
ERMiner: Sequential Rule Mining

Using Equivalence Classes

Philippe Fournier-Viger1, Ted Gueniche1, Souleymane Zida1,
and Vincent S. Tseng2

1 Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Computer Science and Information Engineering,

National Cheng Kung University, Taiwan
{philippe.fournier-viger,esz2233}@umoncton.ca, ted.gueniche@gmail.com,

tsengsm@mail.ncku.edu.tw

Abstract. Sequential rule mining is an important data mining task with
wide applications. The current state-of-the-art algorithm (RuleGrowth)
for this task relies on a pattern-growth approach to discover sequen-
tial rules. A drawback of this approach is that it repeatedly performs a
costly database projection operation, which deteriorates performance for
datasets containing dense or long sequences. In this paper, we address
this issue by proposing an algorithm named ERMiner (Equivalence class
based sequential Rule Miner) for mining sequential rules. It relies on
the novel idea of searching using equivalence classes of rules having the
same antecedent or consequent. Furthermore, it includes a data structure
named SCM (Sparse Count Matrix) to prune the search space. An exten-
sive experimental study with five real-life datasets shows that ERMiner
is up to five times faster than RuleGrowth but consumes more memory.

Keywords: sequential rule mining, vertical database format, equiva-
lence classes, sparse count matrix.

1 Introduction

Discovering interesting sequential patterns in sequences is a fundamental prob-
lem in data mining. Many studies have been proposed for mining interesting
patterns in sequence databases [12]. Sequential pattern mining [1] is probably
the most popular research topic among them. It consists of finding subsequences
appearing frequently in a set of sequences. However, knowing that a sequence
appears frequently is not sufficient for making predictions [4]. An alternative
that addresses the problem of prediction is sequential rule mining [4]. A sequen-
tial rule indicates that if some item(s) occur in a sequence, some other item(s)
are likely to occur afterward with a given confidence or probability.

Two main types of sequential rules have been proposed. The first type is
rules where the antecedent and consequent are sequential patterns [11,15,13].
The second type is rules between two unordered sets of items [6,4]. In this paper
we consider the second type because it is more general and it was shown to

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 108–119, 2014.
c© Springer International Publishing Switzerland 2014

ERMiner: Sequential Rule Mining Using Equivalence Classes 109

provide considerably higher prediction accuracy for sequence prediction in some
domains [5]. Moreover, another reason is that the second type has been used in
many real applications such as e-learning [6], manufacturing simulation [9], qual-
ity control [2], web page prefetching [5], anti-pattern detection in service based
systems [14], embedded systems [10], alarm sequence analysis [3] and restaurant
recommendation [8].

Several algorithms have been proposed for mining this type of sequential rules.
CMDeo [6] is an Apriori-based algorithm that explores the search space of rules
using a breadth-first search. A major drawback of CMDeo is that it can generate
a huge amount of candidates. As as alternative, the CMRules algorithm was
proposed. It relies on the property that any sequential rules must also be an
association rule to prune the search space of sequential rules [6]. It was shown
to be much faster than CMDeo for sparse datasets. Recently, the RuleGrowth
[4] algorithm was proposed. It relies on a pattern-growth approach to avoid
candidate generation. It was shown to be more than an order of magnitude
faster than CMDeo and CMRules. However, for datasets containing dense or
long sequences, the performance of RuleGrowth rapidly deterioates because it
has to repeatedly perform costly database projection operations. Because mining
sequential rules remains a very computationally expensive data mining task, an
important research question is: ”Could we design faster algorithms?”

In this paper, we address this issue by proposing the ERMiner (Equivalence
class based sequential Rule Miner) algorithm. It relies on a vertical representation
of the database to avoid performing database projection and the novel idea of
explorating the search space of rules using equivalence classes of rules having
the same antecedent or consequent. Furthermore, it includes a data structure
named SCM (Sparse Count Matrix) to prune the search space.

The rest of the paper is organized as follows. Section 2 defines the problem
of sequential rule mining and introduces important definitions and properties.
Section 3 describes the ERMiner algorithm. Section 4 presents the experimental
study. Finally, Section 5 presents the conclusion.

