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Preface

We are proud to present the proceedings of IDA 2014: the 13th International
Symposium on Intelligent Data Analysis, which was held from October 30 to
November 1, 2014, in Leuven, Belgium.

The series started in 1995 and was held biennially until 2009. In 2010, the
symposium re-focused to support papers that go beyond established technology
and offer genuinely novel and game-changing ideas, while not always being as
fully realized as papers submitted to other conferences. IDA 2014 continued
this approach and sought first-look papers that might elsewhere be considered
preliminary, but contain potentially high-impact research.

The IDA symposium is open to all kinds of modeling and analysis methods,
irrespective of discipline. It is an interdisciplinary meeting that seeks abstractions
that cut across domains. IDA solicits papers on all aspects of intelligent data
analysis, including papers on intelligent support for modeling and analyzing
data from complex, dynamical systems. Intelligent support for data analysis
goes beyond the usual algorithmic offerings in the literature.

Papers about established technology were only accepted if the technology was
embedded in intelligent data analysis systems, or was applied in novel ways to an-
alyzing and/or modeling complex systems. The conventional reviewing process,
which tends to favor incremental advances on established work, can discourage
the kinds of papers that IDA 2014 has published.

The reviewing process addressed this issue explicitly: referees evaluated pa-
pers against the stated goals of the symposium, and an informed, thoughtful,
positive review written by a program chair advisor could outweigh other, nega-
tive reviews and result toward acceptance of the paper. Indeed, it was noted that
this had notable impact on some of the papers included in the program. In ad-
dition, IDA 2014 introduced the “First Look Track”, which allowed researchers
to present their ground breaking research at the symposium without publishing
it in the proceedings. This resulted in the presentation of ideas and visions that
were not yet mature enough for publication.

We were pleased to have a very strong program. We received 76 submissions
in total, from 215 different authors from 30 different countries on six continents.
In all, 70 papers were submitted to the regular proceedings track, of which 33
were accepted for inclusion in this volume. Six papers were submitted to the First
Look Track, of which three were accepted for presentation at the symposium.
The IDA Frontier Prize was awarded to the most visionary contribution. As
in previous years, we included a poster and video track for PhD students to
promote their work. The best 2-minute video, as decided by the participants of
the symposium, was awarded the Video Prize.

We were honored to have three distinguished invited speakers at IDA 2014:
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– Arnoldo Frigessi from the University of Oslo, Norway, talked about the re-
newed interest in the analysis of ranked data due to novel applications in
the era of big data. In particular, he presented a Bayesian approach to rank
estimation.

– Jan Van den Bussche from Hasselt University, Belgium, presented DNAQL, a
language for DNA programming, which was developed to better understand,
from a theoretical perspective, the database aspects of DNA computing.

– Chris Lintott from Oxford University, UK, talked about citizen science, the
involvement of many volunteers in the scientific process, and reflected on the
lessons learned when data analysis needs millions of people.

The conference was held at the Faculty Club in Leuven, situated in the his-
torical Grand Béguinage, a UNESCO World Heritage Site. We wish to express
our gratitude to all authors of submitted papers for their intellectual contribu-
tions; to the Program Committee members and the additional reviewers for their
effort in reviewing and commenting on the submitted papers; to the members
of the IDA Steering Committee for their ongoing guidance and support; and to
the Program Committee advisors for their active involvement. Special thanks
go to the poster and video chair, Elisa Fromont; the local chair, Tias Guns; the
publicity chair, Márcia Oliveira; the sponsorship chair, David Martens; the Fron-
tier Prize chairs, Arno Siebes and Allan Tucker; and the webmaster, Vladimir
Dzyuba. We gratefully acknowledge those who were involved in the local or-
ganization of the symposium: Behrouz Babaki, Thanh Le Van, Ashraf Masood
Kibriya, Benjamin Negrevergne, and Vincent Nys. Finally, we are grateful to our
sponsors and supporters: KNIME, which funded the IDA Frontier Prize for the
most visionary contribution presenting a novel and surprising approach to data
analysis; SAS, which funded the IDA Video Prize for the best video presented in
the PhD poster and video track; the Research Foundation – Flanders (FWO);
the Artificial Intelligence journal; the City of Leuven; and Springer.

August 2014 Hendrik Blockeel
Matthijs van Leeuwen

Veronica Vinciotti



Organization

General Chair

Hendrik Blockeel KU Leuven, Belgium

Program Chairs

Matthijs van Leeuwen KU Leuven, Belgium
Veronica Vinciotti Brunel University, UK

Poster and Video Chair

Elisa Fromont Jean Monnet University, France

Local Chair

Tias Guns KU Leuven, Belgium

Publicity Chair
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Bernard De Baets Ghent University, Belgium
Tijl De Bie University of Bristol, UK
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Bayesian Inference for Ranks

Arnoldo Frigessi

University of Oslo

Abstract. Analysis of rank data has received renewed interest, due to
novel applications in the era of big data. Examples include the ranking
and comparison of products, services, films or books, by thousands of
volunteer users over the internet. The basic purpose is to estimate the
latent ranks of n items on the basis of N samples, each of which is
the ranking of the same n items by an independent assessor. If the N
assessors do not represent a homogeneous population sharing the same
latent ranking of the n items, one also needs to partition the N assessors
in homogeneous clusters, each sharing their own unknown latent rank.
In many situations N is very large. In some cases the number of items
n is small, like when a panel of voters rank a few alternative political
candidates in an election. In other cases, n is so large that assessors
are not able to produce a full ranking of all items at all; instead one
resorts on either a partial ranking (of the top 5 items, say) or on a series
of pairwise comparisons. In these cases (and many other with a similar
flavour) the data are highly incomplete. There are also situations, where
observations are quantitative but each assessor uses different scales, and
in these cases passing to ranks is clearly a possibility.
Expressing preferences is in general a very useful way of collecting infor-
mation, and the analysis of such data is receiving increasing attention.
There is a very large literature on statistical and machine learning meth-
ods to estimate such latent ranks, which goes under the title preference
learning, see for example the excellent book [1]. Much inference for rank
data is frequentist in nature, based on exponential models in a distance
between ranks [2]. Such a classical family of distance based models are
Mallows models [3, 4]. Here one starts with a distance between the ob-
served and the latent ranks, and assumes that the observed ranks of the
n items are exponentially distributed in such a distance. The normalis-
ing constant of such a distribution is a sum over all permutations of n
items, and therefore prohibitive in general. For some special (and useful)
distances, including Kendall’s correlation, this partition function can be
computed analytically, but for other distances (also very useful ones!)
it cannot. The footrule distance [3], which is the l1 norm of the differ-
ence between the observed and latent ranks, and Spearman’s distance
(l2 norm) are not tractable.
We take a Bayesian approach, where the latent ranks are assumed to be
random and have a prior distribution over the set of all permutations.
We use a uniform distribution in our examples. There is a further pa-
rameter in Mallows’ distribution, say α, which acts as inverse variance
in the exponential model. On this parameter we assume an exponential
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prior, and argue for a certain form of the hyperparameter. We develop
an MCMC algorithm for sampling the latent ranks, α, and other design
parameters, from the posterior distribution. Here we need to specify a
proposal distribution which allows moving easily in the space of permuta-
tions. For the partition function, we used a simple importance sampling
scheme, which appeared to be satisfactory for n in the order of the tens,
while other approaches are needed for larger n. The algorithm is then
tested on simulated data, on some simple preference experiments that
we collected and on benchmark data sets. We also show an application
on the ranking of football teams, where each game in the season is a
comparison. Finally we discuss limitations of our approach, in particular
how we expect the scaling in n to behave. This is joint work with Øystein
Sørensen, Valeria Vitelli and Elja Arjas [5].

References

1. Fürnkranz, J., Hüllermeier, E.: Preference learning. Springer, US (2010)
2. Marden, J.I.: Analyzing and modeling rank data. CRC Press (1996)
3. Mallows, C.: Non-null ranking models. Biometrika 44(1/2), 114–130 (1957)
4. Diaconis, P.: Group representations in probability and statistics. Lecture Notes-

Monograph Series, p. i-192 (1988)
5. Sørensen, Ø., Vitelli, V., Frigessi, A., Arjas Bayesian, E.: inference from rank data.

arXiv preprint, 1405.7945 (2014)



The DNA Query Language DNAQL

Jan Van den Bussche

Hasselt University & Transnational University of Limburg

Abstract. This invited talk presents an overview of our work on data-
bases in DNA performed over the past four years, joint with my student
Joris Gillis and postdoc Robert Brijder [1–5]. Our goal is to better un-
derstand, at a theoretical level, the database aspects of DNA comput-
ing. The talk will be self-contained and will begin with an introduction
to DNA computing. We then introduce a graph-based data model of so-
called sticker DNA complexes, suitable for the representation and manip-
ulation of structured data in DNA. We also define DNAQL, a restricted
programming language over sticker DNA complexes. DNAQL stands to
general DNA computing as the standard relational algebra for relational
databases stands to general-purpose conventional computing. We show
how DNA program can be statically typechecked. Thus, nonterminating
reactions, as well as other things that could go wrong during DNA ma-
nipulation, can be avoided. We also investigate the expressive power of
DNAQL and show how it compares to the relational algebra.

References

1. Gillis, J.J.M., Van den Bussche, J.: A formal model for databases in DNA. In:
Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp.
18–37. Springer, Heidelberg (2012)

2. Brijder, R., Gillis, J.J.M., Van den Bussche, J.: A comparison of graph-theoretic
DNA hybridization models. Theoretical Computer Science 429, 46–53 (2012)

3. Brijder, R., Gillis, J.J.M., Van den Bussche, J.: A type system for DNAQL. In: Ste-
fanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS, vol. 7433, pp. 12–24. Springer,
Heidelberg (2012)

4. Brijder, R., Gillis, J.J.M., Van den Bussche, J.: Graph-theoretic formalization of
hybridization in DNA sticker complexes. Natural Computing 12(2), 223–234 (2013)

5. Brijder, R., Gillis, J.J.M., Van den Bussche, J.: The DNA query language DNAQL.
In: Proceedings 16th International Conference on Database Theory. ACM Press
(2013)
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Malware Phylogenetics Based on the Multiview

Graphical Lasso

Blake Anderson1, Terran Lane2, and Curtis Hash1

1 Los Alamos National Laboratory
banderson@lanl.gov

2 Google, Inc.

Abstract. Malware phylogenetics has gained a lot of traction over the
past several years. More recently, researchers have begun looking at di-
rected acyclic graphs (DAG) to model the evolutionary relationships be-
tween samples of malware. Phylogenetic graphs offer analysts a better
understanding of how malware has evolved by clearly illustrating the lin-
eage of a given family. In this paper, we present a novel algorithm based
on graphical lasso. We extend graphical lasso to incorporate multiple
views, both static and dynamic, of malware. For each program family, a
convex combination of the views is found such that the objective func-
tion of graphical lasso is maximized. Learning the weights of each view
on a per-family basis, as opposed to treating all views as an extended
feature vector, is essential in the malware domain because different fam-
ilies employ different obfuscation strategies which limits the information
of different views. We demonstrate results on three malicious families
and two benign families where the ground truth is known.

Keywords: Gaussian Graphical Models, Malware, Multiview Learning.

1 Introduction

In addition to malware aimed at a more general audience, advanced persistent
threats (APT) are becoming a serious problem for many corporations and gov-
ernment agencies. APT typically involves malware that has been tailored to
accomplish a specific goal against a specific target. During the life cycle of APT
malware, the authors generally follow software engineering principles. This nat-
urally leads to a phylogenetic graph, a graph demonstrating the evolutionary
relationships between the different software versions.

When beginning the process of understanding a new, previously unseen sample
of malware, it is advantageous to leverage the information gained from reverse
engineering previously seen members of that instance’s family because techniques
learned from related instances can often be applied to a new program instance.
A malware family is a group of related malware instances which share a common
codebase and exhibit similar functionality (e.g. different branches in a software
repository). In this paper, we focus on extracting a more detailed picture about
the relationships between the malware instances within a given family.

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. An example of creating a phylogenetic graph for the bagle worm

Figure 1 exhibits the proposed output of the ideal phylogenetic algorithm.
This figure clearly shows the evolution of the bagle virus [15] as a directed
graph. The information presented in Figure 1 is invaluable for a reverse engineer
tasked with understanding specific instances within a malware family as well as
the general evolution of the family.

We describe a method based on the graphical lasso that finds a Gaussian
graphical model where the malware instances are represented as nodes, and the
evolutionary relationships are represented as edges. We present a novel exten-
sion to a standard algorithm that incorporates multiple views of the data. In our
algorithm, a convex combination of views, both static and dynamic, is learned
in order to maximize a multiview graphical lasso optimization problem. This is
an important distinction to make from previous work [13] because it allows our
algorithm to learn the importance of views while it is learning the phylogenetic
graph for a given family. The obfuscation strategies vary between different ma-
licious families, meaning an adaptive strategy would have an advantage because
the more reliable views are weighted more heavily.

2 Data

We begin this section by describing the six views of a program used in this paper.
We go on to explain how we represent these views, and finally introduce how
we measure similarity between different samples in our datasets. It is important
to note that the views described are not an exhaustive list, and the framework
presented in this paper can be easily extended to incorporate other views of a
program. The only restriction that must be met is that a positive-semidefinite
similarity (kernel) matrix must be defined on the view, a restriction that is easily
met in practice.
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2.1 Data Views

We take advantage of six different types of data with the aim of covering the most
popular data views that have been used for malware analysis in the literature.
We use three static, meaning the executable is not run, data views: the binary file
[17], the disassembled binary [4], and the control flow graph of the disassembled
binary [18]. We use two dynamic, meaning the data is collected while the program
is being executed, data views: the dynamic instruction trace [1] and the dynamic
system call trace [12]. Finally, we use a file information data view which contains
seven statistics that provide a summary of the previous data views. A more in-
depth description of the views used in this paper can be found in [2].

2.2 Markov Chain Data Representation

As an illustrative example, we focus on the dynamic trace data, although this
representation is suitable for any sequence-based data view. The dynamic trace
data are the instructions the program executes, typically in a virtual machine to
reduce the risk of contamination. Given an instruction trace P , we are interested
in finding a new representation, P ′, such that we can make unified comparisons in
graph space while still capturing the sequential nature of the data. We achieved
this by transforming the dynamic trace data into a Markov chain which is rep-
resented as a weighted, directed graph. A graph, G = 〈V,E〉, is composed of two
sets, V and E. The elements of V are called vertices and the elements of E are
called edges. In this representation, the edge weight, eij , between vertices i and
j corresponds to the transition probability from state i to state j in the Markov
chain, hence, the edge weights for edges originating at vi are required to sum to
1,
∑

i�j eij = 1. We use an n × n (n = |V |) adjacency matrix to represent the
graph, where each entry in the matrix, aij = eij [16].

The nodes of the graph are the instructions the program executes. To find
the edges of the graph, we first scan the instruction trace, keeping counts for
each pair of successive instructions. After filling in the adjacency matrix with
these values, we normalize the matrix such that all of the non-zero rows sum to
one. This process of estimating the transition probabilities ensures a well-formed
Markov chain. The constructed graphs approximate the pathways of execution
of the program, and, by using graph kernels (Section 2.3), the structure of these
pathways can be exploited.

The Markov chain graph can be summarized as G = 〈V,E〉, where

– V is the vertex set composed of unique instructions,
– E is the weighted edge set where the weights correspond to the transition

probabilities and are estimated from the data.

2.3 Measure of Similarity

Kernels [5,14] are used to make comparisons between the different views of a
program. A kernel, K(x,x′), is a generalized inner product and can be thought
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of as a measure of similarity between two objects [21]. A well-defined ker-
nel must satisfy two properties: it must be symmetric (for all x and y ∈ X :
K(x,y) = K(y,x)) and positive-semidefinite (for any x1, . . . , xn ∈ X and
c ∈ Rn:

∑n
i=1

∑n
j=1 cicjK(xi, xj) ≥ 0).

For the Markov chain representations and the file information feature vector,
we use a standard squared exponential kernel:

KSE(x,x
′) = σ2e−

1
2λ2

∑
i(xi−x′

i)
2

(1)

where xi represents one of the seven features for the file information data view,
or a transition probability for the Markov chain representations. σ and λ are the
hyperparameters of the kernel function.

For the control flow graph data view, we attempted to find a kernel that closely
matched previous work in the literature [18]. Although our approach does not
take the instruction information of the basic blocks into account, we selected the
graphlet kernel due to its computational efficiency. A k-graphlet is defined as a
subgraph of a graph G, with the number of nodes of the subgraph equal to k.
If fG is a a feature vector, where each feature is the number of times a unique
graphlet of size k occurs in G, the normalized probability vector is:

DG =
fG

# of all graphlets of size k in G
(2)

and the graphlet kernel is defined as:

Kg(G,G′) = DT
GDG′ (3)

3 Phylogenetic Graphs

Most malware phylogeny techniques in the literature rely on bifurcating tree-
based approaches [8,25]. These methods do not give ancestral relationships to
the data. We are interested in the problem of phylogenetic graph reconstruction
where the goal is to find a graph, G = 〈V,E〉. The vertices of the graph, V , are
the instances of malware and the edges of the graph, E, represent phylogenetic
relationships between the data such as “child of” or “parent of”.

The main advantage of this approach is that the graph explicitly states the
phylogenetic relationships between instances of malware. For a reverse engineer,
knowing that an instance of malware is similar to known malware, from the
same family for example, rapidly speeds up the reverse engineering process as
the analyst will have a general idea of the mechanisms used by the sample.
However, it is more informative to know the set of parents from which a given
sample’s functionality is derived. Having malware which is a composite of several
other samples is becoming more widespread as malware authors are beginning
to use standard software engineering practices, thus making the reuse of code
more prevalent.
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3.1 Overview of Graphical Lasso

The solution we propose is unsupervised and based on the graphical lasso (glasso)
[9], which estimates the phylogenetic graph by finding a sparse precision ma-
trix based on the combined kernel matrix. Glasso maximizes the Gaussian log-
likelihood with respect to the precision matrix, Θ = Σ−1, of the true covariance
(kernel) matrix, Σ:

max
Θ

{log(det(Θ)) − tr(KΘ) − ||Θ ◦ P ||1} (4)

where K is the sample covariance matrix, which in this case means the kernel
matrix for a given view of malware. || · ||1 is the classic L1 norm used in standard
lasso, P is a matrix penalizing specific edges of the precision matrix, and ◦ is
the Hadamard product. There have been several efficient algorithms developed
to solve Equation 4 that we take advantage of in this work [9].

By using the L1 penalty, a sparse graph that captures the conditional inde-
pendencies of the true covariance matrix is found. For instance, if there exists
three examples of malware with a direct lineage (xc is derived from xb, xb is
derived from xa), then the näıve approach of creating links between similar ex-
amples would create a completely connected graph between these samples. This
would not be unreasonable as they are all similar. The strength of glasso is that
it leverages the precision matrix to discover that xc and xa are conditionally
independent given xb, which would omit the edge between xc and xa.

3.2 Modifying Graphical Lasso for Multiple Views

Equation 4 solves the problem of finding a Gaussian graphical model for a single
view. The obfuscation techniques of malware make this an insufficient solution
as individual views can often be unreliable. Instead, Equation 4 is modified to
accommodate multiple views of the data (i.e., a convex combination of multiple
kernel matrices) with the following multiview problem:

max
Θ,β

{log(det(Θ)) − tr(

M∑
i=1

(βiKi)Θ) − ||Θ ◦ P ||1 − λ||β||2} (5)

where β is the mixing weights and λ is the regularization penalty on β.
Using the linearity of the trace function and rearranging terms:

min
Θ,β

{
M∑
i=1

βitr(KiΘ) − log(det(Θ)) + ||Θ ◦ P ||1 + λ||β||2} (6)

subject to
∑

i βi = 1 and ∀iβi ≥ 0.
The algorithm we employ is based on alternating projections, first finding the

optimal Θ while holding β fixed, and then finding the optimal β while holding Θ
fixed. As we mentioned previously, there are many efficient algorithms to solve
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Algorithm 1. Multiple View Graphical Lasso, iteratively finds optimal β and
Θ, return Θ

Require: initial β

score0 ← log(det(Θ))− tr
(∑M

i=1 (βiKi)Θ
)
− ||Θ ◦ P ||1

while scoret < scoret−1 do
ai = tr(KiΘ)
β ← min aTβ + 1

2
βTCβ

s.t. Gβ � h
K ←

∑M
i=1 βiKi

Θ ← maxΘ{log(det(Θ))− tr(KΘ) − ||Θ ◦ P ||1}
scoret ← log(det(Θ)) − tr

(∑M
i=1 (βiKi)Θ

)
− ||Θ ◦ P ||1

end while
return precision matrix, Θ

for the optimal Θ [9]. To solve for the optimal β assuming a fixed Θ, we first
note that −log(det(Θ)) + ||Θ ◦ P ||1 is independent of β and can therefore be
ignored in the optimization of β leaving us with:

min
β

{
M∑
i=1

βitr(KiΘ) + λ||β||2} (7)

If we let ai = tr(KiΘ), this problem can be stated as a quadratic program [6]
allowing for the use of many efficient algorithms:

min
β

aTβ +
1

2
βTCβ (8)

s.t. Gβ � h

where

G =

⎡⎢⎢⎢⎢⎢⎢⎣

−1 0 · · ·

0
. . . 0

... 0 −1
· · · 1 · · ·
· · · −1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎦ (9)

and
h = [0 1 − 1]T (10)

The top negative identity matrix of G and 0 vector in h enforce non-negative β’s
while the last two constraints force the β’s to sum to one. � is the componentwise
inequality. 1

2β
TCβ removes the incentive of having βi = 1, βj �=i = 0. In the case

of the degenerate solution, βi = 1, βj �=i = 0, this procedure reduces to a feature
selector basing all further optimizations on the best view. Intuitively, a more
robust solution would make use of all available information. We defend this
intuitive claim in Section 4.2. Algorithm 1 outlines the procedure for finding the
optimal precision matrix, Θ, when given multiple views of the data.
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Algorithm 2.Multiple View Graphical Lasso, iteratively finds optimal β and Θ,
returnΘ. Leverages cluster information to have different penalization throughout
the precision matrix.

Require: initial β
clusters, C ← multiview clustering algorithm [3]
for ck ∈ C do

ρ ← (
∑|ck|

i,j Ki,j)/|ck|2
Θk ←perform Algorithm 1 with penalization ρ on cluster ck

end for
K′ ← compute inter-cluster similarity matrix
ΘC ← perform Algorithm 1 with K′

return precision matrices, ΘC , Θk

3.3 Leveraging Clusters in Graphical Lasso

While Algorithm 1 solves Equation 6, we found that the uniform penalization of
the L1-norm led to an interesting phenomenon, namely, the resulting precision
matrix was globally sparse with a small subset of the nodes being highly con-
nected. This suggests that a uniform penalty is not appropriate for this problem.
Instead, a clustering pre-processing step is first used. Once similar versions of
the program are clustered together, penalizing the L1-norm uniformly within
that cluster becomes more appropriate.

Leveraging clusters in the multiview graphical lasso is straightforward. First,
the clusters, C = c1, . . . , cn, are found using a multiview clustering algorithm
[3]. Then, the multiview graphical lasso (Algorithm 1) is applied to each clus-

ter, adjusting the penalty term by using the heuristic, (
∑|ck|

i,j Ki,j)/|ck|2, which
effectively penalizes self-similar clusters more heavily, allowing those clusters to
be more sparse. Finally, we create a new set of similarity matrices, but instead of
measuring the similarity between different instances in the dataset, this similarity
matrix measures similarity between the different clusters. This matrix is created
by taking the average similarity between every x ∈ ci and y ∈ cj . Performing the
multiview glasso on these matrices finds the conditional independences between
the different clusters. Algorithm 2 details the procedure.

4 Evaluation

4.1 Datasets

To be able to accurately quantify our results, we must have access to ground
truth, i.e., the true phylogenetic graph of the program. As one can imagine,
determining the true phylogeny is a very difficult, time-consuming process. For-
tunately, it is made easier for some benign programs as their subversion or github
repositories can be used to gather this information. Unfortunately, malware au-
thors do not typically use these tools in an open setting, making the phylogenetic
graphs of malware much more difficult to obtain. To understand the evolution
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of a malware family, we elicited the help of several experts. These experts used
several sources of information to come up with an informed graph depicting the
evolution of malware, such as the time the malware was first seen in the wild,
the compile-time timestamp, the functionality of the sample, and the obfusca-
tion methods employed by the sample. While the phylogenetic graphs the domain
experts have manually found are by no means 100% accurate, they do provide
a reasonable baseline in a setting where ground truth is not available. We use
three malicious programs: Mytob, Koobface, and Bagle. Mytob is a mass-mailing
worm that seeks a user’s address book to then send itself to all of that user’s
contacts [24]. The Koobface worm spreads through social networking sites with
the intent of installing software for a botnet [23]. Bagle is another mass-mailing
worm that creates a botnet [22].

In addition to the malicious programs, we validate our methods on two benign
programs, NetworkMiner and Mineserver, due to the ground truth for these
graphs being more readily available. NetworkMiner is a network forensics anaylsis
tool specializing in packet sniffing and parsing PCAP files [20]. Mineserver is a
way to host worlds in the popular Minecraft game [19].

4.2 Results

Table 1 lists all of the results for the 5 datasets previously described with respect
to precision, recall, and F-norm. The Frobenius norm, or F-norm, is defined as

||A − B||F =
√∑

i

∑
j(Aij − Bij)2. Precision is defined to be the number of

true edges in the graph found divided by the number of total edges in the graph
found, and recall is defined to be the number of true edges in the graph found
divided by the number of true edges in the ground truth graph. We compare our
multiview glasso + clustering approach to our multiview glasso approach and
regular glasso for the best, single view and a uniform combination of views. We
also compare our approach to the Gupta algorithm [11] and a näıve baseline,
the minimum spanning tree.

As Table 1 demonstrates, the proposed method performs well on a variety of
datasets, both malicious and benign. The Gupta algorithm performs well with
respect to precision, and even out-performs our algorithm on the mineserver
dataset, but this is mainly because it finds sparser graphs, where precision will
naturally be higher. The mineserver dataset is interesting for two reasons: the
ground truth is known with absolute certainty, and merges and branches are
present. Both of these cases are present in most real-word software engineering
projects including malware. Figure 2 shows the ground truth as well as the
graph acquired with the multiview glasso + clustering method. As the figure
demonstrates, we were able to recover the majority of the branches and merges,
and can recover most of the evolutionary flow of the program.

4.3 Computational Complexity

The multiview graphical lasso algorithm is an iterative algorithm with two main
components. First, graphical lasso is solved given some fixed β vector. Graphical
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Table 1. Phylogenetic graph reconstruction results in terms of F-norm, Precision, and
Recall

Dataset Method F-norm Precision Recall

NetworkMiner

MKLGlasso+Clust 4.5826 .4857 .85
MKLGlasso 5.5678 .3514 .65
Glasso-Best View 6.0 .2895 .55
Glasso-Best View+Clust 5.3852 .3902 .80
Glasso-Uniform Comb 6.1644 .3043 .70
Glasso-Uniform Comb+Clust 5.0 .4360 .85
Gupta 5.0 .3810 .40
Minimum Spanning Tree 5.6569 .35 .70

MineServer

MKLGlasso+Clust 4.0 0.7222 0.8125
MKLGlasso 5.4772 0.5833 0.2188
Glasso-Best View 5.8242 0.4118 0.1935
Glasso-Best View+Clust 4.8134 0.4510 0.3871
Glasso-Uniform Comb 5.6711 0.4314 0.1875
Glasso-Uniform Comb+Clust 4.4655 0.4902 0.4194
Gupta 4.7958 0.8462 0.3438
Minimum Spanning Tree 7.4833 0.0 0.0

Bagle

MKLGlasso+Clust 5.7446 0.20 0.3333
MKLGlasso 9.5394 0.0964 0.125
Glasso-Best View 10.7731 0.0704 0.1176
Glasso-Best View+Clust 5.5813 0.1480 .0909
Glasso-Uniform Comb 10.2921 0.0812 0.0980
Glasso-Uniform Comb+Clust 9.6476 .1351 .1220
Gupta 6.5574 0.12 0.125
Minimum Spanning Tree 8.3667 0.0208 0.0417

Mytob

MKLGlasso+Clust 7.9373 0.1563 0.5263
MKLGlasso 8.5348 0.0988 0.2258
Glasso-Best View 8.7388 0.0864 0.1935
Glasso-Best View+Clust 8.2184 0.1282 0.2903
Glasso-Uniform Comb 10.2766 0.0617 0.1951
Glasso-Uniform Comb+Clust 8.8117 0.1081 0.2683
Gupta 6.0828 0.05 0.0526
Minimum Spanning Tree 7.2801 0.0526 0.1053

Koobface

MKLGlasso+Clust 5.2915 0.5812 0.5
MKLGlasso 5.3852 0.2917 0.3889
Glasso-Best View 6.8551 0.2391 0.3171
Glasso-Best View+Clust 6.0427 0.2821 0.3235
Glasso-Uniform Comb 6.6043 0.2195 0.2927
Glasso-Uniform Comb+Clust 5.9486 0.3023 0.3636
Gupta 5.9161 0.3158 0.3333
Minimum Spanning Tree 7.2111 0.0278 0.0556
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Fig. 2. Comparison between mineserver ground truth and the phylogenetic graph found

lasso has a computational complexity of O(n3) where n is the number of samples.
Next, β is updated with a quadratic program, which has a computational com-
plexity O(n3) where n is again the number of samples. This algorithm converged
within 15 iterations for all datasets.

The multiview clustering preprocessing step is an iterative algorithm. The
algorithm is composed of two main parts: computing the spectral clustering
objective function and computing a semidefinite program to find β. Finding the
new feature space can be done in O(	logn
n2) time where n is the number of
samples. Solving the semidefinite program has a computational complexity of
O(n6) in the worst case but has been shown to be O(n3) in the average case.
More details of this algorithm can be found in [3].

For a more concrete view, we looked at five different dataset sizes, [10, 50,
100, 500, 1,000]. The average times Algorithm 2 took, averaged over 10 runs,
were [0.29s, 1.06s, 1.16s, 31.75s, 238.33s]. These results were run on a machine
with a Intel Core i7-2640M CPU @ 2.80GHz with 8 GBs of memory.

5 Related Work

Within the malware literature, most of the work done has centered around cre-
ating phylogenetic trees. For instance, in [25], Wagener et al. create a similar-
ity matrix based on the system calls performed by the samples, and then use
an agglomerative hierarchical clustering method to find the phylogenetic tree.
Graph-pruning techniques have also been used [11] to find a tree. Gupta et al.
begin with a fully connected similarity graph and incoming edges that are below
a certain threshold are pruned for each node. All the remaining incoming edges
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are then pruned if their combined weight is less than some other predefined
threshold.

In [13], Jang et al. infer directed acyclic graph lineage by using a minimum
spanning tree algorithm with a post-processing step to allow nodes to have mul-
tiple parents. Jang et al. use a feature vector which combines both dynamic
and static views. Unlike the method presented in this paper, these features are
treated as a uniform vector, whereas we treat the feature sets as different views
and learn the weights of each view to maximize our objective function. Graphical
lasso also does not need a post-processing step to find multiple parents.

While there has not been any work done on a multiview graphical lasso that
finds a single precision matrix, there has been some work that uses transfer
learning [7,10]. In the problem posed by Danaher et al., the goal is to find several
Gaussian graphical models where the underlying data is drawn from related
distributions. The canonical example for this class of methods is learning gene
regulation networks for cancer and normal tissue. Both types of tissue share many
edges in the network so one would want to leverage all the data possible, but
these networks also have significant differences. This goal can be accomplished
by adding an additional L1 penalty to penalize the difference between the two
learned Gaussian graphical models.

Our proposed approach is different in that we find a single Gaussian graphical
model conditioned on multiple views of the data. The joint graphical lasso will
find multiple Gaussian graphical models, where a hyperparameter controls the
amount of transfer learning between the different models.

6 Conclusions

In this paper, we have presented a novel extension to graphical lasso, which
finds a weighted combination of views, both static and dynamic, to infer a phy-
logenetic graph for a family of programs. Finding a weighted combination of
views that optimizes phylogenetic reconstruction is advantageous because mal-
ware families use different obfuscation strategies rendering certain views more
reliable for different families. Our results show that we can efficiently find phy-
logenetic graphs, and that combining multiple views to maximize Equation 6
significantly increases performance compared to any single view as well as sev-
eral baselines such as minimum spanning trees.
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Abstract. The Ornstein-Uhlenbeck (OU) process is a well known conti-
nuous–time interpolation of the discrete–time autoregressive process of
order one, the AR(1). We propose a generalization of the OU process
that resembles the construction of autoregressive processes of higher or-
der p > 1 from the AR(1). The higher order OU processes thus obtained
are called Ornstein-Uhlenbeck processes of order p (denoted OU(p)), and
constitute a family of parsimonious models able to adjust slowly de-
caying covariances. We show that the OU(p) processes are contained
in the family of autoregressive moving averages of order (p, p − 1), the
ARMA(p, p−1), and that their parameters and covariances can be com-
puted efficiently. Experiments on real data show that the empirical auto-
correlation for large lags can be well modeled with OU(p) processes with
approximately half the number of parameters than ARMA processes.

1 Introduction

The Ornstein-Uhlenbeck process (from now on OU) was introduced by L. S.
Ornstein and E. G. Uhlenbeck [10] as a model for the velocities of a particle
subject to the collisions with surrounding molecules. It is a well studied and
accepted model for thermodynamics, chemical and other various stochastic pro-
cesses found in physics and the natural sciences. Moreover, the OU process is the
unique non-trivial stochastic process that is stationary, Markovian and Gaussian;
it is also mean-reverting, and for all these properties it has found its way into
financial engineering, first as a model for the term structure of interest rates in
a form due to [11], and then under other variants or generalizations (e.g. where
the underlying random noise is a Lévy process) as a model of financial time
series with applications to option pricing, portfolio optimization and risk theory,
among others (see [8] and references therein).
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The OU process can be thought of as continuous time interpolation of an
autoregressive process of order one (i.e. an AR(1) process). We make this point
clear in §2 and define OU in §3. Departing from this analogy, one can seek
to define and analyze the result of iterating the application of the operator
that maps a Wiener process onto an OU process, just as one iterates an AR
process, in order to obtain a higher order OU process. This operator is defined
in §4 and denoted OU , with subscripts denoting the parameters involved. The
p iterations of OU , for each positive integer p, give rise to a new family of
processes, theOrnstein-Uhlenbeck processes of order p, denoted OU(p), proposed
as models for either stationary continuous time processes or the series obtained
by observing these continuous processes at discrete instants, equally spaced or
not. We show in §5 that this higher order OU process can be expressed as a
linear combination of ordinary OU processes, and this allow us to derive a closed
formula for its covariance. This has important practical implications, as shown
in §7, since it allows to easily estimate the parameters of a OU(p) process by
maximum likelihood or, as an alternative, by matching correlations, the latter
being a procedure resembling the method of moments.

We give in §6 a state space model representation for the discrete version of
a OU(p), from which we can show that for p > 1, a OU(p) turns out to be
an ARMA(p, q), with q ≤ p − 1. Notwithstanding this structural similarity, the
family of discretized OU(p) processes is more parsimonious than the family of
ARMA(p, p − 1) processes, and we shall see empirically in §7 and §8 that it is
able to fit well the auto covariances for large lags. Hence, OU processes of higher
order appear as a new continuos model, competitive in a discrete time setting
with higher order autoregressive processes (AR or ARMA).

Related Work. The construction and estimation of continuous–time analogues
of discrete–time processes have been of interest for many years. More recently
there has been an upsurge in interest for continuous–time representations of
ARMA processes, due to their many financial applications. These models, known
as CARMA, have been developed by Brockwell and others (see [3], the survey[4],
and more recently [5]), from a state–space representation of a formal high order
stochastic differential equation, which is not physically realizable. We provide an
alternative constructive method to obtain continuous–time AR processes (CAR),
a particular case of the CARMA models, from repeated applications of an inte-
gral operator (the OU operator). This construction can be extended to apply to
a moving average of the noise as well, and hence provides a different approach
to the CARMA models, that can lead to further generalizations. Regarding the
estimation of our continuous AR model (the OU(p) process) from discretely ob-
served data, we use the state–space representation method as in [5], and derive
analogous results on their representability as discrete ARMA(p, p−1) processes.

All omitted details and proofs in this presentation can be found in an extended
version at [1].
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2 From AR(1) to Ornstein Uhlenbeck Processes

The simplest ARMA model is an AR(1): Xt = φXt−1 + σεt that can be written
as (1 − φB)Xt = σεt, where εt, t ∈ Z is a white noise, and B is the back-shift
operator that maps Xt onto BXt = Xt−1. If |φ| < 1, the processXt is stationary.
Equivalently, Xt can be written as Xt = σMA(1/ρ)εt, where MA(1/ρ) is the
moving average that maps εt onto MA(1/ρ)εt =

∑∞
j=0

1
ρj εt−j . The covariances

of Xt are γh = EXtXt+h = γ0/ρ
h, where γ0 = σ2/(1 − 1/ρ2).

There are many possible ways of defining a continuous time analogue xt,
t ∈ R, of AR(1) processes, for instance,

– by establishing that γ(h) = Ex(t)x(t + h) be γ0e
−κ|h|

– by replacing the measure W concentrated on the integers and defined by

W (A) =
∑

t∈A εt, that allows writing Xt =
∫ t+

−∞
1

ρt−s dW (s), by a measure

w on R, with stationary, i.i.d. increments and defining (with ρ = eκ):

x(t) =
∫ t

−∞ e−κ(t−s)dw(s) �(κ) > 0

Both ways lead to the same result: Ornstein-Uhlenbeck processes.

3 Ornstein-Uhlenbeck Processes

Let us denote by w a standard Wiener process, that is, a Gaussian, centered
process with independent increments with variance E(w(t) − w(s))2 = |t − s|.
We impose further (as usual) that w(0) = 0, but shall not limit the domain
of the parameter to R+ and assume that w(t) is defined for t in R. Then, an
Ornstein-Uhlenbeck process with parameters λ > 0, σ > 0 can be written as

ξλ,σ(t) = σ

∫ t

−∞
e−λ(t−s)dw(s) (1)

or, in differential form,

dξλ,σ(t) = −λξλ,σ dt+ σdw(t) (2)

We may think of ξλ,σ as the result of accumulating a random noise, with
reversion to the mean (that we assume to be 0) of exponential decay with rate
λ. The magnitude of the noise is given by σ.

4 Ornstein-Uhlenbeck Processes of Higher Order

We propose a construction of OU processes of order p > 1, obtained by a pro-
cedure that resembles the one that allows to build an autoregressive process of
order p, AR(p), from an AR(1). We will see that the resulting higher order pro-
cess is a parsimonious model, with few parameters, that is able to adjust slowly
decaying covariances. The AR(p) process
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Xt =

p∑
j=1

φjXt−j + σεt or φ(B)Xt = σεt,

where φ(z) = 1−
p∑

j=1

φjz
j =

p∏
j=1

(1−z/ρj) has roots ρj = eκj , can be obtained by

applying the composition of the moving averages MA(1/ρj) to the noise. Thus,

Xt = σ

p∏
j=1

MA(1/ρj)εt

Let us denote MAκ = MA(e−κ). A continuous version of the operator MAκ,

that maps εt onto MAκεt =
∑

l≤t,integer

e−κ(t−l)εl, is the Ornstein–Uhlenbeck op-

erator OUκ that maps y(t) onto

OUκy(t) =

∫ t

−∞
e−κ(t−s)dy(s)

and this suggests the use of the model OU(p), Ornstein–Uhlenbeck process:

xκ,σ(t) = σ

p∏
j=1

OUκjw(t), (3)

with parameters κ = (κ1, . . . , κp), and σ.

5 OU(p) as a Superposition of OU(1)

Theorem 1. The Ornstein-Uhlenbeck process with parameters κ=(κ1,. . ., κp),
σ, xκ,σ =

∏p
j=1 OUκj (σw), can be written as a linear combination of p processes

of order 1.

(i) When the components of κ are pairwise different, the linear expression has
the form:

xκ,σ =

p∑
j=1

Kj(κ)ξκj , ξκj (t) = σ

∫ t

−∞
e−κj(t−s)dw(s). (4)

and the coefficients Kj(κ) =
1∏

κl �=κj
(1−κl/κj)

.

(ii) When κ has components κh repeated ph times (h = 1, . . . , q,
∑q

h=1 ph = p)
the linear combination is:

xκ,σ =

q∑
h=1

Kh(κ)

ph−1∑
j=0

(
ph−1

j

)
ξ
(j)
κh

ξ(j)κh
(t) = σ

∫ t

−∞
e−κh(t−s) (−κh(t − s))j

j!
dw(s)
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The autocovariances of xκ,σ can be directly computed from this linear expres-
sion. In the case of κ having repeated components, the autocovariances are

γκ,σ(t)=

q∑
h′=1

ph′−1∑
i′=0

q∑
h′′=1

ph′′−1∑
i′′=0

Kh′(κ)K̄h′′(κ)
(
ph′−1

i′
)(

ph′′−1
i′′
)
γ
(i′,i′′)
κh′ ,κh′′ ,σ(t)

γ(i1,i2)
κ1,κ2,σ(t) = Eξ(i1)κ1

(t)ξ
(i2)
κ2 (0)

= σ2(−κ1)
i1(−κ̄2)

i2

∫ 0

−∞
e−κ1(t−s) (t − s)i1

i1!
e−κ̄2(−s) (−s)i2

i2!
ds,

and when the components of κ are pairwise different, the covariances can be

written as γκ,σ(t)=
∑p

h′=1

∑p
h′′=1 Kh′(κ)K̄h′′(κ)γ

(0,0)
κh′ ,κh′′ ,σ(t).

These formulas allow the computation of the covariances of the series obtained
by sampling the OU(p) process at discrete times (equally spaced or not).

6 A State Space Representation of the OU(p) Process

The decomposition of the OU(p) process xκ,σ(t) as a linear combination of sim-
pler processes of order 1 (Thm. 1), leads to an expression of the process by means
of a state space model. This provides a unified approach for computing the like-
lihood of xκ,σ(t) through a Kalman filter. Moreover, it can be used to show that
xκ,σ(t) is an ARMA(p, p − 1) whose coefficients can be computed from κ. In
order to ease notation, we consider that the components of κ are all different.

The decomposition of xκ,σ(t) in (4) as a linear combination of the OU(1)
processes

ξκj (t) = σ

∫ t

−∞
e−κj(t−s)dw(s) = σe−κjξκj (t − 1) + σ

∫ t

t−1

e−κj(t−s)dw(s)

with innovations ηκ with components ηκj (t) = σ
∫ t

t−1
e−κj(t−s)dw(s) provides a

representation of the OU(p) process in the space of states ξκ = (ξκ1 , . . . , ξκp)
tr,

as a VARMA model (this follows from Corollary 11.1.2 of [7]).
The transitions in the state space are

ξκ(t) = diag(e−κ1 , . . . , e−κp)ξκ(t − 1) + ηκ(t),

and
x(t) = Ktr(κ)ξ(t)

The innovations have variance matrix Var(ηκ,τ (t)) = ((vj,l)), where vj,l =

σ2E
∫ t

t−1 e
−(κj+κ̄l)(t−s)ds = 1−e−(κj+κ̄l)

κj+κ̄l
.

Now apply the AR operator
∏p

j=1(1 − e−κjB) to xκ and obtain

p∏
j=1

(1 − e−κjB)xκ(t) = σ

p∑
j=1

KjGj(B)ηκj (t) =: ζ(t),

with Gj(z) =
∏

l �=j(1 − e−κjz) := 1 −
∑p−1

l=1 gj,lz
l.
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This process has the same second-order moments as the ARMA(p, p − 1),∏p
j=1(1 − e−κjB)xκ(t) =

∑p−1
j=0 θjε(t − j) =: ζ′(t) (ε is a white noise), when

the covariances cj = Eζ(t)ζ̄(t − j) and c′j = Eζ′(t)ζ̄′(t − j) coincide.
The covariances cj and c′j are given respectively by the generating functions(∑p−1
h=0 θhz

h
)(∑p−1

k=0 θ̄kz
−h
)
=
∑p−1

l=−p+1 clz
l and

J(z) :=

p∑
j=1

p∑
l=1

KjK̄lGj(z)Ḡl(1/z)vj,l =

p−1∑
l=−p+1

c′lz
l.

Since J(z) can be computed once κ is known, the coefficients θ = (θ0, θ1, . . . ,
θp−1) are obtained by identifying the coefficients of the polynomials zp−1J(z)

and zp−1
(∑p−1

h=0 θhz
h
)(∑p−1

k=0 θ̄kz
−h
)
.

A state space representation

ξ(t) = Aξ(t − 1) + η(t)

x(t) = Ktrξ(t)

and its implications on the covariances of the OU process in the general case
are slightly more complicated. When κ1, . . . , κq are all different, p1, . . . , pq are
positive integers,

∑q
h=1 ph = p and κ is a p-vector with ph repeated components

equal to κh, the OU(p) process xκ is a linear function of the state space vector

(ξ(0)κ1
, ξ(1)κ1

, . . . , ξ(p1−1)
κ1

, . . . , ξ(0)κq
, ξ(1)κq

, . . . , ξ(pq−1)
κq

)tr

and the transition equation is no longer expressed by a diagonal matrix. We omit
the details in this presentation, and note again that these are found in [1].

7 Estimation of the Parameters κ and σ of OU(p)
Process

Though γ(t) depends continuously on κ, the same does not happen with each
term in the expression for the covariance, because of the lack of boundedness
of the coefficients of the linear combination when two different values of the
components of κ approach each other.

Since we wish to consider real processes x and the process itself and its covari-
ance γ(t) depend only of the unordered set of the components of κ, we shall repa-
rameterise the process. With the notation Kj,i =

1
(−κj)i

∏
l �=j(1−κl/κj)

(in partic-

ular,Kj,0 is the same as Kj), the processes xi(t) =
∑p

j=1 Kj,iξj(t) and the coeffi-

cients φ = (φ1, . . . , φp) of the polynomial g(z) =
∏p

j=1(1+κjz) = 1−
∑p

j=1 φjz
j

satisfy
∑p

i=1 φixi(t) = x(t). Therefore, the new parameter φ = (φ1, . . . , φp) ∈
Rp shall be adopted.
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7.1 Matching Correlations

From the closed formula for the covariance γ and the relationship between κ and
φ, we have a mapping (φ, σ2) → γ(t), for each t. Since ρ(T ) := (ρ(1), . . . , ρ(T ))tr

= (γ(1), . . . , γ(T ))tr/γ(0) does not depend on σ2, these equations determine a
map C : (φ, T ) → ρ(T ) = C(φ, T ), for each T . After choosing a value of T and

obtaining an estimate ρ
(T )
e of ρ(T ) based on x, we propose as a first estimate

of φ, the vector φ̌T such that all the components of the corresponding κ have

positive real parts, and such that the euclidean norm ‖ρ(T )
e − C(φ̌T , T )‖ reaches

its minimum, that is, a procedure that resembles the method of moments.
In our experiments we arbitrarily set the value of T to be the integral part of

0.9 × n, where n is the number of observations. This is in fact an upper bound
value since, as we have observed, the graphs of φ̌T for several values of T show
in each case, that after T exceeds a moderate threshold, the estimates remain
practically constant.

7.2 Maximum Likelihood Estimation of the Parameters of OU(p)

From the observations {μ + x(i) : i = 1, . . . , n}, obtain the likelihood L of the
vector x = (x(1)), . . . , x(n)):

logL(x;φ, σ) = −n
2 log(2π) − 1

2 log(det(V (φ, σ)) − 1
2x

tr(V (φ, σ))−1x
with V (φ, σ) equal to the n × n matrix with components Vh,i = γ(|h − i|)
(h, i = 0, . . . , n), that reduce to γ(0) at the diagonal, γ(1) at the 1st sub and super

diagonals, etc. Obtain via numerical optimization the MLE φ̂ of φ and σ̂2 of σ2.
The estimator obtained from Matching Correlations can be used as an initial
iterate. The estimations κ̂ follow by solving

∏p
j=1(1 + κ̂jz) = 1 −

∑p
j=1 φ̂jz

j .

7.3 Some Simulations

We have simulated various series from OU(p) for different values of p and com-
binations of κ (real and complex, with repeated roots, etc.). These experiments
have shown that the correlations of the series with the estimated parameters,
either applying MC or ML, are fairly adapted to each other and to the empirical
correlations. Here is one example.

Example 1. A series (xi)i=0,1,...,n of n = 300 observations of the OUκ process
x (p = 3, κ = (0.9, 0.2 + 0.4ı, 0.2 − 0.4ı), σ2 = 1) was simulated, and the
parameters β = (−1.30, −0.56, −0.18) and σ2 = 1 were estimated by means of

β̌T = (−1.9245, −0.6678, −0.3221), T = 270, β̂ = (−1.3546, −0.6707, −0.2355)
and σ̂2 = 0.8958. The corresponding estimators for κ are κ̌ = (1.6368, 0.1439
+0.4196ı, 0.14389 −0.4196ı) and κ̂ = (0.9001, 0.2273+0.4582ı, 0.2273−0.4582ı).
Figure 1 describes the theoretical, empirical and estimated covariances of x for
different lags under the assumption p = 3, the actual order of x. The results
obtained when the estimation is performed for p = 2 and p = 4 are also shown.
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Fig. 1. Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted
OU models, for p = 3, 2 and 4, corresponding to Example 1. The covariances of OUκ

are indicated with a dotted line.

8 Applications to Real Data

We present two experimental results on sets of real data. The first data set is
“Series A” from [2], and correspond to equally spaced observations of continuous
time processes that can be assumed to be stationary. The second one is a series
obtained by choosing one in every 100 terms of a high frequency recording of
oxygen saturation in blood of a newborn child1.

1 The data were obtained by a team of researchers of Pereira Rossell Children Hospital
in Montevideo, Uruguay, integrated by L. Chiapella, A. Criado and C. Scavone. Their
permission to analyze the data is gratefully acknowledged by the authors.
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Fig. 2. Empirical covariances (◦) and covariances of the ML (—) fitted models
ARMA(1,1) and AR(7) for Series A

8.1 Box, Jenkins and Reinsel “Series A”

The Series A is a record of n = 197 chemical process concentration readings,
taken every two hours, introduced with that name and analyzed in [2, Ch. 4].
The authors suggest an ARMA(1,1) as a model for this data, and subsets of
AR(7) are proposed in [6] and [9]. Figure 2 shows that these models fit fairly
well the autocovariances for small lags, but fail to capture the structure of au-
tocorrelations for large lags present in the series. On the other hand, the ap-
proximations obtained with the OU(3) process reflects both the short and long
dependences, as shown in Figure 3.

The parameters of the OU(3) fitted by maximum likelihood for Series A are

κ̂ = (0.8293, 0.0018+ 0.0330i, 0.0018− 0.0330i) and σ̂ = 0.4401

The corresponding ARMA(3,2) is

(1 − 2.4316B + 1.8670B2 − 0.4348B3)x = 0.4401(1 − 1.9675B + 0.9685B2)ε

On the other hand, the ARMA(3,2) fitted by maximum likelihood is

(1 − 0.7945B − 0.3145B2 + 0.1553B3)x = 0.3101(1 − 0.4269B − 0.2959B2)ε.

The Akaike Information Criterion (AIC) of the parsimonious OU model is
8−2�′′ = 109.90, slightly better than the AIC of the unrestricted ARMA model,
equal to 12 − 2�′ = 110.46. Finally we show in Figure 4 the predicted values of
the continuous parameter process x(t), for t between n − 7 and n+4 (190-201),
obtained as the best linear predictions based on the last 90 observed values, and
on the correlations given by the fitted OU(3) model. The upper and lower lines
are 2σ-confidence limits for each value of the process.
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Fig. 3. Empirical covari-
ances, and covariances
of the ARMA(3,2) and
OU(3) fitted by maximum
likelihood

Fig. 4. Confidence bands
for interpolated and ex-
trapolated values of Series
A for continuous domain
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lag lag lag

Fig. 5. Empirical covariances (◦) and covariances of the MC (—) and ML (- - -) fitted
OU(p) models for p = 2, 3, 4 corresponding to the series of O2 saturation in blood

8.2 Oxygen Saturation in Blood

The oxygen saturation in blood of a newborn child has been monitored during
seventeen hours, and measures taken every two seconds. We assume that a series
x0, x1, . . . , x304 of measures taken at intervals of 200 seconds is observed, and fit
OU processes of orders p = 2, 3, 4 to that series. Again the empirical covariances
of the series and the covariances of the fitted OU(p) models for p = 2, p =
3 and p = 4 are plotted (see Figure 5) and the estimated interpolation and
extrapolation, by using the estimated OU(3), are shown in Figure 6. In the
present case, the actual values of the series for integer multiples of 1/100 of the
unit measure of 200 seconds are known, and plotted in the same figure.

Fig. 6. Partial graph
showing the five last
values of the series of
O2 saturation in blood
at integer multiples of
the 200 seconds unit of
time (◦), interpolated and
extrapolated predictions
(—), 2σ confidence bands
(- - -), and actual values
of the series
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9 Conclusions

We have proposed a family of continuous time stationary processes, OU(p), for
each positive integer p, based on p iterations of the linear operator that maps
a Wiener process onto an Ornstein-Uhlenbeck process. A nice property of these
operators is that their p-compositions decompose as a linear combination of
simple operators of the same kind (Theorem 1). We remark that this result
holds also if w is replaced by any finite variance Lévy process, and it gives a
different (constructive) method to obtain the CARMA models defined in [3].

An OU(p) process depends on p+ 1 parameters that can be easily estimated
by either maximum likelihood (ML) or matching correlations (MC) procedures.
Matching correlation estimators provide a fair estimation of the covariances of
the data, even if the model is not well specified. When sampled on equally spaced
instants, the OU(p) family can be written as a discrete time state space model,
and as it turns out, the families of OU(p) models constitute a parsimonious
subfamily of the ARMA(p, p − 1) processes. Furthermore, the coefficients of the
ARMA can be deduced from those of the corresponding OU(p).

We have shown examples for which the ML-estimated OU model is able to
capture a long term dependence that the ML-estimated ARMA model does not
show. This leads to recommend the inclusion of OU models as candidates to
represent stationary series to the users interested in such kind of dependence.
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Abstract. Software module clustering is the problem of automatically partitioning 
the structure of a software system using low-level dependencies in the source code 
to understand and improve the system's architecture. Munch, a clustering tool 
based on search-based software engineering techniques, was used to modularise a 
unique dataset of sequential source code software versions. This paper employs a 
seeding technique, based on results from previous modularisations, to improve the 
effectiveness and efficiency of the procedure. In order to reduce the running time 
further, a statistic for controlling the number of iterations of the modularisation 
based on the similarities between time adjacent graphs is introduced. We examine 
the convergence of the heuristic search technique and estimate and evaluate a 
number of stopping criterion. The paper reports the results of extensive experi-
ments conducted on our comprehensive time-series dataset and provides evidence 
to support our proposed techniques. 

Keywords: Software module clustering, modularisation, SBSE, seeding, time-
series, fitness function. 

1 Introduction 

Large software systems tend to have complex structures that are often difficult to 
comprehend due to the large number of modules and inter-relationships that exist 
between them. As the modular structure of a software system tends to decay over 
time, it is important to modularise. Modularisation can facilitate program understand-
ing and makes the problem at hand easier to understand, as it reduces the amount of 
data needed by developers [7]. Modularisation is the process of partitioning the struc-
ture of software system into subsystems. Subsystems group together related source-
level components and can be organised hierarchically to allow developers to navigate 
through the system at various levels of details; they include resources such as mod-
ules, classes and other subsystems [7]. 

Directed graphs can be used to make the software structure of complex systems 
more comprehensible [16]. They can be described as language-independent, whereby 
components such as classes or subroutines of a system are represented as nodes and 
the inter-relationships between the components represented as edges. Such graphs are 
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referred to as Module Dependency Graph (MDG). Creating an MDG of the system 
does not make it easy to understand the system's structure; graphs could be partitioned 
to make them more accessible and easier to comprehend. Dependence information 
from system source code is used as input information. A file is considered as a mod-
ule and the reference relationship between files is considered to be a relationship. 
Mancoridis et al. [12] were the first to use MDG as a representation of the software 
module clustering problem.  

For various search algorithms [15], search-based software engineering has been 
shown to be highly robust. There have been a large number of studies [8] [9] [10] [13] 
[17] using the search-based software engineering approach to solve the software 
module-clustering problem. In previous studies, techniques that treat clustering as an 
optimisation problem were introduced. A number of various heuristic search tech-
niques, including Hill Climbing were used to explore the large solution space of all 
possible partitions of an MDG. 

In addition, there are a number of other alternative approaches for improving the 
efficiency and convergence of relatively sparse matrices [5]. However, some of these 
methods are specifically adapted to very sparse matrices and it is not guaranteed that 
the MDG will be of a particular sparseness. On the contrary, we are using a general 
purpose method that is more adaptable. 

This paper introduces strategies to modularise source code check-ins, taking ad-
vantage of the fact that the dataset is time-series based. The nearer the source code in 
time, the more similar it is expected to be, and also the more similar the modularisa-
tion is expected to be. This paper extends [2] and [3] that introduced the seeding tech-
nique to improve the effectiveness and efficiency of the modularisation procedure. 
For this paper, we introduce a statistic for controlling the number of iterations of the 
modularisation based on similarities between time adjacent graphs. We aim to reduce 
the running time of the process by estimating and evaluating a number of stopping 
criterion.  

The paper is organised as follows: Section 2 and 3 describe the experimental meth-
ods and highlight the creation and pre-processing of the source data. Section 4 ex-
plains the move operator and its implications. Section 5 and 6, respectively describes 
the experimental procedure and discusses the results. Finally, Section 7 draws conclu-
sions and outlines future work of the project. 

2 Experimental Methods 

2.1 Clustering Algorithm 

This work extends that of Arzoky et al. [2] and [3] and, follows Mancoridis et al., and 
Mitchell [12] [16], who first introduced search-based approach to software modulari-
sation. The clustering algorithm was re-implemented from available literature on 
Bunch’s clustering algorithm [12] to form a tool called Munch. Munch is a prototype 
implemented to carry out experimentations of different heuristic search approaches 
and fitness functions. Munch’s uses an MDG as an input and produces a hierarchical 
decomposition of the system structure as an output. Closely related modules are 
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grouped into clusters which are loosely connected to other clusters. A cluster is a set 
of the modules in each partition of the clustering. 

The aim is to produce a graph partition which minimises coupling between clusters 
and maximises cohesion within each cluster. Coupling is defined as the degree of 
dependence between different modules or classes in a system, whereas cohesion is the 
internal strength of a module or class [18]. 

The clustering algorithm uses a simple random mutation Hill Climbing approach 
[15] to guide the search; refer to Algorithm 1 for the pseudo code. It is a simple,  
easy to implement technique that has proven to be useful and robust in terms of 
modularisation [16].  

 
Algorithm 1. MUNCH(ITER,M) 
Input: ITER- the number of iterations (runs),  
M - An MDG 
1) Let C be a random (or specified - for seeded) 
    clustering arrangement 
2) Let F = Fitness Function  
3) For i = 1 to ITER (number of iterations) 

4)    Choose two random clusters X and Y (X≠Y) 
5)    Move a random variable from cluster X to Y 
6)    Let F’= Fitness Function 
7)    If F’ is worse than F Then 
8)       Undo move 
9)    Else 
10)       Let F = F’ 
11)    End If 
12) End For 
Output: C - a modularisation of M 

2.2 Fitness Function 

A fitness function is used to measure the relative quality of the decomposed structure 
of system into subsystems (clusters). In our previous work, we experimented with two 
fitness functions: the Modularisation Quality (MQ) metric of Mancoridis et al [12], 
and the EValuation Metric (EVM) of Tucker et al [19]. We also introduced EValua-
tion Metric Difference (EVMD), a faster version of EVM. EVMD was selected for 
the modularisations as it is more robust than MQ and faster than EVM [3]. 

For the following formal definition of EVM, a clustering arrangement C of n items 
is defined as a set of sets {c1, . . . , cm}, where each set (cluster) ci ⊆ {1,…,n} such 
that ci ≠ φ and ci ∩ cj = φ for all i ≠ j. Note that 1 ≤ m ≤ n and n > 0. Note also that 


m

i
i nc

1

}.,...,1{
=

=  Let MDG M be an n by n matrix, where a ‘1’ at row i and column 

j (Mij) indicates a relationship between variable i and j, and ‘0’ indicates that there is 
no relationship. Let cij refer to the jth element of the ith cluster of C. The score for clus-
ter ci is defined in Equation 2. 
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The objective of these heuristic searches is to maximise the fitness function. EVM 

has a global optimum which corresponds to all modules in a single cluster, where 
modules are all related to each other. The theoretical maximum possible value for 
EVM is the total number of links (relationships) in the graph, whereas the minimum 
value is simply the negative of the total number of links. EVM rewards maximising 
the cohesiveness of the clusters (presence of intra-module relationships), but it does 
not directly penalise inter-clustering coupling. In other words, it searches for all pos-
sible relationships within a cluster and rewards those that exist within the MDG and 
penalises those that do not exist within the MDG [12].  

To speed up the process of the modularisation, EVMD was defined. It utilises an 
update formula on the assumption that one small change is being made between clus-
ters. It is a faster way of evaluating EVM, where the previous fitness is known and the 
current fitness is calculated, without having to do the move. It produces the same 
results as EVM, but reduces the computational operations from O(n√n) to O(√n). For 
the formal definition of the EVMD we refer the reader to [3]. From this point forward 
EVM will be used when referring to the EVMD metric. 

2.3 HS Metric 

Homogeneity and Separation (HS) is an external coupling metric defined to measure 
the quality of the modularisation. HS is based on the Coupling Between Objects 
(CBO) metric, first introduced by Chidamber and Kemerer [6]. CBO (for a class) is 
defined as the count of the number of other classes to which it is coupled. It is based 
on the concept that if one object acts on another, then there is coupling between the 
two objects. Since the properties between objects of the same class are the same, the 
two classes are coupled when methods of one class use the methods defined by the 
other [6]. HS is a simple and intuitive coupling metric which calculates the ratio of 
the proportion of internal and external edges. HS is calculated by subtracting the 
number of links within clusters from the number of links that are between clusters, 
and then dividing the answer by the total number of links (to normalise it). The more 
links between the clusters the worse the modularisation, as only internal links are 
modularised (and not external ones). A value of +1 is returned if all the links are 
within the modules, a value of −1 is returned if all links are external coupling, and 0 is 
produced if there is an equal number. For the formal mathematical definition of the 
HS metric we refer the reader to [2]. 
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3 Experimental Design 

3.1 Data Creation 

The large dataset used for this paper is from processed source code of an award win-
ning product line architecture library, provided by Quantel. Quantel is one of the 
world’s leading developers of high performance content creation and delivery systems 
across television and film post production. The dataset consists of information about 
different versions of a software system over time. The data source for this project is 
from processed source code of an award winning product line architecture library that 
has delivered over 15 distinct products. The entire code base currently runs to over 12 
million lines of C++. The subset we are analysing for this paper is over 0.5 million 
lines of C++ code collected over the period 17/10/2000 to 03/02/2005, with 503 ver-
sions in total. There are roughly 2-3 days’ gaps between each check-in, giving a total 
timespan of 4 years and 4 months for the full dataset [4]. 

Table 1. Class Relation Types 

Class relationship Description 

Attributes Data members in a class 
Bases Immediate base classes 
Inners Any type declared inside the scope of a class  
Parameters Parameters to member functions of a class 
Returns Return from member functions of a class 

 
A total of 6120 classes exist in the system; however, not all classes exist at the same 

time slice; there are between 434 and 2272 classes that exist at any particular point in 
time, referred to as “active” classes. The dataset consists of five time-series of un-
weighted (binary) graphs. For this paper, graphs of the five types of relationship were 
merged together to form the ‘whole system’ for particular time slices. The relationship 
of how each graph represented between classes is shown in Table 1. Furthermore, the 
MDGs were significantly reduced. All modules that were not produced by Quantel and 
were not active at the time slice were removed. This has reduced the size of the graphs 
and the running time of the modularisation considerably. There are now between 194 
and 1164 active classes at any one point, refer to Fig. 1. From the plot it can be ob-
served that the number of active classes increases throughout the project.  

3.2 Absolute Value Difference (AVD) 

From experimentations conducted in [2] and [3] we predicted and showed that be-
tween each software version there were no significant changes to the source code that 
made two successive versions very different (for seeding not to be possible). We pro-
duced a set of results showing the similarity between the graphs. Equation 4 shows 
how the AVD was calculated for each graph, where X and Y are two n by n binary 
matrices (MDGs). An AVD value of 0 indicates that two matrices are identical, 
whereas a large positive value indicates that they are different. A value between 0 and 
a large number gives a degree of similarity. Fig. 2 shows the AVDs of the full dataset.  



30 M. Arzoky et al. 

 

Fig. 1. Active classes at 
check-in 

4 Modelling the M

For the following section, l
mal clustering arrangement
ment, E1 be the optimal EV
difference of 1 between two
Assume that E1 is the optim
and also that the data is of s
estimate and assume that th
hypothesise that only one m

When an edge is added o
tween two different cluster
bilities that would result in
Table 2.  

If an edge is added to th
cremented by one. But, if a
be decremented by one, the
an edge is deleted between
cause EVM only looks at in
the other hand, if they are i
does not change or the best 
we assume that the size of 
√n, this indicates that EVM

Table 2 shows the chang
fitness. From the table it ca
the correct variable and pla
ence in the MDG, which w
we compute the probabilit
attempts in a Hill Climb. 

                 

each software Fig. 2. Plot showing the AVDs of the fu
dataset 

Move Operator   

let MDG1 and MDG2 be an n by n matrix, G1 be the o
t, M1 be the MDG associated with the clustering arran
VM for MDG1 and E2 be the optimal EVM for MDG2

o MDGs indicates that one edge is being added or dele
mal EVM applied to M1 and G1 associated modularisati
solid and dense clusters. In addition, from the literature
he size and the number of clusters is √n [14]. Finally, 

move is needed to make the fitness function change.  
or deleted, the difference in MDG is either going to be 
rs or between the same cluster. Thus, there are four po
n a fitness change and thus impact the EVM value, refe

he same cluster then the fitness function, EVM, will be
an edge was deleted from the same cluster, then EVM w
e edge will no longer be there and thus will be penalised
n two different clusters, EVM will not change. This is 
ntra-clusters - there is no penalisation between clusters. 
in different clusters and an edge is added, either the EV
EVM is attained by moving the variable into the cluster
the first cluster is √n and the size of the second cluste

M will be incremented by one.  
ge to EVM, where E1 is the old fitness and E2 is the n
an be seen that the worst case scenario involves choos
acing it in the correct cluster, to account for the one dif
will be the probable one difference in the EVM. Thus, n
ty of a move occurring, which is linked to the iterati

(4)

 

ull 

opti-
nge-
2. A 
ted. 
ion, 

e we 
we 

be-
ossi-
er to 

e in-
will 
d. If 
be-
On 

VM 
r. If 

er is 

new 
sing 
ffer-
now 
ions 



 An Approach to Controlling the Runtime for Search Based Modularisation 31 

 

Table 2. Implications of a move 

 Same cluster Different clusters 
Add edge E2 = E1 + 1 E2 = E1    OR   E2 = E1 + 

1 
Delete edge E2 = E1 −1 E2 = E1 

 
For each one difference between the MDGs, the correct variable needs to be se-

lected. Normally, if a wrong move is made, there would either be no effect on the fit-
ness or the fitness would be decremented by one. However, since we are using a Hill 
Climbing algorithm, if a wrong move is made a worst fitness would not be accepted. 

Let n be the number of variables (classes) in an MDG. Let d be the AVD between 
two MDGs, and T be the number of iterations we are running the process for. There is 
a 1 in n chance of selecting the right variable, and to move it to the correct cluster 
there are √n clusters. There are n variables to choose from and they can be moved to 
√n-1 clusters, as one cluster can be ruled out and that is the cluster it originated from. 

 
Assume that Pr(correct move) = P = 1/(n√n), Let Q = 1-P             
The chance a single move occurs after T iterations is as follows: 

    2)3Pr(,)2Pr(,)1Pr( PQTPQTPT ======  ... 1)Pr( −== iPQiT  

If we have d moves to make, then the probability that all of the d moves are made 
after T iterations of the Hill Climbing algorithms is: 

Pr(All d moves after T iterations) = (1-QT)d 

Let us assume that there is some acceptable level of confidence α that all the 
moves have been made, then we wish to compute a T for which this might happen: 
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5 Experimental Procedure   

Two experiments that modularise the dataset were designed for this paper. The main 
difference between the experiments is the number of iterations they run for and their 
starting clustering arrangements; otherwise it is the same program. The two experi-
ments were repeated 25 times each as Hill Climb is a stochastic method and there is a 
risk of the search reaching only the local maxima and thus produce varying results. 

For experiment 1 (C), we modularised the dataset for 10 million iterations each. 
The starting clustering arrangement consisted of every variable in its own cluster. It 
assumes that all classes are independent; there are no relationships. 

For experiment 2 (S), we modularised the dataset using results of the previous clus-
tering arrangement from C. Instead of creating a random starting arrangement for the 
modularisation, the clustering arrangement of the preceding graph (produced from C) 
was used to give it a head start. For experiment 2, we selected a number of strategies 
to try to estimate the stopping conditions and find the minimal runtime needed for the 
process, they are: 
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Strategy 1 - The number of iterations for this strategy was fixed at 100,000 itera-
tions, representing 1 per cent of the full run, apart from the first graph which was run 
for 10 million iterations. 

Strategy 2 - The number of iterations for this strategy varied depending on the 
similarity between graphs. The AVD was calculated for all graphs and was used as a 
scalar for calculating the number of iterations. The more similar two successive 
graphs (low AVD), the less runs needed; and the more different they are (high AVD), 
the higher the number of iterations needed. The following equation was used for cal-
culating the number of iterations of each graph: ITER = AVD X 8000. 

Strategy 3 - is an estimate based on the probability of making the right move, 
computed using Equation (5). Several acceptable level of confidence values that rep-
resent the likelihood of obtaining the correct answer were selected; they were, T1 - 
99%, T2 - 95%, T3 - 90% and T4 - 70%. 

The convergence points of the 3 strategies (6 policies above) were computed and 
the maximum of these at each time slice was calculated. Convergence point can be 
defined as the earliest point in the iterations of the heuristic search of when the fitness 
function no longer increases until the end of the run. An extra 5% of the estimated 
number of iterations was added to the iterations of all graphs, for each of the 6 poli-
cies. Results produced were used to run Experiment 2; graphs were modularised using 
these computed values apart from the first graph, which was run for the full 10 mil-
lion iterations.  

6 Results and Discussion 

The amount of time it takes the modularisation program to run is proportional to the 
number of fitness function calls. In our experiments, the number of fitness function 
calls is referred to as the number of iterations, and the time it takes the program to run 
is proportional to the number of iterations 

Strategy 1 and 2 were introduced in [2] and needed improvement as the software 
check-ins do not necessarily need to run for a set number of iterations. The process 
might continue to run even when the algorithm has converged. Thus, Strategy 3 was 
introduced in order to estimate the number of iterations needed for each graph. The 
average fitness function calls for Strategy 1 and 2 are 100,000 and 464,956 iterations, 
respectively. The fitness function calls for Strategy 3 range from 12,825 iterations for 
T4 to 23,162 iterations for T1. From the results it can be seen that there is a large effi-
ciency improvement using the new strategy compared to previous strategies. 

Fig. 3 shows a count of the closest strategy estimate to the converged point. From 
the plot it can be seen that T4 is the most accurate estimate as it is the closest/nearest 
to the converged point for most graphs. Even though the new strategy was based on a 
broad estimate of the number of average clusters [14], it still produced better esti-
mates than the old strategies. Results show that 71 graphs from the dataset were 
modularised using the old strategies, whereas 260 graphs were modularised using 
Strategy 3. 171 of the graphs were omitted from the plot as they are zeros for all of 
the strategies. Currently, we are only looking at the most accurate strategy and thus 
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we did not account for whether it is an underestimate or overestimate of the conver-
gence point. We look to investigate this further as part of future work. 

Given that the Munch algorithm runs for T, iterations, the fitness function is O(√n), 
and that the fitness function is where all of the computational complexity of the Hill 
Climbing algorithm is, then the overall complexity of the run is O(T√n). Thus, the 
smaller the value of T the faster the algorithm runs. Table 3 shows the time savings 
under each scheme compared to the full run of 10 million iterations. From the table it 
can be seen that the least amount of saving in terms of runtime is 92.88%, this is for 
Strategy 2. Results show that T4 has the highest percentage of saving in terms of run-
time. We have also compared and computed how fast each of the strategies compared to 
C (iterations reductions factor). The results show that T4 is 509 times faster than the full 
iterations, more than 5 times faster than Strategy 1 and 36 times faster than Strategy 2. 

 

Table 3. Time saving under all schemes 

Strategy Time Saving % Iter. 
Strategy 1– 1% 99.00 100 

Strategy 2 – 8000D 92.88 14 
T1– 99% 99.65 282 
T2– 95% 99.72 360 
T3– 90% 99.76 412 
T4– 70% 99.80 509 

 

Table 4. Count of highest 

Strategy Count of highest 
Strategy 1– 1% 167 

Strategy 2– 8000D 159 
T1– 99% 5 
T2– 95% 0 
T3– 90% 0 
T4– 70% 0 

 

  
Table 4 displays a frequency count of the largest iterations all the time for each of 

the strategies. It can be clearly seen that Strategy 1 and Strategy 2 are nearly the high-
est for all graphs. This illustrates that the previous strategies had a higher running 
time for 326 graphs compared to only 5 graphs for the new strategy. 

Fig. 4 shows a plot of the convergence points of C and S for the full datasets. The 
convergence points indicate that the EVM is at a maximum. A gradually increasing 
trend can be observed for C, which indicates that a longer running time is needed for 
later graphs. The general trend of the results correlate with Fig. 1, which shows a 
gradual increase of the number of active classes throughout the project. Results of S 
are considerably lower than C throughout the full dataset, which indicates that the 
seeding technique works well. This is particularly true when comparing the results 
with Fig. 6 and 7, as they produce the same EVM and HS values for the majority of 
the graphs.  

Fig. 5 shows a plot of the EVM of experiments C and S for the full dataset. It is not 
possible to differentiate C from the plot, as it overlaps with S. S produces the same 
results as C despite the fact that S was ran for a fraction of the original time of C. This 
proves that the seeding technique works and to a fair degree of accuracy.  

Fig. 6 shows a plot of HS values of experiments C and S for the full dataset. It is 
not possible to differentiate C from the plot, as it overlaps with S. The same results 
are produced despite the fact that S was ran for considerably less time than C. It can 
be observed that HS results are gradually getting worse throughout the life of the 
project. We believe that when the system was designed there was more coupling than 
cohesion in the modules and as a result the internal structure of the system design was 
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deteriorating over time. The negative HS values indicate that the inter-modules are 
more than the intra-module edges. In addition, it seems that large changes events oc-
curred a number of times throughout the life of the system. There seem to be a reduc-
tion of coupling to a certain degree during these events. 

Fig. 7 shows a plot of HS against EVM for the whole system. To find out whether 
there is a relationship between HS and EVM they were correlated. A value of −0.791 
is produced, which indicates that the correlation is highly significant. For over 500 
pairs of observations the 1 per cent significance level is at 0.115. It is interesting to 
observe that this strong correlation illustrates the credibility of EVM as a good metric. 
The plot shows that EVM is a good predictor for HS. HS cannot be used as a fitness 
function, as it would re-arrange all clusters into one (HS value of 1.0); since there 
would be no coupling. Despite the fact that EVM is not a measure of coupling or co-
hesion, it was still strongly correlated with HS. Thus, the metric is performing as de-
sired, achieving low coupling and high cohesion. 

Fig. 8 shows a plot of the AVD against the convergence points of the full datasets. 
The correlation of the AVD and the convergence points is 0.658, which indicates a 
very high correlation. From the plot, it can be seen that the lower the difference be-
tween subsequent graphs the quicker it will converge. This is good evidence in sup-
port of our hypothesis that the larger the difference the more iterations are needed. 

7 Conclusion and Future Work 

This paper presents a heuristic search technique where a large and gradually evolving 
industrial software system is evaluated. The evaluation shows that the modularisation 
technique introduced runs much faster than prior modularisation techniques. Code 
structure and sequence was used to improve the efficiency and effectiveness of soft-
ware module clustering. This paper builds on previous work which demonstrated that 
the seeded process of the modularisation works well. Previous work introduced Strat-
egy 1 and Strategy 2 which resulted in 99% and 93.88% time saving in terms of run-
time. However, using a scalar to control the number of iterations is a much more ro-
bust way of conducting the experiment than running the process for a fixed length.  

For this paper we attempted to improve the efficiency and convergence of the 
search process by introducing a strategy based on probability values of the signifi-
cance of the seeded graphs. Using the new seeding strategy, we managed to produce 
results identical to the full modularisation of graphs while reducing the running time 
by more than 500 times. Thus, from the results produced if we were to choose a 
scheme for running the seeded modularisation then we would select T4 as the scheme 
to use. The same theory applies when modularising the dataset using the preceding 
results of the modularisation.  

Although, the estimate is fundamentally based on the assumption that the average 
number of clusters is √n, the results of the new strategy clearly demonstrate a signifi-
cantly better limit than Strategy 2, evidently revealing that the approximation method 
works. However, for future work, we look to obtain a better estimate of the number  
of clusters. We also look to obtain the number of clusters from the dataset and com-
pute the probabilities whilst running the process. In addition, in this paper, we have 
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Abstract. CoCoNAD (for Continuous-time Closed Neuron Assembly
Detection) is an algorithm for finding frequent parallel episodes in event
sequences, which was developed particularly for neural spike train analy-
sis. It has been enhanced by so-called Pattern Spectrum Filtering (PSF),
which generates and analyzes surrogate data sets to identify statistically
significant patterns, and Pattern Set Reduction (PSR), which eliminates
spurious induced patterns. A certain drawback of the former is that a
sizable number of surrogates (usually several thousand) have to be gen-
erated and analyzed in order to achieve reliable results, which can render
the analysis process slow (depending on the analysis parameters). How-
ever, since the structure of a pattern spectrum is actually fairly simple,
we propose a simple estimation method, with which (an approximation
of) a pattern spectrum can be derived from the original data, bypassing
the time-consuming generation and analysis of surrogate data sets.

1 Introduction

About a year ago we presented CoCoNAD (for Continuous-time Closed Neuron
Assembly Detection) [4], an algorithm for finding frequent parallel episodes in
event sequences, which are defined over a continuous (time) domain. The name
of this algorithm already indicates that the application domain motivating our
investigation is the analysis of parallel spike trains in neurobiology: sequences of
points in time, one per neuron, that represent the times at which an electrical
impulse (action potential or spike) is emitted. Our objective is to identify neu-
ronal assemblies, intuitively understood as groups of neurons that tend to exhibit
synchronous spiking. Such cell assemblies were proposed as a model for encoding
and processing information in biological neural networks [8]. As a (possibly) first
step in the identification of neuronal assemblies, we look for (significant) frequent
neuronal patterns, that is, groups of neurons that exhibit frequent synchronous
spiking that cannot be explained as a chance occurrence [13,16]. In this paper
we draw on this application domain for the parameters of the (artificially gener-
ated) data sets with which we tested the proposed pattern spectrum estimation,
but remark that our method is much more widely applicable.

The CoCoNAD algorithm differs from other approaches to find frequent par-
allel episodes in event sequences, like those, for example, in [12,6,10] or [15]
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(some of which are designed for discrete item sequences, although a transfer to
a continuous (time) domain is fairly straightforward), by the support definition
it employs. While the mentioned approaches define the support of a parallel
episode as the (maximal) number of non-overlapping minimal windows cover-
ing instances of the episode, CoCoNAD relies on a maximum independent set
(MIS) approach. This allows to count different instances of a parallel episode
even though the windows covering them overlap, thus leading to a potentially
higher support count. Nevertheless the resulting support measure remains anti-
monotone, because no spike is contained in more than one counted instance [4].

Furthermore, in order to single out significant frequent patterns from the
output, while avoiding the severe multiple testing problem that results from the
usually very large number of frequent patterns, we proposed pattern spectrum
filtering (PSF) in [13].1 This method relies on generating and analyzing surrogate
data sets as an implicit representation of the null hypothesis of items occurring
independently. It eliminates all patterns found in the original data, for which a
analogous pattern was found in a surrogate data set (since then the pattern can
be explained as a chance event, cf. Section 3). This method was further detailed
in [16], where it was also extended with pattern set reduction (PSR), which strives
to eliminate spurious patterns that are merely induced by an actual pattern (that
is, subset, superset and overlapping patterns) with a preference relation.2

These methods (PSF and PSR) proved to be very effective in singling out pat-
terns from artificially generated data. However, the need to generate and analyze
a sizable number of surrogate data sets (usually several thousand) can render
the mining process slow, especially if the data exhibits high event frequencies
and the analysis window width (maximum time allowed to cover an occurrence
of a parallel episode) is chosen to be large. To overcome this drawback, we strive
in this paper to exploit the fact that a pattern spectrum actually has a fairly
simple structure and thus allows for an (at least approximate) estimation from
the original data, bypassing surrogate data generation. The core idea is to count,
based on the user-specified analysis window width, the possible “slots” for pat-
terns of different sizes and to estimate from these counts the (expected) pattern
support distribution with a Poisson approximation.

The remainder of this paper is structured as follows: Section 2 briefly re-
views how (frequent) parallel episodes are mined with the CoCoNAD algorithm
and Section 3 how the output is reduced with pattern spectrum filtering (PSF)
and pattern set reduction (PSR) to significant, non-induced patterns. Section 4
describes the simple, yet effective method with which we estimate a pattern
spectrum from the original data. In Section 5 we report experiments on artifi-
cially generated data sets and thus demonstrate the quality of pattern spectrum
estimation. Finally, in Section 6 we draw conclusions from our discussion.

1 Even though pattern spectrum filtering was presented for time-binned data in [13]
(which reduces the problem to classical frequent item set mining: each time bin gives
rise to one transaction), it can easily be transferred to the continuous domain.

2 Although time-binned data was considered in [16], the idea of pattern set reduction
can easily be transferred to continuous time, requiring only a small adaptation.
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2 Mining Parallel Episodes with CoCoNAD

We (partially) adopt notation and terminology from [12]. Our data are (finite)
sequences of events of the form S = {〈i1, t1〉, . . . , 〈im, tm〉}, m ∈ N, where ik
in the event 〈ik, tk〉 is the event type or item (taken from an item base B) and
tk ∈ R is the time of occurrence of ik, k ∈ {1, . . . ,m}. Note that the fact that S
is a set implies that there cannot be two events with the same item occurring at
the same time: events with the same item must differ in their occurrence time
and events occurring at the same time must have different types/items. Note
also that in our motivating application (i.e., spike train analysis), the items are
the neurons and the events capture the times at which spikes are emitted.

Episodes (in S) are sets of items I ⊆ B that are endowed with a partial order
and usually required to occur in S within a certain time span. Parallel episodes,
on which we focus in this paper, have no constraints on the relative order of
their elements. An instance (or occurrence) of a parallel episode I ⊆ B, I �= ∅,
(or a (set of) synchronous event(s) for I) in an event sequence S with respect
to a (user-specified) time span w ∈ R+ can be defined as a subsequence R ⊆ S,
which contains exactly one event per item i ∈ I and which can be covered by a
(time) window of width at most w. Hence the set of all instances of a parallel
episode I ⊆ B, I �= ∅, in S is

ES(I, w) =
{

R ⊆ S | {i | 〈i, t〉 ∈ R} = I ∧ |R| = |I| ∧ σ(R, w) = 1
}
,

where the operator σ captures the (approximate) synchrony of the events in R:

σ(R, w) =

{
1 if max{t | 〈i, t〉 ∈ R} − min{t | 〈i, t〉 ∈ R} ≤ w,
0 otherwise.

That is, σ(R, w) = 1 iff all events in R can be covered by a (time) window of
width at most w. We then define the support of a parallel episode I ⊆ B in S as

sS(I, w) = max
{

|U| | U ⊆ ES(I, w) ∧ ∀R1,R2 ∈ U ;R1 �= R2 : R1 ∩ R2 = ∅
}
,

that is, as the size of a maximum independent set of the instances of I. Although
in the general case the maximum independent set problem is NP-complete [9]
and even hard to approximate [7], the problem instances we are facing here
are constrained by the underlying one-dimensional time domain, which makes
it possible to devise an efficient greedy algorithm that solves it exactly [14].
Pseudo-code of the support counting procedure can be found in [4].

Frequent parallel episodes are then mined, based on this support definition,
with a standard recursive divide-and-conquer scheme that enumerates candidate
item sets, which may also be seen as a depth-first search. The search is pruned,
as in all such algorithms, with the so-called apriori property: no superset of an
infrequent parallel episode can be frequent, since the support measure defined
above can be shown to be anti-monotone (see, for example, [17,5]). Pseudo-code
of the mining procedure including efficient event filtering can be found in [4].
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3 Pattern Spectrum Filtering and Pattern Set Reduction

Trying to single out significant patterns proves to be less simple than it may
appear at first sight, since one has to cope with the following two problems: in
the first place, one has to find a proper statistic that captures how (un)likely
it is to observe a certain pattern under the null hypothesis that items occur
independently. Secondly, the huge number of potential patterns causes a severe
multiple testing problem, which is not easy to overcome with standard methods.
In [13] we provided a fairly extensive discussion and concluded that a different
approach than evaluating individual patterns with statistics is needed.

As a solution, pattern spectrum filtering (PSF) was proposed in [13] based on
the following insight: even if it is highly unlikely that a specific group of z items
co-occurs c times, it may still be likely that some group of z items co-occurs
c times, even if items occur independently. The reason is simply that there are
so many possible groups of z items (unless the item base B as well as z are tiny)
that even though each group has only a tiny probability of co-occurring c times,
it may be almost certain that one of them co-occurs c times.3 As a consequence,
since there is no a-priori reason to prefer certain sets of z items over others
(even though a refined analysis, on which we are working, may take individual
item frequencies into account), we should not declare a pattern significant if the
occurrence of a counterpart (same size z and same or higher support c) can be
explained as a chance event under the null hypothesis of independent items.

As a consequence, we pool patterns with the same pattern signature 〈z, c〉,
and collect for each signature the (average) number of patterns that we observe
in surrogate data. This yields what we call a pattern spectrum (see Figures 2
and 3). Pattern spectrum filtering consists in keeping only such patterns found
in the original data for which no counterpart with the same signature (or a
signature with the same z, but larger c) was observed in surrogate data, as such
a counterpart would show that the pattern can be explained as a chance event.

The essential part of this procedure is, of course, the generation of surrogate
data, for which we rely on a simple permutation procedure: the occurrence times
of the events are kept and the items (the event types) are randomly permuted.
This destroys any co-occurrence of items that may be present in the data and
thus produces data that implicitly represent the null hypothesis of independently
occurring items. A discussion of other surrogate data generation approaches that
are common in the area of neural spike train analysis can be found in [11].

Note that pattern spectrum filtering still suffers from a certain amount of
multiple testing: every pair 〈z, c〉 that is found in the original data gives rise to
one test. However, the pairs 〈z, c〉 are much fewer than the number of specific
item sets. As a consequence, simple approaches like Bonferroni correction [2,1]
become feasible, with which the number of needed surrogate data sets can be
computed [13]: given a desired overall significance level α and the number k of

3 This is actually the case for, say, z = 5 and c = 4 in our data, for which patterns
are essentially certain to occur, see Figures 2 and 3, although the probability of
observing a specific set of 5 items co-occurring 4 times is extremely small (< 10−8).
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pattern signatures to test, at least k/α surrogate data sets have to be analyzed.
With the common choice α = 1% and usually several dozen pattern signatures
being observed, this rule recommends to generate several thousand data sets.
In our experiments we always chose 10,000, regardless of the actual number of
pattern signatures, in order to ensure a uniform procedure for all data sets.

As a further filtering step, pattern set reduction was proposed in [16], which
is intended to take care of the fact that an actual pattern induces other, spuri-
ous patterns that are subsets or supersets or overlap the actual patterns. These
spurious patterns are reduced with the help of a preference relation between
patterns and the principle that only patterns are kept to which no other pat-
tern is preferred. A simple heuristic, but very effective preference relation is the
following: let X,Y ⊆ B be two patterns with Y ⊆ X and let zX = |X | and
zY = |Y | be their sizes and cX and cy their support values. The pattern X is
preferred to Y if zX · cX ≥ zY · cY . Otherwise Y is preferred to X . The core
idea underlying this method is that under certain simplifying assumptions the
occurrence probability of a pattern is inversely proportional to the number of in-
dividual events underlying it, that is, to the product z · c. Intuitively, the above
preference relation therefore prefers the less probable pattern. Alternatives to
this preference relation and a more detailed discussion can be found in [16].

4 Pattern Spectrum Estimation

As already mentioned in the introduction, pattern spectrum filtering suffers from
the problem that a sizeable number of surrogate data sets (usually several thou-
sand) need to be generated and analyzed, which can render the analysis process
slow, especially if due to high event frequencies and a large window width w an
individual run already takes some time. Even though pattern spectrum gener-
ation lends itself very well to parallelization (since each surrogate data set can
be generated and analyzed on a different processor core), it is desirable to find
a faster way of obtaining (at least an approximation of) a pattern spectrum.

As a solution, we propose pattern spectrum estimation in this paper. This
method draws on the idea that by counting the “slots” for patterns of different
sizes, we can estimate the support distribution of the patterns via a standard
Poisson approximation of the actual binomial distribution. By a “slot” for a
pattern size z we mean any collection of z events in the event sequence S to
analyze that can be covered by the chosen analysis window width w. Each such
slot can hold an instance of a specific parallel episode I ⊆ B, |I| = z. With the
probability of a pattern instance occurring in such a slot, that is, the probabil-
ity that the z items constituting the parallel episode are chosen in a random
selection (since we want to mimic independent items, as this is the implicitly
represented null hypothesis), we obtain a probability distribution over the dif-
ferent numbers of occurrences of the parallel episode in the counted number of
slots. This distribution is actually binomial, but it can be approximated well by
a Poisson distribution, because the number of slots is usually very large while
the occurrence probability of a specific parallel episode is very small.
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By scaling the resulting probability distribution over the possible support
values to the total number of patterns that can occur, we obtain expected counts
for the different pattern signatures with size z. Executing the process for all sizes
z ∈ {1, . . . , |B|} then yields the desired pattern spectrum.

Formally, the number of slots for each pattern size z is defined as

∀z ∈ {1, . . . , |B|} : NS(z, w) =
∣∣{R ⊆ S | |R| = z ∧ σ(R, w) = 1

}∣∣.
However, this formula does not lend itself well to implementation. Therefore,
to count the slots for each pattern size, we first pass a sliding window over the
event sequence S, stopping at each event 〈i, t〉 ∈ S, and collecting the events in
the (time) window [t, t+ w]. That is, we consider the set of event sequences

WS(w) =
{

Re | e = 〈i, t〉 ∈ S ∧ Re = {〈i′, t′〉 ∈ S | t′ ∈ [t, t+ w]}
}
.

Using the mentioned sliding window method, this set is easy to enumerate.
From this set we then obtain the slot counts per pattern size z as

∀z ∈ {1, . . . , |B|} : NS(z, w) =
∑

R∈WS ,|R|≥z

(|R|−1
z−1

)
.

This formula can be understood as follows: only subsequences in WS that contain
at least z events can contain slots for a pattern of size z and therefore the
sum considers only R with |R| ≥ z. In principle, all subsets of z events in a
given R have to be considered. However, the event sequences in WS overlap,
and thus summing

(|R|
z

)
could count the same slot multiple times. We avoid this

by counting for each R only those subsets of size z that contain the first event
in R (that is, the event at which the window defining R is anchored). Of the
remaining |R| − 1 events in R we then choose z − 1 to obtain a slot of size z.

For the support distribution estimation let us first assume that all items (and
thus all parallel episodes) are equally likely (we abandon this assumption later,
but it simplifies the explanation here) and occur independently (as required by
the null hypothesis). Then the probability that a specific parallel episode I ⊆ B,
|I| = z, occurs in a slot of size z is PS(I) = 1/

(|B|
z

)
. The probability distribution

over the support values c can thus be approximated by a Poisson distribution as

PS(〈z, c〉) =
λc

c!
e−λ with λ = NS(z, w) /

(|B|
z

)
,

becauseNS(z, w) is (very) large and 1/
(|B|

z

)
is (very) small and thus the standard

conditions for a Poisson approximation are met. Multiplying this probability
distribution by the number of parallel episodes of size z yields the expected
number of patterns with signature 〈z, c〉, namely

E(〈z, c〉) =
(|B|

z

)λc

c!
e−λ,

and thus the desired pattern spectrum. To account for the finite number M of
surrogate data sets that would have been generated otherwise, one may threshold
it with 1/M and thus obtain an equivalent to a surrogate data pattern spectrum.
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It should be noted, though, that this derivation is only an approximation in
several respects. Apart from the Poisson approximation (which, however, is the
least harmful, since the conditions for its application are met), it suffers from
neglecting the following: in the first place, the support distributions for parallel
episodes of the same size are negatively correlated, since more occurrences of
one pattern must be compensated by fewer occurrences of other patterns. Hence
simply multiplying the individual distributions by the number of possible parallel
episodes is not quite correct. Secondly, the “slots” for a given size z overlap, that
is, the same event can contribute to multiple slots for a given size. However, in
the above derivation the slots are treated as if they are independent. Both of
these issues can be expected to lead to an overestimate of the average number
of patterns for a signature 〈z, c〉. The overestimate can be expected to be small,
though, because the correlation is small due to the large number of parallel
episodes and the amount of overlap is small relative to the total number of slots.
Finally, the overlap actually increases the occurrence probability of a pattern,
since a slot overlapping one that contains an instance of a pattern has a higher
probability of containing the same pattern than an independent slot. This is less
relevant, though, because CoCoNAD does not count both of two overlapping
instances (see the support definition in Section 2).

However, the most serious drawback of the method as we described it up
to now is the assumption that all items (and thus all parallel episodes) are
equally likely. This assumption is rarely satisfied in practice, as the firing rates
of recorded neurons tend to differ (considerably). Therefore we remove this as-
sumption as follows: since for any practically relevant size of the item base B
it is impossible to enumerate all parallel episodes of size z, we draw a sample
of K subsets of the item base B having size z (we chose K = 1, 000 to cover
sufficiently many configurations), using equal probabilities for all items. For each
drawn parallel episode I ⊆ B, |I| = z, we compute the Poisson distribution over
the support values c as described above and sum these distributions over the
elements of the sample. The result, a sum of Poisson distributions with different
parameters λ (which take take of the different occurrence probabilities of the
items), is then scaled to the total number of possible parallel episodes of size z.
That is, the distribution is multiplied with

(|B|
z

)
/K (and thresholded with 1/M

where M is the number of surrogate data sets that would have been generated
otherwise) to obtain the pattern spectrum.

