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Abstract The mathematical analysis of stratified water waves, where the density
distribution of the flow is free to fluctuate, is a highly intractable subject which is of
great physical and geophysical importance. In this chapter, we present an overview
of some recently derived rigorous analytical results for nonlinear steady periodic
stratified water waves.

1 Introduction

The study of stratified water waves, or flows which exhibit a variable density dis-
tribution, is a subject which is of great physical interest, since fluid density may be
caused to fluctuate by a plethora of factors – for example, salinity, temperature, pres-
sure, topography, oxygenation [54, 55]. Furthermore, stratification plays a prominent
role for geophysical fluid phenomena where the physical scales of the fluid motion
are such that the effects of the Earth’s rotation are significant [16]. Mathematically,
allowing for heterogeneity in the fluid adds severe complications to the governing
equations – for instance, stratified flows are inherently rotational [54, 55] – render-
ing them highly intractable to mathematical analysis. Accordingly, there has been
a marked paucity of rigorous mathematical results for the full governing equations
for stratified water waves, even in the inviscid regime and where the effects of the
Earth’s rotation are neglected.

This survey aims to give an overview of some recent analytical results for peri-
odic, steady stratified water waves. The primary emphasis in this survey will be on
existence results for the fully nonlinear governing equations in the inviscid regime.
Due to space considerations, and due to the vastness of the subject, in the considera-
tions of this survey chapter we must omit a number of important aspects of stratified
water waves which are currently active areas of mathematical research, among these
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being the study of internal waves. Also, aside from outlining some Gerstner-type
exact solutions for geophysical water waves in Sect. 4, we neglect the effect of the
Earth’s rotation. We note that the survey [54] and book [55] are good expositions of
the vast subject of stratified water waves, while [16] provides a nice introduction to
stratification in geophysical flows.

The first results concerning the existence of small-amplitude waves for stratified
flows were obtained by Dubreil-Jacotin [19] in 1937. In Sect. 2, we survey recent
rigorous existence results [21, 27, 28] where the authors use local and global bifur-
cation theory to prove the existence of both small-, and large-, amplitude stratified
water waves. A novel feature of this work is that the existence of critical points and
layers is not precluded from the flows. Stagnation points have long been a source of
great interest and fascination in hydrodynamical research, dating back to Kelvin’s
work concerning “cat’s eyes” [29] and Stokes conjecture on the wave of greatest
height, cf. [5, 43] for an overview of Stokes’ waves.

In Sect. 3, we outline the existence results of Walsh [48–50] for stratified water
waves which do not contain critical points. In the absence of critical or stagnation
points, the framework of local and global bifurcation which was presented in the
breakthrough paper [12] for homogeneous water waves with vorticity, is successfully
adapted to prove the existence of large-amplitude stratified gravity water waves
in [48]. In [49, 50], Walsh then proved the existence of large-amplitude stratified
capillary-gravity water waves, where surface tension is a significant restoration force
at the free boundary.

In Sect. 4, we outline some recently derived exact Gerstner-type solutions for
geophysical water waves which incorporate stratification in the underlying flow, and
in Sect. 5, we present some results concerning qualitative properties of stratified
flows.

1.1 The Mathematical Model

For the analytic study of stratified water waves, the Long-Yih formulation [31, 44,
52] for the motion of a two-dimensional inviscid, incompressible fluid with variable
density is essential. The governing equations are formulated in terms of the unknown
free-surface of the wave y = η(t , x), the velocity field (u, v) of the fluid, the pressure
distribution P , the variable density ρ, and the gravity constant g. The equations are
defined in the fluid domain

Ωη :={(x, y) : x ∈ R and −d < y < η(t , x)},
where d is a positive constant and y = −d models a flat impermeable bed. Taking
y = 0 to represent the location of the undisturbed water surface, we assume for any
fixed time t that η(t , ·) has zero integral mean over a period.

This survey concerns traveling wave solutions of the governing equations, with
all functions having an (x, y, t) dependence of the form (x − ct , y), and so

η(t , x) = η(x − ct), (ρ, u, v,P )(t , x, y) = (ρ, u, v,P )(x − ct , y),
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with the positive constant c > 0 the wavespeed. Under the assumption of constant
temperature and zero viscosity, from a reference frame moving with the wave the
flow is steady and is described by the steady two-dimensional Euler equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ(u− c)ux + ρvuy = −Px in Ωη,

ρ(u− c)vx + ρvvy = −Py − gρ in Ωη,

ρx(u− c)+ ρyv = 0 in Ωη,

ux + vy = 0 in Ωη.

