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Abstract We prove local well-posedness for the Whitham equation in Hs , s > 3
2 ,

for both solitary and periodic initial data.

1 Introduction

The Whitham equation,

ut + 2uux + Lux = 0, (1)

with the Fourier multiplier L given by

F (Lf )(ξ ) =
(

tanh (ξ )

ξ

)1
2

f̂ (ξ ), (2)

has recently received renewed attention due to its generically nonlocal properties.
Originally introduced by Whitham in 1967 as an alternative to the Korteweg-de Vries
(KdV) equation for modelling shallow water waves [17], it is known to feature the
exact linear dispersion relation for travelling gravity water waves (KdV, in contrast,
features a local approximation of this relation, making it a less-suited model for large
wave numbers). Some of the intriguing properties of (1) is the nonlocal, fractional,
and inhomogeneous character of the symbol m(ξ ) := (

tanh (ξ )
ξ

)
1
2 , as well as its al-

lowance for qualitative wave breaking, i.e., for bounded solutions whose first spatial
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derivate blows up in finite time (we refer to [18] for the concept of wave breaking,
and [1, 12] for a proof of this in the case of the Whitham equation). The (1) is also an
equation whose balance of dispersive and nonlinear effects admits for the existence
of solitary-wave solutions [3].

The operator L in (1) is singular—its convolutional kernel blows up at the origin
as |x|−1/2, cf. [5]—and not thoroughly understood; even the positivity and single-
sided monotonicity of the inverse Fourier transform ofm(ξ ) are unknown. Although
it was conjectured already by Whitham himself that (1) admits cusp-like solutions
[17], so far only numerical evidence—and partial analytic results supporting this
conjecture—exists, see [4]. In addition, the dispersion determined by (2) is unusually
weak, making global estimates and related well-posed results rather difficult. In fact,
even for the homogenous symbol |ξ |−1/2 very little is known (see [14], and [6] for a
related investigation).

The main motivation for this contribution is [3], in which the existence of solitary
waves and a conditional stability result were proved for a large class of equations
connected to (1). It is noted in [3], as well as in [8], that a local well-posedness result
for the Whitham equation can be obtained using Kato’s method. Since the proof has
never been presented, and since the Whitham equation in important respects differs
from many other model equations investigated in the literature, both what concerns
its generic nonlocal properties and the weak dispersion associated to L, we give here
the details in form of a short, but rigorous, proof of the local well-posedness of the
Whitham equation, on the line as well as in the periodic case. The proof is valid for
initial data in the Sobolev space Hs , s > 3/2, with the natural and best possible
regularity for the solutions in terms of their time and space dependence. Note that
the wave-breaking results [1, 12] for (1) imply that a general global well-posedness
result is excluded. A conditional global existence result is still possible, but so far
out of reach. For earlier treatments of the Whitham equation, see also [7] and [19].

The structure of the note is as follows. First, in Section 2, some general properties
of the Whitham kernel Eq. 2 and related concepts are presented. Section 2 continues
with the main proof for the case of initial data on the line, i.e. for data in Hs(R),
s > 3/2. The method of proof follows that of [2], which in turn is based on Kato’s
method, see [10]. Note, however, that the weakly dispersive, nonlocal, term in the
Whitham (1) differs from those in the equations treated in [2] and [10], so that a
thorough analysis is necessary. Once the arguments are in place, functional-analytic
arguments can be employed to establish the result for periodic initial data, in the
appropriate spaces. That is the content of Section 3.

2 General Preliminaries and the Case of Initial Data on R

In (1) and (2), the Fourier transform F(f ) of a function f is defined by the formula

F(f )(ξ ) = 1√
2π

∫

R

e−iξxf (x)dx,
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extended by duality from S(R) ⊂ L2(R) to S ′(R), the space of tempered distribu-
tions. Here, S(R) is the Schwarz space of rapidly decaying smooth functions on R,
and Hs(R), s ∈ R, is the Sobolev space of tempered distributions whose Fourier
transform satisfies

∫

R

(1+ |ξ |2)s |F(f )(ξ )|2 dξ <∞,

with the standard inner product. For convenience, we will sometimes omit the domain
in the notation for function spaces in the following. Throughout the chapter, the
notation f̂ will also be used interchangeably with F(f ). Note that although the
functions and operators of interest in this chapter are all real-valued, and although
the operator L defined in (2) maps real data to real data, the Fourier transform is
naturally defined in complex-valued function spaces; hence, the function spaces
used in this investigation should in general be understood as the complexifications
of corresponding real-valued function spaces.