2 Problem Definition

Definition 1 (sequence database). Let I = {i1, i2, ..., il} be a set of items
(symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is an unordered set of distinct
items. The lexicographical order �lex is defined as any total order on I. Without
loss of generality, it is assumed in the following that all itemsets are ordered
according to �lex. A sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉
such that Ik ⊆ I (1 ≤ k ≤ n). A sequence database SDB is a list of sequences
SDB = 〈s1, s2, ..., sp〉 having sequence identifiers (SIDs) 1, 2...p.

Example 1. A sequence database is shown in Fig. 1 (left). It contains four se-
quences having the SIDs 1, 2, 3 and 4. Each single letter represents an item. Items
between curly brackets represent an itemset. The first sequence 〈{a, b}, {c}, {f},
{g}, {e}〉 contains five itemsets. It indicates that items a and b occurred at the
same time, were followed by c, then f and lastly e.

110 P. Fournier-Viger et al.

ID Sequences
seq1
seq2
seq3
seq4

{a, b},{c},{f},{g},{e}
{a, d},{c},{b},{a, b, e, f}
{a},{b},{f},{e}
{b},{f, g, h}

ID Rule Support Confidence
r1
r2
r3
r4
r5
r6
r7

{a, b, c} {e}
{a} {c, e, f}
{a, b} {e, f}
{b} {e, f}
{a} {e, f}
{c} {f}
{a} {b}

0.5
0.5
0.75
0.75
0.75
0.5
0.5

1.0
0.66
1.0
0.75
1.0
1.0
0.66

Fig. 1. A sequence database (left) and some sequential rules found (right)

Definition 2 (sequential rule). A sequential rule X → Y is a relationship
between two unordered itemsets X,Y ⊆ I such that X ∩ Y = ∅ and X,Y
= ∅.
The interpretation of a rule X → Y is that if items of X occur in a sequence,
items of Y will occur afterward in the same sequence.

Definition 3 (itemset/rule occurrence). Let s : 〈I1, I2...In〉 be a sequence.
An itemset I occurs or is contained in s (written as I � s) iff I ⊆ ⋃n

i=1 Ii. A
rule r : X → Y occurs or is contained in s (written as r � s) iff there exists an

integer k such that 1 ≤ k < n, X ⊆ ⋃k
i=1 Ii and Y ⊆ ⋃n

i=k+1 Ii.

Example 2. The itemset {a, b, f} is contained in sequence 〈{a}, {b}, {f}, {e}〉.
The rule {a, b, c} → {e, f, g} occurs in 〈{a, b}, {c}, {f}, {g}, {e}〉, whereas the
rule {a, b, f} → {c} does not, because item c does not occur after f .

Definition 4 (sequential rule size). A rule X → Y is said to be of size k∗m
if |X | = k and |Y | = m. Furthermore, a rule of size f ∗g is said to be larger than
another rule of size h ∗ i if f > h and g ≥ i, or alternatively if f ≥ h and g > i.

Example 3. The rules r : {a, b, c} → {e, f, g} and s : {a} → {e, f} are respec-
tively of size 3 ∗ 3 and 1 ∗ 2. Thus, r is larger than s.

Definition 5 (support). The support of a rule r in a sequence database SDB
is defined as supSDB(r) = |{s|s ∈ SDB ∧ r � s}|/|SDB|.
Definition 6 (confidence). The confidence of a rule r : X → Y in a sequence
database SDB is defined as confSDB(r) = |{s|s ∈ SDB ∧ r � s}|/|{s|s ∈
SDB ∧X � s}|.
Definition 7 (sequential rule mining). Let minsup,minconf ∈ [0, 1] be
thresholds set by the user and SDB be a sequence database. A rule r is a frequent
sequential rule iff supSDB(r) ≥ minsup. A rule r is a valid sequential rule iff it
is frequent and confSDB(r) ≥ minconf . The problem of mining sequential rules
from a sequence database is to discover all valid sequential rules [6].

