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Abstract Ankylosing Spondylitis, an inflammatory disease affecting mainly the
spine, can be characterized by abnormal bone structures (syndesmophytes) growing
at intervertebral disk spaces. Monitoring the evolution of these syndesmophytes has
been a challenge because of their slow growth rate, a problem compounded by the
use of radiography and a mainly qualitative rating system. To improve the low
sensitivity to change of radiographic reading, we designed a computer algorithm
that fully quantitates syndesmophytes in terms of volume using the 3D imaging
capabilities of computed tomography. Its reliability was assessed by computing the
difference between the results obtained from 2 scans performed on the same day in
9 patients. A longitudinal study performed over 2 years with 33 patients shows that
the method holds promise for longitudinal clinical studies of syndesmophyte
development and growth. At the end of the first year, 73 % of patients had a volume
increase computed by the algorithm compared to only 12 % for the reading of
radiographs.

1 Introduction

Ankylosing Spondylitis (AS) is a progressive inflammatory arthritis affecting pri-
marily the spine. It characteristically causes back pain and can lead to structural and
functional impairments. As a result, AS patients may suffer from work disability,
unemployment, and reduced quality of life. Estimates of prevalence rates range
from 0.1 to 1.4 % of the general population. AS is about twice as common in men
as in women. It has a known association with an important immunogenetic com-
ponent of DNA known as HLA-B27. The majority of patients affected by AS are
HLA-B27 positive. AS patients may also develop inflammation of tendon–bone
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junctions and the eye. Commonly affected areas of bony involvement are the spine
and sacroiliac joints. Progression of AS is best characterized by abnormal bone
(syndesmophytes) formation along the margins of inter-vertebral disk spaces (IDS).
Syndesmophytes cause irreversible and progressive structural damage, and over
decades, can lead to spinal fusion [1, 2].

Monitoring syndesmophyte evolution is essential for many clinical studies of
AS. Recently available treatments, tumor necrosis factor (TNF) inhibitors, have
attracted much attention and fostered new hope by substantially reducing signs of
inflammation and improving quality of life [3–5]. However it is still an open
question whether they slow syndesmophyte growth or not. Most studies seem to
show a slight deceleration but without statistical significance [6–10]. The causes of
bone formation in AS are still poorly understood. In particular, the involvement of
inflammation, which has face value plausibility, constitutes a perplexing and still
unanswered question. Evidence of the correlation between inflammation and syn-
desmophyte growth has been marginal at best despite extensive studies [11–18]. To
elucidate the mechanisms of bone formation in AS at a molecular level, correlation
between syndesmophyte growth and various biomarkers of bone turnover has been
investigated [19, 20]. Predictors of syndesmophyte formation have been sought
with only limited success [21, 22]. New promising perspectives on syndesmophyte
growth have been opened by genetic studies [23, 24]. In particular, Dickkopf-1
(DKK-1), a regulatory molecule of the Wnt pathway which controls embryonic
development, has attracted much attention [25–27].

Unfortunately, all those studies have been hampered by the fact that the current
standard for assessing syndesmophyte growth, the visual examination of radio-
graphs, has very poor sensitivity to change. This low sensitivity to change is not
only a reflection of the slow growth rate of syndesmophytes. It is also caused by the
limitations of radiography, which projects 3D objects onto 2D images with atten-
dant losses of spatial information and ambiguities in density caused by superim-
position. Moreover, syndesmophytes on radiographs are usually rated using coarse
semi-quantitative reading systems [28, 29]. The modified Stoke Ankylosing
Spondylitis Spinal Score (mSASSS) has emerged as the most widely used reading
system [30]. The crudeness of the scoring systems further limits sensitivity to
change [31]. Figure 1 shows an example of syndesmophyte growth visible on
reformatted CT but not radiography.

To overcome the limitations of radiographic methods, we designed a computer
algorithm that quantitatively measures syndesmophyte volumes in the 3D space of
CT scans [32, 33]. The algorithm is described in the following section. In Sect. 3,
we investigate its accuracy and precision. Results of a 2-year longitudinal study are
presented in Sect. 4. We review the future challenges of the new method in Sect. 5
before concluding in Sect. 6.
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2 The Algorithm

The complete algorithm, summarized in Fig. 2, has of three main parts. First,
vertebral bodies are segmented using a 3D multi-stage level set method. Triangular
meshes representing the surfaces of the segmentations are made [34]. The 3D
surfaces shown in Fig. 2 are triangular meshes obtained from our segmentation
results. The vertebral surfaces of corresponding vertebrae are then registered. The
purpose of the registration is to extract the syndesmophytes of both vertebrae using
the same reference level. Syndesmophytes are cut from the vertebral body using the
end plate’s ridgeline as the reference level.