As usual, Ck denotes the space of k times continuously differentiable functions,
and BCk the corresponding space of functions whose derivatives up to order k are
also bounded.

Before considering some properties of the Fourier multiplier operator L, let us
state our main theorem.

Theorem 1 Let s > 3
2 . Given u0 ∈ Hs(R) there is a maximal T > 0 depending

only on ‖u0‖Hs , and a unique solution u = u(·, u0) to (1) in C([0, T );Hs(R)) ∩
C1([0, T );Hs−1(R)). The solution depends continuously on the initial data, i.e.,
the map u0 �→ u(·, u0) from Hs(R) to C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is
continuous.

Remark 1 It is clear from the method behind Theorem 1 as well as Theorem 3 that
the results can be generalised to a larger class of Whitham-like equations (cf. [3]). For
example, similar results could be obtained if the linear term L is bounded L2 → L2

and the nonlinear term is temperate (slowly growing) and belongs toCk for k > s+2,
although the Whitham equation gives some more regularity than this general case.
These conditions, however, are not optimal, and a larger class of interest requires
results on the Nemytskii operator n that are still only partially available (the periodic
case is open, although arguments are likely available [15]). Results in this direction,
including the possibility ofL being a Fourier integral operator, are under preparation.

In order to prove Theorem 1, we first make some basic assumptions and
observations. Let

X = L2(R) and Y = Hs(R),

for some fixed s > 3
2 . Note that for f ∈ L2(R),

‖Lf ‖L2 = ‖F (Lf )‖L2 =
∥∥∥
( tanh (ξ )

ξ

)1
2
f̂ (ξ )

∥∥∥
L2
≤ ‖f̂ ‖L2 = ‖f ‖L2 ,
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so that L is a bounded linear operator on L2(R). In fact, it is shown in [3] that

L ∈ C∞(Hs(R),Hs+ 1
2 (R)) ∩ C∞(S(R), S(R)), (3)

for all s ≥ 0. We note that the smooth and even function ξ �→ (
tanh (ξ )
ξ

)
1
2 is increasing

in (−∞, 0) and decreasing in (0,∞), reaching its global maximum of unit size at
x = 0. As |ξ | → ∞, it vanishes with the rate |ξ |− 1

2 .
The operator L is furthermore symmetric on L2(R), since for f , g ∈ L2(R) we

have that

(Lf , g)L2 = (F(Lf ), F(g))L2

=
∫

R

F(Lf )F(g) dξ

=
∫

R

(
tanh (ξ )

ξ
)

1
2 f̂ (ξ )ĝ(ξ ) dξ

=
∫

R

F(f )F(Lg) dξ

= (f , Lg)L2 ,

so it follows that L is a symmetric bounded linear operator on the space X.
To proceed, rewrite Theorem 1 as

ut + A(u)u = 0, t ≥ 0,

u(0) = u0. (4)

Here,

A(y) = (2y + L)∂x , dom(A(y)) := {v ∈ L2 | 2yv+ Lv ∈ H 1},

for some y ∈ Hs with s > 3
2 . In view of (3), and since Hs is a Banach algebra for

s > 1
2 , dom(A(y)) is dense in X = L2.

In order to state Kato’s theorem in a form suitable for our purposes, we also need
the concept of accretiveness (cf. [11]). Let T be an operator on a Hilbert spaceH , and
let L denote the space of all bounded linear operators from some space to another,
in this case H → H . We then say that:

– T is accretive if Re(T v, v)H ≥ 0 for all v ∈ dom(T ).

– T is quasi-accretive if T + α is accretive for some scalar α > 0.

– T is m-accretive if (T +λ)−1 ∈ L(H ) with Re(λ)‖(T +λ)−1‖ ≤ 1 for Re(λ) > 0.

– T is quasi-m-accretive if T + α is m-accretive for some scalar α > 0.

We shall make use of the following version of Kato’s theorem to establish the
local well-posedness for the problem (4), adapted from [2].
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Theorem 2 (Cf. [2]) Consider the abstract quasi-linear evolution (4). Let X and
Y be as above (Hilbert spaces such that Y is continuously and densely injected into
X), and let Q : Y → X be a topological isomorphism. Assume that:

(i) A(y) ∈ L(Y ,X) for y ∈ Y with

‖(A(y)− A(z))w‖X ≤ μA‖y − z‖X‖w‖Y , y, z, w ∈ Y ,

and A(y) is quasi-m-accretive, uniformly on bounded sets in Y .

