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Abstract. Clustering ensembles take advantage of the diversity pro-
duced by multiple clustering algorithms to produce a consensual parti-
tion. Evidence accumulation clustering (EAC) combines the output of a
clustering ensemble into a co-association similarity matrix, which con-
tains the co-occurrences between pairs of objects in a cluster. A consensus
partition is then obtained by applying a clustering technique over this
matrix. We propose a new combination matrix, where the co-occurrences
between objects are modeled in a probabilistic way. We evaluate the
proposed methodology using the dissimilarity increments distribution
model. This distribution is based on a high-order dissimilarity measure,
which uses triplets of nearest neighbors to identify sparse and odd shaped
clusters. Experimental results show that the new proposed algorithm pro-
duces better and more robust results than EAC in both synthetic and
real datasets.
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1 Introduction

Many clustering algorithms have been developed, each producing a different par-
tition for a given dataset, and typically relying on a similarity measure between
objects, which can be difficult to choose when no prior knowledge about cluster
shapes and structure is available. Furthermore, one single clustering algorithm,
with a given similarity measure, can also produce different solutions for the same
dataset, depending on the initialization or parameters values, e.g., k-means.

To exploit that diversity, an approach called clustering ensemble (CE) has
been developed [13,10,3], producing a set of data partitions. These methods
combine information given by the set of data partitions produced, and propose
a consensus partition. Moreover, it has been shown that CE methods uncover a
more robust and stable cluster structure than a single clustering algorithm [6,13].
To combine information from the set of data partitions, different paradigms
were followed: (i) similarity between objects, induced by the clustering ensemble
[6,13,7]; (ii) similarity between partitions [4,3]; (iii) combining similarity between
objects and partitions [5]; (iv) probabilistic approaches to CEs [14,15].
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This paper focuses on a clustering ensemble technique, namely the evidence
accumulation clustering (EAC) [7], which combines the results of multiple clus-
terings into a co-association matrix, corresponding to co-occurrences of pairs of
objects in a cluster. This co-occurrence between pairs of objects means that two
objects that are very similar, more likely will be grouped together. Therefore, the
co-association matrix can be seen as a similarity measure and the final partition
of data is obtained by applying a clustering algorithm over this matrix.

We propose a new combination matrix, where each element of the matrix
corresponds to the probability of observing a pair of objects co-occurring in a
cluster. That co-occurrence can be modeled by any probabilistic model, how-
ever we use the dissimilarity increments distribution (DID) [2]. The DID is a
probabilistic model for the dissimilarity increments measure [9], which uses the
information from triplets of nearest neighbors. This measure identifies the struc-
ture of a cluster, in terms of sparsity and shape of clusters.

2 Related Work

The Evidence Accumulation Clustering (EAC) [7] is a three step method-
ology, consisting of: (i) building the clustering ensemble (CE); (ii) learning pair-
wise similarities by accumulating evidence in a matrix; and (iii) extracting the
consensus partition using a clustering algorithm.

A CE can be obtained by applying different clustering algorithms over data, or
one algorithm with different initializations or parameters of the same algorithm.
Let X = {x1,...,xn} be a set of N objects and P* = {C{,Ci,...,C} } a data
partitioning into k; clusters obtained by applying a given clustering algorithm 4.
A clustering ensemble, P = {P1 P2, ..., PM} is a set of M different partitions
of the data X.

The evidence accumulation approach consists of learning similarities between
pairs of objects induced by the clustering ensemble, since objects that are similar
and should be grouped together are probably going to be assigned to the same
cluster in different data partitions. Equivalently, we count the co-occurrences of
pairs of objects in the same cluster, n;;, among the M partitions, yielding a
N x N co-association matrix:

. Nij
C@,7) =3/ 1)
Finally, the consensus partition is found by applying a clustering algorithm to
the co-association matrix.

On the other hand, each element of the co-association matrix in eq. (1) can
be viewed as an independent realization of binomial random variables counting
the number of times two objects occur in the same cluster [11].

3 Combination of Evidence: A Probabilistic Point of
View

We can interpret each element of the co-association matrix as the probability of
observing a pair of objects, x; and x;, in the same cluster for a given partition PL.
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Therefore, in this paper, we formulate the co-association matrix in a probabilistic
way. Formally, an element of matrix C is given by the probability of observing
x; and x; in the same cluster among the M partitions of the ensemble, i.e.,

M M
C(i,5) = P(xi,%x;) = 3 P(xi,x;,P') = > P(xi,x;|PHP(P').  (2)
=1 =1

The term P(P') allows giving different weights to each partition, depending
on how well a partition fits the data, creating a weighted version of this approach.
Here it is assumed uniform, i.e., each partition contributes equally to the matrix
C (P(P') = 1/m). The term P(x;,x;|P!) can be described by any probabilistic
model of observing x; and x; belonging to the same cluster in partition PL.

