigation

Consider the stochastic process

Z(t)= {N(t), Xk(t), Yk(t); k = 1, r
}
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under the set space for t ≥ 0

E = {0 ≤ xk,ik ≤ yk,ik <∞ (ik = 1, nk, k = 1, r)
}
,

where

N(t)= (N1, . . . ,Nk(t), . . . ,Nr(t)) is the random vector of calls at each node;
Xk(t)= (Xk,1, . . . ,Xk,nk ) is the vector of remained service times of calls at the
k-th node (k = 1, r);
Yk(t)= (Yk,1, . . . , Yk,nk ) is the vector of initial service times of calls at the k-th
node (k = 1, r − 1) arranged in the same order as vector Xk(t).

Denote by

π(t; z)= π(t;n,x,y) the probability density function (p.d.f.) of the process Z(t),
ek = (0, . . . ,0,1,0, . . . ,0) the vector, which k-th component equals 1, while oth-
ers equal 0,
x−
k,i = (xk,1, . . . , xk,i−1, xk,i+1, . . . , xk,n) the vector, in which i-th component is

eliminated,
xi (k, y) = (xk,1, . . . , xk,i−1, y, xk,,i+1, . . . , xk,n) the vector, to which additional
value y is added at i-th place, while others move at the next positions,

and introduce operators A(k,i), T(k,i,j), D(i) in the system state space corresponding
to

arrival of call at i-th position of the k-th node,
service completions of call, being in i-th position at the k-th node and its trans-
mission to the j -th position of the next one, and
service completions of call from i-th position of the last node and its leaving the
system.

Formally these operators can be represented by the following relations:

A(k,i)z(y)=
(
n + ek,xk,i(y),yk,i (y)

);
T(k,i,j)z = (n − ek + ek+1,x

−
k,i ,xk+1,j (yk,i),y

−
k+1,i (yk,i)

);
D(i)z = (n − er ,x

−
r,i

)
.

Theorem 1 If the p.d.fs. π(t; z)= π(t;n,x,y) of the process Z(t) are differentiable
with respect to all its arguments in the set z ∈ E for t ≥ 0, then they satisfies to the
following Kolmogorov system of differential equations

∂π(t, z)
∂t

−
∑

1≤k≤r,
1≤ik≤nk

1

nk

∂π(t, z)
∂xk,ik

+Λπ(t, z)

=
∑

1≤k≤r,
1≤ik≤nk

Λk

nk
π
(
t;A−1

(k,ik)
z
)+

∑

1≤k≤r−1,
1≤ik≤nk,

1≤ik+1≤nk+1+1

1

nk(nk+1 + 1)
π
(
t, T −1

(k,ik,ik+1)
z
)
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+ 1

nr + 1

∑

1≤ir≤nr
π
(
t,D−1

(r,i)z
)

(4.1)

while the initial conditions in terms of Dirac δ-function are

π(0; z)≡ π(0; (n,x,y))= δ(n,0)(t)δ(x)δ(y) (z ∈ E). (4.2)

Proof The proof uses the usual argumentations based on complete probability for-
mulae, Markov property of the process and connection of the process p.d.f. in times
t and t + h for small h, when it tends to zero. �

For the Harris irreducible process [24] the following corollary holds.

Corollary 2 If the process Z(t) is Harris irreducible one, then these equations have
a unique solution that with t → ∞ converges to the solution of stationary regime,
which p.d.fs. for z ∈ E satisfy the following system of equations

Λπ(z)− 1

nr + 1

∑

1≤ir≤nr
π
(
D−1
(r,i)z
)

=
∑

1≤k≤r,
1≤ik≤nk

1

nk

∂π(z)
∂xk,ik

+
∑

1≤k≤r

Λk

nk

∑

1≤ik≤nk
π
(
A−1
(k,ik)

z
)

+
∑

1≤k≤r−1,
1≤ik≤nk,

1≤ik+1≤nk+1+1

1

nk(nk+1 + 1)
π
(
T −1
(k,ik,ik+1)

z
)
. (4.3)

By the simple substitution the following theorem is proved

Theorem 3 The functions

π(z)= C
∏

1≤k≤r−1

Λ
nk
k

∏

1≤i≤nk
Θ(yk,i − xk,i)bk(yk,i)× λnrr

∏

1≤i≤nr

(
1 −Br(xr,i)

)

(4.4)
with some constant C are the solution of Eq. (4.3) and therefore represent an invari-
ant measure of the process Z(t).

At last integration with respect to all admissible continuous variables and calcula-
tion of the constant C gives in terms of calls size the final macro-states distribution.

Corollary 4 The macro-states distribution of the process has the product form

π(n)=
∏

1≤k≤r
(1 − ρk)ρnkk (4.5)

with ρk = Λkm
rck

and m= EV = ∫ (1 −G(x))dx.
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5 Proof the Theorem

In order to omit the long and cumbersome calculation we prove the theorem only
for the case of simple tandem system for r = 2. In this case the system is described
by the stochastic process Z(t) = {N(t),Xk(t),Yk(t); k = 1,2} for t ≥ 0 under the
set space

E = {0 ≤ x1,i1 ≤ yi1 <∞ (i1 = 1, n1),0 ≤ x2,i1 <∞ (i2 = 1, n2)
}

and Eqs. (4.1) take the form

∂π(t; z)
∂t

− 1

n1

∑

1≤i1≤n1

∂π(t; z)
∂x1,i1

− 1

n2

∑

1≤i2≤n2

∂π(t; z)
∂x2,i2

+ λπ(z)

= 1

n1

∑

1≤i1≤n1

λπ
(
t;A−1

(i1)
z(yi1)

)+ 1

n2(n1 + 1)

∑

1≤i1≤n1,
1≤i2≤n2

π
(
t;T −1

(i1,i2)
z
)

+ 1

n2 + 1

∑

1≤i2≤n2

π
(
D−1
(i2)
t; z
)

(5.1)

while Eqs. (4.3) for the stationary regime are

− 1

n1

∑

1≤i1≤n1

∂π(z)
∂x1,i1

− 1

n2

∑

1≤i2≤n2

∂π(z)
∂x2,i2

+ λπ(z)

= 1

n1

∑

1≤i1≤n1

λπ
(
t;A−1

(i1)
z(yi1)

)+ 1

n2(n1 + 1)

∑

1≤i1≤n1+1,
1≤i2≤n2

π
(
t;T −1

(i1,i2)
z
)

+ 1

n2 + 1

∑

1≤i2≤n2

π
(
D−1
(i2)
t; z
)
. (5.2)

By the simple substitution the following theorem is proved.

Theorem 5 The functions

π(z)= Cλn
∏

1≤i1≤n1,
1≤i2≤n2

Θ(yi1 − x1,i1)b1(yi1)
(
1 −B2(x2,i2)

)
(5.3)

with some constant C are the solution of Eq. (5.2) and therefore represent an invari-
ant measure of the process Z(t).
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Proof In order to simplify the proof rewrite the last equation in the form

λπ(z)− 1

n2 + 1

∑

1≤i2≤n2+1

π
(
D−1
(i2)

z
)

= 1

n1

∑

1≤i1≤n1

[
∂π(z)
∂x1,i1

+ λπ(A−1
(i1)

z(yi1)
)
]

+ 1

n2

∑

1≤i2≤n2

[
∂π(z)
∂x2,i2

+ 1

n1 + 1

∑

1≤i1≤n1+1,
1≤i2≤n2

π
(
T −1
(i1,i2)

z
)
]

. (5.4)

Now each part of this equation equals zero, that shows that for the system some
kind of partial balance takes place.

Indeed, the substitution of the functions (5.3) to the left side of Eq. (5.4) gives

λπ(z)− Cλn+1

n2 + 1

∑

1≤i2≤n2+1

∏

1≤i1≤n1,
1≤j �=i2≤n2+1

Θ(yi1 − x1,i1)b1(yi1)
(
1 −B2(x2,j )

)

= λπ(z)− λπ(z) 1

n2 + 1

∑

1≤i2≤n2+1

1 = 0.

For first summand on the right side of Eq. (5.4) consider expression in brackets

∂π(z)
∂x1,i1

+ λπ(t;A−1
(i1)

z
)
b1(yi1)

= −Cλnδ(yi1 − x1,i1)b1(yi1)
∏

1≤j1 �=i1≤n1−1,
1≤j2≤n2

Θ(yj1 − x1,j1)
(
1 −B2(x2,i2)

)

+ λCλn−1
∏

1≤j1 �=i1≤n1−1
1≤j2≤n2

Θ(yj1 − x1,j1)b1(yj1)δ(yi1 − x1,i1)
(
1 −B2(x2,i2)

)

= 0.

At last for the last expression it is true

∂π(z)
∂x2,i2

+ 1

n1 + 1

∑

1≤i1≤n1+1

π
(
T −1
(i1,i2)

z
)

= −Cλn b2(x2,i2)

1 −B2(x2,i2)

∏

1≤j1≤n1,
1≤j2 �=i2≤n2

Θ(yj1 − x1,j1)b1(yj1)
(
1 −B2(x2,i2)

)

+ 1

n1 + 1

∑

1≤i1≤n1+1

Cλn
b2(x2,i2)

1 −B2(x2,i2)
Θ(yj1 − x1,j1)
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×
∏

1≤j1≤n1,
1≤j2≤n2

Θ(yj1 − x1,j1)b1(yj1)
(
1 −B2(x2,i2)

)

= −β2(x2,i2)π(z)+Θ(yj1 − x1,j1)β2(yi2)
π(z)
n1 + 1

∑

1≤i1≤n1+1

1 = 0.
�

Corollary 6 Substitution to the formulae (5.3) the expression (3.1) of calls service
time distribution in terms of their size gives

π(z)= Cλn
∏

1≤i1≤n1,
1≤i2≤n2

Θ(yi1 − x1,i1)b1(yi1)
n1

c1

(

1 −G2

(
n2x2,i2

c2

))

g1

(
n1yi1

c1

)

.

(5.5)

Corollary 7 Integration of the previous expression over all admissible values of
continuous variables and the constant C calculation gives the macro-state proba-
bility distribution

π(n)= (1 − ρ1)(1 − ρ2)ρ
n1
1 ρ

n2
2 (5.6)

with

ρi = λm

ci

(
i = {1,2}) and m= EV =

∫
(
1 −G(x))dx.

6 Conclusion

As a model for investigation of the broadband wireless data transmission network
aimed automobile transport system safety a tandem-type network with nodes of
infinity buffers and processor sharing discipline is proposed. The product-form rep-
resentation for the steady-state probabilities of the model is found.

The algorithms for the numerical investigations of the model are needed, their
computer realization should be done and applied to different concrete situations.

The authors are very grateful to anonymous reviewers, whose remarks was very
helpful and promote for the text improvement.
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Damage Prediction of the Femur
with Postresection Defect

S. Bosiakov, D. Alekseev, and I. Shpileuski

Abstract The aim of this study is to develop an approach to assessing the strength
of the femur after sectoral resection in cases of benign bone tumors, tumor-like and
metastatic lesions. The proposed approach is based on the finite element calculation
of dangerous volumes in the area of bone defect. Load is static and equivalent to
average human weight. Model of the femur is based on tomographic data. Postre-
section defect is localized in the middle third of the lateral side of the femur. As a
conditions for the selection of dangerous volume fracture criterion Coulomb–Mohr
is used. The analysis of damage near the concentrators of the bone defect is carried
out for different loads. The domain of the bone defect with the largest damage is
determined. For concentrators of the postresection hole the emergence and growth
of crack is considered as a change of the dangerous volume with taking account the
removal of the damaged finite elements. The ranges of the load corresponding to the
various cases of damage development are determined. Three options to compensate
for bone strength and the prevention the pathological bone fracture after sectoral
resection are suggested.
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Fig. 1 Scheme of sectoral resection: (a) is the fragment of cortical bone before resection (1 is the
lesion, 2 is the line of excision of the bone); (b) is the fragment of cortical bone after resection
(3 is the postresection defect)

1 Introduction

The leading method of treatment of the benign bone tumors, tumor-like and
metastatic lesions in tubular bones is the surgical removal of the pathological fo-
cus within intact bone. Thus there is formed a sectoral bone defect that leads to a
reduction its strength. Figure 1 shows a schematic diagram of sectoral bone resec-
tion.

Functional capabilities of the limb and quality of life after the operation are re-
duced significantly because there is a risk of pathologic bone fracture on the level
of the resection. A review of research on the development of criteria for predicting
of fractures of the bone with defects and of intact bone, shows that for this purpose
finite element modeling, X-ray computed tomography or routine radiography are
used. In particular, on basis a retrospective analysis of radiographs of patients with
a high probability of pathological fracture and with actually fracture an approach
for predicting fractures in trochanteric region of femur with metastatic lesion is sug-
gested [1]. In a study [2] on the basis of subject-specific finite element analysis the
torsional stiffness and strain energy density for femora the ratio for the torque at
which the fracture occurs in the vicinity of the defect or post-resection of metastatic
lesions is determined. In [3] it was proposed to predict fractures in the neighbor-
hood of metastatic lesions on the basis of plastic strains. The method of predicting
of pathologic fracture after sectoral resection based on the direct use of quantitative
computed tomography is presented in study [4]. When predicting the pathologic
fractures of long bones with post-resection defects and other lesions much attention
is paid to the principal and the equivalent (von Mises) stresses. Results obtained in
this direction are presented in [5, 6]. In [7] the use the factors of safety is proposed.
They are defined as the ratio of the allowable to the computed stress or strain ac-
cording to a particular failure theory, were computed for each element using several
failure theories. Values of safety factors are determined for each of the finite ele-
ments. The coefficient of less than one indicates the damage of the corresponding
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Fig. 2 Area of application of
the load to the femur head
and its direction of action (a),
as well as rigid fixing of the
femoral condyles (b)

element and allows to predict the location and nature of the fracture. Direct mea-
surement of the volume of damaged finite elements for assessing the strength of the
distal radius and proximal femur is proposed in [8–10]. In these studies, the element
is considered damaged if certain strength criteria are not carried out. The advantage
of this approach is not only the ability to predict occurrence of cracks or fracture,
but also the possibility of determining the location and nature of the fracture. This
study develops this topical direction. The aim is to research on the basis the finite
element method the damage femur with postresection defect localized in the middle
third.

2 Modeling

Computed tomography of the femur is performed on the spiral X-ray CT Siemens
Somatom Emotion 16, step of slice is 2 mm. Development of three-dimensional
solid model of the femur carried out using a computer system processing of medical
images ScanIP (Simpleware Ltd., UK). STL-model converted into a solid model
using CAD-package CATIA V5 (Dassault Systémes, France). Postresection defect
is constructed after importing model in ANSYS 14.0 (ANSYS Inc., USA). Hole is
localized in the middle third of the femur and is positioned on its medial surface.
Defect length along the axis of the bone is 2d (d is a diameter of the median surface
of the bone at the level of the defect). The angular size of the defect is equals to
180◦.

Static load is directed along the biomechanical axis if the femur extending from
the upper pole of the femoral head to the middle of the segment between the extreme
points of the articular surfaces of the femoral condyles. Load zone corresponds to
a contact region of the femoral head with the roof of the acetabulum. The lower
regions of the femoral condyles (contact areas with the condyles of the tibia and
meniscus) are rigidly fixed. The application of the load, its direction and embedded
region of the femur condyles are shown in Fig. 2.
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Bone tissue modeled by homogeneous isotropic medium. The elastic modulus is
13.7 GPa, Poisson’s ratio is 0.3 (the constants of elasticity correspond to compact
bone [11]).

3 Definition of Damage

According to the model of the body with a dangerous volume the damage is deter-
mined by the volume of the material with a critical level of stresses therein [12].
As a criterion for limiting the dangerous volume in region of postresection hole
Coulomb–Mohr failure theory has been used [10, 13]:

σ1 − σ3

σyc
≥ 1,

where σ1 ≥ σ2 ≥ σ3 are principal stresses; σyc = Eεyc is limit of strength for com-
pressed compact bone tissue; εyc is the limit compressive deformation (for compact
bone εyc = 0.0154 [10]).

4 Assessment of Damage

Analysis of the damage in the region of bone defect is carried out under a load of
0.55 kN to 1.0 kN. Finite element calculation of the stress-strain state was performed
in several stages, to trace the development of dangerous volumes. At the first stage
determined the ψ = (σ1−σ3)

σyc
value for the four concentrators of postresection hole.

The next step of calculating is removing the finite elements, for which inequality
ψ ≥ 1 is performed. After that the finite element calculation of model is carried
out under the same boundary conditions, and dangerous volumes are determined
in the vicinity of each concentrator. Dangerous volumes are removed again, and
finite element calculation is repeated. Discrete model of femur with designations of
concentrators, as well as the visualization of dangerous volumes at various steps of
the calculation are shown in Fig. 3.

We note that the finite-element partition has been carried out in semi-automatic
mode. The finite element mesh is tetrahedral, the maximum size of finite element
edge is 5 mm (see Fig. 3a). The number of elements in the model is 101246, number
of nodes is 146290, the element type is Solid187. In the neighborhood of concen-
trators 1–4 maximum of the edge finite element is 0.5 mm (see Fig. 3a). Figure 4
shows the change of the dangerous volumes under various loads for five consistent
stages of the finite element calculation.

Figure 4 also shows that at the first stage of the calculation the largest dangerous
volumes are observed in the vicinity of the first, second and fourth hubs. At subse-
quent stages of calculation the dangerous volume to a greater extent increases near
of the concentrator 4 as compared with the concentrators 1, 2 and 3. This allows
to conclude that the fracture in the femur, primarily occurs in the concentrator 4 of
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Fig. 3 Finite element model
of the femur with notations of
concentrators of the bone
defect (a); dangerous
volumes in the neighborhood
of the fourth concentrator on
the first (b) and on the fifth
(c) step of the calculation

the bone defect. In descending order of magnitudes of dangerous volumes after con-
centrator 4 follows concentrators 1 or 2 (depending on the step of the finite element
calculation). Smallest dangerous volume at any load observed near the third concen-
trator. Taking this into account it can be concluded that the fracture will propagate
in a direction away from the concentrator 4 to the concentrator 1.

4.1 Discussion and Conclusions

At various stages of the finite element calculation the dangerous volumes are
changed differently depending on the load (see, for example, Figs. 3a and 3d).
Figure 3a shows that the dangerous volume decreases with sequential removal of
elements for which an inequality ψ ≥ 1 is carried out. A similar behavior of dan-
gerous volume is observed at the load of 600 N and 650 N. At a load of 550 N the
dangerous volumes are not occurs. With increase of the load (750 N to 1000 N) the
dangerous volumes increase for all concentrators at each stage of the finite element
calculation.

Nature of the change dangerous volumes at various stages of the finite element
calculation suggests three variants of behavior femur with postresection defect and
three variants of recommendations for the patient. If in the neighborhood concentra-
tors do not appear the dangerous volumes from routine human activity in region of
the defect don’t occur—the fracture will not happen. In this case, unloading regime
should be the recommended for the patient. Else, if defect arise near the concen-
trators of bone the dangerous volumes, but the magnitudes of the volume are de-
creased at following stages of the calculation with the removal of elements with
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Fig. 4 Dangerous volumes at various stages of the finite-element calculation at the area of bone
defect by the action of a static load: (a) for 700 N; (b) for 800 N; (c) for 900 N; (d) for 1000 N.
The number of concentrator defect is indicated on the horizontal axis. The bar chart corresponding
to the first step of the calculation is shown on the foreground; the bar chart for the fifth step of the
calculation is shown on the background

critical values of ψ , there is a damage of the femur in the neighborhood of concen-
trators. Development of damage can be stopped if certain preventive measures are
undertake. In this case, the use of means of external immobilization (plaster cast)
should be recommended the patient. With increasing of dangerous volumes in the
successive stages of the calculation, we assume that the damage will develop even in
static position and fracture will arise. In this case, the mandatory bone reinforcement
(“preventive osteosynthesis”) should be applied to the bone.

Acknowledgement The study was supported the State Committee on Science and Technology
of the Republic of Belarus (the project “Development of a mathematical model and the calculation
program of strength characteristics of human long bones when performing of sectoral resection”).
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Representative Elements for Polydispersed
Composites

Natalia Rylko

Abstract Effective properties of random 2D composites are discussed in the frame-
work of the representative volume element (RVE) theory proposed by Mityushev
(Complex Var. Elliptic Equ. 51:1033–1045 2006). This theory is extended to 2D
fiber composites with sections perpendicular to fibers of different radii. The RVE
theory is applied to the mixture problem arisen in technological processes.

Keywords Representative volume element · Random composite

Mathematics Subject Classification (2010) 74Q99

1 Introduction

The physical properties of composites can be determined by measurement of macro-
scopic properties of testing specimen. Analogous to experimental investigations
computational methods are used in theoretical study of the specimen which rep-
resent the entire material. If inclusions or pores are distributed statistically homo-
geneous in the bulk material, the effective properties are described by constant ten-
sors [1]. The macroscopic tensors do not depend on the size, shape of the chosen
specimen or on boundary conditions [2, 9]. These tensors can be determined via
solution of the periodic problem when the periodicity cell represents the material
under consideration. This concerns also statistically homogeneous media when a
cell represents the macroscopic properties of the random media not necessary peri-
odic [7, 9, 18]. Such media constitute a subclass of heterogeneous fields discussed
in [11, 15, 17] and functionally gradient materials [8].

Statistically homogeneous media defined in [7, 9, 18] can be represented by a cell
which is called by the representative volume element (RVE). Statistical methods to
construct RVEs have been described in details in [10] and have been developing in
many recent papers, see for instance [16] and works cited therein. The statistical
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methods are based on the overall testing process. For dispersed two phase com-
posites with identical inclusions, the number of particles contained in a sample is
increased and the effective constants can be computed by numerically [19]. The pro-
cess of increasing is stopped when the fluctuations of the effective constants become
sufficiently small. The number of particles 64 per cell frequently arises in literature
[19] as a sufficiently large number for the non-overlapping uniform distribution of
inclusions. Analytical and numerical results [4, 5] rigorously confirm this fact.

Numerical methods [19] are restricted by special distributions of inclusions. The
properties of constitutes are also given numerically. These difficulties were over-
came in [13] where a rigorous and constructive theory of the RVE for plane com-
posites with identical circular inclusions was described. The RVE theory for iden-
tical disks [13] is based on the representation of the effective conductivity tensor
[3] and [12] in the form of a double series on the concentration of inclusions and
on “basic elements” which depend only on the locations of the inclusions. These
basic elements are written in terms of the Eisenstein series. Coefficients in the dou-
ble series depend on the physical properties of constitutes. Two composites were
defined as equivalent if they have the same basic elements. Therefore, the set of the
composites with circular identical inclusions into classes of equivalence determined
only by geometrical structure of the composite. In each class of equivalence a com-
posite having the minimal size cell is chosen. This cell is called the representative
cell [13] of equivalent composite materials. A constructive algorithm to determine
the representative cell for any distribution of inclusions using only pure geometrical
parameters was described in [13]. Examples presented in [13] yield quick trans-
formations from cells to the representative cell of small size. This can be used in
optimal computations of the macroscopic properties by applications of the numeri-
cal and analytical methods.

In the present paper, we extend the RVE theory [13] to 2D polydispersed com-
posites with circular inclusions. The results can be applied to the mixture problem
which can be outlined as follows. Take many particles, put them in a vessel and
stir. There are the original and final locations of particles in the vessel. The mixture
problem consists in the process to reach the required mixture. Here, we arrive at the
questions how to measure the macroscopic thermal and mechanical properties of
the mixture during the process. It can be done by expensive experiments. The RVE
theory yields a simple method to solve this mixture problem.

2 2D RVE Theory

Following [13] we develop the RVE theory to disks of different radii. Consider 2D
two-component composite made from a collection of non-overlapping disks em-
bedded in an otherwise matrix. It is assumed that the distribution R of the radii
of the disks rk is given and it does not depend on the locations of the disks. The
centers of disks satisfies a distribution A corresponding to a non-overlapping disks
distribution on the plane. The distribution A formally does not depend on the radii
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Fig. 1 Section of the
polydispersed fibrous
composite

distribution R. But the choice of the distribution A is restricted by R. This situation
can be demonstrated by the following observation. For identical disks of radius r
the distance between any two centers must exceed 2r .

It is assumed that the distribution A generates a random homogeneous field
[7, 9, 18] for which the macroscopic properties are correctly defined. One of the
most important distribution A is the non-overlapping uniform distribution U which
corresponds to the perfect mixture of inclusions. The distribution U can be realized
by the sequence location method or by random walks described in [4]. Other dis-
tributions are described in the book [17] in terms of the correlation functions. In
the present paper, we do not discuss the question of the statistical generation of the
theoretical distributions and assume that realizations of A are given in the form of
the pares (ak, rk) where ak = (xk, yk) denotes the center and rk the radius of the
kth inclusion. Further, it will be convenient to identify ak to the complex number
ak = xk + iyk (see Fig. 1).