(1a)

The first two relations of (1a) are the conservation of momentum equations, the
last relation expresses the fact that the flow is incompressible, and the second last
relation is a reformulation of the steady continuity equation. Since some of the
results we mention herein apply in the setting of waves with surface tension effects,
the following boundary conditions have to be imposed

⎧
⎪⎪⎨

⎪⎪⎩

v = (u− c)η′ on y = η(x),

P = P0 − ση′′/(1+ η′2)3/2 on y = η(x),

v = 0 on y = −d.
(1b)

Here, P0 is the constant atmospheric pressure and σ is the surface tension coefficient.
In the cases where we neglect the effects of surface tension, we simply set σ = 0 in
the above. The first and last equations of (1b) are kinematic conditions which express
the fact that the wave surface moves along with the fluid and that the fluid bed is
impermeable. The second relation of (1b) is the dynamic boundary condition which
says that the pressure jump along the wave surface obeys the Laplace–Young law: it
is proportional to the curvature of the surface and the constant of proportionality is
the surface tension coefficient [30].

We reformulate system (1a, 1b) into a more useful, malleable form as follows. An
important consequence of the last two equations of (1a) is that

∇ · (√ρ(u− c),√ρv) = 0 in Ωη.

This relation enables us to associate to system (1a, 1b) the pseudo-stream function
ψ defined by

ψ(x, y) := λ+
∫ y

−d
√
ρ(x, s)(u(x, s)− c) ds, (x, y) ∈ Ωη.

The constant λ is defined by the property that ψ vanishes at the wave surface, with
−λ being the relative mass flux of the flow. Since ∇ψ = (−√ρv,

√
ρ(u − c)) is

orthogonal to the steady velocity field (u − c, v) throughout the fluid domain, it
follows that the level sets of the ψ function are the streamlines of the steady flow.

An important assumption which is often invoked when studying traveling water
waves is that

∂yψ = √ρ(u− c) < 0 in Ωη, (2)
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a condition which excludes the presence of stagnation points in the flow, that is,
that points for which ∇ψ = 0. This is a physically reasonable assumption for water
waves, without underlying currents containing strong nonuniformities, and which
are not near breaking [30]. Nevertheless, stagnation points are a very interesting
phenomenon and ideally we would not wish to exclude them from our picture. For
fluid motions where (2) holds we have λ > 0, the relative mass flux being neg-
ative. The condition (2) can be used to formulate the hydrodynamical problem in
the rectangular domain Ωλ := R × (−λ, 0), where the streamlines become straight
horizontal lines in theΩλ. This property provides us with a convenient means of ana-
lyzing how certain quantities change either along fixed streamlines or as we vary the
streamlines. To present this new formulation, we first recall that the Dubreil-Jacotin
[18] semi-hodograph transformation:

H(x, y) := (q,p)(x, y) := (x,−ψ(x, y)), (x, y) ∈ Ωη (3)

is a diffeomorphism H : Ωη → Ωλ. Using the second last equations of (1a), it is
easy to see that the density is constant on each streamline, since

∂q
(
ρ ◦H−1

) ◦H = ρx + ρy v

u− c =
(u− c)ρx + vρy

u− c = 0.

This means that there exists a functionρ : [−λ, 0] → (0,∞), the so-called streamline
density function such that ρ ◦H−1 = ρ, or equivalently ρ(x, y) = ρ(−ψ(x, y)) for
all (x, y) ∈ Ωη. Furthermore, by Bernoulli’s principle, the energy

E := P + ρ (u− c)2 + v2

2
+ gρy (4)

is constant along streamlines, that is ∂q
(
E ◦H−1

) = 0. Particularly, when p = 0,
we obtain

|∇ψ |2 − 2σ
η′′

(1+ η′2)3/2
+ 2gρ(0)y = Q on y = η(x),

for some constant Q ∈ R. Moreover, a direct calculation shows that

Δψ − gyρ ′ ◦H = −∂p(E ◦H−1) ◦H in Ωη.

Since ∂q
(
E ◦H−1

) = 0, there exists a function β = β(p), called Bernoulli’s
function, such that −∂p(E ◦H−1) = β in Ωλ. Piecing all this together leads to the
Long-Yih formulation for steady stratified water waves [31, 44, 52] where ψ solves
the following free boundary problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δψ = gyρ ′(−ψ)+ β(−ψ) in Ωη,

ψ = 0 on y = η(x),

ψ = λ on y = −d,

|∇ψ |2 − 2σ
η′′

(1+ η′2)3/2
+ 2gρ(0)y = Q on y = η(x).

(5)
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A further equivalent formulation of the problem (1a, 1b) and (2) can be derived
in terms of the height function h : Ωλ → R given by

h(q,p) = y + d for (q,p) ∈ Ωλ.

