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Abstract. Context information is important in object representation. By  
embedding context cue of image attributes into kernel descriptors, we propose a 
set of novel kernel descriptors called Context Kernel Descriptors (CKD) for  
object classification and detection. The motivation of CKD is to use spatial con-
sistency of image attributes or features defined within a neighboring region to 
improve the robustness of descriptor matching in kernel space. For feature se-
lection, Kernel Entropy Component Analysis (KECA) is exploited to learn a 
subset of discriminative CKD. Different from Kernel Principal Component 
Analysis (KPCA) that only keeps features contributing mostly to image recon-
struction, KECA selects the CKD that contribute mostly to the Rényi entropy of 
the image. These CKD are discriminative as they relate to the density distribu-
tion of the histogram of image attributes. We report superior performance of 
CKD for object classification on the CIFAR-10 dataset, and for detection on a 
challenging chicken feet dataset. 

Keywords: Object classification and detection, Feature selection, Kernel de-
scriptors, Kernel entropy component analysis. 

1 Introduction 

Classification and detection of objects are challenging, as real-world objects are diffi-
cult to model with significant variations in appearance and pose. Recently, local  
descriptor-based methods dominate the state-of-the-art object classification and detec-
tion algorithms. Many local descriptors [1-7] are designed to achieve a stable and 
robust representation for objects. In particular, orientation histogram descriptors like 
SIFT [1] and HOG [2] build a histogram of gradient orientations weighted by the 
gradient magnitudes within the feature point neighborhood. Histograms extracted 
from small image patches are normalized across larger areas and concatenated to form 
the final descriptor. Meanwhile, the impressive recognition performance offered by 
kernel methods, especially the SVM, further inspired people to develop local kernel-
based descriptors. Wallraven et al. [8] first bridged local feature representation with 
SVM classifier by introducing a set of local kernels that satisfy the Mercer condition. 
With these local kernels, the feature matching step can be formulated as a part of the 
kernel itself, thus used as the input to SVM classifier. Based on that, more match 
kernels [9-11] over local feature sets are addressed. In particular, Bo et al.[6] linked 



828 H. Pan, S.I. Olsen, and Y. Zhu 

 

the design philosophy behind SIFT with the match kernel over image patches and 
developed kernel descriptors (KDES) to achieve the state-of-the-art performance on 
classification benchmarks. 

Integrating the strength of local descriptor representation and kernel method, we 
propose a novel and systematic framework for object classification and detection from 
kernel’s perspective. In this framework, each module from feature extraction to fea-
ture selection, as well as classification is completely treated in a ‘kernelized’ way. 
More specifically, for feature extraction, we develop a set of Context Kernel Descrip-
tors (CKD) which enhance the original KDES [6] by embedding the spatial context 
into KDES. Context cue enforces some degree of spatial consistency that improves 
the robustness of the resulting descriptors. Different from KDES that applied KPCA 
to reduce feature dimensionality, in our framework, Kernel Entropy Component 
Analysis (KECA) is exploited in the kernel feature space to learn and select a set of 
low-dimensional discriminative CKD. Finally, these reduced discriminative CKD are 
fed into a SVM classifier to perform the classification/detection. Fig.1 illustrates the 
framework of our kernel-based object classification and detection model. Evaluation 
results on the standard classification benchmark and a challenging chicken feet data-
set show that our CKD outperforms the original KDES as well as carefully tuned 
SIFT descriptor and sophisticated deep learning-based methods.  
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Fig. 1. Framework of our kernel-based object classification and detection model 

2 Feature Extraction with CKD 

Recently, [6] showed that the similarity measure of orientation histograms applied in 
HOG and SIFT-based feature matching is equivalent to a particular match kernel over 
image patches. This insight provides a general way to turn pixel-level attributes into 
patch-level features with match kernel measuring the similarity between image 
patches. Since only the pixel’s attribute and position are considered in the match ker-
nel, it may cause unstable feature matching between different image patches with 
similar attributes. 

In this work, we enhance the original match kernel in KDES by embedding it with 
a neighborhood constraint. As neighborhood defines a set of adjacent pixels surround-
ing the center pixel, this neighborhood information can be regarded as the spatial 
context of the center pixel. So we refer to this enhanced match kernel as Context 
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Match Kernel (CMK) and the resulting descriptors as context kernel descriptors. In-
tuition behind CMK is that pixels with similar attributes from two image patches 
should have a high probability to have neighboring pixels with similar attributes. 
Considering the spatial co-occurrence constraint, our CMK significantly improve the 
matching accuracy.  

