
A Block-Cipher-Based Hash Function Using an

MMO-Type Double-Block Compression Function

Shoichi Hirose1 and Hidenori Kuwakado2

1 Graduate School of Engineering, University of Fukui, Japan
2 Faculty of Informatics, Kansai University, Japan

Abstract. Methods to construct a hash function using an existing block
cipher recently attract some interests as an approach to implement a hash
function on constrained devices. It is often required to construct a hash
function whose output length is larger than that of the underlying block
cipher to provide sufficient level of collision resistance with the use of an
existing block cipher. This article presents a new mode of double-block
compression function, which is based on the mode proposed by Jonsson
and Robshaw at PKC 2005. The mode can be instantiated with a block
cipher whose key-length is larger than its block-length such as AES-
192/256, PRESENT-128, etc. This article also provides provable security
analyses to an iterated hash function using the proposed mode and the
MDP domain extension. The security properties discussed are collision
resistance, preimage resistance, pseudorandom-function property of the
keyed-via-IV mode, and the indifferentiability from a random oracle.

1 Introduction

Background. A cryptographic hash function transforms strings of arbitrary length
to strings of fixed length. It usually consists of a compression function and do-
main extension. A compression function is a function from strings of fixed length
to strings of fixed smaller length. Domain extension specifies how to process input
strings of arbitrary length using a given compression function. A cryptographic
hash function of this type is called an iterated hash function.

Most of the iterated hash functions are classified into two types according to
their compression-function construction: block-cipher-based and permutation-
based. The methods to construct block-cipher-based compression functions are
further classified into dedicated and using existing block ciphers. The former
includes most of the widely deployed or well-known hash functions such as
MDx [25,26], SHA-x [8], Whirlpool [24] and so on. On the other hand, the
latter attracts some interests as an approach to implement a hash function on
constrained devices [4,27]. This is the topic of this article.

The collision resistance of a hash function producing n-bit digests is at most
O(2n/2) due to the birthday attack. To provide sufficient level of collision resis-
tance with the use of existing block ciphers, it is necessary to construct a com-
pression function whose output length is larger than that of the underlying block
ciphers. There have been several proposals for modes to construct double-block
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compression functions [6,11,13,15]. One line of research is to present a general
model and discuss security properties in a unified way [22]. We are interested in
another line of research: identifying modes of practical interest.

Our Contribution. We first present a mode of compression function based on
the mode proposed by Jonsson and Robshaw [13]. Then, we provide provable
security analyses to an iterated hash function using the proposed compression
function and the MDP domain extension [12] in terms of collision resistance
(CR), preimage resistance (PR), pseudorandomness as a function (PRF), and
indifferentiability from a random oracle (IRO).

CR, PR and IRO are discussed in the ideal cipher model, and PRF is discussed
in the standard model. Birthday-type lower bounds are given to its CR and IRO.
These bounds are optimal up to some constant factors for this kind of iterated
hash functions. A lower bound optimal up to a constant factor is also given to its
PR. The keyed-via-IV (KIV) mode is shown to be a PRF if the underlying block
cipher is a pseudorandom permutation (PRP) under rather mild related-key
attacks.

The proposed mode requires an underlying block cipher with its key length
larger than its block length, which is similar to that of abreast-/tandem-DM [15]
and Hirose mode [11]. The advantage of the proposed mode over them is that
the key input of the underlying block cipher only receives the chaining value. It
prevents attackers from manipulating the key inputs directly. It also enables the
reduction of the PRF property of the hash function to the PRP property of the
underlying block cipher. The advantage of the proposed mode over MDC-2/4 [6]
is that the security reductions are settled and, in particular, optimal security
levels (up to some constants) are achieved for CR, PR and IRO.

Related Work. Security properties such as collision resistance and preimage re-
sistance of existing double-block modes have also been analysed in the ideal
cipher model. Steinberger gave a lower bound on CR of MDC-2 [28], which is
quite lower than the birthday bound. Optimal birthday-type lower bounds were
obtained on CR of abreast-DM and Hirose modes [9,11,16]. A nearly optimal
lower bound was obtained on CR for tandem-DM [19]. Optimal lower bounds
on PR were obtained for abreast-DM, tandem-DM and Hirose modes [1].

Özen and Stam [22] presented a general model of double-block modes using
one or two calls to a 2n-bit-key and n-bit-block block cipher, and discussed CR
and PR of the modes in this model. Strictly, our analysis of CR is not covered
by theirs since our analysis accepts a block cipher with variable-length key.
Furthermore, they discussed neither IRO nor PRF.

