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Abstract. In this work we analyze and implement several audio fea-
tures. We emphasize our analysis on the ZCR feature and propose a
modification making it more robust when signals are near zero. They
are all used to discriminate the following audio classes: music, speech,
environmental sound. An SVM classifier is used as a classification tool,
which has proven to be efficient for audio classification. By means of a
selection heuristic we draw conclusions of how they may be combined for
fast classification.

1 Introduction

The analysis of audio features is an important task when an automatic audio
classifier is being developed. In this work we aim at classifying audio signals
according to a predefined audio category. This corresponds to the audio content
analysis (ACA) field of study. The objective of ACA is the extraction of infor-
mation from audio signals such as music recordings or any type of specific audio
type that is stored on digital media. The information to be extracted is expected
to allow a meaningful description or explanation of the raw audio data, which
will lead to a more convenient processing. This processing may include automatic
organization (tagging) of audio content in large databases as well as search and
retrieve audio files with specific characteristics in such databases. Also, this pro-
cessing may conduct to a more specialized task for a specific type of audio. For
instance, in case of music recordings, applications range from tempo and key
analysis -ultimately leading to the complete transcription of recordings into a
score-like format- over the analysis of artists’ performances of specific pieces of
music [1], to transcribing news only segments [3], detecting commercials in TV
broadcast program [4], transcribing lecture presentations [8], etc.

A common taxonomy of audio classes generally considers speech, music and
environmental sound, although some other works include a mix of these classes
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or other subclasses. For example, Chen et al. departed the audio data into five
types: music, speech, environmental sound, speech with music background, and
environmental sound with music background [2]; Zhang parsed audio data into
silence, speech, harmonic environmental sound, music, song, speech with mu-
sic background (speech+music), environmental sound with music background,
non-harmonic sound, etc. [12]. Once each of these classes are established in the
audio signal, several other applications arise. For instance, in case of speech, the
speech activity detection (SAD) has applications in a variety of contexts such
as speech coding, automatic speech recognition (ASR), speaker and language
identification, and speech enhancement.

Audio classification is generally based on features estimated over short time
audio samples, followed by a state-of-the-art classifier. Each of these features rep-
resent some particular characteristic which make them more suitable to detect
certain types of audio that are present in the audio clip. A well-known feature
called Zero Crossing Rate (ZCR) gives a rough estimate of the spectral proper-
ties of audio signal and it is related with its noisiness; generally, voiced audio
clips have much smaller ZCR that unvoiced clips making it suitable for speech
discrimination. In this work, we analyze the ZCR and propose a modification
making it more robust when signals are near zero. One of the firsts approaches
by Sanunders used this feature and the short time energy to classify radio pro-
gram into speech and music [10]. Other work by Panagiotakis used only energy
and frequency features to discriminate these two classes [7].

There are several more audio features to consider. In this work we analyse High
Zero Crossing Rate Ratio, Spectral Flux, Low Short-Time Energy Ratio, Noise
Frame Ratio and Band Periodicity audio features. We use them to discriminate
the following predefined audio classes: music, speech, environmental sound. An
SVM classifier is used as a classification tool, which has proven to be efficient for
audio classification [5]. By means of a selection heuristic we draw conclusions of
how they may be combined for fast classification.

2 Audio Features

In order to compute the features, we have an audio clip x which has been chopped
into N consecutive frames per second, having each frame L samples (see Fig. 1).
We will refer to xn to the n-th frame and xn(l) to the l-th sample within the n-th
frame, for 0 ≤ n ≤ N − 1 and 0 ≤ l ≤ L − 1. For audio classification, based on
the work of [6], the input signal is downsampled to 8000Hz (samples per second),
and N = 40 frames per second having a total of L = 200 samples per frame.
Then, for each second of the audio, several features have been implemented and
evaluated and a support vector machine classifier for each type is employed to
detect if the second has content related to the type.

High Zero Crossing Rate Ratio (HZCRR). HZCRR is defined as the ratio
of the number of frames whose Zero Crossing Rate (ZCR) are above 1.5-fold
average zero-crossing rate in an 1-second window [6]. The ZCR is defined as the
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Fig. 1. Sketch of a T-seconds signal x partitioned into N frames per second and L
samples per frame

ratio of the number of times a signal crosses the x-axis and is an approximate
measure of noisiness and has proven to be a discriminative feature for audio
signals.

