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Abstract. This paper deals with the relation between rough set reducts
and typical testors from the logical combinatorial approach to pattern
recognition. The main objective is to clarify once and for all that al-
though in many cases the two concepts coincide, being rigorous they
are not the same. Definitions, comments and observations are formally
introduced and supported by illustrative examples. Furthermore, some
theorems expressing theoretical relations between reducts and typical
testors are enunciated and proved.

1 Introduction

This paper deals with the relation between rough set reducts [8] and typical
testors [13] from the so-called logical combinatorial approach to pattern recog-
nition [11]. The assumption that both concepts are closely related (to the point
that some authors equate them) is based on their common properties. In both
approaches, decision tables are used for data representation, it means that ob-
jects of study are perceived by means of information represented by attributes.
Both, reducts and typical testors (some authors use test instead of testor), rep-
resent strong differentiating power, they are attribute subsets jointly sufficient
and individually necessary to discern among object descriptions.

As an important antecedent and a motivation, we can mention the work of
M. Ju. Moshkov (see for example [4]), who has deeply studied decision trees and
relations among testors, decision rules and decision trees. In this publication,
several assertions like “A reduct ... is a test ... for which each proper subset is
not a test” ( page 6) or “we use the term test instead of the term super reduct”
(page 3) can be read.

The contribution of this study is to make clear, that although there is a
close relationship between couples testor-super reduct and typical testor-reduct,
actually they have different scopes and in some cases they differ.

This document is organized as follows. Section 2 provides the formal back-
ground for the study. Section 3 contains theorems expressing relations between
reducts and typical testors, including a case study. Our remarks are summarized
in Section 5.
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2 Basic Concepts

2.1 Reducts

In many data analysis applications, information and knowledge are stored and
represented as a decision table which provides a convenient way to describe a
finite set of objects within a universe through a finite set of attributes [8].

Definition 1. A decision table is a pair Sq = (U, Ay = A; U{d}), where U is
a set of objects, A} is a set of conditional attributes and d is a decision attribute
({d}=D). Each a € A corresponds to the function I, : U — V, called evaluation
function, where V, is called the value set of a

Definition 2. Given a subset of conditional attributes A C A, the indiscerni-
bility relation is defined as IND(A|D) = {(u,v) € U x U : Va € A, [I,(u) =
Lo (0)] V [la(u) = Ia(v)]}.

In practice, it is common that decision tables contain descriptions of a finite
sample U of objects from a larger (possibly infinite) universe U, where values of
descriptive attributes are always known for all objects from U, but the decision
attribute is in general a hidden function except for those objects from the sample
U. The main problem of learning theory is to generalize the decision function
(defined on the sample U) to the whole universe Y.

Based on the indiscernibility relation, a reduct [9] is defined as follows.

Definition 3. Given a decision table Sq, an attribute set R C Ay is called a
reduct, if R satisfies the following two conditions:

(i) IND(R|D) = IND(A;|D) (if R satisfies (i) it is called a super reduct);
(ii) For any a € R, IND((R —{a})|D) # IND(A}|D).

Another widely used definition of reduct requires that a region of the universe
be preserved, this region is called the positive region. Next, we will introduce it.

Definition 4. Let A C Ay, andlet IND(A) = {(u,v) € UxU :Va € A, I,(u) =
I,(v)}; [u]a denotes the class in U/IND (A) containing w. We define the A-
lower approxzimation of a set X CU as A(X)={uecU:[uls C X}

Definition 5. Given a decision table Sq and a subset of attributes A C Af. The
A-positive region with respect to d is defined as

POS{d} (A) = UXEU/IND({d})A(X)-

We say that a decision table Sy is consistent if POS(qy(A;) = U. Otherwise,
we call it inconsistent. Usually, the following definition of reduct is used [12].

Definition 6. Given a decision table Sq, an attribute subset R C AY is called a
relative reduct, if R satisfies the two conditions:
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(i) POStqy (R) = POStay (Af); (R is called a relative super reduct)
(ii)) POStqy (R —{a}) # POSqy (A7) for any a € R.

An important point for answering the question are reducts and typical testors
the same? is the study of the relationship between these two ways of defining a
reduct for a decision table, and the understanding that the two definitions are
equivalent when the decision table is consistent but not in the general case, as
it is shown in the following example.