2.1 Segmentation of the Vertebral Bodies

Many image processing segmentation techniques have previously been applied to
the extraction of vertebral bodies in CT [35–42]. For our algorithm, we chose to use
level sets for their flexibility [43]. Flexibility is essential in our application as
syndesmophytes can deform the normal vertebral shape in unexpected ways. Level
sets are evolving contours or surfaces that can expand, contract, and even split or
merge. For the purpose of segmentation they are designed to deform so as to match
an object of interest. Many different types of level set exist, depending on the image
features chosen to guide the segmentation. For our particular purpose, we selected

Fig. 1 Example of syndesmophyte growth from baseline (BL) to year 1 (Y1) visible on CT
reformations but not on radiographs
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Fig. 2 Overview of the complete algorithm
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two level sets based on edge features: the geodesic active contour (GAC) [44] and
what we call for convenience the classical level set (CLS) [43]. The GAC evolves
according to the equation [44]:

dw
dt

¼ ag ~xð Þc rwj j þ bg ~xð Þj rwj j þ crg ~xð Þrw ð1Þ

Contours encoded as the zero level set of a distance function w ~x; tð Þ: points that
verify w ~x; tð Þ ¼ 0 form the contour. The three terms on the right-hand side of the
equation respectively control the expansion or contraction of the contour (velocity c),
the smoothness of the contour using the mean curvature j and the adherence of the
contour to the boundary of the object to be segmented. The last term, often called
advection term, is specific to the GAC and is responsible for its robustness to gaps in
an object’s boundary. The parameters a, b and c allow the user to weight the
importance of each term. The spatial function g ~xð Þ, often called speed function, is
derived from the images to be segmented and contains information about the objects’
boundaries. The design of the speed function is crucial for the success of the seg-
mentation. Depending on the specific needs of the application, information on the
object’s boundary can be based on image gradient, Laplacian or any other relevant
feature. The CLS is equivalent to the GAC without the advection term. The omission
of the advection term makes the CLS more flexible.

A vertebral body is composed of trabecular bone surrounded by denser cortical
bone. Syndesmophytes are made of cortical bone (Fig. 1). To capture those different
components, we adopted a multistage strategy in which successive level sets seg-
ment the trabecular and cortical bone. Our algorithm is also multiscale. It was
originally uniscale [45] but we found that multiscaling made the segmentation not
only faster but also more robust and accurate. Our multiscale, multistage, 3D
segmentation algorithm is summarized in the flowchart in Fig. 3. We first linearly
subsample our data (step 1). Then the original algorithm is applied to the obtained
half-scale volume. The preprocessing (described below) determines the parameters
of the sigmoid used to compute the speed function of the first GAC (step 2.1). The
first GAC roughly segments the interior of the vertebra (step 2.2). Its seed is the
result of a fast marching (FM) stage starting from a seed point roughly placed by the
user in the center of the vertebral body and lasting 20 iterations. The second level
set, also a GAC, refines this segmentation using a Laplacian convolution of the
image as the speed function (step 2.3). The third level set, a CLS, segments the
cortical bone (step 2.4). A postprocessing step fills some remaining holes using a
dilation followed by an erosion (step 2.5). The resulting segmentation is then super-
sampled back to full scale (step 3) and refined using a CLS (step 4). A last hole-
filling postprocessing is performed (step 5).

The speed function g ~xð Þ should ideally have values close to 1 where there are no
boundaries (so that the level set can expand rapidly) and values close to 0 where
boundaries are present (so that the level set stops). This can be achieved for instance
by writing [46]:
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g ~xð Þ ¼ 1� 1

1þ exp � I�n
g

� � ð2Þ

where I is the gradient magnitude of the grey level image at voxel ~x. The two
parameters n and g are typically computed using the equations [46]:

g ¼ K1 � K2

6
n ¼ K1 þ K2

2
ð3Þ

where K1 is the minimum gradient magnitude value along the object’s boundary
and K2 the average gradient magnitude inside the object where the level set is
initialized. Those definitions ensure that the level set advances over internal gra-
dients but stops at the minimum gradient along the boundary, as Eq. (2) maps
gradients values up to K2 to approximately 1 and gradient values equal or larger

Fig. 3 Flowchart of the algorithm for segmenting vertebral bodies
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than K1 to approximately 0. K2 can be evaluated as the mean gradient magnitude
inside a neighborhood around the seed placed by the user in the center of the
vertebral body. K1 can be determined by a search algorithm. Along lines originating
from the center of the vertebral body, the maximal gradient magnitude is considered
as belonging to the object’s boundary and is recorded. The mean of the 10 % lowest
recorded values constitutes our estimate for K1 [32]. The optimal values for
parameters a, b and c were determined experimentally [32]. Figure 4 shows an
example of segmentation obtained by the algorithm.