In terms of h, the system (5) can be recast as a set of equations in a fixed rectangular
domain:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1+ h2
q)hpp − 2hqhphpq + h2

phqq − (gρ ′(h− d)+ β)h3
p = 0 in Ωλ,

h = 0 on p = −λ,

1+ h2
q + h2

p

[
2gρ(0)(h− d)− 2σ

hqq

(1+ h2
q)3/2

−Q] = 0 on p = 0,

(6)

the relation (2) taking the form

inf
Ωλ
hp > 0. (7)

The problem (6) consists of a quasilinear elliptic equation subjected to nonlinear
boundary conditions. This formulation gives an insight into the flow because the
streamlines in the moving frame are parametrized by the mappings x �→ h(x,p)−d.
The formulations (1a, 1b), (2), and (5) are equivalent in the setting of classical
solutions when (6) and (7) holds, cf. e.g., [48].

2 Existence Results for Flows Admitting Stagnation Points

When allowing for stagnation points to exist, that is, when dropping assumption (2),
the three formulations – the Euler equations, the stream function formulation, and
the height function formulation – are no longer equivalent. However, it is not difficult
to see that if we are given a Bernoulli function β : R → R and a streamline density
function ρ : R → (0,∞), then any solution (η,ψ) of (5) defines a solution (η, u, v,P )
of (1a, 1b). Furthermore, if∇ψ(P ) = 0 at some pointP ∈ Ωη, thenP is a stagnation
point of the flow. This aspect has been exploited to construct small-amplitude gravity
waves with a linear density distribution and constant Bernoulli function that contain
stagnation points in [21]. In the case of more general streamline density and Bernoulli
functions, small- as well as large-amplitude capillary-gravity waves that may posses
stagnation points where shown to exist in [27, 28]. In the references [21, 27, 28],
the fluid bed is taken to be located at y = −1 and the waves that are found are
2π -periodic and bifurcate from laminar flows with the wave surface being located
at y = 0. Nevertheless, the methods can be applied in the context of flows with
arbitrary finite depth and arbitrary wavelength.
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2.1 Stratified Flows with Linear Density Distribution
and Constant Bernoulli Function

The analysis in [21] was devoted to the classification of the gravity waves (that is
σ = 0) with stagnation points that bifurcate from laminar flows when considering a
linear streamline density and a constant Bernoulli function. A precise description of
the flow pattern for the classes of flows that were found was also given. To recall the
results of [21] we assume that

ρ(p) = Ap + B and β(p) = C for p ∈ R.

Of course, the constants A,B,C ∈ R have to be chosen such that the bifurcating
solutions (η,ψ) of (5), that is in this particular case of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δψ = Agy + C in Ωη,

ψ = 0 on y = η(x),

ψ = λ on y = −1,

|∇ψ |2 + 2Bgy = Q on y = η(x),

(8)

have positive density ρ(x, y) = ρ(−ψ(x, y)) > 0 for (x, y) ∈ Ωη. As a result of
this and recalling that ψ = 0 at the wave surface, the constant B has to be taken
positive. The laminar flow solutions of (8) with the free surface given by η = 0 can
be parametrized as a family {(0,ψμ) : μ ∈ R}, with the constants λ and Q being
also function of μ, that is

ψμ(y) := Agy3

6
+ Cy2

2
+ μy, Q = μ2, λ = −Ag

6
+ C

2
− μ.

The constantμ satisfiesμ = ∂yψ |y=0, so that it represents the horizontal speed in the
moving frame of the laminar flows at the wave surface. In fact, the stream function
ψ can be uniquely determined when knowing μ and η, so that (μ, η) are the only
unknowns in (8) when considering Q and λ as functions of μ as defined above.

The dispersion relation for such waves is determined as follows:

μ±k := C

2

tanh (k)

k
±

√
C2

4

tanh2 (k)

k2
+ 2Bg

2

tanh (k)

k
,

the integer |k| representing the wave number. Each of the points (μ±k , 0) is a critical
bifurcation point.

Theorem 1 ([21, Theorem 2.1]) Let k ∈ N\{0}, μ∗ ∈ {μ±k }, α ∈ (0, 1), andB > 0
be given. Then, there exists ε > 0 and a real-analytic curve

(μ, η) : (−ε, ε) → R× C2+α(R),

consisting only of solutions (μ(s), η(s)) of (8) of minimal period 2π/k, having exactly
one crest and trough per period, and with a real-analytic and symmetric free surface.
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These are the only nonlaminar solutions of (8) close to (μ∗, 0), and, for s → 0,

μ(s) = μ∗ +O(s2),

η(s) = −s cos (kx)+O(s2) in C2+α(R).