Ezample 1. Let us consider the decision table in Table 1 (a) where U = {uy,
Ug, U3, U4, Us, Ug, U7}, AF = {a1,a2,a3,a4} and D = {d}. We have that
IND(AﬂD) = {(ulaul)’ (u%u?)’ (uS,uS)a (U4,U4), (U5,U5), (uﬁauﬁ)a (U7,U7),
<U1,U2>, <U1,U3>7 <U1,U4>7 <U2,U3>, <U2,U4>7 <U37U4>7 <U57U6>, <U5,U7>, <U6,U7>7
(u2, ug), (us, ug), (U4, us)}, where (u;, u;) denotes the two elements (u;, u;) and
(uj, ug).

Consider the attribute subset R = {a1,a2,as}, then IND(R) = {(u1,u1),
(u2,u2), (us,us), (ua,ua), (us,us), (ue,ug), (ur,ur), (uz,us), (u2,ue), (us,ue),
(ug,us)} = IND(A}), therefore IND(R|D) = IND(A;|D). Following Defini-
tion 3, R is a super reduct for this decision table. Let analyze if R is a reduct, and
for this purpose let consider the subsets R; = R — {a;}; i = 1,2, 3, for which we
have that IND(R;|D) = IND(A;|D)U{(uz,us), (us, us), (va, us)}; IND(R2|D)
= IND(A}|D) U {{u1,ur)} and IND(R3|D) = IND(A}|D) U {{(u1, ue)}.

According to condition (%) in Definition 3, we can say that R is a reduct for
this decision table.

Now, let us consider the Definition 6, then U/IND({d}) = {{u1, ua, us, us},
{us, ug, ur}}; U/IND(A}) = {{ur}, {u2,us,ue} {us,us} {ur}} and Ay ({us,
uz, uz,us}) = {ur} = R({u1, uz, uz, ua}); A;({us,us,ur}) = {ur} = R({us,
ug, u7}), and therefore POS(4(A}) = {u1,ur} = POSiqy(R); so R satisfies
condition (i) of Definition 6 and we can say that R is a relative super reduct.

Let analyze condition (it); U/IND(R1) = {{u1}, {ue, us, us,us,ue}, {ur}};
U/IND(RQ) = {{U1,U7},{UQ,U3,U6},{U4,U5}} and U/IND(Rg) = {{U1, usg,
uz, ue}, {us,us}, {ur}}; then Ry({ur,uz,us,us}t) = {ur}, Ro({ur, uz, us, ua})
= 0 and Rs({u1,uz2,us,us}) = 0 and Ry ({us,us,ur}) = {ur}, Ry({us,us,ur})

Table 1. Two examples of decision tables

(a) (b)

U a1 a2 az a4 d U al a2 as d
up 1 0 1 00 ur 1 1 horO
uz2 1 0 0 10 uz 0 0 hor 0
us 1 0 0 10 us 0 1 ver 0
ug 0 0 0 10 usl 1 neul
us 0 0 0 11 us 0 0 hor 1
u 1 0 0 11 ugl 1 wver O
ur 1 1 1 11
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= 0 and R3({us,us, ur}) = {ur}; thence POSqy(R — {a1}) = POS{4(Af). It
means that R does not fulfill condition (i¢) of Definition 6. We can conclude that
R is a reduct of the decision table in Table 1 (a) according to Definition 3, but
it is not a reduct if we use Definition 6.

It should be emphasized that although in some publications the equivalence
between both definitions of reduct here included (3 and 6) is handled lightly; in
[12] it is accurately established (Proposition 5.6, page 351) that if IND(A}) =
IND({d}) the equivalence holds. Meanwhile, Bazan and Szczuka [2] also remark
that in the presence of an inconsistent decision table the notion of generalized
decision, which is defined below, has to be used.

There are other definitions of reducts. Miao et al. [7] for example, define
a reduct as a minimum set of attributes that preserve certain property (e.g.
indiscernibility relation, generalized decision, positive region, etc.).

Definition 7. Let S; be a decision table, the generalized decision function 0
is defined as O(u) = {k € Vg : Jv € U [(u,v) € IND(A}) A I4(v) = K]}

Now, we can say that Sy is consistent if |0(u)| = 1 for any u € U.

An important consequence of the last definition is that one can transform an
arbitrary inconsistent decision table Sy = (U, Ay = Af U {d}) into a consistent
decision table Sp = (U, Af U {0}).