2.2 Segmentation of the Vertebral Body Ridgelines

The segmentation of vertebral body ridgelines is a preliminary step to both the
registration stage (Sect. 2.3) and the syndesmophyte extraction stage (Sect. 2.4).
The vertebral body ridgelines provide the landmarks that aid the registration process
and the reference level from which syndesmophytes are cut. We extract the ridg-
elines from the triangular meshes representing the surfaces of the vertebrae using
the same level set as Eq. (1), but transposed from the Cartesian domain of rect-
angular grids to the domain of a surface mesh. While in the usual image grids of CT
scans the relevant features are grey level gradients, on a surface mesh, the useful
features are curvature measures (the vertebral body surface is more curved at the
ridgelines than on the end plates). The curvature measure we used is curvedness
(C) [47]:

Fig. 4 Example of vertebral body segmentation (original image on the left, segmentation results
on the right)
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C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ j22

2

r
ð4Þ

where j1 and j2 are the principal curvatures. Curvedness is a local measure that can
be computed at each vertex on the mesh. The larger C is, the more curved the local
surface is. The speed function, constructed using Eqs. 2 and 3 but with curvedness
replacing grey level gradients, ensures that the level set contour expands in
the center of the end plates (low curvedness) and stops at the ridgelines (high
curvedness) [32].

The level set evolution equation (Eq. 1) can be implemented on a mesh with two
important adjustments relative to level sets in rectangular grids: (1) Gradients and
curvatures have to be computed in local coordinate systems defined around each
vertex as small enough neighborhoods can reasonably be considered planar. (2)
Gradients and curvatures have to be computed using least square estimation
methods rather than finite differences [32].

We use the following definitions and notations for level sets on mesh. A function
f Vð Þ defined on a mesh associates to each vertex V the quantity f Vð Þ. A vertex V is
defined by its three coordinates (x, y, z) which can be relative to a global or a local
orthonormal frame. V can therefore also be seen as a vector. By immediate neighbor
of vertex V , we mean a vertex linked to V by an edge. The 1-ring neighborhood of
V is the set of immediate neighbors of V . The 2-ring neighborhood of V consists of
its 1-ring neighborhood and all the immediate neighbors of the vertices in the 1-ring
neighborhood. The process can be iterated. Thus, the n-ring neighborhood of V is
comprised of its (n − 1)-ring neighborhood and all the immediate neighbors of the
vertices in the (n − 1)-ring neighborhood.

To implement Eq. 1, the gradients of the distance function w and the speed
function g have to be evaluated. We do this locally on the mesh in a 1-ring
neighborhood around each vertex. The components of rf Vð Þ the gradient of any
function f at vertex V can be evaluated by minimizing:

E ¼
XN
i¼1

rf Vð Þ �~ni �rf Vð Þi
� �2 ð5Þ

The summation is over the N immediate neighbors of V . The ith neighbor Vi of
V defines the unit directional vector ~ni:

~ni ¼ Vi � V
Vi � Vj j ð6Þ

The quantity rf Vð Þi is the finite difference of function f in the direction of the
ith neighbor Vi:
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rf Vð Þi¼
f Við Þ � f Vð Þ

Vi � Vj j ð7Þ

The vector components in Eqs. (5)–(7) are relative to local orthonormal frames
defined at each vertex V . The gradients rw and rg in Eq. (1) are computed using
Eqs. (5)–(7). rw is then used to compute the mean curvature j.

The gradient rw is used to form two functions on the mesh: wx Vð Þ and wy Vð Þ,
which respectively associate the x and y components of rw to each vertex V . We
can then evaluate the gradients of wx Vð Þ and wy Vð Þ using Eqs. (5)–(7), which in
turn yields wxx, wxy and wyy. Those are the quantities necessary to compute the mean
curvature j of the distance function w:

j ¼ wxxw
2
y � 2wxwywxy þ wyyw

2
x

w2
x þ w2

y

� �3
2

ð8Þ

The seeding for the mesh level set is also derived from the user placed seed for
the vertebral body segmentation. From that seed (roughly in the center of the
vertebral body), a vertical line cuts the upper and lower end plates in two points.
Those points are used as the seeds for the mesh level sets on the upper and lower
end plates. An alternative seeding technique without user input and that relies on
the clustering of vertices with low curvedness has recently been proposed [48].
Figure 5 shows an example of contour evolution on the upper end plate of a
vertebra. Figure 6 shows several examples of final segmentation results.