CMK can be conveniently applied to develop a set of local descriptors using any 
kind of image attributes, such as gradient, color, texture, and shape. Next we derive 
the CMK, then introduce several specific CMKs used in our work. 

2.1 Formulation of CMK 

An image patch can be modeled as a set of pixels X ={xi} (i= 1… n), where xi is coor-
dinate of the ith pixel. Let ai be attribute vector at the ith pixel xi. The k-neighborhood 
Nk

i of pixel xi in X is defined as a group of pixels (including itself) that are closest to 
it. Mathematically, Nk

i = {xj∈X | ∥xi−xj∥≤k; k≥1}. So the context kernel of attributes a 
between two pixels xp and xq is defined as [( , ), ( , )] 1 | || |p q

p p q q k kx a x a N N=conκ  

( , )
p q

u vk k

u v
x N x N

a a
∈ ∈
  aκ , where κa(au, av) = exp(-γa∥au-av∥2) = a(au)

T
a(av) is a Gaussian 

kernel measuring the similarity of attributes between two pixels xu and xv. Merging 
κcon into match kernels [6] and replacing attribute a in κcon with specific attributes, we 
can derive a set of ad hoc attribute-based CMKs. 

Let θp and mp be orientation and magnitude of the image gradient at pixel xp. For 
the convenience of matching, we use normalized orientation θ'p= (sinθp, cosθp) and 

normalized magnitude 2
p p pp P

m m m ε
∈

′ = +  (ε is a small positive number). To com-

pare the similarity of gradients between patches P and Q from two different images, 
the gradient context match kernel Kgck can be defined as 

             ( , ) ( , ) ( , ) [( , ), ( , )]p q p q p q p p q q
p P q Q

P Q m m x x x xθ θ θ θ
∈ ∈

′ ′ ′ ′ ′ ′=gck o s conK κ κ κ           (1) 

where κs(xp, xq) = exp(-γs∥xp−xq∥2) = s(xp)
T

s(xq) is a spatial kernel measuring how 
close two pixels are spatially;  κo(θ'p,θ'q) = exp(-γo∥θ'p−θ'q∥2) = o(θ'p)T

o(θ'q) is the 
orientation kernel measuring the similarity of normalized orientations at two pixels xp 
and xq. Similarly, to measure the proximity of color attributes between P and Q, the 
color context match kernel Kcck can be defined as 

            ( , ) ( , ) ( , ) [( , ),( , )]p q p q p p q q
p P q Q

P Q c c x x x c x c
∈ ∈

= cck c s conK κ κ κ            (2) 

where κc(cp,cq) = exp(-γc∥cp−cq∥2) = c(cp)
T

c(cq) is the color kernel measuring the 
similarity of color values cp and cq. For color images, we use normalized rgb vector as 
color value, whereas intensity value is used for grayscale images. For the texture 
attribute, we define our texture context match kernel, Klbpck, using Local Binary Pat-
terns (lbp) [3] 

                  
( , ) ( , ) ( , ) [( , ),( , )]p q p q p q p p q q

p P q Q

P Q lbp lbp x x x lbp x lbpσ σ
∈ ∈

′ ′= lbpck lbp s conK κ κ κ       (3) 
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where
3

2
p p pp N

σ σ σ ε
∈

′ = +  is the normalized standard deviation of pixel values within 

a 3×3 window around xp; κlbp(lbpp, lbpq) = exp(-γlbp∥lbpp−lbpq∥2) is a Gaussian match 
kernel for lbp operator. 

As shown in Eq.(1)-(3), each attribute-based CMK consists of four terms: 1) nor-
malized linear kernel, e.g. m'p m'q for Kgck; 1 for Kcck and 'p 'q for Klbpck, weighting 
the contribution of each pixel to the final attribute-based CMK; 2) attribute kernel 
evaluating the similarity of pixel attributes; 3) spatial kernel κs measuring the relative 
distance of two pixels; 4) context kernel κcon comparing the spatial co-occurrence of 
pixel attributes. In this sense, we can formulate all these attribute-based CMKs in a 
unified way 

   ( , ) ( , ) ( , ) [( , ),( , )]p q p q p q p p q q
p P q Q

P Q w w a a x x x a x a
∈ ∈

= a a s conK κ κ κ           (4) 

where wpwq and κa are linear weighting kernel and attribute kernel, respectively. 