In this computation one has to take care that the probability of a parallel
episode I ⊆ B, |I| = z, cannot simply be computed as PS(I) =

∏
i∈I pi, where

∀i ∈ B : pi = |{t | 〈i, t〉 ∈ S}| / |S|

is the probability that a randomly chosen event has item i. The reason is that a
chosen item cannot be chosen again and therefore the probability should rather
be computed, using an order i1, . . . , iz of the items in I, like

PS(I) =
z∏

k=1

pik

1 −
∑k−1

j=1 pij
.
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However, there is no reason to prefer any specific order of the items over any
other. To handle this problem, we draw a small sample of orders (permutations)
for each chosen parallel episode and average over these orders as well as their
reversed forms (unless z ≤ 4, for which we simply enumerate all orders, since
their number is manageable). We consider both a generated item order as well
as its reverse, because the computed probabilities are certain to lie on opposite
sides of the mean probability. In this way the average over the considered item
orders can be expected to yield a better estimate of the mean probability.

In our experiments we found that if the item probabilities actually differed,
this approach produced a better pattern spectrum estimate than assuming equal
item probabilities. However, it tended to overestimate the occurrence frequencies
of the pattern signatures. On the other hand, using equal item probabilities
for the estimation (even though the probabilities actually differed) tended to
produce underestimates. As a straightforward heuristic to correct these effects,
we introduced a factor that contracts the probability dispersion of the items, thus
reducing the overestimate. That is, before the support distribution estimation
we transform the item probabilities computed above according to

p′i = p̄+ �(pi − p̄) where p̄ = 1/|B| and � ∈ [0, 1].

By evaluating the quality of an estimated pattern spectrum relative to one de-
rived from surrogate data, focusing on the expected signature counts close to
the decision border for rejecting a found pattern (technically: expected counts
E(〈z, c〉) ∈ [0.0001, 0.1]) and using a logarithmic error measure (that is, com-
puting differences of logarithms of pattern counts rather than differences of the
counts directly), we found that � ∈ [0.4, 0.5] is a good choice for basically all
parameter combinations that we tested. We only observed a slight dependence
on the window width w: for larger values of w, smaller values of � appear to
produce better results. For the experiments reported in the next section we used
the fixed value � = 0.5, but results for other values did not differ much.

5 Experiments

We implemented our pattern spectrum estimation in both Python and C (see
below for the source code) and applied it to a variety of data sets that were
generated to resemble the data sets we meet in neural spike train analysis (our
motivating application area). In total we generated 108 data sets, each of which
represented 3 seconds of recording time. We varied the number of neurons (or
items, n ∈ {40, 60, 80, 100}, which are typical numbers that can be recorded with
state of the art equipment), the averaging firing rate (r ∈ {10, 20, 30}Hz), the
firing rate variation over the neurons (either the same for all neurons or linearly
increasing from the lowest to the highest, which was chosen to be 2 or 3 times
the lowest rate) and the firing rate variation over time (using either a flat rate
profile or a burst profile that mimics presenting and removing a stimulus three
times, where the highest rate was chosen to be 2 or 3 times the lowest rate).
As an illustration, dot displays of some of these data sets are shown in Figure 1.
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Fig. 1. Some examples of test data sets: a) stationary Poisson processes, same firing
rate for all neurons; b) stationary Poisson processes, different firing rates (3:1 highest
to lowest); c) burst profile (3:1 highest to lowest rate), same for all neurons; d) burst
profile (3:1 highest to lowest rate), different average firing rates (3:1 highest to lowest)
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Fig. 2. Pattern spectra for window width 3ms, generated from surrogate data sets (top)
or estimated with the described method (bottom). The top word in a diagram title
encodes the data set parameters: n—number of neurons, r—firing rate, v—firing rate
variation over neurons as x : 1 (highest to lowest), t—firing rate variation over time as
x : 1 (highest to lowest), w—analysis window width. Grey bars extend beyond the top
of the diagram, white squares represent zero occurrences. Note the logarithmic scale.

Each data set was then analyzed with four different window widths (w ∈
{2, 3, 4, 5}ms), yielding a total of 432 configurations. In each configuration a
pattern spectrum was obtained by generating and analyzing 10,000 surrogate
data sets and by estimating it with the described method. With this number
of surrogate data sets we can be sure to meet an overall significance level of
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Fig. 3. Pattern spectra for window width 5ms, generated from surrogate data sets
(top) or estimated with the described method (bottom). The top word in a diagram
title encodes the data set parameters (cf. caption of Figure 2 for details).

α = 1% or even lower, since the number of pattern signatures was always clearly
less than 100. (See the estimation of the number of needed surrogate data sets
via Bonferroni correction in Section 3.) We observed that the estimated pattern
spectra match the ones derived from surrogate data sets very well. However,
they can be obtained in a small fraction of the time: while estimating a pattern
spectrum takes only a fraction of a second, generating and analyzing 10,000
surrogate data sets can take hours and even days (as we experienced for some
of the data sets we experimented with). Examples of obtained pattern spectra
are shown in Figure 2 (w = 3ms) and Figure 3 (w = 5ms).4

6 Conclusions

Although in several respects a (coarse) approximation, the pattern spectrum
estimation we presented in this paper proved to produce very usable pattern
spectra for the (artificially generated) data sets on which we tested it. The speed-
up that can be achieved by estimation is substantial (often orders of magnitude).
This speed-up can be exploited, for example, to automatically determine a proper
window width w by trying different values and evaluating the result. Doing the
same with surrogate data sets can turn out to be tedious and time-consuming,
since each window width requires a new set of surrogates to be generated and
analyzed. We are currently in the process of applying our pattern mining method

4 Diagrams of the full set of pattern spectra can be found here:
http://www.borgelt.net/docs/spectra.pdf

http://www.borgelt.net/docs/spectra.pdf
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(CoCoNAD + PSF + PSR, with pattern spectrum estimation as well as deriving
a pattern spectrum by generating and analyzing surrogate data sets) to real-
world data sets. Preliminary results look very promising.

Software and Source Code

Python and C implementations of the described estimation procedure as well as
a Java based graphical user interface can be found at these URLs:

www.borgelt.net/pycoco.html www.borgelt.net/cocogui.html

Acknowledgments. The work presented in this paper was partially supported
by the Spanish Ministry for Economy and Competitiveness (MINECO Grant
TIN2012-31372).
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Abstract. Automatic data acquisition systems provide large amounts of
streaming data generated by physical sensors. This data forms an input
to computational models (soft sensors) routinely used for monitoring and
control of industrial processes, traffic patterns, environment and natural
hazards, and many more. The majority of these models assume that the
data comes in a cleaned and pre-processed form, ready to be fed directly
into a predictive model. In practice, to ensure appropriate data quality,
most of the modelling efforts concentrate on preparing data from raw sen-
sor readings to be used as model inputs. This study analyzes the process
of data preparation for predictive models with streaming sensor data. We
present the challenges of data preparation as a four-step process, iden-
tify the key challenges in each step, and provide recommendations for
handling these issues. The discussion is focused on the approaches that
are less commonly used, while, based on our experience, may contribute
particularly well to solving practical soft sensor tasks. Our arguments
are illustrated with a case study in the chemical production industry.

1 Introduction

Automatic data acquisition systems, which are common nowadays, generate large
amounts of streaming data. This data, provided by various physical sensors is
used for monitoring and control of industrial processes, traffic patterns, environ-
ment and natural hazards to name a few. Soft sensors are computational models
that aggregate readings of physical sensors to be used for monitoring, assess-
ing and predicting the performance of the system. They play an increasingly
important role in management and control of production processes [3, 7]. The
popularity of soft sensors is boosted by increasing availability of real sensors,
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data storage and processing capacities, as well as computational resources. Soft
sensors operate online using streams of sensor readings, therefore they need to
be robust to noise and adaptive to changes over time. They also should use a
limited amount of memory and be able to produce predictions in at most linear
time with respect to data arrival.

Building soft sensors for streaming data has received a lot of attention in the
last decade (see e.g. [7, 8]), often focusing on algorithmic aspects of the compu-
tational models, while the process of data preparation receives less attention in
research literature [15]. Evidently, building a soft sensor is not limited to select-
ing the right model. In practice data preparation takes a lot of effort and often is
more challenging than designing the predictive model itself. This paper discusses
the process of building soft sensors with a focus on data preparation along with
the case study from chemical industry. Our goal is to discuss the major issues of
data preparation and experimentally evaluate the contribution of various data
preparation steps towards the final soft sensor performance.

The main contribution of our study is a framework - a systematic character-
ization of data preparation process for developing industrial predictive models
(soft sensors). Data preparation issue has received little attention in the research
literature, while in industrial applications data preparation takes majority of the
modelling time. In line with the framework we present our recommendations for
data preparation that are based on our experience in building soft sensors within
the chemical industry, and are illustrated with real data examples.

The paper is organised as follows. In Section 2 we discuss the requirements and
expectations for soft sensors in chemical industry. Section 3 presents a framework
for developing data driven soft sensors. In Section 4 we experimentally illustrate
the role of three selected data preparation techniques in building accurate pre-
dictive models via a case study in the chemical production domain. Section 5
concludes the study, and discusses directions for future research.

2 Requirements and Expectations for Predictive Models
in the Process Industry

In the process industry soft sensors are used in four main applications: (1) on-
line prediction of a difficult-to-measure variable from easy-to-measure variables;
(2) inferential control in the process control loop; (3) multivariate process moni-
toring for determining the process state from observed measurements; and (4) as
a hardware sensor backup (e.g. during maintenance).

This study focuses on the data-driven soft sensors for online predictions of
difficult-to-measure variables. Many critical process values (e.g. the fermentation
progress in a biochemical process, or the progress of polymerisation in a batch
reactor) are difficult, if not impossible to measure in an automated way at a
required sampling rate. Sometimes the first-principle models, that are based
on the physical and chemical process knowledge, are available. Although such
models are preferred by practitioners, they are primarily meant for planning and
design of the processing plants, and therefore usually focus on the ideal states of



From Sensor Readings to Predictions 51

the process. Thus, such models can seldom be used in practice in a wide range of
operating conditions. Moreover, often the process knowledge for modelling is not
available at all. In such cases data-driven models fill the gap and often play an
important role for the operation of the processes as they can extract the process
knowledge automatically from the provided data.

A successful soft sensor is a model, which has been implemented into the
process online environment and accepted by the process operators. In order to
gain acceptance the soft sensor has to provide reasonable performance, be stable
and predictable. This means that performance has to be immune to changes
often happening in the production plants. It is not uncommon that physical
sensors fail, drift or become unavailable. Hence, the soft sensor needs to have
some kind of automated performance monitoring and adaptation capability. The
predictive performance is not the only success criterion however.

Transparency is another important property for model success. It is essential
for the process operators to understand, how the soft sensor came to its conclu-
sions. This becomes even more critical if the predictions deviate from the true
value. In such cases, it is of utmost importance to be able to backtrack the wrong
prediction to its cause. For this reason pure black-box methods like certain types
of Artificial Neural Networks may have problems with gaining acceptance.

Another challenge is that after the model is deployed, it is often used by
personnel with limited background in machine learning. Therefore, the operation
of the model has to be completely automated, and as simple as possible in order
to avoid frustration and resistance from the operating personnel.

A systematic approach for soft sensor development has been proposed in [9].
The authors present it as a four step process consisting of handling missing
data, detecting and handling outliers, deriving a regression model and validating
it on independent data. An alternative methodology, presented in [16], focuses
on three steps: data collection and conditioning, selection of influential features
and correlation building. In [12], in addition to a general three-step method-
ology a more specialised one, based on multivariate smoothing procedure, is
also discussed. Its distinguishing feature is the focus on the collection of process
knowledge, which is not evident in other approaches. Other general methodolo-
gies for soft sensor development have been proposed in [3,6,7] and [4], with the
latter based on the Six-Sigma process management strategy.

The methodology presented in this paper builds upon some ideas proposed in
the literature, augmented by our own experience and knowledge gained during
interaction with process experts, plant operators and soft sensor practitioners.

3 A Framework for Developing Data Driven Soft Sensors

The framework describes soft sensor development process in four steps:
1. setting up the performance goals and evaluation criteria;
2. data analysis (exploratory);
3. data preparation and preprocessing:
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(a) data acquisition (deciding which data to collect and from which sources);
(b) data preprocessing (de-noising, handling outliers and missing values);
(c) data reduction (extracting relevant representation);

4. training and validating the predictive model.
We focus on the first three steps that have been understudied in data analysis

literature. For model training and validation an interested reader is referred to
one of the classical data mining or machine learning textbooks (e.g. [18]).

3.1 Setting Up Performance Goals and Evaluation Criteria

When starting a soft sensor project we first need to define what the soft sensor is
needed for and what will be the quantitative and qualitative evaluation criteria.

Qualitative Evaluation.Many models are so called black-boxes, where it is dif-
ficult or impossible to track back the relation between the inputs and predictions.
Knowing the effects of input features to the target is particularly important for
controlling the process. Moreover, transparent models are typically more trusted
and better accepted by the operators. Classification trees, regression trees, and
nearest neighbour approaches are among the most transparent.

Computational requirements of the model need to be taken into account par-
ticularly in high throughput or autonomous systems operating on batteries.

Quantitative evaluation. The choice of appropriate error measure is crit-
ical. Not only it is important to choose a criterion, that is possible to opti-
mize [1]. Even more important is that the criterion measures the performance
aspects, that are practically relevant. The Root Mean Squared Error (RMSE)
is very popular in research due to convenient analytical properties: RMSE =√
1/n

∑n
i=1(ŷi − yi)2, where y is the true target, ŷ is the prediction and n is the

size of the testing data. It punishes large deviations from the target, which is
often very relevant for industrial applications, however, the meaning of this error
may not be straightforward to interpret for the process experts and operators.
The Mean Absolute Error (MAE) is often considered a more natural measure of
average error [17]: MAE = 1/n

∑n
i=1 |ŷi − yi|, but is more difficult to optimize.

Often, particularly in the control applications, predicting the direction of a
signal change may be more important than low absolute deviation from the true
value. In such cases it is useful to optimize the classification accuracy (CE). The
accuracy is measured as a fraction of times the true signal from time t − 1 to t
goes to the same direction (up or down) as the prediction.

Variability of the predictions is critical in process control applications. A flat
prediction is preferred to spiky, since following the latter would require very
frequent process adjustments. Jitter (J) measures an average distance that one
would travel if the prediction signal was followed: J = 1

n−1

∑n
i=2 |ŷt − ŷt−1)|,

where n is the number of observations, observations need to be ordered in time.
Robustness and prediction confidence is understood as resistance of the predic-

tor to impurities in the data, such as noisy, outlying or missing observations. If the
systemwas to provide a completely wrong prediction, it should rather not produce
any prediction at all. While some predictive methods, e.g. Gaussian Processes,
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Fig. 1. An example of a profile plot — “low”, “medium” and “high” are the target
intervals

inherently provide a confidence value, most of the them do not. A common ap-
proach is to generate an ensemble of models and use the disagreement of the indi-
vidual models as a confidence estimate. Such an approach however, would carry
higher computational costs and lower transparency of the predictions. Alterna-
tively, one can define a domain, where the model is applicable, and relate confi-
dence values to the locations of test observations in this domain [11].

It is critical to understand the process and the potential role of the soft sensor
as much as possible before deciding on which evaluation criteria to use.

3.2 Data Analysis

When the objectives of a soft sensor have been decided upon, the next step is
data understanding. The goal is to discover characteristic properties of the data
that would help to build a more effective predictive model.

Exploratory data analysis can help to discover anomalies in data, define
necessary data preparation approaches and determine potentially useful model
classes. Scatterplots of variable against variable or against target are commonly
used in exploratory analysis. In addition, we recommend to plot variables over
time and to construct variable profiles by defining a small number of intervals
on the target y and plotting a visualisation of where datapoints in each interval
lie along a given input variable x.

To construct a profile we divide an input variable into a number of bins and
find how many datapoints in each bin fall in each interval of the target. These are
plotted in a stacked bar chart as in the lower part of Figure 1. This makes a crude
representation of the density functions P (y|x), and P (x). Plotting the mean of
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y in each bin as in the upper part of Figure 1 provides further visualisation – in
this example a profile in which the relationship is approximately monotonic.

Time series analysis involves the identification of stationarity in time se-
ries data, which assists in estimating the predictability of the time series, and
can imply preferred forecasting methods. Any data-generating process is either
stationary or integrated in an order higher than zero. Some empirically ob-
served time series however exhibit dependencies between distant observations,
and they are referred as fractionally integrated processes or long-memory pro-
cesses. A process is considered to have long memory when the spectral density
becomes unbounded at low frequencies. The most common approach to detect
the presence of long-memory processes is the rescaled range statistic, commonly
known as R/S statistic, which is directly derived by the Hurst coefficient [10].

We recommend to include domain experts in the data analysis from the begin-
ning of the process in order to quickly detect potential problems of the available
data.

3.3 Data Preparation and Preprocessing

Preprocessing transforms raw data into a format that can be more effectively
used in training and prediction. Examples of preprocessing techniques include:
outlier detection and removal, missing values replacement, data normalisation,
data rotation, or feature selection. We leave out description of techniques, which
can be found in machine learning textbooks, for instance [13, 18].

In industrial processes typically real time data processing is required. For au-
tonomous operation preprocessing needs to be performed online, systematically,
and design decisions need to be verifiable, therefore, the procedure and order
of preprocessing actions need to be well defined. We propose a seven-step data
preprocessing process, as highlighted in Figure 2.

The first step defines the data design decisions, such as, how data is queried
from databases, how data sources are synchronized, at what sampling rate data
arrives, whether any filtering (de-noising) is used. This step produces raw data in
a matrix form, where each row corresponds to an observation of sensor readings
at one time. Typically, the design choices remain fixed during the project.

In industrial processes data often comes from multiple sources, which may be
separated physically (e.g. a long flow pipe) or virtually (e.g. data is stored in
different ways), and need to be synchronized. Synchronization of virtual sources
requires consolidating the data into a single database or stream, and is relatively
straightforward. Synchronizing data from different physical locations is usually
more challenging, and can be estimated based on the physical properties of the
process (e.g. speed of flow), or approached as as a computational feature selection
problem, where for each sensor different time lags are tried as candidate features.

The second step filters out irrelevant data. For example, we can discard data
during plant shut-down times and non-steady operation states. Rules for detect-
ing such periods can be defined by experts during the design step, or statistical
change detection techniques could be used to identify them automatically.
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Fig. 2. The proposed order of data preprocessing steps

The third step detects outliers in four stages. Firstly, recordings are checked
against physical constraints (e.g. water temperature cannot be negative). Sec-
ondly, univariate statistical tests can detect outliers in individual sensors. Thirdly,
multivariate statistical tests on all variables together (see e.g. [2]) can detect out-
liers at an observation level. Finally, we check consistency of the instances with
the target values. At this step outliers are flagged as missing values.

In the fourth step we handle the identified outliers, and/or missing values. In
industrial applications predictions are needed continuously, therefore, removing
observations with missing values is typically not an option. Standard missing
value imputation techniques can be used, ranging from computationally light
last observed value, or mean imputation, to various model based imputation
methods (see e.g. [5]). The result is a modified data matrix, data size is still the
same as produced in step 1.

The fifth step performs data transformations, which can modify the existing
features (e.g. discretisation), derive new features (e.g. an indicator if the produc-
tion is running), scale the data or rotate the data for de-correlation purposes.
The result of this step is a data matrix that can have more or the same number
of features than before and the same number of observations.

The sixth step reduces data by feature selection (or extraction) and observa-
tion selection (subsampling). As a result the data matrix will decrease in size.

The seventh step performs model specific preprocessing, e.g. further removing
of outliers or undesired observations. This completes data preprocessing and we
can proceed to model training.

While the design decisions (step 1) must be made, other steps (2-7) are op-
tional, and it is up to data scientist to decide, which particular techniques to use.
However, we recommend to keep the order as suggested. It enables reproducibil-
ity, allows easier documentation, and, most importantly, easier automation when
it comes to implementation.
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4 Case Study

We have discussed the process of building soft sensors with an emphasis on
data preprocessing, which in practice is often the essential step for obtaining
good predictions. In this section we illustrate our arguments via a case study
from chemical production domain. We experimentally analyze how selected data
preprocessing steps contribute towards the accuracy of the final predictor.

We test the effects of data preparation on the real industrial dataset from a
debutanizer column. The dataset covers three years of operation and consists of
189 193 records of 85 real-valued sensor readings. The sensors measure temper-
atures, pressures, flows and concentrations at various points in the process at
every 5 min. The target variable is a real-valued concentration of the product.

We prepare 16 versions of data, which differ in preprocessing applied to them,
while the final predictive model is the same. The idea is to compare the perfor-
mance on these datasets pairwise, while within a pair all the preprocessing is
the same, but one step is different. That allows to asses the contribution of that
particular preprocessing step in isolation, other factors held constant.

Table 1. Versions of data with different preprocessing

Training Testing Subsam- Synchro- Feature Fractal Difference
size size pling nization selection features data

RAW 188 752 21 859

RAW-SYN 188 752 21 859 �
RAW-FET 188 752 21 859 �
RAW-SYN-FET 188 752 21 859 � �
SUB 15 611 1 822 �
SUB-SYN 15 611 1 822 � �
SUB-FET 15 611 1 822 � �
SUB-SYN-FET 15 611 1 822 � � �
SUB-DIF-FRA 15 610 1 822 � � �
SUB-DIF-SYN-FRA 15 610 1 822 � � � �
SUB-DIF 15 610 1 822 � �
SUB-DIF-SYN 15 610 1 822 � � �

The datasets are summarized in Table 1. RAW and SUB refer to different
sampling rates. RAW uses data sampled at every 5 min, while SUB at every 1 h.
SYN means that the input features of the data are synchronised by moving the
features along the time axes to better reflect the physical process, as described in
Section 3.3. FET indicates feature selection. We select 20 features that have the
highest absolute correlation with the target variable from the original 85 features.
We explore two options: early and late selection. Early (E) selection means that
we select features from the first 1000 training examples. Late (L) selection means
that we select features from the latest 1000 data points in the training set. If
data is changing over time, we expect L to be more accurate. FRA means that



From Sensor Readings to Predictions 57

the space of the dataset has been complemented with the features derived by
computing the fractal dimension, as presented in Section 3.2. Fractal features
describe the Hurst exponent for each input and the output, calculated over
the last 128 measurements. Finally, DIF refers to transformation of the input
features and the target variable. Differenced data replaces the original values
with the first derivative with respect to time. It describes how much the values
are changing in comparison to the previous time step. For example, suppose yt
is the original variable at time t, then the differenced data is rt = yt − yt−1.

The experimental protocol is as follows. Size of the training and testing sets
for each dataset are reported in Table 1. For testing we use a hold out set, which
did not participate in the parameter tuning of the preprocessing methods. The
performance is evaluated using the mean absolute error (MAE). The predictions
on DIF datasets are transformed back to the original space before measuring the
error. We use the Partial Least Squares regression (PLS) [14] as the predictive
model with the number of hidden variables set to 10.

Tables 2 and 3 present the results in MAE, the lower - the better. Prepro-
cessing actions are assessed pairwise - the baselines are on the left, and datasets
with additional preprocessing are on the right. Table 2 covers non-differentiated
data, and Table 3 presents the results on differentiated data. We treat these
cases separately, since differentiating allows to capture different properties of
the signal (autoregressive properties), and hence leads to different errors.

Table 2. Testing errors (MAE) on non-differentiated data (• - superior performance)

preprocessing#1 MAE#1 MAE#2 preprocessing#2 improvement

RAW 225 222 • RAW-SYN 3 (1%)
SUB 227 221 • SUB-SYN 6 (3%)

RAW-FET-E 228 198 • RAW-FET-L 30 (13%)
RAW-SYN-FET-E 245 201 • RAW-SYN-FET-L 44 (18%)

SUB-FET-E 236 193 • SUB-FET-L 43 (18%)
SUB-SYN-FET-E 215 185 • SUB-SYN-FET-L 30 (14%)

Table 3. Testing errors (MAE) on differentiated data (• - superior performance)

preprocessing#1 MAE#1 MAE#2 preprocessing#2 improvement

SUB-DIF 41.8 35.3 • SUB-DIF-SYN 6.5 (16%)
SUB-DIF 41.8 32.4 • SUB-DIF-FRA 9.4 (22%)

We see that each selected preprocessing action improves the predictive perfor-
mance (the right approaches are better than the left). The largest improvement
is achieved by late feature selection (RAW-SYN-FET-L and SUB-FET-L), as
compared to early feature selection. This is an interesting observation. This sug-
gests, that feature relevance is changing over time, and we can achieve as much
as 18% reduction in the prediction error only by making the feature selection
adaptive over time using the simplest fixed sliding window strategy.
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Table 3 presents the mean absolute errors (MAE) of the predictions.
Comparing the results on non-differentiated data in Table 2 and differentiated

data in Table 3 suggests that taking into account self-similarity is very benefi-
cial. That is not surprising, considering that in chemical production processes
operating conditions do not jump suddenly, hence, the concentration of the out-
put also remains similar to what has been observed in the recent past, therefore,
methods from time series modeling contribute well.

Experiments show that preprocessing actions consistently improve the predic-
tive performance, with adaptive feature selection making the largest impact.

In Section 3.1 we also discussed qualitative criteria, namely transparency and
computational load. In terms of computational load, PLS regression that was
used can be updated recursively using analytical solutions, it does not require
optimization loops, and is easy to handle on a commodity hardware.

PLS regression is one of the most transparent models available. While fitting
the model is somewhat more involved, the result is a linear model. The coeffi-
cients at the inputs can be interpreted as the importance weights, hence, PLS
regression provides good transparency and interpretability, easy to understand
even for non-experts. All the tested preprocessing actions, except maybe the frac-
tal dimension, do not reduce transparency and interpretability in any substantial
way. For example, synchronization of the features (SYN) shifts observations in
time, but the regression coefficients remain as interpretable, as before.

5 Conclusion

We analyzed data preparation process for building soft sensors in three main
steps: establishing the evaluation framework, exploratory data analysis and data
preparation. We recommended a sequence of data preparation techniques for
building soft sensors. We illustrated our propositions with a case study with
real data from industrial production process. The experiments showed that the
selected preprocessing actions consistently improve the predictive performance,
and adaptive feature selection makes the largest contribution towards improving
the prediction accuracy.

This study opens several interesting directions for further research. Firstly,
since relational and autoregressive data representations capture different pat-
terns in data, combining the two approaches suggests a promising research direc-
tion. A straightforward way to combine would be to extend the feature space with
autoregressive features. Alternatively, we could combine those different types of
approaches into an ensemble for the final decision making.

Secondly, it would be interesting to explore how to filter out the effects of data
compression when evaluating predictive models. One direction is to identify the
real sensor readings and treat the compressed readings as missing values. It
would be also interesting to analyse theoretically what compression algorithms
would be the most suitable for streaming data, which is later intended to be
used for predictive modelling.
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Finally, despite thorough synchronisation of preprocessing steps we encoun-
tered different data representations (after each preprocessing step), not straight-
forward to integrate. Thus, our study confirmed the intuition that automating
and combining multiple data preparation methods into a single autonomous sys-
tem that would use a feedback loop to update itself is urgently needed.
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Abstract. An ongoing issue in industrial software engineering is the amount of 
effort it requires to make ‘maintenance’ changes to code. An equally relevant re-
search line is determining whether the effect of any maintenance change causes a 
‘ripple’ effect, characterized by extra, unforeseen and wide-ranging changes in 
other parts of the system in response to a single, initial change. In this paper, we 
exploit a combination of change data and comment data from developers in the 
form of free text from three ‘live’ industrial web-based systems as a basis for ex-
ploring this concept using IDA techniques. We explore the predictive power  
of change metrics vis-à-vis textual descriptions of the same requested changes. 
Interesting observations about the data and its properties emerged. In terms of 
predicting a ripple effect, we found using either quantitative change data or  
qualitative text data provided approximately the same predictive power. The re-
sult was very surprising; while we might expect the relative vagueness of textual 
descriptions to provide less explanatory power than the categorical metric data, it 
actually provided the approximate same level. Overall, the results have reson-
ance for both IT practitioners in understanding dynamic system features and for 
empirical studies where only text data is available.  

Keywords: Software maintenance, web-based systems, prediction, metrics.  

1 Introduction 

In the development of industrial software, it is well-recognized that software mainten-
ance accounts for at least seventy-five percent of overall development costs [15]. 
Maintenance of code (both through fault fixing and for other perfective reasons) is 
still the subject of intense research activity and any study which provides insights into 
our understanding of this facet of software is potentially of use [4]. One under-
researched aspect of the software maintenance process is the notion of a ‘ripple’ effect 
[3]. In other words, if we make one change to a computer system, does this cause 
‘knock-on’ wider (and hence more costly and time-consuming) changes to be required 
elsewhere in the same system? In this paper, we explore three industrial web-based 
systems to provide insights into this phenomenon using IDA techniques as a basis  
[2, 14]. We use data about requests for changes made by system end-users after  
the systems had been made ‘live’ (i.e., put into production) as a basis of our analysis; 
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this data includes the type of maintenance change requested, affected parts of the 
system, developer effort data as well as whether that change had caused a ripple ef-
fect. Using Bayesian Networks (BNs) [14], we first explore a number of relationships 
in the data that inform an understanding of a ripple effect. We also compare the pre-
dictive power of numerical data for predicting a ripple effect against short textual 
descriptions of the actual requested changes to the same system. Hypothetically, we 
might expect numerical data to be a better indicator of a system feature than textual 
descriptions of the same changes, since natural language is usually more subjective 
and vague. Results showed however, that this was not the case - textual descriptions 
of changes provided the same approximate predictive power.  

The remainder of the paper is organized as follows. In the following section, we 
describe related work. In Section 3, we provide data definitions and the organization 
context of the study including the data collected. We then describe results using BNs 
and text analysis using a word tool (Section 4) before concluding and suggesting 
further work (Section 5).  

2 Related Work 

Research into the area of software maintenance and its associated problems has been 
ongoing for over forty years by the software engineering (SE) community. The main-
tenance ‘iceberg’ is a phrase often used to describe the hidden cost and effort of mak-
ing changes to software [5]. In this paper, we explore a relatively recent maintenance 
phenomenon of a ‘ripple’ effect. The concept of a ripple effect was first investigated 
by Black [3] using C code as a basis and has been widely cited since. A tool was de-
veloped which used an algorithm to compute the ripple effect for the C programming 
language and the research explored its theoretical and empirical properties. Despite its 
importance, examination of the ripple effect has been under-researched in the past and 
so the study presented is an opportunity to understand this characteristic of changes in 
software in a little more detail. In terms of the SE-IDA crossover, application of BNs 
to the prediction of fault-proneness in software has been proposed in the past by Fen-
ton et al., [8]; the authors suggested that BNs could be applied effectively in numer-
ous applications and, as such, have been applied to areas as diverse as football result 
prediction and ‘agile’ software development processes [6, 10]. The research presented 
thus informs the growing area of search-based software engineering [9]. A corner-
stone of search-based software engineering is the robustness with which the IDA-
based search algorithms can be applied [11]; it is the marriage of SE and IDA in this 
paper which allows novel and interesting information about existing software artifacts 
to be generated. 

3 Study Context 

The context of the case study used in this paper was an IT development division  
of a small to medium-sized enterprise in London, UK. The company was an estab-
lished web services development consultancy with over fifteen years experience in the 
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design and production of commercial products. All systems described in the next 
section were of roughly similar size in their functionality and the same core team of 
four to six developers in the company produced each system. A waterfall develop-
ment methodology was adopted for each system.  Each change to a system requested 
by an end-user of the developers generated a Change Request Form (CRF) on which 
details of the request were formally stated.  

3.1 The Three Systems Studied 

System A was commissioned by a client providing business services and support to 
organizations providing human resource applications, for example, payroll systems. 
The project required an integrated corporate on-line system which disseminated and 
marketed human resource products.  The specification included a back-end database, 
a content management system and an open forum communication facility. System B 
involved the on-line implementation of an end client’s portfolio management service 
which would allow their customers to delegate management of their assets. The de-
veloped product would allow a fully active, real-time system for customers; it pro-
vided a calculation facility for computing complex financial queries and the produc-
tion of reports based on customers current portfolio positions. System C was to de-
velop an online implementation of financial services; in particular, the investment and 
management of customer’s portfolios. This included services such as loans, treasury-
based transactions and pensions. The project required the inter-connectivity between 
corporate-wide sub-systems linked to a web application.  

3.2 Data Collected  

The following items were collected manually (and then transcribed to file) from each 
of the three systems by one of the authors who spent 6 months at the company as part 
of a research project and with recourse and access to the CRFs of each of the three 
systems: 
 
The architectural layer of a system: Separating a system into architectural layers is 
considered good practice in the design of computer systems since it logically deli-
neates the boundaries of a system making it easier to develop and maintain ‘parti-
tioned’ systems. Defined as either: presentation, system or data. The presentation 
layer is the uppermost level of the software application and displays information re-
lated to services on the client side. It communicates with other layers by outputting 
results to the browser and all other tiers in the network. The system layer (or business-
logic layer) controls an application’s functionality by implementing detailed 
processing and logic. The data layer consists of database servers and is where the data 
about the system is stored and retrieved.  
 
Evidence of a ripple effect: In this paper, a ripple effect is more formally defined as 
a change made at one architectural layer requiring a change (or number of changes) at 
another architectural layer.  
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The maintenance type: In this paper, we adopt the well-known maintenance catego-
ries of Swanson [17]. The three categories of are: Corrective: Performed in response 
to processing, implementation features that are faulty and includes emergency fixes 
and routine debugging. Perfective: Performed to eliminate processing inefficiencies, 
enhance performance or improve maintainability. Adaptive: Performed in response to 
changes in the data and processing environment; examples are changes to organiza-
tional processes or the tax rules of a country.  
 
Effort: Measured by the number of developer hours required to satisfy a specific 
CRF, rounded to the nearest half hour. The effort value is inclusive of any added 
effort incurred by a change as a result of a ripple effect.  
 
A textual description of the change as part of the CRF: A short sentence in Eng-
lish describing the requested change and produced by the developer as part of the 
CRF in consultation with the user. This was the text used as a basis of predicting a 
ripple effect described later. An example is “Error message when secondary pages 
accessed via navigation box” (a corrective change in System A). Equally, “Remove 
bullet point numbering system for text content” (an adaptive change in System B).  

4 Data Analysis 

4.1 Summary Analysis  

A total of 425 CRFs were collected from the live phase of each project and were col-
lected and verified by one of the authors. Table 1 shows the frequency of ripple ef-
fects in each of the three systems (i.e., ‘Ripple’ or ‘No ripple’).  System B is clearly 
the system with the greatest number of ripple effects and System C the lowest. Inte-
restingly, System B was the only system delivered on time (the other two systems 
were delivered late). This statement might seem paradoxical. In other words, why 
would a system delivered on time be more prone to a ripple effect? The answer is 
relatively straightforward: the system was delivered to the client on time, but with 
known bugs and inadequacies. In other words, much of the high-intensive effort 
(usually associated with a ripple) was required after the system had been shipped to 
the client. Often the end client would request and then receive the system even though 
they knew that it contained bugs. 

Table 1. Distribution of CRFs 

System   CRFs Ripple No ripple 
A 134 62 72 
B 128 90 38 

C 163 55 108 

Total 425 207 218 
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4.2 Bayesian Network Analysis  

We developed a Bayesian Network (BN) with the following five nodes: effort (in 
hours), ripple (‘y’ or ‘n’), architectural layer (presentation (p), system (s) or data (d)), 
the maintenance type (adaptive (a), corrective (c) or perfective (p)) and system (A, B 
or C). As a preliminary analysis, one relationship that we might expect from the de-
veloped BN is that: A low effort value is usually associated with the absence of a  
ripple effect (and vice versa) since the incidence of a ripple effect, by its nature, will 
usually cause a higher effort value than if there had been no ripple effect. BNs were 
learnt using the change data where the ripple node was predicted, based upon evi-
dence from the other nodes; the K2 learning algorithm was used to learn the structure 
[7] and a ten-fold cross-validation approach used to score the ability of the model to 
predict ripples. An identical approach was then applied to the free text which was pre-
processed into a document term matrix; any word which appeared in the comments 
was treated as a variable once it was stemmed [18]. This resulted in twenty-two va-
riables (terms) and hence a wrapper feature selection approach was used [12] using 
BN classifiers to score combinations of terms. This process ensured that we would 
identify combinations of terms rather than single words. The selected features were 
then used to build a BN to predict ripples. Again, ten-fold cross validation was used to 
compare the predictive capabilities of the pre-processed text to the change data. Stan-
dard inference was used with the junction tree algorithm [13] to explore “what if?” 
scenarios with respect to ripple effects. We also explored Agrawal’s association rule 
analysis [1] when applied to this data as a comparison.  

Fig. 1 shows the BN settings when effort is set to low (here, ‘-inf’ denotes minus 
infinity and ‘+inf’, positive infinity). A probability of ‘no’ ripple effect with that low 
effort is reported as 0.98, confirming the intuitive relationship between effort and 
ripple. However, we note an unexpected feature not so evident from this initial explo-
ration - the probability of the ‘presentation’ layer prevailing as the source of a change 
with low effort (and no ripple) was 0.94. One explanation for this result may be that 
changes at the presentation layer generally tend to be cosmetic, requiring relatively 
simple changes only. An example might be to change or remove some text from a 
web page. Such a change is unlikely to cause a ripple effect and that may explain the 
high probability value.  

Association rule analysis [1] revealed a similar relationship (rule 1) and it was Sys-
tem C where this relationship was most prevalent (rule 2), see Fig.2. Another interest-
ing feature derived from both of these association rules was that the adaptive category 
of change was most evidently the source of a non-ripple effect (from both rules). 
Inspection of the raw data for adaptive changes (all three systems) with no ripple 
revealed typical change text to be of the form: ‘remove text’, ‘change text’ and ‘line 
space required between text’. All of these types of change are low effort and again are 
unlikely to cause a ripple effect. (Note: Fig. 2 details the top two rules extracted. Rule 
1 is interpreted as: “if effort is "less than 1.75", there is no ripple, change type is’ ‘a’, 
then layer will be p with a confidence of 0.98 (very high), lift of 1.6 and leverage of 
0.08”.) 
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in particular, the word ‘section’. Typical of the type of change that included this word 
was: “Charges section requires database and admin”. This type of change was non-
trivial in the sense that it required other parts of the application to be changed and 
hence a ripple effect was caused. Often, this was an addition to the database (at the 
data layer) and this required change at the system layer to accommodate the new 
functionality. Interestingly, a distinction can therefore be made between the two types 
of ‘link’ in each diagram. Simply changing the wording of a link caused no ripple 
effect – a simple textual change. Adding new links or errors in the links did cause a 
ripple effect. Cloud diagrams could thus be used by a project manager to target areas 
that are clearly ripple-prone, at the same time overcoming issues with synonyms in 
the text and complementing a BN analysis. 

5 Conclusions and Future Work 

Most systems suffer from constant requests for changes to systems after they are in 
operation. The nature of these changes varies widely and some may cause   unfore-
seen effort in unanticipated parts of the system – a so called ‘ripple effect’. In this 
paper, we explored the ripple effect in three industrial, web-based systems. Our objec-
tive was to gain insights into the features of 425 change requests and the relationship 
they had with a ripple effect. We used a combination of text mining and Bayesian 
Networks (BNs) to determine relationships between changes that caused a ripple and 
interesting results emerged which demonstrated the dependencies between system 
features (effort, architectural layer, for example). Of equal interest was the result 
produced when the BN considered either numerical data or textual descriptions of the 
change requests. No significant difference was found between the two types of data as 
predictors when looking at overall accuracy, although sensitivity was better when 
using the change metrics. This is highly relevant to empirical studies where often only 
qualitative data is available and it encourages a number of lines for future research. 
Firstly, we will explore other areas of software engineering (e.g. bug analysis) in the 
context of IDA. Second, the research opens up opportunities for further exploration of 
how free-form text could be optimized to provide maximum information with impli-
cations in information theory [16].  
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Abstract. Physiology experts deal with complex biophysical relation-
ships, across multiple spatial and temporal scales. Automating the dis-
covery of such relationships, in terms of physiological meaning, is a key
goal to the physiology community. ApiNATOMY is an effort to provide
an interface between the physiology expert’s knowledge and all ranges of
data relevant to physiology. It does this through an intuitive graphical in-
terface for managing semantic metadata and ontologies relevant to physi-
ology. In this paper, we present a web-based ApiNATOMY environment,
allowing physiology experts to navigate through circuitboard visualiza-
tions of body components, and their cardiovascular and neural connec-
tions, across different scales. Overlaid on these schematics are graphical
renderings of organs, neurons and gene products, as well as mathematical
models of processes semantically annotated with this knowledge.

1 Introduction

Knowledge of physiology is extensive and complex. To provide software support
for using and manipulating physiology data, formalization of the knowledge is
required. An ontology consists of a set of terms, and their relations, representing
a specific domain of knowledge. They are created and maintained by knowledge
domain experts, and are used as computer-readable taxonomies by software tools
to support knowledge management activities in that domain. When knowledge
is formalised in this way, it is possible to record explicit descriptions of data
elements in the relevant domain using ontologies; this is the process of semantic
annotation or the generation of semantic metadata.

For example, physiology experts deal with complex biophysical operations
across multiple spatial and temporal scales, which they represent in terms of the
transfer of energy from one form to another and/or from one anatomical loca-
tion to another. Different kinds of descriptions of these biophysical operations
are produced by different disciplines in biomedicine. For instance, (i) a medi-
cal doctor may describe the mechanism by which a stone in the ureter causes
damage in the kidney; (ii) a pharmacologist may depict the process by which a
drug absorbed from gut transits to the hip joints where it reduces inflammation;
(iii) a molecular geneticist may trace the anatomical distribution of the expres-
sion of a particular gene to understand the cause of a skeletal malformation; and,
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(iv) a bio-engineer may build a mathematical model to quantify the effect of hor-
mone production by the small intestine on the production of bile by the liver.
These descriptions take diverse forms, ranging from images and free text (e.g.,
journal papers) to models bearing well-defined data (e.g., from clinical trials) or
sets of mathematical equations (which might be used as input for a simulation
tool).

The physiology community is investing considerable effort in building on-
tologies for the annotation and semantic management of such resources. For
example, a number of reference ontologies have been created to represent gene
products [3], chemical entities [4], cells [5] and gross anatomy [6]. Together, these
ontologies consist of hundreds of thousands of terms, such that the volume of
semantic metadata arising from resource annotation is considerable.

Unfortunately, conventional technology for the visualization and management
of ontologies and metadata is not usefully accessible to physiology experts, as
they involve unfamiliar, abstract technicalities. A number of generic ontology
visualization tools have been developed to assist knowledge acquisition, brows-
ing and maintenance of ontologies [2]. Such tools, however, put considerable and
unrealistic demands on the users’ familiarity and expertise in semantic web tech-
nologies and the design principles of ontologies. Having to become technically
proficient with such technologies is a burden few physiology experts can bear
without losing touch with their long term goals. Rather, domain experts should
be able to manage data based on a familiar perspective, in which its meaning is
made explicit in terms of the expert’s own knowledge; a long standing challenge
in knowledge engineering.

In this paper, we present ApiNATOMY, a web-based environment that al-
lows physiology experts to navigate through circuitboard visualizations of body
components, and their cardiovascular and neural connections, across different
scales. It supports a plugin infrastructure to overlay graphical renderings of or-
gans, neurons and gene products on these schematics, in support of biomedical
knowledge management use cases discussed in the next section.

The remainder of the paper is structured as follows: Section 2 gives an overview
of the ontology-, metadata- and data-resources that we focused on for the Ap-
iNATOMY prototype, and outline key use-case scenarios that motivate our work.
Sections 3 and 4 then discuss the visualization techniques we applied to arrange
and display those resources. Section 5 provides some insight into the implemen-
tation of the prototype. Finally, Sections 6 and 7 offer an overview of related
efforts in the field, and conclude the paper with a discussion of the anticipated
implications of our tool, as well as planned future work.

2 Use Cases and Data Resources

In this section, we briefly discuss a core use case for the ApiNATOMY applica-
tion: the generation of interactive schematics in support of genomics and drug
discovery studies. We introduce some of the key ontology- and data-resources
required in this case. In so doing, we set the stage for an exposition of our
early-stage results in the ApiNATOMY application effort.
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The domains of genomics and drug discovery are heavily dependent on physi-
ology knowledge, as both domains take into account the manufacture of proteins
in different parts of the body and the transport of molecules that interact with
those proteins, such as drugs, nutrients, and other proteins. We aim to provide
an interactive, schematic overview of data resources important to these domains.
This includes gene expression data (e.g., [7]), and data on the transport routes
taken by molecular interactors (e.g., [8]). Such data may be usefully depicted in
the form of a physiology circuitboard.

In ApiNATOMY, a physiology circuitboard schematic consists of an anatom-
ical treemap and an overlay of process graphs. Our earlier prototypes [9,10] pre-
sented treemaps of the Foundational Model of Anatomy (FMA) ontology [6].
Nesting of one treemap tile inside another indicated that the term associated
with the child tile is either a mereotopological part or a subclass of the term as-
sociated with the parent tile. Our newest prototype also adopts this convention.

(a) Initial view of ApiNATOMY (b) Longitudinal section through the
male human body, justifying the lay-
out [9]

Fig. 1. The main 24-tile layout of the ApiNATOMY circuitboard

The ApiNATOMY graphical user interface (Figure 1(a)) supports user inter-
action with circuitboard schematics via point-and-click navigation of the treemap
content. The upper level of the anatomical treemap is arranged to resemble the
longitudinal section through the middle of the human body (Figure 1(b)). Each
of the organs in the plan is composed of multiple tissues and sub-organs. The
GUI supports filtering across multiple levels and zooming into selected areas.

This type of interaction extends also to the overlayed process graphs. These
graphs project routes of blood flow processes linking different regions of the
human body —using data generated in [11]—, as well as transport processes
along neurons of the central nervous system (i.e., the brain and spinal cord) —
using data obtained via the Neuroscience Information Framework [12].

The ApiNATOMY GUI is built from inception as a three-dimensional envi-
ronment. This facilitates interaction not only with 3D renderings of the circuit
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boards themselves, but also with a wide range of geometry/mesh formats for vol-
umetric models of biological structure across scales. For instance, it is already
possible to overlay Wavefront .obj data from BodyParts3D [13] as well as .swc
data provided by neuromorpho.org [14]. Easy access to such visual resources is
critical to the understanding of long-range molecular processes in genomics and
drug discovery research.

In the next two sections, we discuss our techniques for constraining treemap
layouts to generate stable anatomical treemaps (Section 3.1), designing and over-
laying physiological communication routes for the cardiovascular and neural sys-
tems (Sections 3.2 and 3.3), and depicting three-dimensional models of organs
and protein architecture diagrams for the anatomical overview of gene expression
data (Section 4).

3 Visualizing Ontologies and Connectivity Data

In this section we discuss our considerations in the visualization of ontological
hierarchies using treemaps, and connectivity data using graph overlays.

3.1 Treemaps

Treemaps [15] visualize hierarchical data by using nested shapes in a space-
filling layout. Each shape represents a geometric region, which can be subdivided
recursively into smaller regions. The standard shape is a rectangle. Nodes in a
treemap, also called tiles, represent individual data items. Node size, color and
text label can be used to represent attributes of the data item. In interactive
environments such as ApiNATOMY, it is possible to navigate between different
layers and zoom into selected tiles [16].

We do not use node size to represent information. We focus on tile color
and position. Tiling algorithms used for typical applications of treemaps (e.g.,
visualizing the structure of a computer file system) do not usually associate tile
positions with any characteristic of the data, and as such, it does not matter if
tiles shift around arbitrarily. But this is not the case in our scenario. As shown
in Figure 1, relative tile positions are quite relevant, and should be kept stable
while the user filters data and zooms in and out. Otherwise, their perception of
the data could be easily disrupted. Moreover, the user should be able to enforce
constraints on (relative) tile positions to make the treemap views structurally
resemble body regions. Hence, we developed a stable and customizable tiling
algorithm that arranges tiles according to a given template [10].

The schematic body plans created using template-based treemaps can be seen
in Figure 1. Figure 1(a) shows the top level 24 tile body anatomy plan. The choice
of this layout is explained by Figure 1(b), which shows how it can conceptually
wrap around the longitudinal axis of the human body. The treemap layout is
controlled by the (default) templates and remains stable during navigation.
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(a) Selected blood vessel connections (b) Arterial connections from left ventricle

(c) Bundled connections from left ventricle (d) Bundled connections to right atrium

Fig. 2. Overlaying cardiovascular connections. A straightforward approach works well
when the number of connections is limited (a). When many connections need to be
displayed, we quickly lose overview (b). This is mitigated by employing edge-bundling
techniques (c,d).

3.2 Process Graphs

With the treemap-based body plans as background, we overlay the schematic
representation of body systems such as circulatory, respiratory, or nervous sys-
tems. Body systems are essentially graphs with nodes corresponding to body
parts (treemap tiles) or entities inside of body parts (e.g., proteins, cells), and
edges corresponding to organ system compounds such as blood vessels or ner-
vous connections that pass through such body parts or sub-parts. They may also
contain auxiliary nodes that are not represented on the treemap but still carry
important biomedical information.

Body systems are intrinsically complex and require efficient data visualization
techniques to help avoid clutter induced by the large amount of graph edges and
their crossings. Our users need to trace individual connections of body systems,
as well as view large parts at once. Edge bundling techniques [17,18,19] have been
proposed to improve perception of large, dense graphs. Such techniques generally
rely on edge rerouting strategies that are either solely targeted at improving
visual perception (by using the positions of nodes) or exploit the relationships
among connectivity data as guidelines for a more natural allocation of graph
edges and nodes. Our application requires a mixture of these techniques.
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If there are too many edges to get a clear overview of the data —as in Fig-
ure 2(b), which shows the full connectivity graph for the left ventricle (7101) on
the top-level body plan— we can apply hierarchical edge bundling techniques
that use path structure to bundle common sub-paths. The result for the left
ventricle is shown in Figure 2(c), which gives a much nicer overview. The result
for the right atrium is shown in Figure 2(d).

After a one-time pre-processing to import data from available external sources,
we store connectivity data in a convenient format. A user can interact with and
edit this data using the tool.

3.3 Analyzing the Connectivity Data: An Example

Consider the blood vessels in the human body. Our initial dataset on this is a
graph based on the FMA ontology, and consists of approximately 11,300 edges
and over 10,000 distinct nodes. In this graph, an edge represents a flow process
over an unbranched blood-vessel segment. Nodes represent blood vessel junctions
and end-points. Samples of records from the dataset are shown in Table 1.

Table 1. Vascular connectivity data from the FMA ontology. The first column is a
unique segment identifier. The second shows the type of a segment (1: arterial, 2:
microcirculation, 3: venous, and 4: cardiac chamber). The third contains FMA IDs.
The fourth and fifth contain identifiers of the two connected nodes.

Segment T. FMA Node 1 Node 2 Description

121a 2 62528 62528 2 62528 4 Arterioles in Microcirculation segment of
Wall of left inferior lobar bronchus

121c 2 62528 62528 4 62528 5 Capillaries in Microcirculation segment of
Wall of left inferior lobar bronchus

121v 2 62528 62528 3 62528 5 Venules in Microcirculation segment of Wall
of left inferior lobar bronchus

...
...

...
...

...
...

8499 1 69333 8498 0 62528 2 Arterial Segment 8499 of Trunk of left sec-
ond bronchial artery from origin of supply-
ing terminal segment to the arteriolar side of
the Wall of left inferior lobar bronchus MC

9547 3 66699 9546 0 62528 3 Venous Segment 9547 of Trunk of left
bronchial vein from origin of supplying ter-
minal segment to the venular side of the
Wall of left inferior lobar bronchus MC

A microcirculation (MC) is represented by three edges connected in series:
one representing tissue arterioles, a second for the bed of capillaries, and a third
for the venules. In Table 1, the anatomical entity in which the MC is embedded
is 62528 (“Wall of left inferior lobar bronchus”). The topology of its MC segment
connectivity is as follows:

62528 2
121a−−−−→ 62528 4

121c−−−→ 62528 5
121v←−−−− 62528 3.
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MC segment 121a is supplied with blood by the arterial segment 8499, and MC
segment 121v is drained of blood by the venous segment 9547.

The accurate and comprehensible visualization of the cardiovascular system
requires complex pre-processing; a biomedical expert in our team identified about
12 rules for the extraction of relevant data from the full dataset. For illustration
purposes, Figure 2 shows only paths connecting MCs of the walls of the heart
to MCs belonging to the sub-organs of the tiles in our upper level 24 tile body
plan. To obtain this view, we looked for the shortest paths — due to the way
the data is represented in the initial data set, cycles are possible. For example,
the path from the left ventricle to the wall of left inferior lobar bronchus MC
is 7101 → 2406 → · · · → 8499 → 62528, and the path from there to the right
atrium is 7096 ← 771 ← · · · ← 9546 ← 9547 ← 62528.

The first and the last IDs in this path correspond to the tiles in the treemap,
while the intermediate IDs are represented by auxiliary nodes. One of the issues
we encountered is the need to determine optimal positions for these nodes. Since
several paths can have common sub-paths, as shown in Figure 2(a), the inter-
mediate nodes should be positioned so as to minimize the overall path length.
This motivates our application of the sticky force-directed graph visualization
method [20,21] in which a sub-set of nodes have fixed coordinates, and the other
nodes are positioned by simulating imaginary forces applied by their edges.

4 Visualizing Models and Metadata

The entities in the ApiNATOMY ontologies have various data associated with
them, to which they are explicitly linked via semantic metadata annotations.
This includes static and dynamic 3D models of body organs and their subsys-
tems. For instance, we extract and display neuronal reconstructions and as-
sociated metadata from http://neuromorpho.org [14]. Figure 3(a) shows a
sample neuron model associated with the neocortex (reached through “Nervous
Cephalic” → “Region of cerebral cortex” → “Neocortex”). ApiNATOMY allows
users to show multiple 3D objects together in their proper context. For example,
Figure 3(b) shows a screenshot including the “Neocortex” neuron, as well as 3D
models of the “Liver” and “Stomach”, retrieved from BodyParts3D [13].

ApiNATOMY also supports the visualization of protein- and drug-interaction
networks (Figure 4(a)) that are represented as graphs on top of treemap tiles. We
are in the process of acquiring and integrating relevant data from the Ensembl
genomic database [22]. In Ensembl, gene models are annotated automatically
using biological sequence data (e.g. proteins, mRNA). We query this database
to extract genes, transcripts, and translations with related protein features, such
as PFAM domains. ApiNATOMY generates diagrams of protein-interactions and
positions them on tiles where the corresponding genes are expressed. For easy
access, protein diagrams are able to represent domain features in the form of
color-coded 3D shapes extending from the circuitboard (Figure 4(b)).

http://neuromorpho.org
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(a) A neuron in the “Neocortex” (b) Multiple 3D models in context

Fig. 3. Visualizing static 3D models

(a) Protein interactions in 2D (b) Protein features in 3D

Fig. 4. Visualizing protein expression, protein interaction and protein features

5 Implementation

In this section we discuss a number of implementation aspects of ApiNATOMY.
For maximum compatibility across operating systems as well as handheld de-
vices, the whole application is written in Javascript. The main framework in
use is AngularJS, which provides a Model-View-Controller architecture, as well
as two-way databinding. Connectivity- and protein-protein interaction diagrams
(Figures 2 and 4(a)) are generated using D3.js, and all 3D functionality (Fig-
ures 3 and 4(b)) is implemented using Three.js, which provides a convenient
abstraction layer over WebGL.

The circuit-board is rendered with essentially three layers, which are shown
in Figure 5. The treemap is generated with plain HTML. On top of this, a partly
transparent diagram layer is rendered by D3.js. The positions of the tiles and
the positions of the diagram nodes are synchronized with AngularJS two-way
databinding. When 3D mode is activated, Three.js takes control of both layers.
Besides rendering 3D objects with WebGL, it can manipulate HTML elements
using CSS 3D transforms. When using both rendering engines in conjunction,
Three.js can keep WebGL and HTML perfectly synchronized. Together with
AngularJS two-way databinding, we get very fine control of positioning. This
is demonstrated particularly well in Figure 4(b). To render .swc neuron files
(Figure 3), ApiNATOMY uses SharkViewer, an open source Three.js library
developed by the Howard Hughes Medical Institute [23].
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Able to Control Position:

Three.js Canvas −→ HTML Treemap

Three.js Canvas −→ D3.js Layer

Able to Add Content:

HTML Treemap −→ D3.js Layer

HTML Treemap −→ Three.js Canvas

D3.js Layer −→ Three.js Canvas

Fig. 5. The three layers of circuitboard visualization and their interaction

A separate module keeps track of the entity under focus. Whenever the mouse
hovers over a specific tile or object, it is highlighted and its hierarchical informa-
tion is shown in the left side-panel (Figures 3 and 4). Clicking on the object fixes
this focus, allowing the user to interact with the information in the side-panel.

This direct feedback has another purpose. An ontology need not necessarily
be a tree. In the FMA ontology, for example, different branches may join, making
it a directed acyclic graph. A treemap, however, is only meant for visualizing
trees. We compensate for this by allowing the same entity to be represented by
more than one tile at the same time. To reinforce this intuition, all such tiles
are highlighted in unison when the mouse hovers over any one of them. Only
one visible tile per entity may be opened up to show its children. Such a tile
is considered ‘active’, and only active tiles participate in the visualization of
cross-tile connectivity data.

6 Rationale for Our Approach and Related Work in
Anatomy and Physiology Knowledge Visualization

The need for the multi-scale visualization and analysis of human body systems
is well recognized by biomedical communities. For example, the 3D Multiscale
Physiological Human initiative deals with combinations of physiological knowl-
edge and computational approaches to help scientists in biomedicine to improve
diagnostics and treatments of various disorders [24,25]. In addition, numerous
anatomy-related taxonomies and databases have been created and are widely
used by researchers in the biomedical field [26]. While various generic visualiza-
tion techniques can be used to display biomedical ontologies [2], to the best of
our knowledge, ApiNATOMY is the first systematic approach to integrate such
knowledge in one extensible and configurable framework.

Among the most effective taxonomy visualization techniques are space-filling
diagrams, and in particular, treemaps. de Bono et al. [9] describes limitations of
existing treemapping tools for biomedical data visualization. To overcome these
limitations, we introduced a generic method to build custom templates which is
applied in our tool to control layout of ApiNATOMY body tissues. Among the
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advantages of the proposed treemapping method are customizable layouts, visu-
alization stability and multi-focus contextual zoom. The detailed comparison of
our method with existing treemaping algorithms can be found in [10]. Burch and
Diehl [27] discuss the ways to display multiple hierarchies and conclude that over-
laying connectors on top of treemaps is the most visually attractive and easy to fol-
low approach. Among the alternative options they considered are separate, linked
and colored tree diagrams, sorted and unsorted matrices and sorted parallel coor-
dinate views. Regarding the way to layout the connectors, two naive methods were
considered: straight connections and orthogonal connections.

Our application requires multiple taxonomies consisting of thousands of items
to be displayed on relatively small screens of handhold devices. We employ the
same visualization technique with more advanced treemapping and connector
layout algorithms. Due to the potentially large amount of vascular connectivity
data, we employ the hierarchical edge bundling technique [17] that results in
an intuitive and realistic depiction of blood flow across a treemap-based plan of
the human body. In contrast to the scenarios in the aforementioned work, not
every node in our vascular connection dataset has a corresponding node in the
treemap. Thus, force-directed graph drawing method [28] is added to the scene
to find optimal positions of intermediate junctions on the paths that connect
the root of the taxonomy (i.e. in the heart) with its leaves (body tissues shown
as treemap tiles). The variation of the force-bundling method suitable for our
application is known as sticky force-directed placement [20] which allows to fix
the positions of certain nodes and allocate other nodes to achieve mechanical
equilibrium between forces pulling the free nodes towards fixed positions.

Other potentially useful methods did not provide the desired result. The
first approach we tried consists of applying the force-directed edge bundling
method [29] to bundle entire paths among the heart chambers and body tissues,
but this does not reflect the hierarchical structure of vascular connectivity graph.
The second approach, force-based edge bundling over a graph produced by sticky
force-directed node allocation algorithm results into unnatural distortion of short
edges towards each other. Other edge-bundling methods(e.g., [18,19,30]) operate
on graphs with known node positions and thus would produce visualizations on
our data that suffer from similar problems.

7 Conclusions and Future Work

The core goal for ApiNATOMY is to put clinicians, pharmacologists, basic sci-
entists and other biomedical experts in direct control of physiology knowledge
management (e.g. in support of integrative goals outlined in [31]). As the do-
main of physiology deals with processes across multiple anatomical scales, the
schematic ApiNATOMY approach provides a more flexible and customizable
depiction of process participants, and the routes they undertake, compared to
conventional methods of anatomy navigation that constrain visualization to re-
gional views of very detailed and realistically proportioned 3D models (such as
Google Body [32]). In this paper, we presented our initial results in the develop-
ment of a generic tool that creates an interactive topological map of physiology
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communication routes. These routes are depicted in terms of (i) treemaps derived
from standard reference anatomy ontologies, as well as (ii) networks of cardio-
vascular and neural connections that link tiles within these treemaps. These
topological maps, also known as circuitboard schematics, set the stage for the
visual management of complex genomic and drug-related data in terms of the
location of gene products and the route taken by molecules that interact with
them. While the implementation of our tool is still in its early stages, we have
already started taking steps in preparation for future developments, supporting:

– the visually-enhanced construction of mathematical models in systems biol-
ogy (e.g., as discussed in [33]),

– the collaborative graphical authoring of routes of physiology communication
(e.g., brain circuits) and, crucially,

– the automated discovery of transport routes given (i) a fixed- location re-
ceptor and (ii) its corresponding ligand, found elsewhere in the body.

Above all, our aim is to ensure that ApiNATOMY is easy to use for biomedical
professionals, and available across a wide range of platforms, to foster collabora-
tive exchange of knowledge both within, and between, physiology communities.
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Abstract. Many applications see huge demands for discovering relevant
patterns in dynamic attributed graphs, for instance in the context of so-
cial interaction analysis. It is often possible to associate a hierarchy on the
attributes related to graph vertices to explicit prior knowledge. For exam-
ple, considering the study of scientific collaboration networks, conference
venues and journals can be grouped with respect to types or topics. We
propose to extend a recent constraint-based mining method by exploiting
such hierarchies on attributes. We define an algorithm that enumerates
all multi-level co-evolution sub-graphs, i.e., induced sub-graphs that sat-
isfy a topologic constraint and whose vertices follow the same evolution
on a set of attributes during some timestamps. Experiments show that
hierarchies make it possible to return more concise collections of patterns
without information loss in a feasible time.

1 Introduction

Due to the success of social media and the ground-breaking discovery in exper-
imental sciences, network data have become increasingly available in the last
decade. Consequently, graph mining is recognized as being one of the most stud-
ied and challenging tasks for the data mining community. Two different and
complementary ways have been considered so far: (1) analyzing graphs based on
macroscopic properties (e.g., degree distribution, diameter) [9] or partitioning
techniques [12], and (2) extracting more sophisticated properties within a pat-
tern discovery setting. In particular, local pattern mining in graphs has received
much attention, leading to the introduction of new problems (e.g., mining col-
lections of graphs [17,22] or single graphs [5,7]). The graph vertices are generally
depicted by additional information that form with the graph structure an at-
tributed graph [15,16,18,20]. Such attributed graphs support advanced discovery
processes providing insightful patterns.

However, there exists other types of augmented graphs such as evolving [1,4,19]
or multidimensional graphs [2]. A growing body of literature has investigated
augmented graphs by only considering one of the above types at a time. In [11],
we proposed to tackle both dynamic and attributed graphs by introducing the
problem of trend sub-graphs in dynamic attributed graph discovery. This new
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Fig. 1. US domestic flights dynamic graph

kind of patterns relies on the graph structure and on the temporal evolution of
the vertex attribute values. In this paper, we go deeper in the analysis of dynamic
attributed graphs by also examining the existence of a hierarchy over the vertex
attributes. Indeed, we believe that the subsumption power of hierarchies is of
most interest to summarize patterns and avoid unperceptive/useless/meaningless
patterns. We propose to mine maximal dynamic attributed sub-graphs that sat-
isfy some constraints on the graph topology and on the attribute values. To
be more robust towards intrinsic inter-individual variability, we do not compare
raw numerical values, but their trends, that is, their derivative at time stamp t.
Let us consider the example in Fig. 1 that depicts a dynamic attributed graph
describing the US domestic flights. The vertices stand for the airports and edges
link airports that are connected by at least a flight during the time period of
observation. Two attributes described the vertices of the graph: a is the num-
ber of flight arrivals and b is the average delay of arrival. At each time period
of observation, we only consider the evolution or trend of the attribute values,
and the value increases are denoted +, whereas their decreases is denoted −.
The two attributes a and b can be specialized according to the geographical
location of the airports where planes come from (see hierarchy H on Fig. 1).
The incoming number of flights and their average delay can be decomposed into
the ones coming from the North and South areas, as well as the distinct states
of America. Hence, if a pattern describes a phenomenon that characterizes the
whole airplane system, the most appropriate level of description is the first one
(namely attributes a and b), whereas if the pattern is specific to a peculiar state,
the involved attributes will be the ones at the leaves of the hierarchy.

The connectivity of the extracted dynamic sub-graphs is constrained by a
maximum diameter value that limits the length of the longest shortest path be-
tween two vertices. Additional interestingness measures are used to assess the
relevancy of the trend dynamic sub-graphs and guide their search with user-
parametrized constraints. In this unified framework, these measures aim at eval-
uating (1) how the vertices outside the trend dynamic sub-graph are similar to
the ones inside it; (2) the dynamic of the pattern through time; (3) the quality
of the description of the pattern given the hierarchy over the vertex attributes.
The algorithm designed to compute these patterns traverses the lattice of dy-
namic attributed sub-graphs in a depth-first manner. It prunes and propagates
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constraints that are fully or partially monotonic or anti-monotonic [8], and thus
takes advantage of a large variety of constraints that are usually not exploited
by standard lattice-based approaches. Our contributions are:

– The definition of hierarchical co-evolution sub-graphs: We define them as
a suitable mathematical notion for the study of dynamic attributed graphs
and introduce the purity and h-gain concepts (see Section 2).

– The design of an efficient algorithm H-MINTAG that exploits the constraints,
even those that are neither monotonic nor anti-monotonic (see Section 3).

– A quantitative and qualitative empirical study. We report on the evalua-
tion of the efficiency and the effectiveness of the algorithm on a real-world
dynamic attributed graph (see Section 4).

2 Hierarchical Co-evolution Sub-graphs

A dynamic attributed graph G = (V , T ,A) is a sequence over a time period T
of attributed graphs {G1, . . . , G|T |} where each attributed graph Gt is a triplet
(V , Et, At), with V a set of vertices that is fixed throughout the time, Et ⊆ V ×V
a set of edges at timestamp t, and A a set of attributes common to all vertices
at all times. At(v) ∈ R|A| are the values of vertex v at time t on A.

A vertex induced dynamic sub-graph of G is an induced subgraph across a
subsequence of G, denoted by (V, T ) with V ⊆ V and T ⊆ T . In order to
take into account both the fact that attributes can be expressed according to
different levels of granularity and the end-user’s prior knowledge, we assume
that a hierarchy H is provided over the set of vertex attributes A. A hierarchy
H on dom(H) is a tree whose edges are a relation is a, a specialization (resp.
generalization) relationship that corresponds to a path in the tree from the root
node HAll to the leaves, that are the attributes of A (resp. from the leaves to
the root). Different functions are used to run through the hierarchy:

– parent(x) returns the direct parent of the node x ∈ dom(H)
– children(x) returns the direct children of the node x ∈ dom(H)
– leaf(x) returns all the leaves down from x ∈ dom(H)

We aim at identifying relevant sub-graphs that rely on the graph structure,
the temporal evolution of attributes and the associated hierarchy. To this end, we
define a new kind of pattern, the so-called hierarchical co-evolution sub-graphs.
Intuitively, a hierarchical co-evolution sub-graph P = {V, T,Ω} is such that
V ⊆ V , T ⊆ T and Ω ⊆ {dom(H) × {+,−}}, a set of signed attributes. Such
a dynamic sub-graph of G is induced by (V, T ) and its vertices follow the same
trends defined by Ω. Such dynamic sub-graphs, whose attribute values increase
or decrease at the same timestamps, may be unconnected. Therefore, to support
analysis based on the graph structure, we introduce a structural constraint that
is based on the diameter of the induced dynamic subgraph and provides relevant
patterns.
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A hierarchical co-evolution sub-graph is then defined as follows:

Definition 1 (Hierarchical co-evolution Sub-Graph). P = (V, T,Ω) is a
sequence of graphs Gt[V ] induced1 by the vertices of V in the graphs Gt, t ∈ T .
The sets V , T and Ω are such that V ⊆ V, T ⊆ T and Ω ⊆ {dom(H)×{+,−}}.
The pattern P has to satisfy the two following constraints:

1. Each signed attribute (a, s) ∈ Ω defines a trend that has to be satisfied by
any vertex v ∈ V at any timestamp t ∈ T . Thus, if (v, a, t) is the value of
attribute a at time t for vertex v, trend(v, a, t) = s with:

trend(v, a, t) = + iff
∑

ai∈leaf(a)

(v, ai, t) <
∑

ai∈leaf(a)

(v, ai, t+ 1)

trend(v, a, t) = − iff
∑

ai∈leaf(a)

(v, ai, t) >
∑

ai∈leaf(a)

(v, ai, t+ 1)

Thus, if ∀v ∈ V , ∀t ∈ T and ∀(a, s) ∈ Ω, we have trend(v, a, t) = s, then
coevolution(P ) constraint is satisfied.

2. Given Δ, a user-defined threshold, and spG(v, w) the length of the shortest
path between vertices v and w in graph G, the constraint diameter(P ) is
satisfied iff ∀t ∈ T , maxv,w∈V spGt[V ](v, w) ≤ Δ.

The maximum diameter constraint makes it possible to focus on some specific
graph structure within the discovery of hierarchical co-evolution sub-graphs.
Indeed, it allows to check how far the vertices are from each other. Δ = 1 implies
that the sub-graph is a clique, Δ = 2 implies that the vertices of the sub-graph
have at least one common neighbor. More generally, the higher the maximum
diameter threshold Δ, the sparser the sub-graphs can be. Until Δ = |V| − 1, the
sub-graphs have to be connected.

The attribute value of a parent node within the hierarchy is evaluated by
adding the corresponding values of its children. Therefore, even if the trend
conveyed by an attribute of the parent is true, it is important to check how
this information is valid, i.e., if the trends associated to its children are similar.
Indeed, if a children attribute has a large increase while the other children have
a small decrease, the sum associated to the parent attribute may result in an
increase that is not followed by most of its leaves. The purity measure evaluates
the correlation between trends of the leaves of an attribute. Given the Kronecker
function δcondition and given a user-defined threshold ψ ∈ [0, 1], the purity of a
pattern returns the number of valid trends trend(v, a, t) = s of the pattern
compared to the total number of trends:

purity(V, T,Ω) =

∑
v∈V

∑
t∈T

∑
(a,s)∈Ω

∑

∈leaf(a) δtrend(v,
,t)=s

|V | × |T | × |leaf(Ω)|

1 Gt[V ] = (V,Et ∩ {V × V })
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P1 = {{v1, v2, v3, v4}, {Aug. 2005}, {(a,+)}} P2 = {{v1, v2, v3, v4}, {Aug. 2005}, {(b,+)}}

Fig. 2. Illustration of the purity values of two patterns extracted from dynamic graph
presented in Fig. 1

From this measure, we can derive the predicate purityMin(P ) which is true
iff purity(P ) ≥ ψ. For example of Fig. 2, the purity of the pattern P1 =
{{v1, v2, v3, v4}, {Aug. 2005}, {(a,+)}} is equal to 7

8 = 0.875 whereas the one
of P2 = {{v1, v2, v3, v4}, {Aug. 2005}, {(b,+)}} is equal to 5

8 = 0.625.
One inconvenient of hierarchy is that it may introduce redundancy among the

hierarchical co-evolution sub-graphs. An important issue is thus to avoid this re-
dundancy by identifying the good level of granularity of a pattern. The question
is thus to determine whether the pattern is worth to be specialized. Fig. 2 illus-
trates this problem with two patterns in two dimensions, i.e., lines depict vertices,
columns are related to attributes. A cell is coloured if the trend of the attribute
is +. Considering the pattern P3 = {{v1, v2, v3, v4}, {Aug. 2005}, {(anorth,+)}},
its purity is equal to 1, and the one of pattern P1 is of 0.875. There is no much
interest in specializing pattern P3 into P1: end-users may prefer to consider the
pattern P3 as it is more synthetic while having a similar purity. On the other
hand, the pattern P4 = {{v1, v2, v3, v4}, {Aug. 2005}, {(bnorth,+)}} as a purity
of 1 while its parent P2 has a purity of 0.625. Then it seems much more inter-
esting to keep the ”parent” attribute instead of producing redundant pieces of
information.

To this end, we introduce the gain of purity that evaluates whether the purity
of the pattern would increase if it gets specialized or not. To this aim, we compare
the purity of the a pattern P with respect to the purity of its “parent” patterns,
that is, all the patterns made by generalizing one of the attributes of P . Given a
user-threshold γ ≥ 1, the gain of purity is defined as the purity of the “children”
pattern compared to the purity of its “parent” patterns:

gainMin(P ) iff
purity(P )

maxPi∈parent(P )(purity(Pi))
≥ γ

where (V, T,Ωi) ∈ parent(V, T,Ω) if ∃(ai, si) ∈ Ωi and ∃(a, s) ∈ Ω s.t. a ∈
children(ai) and (Ωi \ ai) = (Ω \ children(ai)). From Fig. 2, the pattern P4 has
a gain equal to 1.6, whereas P3 has a gain equal to 1.14.

Before ending this Section, let us formalize the general problem we want to
solve as follows:
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Problem 1 (Maximal hierarchical co-evolution sub-graph discovery). Let G be a
dynamic attributed graph, H be a hierarchy over the set of vertex attributes
A, Δ be a maximum diameter threshold, and γ be a minimum gain threshold.
Additional quality measures Q can be used, as defined in [11] (e.g., volume,
vertex specificity, temporal dynamic). Given a conjunction of constraints CQ
over Q, the maximal hierarchical co-evolution sub-graph mining problem is to
find the set of all the patterns that satisfy the constraints coevolution, diameter,
gainMin and CQ.

3 H-MINTAG Algorithm

Algorithm 1 presents the main steps of H-MINTAG. The search space of the al-
gorithm can be represented as a lattice which contains all possible tri-sets from
V ×T ×(dom(H)×{+,−}), with bounds {∅, ∅, ∅} and {V , T , dom(H)×{+,−}}.
The enumeration of all the patterns by materializing and traversing all possible
tri-sets from the lattice is not feasible in practice. Therefore, in the algorithm, all
possibly valid tri-sets are explored in a depth-first search manner which allows
to extract the whole collection of hierarchical co-evolution sub-graphs and the
constraints are used to reduce the search space by using their properties to not
develop tri-sets that can not be valid patterns. The enumeration can be repre-
sented as a tree where each node is a step of the enumeration. A node contains
two tri-sets P and C. P is the pattern in construction and C contains the ele-
ments not yet enumerated and that can potentially be added to the pattern. At
the beginning, P is empty and C contains all the elements of G, i.e., P = ∅ and
C = {V , T , dom(H)× {+,−}}. The extracted patterns are the ones that respect
the diameter, the coevolution, the gainMin, the maximality constraints, and
the other possible constraints as defined in [11].

At each step of the enumeration, either an element of C is enumerated (vertex,
timestamp or attribute) (lines 18-27) or an attribute of P is specialized (lines
5-10) and an attribute from C is enumerated (lines 11-15) while keeping the non
specialized attribute. At the beginning of the algorithm, one vertex, one times-
tamp and one attribute are enumerated to allow a better use of the constraints
to prune the search space. At each step, the elements of C (vertices, timestamps
and attributes) are deleted if they can not be added to P without invalidating
it, i.e., if they cannot respect the different constraints (line 1). If P does not
respect the constraints, the enumeration is stopped.

The constraints coevolution, diameter, purityMin are not anti-monotonic
considering the algorithm. They cannot be used directly to prune the search
space. However, some piecewise monotonic properties of these constraints can
be used to reduce the search space.

The coevolution constraint is not anti-monotonic considering the specialization
of an attribute: If a vertex v does not respect the trend as at time t, no conclu-
sions can be derived for the trends of any of its leaf attributes ai. Indeed, the
trend associated to a is computed while summing the values of the ai ∈ leaf(a),
so some ai can have an opposite trend. However, considering the enumeration
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Algorithm 1. H-MINTAG

Require: P = ∅,C = (V, T , children(HAll)),attr,CQ
Ensure: Maximal hierarchical co-evolution sub-graphs
1. Propagation(C)
2. if ¬empty(C) and CQ(P,C) then
3. if attr �= ∅ then
4. child ← children(attr)
5. for i in 1..|child| do
6. if gainMin(P .V ∪ C.V , P .T ∪ C.T , P .A \ attr ∪ child[i]) then
7. H-MINTAG((P \ attr) ∪ child[i], C ∪ child[i + 1..|child|], child[i])
8. hasSon ← true
9. end if
10. end for
11. if hasSon then
12. for i in 1..|C.A| do
13. H-MINTAG(P ∪ C.A[i], C \ C.A[1..i], i)
14. end for
15. else
16. attr ← ∅
17. end if
18. else
19. E ← ElementTypeToEnumerate(P,C)
20. for i in 1..|C.E | do
21. if E = A then
22. attr ← C.E[i]
23. end if
24. H-MINTAG(P ∪ C.E[i], C \ C.E[1..i], attr)
25. end for
26. H-MINTAG(P , C \ C.E,∅)
27. end if
28. else if CQ(P ) output (P )
29. end if

of the proposed algorithm, the coevolution can be pruned if the next step is not
a specialization step. Indeed, if the attributes of the pattern are leaves of H or
if the attributes have already passed the specialization step, the constraint is
anti-monotonic. Then enumeration can be stopped if coevolution(P ) is false and
elements e of C can be deleted if coevolution(P ∪ e) is false.

The diameter constraint is neither monotonic nor anti-monotonic. The addi-
tion of a vertex to a set of vertices can increase or decrease the diameter of the
induced subgraph. Then, it is not possible to check strictly the diameter on P
and C, however one can check if the induced graph can respect the diameter con-
straint while adding all or part of the vertices of C. Thus, during the algorithm,
the following relaxed constraint lightDiameter(P,C) is used:

∀t ∈ T, max
v,w∈P.V

spGt[P.V ∪C.V ](v, w) ≤ Δ
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Otherwise, no valid pattern can be enumerated. Moreover only elements of
C that can be added while respecting the diameter constraint are kept, i.e.,
C.V = {v ∈ C.V |∀t ∈ T,maxw∈P.V spGt[P.V ∪C.V ](v, w) ≤ Δ} and C.T = {t ∈
C.T |maxv,w∈P.V spGt[P.V ∪C.V ](v, w) ≤ Δ}.

The purityMin constraint is not anti-monotonic. Indeed, while specializing an
attribute, the number of trends trend(v, a, t) = s, v ∈ (P.V ∪ Q.V ), t ∈ (P.T ∪
Q.T ), (a, s) ∈ (P.Ω ∪ Q.Ω) can increase or decrease if the leaf attributes do not
follow the same trend as their parent. One must compute the number of trends
that validate either s or s for at least one of the leaf attribute of a. Then the num-
ber of valid trends

∑
v∈P.V ∪C.V

∑
t∈P.T∪C.T

∑

∈leaf(P.Ω∪C.Ω) δtrend(v,a,t)=s +

δtrend(v,a,t) �=s is anti-monotonic and the number of possible trends |P.V |×|P.T |×
|leaf(P.Ω)| is monotonic. The lightPurity relaxed constraint is anti-monotonic:

lightPurity(P,C) =∑
v∈P∪C.V

∑
t∈P∪C.T

∑
(a,s)∈leaf(P∪C.Ω) δtrend(v,a,t)=s + δtrend(v,a,t) �=s

|P.V | × |P.T | × |leaf(P.Ω)|

If lightPurity(P,C) < ψ is false, then the enumeration can safely be stopped.

4 Experiments

We carried out some experiments on a dynamic attributed graph built from the
DBLP Computer Science Bibliography2. Vertices of the graph represent 2,145
authors who published at least 10 papers in a selection of 43 conferences and
journals of the Data Mining and Database communities between January 1990
and December 2012. This time period is divided into 10 overlapping periods.
A hierarchy over the 43 attributes is built considering the type of publications
(e.g., journal, conference), the related area (e.g., database, machine learning,

HAll

Conf Journal

KnowledgeDB Knowledge BioInfo

AI Data
Intelligent
System

DM DB ML

DM ML

. . . . . .

. . .

. . . . . . . . . . . .

. . .

. . .

. . .

. . . . . .

Fig. 3. Hierarchy of DBLP dataset

2 http://dblp.uni-trier.de/db/

http://dblp.uni-trier.de/db/


92 É. Desmier et al.

data mining, bioinformatics). This hierarchy contains 59 nodes and has a depth
equal to 5, it is partly represented in Fig. 3. The default setting is Δ = 1, Γ =
1.1, Ψ = 0.2 and two maximum threshold on the vertex specificity (κ) and the
temporal dynamic (τ) set to 0.5.

Quantitative experiments. The impact of the hierarchy can be analyzed with
respect to 3 parameters: the purity and the h-gain and the depth of the hierar-
chy. Fig. 4 reports the execution time of H-MINTAG and the number of patterns
according to these parameters. The purity constraint has a significant and sim-
ilar positive impact on both the execution time and the number of patterns.
Increasing the h-gain enables to discard many patterns while the running time
is marginally impacted. To study the impact of the depth of the hierarchy, we
modified the hierarchy by deleting levels of abstractions. Hierarchy with depth
equal to 0 is the dataset with no-hierarchy (i.e., only the 43 attributes). In our
approach, the deeper the hierarchy, the lower the number of patterns. The exe-
cution time also decreases when the hierarchy becomes deeper.

purityMin gainMin hierarchy depth
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Fig. 4. Execution time and number of patterns with respect to ψ, γ and of the depth
of the hierarchy

Qualitative experiments. We then look for connected hierarchical co-evolution
sub-graphs (i.e., Δ = 2144), with γ = 1.1 and ψ = 0.35. We also set some addi-
tional interestingness measures thresholds (a minimum volume threshold ϑ = 20,
a maximum vertex specificity threshold κ = 0.2 and a maximal temporal dynamic
threshold τ = 0.4). As this dataset has many attribute values equal to 0, it is not
relevant to set the purity threshold too high. Considering the hierarchy, attributes
too generalized as “conference” or “journal” are not really interesting, then γ was
set to 1.1 to obtain patterns not too generalized. Two patterns were obtained in
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Casati

Yu
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HalevyChaudhuri

Koudas

Ioannidis
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Chang
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NaughtonSun

Shanmugasundaram

Kaushik

Papadimitriou

2004 → 2010 2006 → 2012

VLDB− ICDE−

Yu

Han Yang

Pei

Wang

1998 → 2004 2000 → 2006

Journal-DM+ TKDE+

Fig. 5. First (on the left) and second (on the right) patterns extracted from DBLP
with the parameters: ϑ = 20, Δ = −1, γ = 1.1, ψ = 0.35 κ = 0.2 and τ = 0.4

this extraction. The first pattern is presented in Fig. 5 (left). This pattern con-
cerns 17 authors who decreased their number of publications in VLDB and ICDE
between 2004 and 2012. This pattern is relatively sparse, as the edges are dotted
when they exist only at one of the two timestamps, for instance “Raymond T.
Ng” is connected to “Beng Chin Ooi” at the first timestamp and to “Yannis E.
Ioannidis” at the second timestamp, but he is connected to none author at both
timestamps. It represents small groups of authors who work together occasion-
ally. Moreover, if the decreasing of publication in VLDB seems logical considering
the new publication policy of the “VLDB endowment” it is noteworthy that it is
also true for the ICDE conference. This pattern has small outside densities with
V ertexSpecificity = 0.126 and TemporalDynamic = 0.118. Since the decreas-
ing in “VLDB” concerns many authors at this timestamp (not only those involved
in this pattern), we can conclude that the vertex specificity is mainly due to the
decreasing in “ICDE”. The low temporal dynamic specificity means that they do
not decrease their number of publication in these conferences and that the pattern
can show that this small community changed its publication policy.

The second pattern is illustrated in Fig. 5 (right). It involves 5 authors that
increase their number of publication in the journal “IEEE-TKDE” and in the
data-mining journals between 1998 and 2006. This pattern reflects that even if
the journal “IEEE-TKDE” is considered as a database journal in the hierarchy,
it has a high attractiveness in data mining. This pattern has a purity of 0.417,
which means that they publish in a lot of data-mining journals; it seems to
make sense since these authors are well-known in the data mining community.
The vertex specificity is equal to 0.073 which depicts that this behavior is truly
specific to these authors. And the temporal dynamic is equal to 0.4 which shows
that their number of publications maybe oscillates. That points out that it is
difficult to publish regularly in this type of journals.
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5 Related Work

Recently, dynamic attributed graphs have received a particular interest. Boden
et al. [3] mine sequences of attributed graphs. They propose to extract clusters
in each attributed graph and associate time consecutive clusters that are similar.
Jin et al. [14] consider dynamic graph with weights on the vertices. They extract
groups of connected vertices whose vertex weights follow a similar increasing or
decreasing evolution, on consecutive time stamps. Desmier et al. [10] discover
subgraphs induced by vertices whose attributes follow the same trends. However,
these propositions do not take into account additional user knowledge.

Hierarchies are not often used in the analysis of graphs. In [21], the authors
propose subgraph querying in labelled graphs based on isomorphisms using an
ontology on the labels. They use a similarity function such that the extracted
subgraphs have labels similar to the query. Inokuchi [13] propose generalized
frequent subgraphs in labelled graphs using a taxonomy on vertex and edge la-
bels.The method is based on an isomorphic function and avoid the extraction of
over-generalized patterns. The authors of [6] defines the taxonomy-superimposed
graph mining problem. They compute frequency based on generalized isomor-
phism with a one-to-one mapping function. These propositions treat labelled
graphs instead of attributed graphs and do not deal with dynamic aspect of the
graphs.

6 Conclusion

We propose to extract hierarchical co-evolution sub-graphs from a dynamic at-
tributed graph and a hierarchy. These patterns are sets of vertices that are
connected and that follow the same trends over a set of attributes over time,
with attributes that are either those of the dataset or of the hierarchy. We also
define some constraints to reduce the execution time and increase the relevancy
of the patterns, in particular according to hierarchy. We design an algorithm
H-MINTAG to compute the complete set of patterns. Experiments on a real-world
dataset prove that this method extracts, in a feasible time, interesting patterns
based on the user parametrized constraints.

Acknowledgements. The authors thank ANR for supporting this work through
the FOSTER project (ANR-2010-COSI-012-02).
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Abstract. This paper presents an algorithm capable of providing mean-
ingful and diversified product recommendations to small sets of users.
The proposed approach works on a high-dimensional space of latent fac-
tors discovered by the bias-SVD matrix factorization techniques. While
latent factor models have been widely used for single users, in this pa-
per we formalize recommendations for multi-user as a multi-objective
minimization problem. In the pursuit of recommendation diversity, we
introduce a metric that explores the angles among product factor vec-
tors and extracts from these a measurable real-life meaning in terms of
diversity. In contrast to the majority of recommender systems for groups
described in literature, our system employs a collaborative filtering ap-
proach based on latent factor space instead of content-based or ratings
merging approaches.

1 Introduction

Recommender systems emerged with the purpose of providing personalized and
meaningful content recommendations based on user preferences and usage his-
tory. In the context of recommendation for groups, where there is more than
one user to please, recommendations must be provided in a different way so
that the whole group of users is satisfied. The most successful approaches to
recommender systems are commonly oriented to single users, providing these
with highly personalized recommendations. In our implementation, we attempt
to explore state-of-the-art latent factor collaborative filtering techniques in the
pursuit of meaningful and diversified multi-user recommendations, by extend-
ing the potentialities of these techniques to a multi-user context. The purpose
of latent factor approaches to recommender systems is to map both users and
products onto the same latent factor space, representing these as vectors with
k dimensions. That is, the user i factors vector, ui = (ui1 , ui2 , · · · , uik) and
the product j factors vector pj = (pj1 , pj2 , · · · , pjk). By representing users and
products in such way, one can evaluate the extent to which users and products
share common characteristics by comparing their k factors against each other.
The principle underlying this approach is that both users and products can be
represented under a common reduced dimensionality space of latent factors that

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 96–107, 2014.
c© Springer International Publishing Switzerland 2014
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are inferred from the data and explain the rating patterns. Our algorithm oper-
ates exclusively in the latent-factor space, in which one can easily relate differ-
ent users. Moreover, by clustering this space we obtain a set of interest-groups
to which users belong, enabling us to experiment with different multi-group
scenarios.

Our approach intends to find sets of products that satisfy different users at
the same time, while pursuing maximum product diversity. To achieve such goal,
we defined satisfaction metrics and diversity metrics, and designed optimization
algorithms to maximize these indicators. Finding the set of products within the
large scope of available products that yields the highest satisfaction and diversity
presents a complex combinatorial problem, which raised some challenges. On
the pursuit of multi-user diversified recommendations, we needed to deal with
the non-convex nature of the objective functions we attempted to optimize,
which led us to develop a deterministic greedy search algorithm that avoids local
minima and returns a nearly optimal solution, while avoiding an exhaustive and
computationally infeasible search through all possible solutions.

This paper is organized as follows: section 3 describes the matrix factorization
implementation, section 4 presents our multi-user recommendation algorithms
and section 5 presents an evaluation and discussion of our system’s performance.
Next, we discuss related work.

2 Related Work

Collaborative filtering approaches attempt to infer user preferences by analysing
the patterns and historic of consumption of all users in the system, mining
the relations between users and products based on their interactions. An early
application of collaborative filtering was the open architecture GroupLens, im-
plemented by Resnick et al.[1] with a similar purpose. This approach introduced
the concept of user feedback provided explicitly by users in the form of ratings
(explicit feedback) or extracted from user activity analysis (implicit feedback).
Within collaborative filtering approaches, the latent factor approach alone has
proven to yield state-of-the-art results [2]. Applications of such approach include
neural networks [3], latent variable models [4] and Singular Value Decomposition
(SVD)[5].

Although recommender systems have recently attracted a lot of attention
from the scientific community, recommendation for multi-user groups has not
been widely addressed, since most recommendation techniques are oriented to
individual users and focus on maximizing the accuracy of their preference pre-
dictions. A. Jameson et al. [6] conducted an enlightening survey presenting the
most relevant works on the field of recommendation for groups. The main chal-
lenges faced when providing recommendation for groups are (1) capturing user
preferences, (2) combining user preferences into a representation of group pref-
erences, (3) defining criteria to assess the adequacy of recommendations, and
(4) delivering recommendations. Group recommender systems can be compared
according to how they deal with these challenges. In 2002, the Flytrap system
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was proposed by A. Crossen et al. [7], presenting a simple system designed to
build a soundtrack that would please all users within a group in a target envi-
ronment. The Flytrap system, relied on the songs metadata and users’ listening
patterns. The CATS system, proposed McCarthy et al. [8], is designed to rec-
ommend travel packages to groups of users. It relies on the explicit feedback
provided by the group users as a more of this / less of that fashion. This user
feedback is recorded and linearly combined between all users within the group
to be afterwards compared against the set of features that represent each travel
package. Another example of group recommender systems is the system Blue-
music proposed by Mahato et al. [9]. In this approach users are detected via
bluetooth and the awareness of their presence has direct influence on a playlist
which is being played on a public place. While most recommender for group
systems are more concerned with gathering data from users, in this paper we
propose a specific algorithm and especially designed for recommending products
for groups of users.

Baltrunas et al. [10] examined a late-fusion approach to recommendation for
groups. Recommendations are computed individually and later combined into a
single ranked list of recommendations. They assume that the order of the rec-
ommended items (independent of their position in the rank) is more important
than optimizing the top elements of the rank for all users. Moreover, they do not
explicitly tackle diversity as we do in this paper. Recognizing that product rat-
ings and consumption patterns might differ, Seko et al. [11] proposed to extend
the Power Balance Map (a distribution density of shared usage history) with
new dimensions related to items metadata and user behavior. Different users are
then related in this newly created space. Barbieri and Manco [12] argued that
just optimizing RMSE might not lead to improvements in terms of recommen-
dations or user satisfaction. This fact has been recognized at general by authors
such as Ziegler et. al [13] who explicitly addressed the diversification recommen-
dations. Following this idea we propose to maximize the diversity by predicting
the missing product in a set of products for a multi-user scenario.

Thus, our approach is related to greedy search algorithms for multi-objective
functions. This problem can be solved by combinatorial optimization, such as
[14], or forward-backward greedy search algorithms [15]. The algorithm proposed
in this paper first computes a joint set of recommendation for each individual
function and incrementally searches for the best set of products that satisfy the
sum of functions.

3 Collaborative Filtering with Bias-SVD

In the context of recommender systems, matrix factorization is mainly performed
through methods that approximate Singular Value Decomposition (SVD). SVD
is a technique to decompose a matrix into the product QΣV , where Q contains
the left singular vectors, Σ contains the singular values and V contains the right
singular vectors of the original matrix. The application of SVD to recommender
systems is motivated by the desire of decomposing the ratings matrix into a
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2-matrices representationR = U ·PT . Where each vector (row) ui of U represents
a user i and each vector (row) pj of P represents a product j.

The goal of using matrix factorization in recommendation problems is to en-
able the assessment of user preferences for products by calculating the dot prod-
uct of their factor representations, as the predicted preference r̂ij = ui · pTj of
user i for product j.

A noticeable improvement proposed by Koren et al. [2] defines a baseline
predictor and considers the deviations from the average rating for users and
products, referred to as user and product biases. User and product biases
can be taken into account to better capture the real essence of user preferences,
minding the fact that different users tend to give higher or lower ratings and dif-
ferent products tend to get higher or lower ratings, as well. Thus, the plain-SVD
model can be improved into a bias-SVD model by setting a global mean rating
average baseline prediction and adding parameters to capture biases, resulting
in the prediction rule defined by eq. 1.

r̂ij = μ+ ui · pTj + bi + bj (1)

Here, μ is the mean rating average, bi represents user i bias and bj represents
product j bias. Accordingly, the expression to be minimized corresponds to:

[U, P ] = argmin
ui,pj

∑
rij∈R

(r̂ij − μ − bi − bj − ui · pTj )2+ (2)

λ · (‖ui‖2 + ‖pj‖2 + b2i + b2j)

This expression accomplishes three goals: matrix factorization by minimiza-
tion, biases compensation and the corresponding regularization for over-fitting
control. The first part of eq. 2 pursues the minimization of the difference (hence-
forth referred to as error) between the known ratings present on the original
R ratings matrix and their decomposed representation (U and P ). The sec-
ond part controls generality by avoiding over-fitting during the learning process,
where λ is a constant defining the extent of regularization, usually chosen by
cross-validation.