According to the homogenization theory there exist a periodicity cell with a finite
number of inclusions representing the composite. First, we describe parameters of
this cell. Consider a lattice Q on the complex plane C which is defined by two
fundamental translation vectors ω1 and ω2. Without loss of generality we assume
that ω1 > 0 and Imω2 > 0 where Im stands for the imaginary part. Introduce the
zero-th cell Q0 := {z ∈ C : z = t1ω1 + t2ω2 − 1/2 < t1,2 < 1/2}. The lattice Q is
generated by the cellsQm := {z ∈C : z−m1ω1 −m2ω2 ∈Q0} wherem=m1 + im2
denote complex numbers with integers m1 and m2.

Let CN denote the set of the elements (ak, rk), k = 1,2, . . . ,N , where the radii
rk satisfies the distribution R and the centers ak correspond to the non-overlapping
uniformly distributed disks in a cellQ0. Introduce the set C =⋃∞

N=N0
CN with suf-
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ficiently large N0. Actually, the number N0 gives the size of the minimal represen-
tative set CN0 . The set C consists of all the configurations of mutually disjoint disks
uniformly distributed on the plane whose radii satisfy the distribution R. It is worth
noting that C describes random locations of disks on the plane. In practical measure-
ments, we observe finite fragments of C. If these fragments represent the considered
material, it is possible to statistically recover the distributions R and A. The radii
distribution R can be easily constructed since it describes a 1D random variable.
The 2D distribution A is theoretically described by correlation functions [17]. But
we do not follow [17] and consider A as a set of the given center coordinates ak
(measured and statistically presented). In particular, the 2D concentration of inclu-
sions φ2 can be measured. Theoretically, the 2D concentration φ2 can be considered
as the mean value

φ2 = 1

|Q|
N∑

k=1

πr2
k , (2.1)

where |Q| stands for the area of the domain Q.
According to the theory [13] we have to compare two different representative ele-

ments of A. Consider a large fundamental regionQ′ constructed by the fundamental
translation vectors ω′

1 and ω′
2. LetQ′ containsN ′ non-overlapping circular disksD′

k

of radius r ′k with the centers a′
k ∈Q′ (k = 1,2, . . . ,N ′) representing the distributions

R and A. Let Λ̂′ be the effective tensor of the composite represented by the region
Q′ with inclusions D′

k . Let the cell Q′ corresponds to another small cell Q which
contains inclusions Dk = {z ∈C : |z− ak|< rk} (k = 1,2, . . . ,N ) also representing
the distributions R and A such that an effective tensor Λ̂ close to Λ̂′. Closeness
is defined by the concentration accuracy O(φL+1

2 ) for the difference �Λ̂= Λ̂− Λ̂′
with prescribed L. According to [13] the cellQ is a representative cell for the region
Q′ with the accuracy O(φL+1

2 ) if

�Λ̂=O(φL+1
2

)
. (2.2)

Let a representative cellQ has the minimal possible area from all the representative
cells equivalent to Q′. This cell is called the RVE [13]. The existence of the RVE
is evident since in the worst case one can take Q = Q′. The numerical statistical
methods [10] are also based on the relation (2.2). Since φ2 is fixed in numerical
computations, (2.2) becomes �Λ̂≈ 0.

Instead of (2.2) Mityushev [13] proposed to compare the basic elements of the
expansion of the effective tensor. These basic elements are introduced as follows.
Let a cell Q contains N inclusions with centers ak . Let Em(z) denote the Eisen-
stein function of order m (see for instance Appendix A to [4]). Let C denote the
operator of complex conjugation which is identical for even q , i.e., Cqz = z and
Cqz= Cz= z for odd q .
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The following sum of multi-order (m1, . . . ,mq) were introduced by Mityushev
[13]

em1...mq :=
(
π

φ2

)[1+ 1
2 (m1+···+mq)] ∑

k0k1...kq

r2
k0
r

2t1
k1
. . . r

2tq
kq
Em1(ak0 − ak1)

×Em2(ak1 − ak2) . . .C
qEmq (akq−1 − akq ), (2.3)

where ks = 1,2, . . . ,N (s = 0,1, . . . , q), t0 = 1 and ts =ms − ts−1. We call1 (2.3)
by M-sum of order (m1, . . . ,mq). For instance, the M-sum of order (2,2) has the
form

e22 :=
(
π

φ2

)3 ∑

k0,k1,k2

r2
k0
r2
k1
r2
k2
E2(ak0 − ak1)E2(ak1 − ak2). (2.4)

It is justified in [13] that the effective conductivity tensor for 2D composites
can be presented in the form of the power series on the total concentration φ2 with
coefficients linearly depending on em1...mq . In order to obtain the effective elastic
tensor one has to add to theM-sums analogous sums when the Eisenstein functions
are replaced by quasi-elliptic functions introduced in Appendix 2 of the book [6].
However, the quasi-elliptic functions are expressed via the Eisenstein functions by
algebraic equations [6]. Therefore, it is sufficient to consider only theM-sums (2.3)
for elastic media. Not all theM-sums participate in the effective tensor. For instance,
the effective conductivity up to O(φ5

2) contains eight M-sums: e2, e22, e33, e222,
e44, e322, e223, e2222. For macroscopically isotropic composites e2 = π and many
otherM-sums are dependent [14]. This reduces the number of the basic elements to
achieve the accuracy O(φ4

2) to the following fourM-sums:

e22, e33, e2222, e44. (2.5)

The M-sum (2,2) can be calculated by (2.4). Explicit form of other M-sums (2.5)
is given by the following formulae

e33 =
(
π

φ2

)4 ∑

k0,k1,k2

r2
k0
r4
k1
r2
k2
E3(ak0 − ak1)E3(ak1 − ak2), (2.6)

e2222 =
(
π

φ2

)5 ∑

k0,k1,k2,k3,k4

r2
k0
r2
k1
r2
k2
r2
k3
r2
k4

×E2(ak0 − ak1)E2(ak1 − ak2)E2(ak2 − ak3)E2(ak3 − ak4), (2.7)

e44 =
(
π

φ2

)5 ∑

k0,k1,k2

r2
k0
r6
k1
r2
k2
E4(ak0 − ak1)E4(ak1 − ak2). (2.8)

1M-sum is short for Mityushev’s sum.
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Remark The M-sums (2.3), in particular (2.5), can be considered as the moments
of the correlation functions [17]. Hence, the RVE theory [13] implicitly uses the
correlation functions and do not requires their explicit computations.

3 Conclusion

In the present paper, we extend the RVE theory [13] to 2D composites with different
circular inclusions. This theory can be applied to solution of the mixture problem.
Namely, one can check, whether the M-sums (2.5) coincide with the theoretical
ones computed in [4, 5]. If they do coincide with an appropriate accuracy, one can
say that the inclusions are well stirred in the host.

One can investigate by the same method composites with inclusions having
other shapes and compare the obtained M-sums with the corresponding theoreti-
cal M-sums which can be computed by methods presented in [4, 5]. This idea was
presented and justified in [13].
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Random Non-overlapping Walks of Disks
on the Plane

Wojciech Nawalaniec

Abstract The initial locations of disks on the plane form regular lattice. Random
non-overlapping walks of disks approach to the uniform non-overlapping distribu-
tion of disks on the plane. The basic e-sums are computed in time to describe such
a dynamic process within random walks.

Keywords e-Sums · Representative volume element · Composite material

1 Introduction

Consider two-dimensional two-component periodic composite made from a col-
lection of non-overlapping, identical, circular disks, embedded in a matrix. In
accordance with a theory of the representative cells (representative volume ele-
ments, RVE), the effective conductivity of disks is expressed in terms of the e-sums
(see below formula (2.8)). It was established in [4] that the effective conductivity
tensorΛe of the considered composites has the form of double series on the concen-
tration of inclusions and on “basic elements” which depend only on locations of the
inclusions. These basic elements are written in terms of the Eisenstein series. Coef-
ficients in the double series depend on conductivity of constitutes. Two composites
are equivalent if expansions of their Λe have the same basic elements. Therefore,
the set of the composites with circular identical inclusions is divided onto classes of
equivalence determined only by geometrical structure of the composite. Each com-
posite is represented by a periodicity cell. In each class of equivalence a composite
having the minimal size cell is chosen. This cell is called the representative cell of
the considered class of equivalent composites.

This approach was used in [2] to simulate representative volume elements for
random 2D composites with circular non-overlapping inclusions. A method of ran-
dom walks to simulate random locations of inclusions with high concentrations was
applied. The initial locations of disks were fixed in various periodical nodes: square,
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hexagonal and rectangular. The results showed that lower order e-sums which es-
sentially impact on the effective conductivity tensor do not depend on the choice
of the original location. But some higher order e-sums “remember” the initial lo-
cation. This yield the hypothesis that the original regular location of inclusions can
be restored for dispersed composites produced by stirring. This observation can be
explained by the different scales of convergence of the e-sums when time of ran-
dom walks tends to infinity. In the present paper, we consider particular e-sums as
functions depending on time of random walk of disks in plane. Our considerations
show the strong relation of e-sums to the geometrical structure of composites.

2 General Theory of e-Sums

Following [3, 4] we present constructive formulae for the Eisenstein–Rayleigh sums
Sm and the Eisenstein functions Em(z) corresponding to lattice Q. Let ω1 and ω2
be the fundamental pair of periods on the complex plane C such that Im ω2

ω1
> 0.

The fundamental parallelogramQ is defined by its vertices ±ω1
2 and ±ω2

2 . Without
loss of generality the area ofQ can be normalized to one. The points m1ω1 +m2ω2

(m1,m2 ∈ Z) generates a doubly periodic lattice Q. Here, Z stands for the set of
integer numbers.

The Eisenstein–Rayleigh lattice sums Sm can be easily calculated through the
rapidly convergent series

S2 =
(
π

ω1

)2
(

1

3
− 8

∞∑

m=1

mq2m

1 − q2m

)

, where q = exp

(

πi
ω2

ω1

)

, (2.1)

S4 = 60

(
π

ω1

)4
(

4

3
+ 320

∞∑

m=1

m3q2m

1 − q2m

)

, (2.2)

S6 = 1400

(
π

ω1

)6
(

8

27
− 448

3

∞∑

m=1

m5q2m

1 − q2m

)

. (2.3)

S2n (n≥ 4) can be calculated by the recurrent formula

S2n = 3

(2n+ 1)(2n− 1)(n− 3)

n−2∑

m=2

(2m− 1)(2n− 2m− 1)S2mS2(n−m). (2.4)

The rest sums vanish.
The Eisenstein functions [5] are related to the Weierstrass function ℘(z) [1] by

the identities

E2(z)= ℘(z)+ S2, Em(z)= (−1)m

(m− 1)!
dm−2℘(z)

dzm−2
, m= 3,4, . . . . (2.5)
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Every function (2.5) is doubly periodic and has a pole of order m at z = 0. The
Eisenstein functions of the even order E2m(z) can be presented in the form of the
series [5]

E2m(z)= 1

z2m
+

∞∑

k=1

σ
(m)
k z2(k−1), (2.6)

where

σ
(m)
k = (2m+ 2k− 3)!

(2m− 1)!(2k − 2)!S2(m+k−1). (2.7)

We follow [4] to introduce e-sums. Let ak (k = 1,2, . . . ,N ) be a set of points.
Let q be a positive integer; kt runs over 1 toN ;mj = 2,3, . . . . Let C be the operator
of complex conjugation. Introduce the following sum of multi-index (m1, . . . ,mq)

em1...mq := N−[1+ 1
2 (m1+···+mq)] ∑

k0k1...kq

Em1(ak0 − ak1)

×Em2(ak1 − ak2) . . .C
qEmq (akq−1 − akq ). (2.8)

Here, it is assumed for convenience that

Em(0) := Sm. (2.9)

According to (2.8)–(2.9), em becomes the classical e-sum Sm in the caseN = 1. The
sums (2.8) constitute the basic elements to calculate the effective conductivity [2, 3]
dependent only on the locations of inclusion.

3 Random Walk Model

Consider N non-overlapping circular disks Dk of radius r with the centres ak ∈Q
(see Fig. 1). Let D0 be the complement of all closure disks |z − ak| ≤ r to the
domain Q. We study conductivity of the doubly periodic composite when the host⋃
m1,m2

(D0 +m1ω1 +m2ω2) and the inclusions Dk +m1ω1 +m2ω2 are occupied
by conducting materials. It is assumed that inclusions are occupied by a perfect
conductor.

The concentration of the inclusions has the form ν = Nπr2. The centres ak
are considered as random variables distributed in such a way that the disks Dk =
{z ∈C : |z− ak|< r} generate a set of uniformly distributed non-overlapping disks.
Theoretically this distribution denoted below as U can be introduced as the distribu-
tion of the variable a = (a1, a2, . . . , aN) ∈QN with the restrictions |am − ak|> 2r
for m �= k (m,k = 1,2, . . . ,N ). According to [2], 0 ≤ ν ≤ π√

12
where π√

12
is the

maximal concentration attained for the hexagonal array. It is worth noting that the
disks Dk belong to Q in the torus topology when the opposite sides of Q are iden-
tified.

A constructive description of the distribution U for high concentrations is based
on random walks. Put the centres ak onto the nodes of a regular array. Take a positive
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Fig. 1 Doubly periodic composite with inclusions Dk +m1ω1 +m2ω2 where m1,m2 ∈ Z

number d less than mink �=m |ak−am|−2r . Let each ak moves in a randomly chosen
direction φk ∈ [0,2π) (i.e. program calculates range of possible move to avoid colli-
sions) in the torus topology ofQ. Then, each center obtain new complex coordinate
a′
k = ak + deiφk .

After sufficiently large number of the walks the obtained location of the centres
can be considered as a statistical realization of the distribution U . This method can
be applied for arbitrary concentrations satisfying 0 ≤ ν ≤ π√

12
.

If every center ak move to a′
k with a randomly chosen direction, for all k =

1,2, . . . ,N , we say that a cycle is performed. As a result, we have one ultimate
location a = (a1, a2, . . . , aN). The time T of random walk is measured in number
of cycles performed from the start.

Particular e-sums are considered as functions on T (i.e. numerical values of e-
sums are calculated for every performed cycle). All computations are based on the
fast algorithm presented in [2]. Below, the numerical computations are performed
for the square and hexagonal-like lattices in Fig. 2, both in the square cell (i.e.
ω1 = 1 and ω2 = i, where i denote the imaginary unit). The positions of inclusions
at time T = 1500 of random walk are presented in Fig. 3.

4 Computation of e-Sums and Examples of Their Convergence

The hexagonal-like and square lattices are considered (see Fig. 2) with the con-
centration ν = 0.7 as initial locations of the points ak and further random walks
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Fig. 2 Considered lattices for N = 64. The hexagonal-like lattice is obtained from square lattice
by translating disks of every second row by vector ṽ = [ ω1

2
√
N
,0]

Fig. 3 Considered lattices for N = 64 and T = 1500. Square lattice is on the left; hexagonal-like
lattice is on the right

described in Sect. 3. Both lattices contains N = 64 inclusions and are placed within
the square cell. The values of the considered e-sums are calculated for positions of
disks at each time T (T = 0,1,2, . . . ,1500). The results are presented in Fig. 4. It
is clear that beginning from the special value T0 = 100, the considered e-sums are
oscillating near the same value for both lattices. One can see (Figs. 5 and 6) that
their values are different for T less about 100.

5 Discussion and Conclusion

One can consider the set {em1...mq ,mj = 2,3, . . .} as a basis in the space of the de-
terministic or random locations of inclusions. This observation was used in [4] to
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Fig. 4 Sums e4,4 and e6,6 as the functions of time of random walk T . Black dots—square lattice;
grey dots—hexagonal-like lattice

Fig. 5 Sum e4,4 as a function
of time of random walk T .
Black dots—square lattice;
grey dots—hexagonal-like
lattice

Fig. 6 Sum e6,6 as a function
of time of random walk T .
Black dots—square lattice;
grey dots—hexagonal-like
lattice

create a constructive theory of RVEs and in [2] to simulate the RVEs for random 2D
composites with circular non-overlapping inclusions. The convergence of e-sums
reflects the geometrical convergence of cells to the one class of equivalent compos-
ites.
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Symbolic Computation of Conformal Mappings
onto Slit Domains

Roman Czapla

Abstract A present paper, the symbolic implementation of conformal mappings of
arbitrary circular multiply connected domains onto the complex plane with slits of
prescribed inclinations is applied to examine of distribution of lengths of slits.

Keywords Riemann–Hilbert problem · Multiply connected domain · Complex
plane with slits

1 Introduction

The study of the conformal mappings between multiply connected domains be-
comes more convenient by introducing the canonical domains and to study con-
formal mappings of arbitrary domains onto these canonical domains. Multiply con-
nected domains on the extended complex plane whose boundaries consist of mu-
tually disjoint circles form one of the most important class of the canonical do-
mains. Domains bounded by mutually disjoint arbitrarily oriented slits are impor-
tant in fracture mechanics. The method of Riemann–Hilbert problems [1] was used
to unify and to simplify construction of conformal mappings of multiply connected
domains. Authors derived the conformal mappings of arbitrary circular multiply
connected domains onto the complex plane with slits of prescribed inclinations in
terms of uniformly convergent Poincaré series (see below (3.7)). The method of
successive approximations was applied to obtain the iterative formula (3.8). In the
present paper, the symbolic implementation of (3.8) is presented. As an application,
we examine the distribution of lengths of slits obtained in particular example.

2 Riemann–Hilbert and RRR-Linear Problems

Let z = x + iy denote a complex variable on the complex plane C. Consider non-
overlapping disks Dk = {z ∈ C : |z − ak| < rk}, k = 1,2, . . . , n. Let the boundary
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of Dk , the circle ∂Dk , is oriented in counterclockwise direction and D denote the
complement of the closed disks |z − ak| ≤ rk in the extended complex plane Ĉ =
C ∪ {∞}. Consider the second complex variable ζ = u+ iv on the complex plane
with slits Γk lying on the lines

− sinαku+ cosαkv = ck, (2.1)

where ck are real constants. Let D′ denote the complement of all the segments Γk
to Ĉ. Let ζ = ϕ(z) be a conformal mapping of the circular multiply connected do-
main D onto D′, which transforms the circle |z− ak| = rk to the slit Γk . For defi-
niteness, it is assumed that ϕ(z) satisfies the hydrodynamic normalisation at infinity

ϕ(z)= z+ ϕ0 + ϕ1

z
+ ϕ2

z2
+ · · · . (2.2)

Such a conformal mapping always exists and unique up to an arbitrary additive
constant for the given inclinations αk [3]. It follows from (2.1) that ϕ(z) satisfies the
following Riemann–Hilbert problem [4]

Im
[
e−iαkϕ(t)

]= ck, |t − ak| = rk, k = 1,2, . . . , n, (2.3)

where ck are undetermined constants, Im stands for the imaginary part. The problem
(2.3) with ck = 0 in classes of meromorphic functions were investigated in [6].

One can prove the following lemma [1].

Lemma 2.1 The problem (2.2)–(2.3) has a unique solution up to an arbitrary ad-
ditive constant.

Remark 2.2 One can see that Lemma 2.1 is valid for an arbitrary multiply connected
D with smooth boundary.

The problem (2.3) can be reduced to the R-linear problem [5]

ϕ(t)= ϕk(t)+ e2iαkϕk(t)+ ieiαk ck, |t − ak| = rk, k = 1,2, . . . , n, (2.4)

where ϕk(z) is analytic in |z − ak| < rk and continuously differentiable in
|z− ak| ≤ rk . Transforming (2.4) we obtain

ψ(t)=ψk(t)− e2iαk

(
rk

t − ak
)2

ψk(t), |t − ak| = rk, k = 1,2, . . . , n, (2.5)

where ψ(z)= ϕ′(z) and ψk(z)= ϕ′
k(z).
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3 Functional Equations and Method of Successive
Approximations

The R-linear problem (2.5) can be reduced to functional equations. Following [4, 5]
introduce the function

Φ(z) :=
⎧
⎨

⎩

ψk(z)+∑m �=k e2iαm( rm
z−am )

2ψm(z
∗
(m)
),

|z− ak| ≤ rk,
k = 1,2, . . . , n,

ψ(z)+∑n
m=1 e

2iαm( rm
z−am )

2ψm(z
∗
(m)), z ∈D,

analytic in the domains Dk (k = 1,2, . . . , n) and D, where z∗
(m)

= r2
m

z− am + am
denote the inversion with respect to the circle |t − am| = rm.

Calculate the jump across the circle |t − ak| = rk
�k :=Φ+(t)−Φ−(t), |t − ak| = rk,

where Φ+(t) := limz→tz∈D Φ(z), Φ−(t) := limz→tz∈Dk Φ(z). Using (2.5) we get
�k = 0. It follows from the principle of analytic continuation that Φ(z) is an-
alytic in the extended complex plane. Moreover, ψ(∞) = ϕ′(∞) = 1 yields
Φ(∞)= 1. Then Liouville’s theorem implies that Φ(z)≡ 1. The definition of Φ(z)
in |z− ak| ≤ rk yields the following system of functional equations

ψk(z)= −
∑

m �=k
e2iαm

(
rm

z− am
)2

ψm
(
z∗(m)
)+ 1,

|z− ak| ≤ rk, k = 1,2, . . . , n. (3.1)

Let ψk(z) (k = 1,2, . . . , n) be a solution of (3.1). Then the function ψ(z) can be
found from the definition of Φ(z) in D

ψ(z)= −
n∑

m=1

e2iαm

(
rm

z− am
)2

ψm
(
z∗(m)
)+ 1, z ∈D ∪ ∂D. (3.2)

Was proved in [1] that there is convergence of the method of successive approx-
imations applied to the system (3.1).

Let ψk(z) be a solution to the system of functional equations (3.1). Let w ∈D be
a fixed point not equal to infinity. Introduce the functions

φm(z)=
∫ z

w∗
(m)

ψm(t)dt + φm
(
w∗
(m)

)
, |z− am| ≤ rm, m= 1,2, . . . , n, (3.3)

and

ω(z)=
n∑

m=1

e2iαm
[
φm
(
z∗(m)
)− φm

(
w∗
(m)

)]
. (3.4)
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One can prove, inter alia by Lemma 2.1, that the required conformal mapping
has the form

ϕ(z)= z+ω(z)+ constant, (3.5)

where ω(z) is calculated by (3.4). Application of the method of successive approxi-
mations to (3.1) and integration terms by terms of the obtained uniformly convergent
series yields the exact formula

ϕk(z)= qk + z+
∑

k1 �=k
e2iαk1

(
z∗(k1)

−w∗
(k1)

)

+
∑

k1 �=k

∑

k2 �=k1

e2i(αk1 −αk2 )(z∗(k2k1)
−w∗

(k2k1)

)

+
∑

k1 �=k

∑

k2 �=k1

∑

k3 �=k2

e2i(αk1 −αk2+αk3 )(z∗
(k3k2k1)

−w∗
(k3k2k1)

)+ · · · ,

|z− ak| ≤ rk. (3.6)

Using (3.4) and (3.6) we write the function (3.5) up to an arbitrary additive constant
in the form

ϕ(z)= z+
n∑

k=1

e2iαk
(
z∗(k) −w∗

(k)

)

+
n∑

k=1

∑

k1 �=k
e2i(αk−αk1 )(z∗(k1k)

−w∗
(k1k)

)

+
n∑

k=1

∑

k1 �=k

∑

k2 �=k1

e2i(αk−αk1 +αk2 )(z∗(k2k1k)
−w∗

(k2k1k)

)+ · · · . (3.7)

We use another implementation based on the functional equations (3.1). The
method of successive approximations is applied to (3.1). We start with the initial
guess, ψ(0)k = 1, k = 1,2, . . . , n. The iteration is then given by

ψ
(it+1)
k (z)= −

∑

m �=k
e2iαm

(
rm

z− am
)2

ψ
(it)
m

(
z∗(m)
)+ 1, (3.8)

for |z− ak| ≤ rk , k = 1,2, . . . , n. The approximations converge uniformly for any
location of non-overlapping disks. Further, the functionψ(z) is constructed by (3.2).
The conformal mapping ϕ(z) is constructed by integration of ψ(z).
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Table 1 Considered random
centers an inclinations

ak αk

−0.1435−0.0946i −0.8843

0.1519+0.2254i 1.1627

0.2586−0.2910i −1.3488

−0.3058+0.2416i 0.3787

Now, we implement the iterative formula (3.8) in Mathematica®:

For example, let ak and αk be defined by Table 1, formula (3.8) takes the follow-
ing form (3.9).