2.2 Approximation of CMK 

Using the inner product, we rewrite Ka as Ka(P,Q)=<ψa(Q), ψa(P)> = ψa(P)Tψa(Q), 
with ( ) ( ) ( ) ( , )a s conw a x x aϕ ϕ ϕ⋅ = ⊗ ⊗aψ , where ⨂ is the tensor product. ψa gives the 

mapping feature in kernel space, namely the CKD. Note that the dimensions of a, s 

and con are all infinite, since Gaussian kernels are used. To obtain an accurate ap-
proximation of the CMK matrix Ka, we have to uniformly sample a, s and con 
using a dense grid along sufficient basis vectors. In particular, for a and con, we 
discretize a into G bins and approximate a(a) and con(x,a) by their projections onto 
the subspaces spanned by the G basis vectors 1{ ( )}g G

a gaϕ = . For space vector x, we dis-

cretize spatial basis vectors into L bins and sample x along the L basis vectors. Final-
ly, we approximate ψa by its projections onto the G×L×G joint basis vectors: 
{ a(a

1)⨂ s(x
1)⨂ con(a

1),…, a(a
G)⨂ s(x

L)⨂ con(a
G)}, and derive the G×L×G-

dimensional CKD, i.e. 

1 1 1

( ) ( ) ( ) ( )
G L G

i j k
ijk a s con

i j k

f a x aϕ ϕ ϕ
= = =

⋅ ⊗ ⊗aψ                (5) 

where fijk is the projection coefficient onto the joint basis vector 
a(a

i)⨂ s(x
j)⨂ con(a

k). As aforementioned, we approximate the resulting CKD ψa 
with finite joint basis vectors. However, due to the tensor product, the full dimensio-
nality of projected CKD onto the joint basis vectors is high. For example, for gradient 
CKD ψgck, if we quantize basis vectors of o and con into 25 bins respectively,  
and choose the basis vectors of spatial kernel s on a 5×5 grid, the dimensionality  
of ψgck equals 25×5×5×25=15625. This dimensionality is too high for practical com-
putation. Next, we show how to further reduce the dimensionality of CKD to a  
tractable scale. 
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3 Feature Selection with KECA 

By uniform sampling along sufficient basis vectors over a dense spatial grid in image 
attribute space, we approximate the CKD ψa with its projection onto finite dimension-
al basis vectors. Uniform sampling usually yields redundant basis vectors. To reduce 
the redundancy and further lower the feature dimensionality, original KDES applied 
KPCA. However, KPCA can only capture second-order statistics of KDES and select 
features contributing mostly to image reconstruction. This inevitably degrades the 
distinctiveness of KDES for image classification. In contrast, we apply KECA that 
selects basis vectors relating to the probability distribution of the histogram of image 
attributes from available basis vectors to generate low-dimensional discriminative 
CKD features.  

Similar to KPCA [12], KECA [13] is a novel spectral analysis method based on 
kernel similarity matrix. But it does not necessarily use the top eigenvalues and ei-
genvectors of the kernel matrix. Unlike KPCA which maximally preserves the  
variance of the data set, KECA, built on information theory, tries to preserve the  
maximum Rényi entropy of the input data set with the smallest number of extracted 
features. KECA provides a new information theoretic learning tool that enables to 
capture geometric structure of the input data [13]. Thus, it is extremely suitable for 
nonlinear data analysis. 

The quadratic Rényi entropy [14] is defined as 

            2( ) log ( ) log[ ( )]H p p s ds V p= − = −                           (6) 

where p(s) is the probability density function of a data set S = {si}(i =1,…,N). Since 
the logarithm is a monotonic function, we only focus on V(p).Using Parzen window, 
V(p) can be estimated as 2 2 Tˆ( ) 1 ( , | ) 1

t t

t t
s s

V p N k s s Nσ
′

′
∈ ∈

= = 1 1
S S

K ,where k(s, st|σ) is the 

Parzen window (kernel), centered at st with a width of σ; K is a N×N kernel matrix 
corresponding to the Parzen window; and 1 is an N×1 vector with each element  
being 1. 

