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Abstract. Virtualization of the ARM architecture is becoming increas-
ingly popular in several domains. Thus security is one of the main con-
cerns in modern virtualized embedded platforms. An effective way to
enhance the security of these platforms is through a combination of vir-
tualization and Mandatory Access Control (MAC) security policies. The
aim of this paper is to discuss the performance overhead of MAC-secured
virtual machines. We compare the I/O performance of a KVM/ARM
guest running on a SELinux host with the one of a non-secured VM.
The result of the comparison is unexpected, since the performance of the
SELinux based VM is better than the non-secured VM. We present a
detailed analysis based on a modified version of SELinux running on an
ARM core, and highlight the main causes of the observed performance
improvement.

Keywords: ARM virtualization · SELinux · KVM ARM · VM secu-
rity · MAC virtual machines · Mandatory access control (MAC)

1 Introduction

The ARM architecture is expanding from embedded systems to server, automo-
tive and High Performance Computing (HPC) platforms. The use of virtualization
is rapidly increasing in these platforms to save power through consolidation, to
isolate applications and to deploy multiple operating system instances on shared
hardware resources.As the use of virtualization technology becomes commonplace
in enterprise and end-user markets e.g. Data Centers, NFV (Network Functions
Virtualization) systems,Android devices, CPS (Cyber Physical Systems) etc., new
security aspects have emerged, such as protecting virtual machines from potential
host based attacks.

A hypervisor or Virtual Machine Monitor (VMM) creates virtual instances
of the CPUs, memory and interrupts to provide an illusion of a real machine
in software. When the VMM implements full virtualization, it provides hard-
ware isolation for these resources exploiting hardware features e.g. Virtualiza-
tion Extensions, IOMMU and GIC in ARM platforms. Other resources such as
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device peripherals (network, disks etc.) or shared memory are isolated in soft-
ware by the hypervisor and virtualized through emulation or para-virtualization.
This constitutes the concept of isolation using virtualization, which is valid from
the guest point of view but not from the host perspective. Especially for a privi-
leged user in a standard Discretionary Access Control (DAC) environment, VM’s
resources are accessible without any restrictions. This means that a cloud admin-
istrator may read the disk data and sniff network traffic of its customers’ virtual
machines. Moreover, an attacker can compromise the host system (even from a
virtual environment) and perform un-authorized operations over the resources
that belong to the VMs.

Security issues that specifically affect virtual environments have been classi-
fied as: communication between VMs or between VMs and host, VM escape, VM
monitoring from the host, VM monitoring from another VM, denial of service,
guest-to-guest attacks, external modification of a VM and external modification
of the hypervisor [14]. Most of these security threats, aim to compromise isola-
tion between guests or between guest and host e.g. using the CPU cache [23] or
directly assigned devices [13] to gain privileges or access un-authorized data. To
mitigate these threats, hypervisors are provided with strong access control mech-
anisms [22] like the Mandatory Access Control (MAC) and Role Based Access
Control (RBAC) [12]. In fact, in every virtualized system such as a cloud, the
primary challenges for data security are the separation of sensitive data and
access control mechanisms [20].

This paper presents a performance overviewof theKVM/ARMVMs that lever-
age MAC policies to secure virtual resources. The Linux kernel provides different
alternative implementations of MAC security policy such as SELinux, TOMOYO,
AppArmor and SMACK. None of these is clearly better than the others but
SELinux is considered the most mature and widely deployed amongst Linux
enhanced security mechanisms [17]. The KVM hypervisor has been selected for
this evaluation as it exploits the standard SELinux implementation. In fact, the
most important alternative VMM for ARM i.e.XEN, has its own MAC implemen-
tation wrapped in Xen Security Modules (XSM) [2].

We compare the performance of two VMs: one running on a host using the DAC
security policy and the other executed in SELinux environment. This comparison
shows unexpected results, as the performance of SELinux based VM is better than
the non-secure VM. We isolate and discuss the key factors behind this behavior
using a modified version of SELinux. To the best of our knowledge, this is the first
SELinux based performance analysis for KVM/ARM virtual machines.

This paper is organized as follows: Sect. 2 describes SELinux and the Linux
Security Modules (LSM). Section 3 gives details on the hardware and software
platform used to gather test results that are presented in Sect. 4. Related work
is described in Sect. 5 and potential future directions are given in Sect. 6.

2 Security in the Linux Kernel

By default the Linux kernel uses DAC security policy, which is based on users
and groups. This policy is easy to use but has significant drawbacks. In fact,
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DAC allows the owner of a resource to freely delegate rights over it. Moreover,
only two types of roles are supported: super user and normal users. The former
(also known as root), may be a security threat as it has complete control of the
system. This is particularly undesirable in multi-user, multi-tenancy systems
such as cloud, server, NFV and CPS environments.