ϕ(z)= z− 0.0287442 + 0.0136743i

1.z− (0.258645 − 0.291009i)
− 0.00035354 − 0.003626i

z− (0.246426 − 0.2319i)

− 0.000424771 + 0.00162785i

z− (0.228812 − 0.26286i)
+ 0.00133436 + 0.00487988i

z− (0.194735 − 0.259791i)

+ 0.00239752 − 0.00274351i

z− (0.164111 + 0.166303i)
− 0.0218029 − 0.0231915i

z− (0.151891 + 0.225414i)

− 0.00458698 − 0.00273962i

z− (0.102315 + 0.171702i)
− 0.000354363 + 0.00481762i

z− (0.0824317 + 0.227868i)

− 0.00505799 + 0.0001021i

z+ (0.0795605 + 0.125805i)
+ 0.00409164 + 0.0034358i

z+ (0.0938938 + 0.040876i)

− 0.00625544 + 0.0312103i

z+ (0.14347 + 0.0945875i)
− 0.000402701 + 0.00725921i

z+ (0.180548 + 0.0178048i)

+ 0.000327288 + 0.00481953i

z+ (0.236346 − 0.239127i)
− 0.00697891 + 0.00203792i

z+ (0.268727 − 0.164798i)

+ 0.00061054 − 0.0015677i

z+ (0.275972 − 0.213432i)
+ 0.0231302 + 0.0218679i

z+ (0.305805 − 0.241581i)
(3.9)
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Fig. 1 Unit square with
randomly distributed
inclusions

Fig. 2 Plane with slits of the
inclinations randomly chosen
on (− π

2 ,
π
2 )

4 Numerical Example

Let Q be the unit square (Fig. 1). Consider 100 non-overlapping circular disks Dk
of radius r = 0.0356825 randomly distributed in Q (see the Method I described in
Chap. 2 of [2]).

Conformal mapping of the exterior of considered disks onto the plane with slits
of the inclinations randomly chosen on (−π

2 ,
π
2 ) is presented in Fig. 2.

The histogram in Fig. 3 presents the distribution of lengths of obtained slits. The
values seem to be normally distributed. Note that the lengths of the slits are greater
than 2r .
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Fig. 3 Distrubutions lengths
of the slits (r = 0.0356825)

5 Conclusion

In this symbolic implementation (3.8), the cost of each iteration increases rapidly as
the number of iterations increases. A preliminary numerical method, similar to [7,
Sect. 12.4], has been implemented in MATLAB. It is much faster than the symbolic
calculation, but does not yield analytic formulas like (3.9).
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On One Approach to the Simulation
of the Periodontal Ligament Takes into Account
Its Viscoelastic Properties

K. Yurkevich and S. Bosiakov

Abstract The mathematical model of the viscoelastic periodontal ligament is pre-
sented. The relaxation kernel corresponds to the Maxwell model. Model describes
the viscoelastic deformations of the periodontal membrane and the tooth move-
ments. Analysis of premolar root movements in the form of an elliptical hyperboloid
under the vertical load is performed.

Keywords Viscoelastic periodontal ligament · Elliptical hyperboloid · Tooth root
displacements · Maxwell’s kernel

1 Introduction

Periodontal ligament is a thin membrane that holds the tooth root in the alveolar
bone, absorbs and distributes the occlusal forces on the tooth by the collagen fibers.
Under normal conditions the contact between the tooth root and the bone tissue is
absent. The load acting on the crown of the tooth is transferred to the alveolar bone
through the periodontal ligament. Short-term (initial) and long-term (orthodontic)
tooth displacements are regulated by strains and stresses of the periodontal ligament,
because teeth and alveolar bone are considered almost completely rigid [1–5].

Adequately describe the function of the periodontal tissues without using of sim-
ple or too complex mathematical models allow the viscoelastic equations [6, 7]. In
particular, the viscoelastic model allows to avoid differences between the physiolog-
ical and calculated stresses in periodontal tissues. Also this model allows to explain
the dependence of the physiological response of the periodontal tissue to the action
of the load on the time and to combine movement of unsteady viscous liquid phase
with deformation of rigid body [8, 9].

Known existing viscoelastic model are based on the use of single Maxwell’s el-
ement [10], Kelvin–Voight model (parallel connected springs and shock absorber)
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[11, 12], nonlinear springs with three parameters [13]. Attempts to run the simu-
lation of the periodontal ligament using a linear viscoelastic law are undertaken in
the studies [14, 15]. Nevertheless, in [16] it is shown that the simulation of the peri-
odontium nonlinear properties provides a more accurate and reliable calculation of
stresses and strains in a wide range of the tooth movements. Some authors demon-
strated the viscoelastic behavior of human and primate periodontal ligaments, but
not offered a quantitative description [17–20]. The enhanced approach to the study
of the mechanical behavior of the periodontium based on the quasi-linear viscoelas-
tic phenomenological model is proposed in [21]. However the results obtained here
been challenged since the nonlinear behavior of periodontium may not be well de-
scribed by a quasi-linear viscoelastic theory which is usually used to describe the
biomechanics of tissue [22]. The most important results related to the finite ele-
ment calculation of viscoelastic models of the “tooth root—periodontal ligament”
are represented in [23–26].

A review of the results concerning the use of viscoelastic model for describing
the periodontal ligament’s behavior shows that precise information about relation-
ships between the viscoelastic response and periodontium structure, as well as uni-
form approach to the description of the periodontal ligament properties are absent.
A lot of studies on the properties and behavior of the periodontal membrane still
interprets its as linear elastic material. The aim of this work is the formulation of
the motion equations of the viscoelastic periodontal ligament in the shape of elliptic
hyperboloid.

2 Material and Methods

Let us assume that external and internal periodontal surfaces are defined by equa-
tions of the elliptical hyperboloids F0(x1, x2, x3) and F(x1, x2, x3), respectively:

F0(x1, x2, x3) = F(x1, x2, x3)+ h0 = 0, (2.1)

F(x1, x2, x3) = x3 − H
√

1 + p2 − p
(
√

x2
1

a2
+ x2

2

b2
+ p2 − p

)

= 0, (2.2)

where H is the height of the root; p is the parameter characterizing the rounding of
the root; a and b are semiaxes of the ellipse in the cross-section of the tooth root near
the alveolar crest; h0 is the parameter characterizing the thickness of periodontal lig-
ament; the surface F0(x1, x2, x3) restricts the periodontal surface from the alveolar
bone; the surface F(x1, x2, x3) limits the surface of the periodontal ligament from
the side of tooth root (see Fig. 1).

Any displacement of the root (and points on the internal surface of the periodon-
tal ligament) can be described as a combination of a translation of the apex and
a rotation around the apex of the root. The displacements of points on the exter-
nal surface of the periodontal ligament are equal to zero, because the periodontium
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Fig. 1 The geometrical
parameters of the tooth root

is rigidly fixed in alveolar bone. Taking this into account the displacements of the
periodontal ligament are represented as follows:

u(r, t)= 1

h0

(
F(x1, x2, x3)+ h0

)(
u(0)(t)+ ϕ(t)× r

)
. (2.3)

Here u(0)(t) is the translational displacement vector of tooth root; ϕ(t) is the ro-
tational angle vector of tooth root; r = (x1, x2, x3) is the radius-vector. Geometric
parameters of tooth root and the coordinate system are shown in Fig. 1.

The relationship between stresses and strains for the periodontal membrane takes
into account their viscoelastic properties written as follows:

σij (r, t)= 2G

(

eij (r, t)−
∫ t

0
K(t − τ)eij (r, τ )dτ

+ νδij

1 − 2ν

(
3∑

k=1

ekk(r, t)−
∫ t

0
K(t − τ)

3∑

k=1

ekk(r, τ )dτ

))

, i, j = 1,3,

(2.4)

where G is the shear modulus; ν is Poisson’s ratio; K(t) is the relaxation kernel for
volume and shear stresses; δij is Kronecker delta.

The components of the strain tensor have the following form:

eij (r, t)= 1

2

(
∂ui(r, t)
∂xj

+ ∂uj (r, t)
∂xi

)

, i, j = 1,3. (2.5)
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Let’s substitute the relations (2.5) to (2.4), and then insert the resulting expressions
in the equations of motion:

∫∫

F

(
n · σ(r, t))dF +Md

2u(0)(t)
dt2

− P = 0,

∫∫

F

r × (n · σ(r, t))dF + J d
2ϕ(t)

dt2
− m = 0,

(2.6)

where m = (m1,m2,m3) is the principal moment of the external forces; P =
(P1,P2,P3) is the principal vector of the external forces; n = (n1, n2, n3) is the
unit normal vector to the surface F(x1, x2, x3); σ(r, t) is the stress tensor whose
components defined by the expressions (2.4); M is the mass of the tooth; J is the
axial moment of inertia of the tooth.

3 Tooth Translation (Extrusion)

Let’s consider one of the clinical cases of orthodontic movements of tooth, when
the tooth displacement is only vertical, in particular by extrusion. During trans-
lation along the vertical axis under the force P = P3 from system (2.6) we have
(P1 = P2 = 0, the translational displacements u(0)1 and u(0)2 , as well as all rotation
angles are equal to zero):

c3

(

u
(0)
3 (t)−

∫ t

0
K(t − τ)u(0)3 (τ )dτ

)

+Md
2u
(0)
3 (t)

dt2
= P,

c3 = 2aGπ(b2H 2 + a2(H 2 + 2γ r1b2)−H 2p2r2(a
2 + b2))

4a2bh0r1
,

r1 = (
√

1 + p2 − p)2, r2 = ln

(
1

p2
+ 1

)

, γ = 2(1 − ν)
1 − 2ν

, (3.1)

where c3 is the stiffness of the periodontal ligament.
Let’s find the solution of (3.1) for Maxwell’s kernel K(t) = A exp−bt ,

(A > 0, b > 0) with the initial conditions corresponding to the absence of initial
velocity. The initial displacement was determined in accordance with the previously
developed linear elastic model of the periodontal ligament [27]. As a result one
obtains:

u
(0)
3 (t)=

Pb

c3(b−A) + PA

c3m(A− b)
(

exp(p1t)(cz +Mp1(b+ p1))

(p1 − p2)(p1 − p3)

+ exp(p2t)(c3 +Mp2(b+ p2))

(p2 − p1)(p2 − p3)
+ exp(p3t)(c3 +Mp3(b+ p3))

(p3 − p1)(p3 − p2)

)

,

p1 = −b
3

+ α+ β, p2 = −b
3

− 1

2
(α + β)+ i

√
3

2
(α − β),
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Fig. 2 The dependence of
the tooth root translation in
the viscoelastic periodontal
ligament in the vertical axis
direction

p3 = −b
3

− 1

2
(α + β)− i

√
3

2
(α − β), α = 3

√
√
√
√−q2

2
+
√
(
q2

2

)2

+
(
q1

2

)3

,

β = − q1

3α
, q1 = c3

M
− b2

3
, q2 = 2b3

27
− Ac3

M
+ 2bc3

3M
. (3.2)

Relaxation kernel parameters are defined based on results of the clinical ob-
servations of the periodontal membrane deformations. It is assumed that the ab-
solute maximum deformation of the periodontal ligament under constant force is
h1 ≈ 2h0/3 (h0 is the thickness of the periodontal ligament at the apex). If the
thickness h0 is 0.25 mm [28] then displacement h1 of the tooth root approximately
is 0.17 mm. The calculation of the kernel parameters based on the solution of (3.2)
for a premolar (a = 5 mm, b = 3.5 mm, H = 14.3 mm, p = 0.4) under vertical
load P = 100 N shows that A = 23.80 1/s, b = 24.48 1/s. Elasticity modulus of
the periodontal ligament is 10 MPa, Poisson’s ratio is 0.45 [29]. The stiffness c3 is
22.4 MN/m and the mass of premolar is 1 gram. Figure 2 shows the dependence
of the premolar’s root movement in the periodontal ligament from time for given
geometrical, physical and mechanical properties, the time variable varies from 0 to
5 seconds.

As shown in Fig. 2, with further change of time translational movement takes
almost constant value approximately is 0.16 mm. Using found values for the param-
eters of relaxation kernel the dependence of stresses from time can be determined.
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Biomechanical Effects of Maxillary Expansion
in Cross-Bite Patients During Orthodontic
Treatment with Hyrax Screw

S. Bosiakov, A. Vinokurova, and A. Dosta

Abstract The aim of this study was finite element analysis of stress-strain state of
the human maxillary complex with and without cleft palate. Loading the skull is
carried out by activating orthodontic device HYRAX. Model of the skull and sup-
porting teeth of upper jaw obtained on the basis of tomographic data for dry intact
skull of an adult. Design of orthodontic device differ position of screws and rods
relative to the palate. Equivalent stresses in the bones of the craniofacial complex
are assessed. It is shown that large stresses occur in the maxillary complex, if the
screw and rods of orthodontic devices are located in a horizontal plane for skull
with and without cleft. Also in the intact skull big stresses appear in the bone of the
upper jaw with location of the screw and rods of orthodontic device in a horizontal
plane. In the rest of the skull bones stresses are insignificant. By moving the device
screw to the palate the values of maximum stresses are reduced, but the region of
big stresses displaced to the pterygoid plate and pharyngeal tubercle. In the skull
with cleft for different positions of screws and rods orthodontic device the upper
jaw is loaded fragmentary. High stresses are observed in the region of the maxilla
near the zygomatic arches and along the edges of eye-sockets. When placing screw
of orthodontic device close to palate the stresses decreases, but are observed in most
part of the zygomatic arches.

Keywords Maxillary expansion · Orthodontic device Hyrax · Craniofacial
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1 Introduction

Correction of cross-bite, usually performed using transverse forces that create a
fixed or removable orthodontic appliances [1]. It allows to increase the maxillary
transverse dimension, but is sufficiently a complicated procedure that causes signif-
icant side effects, in particular dislocation of the supporting teeth, fenestration of the
cortical plate, root resorption and gingival recession [2]. The maxillary expansion
may be associated with a pressure in the various areas of its joint, for example in
the zygomatic bones and bridge of the nose, and may also be accompanied by com-
plications [3]. To better understand the effects of the rapid expansion of the max-
illary complex was carried out a lot of finite-element studies [4–14]. At the same
time, in most of these studies don’t considered the real design of the orthodontic
appliance. Loading is performed through the application of the transversal concen-
trated forces to the teeth in particular the molars and premolars (from 1 N to 300 N)
[4, 5, 9, 10, 12], or by displacement of teeth by a distance corresponding some num-
ber of revolutions of orthodontic screw (from 0.2 mm to 5.0 mm) [7, 10, 11, 13, 14].
Such simplified approaches do not represent real situation and give inaccurate re-
sults in the simulation of the maxillary expansion [6]. The aim of this paper is to
analyze the influence of design of the orthodontic appliance HYRAX on the stress-
strain state of the intact human skull and skull with unilateral cleft, which occurs
after the activation of the device.

2 Model the Skull and Orthodontic Device

Stereolithography model format of the skull was obtained using the program for
medical imaging MIMICS 14.12 (Materialise’s Interactive Medical Image Control
Systems, Materialise BV, Leuven, Belgium) on the basis of 210 tomographic im-
ages of the dried cadaveric intact skull of an adult. Note that for the development of
the skull model enough tomography data obtained from of dry human skull [9–11].
In addition, under the action of orthodontic forces the initial reaction of dry skull
and skull in vivo are similar [15]. Step tomographic slices is equal to 1 mm. Finite
element model is obtained after processing model in MIMICS 3-matic 6.1. Teeth of
the maxilla (first and second premolars, permanent molars), on which established
orthodontic device were removed when generating stereolithographic format. Dis-
crete model of the skull contains 26445 nodes and 91731 elements like Solid72.
Finite element partition of is performed automatically. Simulation of the periodon-
tal ligament was not carried out, as it has virtually no effect on the stress distribu-
tion in the bones of the maxillofacial complex under the action of loads of different
types [16]. Sutures in the craniofacial complex also not taken into account in the
finite element model. This is because in the adult the skull sutures partially or fully
are ossified [7].

Solid models premolar and first molar of the upper dental row also obtained
on the basis of tomographic data of the human skull. For this SolidWorks 2010



Biomechanical Effects of Maxillary Expansion 795

Fig. 1 Distribution of equivalent stresses in the intact skull (frontal view): (a) is skull with hori-
zontal position of the orthodontic device; (b) is skull with screw higher on 8 mm of the horizontal
position

(SolidWorks Corporation, USA) is used. Model orthodontic device HYRAX using
graphical primitives of this package is constructed. Crowns device are installed on
the first permanent molars and premolars. The length and width of the plates in a
model orthodontic device is 4.0 mm and 10.0 mm respectively, the radius of the
cross section is 1.0 mm rods, thickness of crown is 0.2 mm.

Boundary conditions correspond to anchorage of nodes near the foramen mag-
num [4, 6]. Displacement of each plate is 0.25 mm (corresponding to the activation
screw of orthodontic device a half turn [5, 12]) and transversally is directed (in the
direction of the axis 0x). Modulus of elasticity material plates and rods of the or-
thodontic device is 200 GPa, Poisson’s ratio is 0.3. The elastic modulus of cortical
bone and teeth equal to 15 GPa and 20 GPa, Poisson’s ratio for the cortical bone
and teeth equal to 0.3. Finite element analysis of the stress-strain state of a skull
with orthodontic appliances is carried out for different locations of the screw and
rods. In one design, the screw and rod of the device were located in a horizontal
plane. In other configurations, the screw of device was located on the 0.5, 1, 2 and
8 mm above relative to the horizontal construction of the orthodontic appliance. Ge-
ometric dimensions of orthodontic appliances, except for the lengths of rods, are
not changed. Rods lengths between the plates and crowns on the first premolars is
vary from 8.15 mm to 12.20 mm, length of rods between the plates and the molars
is changes from 11.05 mm to 16.45 mm.

3 Stress-Strain State of the Intact Skull

Figures 1 and 2 show the distribution of the equivalent stresses in the front part and
in the base of the skull respectively for two different designs of orthodontic device.
Here and further, the case a corresponds to the design of the device with horizontal
position of screw and rods; case b meets the construction in which the screw is
shifted by 8 mm closer to the palate relative to first case.
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Fig. 2 Distribution of equivalent stresses in the intact skull (bottom view): (a) is skull with hori-
zontal position of the orthodontic device; (b) is skull with screw higher on 8 mm of the horizontal
position

From distributions of stress is seen (see Figs. 1a and 2a) that significant stresses
occur mainly in the maxilla, the maximum equivalent stress is equal ≈74.3 MPa.
Also high stresses are observed in the middle and lower part of nasal concha.
Stresses are present at the bottom of the left orbit. Figure 1b shows that when
installing the screw device in the palate, the maxilla is loaded fragmentary, and
most equivalent stress is ≈20.12 MPa. In particular, the stresses are observed in the
frontal area and the alveolar processes region of the maxilla and also in the fron-
tonasal suture. Insignificant stresses arise in the sphenoid and occipital bones.

As Fig. 2b shows, the palatal suture loaded slightly. Thus for rapid expansion of
the palatal suture the case a is more preferable than case b. Note that the maximum
stresses in the case of a and b occur in the bone tissue around teeth on which the
orthodontic device is installed. This is confirmed by the distribution of equivalent
stress at the base of the skull (see Figs. 2a, b). At the same time, the skull bone
differently are loaded in cases a and b. In case a, large stresses occur in incisal bone
(33.02 MPa), the maxilla and the palatal bone (8.26–33.02 MPa). In case b, stress
in the maxilla (6.71 MPa) is less than stress in the occipital bone, particularly in the
region of the foramen magnum (11.18 MPa). Besides, in the case b the non-zero
stress in the zygomatic arcs is observed, as well as in the pterygoid plate.

4 Stress-Strain State of Maxilla with Cleft Palate

Figures 3 and 4 shows the distribution of equivalent stresses in the front part (see
Figs. 3a and 4a) and in the base (see Figs. 3b and 4b) of the skull with a cleft for
two different designs orthodontic device.

Figures 3 and 4 show that the maximum stresses in the skull with palate cleft are
occur when placing of the screw and rod in a horizontal plane. At the same time,
maximum stresses in the skull with a cleft (≈69.1 MPa, see Figs. 3, 4a) is less than
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Fig. 3 Distribution of equivalent stresses in the skull with cleft palate (frontal view): (a) is skull
with horizontal position of the orthodontic device; (b) is skull with screw higher on 8 mm of the
horizontal position

Fig. 4 Distribution of equivalent stresses in the skull with cleft palate (frontal view): (a) is skull
with horizontal position of the orthodontic device; (b) is skull with screw higher on 8 mm of the
horizontal position

the maximum stress in the intact skull (≈74.3 MPa, see Figs. 1, 2a). Conversely, in
the case b for skull with cleft the maximum stress increases (≈37.0 MPa compared
to ≈20.1 MPa, see Figs. 1–4b). Like for the intact skull, the maximum stresses
in the skull with palate cleft are observed in the bone tissue of maxilla adjacent
to the supporting teeth. Along with the change of stresses can observe significant
qualitative differences in the distribution of stresses in cases a and b for the intact
skull and skull with cleft. In particular, in the skull with a cleft palate the region of
the median palatal suture practically is not loaded during activating the orthodontic
device (see Figs. 4a, b). In the case a (see Fig. 4a) can be observed insignificant
stresses (less than 15.4 MPa) in pterygoid plate. More great stresses appear in the
eye-sockets and in the zygomatic arches (less than 46.1 MPa). In case b the region
of stress in the skull base shifts from pterygoid plate aside large pharyngeal tubercle
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(stresses reach ≈24.7 MPa). Stresses (less than ≈23.0 MPa) are observed along the
entire length of the zygomatic arches (see Figs. 3b and 4b).

5 Conclusions

• When installing screws and rods of the orthodontic device in the horizontal plane
significant stresses appear in the upper jaw and the lower part of the nasal cavity
of a human skull. By moving the screw of orthodontic device to the palate the
stresses redistributed and maxilla slightly is loading. The stress state is observed
around the nasal cavity, in the region of fronto-nasal suture, as well as in the
pterygoid plate and pharyngeal tubercle. Therefore, in the case a of the installation
of orthodontic device on an intact skull expediently carry out osteotomy median
palatal suture. In case b, we can recommend an osteotomy, which will prevent the
loading of the skull base.

• During expansion upper jaw with a cleft palate advisable to carry out an os-
teotomy to separate the maxilla and pterygoid plate in region of pterygoid process
regardless of orthodontic device design. When installing screw of orthodontic de-
vice near the palate in the skull with cleft also advisable to carry out an osteotomy
of the zygomatic arches.
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On the Solvability of a Nonlinear Optimal
Control Problem for the Thermal Processes
Described by Fredholm Integro-Differential
Equations

Akylbek Kerimbekov

Abstract The problem of nonlinear optimal control of the thermal process de-
scribed by Fredholm integro-differential equation was investigated. The concept of
a weak generalized solution of the boundary problem was introduced and the algo-
rithm for its construction was indicated. It was established that the optimal control
is defined as a solution of a nonlinear integral equation satisfying the additional
condition in the form of inequality. Sufficient conditions for unique solvability of
nonlinear optimization were found and the algorithm for constructing approximate
solutions was developed. The convergence of approximate solutions with respect to
control, optimal process and functional was investigated.

Keywords Boundary value problem · Weak generalized solution · Functional ·
The maximum principle · The optimality condition · Integral equation ·
Approximate solution · Convergence

1 Introduction

Many applied problems are described by integro-differential equations [5, 7]. As it
was noticed in [3, Introduction] in many applications mathematical models which
contain integro-differentional operators haven’t been studied or have been studied
not enough because of controlled system’s difficulty. Problems of control processes
described by integro-differential equations, in the case in which control functions
enter the equations non-linearly, were almost not studied. In this paper, the solvabil-
ity of control problem with the quadratic quality criterion was investigated. Using
the maximum principle in the case in which the controlled process is described by a
Fredholm integro-differential equation, the optimality condition was obtained in the
form of a nonlinear integral equation and differential inequality, i.e. optimal control
is defined as a solution of the specific problem that is new in the theory of inte-
gral equations. By applying the method of [2] sufficient conditions were found for
unique solvability of this problem and the algorithm was indicated for constructing
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solutions of nonlinear optimization problems with arbitrary precision in the form
of a triplet (u0(t), v0(t, x), J [u0(t)]), where u0(t) is the optimal control, v0(t, x) is
the optimal process, J [u0(t)] is the minimal value of the functional.