There are some proposals to construct double-block iterated hash functions
using a block cipher. Naito [21] proposed a scheme using a 2n-bit-key and n-bit-
block block cipher. He also presented a birthday-type lower bound on IRO of the
hash functions in the ideal cipher model. Kuwakado and Hirose [14] proposed a
scheme suitable for lightweight block ciphers. They discussed the preimage resis-
tance of the hash function and the PRF property of its keyed mode in the stan-
dard model. Lee and Stam [18] recently showed that the iterated hash function
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using the double-block compression function called MJH [17] has asymptotically
optimal collision resistance in the ideal cipher model.

Organization. Section 2 gives some notations and definitions of security prop-
erties used and discussed in the paper. The proposed double-block mode is pre-
sented in Sect. 3. The iterated hash function composed of the compression func-
tion with the MDP domain extension is also presented in this section. Collision
resistance and preimage resistance are discussed in Sect. 4. Pseudorandomness
of the KIV mode is discussed in Sect. 5. IRO is discussed in Sect. 6.

2 Preliminaries

2.1 Notations

Let F (X ,Y) be the set of all functions with domain X and range Y. Let P (X )
be the set of all permutations on X . Let BC(n, κ) be the set of all (n, κ) block
ciphers, where n and κ represent their block size and key size, respectively.

Let Σ = {0, 1}. Let Σ∗ =
⋃∞

i=0 Σ
i, (Σn)+ =

⋃∞
i=1 Σ

ni, and (Σn)≤i =
⋃i

j=0 Σ
nj.

For binary strings x and y, let x‖y be their concatenation. For simplic-
ity, for M1,M2, . . . ,Ml ∈ Σn, M1‖M2‖ · · · ‖Ml will be denoted by M[1,l] or
M1M2 · · ·Ml.

Let φ be the permutation on Σk defined by φ(xL‖xR) = xR‖xL for every xL

and xR in Σk/2.

2.2 Collision Resistance and Preimage Resistance

Let HE be a hash function using a block cipher E. The collision resistance and
preimage resistance of a block-cipher-based hash function are often discussed in
the ideal cipher model [3]. We follow this convention.

In the ideal cipher model, the underlying block cipher E is assumed to be
uniformly distributed over BC(n, κ). An encryption/decryption operation is an
encryption/decryption query to the oracle E. Without loss of generality, it is
assumed that an adversary does not make any query to which it already knows
the answer.

Let A be an adversary trying to find a collision for HE, that is, a pair of
distinct inputs mapped to the same output by HE . The col-advantage of A
against HE is given by

AdvcolHE (A) = Pr[AE = (M,M ′) ∧HE(M) = HE(M ′) ∧M �= M ′] ,

where E is uniformly distributed over BC(n, κ). It is assumed that A makes all
the queries necessary to compute HE(M) and HE(M ′). Let AdvcolHE (q) be the
maximum col-advantage over all adversaries asking at most q queries.
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Let A be an adversary trying to find a preimage of a given output v for HE .
The pre-advantage of A against HE is given by

Advpre
HE (A) = Pr[AE(v) = M ∧HE(M) = v] ,

where E is uniformly distributed over BC(n, κ). It is assumed that A makes
all the queries necessary to compute HE(M). Let AdvpreHE (q) be the maximum
pre-advantage over all adversaries asking at most q queries.

2.3 Pseudorandom Function and Permutation (PRF & PRP)

Let f ∈ F (K×X ,Y) be a keyed function from X to Y with key space K. Let A
be an adversary which has oracle access to a function from X to Y and outputs
0 or 1. The prf-advantage of A against f is given by

Advprff (A) =
∣
∣Pr[AfK = 1]− Pr[Aρ = 1]

∣
∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
F (X ,Y).

Let f ∈ F (K × X ,X ) be a keyed function. Then, the prp-advantage of A
against f is given by

Advprpf (A) =
∣
∣Pr[AfK = 1]− Pr[Aρ = 1]

∣
∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
P (X ).