4 Multi-user Recommendations

Computing group-based preferences comprises combining the preferences of those
users into a representation of group preferences. Since the system already has some
knowledge regarding these target users’ preferences, in the form of product rat-
ings, such knowledge shall be used to produce a diversified list of recommendations
for groups. For combining user preferences, an early fusion approach was taken.
The early fusion approach consists in combining the factor vectors of target users
in a linear combination,

g =

∑m
i ui

m
. (3)
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In eq. 3, m is the number of target users, ui is the factor vector representing user
i and g is the resulting combined factor vector representing the preferences of
the group. The intuition behind this choice for computing group preferences is
the following: according to the intuition behind the latent factor representation
of users and products, each latent factor represents a characteristic associated to
users and products, meaning that each user’s latent factor vector will represent
the extent to which that user likes (positive factor values) or dislikes (negative
factor values) a given characteristic in a product. By combining user’s latent
factor vectors as our early fusion approach suggests, we expect to neutralize
contradicting user preferences and preserve common user preferences, represent-
ing these in a resulting group latent factor vector. Afterwards, the system at-
tempted to produce a list of recommendations that would please the group in
terms of user satisfaction and product diversity. In this section, these steps will
be addressed in detail.

4.1 Group Bias-SVD: Maximizing Group Satisfaction

Group satisfaction is defined as the rating that a group would give to a product.
Our system attempts to recommend lists of products that maximize the group
satisfaction, by making use of the users’ latent factor vectors and the group la-
tent factor vector, obtained through the early fusion approach previously men-
tioned. Once obtained the latent factor vector representing group preferences,
recommendations can be computed with the prediction rule introduced by the
bias-SVD model in eq. 1, only this time using the group preferences factor vector
as a super-user, as

r̂gj = μ+ g · pTj + bg + bj (4)

where the group bias bg is computed by averaging all m users’ individual biases.
By using the prediction rule defined by eq. 4, one can predict which products are
more likely to satisfy this artificial n-user-group: products with higher predicted
score are expected to be more fit to recommend the group of users. However, al-
though the system relies on the group factor vector to produce recommendations,
individual user preferences are still used to assure a minimum degree of individ-
ual satisfaction, by setting a minimum individual predicted preference threshold
minUSat. With such threshold, the system avoids recommending products that
would significantly displease some of the target users, even if the overall pre-
dicted multi-user preference for those products is high. To achieve this goal, the
system stores all products within the database that fulfil the minUSat restric-
tion and sorts them in descending order of predicted multi-user preference into
a list L, so that the n top products can be recommended to the group. Thus,
our objective function intends to find the set S of n products that maximizes
the average predicted multi-user rating, as described by eq. 5.

S = argmax
{p1,··· ,pn}

∑n
j=1 r̂gj

n
, {p1, · · · , pn} ∈ L (5)
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4.2 Maximizing Product Diversity

In addition to aiming for maximizing the satisfaction of the group in terms of
preference, the system also attempts to present a diversified list of products.
In most cases, striving towards maximizing diversity compromises satisfaction.
To deal with this satisfaction-diversity trade-off issue, the system takes as input
the parameters minGSat and minUSat, defining the minimum multi-user and
individual user satisfaction respectively. Thus, the first thing the system does
is to obtain a list E, containing only the top products that fulfil the minimum
satisfaction restrictions imposed by the parameters minGSat and minUSat.
Once obtained the list E, the systems attempts to find the set S of n products
contained in E that maximizes diversity.

Defining Diversity. To define diversity let us revisit the latent factor repre-
sentation of users and products obtained through matrix factorization: each user
and product is represented by a vector of latent factors, where these latent fac-
tors are abstract or real-life characteristics. This means that a product vector’s
direction within the latent factor high-dimensional space indicates which char-
acteristics this product has and which it does not have. Hence, two products can
be compared by comparing the direction to which their respective factor vectors
point. In this sense, the straightforward choice for a comparison metric between
products is the cosine of the angle formed by these products. This metric is well
known as the cosine similarity/distance, defined as cosSima,b =

pa·pb

‖pa‖·‖pb‖ . Here,

pa and pb denote products a and b factor vectors. Notice that cosine similarity
values range from −1 to 1. Using the cosine similarity metric, our intuition is
that a set of 2 products will be more diversified if the cosine similarity between
its products is negative or close to zero. Fig. 1 illustrates the intuition behind
cosine diversity. Accounting for vector directions by measuring diversity in terms
of sums of the vertex angles avoids the curse of high-dimensionality problem and
is more consistent with what we consider to be diversity. Since our goal is to
maximize diversity among products, i.e., to minimize similarity, we define the
cosine diversity metric as cosDiva,b = −cosSima,b. This cosine diversity metric
measures the diversity between two products, but our goal is to find a diversity
metric that measures the diversity of a set of n products. In that sense, we define

Fig. 1. Maximizing the vertex-angle diversity
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the diversity of the set S as the average cosine diversity between all products in
the set and between all products and all users in the target group G, as in eq. 6.

cosDivS =

∑
∀a,b∈S (cosDiva,b) +

∑
∀p∈S,∀u∈G (cosDivp,u)

|S|2 + |S| · |G| (6)

Thus, the objective function becomes as described by eq. 7.

S = argmax
{p1,··· ,pn}

cosDiv{p1,··· ,pn}, {p1, · · · , pn} ∈ E (7)

As we can observe from eq. 7 and fig. 1, the optimization problem we face is a
combinatorial problem with a non-convex objective function, since the diversity
each product adds to the set depends on which products have already been
selected to be part of the product set to recommend. Thus, the universe of
possible solutions is very wide, where finding the optimal solution constitutes a
challenge in terms of computational efficiency.

Algorithm 1. Greedy vertex-angle maximization algorithm

E ← getTopProds(G,minGSat,minUSat)
S ← E.topSublist(n)
for t do

seed ← newRandomProd(E)
newS.add(seed)
E.remove(seed)
while |newS| < n do

newProd ← getMostDivProd(E,G,newS)
newS.add(newProd)
E.remove(newProd)

end while
if newS.divScore > S.divScore then

S ← newS
end if

end for

Greedy Vertex-angle Maximization. To solve the combinatorial problem
we face, computing all possible combinations of n products is not a feasible
option, since the number of possibilities can easily reach many thousands. Hence,
we opted by taking a greedy search approach which is dramatically cheaper in
terms of computational effort. The greedy search algorithm we designed follows
a few steps, listed in alg. 1: first, the list E of products that maximize each
user satisfaction individually is computed, then one product is chosen randomly
from the E list to be used as seed for the following steps. Afterwards, each new
product from the remaining candidate products list is chosen to be included
in the solution according to the cosine diversity value it carries: the candidate
product with the highest cosine diversity score considering the target users and
the already selected products, will be included in the selected products list.
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This last step is repeated until the list of products to recommend reaches the
desired number n of products selected for recommendation. These steps will
produce one solution. Repeating these steps t times with t different seeds will
produce t different solutions from which the algorithm picks the one that yields
the highest cosine diversity score. In alg. 1, t is the pre-determined number
of runs the algorithm should take and consequently the number of different
solutions it will return, n is the number of products we intend to recommend
the group and minGSat/minUSat are the previously introduced parameters
to define the minimum group satisfaction and the minimum user satisfaction,
respectively. To avoid sacrificing satisfaction (i.e., group RMSE), products were
selected to be seeds according to their order in the E list (recall that products
in E are sorted by satisfaction: predicted group preference), i.e., if the greedy
search takes t runs, the top t products on the E list will be sequentially selected
as seeds for each run. Thus, in our case t ≤ |E|.

5 Evaluation

5.1 Dataset

For the following experiments, the Movielens dataset was used. This dataset
contains 10 million ratings on 0 to 5 scale with 0.5 point increments, given by
69878 users to 10681 movies. To obtain the latent factor space through ma-
trix factorization, we considered only users with at least 20 ratings, so that we
would have a reasonable confidence level about each user’s preferences and a
reasonable number of ratings in each subset. The dataset was further split into
3 subsets: training (65%), validation (15%), and test (20%), for cross-validation.
At the matrix factorization stage, only the training and validation subsets were
used, leaving the test subset for final evaluation of multi-user recommendation
experiments.

5.2 Evaluation Protocol

The latent factor space was discovered using the bias-SVD matrix factoriza-
tion model described in section 3, and the space dimensionality was set at 50
latent factors. Experiments were made with different scenarios: single-group, 2-
group and 4-group. In each scenario, the system produced lists of products to a
multi-user set of 4 randomly selected users that may belong to one, two or four
different interest-groups. On the pre-processing stage, we also used a k-means
clustering algorithm to find interest-groups among users. We set a minimum
threshold of 150 users per cluster so that every user would be categorized as
part of a representative and reasonably-sized interest-group. The recommenda-
tion lists produced in each scenario were then evaluated based on two criteria:
user satisfaction and product diversity, which will be detailed in the next
sections.

Target users must have at least 25 ratings on the test set. To assure there will be
a reasonable number of ratings to evaluate group satisfaction we selected products
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containing ratings from at least 75% of the target users. Each recommendation list
contains 5 products. Additionally, the minUSat was set to 2.5.

5.3 Experiment: Group Satisfaction

In this experiment we assess the group bias-SVD model. For each of the three
aforementioned scenarios, 50 different experiments were made to assure the re-
sults have statistical significance. In each individual experiment, a set of 5 prod-
ucts was recommended to a set of 4 users. When evaluating multi-user recom-
mendations we face several challenges, in particular the absence of multi-user
preference data. To overcome this limitation the test data followed a product
eligibility criteria to select products that were commonly rated by all users.

Metrics for Measuring Multi-user Satisfaction. Once multi-user recom-
mendations are produced, we measured some indicators associated with these
recommendations to evaluate their quality. The group satisfaction value avgSat
is the average rating given by target users to recommended products on the test
set. To help making a correct interpretation of the avgSat value we registered
the best and worst possible satisfaction values considering the set of products
eligible for recommendation and the target users. This makes it possible to eval-
uate the obtained satisfaction levels according to how good or bad they could
have been.

Results: Multi-user Satisfaction Experiments. Figure 2, illustrate the re-
sults obtained on the single-group, 2-group and 4-group scenarios, respectively.
The experiments illustrated on these charts are sorted in descending order of
the maximum possible satisfaction. As we can observe on all three figures, the
multi-user satisfaction curve tends to be substantially closer to the best possible
multi-user satisfaction curve than to the worst possible multi-user satisfaction
curve. The average normalized multi-user satisfaction values (gSat/maxSat)
obtained in all three scenarios ranged from 76% to 80%. These results mean
that the recommender system is producing good multi-user recommendations.
Finally, the normalized multi-user satisfaction values indicate no relevant differ-
ences among the system’s performances for single-group, 2-group and 4-group
scenarios, showing its versatility when recommending products to users from
different interest-groups.

5.4 Experiment: Product Diversity

A set of experiments following the same protocol as those performed to eval-
uate multi-user satisfaction was made to evaluate product diversity. This time
we made 100 experiments for each scenario instead of 50, produced recommen-
dation lists with 15 products instead of 5, and decided not to enforce prod-
uct eligibility standards. This way, we can recommend more products at once,
make more unique experiments and explore a larger scope of products to obtain
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Fig. 2. Multi-user satisfaction evaluation scenarios: 4 users, single-group; 4 users, 2-
groups; 4 users, 4-groups. Average normalized satisfaction: 76.0%, 80.5% and 80.4%
respectively.

maximum diversity. To evaluate the performance of our diversity-oriented ap-
proach to multi-user recommendation we compared it against the performance
of a satisfaction-oriented approach (group bias-SVD) where recommendation
lists contain the 15 products that rank higher in terms of predicted multi-user
satisfactions, regardless of how diversified this list is.

Metrics for Measuring Product Diversity. The metric used for testing the
vertex-angle diversity algorithm is based on product genres. In this dataset, each
product is associated to a list of genres. Since there is no universal definition
for diversity, we consider that a list of products is diversified if there is a high
number of different genres associated to those products and if the occurrences of
the genres involved is balanced. A straightforward way of measuring the balance
between genre occurrences is to calculate its variance: lower variance means more
balanced genre occurrences. Thus, real product diversity for a list of products S
is defined as eq. 8.

divS = nGenresS/varGenresS (8)

Here, nGenresS represents the number of different genres related to the products
in list S and varGenresS represents the variance in genre occurrences in that
same product list S.

Results: Product Diversity Experiments. The top row of figure 3 illus-
trate the diversity scores obtained with both the diversity-oriented (greedy ver-
tex maximization) and the satisfaction-oriented approach (group bias-SVD) in
single-group, 2-group and 4-group scenarios. As we can observe, the normal-
ized diversity-oriented approach produced more diversified recommendations in
77%-83% of the experiments without lowering multi-user satisfaction below the
minimum 3.5 minGSat threshold, which represents an overall successful perfor-
mance of the proposed multi-user recommender system. The bottom row of figure
3 depicts 100 experiments in satisfaction-versus-diversity charts for the single-
group, 2-group and 4-group scenarios. Each point corresponds to an experiment
where 15 products were recommended to the group of users. The salient fact from
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these charts is that independently of the group heterogeneity, the vertex-angle
maximization algorithm works on a consistent and wider range of diversity when
comparing it to the group bias-SVD algorithm. Moreover, figure 4 summarizes
the experiment overall results, where it is best observed the differences among
the two approaches.
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Fig. 3. Diversity evaluation scenarios: 4 users, single-group; 4 users, 2-groups; 4 users,
4-groups

Fig. 4. Summary results comparing the group bias-SVD to the vertex-angle maximiza-
tion algorithms

6 Discussion

In this paper we addressed the problem of computing diverse but effective rec-
ommendations in multi-user scenarios. Previous approaches to recommendations
for multi-users either followed a content-based method or a simple collaborative
approach merging the ratings of users. In contrast, our method transfers the en-
tire problem into a high-dimensional latent factor space. The proposed technique
achieved a trade-off between accuracy (satisfaction) and diversity. We showed
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that the vertex-angle maximization algorithm can compute consistent and co-
herent recommendations across several heterogeneous groups of users. Moreover,
the use of latent space to solve problems related to multi-user recommendation
introduced in this paper was our most significant accomplishment, encouraging
further research on the subject.
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Abstract. Sequential rule mining is an important data mining task with
wide applications. The current state-of-the-art algorithm (RuleGrowth)
for this task relies on a pattern-growth approach to discover sequen-
tial rules. A drawback of this approach is that it repeatedly performs a
costly database projection operation, which deteriorates performance for
datasets containing dense or long sequences. In this paper, we address
this issue by proposing an algorithm named ERMiner (Equivalence class
based sequential Rule Miner) for mining sequential rules. It relies on
the novel idea of searching using equivalence classes of rules having the
same antecedent or consequent. Furthermore, it includes a data structure
named SCM (Sparse Count Matrix) to prune the search space. An exten-
sive experimental study with five real-life datasets shows that ERMiner
is up to five times faster than RuleGrowth but consumes more memory.

Keywords: sequential rule mining, vertical database format, equiva-
lence classes, sparse count matrix.

1 Introduction

Discovering interesting sequential patterns in sequences is a fundamental prob-
lem in data mining. Many studies have been proposed for mining interesting
patterns in sequence databases [12]. Sequential pattern mining [1] is probably
the most popular research topic among them. It consists of finding subsequences
appearing frequently in a set of sequences. However, knowing that a sequence
appears frequently is not sufficient for making predictions [4]. An alternative
that addresses the problem of prediction is sequential rule mining [4]. A sequen-
tial rule indicates that if some item(s) occur in a sequence, some other item(s)
are likely to occur afterward with a given confidence or probability.

Two main types of sequential rules have been proposed. The first type is
rules where the antecedent and consequent are sequential patterns [11,15,13].
The second type is rules between two unordered sets of items [6,4]. In this paper
we consider the second type because it is more general and it was shown to
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provide considerably higher prediction accuracy for sequence prediction in some
domains [5]. Moreover, another reason is that the second type has been used in
many real applications such as e-learning [6], manufacturing simulation [9], qual-
ity control [2], web page prefetching [5], anti-pattern detection in service based
systems [14], embedded systems [10], alarm sequence analysis [3] and restaurant
recommendation [8].

Several algorithms have been proposed for mining this type of sequential rules.
CMDeo [6] is an Apriori-based algorithm that explores the search space of rules
using a breadth-first search. A major drawback of CMDeo is that it can generate
a huge amount of candidates. As as alternative, the CMRules algorithm was
proposed. It relies on the property that any sequential rules must also be an
association rule to prune the search space of sequential rules [6]. It was shown
to be much faster than CMDeo for sparse datasets. Recently, the RuleGrowth
[4] algorithm was proposed. It relies on a pattern-growth approach to avoid
candidate generation. It was shown to be more than an order of magnitude
faster than CMDeo and CMRules. However, for datasets containing dense or
long sequences, the performance of RuleGrowth rapidly deterioates because it
has to repeatedly perform costly database projection operations. Because mining
sequential rules remains a very computationally expensive data mining task, an
important research question is: ”Could we design faster algorithms?”

In this paper, we address this issue by proposing the ERMiner (Equivalence
class based sequential Rule Miner) algorithm. It relies on a vertical representation
of the database to avoid performing database projection and the novel idea of
explorating the search space of rules using equivalence classes of rules having
the same antecedent or consequent. Furthermore, it includes a data structure
named SCM (Sparse Count Matrix) to prune the search space.

The rest of the paper is organized as follows. Section 2 defines the problem
of sequential rule mining and introduces important definitions and properties.
Section 3 describes the ERMiner algorithm. Section 4 presents the experimental
study. Finally, Section 5 presents the conclusion.

2 Problem Definition

Definition 1 (sequence database). Let I = {i1, i2, ..., il} be a set of items
(symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is an unordered set of distinct
items. The lexicographical order �lex is defined as any total order on I. Without
loss of generality, it is assumed in the following that all itemsets are ordered
according to �lex. A sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉
such that Ik ⊆ I (1 ≤ k ≤ n). A sequence database SDB is a list of sequences
SDB = 〈s1, s2, ..., sp〉 having sequence identifiers (SIDs) 1, 2...p.

Example 1. A sequence database is shown in Fig. 1 (left). It contains four se-
quences having the SIDs 1, 2, 3 and 4. Each single letter represents an item. Items
between curly brackets represent an itemset. The first sequence 〈{a, b}, {c}, {f},
{g}, {e}〉 contains five itemsets. It indicates that items a and b occurred at the
same time, were followed by c, then f and lastly e.
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ID Sequences 
seq1 
seq2 
seq3 
seq4 

{a, b},{c},{f},{g},{e}  
{a, d},{c},{b},{a, b, e, f}  
{a},{b},{f},{e}  
{b},{f, g, h}  

 

ID Rule Support Confidence 
r1 
r2 
r3 
r4 
r5 
r6 
r7 

{a, b, c} {e} 
{a} {c, e, f} 
{a, b} {e, f} 
{b} {e, f} 
{a} {e, f} 
{c} {f} 
{a} {b}  

0.5 
0.5 
0.75 
0.75 
0.75 
0.5 
0.5 

1.0 
0.66 
1.0 
0.75 
1.0 
1.0 
0.66 

 

Fig. 1. A sequence database (left) and some sequential rules found (right)

Definition 2 (sequential rule). A sequential rule X → Y is a relationship
between two unordered itemsets X,Y ⊆ I such that X ∩ Y = ∅ and X,Y �= ∅.
The interpretation of a rule X → Y is that if items of X occur in a sequence,
items of Y will occur afterward in the same sequence.

Definition 3 (itemset/rule occurrence). Let s : 〈I1, I2...In〉 be a sequence.
An itemset I occurs or is contained in s (written as I � s ) iff I ⊆

⋃n
i=1 Ii. A

rule r : X → Y occurs or is contained in s (written as r � s ) iff there exists an

integer k such that 1 ≤ k < n, X ⊆
⋃k

i=1 Ii and Y ⊆
⋃n

i=k+1 Ii.

Example 2. The itemset {a, b, f} is contained in sequence 〈{a}, {b}, {f}, {e}〉.
The rule {a, b, c} → {e, f, g} occurs in 〈{a, b}, {c}, {f}, {g}, {e}〉, whereas the
rule {a, b, f} → {c} does not, because item c does not occur after f .

Definition 4 (sequential rule size). A rule X → Y is said to be of size k∗m
if |X | = k and |Y | = m. Furthermore, a rule of size f ∗g is said to be larger than
another rule of size h ∗ i if f > h and g ≥ i, or alternatively if f ≥ h and g > i.

Example 3. The rules r : {a, b, c} → {e, f, g} and s : {a} → {e, f} are respec-
tively of size 3 ∗ 3 and 1 ∗ 2. Thus, r is larger than s.

Definition 5 (support). The support of a rule r in a sequence database SDB
is defined as supSDB(r) = |{s|s ∈ SDB ∧ r � s}|/|SDB|.

Definition 6 (confidence). The confidence of a rule r : X → Y in a sequence
database SDB is defined as confSDB(r) = |{s|s ∈ SDB ∧ r � s}|/|{s|s ∈
SDB ∧ X � s}|.

Definition 7 (sequential rule mining). Let minsup,minconf ∈ [0, 1] be
thresholds set by the user and SDB be a sequence database. A rule r is a frequent
sequential rule iff supSDB(r) ≥ minsup. A rule r is a valid sequential rule iff it
is frequent and confSDB(r) ≥ minconf . The problem of mining sequential rules
from a sequence database is to discover all valid sequential rules [6].

Example 4. Fig 1 (right) shows 7 valid rules found in the database illustrated in
Table 1 for minsup = 0.5 and minconf = 0.5. For instance, the rule {a, b, c} →
{e} has a support of 2/4 = 0.5 and a confidence of 2/2 = 1. Because those values
are respectively no less than minsup and minconf , the rule is deemed valid.



ERMiner: Sequential Rule Mining Using Equivalence Classes 111

3 The ERMiner Algorithm

In this section, we present the ERMiner algorithm. It relies on the novel concept
of equivalence classes of sequential rules, defined as follows.

Definition 8 (rule equivalence classes). For a sequence database, let R
be the set of all frequent sequential rules and I be the set of all items. A left
equivalence class LEW,i is the set of frequent rules LEW,i = {W → Y |Y ⊆
I ∧ |Y | = i} such that W ⊆ I and i is an integer. Similarly, a right equivalence
class REW,i is the set of frequent rules REW,i = {X → W |X ⊆ I ∧ |X | = i},
where W ⊆ I, and i is an integer.

Example 5. For minsup = 2 and our running example, LE{c},1 = {{c} →
{f}, {c} → {e}}, RE{e,f},1 = {{a} → {e, f}, {b} → {e, f}, {c} → {e, f}} and
RE{e,f},2 = {{a, b} → {e, f}, {a, c} → {e, f}, {b, c} → {e, f}}.

Two operations called left and right merges are used by ERMiner to explore
the search space of frequent sequential rules. They allows to directly generate
an equivalence class using a smaller equivalence class.

Definition 9 (left/right merges). Let be a left equivalence class LEW,i and
two rules r : W → X and s : W → Y such that r, s ∈ LEW,i and |X ∩ Y | =
|X − 1|, i.e. X and Y are identical except for a single item. A left merge of r, s
is the process of merging r, s to obtain W → X ∪ Y . Similarly, let be a right
equivalence class REW,i and two rules r : X → W and r : Y → W such that
r, s ∈ REW,i and |X ∩ Y | = |X − 1|. A right merge of r, s is the process of
merging r, s to obtain the rule X ∪ Y → W .

Property 1 (generating a left equivalence class). Let be a left equiva-
lence class LEW,i. LEW,i+1 can be obtained by performing all left merges on pairs
of rules from LEW,i. Proof. Let be any rule r : W → {a1, a2, ...ai+1} in LEW,i+1.
By Definition 8, rules W → {a1, a2, ...ai−1, ai} and W → {a1, a2, ...ai−1, ai+1}
are members of LEW,i, and a left merge of those rules will generate r.��

Property 2 (generating a right equivalence class). Let be a right equiv-
alence class REW,i. REW,i+1 can be obtained by performing all right merges on
pairs of rules from REW,i. Proof. The proof is similar to Property 1 and is
therefore omitted.

To explore the search space of frequent sequential rules using the above merge
operations, ERMiner first scans the database to build all equivalence classes
for frequent rules of size 1 ∗ 1. Then, it recursively performs left/right merges
starting from those equivalence classes to generate the other equivalence classes.
To ensure that no rule is generated twice, the following ideas have been used.

First, an important observation is that a rule can be obtained by different
combinations of left and right merges. For example, consider the rule {a, b} →
{c, d}. It can be obtained by performing left merges for LE{a},1 and LE{b},1
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followed by right merges on RE{c,d},1. But it can also be obtained by performing
right merges on RE{c},1 and RE{d},1 followed by left merges using LE{a,b},1. A
simple solution to avoid this problem is to not allow performing a left merge
after a right merge but to allow performing a right merge after a left merge.
This solution is illustrated in Fig. 2.

Fig. 2. The order of rule discovery by left/right merge operations

Second, another key observation is that a same rule may be obtained by merg-
ing different pairs of rules from the same equivalence class. For example, a rule
{a, b, c} → {e} may be obtained by performing a left merge of {a, b} → {e} with
{a, c} → {e} or with {b, c} → {e}. To avoid generating the same rule twice, a
simple solution is to impose a total order on items in rule antecedents (conse-
quents) and to only perform a left merge (right merge) if the rule consequent
(rule antecedent) shares all but the last item according to the total order. In
the previous example, this means that {a, c} → {e} would not be merged with
{b, c} → {e}.

Using the above solutions, it can be easily seen that all rules are generated
only once. However, to be efficient, a sequential rule mining algorithm should be
able to prune the search space. This is done using the following properties for
merge operations.

Property 3 (antimonotonicity with left/right merges). Let be a sequence
database SDB and two frequent rules r, s. Let t be a rule obtained by a left or
right merge of r, s. The support of t is lower or equal to the support of r and
that of s. Proof. Since t contains exactly one more item than r and s, it can
only appear in the same number sequences or less. ��

Property 4 (pruning). If the support of a rule is less than minsup, then
it should not be merged with any other rules because all such rules are infre-
quent. Proof. This directly follows from Property 3.

Because there does not exist any similar pruning properties for confidence, it
is necessary to explore the search space of frequent rules to get the valid ones.

Fig. 1 shows the main pseudocode of ERMiner, which integrates all the pre-
vious idea. ERMiner takes as input a sequence database SDB, and the minsup
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and minconf thresholds. It first scans the database once to build all equivalence
classes of rules of size 1 ∗ 1, i.e. containing a single item in the antecedent and
a single item in the consequent. Then, to discover larger rules, left merges are
performed with all left equivalence classes by calling the leftSearch procedure.
Similarly, right merges are performed for all right equivalence classes by calling
the rightSearch procedure. Note that the rightSearch procedure may generate
some new left-equivalence classes because left merges are allowed after right
merges. These equivalence classes are stored in a structure named leftStore. To
process these equivalence classes, an additional loop is performed. Finally, the
algorithm returns the set of rules found rules.

Algorithm 1. The ERMiner algorithm

input : SDB: a sequence database, minsup and minconf : the two
user-specified thresholds

output: the set of valid sequential rules

1 leftStore ← ∅ ;
2 rules ← ∅ ;
3 Scan SDB once to calculate EQ, the set of all equivalence classes of rules of

size 1*1;
4 foreach left equivalence class H ∈ EQ do
5 leftSearch (H , rules);
6 end
7 foreach right equivalence class J ∈ EQ do
8 rightSearch (J , rules, leftStore);
9 end

10 foreach left equivalence class K ∈ leftStore do
11 rightSearch (K);
12 end
13 return rules;

Fig. 2 shows the pseudocode of the leftSearch procedure. It takes as parameter
an equivalence class LE. Then, for each rule r of that equivalence class, a left
merge is performed with every other rules to generate a new equivalence class.
Only frequent rules are kept. Furthermore, if a rule is valid, it is output. Then,
leftSearch is recursively called to explore each new equivalence class generated
that way. The rightSearch (see Fig. 3) is similar. The main difference is that new
left equivalences are stored in the left store structure because their exploration
is delayed, as previously explained in the main procedure of ERMiner.

Now, it is important to explain how the support and confidence of each rule
is calculated by ERMiner (we had previously deliberately ommitted this expla-
nation). Due to space limitation and because this calculation is done similarly
as in the RuleGrowth [4] algorithm, we here only give the main idea. Initially,
a database scan is performed to record the first and last occurrences of each
item in each sequence where it appears. Thereafter, the support of each rule



114 P. Fournier-Viger et al.

Algorithm 2. The leftSearch procedure

input : LE: a left equivalence class, rules: the set of valid rules found until
now, minsup and minconf : the two user-specified thresholds

1 foreach rule r ∈ LE do
2 LE′ ← ∅ ;
3 foreach rule s ∈ LE such that r �= s and the pair r, s have not been

processed do
4 Let c, d be the items respectively in r, s that do not appear in s, r ;
5 if countPruning(c, d) = false then
6 t ← leftMerge(r, s) ;
7 calculateSupport(t, r, s);
8 if sup(t) ≥ minsup then
9 calculateConfidence(t, r, s);

10 if conf(t) ≥ minconf then
11 rules ← rules ∪ {t};
12 end
13 LE′ ← LE′ ∪ {t};
14 end

15 end

16 end
17 leftSearch (LE′, rules);
18 end

of size 1*1 is directly generated by comparing first and last occurrences, with-
out scanning the database. Similarly, the first and last occurrences of each rule
antecedent and consequent are updated for larger rules without scanning the
database. This allows to calculate confidence and support efficiently (see [4] for
more details about how this calculation can be done).

Besides, an optimization is to use a structure that we name the Sparse Count
Matrix (SCM) (aka CMAP [7]). This structure is built during the first database
scan and record in how many sequences each item appears with each other items.
For example, Fig. 3 shows the structure built for the database of Fig. 1 (left),
represented as a triangular matrix. Consider the second row. It indicates that
item b appear with items b, c, d, e, f, g and h respectively in 2, 1, 3, 4, 2 and 1
sequences. The SCM structure is used for pruning the search space as follows
(implemented as the countPruning function in Fig. 3 and 2). Let be a pair of
rules r, s that is considered for a left or right merge and c, d be the items of r, s,
that respectively do not appear in s, r. If the count of r, s is less than minsup
in the SCM, then the merge does not need to be performed and the support of
the rule is not calculated.

Lastly, another important optimization is how to implement the left store
structure for efficiently storing left equivalence classes of rules that are generated
by right merges. In our implementation, we use a hashmap of hashmaps, where
the first hash function is applied to the size of a rule and the second hash function
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Algorithm 3. The rightSearch procedure

input : RE: a right equivalence class, rules: the set of valid rules found until
now, minsup and minconf : the two user-specified thresholds,
leftStore: the structure to store left-equivalence classes of rules
generated by right-merges

1 foreach rule r ∈ RE do
2 RE′ ← ∅ ;
3 foreach rule s ∈ RE such that r �= s and the pair r, s have not been

processed do
4 Let c, d be the items respectively in r, s that do not appear in s, r ;
5 if countPruning(c, d) = false then
6 t ← rightMerge(r, s) ;
7 calculateSupport(t, r, s);
8 if sup(t) ≥ minsup then
9 calculateConfidence(t, r, s);

10 if conf(t) ≥ minconf then
11 rules ← rules ∪ {t};
12 end
13 RE′ ← RE′ ∪ {t};
14 addToLeftStore(t)

15 end

16 end

17 end
18 rightSearch (RE′, rules);
19 end

Item a b c d e f 
b 3      
c 2 2     
d 1 1 1    
e 3 3 2 1   
f 3 4 2 1 3  
g 1 2 1 0 1 2 
h 0 1 0 0 0 1 

Fig. 3. The Sparse Count Matrix

is applied to the left itemset of the rule. This allows to quickly find to which
equivalence class belongs a rule generated by a right merge.

4 Experimental Evaluation

We performed experiments to assess the performance of the proposed algorithm.
Experiments were performed on a computer with a third generation Core i5 pro-
cessor running Windows 7 and 5 GB of free RAM. We compared the performance
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of ERMiner with the state-of-the-art algorithms for sequential rule mining Rule-
Growth [4]. All algorithms were implemented in Java.

All memory measurements were done using the Java API. Experiments were
carried on five real-life datasets having varied characteristics and representing
four different types of data (web click stream, sign language utterances and
protein sequences). Those datasets are Sign, Snake, FIFA, BMS and Kosarak10k.
Table 2 4 summarizes their characteristics. The source code of all algorithms
and datasets used in our experiments can be downloaded from http://goo.gl/

aAegWH.

Table 1. Dataset characteristics

dataset sequence count distinct item avg. seq. length type of data
count (items)

Sign 730 267 51.99 (std = 12.3) language utterances
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85) web click stream
Kosarak10k 10000 10094 8.14 (std = 22) web click stream

We ran all the algorithms on each dataset while decreasing the minsup thresh-
old until algorithms became too long to execute, ran out of memory or a clear
winner was observed. For these experiments, we fixed the minconf threshold
to 0.75. However, note that results are similar for other values of the minconf
parameter since the confidence is not used to prune the search space by the
compared algorithms. For each dataset, we recorded the execution time, the
percentage of candidate pruned by the SCM structure and the total size of
SCMs.

Execution times. The comparison of execution times is shown in Fig. 4. It
can be seen that ERMiner is faster than RuleGrowth on all datasets and that
the performance gap increases for lower minsup values. ERMiner is up to about
five times faster than RuleGrowth. This is because RuleGrowth has to perform
costly database projection operations.

Memory overhead of using SCM. We have measured the overhead produced
by using the SCM structure by ERMiner. The size of SCM is generally quite
small (less than 35 MB). The reason is that we have implemented it as a sparse
matrix (a hashmap of hashmaps) rather than a full matrix (a n × n array for n
items). If a full matrix is used the size of SCM increased up to about 300 MB.

Overall memory usage. The maximum memory usage of RuleGrowth / ER-
Miner for the Snake, FIFA, Sign, BMS and Kosarak datasets were respectively
300 MB / 1950 MB, 478 MB / 2030 MB, 347 MB / 1881 MB, 1328 MB / 2193
MB and 669 MB / 1441 MB. We therefore notice that thhere is a trade-off be-
tween having faster execution times with ERMiner versus having lower memory
consumption with RuleGrowth. The higher memory consumption for ERMiner
is in great part due to the usage of the left store structure which requires main-
taining several equivalence classes into memory at the same time.

http://goo.gl/aAegWH
http://goo.gl/aAegWH
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Fig. 4. Execution times

Effectiveness of candidate pruning. The percentage of candidate rules pruned
by using the SCM data structure in ERMiner for the Snake, FIFA, Sign, BMS
and Kosarak datasets were respectively 1 %, 0.2 %, 3.9 %, 3 % and 51 %. It can
be concluded that pruning based on SCM is less effective for datasets containing
dense or long sequences(e.g. Snake, FIFA, Sign) where each item co-occurs many
times with every other items. It could therefore be desactivated on such datasets.

5 Conclusion

In this paper, we proposed a new sequential rule mining algorithm named ER-
Miner (Equivalence class based sequential Rule Miner). It relies on the novel idea
of searching using equivalence classes of rules having the same antecedent or con-
sequent. Furthermore, it an includes a data structure named SCM (Sparse Count
Matrix) to prune the search space. An extensive experimental study with five
real-life datasets shows that ERMiner is up to five times faster than the state-
of-the-art algorithm but comsumes more memory. It can therefore be seen as
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an interesting trade-off when speed is more important than memory. The source
code of all algorithms and datasets used in our experiments can be downloaded
from http://goo.gl/aAegWH.
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Abstract. Medical diagnostics are based on epidemiological findings about re-
liable predictive factors. In this work, we investigate how sequences of historical
recordings of routinely measured assessments can contribute to better class sepa-
ration. We show that predictive quality improves when considering old record-
ings, and that factors that contribute inadequately to class separation become
more predictive when we exploit historical recordings of them. We report on our
results for factors associated with a multifactorial disorder, hepatic steatosis, but
our findings apply to further multifactorial outcomes. 1 2

Keywords: medical data mining, longitudinal epidemiological studies, hepatic
steatosis, classification.

1 Introduction

Diagnostic procedures for health incidents are based on epidemiological findings. Epi-
demiological studies encompass sociodemographic assessments and medical tests for
randomly selected participants. In this study, we investigate how longitudinal epidemi-
ological data can contribute to class separation w.r.t. a disease that has been reliably
identified only in the most recent moment of the observation horizon. The outcome
we study is hepatic steatosis, a liver disorder that indicates a risk of hepatic sequels
(like cirrhosis) and extrahepatic ones (like cardiovascular diseases [1]), but our mining
workflow applies to other multifactorial diseases.

Epidemiological advances have lead to the discovery of elaborate features, such as
genetic markers, that are associated with clinical outcomes. Nonetheless, major impor-
tance is allotted to features that are easily and routinely recorded, like the ”fatty liver
index” [2], which is termed by Bedogni et al. as ”simple and accurate”. This leads to
the question of how the history of recordings for a routinely measured feature can be
exploited to increase its predictive power. We investigate this question on data of 578
participants from the Study of Health in Pomerania (SHIP) [3], denoted as SHIP·578
hereafter, for whom we obtained (in 2013) the Magnetic Resonance Imaging (MRI)
results on fat accumulation in the liver.

1 Part of this work was supported by the German Research Foundation project SP 572/11-1
”IMPRINT: Incremental Mining for Perennial Objects”.

2 Data made available through cooperation SHIP/2012/06/D ”Predictors of Steatosis Hepatis”.

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 120–130, 2014.
c© Springer International Publishing Switzerland 2014
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Historical recordings for cohort participants are often incomplete, because some as-
sessments become part of the protocol after the study has started, while others are
discontinued. The assessments of the SHIP participants have been measured at three
moments (SHIP-0, SHIP-1, SHIP-2), but liver sonography was omitted in SHIP-1, and
liver MRI was done only in SHIP-2. Hence, our mining approach must deal with the
additional challenge of learning from incomplete sequences of recordings.

Our contributions are as follows. First, we propose a mining workflow for longitu-
dinal epidemiological data, in which sequences of recordings of each feature are ex-
ploited for classification. We address the challenges of incomplete sequences and of the
absence of a recording for the target variable in all but the last moment. We omit the
large diversity among the individual values per participant and moment by deriving se-
quence profiles from the sequences, and by using these profiles as new features. Finally,
in the context of the specific disorder, we identify informative features and show that
the sequence profiles can be more informative than the features they originate from.

The paper is organized as follows. In section 2, we discuss related work. In section
3, we first present our materials (the subcohort SHIP·578 ). Our mining methods, orga-
nized as a workflow, are provided in the following section 4. In section 5, we report on
our results. In the last section, we reflect on our findings and propose further steps.

Our approach is a followup of our recent work [4]: we proposed a mining workflow
for classification on the basis of participant similarity, considering only one moment
of SHIP (SHIP{2}·578). Here, we use all available historical data, i.e. the complete
SHIP·578. We employ an adjusted similarity function and also use a kNN classifier with
new input, since we organize the historical recordings on each variable into sequences,
and we derive sequence profiles for them, which we use as new features.

2 Related Work

Learning prediction models on epidemiological data is a promising approach to iden-
tify potential risk factors of diseases or disorders. For example, Oh et al. [5] use health
records to study diabetic retinophaty and use multiple penalized logistic regression
models, to help to account for the high dimensionality of the data and varying rele-
vance of predictors. Although study assessments were conducted multiple times, each
survey was constituted of different participants so that outcome sequences could not be
considered. Fuzzy Association Rule models on epidemiological data to predict risk of
future dengue incidence are proposed in [6]: they show potential alternatives to regres-
sion models.

Approaches that share similarities to ours are presented in [7] and [8]. Moskovitch
and Shahar [7] mine temporal interval patterns on multivariate time-oriented data of
differing temporal granularity, and use the frequent time interval relation patterns as
features for classification. Berlingerio et al mine time annotated sequences consider-
ing sequentiality and elapsed time between events [8]. Both approaches intend to find
time-dependent relations among multiple features, whereas we consider only relations
between time-specific realizations of the same medical assessment. Rather than value
abstraction (for continuous features), we conduct supervised clustering to detect infor-
mative groups of similar sequences.
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The SHIP-data we built our workflow on were analyzed in [9], [10], [11], [12] and in
our earlier work [4]. In [4] the viability of similarity-based classification and identifica-
tion of important features was investigated. In [12], a mining workflow is proposed for
SHIP{2}·578 . However, these studies did not consider past recordings of participants
which we utilize in our workflow. On top of that we provide insights regarding their
impact on class separation quality and on the identification of important features and
subpopulations.

3 Materials

SHIP is a population-based project [3]: persons are chosen who reside in Pomerania
(Northeast Germany) and are between 20 and 79 years old. SHIP participants undergo
an examination program consisting of interviews, exercise tests, laboratory analysis, ul-
trasound examinations and whole-body magnetic resonance tomography (MRT). Three
examination ”‘moments”’ of the first SHIP cohort exist, SHIP-0 (1997-2001, n= 4308),
SHIP-1 (2002-2006, n= 3300) and SHIP-2 (2008-2012, n= 2333). We have the SHIP-2
liver fat concentration only for 578 participants (mrt liverfat s2). The values of assess-
ments at the three moments 0,1,2 are recorded in SHIP·578 as different features, e.g.
som bmi s0, som bmi s1, som bmi s2 for the somatographic Body Mass Index (see
also Figure 2, left upper part). In [12], the use of the original target variable with re-
gression led to poor results, we therefore discretize the continuous target variable into
a positive and negative class, with cut-off value choices as shown in [4] and [12] to
formulate a classification problem. Like in both works, we also consider the partition
of female participants (Subsetw ) and male participants (Subsetm ) separately, where
Subsetw contains 314 individuals with a relative negative-class frequency of 0.81 and
Subsetm contains 264 individuals with a relative negative-class frequency of 0.69.

4 Methods

Our mining workflow consists of three main steps as shown in Figure 1: (1) generat-
ing sequence features per assessment/variable; (2) identifying a subset of informative

(3) Classification

Study Participant 
Data

Supervised 
Discretization

Identification of 
informative Features Important 

Features

Distinct 
Subpopulations

Sequence Set 
Generation

Sequence Set 
ClusteringSequence-Feature 

Values

Pariticipant Value 
Assignment

Sequence-
Features

(1) Sequence Feature 
Generation

(2) Feature Selection

Fig. 1. Workflow for classification and risk factor identification on longitudinal data
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Fig. 2. Example workflow for the generation of the som bmi sequence-feature

features; (3) similarity-based class separation of study participants.These steps are de-
scribed in the following.

4.1 Sequence-Feature Generation

Workflow input is the data collected during all rounds of an epidemiological study.
Such a study consists of medical examinations or measurements (e.g. Body Mass Index
measurement, sonography examination etc.), hereafter referred to as assessment, which
study participants (individuals) have to undergo multiple times. During each round a
specific realization of an assessment is conducted and given as a single feature. First,
we incorporate recordings of past epidemiological study rounds into our classification
workflow. To do this, we generate new features, so called sequence-features, from as-
sessments obtained at different times during the multiple study moments. As an ex-
ample, consider the Body Mass Index (BMI) assessment as shown in Figure 2. For
each individual we have the BMI in SHIP-0,1 and 2, som bmi s0, som bmi s1 and
som bmi s2 (the post-fix s {0, 1, 2} corresponds to the SHIP study moment). We then
build a sequence per individual and assign each sequence the class of the corresponding
individual (as shown in Figure 2, right upper part), cluster the set of sequence examples
and generate a new sequence-feature. Finally each of the individuals gets assigned a
nominal sequence-feature value, that is the cluster id correspondent to the cluster mem-
bership of their exhibited sequence.

Let at ∈ F be assessment a, at study moment t, and at(x) its value for individual
x ∈ X . A feature sequence example is a tuple za(x) = (sa(x), y) where sa(x) is
the value-vector (at1(x), at2(x), ..., atm(x))T with tj < tj+1, j = 1, ...,m and y is
the label of x at the most recent study moment. For assessment a, we build a set of
sequence examples S(a) = {za(x)|x ∈ X}. In the case of missing feature values we
impute them by their subpopulation average.

After extracting each assessment’s sequence set, we separately cluster them to se-
quence profiles. Equivalently to supervised clustering [13] we want to find groups of
objects which are homogenous w.r.t. the class variable. We apply Information Gain on
the data partitions aiming at high priority w.r.t. class, so that we can find predictive
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sequence profiles. Similarly to attribute discretization as shown in [14], for a sequence
set S which is partitioned (clustered) into k mutually disjoint subsets S1, ..., Sk and the
set of class labels L, we calculate the IG of clustering Z = {S1, ..., Sk} as:

IG(Z) = H(L, S) −
∑

SUB∈S(|SUB| · H(L, SUB))

|S| , (1)

Here, H(L, S) = −
∑

l∈L p(l, S)·log2(p(l, S)) is the class entropy of set S and p(l, S)
is the proportion of examples in S with class label l.

With a quality function defined, the clustering of the sequence sets can commence.
Density-based algorithms like DBSCAN [15] are especially suitable to find object
groups when no prior knowledge about the natural shape of the data is present. To
evaluate different clusterings we conduct a grid-search of the minPts and eps pa-
rameter space and afterwards choose the data partitioning with the highest Informa-
tion Gain, using Euclidean Distance (for continuous features) or Overlap Metric (for
nominals) as proximity measure. We execute multiple clusterings per assessment-type
exploring all values minPts ∈ {4, 5, ..., 10} and eps ∈ {0.1, 0.2, ..., 0.5} in the case
of continuous features and eps ∈ {0, 1, 1.5} when dealing with nominal features. A
continuous feature’s range is normalized in advance to [0, 1]. The approach is paral-
lelizable and its potentially high costs are mitigated by the low data dimensionality
and number of instances. Through this clustering method, for each assessment a with
corresponding sequence set S(a), we build a nominal sequence-feature α. The values
of α are the cluster-ids obtained during the best sequence set clustering w.r.t. Infor-
mation Gain. Sequence-feature values α(x) for known individual x are the observed
sequence cluster-ids, denoted as cid(sa(x)), i.e. α(x) = cid(sa(x)). Unknown indi-
viduals sequence-features are assigned the cluster-id of their nearest labeled sequence
vectors, that means each sequence-feature value of an unlabeled individual is given by
the sequence-feature value of a known individual who exhibits the most similar se-
quence vector (as measured by a distance function). In addition to the existing features
derived from the study assessments, generated sequence-features are then used to rep-
resent participants as feature-vectors.

4.2 Feature Selection

After representing individuals with existing features and generated sequence-features
we aim to find feature subsets with high feature-class and low feature-feature interde-
pendencies. To achieve this we use Correlation-based Feature Selection (CFS) (cf. [16])
to compute the merit value MF of a set of features F . The merit is the ratio between
average feature-class and feature-feature association of features in F . We compute the
associations as described in (cf. [16]), calculating the standardized IG between each
feature-feature and feature-class-variable pair and separately averaging over both types
of associations. To apply CFS on a dataset I , we first use entropy-based MDL discretiza-
tion on all continuous features (cf. [14]), to obtain a nominal representation consisting
of feature-value ranges which induce distinct subpopulations with highly skewed class
distributions. Then, we start with an empty set of features F and iteratively add to F the
feature f that leads to the highest new merit-value MF∪f . The procedure ends when
adding any feature decreases the merit.
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4.3 Classification

Our classification approach is based on the similarities between individuals. Individu-
als are modeled as vectors in a d-dimensional feature space, we then identify their most
similar individuals by computing their k Nearest Neighbors (kNN). Our approach as-
signs each individual x with unknown label to the majority class among the classes of
the k nearest labeled neighbors of x using simple majority voting. Similarity between
individuals is calculated through the mutual distance of their vector representations in
the feature space. We use the Heterogeneous Euclidean Overlap Metric (HEOM) as
base function: HEOM uses Euclidean distance for continuous features and the Overlap
Metric (OM) for nominals [17].

Yet, base HEOM does not take the nature of epidemiological data into account. In
epidemiological studies a plethora of features from different measurements and exam-
inations are derived. Even after feature selection the importance of features can differ
widely. Some features can contain more useful information for class separation than
others and thus should have a higher impact when calculating participant similarity. To
address this issues we adjust the HEOM distance as follows.

Let A be the set of features over dataset I and a(x), a(y) be the values of a ∈ A for
x, y ∈ I . Let further QF () be a quality function with value QF (a) for feature a, and
let QFmax be the highest observed quality function value in the considered feature set.
Then we denote dHEOM QF as the adjusted HEOM distance measure:

dHEOM QF (x, y) =

√√√√∑
a∈A

(
QF (a)

QFmax
· δHEOM (a(x), a(y))

)2

, (2)

δHEOM (a(x), a(y)) =

⎧⎪⎨⎪⎩
δOM (a(x), a(y)) if a is nominal
a(x)−a(y)
range(a) if a is continuous

1 otherwise

with δOM (a(x), a(y)) =

{
0 if a(x) = a(y)

1 otherwise

The unadjusted HEOM measure comes from the adjusted measure when QF (a) =
1, ∀a ∈ A. For our computations we set QF = IG, i.e. we use Information Gain as fea-
ture quality measure. For each participant x ∈ I , we then build the set NN(k, x) ⊆ I ,
which contains the k labeled participants most similar to x, such that: (i) the cardinality
of NN(k, x) is k, and (ii) for each y ∈ NN(k, x) and for each z ∈ I \ (NN(k, x)∪x)
it holds that dHEOM QF (x, y) ≤ dHEOM QF (x, z).

5 Results

In our experiments we study class separation performance on the disorder hepatic steato-
sis when using the presented workflow. Based on attribute quality measures, we show
a subset of relevant features according to our study data including sequence-features
which contain useful information not present in the existing set of regular features.
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5.1 Variants under Evaluation

Prior to the evaluation we balance the class distribution of our dataset by applying
random under-sampling on both Subsetwand Subsetm, resulting in 118 (Subsetw) and
162 (Subsetm) examples. Beside the unknown distribution in a future medical scenario,
this is also done to better show the impact on class separation of our workflow without
classifier bias having a too strong effect on classification performance (highly dominant
negative class in the original dataset). Classification results on the unbalanced dataset
are provided in [4]. For classification, we consider a kNN classifier with neighborhood
size k = 7, majority voting and HEOM as base proximity measure. We built multiple
variants of this kNN classifier to show the impact of each step of our workflow as
follows: we use the kNN classifier with unadjusted HEOM, using only the original
SHIP-2 features. Then we use CFS on the set of SHIP-2 features and contrast the use
of the unadjusted HEOM with the adjusted HEOM (HEOMIG). Lastly we generate
sequence-features (SFG), apply CFS on the combined set of SHIP-2 and sequence-
features and use adjusted HEOM for similarity computation. All variants are separately
applied on Subsetw and Subsetm. The CFS algorithm, sequence-feature generation
and HEOM adjustment exclusively use labeled information available from training data.

5.2 Findings on Classification Performance

In our experiments, we evaluate classification performance on sensitivity, specificity,
accuracy and calculate the area under the receiver operating characteristic curve (AUC).
As explained in subsection 5.1, we consider several classifier variants on the basis of
different feature sets. For each variant, we perform five-fold cross-validation and aver-
age over the evaluation measure values and size of the feature set used for classification.
Table 1 shows the results of each variant for Subsetwand Subsetm.

Classification performance is generally high for Subsetwparticipants. Here, the
HEOM base-classifier achieves lowest performance values. This was expected because
there may be features with redundant or irrelevant information. Each successive step
within our workflow leads to better or same evaluation results compared to its direct
predecessor. In comparison to the plain base classifier, the complete workflow leads to
an average increase of 8.5%- sensitivity, 9.1%- specificity, 8.5%- accuracy and 2.8%-
points in AUC, with absolute performance values in the vicinity of 0.9. Highest gains
are achieved with feature selection while distance measure adjustment and sequence
feature generation contribute approximately equally to performance enhancement. On
average, best results are obtained with just 2.2 features in contrast to the original set
of 67 features. Considering the classification performance and small feature count, we
conclude that there exist a small subset of uncorrelated, highly informative features for
Subsetw.

The classification results for Subsetm differ strongly. No variant performs best for
all evaluation measures, however {CFS,HEOMIG} and {SFG,CFS,HEOMIG}
show the best accuracy and AUC results. All in all, average performance gain when
using the complete workflow in comparison to the plain base classifier accumulates to
20%- sensitivity, -2.2%- specificity, 8.5%- accuracy and 12.3%-points AUC. Again, the
amount of features used for classification is heavily reduced after applying CFS but,
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Table 1. For each variant: Average evaluation measures: best values are printed in boldface

Variant Avg Sensitivity Avg Specificity Avg Accuracy Avg AUC Avg Num
of Features

Subsetw
HEOM 0.847 0.796 0.822 0.889 67

CFS,HEOM 0.932 0.816 0.873 0.898 3.2
CFS,HEOMIG 0.932 0.851 0.890 0.909 3.2

SFG,CFS,HEOMIG 0.932 0.887 0.907 0.917 2.2
Subsetm

HEOM 0.629 0.797 0.716 0.762 61
CFS,HEOM 0.840 0.775 0.808 0.862 7.4
CFS,HEOMIG 0.865 0.787 0.827 0.867 7.4

SFG,CFS,HEOMIG 0.829 0.775 0.801 0.885 8

in contrast to Subsetw , the variants associated with our workflow achieve lower per-
formance and maintain bigger feature subsets. This signals that the association between
features and target concept are weaker which in turn leads to more difficult classification
for the subcohort of male participants.

5.3 Findings on Important Features

The evaluation results show that there exist small subsets of highly informative features
which are relevant to class separation. We present these features, a short description and
their Information Gain in Table 2 and Table 4. Note that these are the remaining fea-
tures when using our workflow on the whole dataset. Because of varying training and
test sets during cross validation, these can slightly differ in comparison to the resultant
subsets of the workflow evaluation in Section 5.2. We observe that with the exception
of the hrs s s2 feature, the selected Subsetwfeature set is a subset of the Subsetm fea-
ture set. However, the information quality is much higher for Subsetw. Within both
feature sets, the stea seq sequence feature contains the most information regarding the
class variable. Subsetm’s twice as big feature set additionally contains the ggt s seq
sequence-feature. The relative frequency distributions of these features are presented in
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Fig. 3. Mosaic plots of most predictive features for Subsetw.
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Fig. 4. Mosaic plots of most predictive features for Subsetm

the mosaic plots of Figure 3 and Figure 4. A plot’s rectangle corresponds to a subpop-
ulation of participants which exhibit a feature-value and class combination as specified
by the plot axis. The area of a rectangle directly reflects the relative frequency of partic-
ipants which have the associated feature-value and class combination. For example, by
comparing the lower left rectangle with the lower right rectangle of Subsetm’s stea s2
mosaic plot, we can see that number of negative-class participants with a stea s2 value
of 0 is more than twice as big as the number of negative-class participants with stea s2
values of 1. The mosaic plots show that each feature in both subsets induce at least
one subpopulation where a majority of participants belong to the negative class and
one which is more balanced (Subsetw) or which contains a majority of positive-class
pariticipants (Subsetm). Especially the newly generated sequence features show some
interesting distributions. Of all features, the stea seq feature with its cluster 1 and clus-
ter 4 values induces the most skewed subpopulations regarding the class variable. Table
3 shows the regular stea feature values associated with each stea seq cluster. It becomes
apparent that either two sequential negative or positive sonography diagnostics (cluster
1 and 4) are much more informative in comparison to a single diagnosis during the most
recent study moment (stea s2). A similar result is given by the ggt s seq feature. Here,
the highly skewed outlier cluster corresponds to participants with unusual values during
all three study moments. Because both ggt s features with its similar class distribution
remain in the selected feature subset, they provide information for different subpopu-
lations which in turn means that pariticipant whith unusual ggt s values during SHIP-2
are dissimilar to participants which exhibit unsual values consistently.
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Table 2. Most relevant features in Subsetw

Subsetw
Feature IG Description
stea seq 0.347 Sono. result cluster
stea s2 0.304 Sono. result

som tail s2 0.193 Waist circumference (cm)
hrs s s2 0.147 Serum uric acid (μmol/l)

Table 3. Value mapping of the stea features

stea seq stea s0 stea s2
Cluster 1 0 0
Cluster 2 0 1
Cluster 3 1 0
Cluster 4 1 1

Table 4. Most relevant features in Subsetm

Subsetm
Feature IG Description
stea seq 0.321 Sono. result cluster
stea s2 0.250 Sono. result

stea alt75 s2 0.186 Sono. result
ggt s s2 0.149 Serum GGT (μmol/sl)
ggt s seq 0.127 Serum GGT (μmol/sl) cluster

som tail s2 0.118 Waist circumference (cm)
som bmi s2 0.117 Body Mass Index (kg/m2)
som huef s2 0.095 Hip size (cm)

6 Conclusions

We have presented a workflow for the identification of important features and distinct
subpopulations from epidemiological study data w.r.t. a multifactorial disorder. We in-
vestigated how past study recordings can contribute to class separation by first executing
multiple clusterings of participants with similar feature value sequences and then build-
ing sequence-features on the basis of discovered clusters. In the case of hepatic steatosis,
we further evaluated the classification performance impact of each workflow step and
provided the set of most predictive features for the subcohorts of female and male study
participants. Our contribution shows the viability of a data-driven approach to mine
important features from longitudinal epidemiological data w.r.t. a target disease or dis-
order. The workflow provides a way to validate the predictive quality of mined features
through a similarity-based participant classification. For hepatic steatosis, our workflow
achieved good classification results on a balanced two-class problem with AUC values
of 0.917 (female participants) and 0.885 (male participants). The automatically gener-
ated sequence-features incorporated historical (up to 10 years old) participant assess-
ment knowledge and enhanced the discriminative ability of the regular feature set which
reflected assessment outcomes from only the most recent study moment. Our analysis
of the set of important features showed that some values of sequence-features induce
highly distinct subpopulations which go unidentified when solely considering their reg-
ular counterparts. For example, the stea seq sequence feature indicates highly skewed
class distributions, and thus allows for better class separation, through the differentia-
tion of participants with two consecutive positive or negative sonography results.

In our future work we want to validate our workflow for further multifactorial dis-
eases and disorders like coronary heart diseases or diabetes. We also aim to incorporate
additional time-series data like smoking- and drinking-behavior and identify new po-
tential risk-factors. We further want to split the male and female subgroups into more
homogenous subgroups that help to better predict the target variable.



130 T. Hielscher et al.

References

1. Targher, G., Day, C.P., Bonora, E.: Risk of Cardiovascular Disease in Patients with Nonalco-
holic Fatty Liver Disease. N. Eng. J. Med. 363(14), 1341–1350 (2010)

2. Bedogni, G., Bellentani, S., ..., Castiglione, A., Tiribelli, C.: The Fatty Liver Index: a simple
and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol-
ogy 6(33), 7 (2006)

3. Völzke, H., Alte, D., ..., Biffar, R., John, U., Hoffmann, W.: Cohort profile: the Study of
Health In Pomerania. Int. J. of Epidemiology 40(2), 294–307 (2011)

4. Hielscher, T., Spiliopoulou, M., Völzke, H., Kühn, J.P.: Using participant similarity for the
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Abstract. Biodiversity datasets are generally stored in different for-
mats. This makes it difficult for biologists to combine and integrate them
to retrieve useful information for the purpose of, for example, efficiently
classify specimens. In this paper, we present BioKET, a data warehouse
which is a consolidation of heterogeneous data sources stored in different
formats. For the time being, the scopus of BioKET is botanical. We had,
among others things, to list all the existing botanical ontologies and re-
late terms in BioKET with terms in these ontologies. We demonstrate
the usefulness of such a resource by applying FIST, a combined biclus-
tering and conceptual association rule extraction method on a dataset
extracted from BioKET to analyze the risk status of plants endemic
to Laos. Besides, BioKET may be interfaced with other resources, like
GeoCAT, to provide a powerful analysis tool for biodiversity data.

Keywords: Biodiversity, Information Technology, Ontologies, Knowl-
edge Integration, Data Mining.

1 Introduction

Biological diversity, or biodiversity, refers to the natural variety and diversity
of living organisms [26]. Biodiversity is assessed by considering the diversity of
ecosystems, species, populations and genes in their geographical locations and
their evolution over time. Biodiversity is of paramount importance for a healthy
environment and society, as it ensures the availability of natural resources and
the sustainability of ecosystems [6,10,13,16,22,25]. The effects of biodiversity
loss on the environment, caused by habitat loss and fragmentation, pollution,
climate change, invasive alien species, human population, and over-exploitation
can affect all life forms and lead to serious consequences [9]. Understanding
biodiversity is an essential prerequisite for sustainable development.

For many years, biodiversity datasets have been stored in different formats,
ranging from highly structured (databases) to plain text files, containing plant
descriptions (vocabularies and terms). Numerous data and knowledge reposi-
tories containing biodiversity and environmental information are available on
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the Internet as on-line and off-line resources nowadays. Data repositories store
large amounts of information depicting facts on concrete objects related to a
specific domain of application, e.g., results of environmental studies or invento-
ries of species in a geographic location. This makes it difficult for botanists or
zoologists to combine and integrate them to retrieve useful information for the
purpose of identifying and describing new species.

The ever increasing availability of data relevant to biodiversity makes the idea
of applying data mining techniques to the study of biodiversity tempting [12].

Data mining, also known as knowledge discovery from data (KDD), is a set of
concepts, methods and tools for the rapid and efficient discovery of previously
unknown information, represented as knowledge patterns and models, hidden
inside massive information repositories [11].

One important obstacle to the application of data mining techniques to the
study of biodiversity is that the data that might be used to this aim are somewhat
scattered and heterogeneous [24]. Different datasets cover different aspects of the
problem or focus on some geographical areas only. None of them is complete and
there is no standard format.

To overcome these limitation, we have designed and implemented BioKET, a
data warehouse whose purpose is to consolidate a maximum of data sources on
biodiversity in a logically organized, coherent, and comprehensive resource that
can be used by the scientific community as a basis for data-intensive studies.

The main contribution of this paper is to provide a detailed account of how the
BioKET data warehouse has been designed and populated, by consolidating and
integrating multiple and heterogeneous sources of data. The reader should not
underestimate the methodological challenges and the practical problems that
had to be overcome in order to achieve that result. As all data mining prac-
titioners agree, pre-processing, which includes data cleaning, integration, and
transformation is the most time-consuming and critical phase of the data min-
ing process [14,15] illustrated in Figure 1.

Fig. 1. Main phases of a data mining process

We demonstrate the use of such resource by applying FIST, a combined bi-
clustering and conceptual association rule extraction method already described
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in the literature [17], on a dataset extracted from it to analyze the risk status of
plants endemic to Laos.

2 The BioKET Data Warehouse

The BioKET data warehouse is the consolidation of four main data sources:

– BIOTIK [2] (Western Ghats of India and National University of Laos), which
contains 652 species records;

– the herbarium from the BRAHMS repository [3] (National University of
Laos, Faculty of Forestry), with 7548 species records;

– the herbarium from the NAPIS repository [18] (Lao Ministry of Public
Health, Institute of Traditional Medicine), with 747 species records;

– the IUCN Red List Data [27], with 71570 species records.

These data sources are stored in different formats: BIOTIK and IUCN Red List
are in HTML, while the two others use, respectively, the dBase and Paradox file
formats. Integrating such diverse data sources required performing the following
tasks:

1. Listing all botanical and plant ontologies available on the Internet.
2. Selecting relevant information (phenotypic/plant traits/features/character-

istics).
3. Relating terms in our database with terms in these ontologies.
4. Searching for thesauri/glossaries/taxonomies of terms for plants available on

the Internet.
5. Relating terms in our database with terms in these thesauri.
6. Relating terms in Plant Ontology (PO) (which seems to be the most com-

plete ontology in Botany) with terms/definitions (e.g., Latin terms) in these
thesauri.

The first step was to extract data from sources and store them in a standard
file format (such as an Excel spreadsheet), by using database management tools.
Then, data cleaning was performed by using advanced Excel functions. The
next step was to generate and link Google Maps Geocoding Service with the
BIOTIK, BRAHMS, and NAPIS data by using VBA script (GoogleGeoLocation
Function). The last step was to import the data thus obtained into the BioKET
database, under MySQL.

A key factor for the integration and the enrichment of the data was the use
of ontologies. Formal ontologies are a key for the semantic interoperability and
integration of data and knowledge from different sources. An ontology may be
regarded as “a kind of controlled vocabulary of well-defined terms with specified
relationships between those terms, capable of interpretation by both humans
and computers” [28]. From a practical point of view, an ontology defines a set
of concepts and relations relevant to a domain of interest, along with axioms
stating their properties. An ontology thus includes a taxonomy of concepts, a
formally defined vocabulary (called a terminology), and other artifacts that help
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structure a knowledge base. A knowledge base that uses the terms defined in an
ontology becomes usable by and interoperable with any other system that has
access to that ontology and is equipped by a logic reasoner for it [19].

It was thus important to construct a map among all the concepts in all the
data sources and all the considered ontologies. It is worth noting that (i) some
concepts are not equally represented in all the sources, (ii) some are represented
in some sources and not in others and (iii) other concepts are not represent at
all. The mapping process works as follows: the textual descriptors of plants are
segmented into small chunks, which are then matched with the labels of concepts
in the target ontology. For instance, from the descriptor “evergreen tree up to 8
m”, we can in infer that “evergreen” is related to “shedability”, “up to 8m” is
related to “height” and “tree” is related to “plant type ”. In the process, new
concepts may be generated (e.g., from the textual descriptor “branches ascending
or horizontal”, where “branch”, “branch ascending”, and “branch horizontal”
match concepts in the ontology, a new concept “branch ascending or horizontal”,
subsumed by “branch” and subsuming the latter two is generated). The plant
record can thus be automatically enriched with a large number of “implicit”
fields, inferred from the ontology. We have designed a relational data base of
concepts that make it possible to relate concepts represented in different ways.

The result of this integration process — the BioKET data warehouse — is
schematized in Figure 2. BioKET contains 77 relationship entities and a total of
80,517 records.

As pointed out by many researchers (see, e.g., [1]), to conserve organisms,
whether plant or animal, one important step to take is to identify rare and en-
dangered organisms in a given geographical area or country. The integration
of geographical information from Geographical Information Systems (GIS) with

Fig. 2. An Overview of the BioKET Data Integration Process
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Fig. 3. Overview of the BioKET Datawarehouse Entity-Relationship Model

species data, and its use in data mining studies is the object of the biodiversity
informatics project of the W. P. Fraser Herbarium (SASK) [20]. The partici-
pants in such project developed an integrated bio-geography GIS model, using
Google Maps API, based on data mining concepts to map and explore flora
data. This allows data to be explored on a map and analyzed in several ways
to reveal patterns showing relationships and trends that are not discernible in
other representations of information.

The BioKET data warehouse integrates geographical information and 8,947
species out of the 80,517 total species have descriptions of specimen location
and risk status that may differ depending on the area considered. This infor-
mation is described at different levels of precision, from continent to specific
places such as cities or villages. For example, Cratoxylum formosum grows up in
Myanmar, South China, Thailand, Indochina, and Laos (Khammouan) [2]. This
species is also reported in the Lower Risk/Least Concern category by IUCN
Red List data [27]. The integration of geolocation information allows to explore
species properties in different areas using the GeoCAT (Geospatial Conservation
Assessment Tool) platform [8]. GeoCAT is based on Google Maps to explore geo-
graphical information if coordinates, i.e., latitudes and longitudes, are provided.
We already linked Google Maps with the terms of geographical information
of each source (BIOTIK, BRAHMS, and NAPIS) and extracted their coordi-
nates into BioKET database system. Google Maps does not support coordinates
of directions (South, North, East, West, etc.) like “South China”, but Google
Bounding Box (BBox) coordinates are provided. We propose to improve this
issue by calculating the coordinates for each direction (Figure 4) from Google
BBox coordinates.

In the geolocation domain, the BBox of an area on Earth is defined by two
points corresponding to the minimal and maximal longitudes and latitudes of the
area [4]. Figure 4 shows the 13 partitions of an area: the 9 elementary partitions
and the North, South, East and West partitions that result of merging the 3
corresponding elementary partitions, e.g., NW, NC and NE for North. This
multilevel partitioning allows to represent location related properties of species,
such as risk status or abundance for instance, at different area covering levels.
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Fig. 4. Thirteen partitions for an area on Earth

Table 1. Partition Bounding Box Computations

Area Min Long Min Lat Min Long Max Lat

South Min Y Min X Min Y +H Max X

North Min Y + 2H Min X Max Y Max X

West Min Y Min X Max Y Max X + L

East Min Y Min X + 2L Max Y Max X

SW Min Y Min X Min Y +H Min X + L

SC Min Y Min X + L Min Y +H Min X + 2L

SE Min Y Min X + 2L Min Y +H Max X

CW Min Y +H Min X Min Y + 2H Min X + L

Center Min Y +H Min X + L Min Y + 2H Min X + 2L

CE Min Y +H Min X + 2L Min Y + 2H Max X

NW Min Y + 2H Min X Max Y Min X + L

NC Min Y + 2H Min X + L Max Y Min X + 2L

NC Min Y + 2H Min X + 2L Max Y Max X

Formulas to calculate the BBox of each partition are given in Table 1. These
computations use the L and H values computed from the minimal (Min X ,
Min Y ) and maximal (Max X , Max Y ) longitude and latitude coordinates of
the BBox of the partitioned area as follows:

L =
(Max−X − Min−X)

3
, H =

(Max−Y − Min−Y )

3
.

This computation of partitions can be applied to all objects defined by a
geolocation bounding box, from continents to cities. For example, using the BBox
of China, that is {73.4994137, 18.1535216, 134.7728100, 53.5609740}, the BBox
of Southern China will be computed as {73.4994137, 18.1535216, 93.9238791,
53.5609740}.
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3 BioKET Experimental Analysis

For experimental purpose, we constructed a dataset containing information on
the 652 species extracted from the Biotik repository. This information is rep-
resented as 1834 binary attributes describing morphological and environmental
properties (characteristics of part of the plant, size, habitat, exudation, etc.) and
risk status of species. Extracting knowledge patterns can then provide support to
relate increases and decreases in risk status to environmental factors impacting
specific species (climate change, pollution, etc.). They can also help taxonomists
to analyze the different types of species in an ecosystem, e.g., associating species
with specific features and risk categories, and their viability, or growth rate, in
some particular areas.

3.1 Conceptual Bicluster Extraction

This dataset was analyzed using the FIST approach which is based on the fre-
quent closed itemsets framework. FIST extracts minimal covers of conceptual
association rules and biclusters jointly.

Conceptual biclusters of the form {I1 V1} associate to a maximal set of in-
stances I1, a maximal set of variable values V1 that are common to all instances.
In other words, a bicluster is a sub-matrix associating a subset of rows and
a subset of columns such that all these rows have a similar value for each of
these columns. Conceptual biclusters are partially ordered according to the in-
clusion relation and form a lattice. This hierarchical organization allows to ex-
plore groups of instances (species) and properties (characteristics) at different
levels of abstraction: the highest biclusters in the lattice regroup a large number
of properties shared by small groups of instances; the lowest biclusters regroup
small set of properties that are common to large group of instances.

Conceptual association rules are rules with the form {V1 −→ V2, I1, support,
confidence, lift} where V1 and V2 are sets of variable values (properties) and I1 is
the set of instances (species) supporting the rule. Statistical measures computed
for each rule are:

– support = P (V1∪V2) (or count(V1∪V2) = |I1| if given as an absolute number)
evaluates the scope, or weight, of the rule in the dataset. It corresponds to
the proportion of instances containing V1 and V2 among all instances.

– confidence = P (V1∪V2)
P (V1)

evaluates the precision of the rule. It corresponds to

the proportion of instances containing V2 among those containing V1. Rules
with confidence = 1, that have no counter-example in the dataset, are called
exact rules. Rules with confidence < 1 are called approximate rules.

– lift = P (V1∪V2)
P (V1)P (V2)

corresponds to the correlation between occurrences of V1

and V2:

• lift > 1 means there is positive correlation between V1 and V2,
• lift = 1 means V1 and V2 are independent,
• lift < 1 means there is a negative correlation between V1 and V2.
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Extraction parameters are the minsupport threshold, which corresponds to the
minimal number of supporting instances required for a rule to be considered
valid, and the minconfidence threshold, which corresponds to the minimal con-
fidence required in order to consider a rule valid.

Experiments were conducted on a Dell PowerEdge R710 server with 2 Intel
Xeon X5675 processors at 3.06 GHz, each possessing 6 cores, 12 MB cache mem-
ory, 24 GB of DDR3 RAM at 1333 MHz and 2 Hot Plug SAS hard disks of 600
GB at 15000 rounds/min with RAID 0 running under the 64 bits CentOS Linux
operating system.

The numbers of patterns extracted, i.e., generators, biclusters, and rules, are
shown in Figure 5. For this experiment, the minsupport threshold was varied
between 50% (326 species) and 0.5% (3 species). The minconfidence threshold
was varied between 50% and 1%. It should be noted that the vertical axes are
on a logarithmic scale.

Generators, biclusters and exact rules Approximate rules

Fig. 5. Number of Patterns Generated by FIST

3.2 Extracted Pattern Evaluation

In this section, we present some interesting conceptual association rules obtained
from FIST. We would like to stress that these results mainly depend on the data
collected within BioKET, which, as far as we know, is the only data warehouse
consolidating different biodiversity information sources. These rules make it pos-
sible to estimate the risk status of a plant species according to IUCN RedList
categories (Lower Risk, Endangered, Least Concern, Vulnerable, Critically En-
dangered, Rare, Data Deficient, Rare & Threatened, Possibly Extinct) with re-
spect to their characteristics and vice-versa. For this experiment, the minsupport
threshold was set to 1%, which corresponds to 6 species in the dataset, and the
minconfidence threshold was set to 50%.

One of the obtained rules with the highest lift (11.75) is

INFL:pedicels up to 3 mm long,BBT:Twigs terete, INFL:axillary ⇒ RS:Lower Risk.
(1)
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According to this rule, of the six species with pedicels up to 3 mm long, twigs
terete, and axillary inflorescence, 66,67% belong to the lower risk category. The
identified species are Cratoxylum cochinchinense, Cratoxylum formosum, Engel-
hardtia serrata, Engelhardtia spicata, Irvingia malayana, and Knema globularia.
This result is corroborated, for example, by information from Singapore flore.1

The following rule states, with 83.33% confidence, that a plant species classi-
fied as critically endangered has simple leaves:

RS:Rare ⇒ LEAVES:Leaves simple. (2)

This rule is corroborated, for example, by [7], which describes Gaultheria paucin-
ervia, a new species restricted to the eastern slopes of Mt. Kinabalu in Sabah
State, Borneo, Malaysia, which has been confused with Gaultheria borneensis
Stapf, but differs in its more erect habit and larger stature, longer nonap-
pressed leaf trichomes, purple (vs. white) fruiting calyx, and lower elevation
range, among other features. Gaultheria paucinervia has not yet been assessed
for the IUCN Red List, (but is in the Catalogue of Life: Gaultheria paucinervia
P.W. Fritsch & C.M. Bush apparently). Besides, by taking into account the
features in the geographical data source, the FIST algorithm finds the rule

RS:Rare,GEO:Western Ghats ⇒ LEAVES:Leaves simple, (3)

which identifies species Bentinckia condapanna, Drypetes malabarica, Glycosmis
macrocarpa, Holigarna grahamii, Lasianthus jackianus, Pittosporum dasycaulon,
and Vepris bilocularis, all found in the Western Ghats.

The following rule states, with 79.59% confidence, that a plant species classi-
fied as Vulnerable has simple leaves:

RS:Vulnerable ⇒ LEAVES:Leaves simple. (4)

This result is corroborated, for example, by [23,29]. In [23], the author discusses
the applicability of the Accelerated Pioneer-Climax Series (APCS) method for
restoring forests to degraded areas in Southern Vietnam using many local species
such as Hopea odorata directly concernend by the above rule and which has been
identified as vulnerable in the IUCN red list. Wickneswari [29], instead, proposes
a document which can help the readers to understand the entire life cycle of
Hopea odorata Roxb in Malaysia, Vietnam, Cambodia, and Thailand.

The following rule, whose lift is 1.189 and whose support is 4.14%, states, with
55.1% confidence, that a plant species classified as vulnerable has both glabrous
and simple leaves:

RS:Vulnerable ⇒ LEAVES:glabrous, LEAVES:Leaves simple. (5)

Indeed, [21], proposing a deep and comprehensive botanical study of two rock
outcrops in India, corroborates this rule.

1 URL: http://florasingapura.com/Home.php. The aim of this site is to to bridge
the gap between the terse technical descriptions of plants found in various botanical
text books and what is observed in the Singapore forests.

http://florasingapura.com/Home.php
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Another interesting rule with a support of 3.37% and a lift of 1.07, states,
with 59.46% confidence, that a plant species classified as having a lower risk has
alternate leaves:

RS:Lower Risk ⇒ LEAVES:alternate. (6)

This result is corroborated, for example, by results obtained by Craenel [5].
Species concerned include Aglaia elliptica, Aphanamixis polystachya, and Prunus
arborea. As seen for Rule 3, the integration of geolocation information with
multiple heterogeneous biological data can show common properties related to
species with a specific risk status and/or in a specific area. For instance, the
following rule with a lift of 4.26 states that 88.9% of species having a lower
risk in the Indochina geographic region (i.e., 8 species) have leaves with entire
margin:

RS:Lower Risk,GEO:Indochina ⇒ LEAVES:Margin entire. (7)

Another example of such rules is the following, showing that 88.2% of endan-
gered species in Western Ghats have alternate leaves:

RS:Endangered,GEO:Western Ghats ⇒ LEAVES:Alternate. (8)

This rule, whose lift is 1.96, concerns 15 species. Such patterns can help compar-
isons between different geographical areas, at different levels of abstraction. For
instance, considering the Malaysia geographic region, a part of Indochina, only
61.5% of species having a lower risk have leaves with entire margin as stated by
the following rule, whose lift is 2.95 and which concerns 8 species:

RS:Lower Risk,GEO:Malaysia ⇒ LEAVES:Margin entire. (9)

If we consider the Agasthyamalai area, lying at the extreme southern end of
the Western Ghats mountain range along the western side of Southern India, we
can see from the following rule that only 50% of endangered species in this area
have alternate leaves, whereas the percentage is of 88.2% in the whole Western
Ghats:

RS:Endangered,GEO:Agasthyamalai ⇒ LEAVES:Alternate. (10)

This rule, which has a lift of 4.27, concerns 10 species.
All the above rules have been constructed from the consolidation of data from

the four data sources presented above. Although some of the species are not
yet included in the IUCN red list, combining information from the three other
data sources allowed us to infer their risk status using the rules constructed
by FIST. This is the case, e.g., for the species related to Rule 3, with the sole
exception of Bentinckia condapanna, whose risk category is explicitly in IUCN.
Indeed, Glycosmis macrocarpa’s taxon has not yet been assessed for the IUCN
Red List, but is listed in the Catalogue of Life as Glycosmis macrocarpa Wight.
The same holds for Drypetes malabarica (in the Catalogue of Life as Drypetes
malabarica (Bedd.) Airy Shaw), Lasianthus jackianus (in the Catalogue of Life
as Lasianthus jackianus Wight), Pittosporum dasycaulon (in the Catalogue of
Life as Pittosporum dasycaulon Miq), and Vepris bilocularis (in the Catalogue
of Life as Vepris bilocularis (Wight & Arn.) Engl.).
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4 Conclusion

We presented BioKET, a data warehouse obtained by consolidation of a number
of heterogeneous data sources on biodiversity. As far as we know, this is the first
data warehouse containing that amount of heterogeneous data which can be
used for conducting data-intensive studies about biodiversity. For the moment,
the scopus of BioKET is botanical, but we plan to integrate other types of data.

We have demonstrated the usefulness of BioKET by applying FIST, an ex-
isting conceptual biclustering method, on a dataset extracted from BioKET to
analyze the risk status of plants endemic to Laos. The evaluation of the extracted
patterns against the botanical literature shows that meaningful knowledge can
be infered from BioKET.
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Abstract. We study the problem of detecting hierarchical ties in a
social network by exploiting the interaction patterns between the actors
(members) involved in the network. Motivated by earlier work using a
rank-based approach, i.e., Rooted-PageRank, we introduce a novel time-
sensitive method, called T-RPR, that captures and exploits the dynamics
and evolution of the interaction patterns in the network in order to iden-
tify the underlying hierarchical ties. Experiments on two real datasets
demonstrate the performance of T-RPR in terms of recall and show its
superiority over a recent competitor method.

1 Introduction

Interactions between groups of people and the patterns of these interactions are
typically affected by the underlying social relations between the people. In social
networks such social relationships are usually implicit. Nonetheless, analysing
patterns of social interactions between the members of a social network can help
to detect these implicit social relations. For example, consider a social network
where the members declare explicitly some type of social relationship with oth-
ers, such as x is a colleague of y. Now, suppose that we also have available
the communication patterns between x and y, e.g., how often they exchange
e-mails in a month. Using this information we may be able to infer additional
relationships between these two members, such as x is the manager of y.

In this paper, we study the problem of detecting implicit hierarchical relation-
ships in a social network by exploiting the interactions between the members of
the network. We mainly focus on two key features that play a central role in
our problem: (a) the structure of the interaction network, and (b) the evolution
of the interactions, or in other words, the “dynamics” of the interactions over
time. Given the interactions, we are interested in finding for each member of the
social network their parent in the hierarchy, which we call their superior.

Figure 1 illustrates the problem we are addressing. The input graph (a) is the
interaction network, where nodes represent actors and edges represent interac-
tions between the actors. By analysing this network, we can infer a hierarchical
relationship network (b), where nodes represent the same group of actors and
edges represent the hierarchical relationships detected between them.
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Fig. 1. (a) An interaction graph, where each arc is weighted by the total number of
interactions. (b) Inferred hierarchical relationships between actors in (a).

Most related work has focussed on either the relationship structure of the
network or the interactions between the nodes, but not on both. In our previ-
ous work [9], we proposed two methods for detecting hierarchical ties between
a group of members in a social network. The first one, RPR, exploits the in-
teraction graph of the network members and employs the Rooted-PageRank
algorithm [17], whereas the second, Time-F, studies the interaction patterns
between the network members over time.

In this paper, we propose a novel method, Time-sensitive Rooted-PageRank
(T-RPR), to capture the interaction dynamics of the underlying network struc-
ture. The method proves to be more effective in detecting hierarchical ties, es-
pecially when the period over which the interactions occur is long enough.

The contributions of this paper include: (1) a novel time-sensitive method
(T-RPR) which builds upon Rooted-PageRank and captures how the structure
of the interaction network changes over time, (2) two approaches for aggregat-
ing scores from each of the time slots over which T-RPR is run, one based on
a simple weighted average and the other based on voting, (3) an extensive ex-
perimental evaluation of the performance of these methods in terms of recall
on two large real datasets, the Enron e-mail network and a co-authorship net-
work. Our experiments show that T-RPR achieves considerably better results
than the competitor RPR: in the Enron network, T-RPR detects up to 58% of
manager-subordinate relationships, compared to only 29% by RPR, while in the
co-author network it detects about 65.5% of PhD advisor-advisee relationships,
a significant improvement over the 39.5% achieved by RPR.

2 Related Work

Few researchers have focussed on finding implicit ties in social networks. In our
previous paper [9], we started an investigation into how the time dimension of in-
teractions between actors could improve the detection of hierarchical ties.
We defined two methods, Time-F and FiRe, which are based on predefined time
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functions. However, both Time-F andFiRe are ineffective in detecting hierarchical
ties when there are relatively few or no interactions between the actors connected
by a hierarchical relationship, a problem we address in the current paper.

Gupte at al. [6] propose an algorithm to find the best hierarchy in a di-
rected network. They define a global measure of hierarchy which is computed by
analysing the direction of interaction edges. They do not consider the temporal
dimension of the interactions nor do they infer the superior of each actor, as we
do. Buke et al. [3] focus on child-parent relationships at many life stages and
how communication varies with the age of child, geographic distance and gen-
der. In contrast to our approach, they model the language used between users
to generate text features. Backstrom et al. [1] developed a new measure of tie
strength which they termed “dispersion” to infer romantic and spouse relation-
ships. However, dispersion does not seem relevant to our problem of detecting
hierarchical relations.

On the other hand, many methods have been developed in social-network
analysis to assess the importance of individuals in implicitly- or explicitly-defined
social networks. Measures of importance in social networks include in-degree,
degree centrality, closeness centrality, betweenness centrality and eigenvector
centrality [8,10,13,14,16].

The PageRank [2] and HITS [11] algorithms have been used and adapted to
address a range of problems. For example, Xiong et al. [18] evaluate a user’s
influence based on PageRank. They considere three factors: the number of the
user’s friends, the quality of their friends and the community label, i.e. the
similarity between the user and the community. Fiala et al. [5] employ and adapt
PageRank to analyse both co-authorship and citation graphs to rank authors
by their influence. Their results are improved in [4] by introducing time-aware
modifications in which citations between researchers are weighted according to
a number of factors, such as the number of common publications and whether
or not they were published before a citation was made.

In the same context, Yan and Ding [19] used weighted PageRank to discover
author impact on a community. In the area of search engines, Li et al. [12]
investigated how time-based features improve the results of retrieving relevant
research publications. They consider both the structure of the citation network
and the date of publication, giving older papers lower weight.

Predicting future link formation in networks has attracted much research.
Huang and Lin [7] implemented an approach that considers the temporal evolu-
tion of link occurrences within a social network to predict link occurrence prob-
abilities at a particular time in the future. Sun [15] proposed a meta path-based
model to predict the future co-author relationships in a bibliographic network.
Different types of objects (e.g., venues, topic) and the links among them were
analysed. However, our approach differs from these two studies in that it detects
hierarchical social ties.
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3 Problem Setting

Let V denote the set of actors (members) of a social network. We consider two
types of graphs defined over V : the interaction graph and the hierarchy graph.

Definition 1 (Interaction Graph). An interaction graph is defined as GI =
(V,Ec,W ), where Ec is the set of edges (directed or undirected) representing the
interactions between the actors in V and W is a vector of edge weights, where
wuv ∈ W corresponds to the weight of the edge connecting nodes u and v.

We note that GI can be modeled both as a directed or undirected graph, as
well as weighted or unweighted, depending on the nature of the interactions and
the application domain at hand.

Definition 2 (Hierarchy Graph). A hierarchy graph is a directed graph de-
fined as GH = (V,Es), where Es ⊆ V × V is a set of of edges representing
the hierarchical relationship between the actors in V . Each edge (u, v) ∈ Es

indicates that actor u ∈ V is the direct superior of actor v ∈ V in the hierarchy.

For example, in the context of an e-mail network among a group of employees
a hierarchy graph may represent the set of manager-subordinate relationships,
where (u, v) ∈ Es indicates that u is the manager of v. Based on the above
definitions, the problem studied in this paper can be formulated as follows:

Problem 1. Given a set of actors V and their corresponding interaction graph
GI , infer the hierarchy graph GH of V .

In Figure 1 we can see an example of the problem we want to solve. Given
the interaction graph (a) of the five actors a, b, c, d, e, f , we want to infer their
corresponding hierarchy graph (b).

4 Static Rooted-PageRank (S-RPR)

In our previous paper [9], we proposed an approach that employs Rooted Page-
Rank (RPR) to detect hierarchical ties between a group of actors who interact
over a time period. The approach relies on the fact that RPR scores reflect the
importance of nodes relative to the root node. For each actor x ∈ V (root node)
we rank each other actor y ∈ V \ {x} according to the score RSx(y) obtained by
RPR, which reflects the chance of y being the superior of x. In the ideal case, the
actual superior of x should have the highest score and be ranked first. The main
feature of this approach is that it considers the static structure of the interaction
graph over the whole time period of the interaction.

After running RPR for all actors, a ranking list L(x) = [y1, y2, . . . , y|V |−1],
yi ∈ V , is produced for each x ∈ V , such that RSx(yi) ≥ RSx(yi+1), 1 ≤ i ≤
n−1. Finally, the hierarchy graph GH is inferred from L(x) by assigning to each
node x ∈ V one of the candidate managers that ranked high in L(x), e.g., within
the top-K places, for some K.
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5 Time-Sensitive Rooted PageRank (T-RPR)

We investigate whether “time matters” in detecting hierarchical social relation-
ships; in other words, whether significant improvements in detecting hierarchical
ties can be obtained by taking into account the temporal aspects of the interac-
tions. We adapt Rooted PageRank (RPR), as described in the previous section,
and introduce Time-Sensitive Rooted Pagerank (T-RPR), which captures how
the ranking scores of the interactions change over time. The proposed method
consists of three parts: time segmentation, ranking, and rank aggregation.

5.1 Time Segmentation

We consider the interaction graph GI of V . As opposed to S-RPR, now GI is not
static. Let T = [t1, tm] be the time period of interactions in GI , starting at time
t1 and ending at time tm. First, T is divided into n equal-sized non-overlapping
time slots {T1, T2, ..., Tn}, with Tj = [tjk, tjl], ∀j ∈ [1, n], such that tjl − tjk = d,
∀j, where d ∈ Z+ is the size of the time segments. Observe that a time slot
can be any time unit (e.g., day, fortnight, month, or year) depending on the
application. Next, we define an interaction graph for each time slot.

Definition 3 (Time-Interaction Graph). A time-interaction graph is de-
fined as Gk

I = (Vk, E
c
k,W ), where Vk ⊆ V is the set of actors who interacted

with at least one other actor within time slot Tk, E
c
k ⊆ Vk × Vk is the set of

edges (directed or undirected) corresponding to the interactions between the set
of actors Vk which took place within Tk, and W is the vector of edge weights.

Finally, a set of time-interaction graphs GI = {G1
I , . . . , G

n
I } is produced for the

n time slots. The next task is to rank the nodes in each graph.

5.2 Segment-Based Ranking

For each time-slot Tk and each actor x ∈ V , we run RPR on the corresponding
time-interaction graph Gk

I = (Vk, Ek,W ). Let scorex,k(vi) denote the RPR score
of actor vi when x is used as root on Gk

I . This results in a list of actors sorted
in descending order with respect to their RPR scores at time slot k:

L(x)k = [v1, v2, .., vN ] ,

where N = |Vk| − 1, Vk\{x} = {v1, v2, .., vN}, and scorex,k(vi) ≥ scorex,k(vi+1)
for i = 1, . . . , N − 1.

The rankings obtained over the n time-slots are aggregated for each root actor
x and all remaining actors vi ∈ V , resulting in an aggregate score aggScorex(vi).
Finally, the aggregate scores are sorted in descending order resulting in the
following aggregate list of actor ranks:

L(x) = [v1, v2, .., vM ] ,
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where M = |V | − 1, V/{x} = {v1, v2, .., vM}, and aggScorex(vi) ≥ aggScorex
(vi+1), for i = 1, ...M − 1. More details on the aggregation techniques are given
below.

Finally, as in S-RPR, the hierarchy graph GH is inferred from L(x) by as-
signing to each node x ∈ V one of the candidate managers that ranked high in
L(x), e.g., within the top-K places, for some K.

5.3 Rank Aggregation

We explored two rank aggregation techniques, one based on averaging and one
based on voting.

Average-based Time-sensitive RPR (AT-RPR). In this approach, the
ranking in L(x) is based on a weighted average of the individual RPR scores
over all time-slots. We define a set of weights Ω = {ω1, . . . , ωn}, where ωk is the
weight assigned to time slot Tk. Each actor y ∈ L(x) is ranked according to the
obtained scores over all time-slots:

aggScorex(y) = 1/n ·
n∑

k=1

ωk · scorex,k(y) . (1)

Assigning the values in Ω is application-dependent. For example, if the in-
teractions between actors and their superiors are distributed regularly over the
whole period T , then all weights can be equal. On the other hand, the inter-
actions between actors and their superiors may be more intensive in earlier or
later time-slots. An example of the former case is when detecting PhD advisor-
advisee relationships in a co-author network; higher weights are given to scores
in early time-slots when the advisees are expected to publish more papers with
their advisors, decreasing in later time-slots.

Vote-based Time-sensitive RPR (VT-RPR). An alternative approach is
to assign candidate actors with votes at each time-slot Tk based on their rank in
that slot. The final rank of an actor is determined according to the total number
of votes they win over all time-slots.

More precisely, given L(x)k at slot Tk, a vote is assigned to actor y ∈ V \ {x},
if y appears among the first c actors in L(x)k. We call c the vote-based cut-off.
Let pos(L(x)k, y) denote the position of y in L(x)k. The total number of votes
obtained by each candidate y is then defined as:

aggScorex(y) =
n∑

k=1

ωk · votex,k,c(y) , (2)

where: votex,k,c(y) =

{
1 if pos(L(x)k, y) ≤ c
0 otherwise

and ωk is the weight of time slot Tk, which is set depending on the application.
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5.4 Example

Let us consider the example shown in Figure 1. Assume that we want to detect
the superior of actor a, namely, actor b. We will apply S-RPR and T-RPR, and
compare the findings. We emphasise that the RPR scores used in the example
are made up; however, we wish to illustrate how ranks are aggregated in our
approach rather than how RPR scores are computed.

S-RPR. We set a to be the root and run RPR over the interaction graph, which
produces L(a). Specifically, the list contains the actors in the following order:

[(e, 0.30), (f, 0.25), (b, 0.20), (d, 0.18), (c, 0.07)] .

We observe that the position of actor b in L(a) is 3 (out of 5).

T-RPR. Suppose that T consists of four equal-sized time-slots. We generate four
time-interaction graphs, G1

I(V1, E
c
1), G

2
I(V2, E

c
2), G

3
I(V3, E

c
3), G

4
I(V4, E

c
4), one for

each time-slot, as shown in Table 1.

Table 1. The set of time-interaction graphs: we list the set of vertices Vk and edges
Ec

k for each time slot Tk

Vk Ec
k

T1 a, b, e, f (a, b), (e, b), (e, f), (f, e)

T2 a, b, c, d, e, f (a, b), (a, c), (b, a), (e, d), (f, e),

T3 a, b, e, f (a, b), (a, e), (e, a), (e, b), (e, f), (f, b), (f, e)

T4 a, c, e (a, c), (a, e)

Next, to detect the superior of a, we run RPR with a as the root for each
time-slot Tk using Gk

I for k = 1, . . . , 4. A ranked list L(a)k is produced for each
Tk, as shown in Table 2.

Table 2. Rank lists produced by T-RPR over all time-slots with root a

L(a)1 L(a)2 L(a)3 L(a)4
rank actor scorea,1 rank actor scorea,2 rank actor scorea,3 rank actor scorea,4
1 b 1.00 2 b 0.50 1 b 0.50 2 c 0.50

5 c 0.00 2 c 0.50 2 e 0.30 2 e 0.50

5 d 0.00 5 d 0.00 3 f 0.20 5 b 0.00

5 e 0.00 5 e 0.00 5 c 0.00 5 d 0.00

5 f 0.00 5 f 0.00 5 d 0.00 5 f 0.00

Finally, the lists are aggregated using Eq. (1) (average-based approach with
weights ωk = 1) and Eq. (2) (vote-based approach with weights ωk = 1 and cut-
off c = 2). The final aggregated lists for each aggregation approach are shown
in Tables 3 and 4. For example, the score for e in Table 3 is 0.20 because its
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average score is (0.30+ 0.50)/4, while its score in Table 4 is 2 because e appears
in ranks 1 or 2 in 2 time slots (3 and 4). We observe that in both cases T -RPR
places actor b at position 1, as opposed to position 3 (S-RPR).