2 Boundary Value Problem of the Controlled Process

Let the state of a thermal process be described by a scalar function v(t, x), which
in the region QT =Q× (0, T ], where Q is a region of the space Rn bounded by a
piecewise smooth curve γ , satisfies the integral-differential equation [5, 7]

vt −Av = λ
∫ T

0
K(t, τ )v(τ, x)dτ + g(t, x)f [t, u(t)],

x ∈Q⊂Rn, 0< t ≤ T (2.1)

and on the boundary of Q satisfies the initial condition

v(0, x)=ψ(x), x ∈Q (2.2)

and the boundary condition

Γ v(t, x)≡
n∑

i,j=1

aij (x)vxj (t, x) cos(δ, xi)+ a(x)v(t, x)= 0,

x ∈ q, 0< t ≤ T . (2.3)

Here A is the elliptic operator defined by the formula:

Av(t, x)≡
n∑

i,j=1

(
aij (x)vxj (t, x)

)

xi
− c(x)v(t, x),

aij (x)= aji(x),
n∑

i,j=1

aij (x)aiaj ≥ a0

n∑

i=1

a2
i , a0 > 0;

δ is a normal vector, outgoing from the point x ∈ q; T is a fixed moment of time,
K(t, τ ) is a given function defined in the region D = (0 ≤ t ≤ 1,0 ≤ τ ≤ 1) and
satisfying the condition

∫ T

0

∫ T

0
K2(t, τ )dτdt =K0 <∞, (2.4)

i.e. K(t, τ ) is an element of the Hilbert space H(D)≡ L2(D);

g(t, x) ∈H(Q), ψ(x) ∈H(0,1), f
[
t, u(t)

] ∈H(0, T ),
fu
[
t, u(t)

] �= 0, ∀t ∈ (0, T ),
(2.5)
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are given functions; a(x) ≥ 0, c(x) ≥ 0 are known measurable functions; u(t) ∈
H(0, T ) is a control function, λ is a parameter and α > 0 is a constant.

As is known, under conditions (2.5) problem (2.1)–(2.3) has no classical solu-
tions. Therefore, we will use the notion of a weak generalized solution of problem
(2.1)–(2.3).

The solution of problem (2.1)–(2.3) we will seek in the form:

v(t, x)=
∞∑

n=1

vn(t)zn(x),

vn(t)=
〈
v(t, x), zn(x)

〉=
∫

Q

v(t, x)zn(x)dx,

(2.6)

where zn(x), n= 1,2,3, . . . are eigenfunction function of the boundary value prob-
lem

Az(x)= −λ2z(x), x ∈Q,
Γ z(x)= 0, x ∈ q,

which form a complete orthonormal system in the Hilbert space H(Q), and the
corresponding eigenvalues λn satisfy the following conditions

λn ≤ λn+1 ≤ · · · , lim
n→∞λn = ∞

Definition 2.1 A weak generalized solution of problem (2.1)–(2.3) is a function
v(t, x) ∈H(Q) that satisfies the initial condition in a weak sense, i.e. for any func-
tion φ0(x) ∈H(Q) we have the equality:

lim
t→+0

∫

Q

v(t, x)φ0(x)dx =
∫

Q

ψ(x)φ0(x)dx,

and the Fourier coefficients vn(t) satisfy the linear Fredholm integral equation of
the second type

vn(t)=
∫ t

0
e−λ2

n(t−τ)
(

λ

∫ T

0
K(τ, s)vn(s)ds + gn(τ)f

[
τ,u(τ)

]
)

dτ

+ e−λ2
ntψn, (2.7)

where ψn and gn(t) are the Fourier coefficients of the functions ψ(x), g(t, x) re-
spectively.

To determine the Fourier coefficients vn(t) (2.7) can be rewritten as

vn(t)= λ
∫ T

0
Kn(t, s)vn(s)ds + αn(t), (2.8)
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where

Kn(t, s)=
∫ t

0
e−λ2

n(t−τ)K(τ, s)dτ, (2.9)

αn(t)= e−λ2
ntψn +

∫ t

0
e−λ2

n(t−τ)gn(τ )f
[
τ,u(τ)

]
dτ (2.10)

The solution of integral equation (2.8) we find by the formula [1]:

vn(t)= λ
∫ T

0
Rn(t, s, λ)αn(s)ds + αn(t), (2.11)

where

Rn(t, s, λ)=
∞∑

n=1

λi−1Kn,i(t, s), n= 1,2,3, . . . , (2.12)

is the resolvent Kn,1(t, s)≡Kn(t, s), and the iterated kernels Kn,i(t, s) are defined
by the formula [1]

Kn,i+1(t, s)=
∫ T

0
Kn(t, η)Kn,i(η, s)dη, i = 1,2,3, . . . , (2.13)

for each n= 1,2,3, . . . . We investigate the convergence of Neumann series (2.12).
According to (2.9) and (2.13) by direct calculation the following estimates are es-
tablished

∣
∣Kn,i(t, s)

∣
∣2 ≤ (K0T )

i−1

(2λ2
n)
i

∫ T

0
K2(η, s)dη, i = 1,2,3, . . . . (2.14)

Neumann series (2.12) is dominated by the numerical series

∞∑

i=1

λi−1Kn,i(t, s) ≤
∞∑

i=1

|λ|i−1
∣
∣Kn,i(t, s)

∣
∣

≤
(∫ T

0
K2(η, s)dη

)1/2 1
√

2λ2
n

∞∑

i=1

(

|λ|
√
K0T
√

2λ2
n

)i−1

,

which converges for every n = 1,2,3, . . . for the values of the parameter λ that
satisfy the inequality

|λ|
√
K0T
√

2λ2
n

< 1.

Note that

|λ|<
√

2√
K0T

λn −−−→
n→∞ ∞,
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i.e. the radius of convergence increases when n is growing. However, the Neumann
series, for the parameter values λ that satisfy the condition

|λ|<
√

2√
K0T

λ1, λ �= 0 (2.15)

converges absolutely for any n= 1,2,3, . . . . In this case the resolvent as the sum of
an absolutely convergent series is a continuous function and satisfies the following
estimates

∣
∣Rn(t, s, λ)

∣
∣≤
(∫ T

0
K2(η, s)dη

)1/2 1
√

2λ2
n

∞∑

i=1

(

|λ|
√
K0T
√

2λ2
n

)i−1

= 1
√

2λ2
1 − |λ|√K0T

(∫ T

0
K2(η, s)dη

)1/2

,

∫ T

0
R2
n(t, s, λ)ds ≤ 1

(

√

2λ2
1 − |λ|√K0T )2

∫ T

0

∫ T

0
K2(η, s)dηds

= K0

(

√

2λ2
1 − |λ|√K0T )2

.

(2.16)

Thus, the solution of problem (2.1)–(2.3) we find by (2.6), where vn(t) is defined by
formula (2.11) as the unique solution of integral equation (2.8). It is easy to verify
that this solution satisfies initial condition (2.2).

Now we show that this solution is an element of the space H(QT ). Taking into
account (2.9) and (2.10) by direct calculation it is easy to show that the following
inequality holds

∫ T

0

∫

Q

v2(t, x)dxdt

≤
∫ T

0

∫

Q

( ∞∑

n=1

v(t)zn(x)

)2

dxdt =
∫ T

0

∞∑

n=1

v2
n(t)dt

≤
∫ T

0

∞∑

n=1

(

λ

∫ T

0
Rn(t, s, λ)αn(s)ds + αn(t)

)2

dt

≤ 2
∫ T

0

∞∑

n=1

(

λ2
∫ T

0
R2
n(t, s, λ)ds

∫ T

0
α2
n(s)ds + α2

n(t)

)

dt

≤ 2

(
λ2K0T

(

√

2λ2
1 − |λ|√K0T )2

∞∑

n=1

∫ T

0
α2
n(s)ds +

∫ T

0

∞∑

n=1

α2
n(t)dt

)
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≤ 2

(
2λ2K0T

(

√

2λ2
1 − |λ|√K0T )2

+ 1

)

× 2T

( ∞∑

n=1

ψ2
n +

∞∑

n=1

∫ T

0
g2
n(τ )dτ

∫ T

0
f 2[τ,u(τ)

]
dτ

)

= 4T

(
λ2K0T

(

√

2λ2
1 − |λ|√K0T )2

+ 1

)

× {∥∥ψ(x)∥∥2
H

+ (∥∥g(t, x)∥∥2
H

∥
∥f
[
t, u(t)

]∥
∥2
H

)}
.

From this inequality it follows that v(t, x) ∈H(QT ). When the functions vn(t), n=
1,2,3, . . . , are determined by formulas (2.11)–(2.12), it is not always possible to
find the exact resolvent Rn(t, s, λ). In practice, the approximations of the resolvent
are considered most often. The truncated series of the form

Rmn (t, s, λ)=
m∑

i=1

λi−1Kn,i(t, s), n= 1,2,3, . . . , (2.17)

is called mth approximation of the resolvent Rn(t, s, λ) for each fixed n =
1,2,3, . . . .

The function vmn (t) defined by the formula

vmn (t)= λ
∫ T

0
Rmn (t, s, λ)αn(s)ds + αn(t), n= 1,2,3, . . . , (2.18)

is called the mth approximation of the function vn(t) for each fixed n= 1,2,3, . . . .
According to the formula (2.6), the mth approximation of the solution v(t, x) of

boundary value problem (2.1)–(2.3) we find from the formula

v(m)(t, x)=
∞∑

n=1

vmn (t)zn(x), (2.19)

where vmn (t) have the form (2.18). We show that the approximate solution vmn (t, x)
of boundary value problem (2.1)–(2.3) converges to the exact solution v(t, x) with
respect to the norm of the space H(QT ). Taking into account (2.12), (2.14), (2.15),
(2.17), (2.18) and the inequality

∞∑

i=m+1

αi ≤ αm+1 +
∫ ∞

m+1
αxdx = αm+1 + 1

lnα
αx
∣
∣∞
m+1 = αm+1

(

1 − 1

lnα

)

,

0< α < 1,
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by direct computation we find that

[
vn(t)− vmn (t)

]2 =
(

λ

∫ T

0

[
Rn(t, s, λ)−Rmn (t, s, λ)

]
αn(s)ds

)2

≤ λ2
∫ T

0

[
Rn(t, s, λ)−Rmn (t, s, λ)

]2
ds

∫ T

0
α2
n(s)ds

≤ λ2
∫ T

0

( ∞∑

i=m+1

|λ|i−1
∣
∣Kn,i(t, s)

∣
∣

)2

ds

∫ T

0
α2
n(s)ds

≤ λ2 K0

2λ2
n

( ∞∑

i=m+1

(

|λ|
√
K0T

2λ2
1

)i−1
)2 ∫ T

0
α2
n(s)ds

≤ λ2K0

2λ2
n

(

|λ|
√
K0T

2λ2
1

)2m(

1 − 1

ln |λ|
√
K0T

2λ2
1

)2

×
∫ T

0
α2
n(s)ds ≤ Cn(λ)

(

|λ|
√
K0T

2λ2
1

)2m

, (2.20)

where

Cn(λ)= λ2K0

2

(

1 − 1

ln |λ|
√
K0T

2λ2
1

)2

×
(

ψ2
n(x)+

∫ T

0
g2
n(τ )dτ

∥
∥f
[
t, u(t)

]∥
∥2
H

)

. (2.21)

Note that, because the parameter λ satisfies (2.15), we have the inequality

0< 1 − 1

ln |λ|
√
K0T

2λ2
1

<∞. (2.22)

The convergence of the approximate solutions of boundary-value problem follows
from
∥
∥v(t, x)− vm(t, x)∥∥2

H

=
∫ T

0

∫

Q

( ∞∑

n=1

[
vn(t)− vmn (t)

]
zn(x)

)2

dxdt

=
∫ T

0

∞∑

n=1

[
vn(t)− vmn (t)

]2
dt ≤

∫ T

0

∞∑

n=1

Cn(λ)

(

|λ|
√
K0T

2λ2
1

)2m

dt
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≤
∫ T

0

∞∑

n=1

λ2K0

λ2
1

(

1 − 1

ln |λ|
√
K0T

2λ2
1

)2

×
(

ψ2
n +
∫ T

0
g2
n(τ )dτ

∥
∥f
[
t, u(t)

]∥
∥2
n

)(

|λ|
√
K0T

2λ2
1

)2m

dt

≤ λ2K0T

λ2
1

(

1 − 1

ln |λ|
√
K0T

2λ2
1

)2

× (∥∥ψ(x)∥∥2
H

+ ∥∥g(t, x)∥∥2
H

∥
∥f
[
t, u(t)

]∥
∥2
H

)
(

|λ|
√
K0T

2λ2
1

)2m

−−−−→
m→∞ 0.

3 Formulation of Optimal Control Problem and Conditions
of Optimality

Consider the optimization problem in which it is required to minimize the integral
functional

J
[
u(t)
]=
∫

Q

[
v(T , x)− ξ(x)]2dx + 2β

∫ T

0
M
[
t, u(t)

]
dt, β > 0, (3.1)

where ξ(x) ∈H(Q),Mu[t, u(t)] ∈H(0, T )—are given functions on the set of solu-
tions of problem (2.1)–(2.3), i.e. we need to find the control u0(t) ∈H(0, T ) which
together with the corresponding solution v0(t, x) of boundary value problem (2.1)–
(2.3) gives the smallest possible value of functional (3.1). In this case u0(t) is called
the optimal control, and v0(t, x) the optimal process.

Since by condition (2.5) each control u(t) uniquely defines the controlled process
v(t, x), the solution of boundary value problem (2.1)–(2.3) of the form v(t, x) +
�v(t, x) corresponds to the control u(t)+�u(t), where �v(t, x) is the increment
corresponding to the increment�u(t). According to the procedure of application of
the maximum principle [3, 4, 6], the increment of the functional (3.1) can be written
as

�J [u] = J [u+�u] − J [u]

= −
∫ T

0
�Π
[
t, v(t, x),ω(t, x), u(t)

]
dt +

∫

Q

�v2(T , x)dx, (3.2)
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where

�Π(t, v,ω,u)=Π(t, v(t, x),ω(t, x), u(t)
+�u(t))−Π(t, v(t, x),ω(t, x), u(t)),

Π
(
t, v(t, x),ω(t, x), u(t)

)=
∫

Q

g(t, x)ω(t, x)dxf
[
t, u(t)

]− 2βM
[
t, u(t)

]
,

(3.3)
and the function ω(t, x) is a solution of the adjoint boundary value problem

ωt +Aω+
∫ T

0
K(τ, t)ω(τ, x)dτ = 0, x ∈Q, 0 ≤ t < T ,

ω(T , x)+ 2
[
v(T , x)− ξ(x)]= 0, x ∈Q,

Γ ω(t, x)= 0, x ∈ q.

(3.4)

According to the maximum principle for systems with distributed parameters [6],
the optimal control is determined by the relations

2βMu
[
t, u(t)

]
f−1
u

[
t, u(t)

]=
∫

Q

g(t, x)ω(t, x)dx, (3.5)

fu
[
t, u(t)

]
(
Mu[t, u(t)]
fu[t, u(t)]

)

u

> 0, (3.6)

which are called the optimality conditions.

4 Solution of the Adjoint Boundary-Value Problem

We are looking for solution of boundary value problem (3.4) in the form of the series

ω(t, x)=
∞∑

i=1

ωn(t)zn(x). (4.1)

It is easy to verify that the Fourier coefficients ω(t, x) for each fixed n =
1,2,3, . . . , satisfy the conditions

ω′
n(t)− λ2

nωn(t)= −λ
∫ T

0
K(τ, t)ωn(τ )dτ,

ωn(T )+ 2
[
vn(T )− ξn

]= 0,

which can be converted to the linear non-homogeneous Fredholm integral equation
of the second type

ωn(t)= λ
∫ T

0
Bn(s, t)ωn(s)ds − 2e−λ2

n(T−t)[vn(T )− ξn
]
, (4.2)
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where the kernel

Bn(s, t)=
∫ T

t

e−λ2
n(T−t)K(s, τ )dτ and Bn(s, T )= 0. (4.3)

The solution of (4.2) we find by the formula [1]

ωn(t)= −2
[
vn(T )− ξn

]
(

e−λ2
n(T−t) + λ

∫ T

0
Pn(s, t, λ)e

−λ2
n(T−s)ds

)

, (4.4)

where the resolvent Pn(s, t, λ) of the kernel Bn(s, t) is given by

Pn(s, t, λ)=
∞∑

i=1

λi−1Bn,i(s, t),

Bn,i+1(s, t)=
∫ T

0
Bn(η, t)Bn,i(s, η)dη, i = 1,2,3, . . . ,

and by the condition (2.14) it is a continuous function, and satisfies the inequality

∣
∣Pn(s, t, λ)

∣
∣≤ 1
√

2λ2
1 − |λ|√K0T

(∫ T

0
K2(η, s)dη

)1/2

. (4.5)

It is easy to verify that ω(t, x) is an element of the space H(Q).
This follows from the inequality

∫ T

0

∫

Q

ω2(t, x)dxdt

=
∫ T

0

∫

Q

( ∞∑

n=1

ωn(t)zn(x)

)2

dxdt =
∫ T

0

∞∑

n=1

ω2
n(t)dt

≤ 8
∫ T

0

∞∑

n=1

[
vn(T )− ξn

]2

×
(

e−2λ2
n(T−t) + λ2

∫ T

0
P 2
n (s, t, λ)ds

∫ T

0
e−2λ2

n(T−s)ds
)

dt

≤ 8
∫ T

0

∞∑

n=1

[
vn(T )− ξn

]2

×
(

1 + λ2 1

(

√

2λ2
1 − |λ|√K0T )2

∫ T

0

∫ T

0
K2(s, η)dηds

1

2λn1

)

dt
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≤ 16T

(

1 + λ2K0

(2λ2
1

√

2λ2
1 − |λ|√K0T )2

) ∞∑

n=1

(
v2
n(T )− ξ2

n

)
<∞,

which holds by the following relations

∞∑

n=1

v2
n(T ) <∞ and

∞∑

n=1

ξ2
n = ∥∥ξ(x)∥∥2

H
.

5 Nonlinear Integral Equation of Optimal Control

We find the optimal control according to optimality conditions (3.5) and (3.6). We
substitute in (3.5) the solution of adjoint boundary value problem (3.4) defined by
(4.1) and (4.4). First, we calculate the integral

∫

Q

g(t, x)ω(t, x)dx =
∫

Q

∞∑

n=1

gn(t)zn(x)

∞∑

k=1

ωk(t)zk(x)dx =
∞∑

n=1

gn(t)ωn(t)

and rewrite equality (3.5) in the form

βMu
[
t, u(t)

]
f−1
u

[
t, u(t)

]

= −
∞∑

n=1

gn(t)
[
vn(T )− ξn

]
(

e−λ2
n(T−t) + λ

∫ T

0
Pn(s, t, λ)e

−λ2
n(T−s)ds

)

.

According to (2.6), we reduce this equality to the form

βMu
[
t, u(t)

]
f−1
u

[
t, u(t)

]+
∞∑

n=1

Ln(t, λ)

∫ T

0
Gn(s,λ)f

[
s, u(s)

]
ds

=
∞∑

n=1

Ln(t, λ)hn, (5.1)

where

Ln(t, λ)= gn(t)
[

e−λ2
n(T−t) + λ

∫ T

0
Pn(τ, t, λ)e

−λ2
n(T−τ)dτ

]

, (5.2)

Gn(t, λ)= gn(t)
[

e−λ2
n(T−t) + λ

∫ T

t

Rn(T , τ, λ)e
−λ2

n(τ−t)dτ
]

, (5.3)

hn = ξn −ψn
[

e−λ2
nT + λ

∫ T

0
Rn(T , τ, λ)e

−λ2
nτ dτ

]

. (5.4)



814 A. Kerimbekov

Thus, the optimal control is defined as the solution of nonlinear integral equa-
tion (5.1), and here we must have condition (3.6). Condition (3.6) restricts the class
of functions of external actions f [t, u(t)]. Therefore, we assume that the function
f [t, u(t)] satisfies (3.6) for any control u(t) ∈H(0, T ).

Nonlinear integral equation (5.1) is solved according to the procedure of
work [7]. We set

βMu
[
t, u(t)

]
f−1
u

[
t, u(t)

]= p(t). (5.5)

Lemma 5.1 The function p(t) is an element of space H(0, T ).

Proof By (2.5), we have the estimate

∣
∣f−1
u

[
t, u(t)

]∣
∣≤M0, ∀t ∈ [0, T ]. �

Since u(t) ∈H(0, T ), the statement of the lemma follows by the inequality

∫ T

0
p2(t)dt ≤ β2

∫ T

0

∣
∣f−1
u

[
t, u(t)

]∣
∣2
∣
∣Mu
[
t, u(t)

]∣
∣2dt

≤ β2M2
0

∫ T

0
M2
u

[
t, u(t)

]
(t)dt <∞.

According to (3.6), the control u(t) is uniquely determined by equality (5.5), i.e.
there is a function ϕ such that

u(t)= ϕ(t, p(t), β). (5.6)

By (5.5) and (5.6) we rewrite (5.1) in the form

p(t)+
∞∑

n=1

Ln(t, λ)

∫ T

0
Gn(s,λ)f

[
s, ϕ
(
s,p(s), β

)]
ds =

∞∑

n=1

Ln(t, λ)hn, (5.7)

or in the operator form

p(t)=G[p(t)], (5.8)

where

G
[
p(t)
]=

∞∑

n=1

Ln(t, λ)

[

hn −
∫ T

0
Gn(s,λ)f

[
s, ϕ
(
s,p(s), β

)]
ds

]

. (5.9)

Now we turn to the problem of unique solvability of operator equation (5.8).

Lemma 5.2 The operator G maps the space H(0, T ) into itself, i.e. G[p(t)] is an
element of the space H(0, T ).
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Proof By direct calculation we have the inequality
∫ T

0
G2[p(t)

]
dt

=
∫ T

0

( ∞∑

n=1

Ln(t, λ)

[

hn −
∫ T

0
Gn(s,λ)f

[
s, ϕ
(
s,p(s), β

)]
ds

])2

dt

≤ 2
∫ T

0

∞∑

n=1

L2
n(t, λ)

∞∑

n=1

[

h2
n +
∫ T

0
G2
n(s, λ)ds

∫ T

0
f 2[s, ϕ

(
s,p(s), β

)]
ds

]

dt

≤ 2
∫ T

0

∞∑

n=1

2g2
n(t)

[

e−2λ2
n(T−t)

+ λ2
∫ T

0
P 2
n (τ, t, λ)dτ

∫ T

0
e−2λ2

n(T−τ)dτ
]{

2

[
∥
∥ξ(x)

∥
∥2
H

+ 2

(

1 + λ2K0

(

√

2λ2
1 − |λ|√K0T )2

1

2λ2
1

)
∥
∥ψ(x)

∥
∥2
H

]

+
∞∑

n=1

2g2
n(t)

(

1 + λ2K0T

(

√

2λ2
1 − |λ|√K0T )2

)
∥
∥f
[
s, ϕ
(
s,p(s), β

)]∥
∥2
H

}

dt

≤ C
∫ T

0

∞∑

n=1

g2
n(t)dt <∞,

from which the statement of the lemma follows. �

Lemma 5.3 Suppose conditions
∥
∥f
[
t, u(t)

]− f [t, u(t)]∥∥
H

≤ f0
∥
∥u(t)− u(t)∥∥

H
, f0 > 0 (5.10)

and
∥
∥ϕ
[
t, p(t), β

]− ϕ[t, p(t), β]∥∥
H

≤ ϕ0(β)
∥
∥p(t)− p(t)∥∥

H
, ϕ0(β) > 0 (5.11)

are satisfied. Then if the condition

γ = 2
∥
∥g(t, x)

∥
∥2
H

(

1 + a2
0K0

(

√

2λ2
1 − a0

√
K0T )2

)

f0ϕ0(β) < 1, (5.12)

is met, where α0 is a positive constant satisfying the inequality

|λ| ≤ a0 <

√
2λ1√
K0T

, (5.13)

then the operator G is contractive.
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Proof By direct calculations, we have the inequality

∫ T

0

∣
∣G[p] −G[p]∣∣2dt

=
∫ T

0

( ∞∑

n=1

Ln(t, λ)

∫ T

0
Gn(s,λ)

× (f [s, ϕ(s,p(s), β)]− f [s, ϕ(s,p(s), β)])ds
)2

dt

≤
∫ T

0

∞∑

n=1

L2
n(t, λ)

∞∑

n=1

∫ T

0
G2
n(s, λ)ds

∫ T

0

(
f
[
s, ϕ
(
s,p(s), β

)]

− f [s, ϕ(s,p(s), β)])2dsdt

≤
[

2
∥
∥g(t, x)

∥
∥2
H

(

1 + λ2K0

(

√

2λ2
1 − |λ|√K0T )2

)

f0ϕ0(β)
∥
∥p(s)− p(s)∥∥

H

]2

,

from which we find that

∥
∥G[p] −G[p]∥∥

H

≤ 2
∥
∥g(t, x)

∥
∥2
H

(

1 + λ2K0

(

√

2λ2
1 − |λ|√K0T )2

)

f0ϕ0(β)
∥
∥p(t)− p(t)∥∥

H
.