(ii) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on
bounded sets in Y . Moreover,

‖(B(y)− B(z))w‖X ≤ μB‖y − z‖Y‖w‖X, y, z ∈ Y , w ∈ X.

Here, the constants μA and μB depend only on max{‖y‖Y , ‖z‖Y }.
Then, for any given v0 ∈ Y , there is a maximal T > 0 depending only on ‖v0‖Y and
a unique solution v to (4) such that

v = v(·, v0) ∈ C([0, T );Y ) ∩ C1([0, T );X).

The map v0 �→ v(·, v0) is continuous from Y to C([0, T );Y ) ∩ C1([0, T );X).
To continue, we need to study the operator A(y) for a fixed y ∈ Hs , with s > 3

2 .
Later y will be taken in a bounded subset of Y = Hs for s > 3

2 , but note that all
estimates to come are uniform with respect to any such bounded subset.

For y ∈ Y , we define

Dv := (2yv + Lv)x − 2yxv, dom(D) := {v ∈ L2 | 2yv+ Lv ∈ H 1},
and

D0v := −(2yv+ Lv)x , dom(D0) := dom(D).

Note that the choice of these domains makes both D and D0 closed operators in
X = L2. In view of the embedding Hs ⊂ BC for s > 1

2 , we furthermore have

(2yv+ Lv)x = 2yxv+ 2yvx + (Lv)x in H−1, (5)

so that, in that space,

Dv = 2yvx + Lvx ,

D0v = −2yxv− 2yvx − (Lv)x ,

and

2yvx + (Lv)x = (2yv+ Lv)x − 2yxv ∈ L2,

for y and v as considered here.
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We will prove thatD satisfies the condition (i) in Theorem 2 with the help of a few
consecutive lemmata. To state the first of these, let C∞0 be the space of compactly
supported smooth functions on some open set, in this case R.

Lemma 1 Given v ∈ dom(D), there exists a sequence {vn}n ⊂ C∞0 such that

vn → v and (2yvn + Lvn)x → (2yv+ Lv)x

in L2 as n→∞.

Proof Pick ρ ∈ C∞0 with ρ(x) ≥ 0 and
∫

R
ρ dx = 1. For n ≥ 1, let ρn(x) := nρ(nx)

be a mollifier on R. Denoting by vn the convolution v ∗ ρn, we have vn ∈ C∞ and
vn → v in L2 as n→∞. This proves the first part of the lemma due to the density
of C∞0 in L2.

As what concerns the second part, we have

(2yvn + Lvn)x − (2yv+ Lv)x

= ((2y(vn)x + L(vn)x)− (2yvx + Lvx))+ (2yxvn − 2yxv)

= (2y(vn)x + L(vn)x − (2yvx + Lvx) ∗ ρn)
+ ((2yvx + Lvx) ∗ ρn − (2yvx + Lvx))+ (2yxvn − 2yxv)

=: In(v)+ IIn(v)+ IIIn(v).

By observing that 2yvx +Lvx ∈ L2 with yx ∈ Hs−1 ⊂ BC for s > 3
2 , one naturally

gets

IIn(v) = (2yvx + Lvx) ∗ ρn − (2yvx + Lvx) → 0,

IIIn(v) = 2yxvn − 2yxv → 0,

in L2, as n→∞.
It remains to prove that In(v) → 0 in L2 as n→∞. Since this clearly holds for

v ∈ C∞0 , and since C∞0 is densely and continuously embedded in L2, we only need
to prove that ‖In(v)‖L2 ≤ ‖v‖L2 , for v ∈ L2. Then the result follows from continuity.