2.4 PRF & PRP under Related-Key Attacks

The PRF and PRP under related-key attacks are formalized by Bellare and
Kohno [2]. Let Φ ⊂ F (K,K). Let A be an adversary which has oracle access
to g(key(·,K), ·), where g ∈ F (K × X ,Y), K ∈ K and key ∈ F (Φ × K,K)
such that key(ϕ,K) = ϕ(K). A asks a pair of ϕ ∈ Φ and x ∈ X as a query,
and obtains g(ϕ(K), x). For simplicity, g(key(·,K), ·) is denoted by (g,K). The
prf-rka-advantage of A against f ∈ F (K × X ,Y) restricted by Φ is given by

Advprf -rkaΦ,f (A) =
∣
∣
∣Pr[A(f,K) = 1]− Pr[A(ρ,K) = 1]

∣
∣
∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
F (K × X ,Y).

Let P (K×X ,X ) be the set of all keyed permutations on X with key space K.
The prp-rka-advantage of A against f ∈ F (K × X ,X ) restricted by Φ is given
by

Advprp -rka
Φ,f (A) =

∣
∣
∣Pr[A(f,K) = 1]− Pr[A(ρ,K) = 1]

∣
∣
∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
P (K × X ,X ).
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2.5 Indifferentiability from Random Oracle

The notion of indifferentiability is introduced by Maurer et al. [20] as a gen-
eralized notion of indistinguishability. It is tailored to security analysis of hash
functions by Coron et al. [7].

Let C be an algorithm with oracle access to an ideal primitive F . In the
setting of this article, C is an algorithm to construct a hash function using F
with fixed input length. Let H be a variable-input-length (VIL) random oracle
and S be a simulator which has oracle access to H. SH tries to behave like F in
order to convince an adversary that H is CF . Let A be an adversary with access
to two oracles. The indiff-advantage of A against C with respect to S is given
by

AdvindiffC,S (A) =
∣
∣
∣Pr[ACF ,F = 1]− Pr[AH,SH

= 1]
∣
∣
∣ .

3 Construction

Let E ∈ BC(n, k), where k is an even integer such that n ≤ k ≤ 2n. We con-
sider constructions of an iterated hash function with the following compression
function F : Σk ×Σn → Σk based on E:

F (hi,Mi) = trk/2(Ehi(Mi)⊕Mi)‖trk/2(Ehi(σ(Mi))⊕ σ(Mi)) .

σ : Σn → Σn is an involution with no fixed points, that is, σ = σ−1 and
σ(Mi) �= Mi for any Mi ∈ Σn. trk/2 : Σn → Σk/2 outputs k/2 least significant
bits of the input. F is depicted in Fig. 1. It is based on the mode proposed
by Jonsson and Robshaw [13], and its upper or right half has the structure of
the Matyas-Meyer-Oseas (MMO) mode. It can be instantiated with AES with
256-bit or 192-bit key.

MDP [12] is adopted for domain extension. Let π be a permutation on Σk

with at most few fixed points. For 1 ≤ i ≤ N , let Mi ∈ Σn. F ◦
π : Σk × (Σn)+ →

Σk is an iterated hash function such that F ◦
π (IV ,M1‖ · · · ‖MN) = hN , where

h0 = IV is a fixed initial value, hi = F (hi−1,Mi) for 1 ≤ i ≤ N − 1, and
hN = F (π(hN−1),MN ). Notice that h1 = F (π(IV ),M1) if N = 1. For M ∈ Σ∗,
an unambiguous padding function pad : Σ∗ → (Σn)+ is necessary to apply F ◦

π

to M . F ◦
π is illustrated in Fig. 2.

E

E

Mi

hi−1 hi

σ

trk/2

‖
trk/2

Fig. 1. Compression function F

F

M1 MN−1 MN

IV F π F

Fig. 2. Hash function F ◦
π
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4 Collision Resistance and Preimage Resistance

In this section, the collision resistance and preimage resistance of F ◦
π is evaluated

in the ideal cipher model. The followings are assumed here:

– When adversary A makes an encryption query (K,X), A receives Y such
that EK(X) = Y and also gets for free Y ′ = EK(σ(X)).

– When A makes a decryption query (K,Y ), A receivesX such that EK(X) =
Y and also gets for free Y ′ = EK(σ(X)).

4.1 Collision Resistance

The theorem given below implies that the collision resistance of F ◦
π is optimal

up to some constant factor.

Theorem 1. For 1 ≤ q < 2n−1,

AdvcolF◦
π
(q) ≤ q

2k/2(1− q/2n−1)
+

q2 + 2q

2k(1 − q/2n−1)2
.