To overcome the security issues of DAC, Linux combines it with the MAC
security policy, where a system-wide mechanism controls access to objects e.g.
a socket, a disk file etc., and an individual subject e.g. a process, a VM etc.,
cannot alter it [6].

2.1 Linux Security Modules and SELinux

To avoid the proliferation of security solutions that perform invasive modifi-
cations to the Linux kernel, support for security solutions has been provided
through an abstraction layer known as the Linux Security Modules (LSM). It
enables the implementation of MAC policies as loadable kernel modules avoid-
ing the necessity to deal with long and difficult to maintain patches. LSM allows
modules to mediate access to kernel objects by placing hooks in the kernel code
just ahead of access to them [25]. These hooks are scattered through-out the
kernel and have been classified as task, program loading, file-system, IPC, mod-
ule and network hooks [24]. A security module implements some or all of these
hooks.

In 2001 SELinux was initially presented to the open source community as a ker-
nel patch by the National Security Agency(NSA), and was later re-implemented
as LSM module [19]. It is an implementation of the Flask OS security architec-
ture [5] and its MAC policy is based on Type Enforcement (TE) that can also
provide Role Based Access Control (RBAC). The Flask OS’s main capability is to
separate security access control decisions from their enforcement [1]. This feature
has been inherited in SELinux, where the Security Server takes the security access
control decisions and the LSM hooks enforce them [7]. Furthermore, SELinux has

(a) (b)

Fig. 1. DAC and SELinux based virtualization environments
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a third component known as Access Vector Cache (AVC), which is designed to
speed-up the access validation decisions. The AVC maintains a cache of decisions
made by the Security Server for subsequent accesses [7]. Figure 1 shows the DAC
and SELinux based virtualization environments.

2.2 Disabling the SELinux AVC

When comparing a guest in a DAC virtualization environment (Fig. 1a) with
a VM in a SELinux host (Fig. 1b), the later shows better I/O performance.
This result is unexpected given that SELinux introduces at-least two different
sources of overhead: the first one comes from the LSM layer and the second is
due to the access control decision making infrastructure i.e. SELinux performs a
security check every time a subject wants to execute an operation on an object.
So this additional cost should lower the performance of SELinux host VMs.
In order to explain these results and evaluate its performance impact on the
overall security system, we disable the main component designed to improve the
SELinux performance i.e. the AVC.

We modify the avc has perm noaudit() function, which performs permissions
checks in every access. The permission check is firstly delegated to the AVC
cache and if the result is not found (an AVC miss), the request is forwarded to
the Security Server. In order to oblige the Linux kernel to always go through the
Security Server, we force a cache miss for each request. To include the lookup
time in our measurements, we force the cache miss after the AVC lookup func-
tion. This modification aims to keep the SELinux source code changes as simple
as possible. In fact, a complete removal of the AVC would result in important
modifications to the existing code as it has been included in SELinux from very
early stages, and it is fully integrated into it. In addition, this enables us to
measure the AVC cache miss influence on an implementation that is very similar
to the mainline SELinux.

3 Hardware/Software Platform and Benchmarks

The Texas Instruments OMAP5-uEVM board has been used to perform these
tests. It is equipped with two ARM Cortex-A15 MPCore (1.5 GHz), 2 GB of
DDR3L RAM and a 16 GB MicroSD card (Class 6). Although Ubuntu 12.04 is
the most widely used distribution on ARM, it does not officially support SELinux
so we installed Fedora 20 as a host on the OMAP platform. To create and manage
virtual machines we used QEMU 1.7.91 and libvirt 1.2.2 [10]. The mainline kernel
v3.14.0 is used for the host; for the DAC virtualization environment (Fig. 1a) it
is compiled without any security support (i.e. no LSM) and for the MAC secured
virtualization environment (Fig. 1b), it is compiled with SELinux support and
booted in targeted enforcing mode.

The VM runs Ubuntu 12.04 (kernel v3.12.0-rc7) with 256 MB of RAM and
is pinned to a physical processor. The virtio para-virtual drivers have been used
for both network and disks. The VM’s disk image is stored on the host local
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storage. The noop I/O scheduler and EXT4 file-system have been used in both
guest and host systems.

The iozone and netperf software benchmarks are used for the guest file-
system and network tests, respectively. In fact, I/O is the most important reason
for interactions between the guest and host systems. The disk tests have been
performed with different file sizes i.e. 4 KB, 100 KB, 1 MB, 2 MB and 10 MB. The
smallest file size is equal to the block size of EXT4 file-system, while the higher
values are small-to-medium sizes that are commonly found in different use-cases.
To prevent any caching mechanism between the VM and host, we disable caches
in the virtio and iozone configurations. The performance evaluation of SELinux
within the virtual machines is out-of-scope of this paper.