2.3 Vertebral Body Registration

Ideally, ridgelines detected on different scans of the same vertebra should be located
at identical positions at the junction where the syndesmophytes merge with the end
plates. In reality, those positions can be subject to variations, especially for syn-
desmophytes that do not grow at a right angle in respect to the end plate but
laterally and merge with the end plate in a smooth gradual junction. In such cases,
the curvature at the junction can be low and the level set might stop at the syn-
desmophyte’s base or slightly leak into the syndesmophyte depending on differing
image resolution, sharpness or noise. Figure 7 shows such a discrepancy between
baseline and year 1 ridgelines, with a small leak at year 1 (red arrow). Bone above
the ridgeline will be labeled as syndesmophyte. If the syndesmophytes at baseline
and year 1 were cut from their respective ridgelines, the leak in the year 1 syn-
desmophyte would cause a deficit in volume compared to baseline. This difference
would not be due to real syndesmophyte change. Because real growth may be
small, it is important to reduce the error coming from ridgeline discrepancies. We
use registration to correct such inconsistencies. Registration aligns the vertebral
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bodies of scans (middle of Fig. 2). Once the vertebral bodies are registered, either of
the two ridgelines can be used. The important point is to use only one of the
ridgelines so that the same syndesmophyte is cut from the exactly the same level on
two scans.

Fig. 5 Example of level set evolution on a mesh

Fig. 6 Examples of end plate (white) and ridgeline (green) segmentation
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We used the iterative closest point (ICP) algorithm to register the surfaces of the
vertebrae segmented at baseline and year 1. Given 2 sets of points, the ICP algo-
rithm finds the rigid transformation that minimizes the mean square distance
between them [49–51]. We added landmark matching to address the problem of
entrapment in local minima. Our ICP algorithm is performed successively on the
ridgelines, end plates and the complete surface, the result of each stage serving as
the initialization for the following stage [52]. Figure 8 shows some examples of
registration results.

Fig. 7 End plate (red) and ridgeline (black) segmentation at baseline (left) and year 1 (right)

Fig. 8 Two examples of vertebral surface registration
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2.4 Syndesmophyte Segmentation

Once corresponding pairs of vertebrae are registered, syndesmophytes can be cut
from the vertebral bodies using the ridgeline of the baseline vertebra (using the year
1 or 2 ridgelines is also possible). The algorithm identifies syndesmophytes in each
IDS unit. The cutting algorithm marks as syndesmophyte bone voxels lying
between the two end plates that bound each IDS. Because of the high precision
required by our application, we found it necessary to operate this cutting with
subvoxel accuracy. We also address the problem of differing degrees of smoothness
in the reconstructions and partial volume effect, and refine the segmentation of
syndesmophytes [33].

2.4.1 Syndesmophyte Cutting

Each IDS is bounded by the lower end plate of the superior vertebra, that we note
EP1, and the upper end plate of the inferior vertebra, noted EP2. The corresponding
ridgelines are respectively noted RL1 and RL2. The cutting algorithm marks as
syndesmophyte those previously segmented voxels that are between those 2 end
plates. Each candidate voxel is considered in relation to the local ridgelines. If it is
below the local level of EP 1/RL1 and above the local level of EP2/RL2 it is
marked as syndesmophyte.

However the representation of a continuous space by discrete voxels can
introduce inaccuracies in this algorithm. In the first version of our algorithm, a
whole voxel was considered either totally above or below the local ridgeline level
[32]. However, in reality, most voxels close to the ridgeline level are neither
completely above nor completely below that level. Rather, part of the voxel is
above while the other part is below. The following algorithm achieves syndes-
mophyte cutting with subvoxel accuracy. We show how to determine the proportion
of a voxel above the local level of EP2/RL2. Determining the proportion of a voxel
below the local level of EP1/RL1 is straightforwardly similar.

First we extract the normal to the end plate EP2, ~N, using a least square estimate
method [32]. Let V be a voxel under consideration. We determine the local ridgeline/
end plate level in the following way. The point of RL2 closest to V is found.
Neighboring points of EP2/RL2 are averaged to form the point RV , which, as an
average, is an estimate more robust to noise. ~N and RV define a plane P (orthogonal
to ~N and containing RV ), that can be used to cut syndesmophyte from vertebral body.
We now determine the position of V relative to this plane. V is a rectangle defined by
8 vertices Vi with i 2 f1; . . .; 8g: The sign of the scalar product:

s Við Þ ¼ signðRVVi
��! � ~NÞ ð9Þ

tells us if Vi is above or below the plane P. If all signs are positive or negative, then
voxel V is either completely a syndesmophyte voxel or not. If we have a mix, then
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V is a partial syndesmophyte voxel. To determine what proportion of V is
syndesmophyte, we subdivide V into smaller rectangles. A voxel V of dimensions
px, py and pz can be subdivided into M3 equal subvoxels of dimensions px

M,
py
M and pz

M.
For this, we simply take as locations of the vertices of the new subvoxels the
coordinates i � pxM ; j � pyM ; k � pzM