Table 3. Final ranked list using the
average-based approach

position actor scorea
1 b 0.50
2 c 0.25
3 e 0.20
4 f 0.05
5 d 0.00

Table 4. Final ranked list using the vote-
based approach

position actor scorea
1 b 3
3 c 2
3 e 2
5 d 0
5 f 0

6 Results and Analysis

We evaluated the methods in terms of recall on two datasets: the Enron email
dataset and a co-authorship network, both of which are available online1.

The Enron dataset includes more than 255000 emails exchanged among 87474
email addresses between January 2000 and November 2001. However, only 155
of these email addresses belong to Enron employees. Each email in the dataset
has a sender, subject, timestamp, body, and a set of recipients. The dataset also
contains the hierarchical manager-subordinate relationship between employees.
The co-author dataset includes more than 1 million authors who contributed to
about 80000 papers in total between 1967 and 2011. Each paper has a title, date,
conference where it was published and a list of co-authors. The dataset includes
hierarchical relationships between PhD advisors and their advisees.

To evaluate the performance of the two methods, we compute for each sub-
ordinate/advisee x the rank of their correct superior/advisor x∗ in L(x):

rank(x, x∗) = |{y : scorex(y) ≥ scorex(x
∗)}| , ∀y ∈ L(x) . (3)

Hence, the rank of the manager x∗ of x is the number of actors in L(x) who
have an RPR score greater than or equal to the score of x∗ (see Table 2).

Finally, given a threshold K, we can define the overall rank ρ(K) of V as
the percentage of actors with rank at most K over all hierarchical relations that
exist in GH :

ρ(K) =
|{x : rank(x, x∗) ≤ K}|

|Es| · 100 (4)

Enron. We excluded all email addresses of people who were not Enron employ-
ees. In cases where an employee used more than one email address, we chose one

1 http://arnetminer.org/socialtie/

http://arnetminer.org/socialtie/
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randomly. We explored two versions of the interaction graph: directed, where
a directed edge exists from employee u to v if u sent at least one email to v;
undirected, where any interaction (sent or received email) between u and v is
represented as an edge between them. So, in both cases, all edge weights are 1.

For the T-RPR approach, each time-slot represents 1 month, giving 24 time-
slots in total. In addition, since we expect to have regular interaction between
a subordinate and their manager over the whole time period, each weight ωk

(k = 1, . . . , n) in the aggregation functions given in Eq. (1) and (2) was set to 1.
The experimental results of the performance benchmark of AT-RPR and VT-

RPR against S-RPR are shown in Figure 2(a) for the directed case and in Fig-
ure 2(b) for the undirected case. S-RPR performs considerably better for the
directed graph. This becomes clear when we consider the number of managers
ranked first in a subordinate’s ranked list. About 30% of the managers are ranked
first when using a directed graph compared to only 9.7% for the undirected
graph. However, this picture changes when we consider the time dimension in
T-RPR. Both AT-RPR and VT-RPR give better results on the undirected graph
and especially when using vote-based aggregation. We consider the best value for
the voting cut-off c for each case, i.e., 3 for the directed and 4 for the undirected
graph. This finding suggests that the volume of email matters more than direc-
tion for detecting hierarchical ties in an employer-employee setting. A possible
explanation is that employees may have similar communication patterns with
respect to the fraction of sent vs. received emails when they communicate with
other employees and also when they communicate with their boss. However, the
volume of the email traffic as a whole can be a more distinctive feature of the
underlying hierarchical tie.

In Tables 5 and 6, we can see how different values of the voting cut-off c affect
the performance percentages of VT-RPR. Using these tables in combination with
Figure 2 we can make several observations. Firstly, for the undirected graph, we
observe that VT-RPR with the voting cut-off at 4 is preferable to both S-RPR
and AT-RPR with significant improvement in detecting managers who rank

Fig. 2. Results using S-RPR and T-RPR (both aggregation strategies) on Enron using
(a) the directed interaction graph and (b) the undirected interaction graph
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in the top three of their subordinate’s lists. For example, in 58.9% of manager-
subordinate relations, managers come first in the ranked lists compared to 39.8%
and 9.7% detected by AT-RPR and S-RPR respectively. In addition, for the
directed graph, VT-RPR is still better than both AT-RPR and S-RPR, which
perform similarly. For AT-RPR and S-RPR, about 30–33% of managers are
ranked first in their subordinate’s lists. VT-RPR performs substantially better,
detecting over 48% of managers in the top position (K = 1).

Table 5. VT-RPR results on Enron
dataset using vote cut-off c = 1–6 with
directed interaction graph

ρ
c K = 1 K = 2 K = 3 K = 4 K = 5
1 39.72 52.05 56.84 60.27 62.32
2 43.83 55.47 62.32 67.80 68.49
3 48.63 56.84 62.32 66.43 67.80
4 44.52 58.90 63.01 67.12 67.80
5 42.46 58.21 63.69 65.75 67.80
6 40.41 59.58 63.69 65.75 67.80

Table 6. VT-RPR results on Enron
dataset using vote cut-off c = 1–6 with
undirected interaction graph

ρ
c K = 1 K = 2 K = 3 K = 4 K = 5
1 45.20 60.95 67.80 68.49 68.49
2 54.10 67.12 75.34 78.08 79.45
3 57.53 72.60 76.02 78.08 79.45
4 58.90 73.28 76.71 78.76 80.13
5 58.21 73.28 76.02 77.39 80.13
6 54.79 72.60 75.34 78.08 80.82

Co-author. For the purposes of our study, we excluded all single-author papers
as well as papers without a publication date. Due to the symmetric nature of
the co-author relationship, the interaction graph representing this dataset is
undirected. Once again, each edge weight was set to 1. For the T-RPR approach,
we defined 45 time-slots, one per publication year. Moreover, the weights used by
both aggregationmethods were defined for each aggScorex(y), as ωk = 1−Nfirst

Nall
,

where Nfirst is the number of time-slots (years) between time-slot k and the
slot in which the first paper co-authored by x and y appeared, and Nall is the
total number of time-slots between the first and last papers co-authored by
x and y. We defined the weights in this way since we expect more intensive
interactions between an advisee and their advisor in the early stages of the
advisee’s publication activity. Therefore, higher weights are given to early years.

Figure 3 depicts the performance of S-RPR, AT-RPR, and VT-RPR for Co-
author. Clearly, the results for both AT-RPR and VT-RPR, are substantially
better than those for S-RPR. For example, for more than 65% of the advisees,
both AT-RPR and VT-RPR correctly infer their advisor as the top-ranked co-
author. This gives a remarkable improvement over the results of S-RPR which
only detects 39.6% of advisors correctly.

On the other hand, the results of AT-RPR are 4–5% better than VT-RPR.
For instance, more than 95% and 90% of advisor-advisee relationships can be
detected within the top 7 authors by AT-RPR and VT-RPR respectively. Table 7
shows that the best results for VT-RPR are with voting cut-off c = 1.
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Fig. 3. Results for S-RPR, T-RPR
(both aggregations) on Co-author

Table 7. VT-RPR results for Co-author
using vote cut-off c = 1–5

ρ
c K = 1 K = 2 K = 3 K = 4 K = 5
1 65.52 79.25 85.12 87.55 89.50
2 60.80 78.54 84.64 88.03 89.93
3 56.84 75.58 82.30 85.78 87.88
4 53.55 72.72 79.97 83.83 86.17
5 50.69 69.48 77.25 81.78 84.21

Main Findings. For both the Enron and co-author datasets, the time-sensitive
methods AT-RPR andVT-RPR are significantly better than S-RPR. This demon-
strates that time matters when detecting hierarchical relationships in social net-
works. However, AT-RPR and VT-RPR perform differently on each dataset, with
VT-RPR being more effective in detecting subordinate-manager relationships in
the Enron data and AT-RPR being slightly better in detecting advisee-advisor
relationships in the co-author network.

One interpretation of these results is that, when the interactions between ac-
tors and their superiors extend over many time-slots, then VT-RPR is more ap-
propriate. An example of this is the Enron dataset, where the interactions occur
over 24 time-slots. On the other hand, when the interactions with the superior
are intensive within a few time-slots, AT-RPR is preferable to VT-RPR. This
is the case for the co-author dataset where usually an advisee publishes papers
with their advisor within only 4–5 time-slots while the advisee is completing
their PhD. When compared to our previous work [9], our new time-sensitive
methods prove to be effective in detecting hierarchical ties even when there are
no, or relatively few, interactions between an actor and their superior.

7 Conclusion

We introduced T-RPR, a method for detecting hierarchical ties in an interac-
tion graph. We investigated the impact of the temporal dimension in the ranking
process and adapted Rooted-PageRank to capture the dynamics of the interac-
tions over time between the actors in the network. We explored two variants
for aggregating the rankings produced at each time slot. Experiments on two
real datasets showed the superiority of T-RPR against our previous static ap-
proach, S-RPR, hence providing reasonable empirical justification for our claim
that “time matters” in detecting hierarchical ties.
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Abstract. Solar radiation forecasting is important for multiple fields,
including solar energy power plants connected to grid. To address the
need for solar radiation hourly forecasts this paper proposes the use of
statistical and data mining techniques that allow different solar radia-
tion hourly profiles for different days to be found and established. A
new method is proposed for forecasting solar radiation hourly profiles
using daily clearness index. The proposed method was checked using
data recorded in Malaga. The obtained results show that it is possible
to forecast hourly solar global radiation for a day with an energy er-
ror around 10% which means a significant improvement on previously
reported errors.

Keywords: k-means, clearness index, forecasting hourly solar radiation.

1 Introduction

The number of solar energy plants has increased significantly in recent years,
mainly due to the following factors: the need to use energy sources that con-
tribute to reduce carbon emissions, support policies being established to intro-
duce this type of systems, improved efficiency of these systems and the signifi-
cant reduction in the price of all the components that make up those systems.
As the number of these systems rises, there is an increasingly greater need for
systems to be developed that enable these energy sources to be integrated with
the traditional generation system. Therefore, predicting energy production by
these plants has become a requirement on competitive electricity markets. In
fact, accurate solar radiation forecasting is critical to large-scale adoption of
photovoltaic energy.

Electrical energy production planning is usually made on an hourly basis to
adjust production to consumption. Solar power plants depend on meteorological
factors (basically solar irradiance) to produce energy. Knowing how much energy
these systems will produce is necessary in order to ensure correct integration into
the electrical system. For instance, since 1998, the Spanish electricity market

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 155–166, 2014.
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has moved from a centralized operational approach to a competitive one. It
encourages the deployment of solar plants with a financial penalty for incorrect
prediction of solar yields for the next day on an hourly basis.

Estimating the energy generated by solar plants is difficult mainly due to its
dependence on meteorological variables, such as solar radiation and temperature,
[1], [2]. In fact, photovoltaic production prediction is mainly based on global solar
irradiation forecasts. The behavior of this variable can change quite dramatically
on different days, and even on consecutive days.

Short-term prediction of solar radiation can be addressed by other process
forecasting. In general, a wide type of statistical and data mining techniques
have been developed for process forecasting. Statistical time series methods are
based on the assumption that the data have an internal structure that can be
identified by using simple and partial autocorrelation, [3], [4], [5]. Time series
forecasting methods detect and explore such a structure. In particular, ARMA
(autoregressive moving average), ARIMA (autoregressive integrated moving av-
erage) models have been widely used; for instance, [6], [7], [8], [9], [10] and [11]
propose different methods for modeling hourly and daily series of clearness in-
dex (parameter related to solar global radiation). These models are particularly
useful for long-term characterization and prediction of the clearness index as
they pick up the statistical and sequential properties of series. However, these
methods have not been used for short-term prediction of clearness index as the
error in the prediction of isolated values (next value in a series) is too large.

Data mining techniques have been also used for process forecasting. These ap-
proaches have been proposed to overcome the limitations of statistical methods
as they do not require any assumptions to be made, particularly with respect to
the linearity of the series. Some of the data mining models developed for fore-
casting global solar radiation can be found in [12], [13], [14], [15], [16]. Short-term
forecasting models have been also proposed. For instance, a multilayer percep-
tron (MLP) for predicting 24 hours irradiance values for the next day is proposed
in [17]. MLP input values are mean daily values for solar irradiance and air tem-
perature; the correlation coefficient obtained is about 98-99% for sunny days and
94-96% for cloudy days; however, it is around 32% in energy terms. In [18] short-
term forecasting with continuous time sequences was performed and the mean
square errors of the proposed models range from 0.04 to 0.4 depending on the
value of clearness index. An artificial neural network (ANN) model was used to
estimate the solar radiation parameters for seven cities from the Mediterranean
region of Anatolia in Turkey in [19]. The maximum RMSE was found to be 6.9%
for Mersin citation and the best value obtained was 3.58% for Isparta. Artificial
neural network and ARIMA models are proposed in [20]; the errors range from
30 to 40% in energy terms. Similar models are used in [21]; the obtained errors
for predicting hourly values for a day range from 23 to 28%.

This paper proposes the use of a clustering data mining technique that allows
different solar radiation hourly profiles for different days to be found to address
the need to forecast hourly solar radiation values. The main objective is to
develop a method that is able to forecast accurately solar radiation on an hourly
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basis for a day. The main idea is to establish different hourly profiles for different
types of days, that is, separate days into different clusters and then, for each
profile, apply the information of its cluster to get accurate predictions. The
rest of the paper is organized as follows. The materials and methods used are
described in the second section. The third section describes the data used. The
results of the proposed methodology are detailed in the fourth section. Finally,
the last section concludes.

2 Materials and Methods

Hourly irradiance values distribution over a day seems to have a clear depen-
dency on the daily clearness index, [22]. In order to describe how solar irradiance
is distributed in each hour along the day, cumulative distribution probability
functions (c.p.d.f.) of the recorded values in 20 minutes intervals will first be es-
timated in order to determine how many different functions have been observed.
K-means will use all these curves to cluster these functions into groups, which
satisfy that all c.p.d.f.’s in each group can be considered homogeneously equal
using the Kolmogorov-Smirnov two sample test. For each group, tests will be
conducted to establish which parameters explain curves in that group. Finally,
a model capable of simulating the hourly profile of the group will be proposed.

The proposed models will be evaluated using the total energy error estimated
using the predicted hourly energy and the actual hourly energy.

2.1 Solar Radiation and Clearness Index

Solar radiation received in the Earth has seasonality and daily variability. The
clearness index is commonly used to remove these trends, instead of using solar
radiation data directly. The instantaneous clearness index is defined as the ratio
of the horizontal global irradiance to the irradiance available from the atmo-
sphere or extraterrestrial irradiance. In a similar way, the clearness for different
time periods (such as hourly or daily) is defined as the ratio of the horizontal
global irradiation received for a period of time to the irradiation received for the
same period out of the atmosphere, according to the expression 1:

Kt =
Gt

Gt,0
(1)

where Gt is the solar global radiation recorded for time t and Gt,0 is the
extraterrestrial solar global radiation for this period. We have used two different
periods, 20 minutes and 1 hour, both from sunrise to sunset.

Solar radiation received on Earth and solar radiation received out of the at-
mosphere depend on the distance to the Sun and the Earth’s relative position to
the Sun, that is defined by three angles: the solar elevation, the azimuth and the
hourly angle. Extraterrestrial solar radiation is estimated using the Earth-Sun
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distance, the declination, the latitude of the place and the hour angle consid-
ered. The extraterrestrial irradiance (instantaneous radiation), G0 received on
an horizontal surface is obtained using the expression:

G0 = IscE0 cos θz = IscE0(sin δ sinφ+ cos δ cosφ cosωs)(Wm−2) (2)

where Isc is the solar constant, E0 is the eccentricity factor, δ is the declination
angle, φ is the latitude, ωs is the hour angle. The expressions for estimating E0,
δ and ωs can be found in [23]. The expression for obtaining the extraterrestrial
solar radiation for a period of time is obtained integrating expression 2 for this
period. For the hourly solar extraterrestrial global radiation, the expression is
Eq.2 being ωs the value of this angle for the center of the hour.

2.2 Cumulative Probability Distribution Functions

The cumulative probability distribution function (c.p.d.f.), FX(·), of independent
and identically distributed observations, {Xi}ni=1, with the same distribution as
a random variable X , is calculated using the expression:

FX(t) = Pr(X ≤ t) (3)

assuming FX(·) is continuous.
These functions were estimated from the clearness index values calculated

using the solar radiation recorded every 20 minutes for each day. We used these
functions for each day instead of directly using the clearness index values because
of the different length of hours with data (due of the different length of days
during the year).

2.3 K-means

We propose using the data mining technique known as k-means clustering to
establish the number of different clearness index c.p.d.f.’s. Clustering techniques
have already been used in different areas such as text mining, statistical learning
and pattern recognition, [24], [25], [26]. It is based on analyzing one or more
attributes (variables) to identify a cluster of correlating results. The distance
from the sample to its cluster is used to measure the similarity between each
c.p.d.f. and the centroid of each cluster as all the variables are numerical. We
have used squared Euclidean distances, as it is defined in [24].

dp((Xi,Xj) = (

d∑
k=1

|xi,k − xj,k|p)1/p = ||Xi − Xj ||p (4)

where Xi and Xj are the variables included for characterizing observation i
and j respectively; they are the c.p.d.f. vector for each day in our study . These
vectors are the inputs for the k-means algorithm. The hypothesis is that K sets
will be obtained, with each one representing a different type of day.
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2.4 Kolmogorov-Smirnov Two Sample Test

We propose to use the Kolmogorov-Smirnov two sample test to analyze whether
two c.p.d.f.’s are homogeneously equal. This test will be used to check whether
each c.p.d.f.’s of each group obtained with k-means is equal to the centroid of its
group. The final number of groups used will be selected according to the results
of this test. The “test of homogeneity between two samples”is defined as follows.
Let the cumulative probability distribution function (c.p.d.f.) of X as FX(·) and
the c.p.d.f. of Y as FY (·), i.e. FX(t) = Pr(X ≤ t), FY (t) = Pr(Y ≤ t), according
to 2.2. Both FX(·) and FY (·) are assumed to be continuous. Suppose that we
want to test the null hypothesis

H0 : FX(·) = FY (·),

versus the general alternative hypothesis

Ha : FX(·) �= FY (·),

making no parametric assumption about the shape of these c.p.d.f.’s.
The test can be performed using the Kolmogorov-Smirnov statistic that com-

pares the empirical c.p.d.f.’s obtained with each sample.
Specifically, if for any real number t we define F̂X(t) ≡ n−1

∑n
i=1 I(Xi ≤ t)

and F̂Y (t) ≡ m−1
∑m

i=1 I(Yi ≤ t), where I(A) is the indicator function of event
A, which takes the value 1 if A is true or 0 otherwise, then the Kolmogorov-
Smirnov statistic is

Dn,m ≡
(

nm

n+m

)1/2

sup
t∈R

∣∣∣F̂X(t) − F̂Y (t)
∣∣∣ .

The null hypothesis is rejected with significance level α if Dn,m > cα, where cα
is a critical value that only depends on α (for details, see e.g. [27]).

2.5 Metrics for Evaluating the Proposed Methodology

The metric for homogeneity in clusters obtained with k-means (Kolmogorov-
Smirnov statitistic) is labeled in the direct value comparison category [28] which
tests whether the model output shows similar characteristics as a whole to the
set of comparison data, but does not directly compare observed and modeled
data points.

The metrics for evaluating the hourly estimated modeled profiles are:

– The standard deviation of daily profile hourly values for each cluster.
– The difference between the total hourly solar radiation estimated, Ĝh, and

the total hourly solar radiation received for the whole period of data nor-
malized to the total hourly solar radiation received, Gh, according to the
expression:

Errorrad =

∑m
i=1 |Gh,i − Ĝh,i|∑m

i=1 Gh,i
100(%) (5)
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The error in the estimation of total solar radiation was calculated as this
information is very useful for solar plants connected to the grid. The data used
is the difference between the values of total predicted radiation (directly used to
predict the energy produced) and the total actual radiation received, because of
the penalization applied for this difference.

3 Proposed Model for Simulating Hourly Profiles of Solar
Radiation

We propose to use the k-means and Kolmogorov-Smirnov two sample test to
cluster the observations and establish the number of different solar radiation
hourly profiles. The hourly profile type of each cluster is obtained as the hourly
mean values estimated using all the observations in the cluster.

The proposed model for simulating solar radiation hourly profiles uses the
daily clearness index value and the solar radiation hourly profiles obtained for
each cluster as inputs. The daily clearness index can be estimated using different
previously proposed models, such as [8], [9].

The procedure for forecasting hourly global radiation is described in 1.

Input : Kd Daily clearness index; Clearness index hourly profiles.

Using Kd select the cluster.
Estimate solar global radiation hourly values using the clearness index
hourly profile for the selected cluster and the extraterrestrial solar global
radiation hourly values (Eq.2).

Output: Hourly solar radiation values for day d

Algorithm 1. Procedure for obtaining solar global radiation hourly values

4 Data

Data used were recorded at the Photovoltaic Systems Laboratory of the Univer-
sity of Malaga (latitude is 36o42’54” N, Longitude 4o28’39 W, 45 meters eleva-
tion). Available data ranges from 2010/11/1 to 2012/10/31 in order to have two
complete years.

The available data are recorded every minute, in total 1440 records per day.
First, data are preprocessed to remove undesired values, such as night hour values
or out of range values, measurements error, etc. Sunset and sunrise angles were
used remove the night hours. Moreover, measurements corresponding to sun
elevation angles less than 5o were removed due to observed distortions in these
measurements (values greater that solar extraterrestrial radiation or values in the
range of the error of the measurement device). Extraterrestrial solar horizontal
radiation and clearness index are calculated and stored within the whole data
set.
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5 Results

Clearness index values were estimated for each of the measured solar global
radiation values using Eq. 1. After calculating these values we calculated the
cumulative probability distribution function for the values of each day where
a vector of dimension 100 was obtained as the accuracy used for estimating
clearness index is 0.01. These vectors are the inputs for k-means clustering.
The goal of using a clustering method is to cluster functions in groups with
similar c.p.d.f’s. The number of clusters need to be fixed in advance in order to
use k-means. We checked four different number of clusters, from 4 to 7, taking
into account the expected different c.p.d.f.’s. For each execution of k-means
we obtained the centroid of each cluster. Using these centroids we checked the
equality of c.p.d.f’s of the cluster in each test using the Kolmogorov-Smirnov
two sample test. Table 1 shows the results obtained for the different numbers of
checked clusters.

Table 1. Results of Kolmogorov-Sminorv two sample test for different number of
clusters

Number of c.p.d.f’s for which % c.p.d.f.’s % of clusters
clusters Dn,m > cα Dn,m > cα

4 29 4.4 100
5 26 3.9 80
6 21 3.1 33
7 19 2.9 29

Taking these results into account, we selected a total of 6 clusters instead of 7
clusters as only 2 of 6 clusters in both cases have some c.p.d.f.’s (approximately
3%) that are significantly different from theirs centroids and therefore 6 clusters
are enough to capture the different c.p.d.f.’s observed. The days included in each
cluster are from different months in all cases which means that the clustering
method allows us to capture the different c.p.d.f.’s observed along the year and
not the season of the year.

After clustering all the observations, the relationship between the daily clear-
ness index corresponding to each c.p.d.f. and its cluster was analyzed. Figure 1
shows these values.

As can be observed, the daily clearness index is related to the cluster to which
the c.p.d.f. for the day in question belongs. These results can be used to decide
the cluster to which one day belongs. We have checked that for c.p.d.f.’s that can
belong to two different clusters (see Fig.1) the Dn,m between these each c.p.d.f.
and the centroid of each possible cluster is always lower than the critical value
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Fig. 1. Daily clearness index, Kt, vs cluster to which the day belongs

cα. We propose to assign the cluster depending on the daily clearness index value
using the expression 6.

Number of cluster =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3 if Kd ≤ 0.22
2 if 0.22 < Kd ≤ 0.42
4 if 0.42 < Kd ≤ 0.55
1 if 0.55 < Kd ≤ 0.62
5 if 0.62 < Kd ≤ 0.7
6 if Kd > 0.7

(6)

The observed relationship between daily clearness index and cluster suggests
that k-means could produce clusters with days with a similar hourly solar radia-
tion profile. Moreover, the relationship between the solar radiation distribution
during a day and the daily clearness index value has been pointed out in [22].
However, solely one hourly profile cannot be used for all days due to the observed
differences in different clusters. Using these two facts, we propose to use all the
days of each cluster to estimate the solar radiation hourly profile for that cluster.
Therefore, the hourly clearness index mean value and its standard deviation have
been calculated for each cluster. Figures 2, 3 and 4 show these values. As can
be observed, the standard deviation for most clusters and hours is not large and
the results show that these values change with solar time, particularly for the
hours at the start and end of the day. These results agree with those previously
obtained in [10]. Moreover, these values decrease significantly for the hours with
more radiation (central hours of day). This fact is the reason for our proposing
the use of these mean values as the hourly profile model for each cluster.
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Fig. 2. Mean hourly clearness index and hourly standard deviation for clusters 1 (left)
and 2 (right)
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Fig. 3. Mean hourly clearness index and hourly standard deviation for clusters 3 (left)
and 4 (right)

Following the procedure described in 1, the estimated hourly radiation val-
ues for all the recorded data were estimated. Eq.5 was used to estimate the
energy error for each cluster to check the accuracy of these predictions. A naive
persistent model that assumes that the hourly profile for a day is the same as
the profile for the previous day was also used in order to evaluate whether the
proposed model improves this naive model. Table 2 shows the obtained results.

As can be observed, the proposed method is able to estimate the daily profiles
of hourly global radiation with an error lower or equal to 5% for the 57% of
energy received; this total increases to 84% with an error less than 11%. The
highest error occurs for only 1.3% of energy received. The total error for all the
clusters is 10.5% that is less than both naive model errors, 20.6%, and errors
reported in previous works that range between 20 and 40%, as set out in the
Introduction section. These results indicate that it is possible to use the obtained
daily profiles of hourly solar radiation distribution to forecast the hourly values
of this variable.
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Fig. 4. Mean hourly clearness index and hourly standard deviation for clusters 5 (left)
and 6 (right)

Table 2. Energy error (EE)(%) for each cluster when forecasting hourly solar global
radiation with proposed model and with a persistent naive model and percent-
age of energy received in all days included in each cluster respect to total energy
received.(∗clusters are randomly built)

EE proposed EE naive EE random
Cluster model (%) model (%) % energy clustering∗ (%) % energy

1 10.5 16.5 26.3 24.9 15.5
2 36.8 71.0 4.9 29.7 15.7
3 49.1 193.8 1.3 25.3 15.4
4 25.0 35.9 10.5 24.2 17.0
5 5.0 10.8 37.1 17.9 17.1
6 4.0 12.3 19.9 22.6 19.3

All clusters 10.5 20.6 24.0

6 Conclusions

We propose a methodology to characterize and model the solar global radiation
hourly profiles observed for different types of days. The cumulative probability
distribution functions of data and k-means clustering data mining technique
were used for these tasks. Moreover, the Kolmogorov-Smirnov two sample test
was used for analyzing the c.p.d.f.’s of each clusters. The 97% of c.p.d.f.’s are
equal to the centroid of its cluster.

The observed relationship between daily clearness index and cluster means
that we can state a one hourly radiation profile can be defined for each cluster.

The proposed method has been checked for data recorded in Malaga. The
energy error is lower or equal to 5% for 57% of the energy received and lower
than 11% for 84% of the energy. The obtained results show that hourly solar
global radiation for a day can be forecasted with an energy error around 10%
which is a significant improvement over previously reported errors that range
from 20% to 40%.
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As future research, the authors will conduct new experiments with data from
different locations to prove the validity and universality of the proposed model.
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Abstract. We present an approach that uses known translation forms
in a validated bilingual lexicon and identifies bilingual stem and suffix
segments. By applying the longest sequence common to pair of ortho-
graphically similar translations we initially induce the bilingual suffix
transformations (replacement rules). Redundant analyses are discarded
by examining the distribution of stem pairs and associated transforma-
tions. Set of bilingual suffixes conflating various translation forms are
grouped. Stem pairs sharing similar transformations are subsequently
clustered which serves as a basis for the generative approach. The pri-
mary motivation behind this work is to eventually improve the lexicon
coverage by utilising the correct bilingual entries in suggesting transla-
tions for OOV words. In the preliminary results, we report generation
results, wherein, 90% of the generated translations are correct. This was
achieved when both the bilingual segments (bilingual stem and bilingual
suffix) in the bilingual pair being analysed are known to have occurred
in the training data set.

Keywords: Translation lexicon coverage, Cluster analysis, Bilingual mor-
phology, Translation generation.

1 Introduction

Given a bilingual lexicon of translations, the approach returns the sets of prob-
able bilingual stems and bilingual suffixes along with their frequencies. Also,
the clusters representing a set of transformations (suffix replacement rules) and
the associated set of stem pairs sharing those transformations as observed in the
training set is returned. The main objective of the work is to suggest new trans-
lations through a generative approach by productively combining the bilingual
stems and suffixes belonging to the same cluster. Further, by identifying bilingual
morphemes in new translations, probable translations could be suggested.
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The bilingual translation lexicon used in this study is acquired from an aligned
parallel corpora1[1] using the extraction methods such as [2], [3], [4], [5]. First,
a bilingual lexicon is used to align parallel texts [1] and then extract new2 term-
pairs from the aligned texts [2]. In order to continually improve the alignments,
the extracted translations are validated and the correct ones are added to the
bilingual lexicon, marked as ’accepted’ which are used in subsequent alignment
and translation extractions. Incorrect ones are as well added to the lexicon
marked as ’rejected’. Thus, a cycle of iterations over parallel text alignment,
term translation extraction and validation is carried out. The English (EN) -
Portuguese (PT) unigram translations used in this work for learning the trans-
lation segments is acquired with the aforementioned approach, and are affirmed
as ’accepted’ by the human validators. The verification step is crucial for keep-
ing alignment and extraction errors from being propagated back into subsequent
alignment and extraction iterations, which would cause the system to degenerate.

The lexicon thus acquired is not complete as it does not contain all possible
translation pairs. Table 1 shows the accepted translations extracted for each of
the word forms corresponding to ensure. The translations seem exhaustive with
respect to the first 2 columns. However, certain missing translation forms are,
garantam for ensure, garantiu, garantiram, garantidos, permitidas, permitido,
permitidos, permitidas, permitidas permitiu, permitiram for ensured, which can
also be considered as possible translations. All the translation forms in the 3rd
column are missing. This is because, the extraction techniques cannot handle
what is not in a parallel corpora, unless we care about automatically learning
and generalising word and multi-word structures. Moreover, they are not able
to extract everything.

Term (EN) Term (PT)

ensure assegurar zelar garantir, garantem permitir
asseguram permitam
assegurem permitem

ensures assegura garanta permite
assegure garante permita

ensured asseguradas,
assegurados,
assegurado,
assegurou

garantidas, garantido

asseguraram garantidos

ensuring assegurando garantindo permitindo
Table 1. Translation Patterns in the Extracted Lexicon

On a whole, although it is evident that the existing lexicon is reasonably ex-
tensive, acknowledging its incompleteness with respect to the vocabularies in

1 A collection of pair of texts that are translations of each other.
2 By new we mean that they were not in the bilingual lexicon that was used for
aligning the parallel texts.
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either or both languages involved, accommodating most of the possible patterns
demand learning the translation structure. In this paper, we only focus on gen-
erating word-to-word translations, by treating a translation lexicon itself as a
parallel corpus. Having a hugely high degree of certainty associated with each
bilingual pair asserting its correctness, we use it to learn and generalise trans-
lation patterns, infer new patterns and hence generate those OOV translation
pairs that were not explicitly present in the training corpus used for the lexicon
acquisition.

From Table 1, we observe that each of the terms in EN share the same set
of suffixes -e, -es, - ed and -ing and stem ensur. Including their corresponding
translations, we see that a term in EN ending with -ed is translated to a term
ending with -adas, - ados, -ado, -ou, -aram. Likewise, the translations for de-
clared3 follow similar pattern and the translations end with -ada, -adas, -ado,
-ados, -aram, -ava, -ou. Equivalently they share the stems assegur and declar4.
Knowing that ensured and declared share suffixes -ed and by considering the
intersection of suffixes corresponding to their translation endings in PT, we may
say that a term with suffix -ed in EN might be translated to terms with suffixes
-adas, -ados, -ado, -ados, -aram, -ou in PT. This simple knowledge allows us
to generate new translation pairs based on the similarities observed from the
known examples. But, in 4th column of Table 1, the translation endings such as,
-ido, -idas, -idos corresponding to -ed are related and may be used to generate
permitido, permitidas, permitidos thereby partially completing the translations
for ensured in column 55.

Moreover, clusters of suffixes in English may translate as different clusters of
suffixes in Portuguese and hence it is necessary to identify, for a specific case the
best selection. Referring Table 1, we may see that suffix -e in English maps to
-am, -em, -ar (inflections for root assegur), -ir, -em (inflections for root garant)
and -am, -em, -ir (inflections for root permit). Suffixes -am, -em are shared by
all the three verb forms, while the suffix -ar discriminates the verbs in -ar group
from the verbs in -ir group. Equivalent phenomena occurs for the other suffixes.
Generally, we may see that verbs belonging to -e, -es, - ed, -ing in English
could be mapped to verbs belonging to one of the three Portuguese conjugation
classes -ar, -ir or -er with the classes being discriminated by the ending of their
infinitive forms. It is to be noted that, by chance, the suffix -ou corresponding to
-ed in column 1 of table 1, is also a discriminator for Portuguese verbs belonging
to -ar group.

2 Related Work

The fact that ’words consist of high-frequency strings (affixes) attached to low-
frequency strings (stems)’ has motivated several researches ranging from text

3 Declared ⇔ declarada, declaradas, declarado, declarados, declararam, declarava,
declarou.

4 Stem can be determined as longest common sequence of characters.
5 This follows as verbs garantir and permitir belong to the 2nd verb inflection class,
unlike assegur which belongs to the 1st verb inflection class.
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analysis for acquisition of morphology, to learning suffixes and suffixation op-
erations for improving word coverage and for allowing word generation. Cer-
tain approaches are partially supervised [6]. Unsupervised, Minimum Descrip-
tion Length based models such as [7], [8] focus on finding a better compressed
representation for lexicon of words. Other unsupervised approaches address lan-
guage specific issues such as data and resource sparseness [9], agglutination [10].
In each of these works, morphological segmentation is induced considering mono-
lingual data. Lexical inference or morphological processing techniques have been
established to be interesting in suggesting translations for OOV words that are
variations of known forms. Below, we discuss a few of them.

Predicting translation for unknown words based on inductive learning mecha-
nism is discussed in [11]. Common and different parts of strings between known
words and their translations represent the example strings, referred as Piece of
Word (PW) and Pair of Piece of Word (PPW). The bilingual pairs of these ex-
tracted example strings maintained as a Pair of Piece of Word (PPW) dictionary
form the basis of the prediction process.

In [12], morphological processing is used to learn translations for unknown
German compounds from the translation of their parts. The splitting options are
guided by parallel texts in such a way that all the parts6 should have occurred as
whole word translations in the training corpus. The guidance from parallel corpus
relies on two7 translation lexicons with correspondences learnt using toolkit Giza.
The two lexicons are jointly used to guide the splitting process. The approach
records 99.1% accuracy with an improvement of 0.039 BLEU in German-English
noun phrase translation task.

The hierarchical back-off model discussed in [13] for translating unseen forms
stand out to act on highly inflectional languages such as German and Finnish,
particularly under the scenario of limited training data. Morphological decom-
positions mainly include alternative layers of stemming and compound splitting,
requiring that “a more specific form (a form closer to the full word form) is
chosen before a more general form (a form that has undergone morphological
processing)”. Unlike the splitting techniques reported in [12], the method in-
volves investigating all possible ways of segmentation with the only constraint
that each part has a minimum length of 3 characters. As in [12], acceptance of
the segmentation is subjected to the appearance of subparts as individual items
in the training data vocabulary. The approach relies on translation probabilities
derived from stemmed or split versions of the word in its phrasal context. Ex-
periments with varied amount of training data reveal its appropriateness under
limited training data conditions and adaptability to highly inflected languages.

Gispert et al., [14] show that translations for unseen verb forms can be gen-
erated by generalising them using verb forms seen in training data. Verbs are

6 To avoid prefixes and suffixes from splitting off, the parts are restricted only to
content words, thus excluding the prepositions or determiners.

7 The first lexicon is learnt from original versions of parallel texts and the second from
the parallel corpus with split German and unchanged English text versions in order
to learn specific translations for compound parts.
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identified using rules incorporating word forms, POS-tags and word lemmas and
are classified to the lemma of their head verb, such that they belong to only one
class with such a classification done for each language separately. To translate
an unseen verb form, the verb is classified into the lemma of its head word and
all the tuples representing translation of that class of verbs (in training data) are
identified. New target verb form is generated by replacing the personal pronoun
in the seen form with the personal pronoun in the expression to be translated.
The suggested translation is weighed based on the frequency of its occurrence in
the training data. In case of any ambiguity in generalisation of verb forms, the
approach over generates all possible forms, leaving the target language model to
decide on the best translation alternative.

The need for dealing language-specific problems while translating from En-
glish to a morphologically rich languages by identifying morphological relation-
ships that are not captured by current SMT models, the possibilities of handling
these independently from translation model by morphology derivation are dis-
cussed in [15]. Proper derivations into the text are introduced by simplifying
morphological information (or parts of it), followed by a morphology generation
by means of a classification model which makes use of a set of relevant features
for each simplified morphology word and its context. The study reveals that
the main source of potential improvement lies in verb form morphology as this
morphological category is seen to exhibit more derivation in Romance languages.

Discovery of abstract morphemes by simultaneous morphology learning for
multiple languages is discussed in [16]. The discriminative log-linear model dis-
cussed in [17] uses overlapping contextual features to boost the segmentation
decisions. Morphological analysis and generation in [18] is achieved through the
suffix stripping and joining method. The approach relies on a bilingual dictionary
consisting of the root/stem of the words with its grammatical category.

In this paper, we focus on learning the structure of translations, treating the
bilingual lexicon as a parallel resource. We take advantage of the bilingual data
to deal with the ambiguities and complexities in decompositions by focusing on
the frequent forms occurring in translations rather than words in one language.
As in [11], the approach identifies common and different bilingual segments oc-
curring in several translation examples and employs them in generating new
translations. We restrict the bilingual segments only to two parts, interpreting
the first part as the bilingual stem and the second part as bilingual suffix. A
pair of bilingual suffixes attached to the same bilingual stem indicate the suffix
replacement option and hence motivates translation generation. To enable gener-
alisation, clusters of bilingual stems sharing same transformations are identified.

The remaining sections are organised as follows. The learning phase for iden-
tifying bilingual segments is discussed in Section 3. The approach used in gen-
erating new translations is discussed in Section 4. Results are presented and
analysed in section 5. Conclusions drawn based on the results and the scope for
future work are discussed in section 6.



172 K. Karimbi Mahesh, L. Gomes, and J.G.P. Lopes

3 Learning the Bilingual Segments

Given a lexicon of bilingual entries (word-to-word translations) extracted from
the aligned parallel corpora8, we first look for orthographically similar transla-
tions. Translations are considered similar if they begin with the same substring9.

Based on the longest sequence common to pair of similar translations, we note
the bilingual stems and the pair of bilingual suffixes attached it. For example,
with the translation forms ensuring ⇔ assegurando and ensured ⇔ assegurou,
we obtain the bilingual stem ensur ⇔ assegur with a pair of bilingual suffixes,
(ing ⇔ ando, ed ⇔ ou).

To determine their validity, the induced bilingual segments are analysed with
respect to their occurrences as bilingual stems and bilingual suffixes. We require
that the following conditions are satisfied with respect to the bilingual segments:

– Each candidate bilingual stem should attach to at least two unique morpho-
logical extensions (pair of bilingual suffixes).
For the example discussed above, the bilingual stem (ensur ⇔ assegur) is
retained if it appears as a stem with at least another pair of bilingual suffixes,
say, (ing ⇔ ando, ed ⇔ ou) induced from of the translations ensuring ⇔
assegurando and ensured ⇔ assegurou with the decomposition as below:
[ensur ⇔ assegur ] + [ing ⇔ ando] and [ensur ⇔ assegur ] + [ed ⇔ ou],

– Similarly, each pair of bilingual suffixes should have been attached to at least
two unique bilingual stems.
For example, (ing ⇔ ando, ed ⇔ ou) is considered, if it appears with another
bilingual stem such as (declar ⇔ declar) induced from translations declaring
⇔ declarando and declared ⇔ declarou with the following decompositions:
[declar ⇔ declar ] + [ing ⇔ ando] and [declar ⇔ declar ] + [ed ⇔ ou].

3.1 Filtering

For each of the bilingual stems obtained, we gather all the bilingual suffixes
associated with that bilingual stem. For example, the candidate bilingual suffixes
that associate with the candidate bilingual stems (’ensur’, ’assegur’) obtained
from the segmentation of the bilingual pairs ensure ⇔ assegurem, ensured ⇔
assegurou and ensuring ⇔ assegurando would be as follows:
(’ensur’, ’assegur’):(’e’, ’em’), (’ing’, ’ando’), (’ed’, ’ou’).

Each such grouping indicate the suffix pair replacement rules that enable one
translation form to be obtained using the other. For instance, from the above
grouping, it follows that replacing the suffix e with ed and the suffix em with
ou in the bilingual pair ensure ⇔ assegurem, yields ensured ⇔ assegurou.

8 DGT-TM - https://open-data.europa.eu/en/data/dataset/dgt-translation-
memory

Europarl - http://www.statmt.org/europarl/
OPUS (EUconst, EMEA) - http://opus.lingfil.uu.se/

9 same with respect to the first and the second language, where the minimum substring
length is 3 characters

https://open-data.europa.eu/en/data/dataset/dgt-translation-memory
https://open-data.europa.eu/en/data/dataset/dgt-translation-memory
http://www.statmt.org/europarl/
http://opus.lingfil.uu.se/
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A few among the identified groups are redundant. The bilingual stems and
the associated bilingual suffixes listed below exemplify such redundancies.
(’ensur’, ’assegur’) : (’e’, ’ar’), (’ed’, ’ado’), (’ed’, ’ados’), (’ed’, ’ada’), (’ed’,
’adas’), (’ing’, ’ando’), (’es’, ’e’), (’es’, ’a’), (’e’, ’am’), (’e’, ’em’), (’ed’, ’aram’),
(’ed’, ’ou’ ).
(’ensure’, ’assegur’) : (”, ’ar’), (’d’, ’ado’), (’d’, ’ados’), (’d’, ’ada’), (’d’, ’adas’),
(’s’, ’e’), (’s’, ’a’), (”, ’am’), (”, ’em’), (’d’, ’aram’)
(’ensur’, ’assegura’) : (’e’, ’r’), (’ed’, ’do’), (’ed’, ’dos’), (’ed’, ’da’), (’ed’, ’das’),
(’ing’, ’ndo’), (’es’, ”), (’e’, ’m’), (’ed’, ’ram’)
(’ensure’, ’assegura’) : (”, ’r’), (’d’, ’do’), (’d’, ’dos’), (’d’, ’da’), (’d’, ’das’), (’s’,
”), (”, ’m’), (’d’, ’ram’)

Table 2. Occurrence frequencies of induced bilingual stems with respect to the trans-
lations in the bilingual lexicon

Stem pair Frequency Stem pair Frequency

accord, acord 3 ’abandon’, ’abandon’ 17

accord, acorde 2 ’abandon’, ’abandona’ 2

We consider discarding the redundant groups, where the bilingual stems vary
by single character in the boundary. We retain the bilingual stems that allow
higher number of transformations. This is done by counting the number of unique
translations in the lexicon that begin with each of the bilingual stems. To handle
multiple such instances we prefer shorter bilingual stems over longer pairs. In
the examples listed above, the first group is retained.

3.2 Clustering

A set of bilingual stems that share same suffix transformations form a cluster.
The bilingual stems identified in the previous step characterised by suffix pairs
(features) are clustered using the clustering tool, CLUTO10. The toolkit provides
three different classes of clustering algorithms such as, partition, agglomerative
and graph-partitioning, to enable the clustering of low and high dimensional
data sets. The partition and agglomerative clustering, is driven by total of seven
different criterion functions that are described and analysed in [19].

In the experiments presented here, partition approach was adapted for clus-
tering. To prepare the data for clustering, the doc2mat11 tool is used, which
provides the necessary conversion of data into matrix form. We experimented
with 10, 15, 20, 50 and 100 way clustering and the best results were obtained
with 50 clusters. The clustering results are further analysed manually to remove
outliers (bilingual suffixes) from each cluster and to identify the sub-clusters
from among the clustered results. Next, we generate new translations by direct

10 http://glaros.dtc.umn.edu/gkhome/views/cluto
11 http://glaros.dtc.umn.edu/gkhome/files/fs/sw/cluto/doc2mat.html

http://glaros.dtc.umn.edu/gkhome/views/cluto
http://glaros.dtc.umn.edu/gkhome/files/fs/sw/cluto/doc2mat.html
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concatenation of stem pair and suffix pair belonging to a same cluster. These
newly generated pairs are validated manually and are included as training data
for the subsequent iteration.

4 Generating New Translations

The output of the learning phase includes known list of bilingual stems, bilingual
suffixes along with their observed frequencies in the training data set. We further
have information about which set of bilingual suffixes attach to which set of
bilingual stems. The underlying approach for suggesting new translations relies
on these clusters of bilingual stems and bilingual suffixes identified in the learning
phase. Now, for each of the new bilingual pairs to be analysed, we consider
all possible splits restricting the first part (bilingual stem) to a minimum of 3
characters. We examine the following possibilities in generating new translations:

– If both the bilingual stems and the bilingual suffixes are known, we check
whether they belong to the same cluster. If so, each of the new translations
are suggested by concatenating the stem pair with the associated suffix pairs.

– If only the bilingual suffixes are known, we generate by replacing the iden-
tified bilingual suffix with other bilingual suffixes that have been recorded
to co-occur with the identified bilingual suffix. To avoid over-generations
from multiple matches, we restrict to generations where the longer bilingual
suffixes are preferred over shorter matches or the bilingual suffixes with the
higher frequencies are preferred over bilingual suffixes with lower frequencies.

– If only the stem pairs are known, we generate by concatenating the identified
stem pair with all the suffix pairs that attach to the identified stem pair.

5 Results and Discussion

5.1 Clustering Results

Table 3 provides an overview of the data sets used in training and the correspond-
ing clustering statistics. A list of the most common bilingual suffixes identified
for the currently existing lexicon entries is shown in Table 4.

Table 3. Overview of the training data and generation statistics with different
training sets

Training
Data

Unique
Bilingual
Stems

Unique
Bilingual
Suffixes

Generated
pairs

Correct
Generations

Incorrect
Generations

36K 6,644 224 4,279 3,862 306

210K 24,223 232 14,530 2,283/2,334 20/2,334
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Table 4. Highly frequent Bilingual Suffixes identified for EN-PT bilingual bases with
different training sets (Frequencies in the lexicon are considered)

Training Set1 Training Set2

Suffix Pair Frequency Suffix Pair Frequency

(”, ’o’) 4,644 (”, ’o’) 15,006

(”, ’a’) 2,866 (”, ’a’) 9,887

(’e’, ’o’) 1,685 (”, ’as’) 5,840

(”, ’os’) 1,362 (”, ’os’) 5,697

(”, ’as’) 1,339 (’ed’, ’ado’) 4,760

(’e’, ’a’) 1,297 (’ed’, ’ados’) 4,221

(’ed’, ’ado’) 1,001 (’ed’, ’ada’) 4,193

(’ed’, ’ada’) 868 (’e’, ’o’) 4,159

(’ed’, ’ados’) 814 (’ed’, ’adas’) 4,051

We present below, a few randomly chosen clusters along with the discriminat-
ing features (bilingual suffixes) and a few example bilingual stems under each of
the verb, noun and adjective classes.
Verb-ar Cluster: (’e’, ’ar’), (’e’, ’arem’), (’e’, ’am’), (’e’, ’em’), (’es’, ’e’), (’es’,
’a’), (’ed’, ’ada’), (’ed’, ’adas’), (’ed’, ’ado’), (’ed’, ’ados’), (’ed’, ’aram’), (’ed’,
’ou’), (’ing’, ’ando’), (’ing’, ’ar’)
Example Bilingual Stems: toggl ⇔ comut, argu ⇔ afirm, shuffl ⇔ baralh
Verb-er Cluster: (”, ’er’), (”, ’erem’), (”, ’am’), (”, ’em’), (’s’, ’e’), (’s’, ’a’),
(’ed’, ’ida’), (’ed’, ’idas’), (’ed’, ’ido’), (’ed’, ’idos’), (’ed’, ’eram’), (’ed’, ’eu’),
(’ing’, ’endo’), (’ing’, ’er’)
Example Bilingual Stems: spend ⇔ dispend, reply ⇔ respond, answer ⇔ respond
Verb-ir Cluster: (”, ’ir’), (”, ’irem’), (”, ’am’), (”, ’em’), (’s’, ’e’), (’s’, ’a’),(’ed’,
’ida’), (’ed’, ’idas’), (’ed’, ’ido’), (’ed’, ’idos’), (’ed’, ’iram’), (’ed’, ’iu’), (’ing’,
’indo’), (’ing’, ’ir’)
Example Bilingual Stems: expand ⇔ expand, acclaim ⇔ aplaud, reopen ⇔ reabr
Adjective-ent Cluster: (’ent’, ’ente’), (’ent’, ’entes’)
Example Bilingual Stems: bival ⇔ bival, adjac ⇔ adjac, coher ⇔ consist, coher
⇔ coer, circumfer ⇔ circunfer
Adjective-al Cluster: (’al’, ’ais’), (’al’, ’al’)
Example Bilingual Stems: categori ⇔ categori, cervic ⇔ cervic, coast ⇔ litor
Noun-ence Cluster: (’ence’, ’ência’), (’ences’, ências’)
Example Bilingual Stems: compet ⇔ compet, recurr ⇔ reocorr, jurisprud ⇔
jurisprud, opul ⇔ opul
Noun-ist Cluster: (’ist’, ’ista’), (’ists’, ’istas’)
Example Bilingual Stems: alchem ⇔ alquim, bapt ⇔ bapt, column ⇔ colun

5.2 Generation Results

With a training data of approximately 210K bilingual pairs, about 15K new
translations were generated. Among the 2,334 validated entries, 2283 were
accepted, 27 were inadequate (accept-) indicating incomplete/inadequate trans-
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lations and 20 were rejected (reject). Table 5 shows the statistics for the gen-
erated translations (correct, accepted) in the parallel corpora, where the co-
occurrence frequency is less than 10. Among the generated entries, 9034 bilingual
pairs did not occur in the parallel corpora even once. When both the bilingual
stem and the bilingual suffix in the bilingual pair to be analysed are known, 90%
of the generated translations were correct, with the first data set (Table 3).

Table 5. Co-occurrence frequency for the generated translations in the parallel corpora

Co-occurrence # of generated Co-occurrence # of generated
Frequency bilingual pairs Frequency bilingual pairs

9 45 4 148

8 62 3 207

7 64 2 324

6 80 1 489

5 102 - -

5.3 Error Analysis

Analysing the newly generated translations, we observe that certain translations
are incomplete (examples labelled as accept-), and some are incorrect (examples
labelled as reject). Translation candidates such as ’intend ⇔ pretendem’ are
inadequate as the correct translations require ’intend ’ to be followed by ’to’.
Similarly, ’include’ should be translated either by ’contam-se’ or ’se contam’
and so ’include ⇔ contam’ is classified as accept-.

Other generated entries, such as, ’collector ⇔ coleccionadores ’, ’advisor ⇔
consultores ’, ’rector ⇔ reitores ’, ’elector ⇔ eleitores ’ are instances wherein the
noun acts as an adjective that is translated either by adding ’de’ before the
plural noun translation in PT, eventually with an article after ’de’ as in’de os’.
Again, the bilingual pair generated, ’wholesales ⇔ grossistas ’ misses the noun
’vendas ’ as in ’vendas grossistas’. The English noun is compounded in this case.

Generation errors labelled as ’reject ’ in Table 6, are a consequence of incorrect
generalisations. Verbs in PT ending in ’uir ’ form past participle forms adding
’u’. ’wants ’ is an irregular verb that is translated either by ’quer ’ or ’queira’ or
’quizer ’.

6 Conclusion

In this paper, we have discussed an approach for identifying bilingual segments
for translation generation. The motivation for the work reported in this paper
is the fact that extraction techniques cannot handle what is not in a parallel
corpora and they cannot extract everything. Above all, the way in which trans-
lations are extracted and evaluated does not guarantee that most of the possible
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Table 6. Generated Translations

Accept- Reject

languages ⇔ lingúısticas rights ⇔ adequados

instructor ⇔ instrutores replaced ⇔ substituida / -idas / -idos / -ido

ambassador ⇔ embaixadores several ⇔ vário

include ⇔ contam wants ⇔ quere

emerged ⇔ resultados electrical ⇔ electrica

translation pairs not found in parallel corpora might be automatically suggested
for a translation engine or as bilingual entries.

90% of the generated translations were correct when both the stem and suffix
pairs in the bilingual pair to be analysed are known. However, the approach
fails to handle irregular forms and hence needs to be addressed in the future.
While the current work focused on EN-PT, bilingual segments for other language
pairs, added with limited training data conditions, needs to be further studied.
Also, the improvement brought by the generated translations to the quality of
alignment and extraction needs to be assessed.
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Abstract. We propose MTSC, a filter-and-refine framework for time series Near-
est Neighbor (NN) classification. Training time series belonging to certain classes
are first modeled through Hidden Markov Models (HMMs). Given an unlabeled
query, and at the filter step, we identify the top K models that have most likely
produced the query. At the refine step, a distance measure is applied between the
query and all training time series of the top K models. The query is then assigned
with the class of the NN. In our experiments, we first evaluated the NN classifi-
cation error rate of HMMs compared to three state-of-the-art distance measures
on 45 time series datasets of the UCR archive, and showed that modeling time
series with HMMs achieves lower error rates in 30 datasets and equal error rates
in 4. Secondly, we compared MTSC with Cross Validation defined over the
three measures on 33 datasets, and we observed that MTSC is at least as good
as the competitor method in 23 datasets, while achieving competitive speedups,
showing its effectiveness and efficiency.

1 Introduction

Time series data have become ubiquitous during the last decades. Sequences of numer-
ical measurements are produced at regular or irregular time intervals in vast amounts
in almost every application domain, such as stock markets, medicine, and sensor net-
works. Large databases of time series can be exploited so as to extract knowledge on
what has happened in the past or to recognize what is happening in the present. More
specifically, the task at hand is classification. Given an unlabeled time series, i.e., of
which the category/class is not known, we wish to assign to it the most appropriate
class, which corresponds to the class of the Nearest Neighbor (NN) time series. Conse-
quently, there is a need for searching the time series database.

One way of implementing such search is, given a distance measure, to perform whole
sequence matching between each time series in the database and the query, and finally
select the closest time series, i.e., the one with the smallest distance to the query. Thus,
it can be easily understood that the selection of the distance measure to be used for
comparing time series is critical, as it essentially decides whether a time series is a
good match for the query or not, influencing the NN classification accuracy (percentage
of time series correctly classified).

Several distance measures have been proposed, which are often computed in a dy-
namic programming (DP) manner [6]. The most widely known and used measure is
Dynamic Time Warping (DTW) [22]. Many variants of DTW have also been proposed,
such as cDTW [30], EDR [8], and ERP [9]. All of these measures have the attractive
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characteristic that they are robust to misalignments along the temporal axis. Moreover,
they provide very good classification accuracy results [34].

Searching large time series databases with any of these DP-based distance measures
can be computationally expensive due to their quadratic complexity with respect to the
time series length, though speedups can be achieved for cDTW by applying a lower-
bounding technique [16]. An alternative approach would be to first represent each class
of the time series database with a model, such as a Hidden Markov Model (HMM) [5],
and then perform searching based on the constructed models. HMMs are widely known
and have been used in a variety of domains, such as speech recognition [29], and music
retrieval [28]. In this paper, we deal with both effectiveness (accuracy) and efficiency
(runtime) and we propose a novel approach, named MTSC (shorthand for Model-based
Time Series Classification). Given sets of time series of certain classes, MTSC first mod-
els their underlying structure through the training of one HMM per class. An HMM is
capable of identifying the relationships between the observations within the time se-
ries [18]. At runtime, given a query time series of unknown class, MTSC finds the top K
models that have most likely produced the query. Then, it refines the search by applying
an appropriate distance measure between the query and all the training time series that
compose the K selected models. What remains to be answered is what distance measure
to use during the refine step. Intuitively, given a collection of distance measures, we can
choose the one providing the highest classification accuracy on the training set.

The main contributions of this paper include: 1) A novel way of representing time
series of a specific class via an HMM, and a comparative evaluation of this representa-
tion against three distance measures (DTW, ERP, and MSM) in terms of classification
accuracy on the training sets of 45 datasets [17]. The evaluation shows that HMMs
can attain significantly higher accuracy in 18 datasets, relatively higher accuracy in 12,
and equal accuracy in 4; hence better or equal accuracy in 34 datasets. 2) MTSC: an
model-based framework for effective and efficient time series NN classification. The
framework works in a filter-and-refine manner, by exploiting the novel model-based
representation of time series belonging to the same class. 3) An extensive experimental
evaluation on NN classification accuracy between MTSC and the Cross Validation

method defined over DTW, ERP, and MSM, on 33 datasets. We observed that MTSC
is at least as good as Cross Validation in 23 datasets, while achieving competitive
speedups, showing both its effectiveness and efficiency.

2 Related Work

A plethora of distance/similarity methods for time series have been proposed during
the last decades. As shown by Wang et al. [34], Dynamic Time Warping (DTW) [22]
is not only a widely used distance measure for computing distances between time se-
ries, but also provides very good classification accuracy results. Hence, several lower
bounds have been proposed to speed up its expensive computation [2,24]. Variants of
DTW include constrained DTW (cDTW) [30], Edit Distance on Real sequence (EDR)
[9], and Edit distance with Real Penalty (ERP) [8]. A common characteristic of these
methods is that they allow aligning elements “warped” in time. ERP and EDR satisfy
the triangle inequality, and ERP is found to be more robust to noise than EDR. Another
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very recently proposed measure is called Move-Split-Merge (MSM) [31], which applies
three types of operations (Move, Split, Merge) to transform one time series to another.
MSM is metric and invariant to the choice of origin as opposed to ERP. Longest Com-
mon SubSequence (LCSS) [32] finds the maximum number of elements being common
in the compared sequences allowing for gaps during the alignment. Other distance or
similarity measures include DISSIM [12], TWED [26], and SMBGT [19,21].

Several techniques for time series representation have been proposed in the litera-
ture that capture global or local structural characteristics, e.g., SpaDe [10] and SAX
[25]. Moreover, and Shapelets [35] focus on determining discriminant time series sub-
sequence patterns, and have been used for classification. For a thorough comparison of
different representations and measures please refer to Wang et al. [34], which demon-
strates that there is little difference among them. Speeding up similarity search in large
databases based on different time series summarizations, such as DFT [1] has also at-
tracted the attention of researchers. Some recent approaches for faster whole sequence
matching are embedding-based, which use a set of reference objects to transform simi-
larity matching in a new vector space instead of the original one [3].

Although the aforementioned approaches are very promising, they focus on repre-
senting each time series by taking advantage of its structure. However, in this work we
try to represent “groups” of time series that belong to the same class, which is orthogo-
nal to the previously proposed techniques.

We focus on HMMs, which model the underlying structure of sequences determin-
ing the relationships between their observations. HMMs have been applied to speech
recognition [29] and music retrieval [20]. Although training may be computationally
expensive, once they are constructed they can be highly applicable to time series, as
shown in this work through the classification task. Our approach differs from selecting
the best model in Markovian Processes [15], since at each state we neither perform an
action nor give a reward. Furthermore, model-based kernel for time series analysis re-
quires significant amount of time [7]. Conditional Random Fields (CRFs) [23,33] can
be used for modeling temporal patterns. Nonetheless, we do not target in finding and
modeling patterns, rather to represent groups of “homogeneous” sequences by identify-
ing the relationships among their observations. In addition, non-parametric techniques
have also been proposed within the field of functional data analysis [11,14], though our
approach is orthogonal to those. Finally, HMM-based approaches have also been used
for the problem of time series clustering [13,27]; however, our focus here is classifica-
tion and hence the proposed approach is customised for this task.

3 MTSC: Model-Based Time Series Classification

Let X = (x1, . . . ,x|X |) and Y = (y1, . . . ,y|Y |) be two time series of length |X | and |Y |,
respectively, where xi,y j ∈ R, ∀(i = 1, . . . , |X |; j = 1, . . . , |Y |). Since we are interested
in labeled time series, we denote the class of X as cX . The pair (X ,cX) will correspond
to X along with its label. Given a distance measure distx, the distance between X and Y
is defined as a function ddistx(X ,Y ). The problem we would like to solve is given next.

Nearest Neighbor Classification. Given a collection of N training time series D =
{(X1,cX1), . . . ,(XN ,cXN )}, a distance measure distx, and an unlabeled query time series
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Q, find the class cQ of Q as follows:

cQ = {cXj |argmin
j
(ddistx(Q,Xj)),∀( j = 1, . . . ,N)}

Next, we provide an overview of HMMs, how we can represent classes of time series
with appropriate training of HMMs, and describe the MTSC framework, which takes
advantage of the trained models for NN classification.

3.1 Hidden Markov Models

An HMM is a doubly stochastic process containing a finite set of states [29]. Formally,
it is defined by M distinct states, L values that can be observed at each state (for time
series any real number can be observed), the set T = {tuv} of transition probabilities,
where tuv = P[st = v|st−1 = u] with 1 ≤ u,v ≤ M and st being the state at time t (first
order Markov chain), the set E = {ev(k)} of the probabilities of values at state v, where
ev(k) = P[ot = k|st = v] with ot being the observed/emitted value at time t, and the set
Π = {πv} of prior probabilities, where πv = P[s1 = v],1 ≤ v ≤ M.

When a database consists of sets of time series belonging to certain classes, HMMs
can be used to model the different classes after being trained on their respective time
series. This lies on the fact that a trained HMM can reflect the probabilistic relations
of the values within the sequences, and consequently represent their common structure.
Thus, HMMs can be highly applicable for retrieval or classification [28]. Given a query
Q, we can look for the model that maximizes the likelihood of having generated Q. With
this direction in mind, the time series matching problem is transformed to probabilistic-
based matching.

3.2 Training HMMs

Assume that we have a dataset D with z classes C1, . . . ,Cz. Let Ci be the set of training
time series that belong to class Ci, with i= 1, . . . ,z. The size ofCi is denoted as |Ci|= ni.
The training phase of an HMM for each Ci is split to two phases, which are performed
offine: a) initialization and b) iterative refinement.

Initialization Step. For each time series Xj ( j = 1, . . . ,ni) of Ci (i ∈ [1,z]) we compute
the average distance of all other time series Xk ∈ Ci ( j �= k) to Xj, which we denote as
a j

distx
, i.e.,

a j
distx

=
1

ni − 1 ∑
∀Xk∈Ci,Xj �=Xk

ddistx(Xj,Xk).

For the above computation we choose DTW to be the distance measure, i.e., distx =
DTW, since it has been shown to be one of the most competitive measures for time
series matching [34]. In addition, we keep track of the warping path of all the pair-wise
time series alignments involved in this process.

Next, we identify the medoid of Ci, denoted as XμCi
, which is the time series with the

minimum average distance to the rest of the training set, where

μCi = argmin
j
(a j

distx
),∀( j = 1, . . . ,ni).
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The medoid XμCi
is broken into M equal-sized segments, where each segment m ∈

[1,M] corresponds to one HMM state. Using these segments and the stored warping
paths we can determine the observed values of each state. Specifically, for each state
(that corresponds to a segment m) the observed values include all elements of XμCi

in
m, along with the elements of all time series in Ci that have been aligned to elements of
m; the latter can be retrieved from the stored warping paths.

A common case in HMMs is to have for each state a Gaussian distribution for E ,
which is defined by the mean and standard deviation of the stored elements. To compute
T , since we consider each segment as a state, at time t when an observation is emitted
we can either stay at the same state or move forward to the next state. Let |st | denote
the total number of elements at time t of state st . The probability of jumping to the
next state is p = ni/|st |. This is quite straightforward: consider only one segment and
one time series Xj ( j = 1, . . . ,ni), and suppose that Xj contributes y elements to that
segment. Since only the last element in the segment can lead to a transition from st to
st+1, the transition probability is 1/y. Considering now that all ni time series contribute
to the segment, the probability of a state transition is p = ni/|st |. Finally, the probability
of staying at the same state is (1 − p) = (|st |− ni)/|st |, while for the last state it is 1. In
total, the complexity of this step is O((n2

i max j∈[1,ni]|Xj|)2).

Iterative Refinement Step. In this step, we refine the z HMMs constructed during ini-
tialization. For a specific class Ci (i ∈ [1,z]), for each Xj ∈ Ci, we compute the Viterbi
algorithm [29] to find its best state sequence. Specifically, let us denote as δ the Mx|Xj|
probability matrix. Each Xj always starts from state 1 (thus π1 = 1), and in the ini-
tialization phase the log-likelihood of its first element is computed according to the
Gaussian distribution. The remaining elements of the first column of δ are set to −∞.
Since to get an observation we have either stayed at the same state or have performed
a transition from the previous state, in the recursion phase we consider only the values
of δ representing the probabilities of the previous element for the previous and the cur-
rent state. For cell (u,v) these values are δ (u,v − 1) and δ (u − 1,v − 1), which were
computed in the initialization step. Hence, we first find the most probable transition
by computing m = max(δ (u,v − 1)+ log(tuu),δ (u − 1,v − 1)+ log(tu−1u)), and then
δ (u,v) = m+ log(eu(k)). Finally, we backtrack from δ (M, |Xj|) and store the elements
of Xj falling within each state. Having done this step for all Xj ∈ Ci, the mean and
standard deviation for E of each state, and also T are updated. The complexity of the
aforementioned procedure is O(M ∑ni

j=1 |Xj|).
The refinement step is performed for the z HMMs and is repeated until a stopping

criterion is met, e.g., the classification accuracy on the N training time series composing
D cannot be further improved (Section 4.1). The final outcome of this step is a set of
z HMMs, denoted as H = {H1, . . . ,Hz}, where each Hi ∈ H defines a probability
distribution for Ci, which essentially describes the likelihood of observing any time
series of class Ci.

3.3 Filter-and-Refine Framework

Given D , the MTSC framework consists of three steps: offline, filter, and refine.
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Offline Step. First, we construct H as described in Section 3.2. To make our frame-
work more generic, assume that we have available a set of l distance measures {dist1, . . . ,
distl}. For each distx (x ∈ [1, l]) we compute the NN classification accuracy on the N
training time series using leave-one-out cross validation.

Filter Step. Since we have created a “new” probabilistic space for time series similarity
matching, we should define a way of measuring how “good” each HMM model Hi ∈H
is for a query Q. This can be achieved by applying the Forward algorithm [29], which
computes the likelihood of Q having been produced by Hi. Thus, the “goodness” of
Hi is the likelihood estimate given by the algorithm. The complexity of the Forward
algorithm is O(|Q|M2). Note that this step involves only z computations of the Forward
algorithm and it is significantly fast, given that in practice z is rarely higher than 50.
This is based on the fact that in the 45 datasets of the UCR archive [17], which cover
real application domains, z is at most 50. After computing the likelihood of each Hi for
Q, we identify the K models with the highest likelihood of producing Q.

Refine Step. Next, the training time series that comprise each of the top K selected
models are evaluated with Q. This evaluation is performed using the distance measure
that achieved the highest classification accuracy on the training set during the offline
step. Finally, Q is assigned with the class of the closest time series. The complexity of
this step is O(K′comp(distx)), where K′ is the total number of training time series cor-
responding to the K selected models, and comp(distx) is the complexity of computing
the distance between two time series using distx (selected in the offline step).
It has to be mentioned that the smaller the K the faster our approach is. However, since
each HMM is a very compact representation of all time series of a certain class, reduc-
ing the number of models selected at the filter step may greatly reduce accuracy, as the
time series that will be evaluated at the refine step may not include those of the cor-
rect class. On the contrary, as K increases towards z, more training time series will be
evaluated, resulting in the brute-force approach evaluating Q with all time series when
K = z, which is certainly undesirable. Hence, a good value for K is needed to achieve a
good tradeoff between effectiveness and efficiency. The choice of distance measure also
influences accuracy, but it is beyond our scope to select the “best” measure for each Q.

4 Experiments

In this section, we present the setup and the experimental evaluation for HMM-based
representation and MTSC.

4.1 Experimental Setup

We experimented on the 45 time series datasets available from the UCR archive [17].
A summary of the dataset statistics is included in Table 1. We first evaluated the perfor-
mance of HMMs (Section 3.2) against DTW, ERP, and MSM. Secondly, we compared
MTSC with Cross Validation using the same three measures.

Although any distance measure can be used to perform NN classification, an exhaus-
tive consideration of all of distance measures is beyond the scope of this paper. The
rationales behind selecting these measures are the following: (1) DTW is extensively
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Table 1. NN classification error rates attained by MSM, DTW, ERP, and HMMs on the training
set of 45 datasets from the UCR repository. The table shows for each dataset: the number of
training and test objects, the length of each time series in the dataset, the number of classes, the
value of parameter c used by MSM on that dataset that yielded the lowest error rate on the training
set (when two or three values are given, the one in italics was randomly chosen), the number of
states as a percentage of the time series length and the number of iterations for which the HMMs
achieved the lowest error rate on the training set. Numbers in bold indicate the smallest error rate.

ID Dataset train error rate (%) train test length class parameter state iter.
MSM DTW ERP HMMs size size |X | num. z c (MSM) perc. num.

1 Synthetic 1.33 1.00 0.67 0.33 300 300 60 6 0.1 0.4 3
2 CBF 0.00 0.00 0.00 0.00 30 900 128 3 0.1 0.5 2
3 FaceAll 1.07 6.79 2.50 1.25 560 1,690 131 14 1 0.5 11
4 OSU 19.50 33.00 30.50 17.00 200 242 427 6 0.1 0.3 11
5 SwedishLeaf 12.40 24.60 13.40 12.20 500 625 128 15 1 0.9 6
6 50Words 21.11 33.11 28.22 8.89 450 455 270 50 1 0.5 1
7 Trace 1.00 0.00 9.00 0.00 100 100 275 4 0.01 0.3 2
8 TwoPatterns 0.00 0.00 0.00 0.00 1,000 4,000 128 4 1 0.1 1
9 FaceFour 8.33 25.00 12.50 0.00 24 88 350 4 1 0.1 1

10 Lightning-7 27.14 32.86 28.57 7.14 70 73 319 7 1 0.2 1
11 Adiac 38.97 40.51 39.49 15.90 390 391 176 37 1 0.5 8
12 Fish 13.71 26.29 17.14 7.43 175 175 463 7 0.1 0.5 4
13 Beef 66.67 53.33 66.67 23.33 30 30 470 5 0.1 0.4 2
14 OliveOil 16.67 13.33 16.67 3.33 30 30 570 4 0.01 0.3 2
15 ChlorineConc. 38.97 38.97 38.76 56.32 467 3,840 166 3 1 0.7 4
16 ECG torso 12.50 32.50 25.00 2.50 40 1,380 1,639 4 1 0.4 3
17 Cricket X 18.46 20.26 21.54 25.38 390 390 300 12 1 0.5 14
18 Cricket Y 24.10 20.51 23.33 19.23 390 390 300 12 0.1, 1 0.4 9
19 Cricket Z 24.10 22.56 24.87 23.08 390 390 300 12 1 0.4 14
20 Diatom Red. 6.25 6.25 6.25 0.00 16 306 345 4 0.01, 0.1, 1 0.1 4
21 FacesUCR 2.50 10.00 5.50 0.50 200 2,050 131 14 1 0.8 9
22 Haptics 49.68 58.71 54.19 29.68 155 308 1,092 5 1 0.1 15
23 InlineSkate 50.00 59.00 49.00 43.00 100 550 1,882 7 1 0.5 3
24 MALLAT 5.45 5.45 5.45 0.00 55 2,345 1,024 8 1 0.1 1
25 MedicalImages 27.82 27.56 26.51 34.91 381 760 99 10 0.1 0.4 13
26 StarLightC. 10.70 9.60 13.80 8.60 1,000 8,236 1,024 3 0.1 0.5 14
27 Symbols 0.00 4.00 8.00 0.00 25 995 398 6 0.1 0.1 1
28 uWaveGest X 25.78 29.35 26.67 25.22 896 3,582 315 8 0.1, 1 0.5 11
29 uWaveGest Y 28.24 37.05 33.93 34.60 896 3,582 315 8 1 0.7 13
30 uWaveGest Z 29.24 33.59 31.25 27.46 896 3,582 315 8 1 0.2 12
31 WordsSynon. 22.10 36.33 28.46 13.86 267 638 270 25 1 0.8 13
32 ECGThorax1 18.17 20.11 17.83 7.17 1,800 1,965 750 42 1 0.5 15
33 ECGThorax2 10.83 14.17 11.72 7.67 1,800 1,965 750 42 1 0.5 14
34 Gun Point 4.00 18.00 8.00 8.00 50 150 150 2 0.01 0.3 2
35 Wafer 0.10 1.40 0.10 1.70 1,000 6,164 152 2 1 0.9 4
36 Lightning-2 16.67 13.33 13.33 5.00 60 61 637 2 0.01 0.1 15
37 ECG 14.00 23.00 18.00 12.00 100 100 96 2 1 0.8 2
38 Yoga 12.00 18.33 17.33 22.33 300 3,000 426 2 0.1 0.2 15
39 Coffee 25.00 14.29 25.00 21.43 28 28 286 2 0.01 0.3 1
40 ECGFiveDays 26.09 43.48 26.09 0.00 23 861 136 2 1 0.2 4
41 ItalyPowerDemand 4.48 4.48 5.97 5.97 67 1,029 24 2 0.1, 1 0.9 2
42 MoteStrain 15.00 25.00 25.00 0.00 20 1,252 84 2 0.1 0.5 7
43 SonySurfaceI 10.00 20.00 15.00 0.00 20 601 70 2 1 0.1 1
44 SonySurfaceII 11.11 14.81 18.52 3.70 27 953 65 2 0.1 0.3 1
45 TwoLeadECG 4.35 8.70 4.35 0.00 23 1,139 82 2 0.01, 0.1 0.1 4

used in time series and has been shown to provide excellent classification accuracy re-
sults [34], (2) ERP is a variant of DTW and Edit Distance fixing the non-metric property
of DTW, and (3) MSM is also metric and has been shown to outperform ERP and DTW
in terms of NN classification accuracy on several datasets. Their time complexity is
quadratic with respect to the time series length.

The Cross Validation method works as follows: (1) for each dataset we com-
puted the classification accuracy for DTW, ERP, and MSM on the training set using
leave-one-out cross validation, and (2) the method outputs the classification accuracy
on the test set of the measure with the best accuracy on the training set. If more than
one measures provide the same highest classification accuracy on the training set, then
the accuracy of Cross Validation is the accuracy on the test set of the measure that
outperforms the other tied measure(s) on most datasets (on their training sets).
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For each dataset, parameter c of MSM was selected from {0.01,0.1,1} [31]. For each
value the classification accuracy was found using leave-one-out cross-validation on the
training set, and the value yielding the highest accuracy was selected. For the training
of HMMs, for each of the 45 datasets, we varied M from 0.1 to 0.9 ∗ |X | (step 0.1) and
applied 15 refinement iterations (135 combinations). For each combination we mea-
sured the percentage of training time series for which the model producing the highest
likelihood through the Forward algorithm was the correct one. Then, the combination
leading to the highest accuracy was selected. If more than one combinations provided
the same highest accuracy we chose the smallest M (for further ties smallest number of
iterations).
Evaluation Measures. We first evaluated the performance of HMMs against DTW,
ERP, and MSM on the training sets, and between MTSC and Cross Validation on the
test sets in terms of classification error rate. This rate is defined as the percentage of
time series misclassified using the NN classifier. Secondly, we evaluated the efficiency
of MTSC and Cross Validation. Nonetheless, runtime measurements may depend on
particular aspects of the hardware, implementation details, compiler optimizations, and
programming language. To overcome these limitations, we also present per dataset the
percentage of classes selected at the filter step ((K/z)∗100), and, more importantly, the
percentage of training time series that are finally evaluated by MTSC, as the number of
time series may (sometimes greatly) deviate among classes in the same dataset. MTSC
was implemented in Matlab, while, for efficiency, DTW, MSM, ERP, and the Forward
algorithm were implemented in Java. Experiments were performed on a PC running
Linux, with Intel Xeon Processor at 2.8GHz.

4.2 Experimental Results

Next, we present our experimental findings for the methods and evaluation measures.
Classification Accuracy of HMMs. For each of the 45 datasets, we compared the
classification error rates on the training set for MSM, DTW, ERP, and HMMs. The
results are shown in Table 1. We observe that HMMs achieve better or equal error
rate than that of the competitor distance measures in 34 datasets, out of which they
outperform them in 30. The performance of HMMs is in many cases significantly better
than all competitors. For example, for ECGFiveDays HMMs achieve an error rate of 0%
as opposed to the next best which is 26.09% (achieved by both ERP and MSM), while
for 18 datasets (e.g., 50Words, Lightning-7, Adiac, Beef, OliveOil, and ECG torso) the
error rate of HMMs is at least two times lower than that of the competitors. These
numbers show that modeling time series classes with HMMs is highly competitive and
promising for NN classification.
Classification Accuracy of MTSC. We studied the classification error rates of MTSC
against Cross Validation on the test sets of the 33 datasets with z > 2. The results
are shown in Table 2. Note that if z = 2 with MTSC we can either select one or two
models for the refine step. However, K = 1 would essentially exclude the refine step,
since time series of only one class would be evaluated, which is meaningless. Hence,
the classification error rate would depend solely on how well the HMMs represent and
discriminate the classes of the dataset, which is not always the case due to their very
compact representation of (sometimes large) classes. In addition, K = 2 would make
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Table 2. NN classification error rates attained by MTSI and Cross Validation on the test set
of 33 datasets from the UCR repository. The table also shows for each dataset: the classification
error rate of MSM, DTW, and ERP on the test set, the number of HMM models used at the refine
step of MTSI and the respective percentage of classes it corresponds to, the average number of
training objects evaluated at the refine step per test object, and the percentage of training objects
this average corresponds to. Numbers in bold indicate the smallest error rate.

ID Dataset MTSI Cross error rate (%) top K % classes avg train % train
Valid. MSM DTW ERP num. obj.

1 Synthetic 3.33 3.70 2.67 0.70 3.70 2 33.33 100.00 33.33
2 CBF 3.67 1.22 1.22 0.30 0.30 2 66.67 20.45 68.16
3 FaceAll 18.99 18.88 18.88 19.20 20.20 5 35.71 200.00 35.71
4 OSU 22.73 19.83 19.83 40.90 39.70 5 83.33 169.00 84.50
5 SwedishLeaf 9.60 10.40 10.40 21.00 12.00 3 20.00 100.87 20.17
6 50Words 19.56 19.56 19.56 31.00 28.10 40 80.00 412.26 91.61
7 Trace 0.00 0.00 7.00 0.00 17.00 2 50.00 49.82 49.82
8 TwoPatterns 0.05 0.08 0.08 0.00 0.00 2 50.00 498.47 49.85
9 FaceFour 4.55 5.68 5.68 17.00 10.20 2 50.00 11.44 47.68

10 Lightning-7 21.92 23.29 23.29 27.40 30.10 6 85.71 64.18 91.68
11 Adiac 33.76 38.36 38.36 39.60 37.90 2 5.41 20.96 5.37
12 Fish 7.43 8.00 8.00 16.70 12.00 6 85.71 149.87 85.64
13 Beef 46.67 50.00 50.00 50.00 50.00 3 60.00 18.00 60.00
14 OliveOil 16.67 13.33 16.67 13.33 16.67 3 75.00 21.80 72.67
15 ChlorineConc. 40.42 37.40 37.27 35.20 37.40 2 66.67 362.14 77.55
16 ECG torso 15.07 10.29 10.29 34.90 25.00 3 75.00 30.36 75.91
17 Cricket X 25.90 27.18 27.18 22.30 29.23 5 41.67 162.54 41.68
18 Cricket Y 20.00 20.80 16.67 20.80 21.28 5 41.67 162.38 41.64
19 Cricket Z 20.77 20.77 21.54 20.77 24.36 10 83.33 330.00 84.62
20 Diatom Red. 4.58 4.58 4.58 3.30 5.23 3 75.00 14.67 91.67
21 FacesUCR 3.20 3.27 3.27 9.51 4.24 13 92.86 191.02 95.51
22 Haptics 57.47 59.42 59.42 62.30 57.47 3 60.00 98.00 63.22
23 InlineSkate 57.45 56.91 55.64 61.60 56.91 6 85.71 87.25 87.25
24 MALLAT 6.74 6.74 6.74 6.60 7.46 6 75.00 41.98 76.33
25 MedicalImages 27.89 27.89 24.74 26.30 27.89 7 70.00 334.98 87.92
26 StarLightC. 9.35 9.30 11.72 9.30 13.62 2 66.67 759.62 75.96
27 Symbols 3.12 3.02 3.02 5.00 5.83 5 83.33 21.00 83.98
28 uWaveGest X 22.28 22.36 22.36 27.30 25.71 5 62.50 574.04 64.07
29 uWaveGest Y 30.35 30.37 30.37 36.60 33.61 5 62.50 553.80 61.81
30 uWaveGest Z 29.12 31.07 31.07 34.20 32.97 2 25.00 222.04 24.78
31 WordsSynon. 23.67 23.51 23.51 35.10 32.13 24 96.00 263.92 98.85
32 ECGThorax1 18.37 19.29 18.27 20.90 19.29 2 4.76 85.99 4.78
33 ECGThorax2 10.89 11.25 11.25 13.50 10.74 7 16.67 300.03 16.67

our approach perform brute-force search, which is undesirable. In columns “top K”, “%
classes”, “avg train num.”, “% train obj.” we show the K value used at the filter step of
MTSC (due to space limitations we present the smallest K < z for which the accuracy
could not be further improved or provided a competitive error rate), the ratio (K/z) ∗
100, the average number of training time series evaluated per query at the refine step,
and the percentage of the “train size” to which this average corresponds to, respectively.

We observe that MTSC achieves at least as good or better error rates than Cross

Validation in 23 datasets; it is better in 17 datasets and equal in 6. There are two
reasons for such competitive performance of MTSC: a) the correct class of the test time
series is among the K models selected at the filter step, and the distance measure ap-
plied at the refine step is able to better differentiate the correct class from the rest K −1,
since there are less training objects to throw away as being “bad” matches compared to
brute-force search, and b) the HMMs of these 23 datasets are constructed exploiting a
sufficient number of training time series comprising their classes, making the probabil-
ity distribution of such classes effectively represent these (and similar) time series.

Carefully analyzing our experimental findings, we concluded that 16 training time
series is a sufficient number to provide a good model representing a class of objects.
This claim is supported by the following examples, where MTSC yields worse error rates
than Cross Validation. Datasets with ID 14, 16, and 20 consist of 4 classes, but no
class of the first two has more than 15 training time series, while the classes of the latter
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include only 1, 6, 5, and 4 time series. Moreover, none of the 6 classes of dataset with
ID 27 has more than 8 time series, WordsSynon. (ID 31) with z = 25 has only 4 classes
with more than 15 time series, as happens with 3 out of the 7 classes of InlineSkate (ID
23). The error rates for datasets ChlorineConc. and StarLightC. (ID 15 and 26) can be
attributed to overfitting, since for the first no class comprises of less than 91 time series,
while for the second all classes have more than 152 time series. In addition, building
a histogram over the number of classes that include specific numbers of training time
series, we observed that 167 out of the 399 classes (comprising the 33 datasets) have
up to 15 training time series. As a result, we would like to emphasize the need for a
sufficient number of training time series per class.
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Fig. 1. Speedup of MTSC vs. Cross Validation for 33 datasets. Each bar represents the ratio of
the Cross Validation avg. total runtime to that of MTSC, for NN classification of a test object.

Efficiency. In Figure 1 we present the average speedup per test time series when us-
ing MTSC instead of Cross Validation for 33 datasets. The speedup is the runtime
ratio of Cross Validation over MTSC, and it intuitively depends on K. For example,
we gain up to a factor of 9 in terms of runtime for dataset with ID 32, since MTSC se-
lects only 2 out of 42 classes at the filter step, and its error rate is lower than that of
Cross Validation. We observe that there are several datasets for which there is no
significant speedup. This is mainly because, for these datasets, MTSC could not achieve
a competitive error rate for large K, even for z − 1 in some cases. Thus, for such values
its runtime converged to that of brute-force using the appropriate distance measure. Ad-
ditionally, there may be cases where the length of the time series is not huge enough to
provide a noticeable difference in the runtimes of the two competitors (ID 25), resulting
in a slight speedup. The latter result may also happen when “train size” is small and/or
the average number of training time series for the K selected models is much higher
than that of the non-selected ones. The last claim holds, e.g., for datasets with ID 6,
15, 20, 25, 26, where the value of “% train obj.” is significantly higher than that of “%
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classes”, showing that the training time series are not equally distributed to all classes.
Additionally, the percentage of training time series that were evaluated ranges from just
4.78% (ID 32) to 98.85% (ID 31), which is the worst possible case since no smaller K
could provide better accuracy. We have to point out, though, that out of the 23 datasets
for which MTSC is better than or equal to Cross Validation there are 11 datasets for
which less than 50% of their training set is evaluated.

Based on these results, we can argue that MTSC outperforms Cross Validation in
classification error rate more often than not, while allowing for a speedup of up to a
factor of 9. An acute reader may argue that the runtime comparison of the two methods
is unfair since we could alternatively have used existing speedup methods for DTW[4],
or even faster techniques such as cDTW with LB Keogh [16]. Nonetheless, we argue
that any speedup achieved by each method used by Cross Validation is also equally
beneficial for MTSC. This is due to the fact that MTSC is using the exact same set of
methods for the refine step, and thus any speedup obtained by Cross Validation is
essentially exploited by MTSC as well (the filter step cost is negligible compared to that
of the refine step).

5 Conclusions and Future Work

We presented an effective way of modeling classes of time series using HMMs and
proposed MTSC, a filter-and-refine framework for NN classification of time series. Ex-
perimenting with 45 widely known time series datasets and three distance measures we
observed that HMMs provide better or equal classification accuracies than the competi-
tors on the training set in 34 datasets. MTSC has equal or better accuracy than Cross

Validation in 23 out of 33 datasets, while achieving a speedup of up to a factor of 9.
We plan to test MTSC on larger datasets with more classes, where we expect its perfor-
mance to further improve.
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Abstract. This paper addresses the problem of clustering binary data
with feature selection within the context of maximum likelihood (ML)
and classification maximum likelihood (CML) approaches. In order to
efficiently perform the clustering with feature selection, we propose
the use of an appropriate Bernoulli model. We derive two algorithms:
Expectation-Maximization (EM) and Classification EM (CEM) with fea-
ture selection. Without requiring a knowledge of the number of clusters,
both algorithms optimize two approximations of the minimum message
length (MML) criterion. To exploit the advantages of EM for cluster-
ing and of CEM for fast convergence, we combine the two algorithms.
With Monte Carlo simulations and by varying parameters of the model,
we rigorously validate the approach. We also illustrate our contribution
using real datasets commonly used in document clustering.

1 Introduction

Cluster Analysis is an important tool in a variety of scientific areas, including
pattern recognition, information retrieval, microarrays and data mining. These
methods organize the dataset into homogeneous classes or natural classes, in a
way that ensures that objects within a class are similar to one another. Different
approaches and algorithms are used. Most of them, however, can lead to clus-
ters that are not relevant in a high-dimensional context. This difficulty is due
to the noise introduced by some variables that, as we will show, are irrelevant
for clustering. Clustering with feature selection therefore remains a challenge.
With given variables, feature selection aims to find the features that best un-
cover classes from data. It has several advantages: it facilitates the visualization
and understanding of data, reduces computational time, defies the curse of di-
mensionality, and improves clustering performance.

We tackle the problem of feature selection by using mixture models. Basing
cluster analysis on mixture models has become a classical and powerful approach
(see for instance Duda and Hart (1973) McLachlan and Peel (2000)). Mixture
models assume that a sample is composed of subpopulations characterized by a
probability distribution. The models are very flexible and can deal with a variety
of situations, heterogeneous populations and outliers alike. Furthermore, their
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associated estimators of posterior probabilities give rise to a fuzzy or hard clus-
tering using the maximum a posteriori (MAP) principle. In general, the mixture
model approach aims to maximize the likelihood over the mixture parameters,
usually estimated by the EM algorithm (Dempster et al., 1977). In Pudil et al.
(1995) , the authors proposed a method of feature selection based on the ap-
proximation of class conditional densities by a mixture of parametrized densities
inspired by Grim (1986) parametric models. In Law et al. (2004),the authors
adopted this model for Gaussian mixtures and proposed feature saliency as a
measure of the importance of each variable.

We chose to use the original model proposed by Grim (1986) for its flexibility
and the derived EM algorithm proposed by Law et al. (2004) for its performance
in terms of simultaneous clustering and feature selection for Gaussian mixture
models. The EM algorithm was evaluated on real datasets with a very small
number of features. Although EM can be slow and dependent on the initial
position, these two difficulties can be overcome by using a classification version
(CEM).

The object of this paper is threefold: first, we propose an extension of the
simultaneous clustering and feature selection model for binary data. Second,
we derive a scalable version of EM, Classification EM, in which the number
of clusters is not fixed. In this version, the optimization criterion requires an
approximation of the minimum message length (MML). Third, we show that
combining EM and CEM algorithms allows the two difficulties of EM mentioned
above to be overcome.

The rest of the paper is organized as follows: in Section 2, we provide back-
ground on the maximum likelihood (ML) and classification maximum likelihood
(CML) approaches. Then we focus on binary data. In Section 3, we study the
problem of simultaneous clustering and feature selection; we describe the model
using a multivariate Bernoulli mixture model and present in detail our proposed
CEM algorithm. Section 4 is devoted to numerical experiments on both synthetic
and real datasets showing the appropriateness of our contribution to document
clustering. The final section sums up the study and gives recommendations for
further research.

2 Mixture Models

Let x denote an n × d matrix defined by x = {(xij); i ∈ I and j ∈ J}, where
I is a set of n objects and J a set of d variables. The input data of x are
binary and the partition obtained is noted z. This partition can be represented
by a matrix of elements in {0, 1}g satisfying

∑g
k=1 zik = 1. Notation (z1, . . . , zn)

where zi ∈ {1, . . . , k, . . . , g} represents the cluster of the ith row will be also
used.

2.1 Definition of the Bernoulli Mixture Model

Before tackling the problem of feature selection we first provide a brief descrip-
tion of the mixture model. In model-based clustering, it is assumed that the data
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are generated by a mixture of underlying probability distributions, where each
component k of the mixture represents a cluster. The data matrix is then as-
sumed to be an i.i.d sample x = (x1, . . . ,xi, . . . ,xn) where xi = (xi1, . . . , xid) ∈
�

d from a probability distribution with density p(xi; θ) =
∑g

k=1 πkp(xi;αk).
The function p(.;αk) is the density of an observation xi from the kth component
and the αk’s are the corresponding class parameters. These densities belong
to the same parametric family. The parameter πk is the probability that an
object belongs to the kth component, and g, which is assumed to be known,
is the number of components in the mixture. The parameter of this model is
the vector θ = (π,α) containing the mixing proportions π = (π1, . . . , πg) and
the vector α = (α1, . . . ,αg) of parameters of each component. The likelihood
of the observed data x can be expressed as P (x; θ) =

∏n
i=1

∑g
k=1 πkp(xi;αk).

For binary data with xi ∈ {0, 1}d, using multivariate Bernoulli distributions for
each component and considering the conditional independence model, we have
p(xi;αk) =

∏d
j=1 α

xij

kj (1−αkj)
1−xij where αk = (αk1, . . . , αkd) and αkj ∈ (0, 1).

2.2 Model-Based Clustering

The problem of clustering can be studied with two different approaches: maxi-
mum likelihood (ML) and classification maximum likelihood (CML).

(i) The first approach estimates the parameters of the mixture; the parti-
tion on the objects is derived from these parameters using the maximum a
posteriori principle (MAP). The maximum likelihood estimation of the param-
eters results in an optimization of the log-likelihood of the observed sample
L(θ;x) =

∑
i log(

∑
k πkp(xi;αk)). This optimization can be achieved using the

EM algorithm (Dempster et al., 1977). But first we have to define the com-
plete data log-likelihood, also known as classification log-likelihood L(θ;x, z) =∑

i,k zik log(πkp(xi;αk)) where z represents an unobserved latent variable, which
is the label of the objects. The EM algorithm maximizes the log-likelihood by
maximizing iteratively the conditional expectation of the complete data log-
likelihood L(θ;x, z) given previous current estimates θ′ and x.

Q(θ|θ′) = �[L(θ;x, z)|θ′,x] =
∑
i,k

sik(log π
′
k + log p(xi;α

′
k)),

where sik ∝ π′
kp(xi;α

′
k) denotes the conditional probability, given θ′, that xi

arises from the mixture component with Bernoulli distribution p(xi;α
′
k). The

steps of the EM algorithm are reported in Algorithm 1.
Under certain conditions, it has been established that EM always converges

to a local likelihood maximum. This is simple to implement and it behaves well
in clustering and estimation contexts. The problem is that it can be slow in some
situations. But this drawback can be overcome by using a variant of EM derived
from the CML approach described below.

(ii) The CML approach (Symons, 1981) is a fruitful one, displaying some
of the statistical aspects of many classical clustering criteria. It estimates the
parameters of the mixture and the partition simultaneously, by optimizing the
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Algorithm 1. EM

input : x of size n× d and g the number of components (clusters).
initialization : θ
repeat

E-step compute sik ∝ π′
kp(xi;α

′
k)

M-step compute θ maximizing Q(θ|θ′), for k = 1, . . . , g and j = 1, . . . , d, we

have πk =
∑

i sik
n

and αkj =
∑

i sikxij∑
i sik

.

until convergence
output: θ̂ and z defined by zik = argmaxk′=1...,g sik(θ̂).

classification log-likelihood. This optimization can be performed using the Clas-
sification EM (CEM) algorithm (Celeux and Govaert, 1992), a variant of EM,
which converts the sik’s to a discrete classification in a C-step before performing
the M-step. This algorithm is faster than EM and is scalable. Next, we embed
the clustering and feature selection in the mixture approach. We use the ML
and CML approaches and derive EM and CEM algorithms with feature selec-
tion, assuming that the number of clusters is unknown. These algorithms are
respectively known as EM-FS and CEM-FS.