There are no bifurcation points (μ, 0) other than {(μ±k , 0) : k ∈ N \ {0}}.
Because of the asymptotic expansion derived for the bifurcation curves, it is not

difficult to see that the flow determined by (μ(s), η(s)) contains no stagnation points
if ∂yψμ∗ does not vanish in [−1, 0] and ε is small. Moreover, it is shown in [21] that if

∂yψμ∗ (y) = Agy2

2
+ Cy + μ = 0 (9)

has solutions in [− 1, 0], then the bifurcating nonlaminar flows will also contain
stagnation points. Hence, the classification of the flow pattern of the bifurcating
small-amplitude waves with stagnation points has to take into account the location of
the solutions y1, y2 of (9). Only the following classes of stratified waves bifurcating
from laminar flows with stagnation points are possible:

(I) Stratified flows with exactly one critical layer. They bifurcate from the laminar
flows (μ∗, 0) with μ∗ ∈ {(μ±k , 0) : k ∈ N \ {0}} in one of the following cases:

(a) The equation ∂yψμ∗ = 0 has a unique solution in (− 1, 0).
(b) The equation ∂yψμ∗ = 0 has y = −1 as the unique solution within [− 1, 0)

(or the solutions are both equal to −1).
(c) The equation ∂yψμ∗ = 0 has two solutions in (− 1, 0), and they coincide.

(II) Stratified flows with two critical layers. They bifurcate from the laminar flows
(μ∗, 0) with μ∗ ∈ {(μ±k , 0) : k ∈ N \ {0}} in one of the following cases.

(d) The equation ∂yψμ∗ = 0 has two solutions −1 = y2 < y1 < 0.
(e) The equation ∂yψμ∗ = 0 has two solutions −1 < y2 < y1 < 0.

These five classes of stratified gravity waves with stagnation points are pictured
in Fig. 1. We note that the stagnation points are located either beneath the wave
crest or beneath the wave trough. Very interesting is the degenerate case (c) where
bifurcation occurs when the solutions of ∂yψμ∗ = 0 satisfy y1 = y2 ∈ (−1, 0). In this
case, there is only a compact (in Ωη) critical layer consisting of closed streamlines
right beneath the wave crest. Such a flow pattern is not encountered in homogeneous
flows with constant or linear vorticity, cf. [13, 20, 46], but the situation slightly
resembles to that of background flows for tsunamis which contain isolated regions
of vorticity surrounded by still water [7, 23]. For the solutions in all five classes, the
density has an extremum at the stagnation point located in the center of the vortices.
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Fig. 1 The flow pattern for the stratified waves bifurcating from laminar flow solution with stag-
nation points for waves in the classes (a), (b), (c), (d), and (e) (from the upper-left corner to the
lower-right corner). The dashed lines are curves where ∂yψ vanishes, and the solid dots are the
stagnation points. The blue curves connecting the stagnation points are separatrices that enclose
(with the exception of the lower separatrix in the third figure) critical layers of closed streamlines
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2.2 Stratified Flows with More General Density Distribution
and Bernoulli Function

We address now the results established in [27, 28] in the context of more general
streamline density and Bernoulli functions for waves with capillarity. To this end,
we make the following notation:

f (y,ψ) := gyρ ′(−ψ)+ β(− ψ), (y,ψ) ∈ [− 1, 1]× R.

The solutions (η,ψ) of (5) are to be found such that maxR|η| < 1. In fact, relying
on the divergence structure of the curvature operator in Bernoulli’s condition, the
constant Q can be eliminated from the equations, if the integral mean of η is zero,
by integrating the Bernoulli condition over [0, 2π ],

Q = 1

2π

∫ 2π

0
|∇ψ |2|y=η(x) dx.

One arrives at the following problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δψ = f (y,ψ) in Ωη,

ψ = 0 on y = η(x),

ψ = λ on y = −1,

|∇ψ |2 − 2σ
η′′

(1+ η′2)3/2
+ 2gρ(0)y= 1

2π

∫ 2π

0
|∇ψ |2|y=η(x) dx on y = η(x).

(10)

As a result of this choice forQ, for any solution (η,ψ) of (10), η has zero integral mean
over [0, 2π ], and therefore the solutions obtained by bifurcation describe flows over
the same volume of fluid (the mean depth of the fluid is constant along the bifurcation
branch).

The following assumptions are made on ρ, β, and f :

(A1) ρ > 0.

(A2) ρ ∈ C 4−(R),β ∈ C 3−(R), and β, ρ ′ ∈ BC 2(R).

(A3) ∂ψf (y,ψ) ≥ 0 for all (y,ψ) ∈ [−1, 1]× R.

(A4) 2f (y,ψ)+ g(1+ y)ρ ′(−ψ) ≤ 0 for all (y,ψ) ∈ [−1, 0]× (−∞, 0].