� �
where M is an integer controlling the number of

subdivisions and (i, j, k) are integers. The choice M = 10, which means each voxel
is divided into M3 = 1,000 subvoxels, is a good trade-off between computational
speed and gain in precision. The better precision results produced by finer subdi-
visions (larger M) are limited by diminishing returns. Then, for each subvoxel, it is
straightforward to determine if it is above or below P using the same scalar product
(Eq. 9). However, since we do not want to pursue the subdivision process further, it
is not necessary to test all 8 vertices. We only test one, corresponding to the
smallest (i, j, k). For every subvoxel of V, if the test is positive in sign we increment
NS that we define as the number of subvoxels of V found to be syndesmophyte
(conversely to determine the proportion of a voxel below the local level of EP1/
RL1, we would increment when the test is negative in sign). The corresponding
partial syndesmophyte volume is:

PSV ¼ NS

M3 � px � py � pz ð10Þ

Figure 9 illustrates the difference between whole voxel and subvoxel cutting.

Fig. 9 Comparison between subvoxel and whole voxel cutting. a Coronal view of a CT scan of an
IDS. b Lateral view of the 3D surface reconstruction of the registered right-hand side
syndesmophytes. View of the registered syndesmophyte upper surfaces after c subvoxel and
d whole voxel cutting from the vertebral body. The view is from the direction of the blue arrow in
(a) and (b)
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2.4.2 Equalization of Image Smoothness

In a longitudinal study, patients imaged at different times can be scanned using
different scanners and/or different scanning parameters. Even when a protocol
specifies the scanner and scanning parameters, errors can occur. Images from
different scanners and/or with different scanning parameters have different levels of
smoothness. The influence of differing degrees of image smoothness on quantitative
measurements has been recognized before [53]. In our case, it has an impact on the
apparent size of the syndesmophytes. In general, the smoother an image is, the
larger the syndesmophyte will appear. To compensate for this effect we devised an
algorithm for harmonizing the degree of smoothness of two images. Although we
strongly recommend using scanners and scanning parameters in a consistent
manner, the ability to compensate for image smoothness differences can allow more
flexibility in scanner use when consistency is impractical.

We first devised a measure of image smoothness in a homogeneous region
containing only trabecular bone. A region containing both trabecular and cortical
bone could produce misleading results. For each voxel in homogeneous region, a
mean difference with its neighbors is computed. All those voxel-wise differences
are then averaged across the region. This measure can be written:

S ¼
XM
j¼1

XNj

i¼1

GLj � GLi
�� ��

MNj
ð11Þ

where GLj is the grey level of voxel j in the region, GLi is the grey level of voxel
i in the neighborhood of j. M is the total number of voxels in the region. Nj is the
total number of neighbors of j that are also in the region. Nj is 26 unless voxel j is at
the boundary of the region. To extract a homogeneous region we make use of the
segmentations of the vertebral bodies (Sect. 2.1). Eroding those with a structuring
element of 5 voxels we obtain homogeneous regions in the trabecular bone. The
standard deviation of grey levels in the homogeneous region described can also be
used as a smoothness measure. In our experiments, we found that our measure
(Eq. 11) performed slightly better in regards to the precision of syndesmophyte
volume measurement.

Our procedure for equalizing the smoothness of two images is as follows. We
first compute the smoothness measures of the two images. The smoother image has
the lower measure, which we call Smin. We call the smoothness measure of the other
image S. We convolve the least smooth image with Gaussians of increasing stan-
dard deviations. We start with a standard deviation of 0.025 mm and increase it by
increments of 0.025 mm. After each convolution we compute S. When S becomes
smaller than Smin we stop the process. Let us call that measure Sn and the previous
one Sn−1. We compute the differences Smin � Snj j and Smin � Sn�1j j. If the first
difference is smaller we use the Gaussian associated with Sn to equalize the
smoothness of the two images. Otherwise we use the Gaussian associated with Sn−1.
Figure 10 shows an example of the procedure. The standard deviation of the
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Gaussian needed to smooth (a) to the level of (b) was 0.125 mm. This stage is a pre-
processing step for the following refinement technique.

2.4.3 Density and Laplacian Based Correction

The last step refines the segmentation of the syndesmophytes using the Laplacian
filter and gray level density. The output of the Laplacian filter allowed us to
pinpoint the boundary between bone and soft tissue. The interface between the two
materials can be modeled as a smooth step function. Its Laplacian is positive on one
side of the step and negative on the other. The Laplacian divides the interface
between 2 materials of different densities with the zero-crossing roughly in the
middle. Figure 11 shows an IDS processed with a Laplacian. The color code is
green for negative values and red for positive ones. Cortical bone is mainly green.
Cortical bone is thin and can be seen as two step functions back to back.