Example 1. The upper bound of Theorem 1 is 0.5 if q = 2125.7 for (n, k) =
(128, 256) and if q = 294.5 for (n, k) = (128, 192).

It is easy to see that AdvcolF◦
π
(q) ≤ AdvcolF (q) + AdvpreF (q). Upper bounds on

AdvcolF (q) and AdvpreF (q) are given in Lemmas 1 and 2, respectively. The upper
bound on AdvpreF (q) is not so tight but suffices for our purpose.

Lemma 1. For 1 ≤ q < 2n−1,

AdvcolF (q) ≤ q

2k/2(1− q/2n−1)
+

(
q

2k/2(1− q/2n−1)

)2

.

Proof. Let A be any collision-finding adversary against F asking at most q
queries to E. For 1 ≤ i ≤ q, making the i-th query, adversary A obtains some
(Ki, Xi, Yi) and (Ki, σ(Xi), Y

′
i ) such that EKi(Xi) = Yi and EKi(σ(Xi)) = Y ′

i .
Let Wi = trk/2(Yi ⊕Xi)‖trk/2(Y ′

i ⊕ σ(Xi))).
Let Col1,i be the event that Wi = φ(Wi). Let Col2,i be the event that Wi ∈⋃i−1
j=1{Wj , φ(Wj)}. If A succeeds in finding a collision for F just after the i-th

query, then either Col1,i or Col2,i occurs. For the two events,

Pr[Col1,i] ≤
2n−k/2

2n − (2i− 1)
and Pr[Col2,i] ≤

(2n−k/2)22(i− 1)

(2n − (2i− 2))(2n − (2i− 1))
.

The probability that A finds a collision for F is bounded above by

q∑

i=1

(Pr[Col1,i] + Pr[Col2,i]) ≤
2n−k/2q

2n − (2q − 1)
+

(2n−k/2)2q(q − 1)

(2n − (2q − 2))(2n − (2q − 1))

≤ 2n−k/2q

2n − 2q
+

(
2n−k/2q

2n − 2q

)2

.


�
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Lemma 2. For 1 ≤ q < 2n−1,

AdvpreF (q) ≤ 2q

2k(1− q/2n−1)2
.

Proof. Let A be any preimage-finding adversary against F asking at most q
queries to E. For 1 ≤ i ≤ q, making the i-th query, adversary A obtains some
(Ki, Xi, Yi) and (Ki, σ(Xi), Y

′
i ) such that EKi(Xi) = Yi and EKi(σ(Xi)) = Y ′

i .
Let Wi = trk/2(Yi ⊕Xi)‖trk/2(Y ′

i ⊕ σ(Xi))).
Let T be the given digest. Let Prei be the event that Wi = T or φ(Wi) = T .

Then,

Pr[Prei] ≤
(2n−k/2)2 · 2

(2n − (2i− 2))(2n − (2i− 1))
.

The probability that A finds a preimage of T for F is bounded above by

q∑

i=1

Pr[Prei] ≤
(2n−k/2)2 · 2q

(2n − (2q − 2))(2n − (2q − 1))
≤ (2n−k/2)2 · 2q

(2n − 2q)2
.


�

4.2 Preimage Resistance

With the technique of “super query” introduced by [19], it can also be proved
that the preimage resistance of F ◦

π is optimal up to a constant factor in the ideal
cipher model.

Theorem 2.
AdvpreF◦

π
(q) ≤ q

2k−4(1− 21−n)
.

Proof. Let A be any preimage-finding adversary against F asking at most q
queries to E. Here, we call the queries normal queries. It is assumed that, if A
makes 2n−2 normal queries with respect to a key, then it is given for free the
remaining 2n−1 pairs of plaintexts and ciphertexts with respect to the same key.
This event is called a super query.

Let PreN be the event that a preimage is obtained by some normal query. Let
PreS be the event that a preimage is obtained by some super query. Then,

AdvpreF◦
π
(q) ≤ Pr[PreN] + Pr[PreS] .

For PreN, the probability that a preimage is obtained by a normal query is
at most (2n−k/2/2n−1)2 · 2 = 1/2k−3. Since A makes at most q normal queries,
Pr[PreN] ≤ q/2k−3.

On the other hand, for PreS, the probability that a preimage is obtained by
a super query is at most

2n−k/2

2n−1
· 2n−k/2

2n−1 − 1
· 2 · 2n−2 ≤ 2n+1

2k(1 − 21−n)
.