We will differentiate between the reducts defined by Definition 3 (we will call
them discerning decision reducts and we will denote the set of all these reducts
by RED;pnq(S4)) and those defined by Definition 6 (which we will call positive
region decision reducts, and we will denote the set of all of them by RED,5(Sq)),
analogously we will denote as D S;,q4(Sq) and DSpes(Sq) the set of super reducts
determined by the definitions 3 and 6 respectively. Sometimes, to point out that
the generalized decision is being used, we will use the notation Sy instead of Sy.

Being Sy a consistent table, we can derive the following fact:

Lemma 1. Let S; a decision table, then
RED,os(Sq) = RED;yna(So) = RED,0s(Ss).
The below theorem asserts an interesting result.

Theorem 1. Let Sq a decision table, then DSina(Sa) € DSpos(Ss). If Sq is
consistent, the equality holds.

It is important to highlight that sometimes the equality holds even if we do
not have a consistent table, as it can be seen from Example 2.

Ezample 2. Consider the decision table S; in Table 1 (b) being U = {u1, us, us,
ug, us, ugt, Af = {a1,as,as} and D = {d}. Notice that Table 1 (b) is inconsis-
tent since I{4, as,a5) (U2) = l{a1,a0,a53 (Us) but Ig(uz) # la(us). The reader can
verify that despite being an inconsistent table, RED p,s(Sq) = {{a2,as},{a1,a3}}
= REDina(S).
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2.2 Testors

The concept of testor was created by S. V. Yablonskii [13] as a tool for solving
problems of control and diagnosis of faults in contact networks. From the early
works [3,13], a research line that is primarily concerned with this kind of prob-
lems was derived . In publications related to this area the original term test is
used instead of testor and the minimal ones (typical testors) are called dead-end
tests. The concept of testor (and typical testor) has had numerous generaliza-
tions and adaptations to different environments [6]. In this paper, we focus on
the classical concept [5].

Let U and A; be a set of objects and a set of descriptive attributes respectively.
Vo denotes the domain of the attribute ¢ and I,(u) the value of the attribute
a € A for the object u € U. Let M = (M[i, j])mxn be the matrix representation
of the information. Thus, the element M]i, j] = I,,(u;) represents the value of
the attribute a; for the object u;.

Let us consider a supervised classification problem and let us assume that we
have information represented as a decision table Sq = (U, A} U {d}) being d a
decision attribute (d ¢ Af). Sg is known as a training sample and its matrix
representation as a training matrix.

Let T C A} and let Ir(u) denote the partial description of u considering only
attributes belonging to T'. In this framework, we will define a testor as:

Definition 8. T' C Af is a testor with respect to a training matriz if Vu,v € U:
[Ir(u) = It (v)] = [Iq(u) = 14(v)]. If T is a testor such that none of its proper
subsets is a testor, then T is a typical (irreducible) testor.

This definition means that attributes belonging to a testor are jointly sufficient
to discern between any pair of objects belonging to different classes, that is
exactly the same as a discerning decision super reduct. If a testor is typical, each
attribute is individually necessary in the same way as in a discerning decision
reduct; then we can enunciate the following lemma.

Lemma 2. Let Sy, = (U, AfU{d}) be a decision table and let M be its associated
training matriz. Let R C A}, then

(i) R is a discerning decision super reduct for Sq iff R is a testor for M.
(i) R is a discerning decision reduct for Sq iff R is a typical testor for M.

Although initially the concept of testor in supervised classification problems
was associated with disjoint classes, in [10] non-disjoint classes are considered
into the testor definition through the confusion concept.

Definition 9. Let M be a training matriz and a; a descriptive attribute, the
number of object pairs belonging to different classes that are indiscernible by
the attribute a; is called the confusion induced by a; in M and we denote
it by C({a;}). Similarly we can define the confusion induced by A C A} by

C(A) = ‘ﬂajeAé({aj}) , being é({aj}) = {(u,v) €U xU : [I;(u) = I; (v)] A
Ha(u) # La(v)]}-
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From this definition the following lemma is immediate.

Lemma 3. Let T C Af. T is a testor iff C(T) = 0. T is typical if for all
T CT, C(T') #0.

Ezample 3. For matrix in Table 1 (b) we have that C(a;) = C(a2)=8 and C(a3) =
4. Considering for example T7 = {a1, a2}, we have that C(T1) = 4. Notice that

C({ar}) NC({az}) = {{ur, ua), (uz, us)}.

The definition of confusion was used to broaden the scope of application of the
concept of testor to problems with overlapping classes. Although in this kind of
problems the term irreducible combination of attributes is more commonly found,
the term testor is also used and it is the one we use in this work for the purpose
of homogeneity. Thus, the following definition is more general.