Depending on the model assumed for the observed variables, one can obtain
an asymmetric matrix or a symmetric matrix. Typical hierarchical clustering
algorithms can be used to extract the consensus partition, however usually they
can only be applied if the matrix is symmetric. If matrix C is asymmetric one
must use clustering algorithms appropriate for asymmetric measures, like spec-
tral clustering [12], or one can transform C into a symmetric matrix, e.g., by
computing the average (C = (C + CT)/2).

Here we consider the dissimilarity increments distribution (DID) [2] as the
model of observing two objects in the same cluster, leading to a matrix called
DID-based consensus matriz. This new matrix combines the probability of a
triplet of objects being in the same cluster. This approach is quite similar to the
voting scheme proposed by Fred and Jain [7], but the voting scheme combines
in a matrix evidence of pairs of objects belonging to the same cluster, here we
combine in a matrix evidence of triplets of objects belonging to the same cluster.

3.1 Dissimilarity Increments Distribution

Let X be a dataset and d(-,-) some dissimilarity measure between objects. Con-
sider x;, an object from X. A triplet of nearest neighbors, (x;,x;,Xx), is obtained
by searching x; and xj, corresponding to the nearest neighbor of x;, and the
nearest neighbor of x; different from x;, respectively. Thus, the dissimilarity
increment [9] associated with the triplet is defined as

dine (X, X5, Xi) = |d(xi,%5) — d(x;,%p)] - (3)

This measure can be applied to characterize the structure of data, in terms
of sparse clusters and different shapes and densities, since abrupt changes of
dissimilarity increments should not occur inside a cluster, and higher values of
this measure occur between well separated clusters. Therefore, the increment
between objects belonging to different clusters is positioned on the tail of the
dissimilarity increments distribution of a cluster.

The dissimilarity increments distribution (DID) was derived in [2], as-
suming a Gaussian distribution of the data, and that d(-,-) is the Euclidean
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distance. Accordingly, let w = dine(Xi, Xj,X%) be a dissimilarity increment, de-
fined in [0, c0). Thus, the probability density function (pdf) of w is given by

w32 w32
Pdine (w; )‘) = 452 w exp < 4\2 w2>

w233 [ 4N 9 T3 VB
+ —w’ Jexp | — w* | erfe w |, 4
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where erfc(:) is the complementary error function, 8 = 2 — /2, and A\ is the
parameter of the distribution corresponding to the mean of the set of increments
inside a cluster, Sy, (C), given by E[Sy,,..(C)] = A. This parameter has influence
in the distribution, since the smaller the values of A, the narrower is the pdf,

indicating that the data is more dense. On the other hand, the higher the values
of A\, the wider is the pdf, corresponding to sparser data.

3.2 DID-Based Probability Matrix

We propose using the DID to model the probability of observing x; and x; be-
longing to the same cluster in the following way: consider a partition of data,
Pl = {C{,...,C’}ﬂ} from the clustering ensemble. Firstly, we obtain the set
of 1-nearest neighbor of each object inside a cluster and the set of increments
Sa,..(CL), with m = 1,2, ..., k. This set of increments is obtained by construct-
ing a minimum spanning tree inside the cluster C!, and applying eq. (3).

Now, for each object x; inside the cluster C!  we find the dissimilarity in-
crement w = dinc (X, X;j, NN (x;)), where NN (x;) is the nearest neighbor of x;.
Thus, the probability of observing x; and x; in the same cluster is given by

Pdine (W5 Act )
P(xi,xj|P) =" " 5
( J| ) D (0’ )\C#) ( )

where Ac: is the mean of increments of cluster CL,, and pg,, . (w; Act ) is the pdf
for the dissimilarity increments given by eq. (4). The term pa,,.(0; Ac: ) is used
to normalize the pdf of clusters with different shapes and densities. The overall
procedure is summarized in Algorithm 1. Notice that the new consensus matrix
as defined by eq. (2) is asymmetric and can be seen as the similarity between
objects i and j.

3.3 DID-Based Probabilistic Consensus Clustering Algorithm

Similar to EAC, the proposed algorithm is a three step methodology, where the
difference is in the construction of the consensus matrix. While EAC is based on
a voting scheme, the proposed algorithm, called DID-based Probabilistic Consen-
sus Clustering (PCCDID), uses a probabilistic model based on DID of observing
pairs of objects as belonging to the same cluster in a partition of the ensemble.
The overall procedure is summarized in Algorithm 2.
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Algorithm 1. DID-based consensus matrix (DIDCM)
Require: data with N samples
Require: partition of data P = {C1,...,Ck}
Require: consensus matrix C
1: for each cluster Cx do

2:  if |Ck| >= 3 then

3: For all x; inside C, find the 1-nearest neighbor (also inside C%), NN (x;)
4: Get Sq,,.(Ck) using a minimum spanning tree

5: Compute Ac, and pg;,.(0; Ac,), using (4)