To prove this, note that for any v ∈ dom(D), we have

F(In(v)) = F(2y(vn)x + (Lvn)x − ((2yv+ Lv)x − 2yxv) ∗ ρn)
= F(2y(vn)x)+ F((Lvn)x)− F((2yv+ Lv) ∗ (ρn)x)+ F((2yxv) ∗ ρn)

= F(2y(vn)x)+ iξ
( tanh (ξ )

ξ

)1
2
F(v)F(ρn)− F((2yv) ∗ (ρn)x)

−
( tanh (ξ )

ξ

)1
2
F(v)iξF(ρn)+ F((2yxv) ∗ ρn)

= F(2y(vn)x − (2yv) ∗ (ρn)x + (2yxv) ∗ ρn),
where we have used (2yv+ Lv)x ∗ (ρn) = (2yv+ Lv) ∗ (ρn)x for v ∈ dom(D).
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Then

In(v) = 2y(v ∗ (ρn)x)− (2yv) ∗ (ρn)x + (2yxv) ∗ ρn
= 2

∫

R

(y(x)− y(x − s))v(x − s)(ρn)x(s) ds + (2yxv) ∗ ρn

= 2n2
∫

R

(y(x)− y(x − s))v(x − s)ρx(ns) ds + (2yxv) ∗ ρn
=: În(v)+ (2yxv) ∗ ρn.

Note that 2yxv ∈ L2 implies that (2yxv) ∗ ρn → 2yxv in L2, whence we only need
to prove ‖În(v)‖L2 ≤ ‖v‖L2 . For this purpose, suppose supp(ρ) ⊂ [−λ, λ] for some
λ > 0. Then, by Hölder’s inequality, we have

‖În(v)‖L2 = ‖2n
∫ λ

−λ
(y(x)− y(x − s/n))v(x − s/n)ρx(s) ds‖L2

≤ ‖2 sup
s∈R

|yx(s)|
∫ λ

−λ
|sv(x − s/n)ρx(x − s)| ds‖L2

≤ 2 sup
s∈R

|yx(s)|‖(
∫ λ

−λ
|sρx(s)|2 ds) 1

2 (
∫ λ

−λ
|v(x − s/n)|2 ds) 1

2 ‖L2

Let M = 2 sups∈R
|yx(s)|( ∫ λ−λ |sρx(s)|2 ds) 1

2 < ∞. Then, by Fubini’s theorem, we
have

‖În(v)‖L2 ≤ M
( ∫

R

∫ λ

−λ
|v(x − s/n)|2 ds dx

)1
2

= M
( ∫ λ

−λ

∫

R

|v(x − s/n)|2 dx ds
)1

2

= (2λ)
1
2M‖v‖L2 ,

which completes the proof. �

Lemma 2 The operators D and D0 are both quasi-accretive in L2.

Proof By definition, D is quasi-accretive in L2 if and only if

Re((D+ αI)v, v)L2 ≥ 0,

for all v ∈ dom(D) and some scalar α > 0. In view of Lemma 1 and (5), we can find
a sequence vn ∈ C∞0 such that

(Dv, v)L2 = lim
n→∞ (Dvn, vn)L2 = lim

n→∞

∫

R

(2y(vn)x + L(vn)x)vn dx.

AsL is symmetric the operatorL∂x is skew-symmetric, and we have (L∂xvn, vn)L2 =
−(vn,L∂xvn)L2 . Since both L and vn are real-valued, the term

∫
R
L(vn)xvn dx thus

vanishes completely for all n ≥ 1.
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Since, in addition,
∫

R

2y(vn)xvndx =
∫

R

y(v2
n)x dx = −

∫

R

yxv2
n dx,

we have

(Dvn, vn)L2 = −
∫

R

yxv2
n dx. (6)

Now, for yx ∈ Hs−1 ⊂ BC, s > 3
2 , we can select α > 0 such that α ≥ ‖yx‖L∞ .

Then

Re((D+ αI)vn, vn)L2 =
∫

R

(α − yx)v2
n dx ≥ 0,

implying that

Re((D+ αI)v, v)L2 = lim
n→∞Re((D+ αI)vn, vn)L2 ≥ 0.

Hence, D is quasi-accretive.
As what concerns the operator D0, note that D0v = Dv + 2yxv and (2yxv, v)L2

can be bounded with same technique as used in connection to (6). Thus, the quasi-
accretiveness of D0 follows from that of D. �

For use in the following, denote by

[T1, T2] = T1T2 − T2T1

the commutator of two operators T1 and T2. Note that both ∂x and L are Fourier
multiplier operators, so that [∂x , L] = 0 on Hs for all s ∈ R.

Lemma 3 The adjoint of D in L2 is D0.