In the context of homogeneous flows, we have that ρ ′ ≡ 0 and the Bernoulli function
β is identified with the vorticity function γ of the rotational flow. In this context, the
conditions (A1)− (A4) are equivalent to

γ ∈ C 3−(R) ∩ BC 2(R), γ ≤ 0 in [0,∞), and γ ′ ≤ 0. (11)

While the first assumption is physical, the assumptions (A2) and (A3) ensure that
the semilinear elliptic problem for ψ that consists of the first three equations of (10)
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has a solution ψ ∈ C2+α(Ωη) (α ∈ (0, 1) is fixed), that is uniquely determined by
the pair (λ, η) ∈ R× Ad, whereby

Ad :=
{
η ∈ C2+α(R) : η is 2π−periodic,

∫ 2π

0
η dx = 0, and max

R

|η| < 1
}
.

Therefore, the pairs (λ, η) ∈ R × Ad are the true unknowns of (10). This unique
solvability property of the semilinear elliptic problem for ψ was used in [27], after
transforming the problem on a fixed reference domain, to recast the hydrodynamical
problem as a nonlinear and nonlocal equation with (λ, η) as unknowns. Because for
(λ, η) with η = 0, the solution ψ of (10) depends only upon y, it is easy to see that
(λ, 0) is a solution of (10) for any λ ∈ R. This trivial branch of solution contains
countably many bifurcation points (λ∗, 0) where branches consisting of nonlaminar
solutions of (10) emerge.

Theorem 2 ([27, Theorem 4.6]). Let σ > 0 be fixed and assume additionally to
(A1)− (A4) assume that:

(B1) ∂ψψf ≥ 0 on [−1, 0]× (−∞, 0].

(B2) 2∂ψf (y,ψ)− g(1+ y)ρ ′′(−ψ) ≥ 0 for all (y,ψ) ∈ [−1, 0]× (−∞, 0].

(B3)
∫ 0

−1

∫ 0

t

∂ψf (s, 0) ds dt ≤ 1.

Then there exists a positive integerK ∈ N and for all k ≥ K a sequence (λm)m≥1 ⊂ R

with λm →−∞ such that:

(i) Given m ≥ 1, there exists a curve (λm, ηm) : (−ε, ε) → R × (Ad ∩ C2π/k(R))
which is continuously differentiable in R× (C2+α(R) ∩ C2π/k(R)) and consists
only of solutions (λm(s), ηm(s)) of (10). The wave determined by (λm(s), ηm(s))
with s �= 0 has minimal period 2π/(mk), exactly one crest and trough per period
and is symmetric with respect to the crest line.

(ii) For s → 0,

λm(s) = λm +O(s), ηm(s) = −s cos (mkx)+O(s2).

All the solutions of (10) in R× (Ad ∩ C2π/k(R)) that are close to (λm, 0) are either
laminar flows or belong to the curve (λm, ηm).Moreover, there exists a constantΛ− ∈
R with the property that if (λ, 0) is a bifurcation point of (10) with λ ∈ (−∞,Λ−),
then λ ∈ {λm : m ≥ 1}.

Hereby, C2π/k(R) stands for the Banach space of 2π/k-periodic functions. That
the wave number k should be sufficiently large is a condition that appears frequently
when dealing with waves with surface tension effects, cf. e.g., [32, 45, 49]. Lastly,
let us note that in the context of homogeneous capillary-gravity waves the conditions
(B1)− (B3) mean that, additionally to (11), we assume

γ ′′ ≥ 0 in [0,∞) and γ ′(0) ≥ −2. (12)
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The local bifurcation branches obtained in Theorem 2 can be continued by using
global bifurcation theory, cf. [28]. The authors of [28] observed that the quasilinear
curvature term in Bernoulli’s condition can be inverted (see also [36]), the problem
(10) being equivalent to an operator equation for a compact (nonlocal and nonlin-
ear) perturbation of the identity. This facilitates the use of the Rabinowitz global
bifurcation theorem, cf. e.g., Theorem II.3.3 in [23].

Theorem 3 ([28, Theorem 4.1]) Let the assumptions of Theorem 2 be satisfied, let
k ≥ K , and fix m ∈ N with m ≥ 1. Moreover, let CM be the maximal connected
component of the closure of the set:

{
(λ, η) : (λ, η) ∈ R× (Ad ∩ C2π/k(R)) is a solution of (10) with η �≡ 0

}

in R× (C2+α(R) ∩ C2π/k(R)) that contains (λm, 0). Then, we have:

(i) CM is unbounded in (−∞,Λ−)× (C2+α(R) ∩ C2π/k(R)), or
(ii) sup

(λ,η)∈CM
max

R

|η| = 1.

Finally, let us emphasize that the Theorems 2 and 3 were stated for a fixed surface
tension coefficient. There is a second possibility when dealing with the problem (10):
To consider the mass flux fixed and use the surface tension coefficient as a bifurcation
parameter. From mathematical point of view this choice is more useful: one can
show [27, Theorem 4.3] that there exists a sequence of bifurcation points (σm, 0)
with m ∈ N, m ≥ 1, for (10) with σm ↘ 0. Each of the points (σm, 0) belongs to a
continuously differentiable local curve of nonlaminar solutions in R×Ad. There is
no restriction on the wave number any longer, and there is no need of the assumptions
(B1) − (B3). These local branches can be continued to global continua as in [28,
Theorem 4.1].