Since A makes at most q/2n−2 super queries, Pr[PreS] ≤ q/(2k−3(1−21−n)). 
�
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5 Keyed Hashing Mode

We consider a keyed hashing mode of F ◦
π : keyed-via-IV (KIV) mode. It is ob-

tained simply by replacing the initial value IV with secret key K, that is,
F ◦
π (K, ·), where K ∈ Σk.
For this mode, it is assumed that the inputs satisfy the following property.

Let M ⊂ (Σn)+ be the domain of the KIV mode of F ◦
π . For any positive integer

l, for any M[1,l] and M ′
[1,l] in M∩ Σnl, Ml �= σ(M ′

l ) if M[1,l−1] = M ′
[1,l−1]. Let

us call this property σ-free. It is easy to see that the KIV mode of F ◦
π cannot be

a PRF if its domain is not σ-free.
The following theorem implies that the KIV mode of F ◦

π is a PRF if E is a
PRP under related-key attacks with respect to Rel = {id , φ, π, π◦φ}, where id is
the identity permutation on Σk. Let Pπ,φ = {x ∈ Σk |π(x) = x∨π(x) = φ(x)}.

Theorem 3. Let A be a prf-adversary against the KIV mode of F ◦
π . Suppose

that the domain of the KIV mode of F ◦
π is σ-free. Suppose that A runs in time

at most τ , and makes at most q queries, and each query has at most � message
blocks. Suppose that q ≤ λ2n/e for some positive constant λ < 1, where e is the
base of the natural logarithm. Then, there exists a prp-rka-adversary B against
E such that

AdvprfF◦
π
(A) ≤ �q · Advprp -rka

Rel,E (B) + � q

(
|Pπ,φ|
2k

+
1

2k/2

)

+
� 2k/2

1− λ

(e q

2n

)2n−k/2+1

.

B makes at most q queries restricted by Rel and runs in time at most τ+O(�qTE),
where TE represents the time required to compute E.

It is easy to make Pπ,φ small. For example, Pπ,φ is empty if π(xL‖xR) =
(xL ⊕ cL)‖(xR ⊕ cR), where xL, xR, cL, cR ∈ Σk/2 and cL and cR are distinct
constants.

The last term of the upper bound in Theorem 3 is Ω(1) for
√
� q = Ω(2n/2)

if k = 2n. If k = 2n − 2c for some constant c, then it is Ω(1) for �1/(2
c+1)q =

Ω(2n/(1+2−c)).
Theorem 3 directly follows from the succeeding three lemmas.
Let A be an adversary with access to m oracles (u1,K1), (u2,K2), . . . ,

(um,Km), where ui ∈ F (K × X ,Y) and Ki ∈ K for 1 ≤ i ≤ m. Each query
by A is directed to just one of the m oracles. Let us define the following nota-
tion: 〈(uj ,Kj)〉mj=1 = (u1,K1), (u2,K2), . . . , (um,Km). The m-prf-rka-advantage
of A against h under Φ-related-key attacks is defined as follows:

Advm-prf-rka
Φ,h (A) =

∣
∣
∣Pr[A〈(h,Kj)〉mj=1 = 1]− Pr[A〈(ρj ,Kj)〉mj=1 = 1]

∣
∣
∣ ,

where Kj ’s are independent random variables uniformly distributed over K, and
ρj ’s are independent random keyed functions uniformly distributed over F (K×
X ,Y).

Lemma 3. Suppose that there are q balls and t bins. Each ball is placed in a
bin chosen independently and uniformly at random. Let m be a positive integer
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and λ be a real such that 0 < e q
m t ≤ λ < 1. Then, some bin contains m or more

balls with probability at most

t

1− λ

( e q

m t

)m

.

Proof. Omitted due to the page limit. 
�

Lemma 4. Let f(K,x) = trk/2(EK(x) ⊕ x). Let A be a prf-adversary against
the KIV mode of F ◦

π . Suppose that the domain of the KIV mode of F ◦
π is σ-free.

Suppose that A runs in time at most τ , and makes at most q queries, and each
query has at most � message blocks. Then, there exists a prf-rka-adversary B
against f with access to q oracles such that

AdvprfF◦
π
(A) ≤ � · Advq- prf -rkaRel,f (B) + � q

(
|Pπ,φ|
2k

+
1

2k/2

)

.