At the boundary between bone and soft tissue, the representation of a continuous
space by discrete voxels leads to the creation of voxels containing both materials, a
phenomenon usually called partial volume effect. Our algorithm incorporates partial
voxels, assigning them a partial volume value depending on their “density”, that is,
their grey level intensity. The density criterion is obtained in the following manner.
From the initial rough syndesmophyte segmentation we estimate the mean voxel

Fig. 10 Smoothness equalization: the least smooth image (a) is convolved with a Gaussian (c) to
match the smoothness level of (b)
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intensity for syndesmophyte, GLS. Syndesmophytes are surrounded by soft tissue.
Considering the neighbors of syndesmophyte voxels we mark the first soft tissue
layer, T1 and second soft tissue layer T2. From those layers (T1 and T2) we extract
the mean voxel intensity for soft tissue, GLT. For a voxel i labeled as syndesmo-
phyte or belonging to T1 or T2, our density criterion is based on the measure Di

defined as:

Di ¼ GLi � GLT
GLS � GLT

ð12Þ

where GLi is the grey level of voxel i. The higher the bone content of the voxel, the
higher Di is.

The density and Laplacian criteria are combined in the following manner:

(a) First we consider all syndesmophyte, T1 and T2 voxels. If a voxel i (syndes-
mophyte, T1 or T2) verifies the conditions:

Di [D1 and Li\0 ð13Þ

where D1 is a threshold, it is classified as syndesmophyte (Li is the Laplacian
at voxel i). Otherwise it is labeled as soft tissue. This first step mainly corrects
leaks. An example is shown in Fig. 12.

(b) The labeling of soft tissue layers T1 and T2 and the computing of GLS and GLT
are updated based on the new more accurate segmentation resulting from step
(a). We then process the first soft tissue layer T1. If a voxel i of T1 verifies the
conditions:

Di [D2 and Li\0 ð14Þ

Fig. 11 Effect of the Laplacian filter on an intervertebral disk space: a Original image.
b Laplacian of image (a), color-coded with green (negative values) and red (positive values)
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where D2 is a threshold, it is classified as partial syndesmophyte with
proportion of bone corresponding to Di. This second step adds a layer at the
bone/soft tissue boundary where, due to partial volume effect, voxels are likely
to contain both types of tissues.

The thresholds D1 and D2 control how selective the algorithm is in admitting
syndesmophyte voxels. They can be used to add partial bone voxels that were not
segmented or exclude soft tissue voxels that were mistakenly labeled as syndes-
mophyte. Both thresholds can be set between 0 and 1. Lower thresholds are more
permissive in syndesmophyte selection. Extensive experimentation led us adopt the
set of threshold (0.8, 0.2) for D1 and D2 respectively [33].

3 Accuracy and Precision of the Algorithm

3.1 Accuracy and Validity

As an accuracy test, we compared manually and automatically segmented syn-
desmophytes [33]. Patients were scanned on either a Philips Brilliance 64 or a GE
Lightspeed Ultra. For both scanners, voltage and current parameters were 120 kVp
and 300 mAs, respectively. Slice thicknesses were 1.5 and 1.25 mm, respectively,
for the Philips and GE. Spacing between slices was 0.7 and 0.625 mm for the
Philips and GE respectively. Each patient was scanned from the middle of the T10
vertebra to the middle of the L4 vertebra providing 4 IDSs for analysis (T11/T12,
T12/L1, L1/L2 and L2/L3). These scanning parameters were used for all the studies
including the reliability and longitudinal studies. Using the ITK-SNAP software
[54], one operator manually segmented syndesmophytes in two IDSs (L1/L2 and
L2/L3) for 6 patients. The agreement between manually and automatically seg-
mented syndesmophytes was evaluated using the overlap similarity index (OSI),
also known as the Dice similarity coefficient [55]:

Fig. 12 First stage of the syndesmophyte refinement algorithm: a original image, b initial
segmentation and c leak correction
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OSI ¼ 2 V1 \ V2ð Þ
V1 þ V2

ð15Þ

where V1 and V2 are the two volumes compared. OSI is always comprised between
0 and 1, with 1 indicating perfect overlap. Out of the 12 IDSs processed, the mean
(±std) OSI was 0.76 (±0.06). Considering that syndesmophytes are small objects, an
OSI of 0.76 indicates good agreement. Figure 13 shows an example of syndes-
mophyte segmentations by the manual and automated methods.

In a more extensive validation study involving 38 patients, the syndesmophyte
volumes computed by the algorithm were compared with the readings of physicians
[56]. Two physicians scored 152 IDSs (4 IDSs per patient) using a 4-point grading
system (0 = no syndesmophyte; 1 = small isolated syndesmophytes involving less
than a quarter of the vertebral rim and no bridging; 2 = syndesmophyte involving
more than a quarter of the vertebral rim or focal bridging; 3 = bridging involvingmore
than a quarter of the vertebral rim). The physicians examined the IDSs in the axial,
coronal and sagittal views of the CT reconstructions. Figure 14 shows the association
of computed volumes with the physicians’ ratings. Volumes computed by the algo-
rithm increased with the readers’ scores (p < 0.0001 using a stratified Kruskal–Wallis
trend test accounting for non-independence of observations within patients [57]).