4 Performance Evaluation and Results

In this section we present some experimental results on I/O performance of the
ARM virtual machines. All of the disk performance figures show the average
results of 13 file-system operations for 5 different file sizes (65 in total), and
each test has been repeated 30 times. In Figs. 2 and 3, a negative result means
that the VM on SELinux host is faster as compared to the DAC host VM.
Figure 2 presents a comparison between two guests: the first running in a DAC
environment and the second on a SELinux host. In this case, the SELinux host
based VM is faster in 38 out of 65 tests (58 % negative results).
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Fig. 2. VM disk performance with a standard SELinux host (with AVC)

These results are unexpected for the reasons discussed in Sect. 2.2. So we
neutralize the SELinux AVC cache and obtain the results shown in Fig. 3. These
results highlight the overall impact of AVC cache on the disk performance. It
is interesting to see that 8 out of 65 results are still negative (12 %), where 7
results are greater than −8% of slowdown percentage and the most negative one
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Fig. 3. VM disk performance with a SELinux host (AVC disabled)
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Fig. 4. VM absolute disk performance on SELinux host (with AVC)

Table 1. VM streaming I/O performance results (netperf )

SELinux (with AVC) SELinux (AVC disabled) DAC host

TCP STREAM 45.96 Mbps 14.23 Mbps 41.79 Mbps

UDP STREAM 114.57 Mbps 23.99 Mbps 81.75 Mbps

Table 2. VM request/response I/O performance results (netperf )

SELinux (with AVC) SELinux (AVC disabled) DAC host

TCP RR 630.37 Tps 362.50 Tps 615.07 Tps

UDP RR 653.93 Tps 377.01 Tps 641.18 Tps
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is about −13%. We consider these results as mostly an experimental anomaly
and in part due to the LSM framework. In fact, there are examples in literature
where LSM performs better than DAC [25]. Finally, Fig. 4 shows the absolute
disk performance of a KVM/ARM guest on a SELinux host.

For the network benchmarks, a similar approach has been taken. We com-
pare the performance of three VMs: the first on a DAC host, the second running
on SELinux with the AVC disabled, and the third running on a full SELinux
host (leveraging the AVC). Two tests have been performed for both TCP and
UDP protocols: bulk data transfers (TCP STREAM and UDP STREAM) and
request/response performance (TCP RR and UDP RR). These results are pre-
sented in Tables 1 and 2, where the bandwidth and packet processing rates
are shown in Mega-bits per second (Mbps) and Transactions per second (Tps),
respectively. In both cases, similar to the disk benchmark results, we can claim
that SELinux VM is faster than the DAC guest. These results also show that
AVC has a significant impact over the network performance of the guest VMs.

5 Related Work

Park [11] did a MAC performance analysis of the Android OS using TOMOYO
Linux and claims a performance loss of around 25 %. On the same operating
system, Shabtai [18] did a SELinux based performance analysis that results
with a negligible performance loss. In this study, the authors confirmed two
cases of SELinux speed-up, but without any analysis of the possible reasons.
In addition, Nakamura [9] measured the performance of SELinux specifically
tuned for resource-constrained devices and Wright [24,25] measured the perfor-
mance overhead of LSM security framework on the x86 architecture, claiming a
nearly zero overhead.

Coker and Vogel [3,21] ported SELinux to different ARM platforms while
Fiorin [4] developed a hardware accelerated AVC to speed-up performance. None
of these works take into account virtualized environments.

Other studies include the Mandatory Access Control implementation directly
in the hypervisor (vHype and XEN, Sailer [15,16]) to improve the manage-
ment and run-time security of the system. Lastly, Nahari [8] proposed a secure
embedded Linux architecture by means of virtualization, SELinux and ARM
TrustZone.

6 Conclusions and Future Work

We provided a detailed I/O performance analysis of a KVM/ARM guest run-
ning on a SELinux host. We compared these results with a guest running without
any security enhancements i.e. on a DAC host. Our test results show that vir-
tual machines running in a DAC environment are slower than virtual machines
running on a SELinux host. We discussed the main causes of this performance
improvement, and finally we strongly recommend the use of SELinux in any
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virtualized environment e.g. Data Centers, NFV systems, Android devices, CPS
etc., for both security and performance enhancement.

Future work will include an analysis of the LSM framework impact on the
guests performance in systems enhanced with MAC security policies. In addition,
it will be interesting to study the scalability of KVM/ARM VMs on SELinux
hosts, analyzing the performance while increasing number of guests in the sys-
tem. Finally we will investigate acceleration methods for those systems which
cannot exploit MAC security.
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