B makes at most q queries restricted by Rel and runs in time at most τ+O(�qTE),
where TE represents the time required to compute E.

Proof. For i ∈ {0, 1, . . . , �} (� ≥ 1), let Ii : (Σ
n)≤� → Σk be a random function

such that

Ii(M[1,l]) =

{
α0(M[1,l]) if 1 ≤ l ≤ i,

F ◦
π (α1(M[1,i]),M[i+1,l]) if i+ 1 ≤ l ≤ � ,

where α0 and α1 are independent and random functions; α0 is uniformly dis-
tributed over F ((Σn)≤i, Σk), and α1 is uniformly distributed over

{α |α ∈ F ((Σn)i, Σk) and α(M[1,i−1]‖σ(Mi)) = φ(α(M[1,i]))} .

Notice that α0 and α1 are independent and random elements uniformly dis-
tributed over Σk if i = 0. Then,

AdvprfF◦
π
(A) =

∣
∣Pr[AI0 = 1]− Pr[AI� = 1]

∣
∣ .

A prf-rka-adversary B with q oracles 〈(uj ,Kj)〉qj=1 is constructed using A as a
subroutine. B first selects i ∈ {1, . . . , �} uniformly at random. Then, B runs A.
B simulates a random function β uniformly distributed over F ((Σn)≤i−1, Σk)

via lazy sampling. B answers to the t-th query of A, M (t) = M
(t)
[1,l], as follows:

1. If 1 ≤ l ≤ i− 1, then B returns β(M (t)).
2. Suppose that i ≤ l ≤ �. Let

p = min
{
t′ | t′ < t ∧

(
M

(t′)
[1,i−1] = M

(t)
[1,i−1] ∨M

(t′)
[1,i−1] = M

(t)
[1,i−2]‖σ(M

(t)
i−1)

)}
.

(a) Suppose that l = i. If p �= ⊥, then B returns

– up(π(Kp),M
(t)
i )‖up(π(Kp), σ(M

(t)
i )) if M

(p)
[1,i−1] = M

(t)
[1,i−1], and
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– up(π(φ(Kp)),M
(t)
i )‖up(π(φ(Kp)), σ(M

(t)
i )) if M

(p)
[1,i−1] =

M
(t)
[1,i−2]‖σ(M

(t)
i−1).

Otherwise, B returns ut(π(Kt),M
(t)
i )‖ut(π(Kt), σ(M

(t)
i )).

(b) Suppose that i+ 1 ≤ l ≤ �. If p �= ⊥, then B returns

– F ◦
π (up(Kp,M

(t)
i )‖up(Kp, σ(M

(t)
i )),M

(t)
[i+1,l]) if M

(p)
[1,i−1] = M

(t)
[1,i−1],

and
– F ◦

π (up(φ(Kp),M
(t)
i )‖up(φ(Kp), σ(M

(t)
i )),M

(t)
[i+1,l]) if M

(p)
[1,i−1] =

M
(t)
[1,i−2]‖σ(M

(t)
i−1).

Otherwise, B returns F ◦
π (ut(Kt,M

(t)
i )‖ut(Kt, σ(M

(t)
i )),M

(t)
[i+1,l]).

Now, suppose that B is given oracles 〈(f,Kj)〉qj=1, whereKj ’s are independent

random variables uniformly distributed over Σk. Then,

up(π(Kp),M
(t)
i )‖up(π(Kp), σ(M

(t)
i )) = F ◦

π (Kp,M
(t)
i )

up(π(φ(Kp)),M
(t)
i )‖up(π(φ(Kp)), σ(M

(t)
i )) = F ◦

π (φ(Kp),M
(t)
i )

and

F ◦
π (up(Kp,M

(t)
i )‖up(Kp, σ(M

(t)
i )),M

(t)
[i+1,l]) = F ◦

π (Kp,M
(t)
[i,l])

F ◦
π (up(φ(Kp),M

(t)
i )‖up(φ(Kp), σ(M

(t)
i )),M

(t)
[i+1,l]) = F ◦

π (φ(Kp),M
(t)
[i,l]) .

Therefore, we can say that A has oracle access to Ii−1, and

Pr
[
B〈(f,Kj)〉qj=1 = 1

]
=

1

�

�∑

i=1

Pr[AIi−1 = 1] .