3 Feature Selection

3.1 Definition of a New Bernoulli Mixture Model

We adopt an alternative formulation of the mixture model described in Section 2.
First proposed by Grim (1986), the formulation assumes that each component
density of the finite mixture consists of a common background to all classes,
multiplied by a modifying parametric function. Thus, the model can be rewritten
as

p(xi|φ) =
∑
k

πk

∏
j

p(xij , αkj)
φj q(xij ;λj)

1−φj

where φj = 1 if the feature j is relevant and φj = 0 otherwise. The function
q(xij ;λj) is the common background Bernoulli distribution, p(xij , αkj) is the
Bernoulli distribution of the jth feature in the kth component. Law et al. (2004)
considered this model and introduced a key notion: the feature saliency. The
feature saliency is the probability that a feature j is relevant i.e. P (φj = 1). In
this context, φj can be considered as a hidden variable which determines which
edges exist between the hidden class label and the individual features. We note
Φ = (φ1, . . . , φd) the vector of binary parameters. Considering this new definition
of the model, the mixture density can be written as p(xi;φ) = p(xi|φ)p(φ)
and the marginal density is p(xi) =

∑
Φ P (xi;φ). Assuming that the φj ’s are

mutually independent and also independent from the hidden class label zi, p(xi)
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takes the following form:

p(xi) =
∑
k

πk

∑
Φ

∏
j

p(xij ;αkj)
φj q(xij ;λj)

1−φj

∏
j

ρ
φj

j (1 − ρj)
1−φj

=
∑
k

πk

∏
j

1∑
φj=0

[ρjp(xij ;αkj)]
φj [(1 − ρj)q(xij ;λj)]

1−φj ,

and the likelihood of this model is given by:

P (x; θ) =
∏
i

∑
k

πk

∏
j

[ρjp(xij ;αkj) + (1 − ρj)q(xij ;λj)]. (1)

Next, we focus on the estimations of the parameters and clustering thanks to
EM and CEM algorithms.

3.2 Estimation of the Parameters and Clustering

First, the expectation Q(θ|θ′) takes the following form:

Q(θ|θ′) =
∑
i,k

sik log π
′
k +

∑
i,k,j

uikj [xij log
α′
kj

1 − α′
kj

+ log(1 − α′
kj)]

+
∑
i,k,j

vikj [xij log
λ′
j

1 − λ′
j

+ log(1 − λ′
j)]

+
∑
i,k,j

uikj log(ρ
′
j) +

∑
i,k,j

vikj log(1 − ρ′j),

where

sik = p[zik = 1|xi, θ
′] ∝ π′

k

d∏
j=1

[ρ′jp(xij ;α
′
kj) + (1 − ρ′j)q(xij ;λ

′
j)],

uikj = p[zik = 1, φj = 1|xi, θ
′] = p[zik = 1|xi, θ

′] × p[φj = 1|zik = 1,xi, θ
′]

= sik × βikj where βikj =
ρ′jp(xij ;α

′
kj)

ρ′jp(xij ;α′
kj) + (1 − ρ′j)q(xij ;λ′

j)
,

vikj = p[zik = 1, φj = 0|xi, θ
′]

= sik × γikj where γikj =
(1 − ρ′j)q(xij ;λ

′
j)

ρ′jp(xij ;α′
kj) + (1 − ρ′j)q(xij ;λ′

j)
.

We then deduce the estimations of the parameters that are computed in the
same way that for EM. In the M-step we have to estimate for each k and j
the four parameters πk, αkj , λj and ρj. Fixing three of them, and setting the
derivate of Q with respect to the fourth as zero, we have

πk =

∑
i sik
n

, αkj =

∑
i uikjxij∑
i uikj

, λj =

∑
i,k vikjxij∑
i,k vikj

, ρj =

∑
i,k uikj

n
(2)
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At the convegence we deduce the clustering. Now, if we consider the CEM al-
gorithm, in the M-step the computations are performed after the C-step; sik is
replaced by zik ∈ {0, 1} in πk. In addition, the posterior probabities uikj and
vikj depend on zik and we have uikj = zikβikj , vikj = zikγikj .

Assessing the number of classes remains a challenging problem in clustering. In
mixture modeling, different criteria need to be minimized, such as BIC (Schwarz,
1978) or ICL (Biernacki et al., 2000). The number of clusters is assessed at the
convergence of standard EM. These criteria require the algorithms to be run
with different numbers of classes. But in Law et al. (2004), the authors proposed
an incremental EM algorithm optimizing the minimum message length (MML)
criterion based on information/coding theory. They showed the usefulness of this
criterion, but focused only on continuous data. Adapting this approach to our
model, we now propose two algorithms and extend the model to binary data.

3.3 MML Criterion

Using the approximation of the Fisher information matrix of the log-likelihood,
noted I, by Ic the Fisher information matrix of the complete data log-likelihood,
the MML criterion consists in minimizing, with respect to θ, the following cost
function − logP (θ) − logP (x, θ) + 1

2 log |Ic(θ)| + μ
2 (1 + log 1

12 ), where μ is the
number of parameters of th model. This leads to some calculations about the
Fisher information matrix by differentiating the complete data log-likelihood and

considering only the priors on the πks P (π1, . . . , πg) ∝
∏

k π
−d/2
k (see for details,

(Figueiredo and Jain, 2002)). In addition, we approximate P (x, θ) by P (x, z, θ).
Note that this proposed approximation is also used in ICL (Biernacki et al.,
2000) which corresponds to a classifying version of BIC (Schwarz, 1978). We
propose a classifying version of MML. It is noteworthy that these two approx-
imations of I and P (x, θ) become exact in the limit of non-overlapping com-
ponents. Finally, when we substitute P (θ), |Ic(θ)| and P (x, θ), and drop the
order-one term, the cost function becomes

− logP (x, z, θ) +
1 + d

2
log(n) +

1

2

∑
k,j

log(nπkρj) +
1

2

∑
j

logn(1 − ρj).

Hence, we can propose two algorithms EM-FS and CEM-FS with detection of
the number of clusters. In Algorithm 2, CEM-FS is depicted. For EM-FS, crite-
rion MML is based on P (x, θ) instead of P (x, z, θ). In algorithmic terms, this
removes the C-step and the M-step is performed with the same formulas but
simply replacing zik by sik. We also propose a strategy which consists of run-
ning CEM-FS and, using the parameter estimation obtained to initialise EM-FS
(CEM+EM-FS).
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Algorithm 2. CEM-FS

input : x, minimum number of components gmin.
initialization : θ, Φ
while g > gmin do

while not reach local minimum do
E-step compute sik, uikj , vikj .
C-step compute zik = argmaxk′=1,...,g sik.
M-step compute θ using equations of (2) but using zik instead of sik.
If πk becomes 0, the k-th component is pruned.

end while
record : z, g, ρj , MML.
remove : the component with the smallest weight.

end while
Return the parameters of the model with the MML and z.

4 Numerical Experiments

4.1 Synthetical Datasets

To study the performances of EM-FS, CEM-FS and CEM+EM-FS (EM-FS ini-
tialized by CEM-FS), we used simulated data of varying sizes. We selected binary
data from three components, with 70% of the features considered as noise. For
size, we took n×d = 1000×100, 1000×500, 1000×1000.We therefore selected nine
types of data corresponding to three degrees of cluster overlap (+,++,+ + +),
and three dimensions. Figure 1 shows data matrices with 500 features, 1000 ob-
jects, equal proportions and different degrees of separation of clusters. We can
clearly see three cluster structures as well as the non salient features.

For each data structure, we generated 200 samples. For each sample, we ran
EM-FS and CEM-FS 30 times in random situations. For each set of parameters
in these trials, we summarized each error rate and NMI (Strehl and Ghosh, 2003)
by its mean and its standard deviation.

(a) (b) (c)

Fig. 1. Visualisation of reorgnized data matrix according the partition: dark point
represents a 0 and white point a 1
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(a) MML in function of it-
erations

(b) Number of clusters (c) 1000x1000 +++

Fig. 2. CEM-FS: behavior of MML (a), detection of the number of clusters (b) and
estimation of the feature saliency (c) for dataset 1000 × 1000

(a) 1000x1000 + (b) 1000x1000 ++ (c) 1000x1000 +++

Fig. 3. Running time (Running time (including the selection of the number of clusters)
for EM-FS versus CEM-FS and CEM+EM-FS for the three degree of separation + (a),
++(b) and +++ (c)

– The version of MML based on the complete data log-likelihood and mini-
mized by CEM-FS appears particularly interesting in terms of convergence.
Its behaviour is illustrated in Figure 2(a) for dataset 1000 × 1000.

– This model successfully detected the number of clusters in all situations. For
instance, in Figure 2(b), the number of clusters is well detected (3 clusters).
The number of relevant variables (30%) is also detected in Figure 2(c).

– EM-FS gives good results in terms of error rates and NMI (see Table 1). It
outperforms CEM-FS but it suffers from slow convergence, as illustrated in
Figure 3.

– The simple random initialization by EM-FS is often outperformed by CEM-
FS and CEM+EM-FS. This gives encouraging results in terms of clustering
(Table 1), with fast convergence compared to EM-FS. In Figure 3, it can be
seen that CEM+EM-FS is about six times faster than EM-FS.
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Table 1. Means of error rates and NMIs (± standard errors) computed on 200 samples

Size Degree of Performance Algorithms
overlap

EM-FS CEM-FS CEM+EM-FS
Error r. 0.02 ±0.01 0.03 ± 0.02 0.02±0.01

(1000, 100) + NMI 0.96±0.00 0.94 ± 0.00 0.96±0.00
Error r. 0.15 ± 0.02 0.23 ± 0.06 0.14±0.01

++ NMI 0.53 ± 0.01 0.30 ± 0.04 0.55±0.02
Error r. 0.25±0.05 0.38 ± 0.13 0.25±0.02

+++ NMI 0.34±0.01 0.27 ± 0.06 0.35± 0.02
Error r. 0.07 ± 0.01 0.12 ± 0.05 0.03±0.01

(1000, 500) + NMI 0.75 ± 0.01 0.63 ± 0.05 0.90±0.01
Error r. 0.16±0.02 0.23 ± 0.01 0.17± 0.07

++ NMI 0.52±0.02 0.30 ± 0.05 0.51± 0.08
Error r. 0.24±0.05 0.32 ± 0.03 0.25± 0.07

+++ NMI 0.20±0.02 0.14 ± 0.01 0.18± 0.07
Error r. 0.07 ± 0.01 0.12 ± 0.02 0.06±0.00

(1000, 1000) + NMI 0.78±0.12 0.76 ± 0.18 0.78±0.02
Error r. 0.15 ± 0.03 0.21 ± 0.07 0.14±0.04

++ NMI 0.52 ± 0.09 0.30 ± 0.11 0.53±0.06
Error r. 0.28±0.01 0.37 ± 0.05 0.31± 0.07

+++ NMI 0.19±0.12 0.09 ± 0.12 0.17± 0.05

4.2 Real Datasets

We evaluate our algorithms on 3 real document datasets described in Table
2. Each cell of these datasets denotes the number of occurrences of a word in
a document. Note that these matrices are sparse and they are converted into
binary data; each cell having a value higher to 1 is considered equal to 1 and 0
otherwise. In our approach the number of clusters is assumed to be unknown.

Table 2. Datasets Description

Datasets # documents #words #class
CSTR 475 1000 4
Classic3 3891 4303 3
WebKB4 4199 8035 4

Tables 3 show the accuracy (ACC) which corresponds to (1-error rate), the
normalized mutual information (NMI) and the adjusted rand index (ARI)
(Hubert and Arabie, 1985). The results are averaged for 15 trials. It can be
seen that both EM-FS, CEM-FS and CEM+EM-FS algorithms outperform the
K-means and the Nonnegative Matrix Factorization (NMF) Berry et al. (2006).
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Table 3. Accuracy, Normalized Mutual Information and Adjusted Rand Index

Algorithms Time

Kmeans NMF CEM-FS EM-FS CEM+EM-FS
time(EM-FS)

time(CEM+EM-FS)

CSTR
ACC 0.74 0.67 0.75 0.88 0.90
NMI 0.59 0.58 0.58 0.69 0.69 7.4
ARI 0.54 0.53 0.53 0.67 0.65

Classic3
ACC 0.86 0.87 0.92 0.98 0.99
NMI 0.62 0.62 0.73 0.91 0.93 4.85
ARI 0.64 0.66 0.77 0.94 0.96

WebKB4
ACC 0.54 0.60 0.52 0.65 0.65
NMI 0.22 0.31 0.18 0.33 0.32 3.6
ARI 0.14 0.30 0.08 0.35 0.35

The accuracy, NMI and ARI of EM-FS and CEM+EM-FS are really close. For
instance, in Classic3, CEM+EM-FS is slightly better than EM-FS, but the latter
requires seven times more computation time. For the other datasets, CEM+EM-
FS not only significantly outperforms K-means and NMF, it is also faster than

EM-FS and the rate time
time(EM-FS)

time(CEM+EM-FS)
is at least greater than 3.5.

5 Conclusion

We considered the clustering of binary data with feature selection using two
approaches, ML and CML. We developed and studied two derived algorithms
EM-FS and CEM-FS in detail. Since most classical clustering criteria can be
viewed as complete data log-likelihood under constraints, the CEM-FS algorithm
turns out to be a general clustering algorithm but with feature selection and with
the assumption that the number of clusters is unknown. However, the clustering
results are not better than with EM-FS. Then we proposed initializing EM-FS
by the best result obtained by CEM-FS. The results in clustering and computing
time are very encouraging. The use of CEM+EM-FS deserves to be extended
to other models, such as multinomial mixtures, and compared to the model
proposed by Li and Zhang (2008).
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Abstract. When plugged into instant interactive data analytics pro-
cesses, pattern mining algorithms are required to produce small collec-
tions of high quality patterns in short amounts of time. In the case of
Exceptional Model Mining (EMM), even heuristic approaches like beam
search can fail to deliver this requirement, because in EMM each search
step requires a relatively expensive model induction. In this work, we
extend previous work on high performance controlled pattern sampling
by introducing extra weighting functionality, to give more importance
to certain data records in a dataset. We use the extended framework to
quickly obtain patterns that are likely to show highly deviating mod-
els. Additionally, we combine this randomized approach with a heuristic
pruning procedure that optimizes the pattern quality further. Experi-
ments show that in contrast to traditional beam search, this combined
method is able to find higher quality patterns using short time budgets.

Keywords: Controlled Pattern Sampling, Subgroup Discovery, Excep-
tional Model Mining.

1 Introduction

There is a growing body of research arguing for the integration of Local Pat-
tern Mining techniques into instant, interactive discovery processes [3,5,9,10,14].
Their goal is to tightly integrate the user into the discovery process to facili-
tate finding patterns that are interesting with respect to her current subjective
interest. In order to allow true interactivity, the key requirement for a mining
algorithm in such processes, is that it is capable of producing high quality results
within very short time budgets—only up to a few seconds.

A particularly hard task for this setting is Exceptional Model Mining (EMM)
[8], i.e., the discovery of subgroups showing data models that highly deviate from
the model fitted to the complete data. In the EMM setting, even fast heuristic
methods that cut down the search space tremendously, e.g., beam search [8], can
fail to deliver the fast response times necessary for the interactive setting. This
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comes from the fact that every individual search step in the subgroup description
space involves an expensive model induction step.

In this paper, we extend an alternative randomized technique to pattern dis-
covery, Controlled Direct Pattern Sampling [4], and adapt it to EMM. As op-
posed to many other algorithmic approaches, direct pattern sampling does not
traverse any part of the pattern search space. Instead, it defines an efficient sam-
pling process that yields patterns according to a distribution, which overweights
high-quality patterns. A previously published framework [6] allows to express
distributions in terms of the pattern support. Here we extend it to specify dis-
tributions in terms of the weighted pattern support. We then develop a weighting
scheme based on Principal Component Analysis, which leads to efficient sampling
procedures particularily suitable for EMM tasks. As we show empirically, when
combined with a lightweight local search procedure as post-processing step, the
resulting EMM algorithms outperform both, pure local search as well as pure
sampling strategies, and deliver high-quality results for short time budgets.

2 Exceptional Model Mining

Throughout this paper we assume that a dataset D = {d1, . . . , dm} consists of
m data records d ∈ D, each of which is described by n descriptive attributes
A = {a1, . . . , an} and annotated by k target attributes T = {t1, . . . , tk}. All
attributes f ∈ A ∪ T assign to each data record a value from their attribute
domain Dom(f), i.e., f : D → Dom(f). In this paper we assume that all at-
tributes f ∈ A ∪ T are either numeric, i.e., Dom(f) ⊂ R and we use ≤ to
compare attribute values, or categoric, i.e., Dom(f) is finite and its values are
conceptually incomparable. We are interested in conjunctive patterns of simple
binary propositions about individual data records. This is the standard setting
in subgroup discovery and itemset mining. That is, a pattern descriptor p
can be formalized as a set p = {c1, . . . , cl} where cj : Dom(aij ) → {true, false}
is a constraint on the descriptive attribute aij for j = 1, . . . , l (corresponding
to item literals in frequent set mining). Correspondingly, the support set (or
extension) of p is the subset of data records for which all constraints hold, i.e.,

Ext(D, p) = {d ∈ D : c1(ai1(d)) ∧ · · · ∧ cl(ail(d))} ,

and the frequency of p is defined as the size of its extension relative to the total
number of data records frq(D, p) = |Ext(D, p)|/m. We write Ext(p), resp. frq(p),
when D is clear. For the constraints, one typically uses equality constraints if
aij is categorical, i.e., cj(v) ≡ v = w for w ∈ Dom(aij ), and interval constraints
if aij is numeric, i.e., cj(v) ≡ v ∈ [l, u] for a few expressive choices of interval
borders l, u ∈ Dom(aij ) (e.g., corresponding to the quartiles of {aij (d) : d ∈ D}).

Let C denote the constraint universe containing all the constraints that we
want to use to express patterns. We are interested in searching the pattern lan-
guage L = P(C) for descriptors p ∈ L with a) a relatively high frequency and b)
such that the target attributes behave differently in Ext(p) than in the complete
data. This behavior is captured by how the target attributes are represented by a
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(a) Data representation

A1=low A1=high

A2=high .20 .40
A2=low .30 .10

(b) Global model

A1=low A1=high

A2=high .55 .20
A2=low .15 .10

(c) Local model

Fig. 1. Exceptional contingency table models for fictitious dataset with two numerical
attributes: red+blue is the global data and red is a local pattern. (b) shows the global
model and (c) the local model. The model deviation equals .35.

model of a certain model class M . That is, formally, a model m(D′) ∈ M can
be induced for any subset of the data records D′ ⊆ D, and there is a meaningful
distance measure δ : M × M → R+ between models. Then the interesting-
ness of a pattern descriptor p ∈ L is given as int(p) = frq(p) δ(m(D),m(Ext(p)).

In this paper we focus on non-functional models that treat all target attributes
symmetric. When all target attributes are numeric, the perhaps simplest example
of a model class are the mean models Mmn = Rk defined by

m(D′) = (t1(D
′), . . . , tk(D

′))

with ti(D
′) =

∑
d∈D′ ti(d)/|D′|. A useful distance measure between two mean

models m,m′ ∈ Mmn is for instance given by the normalized Euclidean dis-
tance δnl2(m,m′) =

√
(m − m′)TS−1(m − m′) where S denotes the diagonal

matrix with entries Si,i equal to the standard deviation of target attribute ti on
the data. For categorical targets, a simple example are the contingency table
models Mct = RVt1×···×Vtk where each m ∈ Mct represents the relative counts
of all target value combinations, i.e.,

m(D′)v = |{d ∈ D′ : t1(d) = v1 ∧ · · · ∧ tk(d) = vk}|/|D′|

for all v ∈ Vt1 × · · · × Vtk . A meaningful distance measure between contingency
tables m,m′ ∈ Mct is the total variation distance defined by δtvd(m,m′) =∑

v∈Vt1×···×Vtk
|mv − m′

v|/2. See Figure 1 for an example.

Since EMM is a computationally hard problem and no efficient way is known
to find a pattern descriptor p ∈ L for a given dataset that maximizes the EMM
interestingness, the standard algorithmic approach to EMM is heuristic beam
search. This strategy is an extension of a greedy search, where on each search
level (corresponding to a number of constraints in a pattern descriptor) instead
of extending only one partial solution by a constraint that locally optimizes the
interestingness, one considers b ∈ N best partial solutions. This parameter b is
referred to as the beam-width. Formally, starting from search level L′

0 = {∅},
level L′

i+1 is defined as



206 S. Moens and M. Boley

L′
i+1 =

b⋃
i=1

{pi ∧ c : c ∈ C \ pi, frq(pi ∧ c) ≥ τ}

where {p1, . . . , pb, . . . , pz} = L′
i in some order consistent with decreasing interest-

ingness, i.e., int(pi) ≥ int(pj) for i < j, and τ ∈ [0, 1] is a frequency threshold
used to reduce the search space (possibly alongside other anti-monotone hard
constraints). This algorithm has to construct the models for Θ(bl|C|) elements
of the pattern language where l denotes the average length of descriptors that
satisfy the constraints.

3 Sampling Exceptional Models

In this section we develop an alternative approach to EMM using Controlled
Direct Pattern Sampling (CDPS). The key idea of this approach is that we
create random patterns by a fast procedure following a controlled distribution
that is useful for EMM, i.e., that favors patterns with a high frequency and
a large model deviation. In contrast to beam search, sampling only requires to
perform a model induction after a full descriptor is found. As we will argue later,
it is most efficient to combine this sampling approach with a very lightweight
local search procedure as post-processing step.

3.1 Weighted Controlled Direct Pattern Sampling

Boley et al. [6] gives a fast algorithm for CDPS that draws samples from a
user-defined distribution over the pattern space using a simple two-step random
experiment. Distributions that can be simulated with this approach are those
that can be expressed as the product of frequency functions wrt to different parts
of the data. Here we extend this idea by allowing to specify utility weights
w(d) ∈ R+ for each data record d ∈ D.

With this we define the weighted frequency as the relative total weight
of a pattern’s extension, i.e., wfrq(D, p) =

∑
d∈Ext(p) w(d)/

∑
d∈D w(d), and

the negative weighted frequency equals wfrq(D, p) = 1 − wfrq(D, p). Let
D+

i , D
−
j ⊆ D be subsets of the data for i ∈ {1, . . . , a} and j ∈ {1, . . . , b}. Now

we can define a random variable over the pattern space p ∈ L by

P[p = p] =
a∏

i=1

wfrq(D+
i , p)

b∏
j=1

wfrq(D−
j , p)/Z, (1)

with a normalization constant Z such that
∑

p∈L P[p = p] = 1. This distribution
gives a high probability to patterns that have a high weighted frequency in
D+

i , further referred to as the positive data portions, and a low weighted
frequency in D−

j , further referred to as the negative data portions. As an
example, when designing an algorithm for subgroup discovery in data with binary
labels, data records with a positive label could be assigned to a positive data
portion and data records with a negative label to a negative data portion. This
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results in a pattern distribution favoring patterns for which data records in their
extension are assigned mainly a positive label. In subsequent sections we will use
distributions from this family (Eq. 1) to construct effective EMM algorithms.
However, we first show that realizations of p can be computed with a two-step
framework similar to the one given in Boley et al. [6]1.

Let us denote by D = D+
1 × · · · ×D+

a ×D−
1 × · · · ×D−

b the Cartesian product
of all data portions involved in the definition of p containing one representative
record for each positive and each negative data portion. For a tuple of data
records r ∈ D let

Lr = {p ∈ L : r(i) ∈ Ext(D+
i , p), 1 ≤ i ≤ a ∧ r(j) �∈ Ext(D−

j−a, p), a < j ≤ a+ b}

denote the set of pattern descriptors having in their extensions all positive rep-
resentatives r(1), . . . , r(a) and none of the negatives r(a+1), . . . , r(a+ b). Then
consider the random variable r ∈ D defined by

P[r = r] = |Lr|
a+b∏
i=1

w(r(i))

In the following proposition we note that in order to simulate our desired distri-
bution p it is sufficient to first draw a realization r of r and then to uniformly
draw a pattern from Lr.

Proposition 1. For a finite set X denote by u(X) a uniform sample from X.
Then p = u(Lr).

Proof. Denote by Dp = {r ∈ D : p ∈ Lr}. Noting that Dp is equal to

Ext(D+
1 , p) × · · · × Ext(D+

a , p) ×
(
D−

1 \ Ext(D−
1 , p)

)
× · · · ×

(
D−

b \ Ext(D−
b , p)

)
it follows that

P[u(Lr) = p] =
∑
r∈Dp

P[u(Lr) = p|r = r]P[r = r]

=
∑
r∈Dp

1

|Lr|
|Lr|

∏a+b
i=1 w(r(i))

Z
=

1

Z

∑
r∈Dp

a+b∏
i=1

w(r(i))

=
1

Z

a∏
i=1

∑
d∈Ext(D+

i ,p)

w(d)

b∏
j=1

∑
d∈D−

j \Ext(D−
j ,p)

w(d)

=
1

Z

a∏
i=1

wfrq(D+
i , p)

b∏
j=1

wfrq(D−
j , p) = P[p = p]

(2)

��
1 Note that the algorithm given in Boley et al. [6] also allows to specify modular prior
preferences for pattern descriptors as well as to avoid descriptors of length 1 and 0.
We omit both additions here for the sake of simplicity and note that they could be
included in exactly the same way as in the original algorithm.
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(a) PCA based weight computation
and pattern describing points with
high mean shift deviation.

(b) Pattern describing points with low
mean shift deviation.

Fig. 2. Example weighting scheme for mean shift models for fictitious dataset

Efficient implementations of r and u(Lr) for r ∈ D can be performed by using
coupling from the past and sequential constraint sampling, respectively, for which
we refer to Boley et al. [6]. In the remainder of this paper, we focus on utilizing
the resulting pattern sampler for EMM.

3.2 Application to Exceptional Model Mining

We start with the case of the contingency table modelsMct. Let V = Vt1×· · ·×Vtk

be the set of all cells of a contingency table m ∈ Mct. We give an instantiation
of Eq. 1 using exactly one positive and one negative frequency factors, i.e.,
a = b = 1 with disjoint data portions D+, D− that partition D. The idea is that
we try to oversample patterns with an extension lying mostly in contingency
table cells with small counts. For that we can sample a random subset of the
table cells W ⊆ V with |W | = |V|/2 such that P[v ∈ W] = m(D)−1

v Z−1

and assign each d ∈ D to D+ if v(d) ∈ W and to D− otherwise (where v(d)
denotes the contingency table cell of d). Note that more focused versions of
this distribution can be achieved by simply replicating the two frequency factors
described here. Also, for this simple instantiation we did not use utility weights
for the data records (i.e., they are chosen uniform).

Now turning to the case of high mean shift deviation Mmn, we will give an-
other instantiation of Eq. 1 that also uses weights in addition to defining suitable
positive and negative data portions. Since we only have one weight vector for
the data records, we are interested in the direction in which the largest target
deviation from the mean can be achieved. By applying a centralized Principal
Component Analysis (PCA) we can find a linear transformation of the target
data vectors that maximizes the variance among the data points. The first com-
ponent then gives the direction of interest. Let us denote by PCA1(d) ∈ R the
first component of (t1(d), . . . , tk(d)), i.e., the length of the target vector of a data
record in the direction of highest variance. We define d ∈ D+ if PCA1(d)≥ 0
and d ∈ D− otherwise. This idea is shown in Figure 2a: the black line shows
the first component, the points to the right are assigned to D+ and the points
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to the left are assigned to D−. Note that in practice we can randomly choose
which side is D+ or D−. For the computation of weights, recall that our task is
finding descriptors with a high mean shift (see again Figure 2a). As such, data
points in the extension of a pattern that are in D+, should be far away from the
mean. While data point in the extension of a pattern that are in D−, should be
very close to the mean, such that the mean gets minimally shifted towards the
center. Hence, it is sensible to use w(d) = |PCA1(d)| as weights for data records.
This means that in the positive part, data records far away from the mean will
contribute a lot to wfrq(D+, p) and in the negative part, points close to the
center—having small absolute weights—will contribute a lot to wfrq(D−, p).

Finally, we propose to combine the EMM pattern sampler with a pruning
routine, in order to further optimize the quality of sampled patterns. Our method
then becomes a two-step framework: (1) optimizes the model deviation through
direct sampling and (2) optimizes the interestingness via pruning. We employ
heuristic optimization on patterns to optimize wrt the interestingness. First, we
generate a random permutation of constraints. Then we remove each constraint
one by one. If the quality increases, we replace the pattern. For a pattern p, the
pruning step constructs models for Θ(k) patterns where k = |p|. The total cost of
our sampling procedure is Θ(l + 1), where l is the average length of descriptors
that satisfy the constraints. This is a theoretical advantage over beam search
when model induction is expensive (e.g., when there are a lot of data points for
which contingency tables have to be computed).

4 Experiments

Table 1. Overview of dataset characteristics

dataset #attributes #data records time budget (ms)

Adult 15 30,163 300
Bank Marketing 17 45,211 300
Twitter 34 100,000 2,000
Cover Type 10 581,012 2,000

In the previous section we introduced a method for sampling exceptional models.
We show now that our method is able to outperform beam search when given
short time budgets. Throughout the experiments we used datasets available from
the UCI Machine Learning Repository [2]. Their main characteristics together
with the individual mining times are summarized in Table 1. The mining times
do not taking into account loading the data, since in interactive systems the data
is already loaded. For each dataset we removed lines with missing values. For
Twitter we used only the first two measurements and for Cover Type we used
the first 10 attributes. At last, both techniques run on Java 7.
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(a) Adult (fnlwgt, capital-loss) (b) Bank Marketing (balance, previous)

(c) Twitter 34 (NSD 0, CS 0) (d) Cover Type (elevation, slope)

Fig. 3. Max qualities for 2 target exceptional contingency table models

4.1 Contingency Table Quality

In this experiment we analyze contingency table models found by our sampler
and compare them to models found by beam search. Throughout the experiments
we used short time budgets found in Table 1. For the quality assessment we used
the interestingness from Section 2.

We ran the algorithms to find exceptional contingency tables with 2 pre-
defined targets. For beam search (BS) we only reported runs with beam widths
1, 5 and 10 since the others behave similar. For the sampling process Equa-
tion 1 with 2 positive and 1 negative factor and no weighting strategy. We fixed
four settings: CT (IP + P ) – inverse probability for sampling D+ and pruning,
CT (IP ) – inverse probability without pruning, CT (R + P ) – uniform selection
of D+ in combination with pruning CT (R) – uniform selection without prun-
ing. Moreover, we ran each algorithm 10 times and extracted the highest quality
patterns found for each run. We then normalized the results by the best pattern
found over all algorithms. Aggregated results are shown in Figures 3.

Generally, sampling is able to find higher quality patterns using short time
budgets. The problem with beam search is that it has to start from singleton
patterns every time and evaluate them individually. The sampling process, in
contrast, immediately samples larger seeds with high deviation. It then locally
optimizes the interestingness by pruning. Therefore, it can quickly find high
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(a) Adult (fnlwgt, capital-loss) (b) Bank (balance, previous)

(c) Twitter 34 (NSD 0, CS 0) (d) Cover Type (elevation, slope)

Fig. 4. Max qualities for 2 target exceptional mean shift deviation models

deviation patterns with more than 1 descriptor, while beam search often is still
enumerating patterns with 1 descriptor. Surprisingly, especially for Twitter 34,
singleton patterns show already high interestingness, because of their frequency.

As expected, the unpruned versions performs slightly worse, because the fre-
quency for sampled patterns is lacking. Comparing uniform (R) to pseudo-
randomized (IP), we see that neither of the two is really able to outperform
the other. One could argue that the pseudo-randomized version is a bit better
at providing qualitative patterns more consistently.

4.2 Mean Model Quality

Here we used the same setup as before: i.e., we assume an interactive system
with limited time budgets (see Table 1) and ran algorithms with 2 pre-defined
targets. We ran beam search (BS) with beam sizes of 1, 5 and 10. For sampling we
used 2 weighted positive and 1 weighted negative factor using the PCA method
(implementation provided by WEKA [11]). We used 4 settings: MS(W + P )
– weighting and pruning, MS(W ) – weighting and no pruning, MS(P ) – no
weights and pruning and, at last, MS – no weights and no pruning. Aggregated
results of maximum quality patterns over 10 runs are summarized in Figure 4.
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The results are similar to Section 4.1: beam search is often not able to get
past the singleton pattern phase, and all runs provide similar quality. Also the
Twitter dataset shows again that singleton patterns score very high due to their
frequency. For the sampling methods, we see that the weighted variants are a
bit better. A reason for the sometimes marginal difference is that the weights
may be counterproductive. Comparing pruning and non-pruning, we often find
a larger gap in favor of pruning, except for Twitter. The main reason is that our
distribution is not optimizing enough the frequency of patterns, and only a few
large seeds, with high deviation, are sampled and then pruned. In contrast, the
non-pruned method more often samples small seeds with high frequency.

5 Related Work

The discovery of interesting subgroups is a topic for several years already and
our main objective is not to give an elaborate study on different techniques for
finding subgroups. We kindly refer the reader to the overview work by Herrera
et al. [12] for more information. Exceptional model mining, on the other hand,
is relatively new and can be seen as an extension to subgroup discovery, where
models are induced over more than one target. For more information regarding
exceptional model mining we refer the reader to the Duivesteijn’s thesis [8].

Our main focus are techniques enabling the instant discovery of patterns.
Sampling from the output space is an area that has attracted attention only
recently. Chaoji et al. [7] use a randomized MCMC process for finding maximal
subgraphs in graph databases. Their method is biased towards larger subgraphs,
but they use heuristics to overcome this bias. Also on graphs, Al Hasan and
Zaki [1] use Metropolis-Hastings to enable uniform sampling of maximal graphs.
Moens and Goethals [13] proposed a method similar to the one by Chaoji et al.
for sampling the border of maximal itemsets.

At last, we give a short overview of recent exploratory data mining tools,
that have high demands wrt responsiveness. MIME [10] allows a user to interact
with data directly by letting her create patterns and pattern collections that are
evaluated on-the-fly. Moreover, different data mining algorithms can be applied
and as their results become input to the user, she can adapt the results at will.
Boley et al. [5] propose a framework combining multiple data mining algorithms
in a black box environment, alleviating the user from the process of choosing
pattern mining methods to apply. They employ a user preference model, based
on user interactions, which influence running times for the black boxes. Dzuyba
et al. [9] use beam search as their underlying method for finding interesting
subgroups. Users then provide feedback on generated patterns, to give more/less
importance to specific branches in the search tree.

6 Conclusion and Future Work

Existing methods for finding exceptional models, fail to produce instant results
required for interactive discovery processes. In this work, we extended Controlled
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Direct Pattern Sampling with weights for individual data records and used the
framework to directly sample exceptional models using short time budgets.

We showed in our experiments that sampling is able to find better quality
patterns in settings that where previously out of reach for beam search. We also
showed that by optimizing sampled patterns locally, the quality of patterns can
be improved even more. Moreover, we showed that our new weighting scheme
can push sampled models into higher quality parts of the search space. However,
the weighting can also have a negative effect, when instantiated improperly.

At last we point out future research directions for this research. An important
step is extending the mean shift model to more than 3 attributes. The current
framework uses the first component by PCA to obtain the highest variance direc-
tion, and next samples patterns that lie on the poles of this direction. However,
when increasing the number of attributes, using only the first component is not
enough and using more components is not optimizing the deviation enough in
practice. Different strategies for partitioning the data in positive and negative
parts with proper weight assignments is an important issue.
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12. Herrera, F., Carmona, C.J., González, P., del Jesus, M.J.: An overview on subgroup
discovery: Foundations and applications. Knowl. Inf. Syst., 495–525 (2011)

13. Moens, S., Goethals, B.: Randomly sampling maximal itemsets. In: Proc. ACM
SIGKDD 2013 Workshop IDEA, pp. 79–86 (2013)
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Abstract. The methods used to produce news rankings by recommender
systems are not public and it is unclear if they reflect the real importance
assigned by readers. We address the task of trying to forecast the num-
ber of times a news item will be tweeted, as a proxy for the importance
assigned by its readers. We focus on methods for accurately forecasting
which news will have a high number of tweets as these are the key for
accurate recommendations. This type of news is rare and this creates
difficulties to standard prediction methods. Recent research has shown
that most models will fail on tasks where the goal is accuracy on a small
sub-set of rare values of the target variable. In order to overcome this,
resampling approaches with several methods for handling imbalanced
regression tasks were tested in our domain. This paper describes and
discusses the results of these experimental comparisons.

1 Introduction

The Internet is becoming one of the main sources for users to collect news con-
cerning their topics of interest. News recommender systems provide help in man-
aging the huge amount of information that is available. A typical example of
these systems is Google News, a well-known and highly solicited robust news ag-
gregator counting several thousands of official news sources. Although the actual
process of ranking the news that is used by Google News is not known, official
sources state that it is based on characteristics such as freshness, location, rele-
vance and diversity. This process, based on the Page Rank algorithm explained
in Page et al. [16] and generally described in Curtiss et al. [4], is of the most
importance as it is responsible for presenting the best possible results for a user
query on a set of given terms. However, some points have been questioned such
as the type of documents that the algorithm gives preference to and its effects,
and some authors conclude that it favours legacy media such as print or broad-
cast news ”over pure players, aggregators or digital native organizations” [6].
Also, as it seems, this algorithm does not make use of the available information
concerning the impact in or importance given by real-time users in an apparent
strategy of deflecting attempts of using its capabilities in ones personal favour.

This paper describes some initial attempts on a task that is part of a larger
project that tries to merge the news recommendations provided by two types

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 215–226, 2014.
© Springer International Publishing Switzerland 2014
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of sources: (i) official media that will be represented by Google News; and (ii)
the recommendations of Internet users as they emerge from their social network
activity. Concerning this latter source, the idea is to use Twitter as the source
of information for checking which news are being shared the most by users. We
will use the number of tweets of a given news as a kind of proxy for its impact
on consumers of news, on a given topic1. The workflow solved by the system we
plan to develop within this project is the following:

1. At a time t a user asks for the most interesting news for topic X

2. The system returns a ranking of news (a recommendation) that results from
aggregating two other rankings:

– The ranking provided by the official media (represented by Google News)
– The ranking of the consumers of news (represented by the number of

times the news are tweeted)

This workflow requires that at any point in time we are able to anticipate
how important a news will be in Twitter. If some time has already past since
the news publication this can be estimated by looking at the observed number
of times this news piece was tweeted. However, when the news is very recent, the
number of already observed tweets will potentially under-estimate the attributed
importance of the news item. In this context, for very ”fresh” news we need to be
able to estimate their future relevance within Twitter, i.e. their future number
of tweets. Moreover, given that we are interested in using this estimated number
of tweets as a proxy for the news relevance, we are only interested in forecasting
this number accurately for news with high impact, i.e. we are interested in being
accurate at forecasting the news that will have a high number of tweets. This
is the goal of the work presented in this paper. We describe an experimental
comparison of different approaches to forecasting the future number of tweets of
news, when the goal is predictive accuracy for highly popular news. This latter
aspect is the key distinguishing aspect of our work when compared to existing
related work, and it is motivated by the above-mentioned long-term project of
news recommendation integrating different types of rankings. In this context,
the main contribution of this work is a study and proposal of approaches to the
problem of predicting highly popular news upon their publication.

2 Previous Work

In our research, although we did not find work that deals with the prediction
of rare cases of highly tweeted news events, we did find important work focused
on the general prediction of the number of tweets a news events will obtain in a
given future.

1 We are aware that this may be a debatable assumption, still this is something ob-
jective that can be easily operationalised, whilst other alternatives would typically
introduce some subjectivity that would also be questionable.
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Leskovec et al. [15] suggests that popular news take about four days until
their popularity stagnates. Our own research using the data collected for this
paper suggests that tweeting of a news item very rarely occours after two days.

Related to the subject in this paper, Asur and Huberman [1] use Twitter to
forecast the box-office revenues for movies by building linear regression models,
as well as demonstrate the utility that sentiment analysis has in the improvement
of such objectives.

In Bandari et al. [2] classification and regression algorithms are examined in
order to predict popularity, translated as the number of tweets, of articles in
Twitter. The distinguishing factor of this work from others [19, 13, 20, 11, 14]
that attempt to predict popularity of items, is that this work attempts to do
this prior to the publication of the item. To this purpose the authors used four
features: source of the article, category, subjectivity in the language and named
entities mentioned. Furthermore, the authors conclude that the source of a given
article is one of the most important predictors.

Regression, classification and hybrid approaches are used by Gupta et al. [7]
also to predict event popularity. However, in this work the authors use data from
Twitter, such as the number of followers/followees. The objective is the same in
the work of Hsieh et al. [9], but the authors approach the problem by improving
crowd wisdom with the proposal of two strategies: combining crowd wisdom with
expert wisdom and reducing the noise by removing ”overly talkative” users from
the analysis.

Recently, a Bayesian approach was proposed by Zaman et al. [25] where a
probabilistic model for the evolution of the retweets was developed. This work
differs from the others in a significant manner as it is focused on the prediction
of the popularity of a given tweet. The authors conclude that it is possible to
predict the popularity of a given tweet after 10 minutes of its publication. They
state that the number of tweets after two hours of its publication should improve
by roughly 50% in relation to the first ten minutes. The test cases include both
famous and non-famous twitter accounts. This work is preceded by others also
using the retweet function as predictor having as the objective result an interval
[8] or the probability of being retweeted.

3 Problem Description and Approach

This work addresses the issue of predicting the number of tweets of very recent
news events with a focus on the predictive accuracy at news that are highly
tweeted. This is a numeric prediction task, where we are trying to forecast this
number based on some description of the news. However, this task has one
particularity: we are only interested in prediction accuracy at a small sub-set of
the news - the ones that are tweeted the most. These are the news that the public
deems as highly relevant for a given topic and these are the ones we want to put
at the top of our news recommendation. The fact that we are solely interested
on being accurate at a low frequency range of the values of the target variable
(the number of tweets) creates serious problems to standard prediction methods.
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In this paper we describe and test several approaches that try to improve the
predictive performance on this difficult task.

3.1 Formalization of the Data Mining Task

Our goal of forecasting the number of tweets of a given news is a numeric pre-
diction task, usually known as a regression problem. This means that we assume
that there is an unknown function that maps some characteristics of the news
into the number of times this news is tweeted, i.e. Y = f(X1, X2, · · · , Xp),
where Y is the number of tweets in our case, X1, X2, · · · , Xp are features de-
scribing the news and f() is the unknown function we want to approximate. In
order to obtain an approximation (a model) of this unknown function we use a
data set with examples of the function mapping (known as a training set), i.e.
D = {〈xi, yi〉}ni=1.

The standard regression tasks we have just formalized can be solved using
many existing algorithms, and most of them try to find the model that optimizes
a standard error criterion like the mean squared error. What sets our specific
task apart is the fact that we are solely interested in models that are accurate at
forecasting the rare and high values of the target variable Y , i.e. the news that
are highly tweeted. Only this small sub-set of news is relevant for our overall
task of providing a ranking of the most important news for a given topic. In
effect, predictive accuracy at the more common news that have a small number
of tweets is completely irrelevant because only the top positions of the ranking
of recommended news are really relevant for the user, and these top positions
are supposed to be filled by the news that have a very high number of tweets.

3.2 Handling the Imbalanced Distribution of the Number of Tweets

Previous work [17, 22, 23] has shown that standard regression tools fail dramati-
cally on tasks where the goal is accuracy at the rare extreme values of the target
variable. The main goal of the current paper is to compare some of the proposed
solutions to this type of imbalanced regression tasks in the particular problem
of forecasting the number of tweets of news.

Several methodologies were proposed for addressing this type of tasks. Resam-
pling methods are among the simplest and most effective. Resampling strategies
work by changing the distribution of the available training data in order to meet
the preference bias of the users. Their main advantage is that they do not re-
quire any special algorithms to obtain the models - they work as a pre-processing
method that creates a ”new” training set upon which one can apply any learning
algorithm. In this paper we will experiment with two of the most successful re-
sampling strategies: (i) SMOTE [3] and (ii) under-sampling [12]. These methods
were originally developed for classification tasks where the target variable is nom-
inal. The basic idea of under-sampling is to decrease the number of observations
with the most common target variable values with the goal of better balancing
the ratio between these observations and the ones with the interesting target
values that are less frequent. SMOTE works by combining under-sampling of
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the frequent classes with over-sampling of the minority class. Namely, new cases
of the minority class are artificially generated by interpolating between existing
cases. Recently, Torgo et al. [23, 24] extended these methods for regression tasks
as it is the case of our problem. We have used the work of these authors to create
two variants of each of our datasets. The first variant uses the SMOTEr algo-
rithm [23] to create a new training set by over-sampling the cases with extremely
large number of tweets, and under-sampling the most frequent cases, thus bal-
ancing the resulting distribution of the target variable. The second variant uses
the under-sampling algorithm proposed by the same authors to decrease the
number of cases with low number of tweets, hence the most common, once again
resulting in a more balanced distribution. In our experiments we will apply and
compare these methodologies in order to check which one provides better results
in forecasting accurately the number of tweets of highly popular news items.
As explained in detail in Section 4.3 these resampling strategies are framed in
an utility-based regression framework (Torgo and Ribeiro [22] and Ribeiro [17])
which maps the values of the target variable into a [0, 1] scale of relevance. By
defining a relevance threshold, this scale is then used to define the sub-range of
target variable values as rare and common. The SMOTEr and under-sampling
strategies use this information to over- and under-sampling the values to balance
the distribution.

4 Materials and Methods

4.1 The Used Data

The experiments that we will describe are based on news concerning four specific
topics: economy, microsoft, obama and palestine. These topics were chosen due to
two factors: its actual use and because they report to different types of entities
(sector, company, person and country). For each of these four topics we have
constructed a dataset with news mentioned in Google News during a period of
13 days, between 2013-Nov-15 and 2013-Nov-28. Figure 1 shows the number of
news per topic during this period.

For each news obtained from Google News the following information was col-
lected: title, headline and publication date. For each of the four topics a dataset
was built for solving the predictive task formalized in Section 3.1. These datasets
were built using the following procedure. For obtaining the target variable value
we have used the Twitter API2 to check the number of times the news was
tweeted in the two days following its publication. These two days limit was de-
cided based on the work of Leskovec et al. [15] that suggests that after a few
days the news stop being tweeted. Despite Leskovec et al. [15] statement that
this period is of four days, some initial tests on our specific data sets have shown
that after a period of two days the number of tweets is residual, and therefore
we chose this time interval. In terms of predictor variables used to describe each
news we have selected the following. We have applied a standard bag of words

2 Twitter API Documentation: https://dev.twitter.com/docs/api

https://dev.twitter.com/docs/api
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Fig. 1. Number of news per topic

approach to the news headline to obtain a set of terms describing it3. Some
initial experiments we have carried out have shown that the headline provides
better results than the title of the news item. We have not considered the use
of the full news text as this would require following the available link to the
original news site and have a specific crawler to grab this text. Given the wide
diversity of news sites that are aggregated by Google News, this would be an
unfeasible task. To this set of predictors we have added two sentiment scores: one
for the title and the other for the headline. These two scores were obtained by
applying the function polarity() of the R package qdap [18] that is based on
the sentiment dictionary described by Hu and Liu [10]. Summarizing, our four
datasets are built using the information described on Table 1 for each available
news.

As expected, the distribution of the values of the target variable for the four
obtained datasets is highly skewed. Moreover, as we have mentioned our goal is
the accuracy at the low frequency cases where the number of tweets is very high.
We will apply the different methods described in Section 3.2 to our collected
data. This will lead to 12 different datasets, three for each of the selected topics:
(i) the original imbalanced dataset; (ii) the dataset balanced using SMOTEr;
and (iii) the dataset balanced using under-sampling. The hypothesis driving
the current paper is that by using the re-sampled variants of the four original
datasets we will gain predictive accuracy at the highly tweeted news, which are
the most relevant for providing accurate news recommendations.

3 We have used the infra-structure provided by the R package tm [5].
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Table 1. The variables used in our predictive tasks

Variable Description

NrTweets The number of times the news was tweeted in the
two days following its publication. This is the target
variable.

T1, T2, · · · The term frequency of the terms selected through
the bag of words approach when applied to all news
headlines.

SentTitle The sentiment score of the news title.

SentHeadline The sentiment score of the news headline.

4.2 Regression Algorithms

In order to test our hypothesis that using resampling methods will improve the
predictive accuracy of the models on the cases that matter to our application,
we have selected a diverse set of regression tools. Our goal here is to try to make
sure our conclusions are not biased by the choice of a particular regression tool.

Table 2 shows the regression methods and tools that were used in our ex-
periments. To make sure our work can be easily replicable we have used the
implementations of these tools available at the free and open source R environ-
ment. All tools were applied using their default parameter values.

Table 2. Regression algorithms and respective R packages

ID Method R package

RF Random forests randomForest
LM Multiple linear regression stats
SVM Support vector machine e1071
MARS Multivariate adaptive regression splines earth

4.3 Evaluation Metrics

It is a well-known fact that when the interest of the user is a small proportion
of rare events, the use of standard predictive performance metrics will lead to
biased conclusions. In effect, standard prediction metrics focus on the ”average”
behaviour of the prediction models and for these tasks the user goal is a small
and rare proportion of the cases. Most of the previous studies on this type of
problems was carried out for classification tasks, however, Torgo and Ribeiro
[22] and Ribeiro [17] have shown that the same problems arise on regression
tasks when using standard metrics like for instance the Mean Squared Error.
Moreover, these authors have shown that discretizing the target numeric variable
into a nominal variable followed by the application of classification algorithms
is also prone to problems and leads to sub-optimal results.
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In this context, we will base our evaluation on the utility-based regression
framework proposed in the work by Torgo and Ribeiro [22] and Ribeiro [17]. The
metrics proposed by these authors assume that the user is able to specify what
is the sub-range of the target variable values that is most relevant. This is done
by specifying a relevance function that maps the values of the target variable
into a [0, 1] scale of relevance. Using this mapping and a user-provided relevance
threshold the authors defined a series of metrics that focus the evaluation of
models on the cases that matter for the user. In our experiments we have used
as relevance threshold the value of 0.9, which leads to having on average 7% to
10% of the cases tagged as rare (i.e. important in terms of number of tweets)
depending on the topic.

In our evaluation process we will mainly rely on two utility-based regression
metrics: a variant of the mean squared error weighed by relevance, and the F-
Score. The variant of the mean squared error (mse phi in our tables of results)
is calculated by multiplying each error by the relevance of the true number of
tweets. This means that the errors on the most relevant news will be amplified.
The main problem of this metric is that it does not consider situations were
the models forecast a high number of tweets for a news that ends up having a
low number of tweets, i.e false positives. On the contrary, the F-Score is able to
take into account both problems. This is a composite measure that integrates
the values of precision and recall according to their adaptation for regression
described in the above mentioned evaluation framework.

5 Experimental Comparison

5.1 Experimental Methodology

Our data (news items) has a temporal order. In this context, one needs to be
careful in terms of the process used to obtain reliable estimates of the selected
evaluation metrics. This means that the experimental methodology should make
sure that the original order of the news is kept so that models are trained on
past data and tested on future data to avoid over-optimistic estimates of their
scores. In this context, we have used Monte Carlo estimates as the experimental
methodology to obtain reliable estimates of the selected evaluation metrics for
each of the alternative methodologies. This methodology randomly selects a set
of points in time within the available data, and then for each of these points
selects a certain past window as training data and a subsequent window as test
data, with the overall train+test process repeated for each point. All alternative
approaches are compared using the same train and test sets to ensure fair pair-
wise comparisons of the obtained estimates. Our results are obtained through
10 repetitions of a Monte Carlo estimation process with 50% of the cases used
as training set and 25% used as test set. This process is carried out in R using
the infra-structure provided by the R package performanceEstimation [21].
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5.2 Results

Our results contemplate four topics, as referred before: economy, microsoft,
obama and palestine. Tables 3 and 4 present a summary of our results, with
other results ommited due to space economy reasons though the general trends
are similar. For each regression algorithm the best estimated scores are denoted
in italics, whilst the best overall score is in bold. Table 3 presents all estimated
metric scores for the palestine topic data set. The mean squared error estimates
are provided for highlighting once again that this type of metrics may mislead
users when the focus is accuracy on rare extreme values of the target variable.
The last four metrics are the most interesting from the perspective of our ap-
plication, particularly the last three (precision, recall and F-measure) because
they also penalise false positives (i.e. predicting a very high number of tweets for
a news that is not highly tweeted). These results clearly show that in most se-
tups all algorithms are able to take advantage of resampling strategies to clearly
boost their performance. The results obtained with both random forests and
SVMs are particularly remarkable, moreover taking into account that all meth-
ods were applied with their default parameter settings. With precision scores
around 60% we can assume that if we use the predictions of these models for
ranking news items by their predicted number of tweets, the resulting rank will
match reasonably well the reading preferences of the users.

Table 3. Prediction Models Results - Topic Palestine

mse mse phi prec rec F1

lm 4622.81 1651.31 0.28 0.14 0.18
lm+SMOTE 763343.67 115671.61 0.50 0.13 0.20
lm+UNDER 240787.13 36782.38 0.57 0.16 0.24

svm 1681.23 1543.91 0.00 0.00 0.00
svm+SMOTE 7845.29 662.88 0.59 0.57 0.57
svm+UNDER 7235.22 645.46 0.57 0.56 0.56

mars 2334.96 1490.63 0.41 0.10 0.16
mars+SMOTE 17238.67 1971.88 0.43 0.25 0.31
mars+UNDER 15291.91 1514.40 0.49 0.36 0.41

rf 1770.16 1438.93 0.23 0.04 0.06
rf+SMOTE 6309.61 636.77 0.49 0.50 0.49
rf+UNDER 8170.99 618.81 0.61 0.56 0.58

Table 4 shows the overall estimated precision, recall and F1 scores for all
alternatives in the four topics. Once again we confirm that using resampling
strategies provides very good results in the task of predicting highly tweeted
news for these four diverse topics. These results are also in accordance with
the findings by Torgo et al. [23] where it was reported that similar gains were
obtained with both under-sampling and SMOTEr. These results show that in
all experimental settings we have considered, the use of resampling was able to
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Table 4. The F1 estimated scores for all topics

economy microsoft obama palestine
prec rec F1 prec rec F1 prec rec F1 prec rec F1

lm 0.15 0.12 0.13 0.30 0.11 0.16 0.15 0.07 0.10 0.28 0.14 0.18
lm+SMOTE 0.30 0.02 0.04 0.60 0.04 0.07 0.55 0.04 0.07 0.50 0.13 0.20
lm+UNDER 0.41 0.02 0.04 0.58 0.03 0.05 0.38 0.03 0.05 0.57 0.16 0.24

svm 0.00 0.00 0.00 0.37 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00
svm+SMOTE 0.41 0.51 0.45 0.46 0.39 0.42 0.50 0.56 0.53 0.59 0.57 0.57
svm+UNDER 0.37 0.47 0.41 0.48 0.41 0.44 0.48 0.55 0.51 0.57 0.56 0.56

mars 0.16 0.10 0.12 0.35 0.10 0.15 0.09 0.04 0.06 0.41 0.10 0.16
mars+SMOTE 0.40 0.20 0.27 0.56 0.23 0.32 0.40 0.17 0.24 0.43 0.25 0.31
mars+UNDER 0.42 0.33 0.36 0.58 0.31 0.40 0.41 0.27 0.32 0.49 0.36 0.41

rf 0.11 0.05 0.07 0.29 0.06 0.10 0.02 0.01 0.01 0.23 0.04 0.06
rf+SMOTE 0.45 0.48 0.46 0.54 0.46 0.50 0.34 0.43 0.38 0.49 0.50 0.49
rf+UNDER 0.54 0.49 0.51 0.63 0.52 0.56 0.46 0.47 0.46 0.61 0.56 0.58

clearly improve the precision of the models at identifying the news that will be
highly tweeted by users.

Overall, the main conclusion from our comparisons is that resampling methods
are very effective in improving the predictive accuracy of different models for the
specific task of forecasting the number of tweets of highly popular news. These
methods are able to overcome the difficulty of these news being infrequent. This
is particularly important within our application goal that requires us to be able
to accurately identify the news that are more relevant for the users in order to
be able to improve the performance of news recommender systems.

6 Conclusions

This paper describes an experimental analysis of different methods of predict-
ing the number of times a news item will be tweeted. Being able to forecast
accurately this number for news that will be highly tweeted is very important
for effective news recommendation. These news are rare and this poses difficult
challenges to existing prediction models. We evaluate recently proposed methods
for addressing these problems in our particular task.

The results of our experimental comparisons clearly confirm the hypothesis
that using resampling methods is an effective and simple way of addressing the
task of predicting when a news item will be highly tweeted. Our results, under
different experimental settings and using different prediction algorithms, clearly
indicate that resampling is able to boost the accuracy of the models on cases
that are relevant for this application. In particular, we have observed a marked
increase of the precision of the models, which means that most of the times
when they forecast that a news will be highly tweeted, that will happen. This
is very important for this application as it means that rankings produced based
on these predictions will be useful for users as they will suggest news items that
are effectively interesting for them.
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Future work will include the addition of more information such as the source
of the news article and the use of the predictions of the different alternative ways
of forecasting the number of tweets to produce actual news rankings. Moreover,
we will use methods for comparing rankings in order to correctly measure the
impact of the use of resampling methods on the quality of news recommendation.
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Abstract. In this paper, we presented a probabilistic framework to pre-
dict Bus Bunching (BB) occurrences in real-time. It uses both historical
and real-time data to approximate the headway distributions on the
further stops of a given route by employing both offline and online su-
pervised learning techniques. Such approximations are incrementally cal-
culated by reusing the latest prediction residuals to update the further
ones. These update rules extend the Perceptron’s delta rule by assuming
an adaptive beta value based on the current context. These distributions
are then used to compute the likelihood of forming a bus platoon on
a further stop - which may trigger an threshold-based BB alarm. This
framework was evaluated using real-world data about the trips of 3 bus
lines throughout an year running on the city of Porto, Portugal. The
results are promising.

Keywords: supervised learning, probabilistic reasoning, online learn-
ing, perceptron, regression, bus bunching, travel time prediction, head-
way prediction.

1 Introduction

The bus has become a key player in highly populated urban areas. Inner-city
transportation networks are becoming larger and consequently, harder to moni-
tor. The large-scale introduction of GPS-based systems in the bus fleets opened
new horizons to be explored by mass transit companies around the globe. This
technology made it possible to create highly sophisticated control centers to
monitor all the vehicles in real-time. However, this type of control often requires
a large number of human resources, who make decisions on the best strategies
for each case/trip. Such manpower requirements represent an important slice of
the operational costs.
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c© Springer International Publishing Switzerland 2014



228 L. Moreira-Matias et al.

It is known that there is some schedule instability, especially in highly frequent
routes (10 minutes or less) [1–5]. In this kind of routes it is more important the
headway (time separation between vehicle arrivals or departures) regularity than
the fulfilment of the arrival time at the bus stops. In fact, a small delay of a bus
provokes the raising of the number of passengers in the next stop. This number
increases the dwell time (time period where the bus is stopped at a bus stop) and
obviously, it also increases the bus’s delay. On the other hand, the next bus will
have fewer passengers, shorter dwell times without delays. This will continue as
a snow ball effect and, at a further point of that route, the two buses will meet
at a bus stop, forming a platoon as it is illustrated in Fig. 1. This phenomenon
is denominated as Bus Bunching(BB) [3, 6].

The emergence of these events is completely stochastic as you never know
when or where they may occur. However, there are some behavioural patterns
that may anticipate its occurrence such as consecutive headway reductions and
travel times longer than expected. Such patterns uncover some regularities on the
causes that may be explored by Machine Learning algorithms to provide decision
support. It can be done by mining not only the historical location-based data on
the daily trips but also on their real-time tracking. Consequently, the problem
complexity turns the off-the-shelf learning methods as inadequate to predict BB
events in real-time.

By predicting these events, we can not only automatically forecast where a
BB occurrence may emerge but also which is the problematic trip/vehicle and
how can we prevent it from happening. In this work, we introduce a complex
framework to predict BB occurrences in a short-term time horizon. This event
detection is build over a stepwise methodology which starts by performing an
1) offline regression to predict the Link Travel Times (the travel time between
two consecutive stops) which is incrementally updated by considering the

Fig. 1. Bus Bunching illustration
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2) error measured from trip to trip and from 3) stop to stop as seeds for a
Perceptron-based update rule. Then, a 4) probabilistic framework is devised
to express the likelihood of a pair of buses to form a platoon on a given stop.
Finally, 5) these probabilities are used to compute a Bunching score which, given
a certain context-based threshold, triggers an alarm on a BB occurrence. Our
main contributions are threefold:

1. we introduce a novel data driven approach to predict the emergence of BB
events in a short-term horizon. More than maintaining the headway stable on
the network in exchange of some schedule unreliability, it aims to anticipate
last-resource contexts where a corrective action must be took;

2. by producing numerical scores rather than BUNCHING/NO BUNCHING labels,
we favour the framework’s interpretability and, consequently, its ability to
adapt to different scenarios;

3. we validated such framework using a large-scale dataset containing times-
tamped trip records of three distinct bus routes running on the city of Porto,
Portugal, during an one-year period.

2 Problem Overview

The Public Transportation (PT) companies operate on high competitive sce-
narios where there are many options to perform this short connections such as
other bus companies, trains, light trams or even private transportation means.
The service reliability is key to maintain their profitability. By guaranteeing
on-time arrivals, the passengers’ perception of the service quality will rise and,
consequently, they will pick it often. On the other hand, an unreliable schedule
may decrease the number of customers running on that company and therefore,
lead to important profit losses [7, 8]. One of the most visible characteristics of
an unreliable service is the existence of BB events. Two (or more) buses running
together on the same route is an undeniable sign that something is going terribly
wrong with the company’s service.

To avoid such occurrences, the PT companies installed advanced Control cen-
ters where experienced operators are able to monitor the network operations in
real-time. Their goal is to suggest corrective actions to the bus drivers able to
prevent such occurrences. There are four typical methods employed as real-time
control strategies [6, 9]:

1. Bus Holding: It consists of forcing the driver to increase/reduce the dwell
time1 on a given bus stop along the route;

2. Speed Modification: This strategy forces the driver to set a maximum
cruise speed on its course (lower than usual on that specific route);

3. Stop-Skipping: Skip one or more route stops; also known as short-cutting
when it requires a path change to reduce the original length of the route.

1 The time spent by a bus stopped on a given stop.
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4. Short-Turning: This complex strategy consists of causing a vehicle to skip
the remaining route stops (usually at its terminus) to fill a large service gap
in another route (usually, the same route but in the opposite direction). In
a worst case scenario, the passengers may be subjected to a transfer.

By studying the BB phenomenon, we expect not only to anticipate when it
may occurs but also which is the most adequate corrective action to employ in
each situation. However, these actions must be took as a last resource as they
also affect negatively the schedule reliability (even if they do it in a smaller
scale). The idea is to be able to automatically perform the following decisions:
1) when does it worth to take an action? 2) which is the action to employ? 3)
which is the bus/pair of buses to be affected by such action? Such framework will
represent considerable savings to any PT company by reducing the manpower
needs on the control department.

The most important variable regarding the BB events is the distance (in
time) between two consecutive buses running on the same route. Such distance
is denominated as headway. Let the trip k of a given bus route be defined
by Tk = {Tk,1, Tk,2, ..., Tk,s} where Tk,j stands for the arrival time of the bus
running the trip k to the bus stop j and s denotes the number of bus stops
defined for such trip. Consequently, the headways between two buses running on
consecutive trips k, k + 1 be defined as follows

H = {h1, h2, ..., hs} : hi = Tk+1,i − Tk,i (1)

Theoretically, the headway between two consecutive trips should be constant.
However, due to the stochastic events (e.g. traffic jams, unexpected high demand
on a given stop, etc.) arose during a bus trip, the headway suffers some variability.
Such variability can provoke other events that may decrease the existing headway
following a snowball effect (as illustrated in Fig. 1). The BB occurs not only when
a bus platoon is formed but sooner, when the headway becomes unstable. The
headway between two consecutive buses is defined as unstable whenever it is
strictly necessary to apply a corrective action in order to recover the headway
value to acceptable levels. Such threshold is usually defined in function of the
frequency f = h1 (the time between the departure of two consecutive buses) [6].
Let the BB occurrence be expressed as an boolean variable defined as follows

BUNCHING =

{
1 if ∃ hi ∈ H : hi < f/4
0 otherwise

(2)

Consequently, a relationship between the BB occurrences, the headway and the
arrival time Tk,i can be established. Let the arrival time be defined as Tk,i+1 =
Tk,i + dwk,i + CTTk,i,i+1 where dwk,i denotes the dwell time on the stop i and
CTTk,i,i+1 stands for the Cruise Travel Time between those two consecutive
stops. Therefore, it is possible to anticipate the occurrence of BB events if we
are able to predict the value of dwk,i + CTTk,i,i+1, which is often denominated
by Link Travel Time [10]. In this work, we develop a probabilistic method to
detect BB events that settles on Link Travel Time predictions based on the data
described below.
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2.1 Case Study

The source of this data was STCP, the Public Transport Operator of Porto,
Portugal. It describes the trips from three distinct lines (A, B, C) during 2010.
Each line has two routes – one for each way {A1, A2, B1, B2, C1, C2}. Line A is
common urban line between Viso (an important neighbourhood in Porto) and
Sá da Bandeira, a downtown bus hub. Line B is also an urban line but it is an
arterial one. It traverses the main interest points in the city by connecting two
important street markets: Bolhão - located in downtown - and Mercado da Foz,
located on the most luxurious neighbourhood in the city. Line C connects the
city downtown to the farthest large-scale neighborhood on the region (Maia).

This dataset has one entry for each stop made by a bus running in the route
during that period. It has associated a timestamp, the weekday (MON to SUN)
and a day type (1 for work days, 2-6 for other day types i.e.: holidays and
weekends). Table 1 presents some statistics about the set of trips per route
considered and the BB events identified. The BB Avg. Route Position represents
the percentage of route accomplished when these events typically arise.

3 Travel Time Prediction

Let the Link Travel Time Prediction be defined as an offline regression prob-
lem where the target variable is the cruising time between two consecutive bus
stops. Such predictions are computed in a daily basis (the forecasting horizon)
using the θ most recent days (the learning period) to train our model. Conse-
quently, we obtain a set of predictions for all the t trips of the day denoted as
P =

⋃t
i=1 Pi = {P1,1, P1,2, ..., Pt,s}. These predictions are then incrementally re-

fined in two steps: 1) trip-based and 2) stop-based. Both steps are based on the
Perceptron’s Delta Rule [11] by reusing each prediction’s residuals to improve
the further ones.

Let e denote the last trip completed before the current trip starts (i.e. c).
The trip-based refinement consists into comparing the predictions to e Pe =

Table 1. Descriptive statistics for each route considered. The frequencies are in min-
utes.

A1 A2 B1 B2 C1 C2

Number of Trips 20598 20750 20054 19361 26739 26007
Nr. of Stops 26 26 32 32 45 45
Min. Daily Trips 44 45 56 57 65 71
Max. Daily Trips 76 76 85 84 100 101
Min. Frequency 10 11 12 13 10 10
Max. Frequency 112 100 103 120 60 60
Nr. of Trips w/ BB 682 553 437 634 1917 1702
Nr. of HD events detected 63.22% 74.86% 58.31% 68.54% 49.71% 53.63%
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{Pe,1, Pe,2, ..., Pe,s} with the real times Te to update Pc. Firstly, we compute

the residuals as Re = Te − Pe and then its average value as νe =
∑s

i=1
Re,i

s .
Secondly, an user-defined parameter 0 < α << 1 is employed to set a threshold th
able to identify trips where the error is larger than expected. Consequently, th =
α ∗ fe where fe stands for the current frequency on this route (i.e. the difference
between the departure time of c and e). Three other variables are then defined:
ϑp = 0, ϑn = 0 and β′ = β. The first two are counters that are incremented
whenever the prediction error is going to the same way (positive/negative) on
consecutive trips (e.g. if μe > th ϑp is incremented; otherwise, ϑp = 0). The beta
value stands for the residual’s percentage to be added to Pc (its initial value β is
user-defined). It is initialized with another user-defined parameter 0 < β << 1
and updated according to a user-defined learning rate 0 < κ <= 1. Consequently,
if ϑp or ϑn are incremented, the Pc and β′ are updated as P ′

c = Pc ± (β′ × Pc)
and β′ = beta′+ϑ ∗ (1+κ) ∗β, respectively. If both ϑ stay the same, β′ resumes
its original value as β′ = β. These updates are performed incrementally (i.e.
whenever a real travel time for a given trip on one of its links arrives) to every
trips available in the dataset. Note that the residuals are always calculated over
the regression results Pc and not over the updated arrays P ′

c. Thereby, its calculus
is iterative but not recursive.

Given the updated predictions of two consecutive trips (P ′
c, P

′
c+1), it is possible

to obtain the predicted headways Ec = P ′
c+1 −P ′

c while the real one is obtained
asHc = Tc+1−Tc. The calculus of Ec works as an offline prediction as it does not
use information about the current headway experienced between the two trips.
The second refinement uses the headway residuals HRc = Hc − Ec to update
Ec stop-by-stop. Incrementally, we can obtain online headway predictions as
E′

c,i = Hc,i−1+Ec,i −Ec,i−1, ∀i ∈ {2, s}. The problem is to update the headway
online prediction for the next stop E′

c,i given the value of HRc,i−1. Let γ′ = γ
be the residual’s percentage to add to the prediction where its initial value for
each trip (0 < γ << 1) is an user-defined parameter. E′

c,i can be updated
as E′′

c,i = E′
c,i + (HRc,i−1 ∗ γ′). Finally, γ′ is also updated by comparing the

residuals of Ec and E′
c (HRc and HR′

c, respectively). If |HRc| > |HR′
c|, then

γ′ = γ′ ∗(1−γ). Otherwise, γ′ = γ′ ∗(1+γ). The progression of γ′ is bounded by
an user-defined domain [γmin, γmax]. The value of E

′′
c,i is also used to update the

offline predictions for further stops as E′
c,j = E′′

c,j−1 + Ec,j − Ec,j−1 ∧ j = i + 1
and E′

c,j = E′
c,j−1 + Ec,j − Ec,j−1, ∀j ∈ [i + 2, s]. Again, whenever a newer

headway value Hc, i arrives, the entire headway array E′
c,q, q ∈ {i + 1, s} is

updated accordingly. This scheme introduces a certain flexibility to handle the
real-time stochastic usually associated to this variable.

By performing these two steps, it is possible to seize distinct levels of infor-
mation to approximate the real-time link travel times incrementally. The prop-
agation of our updates for further stops on the trip is the key to anticipate
BB occurrences. The probabilistic framework devised to do so is detailed in the
following section.
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4 Event Detection

Let M denote a l × (s − 1) matrix containing the l most recent residuals2 for
headway predictions from 1 to s−1 stops ahead of the current one (c) (where s is
the number of stops) on a specific route, where l is an user-defined parameter to
set the size of the sliding window to be employed. Consequently,M [, i] represents
a vector containing the most recent residuals on headway predictions i stops
ahead. Departing from M , it is possible to build a rough approximation to the
probability density function (p.d.f.) that describes the headway on a bus stop
located i stops ahead. We do it so by assuming that all these distributions are
Gaussian3, being described by a function as Xi = fi(μ, σ). μ is given by E′

c,i or

E′′
c,1 while σ is given by the median value of M [, i] (i.e. ˜M [, i]). Considering the

hypothesis of arising a BB event on this specific stop (i.e. Hi), we can express
its likelihood as Pri(Xi ≤ f/4 | Hi). Such definition allows to quantify the
statistical significance (i.e. p-value) of occurring a BB event on that specific
stop. Using this framework, it is possible to quantify a Bunching likelihood for
all the remaining stops in the route (and also to update them each time we
obtain a newer value for the headway).

Using such estimations, it is possible to predict incrementally the BB oc-
currences in three simple steps: 1) calculate/update the Bunching likelihoods;
2) estimate a Bunching Score (BS) and 3) test if it is greater than the pre-
defined threshold. These steps are performed each time a new headway value
arrives (i.e. for each bus stop). Let j represent the latest bus stop for which
the headway value is known. BS is calculated as follows: let mj be an ordered
vector (descendent) containing the likelihoods for the remaining bus stops and
nj = 3 − ((j − 1) × 3/s) : nj ∈ N be the number of likelihoods to be used to
compute BS. Finally, we have that BSj = ¯mj [1 : nj ] as the mean likelihood of
the nj greater ones. The BS threshold is defined in function of the frequency
as thBS = 0.3 + [(f mod ρ) ∗ 0.1] : 0 < thBS ≤ 1 where ρ is an user-defined
parameter to set how many threshold levels should be defined for the frequency.
Therefore, a BB event is detected if BSi ≥ thBS . The alarm is triggered on the
nearest stop where mi ≥ thBS .

This probabilistic framework allows an incremental detection of the BB events
by refining the headway predictions reusing not only its latest true values but
also the most recent residuals. Experiments were conducted to validate this
methodology. They are extensively described in the following section.

5 Experiments

On the offline regression problem, a state-of-art algorithms was employed: Ran-
dom Forest (RF). We did so by following previous work on this topic which used

2 E.g. given the newest headway value known, Hc, the residuals for the stops ranged
between c and c− l ≥ 1 are used

3 a D’Agostino K-Squared test [12] was conducted on the headways experienced on
every stop using previous data.
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data from the same source [13]. The experiments were conducted using the R
Software [14]. A sensitivity analysis was conducted on the regression parameters
based on a simplified version of Sequential Monte Carlo method (the reader can
consult the survey in [15] to know more about this topic) on previous data. The
goal was to identify the best parameter setting to optimize the regression task.
The best parameter setting was mtry=3 and ntrees=750. The learning period
used was θ = 7 days. The error threshold to trigger the inter-trip update rule
was set to α = 0.05 while the initial value for the residual’s percentage to be em-
ployed is β = 0.01. The learning rate kappa was set to 0.3. The initial residual’s
percentage employed on the stop-based update rule is γ = 0.1 while its domain
is γ ∈ [0.005, 0.3]. Finally, the ρ was set to 360 seconds.

It is possible to divide the evaluation of our framework on two distinct con-
texts: (i) the mean absolute error and (ii) the BB detection accuracy. On the first
one, we employed a prequential evaluation [16] by evaluating just the prediction
made for the Link Travel Time performed for the next bus stop. We did so by
using the Mean Absolute Error (MAE) on (1) the offline regression output and
then on the (2) inter-trip and (3) intra-trip refinement. On the BB detection
context, the Accuracy, the Precision and the Recall as evaluation metrics. An
weighted accuracy was also employed by weighting the trips where a BB event
emerge ten times more than the remaining ones. Such cost-based evaluation was
done to address the different value on performing a false negative on detect-
ing BB event - which is largely higher than raising a false positive. The Average
Number of Stops Ahead is also displayed to show which is the forecasting horizon
that this framework can reach. The results of these experiments are presented
in the next section.

5.1 Results and Discussion

The results are presented on Table 2. More than identifying just a problematic
link or stop, this framework also identifies which is the vehicle pair where a
corrective action must be taken. In the current dataset, it was able to detect
BB events thirteen stops ahead (in average), which gives more than enough
room to perform any of the four possible corrective actions. Nevertheless its
achievements, this framework also presents some limitations, namely, on the
regression task and on the parameters employed. The regression task was tested
using only one algorithm. Even considering that it presented good results in
similar data [13], we do not know if there is another that could perform better
using a similar computational effort. On the other hand, both the prediction
refinements and the event detection framework rely on a large set of parameters.
To get a fair parameter setting can be a hard task - especially if the user has no
expertise on the case study approached. This issue can be specially relevant on
the parameters defining the learning rates and the residual’s percentages (β, κ
and γ). A large-scale sensitivity analysis on these parameters must be carried
out as future work.

On the first span of Table 2, it is possible to observe that the two update
rules have a significant impact on reducing the MAE produced by the headway
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prediction. The accuracy is high. However, the Precision is low (i.e. 52.51%).
It demonstrates that our model triggers more BB alarms than necessary. This
behavior can be partially justified by the preventive characteristics of this
framework. Nevertheless its existence, it is not possible to quantify the negative
impact it may have without regarding the corrective actions. By quantifying
the BB probability along the route, our framework also quantifies the necessary
range of the corrective action, which is given by 0 ≤ BSi − thBS < 1. This
value can also be useful to determine which may be the corrective action to
be applied in each case. The selection of a low-impact action can mitigate the
effects of this over-prediction. However, such conclusions have to be validated
by further experiments regarding such corrective actions (which are out of this
paper scope).

6 Related Work

One of the first works to address the BB phenomenon was presented by Powell
and Sheffi [17]. They devised a probabilistic model which built a set of recur-
sive relationships to calculate the p.d.f. to validate the hypothesis of forming
a platoon of vehicles on each stop. Nevertheless it has many similarities with
the work presented here, both the relationships and the distributions were cal-
culated based on a set of assumptions - and not on the real-time data. After
this paper, many others works followed the stability concept (i.e. if we guarantee
a stable headway, BB events will never emerge) by constantly introducing cor-
rective actions on the system to avoid headway instability. Some examples are
the work in [2], where each bus is an agent that negotiates with others the bus
holding time on each station or in [4], where the negotiation is centered on the
cruising speed. A more sophisticated approach to the p.d.f. estimation is done
in [5] by accounting complex models to determine dwell times or even arrivals
during such dwell times.

Table 2. Experimental results. The times are in seconds. The ALL column contains
the average for the first two spans and the sum for the last one.

A1 A2 B1 B2 C1 C2 ALL

MAE offline regression 1356.96 643.99 1475.22 1871.01 473.61 2776.57 1432.88
MAE inter-trip update 148.85 92.91 124.99 148.85 40.65 123.77 113.34
MAE incremental update 13.21 26.35 22.67 13.21 31.79 27.47 22.45

Accuracy 97.99% 96.34% 97.08% 97.83% 96.63% 93.83% 96.62%
Weighted Accuracy 93.97% 93.57% 94.57% 95.52% 95.73% 91.51% 94.14%
Precision 65.88% 40.85% 41.53% 45.70% 69.44% 51.67% 52.51%
Recall 81.81% 83.18% 83.07% 83.24% 94.48% 87.95% 85.62%
Avg. Nr. of Stops Ahead 11.85 14.78 13.88 15.01 12.96 14.52 13.83

Correct BB Predictions 558 460 363 303 1811 1497 4992
Real BB Events 682 553 437 364 1917 1702 5655
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The employment of historical data to address this problem is very recent.
In [3], a model to determine the optimal holding time in each station based
on real-time location is presented. Delgado et al. [18] also suggested preventing
passengers from boarding by establishing maximum holding times to maintain
the headway stable. The efficiency of this type frameworks is usually demon-
strated by simulations assuming i) stochastic demand and/or traffic events or
2) using historical data. Despite their usefulness, all these works do not account
the historical and the real-time data. Moreover, they have a low interpretability
because their outputs do not provide any clew on which is the best corrective ac-
tion to took (usually, these works just pick one corrective action). The predictive
method presented along this paper is able to deal with the network stochasticity,
independently on which corrective action we want to take. Finally, it is important
to highlight that the majority of the works on the literature try to maintain the
headway stable at cost of some schedule uncertainty (introduced by the constant
corrective actions), independently on the existing risk on forming a bus platoon
on a further stop. By the abovementioned reasons, the authors believe that the
proposed framework meets no parallel in the existing literature on this topic.

7 Final Remarks

In this paper, a probabilistic framework to anticipate the occurrence of BB
events in real-time was presented. This framework employs Supervised Machine
Learning techniques that incrementally refine predictions on the Link Travel
Time of each bus trip. The residuals of such predictions are then used to build
Gaussian Distributions on the headway values which can be used to estimate the
Bunching likelihood on each bus stop. Experiments conducted on a real world
data set of six bus routes running on the city of Porto, Portugal throughout
an year validated this a framework as a step forward on automatizing the BB
prediction task.

The present work is a proof of concept on the usefulness of predicting BB
events instead of trying to maintain the headway stable at all cost. This work can
be extended on three distinct axis: 1) the dataset, by including a larger dataset
containing a set of lines representative of the entire network; 2) the parameter
setting, by conducting a large-scale sensitivity analysis on their values and 3)
on the corrective actions, by proposing a method to choose where and when a
action should be took to avoid BB, as well as one to choose which is the best
one to took in each case. Such issues comprise open research questions to be
explored on future work.
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Abstract. More and more data come with contextual information de-
scribing the circumstances of their acquisition. While the frequent pat-
tern mining literature offers a lot of approaches to handle and extract
interesting patterns in data, little effort has been dedicated to rele-
vantly handling such contextual information during the mining process.
In this paper we propose a generic formulation of the contextual fre-
quent pattern mining problem and provide the CFPM algorithm to mine
frequent patterns that are representative of a context. This approach is
generic w.r.t. the pattern language (e.g., itemsets, sequential patterns,
subgraphs, etc.) and therefore is applicable in a wide variety of use cases.
The CFPM method is experimented on real datasets with three different
pattern languages to assess its performances and genericity.

1 Introduction

In the data mining field as well as in every data-related domain, more and
more data come with contextual information detailing the circumstances under
which data have been acquired. A concrete example lies in the explosion of
mobile phone usage accompanied by information about the user location and
user profiles. Another omnipresent example is related to the Web, where users
often give some information about themselves (e.g., on forums or social media)
that can be used to better understand their Web usage.

While mining patterns of very various forms and structures (itemsets, se-
quences, episodes, subgraphs, spatio-temporal patterns, etc.) has been studied
extensively in the past two decades [6], there has been little interest in fully ex-
ploiting the surrounding data, i.e., the so-called contextual data. Many machine
learning approaches can however benefit from this contextual information to
finely analyze or exploit the data. In the current paper, we study and propose a
solution for mining frequent patterns in the presence of contextual information.
More precisely, the contributions of this paper are twofold:

– Providing a generic theoretical framework.We propose a formalism for
defining contextual frequent patterns that does not depend on a particular
pattern language. This framework has the ability to generalize the frequent
pattern mining problem to consider available contextual information.

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 239–250, 2014.
© Springer International Publishing Switzerland 2014
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– Contextual frequent pattern mining algorithm. We also propose a
new algorithm, so-called CFPM, which is generic w.r.t. the pattern language
and the underlying mining algorithm. This approach is based on relevantly
post-processing the output of existing algorithms, meaning that it can be ap-
plied in conjunction with any algorithm that aims at solving a transactional
frequent pattern mining problem and offers a great applicability range.

While seminal work has already defined the basis of contextual frequent pat-
tern mining in the case of sequential patterns [12,13], the existing work has the
following drawbacks: (1) its formulation is only dedicated to sequential patterns,
while we are interested in providing a generic formulation applicable to most
frequent patterns definitions; (2) the algorithm designed to mine contextual fre-
quent sequential patterns uses specific techniques that make it unusable for other
pattern languages. We build upon this previous work and show that the princi-
ples of mining contextual frequent patterns are not inherently associated to one
pattern language, or even to one mining method, and can be used in conjunction
with a lot of existing previous work for a great flexibility and applicability. Min-
ing contextual frequent patterns only relies on pattern frequency and does not
relate to how a pattern frequency contrasts with the rest of the database. Such
patterns, found in the literature as discriminative patterns, contrast patterns or
correlated patterns [4] do not fall within the scope of this study.

The remaining is organized as follows. Section 2 defines the contextual fre-
quent pattern mining problem. Then, Section 3 describes the proposed CFPM

algorithm. Experiments are conducted in Section 4 and some conclusions and
prospects are given in Section 5.

2 Contextual Data and Frequent Patterns

This section aims at formalizing the frequent pattern mining problem as well
as its extension for handling contextual information. According to [10], a large
family of pattern mining problems can be specified with the following formula-
tion: given a database D, a class of patterns P called a pattern language and
a selection predicate q, it consists in finding the set {p ∈ P | q(D, p) is true}.
This definition is refined as follows to describe the transactional frequent pattern
mining problem addressed in this study.

Definition 1 (Transactional frequent pattern mining). A transaction is
a couple T = (tid, oT ), where tid is a unique transaction identifier, and oT is
the transaction object, i.e., an object provided in an arbitrary description space.
A transactional database is a set of transactions.

The pattern language is associated with a support operator ≺, such that
a transaction T supports a pattern p (or p is supported by T ) if p ≺ T . From
the support operator, one can define the frequency of p in D as the fraction of

transactions in D supporting p: FreqD(p) = |{T∈D|p≺T}|
|D| .
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Frequent patterns are those whose frequency is above a user-specified mini-
mum frequency threshold. In other terms, given a transactional database D,
a pattern language P, a pattern support operator ≺, and a minimum frequency
threshold σ, the transactional frequent pattern mining problem refers to
finding the set F(P , D,≺, σ) = {p ∈ P|FreqD(p) ≥ σ}.

As an example, the well-known frequent itemset mining problem [1] within
this transactional setting can be: given an alphabet of items I = {a, b, c, d, e},
transaction objects are itemsets, i.e., subsets of I. The pattern language P is
defined as 2I and the support operator ≺ as the set inclusion operator between
patterns and transaction itemsets. For instance, given a pattern p = {a, d} and
a transaction T = (t, {a, b, d, e}), then p ≺ T because {a, d} ⊆ {a, b, d, e}.

Figure 1(a) provides an example of a transactional database of itemsets D
using the alphabet I. The first column gives the identifier of each of the 14
transactions, while the second one provides the corresponding transaction item-
set. The third column is not used in the transactional pattern mining setting.
By considering a minimum frequency threshold σ of 0.5, we notice that the pat-
tern p = {a, b} has a frequency FreqD(p) = 8/14 and is therefore frequent with
FreqD(p) ≥ σ.

tid Itemset Context

t1 {a, b, e} YS

t2 {a, b, d} YS

t3 {a, b, e} YS

t4 {a, b, c} YS

t5 {a, b} YS

t6 {a, c, d} YW

t7 {a, b, d} YW

t8 {a, b} YW

t9 {a, b, c, e} OS

t10 {b, c, d} OS

t11 {b, d} OS

t12 {b, d, e} OW

t13 {b, d} OW

t14 {a, c, d, e} OW

(a) A transactional
database with associated
contexts.

A

Y OS W

YS YWOS OW

(b) A context hierarchy.

Fig. 1. A transactional contextual database composed of (a) a transactional database
of itemsets with the associated minimal contexts, and (b) a context hierarchy

Such a theoretical framework is representative of a large fraction of frequent
pattern mining approaches appeared in the literature in the past decades. These
problems exploit a transactional view of the data, i.e., they are represented under
the form of a collection of transactions and frequent patterns are those mapped
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to at least a given number of transactions. Among pattern mining problems that
do not enter this family, an example is the relatively recent problem of mining
patterns in one unique large graph or network, addressed for instance in [3].

We are interested in enriching this transactional setting for mining frequent
patterns in the presence of contextual information, i.e., data describing some
circumstances regarding each transaction. We therefore introduce the context
hierarchy to manipulate this contextual information.

Definition 2 (Context hierarchy). A context hierarchy H is a directed
acyclic graph (DAG), denoted by H = (VH, EH), such that

– VH is a set of vertices also called contexts,
– EH ⊆ VH × VH is a set of directed edges among contexts.

H is naturally associated with a partial order <H on its vertices, defined as
follows: given c1, c2 ∈ VH, c1 <H c2 if there exists a directed path from c2 to c1
in H. This partial order describes a specialization relationship: c1 is said to be
more specific than c2 if c1 <H c2, and more general than c2 if c2 <H c1.

A minimal context from H is a context such that no more specific context
exists in H, i.e., c ∈ VH is minimal iff �c′ ∈ VH | c′ <H c. The set of minimal
contexts in H is denoted as V −

H .

A context hierarchy aims at offering more information about the elements
of a transactional database D when mining frequent patterns. A transactional
database and a context hierarchy are combined to produce a contextual trans-
actional database D, i.e., a triple (D,H, δ) such that:

– D is a transactional database,
– H is a context hierarchy,
– δ is a function δ : D → V −

H mapping each transaction from D to a minimal
context in H.

In a contextual transactional database D, a transaction T is explicitly mapped
to a minimal context given by c = δ(T ). By following the intuition that a transac-
tion associated to a very specific context also is part of the more general contexts,
we define the database induced by c, denoted by D(c), as the subset of D which
is associated with c. More formally, D(c) = {T ∈ D|(δ(T ) <H c) ∨ (δ(T ) = c)}.

Example. To illustrate the contextual database notions, let first consider Fig-
ure 1(b) which provides a visual representation of a context hierarchy. Contexts
are the labels of vertices, such as contextual information is given by the age
(young or old, respectively shorten to Y and O) and the season (summer or win-
ter, respectively shorten to S and W). Some examples of contexts provided by
this context hierarchy shown in Figure 1(b) are (from the more specific to the
more general) YS, S, or A, respectively corresponding to “transactions associated
to young people in summer”, “transactions associated to summer (regardless of
the age of people)” and “all (A) the transactions regardless of the age and sea-
son”. The third column of Figure 1(a) describes the δ function by mapping
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each transaction to a minimal context, such as the first transaction identified
by t1 associated with the context YS, i.e., δ(t1) = Y S. Figure 1 hence provides
a contextual transactional database D. From this δ mapping, we notice for in-
stance that the database induced by YS (i.e., D(Y S)) is the set of transactions
of identifiers t1, . . . , t5, while D(A) is the set of all transactions.

2.1 When Should a Pattern Be Associated with a Context?

The contextual frequent pattern mining problem aims at discovering patterns
whose the property of being frequent is context-dependent. In order to study and
highlight the interest of exploiting contextual information within the frequent
pattern mining process, we below isolate two patterns from our running example.

Case 1. Itemset {a, b} is frequent in D (FreqD({a, b}) = 8/14). However, con-
sidering the database and its fragmentation given by contextual information,
one can notice that {a, b} is frequent in the fraction of D corresponding to
young people (Y) with a frequency of 7/8 while it is infrequent in the rest of
D, i.e., old people. In the following, we will state that this pattern, while
frequent in A, is not general in A because it is not frequent in every context
contained in A. On the other hand, this pattern is general in Y because, in
addition to be frequent in Y, it is also frequent in YS (FreqY S(p) = 5/5) and
YW (FreqY W (p) = 2/3), i.e., all contexts contained in Y.

Case 2. p′ = {b, d} is not frequent in D (FreqD(p′) = 6/14), while it however is
frequent in O (FreqO(p) = 5/6) as well as in the contexts contained in O: its
frequency is 2/3 both in OS and OW.

Case 1 shows that simply mining frequent patterns within a context does
not necessarily provide representative patterns. In addition, Case 2 shows a
pattern that is representative of a given context, but mining frequent patterns
in the whole database could not make such patterns emerge as the context they
represent is not large enough relatively to the whole database.

The next section exploits these intuitions to formally define what types of
frequent patterns are mined in a contextual database and how they relate to the
context hierarchy.

2.2 Contextual Frequent Patterns: A Formal Definition

The current section applies the contextual transactional setting defined above
to first reformulate the notion of frequent pattern within a context and then
introduce the notions related to the contextual frequent patterns (CFPs).

Definition 3 (c-frequent pattern). A pattern p is frequent in c, or c-frequent,
iff p is frequent in D(c), i.e., if FreqD(c)(p) ≥ σ. For the sake of readability, we
denote FreqD(c)(p) with Freqc(p).
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As discussed in the previous section, we are interested in patterns being rep-
resentative of a context, i.e., such that their frequency property holds for all the
descendants of this context. Such patterns are called general patterns and are
used to define CFPs.

Definition 4 (c-general pattern). A pattern p is general in c, or c-general,
iff p is c-frequent and p is c′-frequent ∀c′ | c′ <H c.

Definition 5 (Contextual frequent pattern). A contextual frequent pattern
is a couple α = (c, p), such that p is c-general. α is said to be generated by p.
(c, p) is context-maximal if there does not exist another context c′ more general
than c and such that (c′, p) is a CFP, i.e., �c′ ∈ VH|(c <H c′) and p is c′-general.

The CFP mining problem consists in enumerating all the context-maximal
CFPs given a contextual database D and a minimum frequency threshold σ.

The set of CFPs that are context-maximal constitutes an exact condensed
representation of the set of CFPs, as no CFP cannot be derived from a context-
maximal one. Indeed, following Definition 4, one may notice that if a pattern
is c-general, then it is also general in all descendants of c. Therefore, mining all
CFPs in D is equivalent to mining context-maximal CFPs only.

The CFP mining framework also has the advantage of associating to each con-
text in H less patterns than what a typical transactional frequent pattern miner
would provide (as being frequent in a context is only one of the requirements for
a pattern to generate a CFP). To some extent,

3 Mining Contextual Frequent Patterns

This section describes how CFPs are mined given a contextual transactional
database, by defining two approaches: (1) a baseline approach that makes direct
use of the definitions given in Section 2, and (2) a more efficient approach that
relies on theoretical properties emerging from the CFP mining framework.

3.1 A Baseline Approach

By relying on the requirements listed in Definition 4, Algorithm 1 provides a
baseline approach to extract context-maximal CFPs. This approach relies on
the following steps: (1) extracting frequent patterns from every possible context
(lines 2-4), (2) for each context c and each pattern p frequent in c, checking the
c-generality and context-maximality of (c, p) (lines 5-11).

Mining all the contexts in order to enumerate all their frequent patterns ob-
viously is very time-consuming, as it requires to run an external pattern miner
for each context separately. We therefore study in the following some theoretical
properties in order to allow a more efficient extraction of CFPs.
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Algorithm 1. A Baseline Approach

Require: A contextual database D, a minimum frequency threshold σ
Ensure: Set of contextual frequent patterns in D
1. C ← ∅ // initialize the set of discovered CFPs

2. for c ∈ D do
3. Fc ← frequent patterns in c
4. end for
5. for c ∈ D do
6. for p ∈ Fc do
7. if p is c-general and context-maximal then
8. C ← C ∪ {(p, c)} // generate and store the contextual pattern

9. end if
10. end for
11. end for

3.2 CFPM: A More Efficient Post-processing Approach

The approach described in Algorithm 1 trivially exploits the definition of con-
textual data and CFPs and leads to costly calculation, in particular by first
extracting frequent patterns from each possible context. We highlight some in-
teresting properties to reduce redundant calculations, in particular by reducing
the executions of the frequent pattern miner. As opposed to [12,13], we focus
in this paper on providing a generic post-processing algorithm that, from the
output of existing frequent pattern miners, generates the CFPs.

Additional properties of contextual general patterns. A context can be
uniquely described by its minimal descendants in H. To this end, we consider
the decomposition of a context c in H as the set of minimal contexts in H being
more specific than c, i.e., decomp(c,H) = {c′ ∈ V −

H |(c′ <H c) ∨ (c′ = c)}. For
instance, decomp(Y ) = {Y S, Y W} and decomp(Y S) = {Y S}.

Property 1. p is c-general iff p is c′-frequent ∀c′ ∈ decomp(c).