3 Existence Results for Flows Without Critical Points

For flows without stagnation or critical points, the assumption (2) is valid throughout
the fluid domain. Accordingly, the Dubreil-Jacotin semi-hodograph transformation
(3) represents a change of variables and the stratified capillary-gravity water wave
problem may be recast as system (6)—the inequality (7) ensures that system (6) is
uniformly elliptic. In this framework, Walsh has recently proved the existence of
finite amplitude steady periodic stratified water waves, in [48] for the setting of pure
gravity waves, and in [49, 50] for capillary-gravity waves.

3.1 Gravity Stratified Waves

For the setting of pure gravity stratified water waves, which we may obtain by set-
ting σ = 0 in (6), Walsh proved the existence of large-amplitude steady periodic
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stratified water waves [48]. The approach used in [48] successfully implemented a
local and global bifurcation analysis along the lines of the seminal work [12] which
proved existence for homogeneous, gravity water waves with vorticity. However,
the application of this method for stratified water waves is highly nontrivial, and
one must overcome a number of significant technical hurdles induced by the fluid
stratification. A benefit of this approach is the derivation of an explicit size condition
(13) on the physical variables which is sufficient for bifurcation to occur. The lo-
cal bifurcation analysis employs the Crandall–Rabinowitz bifurcation theorem [15],
whereby a necessary and sufficient condition, denoted (L-B), for local bifurcation to
occur is derived depending on λ,β, ρ. An explicit version of this condition, which is
sufficient for local bifurcation to occur, may be stated as follows. First, we define

B(p) = −
∫ p

0
β(s)ds, −λ ≤ p ≤ 0,

and let

ε0 = max
{(

2g‖ρ ′‖∞λ2eλ
)2/3

, (2g‖ρ ′‖∞)2, (4‖ρ ′‖∞)2, (8gλρ(0))2/3
}
.

Then the condition which is sufficient for local bifurcation to occur is given by

gρ(0)λ2 >

∫ 0

−λ

{
4π2

L2
(2B(p)− 2Bmin + 2ε0)

3/2

+(p + λ)2( (2B(p)− 2Bmin + 2ε0)
1/2 + gρ ′(p))

}
dp.

(13)

Following the local existence result, the bifurcation curve may then be extended to
a global continuum using the global bifurcation approach of Healey-Simpson and
Kielhofer, cf. [6] for an overview of this approach. Using the notation of this survey
chapter, the main result for stratified gravity water waves in [48] may be stated as
follows.

Theorem 4 ([48]) Fix a wavespeed c > 0, wavelength L > 0, and λ > 0. Fix any
α ∈ (0, 1), and let the functions β ∈ C1+α([− λ, 0]) and ρ ∈ C1+α([− λ, 0]) be given
such that the (L-B) condition holds. Also, we assume the streamline density function ρ
is nonincreasing. Consider traveling solutions to the stratified water wave problem
(1a, 1b) of speed c, relative mass flux −λ, Bernoulli function β, and streamline
density function ρ such that u < c throughout the fluid. There exists a connected set
C of solutions (u, v, ρ, η) in the spaceC2+α

per (Ωη)×C2+α
per (Ωη)×C2+α

per (Ωη)×C3+α
per (R)

with the following properties:

1. C contains a laminar flow (with a flat surface η ≡ 0 and all streamlines parallel
to the bed).

2. Along some sequence (un, vn, ρn, ηn) ∈ C, either maxΩηn
un ↑ c, minΩηn

un ↓
−∞, or C contains more than one distinct laminar solution.
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Furthermore, each nonlaminar flow (u, v, ρ, η) ∈ C is regular in the sense that:

1. u, v, ρ, and η each have period L in x.
2. Within each period the wave profile η has a single crest and trough; say, the crest

occurs at x = 0.
3. u, ρ, and η are symmetric, v antisymmetric across the line x = 0.
4. A water particle located at (x, y), with 0 < x < L and y > d has positive vertical

velocity v > 0.
5. η′(x) < 0 on (0,L).

The symmetry of solutions ensured by Theorem 4 is interesting, and it will be
considered further in Sect. 5.