Next, suppose that B has oracle access to 〈(ρj ,Kj)〉qj=1, where ρj ’s are inde-

pendent random functions uniformly distributed over F (Σk × Σn, Σk/2), and
Kj’s are independent random variables uniformly distributed over Σk. Since the
domain of F ◦

π is σ-free, B can successfully simulate Ii to A if φ(Kj) �= Kj and
{π(Kj), π(φ(Kj))} ∩ {Kj, φ(Kj)} is empty for every 1 ≤ j ≤ q. Let Bad be the
event that φ(Kj) = Kj or {π(Kj), π(φ(Kj))} ∩ {Kj, φ(Kj)} is not empty for
some j. Then,

Pr
[
B〈(ρj ,Kj)〉qj=1 = 1

]

= Pr[¬Bad] Pr
[
B〈(ρj ,Kj)〉qj=1 = 1

∣
∣
∣¬Bad

]
+ Pr

[
Bad ∧B〈(ρj ,Kj)〉qj=1 = 1

]

=
Pr[¬Bad]

�

�∑

i=1

Pr[AIi = 1] + Pr
[
Bad ∧B〈(ρj ,Kj)〉qj=1 = 1

]

=
1

�

�∑

i=1

Pr[AIi = 1]− Pr[Bad]

�

�∑

i=1

Pr[AIi = 1] + Pr
[
Bad ∧B〈(ρj ,Kj)〉qj=1 = 1

]
.
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From the discussions above,

Advq- prf -rkaRel,f (B) =
∣
∣
∣Pr

[
B〈(f,Kj)〉qj=1 = 1

]
− Pr

[
B〈(ρj ,Kj)〉qj=1 = 1

]∣
∣
∣

≥ 1

�

∣
∣Pr[AI0 = 1]− Pr[AI� = 1]

∣
∣− Pr[Bad]

=
1

�
AdvprfF◦

π
(A)− Pr[Bad] .

Thus,

AdvprfF◦
π
(A) ≤ � ·Advq- prf -rkaRel,f (B) + � · Pr[Bad]

≤ � ·Advq- prf -rkaRel,f (B) + � q

(
|Pπ,φ|
2k

+
1

2k/2

)

.

B makes at most q queries and runs in time at most τ +O(�qTE). 
�

Lemma 5. Let f(K,x) = trk/2(EK(x)⊕x). Let A be a prf-rka-adversary against
f with m oracles. Suppose that A runs in time at most τ and makes at most
q queries restricted by Rel. Suppose that q ≤ λ2n/e for some positive constant
λ < 1. Then, there exists a prp-rka-adversary B against E such that

Advm- prf -rka
Rel,f (A) ≤ m · Advprp -rka

Rel,E (B) +
2k/2

1− λ

(e q

2n

)2n−k/2+1

.

B makes at most q queries restricted by Rel and runs in time at most τ+O(q TE),
where TE represents the time required to compute E.

Proof. Let K1, . . . ,Km be independent random variables uniformly distributed
over Σk. Let ρ1, . . . , ρm be independent and random keyed functions uniformly
distributed overF (Σk×Σn, Σk/2). Let�1, . . . , �m be independent randomkeyed
permutations uniformly distributed over P (Σk × Σn, Σn), and let �̃j(·, x) =
trk/2(�j(·, x) ⊕ x) for 1 ≤ j ≤ m. Then,

Advm- prf -rka
Rel,f (A) ≤

∣
∣
∣Pr

[
A〈(f,Kj)〉mj=1 = 1

]
− Pr

[
A〈(�̃j ,Kj)〉mj=1 = 1

]∣
∣
∣+

∣
∣
∣Pr

[
A〈(�̃j ,Kj)〉mj=1 = 1

]
− Pr

[
A〈(ρj ,Kj)〉mj=1 = 1

]∣
∣
∣ .

LetOi bem oracles such that (f,K1), . . . , (f,Ki), (�̃i+1,Ki+1), . . . , (�̃m,Km)
for 0 ≤ i ≤ m. Notice that O0 = 〈(�̃j ,Kj)〉mj=1 and Om = 〈(f,Kj)〉mj=1.

A prp-rka-adversary B is constructed using A as a subroutine. The algorithm
of B with an oracle (u,K) is given below, where u is either E or �. � is a
random keyed permutation uniformly distributed over P (Σk ×Σn, Σn), and K
is a random variable uniformly distributed over Σk.