ZCR(xn) =
1

2L

L−1∑

l=1

|sgn(xn(l))− sgn(xn(l − 1))| (1)

where

sgn(x) =

⎧
⎨

⎩

−1 if x < 0
0 if x = 0
1 if x > 0

(2)

After evaluating this feature, we detected that for some audios, the zero cross-
ing rates were unreasonably high. This was because the signal oscillated when
close to zero. To fix this, a thresholded version of the ZCR, the TZCR feature is
proposed. The idea is to divide the space in three distinct non-overlapping areas:
the zero area, delimited by [−t, t], the positive values higher than the threshold
t, and the negative values lower than −t. The TZCR feature is then defined by

TZCR(xn) =
1

2L

L−1∑

l=1

TZC(xn(l)) (3)

where

TZC(xn(l)) =

⎧
⎪⎪⎨

⎪⎪⎩

|sgn(xn(l))− sgn(xn(l − 1))| if |xn(l)| > t and |xn(l − 1)| > t
1 if |xn(l)| > t and |xn(l − 1)| ≤ t
1 if |xn(l)| ≤ t and |xn(l − 1)| > t
0 otherwise

(4)

As in the original Zero Crossing metric, when the discrete function xn goes
from negative to positive, it accounts for 2 ZC, and when a consecutive pair of
values goes to zero coming from something different, it accounts for 1 ZC. Our
thresholded version keeps the same definition, however the ‘zero’ is now a region
that covers the range [−t, t]. Finally, the HZCRR feature becomes

HZCRR =
1

2N

N−1∑

n=0

sgn(TZCR(xn)− 1.5 · TZCR) + 1 (5)
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where

TZCR =
1

N

N−1∑

n=0

TZCR(xn) (6)

Fig. 2 shows the histograms of the values for this feature, the first using
the original ZCR and the second using the proposed TZCR. Under the original
formulation, it is easily perceptible how the discrimination of the audio types
is not clear and the three curves look similar. This does not occur under the
proposed formulation where if the HZCRR value is between 0 and 0.25, the
analyzed second is probably music, if the value lies between 0.4 and 0.7 there
is a high probability the input signal is voice, and values higher than 0.75, we
are clearly dealing with an environmental sound. In the non-defined intervals,
this new feature may not be discriminative enough and other features have to
be used.
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Fig. 2. Comparison of histograms of HZCRR values for three different audio classes:
music, voice and environment

Spectral Flux (SF). The spectral flux [9] measures the spectrum fluctuations
between two consecutive audio frames. It is defined as

SFn(x) =
L−1∑

k=1

|Xn(k)−Xn−1(k)| (7)

where Xn is the Discrete Fourier Transform of the n-th audio frame xn. The
Spectral Flux SF feature estimated in a 1-second window is defined as the
average of the SFn’s:

SF =
1

N − 1

N−1∑

n=1

SFn(x) (8)
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Low Short-Time Energy Ratio (LSTER). LSTER is defined as the ratio of
the number of frames whose short-time energy are less than 0.5 time of average
short-time energy in a 1-sec window.

LSTER =
1

2N

N−1∑

n=0

sgn

(
STE

2
− STE(xn)

)
+ 1 (9)

where

STE(xn) =
1

L

L−1∑

l=0

x2
n(l), STE =

1

N

N−1∑

n=0

STE(xn) (10)

Noise Frame Ratio (NFR). Let xn be a frame, 0 ≤ n ≤ N − 1, and let

Ân(m) =
An(m)

An(0)
=

∑L−1−m
l=0 xn(l)xn(l +m)

∑L−1
l=0 x2

n(l)
(11)

be the normalised autocorrelation sequence of the frame xn. We consider this
frame xn is a noise frame NFn if maxm Ân(m) < Th. Finally, we define the
Noise Frame Ratio

NFR =
#NFn

N
(12)

Band Periodicity (BP). We define a subband xband as the audio sequence
containing the frequency range [F1, F2] of the frequencies in x. In this work we
considered four subbands in the following ranges: [500, 1000] Hz, [1000, 2000] Hz,
[2000, 3000] Hz, and [3000, 4000] Hz. The periodicity property of xband is derived
by subband correlation analysis and is represented by the maximum local peak of
the normalized correlation function. The normalized correlation function rband,n
for the n-th frame is calculated as

rband,n(k) =

∑L−1
l=0 xband

n (l − k)xband
n (l)√∑L−1

l=0 (xband
n (l − k))2

√∑L−1
l=0 (xband

n (l))2
, k = 0, . . . , L− 1

where xband
n (l) refers to values from the current frame when l ≥ 0; if l ≤ −1 then

we refer to values in the previous frame xband
n−1 (l). Then, the band periodicity in

a 1-second window for each subband is estimated as

BPband =
1

N

N−1∑

n=0

rband,n(kp)

where kp is the index of the maximum local peak: kp = argmaxk rband,n(k).
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3 Classification and Results