Definition 10. Let T C Ay. T is a global testor if C(T') = C(A}). T is typical

/

if none of its proper subsets is a global testor, i.e. C(T") # C(Ay) for all T CT.

Definition 8 becomes particular case of this one. We will denote by TT (M)
the set of all typical global testors of the training matrix M. T'(M) will denote
the set of all global testors of M.

3 Relations

Finally, we present the theoretical relations between reducts and typical testors.
Due to space constraints proofs are not included.

Theorem 2. Let Sy be a consistent decision table and M its associated training
matriz; then RED;nq(Sq) = REDpos(So) = TT(M).

Theorem 3. Let Sq = (U, Ay U{d}) be a (possibly inconsistent) decision table
and M its associated training matriz. Let Sp = (U, AfU{0}) the consistent table
obtained from Sy considering generalized decision and Mgy the corresponding
training matriz. Then RED;nq(Sq) = TT(M) and REDpos(Sq) = REDpos(Sa)
=TT (My).

Let Sq = (U, Af U {d}) be a (possibly inconsistent) decision table, and let us
introduce the decision attribute A defined by

[u]a: otherwise

Lemma 4. Let Sq = (U, A;U{d}) be a decision table and let Sa = (U, AfU{A})
being A defined as in (1), then Sa is consistent.

From these results we have the following corollary which establishes a relation
between the different partitions of U.
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Table 2. Typical testors and positive region decision reducts for the Spect dataset

Data set Descriptive attributes Classes Objects |TT (M.)| |REDpos(S«)|
(A) B) (O (D) (E)

Spect=(S4) 22 2 80 26 70
Spect3c=8s 22 3 80 70 70
Spectbc=Sa 22 6 80 26 26
« €4d,0,A}.

Corollary 1. With the same hypothesis as Lemma 4; U/IND(AF) is a finer
partition of U than U/IN D({A}) while U/IN D({A}) is finer than U/IN D({0}).
It means that for every u € U, [ua: C [u]la C [uls. If Sq is consistent then
[ua; € [u]a = [u]o = [ul{a-

It is easy to realize that:

Theorem 4. Let Sq = (U, Af U{d}) be a decision table and let Sa = (U, A} U
{A}) built as above. Let M and M a the respective associated training matrices,
then TT(M) = REDp,s(SA).

The theorems enunciated in this section confirm the non-equivalence between
the concepts of reduct and typical testor. Even more, they give us the possibility
of using algorithms to compute reducts in contexts where algorithms to com-
pute testors are used and vice versa. For example, Theorem 4 allows computing
discerning decision reducts (Def. 3) for an inconsistent table by using a software
like RSES [2] designed for computing positive region decision reducts (Def. 6).

3.1 Case Study

Here, we illustrate the non-equivalence between typical testors and reducts using
Spect dataset taken from the UCI Machine Learning Repository [1]. The Spect
data set consists of two non-disjoint classes, each class containing 40 objects and
22 descriptive attributes, but there are several coincidences.

From the Spect dataset, we created two modified datasets: Spect3c and
Spectbe. Spect3c results from creating a new class containing the intersection
between the two original classes and Spect6c results from separating each re-
peated description as a new class. Notice that Spect3c is the table resulting
from applying generalized decision; in Table 2 we denote it by Sy, meanwhile
Spect6e corresponds to Sa.

Table 2 presents the amount of typical testors (column D) and positive region
decision reducts (column E) from the original Spect dataset and for the other
two datasets before described. Although the table does not explicitly contain
the attribute sets but only quantities, we can see the equalities |TT(M)| =
|[REDpos(Sa)| and |TT(Mp)| = |RED;na(Sq)|- For second and third rows the
tables in the first column are consistent, for this reason in these rows the values
in columns (D) and (E) are equal, i.e [TT(M.)| = |REDpos(S«)| with * taking
value in {0, A} .
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4 Conclusions

This paper studies the relation between reducts (from rough set theory) and
typical testors (from logical combinatorial pattern recognition) and demonstrates
that although in many cases (specially when classes are disjoint) the two concepts
coincide, they are not exactly the same. The knowledge of the true relations
between these concepts allows a proper use in one area of the results obtained
in the other. This study can be a starting point for further considerations and
will probably lead to interesting practical applications in which both research
communities can benefit from each other. Although we focus on the relation
between the classical concepts of testor and reduct, we believe that our study
can be expanded to include other types of testors and reducts.
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