3.2 Capillary-Gravity Stratified Waves

When surface tension is taken into account in the governing equations (6), Walsh
has also proven the existence of large-amplitude waves [50]. The global bifurca-
tion analysis in [50] extends the local bifurcation curves derived in [49], adapting
the methods first applied for the local existence of homogeneous capillary-gravity
waves with vorticity in [45]. In [50], the author also uses Dancer’s analytic global
bifurcation theory [2, 6] to extend the local bifurcation curves. In [49], the author
proves local bifurcation from both simple eigenvalues, and from double eigenvalues
where additional non-degeneracy conditions are satisfied. For the simple eigenvalue
setting, we let ε0 be as above, then a sufficient condition for local bifurcation to occur
is given by

(gρ(0)+ σ) λ2 >

∫ 0

−λ

{
4π2

L2
(2B(p)− 2Bmin + 2ε0)

3/2

+(p + λ)2( (2B(p)− 2Bmin + 2ε0)
1/2 + gρ ′(p))

}
dp.

The main results for bifurcation from a simple eigenvalue in [49, 50] may then be
stated (combined) as follows:

Theorem 5 Fix any α ∈ (0, 1), and let the wavespeed c > 0, wavelength L > 0,
and λ > 0 be given, along withβ ∈ C1+α([−λ, 0]) and ρ ∈ C2+α([−λ, 0]), such that
the (L-B) condition holds. Also, let the given coefficient of surface tension σ ∈ Σ1,
where (σc,∞) ⊂ Σ1 ⊂ (0,∞), and we assume the streamline density function ρ is
nonincreasing. Consider traveling solutions to the stratified water wave problem (1a,
1b) of speed c, relative mass flux −λ, Bernoulli function β, and streamline density
function ρ such that u < c throughout the fluid. There exists a connected set C of
solutions (u, v, ρ, η) in the space C2+α

per (Ωη) × C2+α
per (Ωη) × C2+α

per (Ωη) × C3+α
per (R)

with the following properties:

1. C contains a laminar flow (with a flat surface η ≡ 0 and all streamlines parallel
to the bed).
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2. Along some sequence (un, vn, ρn, ηn) ∈ C, either maxΩηn
un ↑ c, minΩηn

un ↓
−∞, or C contains more than one distinct laminar solution.

Additionally, there exists a path-connected subset K ⊂ C such that:

1. K admits a global, locally injective continuous parameterization with a locally
injective C1 reparametrization.

2. Either K is a closed loop, or it is unbounded in the sense that along some sequence
(un, vn, ρn, ηn) ∈ K, either maxΩηn

un ↑ c, minΩηn
un ↓ −∞.

Furthermore, each nonlaminar flow (u, v, ρ, η) ∈ C is regular in the sense of
Theorem 4.

A mathematical idiosyncrasy of the effects of surface tension, rather than strati-
fication, is the possibility of bifurcation from double eigenvalues, and we therefore
refer the reader to [49, 50] for an exposition of this phenomenon in stratified
capillary-gravity waves.

4 Stratification for Gerstner-Type Flows

Interestingly, prior to her work on the existence of small-amplitude stratified water
waves [18, 19], Dubreil-Jacotin showed that the celebrated Gerstner’s water wave
solution [3, 24] could be adapted to allow for continuous stratification in the under-
lying fluid [17]. Gerstner’s wave is one of the few examples of an explicit solution
for the fully nonlinear governing equations, since the formulation of the solution is
explicit in the Lagrangian formulation [1]. The form of Gerstner’s solution can be
modified in order to obtain an explicit exact solution for edge waves – this was first
achieved in [4]. In [37, 40, 53], it was shown that stratification is also possible in the
prescribed flow for edge waves.

Recently, a number of exact solutions for geophysical water waves have been
derived, beginning with [8] and extending to [9, 25, 33, 34], which are explicit in the
Lagrangian representation and which admit continuous stratification. We present the
solution derived in [8] for three-dimensional trapped equatorial water waves, since it
can be reduced to the setting of the stratified Gerstner’s solution when the geophysical
parameter is set to zero. The β-plane approximation of the geophysical governing
equations, which applies in regions close to of the equator, is given by [16]:

(u− c)ux + vuy + wuz + 2Ωw− βyv = − 1

ρ
Px , (14a)

(u− c)vx + vvy + wvz + βyu = − 1

ρ
Py , (14b)

(u− c)wx + vwy + wwz − 2Ωu = − 1

ρ
Pz − g. (14c)

Here, we take the Earth to be a perfect sphere of radius R = 6378 km,
which has a constant rotational speed of Ω = 73 × 10−6 rad s−1 . Then
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g = 9.8 ms−2 is the standard gravitational acceleration at the Earth’s surface, and
β = 2Ω/R = 2.28 × 10−11 m−1s−1 is a geophysical parameter. The boundary
conditions for the fluid are given by

w = (u− c)ηx + vηy on y = η(x, y, t), (15)

P = P0 on y = η(x, y, t). (16)