Proof For v ∈ C∞0 ⊂ dom(D) and any ω ∈ dom(D∗), we have

(v, D∗ω)L2 = (Dv,ω)L2

=
∫

R

[(2yv+ Lv)x − 2yxv]ω dx

=
∫

R

(2yvx + Lvx)ω dx

=
∫

R

(2yω + Lω)vx dx,

so that D∗ω ∈ L2 is the weak derivative of 2yω + Lω ∈ L2. Consequently, 2yω +
Lω ∈ H 1 and ω ∈ dom(D0). Then

(v, D∗ω)L2 =
∫

R

−(2yω + Lω)xv dx

= (v, D0ω)L2 ,

so that D∗ ⊂ D0.
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Assume now that v ∈ dom(D0) ⊂ L2 and note that for any ṽ ∈ dom(D∗), which by
the above calculation belongs to dom(D0) = dom(D), we can always find a sequence
{ṽn} ⊂ C∞0 such that Lemma 1 holds. Therefore, we have that

(Dṽ, v)L2 = lim
n→∞ (Dṽn, v)L2

= lim
n→∞

∫

R

((2y(ṽn)x + L(ṽn)x)v dx

= lim
n→∞

∫

R

(2yv+ Lv)(ṽn)x dx.

Since v ∈ dom(D0) implies that 2yv + Lv ∈ H 1 by our assumptions, we also have
that

(Dṽ, v)L2 = lim
n→∞

∫

R

(2yv+ Lv)(ṽn)x dx

= − lim
n→∞

∫

R

(2yv+ Lv)x ṽn dx

= (ṽ,−(2yv+ Lv)x)L2 dx

= (ṽ,D0v)L2 .

Thus, it follows that v ∈ dom(D∗) and D0 ⊂ D∗. In view of the above, it is then
clear that D0 = D∗.

By Lemmata 2 and 3, both D and D∗ are quasi-accretive. A classical argument
(cf. [13], Corollary 4.4) then gives the following.

Lemma 4 For the closed linear operator D, densely defined on the Banach space
X, with both D and its adjoint D∗ quasi-accretive, there exists a scalar α ∈ R

such that the operator−(D+ α) is the infinitesimal generator of a C0-semigroup of
contractions on X, i.e., D is a quasi-m-accretive operator.

This proposition shows that the operator A in our Cauchy problem satisfies
condition (i) in Theorem 2.

We next turn to condition (ii). Let

B(y) := Q(A(y))Q−1 − A(y) = [Q,A(y)]Q−1,

where A(y) = (2y + L)∂x andQ := Λs = (1− ∂2
x )

s
2 is an isomorphism from Hs to

L2. We then have the following lemma.

Lemma 5 For y ∈ Y , the operator B(y) satisfies condition (ii) in Theorem 2.

Proof Note that

[Q,A(y)] = [Λs ,A(y)]

= [Λs , (2y + L)∂x]

= 2[Λs , y]∂x + [Λs , L]∂x

= 2[Λs , y]∂x ,

(7)
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where we have used the commutation properties [Λs , ∂x] = 0 and [Λs , L] = 0.
In order to prove uniform boundedness of B(y) for y in a bounded subset of Hs ,

we assume without loss of generality that y ∈ W ⊂ Hs , where W is an open ball in
Hs with radius R > 0. Using classical estimates for (7) (cf. [10]), we get

‖[Λs , y]Λ1−s‖ ≤ C0‖∂xy‖Hs−1 ≤ C0‖y‖Hs ≤ α0(R),

where C0 is a constant relying only on s, and α0(R) is a constant relying only on W .
Then, for any z ∈ L2, we have

‖B(y)z‖L2 = ‖[Λs , y]Λ1−sΛs−1∂xΛ
−sz‖L2

≤ ‖[Λs , y]Λ1−s‖ ‖Λs−1∂xΛ
−sz‖L2

≤ α0(R)‖∂xΛ−1z‖L2

≤ α0(R)‖z‖L2 ,

where the last step is due to the fact that

‖∂xΛ−1z‖L2 ≤ ‖Λ−1z‖H 1 = ‖z‖L2 .

Hence, B(y) is a bounded linear operator on L2 for y ∈ Y . In addition, for any
y, z ∈ W and w ∈ X,

‖B(y)w− B(z)w‖L2 = ‖[Λs , y − z]∂xΛ−sw‖L2

≤ α1(R)‖[Λs , y − z]Λ1−s‖ ‖Λs−1∂xΛ
−sw‖L2

≤ α2(R)‖y − z‖Hs‖w‖L2 ,

where α1(R) and α2(R) are constants depending only on W . Thus, B(y) satisfies
condition (ii) for all y ∈ W ⊂ Hs . �

We are now ready to prove the main theorem for initial data u0 ∈ Hs(R).