Example 4. Fig 1 (right) shows 7 valid rules found in the database illustrated in
Table 1 for minsup = 0.5 and minconf = 0.5. For instance, the rule {a, b, c} →
{e} has a support of 2/4 = 0.5 and a confidence of 2/2 = 1. Because those values
are respectively no less than minsup and minconf , the rule is deemed valid.

ERMiner: Sequential Rule Mining Using Equivalence Classes 111

3 The ERMiner Algorithm

In this section, we present the ERMiner algorithm. It relies on the novel concept
of equivalence classes of sequential rules, defined as follows.

Definition 8 (rule equivalence classes). For a sequence database, let R
be the set of all frequent sequential rules and I be the set of all items. A left
equivalence class LEW,i is the set of frequent rules LEW,i = {W → Y |Y ⊆
I ∧ |Y | = i} such that W ⊆ I and i is an integer. Similarly, a right equivalence
class REW,i is the set of frequent rules REW,i = {X → W |X ⊆ I ∧ |X | = i},
where W ⊆ I, and i is an integer.

Example 5. For minsup = 2 and our running example, LE{c},1 = {{c} →
{f}, {c} → {e}}, RE{e,f},1 = {{a} → {e, f}, {b} → {e, f}, {c} → {e, f}} and
RE{e,f},2 = {{a, b} → {e, f}, {a, c} → {e, f}, {b, c} → {e, f}}.

Two operations called left and right merges are used by ERMiner to explore
the search space of frequent sequential rules. They allows to directly generate
an equivalence class using a smaller equivalence class.

Definition 9 (left/right merges). Let be a left equivalence class LEW,i and
two rules r : W → X and s : W → Y such that r, s ∈ LEW,i and |X ∩ Y | =
|X − 1|, i.e. X and Y are identical except for a single item. A left merge of r, s
is the process of merging r, s to obtain W → X ∪ Y . Similarly, let be a right
equivalence class REW,i and two rules r : X → W and r : Y → W such that
r, s ∈ REW,i and |X ∩ Y | = |X − 1|. A right merge of r, s is the process of
merging r, s to obtain the rule X ∪ Y → W .

Property 1 (generating a left equivalence class). Let be a left equiva-
lence class LEW,i. LEW,i+1 can be obtained by performing all left merges on pairs
of rules from LEW,i. Proof. Let be any rule r : W → {a1, a2, ...ai+1} in LEW,i+1.
By Definition 8, rules W → {a1, a2, ...ai−1, ai} and W → {a1, a2, ...ai−1, ai+1}
are members of LEW,i, and a left merge of those rules will generate r.��

Property 2 (generating a right equivalence class). Let be a right equiv-
alence class REW,i. REW,i+1 can be obtained by performing all right merges on
pairs of rules from REW,i. Proof. The proof is similar to Property 1 and is
therefore omitted.

To explore the search space of frequent sequential rules using the above merge
operations, ERMiner first scans the database to build all equivalence classes
for frequent rules of size 1 ∗ 1. Then, it recursively performs left/right merges
starting from those equivalence classes to generate the other equivalence classes.
To ensure that no rule is generated twice, the following ideas have been used.

First, an important observation is that a rule can be obtained by different
combinations of left and right merges. For example, consider the rule {a, b} →
{c, d}. It can be obtained by performing left merges for LE{a},1 and LE{b},1

112 P. Fournier-Viger et al.

followed by right merges on RE{c,d},1. But it can also be obtained by performing
right merges on RE{c},1 and RE{d},1 followed by left merges using LE{a,b},1. A
simple solution to avoid this problem is to not allow performing a left merge
after a right merge but to allow performing a right merge after a left merge.
This solution is illustrated in Fig. 2.