6: for each x; € C} do

7 Find w = dinc(x4, %5, NN(x;)), for all x; € Ci
8: Compute pg,,. (w; Ac,,), using (4)

9: /* Update consensus matriz C. */

10: (C(i»j) <~ (C(i»j) + Pdipe (w§ )‘Ck)/pdinc (O§ )\Ck)
11: end for

12:  end if

13: end for

Algorithm 2. DID-based Probabilistic Consensus Clustering (PCCP™)
Require: data with N samples
C = zeros(N, N)
: fori=1to M do
/* Step 1: Build the clustering ensemble. */
Obtain partition P* by applying clustering algorithm(s)
/* Step 2: Compute the consensus matriz. */
C + C + DIDCM(C, P?) x 1/um, using (2)
end for
/* Step 3: Extract the consensus partition */
Apply a clustering algorithm to the consensus matrix, converting C to a symmetric
matrix if needed
: return Consensus partition

—
o

4 Experiments

We built the clustering ensemble by performing M = 100 runs of k-means, with
k randomly chosen between ki, = max{VN/2,N/50} and kmaz = kmin + 20,
where N is the number of samples of the dataset. Moreover, we extracted the
consensus partition by applying the single-link (SL) and the average-link (AL)
algorithms to the consensus matrix, assuming the true number of clusters is
known. The proposed methodology produces an asymmetric matrix, and in order
to be able to apply SL and AL, one needs to convert it into a symmetric matrix.
We used two different approaches: (i) average, i.e., C(i,5) = C(4,¢) = (C(4,4) +
C(4,4))/2; and (ii) maximum, i.e., C(i,7) = C(j,i) = max{C(s, j),C(j,4)}, for
i,7 = 1,...,N. The proposed method using the first symmetric approach is
designated by PCCPIP and the other one by PCCPID

mean? max*
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Fig. 1. Synthetic datasets
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Fig. 2. Consistency index (CL, in %) for EAC, and the proposed PCCRI2, and PCCRID,
where the final partition is extracted using SL and AL. The number on top of each bar
corresponds to the rank using G-DID to sort the six methodologies. N is the number
of samples, dim the dimension of the feature space, and Nc¢ the number of clusters.

We test the performance of the proposed method in 12 datasets: 4 synthetic
datasets and 8 real datasets from the UCI Machine Learning Repository!. The
synthetic datasets are presented in fig. 1. We assessed the quality of the consen-
sus partitions through the consistency index (CI) [6], which is the percentage of
agreement between the given partition and the true labeling. Moreover, we use
the Graph-based Dissimilarity Increments Distribution (G-DID) [8] to automat-

ically choose the best methodology among all six possibilities (EAC, PC

and PCCPID "ysing SL and AL to extract the final partition), and rank, from

mean?

DID
Cmax

better to worse, the six methodologies. Fig. 2 presents the consistency index and
the numbers on top of the bars corresponding to the ranking given by G-DID.
Note that the probabilistic approach (PCCDID) is always better or equal to
the voting scheme (EAC), and the best results are achieved when the consensus
partition is extracted using AL. It seems that there is no difference between

! http://archive.ics.uci.edu/ml
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Fig. 3. Analysis of fig. 2. The AUC corresponds to the area under an error ROC
curve [1], used as a measure of robustness (lower values indicate more robust methods).

PCCEIIQ]ZH and PCCEII;?(, however PCCEII;?( has better results. Fig. 3 presents a
summary of the results presented in fig. 2.

The first two plots in fig. 3 present the number of datasets with highest
CI for: (i) the six methodologies; and (ii) the combination strategy (voting or
probabilistic), independent of the extraction method. Thus, PCCPIP g clearly
the best strategy, with 8 datasets against 1 dataset for EAC. Those 8 datasets
are distributed as follows: 1 for PCCRID 3 for PCCEIY and 4 for both (max and
mean are tied). Moreover, AL is the best extracting algorithm for PCCPP | with
7 and 8 datasets having the highest CI in PCCLLY and PCCRID | respectively.
Furthermore, the AUC values correspond to the area under a ROC curve [1],
which is used to test the robustness of each methodology. Therefore, PCCP™
with AL used as an extraction algorithm are more robust than EAC.

The two plots on the right of fig. 3, present an analysis of the G-DID rankings.
Looking at those plots, we notice that G-DID chooses, as the best partition fitted
to data, the one with the highest CI for 5 datasets, and it ranks in second and
third place the best CI in 3 datasets each. In 91.7% of datasets, G-DID puts the
partition with highest CI in the first three places of the rank, and in 41.7% of

datasets it founds the best partition, the one with the highest CI value.

5 Conclusions

This paper presents a new methodology for learning similarities from clustering
ensembles, which models the co-occurrence of pairs of objects being in the same
cluster using some probabilistic model. In this paper we model that co-occurrence
using the dissimilarity increments distribution, but any other model of observing
pairs of objects can be used. Moreover, we assumed that each partition of the
clustering ensemble contributes equally to the combination matrix, but some
partitions may have a better fit to the data than others. In future work, we will
study more models for observing pairs of objects in the same cluster and, also,
find a criterion to measure how well a partition of the ensemble fits the data,
constructing a weighted version of the proposed method.
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The proposed methodology performs better than the voting scheme (EAC),

which consists in counting the co-occurrences of pairs of objects in a cluster.
Moreover, the proposed method is more robust than EAC.
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