For the approximated kernel matrix Ka, defined by ψa in Eq.(5), assuming its di-
mensionality is N×N, then it can be eigendecomposed as Ka = EDET, where D is a 
diagonal matrix containing eigenvalues λ1,⋯, λN and E is a matrix with the corres-
ponding eigenvectors e1,⋯,eN as columns. Taking Ka into ˆ( )V p , we have ˆ( )V p =

( )
2

2 T 2

1 1

1 1
N N

i i
i i

N Nλ φ
= =

= 1ie . The term ϕi defines the contribution of each eigenvalue 

and its corresponding eigenvector to the Rényi entropy estimate ˆ( )V p .  
Note that Ka = ψa

Tψa, projecting ψa onto a single principal axis ui in the kernel 

space gives T T
iλ=i a iu ψ e . Projecting ψa onto all principal axes results T 1 2 T=aU ψ D E , 

where U = [u1,⋯, uN] is the projection matrix. Different from KPCA that selects m (m 
< N) principal axes such that the projection data corresponding to the largest m eigen-
values λ1,⋯,λm (λ1≥⋯λm⋯≥λN) and their eigenvectors e1,⋯,em, whereas, KECA selects  
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m principal axes eca
mU , corresponding to the largest m { } 1

m

i i
φ

=
(ϕ1≥ ⋯ ϕ m⋯≥ ϕN), that 

contribute mostly to the Rényi entropy estimate of the data. Projecting ψa onto eca
mU , 

we obtain reduced KECA feature set T 1 2 T= =eca eca
a m a m mψ U ψ D E . This feature set is the solu-

tion to
1, 1, ,

ˆ ˆmin ( ) ( )
N

mV p V p
λ λ

−
 Ne e

, subject to 1 2 Teca
a m mψ = D E , which means that the Rényi entropy 

estimate ˆ( )V p of the original data are maximally preserved in ˆ ( )mV p , after KECA  

transform.  
To sum up, for each type of CMK designed in section 2.1, we first approximate it 

with finite dimensional basis vectors, then KECA is applied to learn the reduced dis-
tinctive basis vectors. Projecting attribute, spatial position and context cue of a pixel 
onto learned basis vectors, we obtain its gradient (G_CKD), color (C_CKD), and tex-
ture (LBP_ CKD) CKD. These heterogeneous CKDs represent an image from differ-
ent aspects and complement each other. To fully exploit all cues, we concatenate 
G_CKD, C_CKD and LBP_CKD into a combined CKD (COM_CKD). Similar to [7], 
we aggregate patch-level CKDs hierarchically to build the final image-level feature 
representation. 

4 Evaluation Results 

We test CKD features on CIFAR-10[15] for object classification and on a chicken 
feet dataset for object detection. To make a fair comparison, we follow the parameter 
setting in [6], except for the final feature dimensionality. Namely, basis vectors for κo, 
κc, and κs are sampled over 25, 5×5×5, and 5×5 uniform grids, respectively.  For κlbp, 
we choose all 256 basis vectors. Basis vectors of κcon for different CKDs are selected 
as the same vectors of their attribute kernels. The optimal dimensionality of CKD and 
neighborhood size k are decided by cross-validation. According to our observation, an 
optimal 200-dimensional feature learned from KECA is selected for each type of 
CKD, resulting a final 600-dimensional COM_CKD feature descriptor per image 
patch. 

4.1 Object Classification 

CIFAR-10: This dataset contains 80 million tiny images with a size of 32×32 pixels. 
It has 10 classes, with 5000 training images and 1000 test images per class. We use 
this dataset for a comprehensive comparison on the classification performance be-
tween original KDES and our CKD. We calculate CKD with 3-neighborhood around 
8 × 8 image patches on a dense grid with a spacing of 2 pixels. The whole training set 
is split into 10,000/40,000 training/validation set, and the validation set is used to 
optimize the kernel parameters using the grid search. Table 1 lists the classification 
accuracy of different kernel descriptors options. Some recent results are also provided 
in table 2. 
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Table 1. Comparison of classification 
accuracy (%) between KDES and CKD on 
CIFAR-10  