Fig. 2. The order of rule discovery by left/right merge operations

Second, another key observation is that a same rule may be obtained by merg-
ing different pairs of rules from the same equivalence class. For example, a rule
{a, b, c} → {e} may be obtained by performing a left merge of {a, b} → {e} with
{a, c} → {e} or with {b, c} → {e}. To avoid generating the same rule twice, a
simple solution is to impose a total order on items in rule antecedents (conse-
quents) and to only perform a left merge (right merge) if the rule consequent
(rule antecedent) shares all but the last item according to the total order. In
the previous example, this means that {a, c} → {e} would not be merged with
{b, c} → {e}.

Using the above solutions, it can be easily seen that all rules are generated
only once. However, to be efficient, a sequential rule mining algorithm should be
able to prune the search space. This is done using the following properties for
merge operations.

Property 3 (antimonotonicity with left/right merges). Let be a sequence
database SDB and two frequent rules r, s. Let t be a rule obtained by a left or
right merge of r, s. The support of t is lower or equal to the support of r and
that of s. Proof. Since t contains exactly one more item than r and s, it can
only appear in the same number sequences or less. ��

Property 4 (pruning). If the support of a rule is less than minsup, then
it should not be merged with any other rules because all such rules are infre-
quent. Proof. This directly follows from Property 3.

Because there does not exist any similar pruning properties for confidence, it
is necessary to explore the search space of frequent rules to get the valid ones.

Fig. 1 shows the main pseudocode of ERMiner, which integrates all the pre-
vious idea. ERMiner takes as input a sequence database SDB, and the minsup

ERMiner: Sequential Rule Mining Using Equivalence Classes 113

and minconf thresholds. It first scans the database once to build all equivalence
classes of rules of size 1 ∗ 1, i.e. containing a single item in the antecedent and
a single item in the consequent. Then, to discover larger rules, left merges are
performed with all left equivalence classes by calling the leftSearch procedure.
Similarly, right merges are performed for all right equivalence classes by calling
the rightSearch procedure. Note that the rightSearch procedure may generate
some new left-equivalence classes because left merges are allowed after right
merges. These equivalence classes are stored in a structure named leftStore. To
process these equivalence classes, an additional loop is performed. Finally, the
algorithm returns the set of rules found rules.

Algorithm 1. The ERMiner algorithm

input : SDB: a sequence database, minsup and minconf : the two
user-specified thresholds

output: the set of valid sequential rules

1 leftStore ← ∅ ;
2 rules ← ∅ ;
3 Scan SDB once to calculate EQ, the set of all equivalence classes of rules of

size 1*1;
4 foreach left equivalence class H ∈ EQ do
5 leftSearch (H , rules);
6 end
7 foreach right equivalence class J ∈ EQ do
8 rightSearch (J , rules, leftStore);
9 end

10 foreach left equivalence class K ∈ leftStore do
11 rightSearch (K);
12 end
13 return rules;

Fig. 2 shows the pseudocode of the leftSearch procedure. It takes as parameter
an equivalence class LE. Then, for each rule r of that equivalence class, a left
merge is performed with every other rules to generate a new equivalence class.
Only frequent rules are kept. Furthermore, if a rule is valid, it is output. Then,
leftSearch is recursively called to explore each new equivalence class generated
that way. The rightSearch (see Fig. 3) is similar. The main difference is that new
left equivalences are stored in the left store structure because their exploration
is delayed, as previously explained in the main procedure of ERMiner.

Now, it is important to explain how the support and confidence of each rule
is calculated by ERMiner (we had previously deliberately ommitted this expla-
nation). Due to space limitation and because this calculation is done similarly
as in the RuleGrowth [4] algorithm, we here only give the main idea. Initially,
a database scan is performed to record the first and last occurrences of each
item in each sequence where it appears. Thereafter, the support of each rule

114 P. Fournier-Viger et al.

Algorithm 2. The leftSearch procedure

input : LE: a left equivalence class, rules: the set of valid rules found until
now, minsup and minconf : the two user-specified thresholds

1 foreach rule r ∈ LE do
2 LE′ ← ∅ ;
3 foreach rule s ∈ LE such that r �= s and the pair r, s have not been

processed do
4 Let c, d be the items respectively in r, s that do not appear in s, r ;
5 if countPruning(c, d) = false then
6 t ← leftMerge(r, s) ;
7 calculateSupport(t, r, s);
8 if sup(t) ≥ minsup then
9 calculateConfidence(t, r, s);