3.2 Reliability/Precision

The precision of the algorithm was evaluated by comparing the results of 2 scans
performed on the same day in 9 patients [56]. The protocol was approved by the
institutional review board and all subjects provided written informed consent. After

Fig. 13 Comparison between manual (red) and automated (green) segmentation of syndesmo-
phytes on a 3D surface reconstructions, b, c sagittal slices. The yellow line in a indicates the
position of the sagittal slices. The overlap similarity index in this example is 0.77
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the first scan, patients stood up before lying down again for the second scan. This
ensured that they did not lie in exactly the same position and that the variation was
in the range expected for patients in a longitudinal study. That enabled us to include
the variability originating from CT artifacts such as beam hardening [58]. Syn-
desmophyte volumes from the 4 IDSs were added to form a total per patient.

Various measures of reliability were computed (Table 1). The mean (±std)
difference between the two scans, 18.3 (±19.6) mm3, only represents 1.31 % of the
total mean syndesmophyte volume, 1,396 (±1,564) mm3. The intraclass correlation
coefficient (ICC) was very high. The coefficient of variation (CV) was estimated
according to the guidelines of Gluer et al. [59]. Bland-Altman analysis was used to
determine the 95 % limits of agreement [60]. Volume measures were heterosked-
astic, with larger inter-scan differences for larger syndesmophyte volumes.
Bland–Altman analysis was therefore performed on log-transformed values, and the

Fig. 14 Boxplots of computed syndesmophyte volume and height by physicians’ scores (white for
one reader, grey for the other). N is the number of intervertebral disc spaces

Table 1 Reliability/precision
of computed syndesmophytes
volumes

Syndesmophyte volumes

1st scan 2nd scan

Min (mm3) 55.4 55.5

Max (mm3) 4,333 4,292

Mean ± std (mm3) 1,396 ± 1,564 1,404 ± 1,564

Reliability measures
Mean ± std of difference
(mm3)

18.3 ± 19.6

ICC 0.99

CV (%) 1.31

95 % limits of agreement
(%)

[−0.30, 0.30]
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95 % limits of agreement for volume were in terms of percentage [61]. Using this
method it was found that an increase in syndesmophyte volume of more than 3 %
represented a change greater than measurement error.

4 Longitudinal Study

For this study, we performed lumbar spine CT scans on 33 patients at baseline, year
1 and year 2 [62]. The same 4 IDSs as in the precision study were processed.
Radiographs of these 4 IDSs were also scored by a physician using mSASSS but

Fig. 15 Examples of syndesmophyte progression from baseline (BL) to year 1 (Y1). From left to
right 3D surface mesh (syndesmophytes in red and vertebral bodies in green), CT slice, radiograph
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without the score of 1 which does not represent syndesmophyte growth. The scores
were: 0 = no syndesmophyte; 2 = syndesmophyte but not complete bridging;
3 = bridging. Results from the 4 IDSs were added. Figures 15 and 16 show
examples of syndesmophyte progression detected by the algorithm but not visible
on radiographs from baseline to year 1 and 2 respectively.

The mean (±std) computed syndesmophyte volume change was 87 (±186) mm3

at year 1 and 201 (±366) mm3 at year 2, which respectively represents an increase
of about 8 and 18 % in respect to the mean baseline volume. At year 1 and 2,
respectively 24 (73 %) and 26 (79 %) patients had a volume increase. By contrast,

Fig. 16 Examples of syndesmophyte progression from baseline (BL) to year 2 (Y2). From left to
right 3D surface mesh (syndesmophytes in red and vertebral bodies in green), CT slice, radiograph

Quantitative Monitoring of Bone Formation … 151



only 4 (12 %) had a mSASSS increase at year 1 and 2 (Table 2). From baseline to
year 1, 18 patients (55 %) had an increase larger than 3 %, the 95 % limit of
agreement derived from Bland-Altman analysis in the reliability study. From
baseline to year 2, 23 patients (70 %) had an increase larger than 3 %. Additionally,
two patients in whom the algorithm detected no syndesmophytes in all 4 IDSs at
baseline developed new syndesmophytes at year 1, and three patients did so at year
2. For these patients, the rate of change cannot be computed because their baseline
was 0.

Figure 17 shows the cumulative probability plots for computed volume changes
and mSASSS changes. The curves for computed volumes show the progressivity of
the disease. The curves for year 1 and 2 are clearly distinguishable and syndes-
mophyte volume changes are larger for year 2 than for year 1. By contrast, for
mSASSS the two curves are nearly identical and both mostly located at zero.