�

Theorem 5.4 Suppose that conditions (2.4)–(2.5), (3.6), (4.5), (5.10)–(5.13) are
satisfied. Then operator equation (5.8) has a unique solution in the space H(0, T ).

Proof According to Lemmas 5.1 and 5.2, operator equation (5.8) can be considered
in the space H(0, T ). According to Lemma 5.3 operator G is contractive. Since the
Hilbert space H(0, T ) is a complete metric space, by the theorem on contraction
mappings the operator G has a unique fixed point, i.e. operator equation (5.8) has a
unique solution. �

The solution of operator equation (5.8) can be found by the method of successive
approximations, i.e. nth approximation of the solution is found by the formula

pn(t)=G
[
pn−1(t)

]
, n= 1,2,3, . . . ,

where p0(t) is an arbitary element of the space H(0, T ), and we have the estimate

∥
∥p(t)− pn(t)

∥
∥≤ γ n

1 − γ
∥
∥G
[
p0(t)

]− p0(t)
∥
∥
H
, (5.14)
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where 0 < γ < 1 is the construction constant. The exact solution can be found as
the limit of the approximate solutions, i.e.

p(t)= lim
n→∞pn(t).

Substituting this solution in (5.6) we find the required optimal control

u0(t)= ϕ[t, p(t), β]. (5.15)

The optimal process v0(t, x), i.e. the solution of boundary value problem (2.1)–(2.5)
corresponding to the optimal control u0(t), according to (2.6) and (2.7) we find from
the formula

v0(t, x)=
∞∑

n=1

(

λ

∫ T

0
Rn(t, s, λ)an(s)ds − an(t)

)

zn(x)

=
∞∑

n=1

[

ψn

(

e−λ2
nt + λ

∫ T

0
Rn(t, s, λ)e

−λ2
ns

)

ds

+
∫ T

0
e−λ2

n(t−τ)gn(τ )f
[
τ,u0(τ )

]
dτ

+ λ
∫ T

0
Rn(t, s, λ)

∫ s

0
e−λ2

n(s−η)gn(η)f
[
η,u0(η)

]
dηds

]

zn(x). (5.16)

The minimum value of the functional (3.2) is calculated by the formula

J
[
u0(t)

]=
∫ 1

0

[
v0(T , x)− ξ(x)]2dx + β

∫ T

0
M
[
t, u0(t)

]
dt. (5.17)

The found triple (u0(t), v0(t, x), J [u0(t)]) is a solution of the nonlinear optimiza-
tion problem.

6 An Approximate Solution of the Optimization Problem

In practice, it is not always possible to find the exact solution of (5.8), i.e. the limit
function p(t). Therefore, in most of the cases only approximate solutions pk(t) of
(5.8) are looked for, where the number k is determined by the inequality

∥
∥p(t)− pk(t)

∥
∥
H

≤ γ k

1 − γ
∥
∥G
[
p0(t)

]− p0(t)
∥
∥
H
< ε (6.1)

for given ε > 0. By substituting the approximate solution pk(t) in (5.6) we find the
kth approximation of optimal control

uk(t)= ϕ
[
t, pk(t), β

]
. (6.2)
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Lemma 6.1 Let the function ϕ[t, ϑ(t), β] satisfy the Lipschitz condition with re-
spect to the functional variable ϑ(t), i.e.

∥
∥ϕ
[
t, ϑ1(t), β

]− ϕ[t, ϑ2(t), β
]∥
∥
H

≤ ϕ0(β)
∥
∥
(
ϑ1(t)− ϑ2(t)

∥
∥
)

H
,

ϕ0(β) > 0. (6.3)

Then the kth approximate controls converge to the optimal control u0(t) in the norm
of the Hilbert space H(Q) as k→ ∞.

Proof Lemma’s assertion follows from the inequality
∥
∥u0(t)− uk(t)

∥
∥
H

= ∥∥ϕ[t, p0(t), β
]− ϕ[t, pk(t), β

]∥
∥
H

≤ ϕ0(β)
∥
∥p0(t)− pk(t)

∥
∥
H

≤ ϕ0(β)
γ k

1 − γ
∥
∥G
[
p0(t)

]− p0(t)
∥
∥
H

−−−→
k→∞ 0. (6.4)

�

Lemma 6.2 Let the function f [t, u(t)] satisfy the Lipschitz condition with respect
to the functional variable u(t), i.e.

∥
∥f
[
t, u1(t)

]− f [t, u2(t)
]∥
∥
H

≤ f0
∥
∥u1(t)− u2(t)

∥
∥
H

(6.5)

and we have (6.3). Then m,kth approximations of the solution vmk (t, x) of boundary
value problem (2.1)–(2.3) converge to the exact solution v(t, x) in the norm of the
Hilbert space H(Q) as m,k→ ∞.

Proof Approximations of the optimal process v0(t, x) are determined by two in-
dices k and m and have the form

vmk (t, x)=
∞∑

n=1

{

ψn

(

e−λ2
nt + λ

∫ T

0
Rmn (t, s, λ)e

−λ2
nsds

)

+
∫ t

0
e−λ2

n(t−τ)gn(τ )f
[
τ,uk(τ )

]
dτ

+ λ
∫ T

0
gn(τ)

∫ T

0
Rmn (t, s, λ)e

−λ2
n(s−τ)dsf

[
τ,uk(τ )

]
dτ

}

zn(x). (6.6)

Since

v0(t, x)− vmk (t, x)

=
∞∑

n=1

{

ψnλ

∫ T

0

[
Rn(t, s, λ)−Rmn (t, s, λ)

]
e−λ2

ns

}

ds
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+
∫ T

0
e−λ2

n(t−τ)gn(τ )
[
f
(
τ,u0(τ )

)− f (τ,uk(τ )
)]
dτ

+ λ
∫ T

0
gn(τ)

∫ T

τ

[
Rn(t, s, λ)−Rmn (t, s, λ)

]
e−λ2

n(s−τ)dsf
[
τ,u0(τ )

]
dτ

+ λ
∫ T

0
gn(τ)

∫ T

τ

Rmn (t, s, λ)e
−λ2

n(s−τ)ds

× [f (τ,u0(τ )
)− f (τ,uk(τ )

)]
dτzn(x),

by calculations, used to prove the convergence of the approximate solutions of
boundary value problem (2.1)–(2.3), we get the relation

∥
∥v0(t, x)− vmk (t, x)

∥
∥2
H

≤ C1(λ)

(

|λ|
√
K0T

2λ2
1

)2m

+C2(λ)

(
γ k

1 − γ
)2

−−−−−→
m,k→∞ 0,

where

C1(λ) =
(∥
∥ψ(x)

∥
∥2
H

+ ∥∥f [t, u(t)]∥∥2
H

· ∥∥g(t, x)∥∥2
H

)λ2K0T

4

(

1 − 1

ln |λ|
√
K0T

2λ2
1

)

,

C2(λ) = 4

(

1 + λ2K0

2λ2
1(

√

2λ2
1 − |λ|√K0T )2

)

× T ∥∥g(t, x)∥∥2
H
f 2

0 ϕ
2
0(β)
∥
∥G
[
p0(t)

]− p0(t)
∥
∥2
H
,

by which assertion of the lemma follows. �

Lemma 6.3 The m,kth approximations Jm[uk(t)] of the minimum value of the
functional J [u0(t)] converges to the exact value as m,k→ ∞.

Proof Since

J
[
u0(t)

] =
∫

Q

[
v0(T , x)− ξ(x)]2dx + β

∫ T

0
M
[
t, u0(t)

]
dt,

Jm
[
uk(t)

] =
∫

Q

[
vmk (T , x)− ξ(x)

]2
dx + β

∫ T

0
M
[
t, uk(t)

]
dt,

it is not difficult to obtain the inequality
∣
∣J
[
u0(t)

]− Jm
[
uk(t)

]∣
∣

=
∫

Q

{[
v0(T , x)− ξ(x)]2 − [vmk (T , x)− ξ(x)

]2}
dx

+ 2β
∫ T

0

(
M
[
t, u0(t)

]−M[t, uk(t)
])
dt



820 A. Kerimbekov

≤ ∥∥v0(T , x)+ vmk (T , x)− 2ξ(x)
∥
∥
H

∥
∥v0(T , x)− vmk (T , x)

∥
∥
H

+ 2β
√
T
∥
∥M
[
t, u0(t)

]−M[t, uk(t)
]∥
∥
H

≤ ∥∥v0(T , x)+ vmk (T , x)− 2ξ(x)
∥
∥
H

∥
∥v0(T , x)− vmk (T , x)

∥
∥
H

+ 2β
√
Tm0

∥
∥u0(t)− uk(t)

∥
∥
H
.

By Lemmas 6.1 and 6.2, and in view of the fact that

u0(t) ∈H(0, T ), v(T , x) ∈H(0,1),
ξ(x) ∈H(0,1), f

[
t, u(t)

] ∈H(0, T ),
we obtain the relation

∣
∣J
[
u0(t)

]− Jm
[
uk(t)

]∣
∣ ≤ C0(λ)

[

C1(λ)

(

|λ|
√
K0T

2λ2
1

)2m

+C2(λ)

(
γ k

1 − γ
)2]1/2

+ 2β
√
T ϕ0(β)

∥
∥G
[
p0(t)

]− p0(t)
∥
∥
H

γ k

1 − γ −−−−−→
m,k→∞ 0,

where

C0(λ)≥
∥
∥v0(T , x)+ vkm(T , x)− 2ξ(x)

∥
∥
H
,

by which the statement of the lemma follows. �

Thus, by Lemmas 6.1–6.3 it is proved that the approximate solutions (uk(t),
vkm(t, x), J [uk(t)]) of the problem of the nonlinear optimization converge to the
exact solution (u0(t), v0(t, x), J [u0(t)]) with respect to control, optimal process
and functional.

7 Conclusion

The obtained results are theoretical and can be used to develop methods for studying
optimal control of systems with nonlinear by distributed parameter and constructive
methods for solving them. They can be applied to solving applied problems.
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Abstract The aim of this work is to establish exact null-controllability conditions
for a linear evolution equation in the class of smooth controls. Applications to the
controllability of system consisting of two serially connected abstract control sys-
tems are considered.

Keywords Controllability by smooth controls · Interconnected evolution
equations · Strongly minimal families
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1 Introduction and Problem Statement

Let X be a separable Hilbert space, and let A be an infinitesimal generator of a
strongly continuous semigroup S(t) in X of the class C0 [5].

Consider the control evolution equation [5] with scalar control1

ẋ(t)=Ax(t)+ bv(t), x(0)= x0, (1.1)

where x(t), x0, b ∈X,v(t) ∈ R.

2 Preliminaries

We assume that the operator A has the following properties.

1. The operatorA has the purely point spectrums σ with no finite limit points. Since
we use scalar controls we assume the geometrical multiplicity2 of eigenvalues of
the operator A to be equal to 1.

1Scalar controls will be considered only for the sake of the simplicity.
2The geometric multiplicity is the number of Jordan blocks corresponding to λj ∈ σ1. Throughout
in the paper it is equal to 1.
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2. The sequence of all eigenvectors of the operators A produces a Riesz basis in
their linear span.

Let the eigenvalues λj ∈ σ , j = 1,2, . . . , be enumerated in the order of non-
decreasing absolute values, let αj be the algebraic multiplicities of λj ∈ σ corre-
spondingly, let ϕjk , j ∈ N, k = 1,2, . . . , αj be the generalized eigenvectors of the
operator A,Aϕjαj = λjϕjαj , j ∈ N, and let ψjk , j ∈ N, k = 1,2, . . . , αj , be the
generalized eigenvectors of the adjoint operator A∗,A∗ψjαj = λ̄jψjαj , j ∈ N, cho-
sen such that (ϕsαs−l+1,ψjk)= δsj δlk , s, j ∈N, l = 1, . . . , αs , k = 1, . . . , αj .

We use the following notations:3 x(t, x0, v(·)) is a mild solution of (1.1) with
initial condition x(0) = x0, generated by the control v(t), xjk(t) = (x(t),ψjk),
x0
jk = (x0,ψjk), bjk = (b,ψjk), j ∈N, k = 1,2, . . . , αj ,

gjk(−t)= e−λj t
αj−k∑

l=0

bjk+l
(−t)l
l! , t ∈ [0, t1], j ∈ N, k = 1,2, . . . , αj . (2.1)

For the simplicity of the exposition we assume below that all the eigenvalues of
the operatorA are simple. In this case the eigenvector of the operatorA, correspond-
ing to the eigenvalue λj , can be denoted by ψj , bj = (b,ψj ), j = 1,2, . . . , and
the family of generalized exponents (2.1) can be written by exponents {gj (−t) =
bj e

−λj t , j = 1,2, . . .}. If 0 ∈ σ , then according to our assumption λ0 = 0 is a sim-
ple eigenvalue, and σ = {λj , j = 0,1,2, . . . , }. Otherwise σ = {λj , j = 1,2, . . .}.
In both cases λj �= 0, j = 1,2, . . . , and {gj (−t)= bj e−λj t , j = 0,1,2, . . .}.

The following property of sequences {xj ∈ X,j = 1,2, . . . } is very significant
throughout in this paper.

Definition 2.1 The sequence {xj ∈X,j = 1,2, . . . } is said to be strongly minimal,
if there exists a positive number γ > 0 such that γ

∑n
k=1 |ck|2 ≤ ‖∑n

k=1 ckxk‖2,
n= 1,2, . . . , where γ = limn→∞ min c1,..,cn:∑n

k=1 |ck |2=1
‖∑n

k=1 ckxk‖2.

3 Controllability of (1.1) by Smooth Controls

Various types of controllability by square integrable and pointwise controls, in-
vestigated by the method of moments, and solvability conditions for the moments
problem, are widely investigated in the literature (see, for example, the books of
[1, 8] and references therein). Below exact null-controllability conditions for (1.1)
in the class of smooth controls are presented. These results are also obtained by the
method of moments.

3If 0 ∈ σ , we denote λ0 = 0 and we will use j ∈ 0 ∪N.
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Denote: α = (α0, α1, . . . , αm−1), β = (β0, β1, . . . , βm−1) ∈R
m, m ∈ N,

Hmαβ [0, t1] =
⎧
⎨

⎩

v(k)(·) ∈ C(m−k−1)[0, t1], k = 0,1, . . . ,m− 2,m≥ 2;
v(m−1)(·) ∈AC[0, t1], v(m)(·) ∈ L2[0, t1],

v(k)(0)= ak, v(k)(t1)= βk, k = 0,1, . . . ,m− 1.

⎫
⎬

⎭
.

Definition 3.1 Equation (1.1) is said to be exact null-controllable on [0, t1] by m-
smooth controls v(·) ∈Hma0[0, t1], if for any x0 ∈X and α ∈ R

m there exists a con-
trol v(·) ∈Hmα0[0, t1], such that x(t1, x0, v(·))= 0.

Theorem 3.2 Equation (1.1) is exact null-controllable on [0, t1] bym-smooth con-
trols v(·) ∈Hma0[0, t1], if and only if either 0 /∈ σ or 0 ∈ σ and b0 �= 0, and the family

{

1, t, . . . , tm−1,
bj

λmj
e−λ1j t , j = 1,2, . . .

}

(3.1)

us strongly minimal.

The theorem is proved by reducing the original system to the composite sys-
tem with respect to the pair (x(t),w(t)), where x(t) is a solution of equation
w(t) = (v(t), v′(t), . . . , v(m−1)(t)). Then eigenvalues and eigenvectors of the ob-
tained system are investigated. The proof is finished by using solvability conditions
for moments problem [3, 9], which are exactly equivalent to the strong minimality
of the family (3.1) of generalized exponentials.

4 Applications. Controllability Conditions of Interconnected
Equations by Distributed Controls

The results obtained in the previous sections may be applied to the controllability of
interconnected systems.

Let X1,X2 be separable Hilbert spaces. Consider the control evolution equation
[5] with scalar control

ẋ1(t)=A1x1(t)+ b1v(t), x1(0)= x0
1 , (4.1)

v(t)= (c, x2(t)
)
, 0 ≤ t <+∞, (4.2)

where x1(t) is a mild solution of (4.1) with initial condition x1(0)= x0
1 , and x2(t)

is a mild solution of the another control equation of the form

ẋ2(t)=A2x2(t)+ b2u(t), 0 ≤ t <+∞, x2(0)= x0
2 . (4.3)

Here x1(t), x0
1 , b1 ∈X1, where X1 is the state space of (4.1), v(t) ∈ R, x2(t), x

0
2 , c,

b2 ∈X2, where X2 is the state space of (4.3), u(t) ∈ R, and the linear operators A1
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and A2 generate strongly continuous C0-semigroups S1(t) in X1 and S2(t) in X2
correspondingly [5].

Equation (4.1) is governed by control u(t) of (4.3) via the output (4.2) of (4.3).

Definition 4.1 Interconnected system (4.1)–(4.3) is said to be exact null-controlla-
ble on [0, t1] if for any x0

1 ∈X1 there exists a scalar control u(·) ∈ L2[0, t1], such that
a mild solution x1(t, x

0
1 , v(·)) of (1.1) with a control v(t) defined by (4.2) satisfies

the condition x1(t, x
0
1 , v(·))= 0.

We know nothing about differential properties of a generalized solution x2(t),
generated by control u(·) ∈ L2[0, t1], but in accordance with the definition of a gen-
eralized solution of (4.3) the function v(t)= (c, x2(t)) defined by (4.2) is absolutely
continuous for any c ∈ D(A∗

2) [2]. In order to keep the control object in the equi-
librium state, we will turn off the control v(t) at the end of the control process, i.e.
v(t)≡ 0, t ≥ t1.

The equation

v(t)− (c, x0
2

)= (c, x2(t)
)=
∫ t

0

(
c, S2(t − τ)b2

)
u(τ)dτ (4.4)

is the Volterra integral equation of the first kind with the kernel K(t, τ ) =
(c, S2(t − τ)b2). So the exact controllability conditions of interconnected system
(4.1)–(4.3) is obtained by joining of exact null controllability conditions established
in Theorem 3.2 for m = 1 and the solvability conditions of Volterra integral equa-
tion (4.4) of the first kind with absolutely continuous function v(·) in the space of
square integrable controls u(·).

4.1 Regular Case

Theorem 4.2 If

• the family of exponents {1, bj
λj
e−λ1j t , j = 1,2, . . .} is strongly minimal,

• c ∈D(A∗
2) and (c, b2) �= 0,

then interconnected equation (4.1)–(4.3) is exact null-controllable on [0, t1].

4.2 Singular Case

If (c, b2)= 0, then it turns out that the proof of theorem can be used, if everywhere
in the proof to replace the vector c ∈D(A∗

2) by the vector A∗
2c ∈D(A∗

2), provided
that the function v(t) is continuously differentiable, v̇(·) is absolutely continuous
and v̈(·) ∈ L2[0, t1]. So the exact controllability conditions of interconnected system
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(4.1)–(4.3) is obtained by joining of exact null controllability conditions established
in Theorem 3.2 for m = 2 and the solvability conditions of Volterra integral equa-
tion v̇(t)= ∫ t0 (c,A2S2(t− τ)b2)u(τ )dτ of the first kind with absolutely continuous
function v̇(t) in the space of square integrable controls u(·).

Theorem 4.3 If

• the family of exponents {1, t, b1j

λ2
j

e−λ1j t , j = 1,2, . . .} is strongly minimal,

• c ∈D(A∗2

2 ), (c, b2)= 0 and (A∗
2c, b2) �= 0,

then interconnected equation (4.1)–(4.3) is exact null-controllable on [0, t1].

Remark 4.4 The same approach can be used, if c ∈ D(A∗m
2 ), (A

∗k
2 c, b2) = 0, k =

0,1, . . . ,m− 2, (A∗m−1

2 c, b2) �= 0 for some m ∈N, m≥ 2.

4.3 Strong Minimality of Real Exponentials

A direct proof of the strong minimality for a given sequence of exponents some-
times can be tough. Below we present two lemmas which substantially facilitate the
establishment of the strong minimality for real exponential families.

Lemma 4.5 If (i) 0 < μ1 < μ2 < · · · , (ii) inf{μn − μn−1} > 0, n = 1,2, . . . ,
(iii) the series

∑∞
n=1

1
μn

converges, (iv) βn �= 0, n = 1,2, . . . , and the Dirichlet

series
∑∞
n=1

e−μnα
βn

converges for some α > 0, then the family of real exponentials

{βneμnt , n= 1,2, . . . , t ∈ [0, t1],∀t1 > 0} is strongly minimal.

Lemma 4.6 If conditions of Lemma 4.5 hold, then the sequence {1, βneμnt , n =
1,2, . . . , t ∈ [0, t1],∀t1 > 0} is strongly minimal.

The proofs of both lemmas are based on results of [4] and [7].

5 Examples. Exact Null Controllability of Interconnected Heat
Equation and Wave Equation by Distributed Control

Let H 2[0,π], H 1
0 [0,π] be Sobolev spaces (see [6] for definitions of the spaces

Hm[a, b], Hm0 [a, b], a, b ∈R).
We consider the heat equation with distributed control

y′
t = y′′

xx + b1(x)v(t), 0 ≤ t ≤ t1, 0 ≤ x ≤ π, (5.1)

y(0, t)= y(π, t)= 0, 0 ≤ t ≤ t1, (5.2)

y(x,0)= ϕ(x), 0 ≤ x ≤ π, (5.3)
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governed by a control u(·) of the wave equation

z′′t t − z′′xx = b2(x)u(t), 0 ≤ t ≤ t1, 0 ≤ x ≤ π, (5.4)

z(0, t)= z(π, t)= 0, 0 ≤ t ≤ t1, (5.5)

z(x,0)=ψ0(x), z′t (x,0)=ψ1(x), 0 ≤ x ≤ π, (5.6)

via the observation

v(t)=
∫ π

0

(
c′1(x)z′x(x, t)+ c2(x)z

′
t (x, t)

)
dx,

0 ≤ t ≤ t1π, c2(·) ∈ L2[0,π] (5.7)

of wave equation (5.4)–(5.6), where c(·)= (c1(·), c2(·)) ∈H 1
0 [0,π] ×L2[0,π] and

ϕ,ψ0,ψ1, b1, b2 ∈ L2[0,π].

5.1 Controllability Conditions

Denote b1n = ∫ π0 b1(x) sinnx, n= 1,2, . . . .

Theorem 5.1 If the Dirichlet series
∑∞
n=1

n2

b1n
e−n2α converges for some α > 0,

then (5.1)–(5.3) is exact null-controllable on [0, t1], ∀t1 > 0, by smooth controls.

Theorem 5.2 If

1. the Dirichlet series
∑∞
n=1

n2

b1n
e−n2α converges for some α > 0,

2. b2(·), c2(·) ∈ L2[0,π],
3.
∫ π

0 c2(x)b2(x)dx �= 0,

then system equation (5.1)–(5.3), (5.4)–(5.6), interconnected by (5.7) is exact null-
controllable on [0, t1], ∀t1 > 0.

For example, conditions of Theorem 5.2 hold true for b1(x) = b2(x) = x,
c2(x)= 1, x ∈ [0,π].

6 Conclusion

Exact null-controllability conditions for abstract control equation (1.1) in the class
of smooth controls is established.

One of applications of these results is the exact null-controllability conditions
for two interconnected abstract control equations (4.1)–(4.3) governed by a scalar
distributed control u(t) of (4.3).
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Of course, these results can be extended for series of a number interconnected
equations, governed by a control of the last one.

The mutual independence of two exact null-controllability conditions for inter-
connected systems allow us to use the abstract approach developed in the paper
for investigation of various control problems for interconnected systems contained
equations of a different nature. For example, (4.1) may be a parabolic control equa-
tion, governed by distributed control, and (4.3) may be a linear differential control
system with delays. The singular case does not seem to be essential (in our opinion),
because there are a lot of practical situations, for which (1.1) and (4.3) are given, and
need to decide, how to connect them. It means, that if the case (c, b2) = 0 occurs,
one can always choose other vector c, slightly different from the first one, such that
(c, b2) �= 0.

The exact null-controllability for interconnected heat-wave equations is consid-
ered as illustrative example only.

The unifying abstract approach for the controllability problem of abstract evolu-
tion equations by smooth boundary controls will be considered later.
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On the Sum of Contractive Type of Mappings I:
Maps on the Same Class

J.R. Morales and E.M. Rojas

Abstract In this paper, we will show that under some conditions the sum of two
mappings belonging to a contractive class of maps is a mapping on the same class
(but with different contractive parameters).