10 if conf(t) ≥ minconf then
11 rules ← rules ∪ {t};
12 end
13 LE′ ← LE′ ∪ {t};
14 end

15 end

16 end
17 leftSearch (LE′, rules);
18 end

of size 1*1 is directly generated by comparing first and last occurrences, with-
out scanning the database. Similarly, the first and last occurrences of each rule
antecedent and consequent are updated for larger rules without scanning the
database. This allows to calculate confidence and support efficiently (see [4] for
more details about how this calculation can be done).

Besides, an optimization is to use a structure that we name the Sparse Count
Matrix (SCM) (aka CMAP [7]). This structure is built during the first database
scan and record in how many sequences each item appears with each other items.
For example, Fig. 3 shows the structure built for the database of Fig. 1 (left),
represented as a triangular matrix. Consider the second row. It indicates that
item b appear with items b, c, d, e, f, g and h respectively in 2, 1, 3, 4, 2 and 1
sequences. The SCM structure is used for pruning the search space as follows
(implemented as the countPruning function in Fig. 3 and 2). Let be a pair of
rules r, s that is considered for a left or right merge and c, d be the items of r, s,
that respectively do not appear in s, r. If the count of r, s is less than minsup
in the SCM, then the merge does not need to be performed and the support of
the rule is not calculated.

Lastly, another important optimization is how to implement the left store
structure for efficiently storing left equivalence classes of rules that are generated
by right merges. In our implementation, we use a hashmap of hashmaps, where
the first hash function is applied to the size of a rule and the second hash function

ERMiner: Sequential Rule Mining Using Equivalence Classes 115

Algorithm 3. The rightSearch procedure

input : RE: a right equivalence class, rules: the set of valid rules found until
now, minsup and minconf : the two user-specified thresholds,
leftStore: the structure to store left-equivalence classes of rules
generated by right-merges

1 foreach rule r ∈ RE do
2 RE′ ← ∅ ;
3 foreach rule s ∈ RE such that r �= s and the pair r, s have not been

processed do
4 Let c, d be the items respectively in r, s that do not appear in s, r ;
5 if countPruning(c, d) = false then
6 t ← rightMerge(r, s) ;
7 calculateSupport(t, r, s);
8 if sup(t) ≥ minsup then
9 calculateConfidence(t, r, s);

10 if conf(t) ≥ minconf then
11 rules ← rules ∪ {t};
12 end
13 RE′ ← RE′ ∪ {t};
14 addToLeftStore(t)

15 end

16 end

17 end
18 rightSearch (RE′, rules);
19 end

Item a b c d e f
b 3
c 2 2
d 1 1 1
e 3 3 2 1
f 3 4 2 1 3
g 1 2 1 0 1 2
h 0 1 0 0 0 1

Fig. 3. The Sparse Count Matrix

is applied to the left itemset of the rule. This allows to quickly find to which
equivalence class belongs a rule generated by a right merge.

4 Experimental Evaluation

We performed experiments to assess the performance of the proposed algorithm.
Experiments were performed on a computer with a third generation Core i5 pro-
cessor running Windows 7 and 5 GB of free RAM. We compared the performance

116 P. Fournier-Viger et al.

of ERMiner with the state-of-the-art algorithms for sequential rule mining Rule-
Growth [4]. All algorithms were implemented in Java.

All memory measurements were done using the Java API. Experiments were
carried on five real-life datasets having varied characteristics and representing
four different types of data (web click stream, sign language utterances and
protein sequences). Those datasets are Sign, Snake, FIFA, BMS and Kosarak10k.
Table 2 4 summarizes their characteristics. The source code of all algorithms
and datasets used in our experiments can be downloaded from http://goo.gl/

aAegWH.