5 Discussion and Future Challenges

The algorithm is still new and has so far been validated on a relatively small
numbers of patients. More extensive work is needed to establish the method. The
method still requires an operator to place a seed to initiate the segmentation.
Automation of this task should be explored. The algorithm also requires high
resolution especially in the z direction (slice thickness of 1.5 mm and spacing
between slices of 0.7 mm). Additional work is needed to adapt the method to more
common lower resolution scans. It is probable that lower resolution will entail
lower precision in volume measurements.

Registration makes the choice of the ridgeline (baseline, year 1 or year 2)
unimportant. In our work, we chose the baseline ridgeline as the reference. Aver-
aging ridgelines may be advantageous, since an average is generally more robust to
errors. Although registration will ensure that the same errors are made for the scans
to be compared and will therefore not impact the computed syndesmophyte volume
differences, it is always benefic to start with the most accurate ridgeline. Many
methods can be proposed to define the average of 2 or more curves. In our case

Table 2 Change in syndesmophyte volume (CT) and mSASSS (radiography)

CT Radiography

Mean (±std) at baseline 1,095 (±1,278) mm3 4.2 (±5.6)

Baseline to year 1 Number of patients with change > 0 24 (73 %) 4 (12 %)

Mean (±std) change 87.0 (±186) mm3 0.24 (±0.97)

Baseline to year 2 Number of patients with change > 0 26 (79 %) 4 (12 %)

Mean (±std) change 201 (±366) mm3 0.30 (±1.4)
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where the ridgelines (same vertebral body at different times) should be fairly
similar, averaging can for instance be done in the direction normal to the curves.
Starting from the baseline curve, for each curve point, a local normal direction can
be estimated. On the year 1 or 2 curve, the curve point most aligned with that
normal direction can be determined and averaged with the curve point on the
baseline curve.

Fig. 17 Cumulative probability plots for changes in a syndesmophyte computed volume,
b modified stoke AS spine score (mSASSS)
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The higher sensitivity to change of our computed volumes reflects both the fully
quantitative nature of the method and the improved visualisation of syndesmophytes
using CT. Exploiting the 3D imaging capability of CT, we were able to quantitate
syndesmophytes along the entire vertebral body rim. It has been suggested that
magnetic resonance imaging (MRI) could also be used to image the spine tomo-
graphically and with less exposure for patients. Several rating systems for structural
chronicdamage inAShavebeenproposed [63–66].However, few longitudinal studies
tracking syndesmophytegrowth inMRIhavebeenpublished [67]. In [62], itwas found
that computed volumes inCTweremuchmore sensitive to change thanMRI readings.
Cortical bone is poorly visualised on MRI because its water content is similar to the
water content of surrounding tissues. Scoring systems based on MRI are semiquan-
titative, which also may limit their sensitivity to change. In addition, higher resolution
can be achieved in CT and long acquisition time for MRI causes motion artefacts.

A major criticism of the work has centered on the radiation exposure associated
with a CT scan. With the protocol used in the study, patients received an average
radiation dose of 8.01 mSv compared with 2.59 mSv for lateral radiographs of the
cervical and lumbar spine (as would be used in a complete mSASSS assessment)
[56, 62]. However, the question of radiation exposure has to be considered in close
relation with the information obtained. Although the radiation exposure of CT is
substantially higher than the radiation exposure of radiographs, each CT scan
provides complete information on syndesmophytes, and, in our study, none needed
to be discarded because of poor visualisation. The advantages of low radiation
exposure need to be weighed by the usefulness of the information gathered by that
exposure. It should be stressed that scanner technology is improving fast and, with
the introduction of iterative reconstruction, dose reduction of 50 % or more has
been achieved with minimal loss in image quality [68, 69]. The reliability of the
algorithm has to be evaluated using such dose saving methods.

Because the algorithm visualizes and quantitates syndesmophytes in their real
3D environment for the first time, it opens the door to new research possibilities.
For instance, the distribution of the syndesmophytes around the rim of the vertebral
end plates, if not random, could shed some light on the drivers of osteoproliferation,
which are still unknown. The testing of drugs that can potentially halt or slow
syndesmophyte progression will benefit from the greatly improved sensitivity and
reliability of the new method. Similarly, studies that seek to associate syndesmo-
phyte progression with gene expression, biomarkers and lifestyle risk factors (such
as smoking or lack of exercise for example) should use a method that can capture
syndesmophytes in their totality and quantitatively.

6 Conclusion

To improve the low sensitivity to change associated radiographic reading, we have
designed a quantitative measurement of syndesmophytes in CT scans. The method
has very good reliability. In a 2-year longitudinal study, the algorithm could detect
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syndesmophyte growth in 79 % of the patients compared to only 12 % for radio-
graphic reading. The mean 2-year change represented a 18 % increase in syndes-
mophyte volume in respect to the baseline volume. This method holds promise for
longitudinal clinical studies that need to track syndesmophyte growth.
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