Property 1 (whose proof can be found in [12] and adapted to the current frame-
work) is essential by allowing the reformulation of the c-generality property w.r.t.
minimal contexts only. The checking of c-generality requirements for a context
thus becomes much simpler: a pattern p is c-general if and only if the set of
minimal contexts where p is frequent includes the decomposition of c. Extending
this property to context-maximal CFPs is straightforward. CFPM, as presented
in Algorithm 2, exploits this property. It can be decomposed into the following
consecutive steps:

Mining. (lines 2-4) Frequent patterns are extracted from each minimal context.
As opposed to Algorithm 1, CFPM does not mine non-minimal contexts.

Reading. (lines 5-8) Output files from previous step are read and patterns p
are indexed by the set of minimal contexts where they are frequent, i.e., lp.
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Algorithm 2. CFPM: Contextual Frequent Pattern Mining

Require: A contextual database D, a minimum frequency threshold σ
Ensure: Set of contextual frequent patterns in D
1. C ← ∅ // initialize the set of discovered CFPs

2. for c ∈ V −
H do

3. Fc ← frequent patterns in c
4. end for
5. for p ∈

⋃
c∈V −

H

Fc do

6. lp ← {c ∈ V −
H | p ∈ Fc}

7. K[lp] ← K[lp] ∪ {p}
8. end for
9. for l a key in K do
10. for c ∈ maxContexts(l,H) do
11. for p ∈ K[l] do
12. C ← C ∪ (p, c) // generate and store a CFP

13. end for
14. end for
15. end for

Then, K is a hash table with keys being sets of minimal contexts and values
being sets of patterns, such asK[l] containing the patterns p such that lp = l.
The cost of this step mainly lies on intensive I/O processing.

Coverage Computation and Pattern Generation. (lines 9-15)During this
step, each key of K is given to the maxContexts routine (line 10) which per-
forms a bottom-up traversal of the vertices of H in order to return the set of
maximal contexts among {c ∈ VH | decomp(c) ⊆ l}. This is the coverage
computation step. Then, for each pattern p such that l = lp(line 11) and each
context returned bymaxContexts (line 10 ), one context-maximalCFP is gen-
erated and stored (line 12 ).Twopatterns p and p′ frequent in the sameminimal
contexts (i.e., lp = lp′) are general in the same contexts. They will generate the
same result via the maxContexts routine. By using the hash tableK to store
the patterns that are frequent in the sameminimal contexts, the number of calls
tomaxContexts is greatly reduced to the number of keys inK rather than the
number of distinct patterns discovered during themining step.

Discussion. Mining minimal contexts only is an essential advantage over the
baseline approach. CFPM’s post-processing oriented design also offers the possi-
bility to use it with any transactional frequent pattern miner, whatever the struc-
ture of mined patterns (e.g., subgraphs, episodes, sequential patterns, itemsets,
etc.). This genericity also is the main advantage over previous work [12,13].

4 Experimental Results

The implementation of the algorithm is divided into two parts. First, a Ruby

wrapper is in charge of running external pattern miners, reading their output,
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and eventually generating the CFPs. Ruby’s flexibility is particularly relevant
for designing a generic approach, where final users should be able to add new
components with very little effort to support new pattern languages. Second, a
C++ module is in charge of the maxContexts routine of Algorithm 2, as it offers
better performances without any drawbacks regarding genericity or usability.

The CFPM approach has been extensively experimented in order to assess its
main features. Therefore, we have performed experiments implying real datasets
and three common pattern languages, namely itemsets [1], sequential patterns [2]
and subgraphs [9]. Each of these pattern languages involves different theoretical
frameworks and algorithms. Experiments have been conducted on an Intel i7-
3520M 2.90GHz CPU, with 16 GB memory.

Contextual Frequent Itemsets. First, in order to study the behavior of
CFPM when considering the frequent itemset mining problem [1], we have used
the APriori algorithm as implemented in [5]. The dataset used for this experi-
ment initially comes from [8]. It consists of 100, 000 product reviews published
on the amazon.com website. Reviews have been lemmatized and grammatically
filtered1. The remaining words compose the item alphabet and each review is
represented as a transaction. Contextual information associated with the reviews
is composed of the type of product, the rating given by the user and the propor-
tion of positive feedbacks received. The resulting context hierarchy contains 210
contexts, whose 48 are minimal. The interested user may refer to [12] for details.

Contextual Frequent Sequential Patterns. The second pattern mining
problem addressed with CFPM considers frequent sequential patterns as defined in
[2]. To this end, CFPM uses the PrefixSpan [11] algorithm as implemented in the
SPMF project [5]. The used dataset is the same as the one described above for
frequent itemset mining, except that reviews have been converted to sequences
of itemsets2. It is also the same as the one previously used in [12].

Contextual Frequent Subgraphs. In order to address the subgraph pat-
tern language [9], we use a dataset that has been constructed to study the mu-
tagenicity property of some molecules [7]. It contains 6, 512 molecular graphs,
such that each one is associated with a label that indicates whether it is muta-
gene or not. Contextual information is composed of the mutagenicity label, the
molecular weight, and the source dataset from which the molecule has been ex-
tracted. The merging of these pieces of information produces a context hierarchy
containing 39 contexts whose 10 are minimal.

Results. First of all, Figures 2(A1,B1,C1) show a large difference of runtimes
when comparing the baseline approach with CFPM, for every used dataset and pat-
tern language. This gap of runtime is mainly due to the fact that the baseline
approach first requires to mine frequent patterns from each context, while CFPM

1 Remaining terms are non-modal verbs, nouns, adjectives and adverbs.
2 The conversion follows the principle that each sentence of the review is an itemset,
and the order of itemsets in a sequence results from the order of sentences.
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only mines minimal contexts, that are less numerous and smaller. Then, Figures 2
(A1,B1,C1) provide a view on how the runtime of CFPM is decomposed accord-
ing to the algorithm steps. The largest fraction of time corresponds to the mining
step, i.e., running pattern miners for each minimal context. This fraction system-
atically increases while the minimum frequency threshold decreases. Of course,
this fraction of runtime also depends on the underlying implementations and al-
gorithms. For instance, the time required to mine sequential patterns is relatively
much larger (cf. Figure 2(B1)).

Figures 2(A2,B2,C2) show the total amount of patterns regarding their type.
First, let consider the number of distinct patterns (i.e., the distinct frequent pat-
terns discovered during the mining step) compared with the number of context-
maximal CFPs. As expected, the latter is always greater than or equal to the
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Fig. 2. Time consumption for mining CFPs for itemsets (A1), sequential patterns
(B1) and subgraphs (C1), and number of distinct patterns and contextual patterns for
itemsets (A2), sequential patterns (B2) and subgraphs (C2).
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number of distinct patterns since every distinct pattern generates at least one
CFP. On the other hand, the total number of CFPs (i.e., not necessarily context-
maximal ones) is much higher, therefore demonstrating the interest of proposing
a condensed representation of contextual frequent patterns.

5 Conclusion and Prospects

In this paper, we adapt the transactional setting for mining frequent patterns by
considering the contextual information associated with transactions. We there-
fore define a theoretical framework for CFP mining and propose a relevant algo-
rithm for mining such patterns in a totally generic way regarding the pattern lan-
guage. By generalizing the typical transactional setting and by post-processing
the output of existing frequent pattern miners, the proposed approach provides
the benefit of being able to be used in conjunction with any such frequent pattern
miner developed during the last decades. Such an approach provides opportu-
nities to be exploited in numerous application domains where data are often
accompanied with contextual information, e.g., the mining of mobile data where
spatial and temporal information may be used as contextual data or user profil-
ing on the Web, where user activities may be mined under the scope of contextual
information about the user such as location, age, etc.

The contextual pattern mining approach offers numerous prospects, such as
for instance adapting it to the case of relying on discriminative patterns rather
than frequent patterns in the context hierarchy, or considering the case where
contextual information is imprecise (i.e., some transactions are mapped to a
non-minimal context).
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Abstract. In the “classifier chains” (CC) approach for multi-label clas-
sification, the predictions of binary classifiers are cascaded along a chain
as additional features. This method has attained high predictive perfor-
mance, and is receiving increasing analysis and attention in the recent
multi-label literature, although a deep understanding of its performance
is still taking shape. In this paper, we show that CC gets predictive power
from leveraging labels as additional stochastic features, contrasting with
many other methods, such as stacking and error correcting output codes,
which use label dependence only as kind of regularization. CC methods
can learn a concept which these cannot, even supposing the same base
classifier and hypothesis space. This leads us to connections with deep
learning (indeed, we show that CC is competitive precisely because it is a
deep learner), and we employ deep learning methods – showing that they
can supplement or even replace a classifier chain. Results are convincing,
and throw new insight into promising future directions.

1 Introduction

Multi-label classification (MLC) is the supervised learning problem where an
instance is associated with multiple binary class variables (i.e., labels), rather
than with a single class, as in traditional classification problems ([12]). The
typical argument (which this paper reanalyzes) is that, since these labels are
often strongly correlated, modeling the dependencies between them allows MLC
methods to improve their performance.

As in general classification scenarios, an n-th feature vector (instance) can be

represented as x(n) = [x
(n)
1 , . . . , x

(n)
D ], where each xd ∈ R|d = 1, . . . , D. In the

traditional binary classification task, we are interested in having a model h to
provide a prediction for test instances x̃, i.e., ŷ = h(x̃); where h, probabilistically
speaking, seeks the expectation E[y|x] of unknown p(y|x). In MLC, there are L
binary output class variables (labels), and we are interested in predictions

ŷ = [ŷ1, . . . , ŷL] = h(x̃) = argmax
y∈{0,1}L

p̂(y|x̃)

where yj = 1 indicates the relevance of the j-th label; j = 1, . . . , L.

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 251–262, 2014.
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Fig. 1. BR (1a) and CC (1b) as graphical models, L = 4. Unlike many typical Bayesian
networks, we have lumped x = [x1, . . . , xD] into a single variable.

FromN labelled examples (training data) D = {(x(n),y(n))}Nn=1, we infer h. A
most basic solution is to train L binary models. This method is called binary rele-
vance (BR); illustrated graphically in Fig. 1a. BR classifies an x̃L times as hBR(x̃) :=
[h1(x̃), . . . , hL(x̃)].

Practically the entirety of the multi-label literature points out that the inde-
pendence assumption among the labels leads to suboptimal performance (e.g.,
[16,7,3,15,20] and references therein), and that for this reason BR cannot achieve
optimal performance. A plethora of methods have been motivated by a perceived
need to modelling this dependence and thus improve over BR. For example, Meta-
BR (MBR, also known in the literature as ‘stacked-BR’ and ‘2BR’) [7,3] stacks the
output of one BR as input into a second (meta) BR1, so as to learn to correct
errors. For some x̃,

hMBR(x̃) := h′
BR(hBR(x̃))

A related approach uses subset mapping (SM, e.g., as in [18]) to force infrequent
label vector predictions to a more frequent ones,

hSM(x̃) := argmin
y∈Ytrain

�(y, hBR(x̃))

where Ytrain are all distinct y(n) from the training data D and �(y, ŷ) is some
penalty function typically rewarding small Hamming distance and high frequency
in D. SM is very closely related to error-correcting output code methods [6] and,
like MBR, can be seen as a regularizer. The penalty goes to ∞ if y �∈ Ytrain,
meaning that any predictions of label combinations not seen in the training set
will be ‘corrected’.

As an example, movie genres adult and family may be mutually exclusive in
the training set, and having a regularization/correction component to avoid this
classification at test time may lead to improved performance (over BR).

The classifier chains method (CC, [16]), illustrated in Fig. 1b, models label
dependence by using binary label predictions as extra input attributes for the
following classifier, in a chain, and therefore models labels and inputs together,

1 There is no consensus in the literature as to whether it is best to also include the
x-space input again, or simply the label outputs h(x), as input to the meta BR.
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rather than correcting labels as a separate step. In the original formulation with
greedy inference,

hCC(x̃) :=
[
h1(x̃), h2(x̃, h1(x̃)), . . . , hL(x̃, h1(x̃), . . . , hL−1(x̃))

]
.

CC variants have consistently performed strongly in the literature and there have
been numerous extensions, variations and analyses, e.g., [2,20,15,11,5]. However,
the reasons for its high performance are only recently being unravelled. In this
paper, we throw new light on the subject.

Two focus points for improvement of CC have been the inference, and the order
of the labels in the chain. Originally, [16] suggested an ensemble of randomly-
ordered chains (ECC) with voting, whereas two recent high-performing CC meth-
ods [11] and [15], use beam and Monte Carlo search, respectively to obtain one
well-ordered chain. We use the latter, which we denote MCC, in empirical com-
parisons, as well as ECC with 10 random chains.

2 Label Dependence in Multi-label Learning

The idea of leveraging label dependence to improve performance vs BR intu-
itively makes sense. However, the understanding behind this is only recently
taking shape, with the authors of [2,5,4] opening an important discussion from
a probabilistic perspective, noting the difference between

– marginal dependence, where p(yj |yk) �= p(yj); and
– conditional dependence, where p(yj |yk) �= p(yj|yk,x).

Thus MBR and SM model marginal dependence, whereas CC models conditional
dependence, by learning labels and input together.

An interesting point of debate is the following: given infinite data, can two
separate binary models on labels yj and yk achieve as good performance as one
that models them together (e.g., MBR, CC) – assuming the same base classifier
(say, logistic regression)? Among others, [16,5] ponder if BR has been underrated
and could equal CC’s performance with enough training data. Indeed, [4] make
the case that it should be possible make risk-minimizing predictions without any
particular effort to detect or model label dependence. This seems to throw into
doubt the bulk of the contributions to the multi-label literature.

It is also worth recalling here, that labels cannot only be learned together
or separately, but also evaluated together or separately. A typical measure for
the latter case is the Hamming score, which is widely used in MLC empirical
evaluations. However, many MLC papers quietly overlook the fact that achieving
statistically significant improvement over BR in this measure is difficult to obtain.
This seems to add to [4]’s claim.

Proposition 1. If we can predict E(Y2|Y1,x) to a certain degree of accuracy
under some evaluation measure, then it is also possible to predict E(Y2|x) with
at least the same accuracy under the same measure.

We elaborate on this in the following sections.
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3 Analysis on Synthetic Datasets

Using the following synthetic datasets with the methods discussed above
(Section 1), with logistic regression as a base classifier, we run some experiments
to expand on the discussion from Section 2. Results are given in Tab. 1.

– Localization: a scenario (see Fig. 2) where labels correspond to pixels which
represent floor tiles in a room, and are active/relevant (yj = 1) if an object
is on them. Light sensors signal detection (with 90% accuracy) xd = 1 if an
active tile lies between the sensor location and the light source. For each of
1000 instances (two thirds of which are used for training), a line of three tiles
is activated (yj = 1 for three j) in a random location in the grid, and another
tile is activated in the furthest corner from that line; which is always a blind
spot (undetectable by sensors). Based on the real-world deployment of [14].

– Logic: Two binary attributes,X1, X2, deterministicallymapped to three labels
Y1, Y2, Y3, corresponding to and(X1, X2), or(X1, X2), xor(X1, X2) (binary
logical operations). We generate 20X1, X2 randomly, and use 12 for training.
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Fig. 2. Top-down view of a grid of L tiles in a room. There are D sensors, which signal
detection (xd = 1) with 90% probability if any of the active tiles (yj = 1) lie between
sensors (black semi circles) and the light source (black bar at the bottom). Here, three
sensors have detected an object. Note the blind spot.

We use two standard, opposing evaluation methods,

Hamming Score :=
1

NL

N∑
n=1

L∑
j=1

[
y
(n)
j = ŷ

(n)
j

]
, and

Exact Match :=
1

N

N∑
n=1

[
y(n) = ŷ(n)

]
which are used in almost all MLC evaluations. Hamming Score (which we
mentioned in the previous section) rewards methods for predicting individual
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Table 1. Predictive Performance on Toy Datasets with per-dataset (rank)
Hamming Score

Dataset BR CC SM MBR ECC MCC

Localization 0.992 (1) 0.992 (1) 0.991 (4) 0.991 (4) 0.991 (4) 0.992 (1)
Logic 0.833 (5) 1.000 (1) 0.750 (6) 0.875 (3) 0.875 (3) 1.000 (1)

Exact Match

Dataset BR CC SM MBR ECC MCC

Localization 0.412 (5) 0.491 (2) 0.455 (3) 0.408 (6) 0.447 (4) 0.497 (1)
Logic 0.500 (6) 1.000 (1) 0.625 (3) 0.625 (3) 0.625 (3) 1.000 (1)

labels well, whereas Exact Match rewards a higher proportion of instances
with all label relevances correct.

Given much of the discussion in the literature, one could understand that
a method which models label dependence would excel on Localization. This
could be claimed for exact match; but the number of correct label relevances
(Hamming score) is essentially identical across all methods. Despite the obvi-
ous label dependence here (wrt the position and shape of the ‘relevant’ pixels),
conditioning on x (i.e., training BR) suffices for high label-wise precision.

The results on Logic indicate the opposite case: BR is clearly unable to learn
the concept, even though we can be sure that E[y3|y2, y1,x] = E[y3|x]. Further-
more, although SM and MBR model label dependence, they cannot learn the con-
cept either: their regularization cannot make up for the fact that their underlying
BR models fail. CC and MCC score perfectly. ECC under-performs, so apparently CC

only performs well under certain label orders (and got ‘lucky’); confirmed by MCC,
which finds one good order before final training. MBR does actually have a structure
suitable for learning xor, but apparently training cannot leverage it properly.

The authors of [5] uncovered a similar case with their probabilistic classi-
fier chains (originally presented in [2], using Bayes-optimal inference instead of
greedy inference for CC), putting it down to this method’s “expanded hypothe-
sis space” (it trials all 2L combinations for ŷ at inference time). This, however,
cannot be the complete answer, since the original CC makes L separate binary
decisions just like BR; thus the same hypothesis space.

With real-world datasets it is difficult to postulate, but on the Logic dataset
it is clear that BR’s accuracy will never reach 1 even under infinite data, since its
h3 model will never learn xor. The performance gap in Tab. 1 is a convincing
50 percentage points for Exact Match. CC’s h3 is a perfect model, even with
the same base classifier.

In the next section we explain how CC works as a deep structure, of up to L
levels (let us simply state that any structure of more than one level is deep) and
for this reason can outperform BR as well as the ‘regularization’-type methods
like MBR and SM.
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4 Why Classifier Chains Works

Fig. 3 shows CC on Logic. It is clear how it learns the xor label (Y3): by leveraging
off labels Y1 and Y2, which are acting like hidden units of a neural network. In
terms of neural networks it is actually more than required; Fig. 3c shows the
smallest neural network that can learn xor as demonstrated in [17]2.

y3y2y1

x

(a) CC standard depiction

y3

y2y1

x

(b) redrawn wrt y3

y3

y2y1

x

(c) Minimum net-
work able to learn
xor function

Fig. 3. CC with three labels, as in the Logic dataset. Note we show (for now) x = [x1, x2]
as a single variable.

In Fig. 4, as a probabilistic graphical models interpretation, are the junction
trees (see [1]) of two of the models, showing that Fig. 3c can be tractable.
Standard CC (Fig. 3a—3b) is fully connected and thus many forms of inference
are intractable; a known issue [2,15].

y1, y2, y3y1, y2x, y1, y2

(a) Junction Tree of Fig. 3c

f1, f2, f3x, f1, f2, f3 f1, f2, f3, y3

(b) Junction Tree of Fig. 5b

Fig. 4. Junction Trees for different formulations

It is a straightforward interpretation of CC to think of labels being used as
features to predict other labels. Let us not forget though that all estimated labels
are derived from the input. Where labels are manually assigned to instances,
then yj = fj(x) are feature functions of the human mind, which (for a logistic
regression base learner hj) is being approximated by a sigmoid function on a
linear combination of the input. From here we could get to conditional random
fields (as in [2]), but we will continue through another route. From the point of
view of y3, there are three inputs (x still treated as a single variable),

y3 = h3(f1(x), f2(x, f1(x)),x)

2 Earlier, pessimistic results about solving the XOR problem with neural networks
[13] resulted in the decline of neural networks research.
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See Fig. 5a. It is clear that f1 and f2 are simply transformations of the input.
In the case of CC with logistic regression as a base classifier,

fj(x) := σ(w�
j [x1, . . . , xD, fj−1(x), . . . , f1(x)])

where σ is the logistic/sigmoid function, but we can easily imagine arbitrary
(possibly non-linear) transformations of the input, and an arbitrary number of
such functions: f∗

1 (x), . . . , f
∗
K(x); see Fig. 5b. Note independence among f∗

k (x).

y3

f2(·)f1(·)

x

(a) Sigmoid functions

y3

f∗
1 (·) f∗

2 (·) f∗
3 (·)

x

(b) Arbitrary func-
tions

Fig. 5. As in Fig. 3b, but labels are shown as transformations of the input. Fig. 5a is
easily equivalent to Fig. 5b in the case where f∗

3 (x) = x, etc.

There is no reason to assume that the number of labels (L) equals the number
of desired features (K). If we include the rest of the labels, expand x into D
nodes, X1, . . . , XD and invert the graph such that the Y label variables are now
at the top, the result is Fig. 6a. These last two changes are purely presentational,
but important for what comes next.

Since f∗
k is an arbitrary function, and two hidden layers are enough for uni-

versal approximation ability [9] of any arbitrary function, Fig. 6a is therefore
equivalent to the deep network of Fig. 6b with, e.g., a sigmoid function for all
layers; i.e.,

z
[1]
k = σ

( D∑
d=1

xdwdk

)
for the first layer, wherewjk is a weight on the link between xd and hidden node zk.

The two hidden layers can be learned by restricted Boltzmann machines
(RBMs) [8]. This means that training BR on the top layer (z[1] vectors) can
theoretically be as competitive as CC trained on the input (x vectors). In fact
they can be equivalent, except that the RBMs discover feature functions, instead
of trying to approximate the human feature functions (labels) available. Indeed,
we do obtain top performance (as with CC, MCC) on Logic (not shown).

In other words, since all labels are related to the input, with an adequate
(possibly non-linear) binary model, we can predict a label yj just as well as
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y3y2y1

f∗
4 (·)f∗

3 (·)f∗
2 (·)f∗

1 (·)

x5x4x3x2x1

(a) A non-linear transform of
the feature space

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

(b) A deep belief network with
two hidden layers

Fig. 6. A network with a non-linear transform of the feature space (left) and two
layers to approximate it (right)

we could given also the prediction of another label yk. Other labels are simply
additional features of the input, albeit often quite powerful ones, since they
often represent human neural circuitry (i.e., human concepts). The true function
behind the concept is of course typically not known, but given the true outputs
in the training data, they can be approximated (standard supervised learning).

Whereas a typical basis function is deterministic, the f∗
k (x) are not (neces-

sarily), as reflected in the RBMs. Guided by this, in the next section we employ
some deep learning methods and show them to be effective. But Tab. 2 already
hints that random features can help in a classifier-chains approach (particularly
when the chain is carefully ordered). Models with random activations have been
considered in e.g., [19], or in ‘extreme learning machines’ [10] – but as a single
hidden layer and not directly into the label space as we consider here.

Table 2. Per-label accuracy on theMusic dataset (see, e.g., [12]), from 5×CV, with (+)
and without 10 random labels (i.e., feature functions), of the form yk = σ(

∑D
d=1 wdkxd)

for random w

label CC CC+ MCC MCC+

amazed 0.759 0.793 0.772 0.776
happy 0.688 0.692 0.722 0.734

relaxing 0.764 0.755 0.764 0.781
quiet 0.895 0.890 0.882 0.895

sad 0.835 0.819 0.793 0.827
aggressive 0.759 0.814 0.793 0.819
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5 Deep Multi-label Learning

Since labels can be seen as high-level features of the input, other higher-level
features should also positively affect predictive performance. For example, from
an image, a feature for the presence of a grainy surface such as sand or pebbles,
or for being adjacent to a (significant) body of water should help us predict
beach just as much (or better) than label urban. We can use RBMs to learn
layers of such hidden features, in an unsupervised fashion. These hidden layers
can capture complex dependencies and structure from the input space.

If the features are powerful, the label variables become independent. This is
intuitively attractive, because humans do not recognise beaches depending on
the probability that what they see is urban or not. Unfortunately, learning high
level features in an unsupervised fashion is not as easy as trying to approximate
labels from training data. Powerful algorithms and computational resources are
needed – a currently active field of research.

Tab. 3 show results, comparing baseline BR, MBR, and MCC, with deep learning
approaches3: namely two RBMs plus a multi-label learner, either BR, MCC, or
with back-propagation (BP) as in [8] but for MLC; all denoted with D. Also
we included [21]’s BP multi-label learner (BPMLL); a multi-layer neural network
not initialized using RBMs. All experiments in this paper are carried out with
the Weka-based Meka framework4 with a setup like [15] (the datasets are
described there). We used a single parameter combination for RBMs for all
datasets (namely 30 hidden units per layer, learning rate 0.1, momentum 0.2,
5000 iterations) chosen ad-hoc – to avoid intensive parameter tuning on many
datasets. Implementations are available within Meka. All base classifiers hj

are logistic regression (Weka’s implementation). We evaluated using Hamming
score and exact match described earlier, and additionally the micro averaged
F-measure,

Micro Averaged F1 := F1([y
(1)
1 , . . . , y

(N)
L ], [ŷ

(1)
1 , . . . , ŷ

(N)
L ])

where F1(a,b) returns the F1 score of binary vectors a and b.
Overall D·MCC performs best under exact match, but not as well as D·BR or

DBP (which are closely related) under Hamming score – a result which corre-
sponds with our discussion; D·MCC provides extra depth with a CC, but with the
RBMs underneath BR already becomes very competitive – especially compared
directly to baseline BR. A well-ordered CC (MCC) is still very powerful for exact
match, but even better performance can be obtained with additional learned
features. We could speculate that advances in deep learning should eventually
reduce the effectiveness of CC, as higher-level features make labels more inde-
pendent. Although, on the other hand, many kinds of CC models are more
interpretable than RBMs (and usually faster to train), and may therefore still
be interesting for many applications.

3 Space does not permit a review of RBMs and deep learning, see e.g., [8] for details.
4 http://meka.sourceforge.net

http://meka.sourceforge.net


260 J. Read and J. Hollmén

Table 3. Predictive performance on real datasets, with dataset-wise (rank)

Exact Match

Dataset BR MBR BPMLL MCC D·MCC D·BR DBP

music 0.193 (6) 0.193 (6) 0.252 (3) 0.208 (5) 0.218 (4) 0.267 (2) 0.287 (1)
scene 0.286 (6) 0.292 (5) 0.554 (2) 0.353 (4) 0.476 (3) 0.582 (1) 0.183 (7)
yeast 0.150 (5) 0.137 (7) 0.161 (4) 0.198 (2) 0.204 (1) 0.149 (6) 0.179 (3)
genbase 0.960 (3) 0.955 (4) 0.271 (7) 0.965 (1) 0.965 (1) 0.950 (5) 0.950 (5)
medical 0.439 (4) 0.457 (3) 0.194 (7) 0.474 (2) 0.361 (5) 0.200 (6) 0.521 (1)
enron 0.022 (5) 0.022 (5) 0.010 (7) 0.028 (4) 0.161 (1) 0.054 (2) 0.043 (3)

avg. rank 4.83 5.00 5.00 3.00 2.50 3.67 3.33

Hamming Score

Dataset BR MBR BPMLL MCC D·MCC D·BR DBP

music 0.761 (5) 0.762 (4) 0.776 (2) 0.742 (6) 0.726 (7) 0.772 (3) 0.791 (1)
scene 0.807 (4) 0.802 (6) 0.895 (1) 0.807 (4) 0.847 (3) 0.895 (1) 0.731 (7)
yeast 0.786 (3) 0.780 (5) 0.790 (2) 0.771 (7) 0.780 (5) 0.784 (4) 0.791 (1)
genbase 0.998 (3) 0.998 (3) 0.932 (7) 0.999 (1) 0.999 (1) 0.998 (3) 0.998 (3)
medical 0.980 (4) 0.981 (2) 0.969 (6) 0.981 (2) 0.971 (5) 0.967 (7) 0.984 (1)
enron 0.892 (6) 0.904 (5) 0.939 (3) 0.884 (7) 0.940 (2) 0.947 (1) 0.937 (4)

avg. rank 4.17 4.17 3.50 4.50 3.83 3.17 2.83

Micro-Averaged F1

Dataset BR MBR BPMLL MCC D·MCC D·BR DBP

music 0.570 (7) 0.571 (6) 0.603 (2) 0.574 (5) 0.580 (3) 0.577 (4) 0.629 (1)
scene 0.463 (5) 0.406 (6) 0.668 (1) 0.480 (4) 0.621 (2) 0.576 (3) 0.199 (7)
yeast 0.599 (6) 0.618 (3) 0.633 (2) 0.601 (5) 0.607 (4) 0.588 (7) 0.639 (1)
genbase 0.987 (1) 0.985 (2) 0.276 (5) 0.985 (2) 0.341 (4) 0.200 (6) 0.174 (7)
medical 0.665 (3) 0.655 (4) 0.315 (7) 0.681 (2) 0.557 (5) 0.487 (6) 0.771 (1)
enron 0.372 (5) 0.248 (7) 0.483 (2) 0.353 (6) 0.475 (3) 0.493 (1) 0.466 (4)

avg. rank 4.50 4.67 3.17 4.00 3.50 4.50 3.50

6 Conclusions

The high performance of the classifier chains (CC) approach can be seen as
stemming from its leverage of labels as high-level features in a deep cascading
structure across binary classifiers. This contrasts with many other approaches
based on binary classifiers, that leverage label dependence in a regularization
step, but provide limited additional learning power. We demonstrated several
scenarios where CC can learn a concept where other methods fail.

We argued that if labels can be considered high-level features stemming from
the input, then it is possible to learn such features independently of the training
data. We employed deep-learning approaches (using restricted Boltzmann ma-
chines) to learn such higher-level features, and obtained provide strong perfor-
mance, particularly when supplemented with a top-layer chain. Results indicate
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that further advances in multi-label classification will come from better models
of features, and borrow from thus-related fields, rather than obsessive modelling
of high-level label ‘correlations’.

Many deep-learning methods have other important advantages, particularly
in online and semi-supervised settings. We intend to investigate this, as well as
produce further empirical study.
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5. Dembczyński, K., Waegeman, W., Hüllermeier, E.: An analysis of chaining in multi-
label classification. In: ECAI: European Conference of Artificial Intelligence. Fron-
tiers in Artificial Intelligence and Applications, vol. 242, pp. 294–299. IOS Press
(2012)

6. Ghani, R.: Using error-correcting codes for text classification. In: ICML 2000: 17th
International Conference on Machine Learning, pp. 303–310. Morgan Kaufmann
Publishers, Stanford (2000)

7. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification.
In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056,
pp. 22–30. Springer, Heidelberg (2004)

8. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

9. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2(5), 359–366 (1989)

10. Huang, G.-B., Wang, D., Lan, Y.: Extreme learning machines: A survey. Interna-
tional Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)

11. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in proba-
bilistic classifier chains with beam search. In: Flach, P.A., De Bie, T., Cristianini,
N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 665–680. Springer,
Heidelberg (2012)

12. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimen-
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Abstract. Probabilistic topic models were successfully used to achieve
the personalization task using query logs. Thus, both users and previ-
ously clicked results are considered when estimating probability distru-
butions in order to answer users’queries. However, the proposed models
are generally parametric and require to define in advance the number
of topics. Moreover, they can not deal with new users. To overcome
these limitations, we propose a model called the Hierarchical personal-
ized Dirichlet Processes (HpDP) that personalizes search and allows to
automatically learn the number of latent topics. It also addresses the
challenging problem of predicting results for new users. We compare
our model, with recent topic models and use them to rank online prod-
ucts by their likelihood given a particular user/query pair. Experiments
performed on data from a real online products comparator show the
effectiveness of our approach.

1 Introduction

Building user profiles is an important component of personalization systems. In
fact, in commercial applications, personalization relies on user profiles to help
adapting the content of websites in order to propose information that best fits
the user’s interests. To achieve these ends, we should first gather information
about users and build their profiles from the analysis of this information. Many
reported approaches enable to get necessary knowledge about the users in order
to build their profiles. An approach consists of considering information from
the current search session to build short term profiles [10]. In [8], an approach
attempted to build long-term user profiles. In [1], the authors have shown how
these short and long-term profiles can be combined. Once prior interaction data
are selected, the following step is to convert it into a user profile in order to
perform a representation of the user’s interests. Different techniques enable to
generate these profiles. The authors of [6] adapted an approach using vectors of
the original terms. Another approach, described in [7], aims to map the user’s
interests onto a set of topics, which can be defined by the users themselves.
Then, an additional approach enables to extract these topics from large online
ontologies of websites, such as the Open Directory Project [3].

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 263–275, 2014.
c© Springer International Publishing Switzerland 2014
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A new technique that starts to arouse interest, consists in using latent topic
models [9] to determine these topics instead of employing a human-generated
ontology. Topic models are considered as a tool for exploratory and predictive
analysis of text. The most used topic model is the latent Dirichlet allocation
(LDA) [2]. It posits that a small number of distributions over words, called
topics, can be used to explain the observed data.

It is in this perspective that a new model that extends the LDA for the
analysis of the personalized search problem was proposed in [5]. A user/topic
distribution was added in the graphical model of LDA, involving the user in the
generative process. The experimental results were not satisfactory and have not
allowed to conclude that personalization increases the performance. The authors
hypothesized that this negative effect on the ranking lists, may be related to
the integration of the user in the generative process, because it makes the user
very influential in the model and can be overwhelming information derived from
data, while this information can be more useful. Thereafter, in [4], a model was
presented for personalized search from query logs using sets of latent topics
derived directly from the log files themselves, where the user is not included in
the generative process, but subtly introduced as part of the ranking formula,
which is used to rank products for a given query. The authors concluded that
there is an improvement in performance compared to non-personalized models.
We will compare this system, called the PTM, with our proposed model. Two
main shortcomings of the PTM are (1) it assumes a fixed prespecified number
of topics regardless of the data and (2) it is unable to deal with new users.

We thus propose a new model, which enables to overcome this limit. Indeed,
our HpDP model, is an extension of the HDP [13]. It allows to automatically
learn the number of topics from the data. Once the topics have converged, we will
be able to identify their number, and then introduce a user/topic distribution to
determine the topical interests of users, and predict products for new users. We
demonstrate the effectiveness of our approach through experiments conducted
on web user sessions collected by a real online products comparator.

2 The HpDP Model

2.1 Background

Mixture models explicitly model the existence of K sub-populations in the data.
Each sub-population is represented by a probability distribution:

p(w |θ, φ1:K) =
K∑

k=1

θkf(w |φk)

where w is a data point, θk is the mixture proportion and f(.|φk) is the density
function of the sub-population k. Under a Bayesian setting, prior distributions
are specified for θ and φk. Since they are multinomial distributions, we use the
Dirichlet distributions as their conjugate priors. Given the specification of the
prior distributions, Bayesian mixture models specify likelihood of data point w
as follows:
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p(w |Δ) =

∫
θ

∫
φ1:K

K∑
k=1

θkf(w |φk)dθdφ1:K

whereΔ is the set of hyperparameters used to specify the prior distributions for θ
and φk. To derive the posterior distributions for θ and φk, we turn to approximate
inference methods since exact inference is intractable. Thus, we use Gibbs sam-
pling [9] by introducing a latent variable zn for each data pointwn to specify which
sub-populations or mixture component the data wn belongs to. The distribution
of wn conditioned by the latent variable zn can be expressed as:

p(w |zn = k,Δ) =

∫
φk

f(w |φk)dφk

The limit of the mixture models introduced above is that it is necessary to
specify in advance the number of sub-populationsK. To overcome this limitation,
we assume that K is infinite:

p(w |π, φk) =
∞∑

k=1

πkf(w |φk)

where θ is a draw from π. The next step is to evaluate the specifications of
φk and the prior distribution over the mixture proportion π, which is infinite-
dimensional. The theoretical basis of this approach is the hierarchical Dirichlet
processes (Figure 1 (Right)). In fact, DP (γ,H) is a distribution over a proba-
bility measure G0. It is defined by 2 parameters: γ > 0 which is a concentration
parameter and H which is a base measure used to generate the parameters φk

of the sub-populations K. We note G0 ∼ DP (γ,H).

2.2 Model Description

In this section, we present the generative process of our proposed model, the
hierarchical personalized Dirichlet processes (HpDP) given in Figure 1 (Left).

Let wdi be the ith word token in the user’s query which led to a click on
product d, and zdi its chosen topic. The generative process of the HpDP follows
the following steps:

1. π|γ ∼ Beta(1, γ)

2. zdi|θd ∼ Multinomial(θd)

3. wdi|zdi, φzdi ∼ Multinomial(φzdi)

We place priors on the parameters θd and φzdi :

4. φzdi ∼ H

5. θd|α ∼ Dirichlet(απ)

After topics convergence, and for a fixed number of topics:

6. udi|zdi, ψzdi ∼ Multinomial(ψzdi)

7. ψzdi |ε ∼ Dirichlet(ε)
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Fig. 1. (Left) Graphical Model of the HpDP, (Right) Graphical Model of the HDP

where π is the distribution over topics and H the distribution over the vocab-
ulary (query items), α and γ are concentration parameters.

Since prior knowledge of the number of topics is difficult, we propose this
model that can determine it automatically. In the HpDP, we have an infinite
number of topics (θd and π are infinite-dimensional vectors), and we use a stick-

breaking representation [12] for π: πk = π̃k

∏k−1
l=1 (1 − π̃l) for k = 1, 2, ... where

π̃l|γ ∼ Beta(1, γ).
Using the notation of the Dirichlet process, we have: Gd ∼ DP (α,G0) and

G0 ∼ DP (γ,H) where: Gd =
∑∞

k=1 θdkδφk
and G0 =

∑∞
k=1 πkδφk

are sums of
point masses, and H is the base distribution.

2.3 Approximate Inference

We consider a product dwith a probability distribution overwords zd1, zd2, ..., zdnd

that make up the query that led to a click on product d. Since Gd ∼ DP (α,G0),
we can characterize this distribution bydescribing how to generate zd1, zd2, ..., zdnd

using the Chinese Restaurant Process (CRP) [13]. In fact, the CRP considers nd

customers in a Chinese restaurant, with an unlimited number of tables. The first
customer sits at the first table. The next customer sits at an occupied table with a
probability proportional to the number of customers already present, or sits at an
unoccupied table, with a probability proportional to α. Suppose customer i sits at
table tdi, the conditional distributions are:

tdi|td1, ..., tdi−1, α ∼
∑
t

ndt∑
t′ ndt′ + α

δt +
α∑

t′ ndt′ + α
δnew
t (1)

where ndt is the number of customers currently at table t. When all customers
have sat, we associate to table t a draw ζdt from G0 and we set: zdi = ζdtdi . We
perform this process independently for each product d, we obtain all the Gd(s)
together with an assignement of each zdi to a sample ζdtdi from G0, with the
partition structure given by CRP(s). We note that all ζdt(s) are i.i.d draws from
G0 ∼ DP (γ,H). We apply the same CRP partitioning process to the ζdt(s).
Suppose that the customer associated with ζdt sits at table kdt, the conditional
distributions are:
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kdt|k11, ..., k1n1 , k21, ..., kdt−1, γ ∼
∑
k

mk∑
k′ mk′ + γ

δk +
γ∑

k′ mk′ + γ
δnew
k (2)

Now, we associate with table k a draw φk from H and we set: ζdt = φkdt
.

Thus, the generative process for the zdi(s) is completed, and we marginalize out
G0 and all the Gd(s). This generative process is called the Chinese Restaurant
Franchise (CRF). The CRF is defined by three variables: t = (tdi), k = (kdt)
and φ = φk. We describe an inference procedure based on Gibbs sampling t , k
and φ given data points w . Let f(.|φ) and h be the density funtions for F (φ)
and H respectively. The conditional probability of tdi given the other variables
is proportional to the product of a prior and likelihood term. The prior term is
given by (1) and the likelihood is given by f(wdi|φkdt

) where for t = tnew, we
can sample kdtnew using (2), and φknew ∼ H . Thus, the distribution is:

p(tdi = t|t\tdi, k ,φ,w) ∝
{
αf(wdi|φkdt

) if t = tnew

n−i
dt f(wdi|φkdt

) if t currently used

where n−i
dt is the number of tdi′ equal to t except tdi. In the same manner, the

conditional distribution of kdt is:

p(tdt = k|t , k\kdt,φ,w) ∝
{
γ
∏

i:tdi=t f(wdi|φk) if k = knew

m−t
k

∏
i:tdi=t f(wdi|φk) if k currently used

where m−t
k is the number of kdt′ equal to k except kdt.

Finally, the conditional distribution for φk is:

p(φk|t , k ,φ\φk,w) ∝ h(φk)
∏

di:kdtdi
=k

f(wdi|φk)

For further details on the calculations, see [13].
Once topics have converged, we calculate the user/topic distribution ψ in order
to consider the user profiles when ranking online products.

2.4 Calculation of the User/Topic Distribution

Since we are in the case where the variables are observed (topics which have con-
verged in addition to users), we use the maximum likelihood method to estimate
ψ (the user/topic distribution). Indeed, in the case of Bayesian estimation, the
objective is to find the most likely parameters ψ given the observed data using
a priori parameters. Bayes rule gives us:
L = p(ψ|u, z) ∝ p(u, z|ψ)p(ψ) ∝ p(u|z, ψ)p(ψ)
Since ψ is a multinomial distribution, its conjugate prior distribution is a Dirich-
let distribution whose coefficient is ε. Thus, forK topics and U users, L becomes:

L =
K∏

k=1

U∏
u=1

ψNuk
uk

K∏
k=1

U∏
u=1

Γ (Uε)

Γ (ε)U
ψεk−1

uk =
Γ (Uε)

Γ (ε)U

K∏
k=1

U∏
u=1

ψNuk+εk−1
uk

where Γ is the gamma function. Taking the logarithm of that term, we obtain:

logL = log
Γ (Uε)

Γ (ε)U
+

K∑
k=1

U∑
u=1

(Nuk + εk − 1) logψuk (3)

To simplify the calculations, we assume that the Dirichlet coefficients are equal:
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ε1 = ε2 = ... = εK = ε. We know that:
∑U

u=1 ψuk = 1, thereby: ψUk = 1−
∑U−1

u=1 ψuk.
By injecting the last two equations in equation (3), we obtain:

logL = log
Γ (Uε)

Γ (ε)U
+

K∑
k=1

(U−1∑
u=1

(Nuk + ε− 1) logψuk + (NUk + ε− 1) log(1−
U−1∑
u=1

ψuk)
)

By taking the derivative of this term with respect to ψuk, we get:

∂ logL

∂ψuk
=

Nuk + ε − 1

ψuk
− NUk + ε − 1

1−
∑U−1

u=1 ψuk

=
Nuk + ε− 1

ψuk
− NUk + ε− 1

ψUk

By seting this term to zero, we get the maximum of ψuk that we denote ψ̂uk:

N1k + ε − 1

ψ̂1k

=
N2k + ε − 1

ψ̂2k

= ... =
NUk + ε − 1

ψ̂Uk

=

∑U
u=1(Nuk + ε − 1)∑U

u=1 ψ̂uk

=

U∑
u=1

(Nuk + ε − 1)

Thus: Nuk+ε−1

ψ̂uk
=

∑U
u=1(Nuk + ε− 1)

Finally, we get the expression of the user/topic distribution:

ψ̂uk =
Nuk + ε− 1∑U

u=1(Nuk + ε− 1)
(4)

This equation will be used to rank products according to the user’s query.

2.5 Predicting Products for New Users

The limit of personalization systems is their inability to handle queries of new
users. We propose the following approach to overcome this limitation:

1. For each new user, generate his/her distribution over the query items (vo-
cabulary containing words composing all users queries) using LDA.

2. Calculate the probability distribution of old users over the query items (the
same vocabulary size).

3. Calculate the KL divergence between a new user distribution over query
items and each of old users distributions.

4. Select the old user uold for which the KL divergence is the lowest.
5. Predict products for the new user using his/her query and the user/topic

distribution of the selected uold.

2.6 Ranking Online Products

In this section, we describe formulas for ranking products using the parameters
that were estimated based on the HpDP. We aim to return to the user a ranked
set of products (d ∈ D) according to their likelihood given his/her query q =
{w1, w2, ..., wn}. The formula in the case of a non-personalized model (LDA) is:

p(d|q) ∝ p(d)p(q|d) = p(d)
∏
w∈q

p(w|d) = p(d)
∏
w∈q

∑
z

p(w|z)p(z|d) (5)
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where: p(d) = Nd
N

, Nd is the number of words composing the user’s query, which
led to a click on product d and N is the total number of words composing all
users’queries.
The ranking formula consists of multiplying a prior on the probability of the
product (which we denote p(d)) with the probability of the query given the
product (which we denote p(q|d)). This latter quantity can be estimated by
introducing latent topics. Indeed, topic models allow to estimate the probability
of words given topics p(w|z) and the probability of topics given products p(z|d).
By introducing the user in the graphical model, we have information about the
queries issued by a user. Thus, the user’s preferences can be included into the
ranking formula. This means that we rank products according to their likelihood
given both the query and the user as follows:

p(d|q, u) ∝ p(d)
∏
w∈q

p(w,u|d) = p(d)
∏
w∈q

∑
z

p(w|z)p(u|z)p(z|d)

This model can be extended by introducing an additional parameter λ in the
range zero to one, in order to weight the probability of a user given a particular
topic p(u|z) as follows:

p̃(d|q, u) = p(d)
∏
w∈q

∑
z

p(w|z)p(u|z)λp(z|d) (6)

The introduction of this new parameter enables us to control the amount of
influence that the user’s topical interests may have on the ranking.

3 Experiments

3.1 Dataset

The dataset is from the query logs of a real products comparator1 that connects
potential buyers with major brands and distribution networks in the market of
mobile telephony. We used two datasets, each one is based on a 1-month web
log file. We have chosen to use data covering different periods to ensure that the
model works regardless of the circumstances (promotion, flash sales, seasonal
products, ...). The training data is generated automatically from log file without
any human intervention.

For data cleaning, we have kept the queries which had resulted in a product
selection. Then, we have selected only products for which more than 6 users
had clicked on at least once. Finally, we selected only users with more than 6
remaining queries. This preprocessing step is carried out to ensure that users
have made a significant number of queries and that products were also viewed
reasonably. Table 1 gives a description of final corpus. Our log file is composed
mainly of 7 attributes: the ID of the transaction, the ID of the user session, the
mobile provider, the package, the package features, the user’s query and the date
when the query has been made. Table 2 shows an example of two transactions
from this query log. In our experiments, we consider that a product is represented
by the triplet: (Package, Mobile Provider, Package features).

1 http://www.choisirsonforfait.com/

http://www.choisirsonforfait.com/
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Table 1. Datasets features

Dataset 1 Dataset 2

Training subset size 1,053 Training subset size 1,049

Testing subset size 60 Testing subset size 65

# Users 130 # Users 132

# Products 103 # Products 106

# Query items 100 # Query items 101

Table 2. Log file format

Id Session Package Mobile Provider Features Date User’s query

3 73f08e Mobile plan 1 Mobile Provider A 2-years contract 2013-01-15 11:57:22 sms & cell phone

2 ce77d6 Mobile plan 2 Mobile Provider B 2 hours plan 2013-01-15 11:57:15 1 hour of calls

3.2 Methodology

The cleaned data is separated in two subsets: training subset (∼ 95% of data) and
testing subset (∼ 5% of data). We have selected the last queries of each user for
testing, to respect the order in which the queries were made. Thus, the training
and testing subsets follow the same chronological order. We ranked products
according to scores values defined above. Concerning the parameter setting, we
set the Dirichlet prior α to be 0.1/K, where K is the number of topics used for
experiments. We evaluate the rankings by calculating two standard measures in
the field of information retrieval: the Mean Reciprocal Rank (MRR) and the
Mean Average Precision (MAP). We report these measures up to rank 6, since
in information retrieval, it is valuable that pertinent products appear early in
the ranked list. We consider that a ranked product is relevant if it is the same
product the user had actually viewed. In order to determine if the hierarchical
process is improving the ranking performance, we report another metric that we
call the hierarchical personalization gain (HP-Gain). This metric compares the
number of times the HpDP improves the ranking (which we denote #better) to
the number of times it worsens it (which we denote #worse). A simple expression
of this equation is given by:

HP-Gain =
#better−#worse

#better+#worse

When the value of this metric is 0, then there is no change between the HpDP
and the other models, when it is positive, this means that our model improves
the ranking and when it is negative, the ranking is deteriorated.

3.3 Results

Top K Products-Based Evaluation. Table 3 shows the results of the rank-
ing experiments for the HpDP, the PTM and the LDA. An advantage key of
our approach is that we do not have to vary the number of topics in order to
obtain the optimum number of topics, since the HpDP enables to automatically
determine them. In fact, we found 7 topics for the first dataset and 9 topics for
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the second one. However, to be fair with the two other models, we performed
them by varying the number of topics. We notice an improvement compared to
the PTM and the LDA. Moreover, we recall that the reciprocal rank of a query
is the multiplicative inverse of the rank of the first correct answer and that the
mean reciprocal rank is the average of the reciprocal ranks of results for a set
of queries. This means that if the first proposed product to the user is relevant,
then the reciprocal rank is equal to 100%, and if the first relevant product is
second-ranked, then the reciprocal rank is equal to 50%. The mean reciprocal
rank obtained by the HpDP is 69.47%, which means that the product it pro-
poses to the user is broadly either ranked first or second. Therefore, we compute
another metric which is Precision@n to determine how much products should
be proposed to the user so that the ranking will be the best.

Table 3. Ranking performance of the models on the test set over all queries (λ = 0.10):
(Top) Results for the first dataset, (Bottom) Results for the second dataset

Number of Topics
Measures Models 5 7 10 15 20 25 30 35 40 45 50

MRR (%)
HpDP - 69.47 - - - - - - - - -
PTM 65.17 63.13 61.79 61.42 55.70 57.22 56.11 62.17 59.70 60.69 61.63
LDA 61.08 59.79 55.71 53.35 61.63 59.21 57.53 59.71 58.93 57.56 59.09

MAP (%)
HpDP - 64.15 - - - - - - - - -
PTM 57.96 58.18 58.65 55.49 53.85 52.11 55.55 54.00 54.46 55.54 53.01
LDA 56.97 55.12 53.61 51.03 60.37 55.47 54.24 54.51 52.23 51.24 52.37

Number of Topics
Measures Models 5 9 10 15 20 25 30 35 40 45 50

MRR (%)
HpDP - 68.04 - - - - - - - - -
PTM 60.28 60.73 61.67 58.53 62.78 57.07 60.58 58.39 57.64 61.45 60.05
LDA 55.15 56.12 56.39 57.81 60.13 58.00 54.59 57.25 55.96 58.86 57.73

MAP (%)
HpDP - 64.10 - - - - - - - - -
PTM 53.56 55.53 59.84 54.30 58.89 54.59 56.49 56.53 54.80 57.43 54.00
LDA 53.72 53.91 52.52 53.07 57.15 54.05 56.06 51.46 50.67 54.53 52.79

Table 4. Precision evolution according to the number of proposed products

HpDP PTM LDA

Measures Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

p@1 68.33 % 69.23 % 68.33 % 66.67 % 63.33 % 64.62 %

p@2 66.66 % 63.07 % 63.33 % 63.33 % 60.00 % 61.54 %

p@3 61.66 % 58.46 % 53.33 % 51.67 % 41.66 % 50.77 %

Table 4 shows the obtained result, which confirms our intuition about the
relevance of the first and second ranked products, that are proposed to the user
given his query. For the next experimentations, we will use 10 topics for PTM
and 20 topics for LDA since their precisions are the best using these numbers of
topics.

Influence of λ on the Gain. In this section, we highlight the influence of
the parameter λ in terms of HP-Gain and hence on performance improvement.
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Fig. 2. The effect of varying the λ parameter in the ranking algorithm: (Left) Results
for the first dataset, (Right) Results for the second dataset

In fact, the parameter λ plays an important role in the ranking formula for the
HpDP, since it enables control over the amount of influence the user profile has
on the products’scores. We tested the effect of this parameter within the range
of {0, 0.05, 0.1, ..., 0.3}. When λ = 0, the estimates of HpDP are the same as
those given by the HDP. Figure 2 shows an improvement performance, over all
queries. The HP-Gain varies between 14% and 28%. We chose to perform our
experiments using λ = 0.10 since for this value, inter alia, the gain is maximum.

Influence of the Click Entropy on the Gain. When a given user/query
pair had been observed before, we can use this information about prior clicks by
assuming that the user will again click on the same products as before. However,
in almost cases, the user/query pair will be novel and we will not have such prior
information to exploit. We will use a measure called the click entropy to identify
such unambiguous queries. The click entropy of an observed query q is defined
as follows:

Hq =
∑

d∈D(q)

−p(d|q) log2 p(d|q)

where D(q) is the set of clicked products given the query q and p(d|q) is the
probability of selecting product d given the query q. Since entropy values vary
in the range zero to the logarithm of the number of distinct products clicked
on for a query, then, the range of values depends on the query. This makes the
comparison of click entropy values accross queries complicated. To deal with this
issue, we will use, in our experiments, normalized entropy values instead, where
the range of values is limited to [0, 1], this new measure is defined as follows:

Ĥq =
Hq

log2 |D(q)|

We calculated this measure for all queries. We separated these queries into two
groups: queries for which this measure is lower than 0.5 and queries for which
this measure is greater than 0.5. Then we calculated the HP-Gain for each of
the two groups containing test queries. Figure 3 shows how the performance of
the HpDP changes as the normalized click entropy of the queries evolves.
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Fig. 3. The effect of query ambiguity in the ranking algorithm: (Left) Results for the
first dataset, (Right) Results for the second dataset

We notice that the HP-Gain increases as the click entropy increases. In fact,
it reaches 18% for queries, the normalized click entropy of which is greater than
0.5 and it drops to 14% for queries, the normalized click entropy of which is
lower than 0.5.
Predictions for New Users. Unlike the first experiment where the personal-
ization task required a particular separation of data (users in the test set must
have appeared in the training set), in this section, we divide the data randomly
(∼ 95% for training, ∼ 5% for testing). Then, we apply the procedure described
in section 2.5 and we compare HpDP to LDA (PTM can not perform this task).
HpDP found 7 topics for the first dataset and 11 topics for the second dataset.
Again, we compute the MRR and MAP for LDA by varying the number of top-
ics. Table 5 shows the obtained results. We notice that the MAP obtained using
HpDP is always greater that the LDA’s. Otherwise, the MRR obtained using
HpDP outperforms LDA’s except when considering 20 topics for LDA. Thus, we
will use 20 topics for LDA when evaluating the Precision@n, given in Table 6.
We notice again a performance improvement using our approach.

Table 5. Ranking performance of the models on the test set over all queries (λ = 0.10):
(Top) Results for the first dataset, (Bottom) Results for the second dataset

Number of Topics
Measures Models 5 7 10 15 20 25 30 35 40 45 50

MRR (%)
HpDP - 64.99 - - - - - - - - -
LDA 61.23 61.84 63.35 61.58 65.91 62.29 62.21 57.50 61.37 62.38 60.25

MAP (%)
HpDP - 61.00 - - - - - - - - -
LDA 54.59 54.91 55.28 55.72 59.12 57.26 60.35 56.64 54.81 60.43 55.07

Number of Topics
Measures Models 5 10 11 15 20 25 30 35 40 45 50

MRR (%)
HpDP - - 63.90 - - - - - - - -
LDA 59.07 54.41 55.78 58.14 64.12 53.90 59.98 60.69 59.74 58.06 62.93

MAP (%)
HpDP - - 59.11 - - - - - - - -
LDA 53.71 47.92 50.61 55.65 58.63 52.96 54.82 57.10 56.98 54.23 58.78
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Table 6. Precision evolution according to the number of proposed products

HpDP LDA

Measures Dataset 1 Dataset 2 Dataset 1 Dataset 2

p@1 65.57 % 67.14 % 63.90 % 65.71 %

p@2 62.30 % 62.86 % 60.66 % 58.57 %

p@3 59.02 % 60.00 % 57.37 % 57.14 %

4 Conclusion

In this paper, we have proposed a nonparametric Bayesian model that builds user
profiles for personalized search. The comparison with other approaches indicated
that performance can be improved through personalization. We also addressed
the prediction task for new users. The obtained results showed that our model
can further improve ranked lists

In our future work, we plan to analyze other families of function, that allow
to control the influence of the user’s topical interests on the ranking, in order to
improve the gain. In addition, we intend to introduce dynamics in our model,
either under Markovian or non-Markovian fashion.
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Abstract. We demonstrate that the previously introduced Widening
framework is applicable to state-of-the-art Machine Learning algorithms.
Using Krimp, an itemset mining algorithm, we show that parallelizing
the search finds better solutions in nearly the same time as the origi-
nal, sequential/greedy algorithm. We also introduce Reverse Standard
Candidate Order (RSCO) as a candidate ordering heuristic for Krimp.

1 Introduction

Research into parallelism in Machine Learning has primarily focused on re-
ducing the execution time of existing algorithms, e.g., parallelized k-Means
[23,17,14,26] and Dbscan [11,4,7]. There have been some exceptions, such as
metalearning and ensemble methods [9], which have employed heterogeneous al-
gorithms in parallel, and [3], which describes the application to simple examples.
Recent work [2,15] describes Widening, a framework for employing parallel re-
sources to increase accuracy. With Widening, measures of diversity are used to
guarantee the parallel search paths’ exploration of disparate regions within a so-
lution space, thereby stepping around the common greedy algorithmic tendency
to find local optima. Thus far, work has concentrated on a proof-of-concept and
demonstrative application to algorithms for solving the Set Cover Problem
and the creation of Decision Trees. This document describes the same approach,
but with a state-of-the-art algorithm, Krimp [24].

Krimp finds “interesting” itemsets from a transactional database via the Min-
imum Description Length (MDL) principle [21]. The authors summarize the
method as “the best set of patterns [being] the set of patterns that describes
the data best,” where the best set of itemsets is the set that provides the high-
est compression using MDL. The algorithm not only provides a solution to the
problem of pattern explosion, thereby greatly reducing the set of itemsets used
to generate association rules, but provides exceptional performance in other ap-
plications such as classification [24].

This paper demonstrates that it is possible to applyWidening to find evenmore
interesting sets of itemsets than those found by the standard Krimp algorithm.

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 276–285, 2014.
c© Springer International Publishing Switzerland 2014
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(a) Two models with five
refinements

(b) Three selected refine-
ments from each group of
five

(c) Two selections (yel-
low) from the group of six,
ready for the next iteration
(green)

Fig. 1. Refine and Select with l = 3 and k = 2

2 Widening

Given the set of all models, M, that describe the solution space for a typical
greedy machine learning algorithm, m(·) ∈ M is a model which describes a
portion of the solution space. It is iteratively refined by a refinement operator,
r(·), based on a subset, x, from a training dataset T , i.e., m′(·) = r(m(·), x), x ⊆
T . The derivation of a Decision Tree is one example of this process [15].

In contrast to that above, in the Widening framework a set of models,
M ⊆ M, is the result of a refinement operator based on data from T and a
diversity metric, Δ, which describes some minimum difference between the re-
sulting models, {m′

1, · · · ,m′
l}, i.e., M = rΔ(m) = {m′

1, · · · ,m′
l}. For clarity, the

data elements from the training data are eliminated from the notation.
A selection operator, stop−k(·) is employed to select the best k models at each

step [15]. Mi+1 = stop−k(rΔ(Mi)). The results of the selection operation are
further refined until some stop condition is met. This iterative refine-and-select
process, as depicted in Figure 1, is conceptually similar to a beam search [19].

3 The KRIMP Algorithm

In the area of Itemset Mining, Krimp finds the set of “most interesting” itemsets
in a transaction database based on MDL, i.e., Krimp defines the best model,
m, as the model that maximizes the compression of a transaction database, D,
encoded with that model and the compression of the model itself [21,24].

Given a database D composed of transactions t ∈ D, Krimp finds the subset
of itemsets, X , from the set of all itemsets, X , that maximally compresses D.
Krimp calculates the size of the encoded database using the codelengths of
prefix-free codes, which are related to the frequency of the appearance of an
itemset, x ∈ X , in the database and to the Shannon entropy: L(x) = − log2 P (x),
where L(x) is the codelength measured in bits of an item or itemset in the
database, and P (x) is the relative frequency of the item’s or itemset’s appearance
in the database [24].
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CT
X L(X)

∑
Database D

Candidate
Table F

ST
X L(X)

CT
X L(X)

Fig. 2. The Krimp algorithm

Krimp begins with the generation of the Standard Code Table, ST , which
is merely a code table comprised of only the individual items from the set of
all single items, I. The codelength of a given transaction, L(t) is the sum of its
compositional codelengths.

Krimp then iterates through a list of candidate itemsets, F , generated by an
algorithm external to Krimp, such as Afopt [18] or Apriori [1]. Each of the
candidate itemsets from F is temporarily inserted into the code table CT , where
all relative frequencies are determined and the compression evaluated. If it pro-
vides better compression, it is kept as part of CT and if not, it is discarded [24].
A general flow diagram is depicted in Figure 2.

The size of the encoded database, L(D|CT ), is the sum of the encoded
lengths of all transactions. The size of the encoded Code Table, L(CT |D), is
the size of each code plus the lengths of the encoded itemsets, for which the
single items from ST are used. The compressed MDL size of the database
is the size of the encoded database plus the size of the encoded code table.
L(D, CT ) = L(D|CT ) + L(CT |D) [24]

Both F and CT are ordered heuristically to maximize compression. F is or-
dered according to the Standard Candidate Order, which orders primarily by the
itemsets’ support in descending order, secondarily by cardinality in descending
order, and tertiarily by lexicographical order, as a tie-breaker. The rationale is
that itemsets with larger support are likelier to cover more transactions and are
evaluated first. Itemsets with the same support are sorted secondarily by car-
dinality, because larger itemsets cover more items in each transaction, reducing
the number of itemsets or items required to cover a transaction [24].

CT is ordered using the Standard Cover Order, which orders primarily by
descending cardinality, secondarily by descending support, and tertiarily lexi-
cographically, again as a tie-breaker. The rationale is that larger itemsets are
preferred for their ability to cover more of each transaction. Of those, the ones
with a larger support are more likely to cover more transactions in the database,
thereby providing shorter codes [24].

Krimp also includes a post-processing step for each iteration called Pruning.
If the relative frequency of any itemset in CT decreases as a result of adding a
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new itemset, CT is re-evaluated with each itemset in CT singly removed. If any
of the itemsets’ temporary absence from CT enables a better compression, it is
discarded. Results in [24] indicate that Pruning improves overall compression
performance marginally, but can dramatically reduce the number of itemsets
providing that level of compression.

4 Widenend Krimp

A given path through aKrimp solution space is based on two things: 1) the order
with which the candidate itemsets from F are evaluated, because the acceptance
of a particular itemset into CT influences which itemsets are accepted in later
iterations, and 2) the order in which the itemsets in CT are used to cover the
database. Varying either of these two heuristics’ orderings varies the solution
path through the solution space and introduces diversity from the other paths
taken.

For use as Δ in the refining function, rΔ(·), two explicit measures and one im-
plicit measure of diversity are investigated here. Explicit measures p-dispersion-
min-sum and p-dispersion-sum select maximally diverse subsets of candidates
from the candidate table. Implicit method, Directed Placement, is investigated
with respect to the ordering of the itemsets evaluated for covering the transac-
tions in CT .

p-dispersion-min-sum maximizes the sum of minimum distances between pairs
of members of the selected subset [20].

Definition 1 p-dispersion-min-sum.1 Given a set F = {F1, · · · , Fn} of n
itemsets and l, where l ∈ N and l ≤ n, and a distance measure Jaccard(Fi, Fj) :
Fi, Fj ∈ F between items Fi and Fj , the l-diversity problem is to select the set
F : F ⊆ F , such that

F ∗ = max
F⊆F
|F |=l

f(F ),where f(F ) =

l∑
i=1

min
1≤j≤l,i�=j

Jaccard(Fi, Fj), Fi, Fj ∈ F [20][16]

(1)

p-dispersion-sum maximizes the distance between all members of the selected
subset.

Definition 2 p-dispersion-sum. Given a set F = {F1, · · · , Fn} of n itemsets
and l, where l ∈ N and l ≤ n, and a distance measure Jaccard(Fi, Fj) : Fi, Fj ∈
F between itemsets Fi and Fj, the l-diversity problem is to select the set F : F ⊆
F , such that

F ∗ = max
F⊆F
|F |=l

f(S),where f(F ) =
1

l(l − 1)

l∑
i=1

l∑
j>1

Jaccard(Fi, Fj)[20,12] (2)

1 The canonical names from the literature, p-dispersion-min-sum and p-dispersion-
sum, are maintained here, even though in this context, they should be called “l-
dispersion-min-sum” and “l-dispersion-sum.”
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Fig. 3. At each iteration, the next F ∈ F is inserted into each of the parallel code
tables at a depth i

l
. Refinement is shown only for one table in each iteration.

p-dispersion-sum has the side-effect of pushing the selected members to the
boundaries of the original set. This results in selected sets that are less diverse
and representative of the dataset than those that are selected by p-dispersion-
min-sum [20].

The Directed Placement diversity heuristic functions by inserting the next
candidate itemset, F ∈ F at a position with different fractional depths into l
parallel instances of CT . The depth inserted into CT is a function of l, where
the depth is i

l |CT | : i = 1, . . . , l. Because the role of each itemset in the covering
algorithm is dependent on its position in CT , positioning F at different depths
explores diverse solution paths. This method of diversity is implicit, because the
diversity between different CT tables is not measured directly. See Figure 3.

An additional heuristic ordering of F called Reverse Standard Candidate Or-
der (RSCO) is introduced here. It orders the candidate itemsets primarily by
cardinality in ascending order, secondarily by support in descending order, and
tertiarily by lexicographical order as a tie-breaker. In combination with the Stan-
dard Cover Order heuristic for covering transactions, RSCO attempts to mimic
the Pruning subalgorithm; candidate itemsets with larger cardinality are ex-
amined later but are inserted before the smaller itemsets already in CT . With
Standard Cover Order, small itemsets whose potential ability to efficiently cover
transactions are “shadowed” by larger itemsets and have a lower relative fre-
quency used for the compression calculation. In contrast, using RSCO, smaller
itemsets that may have a beneficial effect, yet show up too late in the list to be
considered with Standard Candidate Order, can still be evaluated.
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5 Experimental Results

Compression of D with CT , L(D, CT ), is compared to a baseline compression of
D encoded using only ST , L(D, ST ). This paper follows the convention of [24]
in using the compression ratio measured in percentages, where lower is better.
L% = L(D, CT )/L(D, ST ) ∗ 100. [24]

The notation |CT \ I| indicates the number of non-singleton itemsets used.
For a given compression level, a smaller number of itemsets is considered more
interesting. Krimp optimizes for both L% and |CT \ I| by evaluating L% first,
and then bettering |CT \ I| with the Pruning subalgorithm.

All experiments were conducted in KNIME [6] and used Apriori [1,8] with
a minsupport of 1 to generate the set of closed itemsets. The datasets used were
the LUCS-KDD-DN [10] discretized versions of the Breast Cancer Wisconsin
(Original) [25] (Breast) and Pima Indians Diabetes Data Set [22] (Pima) datasets
available from the UCI-ML Data Repository [5].

Evaluations in Sections 5.1 and 5.2 compare three methods, KrimpGreedy,
KrimpRSCO and KrimpDiverse. KrimpGreedy refers to the baseline “stan-
dard” Krimp implementation used within KNIME; KrimpRSCO refers to the
implementation in KNIME, using RSCO for ordering F rather than Stan-
dard Candidate Order, because the results with RSCO for the Breast and
Pima datasets were actually better than Standard Candidate Order;2 and
KrimpDiverse refers to Krimp with a method of diversity being evaluated.
Krimp has two performance metrics for a model; solution pairs are shown in
the form of 〈L%, |CT \ I|〉. Results are shown with and without Pruning for
KrimpGreedy and KrimpRSCO. All experiments with KrimpDiverse were per-
formed without Pruning because we felt it would introduce another variable of
diversity for which we were not controlling.

Experimental solution pairs are also shown at the position found 〈l, k〉, where l
is the number of refined models and k is the number of models selected according
to compression performance.

5.1 Diverse Candidate Selection

Both of these methods of subset selection are performed with replacement, be-
cause early experiments without replacement on F candidate tables generated
from closed itemsets demonstrated that there were simply not enough candi-
date itemsets for evaluation to generate solutions sets of reasonable performance
for larger values of k. With replacement, in order for the algorithm to come
to completion, the first element in F is removed after each iteration, ensuring
the algorithm’s completion after |F| iterations. This method naturally entails a
dependency on the initial ordering of F .

A summary of the results for theBreast dataset using the p-dispersion-min-sum
diversitymetric forF candidate selection can be found inTable 1. The experiments

2 This is just an artifact for these two datasets. Preliminary results not shown here
demonstrate that RSCO does indeed perform better than SCO for some datasets,
albeit not consistently across all datasets tested.
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Table 1. Breast Dataset Results Summary

Heuristic Pruning L% |CT \ I|
F (Candidate Table) CT (Code Table)

KrimpGreedy Standard Candidate Standard Cover no 18.11 29
Order Order yes 17.61 28

KrimpRSCO RSCO Standard Cover no 17.86 28
Order yes 17.82 26

KrimpDiverse p-dispersion-min-sum + RSCO Std. Cover Order no 17.97 28
p-dispersion-sum + RSCO Std. Cover Order 19.42 34

RSCO Directed Placement 17.39 26

Table 2. Pima Dataset Results Summary

Heuristic Pruning L% |CT \ I|
F (Candidate Table) CT (Code Table)

KrimpGreedy Standard Candidate Standard Cover no 35.6 66
Order Order yes 34.4 53

KrimpRSCO RSCO Standard Cover no 34.3 63
Order yes 33.7 49

KrimpDiverse RSCO Directed Placement no 32.9 56

were run with all combinations of l ∈ {5, 10, 20, 30, 40, 50} and k ∈ {1, 5, 10, 15}.
The best solution for KrimpDiverse with p-dispersion-min-sum, 〈17.97%, 28〉 was
found at 〈l, k〉 = 〈50, 10〉, which was better than KrimpGreedy without Prun-
ing 〈18.11%, 29〉, but not better than KrimpGreedy with Pruning 〈17.61%, 28〉.
KrimpRSCO with Pruning performed even better at 〈17.82%, 26〉.

KrimpDiverse with p-dispersion-sum was run with all combinations of l ∈
{5, 10, 20, 30, 40, 50} and k ∈ {1, 5, 10, 20, 50} and as expected, the best solution
pair 〈19.42%, 34〉 was not nearly as good as that with p-dispersion-min-sum, and
was found in an even larger search space of 〈l, k〉 = 〈50, 30〉.

The experiments with KrimpDiverse with p-dispersion-min-sum were run over
a smaller search space when compared to KrimpDiverse with p-dispersion-sum
after recognizing that the results had already reached the goal of beating one of
the KrimpGreedy scores.

Due to run-time constraints (See Section 6.) experiments were not performed
with diversity-based candidate selection on the Pima dataset.

5.2 Diverse Cover Order

The results of the Directed Placement heuristic with RSCO as the Candidate
Selection heuristic are also summarized in Tables 1 and 2. Experiments were per-
formed on the Breast dataset with all combinations of l ∈ {5, 10, 20, 30, 40, 50}
and k ∈ {1, 5, 10, 15}. The heuristic found a solution 〈17.39%, 26〉 outperform-
ing the best Krimp variant. Additionally, the solution was found in a much
smaller search space, when compared to Diverse Candidate Selection, with the
best solution found first at 〈l, k〉 = 〈10, 10〉.
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The Pima dataset showed an interesting property in that paths to better
solutions were sensitive to increasing k, the number of selected models to be
refined in the next step, but not in l, the number of refinements in each step.
Better results, 〈33.2%, 61〉, than KrimpGreedy and KrimpRSCO both without
Pruning were found immediately at 〈l, k〉 = 〈5, 5〉. In fact, all solutions found
with the Directed Placement heuristic with RSCO showed better L% than ei-
ther KrimpGreedy or KrimpRSCO with or without Pruning. The best solution
found for the Pima dataset was 〈32.9%, 56〉 at 〈l, k〉 = 〈5, 50〉. This result has
significantly better compression and yields nearly the number of itemsets as
KrimpGreedy, but not nearly as good as KrimpRSCO.

6 Discussion and Future Work

In general, absolute timing values are not necessary for timing comparisons. To
a first order of approximation, Krimp runs in O(|F|×|D|×θ) where θ is a factor
describing the average length of CT during the entire execution of the algorithm.
(It should be noted that the authors of [24] saw a performance improvement in
execution speed after implementing the Pruning subalgorithm, because of a
smaller value of θ.) Accounting for application of a diversity measure and the
use of a performance measurement for selection,Krimp runs in O((|F|+Δ+Ψ)×
|D| × θ), where O(Δ) is the measure of the complexity of the diversity heuristic,
and O(Ψ) is a measure of the complexity of the performance measurement.

Although p-dispersion-min-sum was able to find comparable results to the
standard Krimp implementation (better than KrimpGreedy without Pruning),
the computational cost is significant. Selecting a subset of p diverse elements
from a larger set is a variation of the p-dispersion problem and is N P-hard [13].
Moreover, a comparison of this metric to p-dispersion-sum demonstrates what
could be a pitfall for applying p-dispersion-sum: a much wider solution space had
to be searched, 〈l, k〉 = 〈50, 10〉 versus 〈l, k〉 = 〈50, 30〉. Although at least one
of these diversity measures fulfills the desire to show that widened data mining
can find better solutions than the traditional greedy algorithm, it is insufficient
for a requirement of finding better solutions in the same or less time than the
traditional greedy algorithm, which is the ultimate goal of Widening.

Directed Placement, however, was able to significantly improve on the solu-
tion found by standard Krimp in [24]. For the Breast dataset, the results were
even better than the results found with KrimpRSCO. Directed Placement also
showed a partially better solution with the Pima dataset. In comparison to the
other diversity metrics presented here, Directed Placement has a much smaller
overhead for generating diverse solution paths. It must be noted, however, that
the claim of “better solutions in the same or faster time” in this case is not
strictly accurate. For large values of |F| and |D|, the influence of O(Δ) for the
Directed Placement diversity heuristic becomes negligible. The evaluation of the
models for selection, O(Ψ) is also negligible for Krimp, because it is merely a
comparison of the best L%. Additionally, Directed Placement provided the best
Widened result in a significantly smaller search region than the other diversity
heuristics.
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Ideally, a Widened algorithm is able to find a better or the best solution in
the same time as the traditional greedy algorithm. The pitfall of the methods
described here is that both a performance evaluation (Ψ) and a synchronized
comparison of results from the parallel workers are required. This would be
avoided with a communication-less [15] approach where the parallel workers
would be able to refine and select without requiring a synchronized comparison
step. Additionally, although the better solutions found by Widened Krimp meet
the definition of “better,” further research into how well the smaller sets perform
as classifiers or in other Krimp applications is necessary. The effects of including
the Pruning subalgorithm on the dataset compression, and the corresponding
solution space paths also require further investigation, as does the magnitude
and interplay between l and k for different datasets.

7 Conclusion

In this paper we have validated Widening for the first time using a state-of-the-
art algorithm for itemset mining, Krimp, and shown that it is possible to use
the novel approach of Widening to find significantly better solutions than that of
the traditional greedy algorithm by searching diverse regions of a solution space
in parallel. We have also introduced RSCO, a new Candidate Table ordering
heuristic for Krimp that can provide even better results for some datasets.
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(eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1451–1454. Springer, Heidelberg (1999)

24. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214 (2011)

25. Wolberg, W.H., Mangasarian, O.L.: Multisurface method of pattern separation for
medical diagnosis applied to breast cytology. Proceedings of the National Academy
of Sciences 87(23), 9193–9196 (1990)

26. Zhao, W., Ma, H., He, Q.: Parallel k-Means Clustering Based on MapReduce. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931, pp.
674–679. Springer, Heidelberg (2009)



Finding the Intrinsic Patterns

in a Collection of Time Series

Anke Schweier and Frank Höppner
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Abstract. With most approaches to pattern discovery in time series
the notion of a pattern is defined a priori and then an algorithm for
the efficient discovery of patterns is proposed. But finding the intrin-
sic patterns in a collection of time series may require a search for the
best pattern representation, too. For one dataset it may be important
to consider absolute points in time, for other datasets only the shapes
may be of interest. With some datasets reoccurring subseries match the
pattern closely and with others only loosely. We propose an MDL-based
approach to search not only for patterns, but for the intrinsic pattern
representation. The preliminary results of this unsupervised method are
promising, because in the examined (supervised) datasets the identified
representations led to patterns that discriminate between classes.

1 Introduction

The ubiquity of sensor technologies (e.g. in mobile phones) and the affordability
of storage capacities attract more and more companies to continuously record
and store data. Prominent examples are ‘open microphones’ in new Android
phones to continuously identify user commands or to create a play-list of all
songs you (incidentally) came across today (www.shazam.com). Many daily ac-
tivities (like driving a car) are potentially interesting (for the car manufacturer
or insurance company) such that one may suspect that your car “likely has a
black box spying on your already” [3]. Without necessarily sharing the visions
behind these applications, the examples demonstrate that temporal data (such
as time series) become increasingly popular and common.

To explore a collection of time series, it is helpful to summarise the series
somehow, that is, to identify subseries that repeat often (within the same series
or across different series). Such patterns can, however, be perceived in many
different ways: using absolute time points (“driving to work at 6:30 in the morn-
ing”), shapes (“sharp increase followed by sudden drop”), etc. And to identify
reoccurring patterns another important aspect is the accuracy of the matching
step: do we have to carve out patterns exactly or only vaguely in order to find
repeating occurrences? Most approaches from the literature define the type of
patterns they are going to discover, but do not consider a search for the best
pattern type. In this preliminary work, we investigate the possibility of identi-
fying the intrinsic patterns in a collection of time series, that is not only the
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patterns but the conditions under which they expose best, with the help of the
minimum description length (MDL) principle.

The paper is organised as follows: In the next section we review MDL and
related approaches from the literature. Then, Section 3 gives an overview of the
approach and the considered pattern representations. The algorithmic approach
is covered in Section 4. Using different datasets from the UCR time series repos-
itory [6] the experimental evaluation is presented in Section 5. Finally, Section
6 concludes the paper.

2 Definitions and Related Work

A time series T of lengthm is an ordered sequence of real values T = (xi)i=1...m ∈
Rm. In principle, any xi may have arbitrary precision, but we assume that num-
ber are discretized to k different values (as suggested in [4]).

Minimum Description Length Principle. The description length DL(T ) of series
T is the number of bits required to encode T . Depending on the type of encoding
DL(T ) will vary. Assuming k = 16, a naive, direct calculation of DL(T ) requires
4 bits per value, amounting to DL(T ) = log2(k) · m. If we use different code
lengths lx to encode value x, we arrive at DL(T ) =

∑m
i=1 lxi . We may obtain

such a variable-length code from Huffman coding [5], which assigns shorter codes
to more frequently occurring values, thereby minimising the overall code length.

Rather than a direct encoding of all values in T , a compact representation or
approximation of T may help to further reduce the description length. Instead
of the original time series T , a model M may be encoded using DL(M) bits
(depending on the type of model used). As the intention of the model is to
approximate the original data, there is a loss of precision when considering model
M instead of the original series T . To allow a lossless reconstruction of T , we
have to encode the differences between model M and original series T , too. In
total, the description of T via model M requires DL(M) bits for encoding the
model plus DL(T |M) for a full reconstruction of T given the model:

DL(T,M) = DL(M) +DL(T |M)

If a model M captures the main characteristics of the series T well, using model
M as an intermediate step may pay off in terms of the total description length,
that is, we may observe DL(T,M) < DL(T ). Figure 1 illustrates such a situ-
ation. Encoding the series T of length 30 directly (4 bits per value) amounts
to 30 · 4 = 120 bits. The Huffman code assigns codes of length 3 to the more
frequent values and 4 to the less frequent values, amounting to 97 bits in total.
An adaptive piecewise constant approximation (APCA) of T is shown in Figure
1 (red line). This model may be represented by a series of pairs denoting the
point in time at which the segment starts and the value that holds within the
segment:

M = ((1, 3), (17, 15), (25, 8)) (1)
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Fig. 1. An example time series
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Fig. 2. Depending on the discretization, a
pattern may or may not show up

With a direct encoding (still assuming k = 16 different values and 24 points in
time) we get (when ignoring the first time point as it is fixed to 1): DL(M) =
3 · log2(16) + 2 · log2(24) ≈ 22 bits. To reconstruct the original series T , we still
need the deviations from the model:

ΔM (T ) = (2, 1, 0, 0, 1, 2,−2,−2,−1, 0,−1,−1, 0,−1, 0,−2, 1, 0, 0,−1, 0, 0, 1,−1, ...

In this example, the delta series consists of five values only (−2,−1, 0, 1, 2) and
may be (naively) encoded by 3 bits per value (DL(T |M) = 90) or less when using
Huffman coding (DL(T |M) = 65). In either case, the total description length
DL(M)+DL(T |M) became smaller, because the model M captures T very well,
such that the deviations can be encoded more efficiently. To save even more bits,
we may choose a coarser granularity kM for the model than the granularity kT
used for T and Δ(T ).

To find the inherent structure of T , the MDL principle advocates to search
for the best encoding [2]. In [4] a range of possible models is constructed1 for a
given time series T . The model with the minimal description length successfully
identified the best-suited model for T .

Sequitur. To identify chunks of repeating segments we will use Sequitur [9], which
is a string compression algorithm that constructs a context-free grammar from a
text string and a compressed representation of the input string using non-terminal
symbols of the grammar. For instance, the input sequence aabaab would be com-
pressed to XX with two rules X → Y b and Y → aa (using capital letters for
non-terminals). Sequitur has been used in [7] to derive patterns (grammar rules)
from a symbolic approximation (SAX [8]) of time series. The greedy algorithm
has several nice properties (e.g. a new non-terminal is introduced only if it can be

1 e.g. adaptive piecewise constant approximations (APCA), piecewise linear approxi-
mation (PLA), discrete Fourier decomposition (DFT), etc.



Finding the Intrinsic Patterns 289

used at least twice for the compression of the input sequence) and linear runtime
complexity. As in [7], we will use Sequitur to compress segment series.

Time Series Patterns. Usually approaches to time series pattern discovery define
some distance measure between subseries and apply a sliding window approach
to compare subseries within the same or between different series (cf. [1,7] and ref.
therein). Such approaches assume, for instance, that the position of a pattern in
time is not relevant and/or that the pattern does not exceed the window length.
It is also common to perform a z-score normalisation of time series, thereby
losing the capability of focusing patterns on exact slopes or exact values. In this
work, we want to avoid such assumptions and investigate if the MDL principle
can reveal the circumstances under which patterns show up prominently.

3 Outline of the Idea

We assume a set T of time series is given, not necessarily all of the same length.
We want to investigate, how the idea of finding a best representation of a single
series by MDL from [4] can be successfully extended to the problem of finding a
set of rules or patterns for a whole set of time series. While in [4] the raw data
were the time series and the models were the APCA representations (amongst
others), we start with APCA-transformed series, which take the role of raw data
now. We use the term segment series for a given APCA model to emphasise that
they become the raw data and to avoid confusion with the patterns that will
serve as models hereafter.

A model is a condensed, lossy representation of the original segment series.
Since we encode all segment series rather than just one, we hope to benefit
from similar subsequences within the same and across different segment series.
Once such re-occurring subsequences have been identified, we encode them as
part of our model and refer to them rather than encoding them multiple times.
The search for the best representation involves two aspects: (1) Similar to the
different types of time series approximation (piecewise constant, piecewise linear,
etc.) we can think of different segment representations that lead to different
types of patterns (see below). (2) Secondly, for any kind of representation, we
may consider two segments as being sufficiently similar (to match each other) if
they become identical under some discretization.

Figure 3 shows two segment series (dashed blue line and dotted red line). We
consider a number of possible representations for a given segment:

ATAV: The most direct representation of a segment series is (ti, xi)i=1...m where
ti is the starting point in time of the ith segment and xi its value (ATAV:
absolute time, absolute value) as used in (1). Then, two segment series
share a common subsequence only if they are aligned in both dimensions
simultaneously. The dotted red and dashed blue series in Fig. 3(top left)
share the segment series drawn in black.

RTAV: Rather than encoding absolute time points, the tuples may store only
relative time (duration), together with the absolute value (RTAV: relative
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ATAV: (19,7) (23,6) RTAV: (+5,4) (+5,6)

ATRV (7,+2) (13,+2) RTRV (+5,+2) (+5,+2)

Fig. 3. Two segment series and (some) shared segments in various representations

time, absolute value). Identical subsequences may then appear at different
positions in time but have identical values (top right).

ATRV: Similarly, relative values of the time series may be stored (keeping ab-
solute time points). Identical subsequences then occur at the same point in
time and change by the same amount in their value (lower left).

RTRV: Finally, both values may be encoded relatively to the previous segment.
The segment itself is then interpreted as a vector (additionally drawn in the
lower right image). Identical subsequences occur at different points in time
and at different values, but keep the same shape.

We consider all pattern types as potentially useful. If the time series at hand
are speed profiles recorded from car drivers (speed at time t, t = 0 at start of
journey), we expect characteristic speed levels to reoccur in patterns (speed lim-
its). To discover driving patterns, RTAV may thus be the best representation.
Air pressure time series recorded at similar weather conditions (e.g. stormy)
may occur at different levels of air pressure but usually exhibit similar slopes, so
RTRV might be the best segment representation. When examining the effect of
marketing effort on product orders over time (t=0 for start of sales promotion),
we may observe characteristic lags between an increase in sales figures depending
on the involved marketing channels, so ATRV may be a the appropriate repre-
sentation. ATAV may be considered as the least interesting representation, as it
corresponds to a 1:1 match of subseries. We do not consider it in this paper due
to lack of space.

Regarding the matching of patterns, we consider two segments as matching
if their discretized versions become identical. This is illustrated in Figure 2 for
RTAV: Using a discretization into three values and three durations the sequence
“(medium length, value 2), (medium length, value 1)” occurs in both examples
(top row), but we observe no repetition at a finer granularity.

We want the MDL principle to identify the representation that characterizes
a given dataset best. We will employ Sequitur to identify the patterns, so the
Sequitur outcome (grammar and compressed sequence) corresponds to the model
and defines DL(M). The difference between the Sequitur model and the set T
determines DL(T |M).
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Algorithm 1.

Require: T set of time series, maximal temporal granularity kT and value gr. kV
Ensure: Best pattern representation (e.g. RTRV) and time/value discretization

1: best = ∞
2: S = {S | T ∈ T , construct segment series S from an APCA representation of T}
3: for all segment representations R (ATRV, RTAV, ...) do
4: Let S ′ be the set of segment series S in representation R
5: for all considered segment discretizations (k1, k2) ∈ N≤kT × N≤kV do
6: D = {D | S ∈ S ′,D is the (k1, k2)-discretized segment series S}
7: merge consecutive segments in segment series of D ∈ D
8: find Sequitur model M (grammar and cseq) from craw
9: if DL(M) +DL(T |M) < best then
10: best = DL(M) +DL(T |M), store R, k1, k2
11: end if
12: end for
13: end for
14: return best representation (stored R, k1, k2)

4 Algorithmic Approach

We propose a simple approach (cf. Algorithm 1) to find the best patterns from
a set of time series. A pattern is a subsequence of segments (encoded in alter-
native ways) at a given resolution (alternative discretizations of segments). The
hypothesis is that the inherent properties of the series can be best exploited by
the pattern representation that leads to a minimal description length for the
whole set of series.

4.1 Preprocessing the Series

As already mentioned, T denotes a set of time series (x1, . . . , xn) of varying
lengths. Each time series is transformed into a piecewise constant approximation
(using e.g. [4]), where the length of each segment may vary (line 2 of Algorithm
1). All further processing is done upon these APCA representations. As this ap-
proximation is performed for each time series individually, each series may come
up with a different set of discrete values to approximate the original series. From
the approximations, a segment series S′ = ((a1, b1), . . . , (am, bm)) is constructed
for each series S, where ai denotes absolute or relative temporal information
and bi absolute or relative time series values, depending on the currently chosen
segment representation (see page 289).

The next step (line 4) performs a discretization of the segments, which involves
the discretization of both tuple values into k1 and k2 discretized values, resp.,
such that we deal with at most k := k1 · k2 different discretized segments. For
any choice of ki we divide the range of values into ki equally sized intervals. We
refer to a discretized value of x or t by putting it into squared brackets [x] or [t].
It may happen that two consecutive segments become similar after discretization
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such that they are better represented by a single segment (likely to happen if
the APCA granularity is high but the current segment representation is coarse).
If and how segments are merged depends on the chosen representation:

RTAV: Two consecutive segments (Δt1, v1) and (Δt2, v2) may refer to the same
discretized value v = [v1] = [v2] and are merged into one segment (Δt1 +
Δt2, v).

ATRV: Two consecutive segments (t1, Δv1) and (t2, Δv2) having the same dis-
cretized time point t = [t1] = [t2] are merged into a segment (t,Δv1 +Δv2).

RTRV: We interpret a segment (Δt,Δv) as having a slope of Δv
Δt for Δt time

units; so we merge consecutive segments (Δv1, Δt1) and (Δv2, Δt2) to (Δv1+
Δv2, Δt1 +Δt2) if both segments encode the same (discretized) slope.

Finally any segment series S = ((a1, b1), . . . , (am, bm)) ∈ S ′ has been trans-
formed to a discretized series D = (d1, d2, . . . , dm′) ∈ D with |D| = k1 · k2 =: k,
m′ ≤ m. For simplicity, we use numbers 1, 2, . . . , k to refer to the available types
of discretized segments. Two subseries with similar but different APCA represen-
tations may now, depending on the discretization parameters, appear identical
after discretization and merging (cf. Figure 2).

4.2 Finding the Model

Sequitur shall be used to identify re-occurring subsequences of segments. As
the discretized segments are represented by numbers, patterns correspond to
sequences in {1, . . . , k}. Let us denote a tuple concatenation operator by •,
i.e., (a, b, c) • (d, e) = (a, b, c, d, e). With di denoting the ith discretized series,
the full set D of m series is encoded into a single sequence (over the alphabet
{−m, . . . ,−1, 1, . . . , k}):

craw := d1 • (−1) • d2 • (−2) • d3 • (−3) · · · dn

The negative numbers serve as separators between the encoded segment series.
As Sequitur requires a symbol to occur at least twice before introducing a rule,
these separators effectively prevent Sequitur from elaborating rules that connect
symbols from the end of series di and the beginning of series di+1. Such rules
would depend on the (arbitrary) order of series di and are therefore undesired.

The code craw represents the input to Sequitur. Sequitur delivers a grammar
based on a set of new (non-terminal) symbols, which we encode also by numbers
(starting at k + 1). A rule of the grammar thus reads like A → BC where A,B
and C are numbers. A represents a non-terminal (thus A > k) and B (as well as
C) may refer to a terminal symbol (discretized segment; 1 ≤ B ≤ k) or another
non-terminal symbol (B > k). Sequitur also delivers a compressed sequence cseq
from which the original sequence craw can be reconstructed by replacing non-
terminals with the resp. right-hand side of its rule. All separators s < 0 (e.g.
(−1), (−2) from craw above) in cseq may be removed completely or replaced
by a single separator symbol (0) to preserve the separation of the series (but
different symbols were only necessary to prevent Sequitur from deriving rules
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that link different series). Thus, if the grammar consists of r rules, the output is
a sequence over the alphabet A = {0, 1, . . . , k + r} (≤ k: discretized segments,
> k: non-terminals).

For instance, we obtain craw = (1, 3, 2, 4,−1, 1, 2, 4, 3,−2, 3, 1, 2, 4) from three
discretized sequences d1 = (1, 3, 2, 4), d2 = (1, 2, 4, 3) and d3 = (3, 1, 2, 4). Se-
quitur may deliver two rules 5 → 24 and 6 → 15 (with new non-terminals 5 and
6), leading to cseq = (1, 3, 5, 0, 6, 3, 0, 3, 6). This procedure is carried out for all
considered discretizations and all considered pattern representations in line 8 of
Algorithm 1.

4.3 Calculating DL

The description length of the model consists of the Sequitur grammar and the
compressed collection of sequences. We encode this as follows: (1) the number
r of rules, (2) the right-hand side of all rules (no separation necessary because
the right-hand side of a Sequitur rule has always 2 symbols), (3) the compressed
sequence cseq. We use a Huffman code to obtain minimal coding costs.

Secondly, we have to determine the difference between the original segment
series S and the model. Let us ignore the merging step of line 7 for the moment.
The Sequitur compression can be reversed to arrive at the original sequence craw,
so we have to encode the differences between the discretized segments of craw
and the original segments of S ′. We apply the same pointwise differencing as
described for the case of time series in section 2: If the original segment series is
S = ((1, 4), (7, 2), (17, 15), (25, 8)) and the time points and values are discretized
to {1, 5, 10, 15, 20, 25, 30} and {2, 6, 10, 14}, resp., we obtain

D = ((1, 6), (5, 1), (15, 14), (25, 10))

and ΔD(S) = ((0,−2), (2, 1), (2, 1), (0,−2)).

The better the discretization adopts to the segments occurring in S, the shorter
DL(S|M). Again, a Huffman code is used to encode ΔD(S).

The merging of segments in line 7 is necessary to join segments that were
considered different in their APCA representation but become identical un-
der the currently applied segment discretization. Without such a merging step,
we have as many original as discretized segments (1:1 relationship), but merg-
ing may reduce the number of discretized segments. Thus, from a single en-
coded segments in craw we may have to reconstruct multiple original seg-
ments in S ′. For example, if S = ((1, 4), (7, 2), (15, 14), (17, 15), (25, 8)) is dis-
cretized to ((1, 6), (5, 1), (15, 14), (15, 14), (25, 10)) and subsequently merged to
((1, 6), (5, 1), (15, 14), (25, 10)), we have to keep in mind which segments were
merged in order to calculate ΔD(S) correctly:

S = (1, 4) (7, 2) (15, 14) (17, 15) (25, 8)
D = (1, 6) (5, 1) (15, 14) (25, 10)
Δ = (0,−2) (2, 1) (0, 0) (2, 1) (0,−2)

There are multiple ways to encode how many segments of Δ belong to a single
segment of D: either we include counts for the number of Δ-segments belonging
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to the next D-segment or we insert a special “glue” symbol (g) between Δ-
segments belonging to a merged D-segment:

counts: 1(0,−2) 1(2, 1) 2(0, 0)(2, 1) 1(0,−2)
glue symbol: (0,−2) (2, 1) (0, 0)g(2, 1) (0,−2)

5 Experimental Evaluation

We examine three datasets to evaluate whether the identification of intrinsic
patterns via MDL is viable: (1) a (one-dimensional) random walk dataset, (2)
the CBF dataset consisting of short time series from three different classes (de-
scribing a cylinder, a bell and a funnel) and (3) the symbols dataset consisting
of 6 different hand-drawn symbols on a touchscreen. The latter two datasets are
taken from [6]. These datasets have been chosen for the first experiments because
the random walk should not contain any particular patterns (by construction)
while the other two datasets are known to contain patterns (cf. [6]).