Then, the Eulerian coordinates of fluid particles (x, y, z) are expressed as functions of
the Lagrangian labeling variables (q, r , s) ∈ R×(−∞, r0)×R, and time t , as follows:

x = q − 1

k
ek[r−f (s)] sin [k(q − ct)], (17a)

y = s, (17b)

z = r + 1

k
ek[r−f (s)] cos [k(q − ct)], (17c)

where r0 < 0 and k is the wave number. The function f (s) is given by

f (s) = cβ

2g
s2, (18)

and it determines the decay of the particle oscillation as it moves in the latitudinal
direction away from the equator. Let us prescribe the density function by

ρ(r , s) = F

(
e2k[r−f (s)]

2k
− r

)
,

where F : (0,∞) → (0,∞) is continuously differentiable and nondecreasing. Then
the formula (17) prescribes a solution of the governing equations (14) if we define
the pressure function

P = gF
(
e2k[r−f (s)]

2k
− r

)
+ P0 − gF

(
e2kr0

2k
− r0

)
, (19)

where F ′ = F and F(0) = 0, cf. [8]. We observe that setting β = 0 in the previous
considerations reduces us to the case of Gerstner’s water wave, and takingF constant
we get the homogeneous non-stratified setting. We finally mention that Gerstner-type
solutions have been derived which model discontinuous stratification, [10, 39, 41,
42], with these solutions giving an explicit formulation for internal waves in a fluid.

5 Qualitative Properties for General Stratified Flows

In this section, we recall recent results concerning the regularity of the streamlines
and the symmetry of the wave profile for stratified waves without stagnation points. In
the first paper [26], it was shown that the streamlines and the wave profile of stratified
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flows for which β, ρ ′ ∈ Cα([−λ, 0]), for some α ∈ (0, 1), are smooth curves. The
streamlines are even real-analytic curves provided that the density decreases with
depth. These results of [26] were improved by Wang [51, Theorems 2.2 and 5.1] as
follows:

Theorem 6 (Regularity properties). Let α ∈ (0, 1) and assume that σ ≥ 0. If
β, ρ ′ ∈ C α([− λ, 0]) and h ∈ C 2+α(Ωλ) is a classical solution of (6) and (7) then,
the wave profile together with all the other streamlines are real-analytic curves.

The symmetry of steady water waves is an old problem, investigated first by
Garabedian [22]. It was recently shown that, when excluding stagnation, periodic
gravity water waves that possess a single crest per period have to be symmetric [11,
14, 38]. Surprisingly, the symmetry property of such waves can be characterized
intrinsically in terms of the flow beneath the wave [35, Theorem 2.1]: the wave
profile is symmetric and has only one crest and trough per period if and only if there
exists a vertical line within the fluid domain such that all the fluid particles located
on that line minimize there their distance to the fluid bed.

Because maximum principles do not apply directly in this context, the symmetry
problem for stratified flows is more delicate. An intrinsic characterization of the
symmetric waves in terms of the underlying flow as in the case of gravity waves is
not yet known. There exist though criteria which ensure the symmetry of stratified
waves with a single crest per period [47]. To present them we introduce first some
notation:

A0 := max
Ωη

√
ρ(c − u), ηM := max

R

η + d , ηm := min
R

η + d,

a0 := min
Ωη

√
ρ(c − u)

2

(
1+ |∇ψ |2 −

√
(1+ |∇ψ |2)2 − 4(

√
ρ(c − u))2

)
,

M := max
{

max
Ωη

∣∣ v

u− c
∣∣, max

Ωη

∣∣(∂x + v

u− c ∂y
) v

u− c
∣∣, max

Ωη

∣∣ 1√
ρ(u− c)∂y

v

u− c
∣∣
}

,

ε := A3
0M(1+ 2M2)

a0
+ (1+ 3a0)A3

0

4a2
0

(max|β| + gηMmax|ρ ′|)

+ 2A2
0M(1+ a0M)+ A3

0M
2

2a2
0

.

The result in Theorem 7 below was obtained by Walsh [47] and presents two criteria
for symmetry.

Theorem 7 (Symmetry result). Consider a stably stratified steady train propagat-
ing at fixed speed c over a flat bed at y = −d with relative pseudo-mass flux−λ < 0.
Let ρ ∈ C 2([−λ, 0]) and β ∈ C 1([−λ, 0]) be the streamline density function and
Bernoulli function associated with the flow, and let (u, v) ∈ (C 2(Ωη))

2 be the vector
field. Assume that the wave profile y = η(x) is monotonic between crests and troughs
with period L, has integral mean zero over a period, and that maxΩη

u < c. Each of
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the following is a sufficient condition for the wave to be symmetric:

(i) maxβ ′ + gηMmax|ρ ′′| < max
{ π2

η2
M

, exp (−min{L, ηm})
}

, or

(ii)

⎧
⎨

⎩
ε
√

ε
a0
+ gmax|ρ ′| < exp (−a−1/2

0 min{L, λ}),
ε < a0.
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