A training set consisting of around 86 minutes (206640 frames), formed by 1714
seconds of music, 1736 seconds of environment, and 1716 seconds of voice was
manually labeled. For each audio type (music, voice and environment), a separate
labeling of the training set was performed indicating if there was presence of that
audio type (a binary decision) on every 1-second segment. Then, once features
were calculated for each 1-second audio segment, they are grouped together and
used to train three Support Vector Machine classifiers [11]. We used the libSVM
library1 and a radial basis function as the kernel. To optimize classification,
a 5-fold cross-validation procedure is performed varying the cost parameter C
and the γ parameter of the radial kernel. Note that for the development of the
results, when the BP feature is mentioned, it means that all four subbands
(features BP1, BP2, BP3 and BP4) are used.

The test set used is formed by 550 frames of voice, 583 frames of music and,
630 of environment sound; precision, recall and accuracy metrics have been used
to evaluate the algorithm.

In table 1, results for each SVM are shown. It should be noted that using
a single SVM to separate between classes obtains excellent results. By using
a multi-SVM schema, the possible outcomes increase dramatically. However,
it is remarkable how even after using multiple classifiers to detect the audio
classes, the proposed method is able to achieve results over 85%, which allows
to successfully perform multi-class classification. We have performed an analysis
considering all the combinations of features, having

(
5
k

)
combinations, for k =

1, . . . , 5. Each of these combinations was used to train and test the SVM classifier
(obtaining a confusion matrix for each test and the corresponding rates).

Table 1. Precision, recall and accuracy rates

Precision Recall Accuracy

Voice 0.8935 0.8606 0.9114

Music 0.9200 0.8470 0.9103

Environment 0.9838 0.9560 0.9787

In Table 2 we summarize these results, showing the best selection of features
with respect to precision, recall and accuracy. This gives us an idea of which are
the most discriminative features for each audio class (voice, music and environ-
ment) and sets an heuristic for selecting features that is depicted in the following
paragraph. The last column shows the results using all the features.

We observe that, when using two features, HZCRR and BP achieve an accu-
racy rate near 90% and all the metrics are high for classes voice and environment.
These two features are present for all the best selections of k features, for k ≥ 2.
In the case of the environment class, adding any number of features to these two

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~ cjlin/libsvm/
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achieves a negligible increase for both precision and recall. Then, this suggests
that HZCRR and BP are sufficient for classifying a test frame as environment or
voice class. Since the computation of features is the most time-consuming task,
we consider that adding both the SF and the LSTER features improves music
classification (i.e., reducing the false positive rate for these classes). We note also
that adding the NFR feature does not increase performance significatively, and
thus, its usage is not recommended.

Table 2. Each column shows the best selection of features with respect to precision,
recall and accuracy for each class

3.1 TZCR Results

In order to evaluate the proposed HZCRR feature using TZCR values, an SVM
was trained using only the HZCRR feature and evaluated for each audio type.
The threshold was empirically set to 0.1 which offered the best results. Table
3 shows the improvement over the original formulation. The F-Measure metric
(also known as F1 score) is defined as F1 = 2 · (precision · recall)/(precision+
recall) and can be interpreted as a weighted average between the precision and
the recall.

Table 3. Evaluation of both variants of the HZCRR feature for all audio types

ZCR Voice TZCR Voice ZCR Music TZCR Music ZCR Env. TZCR Env.

Recall 63.39 % 82.22 % 72.12 % 85.12 % 67.73 % 82.57 %

Precision 100 % 86.01 % 88.56 % 84.24 % 99.59 % 87.44 %

Accuracy 63.39 % 77.91 % 65.98 % 73.43 % 67.54 % 81.50 %

F-Measure 77.59 % 87.58 % 79.50 % 84.68 % 80.62 % 89.81 %
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4 Conclusions and Future Work

In this work we have analysed several audio features for classification of audio
clips according to predefined classes. We have emphasized our analysis on the
ZCR feature detecting that by using the original definition, it yielded high values
when not expected. For that, we have introduced a modification making it more
robust as the signal approaches to zero. In future work, we plan to apply this
improved feature in the wavelet domain. At each step of the wavelet transform,
an approximation and details of the original signal are computed. After several
steps, an approximation at different resolution levels may be obtained and we
expect to achieve better classification rates estimating the HZCRR to these
approximation coefficients.

The analysis performed in this paper has allowed us to infer an heuristic for
selection of the best features that are more suitable for classification of specific
types of audio. This heuristic saves computational times since not all of the
features are necessary to estimate.
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