By the term configuration we refer to both, the chosen pattern type (e.g.
RTRV) and the granularity used for time and value discretization. Once Algo-
rithm 1 has identified the best configuration, how do we know if this representa-
tion succeeded in capturing the patterns inherent in the time series collection?
The CBF and symbols dataset have class labels, so we investigate if the discov-
ered rules correlate with class labels. The algorithm is not aware of the class
labels, but we expect intrinsic patterns to correspond to class-specific subseries.
For rules of the grammar that apply to at least 5% of the series, we qualitatively
examine their entropy. For each class, we report the rule with the lowest entropy.

Table 1 shows the results for all three datasets. The smallest total descrip-
tion lengths (per pattern type) are shown in column total. In all three datasets,
the configuration with the smallest total length is of type RTRV. However, for
the random walk and CBF dataset, only a few patterns (meeting the 5% usage
threshold) were found for RTRV configurations. The minimal cost configuration
does not seem to be a good indicator to identify the intrinsic pattern represen-
tation. We attribute this observation to the fact, that the RTRV representation
benefits from the smoothness of the considered time series: consecutive segments
are only a few time indices apart and (thanks to the smoothness) the deviation
between consecutive values is also comparatively small. Many small differences
(obtained from relative values) are encoded much more efficiently than absolute
values that distribute more uniformly. This gives RTRV an advantage over RTAV
and ATRV, because two values are encoded relatively rather than just one.

But this affects the encoding of the differences ΔD(S) only (column delta).
The description length of the (compressed) model involves only craw, which is just
a sequence over an alphabet of terminal and non-terminal symbols. To evaluate
how well a configuration supports the ‘compressability’ of craw, we report the
the size of the model as a fraction of the size of an uncompressed model (as
if Sequitur delivered an empty grammar for craw) in column reduced size. A
smaller percentage indicates a better compressability of the model and is thus
considered to be a better indicator for the best pattern representation.



Finding the Intrinsic Patterns 295

Table 1. Results for the three data sets

a) random walk best granularity description length reduced
time value model delta total size

RTAV 2 9 6191 69400 75591 40.6%
ATRV 4 2 3352 76603 79955 31.2%
RTRV 6 3 3352 69400 72752 85.4%

b) CBF best granularity description length reduced entropy of best rule
time value model delta total size cylinder bell funnel

RTAV 3 4 6594 40391 47525 37.5% 0.00 0.00 0.00
ATRV 3 2 3898 38063 41961 39.3% 0.49 1.53 0.00
RTRV 2 2 2554 35020 37574 91.1% – 0.98 –

c) symbols best granularity description length reduced entropy of best rule
time value model delta total size 1 2 3 4|5 6

RTAV 3 7 30k 379k 409k 23.8% 0.53 0.96 0.00 0.61 0.00
ATRV 13 2 23k 350k 374k 21.4% 0.95 2.00 0.00 0.11 0.00
RTRV 11 52 67k 259k 327k 45.9% 1.63 0.55 0.57 0.89 0.97

The 500 series in the random walk dataset (without class labels) consist of
250 values and start at x1 = 0. Although there are no patterns imputed in
the dataset there may nevertheless be incidental repetitions to be discovered
by Sequitur. RTRV patterns are sequences of “increase by Δvi within Δti time
units”. This representation is useful to approximate the up’s and down’s of the
random walk locally, but due to the random nature of the dataset, a longer series
of certain up’s and down’s is unlikely to repeat itself, so the representation is of
limited use to identify reoccurring patterns (size remains 85.4% of uncompressed
model, cf. Figure 1a). With ATRV we achieve the best model compression: The
temporal granularity of 4 subdivides the time axis into 4 intervals and Δv takes
only two values (increasing, decreasing). At this configuration, any random walk
consists of a series of length 4 only, a particular series may be described as, e.g.,
’values increase in the first and last quarter, but decrease in the second and
third’. Only 24 different sequences exist, which is exploited by Sequitur. Thus,
the best configuration takes a rather global perspective on the series, which is a
reasonable result for random walk data.

The results for the CBF dataset (900 series, 3 classes) are shown in Table
1b. Only a few short rules are discovered by Sequitur for RTRV with little
connection to the classes. The best model compression was achieved for the
RTAV representation – and it is also the RTAV model which delivered patterns
that best correspond to classes. Relative times are reasonable for CBF, because
the imputed patterns are randomly displaced in time, as well as absolute values,
because all CBF series jumps and linearly interpolates between two values only.

However, the APCA approximation of the CBF series are quite short (only
3-5 segments remain per series), which limits the length of discoverable patterns.
This is quite different for the symbols dataset (995 series, 6 classes, cf. Figure 4);
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Fig. 4. Examples from the symbols dataset (note the similarity of classes 4 and 5)

results are shown in Table 1c. This time the optimal RTRV granularity is much
higher and the discovered rules are much longer, non-terminals of the grammar
represent sequences of up to 13 segments. The RTRV model compression is
much more competitive compared to the CBF and random walk datasets, the
best rule (in terms of entropy) for class #2 is of type RTRV. This is due to the
fact that the time series consist of similar shapes that repeat across different
classes and also within series of the same class. The highest model compression
is achieved with ATRV (down to 21.4%). Series from multiple classes have long
up/downward trends, which are also exploited by patterns of type RTAV and
RTRV, but classes 1∪2, 3 and 6 can be easily distinguished if we know where
these trends occur in time. Again, the best configuration provides those patterns
that are most meaningful with respect to class labels.

6 Conclusions

Patterns may disguise themselves in time series in quite different ways. To iden-
tify similar subsequences, the shape of the subsequence may be important, the
position in the time series, their absolute value, etc. No repetition will be exactly
identical, but it is not a priori clear under which resolution patterns will show
up. In this preliminary work we explored if the MDL principle can successfully
be applied to identify the best pattern representation in terms of pattern types
(absolute/relative values) and degree of similarity (discretization granularity).
The preliminary results are promising: Despite the simplistic approach, the con-
figuration that led to the highest model compression always delivered patterns
that correspond best to class labels (which were unknown to the MDL approach).
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Abstract. Ecosystems consist of complex dynamic interactions among
species and the environment, the understanding of which has implica-
tions for predicting the environmental response to changes in climate
and biodiversity. Machine learning techniques can allow such complex,
spatially varying interactions to be recovered from collected field data. In
this study, we apply structure learning techniques to identify functional
relationships between trophic groups of species that vary across space and
time. Specifically, Bayesian networks are created on a window of data for
each of the 20 geographically different and temporally varied sub-regions
within an oceanic area. In addition, we explored the spatial and temporal
variation of pre-defined functions (like predation, competition) that are
generalisable by experts’ knowledge. We were able to discover meaning-
ful ecological networks that were more precisely spatially-specific rather
than temporally, as previously suggested for this region. To validate the
discovered networks, we predict the biomass of the trophic groups by
using dynamic Bayesian networks, and correcting for spatial autocorre-
lation by including a spatial node in our models.

1 Introduction

In recent decades it has become clear that ecosystem structure and function
can change over relatively short time [13]. Functional changes can significantly
affect the abundance and distribution of fish populations, either directly or by
affecting prey or predator populations [11]. The effect of predators has been
shown to influence prey populations and vice versa and has been described to
be of the same or greater magnitude than fishing alone [11]. Different species
may have similar functional roles (the functional status of an organism) within a
system depending on the region. For example, one species may act as a predator
of another which regulates a population in one location, but another species may
perform an almost identical role in another location. If we can model the function
of the interaction rather than the species itself, data from different regions can
be used to confirm key functional relationships, to generalise over systems and
to predict impacts of forces such as fishing and climate change.
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One way to understand community structure and stability is examination
of the functional relationships (such as prey-predator) between species in their
potential habitat (space) and across time. In this way, learning functional rela-
tionships can provide a metric for assessing community structure and resilience
in response to natural and anthropogenic influences [8]. In this study, we aggre-
gate individual species into trophic species (functional groups of taxa that share
the same set of predators and prey within a food web): invertebrates, pelagics
(pelagic fish that live in the pelagic zone of ocean waters - being neither close to
the bottom nor near the shore), small piscivorous (fish-eating species) and large
piscivorous and top predators from the northern Gulf of St. Lawrence groundfish
and shrimp summer survey since 1990 and examined how the learned functional
relationships between the trophic groups varied in time and space.

Interactions among species make it difficult to predict how ecological commu-
nities will respond to environmental degradation, yet to do so we must under-
stand the functional networks that form the systems [4]. The functional network
approach to understand community structure and resilience is an on-going ap-
proach combining known topological features of food webs with quantitative
variation in species interactions to predict community stability. Recently, an ap-
proach has arisen in biology that is capable of inferring network structures, cap-
turing nonlinear, stochastic and arbitrary combinatorial relationships: Bayesian
Networks (BNs) [10]. Formally, a BN exploits the conditional independence re-
lationships over a set of variables, represented by directed acyclic graphs (DAG)
[6]. Each node in the DAG is characterised by a state which can change depend-
ing on the state of other nodes and information about those states propagated
through the DAG. By using this kind of inference, one can change the state or
introduce new data or evidence into the network, apply inference and inspect the
posterior distribution. Structure learning of these models from data is an NP-
hard problem and many studies have been conducted on this subject, leading
to three different approaches: constraint-based methods, score-based and hybrid
methods [2]. We focus in this paper on BN structure learning using score-based
method, specifically learning a distinct network for each sub-region of the Gulf
of St. Lawrence oceanic area.

In this paper, we examine how aggregated species interact at different spatial
scales and over time to understand what mechanisms are involved in shaping
the ecological networks and functional dynamics of food webs. Specifically, we
explore how pre-defined functional relationships vary in time and space in or-
der to better understand community structure and resilience. At larger spatial
scales, although fishing can still be the dominant driver of functional changes,
the consequences of fishing are not predictable without understanding the food
web dynamics [11].

2 Methods

2.1 Species Collection

We analysed data from the northern Gulf of St. Lawrence (48.00◦N, 61.50◦W,
Fig.1a) groundfish and shrimp summer survey (1990-2013). The survey utilises a
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stratified random sampling design [3] with a standard tow using a benthic otter
trawl. For each tow, all the fish were weighed and a subsample (200 individu-
als per species) was taken for computing length-frequency distributions. These
length-frequency distributions were the basis of the data used here.

2.2 Data Preparation

K-means [9] was applied to limit the number of variables and cluster the number
of sampling stations (originally over 200 sampling stations per year, Fig.1b)
on the mean latitude and longitude, resulting in 20 spatial clusters (or sub-
regions, Fig.1c). Note that differences in density of the clustered stations could
explain the slight spatial contrast between Fig.1b and Fig.1c. The number of
stations varied within each cluster so the biomass (the total quantity or weight
of organisms in a given area or volume) was averaged over the same species and
within the same year. Then, fish and invertebrate species were aggregated into
the relevant trophic group by summing up the biomass. The nature of individual
species summed into the trophic guilds varied between the spatial clusters but
this was not of importance since they were always aggregated into the correct
trophic group. This was performed for each of the 20 clusters and for each year
in the time window: 1990-2013, ending up with four variables for each spatial
cluster across the time window.

(a) Gulf of Saint
Lawrence

(b) Sampling stations before clus-
tering

(c) Sampling stations after cluster-
ing

Fig. 1. Locations of the oceanic region of St. Lawrence (a) and the sampling stations
before clustering (b) and after clustering (c)
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2.3 Structure Learning of BNs

Our model is a BN in which nodes represent trophic groups and edges (con-
nections between nodes) represent potential species interactions. Note we infer
static BNs from temporal data for each of the 20 spatial clusters. Hill-climbing
procedure was applied for learning the static BN structure. The search begins
with an empty network. In each stage of the search, networks in the current
neighbourhood are found by applying a single change to a link in the current
network such as add arc or delete arc and choose the one change that improves
the score the most. We used the Bayesian Information Criterion (BIC ) for scor-
ing candidate networks [14]. The BIC function is a combination of the model
log-likelihood and a penalty term that favours less complex models- as such it
is similar to the minimum description length: BIC = log P (Θ) + log P (Θ|D)
- 0.5 k log(n) where Θ represents the model, D is the data, n is the number
of observations (sample size) and k is the number of parameters. log P (Θ) is
the prior probability of the network model Θ, log P (Θ|D) is the log-likelihood
while the term k log(n) is a penalty term, which helps to prevent over-fitting by
biasing towards simpler, less complex models.

The hill-climb structure learning approach was conducted with 10 random
restarts. In this approach, we apply the search until we hit a local maximum.
Then, we randomly perturb the network structure and repeat the process for
some number of iterations, in the case of the network analysis for individual
clusters alone (20 clusters, each matrix with the size of 4x24 ), we apply the
learning procedure for 500 iterations. In addition, to learn the model structure
for each year in the time window, the hill-climbing was conducted on a window
of data (size of window= 10). In this way, we would be able to capture any
significant functional interactions over the previous 10 years.

Spatial autocorrelation, the phenomenon that observations at spatially closer
locations are more similar than observations at more distant observations, is
nearly ubiquitous in ecology and can have a strong impact on statistical inference
[1]. To incorporate potential spatial autocorrelation in our model, we connect
each node in the network to an enforced parent node that represents the average
biomass from the spatial neighbourhood (the four nearest neighbours) of the
current geographic location (or cluster) [1]. By applying the windowing approach,
we produced two variants of our BN model: one that excludes a spatial node and
one including the spatial node.

2.4 Detection of Pre-defined Functions

A library of simple BNs, representing species interactions or functional rela-
tionships, based on expertise knowledge (Table 1, I-invertebrates, P-pelagics,
SP-small piscivorous and LP-large piscivorous and top predators) was cre-
ated. Then, the experiment was conducted, in which each cluster was individ-
ually analysed to identify how the known functional relationships vary across
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time, but also to discover relationships between trophic groups, producing struc-
tures for 20 static BN models, equivalent to each one of the sub-regions in the
Gulf of St. Lawrence oceanic area. Note that we detect the equivalence classes of
each functional relationship and score the confidence of each relationship being
in the network over space and time. Our model adopting random restarts was
preferably chosen compared to conditional independence tests for example as
we wanted to learn the confidence of each functional relationship being in the
network and not just examine the dependency relationships. We defined func-
tional relationships of high confidence as those in which we have the greatest
confidence of being in the network (threshold ≥ 0.3).

Table 1. Pre-defined Functional Relationships

Pre-defined Functional Relationships and Descriptions

1. I− > SP < −P Competition
2. P < −I− > SP Predation
3. P < −I− > SP, I− > LP Predation
4. P < −I− > SP,P− > LP Predation
5. P < −I− > SP− > LP,P− > LP Predation
6. P < −I− > SP,LP < −SP− > P Intraguild Predation
7. LP < −I− > P− > SP− > LP Omnivory
8. P < −I− > SP− > LP Predation

2.5 Dynamic Bayesian Networks and Prediction

As well as learning functional relationships over space and time, we also explore
network predictions over time. We choose to validate the networks through pre-
diction by inferring dynamic Bayesian networks (DBNs) for each cluster and
comparing the predicted biomass by either including or removing the spatial
node from the model. Modelling time series is achieved by the DBN where nodes
represent variables at particular time slices [6]. More precisely, a DBN defines
the probability distribution over X[t ] where X=X1...Xn are the n variables ob-
served along time t. To predict the biomass of each trophic group, we first infer
the biomass at time t by using the observed evidence from time t-1. Two sets
of experiments were then conducted: one that excludes the spatial node (DBN)
and in the other, spatial node was included in the model (DBN+ spatial) to
see if the node improves prediction. Non-parametric bootstrap analysis [6] was
applied 250 times for each variant of the model (resulting in two model variants
for each of the clusters) to obtain statistical validation in the predictions.

3 Results and Discussion

We were able to discover meaningful networks of functional relationships from
ecological data, giving us confidence in the novel methods and results presented



A Spatio-temporal Bayesian Network Approach 303

here. While the precise explanation behind the varying spatio-temporal confi-
dence of some of the discovered relationships is not known, we expect them to be
reflective of the underlying interactions within the community, thus suggesting
similarity to the majority of the weak and some strong interactions expected of
stable systems [12].

3.1 Functional Relationships Revealed by Hill-Climbing

We now examine how learned by the model relationships amongst trophic groups
of species vary across time and space. The relationship between invertebrates
and pelagics (I-P) was found to be strongly significant (range: 0.3-1) and con-
sistent in time and space (Fig.2a,b). Cluster 7 was the only cluster in which the
relationship was found throughout the entire time series and in cluster 5 the re-
lationship was found to be with highest confidence throughout time. Temporally,
the confidence for the I-P relationship in majority of the clusters was found to
be generally increasing with a small decline over recent years. The invertebrates-
small piscivorous fish (I-SP) relationship had the highest confidence throughout
time in cluster 4. The relationship was relatively consistent in time for individ-
ual clusters. For cluster 19, the invertebrates- large predators (I-LP) relationship
was identified throughout the entire time series but the most highly significant
confidence was found for cluster 17 (range: 0.3-0.8). Temporally, both relation-
ships: I-SP and I-LP, for majority of clusters were relatively stable but with
declining trend at end of the time series.

We now consider the pelagics- small piscivorous fish (P-SP) relationship
(Fig.2c,d). As with the I-P relationship, here P-SP was also the most highly
confident for cluster 5 (range: 0.3-1). This P-SP relationship was highly consis-
tent in time for clusters 4 and 16 in which the relationship was found throughout
the entire time series. Compared to P-SP, for the pelagics- large predators (P-
LP) relationship, cluster 10 was the one in which the relationship was highly
confident (range: 0.3-1). However, cluster 5 was the one in which the relationship
was consistent throughout time. Across time, both relationships varied for the
different clusters and it was difficult to find any temporal trends. However, some
clusters declined around 2007 to 2010 (for example 7, 15) whilst clusters 11 and
19 increased around the same time and in most recent years.

The most highly confident small piscivorous- large predators (SP-LP) rela-
tionship (Fig.2e,f) in time that was also consistent in the series was found for
cluster 20 (range: 0.3-1). The relationship was also consistent in time for cluster
9. Across time, similarly to the previous relationship, some clusters were rela-
tively stable but some decline occurred around 2007 to 2008 (clusters: 15, 5 and
7), whilst in other clusters increase in confidence was found for more recent years
(for example clusters 1, 9).
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(a) I-P, Year 2001 (b) I-P, Year 2011

(c) P-SP, Year 2004 (d) P-SP, Year 2013

(e) SP-LP, Year 2008 (f) SP-LP, Year 2013

Fig. 2. The learned I-P, P-SP and SP-LP relationships for all 20 spatial clusters (size
of scattered bubbles is equivalent to the estimated confidence by the hill-climb). The
clusters mentioned in 3.1 are numbered.
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Overall, the identified functional relationships were found to be consistently
confident in time however we notice the spatially-specific differentiation. Such
spatial heterogeneity could result from habitat fragmentation leading to de-
creased dispersal or the optimal habitat being located in a more restricted area,
leading to increased aggregation [7]. Individual year effects are very strong for
this area as time increases, as already suggested by [5] which makes it difficult to
determine temporal trends. However, some of the clusters’ temporal increase in
early to mid-2000 (specifically for I-SP (cluster 5), P-LP (cluster 7) and SP-LP
(cluster 5), Fig.3a,b,c) could be owed to the fisheries moratorium in the area
placed in 1994. In addition, our findings of recent temporal decline for some of
the clusters’ relationships (P-LP (cluster 5), SP-LP (cluster 19), Fig.3b,c) we
suggest to be due to predation release of small abundant species by the selective
fishing of larger predators [7]. Note again the temporal variation of the sys-
tems was set apart in geographically-specific order, possibly due to site-specific
fisheries exploitation targeting particular species.

(a) I-SP (b) P-LP

(c) SP-LP

Fig. 3. The learned I-SP, P-LP and SP-LP relationships for clusters 5, 7 and 19
(represented by solid, dash and dot line respectively) for the time window: 2000-2013

3.2 Summary of Discovered Functional Relationships

Next, we consider the variation of the pre-defined known functional relationships
(Table 1) temporally and spatially. First, function 1 and 2 were identified in all
clusters. However, the significance of both functions varied across time with some
consistency in terms of spatial clusters. We find the emergence of “characteristic
scales” of functional relationships, identified at spatially-specific geographic scales.
Temporally, there was some decline in the significance of function 1 and function
2, specifically in more recent years: 2010 to 2013 in all clusters. At the same time
clusters like 9, 5 and 20were found to bewith relatively strong significance through-
out time, outlining the importance of habitat quality at specific locations implying



306 N. Trifonova et al.

that in some regions prey are more affected by predators than in others. Function
3 and 4, 5, 6, 7 and 8 were not identified for all clusters and were only found in
some years. However, again there was some spatial consistency in terms of differ-
ent functions identified outlining only some clusters, highlighting the fact that re-
lationships are scale dependant but also the importance of functional relationships
for the local foodweb dynamics and structure.Other possible explanations include
species abundance and distributional changes but in either case fishing could have
had an important role.

3.3 DBNs and Prediction

We now turn to the generated predictions by the DBNs for each spatial cluster.
To recall, two variants of each model were produced: DBN excluding the spatial
node and DBN+ spatial in which the spatial node was enforced and connected to
each one of the other variables. Predictive performance between the two model
variants was compared (Table 2). In general, predictive accuracy was improved
once the spatial node was included in the model. Only for some clusters (6, 11,
17 and 18), better predictions were reported by the DBN. In some clusters (for
example 5 and 15, Fig.4), the predictive accuracy was significantly improved by
the DBN+ spatial. The discovered spatial heterogeneity here in terms of the
varying spatially predictive accuracy is a reflection of some of the mechanisms
involved in shaping the local population dynamics. For example resource avail-
ability, habitat selection, processes like dispersal and metapopulation effects [7]
but also commercial fishing could have influence on the local community stability
and structure, resulting in our modelling approach identifying spatially-specific
differences.

Table 2. SSE of DBN and DBN+ spatial. 95% confidence intervals reported in brackets

DBN DBN+ spatial DBN DBN+ spatial

1. 5.58 (±9.29) 1. 4.38 (±7.08) 11. 12.44 (±20.56) 11. 16.54 (±34.34)
2. 0.24 (±0.36) 2. 0.14 (±0.12) 12. 69.90 (±308.02) 12. 30.55 (±64.30)
3. 16.20 (±29.92) 3. 10.76 (±17.16) 13. 12.68 (±16.63) 13. 12.06 (±9.63)
4. 10.09 (±14.70) 4. 9.68 (±12.58) 14. 196.11 (±271.68) 14. 109.37 (±102.42)
5. 44.20 (±51.17) 5. 11.27 (±12.47) 15. 77.45 (±605.26) 15. 23.62 (±47.80)
6. 20.20 (±40.42) 6. 20.22 (±34.29) 16. 17.15 (±18.40) 16. 14.86 (±13.46)
7. 25.29 (±55.38) 7. 19.47 (±26.86) 17. 5.88 (±8.78) 17. 6.12 (±6.67)
8. 38.72 (±46.22) 8. 19.59 (±11.78) 18. 2.68 (±3.94) 18. 3.43 (±3.72)
9. 125.19 (±240.49) 9. 92.14 (±111.67) 19. 80.32 (±112.90) 19. 77.19 (±72.43)
10. 104.31 (±167.02) 10. 60.62 (±62.38) 20. 13.20 (±22.08) 20. 10.70 (±13.64)
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(a) I, Cluster 5 (b) P, Clsuter 5

(c) SP, Cluster 5 (d) LP, Cluster 5

(e) I, Cluster 15 (f) P, Cluster 15

(g) SP, Cluster 15 (h) LP, Cluster 15

Fig. 4. Biomass predictions generated by DBN+ spatial for clusters 5 and 15 for the
four trophic groups: I, P, SP and LP. Solid line indicates predictions and dash-dot line
indicates standardised observed biomass. 95% confidence intervals report bootstrap
predictions’ mean and standard deviation.

4 Conclusion

In this paper we have exploited the use of BNs with spatial nodes in order to
identify patterns of functional relationships which proved significant in terms of
predictive accuracy of our models, further concluding the spatial heterogeneity
in this oceanic region. We have also used knowledge of functional interactions
between species to identify changes over time. Our results show highly confident
but spatially and temporally differentiated ecological networks that indicate spa-
tial relationship of species and habitat with the particular mechanisms varying
from facilitation through trophic interactions. Future work will involve detailed
analysis of each individual cluster with expansion on the functional networks.
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Abstract. In this paper we explore the combination of text-mining,
un-supervised and supervised learning to extract predictive models from
a corpus of digitised historical floras. These documents deal with the
nomenclature, geographical distribution, ecology and comparative mor-
phology of the species of a region. Here we exploit the fact that portions
of text in the floras are marked up as different types of trait and habi-
tat. We infer models from these different texts that can predict different
habitat-types based upon the traits of plant species. We also integrate
plant taxonomy data in order to assist in the validation of our models.
We have shown that by clustering text describing the habitat of different
floras we can identify a number of important and distinct habitats that
are associated with particular families of species along with statistical
significance scores. We have also shown that by using these discovered
habitat-types as labels for supervised learning we can predict them based
upon a subset of traits, identified using wrapper feature selection.

1 Introduction

In the last two decades, there has been a surge in data related to biodiversity
of plants through, for example, on-line publications, DNA-sequences, images
and metadata of specimens. Much of the new data is characterised by its semi-
structured, temporal, spatial and ’noisy’ nature arising from disparate sources.
Here, we focus on the use of textual data in floras. These are the traditional taxo-
nomic research outputs from organisations such as the Royal Botanical Gardens
at Kew, London, and deal with the nomenclature, geographical distribution,
ecology and comparative morphology of the species of a region, explicitly linked
to defined taxonomic concepts. We exploit the use of data mining (and in par-
ticular text mining) in combination with machine learning classifiers in order to
build predictive models of habitat based upon plant traits.

Textmining has grown in popularity with the digitisation of historical texts and
publication [12]. In particular, the use of text mining for bioinformatics data has
led to a number of different approaches. For example, medline abstracts have been
mined for association between genes, proteins and disease outcome [11]. These can
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vary from simple statistical approaches to more complex concept profiles as devel-
oped in [8] where a measure of association between a pair of genes is calculated
based not only on the co-occurrence of entities in the same document, but also
on indirect relations, where genes are linked via a number of documents. An as-
sociation matrix for gene-pairs can be generated, where each entry represents the
strength of the relationship between genes, based on a database of scientific liter-
ature. Business Intelligence is another area where text mining has proved popular
in relation to tweet messages and sentiment analysis [5]. In ecology, the use of text
mining is a little less explored though there is a growing interest in the use of these
approaches to extract knowledge [14].

There is a growing effort to taking a predictive approach to ecology [3] with
the availability of larger and more diverse datasets. If we can build models that
can predict biodiversity or species distribution, for example, then we will have
greater confidence that the models capture important underlying characteristics.
A related discipline, ‘systems ecology’, encourages a focus on holistic models
of ecosystems [10]. This follows the success of similar approaches in molecular
biological applications Many novel techniques developed from bioinformatics can
be translated to the ecological domain [15]. Indeed, here we make use of a statistic
that was previously developed for validating clusters in microarray data.

In this paper, we explore the use of text-mining where we exploit the fact
that the flora that we analyse are marked-up to distinguish between descrip-
tions of different plant traits and habitats. We cluster habitat texts and use a
statistic (originally designed to validate clusters of genes from microarray ex-
periments) to validate the discovered habitat-types against the plant taxonomy.
We then exploit the trait texts to build probabilistic classifiers [6] for predicting
the habitat clusters. The motivation for this research is to permit exploration of
taxonomic and functional trait diversity. This will lead to better plant functional
type classifications for input to vegetation models under differing climate change
scenarios. From this, we can gain a better understanding of plant species distri-
bution, vital for effective species and habitat conservation. In the next section
we describe the general pipeline that we have developed to build these predictive
models from the marked up text and plant taxonomy. We also describe the prob-
abilistic models and statistics that we use to assess our results. In the results
section we document the results from the different stages of the pipeline with
insights from plant ecology before concluding.

2 Methods

2.1 Data

The Flora of Tropical East Africa (FTEA) is one of the largest regional tropical
Floras ever completed, covering 12,500 wild plant species from Uganda, Kenya
and Tanzania. Together with Flora Zambesiaca and Floras Somalia, these floras
cover equatorial, tropical and subtropical biomes of [16] and major phytochoria
of [17]. Virtually all the main vegetation types are represented. These floras
have been digitised to create the EFLORAS database - a unique data source
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Fig. 1. Pipeline for Converting Free Marked-Up Flora Text into Predictive Models of
Ecosystems

of tropical plant species distribution, ecology and morphology, together with
historical data on plant collectors [9] in the EFLORAS corpus. Each document
represents a taxon (in this case a species) which is identified by a unique ID and
contains a digitised paragraph, tagged as to whether it describes a number of
different characteristics: habitat, habit, leaf, fruit, or seed (flower features were
not available for this study). In total there are 8252 documents (i.e. species),
containing each paragraph. Standard text mining procedures were employed for
each paragraph type in order to remove stop-words, white spaces, punctuation
and numbers, and to stem all necessary words [4]. This results in an n (terms)
by m (documents) matrix for each paragraph, where cells contain the number of
times a term has appeared in the corresponding document. Terms can include
anything such as ‘bilobate’, ‘golden’ and ‘elongated’ reflecting traits but also
other terms such as ‘beautifully’ and ‘actually’ reflecting a particular author’s
writing style.

2.2 Experiments

We exploit the text concerning plant traits to predict habitat. Therefore, the
matrices for all types of trait are combined into a single document term matrix,
the trait matrix, for all types except habitat. Clearly, the combined trait matrix
and the habitat matrix are sparse and any terms that appear in less than 10% of
all documents are removed from both. This reduces the size of the trait matrix
to 759 terms, and the habitat matrix to 106. We use the tm package in R for
all of this processing [4]. Having processed the text into two matrices: one that
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represents the plant traits and the other that represents the habitat character-
istics, we exploit probabilistic clustering to the habitat data in order to identify
different types of habitat. We found that a simple Expectation Maximisation ap-
proach to clustering [1] identified meaningful clusters without the need to supply
the number of clusters. We exploit plant taxonomy information to validate these
clusters. This contains details of the plant family, genus, and species for each
flora document. We make use of a statistic previously developed for assessing
clustering in microarray data against known gene functional information [13].
This NBH statistic is used to score the significance of each plant family being
associated with a particular habitat based upon the number of times a plant
family is associated with it, and the number of times the family is associated
with others. This probability score is based on the hypothesis that, if a given
habitat, i, of size si, contains x documents from a defined family of size kj ,
then the chance of this occurring randomly follows a binomial distribution and
is defined by:

pr(observing x docs from family j) = (
kj

x )pxqkj−x

where p = si/n,
q = 1 − p

As in [13] we use the normal approximation to the binomial to calculate the
probability where:

z = (x − μ)/σ,
μ = kjp,
σ = kjpq

This cluster probability score is used to identify statistically significant families
allocated to each habitat (at the 1% level).

The cluster labels identified through the clustering are then used to identify
predictive features in the trait matrix using a wrapper feature selection approach
[7] to explore combinations of predictive terms. We use the Näıve Bayes Classifier
[6] as the classifier for the wrapper as this was found to be the most predictive.
Whilst we expect there to be interesting interactions between terms, it appears
that the simplicity of the Näıve Bayes is suitable to classifying a large number
of habitats by minimising parameters. What is more, the flexibility of Bayesian
classifiers allow us to use different nodes as predictors so we can use the resultant
models to predict both neighbouring plant traits as well as habitat type.

The Näıve Bayes classifier makes the simplifying assumption that each feature
is independent of each other given the class. This corresponds to the efficient
factorization

p(x|c) =
∏n

i=1 p(xi|c)

Assuming uniform priors, a Bayesian estimate of p(xi|c) is given by

p̂(xip|c) = 1+n(xip|c)
s+n(c)
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where s is the number of discretized states of the gene variable Xi, n(xip|c) is the
number of cases in the dataset where Xi takes on its pth unique state within the
samples from class c, and n(c) =

∑s
p=1 n(xip|c) is the total number of samples

from class c. From p̂(x|c), an estimate of p(c|x) is calculated using Bayes rule
and the resulting classification rule assigns the sample x to the class associated
to the highest estimated probability.

Having identified the relevant features to predict habitat type, we explore how
predictive these features are using a Näıve Bayes classifier under a 10-fold cross-
validation regime. Finally, we explore the interactions between features within
each habitat type by carrying out ‘what if’ experiments on a sample of habitats
and build Bayesian network structures from data associated with each habitat
type to see if any traits / network-of-traits are highlighted for that habitat in
particular. The general pipeline is illustrated in Figure 1.

3 Results

3.1 Discovering Habitat Clusters

Having clustered the data into 9 different habitats based upon the document
term matrices generated from the habitat corpus, the individual term frequencies
were calculated and explored in the context of habitats that they likely represent.
The following descriptions could be elicited from experts based upon the terms
associated with each habitat cluster.Habitat 0 - appears to reflect vegetation in
wet places that are largely, but not exclusively, upland (For the remainder of the
paper we refer to this habitat type as WETLANDS - WET when abbreviated).
Habitat 1 reflects a mixture of woody and herbaceous vegetation in drier con-
ditions, including deciduous types (DECIDUOUS BUSHLAND - BUSHLAND).
Habitat 2 clearly reflects lowland and upland, wetter forest types (RAINFOR-
EST). Habitat 3 contains a variety of upland vegetation (MONTANE). Habi-
tat 4 appears to represent disturbed vegetation and cultivation (DISTURBED)
Habitat 5 contains vegetation in open sites, and margins including cultivation,
similar to 4 and not readily separable (OPEN/DISTURBED - OPEN ). Habitat
6 is large and contains a combination of open woody and herbaceous vegetation
in wetter areas, including evergreen types (WOODLAND + WOODED GRASS-
LAND - WOODED). Habitat 7 is a mixture of drier lowland forest, scrub and
evergreen bush (FOREST + SCRUB + BUSH - SCRUB). Habitat 8 contains
mixed habitats including rainforest and dry vegetation (FOREST + SCRUB +
BUSH - SCRUB2 ).

The distribution of documents to habitat varied dramatically. In general, the
three larger clusters (habitats 1, 6 and 8) were less specific and generally mixed
different habitat-types. For this reason, these were omitted from the feature
selection and classification analysis though further work will involve exploring
finer grain clusters to split these into more detail. The identified habitats were
validated by using the NBH statistic [13]. The distribution of all plant families
occurring in the texts over each specific habitat were explored. Families with an
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a)

b)

Fig. 2. Significant Plant Families for 2 Selected Habitats Using the NBH Statistic
(denoted with an ‘×’) Compared to the Distribution over all Other Habitats (Denoted
by Error Bars)

NBH statistic with p values at less than the 1% level were selected and com-
pared to the distribution over the other habitats in order to highlight the specific
association between that family and the discovered habitat (shown in Figure 2).
These results highlighted some expected families of plants based upon their
habitat types: Habitat 0 (WET) is clearly dominated by families of aquatic and
marshplants (figure 2a). Habitat 1 (BUSHLAND) contains Burseraceae, Legu-
minosae, Capparidaceae which are dominant dry bushland components. Portu-
lacaceae is also characteristic of this type of habitat. Habitat 2 (RAINFOREST)
contains herbs and understory shrub/treelet families are well represented (includ-
ing ferns), followed by tree families (figure 2b). Habitat 3 (MONTANE) contains
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montane ferns. Habitat 4 (DISTURBED) are mostly families with weedy species
which make sense for disturbed regions (figure 2c). Habitat 5 (OPEN) includes
a mixture of herbaceous and woody families. Habitat 6 (WOODLAND) families
are a mixture and this is not surprsing considering the large mixed habitats that
were identified earlier. It is intriguing as to why the mistletoe families are so
prominent (Loranthaceae, Viscaceae, Santalaceae). Habitat 7 (SCRUB) families
are scrub component families and Habitat 8 (SCRUB2) fits with forest herbs
shrubs and trees. For all identified families the p-value compared to the distri-
butions of other families and habitats illustrate that they are well separated and
significant.

3.2 Plant Trait Feature Selection and Classification

We now turn to the plant trait documents. We wish to use these to predict habi-
tat type. A wrapper feature selection procedure was carried out on the plant
traits to identify combinations of traits that characterise the different habitat
clusters. A greedy search scored with classification accuracy was used to identify
the features. Figure 3 illustrates the identified features and how the expected
frequencies of these terms vary for each habitat type. For example, the term
FRUIT exsert representing the term ‘exsert’ in the text describing ‘fruit’ is iden-
tified as relevant and, as can be seen here, has a much higher expected frequency
in scrub habitats compared to others. Features marked with an asterisk ‘*’ were
those that were expected to be good at discriminating between the habitats.

The results of applying 10-fold cross-validation to predicting the habitat type
with Näıve Bayes is shown in Table 1. The predictive accuracy varied depending
on the habitat with Habitat 7 (SCRUB) being the most accurately predicted.
The table shows the distribution of Areas Under the ROC curves for each habitat.
The confusion matrix indicated the typical misclassifications involved mistakenly
classifying Habitats 0 (WET) and 2 (RAINFOREST), and 4 (DISTURBED)

Fig. 3. Identified Features (using Näıve Bayes Wrapper) - Expected Frequencies for
each Habitat
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Table 1. Classification Results (Confusion Matrix and AUC) of Habitats Given Fea-
tures as Percentages (10 fold Näıve Bayes Classifier)

- H0 H2 H3 H4 H5 H7 AUC

Habitat0: 0.06 0.05 0.01 0.03 0.01 0.01 0.70
Habitat2: 0.05 0.15 0.01 0.03 0.01 0.03 0.71
Habitat3: 0.02 0.02 0.02 0.02 0.00 0.01 0.69
Habitat4: 0.03 0.03 0.01 0.08 0.02 0.01 0.70
Habitat5: 0.02 0.03 0.01 0.05 0.02 0.02 0.64
Habitat7: 0.02 0.03 0.00 0.03 0.01 0.07 0.75

Wtd Avg.: - - - - - - 0.70

and 5 (OPEN) which makes sense as vegetation could easily overlap between
these.

3.3 ‘What if?’ Experiments

Having identified both habitat type and plant traits relevant to predicting habi-
tat type, we explore the interaction discovered between the different features.
This allows us to explore combinations of terms as well as their relationship to
different habitats.

Figure 4 illustrates the expected frequencies as inferred from the predictive
model for some selected plant traits. The three bars in Figure 4a represent ex-
pected frequencies for the other traits when HABIT annual is set to 0, 1 and
2 respectively. Terms in brackets illustrate the most probable habitat given the
observation.

Fig. 4. ‘What if’ Experiments Illustrating Distributions of Key Traits Using Different
Observations on HABITAT annual (left) and HABITAT tree (right)
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For the scenario in Figure 4a where HABIT annual=0 is observed, the
most likely habitat is RAINFOREST, and the highest expected values are for
HABIT herb, HABIT stem and SEED seed. This is somewhat counterintuitive
as the features herb, stem and seed are associated with annuals, but here an-
nual has a frequency of zero. For HABIT annual=1, the most likely habitat is
DISTURBED, with highest conditional expected frequencies for HABIT stem,
HABIT herb and HABIT branch. For HABIT annual=2, the most likely habi-
tat WET, with highest conditional expected frequencies for HABIT stem,
HABIT herb and HABIT branch, while HABIT puberulous is 0. This scenario
makes sense: As the frequency of HABIT annual is increased, so too are the
probabilities of observing the ‘annual related’ features (stem, herb, branch etc.).
There are comparatively few annuals in rainforests but as expected they are a
major element of disturbed habitats. In addition, very high numbers of annuals
appear to be associated with the wet habitat and these plants apparently are
never puberulous (shortly hairy). Aquatic plants are frequently glabrous, that
is, without hairs.

Unlike HABIT annual, if we observe HABIT tree as either 0,1 or 2 (see Figure
4b), the most likely habitat is always RAINFOREST. This could be because the
habitat ismore species diverse. However, the intermediate scenarioHABIT tree=1
gives the highest probability for habitat 2. This is because RAINFOREST is a
rich habitat which contains both tree and non-tree species. It could be that
HABIT tree=2 precludes non-tree species typical of RAINFOREST.

3.4 Networks of Traits

For the final piece of analysis, we explored learning network structures for differ-
ent habitat-types by splitting the data accordingly and learning networks using
the K2 algorithm of [2]. Some sample networks are documented in Figure 5
(detail). Some interesting characteristics emerge when focussing on the ‘hub’
nodes - those that have higher degree of connectivity. For example, in Habitat 0
(WETLANDS) there are two clear hubs: HABIT shrub and LEAF free. The for-
mer links to features of woody plants (expected to be mostly absent from typical
habitat 0 plants). The latter contains many aspects of leaf descriptions (lamina,
outline, lanceolate, pinnate, surface) but there are some connections which are
not immediately clear (connections from HABIT terrestrial, FRUIT wide and
FRUIT pappus). The term LEAF free may cover several different situations eg.
free stipules, free petiole (all parts of the leaf). In Habitat 2 (RAINFOREST)
there is a HABIT epiphyte hub (containing terms epiphyte and pseudobulb)
which could be linked to orchids (an epiphyte is a plant that grows on trees
such as orchids). Also epiphyte and tree are linked which could be related to
plants specifically growing on trees. In general, many of the hubs make sense in
terms of why they may be connected (often descriptive terms that are related
to similar parts of a plant). There are also some interesting relationships that
appear to be specific to their habitat such as orchids in rainforests.
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Habitat 0 - WETLANDS
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Fig. 5. Portion of Networks Learnt for 2 Sample Habitats with a Focus on Hub Nodes

4 Conclusions

In this paper we have explored a pipeline for converting text documents at the
Royal Botanical gardens at Kew, London describing different plant families into
models that can predict habitat type and neighbouring plant characteristics,
based upon plant traits. The pipeline identifies distinct habitat types and in-
tegrates taxonomy data in order to highlight significant plant families within
those habitats by exploiting a statistic previously developed for bioinformatics
applications. A combination of wrapper feature selection and naive Bayes clas-
sification is exploited to identify the discriminative features and build models
that can predict both neighbouring plant traits and habitat type. Future work,
will involve exploring other predictive capabilities between the text and other
data such as the taxonomy. For example, we will explore how well our models
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can predict families and species directly rather than via the habitat. We will also
explore other ways to quantify the value of the ‘what if’ results.

The paper documents the start of a larger project that explores the hypothesis
that a comprehensive understanding of neighbouring species and what a plant
looks like will indicate where it grows. Our tools will enable predictions about
individual species and their functions in ecosystems of other regions. This will be
facilitated through identifying factors (including taxonomic and environmental)
that influence biodiversity and stability of ecosystems, vital for effective species
and habitat conservation.
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Abstract. Temporal monitoring of computer network data for statis-
tical anomalies provides a means for detecting malicious intruders. The
high volumes of traffic typically flowing through these networks can make
detecting important changes in structure extremely challenging. In this
article, agile algorithms which readily scale to large networks are pro-
vided, assuming conditionally independent node and edge-based statis-
tical models. As a first stage, changes in the data streams arising from
edges (pairs of hosts) in the network are detected. A second stage anal-
ysis combines any anomalous edges to identify more general anomalous
substructures in the network. The method is demonstrated on the entire
internal computer network of Los Alamos National Laboratory, compris-
ing approximately 50,000 hosts, using a data set which contains a real,
sophisticated cyber attack. This attack is quickly identified from amongst
the huge volume of data being processed.

1 Introduction

Detection of intruders within enterprise computer networks is a challenging and
important problem in cyber security. Perimeter security systems are meant to
prevent intruders from gaining access, but these systems are notoriously per-
meable and it is inevitable that some intruders will succeed in penetrating the
perimeter. Once an attacker has gained access to a host inside the perimeter,
they will typically traverse [7] from host to host, either to collect valuable data
to exfiltrate, to establish a persistent presence on the network, or to escalate
access; this traversal can be achieved, for example, through pass-the-hash tech-
niques [3]. It is this type of anomalous traversal pattern within the network,
as the intruder attempts to compromise multiple hosts, that this work aims to
identify.

There are two broad approaches to intrusion detection: the first searches for
known patterns or structures observed in previous attacks, commonly known
as signature-based detection; the second, anomaly-based detection, screens for
deviations from a model of the normal state of the system. The anomaly-based
approach has a clear advantage in that new types of attacks that have not
previously been observed can still potentially be identified; [9] and [6] provide
an overview of work in this area related to network intrusion.

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 321–332, 2014.
c© Springer International Publishing Switzerland 2014
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Many of the existing methods for detecting anomalous substructures in a
computer network examine heuristics calculated over the whole graph, [8]. In [10],
scan statistics are used for analysing the email communications of users. In [11],
graph-structured hypothesis testing is used to find anomalous structures in a
network based on anomaly scores for nodes. The approach proposed here is to
model the time series of connections between each pair of nodes (hosts). For
tractable inference, conditionally independent discrete time models are used to
model connection frequencies (cf. [2, 5, 7]). Several challenges exist when taking
an anomaly-based approach to intrusion detection: To enable deployment on
large computer networks in real time, methods must be computationally fast and
scalable. Additionally, interactions between humans and technology are complex
and it is imperative that models are able to capture a wide range of features such
as diurnal, periodic, and bursty behaviour.

Following anomalous edge detection, a second stage analysis is performed
to identify network traversal behaviour. Temporally connected components of
anomalous edges provide anomalous subgraphs which could indicate an intruder
moving laterally through the network. This aggregation of anomalous edges over
a sliding time window is similar to the methodology of [7], which looks for anoma-
lous edges that form a path within the network to detect traversal of an intruder.
A path is defined as a sequence of edges where the destination node of one edge
is the source node for the next edge. In the present work, rather than looking
only for path-like traversal through the network initiating from a single infected
node, the proposed method aims to detect more abstract structures.

The analysis of a computer network data set from Los Alamos National Lab-
oratory (LANL) forms the basis of this article; these data are described in Sect.
2. A hierarchical Bayesian model for first the node and then the edge behaviour
is proposed in Sect. 3. A scheme for anomaly detection in which subgraphs are
formed from potentially anomalous edges is detailed in Sect. 4. Finally in Sect.
5, the proposed method is demonstrated on the LANL data set, and a real cyber
attack is successfully identified.

2 Data

Los Alamos National Laboratory (LANL) owns a large computer network, hold-
ing extremely sensitive data. The network faces regular cyber attacks, some of
which penetrate the network boundary, and so fast anomaly detection meth-
ods are imperative. The data set analysed in this article consists of NetFlow
records [12] of the connections made between individual computers (hosts). Each
record marks a connection event from a source IP address to a destination IP
address. Following the approach of [7], the data are aggregated into discrete
time series of counts of the connections made between pairs of computers over
consecutive ten minute intervals, one discrete time series for each pair.

The data comprise an initial four weeks of NetFlow records when there were
no known compromised hosts on the network; these will be referred to as the
training data. Further, there are NetFlow data for ten days during which a
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Fig. 1. Activity status of an edge in the LANL computer network over a fortnight. The
areas shaded are the intervals where the source node was active.

sophisticated, persistent threat attack occurred, referred to as the test data.
Forensic analysts believe that the attack started early on in the test data, and
six hosts were known to be infected. Note that in such cases there is no absolute
ground truth, and further hosts may have been infected but never discovered.
Within the training and test data there are a total of 57,459 unique hosts (nodes)
observed and on average there are approximately 10,000 active nodes and 40,000
observed edge events in each ten minute interval. Although any source computer
can connect to nearly any other computer in the network, analysis is restricted
to communications between nodes that were observed in both the training and
the test data as the types of anomalies sought require the intruder to make
connections between computers in order to traverse the network.

A plot of edge activity for a typical host pair is shown in Fig. 1 and clearly
demonstrates the bursty nature of the data. Many edges have very sparse activ-
ity, with 80% of the edges active less than 10% of the time. Another feature of
the data are volatile connection counts; it is common for edges to be quiet for
long periods of time, followed by bursts of very high connection counts.

3 Hierarchical Markov Model

A piecewise Markov chain model is used to capture the seasonal behaviour of the
source node. Note that seasonality could in practice be modelled at an edge level
rather than a node level and all of the models described below easily extend to
this case. However, if plausible it is preferable to borrow strength across edges
from the same source node by learning seasonality at the node level; this is
particularly true when many of the edges have very sparse data. Furthermore,
there may be some computer networks where it would be appropriate to assume
that seasonality is shared across all nodes in the network, or perhaps across pools
of hosts conducting similar activity.
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3.1 Node

Assuming time is partitioned into intervals, a node is said to be active in a given
interval if it acts as the source IP for at least one NetFlow record during that
period. For interval t, let Y i(t) = 1 if node i is active and Y i(t) = 0 otherwise.

The random variables {Y i(t) : t = 1, 2, . . .} are modelled as a two-state
Markov chain with time-dependent transition probability matrix

P i(t) =

(
1 − ψi(t) ψi(t)
1 − φi(t) φi(t)

)
,

where φi(t) = P(Y i(t) = 1|Y i(t−1) = 1) and ψi(t) = P(Y i(t) = 1|Y i(t−1) = 0).
Seasonal variability is learnt as a changepoint model acting on P i(t) over a

finite seasonal period of length S. A vector of � ordered seasonal changepoints
s1:
 take values in {1, 2, . . . , S − 1}. Notationally let s0 = 0 and s
+1 = S.

Within each seasonal segment the changepoint model assumes a fixed but un-
known parameter pair (ψj , φj) for j = 0, . . . , �, implying a piecewise-homogeneous
Markov chain overall. Note that the dependency on node i is suppressed to sim-
plify notation.

The presence or absence of changepoints at each position are assumed to be
independent Bernoulli(ν) trials. Conjugate priors for the transition probabilities,

φj , ψj
iid∼ Beta(α, β), allow the unknown transition probability matrices for the

node to be integrated out.
For simplicity denote YT = (Y i(0), . . . , Y i(T )). Reversible jump Markov chain

Monte Carlo sampling [1] of the unknown number of unknown seasonal change-
points is used to make inference from the posterior density at time T ,

π(s1:
, �|YT ) ∝ ν
(1 − ν)S−
−1

∏

j=0

1∏
i=0

B(α+ nj
i1, β + nj

i0)

B(α, β)

where B(α, β) is the Beta function and (nj
i0, n

j
i1) are respectively the number

of transitions from state i to states 0 and 1 observed after time T in the jth

seasonal period defined by {sj , . . . , sj+1 − 1}.
The maximum a posteriori (MAP) sample obtained will be used as an esti-

mate for the seasonal changepoints of each node. The seasonal changepoints can
initially be learnt on a batch of training data, and then updated periodically.

Within each seasonal period between the MAP changepoints, the Markov
chain probabilities have a known Beta posterior distribution at time T ,

[ψj |YT ] ≡ Beta(α+ nj
01, β + nj

00), [φj |YT ] ≡ Beta(α+ nj
11, β + nj

10). (1)

When performing inference sequentially, these distributions can be updated over
time as each new data point is observed.

3.2 Edge

Activity Status. Conditional on the source node being active in an interval,
the activity status for an edge is assumed to be independent of the time of day.
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Even when restricting attention to intervals when the source node is active, con-
nections along an edge are still bursty, as illustrated in Fig. 1. To capture the
bursty behaviour, an additional two-state Markov chain for the activity status of
the edge is applied to those time points where the source node is active.

Let N ij(t) be the random variable denoting the number of connections from
node i to node j at the tth time point and let Y ij(t) ∈ {0, 1} be the indicator
variable for whether the edge is active at t: Y ij(t) = 1 ⇐⇒ N ij(t) > 0. A
two-state Markov chain model for the activity status of each edge has transition
probability matrix

P ij =

(
1 − ψij ψij

1 − φij φij

)
.

Conjugate beta distribution priors, φij , ψij iid∼ Beta(ᾱ, β̄), allow the unknown
transition probability parameters to be integrated out. The Beta posterior dis-
tributions for the unknown parameters ψij and φij at time T are then[

ψij |Y ij
T

]
≡ Beta(ᾱ + nij

01, β̄ + nij
00),

[
φij |Y ij

T

]
≡ Beta(ᾱ+ nij

11, β̄ + nij
10). (2)

As with the node model, these posterior distributions act as a prior when pre-
forming inference sequentially and can be updated with each new data point.

Negative Binomial Distribution for Counts. For those periods in which
an edge (i, j) is active, the communication counts {N ij(t)} will be considered
to be independent realisations from a fixed probability model. [5] proposes us-
ing a negative binomial distribution to capture the over-dispersion apparent in
NetFlow connection counts. If Y ij(t) = 1, then it is assumed

N ij(t) − 1 ∼ NB(rij , θij). (3)

If nij =
∑t

u=0 N
ij(u) and aij =

∑t
u=0 Y

ij(u), then the conjugate prior θij ∼
Beta(α̃, β̃) implies a conditional posterior distribution for θij given rij ,[

θij |nij , aij , rij
]

≡ Beta(α̃+ nij − aij , β̃ + rijaij). (4)

An exponential prior is chosen for rij . Full Bayesian inference would require
marginalising over rij using numerical integration or Monte Carlo simulation.
For efficiency, here rij is determined by maximising the joint posterior of rij and
θij using the counts obtained from training data, via a root finding algorithm.

4 Monitoring

For a past window of length w, at time t let Gt = (Vt, Et) be the graph consisting
of all the communicating nodes, Vt, and directed edges, Et, active during the
time window {t − w + 1, . . . , t}. For each edge (i, j) ∈ Et, a predictive p-value,
pijt , is obtained from the counts observed over {t− w+ 1, . . . , t}, signifying how
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far the edge has deviated from its usual behaviour in the last w intervals; this is
explained in Sect. 4.1. An anomaly subgraph of the network is then formed from
all edges that have a p-value below a threshold and further inference is conducted
on the anomaly subgraph; this is discussed in Sect. 4.2. This latter procedure
can be considered as a second stage of analysis, similar to that advocated in [2].

The window length w can be chosen to suit the concerns of the analyst, but
realistically should be small relative to the history of the graph. The use of
sliding windows to monitor network graphs over time is detailed in [7].

4.1 Predictive Distributions

At each time interval we would like to test whether the observed communication
counts along edges {N ij(t)} are typical draws from their respective probability
distributions, or if some of those relationships may have changed. Defining the
random variable N ij(t, w) =

∑w−1
u=0 N ij(t − u), surprise can be measured by the

predictive distribution p-value pijt = P
(
N ij(t, w) ≥ kt,w

)
, where kt,w is the sum of

the observed communication counts from i to j in the previous w intervals. Note
that interest is focused on one-sided, upper tail p-values: when intruders move
around the network they should increase communication counts between edges.

Let Y i(t, w) =
∑w−1

u=0 Y i(t − u) ∈ {0, . . . , w} be the number of intervals in
which source node i was active in the window looking back from time t. The
marginal probability mass function P(Y i(t, w) = yi) can be obtained by sum-
ming over the Markov chain probabilities of all possible activity status w-tuple
combinations. For example if Y i(t − 3) = 0 then

P(Ȳ i(t, 3) = 2) = (1 − ψi
j)ψ

i
jφ

i
j + ψi2

j (1 − φi
j) + ψi

jφ
i
j(1 − φi

j),

given t is in the jth seasonal period.
The unknown transition probabilities are integrated out using the posterior

distributions (2) given the data observed so far. Note that when integrating
out φi(t) and ψi(t), the expression will depend on which seasonal interval the
window of time falls in; furthermore, there will be times when the window {t −
w,+1 . . . , t} may cross over one or more seasonal intervals.

Suppose node i is active for yi intervals. Let Y ij(t, w) ∈ {0, · · · , yi} be the
number of intervals in which edge (i, j) is active. The marginal probability mass
function [Y ij(t, w)|Y i(t, w) = yi] is also obtained by summing the corresponding
Markov chain probabilities for that edge and integrating out the parameters.

For kt,w = 0, pijt = 1. For kt,w > 0 the p-value is calculated as

pijt =

w∑
yi=1

yi∑
yij=1

[
P(N ij(t, w) ≥ kt,w|Y ij(t, w) = yij)

P(Y ij(t, w) = yij |Y i(t, w) = yi)P(Y i(t, w) = yi)
]
.

(5)

If kt,w ≤ yij then trivially P(N ij(t, w) ≥ kt,w|Y ij(t, w) = yij) = 1. Otherwise

let N ij
− (t, w) = N ij(t, w)−Y ij(t, w) and k′t,w = kt,w − yij , where k′t,w > 0. Then

as N ij
− (t, w) is the sum of yij independent negative binomial variables, (3),
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N ij

− (t, w)|Y ij(t, w) = yij , rij , θij
]

≡ NB(rijyij , θij).

The distribution of the unknown parameter θij is given by (4). This can be
integrated out, implying a beta negative binomial distribution for N ij

− (t, w),[
N ij

− (t, w)|Y ij(t, w) = yij , rij
]

≡ BNB(yijrij , α̃+ nij − aij , β̃ + rijaij).

The predictive p-values therefore have closed form solutions, which is critical for
fast inference on large scale networks.

4.2 Anomaly Graphs

Classifying anomalies for single edge p-values that fall below a threshold could
result in many false alarms. Setting a threshold extremely low to limit the num-
ber of false alarms obtained could result in true anomalous events being missed.
As intruders traverse the network they are introducing anomalous signal on mul-
tiple, connected edges. The idea of an anomaly graph is to combine p-values to
identify security-relevant anomalous substructures in the network.

For a p-value threshold Tp ∈ (0, 1), an anomaly subgraph of the network,
St = (V S

t , ES
t ), is formed from edges that have a p-value below the threshold,

ES
t = {(i, j) ∈ Et|pijt < Tp},

V S
t = {i ∈ Vt|∃j �= i ∈ Vt s.t. (i, j) ∈ ES

t or (j, i) ∈ ES
t }.

In practice, the threshold Tp can be chosen so that the number of nodes in the
anomaly graph {|V S

t |} does not exceed a desired level.
A graph is said to be connected if every vertex is reachable from every other

vertex, [4]. A weakly connected component of a graph is a maximally connected
subgraph with the property that if all the directed edges were replaced with
undirected edges, the resulting subgraph would be connected. Each of the weakly
connected components of St can be considered as a potentially anomalous attack
indicating lateral movement of an attacker in a network. Let Ak,t = (Vk,t, Ek,t)
denote the kth weakly connected component. Under the null hypothesis of normal
behaviour the set of p-values pAk,t

= {pijt |(i, j) ∈ Ek,t} obtained from the edges
of a weakly connected component Ak,t are independent and approximately uni-
formly distributed on (0, Tp). Note that they are only approximately uniformly
distributed due to the discreteness of the counts.

The p-values can be combined to give an overall anomaly score for each con-
nected component. Fisher’s method is commonly used to combine p-values ob-
tained from independent tests into a single test statistic. Using this method, for
each connected component a test statistic is obtained,

X2
k,t = −2

∑
(i,j)∈Ek,t

log
pijt
Tp

∼ χ2
2|Ek,t|

The upper tail probability of X2
k,t yields a p-value pFk,t for that component.
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A popular alternative method is Stouffer’s Z-score method. Stouffer’s method
has the flexibility to allow the p-values to be weighted. In a computer network
there are nodes that are inherently more active and hence would naturally appear
in the anomaly graph more frequently. At the other extreme there are nodes that
are rarely active, and hence edges in the anomaly graph originating from these
nodes are more rare. The p-values do not take into account the level of overall
connectivity of a node and so weighting them when combining the p-values would
incorporate the surprise associated with each edge appearing in the anomaly
graph. Given weights for each edge in the anomaly graph, wij

t , define

Zk,t =

∑
(i,j)∈Ek,t

wij
t Zij

t√∑
(i,j)∈Ek,t

wij2

t

∼ N(0, 1),

then p-values for the components can be obtained from the upper tail proba-
bilities of Zk,t. Ultimately how to set the weights would be dependent on the
network and could be guided by an analyst with detailed knowledge of the net-
work layout. A reasonable weighting mechanism could be

wij
t =

(
1 −

∑t
t′=0 I((i, k) ∈ St′ , k �= i)

t+ 2

)(
1 −

∑t
t′=0 I((k, j) ∈ St′ , k �= j)

t+ 2

)
,

corresponding to a linearly increasing interaction in the weights according to
how often the source and destination nodes appear in the anomaly graph.

Finally, the p-values given by (5) for edges originating from the same source
node depend on each other through Y i(t, w). So when combining the p-values,
an alternative solution is to condition on the activity status of the source node so
that, pijt = P

(
N ij(t, w) ≥ k|Y i(t, w) = yi

)
. Using Stouffer’s Z-score method to

combine the p-values and weighting the edges according to how often the source
node appears in the anomaly graph would retain some level of surprise from the
source node. For the LANL data most of the surprise from the p-values comes
from the counts along the edges, so conditioning on the node activity level when
combining the p-values has little effect.

5 Results

For analysis of the LANL data, the counts are aggregated into ten minute inter-
vals following [7]. LANL have a work scheme whereby employees can take every
other Friday off; the effect on NetFlow patterns is apparent in Fig. 2, which
shows the activity status of an example node from the network with respect to
a fortnightly seasonal period. The seasonal changepoint prior parameter ν is set
at 0.009, corresponding a priori to an average of 18 changepoints per seasonal
fortnight period. The parameters α and β for the conjugate Beta priors on the
node activity transition probabilities are set to a default value of 1, as very small
values can lead to overfitting of changepoints. Similarly, ᾱ and β̄ for the Beta
priors on the transition probabilities for each edge are set at 1. The parameters
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Fig. 2. Activity status of a node from the LANL computer network data with the MAP
seasonal changepoints indicated by red triangles. The dotted lines are the posterior
expectations (1): Eπ(φ)± s.dπ(φ) in green and Eπ(ψ)± s.dπ(ψ) in blue.

of the model were initially learnt from the four weeks of training data and then
updated recursively throughout the test period. Fig. 2 shows the MAP seasonal
changepoints and posterior expectation of the transition probabilities for one IP.

Following [7], the window size used to monitor the network is chosen to be 30
minutes, which corresponds to w = 3. Analysts at LANL suggest this to be an
appropriate choice for a window size, as it corresponds to an approximate time
required to see intruders moving around the network.

Many edges in the LANL network exhibit occasional extreme counts as part
of normal behaviour. Standard exponential family models will not capture these
heavy tails well; further work related to modelling the edges better is discussed
in Sect. 6. As a result, the p-values obtained in this analysis are unstable in the
tails of the distribution and this would distort the Fisher score when combining
p-values in the anomaly graph, since they will be far from uniformly distributed
under normal behaviour. Hence for the analysis, the empirical cumulative dis-
tribution function obtained from all p-values obtained less than the threshold
Tp up until the current time are used to recalibrate the p-values. This provides
stabilised p-values which can be combined using Fisher’s or Stouffer’s method
to score each component in the anomaly graph as described in Sect. 4.2.

The threshold, Tp, for the anomaly subgraph was chosen so that the median
of the number of nodes in the anomaly graphs in the training period was ten.
The median was considered rather than the average as the empirical distribution
of the number of nodes in the anomaly graphs has very heavy tails.

Figure 3 shows the Fisher combined p-values less than 0.05 from the com-
ponents of the anomaly graphs over the ten day test period. The points in this
plot which are close together in time are often the same event being repeatedly
detected in sequential time windows; in that the majority of the actors in the
connected components are the same. For example, the points in Fig. 3 joined
together by black lines all constitute one event, detected over several windows.
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Fig. 3. Anomaly scores for components of the anomaly graphs over the 10 day test
period using Fisher’s method. The triangles indicate components that contain known
infected nodes.
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Fig. 4. Heat map of the edges of the anomalous component that was first detected.
The red nodes are the known infected hosts.

The most anomalous component detected on the first day of the test data
contained four of the known infected hosts. Figure 4 shows the anomaly graph
of this event at the window in which it was first detected, just one hour after
the initial infection was known to have occurred. Analysis of the attack suggests
that the four infected computers (labelled 277, 1115, 3584 and 4299) did not
become active until an hour after the time of the initial infection. The same
event is then detected in two subsequent time windows thereafter, and again half
an hour later. Some of the four infected nodes plus two additional anomalous
nodes (130 and 10580) appear in much larger connected components in the later
detections. The strength of the detection of this anomaly is sufficiently high that
it would be possible to set a threshold to detect this real attack with no false
alarms, an exceptional result given the sophisticated nature of the attack.

The central nodes (71 and 58) in Fig. 4 are core servers in the LANL network
and are thus connected to a large portion of the network. The four anomalous
hosts were connecting to these core servers simultaneously for data reconnais-
sance purposes. Combining anomalous activity along edges to look for coordinated
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anomalous traversal in the network allows the anomaly to be detected even though
it is centred around busy hubs of the network. When thresholding is based on the
single p-values of edges there are many false alarms. For example, a single edge
p-value threshold that would detect just the lowest edge p-value in Fig. 4 would
raise 57 false alarms.

6 Conclusion

For anomaly detection in computer networks, a system was developed for the
operational detection of intruders on internal computer networks and shown to
give excellent performance. Discrete time hierarchical Bayesian models were used
to model the seasonal and bursty behaviour of the nodes and edges. A second
stage of analysis combined predictive p-values obtained from the edge models to
detect locally anomalous components in the network indicative of an intruder
traversing the network. The system was demonstrated on Los Alamos National
Laboratory’s enterprise network and a sophisticated attack was detected very
soon after the traversal was known to have begun.

The discrete count model for each edge was approximated as a negative bi-
nomial distribution. However, highly variable behaviour is observed along some
edges across the network. For example, the servers or central machines in the
network are usually constantly active and the distribution of counts observed
along edges connecting to these central machines is very different from that ob-
served along edges that are more user driven. A more complete modelling effort
will provide a future extension to the method, where different models are applied
to different categories of edges. Organisational knowledge, such as lists of hosts
dedicated to specific functions, should be invaluable.
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Abstract. The distribution of shortest path lenghts is a useful charac-
terisation of the connectivity in a network. The small-world experiment
is a classical way to study the shortest path distribution in real-world
social networks that cannot be directly observed. However, the data ob-
served in these experiments are distorted by two factors: attrition and
routing (in)efficiency. This leads to inaccuracies in the estimates of short-
est path lenghts. In this paper we propose a model to analyse small-world
experiments that corrects for both of the aforementioned sources of bias.
Under suitable circumstances the model gives accurate estimates of the
true underlying shortest path distribution without directly observing the
network. It can also quantify the routing efficiency of the underlying pop-
ulation. We study the model by using simulations, and apply it to real
data from previous small-world experiments.

1 Introduction

Consider the real-life social network where two people are connected if they
mutually know each other “on a first name basis”.

What is the distribution of shortest path lengths in this network?

In the late 1960s, decades before the social networking services of today, Jeffrey
Travers and Stanley Milgram conducted an experiment to study this question
[15]. Participants recruited from Omaha, Nebraska, were asked to forward mes-
sages to a target person living in Boston, Massachusetts, via chains of social
acquaintances. Given only basic demographic information of the target, such as
name, hometown and occupation, the starting persons were instructed to pass
the message to a friend (their neighbor in the underlying social network) whom
they considered as likely to forward the message further so that it eventually
reaches the target. The participants were also instructed to notify the experi-
menters whenever they forwarded the message.

Out of the 296 messages that were initially sent, 64 reached the target per-
son, and took only a relatively small number of hops [15]. The main hypothesis
resulting from this experiment was that we live in a “small-world”, meaning
that a lot of people are connected to each other by short paths in the underly-
ing social network. Because of this we refer to such experiments as small-world
experiments. Similar experiments have been repeated a number of times [12,5].

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 333–344, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Left: The Karate-club graph with two paths (green and red, solid lines) that
are examples of observations in a small-world experiment on this network. Right: The
shortest paht distribution of the Karate-club graph (black, dotted), together with the
effects of attrition (red, dashed) and routing efficiency (green, solid) to the length
distribution of observed completed paths.

The observations in such a small-world experiment are a set of paths that each
indicate the trajectory of one message through the social network. Some of these
paths are completed, that is, the message reached the target individual, while
others are discarded on the way. The length distribution of the completed paths
can be seen as a characterization of the social connectivity of the population.
Indeed, the popular notion of “six-degrees-of-separation” is based on the median
of the length distribution of the completed paths that were observed by Travers
and Milgram [15].

However, the lengths of completed paths are in practice distorted by two fac-
tors: attrition and routing efficiency of the participants. Attrition refers to mes-
sages being discarded for one reason or another during the experiment, causing
some paths to terminate before reaching the target. By routing efficiency we
refer to the ability of the participants to pass the message to an acquaintance
who is in fact closer to the target when distance is measured in terms of the true
shortest path distance.

Figure 1 illustrates examples of attrition and routing efficiency with the well
known Karate-club network [17]. There are two starting persons, nodes A and
B, with T as the target person, as well as two paths that originate at A and
B. The path that started from B was terminated early due to attrition: node E
failed to forward the message further. In real small-world experiments a message
is discarded at every step with an average probabiliy that varies between 0.25
and 0.7, depending on the study [15,5]. On the other hand, the path that starts
from node A does reach the target T in five steps, but it does this via node C.
Observe that the true shortest path distance from C to T is four steps, while the
node A is in fact only three steps away from T (via node D, dashed edge). Node
A made thus a “mistake” in forwarding the message to C instead of D. This will
also happen in practice. Indeed, even when all participants belong to the same
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organization, the messages are forwarded to an acquaintance who is truly closer
to the target only in a fraction of the cases [10].

Attrition and routing efficiency will distort the lengths of paths that we ob-
serve in a small-world experiment. In particular, attrition makes long paths less
likely to appear1, even if they might exist in the underlying social network. As
a consequence the length distribution of observed completed paths is shifted to-
wards short paths, giving an “optimistic” view of the social connectivity. Routing
(in)efficiency, on the other hand, implies that even in the absence of attrition we
would not observe the true shortest paths. Finding these requires access to the
entire network topology; information that individuals most likely do not have.
Instead, we observe so called algorithmic shortest paths (see also [11,13]), i.e.,
those that the participants are able to discover using only information about their
immediate neighbors and the target person. These, however, are longer than the
shortest paths. The lengths of observed completed paths are thus shifted towards
longer paths, making the network seem less connected.

Indeed, attrition and routing efficiency have contradictory effects on the ob-
served path lengths, as illustrated on the right side of Fig. 1. Attrition makes
the observed paths shorter, while routing (in)efficiency makes them longer when
compared to the actual shortest path distribution. In practice we observe paths
that have been affected by both. Motivated by this discrepancy between the ob-
servations and the shortest path distribution, we address the following question:

Can we recover the true shortest path distribution given the observed
paths from a small-world experiment?

This is an interesting task for a number of reasons. First, it is another way
to address the original question of Travers and Milgram [15]. Using only the
completed paths gives one view of the social connectivity, by estimating the
actual shortest paths distribution results in a less biased outcome. Second,
the question is related to recent work on reconstructing networks and prop-
erties thereof from observed traces of activity in the network [8,9,14,4]. The
small-world experiment can be seen as another type of such activity. Moreover,
a better understanding of the process that underlies the small-world experiment
may lead to improvements in other propagation processes over networks, such
as spreading of epidemics or opinions.

Our Contributions: We propose a new model to analyse the observations of a
small-world experiment that accounts for the bias caused by attrition and routing
efficiency. The main difference to previous approaches [10,7] is the use a well-
defined probabilistic model that can estimate the true shortest path distribution.
Our technical contribution is that of devising an intuitive parametrization of the
process that underlies a small-world experiment, as well as a means to express
the likelihood of the observed paths in terms of the process parameters. By fit-
ting the proposed model to data from previous small-world experiments [15,5]
we compute estimates for the shortest path distribution of the underlying social

1 If a path terminates with probability r at every step, a path of length l appears with
probability (1− r)l. This decreases rapidly as l increases. See also [7].
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network, as well as quantify the routing efficiency of the population that partic-
ipated in the experiment. To the best of our knowledge this has not been done
before.

2 A Model for Small-World Experiments

The input to our model consists of the set D of both completed and failed paths
that are observed in a small-world experiment. A path is completed if it reaches
the target, and failed if it terminates due to attrition. Of every path in D, we
know thus its outcome, and its length. These are the only two characteristics of
a path that our model is based upon.

We first discuss the parameters of the message-forwarding process that un-
derlies a small-world experiment. As with any generative model, we do not
claim that this process accurately represents reality, it is merely a useful and
tractable representation of it. Then, we show how the process parameters induce
the parameters of a multinomial distribution over different types of paths. The
likelihood of D is determined by this multinomial distribution in a standard
manner.

Model Parameters and Dynamics
We assume the structure of the underlying social network to be hidden. However,
at every step each of the messages must be at some shortest path distance from
the target person. These distances are unknown, but we can model how they
evolve as the messages are forwarded. When a node forwards the message, the
shortest path distance to the target can decrease by one, stay the same, or
increase by one. Note that the distance can not increase or decrease by any
other amount in a single step.

We assume that each node chooses the recipient so that the distance decreases
with probability q−, increases with probability q+, and remains the same with
probability 1−q−−q+. We also enforce the constraint q+ < q− (the participants
are assumed to be in some sense “benevolent”), as well as q−+q+ ≤ 1. The prob-
abilities q− and q+ are the first and second parameters of our model, and they
capture routing (in)efficiency. Moreover, a node might not forward the message
in the first place. We assume that a message can be discarded at every step with
the constant probability r, the attrition rate, which is the third parameter of
our model.

The parameters q−, q+, and r capture how the shortest path distance from
the current holder of the message to the target person evolves, but the process
must start from somewhere. The distances from the starting nodes to the target
node are unknown. We assume that the initial distances from the starting nodes
to the target follow some predefined distribution τ(·). In particular, we take these
to be Weibull distributed with parameters k and λ, because it has been argued
[3] that this produces a good fit for shortest path distributions that are observed
in different types of random networks. The k and λ parameters of τ are the
fourth and fifth parameters of our model. All five parameters are summarised in
Table 1.
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Table 1. Summary of model parameters

q−, q+ probabilities for message to approach and move away from target
r probability of message to be discarded
k, λ shape and scale parameters of the initial distance distribution τ

In summary, we model the small-world experiment using the following two-
stage process. Initially the messages are distributed at distances from the target
that is given by τ(· | k, λ). Upon receiving the message a node 1) decides if it is
going to discard the message, and if not, 2) the node forwards the message to a
neighbor. An independent instance of this process launches from every starting
node, and continues until the message reaches the target or is discrarded.

Path Probabilities
Recall that of every path in the input D we know its outcome o and length l.
A path is of type (o, l) if it has outcome o and length l, where o is either ) (a
completed path) or ⊥ (a failed path). For example, the red and green paths in
Fig. 1 are of types (⊥, 2) and (), 5), respectively.

Next we derive the probability to observe a path of type (o, l), assuming that
the forwarding process adheres to the parameters discussed above. To this end
we express the message-forwarding process as a discrete-time Markov chain. A
graphical representation of this chain together with the transition probabilities
is shown in Fig. 2. The states of the chain are all possible distances to the target
up to some maximal distance m, denoted 0, 1, . . ., m, a special attrition state,
denoted A, and a special terminal state, denoted E. At every step the chain is
in one of the states. The message reaches the target when the chain enters the
state 0. Likewise, the message is discarded when the chain enters the state A.
The state E is needed for technical reasons.

Let Q denote the transition probability matrix associated with the Markov
chain of Fig. 2 so that Qxy is the probability of taking a transition from state
x to state y. From the basic theory of Markov chains we know that given any
initial probability distribution π0 over the states, the distribution after running

Fig. 2. The Markov chain that represents the message-forwarding process. The message
is discarded with probability r independently of its distance to the target. The distance
decreases with probability (1− r)q−, increases with (1 − r)q+, and remains the same
with probability (1 − r)(1 − q− − q+). A neighbor of the target node can discard the
message or passe it to the target. In the state m the distance can no longer increase,
so we introduce a self-loop with probability (1− r)(1− q−).
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the chain for l steps is equal to πl = πT
0 (Q)l. Recall that τ(· | k, λ) is our guess

of the distribution of distances from the starters to the target. We initialize
π0 so that π0(A) = π0(E) = π0(0) = 0, and for the states 1, . . ., m we set
π0(x) = τ(x | k, λ). The probabilities to observe a path of type (o, l) given the
model parameters is now

Pr((o, l) | q−, q+, r, k, λ) =

⎧⎨⎩
πl(0), if o = ), (completed path),

πl(A), if o = ⊥, (failed path),
(1)

where πl(0) and πl(A) are the probability masses at states 0 and A after running
the chain for l steps, respectively. The above equation is derived simply by
noticing that the states 0 and A correspond to endpoints of completed and
failed chains, and the probability of a path of length l to land in either of these
is obtained by running the chain for l steps. (The special terminal state E is
needed to guarantee that πl indeed has the desired value at states 0 and A.)

Finally, to compute the probabilities in practice, the maximum distance m
must be set to a large enough value. In practice we did not observe m to have a
strong effect. In the experiments we use m = 30.

Likelihood of the Input D
As in [7], we view a small-world experiment as a simple sampling procedure,
where |D| paths are drawn independently2 from a categorical distribution, where
every category corresponds to a path type, and the probabilities of individual
categories are induced by the model parameters (Table 1) as discussed above.
Let θ = (q−, q+, r, k, λ) denote a vector with all parameters, and define the
probability of a type pθ(o, l) = Pr((o, l) | θ) as in Eq. 1.

In theory the number of distinct types is infinite, because our model does
not impose an upper limit on the length of a path. However, we only con-
sider types up to some length, because the probability of long paths decreases
rapidly. Given θ, we choose lmax to be the smallest integer so that the inequality∑lmax

l=1 (pθ(), l) + pθ(⊥, l)) ≥ 1 − ε holds for some small ε (in the experiments
we let ε = 10−8). That is, we assume that the paths in D are an i.i.d. sample
from a discrete distribution with categories C(θ) = {(), 1), (⊥, 1), . . . , (), lmax),
(⊥, lmax)}. Note that depending on θ, lmax can be larger than the longest path
we observe in D.

Furthermore, Let cD(o, l) denote the number of paths of type (o, l) in D. Of
course c(o, l) = 0 for any type (o, l) that does not occur in D. The numbers
cD(o, l) are a sample from a multinomial distribution with parameters |D| and
pθ(o, l) for every (o, l) ∈ C. Therefore, the likelihood of D can be expressed as

Pr(D | θ) = |D|!∏
(o,l)∈C(θ) cD(o, l)!

∏
(o,l)∈C(θ)

pθ(o, l)
cD(o,l). (2)

2 This may not fully hold in real small-world experiments, as lengths and outcome
of paths having e.g. the same source or target may be correlated [5]. However, we
consider this to be a reasonable simplification to make the model tractable.
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The likelihood depends on the model parameters θ thus through the probabilities
pθ(o, l). To compute the likelihood, we first find pθ(o, l) for every (o, l) ∈ C(θ)
using the Markov chain of Fig. 2, and then apply Equation 2.

Parameter Estimation
For parameter estimation we can use any available optimisation technique. Af-
ter trying out several alternatives, including different numerical optimisation
algorithms as well as MCMC techniques, the Nelder-Mead method was chosen3.
It does not require partial derivatives, finds a local optimum of the likelihood
function, and is reasonably efficient for our purposes. It also allows to use fixed
values for some of the paramters, and solve the model only for a subset of them
to obtain conditional estimates. For instance, we can fix q− and q+ and solve the
model only for r, k and λ.

It is worth pointing out that the model can be non-identifiable. (Meaning its
true parameters are hard to find even given an infinite amount of data.) Some
of the parameters have opposite effects. For instance, in terms of the observed
paths in D, it might not matter much if a) the initial distances to the target
are long and the routing efficiency is high, or b) the initial distances are short
but the routing efficiency is low. This means that a simultaneous increase in
both e.g. the median of τ(k, λ) as well as the routing efficiency parameter q−
can result in only a very small change in Pr(D | θ).

3 Experiments

Estimation Accuracy
As there in general is no ground truth available in a small-world experiment, it
is important that the estimates obtained from the model are at least somewhat
stable. The estimates are affected by size of the input data, as well as indentifi-
ability issues of the model itself. We start by quantifying these effects by using
paths that are obtained from simulations of the message forwarding process with
known parameters.

As expected, estimating all model parameters simultaneously is a hard prob-
lem. The top half of Table 2 shows both the true parameter values as well as the
median of their estimates from 250 inputs of 5000 paths each. (The estimate of
r is always very accurate, and is omitted from the table.) We can see that while
the median is often fairly close to the true value, the quantiles indicate a high
variance in the estimates, especially for q−.

However, by fixing some parameters it is possible to improve the quality of the
resulting estimates. The bottom half of Table 2 shows conditional estimates for
q− and q+ given k and λ, and vice versa, the estimates for k and λ given q− and
q+. Now the estimates are very accurate in all of the cases. This suggests that
the model is most useful when we have some prior knowledge either about the
routing efficiency, or the shortest path distribution. For example, [10] suggests to

3 We use the implementation provided by the optim function of GNU R,
http://www.r-project.org.

http://www.r-project.org
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Table 2. Estimating parameters from simulated data (5000 paths)

true values simultaneous estimates (with 5% and 95% quantiles)

q− q+ r k λ q− q+ k λ

0.5 0.0 0.25 4 5 0.60 (0.44,0.82) 0.03 (0.00,0.10) 3.71 (3.11,4.46) 5.53 (4.56,6.76)
0.5 0.1 0.25 4 5 0.47 (0.29,0.69) 0.07 (0.00,0.21) 4.10 (3.53,5.08) 4.86 (3.83,6.01)
0.3 0.0 0.25 4 5 0.43 (0.30,0.90) 0.05 (0.00,0.13) 3.45 (2.34,4.10) 6.13 (4.87,11.93)
0.3 0.1 0.25 4 5 0.33 (0.15,0.70) 0.12 (0.00,0.31) 3.86 (2.79,5.50) 5.27 (3.60,8.51)
0.5 0.0 0.50 4 5 0.65 (0.35,1.00) 0.04 (0.00,0.17) 3.65 (2.79,5.05) 5.80 (3.92,8.38)
0.3 0.0 0.50 4 5 0.39 (0.18,0.88) 0.05 (0.00,0.17) 3.67 (2.44,5.41) 5.64 (3.71,11.95)

true values conditional estimates (with 5% and 95% quantiles)

q− q+ r k λ q− | k, λ q+ | k, λ k | q−q+ λ | q−, q+
0.5 0.0 0.25 4 5 0.50 (0.49,0.53) 0.00 (0.00,0.03) 4.01 (3.83,4.21) 4.99 (4.88,5.10)
0.5 0.1 0.25 4 5 0.50 (0.46,0.54) 0.10 (0.05,0.15) 4.01 (3.79,4.24) 4.98 (4.87,5.14)
0.3 0.0 0.25 4 5 0.31 (0.29,0.33) 0.00 (0.00,0.05) 4.02 (3.75,4.24) 5.00 (4.84,5.18)
0.3 0.1 0.25 4 5 0.30 (0.27,0.33) 0.10 (0.04,0.16) 4.00 (3.75,4.30) 4.99 (4.80,5.22)
0.5 0.0 0.50 4 5 0.51 (0.46,0.59) 0.00 (0.00,0.18) 4.00 (3.64,4.42) 5.00 (4.71,5.31)
0.3 0.0 0.50 4 5 0.31 (0.27,0.37) 0.00 (0.00,0.22) 3.99 (3.55,4.58) 5.01 (4.61,5.53)

use q− = 0.3, and [1] provides the exact shortest path distribution of the entire
Facebook social network, which could be used in place of τ(· | k, λ).

The next question is how sensitive are the estimates of k and λ to errors in our
assumptions of q− and q+? That is, suppose the true q−, denoted qTrue− , is 0.5, but
we solve the model with fixed a q− = 0.35 for example. Let μ̂ denote the median
of the estimated shortest path distribution, while μTrue is the median of the true
distribution. (This is a more intuitive quantity than k and λ when interpreting
the shortest path distribution.) The left panel in Figure 3 showsΔ(μ) = μ̂−μTrue

as a function of Δ(q−) = q− − qTrue− when k and λ are estimated given different
q− from 1000 paths generated by the model. (The plot shows distributions over
100 runs for every q−. Input was generated with q− = 0.5, q+ = 0.05, r = 0.25,
k = 4, λ = 5.) We observe that in this range of q− an under- or overestimate of
0.15 will make the conditional estimate of μ̂ about one step too low/high.

The variance of the estimates will also depend on the size of the input D. The
right panel in Figure 3 shows effect of |D| on the variance of μ̂ when k and λ are
estimated with q− and q+ fixed to their correct values. (The paths were generated
using the same parameter values as above.) We find that the conditional estimate
of μ̂ is both unbiased and consistent. In practice a high accuracy requires > 1000
paths, but even only 300 paths seem to give reasonable results.

Estimating Shortest Path Distributions
We continue by estimating the shortest path distribution4 in random networks.
The top row of Fig. 4 shows conditional estimates for an Erdős-Rényi [6] as well

4 Notice that here the resulting shortest path distributions reflect the initial distances
to a single target from the starters. To obtain the all-pairs shortest path distribution,
all paths should have independently sampled starters and targets.
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Fig. 3. Left: Effect of the error when fixing q− to the conditional estimate of μ̂. Right:
Effect of |D| to the conditional estimate of μ̂. (Boxes show 1st and 3rd quartiles.).

as a Barabási-Albert [2] graph. In both cases we considered three values for q−:
the correct one, and ones that under- and overestimate the true value by 0.1.
We find that in both cases the Δ(q−) = 0 estimate (solid line) captures the
qualitative properties of the true distribution (bars). And like above, an under-
or overestimate in q− leads to a slight under- or overestimate in the path lenghts.

Finally, we apply the model to observed data from previous small-world ex-
periments. Travers & Milgram (TM) provide the numbers of completed and
failed paths that we need for our model (in Table 1 of [15]), while for Dodds et
al. (DMW) we obtain the numbers through visual inspection of Fig. 1 in [5]. We
fit both the full model, as well as conditional estimates given fixed q− and q+.
Resulting shortest path distributions are shown in the bottom row of Fig. 4.

While the full estimation is known to be unstable, it is interesting to see that it
produces reasonable estimates. For TM the estimates for q−, q+, and r are 0.92,
0.08 and 0.21, respectively, while for DMW we obtain q− = 0.52, q+ = 0.00,
r = 0.71. The attrition rate estimates are very close to the ones reported in
literature [15,5], while the routing efficiency parameters tell an interesting story.
It appears that in the TM experiment the participants almost always chose the
“correct” recipient, while in the DMW experiment they did this only half of
the time. This is not inconceivable, as the TM study was carried out by regular
mail, while DMW used email as the means of communication. Subjects in the
TM study might indeed have been more careful when choosing the recipient as
participating took more effort also otherwise.

The conditional estimates suggest that the shape of the estimated shortest
path distributions is more or less the same in both experiments if we assume
an identical q−. The conditional estimate for q− = 0.5 in TM is qualitatively
somewhat similar to the full DMW estimate. This applies also to the conditional
estimate for q− = 0.92 in DMW and the full TM estimate.
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Fig. 4. Top row: True shortest path distribution (bars) together with three estimates
for different values of Δ(q−) computed from 1000 paths in an Erdos-Renyi (left) and a
Barabasi-Albert (right) graph. Bottom row: Estimated shortest path distributions given
data from the Travers & Milgram [15] as well as the Dodds et. al. [5] experiments.

4 Discussion

Our model has common aspects with the method devised in [10] as they also
use a similar Markov chain to infer frequencies of observed completed paths
given the q− parameter. But there are some important differences. We allow
the message also to move away from the target, and our model fully separates
attrition from routing efficiency. Moreover, we propose to compute maximum-
likelihood parameter estimates from observed paths. Finally, compensating for
attrition has received attention in previous literature as well [5,7], but using very
a different technique (importance sampling).

Small-world experiments show also that humans can find short paths in a
decentralized manner. It is not obvious why this happens. There are two factors
that play a role in the process: structure of the underlying social network and
the strategy (or algorithm) used to forward the messages. In real small-world
experiments it has been observed that participants tend to pass the message to
an aqcuaintance who has some common attributes with the target. Especially
geographical location and occupation have been reported as important crite-
ria [5]. For such a “greedy” routing strategy to find short paths, the network
must have certain structural properties that reflect the similarity of the nodes in
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terms of social attributes [11,16,13]. However, our model is independent of both
routing strategy and network structure, meaning that we do not have to make
assumptions about either.

Estimating the shortest path distribution from a set of very short (biased)
random walks over an unobserved network is a hard problem, and the lack of a
ground truth makes the results difficult to evaluate. We claim, however, that the
proposed model can be a useful tool when analysing small-world experiments.
Extending the model to deal with other types of data, such as information cas-
cades [8,9,14,4] is an interesting open question, and so is improving the stability
of the unconditional parameter estimates.

Acknowledgements. I would like to thank Aristides Gionis for his comments
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suggestions that helped to substantially improve the final version.
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1 Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands

2 TNO, Groningen, The Netherlands
3 Johann Bernoulli Institute for Mathematics and Computer Science,

University of Groningen, Groningen, The Netherlands
4 Deltares, Delft, The Netherlands

Abstract. Dike monitoring is crucial for protection against flooding dis-
asters, an especially important topic in low countries, such as the Nether-
lands where many regions are below sea level. Recently, there has been
growing interest in extending traditional dike monitoring by means of a
sensor network. This paper presents a case study of a set of pore pressure
sensors installed in a sea dike in Boston (UK), and which are continu-
ously affected by water levels, the foremost influencing environmental
factor. We estimate one-to-one relationships between a water height sen-
sor and individual pore pressure sensors by parametric nonlinear regres-
sion models that are based on domain knowledge. We demonstrate the
effectiveness of the proposed method by the high goodness of fits we ob-
tain on real test data. Furthermore, we show how the proposed models
can be used for the detection of anomalies.

Keywords: Structural health monitoring, dike monitoring, nonlinear
regression, anomaly detection.

1 Introduction

Dikes are artificial walls that protect an often densely populated hinterland
against flooding disasters. Especially the Netherlands, with large areas below
sea level, has a rich history of dike failures that resulted in drowning deaths and
devastation of infrastructure. Although dike technology has improved over the
years, only 44% of the 2875 kilometers of main Dutch dikes met the govern-
ment’s dike regulations in 2006 [1]. Traditional dike monitoring involves visual
inspection by a dike expert at regular time intervals. Dike patrolling is, however,
a time consuming and costly process that does not always reveal weak spots of a
dike. In this light, the IJkdijk foundation1 has been established in 2007 with the
ambition to enhance dike monitoring by sensor systems. The largely successful
program initiated an EU-funded project, called UrbanFlood2, that also imple-
ments sensor systems in dikes, but intends to construct so-called Early Warning

1 Official website: http://www.ijkdijk.nl
2 Official website: http://www.urbanflood.eu

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 345–355, 2014.
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Systems (EWS) for floodings [2]. As a consequence of both projects, more and
more dikes across Europe are being equipped with sensor systems, and therefore
there is an urgent need for algorithms that are capable of detecting damage to
the dike as early as possible.

Geophysical models [3,4] can be used to assess the stability of a dike by sim-
ulation of the underlying physical processes. Such models are computationally
intensive and thus not appropriate for (near) real-time dike monitoring. To over-
come such problems, data driven techniques were considered to detect indicators
for instability of a dike. In [2], the authors proposed neural clouds in order to
detect outliers in the sensor values. The main drawback of this approach is that
sensor values are highly influenced by environmental conditions, and thus out-
liers often correspond to rare environmental conditions rather than changes in
the internal structure of the dike. The same research group also proposed an
anomaly detection technique that uses one-step-ahead prediction of (non-linear)
auto regressive models [5]. Although such methods achieve high model fits, they
are not appropriate to detect gradual changes in a response of a sensor.

In this paper, we conjecture that in order to detect internal changes in a dike,
we first have to model the normal relationship between some environmental
conditions and dike sensors. We present a case study of a set of pore pressure
sensors that are installed in a sea dike in Boston (UK), and which are contin-
uously affected by water levels, the foremost influencing environmental factor.
Although the pore pressure signals vary significantly among the set of sensors,
we hypothesize that essentially two physical processes play a role. We estimate
the one-to-one relationships by parametric nonlinear regression models that aim
to reflect the underlying physical phenomena. In contrast to black box model-
ing techniques, such as Transfer Function Modeling and Neural Networks, the
proposed models are intuitive, interpretable and provide more insight into the
dynamics of the dike. Moreover, we demonstrate that the models can be effec-
tively used for anomaly detection.

2 Background

Fig. 1 shows a schematic overview of the concerned dike in Boston (UK) that
includes the placement of seven sensors that measure the pore pressure at time
intervals of 15 minutes. Although not shown in Fig. 1, there is a sensor that mea-
sures the water level nearby the dike with a sample interval of 15 minutes. In Fig.
2b, we show the water levels of the month of October 2011. It is characteristic of
the dike in Boston that water levels follow half-daily tides with extreme differ-
ences (up to seven meters) between high and low tides. Note that the amplitude
of the half-daily tides also varies with an approximately two-weekly period due
to the lunar cycle. It is also worth mentioning that the sensor cannot detect
water levels below −1.6 meters, which is reflected in the data by the flat lower
envelope of the water level signal. The estuary near the dike falls dry at that
point, although the actual sea levels are a little bit lower.

In Fig. 2a, we illustrate all seven pore pressure signals recorded in October
2011. The relationship between a pressure signal and a water level signal is
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Fig. 1. Schematic overview of the sensor setup in the Boston (UK) dike

influenced by the location of the concerned pressure sensor. For instance, the
AC1 sensor, which is placed at the top of the dike, does not respond to the
water level. On the other hand, the AC4 pore pressure, which is located at a
very deep level, seems to follow the same tidal fluctuations as the water levels.

The available data set consists of one year of sensor values, and ranges from
October 2011 till October 2012. The data set has a lot of missing values. In
particular, approximately 10% of the water levels and 20% of the pore pressure
values are missing. Moreover, measurements of different sensors are not syn-
chronized. As a preprocessing step, we therefore linearly interpolate the water
level signal in order to align it with the pore pressure signal in question. In this
way, we also fill small gaps in the water level signal of at most 2 samples (i.e.
30 minutes). The models we propose use some history of water levels to model
the current pore pressure. We exclude the sample from the training set if either
the pore pressure value is missing, or there is a gap of at least two water level
measurements in the history. In Fig. 2, a sequence of missing values is visible as
a straight line.

3 Model Estimation

In general, we expect that two physical phenomena play a role in the response
of a pore pressure sensor:

Short-term effect. An almost immediate response to the water levels due to
water pressure at the front of the dike. Therefore, the regular rise and fall of
the water levels cause peaks in the pore pressure signals.

Long-term effect. A much slower effect that accounts for the degree of satu-
ration of the dike. A dike that is exposed to high water levels absorbs water,
which increases the degree of saturation of the dike, which in turn increases
the pore pressure.