Table 1. Dataset characteristics

dataset sequence count distinct item avg. seq. length type of data
count (items)

Sign 730 267 51.99 (std = 12.3) language utterances
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85) web click stream
Kosarak10k 10000 10094 8.14 (std = 22) web click stream

We ran all the algorithms on each dataset while decreasing the minsup thresh-
old until algorithms became too long to execute, ran out of memory or a clear
winner was observed. For these experiments, we fixed the minconf threshold
to 0.75. However, note that results are similar for other values of the minconf
parameter since the confidence is not used to prune the search space by the
compared algorithms. For each dataset, we recorded the execution time, the
percentage of candidate pruned by the SCM structure and the total size of
SCMs.

Execution times. The comparison of execution times is shown in Fig. 4. It
can be seen that ERMiner is faster than RuleGrowth on all datasets and that
the performance gap increases for lower minsup values. ERMiner is up to about
five times faster than RuleGrowth. This is because RuleGrowth has to perform
costly database projection operations.

Memory overhead of using SCM. We have measured the overhead produced
by using the SCM structure by ERMiner. The size of SCM is generally quite
small (less than 35 MB). The reason is that we have implemented it as a sparse
matrix (a hashmap of hashmaps) rather than a full matrix (a n× n array for n
items). If a full matrix is used the size of SCM increased up to about 300 MB.

Overall memory usage. The maximum memory usage of RuleGrowth / ER-
Miner for the Snake, FIFA, Sign, BMS and Kosarak datasets were respectively
300 MB / 1950 MB, 478 MB / 2030 MB, 347 MB / 1881 MB, 1328 MB / 2193
MB and 669 MB / 1441 MB. We therefore notice that thhere is a trade-off be-
tween having faster execution times with ERMiner versus having lower memory
consumption with RuleGrowth. The higher memory consumption for ERMiner
is in great part due to the usage of the left store structure which requires main-
taining several equivalence classes into memory at the same time.

http://goo.gl/aAegWH
http://goo.gl/aAegWH

ERMiner: Sequential Rule Mining Using Equivalence Classes 117

50

100

150

200

250

0.50000 0.60000 0.70000 0.80000 0.90000

Ru
nt

im
e

(s
)

minsup

Snake
RuleGrowth
ERminer

20

40

60

80

100

0.23000 0.23500 0.24000 0.24500 0.25000

Ru
nt

im
e

(s
)

minsup

FIFA
RuleGrowth
ERMiner

20
40
60
80

100
120
140
160

0.15000 0.20000 0.25000

Ru
nt

im
e

(s
)

minsup

Sign

RuleGrowth
ERMiner

50

100

150

200

0.00060 0.00062 0.00064

Ru
nt

im
e

(s
)

minsup

BMS
RuleGrowth
ERMiner

10

20

30

40

0.00150 0.00170 0.00190

Ru
nt

im
e

(s
)

minsup

Kosarak

RuleGrowth
ERMiner

Fig. 4. Execution times

Effectiveness of candidate pruning. The percentage of candidate rules pruned
by using the SCM data structure in ERMiner for the Snake, FIFA, Sign, BMS
and Kosarak datasets were respectively 1 %, 0.2 %, 3.9 %, 3 % and 51 %. It can
be concluded that pruning based on SCM is less effective for datasets containing
dense or long sequences(e.g. Snake, FIFA, Sign) where each item co-occurs many
times with every other items. It could therefore be desactivated on such datasets.

5 Conclusion

In this paper, we proposed a new sequential rule mining algorithm named ER-
Miner (Equivalence class based sequential Rule Miner). It relies on the novel idea
of searching using equivalence classes of rules having the same antecedent or con-
sequent. Furthermore, it an includes a data structure named SCM (Sparse Count
Matrix) to prune the search space. An extensive experimental study with five
real-life datasets shows that ERMiner is up to five times faster than the state-
of-the-art algorithm but comsumes more memory. It can therefore be seen as

118 P. Fournier-Viger et al.

an interesting trade-off when speed is more important than memory. The source
code of all algorithms and datasets used in our experiments can be downloaded
from http://goo.gl/aAegWH.