Table 2. Classification accuracy (%) of other 
methods on CIFAR-10 

Methods Accuracy  
 HKDES [7] 80.00 

SPN [16] 83.96 
Zeiler&Fergus [17] 84.88 

MCDNN [18] 88.79 
 

From table 1, we observe that the proposed context-based kernel descriptors con-
sistently outperform original counterparts, for both individual and combination ver-
sion. Except for G_CKD, both C_CKD and LBP_CKD are significantly better than 
the original ones. For combination version, the accuracy of COM_CKD is 85.4%, 
which is 9.4% higher than the combined KDES. We argue that performance im-
provement of CKD comes from two facts: 1) compared with KDES, additional spatial 
co-occurrence constraint defined in CKD further improves its robustness to the se-
mantic ambiguity due to the missing of features in case of partial occlusion; 2) feature 
selection in our method is guided by KECA. Different from KPCA used in [10] that 
only selects KDES contributing mostly to image reconstruction, KECA selects CKD 
that contribute mostly to the Rényi entropy of the original image. These CKD are 
more discriminative than KDES in that they relate to the density distribution of the 
histogram of image attributes. Compared with some sophisticated deep learning me-
thods [16-18], our model achieves a comparable classification accuracy with a simp-
ler and efficient feature learning and classification structure. For a 32×32 sized image, 
our model takes 84.63ms to calculate the full dimensional 3-neighborhood 
COM_CKD and 20.21ms to conduct the feature selection using KECA on a platform 
with Intel Core i7 2.7GHz CPU and 16G RAM. 

4.2 Object Detection 

To adapt our method for object detection, we train a two-class linear SVM classifier 
as the detector using COM_CKD features. For an instance image, we detect locations 
of all candidate objects using a sliding window technique. We test our detector on a 
chicken feet dataset collected in a chicken slaughter house. The aim of our detector is 
to localize chicken feet. This chicken feet dataset is very challenging, considering the 
following facts: chicken feet are very small; multiple chicken feet may appear in one 
image; in many cases feet are severely occluded (most part of feet are hidden under 
feather); the appearance of feet changes drastically under different poses.  

We crop a total of 717 image patches containing chicken feet as positive training 
examples, and 2000 patches without chicken feet as negative training examples. 
Another set of 318 images containing feet patches never occurred in the training set 
are used as test set. Since chicken feet are very tiny, we also calculate 3-neighborhood 
CKD around 8 × 8 image patches on a dense grid with a spacing of 2 pixels. The pa-
rameters of CKD and SVM are tuned by 10-fold cross-validation on the training set. 
We compare the detection performance of our model with that of the hierarchical 

Features KDES[6] CKD 
  gradient 66.3 68.5

color 53.9 62.2
texture(lbp) 68.2 72.0
combination 76.0 85.4
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kernel descriptors (HKDES) [7] and a 3-level spatial pyramid dense SIFT 
(SPM_SIFT) [10] in terms of equal error rate (EER). Fig.2 plots the precision-recall 
(PR) curves for all methods. As we see, among all test models, COM_CKD achieves 
the best overall performance (EER=76.77%), followed by HKDES (EER=75.61%) 
that combines gradient, color and shape information. This further confirms that merg-
ing different visual cues into object representation can significantly boost the perfor-
mance of the classifier. One interesting observation is that, expect for C_CKD, results 
from our single CKD models are better than the sophisticated SIFT method. In partic-
ular, EERs of LBP_CKD and G_CKD model are 70% and 68.35%, respectively, whe-
reas EER of SPM_SIFT is only 59.41%. Considering the individual CKD, C_CKD 
gives the worst result with EER=42.10%. Both LBP_CKD and G_CKD perform well, 
with LBP_CKD achieving a slightly better average accuracy. This is not surprising, 
because color difference between chicken feet and other parts (feather and chest) is 
marginal (refer to Fig.3). Color distributions of chicken feet and other parts overlap 
quite much. In particular, the color distribution of feet and chest can hardly allow an 
acceptable classification based on color cue alone.  In contrast, feet show different 
texture structures from feature and chest. Hence, texture based LBP_CKD outper-
forms other single feature for this dataset. Fig.3 shows some detection examples re-
sulted from the best COM_CKD features. 

 

Fig. 2. PR curves of all methods tested on a chicken feet dataset 

  

Fig. 3. Detection examples resulted from COM_CKD features 

5 Conclusion 
Based on the context cue and KECA, we propose a set of novel kernel descriptors called 
context kernel descriptors. The contributions of our work lie in 1) the new CDK enhances 
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KDES by adding extra spatial co-occurrence constraints to reduce the mismatch of image 
attributes (features) in the kernel space; 2) instead of applying traditional KPCA for fea-
ture selection, KECA is performed in our method to learn a subset of discriminative 
CKDs that correspond to density distribution of the histogram of image attributes. Evalu-
ation results on both popular benchmark and our own datasets show the effectiveness of 
our method for generic (especially tiny) object classification and detection. 
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