Proof of Theorem 1 According to Lemmata 1–5 we can apply Theorem 2 to find a so-
lution u as described in Theorem 1, although in the solution classC([0, T );Hs(R))∩
C1([0, T );L2(R)). In view of that Hs−1(R) is an algebra with respect to pointwise
multiplication, and that L maps Hs(R) continuously into Hs+1/2(R), one, however,
sees that for the Whitham equation,

ut = −2uux − Lux ∈ Hs−1(R).

Hence, u ∈ C1([0, T );Hs−1(R)).
Also, since [u0 �→ u] ∈ C(Hs(R),C([0, T ),Hs(R)), and ∂x maps Hs(R) contin-

uously into Hs−1(R), the same argument can be used to conclude that [u0 �→ u] ∈
C(Hs(R),C1([0, T ),Hs−1(R))). This yields the desired solution class and concludes
the proof of Theorem 1.
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3 The Periodic Case

Consider now the Cauchy problem (1) in the periodic setting. We first define the
periodic Sobolev space Hs

2π -per for s ∈ R as the set of all 2π -periodic distributions
f ∈ S′ such that

‖f ‖Hs
2π -per

=
(∑

k∈Z

(1+ |k|2)s |f̂ (k)|2
)1

2
<∞,

with inner product

(f |g)Hs
2π -per

=
∑

k∈Z

(1+ |k|2)s f̂ (k)ĝ(k).

Here f̂ (k) are generalized Fourier coefficients, see [16]. In what follows, we will be
working with Hs for s ≥ 0 and H 0

2π -per will be denoted by L2
2π -per. If we define the

Fourier coefficients of f ∈ Hs
2π -per to be

ck = f̂ (k) = 1√
2π

(f |eikx)L2((−π ,π )) = 1√
2π

∫ π

−π
f (x)e−ikx dx,

then each f ∈ Hs
2π -per is uniquely determined by its Fourier coefficients, and we

have

f (x) =
∑

k∈Z

f̂ (k)eikx in L2
2π -per. (8)

Note that since Hs
2π -per ⊂ S′, the Fourier transform Ff ∈ S′ is well-defined for all

f ∈ Hs
2π -per, but in view of (8) it can also be identified with an element in ls for all

s ≥ 0. From Parseval’s identity,

‖f̂ ‖2
l2
= ‖f ‖2

L2((−π ,π )), f ∈ Hs
2π -per,

and

(f̂ |ĝ)l2 =
∑

k∈Z

f̂ (k)ĝ(k) =
∫ π

−π
f (x)g(x) dx = (f |g)L2((−π ,π )),

for all f , g ∈ Hs
2π -per. It follows that all Fourier integral formulas in the case on

the line immediately translate into Fourier series in the periodic case. In particular
(cf. [3]),

F (Lf )(k) =
( tanh (k)

k

)1
2
f̂ (k), k ∈ Z,

L ∈ C∞(Hs
2π -per,H

s+ 1
2

2π -per) ∩ C∞(S ′(R), S ′(R)), s ≥ 0,

and L is a bounded linear symmetric operator on L2
2π -per. For more information on

the periodic Sobolev spaces, see also the monograph [9].
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As a consequence of this relationship between the periodic Sobolev spacesHs
2π -per

and their non-periodic counterparts Hs(R), the proof of Theorem 1 can be followed
in detail withHs(R) replaced byHs

2π -per, and the Fourier transform replaced accord-
ingly, as described above1. Note here that the crucial embedding Hs

2π -per ↪→ BC1

for s > 3/2 is equally valid in the periodic case. Analogous to the case on R, we
thus obtain the following result.

Theorem 3 Let s > 3
2 . Given u0 ∈ Hs

2π -per, there is a maximal T > 0 and a unique

solution u to 1 such that u = u(·, u0) ∈ C([0, T );Hs
2π -per) ∩ C1([0, T );Hs−1

2π -per). The
solution depends continuously on the initial data, i.e., the map u0 �→ u(·, u0) is
continuous from Hs

2π -per to C([0, T );Hs
2π -per) ∩ C1([0, T );Hs−1

2π -per).
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