Acknowledgement. This work is financed by a National Science and Engi-
neering Research Council (NSERC) of Canada research grant.

References

1. Agrawal, R., Ramakrishnan, S.: Mining sequential patterns. In: Proc. 11th Intern.
Conf. Data Engineering, pp. 3–14. IEEE (1995)

2. Bogon, T., Timm, I.J., Lattner, A.D., Paraskevopoulos, D., Jessen, U., Schmitz,
M., Wenzel, S., Spieckermann, S.: Towards Assisted Input and Output Data Anal-
ysis in Manufacturing Simulation: The EDASIM Approach. In: Proc. 2012 Winter
Simulation Conference, pp. 257–269 (2012)

3. Bogon, T., Timm, I.J., Lattner, A.D., Paraskevopoulos, D., Jessen, U., Schmitz,
M., Wenzel, S., Spieckermann, S.: Towards Assisted Input and Output Data Anal-
ysis in Manufacturing Simulation: The EDASIM Approach. In: Proc. 2012 Winter
Simulation Conference, pp. 257–269 (2012)

4. Fournier-Viger, P., Nkambou, R., Tseng, V.S.: RuleGrowth: Mining Sequential
Rules Common to Several Sequences by Pattern-Growth. In: Proc. ACM 26th
Symposium on Applied Computing, pp. 954–959 (2011)

5. Fournier-Viger, P., Gueniche, T., Tseng, V.S.: Using Partially-Ordered Sequential
Rules to Generate More Accurate Sequence Prediction. In: Zhou, S., Zhang, S.,
Karypis, G. (eds.) ADMA 2012. LNCS, vol. 7713, pp. 431–442. Springer, Heidelberg
(2012)

6. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E.: CMRules: Mining
Sequential Rules Common to Several Sequences. Knowledge-based Systems 25(1),
63–76 (2012)

7. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Mining of
Sequential Patterns Using Co-occurrence Information. In: Tseng, V.S., Ho, T.B.,
Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443,
pp. 40–52. Springer, Heidelberg (2014)

8. Han, M., Wang, Z., Yuan, J.: Mining Constraint Based Sequential Patterns and
Rules on Restaurant Recommendation System. Journal of Computational Infor-
mation Systems 9(10), 3901–3908 (2013)

9. Kamsu-Foguem, B., Rigal, F., Mauget, F.: Mining association rules for the quality
improvement of the production process. Expert Systems and Applications 40(4),
1034–1045 (2012)

10. Leneve, O., Berges, M., Noh, H.Y.: Exploring Sequential and Association Rule
Mining for Pattern-based Energy Demand Characterization. In: Proc. 5th ACM
Workshop on Embedded Systems For Energy-Efficient Buildings, pp. 1–2. ACM
(2013)

11. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rules - Theory and algo-
rithm. Information Systems 34(4-5), 438–453 (2009)

12. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Computing Surveys 43(1), 1–41 (2010)

http://goo.gl/aAegWH

ERMiner: Sequential Rule Mining Using Equivalence Classes 119

13. Pham, T.T., Luo, J., Hong, T.P., Vo, B.: An efficient method for mining non-
redundant sequential rules using attributed prefix-trees. Engineering Applications
of Artificial Intelligence 32, 88–99 (2014)

14. Nayrolles, M., Moha, N., Valtchev, P.: Improving SOA antipatterns detection in
Service Based Systems by mining execution traces. In: Proc. 20th IEEE Working
Conference on Reverse Engineering, pp. 321–330 (2013)

15. Zhao, Y., Zhang, H., Cao, L., Zhang, C., Bohlscheid, H.: Mining both posi-
tive and negative impact-oriented sequential rules from transactional data. In:
Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009.
LNCS, vol. 5476, pp. 656–663. Springer, Heidelberg (2009)

	ERMiner: Sequential Rule Mining
Using Equivalence Classes

	1 Introduction
	2 Problem Definition
	3 The ERMiner Algorithm
	4 Experimental Evaluation
	5 Conclusion
	References