Keywords Banach space · Fixed point · Contractive mapping
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1 Motivation and Preliminaries

Many real world applications are modeled by equations whose corresponding op-
erators can be decompose as the sum of two or more well known operators. For
instance, many concrete problems have recently appeared in mathematical physics
such as boundary-transmission problems for the Helmholtz equation which arises
within the context of the analysis of problems of wave diffraction by wedges, that
can be reduced to equations characterized by Wiener–Hopf plus Hankel operators
[3–6, 12]. This is also the case of some problems in mechanics and control the-
ory, electro-magnetic fluid dynamic and reformulation of boundary value problems
with a nonlinear boundary condition which are modeled by Volterra–Fredholm–
Hammerstein integral equations [1, 2] and neural networks and spread of diseases
studied by integro-differential equations [16, 21].

On the other hand, the metric theory of fixed points is a very important tool in
the study of solvability of equations, giving conditions under which maps have solu-
tions. However, despite that if we consider equations whose related operators have
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well-developed fixed point’s existence conditions, e.g. Volterra or Fredholm second
kind integral operators and, in general, mapping of contractive type, the conditions
for the existence and uniqueness of fixed points for linear combinations of these op-
erators is not clear (and therefore the solvability conditions of the associated equa-
tion).

Thus, this paper is devoted to study conditions under which the sum of two map-
pings with fixed point also has a fixed point. For this aim, we will consider some
classical classes of contractive type mappings, for which we will prove that under
some conditions the sum of two mappings on each one of these classes belongs to
the same class but with different contractive parameters. To attain our goals, we are
going to assume that a Diaz–Metcalf type inequality is hold.

Proposition 1.1 (Diaz and Metcalf, 1968, [10]) If F : X −→ R is a linear func-
tional of a unit norm defined on the normed linear space X endowed with the norm
‖ · ‖ and the vectors x1, . . . , xn satisfy the condition

0 ≤ r ≤ F(xi) i ∈ {1, . . . , n}
then

r

n∑

i=1

‖xi‖ ≤
∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥
,

where equality holds if and only if both

F

(
n∑

i=1

xi

)

= r
n∑

i=1

‖xi‖ and F

(
n∑

i=1

xi

)

=
∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥
.

In this paper we are going to consider mappings satisfying the next classical
result.

Theorem 1.2 Let (M,d) be a complete metric space and T :M −→M a map.
Then T has a fixed point inM if it satisfies any of the following conditions:

BC(α) (Banach, 1922, see [15]) T is an α-contraction or Banach contraction, this
is:

d(T x,T y)≤ αd(x, y) ∀x, y ∈M, 0 ≤ α < 1.

KA(α) (Kannan, 1969, 1971, [17, 18]) T satisfies: there is α ∈ [0, 1
2 ) such that

d(T x,T y)≤ α(d(x,T x)+ d(y,T y)) ∀x, y ∈M.

CH(α) (Chatterge, 1972, [7]) T satisfies the following condition: there is α ∈ [0, 1
2 )

such that

d(T x,T y)≤ α(d(x,T y)+ d(y,T x)) ∀x, y ∈M.
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RE(a1,a2,a3) (Reich, 1971, [24, 25]) T satisfies:

d(T x,T y)≤ a1d(x, y)+ a2d(x,T x)+ a3d(y,T y),

for all x, y ∈M , with 0 ≤ a1 + a2 + a3 < 1.
RH(a1,a2,a3) (B.E. Rhoades, 1977, [26] or see [19]) T satisfies:

d(T x,T y)≤ a1d(x, y)+ a2d(x,T y)+ a3d(y,T x),

for all x, y ∈M , 0 ≤ a1 + a2 + a3 < 1.
HR(a1,a2,a3,a4,a5) (Hardy and Rogers, 1973, [14] or see [13, 20] for instance)

∀x, y ∈M , T satisfies: there are ai ≥ 0 such that A=∑5
i=1 ai < 1 and

d(T x,T y)≤ a1d(x, y)+a2d(x,T x)+a3d(y,T y)+a4d(x,T y)+a5d(y,T x).

D(a,b) (L. Nova, 1986, [23] or see [8, 9] for instance) K ⊂ M closed and
T : K −→ K an arbitrary operator that satisfies the following condition, for
a, b ≥ 0 and any x, y ∈K

d(T x,T y)≤ ad(x, y)+ b[d(x,T x)+ d(y,T y)].

We shall say T belong or is of class BC(α) (respectively KA(α), CH(α),
RE(a1, a2, a3), RH(a1, a2, a3), HR(a1, a2, a3, a4, a5), D(a,b)) when T satisfies
the conditionBC(α) (respectivelyKA(α),CH(α),RE(a1, a2, a3),RH(a1, a2, a3),
HR(a1, a2, a3, a4, a5), D(a,b)) where α indicates the contraction’s constant (the
same indicate the parameters in each of the remainder classes).

Examples showing that the above conditions are independent among each other
we can be found in [22]. Also, in [22] the following result was proved.

Theorem 1.3 Let X be a strictly convex Banach space, and let S,T : BX −→ BX ,
where BX is the open unit ball of X. If the following conditions hold

(i) S,T ∈D(a,b).
(ii) x − T x = r(x − Sx) for any scalar r and every x ∈ BX .

Then S + T ∈D(a,b) for a + b sufficiently small.

In the next section we will show analogous results for the classes of mappings
consider in the theorem above.

2 Main Results

As was established in the introduction, our principal objective is the existence of a
fixed point for the map resulting of the sum of two contractive type of mappings.
For this reason, we are going to consider the contractive parameters on each one of
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the classes considered sufficiently small such that the uniqueness of the fixed point
can be guarantee for the mappings on each class (Theorem 1.2).

Let (X,‖ · ‖) be a Banach space and T ,S :X −→X be two mappings. To estab-
lish our results we are going to assume that the Diaz–Metcalf’s Theorem is satisfies
for (I − T )x and (I − S)x for each x ∈X. I.e.,

{
0< r ≤ F(x − T x)
0< r ≤ F(x − Sx), for all x ∈X. (1)

We would like to point out that the case when 0 = r = F(T x − x) = F(Sx − x)
corresponds to the case when x in the common fixed point for the pair (T ,S) which
or is unique nor exists. This fact justify that in our results we consider only the case
r > 0.

First, notice that the closeness under sum for Banach contraction mappings can
be assure without any extra assumption.

Proposition 2.1 Let X be a Banach space, and T ,S : X −→ X be of classes
BC(α1), and BC(α2) respectively, then T + S ∈ BC(α1 + α2).

Proof Let x, y ∈X and T ,S :X −→X

∥
∥(T + S)x − (T + S)y∥∥ ≤ ‖T x − Ty‖ + ‖Sx − Sy‖

≤ α1‖x − y‖ + α2‖x − y‖ = (α1 + α2)‖x − y‖. �

Theorem 2.2 Let X be a Banach space, and let T ,S : BX(r) −→ BX(r), where
BX(r) is the ball of X with radius r ∈ (0,1]. If the following conditions hold

(i) T ∈KA(α1), S ∈KA(α2).
(ii) For each x ∈X, the Diaz–Metcalf’s condition (1) holds.

Then S + T ∈KA(μ∗), where μ∗ = max(α1/r,α2/r).

Proof Let x, y ∈ BX(r)
∥
∥(T + S)x − (T + S)y∥∥

≤ ‖T x − Ty‖ + ‖Sx − Sy‖
≤ α1

(‖x − T x‖ + ‖y − Ty‖)+ α2
(‖x − Sx‖ + ‖y − Sy‖)

≤ μ(‖x − T x‖ + ‖y − Ty‖ + ‖x − Sx‖ + ‖y − Sy‖)

where μ= max(α1, α2).
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Condition (ii) implies that ‖x− T x‖ + ‖x− Sx‖ ≤ 1
r
‖2x− (T + S)x‖, thus, we

have

∥
∥(T + S)x − (T + S)y∥∥≤ μ

r

[∥
∥2x − (T + S)x∥∥+ ∥∥2y − (T + S)y∥∥]

≤ μ

r

[‖x‖ + ∥∥x − (T + S)x∥∥+ ‖y‖ + ∥∥y − (T + S)y∥∥]

≤ μ

r

[∥
∥x − (T + S)x∥∥+ ∥∥y − (T + S)y∥∥]+ 2μ. (2)

Since we are considering contractive parameters μ sufficiently small, in particular
we choose it such that the next inequality is fulfilled

∥
∥(T + S)x − (T + S)y∥∥≤ μ∗[∥∥x − (T + S)x∥∥+ ∥∥y − (T + S)y∥∥]. (3)

Hence T + S ∈KA(μ∗), where μ∗ = max(α1/r,α2/r). �

Remark 1 We would like to point out that the value ofμ∗ is not unique. For instance,
if we assume

μ≤ inf
x,y∈BX(r)

{
1

2βr

[∥
∥x − (T + S)x∥∥+ ∥∥y − (T + S)y∥∥]

}

,

where β > 0, then from the inequality (2), the inequality (3) holds for μ∗ =
1
r
(μ+ 1

β
).

In a similar way, different assumptions on the contractive parameters of each
one of the classes of mappings in consideration here, gives different values for the
contractive parameters on the resulting class.

Theorem 2.3 Let X be a Banach space, and let T ,S : BX(r) −→ BX(r). If the
following conditions hold

(i) T ∈ CH(α1), S ∈ CH(α2).
(ii) For each x ∈X, the Diaz–Metcalf’s condition (1) holds.

Then S + T ∈ CH(μ∗), where μ∗ = max(α1/r,α2/r).

Proof Let x, y ∈ BX(r)
∥
∥(T + S)x − (T + S)y∥∥

≤ ‖T x − Ty‖ + ‖Sx − Sy‖
≤ α1

(‖x − Ty‖ + ‖y − T x‖)+ α2
(‖x − Sy‖ + ‖y − Sx‖)

≤ μ(‖x − Ty‖ + ‖y − T x‖ + ‖x − Sy‖ + ‖y − Sx‖)

where μ= max(α1, α2).
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The Diaz–Metcalf’s condition (1) implies that ‖x − Ty‖ + ‖x − Sy‖ ≤ 1
r
‖2x −

(T + S)y‖. Therefore

∥
∥(T + S)x − (T + S)y∥∥≤ μ

r

[∥
∥2x − (T + S)y∥∥+ ∥∥2y − (T + S)x∥∥]

≤ μ

r

[‖x‖ + ∥∥x − (T + S)y∥∥+ ‖y‖ + ∥∥y − (T + S)x∥∥]

≤ μ

r

[∥
∥x − (T + S)y∥∥+ ∥∥y − (T + S)x∥∥]+ 2μ.

As before, from here we get
∥
∥(T + S)x − (T + S)y∥∥≤ μ∗[∥∥x − (T + S)y∥∥+ ∥∥y − (T + S)x∥∥].

Hence T + S ∈KA(μ∗), where μ∗ = max(α1/r,α2/r). �

Theorem 2.4 Let X be a Banach space, and let T ,S : BX(r) −→ BX(r). If the
following conditions hold

(i) T ∈RE(a1, a2, a3), S ∈RE(b1, b2, b3).
(ii) For each x ∈X, the Diaz–Metcalf’s condition (1) holds.

Then S + T ∈ RE(μ1,μ
∗
2,μ

∗
3), where μ1 = a1 + b1, μ∗

2 = max(a2/r, b2/r), μ∗
3 =

max(a3/r, b3/r).

Proof Let x, y ∈ BX(r)
∥
∥(T + S)x − (T + S)y∥∥≤ ‖T x − Ty‖ + ‖Sx − Sy‖

≤ a1‖x − y‖ + a2‖x − T x‖ + a3‖y − Ty‖
+ b1|x − y‖ + b2‖x − Sx‖ + b3‖y − Sy‖

= μ1‖x − y‖ + a2‖x − T x‖ + a3‖y − Ty‖
+ b2‖x − Sx‖ + b3‖y − Sy‖

≤ μ1‖x − y‖ +μ2
[‖x − T x‖ + ‖x − Sx‖]

+μ3
[‖y − Ty‖ + ‖y − Sy‖],

where μ1 = a1 + a2, μ2 = max(a2, b2) and μ3 = max(a3, b3). Again condition (ii)
implies that

‖x − T x‖ + ‖x − Sx‖ ≤ 1

r

∥
∥2x − (T + S)x∥∥,

then we obtain
∥
∥(T + S)x − (T + S)y∥∥≤ μ1‖x − y‖ + μ2

r

∥
∥2x − (T + S)x∥∥

+ μ3

r

∥
∥2y − (T + S)y∥∥
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≤ μ1‖x − y‖ + μ2

r

[‖x‖ + ∥∥x − (T + S)x∥∥]

+ μ3

r

[‖y‖ + ∥∥y − (T + S)y∥∥]

≤ μ1‖x − y‖ + μ2

r

[∥
∥x − (T + S)x∥∥]

+ μ3

r

[∥
∥y − (T + S)y∥∥]+μ2 +μ3.

Since, μ2 +μ3 can be as small as we please, we have

∥
∥(T + S)x − (T + S)y∥∥≤ μ1‖x − y‖ +μ∗

2

∥
∥x − (T + S)x∥∥+μ∗

3

∥
∥y − (T + S)y∥∥.

So, T + S ∈ RE(μ1,μ
∗
2,μ

∗
3), where μ1 = a1 + b1, μ∗

2 = max(a2/r, b2/r), μ∗
3 =

max(a3/r, b3/r). �

Theorem 2.5 Let X be a Banach space, and let T ,S : BX(r) −→ BX(r). If the
following conditions hold

(i) T ∈RH(a1, a2, a3), S ∈RH(b1, b2, b3).
(ii) For each x ∈X, the Diaz–Metcalf’s condition (1) holds.

Then S + T ∈ RH(μ1,μ
∗
2,μ

∗
3), where μ1 = a1 + b1, μ∗

2 = max(a2/r, b2/r), μ∗
3 =

max(a3/r, b3/r).

Proof This theorem can be proved as the previous theorem. In this case the Diaz–
Metcalf’s condition (1) guarantee that the following inequality holds

‖x − Ty‖ + ‖x − Sy‖ ≤ 1

r

∥
∥2x − (T + S)y∥∥.

From here the proof runs analogously to Theorem 2.4. �

Theorem 2.6 Let X be a Banach space, and let T ,S : BX(r) −→ BX(r). If the
following conditions hold

(i) T ∈HR(a1, a2, a3, a4, a5), S ∈HR(b1, b2, b3, b4, b5).
(ii) For each x ∈X, the Diaz–Metcalf’s condition (1) holds.

Then S+T ∈HR(μ1,μ
∗
2,μ

∗
3,μ

∗
4,μ

∗
5), where μ1 = a1 +b1, μ∗

i = max(ai/r, bi/r),
i = 2, . . . ,5.

Proof Let x, y ∈ BX(r)
∥
∥(T + S)x − (T + S)y∥∥

≤ ‖T x − Ty‖ + ‖Sx − Sy‖
≤ a1‖x − y‖ + a2‖x − T x‖ + a3‖y − Ty‖ + a4‖x − Ty‖
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+ a5‖y − T x‖ + b1|x − y‖ + b2‖x − Sx‖ + b3‖y − Sy‖
+ b4‖x − Sy‖ + b5‖y − Sx‖

= μ1‖x − y‖ + a2‖x − T x‖ + a3‖y − Ty‖ + a4‖x − Ty‖
+ a5‖y − T x‖ + b2‖x − Sx‖ + b3‖y − Sy‖
+ b4‖x − Sy‖ + b5‖y − Sx‖,

where μ1 = a1 + b1, therefore we have

∥
∥(T + S)x − (T + S)y∥∥

≤ μ1‖x − y‖ +μ2
[‖x − T x‖ + ‖x − Sx‖]

+μ3
[‖y − Ty‖ + ‖y − Sy‖]+μ4

[‖x − Ty‖‖x − Sy‖]

+μ5
[‖y − T x‖ + ‖y − Sx‖]

here, μi = max(ai, bi), i = 2, . . . ,5. From The Diaz–Metcalf’s condition (1) we
conclude that

‖x − Ty‖ + ‖x − Sy‖ ≤ 1

r

∥
∥2x − (T + S)y∥∥.

So, we obtain the following estimates

∥
∥(T + S)x − (T + S)y∥∥

≤ μ1‖x − y‖ + μ2

r

∥
∥2x − (T + S)x∥∥+ μ3

r

∥
∥2y − (T + S)y∥∥

+ μ4

r

∥
∥2x − (T + S)y∥∥+ μ5

r

∥
∥2y − (T + S)x∥∥.

Let μ∗
i = μi

r
, i = 2, . . . ,5. Then

∥
∥(T + S)x − (T + S)y∥∥≤ μ1‖x − y‖ +μ∗

2

[‖x‖ + ∥∥x − (T + S)x∥∥]

+μ∗
3

[‖y‖ + ∥∥y − (T + S)y∥∥]

+μ∗
4

[‖x‖ + ∥∥x − (T + S)y∥∥]

+μ∗
5

[‖y‖ + ∥∥y − (T + S)x∥∥]

≤ μ1‖x − y‖ +μ∗
2

∥
∥x − (T + S)x∥∥+μ∗

3

∥
∥y − (T + S)y∥∥

+μ∗
4

∥
∥x − (T + S)y∥∥+μ∗

5

∥
∥y − (T + S)x∥∥

+μ2 +μ3 +μ4 +μ5.
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Again,
∑5
i=2μi , can be as small as we please and just like Theorems before, we

have
∥
∥(T + S)x − (T + S)y∥∥≤ μ1‖x − y‖ +μ∗

2

∥
∥x − (T + S)x∥∥+μ∗

3

∥
∥y − (T + S)y∥∥

+μ∗
4

∥
∥x − (T + S)y∥∥+μ∗

5

∥
∥y − (T + S)x∥∥.

Thus we conclude that, T + S ∈ HR(μ1,μ
∗
2,μ

∗
3,μ

∗
4,μ

∗
5), where μ1 = a1 + b1,

μ∗
i = max(ai/r, bi/r), i = 2, . . . ,5. �

Theorem 2.7 Let X be a Banach space, and let S,T : BX(r) −→ BX(r). If the
following conditions hold

(i) S,T ∈D(a,b).
(ii) For each x ∈X, the Diaz–Metcalf’s condition (1) holds.

Then S + T ∈D(a,b/r) for ar + b sufficiently small.

Proof Let x, y ∈ BX(r)
‖T x − Ty‖ ≤ a‖x − y‖ + b[‖x − T x‖ + ‖y − Ty‖]

‖Sx − Sy‖ ≤ a‖x − y‖ + b[‖x − Sx‖ + ‖y − Sy‖].
Then,

‖T x − Ty‖ + ‖Sx − Sy‖ ≤ 2a‖x − y‖
+ b[‖x − T x‖ + ‖y − Ty‖ + ‖x − Sx‖ + ‖y − Sy‖]

∥
∥(S + T )x − (S + T )y∥∥≤ 2a‖x − y‖

+ b[‖x − T x‖ + ‖y − Ty‖ + ‖x − Sx‖ + ‖y − Sy‖].

The condition (ii) gives us the estimate ‖x−T x‖+‖x−Sx‖ ≤ 1
r
‖2x− (T +S)x‖.

From which we obtain
∥
∥(S + T )x − (S + T )y∥∥

≤ 2a‖x − y‖ + b

r

[‖2x − T x − Sx‖ + ‖2y − Ty − Sy‖]

= 2a‖x − y‖ + b

r

[∥
∥2x − (T + S)x∥∥+ ∥∥2y − (S + T )y∥∥]

≤ 2a‖x − y‖ + b

r

[∥
∥x − (S + T )x∥∥+ ‖x‖ + ∥∥y − (S + T )y∥∥+ ‖y‖]

= 2a‖x − y‖ + b

r

[∥
∥x − (S + T )x∥∥+ ∥∥y − (S + T )y∥∥]+ b

r

(‖x‖ + ‖y‖)

≤ a‖x − y‖ + b

r

[∥
∥x − (S + T )x∥∥+ ∥∥y − (S + T )y∥∥]+ 2(ar + b).
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Since ar + b can be as small as we please, we have

∥
∥(S + T )x − (S + T )y∥∥≤ a‖x − y‖ + b

r

[∥
∥x − (S + T )x∥∥+ ∥∥y − (S + T )y∥∥].

Hence S + T ∈D(a,b/r). �

3 Remarks

Notice that in our results we consider the radius r of the ball BX(r) the same that the
Diaz–Metcalf parameter in (1). However we can relax such dependence by consider-
ing the unit ball on X, BX(1), and taking the contractive parameters on each class of
mappings sufficiently smaller than the Diaz–Metcalf parameter r . For instance, if in
Theorem 2.2 we assume that the contractive parameters satisfy 0 ≤ α1, α2 > r , then
the conclusion is maintained and the proof runs analogously with obvious changes.

Also, we would like to point out that there are several inequalities of the type
Diaz–Metcalf that can replace the condition (ii) in our results. These alternatives
include the consideration of more that one linear functional, as well as the explicit
construction of such functional for the case Hilbert spaces, see [11].

If we consider mappings acting into BX(1), where X is a strictly convex Banach
space, as in [22], we can replace the Diaz–Metcalf condition (condition (ii) in our
results) for the more suitable one:

T x − x = k(x − Sx) for any scalar k and every x ∈ BX(1)
and the conclusions of our results are still valid.

Even more, if in Theorems 2.2, 2.3, 2.4, 2.5 and 2.6 we define the mappings onX
instead of BX(1), then we have a similar result of the theorems above, only for the
points of the form x = λy, x, y ∈ X and any scalar λ. On the other words, similar
conclusions are hold for x out of BX(1) and for y any scalar multiple of x.

Let A and B be classes of mappings. By A + B we will mean the sum of the
mappings T ∈ A and S ∈ B , and A + B = C will mean that the mapping T + S
belongs to the class C.

Proposition 3.1 Let X be a strictly convex Banach space, and T ,S : X −→ X,
suppose that x−Ty = r(x−Sy) for any scalar r and every x, y ∈X. If in addition,
x = λy. Then

(i) KA(α)+KA(β)=D(μ,μ), μ= max(α,β).
(ii) CH(α)+CH(β)=RH(μ,μ,μ), μ= max(α,β).

(iii) RE(a1, a2, a3)+RE(b1, b2, b3)=RE(μ4,μ2,μ3), μ4 = μ1 + max(μ2,μ3),
μ1 = a1 + b1, μ2 = max(a2, b2), μ3 = max(a3, b3).

(iv) RH(a1, a2, a3) + RH(b1, b2, b3) = RH(μ4,μ2,μ3), μ1 = a1 + b1, μ2 =
max(a2, b2), μ3 = max(a3, b3), μ4 = μ1 + max(μ2,μ3).
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(v) HR(a1, a2, a3, a4, a5) + HR(b1, b2, b3, b4, b5) = HR(μ,μ2,μ3,μ4,μ5),
μ1 = a1 +b1,μi = max(ai, bi), i = 2, . . . ,5,μ= μ1 +max(μ2 +μ4,μ3 +μ5).

Proof The proof follows from Theorems 2.2, 2.3, 2.4, 2.5 and 2.6. Using the hy-
pothesis x = λy, we can guarantee that ‖x‖+‖y‖ = ‖x− y‖, the rest is repeat each
proof of Theorems mentioned above. �
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On (α,ψ) Contractions of Integral Type
on Generalized Metric Spaces

Erdal Karapınar

Abstract In this paper, we investigate the existence and uniqueness of fixed points
of (α,ψ)-contractive mappings of integral type in complete generalized metric
spaces, introduced by Branciari. Our results generalize and improve several results
in literature.

Keywords Generalized metric spaces · α-ψ contractions of integral type

Mathematics Subject Classification (2010) Primary 46T99 · Secondary 47H10 ·
54H25

1 Introduction and Preliminaries

The notion of a generalized metric, also known as rectangular metric, was intro-
duced by Branciari [1] via replacing the triangle inequality with a quadrilateral in-
equality. It is evident that triangle inequality is more strong then quadrilateral in-
equality, and hence each metric space is generalized metric space, but, the converse
of this statement is false [1]. In this initial paper, Branciari [1] successfully defined
an open ball and hence a topology on generalized metric space. As it is expected, the
topology of the generalized metric space could not provide some basic topological
properties, such as,

(P1) generalized metric needs not to be continuous,
(P2) a convergent sequence in generalized metric space needs not to be Cauchy,
(P3) generalized metric space needs not to be Hausdorff, and hence the uniqueness

of limits can not be guaranteed.

Dedicated to Prof. V.P. Zakharyuta.