Fig. 2b clearly shows that the long-term effect does not play a role in all sensors.
For example, the sensors AC4 and AC5, that reside deep in the dike, do not
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Fig. 2. The raw signals of one month of data of (a) the water level sensor and (b) the
seven pore pressure sensors installed in the dike in Boston (UK). The straight lines
indicate missing values.

have significant changes in the baseline. The saturation degree at that location
in the dike is not heavily influenced by the dike’s exposure to water levels. In the
following, we refer to these sensors as short-term effect sensors, and we propose
a model for them in Section 3.1.

The other sensors follow a mixture of both effects. A typical example is the
AS1 sensor, of which an example month of data is shown in Fig. 2b. There are
significant changes in the baseline of the signal that seem to follow the two-weekly
cycle of the water levels, but there are still half-daily peaks that are superimposed
on this baseline. We model these mixed effect sensors in Section 3.2.
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3.1 Short-Term Effect Sensors

In the following, we select a subset of the complete data set as training data.
Formally, we consider N pore pressure values y[1], . . . , y[N ] (equally spaced in
time) and water level measurements x[1], . . . , x[N ] that are aligned in time. We
model the current pore pressure value y[n] as a function of recent history of water
levels x[n − M + 1], . . . , x[n]. Here, M > 0 represents the number of historical
water level measurements. It should be chosen large enough in order to reliably
predict the pore pressure. We choose M = 100, which translates to roughly one
day of water levels. The training set contains P = N − M + 1 examples, and
consists of a set of water level input vectorsX = {xi = x[i+M−1], . . . , x[i] | i =
1, . . . , P} and pore pressure output y = {yi = y[i+M − 1] | i = 1, . . . , P}.

We propose to model the short-term effect sensor by the following parametric
nonlinear regression model3:

f(θ;xi) = b + a

M−1∑
m=0

exp(−λm)xi[m+ 1] with θ =
[
b a λ

]
(1)

where λ controls the rate of decay, and a and b are affine transformation param-
eters. Our model corresponds to the solution of a first-order constant coefficient
differential equation4:

y′(t) = −λy(t) + ax(t) with initial condition y(0) = b (2)

By rewriting the right hand side to λ (cx(t) − y(t)) with c = a
λ , our model

assumptions become clear. First, the water level linearly relates (by factor c)
to the pressure on the front of the dike. Second, the rate of change of the pore
pressure is proportional to the difference between the current pressure on the
front of the dike and the pore pressure of the sensor.

We estimate the parameters of the model by minimizing the sum of squared
residuals:

S(θ) =
P∑
i=1

r2i (θ) where ri(θ) = yi − f(xi; θ). (3)

which is identical to the Maximum Likelihood Estimator (MLE) under white
Gaussian error terms. We optimize the cost function by a Gauss-Newton solver,
which is appropriate to optimize a least-squares problem [6].

We fit the model on 12 days of AC4 sensor values. We obtain the parameters
bmle = 430.13, amle = 3.17 and λmle = 0.1142, and show the predicted values by

3 For initial rest (i.e. b = 0) the proposed model is a Linear Time Invariant (LTI)
system with an exponential decaying impulse response function. Linear constant co-
efficient differential equations can be represented by causal LTI systems if and only
if they satisfy the initial rest condition. We refer the interested reader to http://

ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/

lecture-notes/MITRES_6_007S11_lec06.pdf.
4 See http://web.mit.edu/alecp/www/useful/18.03/Supplementary-CG.pdf for
more details.

http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf
http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf
http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/lecture-notes/MITRES_6_007S11_lec06.pdf
http://web.mit.edu/alecp/www/useful/18.03/Supplementary-CG.pdf
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Fig. 3. A comparison between the predicted and observed values for (a) the AC4 and
(b) the AC5 sensors. The black bar separates the training and test sets.

our model in Fig. 3a. Note that the model almost perfectly follows the observed
pore pressure. We quantify the goodness of fit by:

R2 = 1 −
∑P

i=1(yi − f(θ;xi))
2∑P

i=1(yi − ȳ)2
with mean ȳ =

P∑
i=1

yi
P
, (4)

which, roughly speaking, measures how successful the model is in explaining
the variation of the data. For the above example, we find R2 = 0.9867, which
indicates that the estimated model fits very well. We consider as test data the
12 days that follow the training data. For this period we also obtain a very high
value of R2 = 0.9760, which demonstrates that the proposed regression model is
not prone to over-fitting.

To give an impression of the duration of the exponential decay, note that λ =
0.1142 corresponds to a mean lifetime of τ = 1/0.1142 = 8.756 measurements,
which in our case amounts to slightly over 2 hours. The corresponding half-life
is τ1/2 = 8.756/ ln(2) = 6.070 which corresponds to roughly 1.5 hours.

In a similar way, we estimate the parameters for the model on 12 days of
AC5 pore pressure values, and obtain bmle = 671.78, amle = 3.09 and λmle =
0.1458. We show the predicted values obtained by our model in Fig. 3b, and
point out that the predicted values are quite close to the observed pore pressure
measurements. This is confirmed by the goodness of fit, R2 = 0.9786. For the
next 12 days, we obtain R2 = 0.9743, which demonstrates its effectiveness on
unseen data.
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3.2 Mixed-Effect Sensors

We extend the models that we proposed above to sensors that are also affected by
the degree of saturation of the dike. Intuitively speaking, a dike is only saturated
if it is exposed to high water levels for a longer period. That is to say, we assume
that the process varies slowly and it is not influenced by half-daily tides, but it
is related to the two-weekly cycle of the water levels.

We extract the top envelope of the water levels in order to capture the general
trend (the underlying fortnightly cycle). To this end, we extract the local maxima
by taking into account the fact that local maxima are expected to be separated by
12 hours. Fig. 4 shows the extracted local maxima for the water levels in October
2011. This extraction decreases the resolution of the signal considerably. We use
linear interpolation to fill in the gaps between the extracted local maxima, such
that we obtain the same resolution as the given water level signal. We denote
by x̂[1], . . . , x̂[N ] the estimated general trend of the water levels, and plot it in
Fig. 4.

We model the long-term effect with a first-order constant coefficient differen-
tial equation that is similar to the short-term model defined in Eq. 2, but here
we use the general trend of the water levels x̂ as input signal. The underlying
assumption is that the rate of change in saturation degree is proportional to the
difference between the current trend in water level (i.e. how much water the dike
is currently exposed to) and the current saturation degree. In other words, a dike
that is exposed to high water levels absorbs water much faster whenever it is
not saturated. We propose to model the mixed-effect sensors by superimposing
the short-term model on the long-term one:

f(θ;x, x̂) = b + al

Ml−1∑
ml=0

exp(−λlml) x̂[ml + 1]pl

+ as

Ms−1∑
ms=0

exp(−λsms)x[ms + 1]ps , (5)

where θ =
[
b al λl pl as λs ps

]�
, and subscripts s and l indicates the variables

for short- and long-term effect, respectively. Note that we have included new
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Fig. 5. A comparison between predicted and observed pore pressure values for (a) the
AS1 sensor and (b) the AS2 sensor. The black bar separates the training and test sets.

parameters pl and ps that raise the water levels x̂ and x to the powers of pl
and ps, respectively. This means that the relation between water level (general
trend of water level) and the pressure (saturation degree) on the front of the
dike is assumed to be c(x[n])p. Exploration of the sensor signals revealed that
the response of some sensors is much higher to water levels above a particular
threshold. There are several explanations for such an effect, which include the
vertical height of the sensor that is below or above a particular water level,
a change in slope of the dike front or a change in material covering the dike
around that height. From the actual setup of the dike, as shown in Fig. 1, it is
not immediately clear which of these the underlying reason might be.

In general, we expect that the long-term effect is based on a longer history than
the short-term effect; i.e. Ml + Ms. Here, we set Ml = 2000 and Ms = 100,
which correspond to roughly 21 and 1 day(s), respectively. The mixed-effect
model is more richly parameterized than the short-effect model, and therefore
we also need more data to reliably estimate the parameters. For the mixed-
effect sensor, the training set is of size P = N − Ml + 1, and we decided to
use approximately 21 days of training data; i.e. P = 2000. The training set
consists of the general trend of water level input vectors X̂ = {x̂i = x[i +Ml −
1], . . . , x[i] | i = 1, . . . , P}, water levels input vectors X = {xi = x[i + Ml −
1], . . . , x[i + Ml − Ms] | i = 1, . . . , P}, and pore pressure output y = {yi =
y[i+Ml − 1] | i = 1, . . . , P}.
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Table 1. The estimated parameters for the mixed-term sensors, as well as the goodness
of fit R2 for training and unseen data

Sensor b al λl pl as λs ps R2 R2
unseen

AS1 57.75 4.32e−11 0.0089 10.59 2.92e−6 0.83 7.47 0.9165 0.9144
AS2 283.31 6.18e−11 7.15e−4 9.41 2.2e−3 1.24 4.60 0.9196 0.8968

We estimate the set of parameters θ by MLE, which minimizes the sum
of squared residuals as defined in Eq. 3, but this time the residuals ri(θ) =
yi − f(θ;xi, x̂i) are defined with respect to the new model f(θ;x, x̂). Table 1
presents the estimated parameters for the AS1 and AS2 sensors, as well as the
goodness of fit for training and test data. The values determined by the proposed
models for training and test sets are shown in Fig. 5. The AS1 sensor model only
partly captures the long-term effect. In particular, there is a significant difference
around November 3-4. The short-term effect is also not modeled very accurately,
but this might be a consequence of the imperfect long-term effect model. Our
observation is confirmed by the goodness of fit R2 = 0.9165, which is slightly
worse than the goodness of fit for short-term effect sensors. For unseen data we
obtain R2 = 0.9144, which indicates that the model captures at least some of
the underlying dynamics of the AS1 sensor.

The AS2 sensor is dominated by the short-term effect, and only has a minor
contribution from the long-term one. Fig. 5b shows that the estimated model
captures the short-term effect, but fails to learn the long-term one. Nevertheless,
the goodness of fit for both training and test set is in the order of R2 = 0.91.

We have excluded the results of the AC2 and AC3 sensors, since they are
in line with the AS2 sensor; the proposed model is not robust enough to fully
capture the long-term effect. We believe that this is mainly due to other environ-
mental factors (e.g. outside temperature, humidity, and air pressure) that were
not considered (because they were not available) in the proposed model.

4 Anomaly Detection

In the previous section, we showed that we can reliably estimate a model for the
short-term effect sensors. As an example application, we show that such models
can be effectively used to detect changes in the response of the sensor — the
so-called anomalies.

We employ the following semi-supervised strategy to detect anomalies in the
AC4 sensor. We first estimate the parameter set θ of the model on data of
October 2011 (that is explicitly labeled as normal). We then use the estimated
model f(θ;x) to predict future pore pressure values ỹ[n] for the next months.
A pointwise anomaly score is calculated by measuring the Euclidean distance√
(y[n] − ỹ[n])2 between the predicted and observed pore pressure. We plot the

anomaly score of the AC4 sensor till August 2012 in Fig. 6a, and mark two
anomalies in this plot by colored rectangles. The red rectangle indicates a rather
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Fig. 6. (a) Anomaly score for the AC4 sensor that is computed as the pointwise Eu-
clidean distance between the predicted and observed pore pressure measurements. (b-c)
A zoomed-in visualization of the predicted (purple dashed) and observed (black solid)
pressure measurements for the respective red solid and green dashed marked regions
in (a).

small anomaly that corresponds to a small offset between the predicted and
observed pressure around December 12, Fig. 6b. On the other hand, the green
rectangle indicates a more serious anomaly since the anomaly score is high over a
long period of time. Indeed, Fig. 6c illustrates a significant discrepancy between
predicted and observed pore pressure from April 16 till April 25. Note that the
anomaly score returns to almost zero around half of May, and thus the detected
anomaly is not a structural change in the response of the sensor. April 2012 was
characterized by extreme rainfall5, and we speculate that the anomaly is caused
by outflow from the locks just upstream of the monitoring site.

5 Discussion and Conclusions

In this paper, we proposed parametric nonlinear regression models that describe
the relationship between a water height sensor and individual pore pressure
sensors. The models that we propose are highly effective (in the order of goodness
of fit R2 = 0.97) for pore pressure sensors (AC4 and AC5) that exhibit short-
term physical phenomenon. Moreover, we demonstrated that the proposed model
can be effectively used for the detection of anomalies.

5 See http://www.metoffice.gov.uk/climate/uk/summaries/2012/april

http://www.metoffice.gov.uk/climate/uk/summaries/2012/april
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While we also achieved reasonably high goodness of fit for what we refer to
as long-term effect sensors (AS1 and AS2), we believe that the proposed model
can be further enriched by incorporating information about other environmen-
tal factors, such as rainfall, humidity and outside temperature. Although the
presented models are tailored to sensors installed in a sea dike, we think that,
due to the general nature of the applied techniques, they are applicable to other
sensing and monitoring systems.
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Abstract. Using space-filling curves to order multidimensional data has
been found to be useful in a variety of application domains. This paper
examines the space-filling curve induced ordering of multidimensional
data that has been transformed using shape preserving transformations.
It is demonstrated that, although the orderings are not invariant under
these transformations, the probability of an ordering is dependent on
the geometrical configuration of the multidimensional data. This novel
property extends the potential applicability of space-filling curves and is
demonstrated by constructing novel features for shape matching.

Keywords: space-filling curves, peano curves, shape preserving trans-
formations.

1 Introduction

Space-filling curves can be used to map multidimensional data into one dimension
that preserves to some extent the neighbourhood. In other words points that are
close, in the Euclidean sense, in the multidimensional space are likely to be close
along the space-filling curve. This property has been found to be useful in many
application domains, ranging from parallelisation to image processing [1].

This paper examines the ordering of point sets mapped to a space-filling
curve that have been transformed using shape preserving transformations. It
is shown that the probability of an ordering is related to the geometry of the
points in the higher dimensional space. Crucial to the analysis is the definition of
betweenness and the ability to measure a corresponding in-between probability.
The motivation for this paper is to demonstrate that the spatial configuration
of multivariate data can be usefully encoded with these in-between probabilities
with a view to develop novel data analysis algorithms. To this end a practical
example based on shape matching is described which uses features derived from
in-between probabilities.

The remainder of this paper is structured as follows. The following section
space-filling curves are described in more detail and relevant literature is re-
viewed. In Section 3 betweenness and the in-between probability are defined.
Section 4 presents experiments to demonstrate the geometric underpinnings of

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 356–367, 2014.
c© Springer International Publishing Switzerland 2014
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the in-between probability. Section 5 concludes with a discussion regarding ap-
plying the approach to other data analytic tasks. Note some figures and defini-
tions have been reproduced from [20].

2 Background and Related Work

This section briefly describes the construction of space-filling curves and dis-
cusses related work.

2.1 Space-Filling Curves

A space-filling curve is a continuous mapping of the unit interval [0, 1] onto a
higher dimensional Euclidean space, where the image of the unit interval consists
of every point within a compact region. For two dimensional space this means
the image has non-zero area and the mapping is typically defined to fill the unit
square and in three dimensions the image fills the unit cube, etc.

For simplicity only mappings onto two dimensional space are considered, but
it is worth noting that the ideas in this paper generalise to higher dimensional
space.

Space-filling curves are typically defined recursively where the unit square is
subdivided into equal sized sub-tiles and ordered. The first three iterations of
the recursion for the Siérpinski curve are shown in Figure 1. The lines joining
the centres of the ordered sub-tiles are collectively referred to as the polygon
approximation to the space-filling curve. The Siérpinski curve is the limit of this
polygon approximation curve as the size of the sub-tiles tends to zero.

Not all recursively defined orderings have a curve as the limit, one example is
raster order shown in Figure 2 (in the limit this mapping is space-filling but not
a curve, see e.g. [13] for an detailed explanation of this issue). In the computing
literature these orderings are often referred to as discrete space-filling curves due
to the fact that the polygon approximation curve visits all the sub-tiles. In order
to allow for the use of discrete space-filling curves, the multidimensional data
will be represented in a (sufficiently finely) discretized space.

Fig. 1. First three iterations for Siérpinski curve construction
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Fig. 2. Raster scan order

Typically space-filling curves are used to map data to the unit interval, hence it
is the inverse of the space-filling curve mapping that is required, source code for
calculating the inverse of various space-filling curves in two and higher dimen-
sions can be found in e.g. [1,15,16].

2.2 Related Work

Combinatorial problems in multidimensional Euclidean space can be approached
using the general space-filling curve heuristic [4]. This heuristic involves using
a space-filling curve to map data onto the unit interval and then solve the one
dimensional version of the problem, which is often much easier. A notable exam-
ple is the planar Travelling Salesman Problem [15] in which, given the locations
for a set of cities, the problem is to find the shortest tour. A tour begins and
ends at the same city and visits all the other cities only once. In two or more
dimensions this is a well known N P problem, however in one dimension this
problem has polynomial computational complexity. Indeed in one dimension the
shortest tour can be constructed by simply sorting the city locations into as-
cending (or descending) order. It is the neighbourhood preserving properties of
the space-filling curve mapping that ensure that the optimal one dimensional
tour, once it is projected back to the original dimension, produces a reasonable
sub-optimal solution.

An extension this heuristic is called the Extended Space-filling Heuristic [14]
and is designed to address the problem that points close in the higher dimensional
space may be far away when mapped onto the unit interval. This is achieved by
repeatedly transforming the dataset and solving the problem for each of these
transformed versions, then combining these solutions. The transformation of the
data is designed to make the aggregate space-filling mapping approximate more
closely the higher dimensional space.

One area where the extended space-filling heuristic and variations of this
heuristic have been explored is in the problem of finding approximate nearest
neighbours to query points, see e.g. [11,14]. This research most closely resembles
the work proposed in this paper. Performing shape preserving shape transfor-
mations to the data (and the query point) will obviously not affect the nearest
neighbour when measured in the original high dimensional space however it will
effect the point order. The motivation for transforming the data is to increase
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the probability that the ‘true’ nearest neighbour is close to query point along
the unit interval. In contrast this paper proposes measuring these probabilities,
since they carry information about the spatial configuration of the dataset.

Shape Matching. In Section 4 a shape matching task is used to further demon-
strate that spatial information of a point set can be captured using probabilities
based on space-filling curve induced point orderings. In this section the use of
space-filling curves to map shapes to one-dimension is discussed.

There are not many instances in the literature where space-filling orderings
are used to represent shapes and in most cases shape normalization is performed
before the shape is mapped to one-dimension. This is done to reduce as far
as possible the effect of the change in point ordering due to affine transforms,
see e.g. [6,9,19]. In [17,18] the space of all possible rotations and translations is
searched (interestingly using another space-filling curve) to find a match.

Matching using one-dimensional representations of shapes which used cross-
correlation was proposed in [8]. Class specific regions of the representation,
known as key feature points, can be extracted by overlaying one-dimensional
representation from shapes of the same class. Intervals that have lower variance
are considered to be informative for identifying the class. A portion of the one-
dimensional representation with the lowest variance is extracted to produce a
representation of reduced length and high similarity across the class. An exten-
sion to the key feature point [7] denoted rotational key feature points involves
concatenating representations from rotated instances of the same shape and
identifying key feature points.

3 Betweenness and the In-between Probability

This section first presents a demonstration for the in-between probability using
the Siérpinski curve before presenting a more formal definition.

Consider 3 points a, b, c. The point b, is in-between a and c, if it is on the
shortest path on the curve between a and c. The darkened part of the curve
in Figure 3 shows examples of shortest paths on polygon approximation to the
Siérpinski curve.

The probability b is in-between a and c is simply the proportion of shape
preserving affine transforms that map b to the region between the transformed
locations of a and c. For example, in Figure 4 each image shows a shape preserv-
ing transformation of a right triangle. This figure shows that the configuration
of the in-between region varies depending on the locations of a, c. Only in the
first and last image is b in-between and a, c.

3.1 In-between Probability

This section presents the in-between probability more formally and for clarity
only the two dimensional case is considered.
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Fig. 3. Examples of shortest paths (shaded) along a polygon approximation to the
Siérpinski curve between two points

a

cb

a

cb a
c

b

Fig. 4. Affine transformed right triangle with region in-between a, c darkened

Let (a, b, c) be a 3-tuple of unique points in the unit square, e.g. the vertices of
a triangle shown in Figure 4. Let the shape preserving transformations be scale,
translation, rotation and reflection (and composites of these transformations).

There are two minor technical considerations. First for simplicity the space-
filling curves used in this paper are defined over the unit square, hence no point
should be transformed outside the unit square, otherwise its location along the
curve cannot bemeasured.The set of allowable transformations for a tuple (a, b, c),
i.e. those that map all three points into the unit square, is denoted S{a,b,c}.

For s ∈ S{a,b,c}, let a′ = s(a) this is the location point a after the shape
preserving transformation s is applied. The second minor technical consideration
relates to the use of discrete space-filling curves. These mappings require the
unit square to be discretized, hence all transformed points are rounded to their
nearest tile centre.

Figure 3 shows that the Siérpinski curve wraps around to meet itself, whereas
raster order does not (Figure 2). In order to capture this difference two types of
betweenness, circular and linear, are defined.

The linear in-between probability for tuple (a, b, c) and space-filling curve f
is defined as, p(Xl = i; (a, b, c), f,S{a,b,c})
where i ∈ 0, 1 and Xl is a random variable defined as,

Xl =

⎧⎪⎪⎨⎪⎪⎩
1

if f−1(a′) < f−1(b′) < f−1(c′)
or f−1(c′) < f−1(b′) < f−1(a′),

0 otherwise.

(1)
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a

b

c

f−1(a) f−1(b) f−1(c)

f

(a) Linear

a

b

c g

g−1(a)
g−1(b)

g−1(c)

(b) Circular

Fig. 5. The in-between mapping

In words, for a particular space-filling curve mapping f ,
p(Xl = 1; (a, b, c), f,S{a,b,c}) is the probability the pre-image of b is in-between
the pre-images of a and c under valid shape preserving transformations. Recall
that space-filling curves are defined to map points from the unit interval onto
the higher dimensional space, hence the inverse space-filling curve mapping is
required, see Figure 5(a).

Using similar notation, the circular in-between probability is defined as,
p(Xc = i; (a, b, c), g,S{a,b,c}), where i ∈ 0, 1, g is a space-filling curve mapping
and Xc is a random variable which is defined as,

Xc =

⎧⎪⎪⎨⎪⎪⎩
1
if g−1(b′) is on the shortest path connecting,

but not including, g−1(a′) and g−1(c′)

0 otherwise.

(2)

See Figure 5(b) for a graphical representation of circular betweenness.

4 Spatial Configurations and In-between Probabilities

The previous section defined the in-between probability, in this section the re-
lationship between spatial configurations of points and their corresponding in-
between probabilities is investigated experimentally. First by empirically esti-
mating the in-between probability distribution for triangles in the plane then
by investigating how well the spatial configuration of large sets of points can
be usefully captured using betweenness probabilities in the practical setting of
shape matching.

For all the following experiments the set of shape preserving transformations
is sampled as follows:

The unit square is subdivided into 2048× 2048 tiles and all transformed loca-
tions are rounded to the nearest tile centre. This level of granularity was chosen
to allow shapes described in Section 4.2 to be scaled up to an order of magni-
tude. First, with probability 1

2 the shape is reflected through the x-axis. Then,
the shape’s centre of gravity is translated to a location that has been sampled
uniformly at random from the unit square. The shape is then rotated uniformly
about its centre of gravity. A scale is sampled uniformly in the range 1 to a max-
imum scale S, where S is chosen such that a shape scaled to any value greater
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than S will not fit completely within the unit square. A shape is not scaled by
a value less that 1 since this would amplify aliasing effects. Finally the trans-
formation is rejected if the points do not all map to positions within the unit
square.

For linear betweenness, assume x1, . . . , xη are identically and independently
drawn from the probability mass function p(Xl = i; (a, b, c), f,S{a,b,c}). Then
the maximum likelihood estimate is simply,

p̂(X = i; (a, b, c),S{a,b,c}) =
1

η

η∑
t=1

1(xt = i),

where 1(·) is the indicator function and the number of samples, η, is set to
20,000. A similar formula can be obtained for circular betweenness.

4.1 Estimating the in-between probabilities for triangles

In this section the in-between probability for different triangular configurations
of points is investigated empirically, more precisely the relationship between
the shape of a set of 3 points (a, b, c) and the circular in-between probability
p(Xc = i; (a, b, c), f,S{a,b,c}), where f denotes a Siérpinski curve mapping.

A simple way to represent shape of triangles in two dimensions is to use Book-
stein shape coordinates. In these coordinates the location of points a, c are fixed
to the locations a = (− 1

2 , 0) and c = (12 , 0), the location of b is the free parame-
ter. Note, since reflections are one of the shape preserving transformations, the
location b can be restricted to the positive half plane to get the full distribution.
To obtain a larger set of triangular shapes the domain b is −3 to 3. This coor-
dinate system is shrunk by a factor of 1

3 and translated in order to fit into the
unit square.

Figure 6 shows the circular in-between probability mass function for the
Siérpinski curve, shown in both a surface plot and a contour plot. Each lo-
cation in the plot corresponds to b a vertex of the triangle which has as a base
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the segment joining (− 1
2 , 0) to (12 , 0). The symmetry about the x-axis is due to

introducing reflection invariance. It can be seen there is a clear dependency be-
tween the probability and shape of the triangle (a, b, c). The maximum occurs at
the midpoint between a and c. The contour plot demonstrates that, in general, a
particular value for the in-between probability does not correspond to a partic-
ular shape of triangle. The locus of shapes with the same in-between probability
starts approximately elliptical and becomes progressively rounder the further
away b is from the line segment joining a to c.

4.2 Shape Matching

The objective of the following experiments is twofold. First to demonstrate the
joint in-between distribution for data comprising of more than three points is
also related to its spatial configuration. Second to directly compare novel shape
descriptors based on this joint in-between distribution with state-of-the-art shape
descriptors.

Fig. 7. Example images from the MPEG-7 Core Experiment CE-Shape-1 Part B
dataset

The MPEG-7 Core Experiment CE-Shape-1 Part B dataset is a widely used
benchmark dataset for image retrieval that contains 1400 shapes, [10]. There are
70 classes of shape, each with 20 instances, examples of shapes from this dataset
can be seen in Figure 7. Performance for this benchmark dataset is measured
using the bulls-eye score, which is calculated as follows.

For each target shape retrieve the 40 most similar shapes, count the number
of shapes that are from the same class as the target. The maximum score for
one target shape is 20 and the overall maximum score is 28,000. The bulls-eye
score is typically shown as the percentage of the maximum score.

The approach that has the current highest bulls-eye score, which is 97.4%,
is described in [3]. This approach uses two different shape descriptors; shape
contexts (SC) and inner distance shape contexts (IDSC). The main purpose of
[3] is to introduce an algorithm called co-transduction which efficiently combines
shape dissimilarities derived from these two descriptors. Combining approaches
is beyond the scope of this paper, however motivated by the success of the shape
descriptors used, the following experiments include results for SC and IDSC for
comparison. The reader is referred to [5] and [12] for detailed descriptions for
SC and IDSC respectively.

In the following experiments, shape matching is achieved using the approach
described in [12]. Briefly, each shape is represented by n = 100 points extracted at
regular intervals from the boundary and for each point a descriptor is measured.
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Shape matching proceeds in the following fashion, let shape S1 consist of the
points p1, . . . , pn and the shape S2 the points q1, . . . , qn. A dissimilarity matrix
ci,j is generated where each entry is a measure of the difference between the
descriptors for point pi and for point qj . The level of dissimilarity between shapes
S1 and S2 involves finding an optimal mapping between the point sets from S1

and S2 which is solved using dynamic programming.

Novel Descriptors. The concern in this section is how to construct a dissimi-
larity matrix using betweenness probabilities. Taking any two points, pi and pj
from S1, it is possible in principle, to build a distribution over the number of
the remaining points that lie in-between them along the space-filling curve. This
distribution contains information about the spatial locations of the remaining
points relative to pi and pj . However this would be unwieldy to measure and
store, instead two simple descriptors are proposed.

The mean descriptor. Let fμ(pi, pj) be the expected number of points in-
between pi and pj . Then the descriptor for point pi is the set
{fμ(pi, p1), . . . , fμ(pi, pn)}.

The 10% descriptor, f10%(pi, pj) is the probability that 10% of the total num-
ber of points or fewer are in-between pi and pj . The descriptor for point pi is
the set {f10%(pi, p1), . . . , f10%(pi, pn)}.

There are, of course, plenty of alternative features that could have been con-
structed. The advantage of the two described above is their very obvious relation-
ship with the underlying in-between probabilities. Furthermore in both cases the
descriptor assigns a one dimensional vector to each point much like SC and IDSC.

To measure the dissimilarity, ci,j , between pi from shape S1 and qj from
shape S2, the descriptor sets of pi and qj are sorted into order and the absolute
difference between the entries is taken, i.e.

ci,j =

n∑
k=1

|f(pi, pπpi
(k)) − fqj , qπqj

(k))|,

where πpi and πqj denote the values in the descriptor sets of pi and qj sorted
into ascending order respectively.

The dissimilarity matrix c is all the information needed to use the matching
process described above.

Results. To allow for a direct comparison between IDSC, SC and the proposed
shape descriptors, shape matching for both IDSC and SC is performed such that
it is invariant to rotation and reflection.

For each descriptor, the space-filling curve mapping that yielded the highest
bulls-eye score is shown in Table 1. For the 10% descriptor this was the Siérpinski
curve and for the mean descriptor this was raster order. In both these cases the
performance was not at the same level as SC and IDSC. Note that the bulls-eye
score for IDSC is slightly higher than that reported by [12], it is also interesting
to note that both SC and IDSC have very similar performance.
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Table 1. Bulls-eye scores

Method Siérpinski-10% Raster-mean SC IDSC

Score 77.72% 78.80% 85.22% 85.81%

Table 2. Bulls-eye scores using additional clustering step

Method Siérpinski-10% Raster-mean SC IDSC

Score 86.14% 87.15% 90.93% 91.17 %

For this particular retrieval task, plugging in an additional clustering phase
has been shown to greatly improve performance [2]. Table 2 show the results
that includes a clustering step referred to as Graph Transduction [2]. All the
approaches have been dramatically improved and with our novel descriptors
obtaining the greatest boost. The results shown in Table 2 clearly demonstrate
that our descriptors are capable of encoding in a meaningful way the spatial
configuration of a point set.

Finally it should be noted that space-filling approaches have been applied
to this image retrieval task, namely the key feature point and the rotational
key feature point, which were described in Section 3. These approaches have
have bulls-eye scores of 85.3% and 99.3% respectively. However these results
cannot easily be compared to the results shown above and indeed the majority
of methods applied to this MPEG-7 shape retrieval task since both the key
feature point and the rotational key feature point require the use of additional
information about shape classes.

5 Conclusion

It should be remarked that although the examples described in this paper have
been in two dimensions the methodology extends naturally to higher dimen-
sion. In order to perform analysis of n-dimensional data all is needed is an
n-dimensional space filling curve and the ability to affine transform points in
n-dimensional space.

This paper has shown that the in-between probability is related to the spatial
configuration of a dataset. This has been demonstrated by investigating the
in-between probability of triangles in the plane and by using features derived
from the in-between probability to successfully perform an image retrieval task.
Although these features did not achieve state-of-the-art performance, the very
fact that these features captured sufficient information about the configuration
to perform the task suggests that in-between probabilities are likely to be useful
in other data analytic tasks.

For example the median of a point set could be defined as the data point
which is most likely to be in-between all other pairs of points in the dataset.
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Taking this concept further, the degree to which a point is in-between all point
pairs can be used identify outliers.

Indeed any data analysis processes that requires a concept of neighbourhood
in the Euclidean sense, such as those that use Voronoi graphs, are all candidates
for our approach to be deployed.
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Abstract. The MDL Principle (induction by compression) is applied
with meticulous effort in the Krimp algorithm for the problem of item-
set mining, where one seeks exceptionally frequent patterns in a binary
dataset. As is the case with many algorithms in data mining, Krimp is
not designed to cope with real-valued data, and it is not able to han-
dle such data natively. Inspired by Krimp’s success at using the MDL
Principle in itemset mining, we develop RealKrimp: an MDL-based
Krimp-inspired mining scheme that seeks exceptionally high-density pat-
terns in a real-valued dataset. We review how to extend the underlying
Kraft inequality, which relates probabilities to codelengths, to real-valued
data. Based on this extension we introduce the RealKrimp algorithm:
an efficient method to find hyperintervals that compress the real-valued
dataset, without the need for pre-algorithm data discretization.

Keywords: Minimum Description Length, Information Theory, Real-
Valued Data, RealKrimp.

1 Introduction

When data result from measurements made in the real world, they quite of-
ten are taken from a continuous, real-valued domain. This holds, for example,
for meteorological measurements like temperature, precipitation, atmospheric
pressure, etcetera. Similarly, the sensors in a smartphone (GPS, accelerome-
ter, barometer, magnetometer, gyroscope, light sensor, etcetera) monitor data
streams from a domain that is, for all practical purposes, real-valued. Most data
mining algorithms, however, specialize in data from a discrete domain (binary,
nominal), and can only handle real-valued data by discretization. Native support
for real-valued data would be an asset to such algorithms.

An example of a popular discrete algorithm is Krimp [1], an algorithm that
finds local patterns in the data. Specifically, Krimp seeks frequent itemsets :
attributes that co-occur unusually often in the dataset. Krimp employs a mining
scheme to heuristically find itemsets that compress the data well, gauged by a
decoding function based on the Minimum Description Length Principle [2,3].

In an effort to extend the applicability of Krimp to continuous data, we intro-
duce RealKrimp: a Krimp-inspired mining scheme with a strong foundation in

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 368–379, 2014.
© Springer International Publishing Switzerland 2014
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information theory, that finds interesting hyperintervals in real-valued datasets.
This interestingness is expressed by an MDL-based model for compression in
real-valued data. The resulting RealKrimp algorithm can be seen as a Krimp-
inspired model for frequent patterns in continuous data, where the role of the
frequent itemsets is played by hyperintervals in the continuous domains, that
show an exceptionally high density.

2 Related Work

The Minimum Description Length (MDL) principle [2,3] can be seen as the more
practical cousin of Kolmogorov complexity [4]. The main insight is that patterns
in a dataset can be used to compress that dataset, and that this idea can be used
to infer which patterns are particularly relevant in a dataset by gauging how well
they compress: the authors of [1] summarize it by the slogan Induction by Com-
pression. Many data mining problems can be practically solved by compression.
Examples of this principle have been given for classification, clustering, distance
function design (all in [5]), feature selection [6], finding temporally surprising
itemsets [7], and defining a parameter-free distance measure on time series [8].
Clearly, the versatility of compression as a data mining tool has been recognized
by the community. All the work done so far within the data mining community,
however, has in common that the structure being compressed stems from a do-
main that is either finite [5,6,7] or at most countably infinite [5,8]. This is in
sharp contrast with the use of MDL in statistics and machine learning, which
has included continuous applications such as density estimation and regression
from the very beginning [2]. The present paper provides a continuous-data MDL
application in data mining.

In the data mining subtask of finding a small subset of dataset-describing
patterns, arguably the most famous contribution is Krimp [1], as described in
the introduction of this paper. An alternative and closely related approach to
data summarizing is tiling [9]. Tiling seeks a group of, potentially overlapping,
itemsets that together cover all the ones in a binary dataset. Similar as it may be
to Krimp, tiling does not concern itself with model complexity or MDL. While
Krimp approaches the binary dataset in an asymmetric fashion, only regarding
the items that are present (the ones), two methods inspired byKrimp fill the void
by approaching the dataset in a symmetric fashion. Pack [10] combines decision
trees with a refined version of MDL, and typically selects more itemsets than
Krimp. Conversely, LESS [11] sacrifices performance in terms of the involved
compression ratio, in order to end up with a set of low-entropy patterns that is
typically an order of magnitude smaller than the set found with Krimp.

3 Relating Codes and Probabilities

An important piece of mathematical background for the application of MDL in
data mining, which is relevant for both Krimp and RealKrimp, is the Kraft
Inequality, relating code lengths and probabilities (cf. [12]). In the following
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sections, we inspect the inequality in its familiar form, where it is only applicable
to at most countable spaces, and then show the derivation of a suitable code
length function for Euclidean (hence uncountable) spaces.

Consider a sample space, i.e., a set of possible outcomesΩ. Let E be a partition
of Ω that is finite or countably infinite. We think of E as the level of granularity
at which data are observed. If Ω is countable, then in most MDL applications,
E = Ω; but if Ω = Rd, then we will always receive data only up to a given
precision determined by the data generating and processing system at hand;
then E is some coarsening of Rd; in practice, the modeler or miner may not
know the details (such as the precision) of this coarsening but as we will see,
the MDL principle can still be applied without such knowledge. A probability
mass function p on a countable set E is simply a function p : E → [0, 1] so that∑

y∈E p(y) = 1. We call p defective if, instead,
∑

y∈E p(y) < 1.
Let A denote a finite alphabet, and let C denote a finite or countably infinite

prefix-free subset of
⋃

i≥0 Ai, i.e., a subset of the strings over A such that there
exist no two elements z, z′ of C such that z is a strict prefix of z′. A description
method [3] for E with code word set C is defined implicitly by its decoding func-
tion, a surjection D : C � E . While we allow that some y ∈ E can be encoded
in more than one way, we do require unique decodability, so that the inverse
function D from C to E does exist. Note that these requirements are standard
in all applications of MDL [3]. We call a description method a (prefix) code if
D is 1-to-1; a natural way to turn a given description method D into a code
is to encode each y ∈ E by the shortest z with D(z) = y. The length function
corresponding to code C, �C : E → Z≥0, assigns to an outcome in E the length
of its encoding under C.

Theorem 1 (Kraft). For every code C over an alphabet A, a (possibly defec-
tive) probability mass function p on E exists that makes short encoded lengths
and high probabilities of outcomes correspond as follows:

for all y ∈ E: − log|A| p(y) = �C(y). (1)

Proofs of this result exist [12] for the case when C is finite or countably infinite.
One can also prove the converse of Theorem 1: for every probability mass func-
tion p on E , there is a code C such that (1) holds. This allows a bi-directional
identification of code length functions and probability mass functions [3]. Thus,
as in most papers on MDL and Shannon information theory, we simply define
codelength functions in terms of probability mass functions: every probability
mass function p on E defines a code with for all s ∈ C, lengths given by

�(s) = − log p(s), (2)

This is also the manner in which the relation between code lengths and proba-
bilities is introduced in the Krimp paper [1, Theorem 1].

What if outcomes are continuous? We start with the basic case with a sample
space equal to R. No code allows encoding data points x ∈ R with infinite pre-
cision, so one proceeds by encoding a discretization of x. We define the uniform
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discretization Ek of R at level k as the partition { [n/2k, (n+1)/2k) | n ∈ Z} of
R. Every possible outcome x is a member of exactly one element of Ek, denoted
[x]k.

Given an arbitrary distribution P on (a connected subset of) R, identified by
its density p, and a data point x0 ∈ R, the probability of [x0]k is given by

P ([x0]k) =

∫
x∈[x0]k

p(x)dx ≈ p(x0)2
−k (3)

As follows directly from the definition of (Riemann) integration, provided p is
continuous, the approximation (3) gets better as k → ∞. This makes it mean-
ingful to define a length-like function, the lengthiness, on R by:

�k(x) := − log p(x) + k. (4)

As k gets larger, (4) becomes a better approximation to the actual codelength
− logP ([x]k) achieved at precision k. The lengthiness �k would only become
a proper length function, i.e., one that satisfies Theorem 1, in the limit as k
approaches infinity, where it would assign infinite length to all elements of X .
However, crucially, the lengthiness does not alter its behavior with varying k,
other than that it is shifted upwards or downwards. Hence, to compare elements
of X , non-limit values for the lengthiness can be used as a length proxy.

To extend the idea above to encode data vectors x = (a1, . . . , an) in Rn for
some n > 1, we define E as a set of hyperrectangles of side width 2−k and
define [x]k to be the single hyperrectangle in E containing x. Approximating the
integral over [x]k as in (3), we then get a lengthiness of

�k(x) := − log p(x) + n · k. (5)

We should note that one can formalize this discretization process in detail for
general noncountable (rather than just Euclidean) measurable spaces and general
types of discretization. (rather than just uniform; in practice our data may be
discretizable in a different manner). This requires substantially more work but
leads to exactly the same conclusions as to how to apply MDL to continuous-
valued data; for details see [13].

4 Two-Part MDL Code for Hyperintervals

Given a set of candidate hypotheses H and data ω, the MDL Principle for
hypothesis selection tells us to select, as best explanation for the data, the H ∈ H
minimizing the two-stage description length

�1(H) + �2(ω | H). (6)

The first term, �1, is the codelength function corresponding to some code C1

for encoding hypothesis H . For each H ∈ H, the second term, �2(· | H), is the
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length function for a code C2,H for encoding the data ‘with the help of H ’, i.e.,
a code such that, the better H fits ω, the smaller the codelength �2(ω | H).

To find interesting patterns in an uncountable dataset ω, consisting of N
records of the form x = (a1, . . . , an), where each attribute ai is taken from a
real-valued domain, the data can be discretized at level k, turning (6) into

�1(H) − log p(ω | H) +N · n · k, (7)

where we approximate the actual codelength function by the ‘lengthiness’ (5)
and the factor N appears because we discretize N data points.

In the original Krimp paper, the resulting patterns are itemsets in finite-
dimensional binary-valued space. In RealKrimp, the patterns are bounded
hyperrectangles, with edges parallel to coordinate axes. Unlike Krimp, Real-
Krimp does not demand any point to be covered by the hyperrectangle. Effec-
tively we strive to find relevant endpoints of intervals of attributes. Hence, we
refer to such hyperrectangles as hyperintervals :

Definition 1 (Hyperinterval). Let R̄ = [−∞,+∞] represent the extended real
numbers. Given a set of 2n extended reals hL

1 , h
U
1 , h

L
2 , h

U
2 , . . . , h

L
n , h

U
n in R̄, the

hyperinterval H ⊆ Rn encoded by the 2n-tuple (hL
1 , h

U
1 , h

L
2 , h

U
2 . . . , hL

n , h
U
n ) is the

subset H = [hL
1 , h

U
1 ]× . . .× [hL

n , h
U
n ] of R

n in which the ith dimension is restricted
to [hL

i , h
U
i ].

Just asKrimp strives to find itemsets that have a relatively high support, Real-
Krimp should strive to find hyperintervals with a relatively high record density.
We want to attain better compression, for increasing difference between density
within a hyperinterval and density outside of the hyperinterval (signposted by
the records in ω).

Description Length �(ω) of Data without Hypothesis Let M denote the volume of
the smallest hyperinterval covering the entire dataset. Without prior information
on the dataset, we do not want to discriminate between records a priori, so we
assign the same length of − log 1/M to each record, using the code corresponding
to a uniform distribution. That makes the complexity of the dataset equal to

N · − log 1/M = N logM (8)

where we can ignore the discretization constant N · n · k since it needs to be
added to both (8) and to (7), which are to be compared.

Description Length �(ω | H) of Data given Hypothesis Suppose that we are
given a hyperinterval H lying within the interval of volume M ; we denote the
number of records it covers by Nin and its volume by Min. Additionally, we
write Nout = N −Nin and Mout = M −Min. Since Nin, Nout,Min, and Mout are
determined by H and here we assume H as given, we can base our code on these
quantities. Each record x is now naturally equipped with the following length:

�(x) :=

{
− log 1/Min = logMin for x ∈ H
− log 1/Mout = logMout for x �∈ H.

(9)
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Note that we can code records x with these lengths only once we know, for each
record x, whether x ∈ H or not. Hence, to describe ω given H , we need to
describe a binary vector (b1, . . . , bN ) of length N where bi = 1 if the ith record
is in H . The standard way of doing this is first to describe Nin using a uniform
code on {0, 1, . . . , N}, which takes log(N+1) bits irrespective of the value of Nin,
adding another constant (independent of H) to the codelength that is irrelevant
for comparisons and hence may be dropped; we then code (b1, . . . , bN) by giving
its index in lexicographical order in the set of allN -length bit vectors withNin 1s,
which takes log

(
N
Nin

)
bits, which is itself equal, up to yet another constant term,

to N · Entropy(Nin/N) = N logN − Nin logNin − Nout logNout [3]. Combining
with Equation (9), the complexity of the dataset is equal to:

Nin logMin/Nin +Nout logMout/Nout +N logN (10)

Description Length of Hypotheses I We gauge the complexity of specifying the
model itself through specifying its boundaries. Consider an attribute ai with min-
imal value L and maximal value U in ω. We may define a probability density
function p̄ on the maximal value of ai within H as x−L

1/2(U−L)2 , a choice justified

below. Given this maximal value u, we take a uniform probability density func-
tion on the minimal value of ai within H , which has constant probability density

1
u−L . Any combination of boundary values for ai within H now has probability

x−L
1/2(U−L)2 · 1

x−L = 2
(U−L)2 , which is independent of the values themselves, thus

justifying our choice for p̄. Following this procedure for all attributes, the like-
lihood of every hyperinterval becomes 2n/M2, which corresponds to the ‘length’:

− log p̄(H) = − log 2n/M2 = 2 logM − n log 2 (11)

While we could safely ignore the discretization constant when deriving the raw
complexity of the dataset (8) and the complexity of the dataset given a model
(10), we cannot do so for the codelength of the hyperinterval. This is because
shortly, we will also look at hyperintervals that are defined only on a dimension
n′ < n. Hence we add a discretization constant twice (for the points describ-
ing the minimal and maximal values) to (11) to make it a proper ‘lengthiness’
function. To determine k, note that we should be more demanding towards the
detail in the model as the number of records increases, so ideally (11) should
increase with N when the discretization constant is taken into account. We take
− logM/Nn for the discretization constant n · k, turning (11) into:

2 logM − n log 2 − 2 log
M

Nn
= 2n logN − n log 2 (12)

This choice is quite natural, since it has an additional interpretation as the code-
length arising from a rather different way of encoding H , namely by specifying,
for each dimension 1 ≤ i ≤ n, two records: one giving the lower boundary for
attribute ai in interval H , and one given the upper boundary.
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Description Length of Hypotheses II: Unbounding Irrelevant Dimensions. When
determining whether something exceptional is going on in a particular subset
of the dataset, typically, only a sharply reduced subset of n′ , n attributes is
relevant. We proceed to generalize the derived complexities and lengths, allowing
RealKrimp to assess whether a dimension should be bounded or unbounded.

To gauge the informativeness of bounding a dimension, we turn to Equation
(12). With our choice of discretization constant, the length for the model spec-
ification was derived as 2n logN − n log 2. This was based on n dimensions, so
the length per dimension, which we denote as Δ, is given by

Δ = (2n logN − n log 2)/n = logN2/2

The quantity Δ represents the information contained in the specification of a
single dimension of the hyperinterval. For a specification of n′ ≤ n dimensions,
the complexity of the model, as originally given in (12), becomes:

n′Δ = n′ log
N2

2
. (13)

When encoding data based on such an n′-dimensional hyperinterval H with n′ <
n, the form of (10) remains intact, but we need to specify whatNin andMin mean
when some of the dimensions remain unbounded. We consider any hyperinterval
to span the full range of any unbounded dimension. Hence, Nin is the number of
records that are covered on the specified dimensions; coverage on the unbounded
dimensions is implied. Also, Min is calculated from a hyperinterval that, in the
unbounded dimensions, spans the full range available in the dataset.

When encoding a hyperinterval H , we must encode which dimensions will be
specified/unbounded. We do that by taking a uniform prior over the 2n available
models in the class. Hence, we obtain a constant complexity for each choice of
specified/unbounded dimensions, making model comparison solely dependent on
the lengths defined in those models. Therefore, a dimension is considered rele-
vant, when specification of hyperinterval boundaries in that dimension delivers
a reduction in description length bigger than Δ.

The hyperintervals that compress the dataset are those for which (8), the com-
plexity of the database, is larger than the sum of (10), the complexity of the data
given the hyperinterval, and (13), the complexity of specifying the hyperinterval.
When this inequality holds, enough information is present in the hyperinterval
to justify the cost of its specification, and we have found an underlying concept
in the dataset. Subtracting N logN from both sides and rearranging terms, we
find that we are interested in hyperintervals for which

N log
M

N
− n′ log

N2

2
> Nin log

Min

Nin
+Nout log

Mout

Nout
(14)

Here, everything that does not depend on the choice of hyperinterval is gathered
on the left-hand side, leaving everything that does on the right-hand side.
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Algorithm 1. The RealKrimp Algorithm

Input: A real-valued dataset ω
Output: Hyperintervals that compress ω well
1: Sample the dataset.
2: Compute all (Euclidean) distances between records in the sample.
3: Pick two neighboring (in distance) rows in the sample.
4: Extend a hyperintervalH covering these rows based on other rows in the sample, in

a compression-increasing direction (measuring compression on the entire dataset).
5: Calculate the coverage of each dimension in H .
6: In order of decreasing coverage, determine if compression improves when letting a

dimension go unbounded.
7: Report the resulting hyperinterval if it is interesting according to Equation (14).
8: Until no more interesting hyperintervals can be found, restart from step 3 with two

rows not covered by any of the previously reported hyperintervals.

5 The RealKrimp Algorithm

One of the most prominent problems in theory mining in general, is the pattern
explosion problem: if we set the interestingness constraints tight, then we find
only a few well-known patterns, but if we set the constraints looser, we are
quickly overwhelmed with an amount of interesting patterns that is unsurveyable
for any data miner. With the real-valued MDL criterion, we can also find many
interesting hyperintervals very easily. When untreated, the pattern explosion
problem hinders a practical application of a pattern mining method. Naturally,
theKrimp paper [1] discusses the problem.Krimp strives to find a set of itemsets
compressing the dataset, and obviously the candidate space is enormous. The
chosen approach to the explosion, is to forego finding the best set of patterns —
heuristically finding a pattern set that compresses well is good enough.

RealKrimp aims for a similar goal in an uncountable space, which ampli-
fies the pattern explosion problem. For every hyperinterval that we could find,
every boundary can have infinitely many values leading to the hyperinterval
covering exactly the same records, with an arbitrarily small change in the vol-
ume of the hyperinterval. To deal with this serious problem in the applicability
of real-valued MDL, in this section we introduce the RealKrimp algorithm:
a mining scheme that confines its attention to those interesting hyperintervals
that locally maximize the inequality of (14); no better compression is obtained
by a hyperinterval that is either an extension or a restriction of the considered
hyperinterval. The RealKrimp algorithm is given in Algorithm 1. Our imple-
mentation of RealKrimp is written in Python 3, and available for the general
public at http://github.com/joukewitteveen/hint.

The first seven lines of the algorithm detail how a single hyperinterval can be
found. Since we are interested in finding a set of well-compressing hyperintervals,
the algorithm subsequently loops back to step 3 in an attempt to heuristically
find additional compressing hyperintervals. The endurance with which the algo-
rithm proceeds to attempt this is governed by a user-set parameter. Additionally,
to gloss over small complexity bumps in the hyperinterval space, a perseverance

http://github.com/joukewitteveen/hint
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(a) The whole dataset (blue), a hyperin-
terval (red), and a sub-hyperinterval (dark
red)

(b) Köppen classification of Europe [16]

Fig. 1. Spatial distribution over Europe of hyperintervals found by RealKrimp, jux-
taposed with the Köppen classification of Europe

parameter can be set that allows the algorithm to escape local optima in step 4.
Lastly, by varying the sample size employed in step 1, substantial influence can
be exercised over the total runtime of the algorithm. To discuss all these details
in full and properly incorporate them into the pseudocode would substantially
bloat the discussion in this section, at the expense of either the theory in pre-
vious sections or the experimental results in the next section. Instead, we refer
the reader who is interested in details on all individual steps to [13].

6 Experiment

We experiment on the Mammals dataset [14], which combines information from
three domains: ① the location of grid cells covering Europe (latitude, longitude);
② the climate within these grid cells (monthly temperatures, precipitation, an-
nual trends as captured by the BIOCLIM scheme [15]); ③ the presence or absence
of species of mammals in the grid cells. The data from these three domains were
pre-processed into one coherent flat-table dataset by Heikinheimo et al. [14].
This version of the dataset is the one we also use in our experiments. We feed
the 19 BIOCLIM features from the second domain and all features from the
third domain to the RealKrimp algorithm, to see its performance on a mixture
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(a) Whole
dataset (N=2221)

(b) Hyperinterval
(N=916)

(c) Sub-hyperinter-
val (N=367)

Fig. 2. Climate data for the hyperintervals of Figure 1a. The solid lines represent
the mean monthly temperature quartiles; the dashed lines represent the precipitation
quartiles. Temperatures range from −5 to 20◦C; precipitation ranges from 0 to 175mm.

of numeric and binary features. We withhold the location information and the
other 48 climate features from the algorithm for evaluation purposes.

For the sake of the distance computation in line 2 of the RealKrimp algo-
rithm, we need to define a way to handle the binary features from the third
domain. Given two sets of present species, we assign a distance determined by
the species in the symmetric difference between those sets. For each species in
this symmetric difference, we add an amount to the distance equal to the binary
entropy of that species in the dataset; if a species in the symmetric difference
occurs k times in the dataset, it adds − k

N log k
N − N−k

N log N−k
N to the distance.

We consider this distance computation a parameter of the algorithm; treating
binary attributes by computing its entropy is a convenient domain-agnostic way,
but given particular domain information one might prefer other solutions.

A RealKrimp run resulted in many interesting hyperintervals, including the
one depicted by the red dots in Figure 1a. Inspecting the boundaries of all 120
features that define the hyperinterval is infeasible; instead we make some ob-
servations that stand out. One bioclimatic variable is left unbounded: the mean
diurnal range. The species that are necessarily present in the hyperinterval are
the Vulpes vulpes (Red Fox), the Capreolus capreolus (European roe deer), and
the Lepus europaeus (European hare). Applying the RealKrimp algorithm re-
cursively, we find the sub-hyperinterval depicted by the dark red dots in Figure
1a. We inspect the relation between the whole dataset, the hyperinterval, and
the sub-hyperinterval, by aggregating information from the 48 climate variables
withheld from RealKrimp to draw up the climographs of Figure 2. These climo-
graphs can be used to illustrate the differences between groups in the Köppen
climate classification [16].
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Comparing the hyperinterval with the whole dataset in Figure 1a and con-
sidering the corresponding areas on the Köppen classification chart of Figure
1b, we observe that the hyperinterval removes the subarctic (Dfc and Dfd, teal),
semi-arid (BSh, sand-colored), and Mediterranean (Csa, Csb, yellow) climate
types from the dataset. Comparing the hyperinterval climograph (Figure 2b)
with the one for the whole dataset (Figure 2a), we see that particularly the
mean temperature inter-quartile range in summer and autumn is reduced.

Reducing the hyperinterval to the sub-hyperinterval, Figures 1a and 1b show
that we remove the humid continental (Dfb, blue) climate type. Comparing the
sub-hyperinterval climograph (Figure 2c) with both others, we see an increase
in precipitation and temperature in the winter. This is consistent with the tem-
perate oceanic (Cfb, green) climate type dominant in the sub-hyperinterval.

Due to space constraints we decided to not present more experimental results
in this paper; doing so would be detrimental to either the development of the
theory or to the relatively extensive discussion of the experimental results we do
discuss in the paper, and we are willing to pay neither of these prices. However,
more experiments were performed, and can be accessed elsewhere. More exper-
imental results on artificial data can be found in the technical report [13]. Part
of these experiments were performed on benevolent artificial data, whose under-
lying structure comes in an ideal form to be represented by hyperintervals, and
part were performed on antagonistic artificial data, whose underlying structure is
particularly problematic for RealKrimp. These artificial experiments illustrate
what can be expected from RealKrimp when presented with a variety of pat-
terns to discover. More experimental results on the Mammals dataset can be in-
spected online, at http://www.math.leidenuniv.nl/~jwitteve/worldclim/.
The main page displays the map corresponding to found hyperintervals. Clicking
on such a hyperinterval will display the results of a RealKrimp run mining for
sub-hyperintervals.

7 Conclusions

We introduce RealKrimp: an algorithm that finds well-compressing hyper-
intervals in a real-valued dataset, based on the Minimum Description Length
Principle. The hyperintervals are bounded hyperrectangles, with edges parallel
to coordinate axes, and the interesting ones are those with a relatively high
density of records in the dataset. In order to allow RealKrimp to search for
compressing hyperintervals, the formal relation between codes and probabilities
on Euclidean spaces is expressed by the lengthiness, a codelength-like function.
We then discuss the MDL Principle for hypothesis selection and its applica-
tion within RealKrimp, and describe a two-part MDL code for hyperintervals.
The RealKrimp algorithm employs this code to heuristically mine for well-
compressing hyperintervals. Hence, RealKrimp can be seen as a real-valued
cousin of the well-known Krimp algorithm.

On the Mammals data, RealKrimp finds hyperintervals defined on BIO-
CLIM and zoogeographical attributes. Evaluation of the hyperintervals on with-
held attributes shows that the found regions are spatially coherent, that they

http://www.math.leidenuniv.nl/~jwitteve/worldclim/
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correspond to climate types on the Köppen classification chart, and that they
display meteorological behavior that is to be expected with these climate types.
These observations provide evidence that RealKrimp finds hyperintervals rep-
resenting real-life phenomena on real-life data from a real-valued domain.
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Abstract. Real-time detection of potential problems from animal production
data is challenging, since these data do not just include chance fluctuations but re-
flect natural variability as well. This variability makes future observations from a
specific instance of the production process hard to predict, even though a general
trend may be known. Given the importance of well-established residuals for reli-
able detection of trend deviations, we present a new method for real-time residual
calculation which aims at reducing the effects of natural variability and hence re-
sults in residuals reflecting chance fluctuations mostly. The basic idea is to exploit
prior knowledge about the general expected data trend and to adapt this trend to
the instance of the production process at hand as real data becomes available. We
study the behavioural performance of our method by means of artificially gener-
ated and real-world data, and compare it against Bayesian linear regression.

1 Introduction

In many fields of production, data are collected in a real-time fashion. Such data often
result from monitoring a specific production process for the purpose of early identifi-
cation of potential problems. In our applications field of animal production, examples
include monitoring the daily egg production at a poultry farm, monitoring weight gain
of fattening pigs in a pig production unit, and monitoring the daily milk yield on a
dairy farm. In these examples, a sudden drop in production could be due to a temporary
problem from an external factor, yet may also point to more serious underlying health
issues. The main motivation for our research is the early detection of disease in animal
production, for which reliable real-time detection of abnormal values is prerequisite.

Various methods are in use for identifying unexpected values from real-time col-
lected data in general. These methods often build on the calculation of residuals, that
is, the differences between expected and actually observed data values. Straightforward
methods for residual calculation suffice if the process being monitored should maintain
a more or less constant level, such as when monitoring the temperature of a cold stor-
age plant; to account for chance fluctuations from the required level, only some degree
of variance should be allowed for the observed data values. The identification of un-
expected values in real-time data becomes more challenging if these data are expected
to exhibit some non-constant yet fixed trend. By explicitly modelling the expected data
trend, residuals are readily calculated; if the trend is captured sufficiently accurately in
fact, the residuals again tend to describe random fluctuation. To the calculated residuals,
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well-known methods for deviation detection, such as the Shewhart control chart [7], the
CUSUM method [8] and ARIMA models [2], can be applied.

Real-time detection of unexpected values from animal production data is signifi-
cantly more challenging than finding deviations in a data sequence which is expected to
exhibit a fixed trend, because production levels reflect not just chance fluctuations but
the influence of natural variability among animals and between animal groups as well.
This variability makes future production levels hard to predict, even though a general
overall trend may be known. While the daily egg production of a flock of laying hens is
known to follow a specific overall trend for example, the exact day at which the produc-
tion of a particular flock will peak can differ by more than ten weeks from other flocks.
Yet, the calculation of residuals reflecting chance fluctuations mostly again is crucial
for reliably identifying trend deviations in a sequence of observed production levels.

Based upon the above considerations, Mertens and his colleagues were the first to
develop a tailored method for detecting trend deviations from daily egg production data
[5] and from egg weight data [6] in poultry. Their method assumes a general overall
trend which is modelled as a mathematical function. The parameters of this function
are estimated from the real data points observed during a start-up period of the pro-
cess being monitored; unexpected values during this start-up period are not detected as
yet. The results are quite promising, but their method is not easily generalised to other
problems, as the start-up period required strongly depends on the expected data trend.
While for monitoring daily egg production the necessary start-up period proved to be
some three weeks, the period required for other applications may be impracticably long.

In this paper, we further elaborate on the idea of supplementing a deviation detec-
tion method with prior knowledge about the overall expected data trend for systems
with natural variability. We focus more specifically on the calculation of residuals re-
sembling the chance fluctuations involved only; these residuals are then used as input
for readily available deviation detection methods. The basic idea of our method is to
exploit a general expected trend, which is again modelled by a mathematical function,
and use it for predicting future data points before calculating residuals. As real data
become available, the general trend is adapted gradually to the process instance being
monitored. Compared to the method by Mertens et al., our method does not require a
start-up period and is therefore applicable to a wider range of more involved data trends.

We would like to note that Bayesian regression [1] provides an alternative approach
to adapting a general trend to observed data. While for problems which are linear in
their parameters a Bayesian approach would be quite efficient, for nonlinear regression
problems such an approach would require posterior simulation algorithms which are
computationally quite demanding [3]. For many problems in our applications field of
animal production in fact, employing Bayesian regression would prove impractical.

The paper is organised as follows. In Section 2 we outline our method and focus on
the choice of parameters involved. We report results from experiments on artificially
generated data in Section 3, and briefly compare these against Bayesian regression. In
Section 4 our approach is applied to real-world production data from poultry farms. The
paper ends in Section 5 with our conclusions and directions for further research.
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2 Real-Time Adaptive Prediction for Residual Calculation

Our method for adaptive prediction of future production levels has been designed to
improve residual calculation for real-time monitored production data reflecting natural
variability. The idea is to exploit a general expected data trend and use it for predict-
ing data points against which residuals are to be established. This expected trend is
supplied to our method as prior knowledge about the production process in general.
As real data points become available over time, the trend used for future predictions is
gradually adapted to the process instance being monitored, thereby modelling posterior
knowledge. With our method we aim at adequately capturing the instance’s real data
trend, which will result in residuals resembling random fluctuations without reflecting
natural variability; we note that such residuals are essential for arriving at high quality
deviation detection [9]. In this section, we outline our adaptive prediction method and
discuss some of its details; Fig. 1 provides a schematic overview of the method.

2.1 Overview of the Method for Residual Calculation

In our applications field, production data vary considerably, both through chance fluc-
tuation and through natural variability. Yet, the trends exhibited by these data are rel-
atively robust, that is, while the function class of the data trend is the same for all
instances of the production process, the values of the parameters involved differ among
instances. Our method for residual calculation builds upon this observation and exploits
the general trend to provide control over the prediction of future data points. More
specifically, the method starts with a mathematical function f(t) describing the general
trend, adapts this function as new data points yt, t = 1, . . . , T , become available, and
uses the adapted function for the prediction of production levels at time t+ 1.

The function f to be used is chosen from a pre-specified class of functions and is
coined the initial prediction function (step 1).

In the field of animal production, research has resulted in function classes describ-
ing the overall data trends from various production processes; such classes have been
detailed for example, for the egg production of laying hens [4], for the daily milk yield
of dairy cows [11] and for the weight of fattening pigs [10]. When a function class
is not readily known from the literature, historical data and expert knowledge can be
instrumental in choosing an appropriate class for the expected data trend for a produc-
tion process in general. Given the selected function class, an initial prediction function
is constructed by choosing parameter values so as to obtain the best possible estimate
of the general overall trend. This function thus captures the expected data trend for a
new process instance about which no further knowledge is available a priori. When his-
torical data is available from similar previous instances, the average parameter values
over these instances may be used; also, when further knowledge is available about the
new instance, this knowledge can be included upon constructing the initial prediction
function.

Our method adopts least-squares regression as an approach to analysing trends
in the production data. To supply the regression with knowledge about the expected
trend, mock data points are drawn from the initial prediction function (step 2).



Real-Time Adaptive Residual Calculation 383

Obtain initial prediction function

Create pseudo points

New data point

Classification of calculated residual

Remove pseudo point when real data is known

Recalculate prediction function

Update weights of pseudo points

Calculate residual

1

2

4

5

6

7

3

Fig. 1. A schematic overview of our method for real-time adaptive residual calculation

These so-called pseudo points are chosen over the full time span of the process in-
stance being monitored; in Section 2.2 we will return to the number and positioning of
these points.

At its start, no further knowledge about a process instance is available than the gen-
eral expected trend, and the initial prediction function capturing this trend is used for
prediction. As monitoring progresses, real data points become available which provide
evidence about the process instance at hand, and the prediction function is adapted to
incorporate this posterior knowledge. More specifically, for a newly observed data point
yt at time t, its residual is calculated against the predicted data point f(t) from the cur-
rent prediction function f (step 3); the basic idea is illustrated for the fifth observed
data point in Fig. 2(b). Based upon the established residual, the point yt is classified as
either an expected or an unexpected production level (step 4); any deviation detection
method can be employed to this end. If a pseudo point had been specified for time t, this
mock point is discarded and excluded from further processing (step 5): since the pseudo
points were created to represent prior estimates for yet to be observed production lev-
els, they are superseded by real data. As evidence of the process instance is building up,
the prediction uncertainty for future data points decreases and the control provided by
the remaining pseudo points is weakened accordingly. To decrease the weights of these
points in the regression over time, a devaluation function is employed (step 6).

The final step of our method is to calculate the updated prediction function by apply-
ing weighted least-squares regression, for the given function class, to the available real
data points and remaining pseudo points (step 7). Fig. 2(c) and (d) illustrate the adaptive
behaviour of the prediction function at different time points in the process being moni-
tored. We note that all real data points are used for the regression, whether classified as
expected or not: since in the beginning of the production process the deviation detection
method is more prone to yield false positives, excluding incorrectly classified expected
data points can be more harmful than including sporadic unexpected ones.
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(a) The initial prediction function with
pseudo points, and the real data function
(steps 1, 2)

(b) Calculating the residual for the fifth data
point after observing four data points (step 3)

(c) The new prediction function constructed
from five observed data points and two re-
maining pseudo points (step 7)

(d) The new prediction function constructed
from fifty observed data points and a single
remaining pseudo point (step 7)

Fig. 2. A schematic illustration of real-time adaptive residual calculation

2.2 On pseudo Points

The number and positioning of the pseudo points to be used are strongly dependent of
the function class at hand. For the regression procedure to arrive at satisfactory predic-
tion functions for example, pseudo points should be positioned over the entire expected
run of the process being monitored. Fig. 3 illustrates, on the left, the possible effect of
positioning pseudo points at the first time points of the process only: even though the
correct function class is enforced by the regression, with few observed data points the
resulting function may deviate significantly from the initial prediction function. To ar-
rive at a satisfactory function moreover, the regression procedure requires pseudo points
near each inflection point of the prediction function. The role of the pseudo points is not
just to enforce the shape of the initial prediction function however, but also to provide
control over the general form of all subsequent prediction functions. The first pseudo
point therefore, should not be placed at the very onset of the process being monitored
as it will immediately be superseded by an observed point and prematurely lose its con-
trol; especially if the new observation is unexpected, could discarding the early pseudo
point have a strong effect on future prediction functions.

As more and more real data points are becoming available, the importance of the
remaining pseudo points decreases, although they retain some role in enforcing the
general shape of the prediction function. For this purpose, the pseudo points are as-
signed weights, between 0 and 1, for the regression, which are adapted over time by a
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Fig. 3. The initial prediction function, with functions constructed from correctly positioned
pseudo points and from pseudo points placed only at early time points, respectively (left). Three
devaluations functions for the values of the pseudo points (right).

devaluation function. As they originate from the same source of information, all pseudo
points are assigned the same weight; the weights of all observed data points are fixed
at 1.0. The devaluation function is designed so as to achieve an initial strong decline
of the weights of the pseudo points to capture the idea of real data points taking over
the overall data trend, which is followed by a more gradual decline to guarantee that
the pseudo points still retain some control over the function form. A first-quadrant hy-
perbola branch as illustrated in Fig. 3 on the right, captures the general idea and hence
constitutes a suitable devaluation function. We note that the more common exponential
decay function is less suited to our purposes, as it either models an initial rapid decline
followed by the function approximating zero, or an overall gradual decline.

Where the initial prediction function captures prior knowledge about the data trend
expected from the process being monitored, do the number, positioning and devalua-
tion of the pseudo points describe the importance of this knowledge for the deviation
detection. Prior knowledge about a process with little variability for example, is best
modelled by a combination of many pseudo points and a gradually decreasing deval-
uation function, as this combination will result in weak adaptation of the prediction
function to observed data points; for a process involving more variability, either fewer
pseudo points, a higher devaluation rate or both would result in increased adaptivity.

3 Experiments with Artificially Generated Data

The adaptive behaviour of our method was investigated experimentally using artificial
data. Since our method aims at calculating appropriate residuals, the experiments fo-
cused on the differences between predicted data points and observed points. For the
experiments, we chose function classes which are linear in their parameters, to allow
ready comparison of our method with Bayesian linear regression as an alternative ap-
proach to real-time adaptation of an expected trend. We show that the results from our
method are comparable to those obtained with Bayesian linear regression. In Section 4
we then show that our method can also be applied with more involved function classes,
for which non-linear Bayesian regression would become inhibitively demanding [3].
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Fig. 4. Differences between the prediction function and the real data function without chance
fluctuations (left) and with fluctuations generated with σε = 7 (right)

3.1 Set-up of the Experiments

From each function class under study, 30 functions were generated, to be taken as the
real data functions in 30 runs of our method. Each function fi was generated by draw-
ing, for each parameter θ, a value from a Gaussian distribution N (μθ, σθ) mimicking
natural variability. Although we studied our method’s behaviour for various function
classes, space limitations allow detailed discussion of the experiments with a single
class only. The reported experiments are loosely based on the linear trend of the feed
intake of laying hens. The parameter values for natural variability were drawn from in-
dependent Gaussian distributions with μslope = 1.24, σslope = 0.1, μintercept = 21
and σintercept = 20. Chance fluctuations were modelled by random noise: from each
function fi, a sequence of data points gi(t) = fi(t) + ε, t = 1, . . . , 400, were gener-
ated, with ε drawn from the Gaussian noise distribution N (0, σε). For each run i of our
method, the initial prediction function pi was established as the function with averaged
parameter values over all other functions: for each parameter θ, the value θ̄i for pi was
calculated as θ̄i =

∑
j �=i θj/29, where θj denotes the value of θ in fj .

3.2 Experimental Results

Our method starts with the selection of pseudo points from the initial prediction function
to convey its prior knowledge to the regression procedure. As the first pseudo point
should not be placed too close to the function’s onset, we placed it at time point 25. As
the prediction function is linear, a single additional pseudo point is required, which we
placed at time point 200. For the first 200 observations therefore, this point provides
prior knowledge; without any inflection points expected, 200 values were considered to
be more than sufficient for replacing all prior knowledge. With the two pseudo points
forcing the linear form of the expected trend, the devaluation function can model a sharp
decrease of the weights of the pseudo points and was chosen to be d(t) = 4.0

t+4.0 .

Experiments without Chance Fluctuations. For four of the 30 runs of our method
without added chance fluctuations, Fig. 4 on the left plots the differences between the
predicted data points and the true data points fi(t) under study. The runs with the largest
and the smallest differences are shown; the results are shown for the first 200 time points
only as from then onwards the differences further converge to zero. All runs revealed
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a sharp initial decrease of the calculated differences, caused by rapid adaptation of the
prediction function to the data. The slope of the decrease is dependent of the position
and weight of the first pseudo point. We recall that the positioning and weight of the
pseudo points serve to describe the importance of the prior knowledge conveyed by the
initial prediction function. For a process likely to yield aberrant values in its start-up
phase for example, this prior knowledge is called upon to exert rather strong control
over the construction of the prediction functions. The first pseudo point had then best
be placed at a somewhat later time and its weight had best decrease more gradually. Al-
ternatively, additional pseudo points can be placed in the start-up phase of the process.

The runs further revealed a marked local maximum in the differences between the
predicted data points and the true data. This maximum has its origin in the control ex-
erted by the remaining pseudo point after some true data points have become available
from the first phase of the (artificially simulated) process. The actual difference attained
depends on the position of this pseudo point and the slope of the initial prediction func-
tion. By definition, least-squares regression will be inclined to construct a prediction
function which does not deviate too much from the pseudo point and will allow some
deviations from the yet limited number of true data points. The larger the slope of the
initial prediction function, the more a later pseudo point will contribute to the sum of
squared differences minimised by the regression procedure. As more and more true data
points are becoming available and the weight of the remaining pseudo point decreases,
the regression will allow larger deviations from this point. The differences between the
predicted data points and the true data will then gradually decrease.

We would like to note that, after the first true data point had been processed, the
largest difference found with our method was smaller than 3.5. This difference was
found with the data function 1.35 · t + 48.7. Compared to the smallest difference 28.2
between this function and the initial prediction function 1.20 · t+20.6, a maximum dif-
ference smaller than 3.5 with the adapted prediction function suggests that our method
is well able to handle at least some degree of natural variability.

Experiments with Chance Fluctuations. The second set of runs with our method
served for studying the effects of chance fluctuations on the calculated residuals. For
this purpose, the regression was supplied with data points from the functions gi instead
of from fi, with σε = 7. Since we are interested in the ability of our method to yield
residuals resembling chance fluctuations mostly, we compare the data points predicted
by the functions pi with the data points drawn from the functions fi from which the
original data sets were created. If the established differences approach zero, we can
then conclude that our method is able to capture the real data trend sufficiently accu-
rately so as to result in appropriate residuals which no longer reflect the influence of
natural variability. We note that upon real-world application of our method, the differ-
ences between the predicted points pi(t) and the actually observed data points gi(t) are
considered, as the data points fi(t) without the chance fluctuations are not known in
reality. Fig. 4 on the right shows the differences between pi and fi for two of the thirty
runs, including the one with the largest differences. When compared to Fig. 4 on the
left, a largely similar behaviour of the calculated differences is seen. Even though the
chance fluctuations affect the calculated prediction functions, only a limited effect on
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the differences between the prediction function and the trend of the true data function
is found.

In our further experiments, including the classes of parabolic and exponential func-
tions, essentially the same behavioural characteristics as reviewed above were found.
Similar characteristics were also found with function classes for which linear regres-
sion could not be applied and for which the Gauss-Newton method was used for fitting
prediction functions. Since more complex function classes offer more freedom for the
prediction functions to differ from a true data trend, these findings suggest robustness of
our method. Our experiments consistently showed in fact, that the residuals calculated
by our method for real-time adaptive prediction captured little influence of the natural
variability involved and represented the random fluctuations quite well. We recall that
such residuals are essential for achieving a high quality of deviation detection.

3.3 Bayesian Linear Regression

Bayesian linear regression is a well-known approach to updating linear regression func-
tions, and in essence constitutes a possible alternative to our method. This Bayesian ap-
proach takes an initial regression function which is updated after each newly observed
data vector by applying an updating rule (see for example Bishop [1]) to its parameters:

mN = SN

(
S−1
0 m0 + βXT y

)
with S−1

N = S−1
0 + βXT X. The vector m0 contains the prior values for the parame-

ters of the initial regression function, and mN is the vector of posterior values after
processing a new observation vector y. Using the covariance matrix S0 of m0, the new
observation vector, the tuning parameter β, and the matrix X containing the data on the
(possibly transformed) input variables, the function parameters are updated. The vector
mN of updated parameter values and its associated covariance matrix SN now serve as
priors for the updating rule when a subsequent data vector is observed. This Bayesian
scheme of updating regression functions is computationally more attractive than repeat-
edly performing least squares regression after every new observation. A more elaborate
introduction to Bayesian linear regression is found in [1].

The tuning parameter β of the Bayesian updating scheme describes the importance
of the prior information in relation to newly observed data. For a regression function
to adapt slowly to new observations for example, a small value should be chosen for
the tuning parameter. As a general guideline, β = 1

σ2 is suggested, where σ is the
expected standard deviation of the observations, for example obtained from datasets or
from domain experts. In essence, the tuning parameter β of the Bayesian scheme serves
the same purpose of moderating the importance of prior information as the combination
of pseudo points and weight devaluation scheme of our approach.

In the experiments described above, we applied Bayesian linear regression to the
generated data as well. Values for the parameters of the initial prediction function and
for the tuning parameter β were based on the available prior knowledge. In all experi-
ments, the results from Bayesian linear regression were quite similar to those obtained
with our method. We would like to note however, that our method allowed more flexibil-
ity for tuning adaptive behaviour than Bayesian linear regression: where the behaviour
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of our approach could be fine-tuned by the number, positioning and weight devaluation
of the pseudo points, the Bayesian approach offered just a single adjustable parameter.

4 Monitoring a Flock of Laying Hens in Poultry Farms

We recall that the motivation for our research was the challenge of detecting abnormal
values in the production data of a flock of laying hens, for the purpose of early detection
of health problems. Typical production parameters for laying hens are the egg produc-
tion, mortality rate, and feed and water intake. Due to space limitations we focus here
on feed intake and egg production; additional application results are reported in [12].

For applying our method of adaptive residual calculation to the poultry domain, we
had available complete production data from ten healthy flocks; in addition we had par-
tial data from three further flocks, two of which were infected with Low Pathogenic
Avian Influenza and one was without health problems. The available partial data ranged
from the time at which the hens were 32 weeks of age, to the moment they were culled
some 60 days later. For validation purposes, we elicited, from poultry experts, classifi-
cations as expected or unexpected for all data points from the three partial datasets.

Based on the available data and the knowledge elicited from our experts, we found
that the trend of the feed intake of a flock was fairly well described by a linear function,
although more complex functions had been proposed [4]:

f(t) =
a

1 + b · e−a·c·t + d · t+ e · t2

We decided to use the linear function for ease of study, but are aware that more accurate
results can be expected from using the more complex function class. For estimating the
two parameter values for the initial prediction function, the data from the ten healthy
flocks were used; as only partial datasets were available for the remaining three flocks,
all starting at week 32, we defined an alternative intercept for the initial prediction
function to account for the limited data range. Prior knowledge about the function was
expressed by two pseudo points, one of which was positioned at day 5, near the first true
data point, and the other one was placed at day 65, near the last observed data point.
With the small number of true data points available and just two pseudo points, the prior
knowledge should more gradually devalue in the regression than in the experiments
from Section 3; the devaluation function was chosen as d(t) = 8.0

t+8.0
Egg production was modelled by a non-linear function with five parameters [4]:

f(t) =
100

1 + a · r
√
t

−
(
b+ c ·

√
t+ d · t

)
As the first observed data points of the production cycle of a flock are quite specific for
the overall data trend, the three datasets for which only partial data was available could
not be used. From the datasets of the ten healthy flocks, seven were used for defin-
ing the initial prediction function and three were retained for validation purposes. With
the more complex function class, more pseudo points were used to control the shape
of the prediction functions. We positioned five pseudo points, at days 15, 50, 150, 250
and 400. The first and second pseudo point, placed near the only inflection point of the
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(a) Real feed intake. (b) Real egg production.

(c) Feed intake differences. (d) Egg production differences.

Fig. 5. Plots of the real data points of the considered trends (a) and (b), and differences between
real data points and the prediction functions (c) and (d)

function, serve to ensure the expected sharp increase in egg production in the start-up
phase of the production cycle; the remaining three pseudo points ensure the prediction
functions to exhibit to a gradually strengthening decrease in production. The devalua-
tion function for the pseudo points is taken to be d(t) = 4.0

t+4.0 . In the presence of five
pseudo points providing control over the shape of the prediction functions, a fairly sharp
weight decrease is appropriate. When fewer pseudo points had been used, the devalua-
tion function should have described a more gradual weight decrease to ensure sufficient
influence of the prior knowledge on the construction of the prediction functions.

The feed consumption and egg production of the three validation flocks are plotted
in Fig. 5 (a) and (b) respectively. Fig. 5 (c) and (d) show the differences, defined as the
real data points subtracted with the predicted points, and the average standard deviation
expected for both trends. From Fig. 5 (a) and (b) it follows that the initial prediction
function for feed intake does not yet model the three considered datasets well, while the
initial prediction function for the egg production appears to be a fairly good fit to flocks
1 and 2 and is initially a bit too conservative for flock 3. For both feed consumption
and egg production, a fairly quick adaptation of the initial prediction function results in
small differences in Fig. 5 (c) and (d). However, the prediction function does not signif-
icantly change when confronted with large deviations of the flocks, as is confirmed by
observing that similar deviations from the production graphs are visible in the differ-
ence graphs. Even when the feed consumption for the infected flocks drop significantly
for several consecutive days, the prediction function hardly adapts to these observa-
tions, as desired. The peaks in the start up period of the egg production of flock 2 are
not able to misguide the prediction function either.
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To summarise, our method exhibits similar behaviour on this non-linear regression
problem as on the linear one: the prediction function gradually adapts to newly observed
data points, yet without following unexpected ones. Since the differences between the
observed data points and the predicted ones better reflect the deviations from the actual
trend of the flock at hand, the calculated residuals provide for a better detection of
trend deviations. With our method, the CUSUM method and the Shewhart control chart,
which are often used in veterinary science, are readily implemented for example and the
resulting classification of each data point is compared with the classification provided
by poultry experts. With a naive implementation, without parameter tuning, already a
sensitivity between 0.8 and 1.0 and a specificity between 0.64 and 1.0 was achieved for
the feed consumption trend.

5 Conclusions and Future Work

We presented a new method for real-time calculation of residuals, tailored to the moni-
toring of production processes involving natural variability. Initially controlled by prior
knowledge of a general expected trend, our method predicts future data points, against
which the true data points are compared. As further knowledge of the process instance
becomes available, the expected trend is gradually adapted to the actually observed data
trend. Experiments on both artificial and real-word data showed that our method results
in residuals modelling chance fluctuations mostly, with a limited influence from natural
variability. Our method can be practicably applied regardless of the function class of the
expected data trend and of the regression type to be used: the only requirement is that
both the function class and initial values for the function parameters are known. Our fu-
ture work will aim at combining our method with known approaches to detecting trend
deviations and at studying our method’s performance for a range of problems in the
applications field of animal production. Our investigations will also include the design
of further guidelines for the use of our method and the definition of quality standards
for deviation detection in view of natural variability.
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	Preface
	Organization
	Bayesian Inference for Ranks
	References

	The DNA Query Language DNAQL
	References

	Table of Contents
	Selected Contributions
	Malware Phylogenetics Based on the MultiviewGraphical Lasso
	1 Introduction
	2 Data
	2.1 Data Views
	2.2 Markov Chain Data Representation
	2.3 Measure of Similarity

	3 Phylogenetic Graphs
	3.1 Overview of Graphical Lasso
	3.2 Modifying Graphical Lasso for Multiple Views
	3.3 Leveraging Clusters in Graphical Lasso

	4 Evaluation
	4.1 Datasets
	4.2 Results
	4.3 Computational Complexity

	5 Related Work
	6 Conclusions
	References

	Modeling Stationary Data by a Classof Generalized Ornstein-Uhlenbeck Processes:The Gaussian Case
	1 Introduction
	2 From AR(1) to Ornstein Uhlenbeck Processes
	3 Ornstein-Uhlenbeck Processes
	4 Ornstein-Uhlenbeck Processes of Higher Order
	5 OU(p) as a Superposition of OU(1)
	6 A State Space Representation of the OU(p) Process
	7 Estimation of the Parameters κ and σ of OU(p)Process
	7.1 Matching Correlations
	7.2 Maximum Likelihood Estimation of the Parameters of OU(p)
	7.3 Some Simulations

	8 Applications to Real Data
	8.1 Box, Jenkins and Reinsel “Series A”
	8.2 Oxygen Saturation in Blood

	9 Conclusions
	References

	An Approach to Controlling the Runtime for Search Based Modularisation of Sequential Source Code Check-ins
	1 Introduction
	2 Experimental Methods
	2.1 Clustering Algorithm
	2.2 Fitness Function
	2.3 HS Metric

	3 Experimental Design
	3.1 Data Creation
	3.2 Absolute Value Difference (AVD)

	4 Modelling theMove Operator
	5 Experimental Procedure
	6 Results and Discussion
	7 Conclusion and Future Work
	References

	Simple Pattern Spectrum Estimationfor Fast Pattern Filtering with CoCoNAD
	1 Introduction
	2 Mining Parallel Episodes with CoCoNAD
	3 Pattern Spectrum Filtering and Pattern Set Reduction
	4 Pattern Spectrum Estimation
	5 Experiments
	6 Conclusions
	References

	From Sensor Readings to Predictions:On the Process of Developing Practical SoftSensors
	1 Introduction
	2 Requirements and Expectations for Predictive Models in the Process Industry
	3 A Framework for Developing Data Driven Soft Sensors
	3.1 Setting Up Performance Goals and Evaluation Criteria
	3.2 Data Analysis
	3.3 Data Preparation and Preprocessing

	4 Case Study
	5 Conclusion
	References

	Comparing Pre-defined Software Engineering Metrics with Free-Text for the Prediction of Code ‘Ripples’
	1 Introduction
	2 Related Work
	3 Study Context
	3.1 The Three Systems Studied
	3.2 Data Collected

	4 Data Analysis
	4.1 Summary Analysis
	4.2 Bayesian Network Analysis
	4.3 Text Analysis

	5 Conclusions and Future Work
	References

	ApiNATOMY: Towards Multiscale Viewsof Human Anatomy
	1 Introduction
	2 Use Cases and Data Resources
	3 Visualizing Ontologies and Connectivity Data
	3.1 Treemaps
	3.2 Process Graphs
	3.3 Analyzing the Connectivity Data: An Example

	4 Visualizing Models and Metadata
	5 Implementation
	6 Rationale for Our Approach and Related Work in Anatomy and Physiology Knowledge Visualization
	7 Conclusions and Future Work
	References

	Granularity of Co-evolution Patternsin Dynamic Attributed Graphs
	1 Introduction
	2 Hierarchical Co-evolution Sub-graphs
	3 H-MINTAG Algorithm
	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Multi-user Diverse Recommendationsthrough Greedy Vertex-Angle Maximization
	1 Introduction
	2 Related Work
	3 Collaborative Filtering with Bias-SVD
	4 Multi-user Recommendations
	4.1 Group Bias-SVD: Maximizing Group Satisfaction
	4.2 Maximizing Product Diversity

	5 Evaluation
	5.1 Dataset
	5.2 Evaluation Protocol
	5.3 Experiment: Group Satisfaction
	5.4 Experiment: Product Diversity

	6 Discussion
	References

	ERMiner: Sequential Rule MiningUsing Equivalence Classes
	1 Introduction
	2 Problem Definition
	3 The ERMiner Algorithm
	4 Experimental Evaluation
	5 Conclusion
	References

	Mining Longitudinal Epidemiological Data to Understand a Reversible Disorder
	1 Introduction
	2 Related Work
	3 Materials
	4 Methods
	4.1 Sequence-Feature Generation
	4.2 Feature Selection
	4.3 Classification

	5 Results
	5.1 Variants under Evaluation
	5.2 Findings on Classification Performance
	5.3 Findings on Important Features

	6 Conclusions
	References

	The BioKET Biodiversity Data Warehouse:Data and Knowledge Integration and Extraction
	1 Introduction
	2 The BioKET Data Warehouse
	3 BioKET Experimental Analysis
	3.1 Conceptual Bicluster Extraction
	3.2 Extracted Pattern Evaluation

	4 Conclusion
	References

	Using Time-Sensitive Rooted PageRankto Detect Hierarchical Social Relationships
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Static Rooted-PageRank (S-RPR)
	5 Time-Sensitive Rooted PageRank (T-RPR)
	5.1 Time Segmentation
	5.2 Segment-Based Ranking
	5.3 Rank Aggregation
	5.4 Example

	6 Results and Analysis
	7 Conclusion
	References

	Modeling Daily Profiles of Solar GlobalRadiation Using Statistical and Data MiningTechniques
	1 Introduction
	2 Materials and Methods
	2.1 Solar Radiation and Clearness Index
	2.2 Cumulative Probability Distribution Functions
	2.3 K-means
	2.4 Kolmogorov-Smirnov Two Sample Test
	2.5 Metrics for Evaluating the Proposed Methodology

	3 Proposed Model for Simulating Hourly Profiles of Solar Radiation
	4 Data
	5 Results
	6 Conclusions
	References

	Identification of Bilingual Segmentsfor Translation Generation
	1 Introduction
	2 Related Work
	3 Learning the Bilingual Segments
	3.1 Filtering
	3.2 Clustering

	4 Generating New Translations
	5 Results and Discussion
	5.1 Clustering Results
	5.2 Generation Results
	5.3 Error Analysis

	6 Conclusion
	References

	Model-Based Time Series Classification
	1 Introduction
	2 Related Work
	3 MTSC: Model-Based Time Series Classification
	3.1 Hidden Markov Models
	3.2 Training HMMs
	3.3 Filter-and-Refine Framework

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions and Future Work
	References

	Fast Simultaneous Clustering and FeatureSelection for Binary Data
	1 Introduction
	2 Mixture Models
	2.1 Definition of the Bernoulli Mixture Model
	2.2 Model-Based Clustering

	3 Feature Selection
	3.1 Definition of a New Bernoulli Mixture Model
	3.2 Estimation of the Parameters and Clustering
	3.3 MML Criterion

	4 NumericalExperiments
	4.1 Synthetical Datasets
	4.2 Real Datasets

	5 Conclusion
	References

	Instant Exceptional Model MiningUsing Weighted Controlled Pattern Sampling
	1 Introduction
	2 Exceptional Model Mining
	3 Sampling Exceptional Models
	3.1 Weighted Controlled Direct Pattern Sampling
	3.2 Application to Exceptional Model Mining

	4 Experiments
	4.1 Contingency Table Quality
	4.2 Mean Model Quality

	5 Related Work
	6 Conclusion and Future Work
	References

	Resampling Approaches to Improve NewsImportance Prediction
	1 Introduction
	2 Previous Work
	3 Problem Description and Approach
	3.1 Formalization of the Data Mining Task
	3.2 Handling the Imbalanced Distribution of the Number of Tweets

	4 Materials and Methods
	4.1 The Used Data
	4.2 Regression Algorithms
	4.3 Evaluation Metrics

	5 Experimental Comparison
	5.1 Experimental Methodology
	5.2 Results

	6 Conclusions
	References

	An Incremental Probabilistic Modelto Predict Bus Bunching in Real-Time
	1 Introduction
	2 Problem Overview
	2.1 Case Study

	3 Travel Time Prediction
	4 EventDetection
	5 Experiments
	5.1 Results and Discussion

	6 Related Work
	7 FinalRemarks
	References

	Mining Representative Frequent Patternsin a Hierarchy of Contexts
	1 Introduction
	2 Contextual Data and Frequent Patterns
	2.1 When Should a Pattern Be Associated with a Context?
	2.2 Contextual Frequent Patterns: A Formal Definition

	3 Mining Contextual Frequent Patterns
	3.1 A Baseline Approach
	3.2 CFPM: A More Efficient Post-processing Approach

	4 Experimental Results
	5 Conclusion and Prospects
	References

	A Deep Interpretation of Classifier Chains
	1 Introduction
	2 Label Dependence in Multi-label Learning
	3 Analysis on Synthetic Datasets
	4 Why Classifier Chains Works
	5 Deep Multi-label Learning
	6 Conclusions
	References

	A Nonparametric Mixture Modelfor Personalizing Web Search
	1 Introduction
	2 The HpDP Model
	2.1 Background
	2.2 Model Description
	2.3 Approximate Inference
	2.4 Calculation of the User/Topic Distribution
	2.5 Predicting Products for New Users
	2.6 Ranking Online Products

	3 Experiments
	3.1 Dataset
	3.2 Methodology
	3.3 Results

	4 Conclusion
	References

	Widened KRIMP:Better Performance through Diverse Parallelism
	1 Introduction
	2 Widening
	3 The KRIMP Algorithm
	4 Widenend Krimp
	5 Experimental Results
	5.1 Diverse Candidate Selection
	5.2 Diverse Cover Order

	6 Discussion and Future Work
	7 Conclusion
	References

	Finding the Intrinsic Patternsin a Collection of Time Series
	1 Introduction
	2 Definitions and Related Work
	3 Outline of the Idea
	4 Algorithmic Approach
	4.1 Preprocessing the Series
	4.2 Finding the Model
	4.3 Calculating DL

	5 Experimental Evaluation
	6 Conclusions
	References

	A Spatio-temporal Bayesian Network Approachfor Revealing Functional Ecological Networksin Fisheries
	1 Introduction
	2 Methods
	2.1 Species Collection
	2.2 Data Preparation
	2.3 Structure Learning of BNs
	2.4 Detection of Pre-defined Functions
	2.5 Dynamic Bayesian Networks and Prediction

	3 Results and Discussion
	3.1 Functional Relationships Revealed by Hill-Climbing
	3.2 Summary of Discovered Functional Relationships
	3.3 DBNs and Prediction

	4 Conclusion
	References

	Extracting Predictive Models from Marked-UpFree-Text Documents at the Royal BotanicGardens, Kew, London
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Experiments

	3 Results
	3.1 Discovering Habitat Clusters
	3.2 Plant Trait Feature Selection and Classification
	3.3 ‘What if?’ Experiments
	3.4 Networks of Traits

	4 Conclusions
	References

	Detecting Localised Anomalous Behaviourin a Computer Network
	1 Introduction
	2 Data
	3 Hierarchical Markov Model
	3.1 Node
	3.2 Edge

	4 Monitoring
	4.1 Predictive Distributions
	4.2 Anomaly Graphs

	5 Results
	6 Conclusion
	References

	Indirect Estimation of Shortest PathDistributions with Small-World Experiments
	1 Introduction
	2 A Model for Small-World Experiments
	3 Experiments
	4 Discussion
	References

	Parametric Nonlinear Regression Modelsfor Dike Monitoring Systems
	1 Introduction
	2 Background
	3 Model Estimation
	3.1 Short-Term Effect Sensors
	3.2 Mixed-Effect Sensors

	4 Anomaly Detection
	5 Discussion and Conclusions
	References

	Exploiting Novel Properties of Space-FillingCurves for Data Analysis
	1 Introduction
	2 Background and Related Work
	2.1 Space-Filling Curves
	2.2 Related Work

	3 Betweenness and the In-between Probability
	3.1 In-between Probability

	4 Spatial Configurations and In-between Probabilities
	4.1 Estimating the in-between probabilities for triangles
	4.2 Shape Matching

	5 Conclusion
	References

	RealKrimp — Finding Hyperintervalsthat Compress with MDL for Real-Valued Data
	1 Introduction
	2 Related Work
	3 Relating Codes and Probabilities
	4 Two-Part MDL Code for Hyperintervals
	5 The RealKrimp Algorithm
	6 Experiment
	7 Conclusions
	References

	Real-Time Adaptive Residual Calculation for Detecting Trend Deviations in Systems with Natural Variability
	1 Introduction
	2 Real-Time Adaptive Prediction for Residual Calculation
	2.1 Overview of the Method for Residual Calculation
	2.2 On pseudo Points

	3 Experiments with Artificially Generated Data
	3.1 Set-up of the Experiments
	3.2 Experimental Results
	3.3 Bayesian Linear Regression

	4 Monitoring a Flock of Laying Hens in Poultry Farms
	5 Conclusions and Future Work
	References



	Author Index