E. Karapınar (B)
Department of Mathematics, Atilim University, 06836 Incek, Ankara, Turkey
e-mail: erdalkarapinar@yahoo.com

E. Karapınar e-mail: ekarapinar@atilim.edu.tr

© Springer International Publishing Switzerland 2015
V.V. Mityushev, M.V. Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
Trends in Mathematics, DOI 10.1007/978-3-319-12577-0_91

843

mailto:erdalkarapinar@yahoo.com
mailto:ekarapinar@atilim.edu.tr
http://dx.doi.org/10.1007/978-3-319-12577-0_91


844 E. Karapınar

Despite the weakness of the topology of generalized metric space, Branciari [1]
proved the analog of well-known Banach Contraction Principle without any fur-
ther conditions. On the other hand, the proofs of Branciari [1] had gaps which was
pointed first by Samet [2]. Later, it was understood that these gaps can be annihilated
in some recent works see e.g. [3–5]. Another interesting result, the characterization
of Caristi theorem in the context of generalized metric spaces, was obtained [4].
Getting fundamental theorems of fixed point theory in the setting of generalized
metric space without additional conditions has attracted attention of several authors
(see e.g. [2–19]).

In this paper, we investigate the existence and uniqueness of fixed point of α-ψ
contraction mappings of integral type, in the setting of generalized metric spaces by
regarding the problems (P1)–(P3) above.

We, first, recall some basic definitions, notations and fundamental results that
will be used in the sequel.

Let Ψ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following
conditions:

(i) ψ is nondecreasing;
(ii) there exist k0 ∈ N and a ∈ (0,1) and a convergent series of nonnegative terms
∑∞
k=1 vk such that

ψk+1(t)≤ aψk(t)+ vk,
for k ≥ k0 and any t ∈ R

+.

These functions are called as either Bianchini–Grandolfi gauge functions (see
e.g. [20–22]) or (c)-comparison functions (see e.g. [23]).

Lemma 1 (See e.g. [23]) If ψ ∈ Ψ , then the following hold:

(i) (ψn(t))n∈N converges to 0 as n→ ∞ for all t ∈ R
+;

(ii) ψ(t) < t , for any t ∈R
+;

(iii) ψ is continuous at 0;
(iv) the series

∑∞
k=1ψ

k(t) converges for any t ∈ R
+.

In what follows, we recollect the notion of generalized metric spaces.

Definition 2 ([1]) Let X be a nonempty set and let d : X × X −→ [0,∞] satisfy
the following conditions for all x, y ∈ X and all distinct u,v ∈ X each of which is
different from x and y

(GMS1) d(x, y)= 0 if and only if x = y
(GMS2) d(x, y)= d(y, x)
(GMS3) d(x, y)≤ d(x,u)+ d(u, v)+ d(v, y).

(1.1)

Then the map d is called generalized metric and abbreviated as GMS. Here, the pair
(X,d) is called generalized metric space.
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In the above definition, if d satisfies only (GMS1) and (GMS2), then it is called
semimetric (see e.g. [6]).

The basic topological properties, such as concepts of convergence, Cauchy se-
quence and completeness in a GMS are defined below.

Definition 3

1. A sequence {xn} in a GMS (X,d) is GMS convergent to a limit x if and only if
d(xn, x)→ 0 as n→ ∞.

2. A sequence {xn} in a GMS (X,d) is GMS Cauchy if and only if for every ε > 0
there exists positive integer N(ε) such that d(xn, xm) < ε for all n >m>N(ε).

3. A GMS (X,d) is called complete if every GMS Cauchy sequence in X is GMS
convergent.

Wilson [6] the following assumption to weakened the triangle inequality by pre-
serving the benefits.

(W) For each pair of (distinct) points u,v there is a number ru,v > 0 such that for
every z ∈X,

ru,v < d(u, z)+ d(z, v).

Proposition 4 ([4]) In a semimetric space, the assumption (W) is equivalent to the
assertion that limits are unique.

Proposition 5 ([4]) Suppose that {xn} is a Cauchy sequence in a GMS (X,d) with
limn→∞ d(xn,u)= 0, where u ∈X. Then limn→∞ d(xn, z)= d(u, z) for all z ∈X.
In particular, the sequence {xn} does not converge to z if z �= u.

Definition 6 ([24]) For a nonempty set X, let T :X→X and α :X×X→ [0,∞)
be mappings. We say that T is α-admissible if for all x, y ∈X, we have

α(x, y)≥ 1 =⇒ α(T x,T y)≥ 1. (1.2)

We refer e.g. [24–29] for interesting examples of such mappings.
In what follows, the notion of α-ψ contractive mapping is defined.

Definition 7 ([24]) Let (X,d) be a metric space and T : X→ X be a given map-
ping. We say that T is an α-ψ contractive mapping if there exist two functions
α :X×X→ [0,∞) and ψ ∈ Ψ such that

α(x, y)d(T x,T y)≤ψ(d(x, y)), for all x, y ∈X. (1.3)

Note that, any contractive mapping, that is, a mapping satisfying Banach contrac-
tion, is an α-ψ contractive mapping with α(x, y)= 1 for all x, y ∈X and ψ(t)= kt ,
k ∈ (0,1). The notion of transitivity of mapping α : X ×X→ [0,+∞) was intro-
duced in [30, 31] as follows:
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Definition 8 (See [30, 31]) Let N ∈N. We say that α is N -transitive (on X) if

x0, x1, . . . , xN+1 ∈X : α(xi, xi+1)≥ 1,

for all i ∈ {0,1, . . . ,N} ⇒ α(x0, xN+1)≥ 1.
In particular, we say that α is transitive if it is 1-transitive, i.e.,

x, y, z ∈X : α(x, y)≥ 1 and α(y, z)≥ 1 ⇒ α(x, z)≥ 1.

2 Main Results

We shall present our main results in this section. First, we define Φ = {ϕ : ϕ :
R

+ →R} such that ϕ is nonnegative, Lebesgue integrable, and satisfy
∫ ε

0
ϕ(t)dt > 0 for each ε > 0. (2.1)

In what follows that we introduce the notion of α-ψ -contractive type mappings
of integral type.

Definition 9 Let (X,d) be a generalized metric space and T : X→ X be a given
mapping. We say that T is an α-ψ -contractive mapping of integral type if there exist
two functions α :X×X→ [0,+∞) and ψ ∈ Ψ such that for each x, y ∈X

α(x, y)

∫ d(T x,T y)

0
ϕ(t)dt ≤ψ

(∫ d(x,y)

0
ϕ(t)dt

)

, (2.2)

where ϕ ∈Φ .

Now, we state the following fixed point theorem.

Theorem 10 Let (X,d) be a complete generalized metric space and T : X→ X

be an α-ψ contractive mapping of integral type. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈X such that α(x0, T x0)≥ 1 and α(x0, T

2x0)≥ 1;
(iii) T is continuous.

Then there exists a u ∈X such that T u= u.

Proof Let x0 ∈X be an arbitrary point such that α(x0, T x0)≥ 1 and α(x0, T x0)≥ 1.
Notice that the existence of such a point guaranteed from assumption (ii) of theo-
rem. We construct an iterative sequence {xn} in X by xn+1 = T xn = T n+1x0 for
all n ≥ 0. If we have xn0 = xn0+1 for some n0, then u = xn0 is a fixed point of T .
Hence, for the rest of the proof, we presume that

xn �= xn+1 for all n. (2.3)
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Since T is α-admissible, we have

α(x0, x1)= α(x0, T x0)≥ 1 ⇒ α(T x0, T x1)= α(x1, x2)≥ 1.

Recursively, we obtain that

α(xn, xn+1)≥ 1, for all n= 0,1, . . . . (2.4)

Analogously, we derive that

α(x0, x2)= α
(
x0, T

2x0
)≥ 1 ⇒ α(T x0, T x2)= α(x1, x3)≥ 1.

Iteratively, we get that

α(xn, xn+2)≥ 1, for all n= 0,1, . . . . (2.5)

Regarding (2.2) and (2.4), we deduce that
∫ d(xn+1,xn)

0
ϕ(t)dt =

∫ d(T xn,T xn−1)

0
ϕ(t)dt

≤ α(xn, xn−1)

∫ d(T xn,T xn−1)

0
ϕ(t)dt

≤ ψ
(∫ d(xn,xn−1)

0
ϕ(t)dt

)

, (2.6)

for all n≥ 1.
Inductively, we find that

∫ d(xn+1,xn)

0
ϕ(t)dt ≤ψn

(∫ d(x1,x0)

0
ϕ(t)dt

)

, for all n≥ 1. (2.7)

It is clear from Lemma 1 that

lim
n→∞

∫ d(xn+1,xn)

0
ϕ(t)dt = 0 (2.8)

and hence

lim
n→∞d(xn+1, xn)= 0. (2.9)

On account of (2.2) and (2.5), we get that
∫ d(xn+2,xn)

0
ϕ(t)dt =

∫ d(T xn+1,T xn−1)

0
ϕ(t)dt

≤ α(xn+1, xn−1)

∫ d(T xn+1,T xn−1)

0
ϕ(t)dt

≤ ψ
(∫ d(xn+1,xn−1)

0
ϕ(t)dt

)

, (2.10)
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for all n≥ 1. By elementary calculations, the inequality (2.10) yields that

∫ d(xn+2,xn)

0
ϕ(t)dt ≤ψn

(∫ d(x2,x0)

0
ϕ(t)dt

)

, for all n≥ 1. (2.11)

Again by Lemma 1, we find that

lim
n→∞

∫ d(xn+2,xn)

0
ϕ(t)dt = 0, and consequently lim

n→∞d(xn+2, xn)= 0. (2.12)

Let xn = xm for some m,n ∈N with m �= n. Without loss of generality, assume that
m> n. Thus, xm = T m−n(T nx0)= T nx0 = xn. Consider now,

∫ d(xn+1,xn)

0
ϕ(t)dt =

∫ d(T xn,xn)

0
ϕ(t)dt

=
∫ d(T xm,T xm−1)

0
ϕ(t)dt

≤ α(xm,xm−1)

∫ d(T xm,T xm−1)

0
ϕ(t)dt

≤ ψm−n
(∫ d(xn+1,xn)

0
ϕ(t)dt

)

. (2.13)

Due to (ii) of Lemma 1, the inequality (2.13) turns into

∫ d(xn+1,xn)

0
ϕ(t)dt ≤ψm−n

(∫ d(xn+1,xn)

0
ϕ(t)dt

)

<

∫ d(xn+1,xn)

0
ϕ(t)dt, (2.14)

which is a contradiction. Now we shall show that the sequence {xn} is Cauchy. First
observe that

∫ d(xn+1,xn)

d(xn,xn−1)

ϕ(t)dt ≤
∫ d(xn+1,xn)

0
(2.15)

since {d(xn+1, xn)} is a non-negative sequence. For this aim, it is sufficient to inves-
tigate the following cases. Case (I): Suppose that k > 2 and k is odd. Let k = 2m+1,
k ≥ 1. Then, by using the quadrilateral inequality together with (2.11) and (2.15),
we find

∫ d(xn,xn+k)

0
ϕ(t)dt =

∫ d(xn,xn+2m+1)

0
ϕ(t)dt

≤
∫ d(xn,xn+1)+d(xn+1,xn+2)+···+d(xn+2m,xn+2m+1)

0
ϕ(t)dt

≤
∫ d(xn,xn+1)

0
ϕ(t)dt +

∫ d(xn+1,xn+2)

d(xn,xn+1)

ϕ(t)dt
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+ · · · +
∫ d(xn+2m,xn+2m+1)

d(xn+2m−1,xn+2m)

ϕ(t)dt

≤
∫ d(xn,xn+1)

0
ϕ(t)dt +

∫ d(xn+1,xn+2)

0
ϕ(t)dt

+ · · · +
∫ d(xn+2m,xn+2m+1)

0
ϕ(t)dt

≤
n+k−1∑

p=n
ψn
(∫ d(x1,x0)

0
ϕ(t)dt

)

≤
+∞∑

p=n
ψn
(∫ d(x1,x0)

0
ϕ(t)dt

)

→ 0 as n→ ∞. (2.16)

Case (II): Let k > 2 and k is even. Let k = 2m, k ≥ 1. Then, by applying the quadri-
lateral inequality together with (2.11), (2.12) and (2.15), we get

∫ d(xn,xn+k)

0
ϕ(t)dt =

∫ d(xn,xn+2m)

0
ϕ(t)dt

≤
∫ d(xn,xn+2)

0
ϕ(t)dt +

∫ d(xn+2,xn+3)

0
ϕ(t)dt

+ · · · +
∫ d(xn+2m−1,xn+2m)

0
ϕ(t)dt

≤
n+k−1∑

p=n
ψn
(∫ d(x2,x0)

0
ϕ(t)dt

)

≤
+∞∑

p=n
ψn
(∫ d(x2,x0)

0
ϕ(t)dt

)

→ 0 as n→ ∞. (2.17)

By (2.16) and (2.16) we observe that {xn} is a Cauchy sequence in (X,d). Since
(X,d) is complete, there exists u ∈X such that

lim
n→∞d(xn,u)= 0. (2.18)

Since T is continuous, we obtain from (2.18) that

lim
n→∞d(xn+1, T u)= lim

n→∞d(T xn,T u)= 0. (2.19)

From (2.18) and (2.19) we get immediately that limn→∞ T xnx0 = limn→∞ T xn =
T u. Taking Proposition 5 into account, we conclude that u is a fixed point of T , that
is, T u= u. �



850 E. Karapınar

Theorem 11 Let (X,d) be a complete generalized metric space and T : X→ X

be an α-ψ contractive mapping of integral type. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈X such that α(x0, T x0)≥ 1 and α(x0, T

2x0)≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1)≥ 1 for all n and xn → x ∈X

as n→ ∞, then α(xn, x)≥ 1 for all n.

Then there exists a u ∈X such that T u= u.

Proof Following the proof of Theorem 10, we know that the sequence {xn} defined
by xn+1 = T xn for all n ≥ 0, converges for some u ∈ X. From (2.4) and condi-
tion (iii), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), u) ≥ 1 for
all k. Applying (2.2), for all k, we get that

∫ d(xn(k)+1,T u)

0
ϕ(t)dt =

∫ d(T xn(k),T u)

0
ϕ(t)dt

≤ α(xn(k), u)
∫ d(T xn(k),T u)

0
ϕ(t)dt

≤ ψ
(∫ d(xn(k),u)

0
ϕ(t)dt

)

. (2.20)

Letting k→ ∞ in the above equality, we find that

lim
k→∞

∫ d(xn(k)+1,T u)

0
ϕ(t)dt = 0 and lim

k→∞d(xn(k)+1, T u)= 0, (2.21)

and hence limn→∞ T nx0 = limn→∞ T xn = T u. By Proposition 5, we obtain that u
is a fixed point of T , that is, T u= u. �

Corollary 12 Let (X,d) be a complete generalized metric space and T : X→ X

be an α-ψ contractive mapping of integral type. Suppose that

(i) T is α-admissible;
(ii) there exists x0 ∈X such that α(x0, T x0)≥ 1 and α is transitive;

(iii) either,

(a) T is continuous.
(b) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn →

x ∈X as n→ ∞, then α(xn, x)≥ 1 for all n.

Then there exists a u ∈X such that T u= u.

Proof By assumption of (ii) theorem, there exists x0 ∈X such that α(x0, T x0)≥ 1.
Thus, we get α(T x0, T

2x0) ≥ 1, by (i). Owing to the fact that α is transitive, we
conclude that α(x0, T

2x0) ≥ 1. Consequently, all conditions of Theorem 10 (and,
respectively Theorem 11) are satisfied. �
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For the uniqueness, we need an additional condition:

(U) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of
fixed points of T .

Theorem 13 Adding condition (U) to the hypotheses of Theorem 10 (resp. Theo-
rem 11 and Theorem 12), we obtain that u is the unique fixed point of T .

Proof In what follows we shall show that u is a unique fixed point of T . We shall
use the reductio ad absurdum. Let v be another fixed point of T with v �= u. It is
evident that α(u, v)= α(T u,T v).

Now, due to (2.2), we have

∫ d(u,v)

0
ϕ(t)dt ≤ α(u, v)

∫ d(u,v)

0
ϕ(t)dt

≤ α(T u,T v)
∫ d(T u,T v)

0
ϕ(t)dt

≤ ψ
(∫ d(u,v)

0
ϕ(t)dt

)

<

∫ d(u,v)

0
ϕ(t)dt (2.22)

which is a contradiction. Hence, u= v. �

As an alternative condition for the uniqueness of a fixed point of a α-ψ contrac-
tive mapping, we shall consider the following hypothesis.

(H) For all x, y ∈ Fix(T ), there exists z ∈X such that α(x, z)≥ 1 and α(y, z)≥ 1.

Theorem 14 Adding conditions (H) and (W) to the hypotheses of Theorem 10
(resp. Theorem 11), we obtain that u is the unique fixed point of T .

Proof Suppose that v is another fixed point of T . From (H), there exists z ∈X such
that

α(u, z)≥ 1 and α(v, z)≥ 1. (2.23)

Since T is α-admissible, from (2.23), we have

α
(
u,T nz

)≥ 1 and α
(
v,T nz

)≥ 1, for all n. (2.24)

Define the sequence {zn} in X by zn+1 = T zn for all n≥ 0 and z0 = z. From (2.24),
for all n, we have

∫ d(u,zn+1)

0
ϕ(t)dt =

∫ d(T u,T zn)

0
ϕ(t)dt ≤ α(u, zn)

∫ d(T u,T zn)

0
ϕ(t)dt

≤ ψ
(∫ d(u,zn)

0
ϕ(t)dt

)

(2.25)
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Iteratively, by using the inequality (2.25), we get that

∫ d(u,zn+1)

0
ϕ(t)dt ≤ψn

(∫ d(u,z0)

0
ϕ(t)dt

)

, (2.26)

for all n. Letting n→ ∞ in the above inequality, we obtain

lim
n→∞d(zn,u)= 0. (2.27)

Similarly, one can show that

lim
n→∞d(zn, v)= 0. (2.28)

Regarding (W) together with (2.27) and (2.28), it follows that u = v. Thus we
proved that u is the unique fixed point of T . �

Corollary 15 Adding condition (H ) to the hypotheses of Theorem 10 (resp. Theo-
rem 11 and Theorem 12) and assuming that (X,d) is Hausdorff, we obtain that u is
the unique fixed point of T .

The proof is clear and hence it is omitted. Indeed, Hausdorffness implies the
uniqueness of the limit. Thus, the theorem above yields the conclusions.

3 Consequences

In this section, we shall state some existing results in the literature that can be in-
ferred from the main results.

Corollary 16 Let (X,d) be a complete generalized metric space and T : X→ X

be a given mapping. Suppose that there exists a function ψ ∈ Ψ such that

∫ d(T x,T y)

0
ϕ(t)dt ≤ψ

(∫ d(x,y)

0
ϕ(t)

)

dt,

for all x, y ∈X. Then T has a unique fixed point.

Proof Let α : X × X → [0,∞) be the mapping defined by α(x, y) = 1, for all
x, y ∈X. Then T is an α-ψ -contraction mapping. It is evident that all conditions of
Theorem 10 are satisfied. Hence, T has a unique fixed point. �

The following fixed point theorems follow immediately from Corollary 16 by
taking ψ(t)= λt , where λ ∈ (0,1).
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Corollary 17 (Samet [32]) Let (X,d) be a complete generalized metric space and
T :X→X be a given mapping. Suppose that there exists a constant λ ∈ (0,1) such
that

∫ d(T x,T y)

0
ϕ(t))dt ≤ λ

∫ d(x,y)

0
ϕ(t))dt,

for all x, y ∈X. Then T has a unique fixed point.

Corollary 18 Let (X,d) be a complete generalized metric space and T : X→ X

be a given mapping. Suppose that there exists a function ψ ∈ Ψ such that

d(T x,T y)≤ψ(d(x, y)),
for all x, y ∈X. Then T has a unique fixed point.

Proof Let α : X × X → [0,∞) be the mapping defined by α(x, y) = 1, for all
x, y ∈X. Then T is an α-ψ -contraction mapping. It is evident that all conditions of
Theorem 10 are satisfied. Hence, T has a unique fixed point. �

The following fixed point theorems follow immediately from Corollary 18 by
taking ψ(t)= λt , where λ ∈ (0,1).

Corollary 19 (Branciari [1]) Let (X,d) be a complete generalized metric space
and T :X→X be a given mapping. Suppose that there exists a constant λ ∈ (0,1)
such that

d(T x,T y)≤ λd(x, y),
for all x, y ∈X. Then T has a unique fixed point.

Remark 20 These result improve the results of Samet [32] and Branciari [1]. Notice
that in the literature, to prove fixed point theorem in generalized metric spaces,
some superfluous conditions have been assumed such as Hausdorffness, continuity
and so on. By following the interesting results [3, 4] we prove our results without
any further condition.
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Infinite Dimensional Stochastic Cauchy
Problems in Ito and Differential Forms:
Comparison of Solutions

Irina V. Melnikova and Olga Starkova

Abstract We consider three types of solutions to the infinite dimensional stochastic
Cauchy problem X′(t)= AX(t)+ BW(t), t ≥ 0, X(0)= ζ , with A being the gen-
erator of a regularized semigroup in a Hilbert space and a white noise W in another
Hilbert space: weak, generalized in t , and generalized in a random variable. It is
proved coincidence of the solutions under the conditions they exist.
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Models of various evolution processes considered with regard for random perturba-
tions lead to the Cauchy problem for equations with an inhomogeneity in the form of
white noise in infinite dimensional spaces. Among them, important for applications
is the first-order Cauchy problem:

X′(t)=AX(t)+BW(t), t ≥ 0, X(0)= ζ ; B ∈ L(H,H), (0.1)

with A, the generator of a generally regularized semigroup in a Hilbert space H and
a white noise process W = {W(t), t ≥ 0} in another separable Hilbert space H. Due
to the singularities of W which is not a process in the usual sense, the problem (0.1),
similarly to the finite dimensional case, is considered in the integral form:

X(t)= ζ +
∫ t

0
AX(s)ds +

∫ t

0
BdW(t), t ≥ 0, (0.2)
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where
∫ t

0 BdW(t) is the Ito integral with respect to an H-valued Wiener process
{W(t), t ≥ 0}, a “primitive” of W (see, e.g. [2, 3, 5, 7, 8]). The problem (0.2) is
usually written in the short form: dX(t)=AX(t)dt +BdW(t), t ≥ 0, X(0)= ζ .

In addition to (0.2), we study the problem in the differential form (0.1) in spaces
of distributions using the known technique of abstract distribution L. Sczwartz and
a new one generalizing the white noise theory to the infinite dimensional case (see,
e.g. [1, 6, 9] and in the finite dimensional case [5, 10]).

The present paper is devoted to the important problem naturally arising in this
situation—to comparison of solutions for the Cauchy problem considered in dif-
ferent forms, more specifically, to comparison of weak solutions, generalized in
t-variable solutions, and generalized in ω-variable solutions. We show that under
conditions when each of them exists, these solutions, obtained in absolutely differ-
ent techniques, coincide.

1 Solutions of the Stochastic Cauchy Problem in Integral
and Differential Forms

Let (Ω,F ,P) be a probability space with normal filtration {Ft , t ≥ 0}; H and H be
separable Hilbert spaces.

At the beginning we consider the abstract stochastic Cauchy problem in the form
(0.2), where ζ is an F0-measurable H -valued random variable, A is the generator
of a semigroup S = {S(t), t ≥ 0}, generally regularized, B ∈ L(H,H), and W =
{W(t), t ≥ 0},W(t)=W(ω, t),ω ∈Ω , is an H-valued Q-Wiener process.

AnH -valued processX = {X(t), t ≥ 0} is said to be a weak solution for problem
(0.2) if

∫ t
0 ‖X(s)‖Hds <∞ and for each y ∈ domA∗

〈
X(t), y

〉= 〈ζ, y〉 +
∫ t

0

〈
X(s),A∗y

〉
ds + 〈BW(t), y〉, Pa.s.

Similarly to the classical case, we look for a solution in the following form

X(t)= S(t)ζ +
∫ t

0
S(t − s)BdW(s)=: S(t)ζ +WA(t), t ≥ 0, (1.1)

where S(t) are solution operators to the corresponding homogeneous problem.
To prove the existence and uniqueness of a weak solution for the Cauchy problem

we need the stochastic convolution WA, the important component of a solution, to
be well defined. That is Ψ (s) = S(t − s)B for t ≥ 0 must satisfy the condition for
existence of the Ito integral

∫ t
0 Ψ (s)dW(s):

∫ t

0

∥
∥Ψ (s)

∥
∥2
HSds <∞, ∥

∥Ψ (s)
∥
∥2
HS :=

∞∑

j=1

∥
∥Ψ (s)Q

1
2 ej
∥
∥2 = TrΨ (s)Q

1
2Q∗ 1

2Ψ ∗(s).

(1.2)
In the case of a semigroup of class C0 the following result holds [1, 2].
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Theorem 1.1 Let A be the generator of a C0-class semigroup S and W be a
Q-Wiener process. If Ψ (s) = S(t − s)B , t ≥ 0, satisfies (1.2), then for each
F0-measurable ζ ∈ H the random process {X(t) = S(t)ζ +WA(t), t ≥ 0} exists
and is a unique weak solution.

In [1] it is shown that if A generates a K-convoluted semigroup {S(t), t ≥ 0}, a
weak K-convoluted solution for the problem (0.2) can be constructed in the form
(1.1). An H -valued process X defined by (1.1) is a weak K-convoluted solution of
(0.2) if for each y ∈ domA∗

〈
X(t), y

〉 =
〈∫ t

0
K(s)ζds, y

〉

+
〈∫ t

0
X(s)ds,A∗y

〉

+
〈∫ t

0

∫ s

0
K(s − r)BdW(r)ds, y

〉

.

In particular, X is a weak n-times integrated solution if

〈
X(t), y

〉=
〈
tn

n!ζ, y
〉

+
∫ t

0

〈
X(s),A∗y

〉
ds +

〈∫ t

0

(t − s)n−1

(n− 1)! BW(s)ds, y
〉

.

Now we consider the Cauchy problem (0.1) in spaces of abstract distributions.
Let H be a Hilbert space. By D′(H) we denote a space of H -valued distributions
over the space of L. Schwartz test functions D and by D′

0(H) the space ofH -valued
distributions with supports on [0,∞).

In the space of distributions D′(H) a Q-white noise is well defined as the gener-
alized derivative of a Q-Wiener process continued by zero for t ≤ 0:

〈ϕ,W〉 := −
∫ ∞

0
W(t)ϕ′(t)dt, ϕ ∈D, Pa.s.; W ∈D′

0

(
L2(Ω,H)

)
. (1.3)

Using [1, 3, 7], the Cauchy problem (0.1) in spaces of abstract distributions can
be written as follows:

P ∗X = δ⊗ ζ +BW, (1.4)

where P := δ′ ⊗ I − δ ⊗A ∈ D′
0(L([domA],H)) and [domA] is the domain of A

with the graph-norm ‖x‖[domA] = ‖x‖ + ‖Ax‖.
A distribution G ∈D′

0(L(H, [domA])) is called inverse with respect to convolu-
tion with P ∈ D′

0(L([domA],H)) if G ∗ P = δ⊗ I[domA], P ∗G= δ⊗ IH , where
I[domA] and IH are identity operators in [domA] and H respectively. By the use the
properties of inverse distribution G, it is proved that a unique solution of a Cauchy
problem P ∗X = δ ⊗ ζ + F with F ∈ D′

0(H) is defined as X =G ∗ δζ +G ∗ F .
It follows that if A generates a C0-class semigroup or an n-times integrated semi-
group, the solution

X =G ∗ δζ +G ∗BW, X ∈D′
0

([domA])∩D′
0

(
L2
(
Ω, [domA])) (1.5)
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exists and is a unique solution of the problem (1.4). Here we also have a stochastic
convolutionWA =G ∗BW, but now in a generalized sense.

If A is the generator a semigroup S = {S(t), t ≥ 0} of class C0, then by the
definition of a convolution in spaces of distributions and distributionG inverse to P
(in the case of C0-class semigroup G coincides with distribution S defined as a
semigroup S, extended by zero as t < 0), we get a solution of (1.4) in the form (1.5)
with G= S and W defined by (1.3).

If A generates a n-times integrated semigroup {S(t), t ≥ 0}, then we obtain the
solution in the form (1.5) with G= S(n).

For a solution of (1.4) with the generator of aK-convoluted semigroup S we need
a larger space of distributions, namely ultra-distributions, since we have to find an
operator inverse to convolution with function K , which is an infinite differentiation
operator Pult ( ddt ) defined in the spaces. In this case the solution of (1.4) is presented
as follows [1]:

〈ϕ,X〉 =
〈

P ∗
ult

(
d

dt

)

ϕ,Sζ

〉

−
∫ ∞

0
S(t)

〈

P ∗
ult

(
d

dt

)

ϕ′(t + s),BW(s)
〉

dt

=
∫ ∞

0
P ∗
ult

(
d

dt

)

ϕ(t)S(t)ζdt +
∫ ∞

0
P ∗
ult

(
d

dt

)

ϕ(t)dt

∫ t

0
S(t − s)BdW(s).

(1.6)

At last, we consider the problem (0.1) in the spaces of abstract stochastic distri-
butions (S)∗(H) and a solution generalized in random variable ω.

The series of inclusions

(S)(H)⊂ · · · ⊂ (Sp)(H)⊂ · · · ⊂ (L2)(H)⊂ · · · ⊂ (S−p)(H)⊂ · · · ⊂ (S)∗(H)
is built for a Hilbert space H (see, e.g. [1]) by analogy with the Gelfand triple
S ⊂ L2(R) ⊂ S∗ [9], where elements of the spaces (Sp)(H) and (S−p)(H) are
defined in terms of the behavior (decrease or increase, respectively) of the Fourier
coefficients with respect to the basis in (L2)(R) consisting of stochastic Hermite
polynomials defined by

hα(ω) :=
∞∏

i=1

hαi
(〈ξi,ω〉), ω ∈ S ′, α = (α1, α2, . . .) ∈ T ,

where ξi(x) = π− 1
4 ((i − 1)!)− 1

2 e− x
2 hi−1(

√
2x) are Hermite functions, hi(x) =

(−1)ie
x2
2 di

dxi
e− x2

2 are Hermite polynomials, and T is the set of all possible fi-
nite multi-indexes. These spaces contain an H-valued Q-Wiener process {W(t) :=∑
j∈N σjβj ej , t ≥ 0}:

W(t) =
∑

i,j∈N
σj

∫ t

0
ξ(s)ds(hεn(i,j)ej )

=
∞∑

n=1

σj(n)

(∫ t

0
ξi(n)(s)dsej (n)

)

hεn ∈ (L2)(H),
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as well as a Q-white noise {W(t), t ≥ 0}:

W(t)=
∑

i,j∈N
σj ξi(t)(hεn(i,j)ej )=

∑

n∈N
σj(n)Wεn(t)hεn ∈ (S)∗(H), (1.7)

where Qej = σ 2
j ej , Wεn(t)= ξi(n)(t)ej (n), n(i(n), j (n))= n, and εn := (0,0, . . . ,

1
n
,0, . . . ).

A generalized (in ω) solution of the Cauchy problem (0.1) with W(t) ∈ (S)∗(H)
is constructed in [1] as follows.

Theorem 1.2 Let A be the generator of a C0-class semigroup {S(t), t ≥ 0} in a
Hilbert spaceH , let B ∈ L(H,H) and let W be a white noise process given by (1.7).
Then

X(t)=
∑

α

Xα(t)hα ∈ (S)∗(H), t ≥ 0, (1.8)

where

Xα(t)=
{
S(t)ζεn + ∫ t0 S(t − s)BWεn(s)ds, α = εn
S(t)ζα, α �= εn,

is a unique solution of the Cauchy problem (0.1) in (S)∗(H) for any ζ =∑α ζαhα ∈
(domA).

Remark 1.3 Note, that a cylindrical Wiener process and a singular white noise are
defined in the space (S)∗(H) and Theorem 1.2 is true for the singular white noise,
but in this paper we do not consider them.

2 Connections Between Weak and Generalized in t-Variable
Solutions

In this section we prove the coincidence of solutions to the generalized Cauchy prob-
lem (1.4) with weak solutions of the Cauchy problem (0.2) in the case of C0-class,
n-times integrated and K-convoluted semigroups. In the next section we will prove
the coincidence of the obtained solution in the space (S)∗(H) with a weak solution
of the Cauchy problem (0.2).

Theorem 2.1 Let A be the generator of a C0-class semigroup {S(t), t ≥ 0} under
condition (1.2) with Ψ (s)= S(t − s)B , t ≥ 0. Then weak solution (1.1) is a solution
of the generalized Cauchy problem (1.4), whereQ-white noise W is the generalized
derivative of aQ-Wiener processW . Conversely: the generalized solution (1.5) with
G= S and W defined by (1.3) is a weak solution of the Cauchy problem (0.2).



860 I.V. Melnikova and O. Starkova

Proof Further the following equality

−
∫ ∞

0
W(t)ϕ′(t)dt =

∫ ∞

0
ϕ(t)dW(t), ϕ ∈ D, (2.1)

resulting from a generalization of the Ito formula to the infinite-dimensional case
will be important.

Now we check that X defined as weak solution X(t) = S(t)ζ +∫ t
0 S(t − s)BdW(s), t ≥ 0, extended by zero for t < 0, satisfies (1.4) for each
H -valued F0-measurable random variable ζ . For this we multiply X by a function
ϕ ∈D and integrate with respect to t from zero to infinity. From (2.1) we obtain the
following equalities:

〈ϕ,X〉 =
∫ ∞

0
ϕ(t)S(t)ζdt +

∫ ∞

0
ϕ(t)

∫ t

0
S(t − s)BdW(s)dt

= 〈ϕ,Sζ 〉 −
〈

ϕ′(t),
∫ t

0
S(t − s)BW(s)ds

〉

, a.s. in ω. (2.2)

The equalities can be written as follows:

〈ϕ,X〉 = 〈ϕ,Sζ 〉 − 〈ϕ′,S ∗BW 〉= 〈ϕ,Sζ 〉 + 〈ϕ,S ∗BW〉, (2.3)

where the (regular) distribution S ∈ D′
0(L(H, [domA])) is the semigroup S ex-

tended by zero for t < 0. The obtained equality (2.3) means that X coincides with
the generalized solution (1.5) of the problem (1.4).

Conversely, we go from bottom to top; then it follows from (2.3)–(2.2) that the
generalized solution X = Sζ + S ∗BW of (1.4) coincides with the weak solution of
(0.2) X(t), t ≥ 0, continued by zero for t < 0. �

Analyzing the structure of the solutions and the relationship between generalized
and weak solutions obtained, we see that in the case of the generator of a C0-class
semigroup the sum of two components S(t)ζ +WA(t), t ≥ 0, is a weak solution
for each H -valued F0-measurable random variable ζ ; this is due to the fact that
we do not need to apply A to S(t)ζ and WA(t), instead A∗ is applied to elements
y ∈ domA∗.

The sum X = Sζ + S ∗ BW is a generalized solution due to the equality
A〈ϕ,Sζ 〉 = −ϕ(0)ζ −∫∞

0 ϕ′(t)S(t)dt , which in the case of a C0-class semigroup is
proved to hold on the whole space H and implies that the action of A is “smoothed”
by test functions ϕ′.

It is important to note, that by the proof of the coincidence of weak and gen-
eralized in t solutions, we have actually proved the coincidence of the stochastic
convolution defined by Ito integral and the one defined in the space of abstract dis-
tributions: WA = S ∗BW.

In the case of a n-times integrated semigroup S = {S(t), t ≥ 0} we show that
a generalized solution coincides with the n-th order derivative of a weak n-times
integrated solution.
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Theorem 2.2 Let A be the generator of a n-times integrated semigroup S un-
der condition (1.2). Then the n-th order generalized derivative of X(t) = S(t)ζ +∫ t

0 S(t − s)BdW(s), weak n-times integrated solution of (0.1), is the solution
of (0.2). Conversely, a solution of the generalized problem (1.4) is the n-th derivative
of a weak n-times integrated solution.

Proof Let X(t), t ≥ 0 be a weak n-times integrated solution and X be equal to the
X(t) continued by zero as t < 0. Then

〈
ϕ,X(n)

〉 = (−1)n
[∫ ∞

0
ϕ(n)(s)S(s)ζds +

∫ ∞

0
ϕ(n)(t)dt

∫ t

0
S(t − s)BdW(s)

]

= (−1)n
[∫ ∞

0
ϕ(n)(t)S(t)ζdt −

∫ ∞

0
ϕ(n+1)(t)dt

∫ t

0
S(t − s)BW(s)ds

]

.

Hence by (2.1), the distribution X(n) is a generalized solution of (1.4) ω a.s. From the
obtained equality and the convolution properties the converse statement follows. �

The theorem for the case of K-convoluted semigroups we present without a
proof, due to the limited size of the article.

Theorem 2.3 Let A be the generator of a K-convoluted semigroup {S(t), t ≥ 0}.
Then the process {Pult ( ddt )X(t), t ≥ 0}, where X is a weak K-convoluted solution
of the problem (0.2), is a solution of the problem (1.4). Conversely, a generalized
solution of the problem (1.4) is the result of applying ultra-differential operator
Pult (

d
dt
) to a weak K-convoluted solution.

3 Connections Between Weak and Generalized in ω-Variable
Solutions

We consider the solution (1.8) obtained for the stochastic Cauchy problem in spaces
of stochastic distributions (S)∗(H) with the generator of a C0-class semigroup, a
white noise W defined by (1.7), and an initial data ζ ∈ (domA). As it follows from
Remark 1.3, solutions in the space can be constructed for the problem with a sin-
gular white noise, not only with a Q-white noise, but with irregular white noise;
nevertheless, we have a restriction on the initial data: ζ ∈ (domA).

Now we show that a generalized in ω solution coincides with a weak solution,
under the existence conditions for both of them.

Theorem 3.1 LetA be the generator of a C0-class semigroup {S(t), t ≥ 0}, Ψ (s)=
S(t − s)B satisfy (1.2), ζ ∈ (domA), and W be a Q-Wiener process. Then the gen-
eralized in ω solution (1.8) for the Cauchy problem (0.1) and a weak solution for
(0.2) coincide.
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Proof The solution obtained by (1.8) can be written in the following form: X(t)=
Sζ + ∫ t0 S(t − s)BW(s)ds, t ≥ 0, X(t) ∈ (S)∗(H), where

∫ t

0
S(t − s)BW(s)ds :=

∑

i,j∈N
σj

∫ t

0
S(t − s)Bξi(s)dsejhεn(i,j) .

Hence, in the case under consideration to prove the coincidence of the solutions
(1.8) and (1.1), is enough to show the coincidence of the integrals:

∫ t

0
S(t − s)BdW(s)=

∫ t

0
S(t − s)BWds. (3.1)

First, for W defined by (1.7) we show that the right hand integral in (3.1) belongs
to the space (L2)(H)= L2(Ω,F;H), where Ω = S ′ and F = B(S ′). For this we
check up that ‖ ∫ t0 S(t−s)BWds‖(L2)(H) <∞ for each t <∞. It follows from (1.2)
for Ψ (s)= S(t − s)B and the following equalities (where {gk} is a basis in H ):

∑

i,j∈N
σ 2
j

∥
∥
∥
∥

∫ t

0
S(t − s)Bej ξi(s)ds

∥
∥
∥
∥

2

H

=
∑

j,k∈N

∑

i∈N

(∫ t

0
ξi(s)

(
σjS(t − s)Bej , gk

)

H
ds

)2

=
∑

j,k∈N

∥
∥1[0,t]

(
σjS(t − ·)Bej , gk

)∥
∥2
L2(R)

=
∑

j,k∈N

∫ t

0

∣
∣
(
S(t − ·)BQ 1

2 , gk
)

H

∣
∣2ds =

∑

j∈N

∫ t

0

∑

k∈N

(
S(t − ·)BQ 1

2 ej , gk
)2
H
ds

=
∫ t

0

∑

j∈N

∥
∥S(t − s)BQ 1

2 ej
∥
∥2
H
ds =

∫ t

0

∥
∥S(t − s)B∥∥2

HSds.

The fact that the integrals in (3.1), being in (L2)(H) coincide, can be proved by
obtaining this equality on elementary functions and then going to the limit. Show
(3.1) on elementary operator-functions Ψm(s) = {χ[sk,sk+1)Ψmk}mk approximating
S(t − s)B:

∫ t

0
Ψ(s)Wds =

∑

i,j∈N
σj

∫ t

0
Ψm(s)ej ξi(s)dshεn(i,j)

=
∑

i,j∈N
σj

m−1∑

k=0

∫ tk

tk−1

Ψmkξi(s)dsejhεn(i,j)
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=
m−1∑

k=0

Ψnk
∑

i,j∈N
σj

∫ tk

tk−1

ξi(s)dsejhεn(i,j)

=
m−1∑

k=0

Ψmk
[
W(tk)−W(tk−1)

]=
∫ t

0
Ψn(t)dW(t).

Going to the limit as n→ ∞, we obtain (3.1). It follows that generalized in ω and
the corresponding weak solution under the existence conditions for both of them. �
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Biomechanical Model of the Human Eye
on the Base of Nonlinear Shell Theory

Vladimir Yakushev

Abstract The goal of this work is the development of a biomechanical model of the
human eye and to prove software simulation systems of measuring the intraocular
pressure (IOP) by an optical analyzer. We numerically simulate the eye deformation
when the IOP is measured using the Ocular Response Analyzer developed by the
USA company Reichert. The biomechanical model includes a cornea and a sclera,
which are considered as axisymmetrically deformable shells of revolution with fixed
boundaries; the space between these shells is filled with incompressible fluid. Non-
linear shell theory is used to describe the stressed and strained state of the cornea
and sclera. The optical system is calculated from the viewpoint of the geometrical
optics. Dependences between the pressure in the air jet and the area of the surface
reflecting the light into a photo detector for the different thickness of the cornea were
obtained. Three problems with different boundary conditions were considered. The
shapes of the regions on the cornea surface were found from which the reflected
light falls on the photo detector. First, the light is reflected from the center of the
cornea, but then, as the cornea deforms, the light is reflected from its periphery. The
numerical results make it possible to better interpret the measurement data. This
work was supported by a grant No. 13-01-00801 from the Russian Foundation for
Basic Research.

Keywords Nonlinear shell theory · Computational mathematics · Geometrical
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1 Introduction

Modeling of the cornea and the sclera is important for clinical applications and as
a tool to deepen our understanding of how an eye behaves from a point of view of
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Fig. 1 Scheme for measuring
the intraocular pressure

measuring the intraocular pressure. Some ocular instruments, such as the CORVIS
ST (Oculus, Inc.) or the ORA (Reichert, Inc.) [1] can be used to investigate biome-
chanical properties of eye and are becoming useful tools for assessing refractive
surgery qualification and outcomes. These devices use a brief and intense air pulse
to rapidly deform the eye and detect its shape during deformation. The pressure
pulse exerted on the cornea during loading is measured throughout the test at all
times.

Glaucoma, an eye disease characterised by degeneration of the optic nerve, is
often associated with increased IOP. The only effective therapy against disease pro-
gression is lowering of IOP. However, our limited understanding of outflow resis-
tance generation by the trabecular outflow pathway impedes the development of new
IOP-lowering therapies.

The outer coat (sclera and cornea) provides structural integrity and has key rela-
tionships with the systems that generate and control intraocular pressure. The latter
is a key risk factor for glaucoma and if too low also can lead to catastrophic loss of
vision.

The scheme of the device can be described as follows. A patient presses his or
her forehead to the device. A narrow beam of light is directed to the cornea center
at a certain angle using a special positioning system. The light passes through the
aperture, as a result, a part of the light flux is cut off and an illuminated area S
emerges on the cornea (Fig. 1). Then, an air jet in which the pressure increases from
zero to a certain magnitude is directed to the center of the cornea. As a result, the
cornea is deformed, and the reflected light flux changes depending on the cornea
shape. As a result of the measurements, a curve is shown on the device display that
plots the reflected light flux against the pressure in the jet. Figures 1 and 2 were
taken by the author from the Internet.

2 Basic Equations

Eye schematically depicted in Fig. 2. We assume that the cornea and the sclera are
axisymmetric about the longitudinal axis and the pressure at the center is also dis-
tributed symmetrically about this axis. Thus, we have an axisymmetric problem for
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Fig. 2 The scheme of the
cornea and the sclera

the calculation of the deformation of both shells (Fig. 3). The coordinates in the
section are denoted by the capital letters X and Z. The cornea and the sclera are
considered as elastic shells whose deformation is described by a geometrically non-
linear theory under finite displacements and rotation angles. So, we have the basic
equations of the theory of shells of revolution under the influence of an axisym-
metric load. These equations are the same for the cornea and the sclera; only their
geometric and mechanical parameters are different. For that reason, we write these
equations in the general form [2].

The shell surface can be obtained by rotating the plane curve X = X(s0),
Z = Z(s0), around the axis Z, where s0 is the arc length along the cornea surface
measured from its center (see [2]). The angle between the tangent to the surface
and the axis X is ϕ(s0). The values X(s0), Z(s0) and ϕ(s0) are obtained by solv-
ing the problem of the simultaneous deformation of the cornea and the sclera. Such
problems were studied in [2–5].

Nonlinear shell theory is used to describe the stressed and strained state of the
cornea and sclera. The spatial problem was decided by a method of finite differ-
ences. For a solution of the nonlinear problems of deformation and stability of shells
a method of additional viscosity was used [2]. It permits to build converging iterative
processes, including those near critical loads. In this case, there is no necessity to
change solution parameters and to chose specified procedures for bypassing singular
points.

As a result, a system of six partial differential equations was obtained. It has the
form of the canonical hyperbolic system (see [2])

∂2Φ

∂s0∂t
+ A

∂Φ

∂t
+ 1

τ

{
∂Φ

∂s0
+ B

}

= 0. (2.1)

The components of Φ are functions of the spatial coordinate s0 and the time t ;
they are determined by the relation

Φ = [γ, ε1, k1, ϕ,X,Z]T . (2.2)
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Fig. 3 Three problems with different boundary conditions

The matrices A and B of size 6 × 6 and 6 × 1 are functions of the components
of Φ , which, in turn, are functions of the time t and the coordinate s0.

The static problem is described by Eq. (2.1) for the zero velocities ε̇1 = ε̇2 = k̇1 =
k̇2 = γ̇ = 0. Therefore, the static problem is described by the equations in braces:

∂Φ

∂s0
+ B = 0.

Its solution is obtain from system (2.1) asymptotically when γ̇ , ε̇1, k̇1, ϕ̇, ẋ, ẏ
tend to zero.

This problem was solved using the step-by-step method. For every load value pe ,
the iterative process was carried out until stabilization, i.e., until the velocity
|∂Φ/∂t | became less than a prescribed value determining the computation error.

Since we solved the problem numerically, the shapes of the cornea and the sclera
could be defined by coordinates of some of their points. However, there is not
enough data to do so; for that reason, we assumed that their shapes were sphere
segments [2].

Three problems with different boundary conditions were considered (Fig. 3). In
the first of them, the point where the cornea and sclera meet was fixed; denote this
point by A. The lower point of the cornea can move freely. On the contrary, in
the second problem considered here, the point A can move in the vertical direction,
while the lower point is fixed. In the third problem sclera is surrounded with muscles
and fatty tissue. They are modelled by Winkler foundation.

To analyze the influence of the initial internal pressure on the location of the
curves in the dependence S–pe, calculations for eight values of pi were performed
with the cornea 0.45 mm thick (see Fig. 4). It is seen that the maximum of the de-
pendence S–pe moves to the right as pi increases. This fact can be used to interpret
the measurement results.

The dependencies between the area S (sq. mm) and the pressure in the jet pi
(mm Hg) are shown in Fig. 5. It gives a comparison of the first and second boundary
conditions. The continuous line corresponds to the second task, and dotted—the
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Fig. 4 The dependence S–pe
for the cornea 0.45 mm thick

Fig. 5 The scheme of the
cornea and the sclera

first. From these results it is visible that change of boundary conditions didn’t lead
to considerable change of the results.

The third type of boundary conditions gives the most realistic scheme of loading
of an eye at measurement of intraocular pressure. Figure 6 displays the pressure
in the air jet pi (mm Hg) against the area S (sq. mm) from which the reflected light
comes to the photodetector for various sizes of maximum shift down Zc of a point A
in millimeters. Apparently insignificant point shifts strongly influences the provision
of a maximum. In Fig. 7 figure value of a maximum S for the area and pressure pi
depending on vertical shift is shown.

The optical system is calculated from the viewpoint of the geometrical optics.
The dependences between the pressure in the air jet and the area of the surface re-
flecting the light into a photodetector are obtained. The shapes of the regions on the
cornea surface are found from which the reflected light falls on the photodetector.
First, the light is reflected from the center of the cornea, but then, as the cornea de-
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Fig. 6 The scheme of the
cornea and the sclera

Fig. 7 The scheme of the
cornea and the sclera

Fig. 8 The scheme of the
cornea and the sclera

forms, the light is reflected from its periphery (Fig. 8). Figure shows the shapes of
the regions in the central part of the cornea corresponding to the unlit part (black),
the illuminated part that reflects the light not hitting the photodetector (gray), and
the illuminated part that reflects the light hitting the photodetector (white). This is
a very important result because no experiments on investigating the shape of the
region for the reflected light were earlier carried out, while this is necessary for the
correct interpretation of measurement results.
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3 Conclusions

Knowledge on the biomechanical properties of human eye is essential in treatment
and diagnosis of ophthalmic diseases. A numerical model was proposed to simulate
the interaction between sclera and cornea. Better understanding the biomechanical
characteristics of the eye can lead to improvements in treatments of IOP.
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