1. selects i from {1, 2, . . . ,m} uniformly at random.
2. runs A with oracles (f,K1), . . . , (f,Ki−1), (ũ,K), (�̃i+1,Ki+1), . . . ,

(�̃m,Km) by simulating (f,K1), . . . , (f,Ki−1), and (�̃i+1,Ki+1), . . . ,
(�̃m,Km), where ũ(·, x) = trk/2(u(·, x) ⊕ x).
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3. outputs A’s output.

Then,

Pr
[
B(E,K) = 1

]
=

1

m

m∑

i=1

Pr
[
AOi = 1

]

and

Pr
[
B(�,K) = 1

]
=

1

m

m−1∑

i=0

Pr
[
AOi = 1

]
.

Thus,

Advprp -rka
Rel,E (B) =

1

m

∣
∣Pr

[
AOm = 1

]
− Pr

[
AO0 = 1

]∣
∣ .

B makes at most q queries and runs in time at most τ +O(q TE).
It is possible to distinguish �̃j and ρj only by the fact that there may be

(2n−k/2 + 1)-collision for ρj(·, x) ⊕ x. Thus, since A makes at most q queries,

∣
∣
∣Pr

[
A〈(�̃j ,Kj)〉mj=1 = 1

]
− Pr

[
A〈(ρj ,Kj)〉mj=1 = 1

]∣
∣
∣ ≤

2k/2

1− λ

(e q

2n

)2n−k/2+1

,

which follows from Lemma 3. 
�

5.1 An Example of Padding for σ-Free Inputs

In this subsection, σ is assumed to be a permutation onΣn such that σ(x) = x⊕c
for some non-zero constant c. The permutation is denoted by σc.

Let pad be a padding function such that

pad(M) = M‖10d+n/2‖lenn/2(M) ,

where d is a minimum non-zero integer such that |M |+ d ≡ n− 1 (mod n), and
lenn/2(M) is the n/2-bit binary representation of |M |. It is easy to see that pad

is σc-free if, for example, c = 1n/2‖0n/2.

6 Indifferentiability from Random Oracle

We show that F ◦
π is indifferentiable from a VIL random oracle in the ideal cipher

model with pad and σc given in the previous section.

Theorem 4. Let E ∈ BC(n, k). Let Pπ be the set of fixed points of π. Let A be
an adversary that asks at most qV queries to the VIL oracle, qe queries to the
encryption oracle and qd queries to the decryption oracle. Let � be the maximum
number of message blocks in a VIL query. Suppose that q = �qV + qe + qd <
2n−1/3. Then, in the ideal cipher model, AdvindiffF◦

π ,S (A) is bounded from above by

q

2k/2(1 − 3q/2n−1)
+
9q2 + 2(|Pπ | − 1)q

2k(1− 3q/2n−1)2
+

q2

4(2k − 2k/2 − 6q − |Pπ |+ 4)
+

q

2n−1
,

where the simulator S is given in Figure 3. S makes at most 2(qe + qd) queries
and runs in time O((qe + qd)

2).
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Proof. Omitted due to the page limit. 
�

Theorem 4 implies that the query complexity to differentiate F ◦
π from a VIL

random oracle is Ω(min{2k/2, 2n}), which is optimal up to a constant factor.

Example 2. The upper bound of Theorem 4 is 0.5 if q = 2124.3 for k = 256 and
if q = 293.5 for k = 192. Though IRO implies CR, Theorem 1 gives a slightly
better bound for CR than Theorem 4.

The simulator S given in Figure 3 simulates the ideal cipher by lazy evaluation.
P(s) (C(s)) is the set of plaintexts (ciphertexts) which are available for the reply
to the current query with the key s. Es(x) and Ds(x) are ⊥ for any s ∈ Σk

and x ∈ Σn initially. They get defined by the queries of the adversary and the
corresponding oracle replies. V is the set of the keys in the queries so far.

The simulator keeps a tree, which initially consists of the root IV . T is the
set of the nodes in the tree so far. During the simulation, for example, new nodes
F (s, x) = t0‖t1 and F (s, σ(x)) = t1‖t0 are created by an encryption query (s, x)

if s ∈ T , and they augment the tree together with the edges s
x−→ t0‖t1 and

s
σ(x)−→ t1‖t0.
The procedure extend(s) uses the VIL random oracleH and evaluates F ◦

π (IV , ·)
for the message, if any, corresponding to the path in the tree from the root IV
to s such that s is the chaining value fed into final F through π. Owing to the
padding pad, the message is unique if it exists. The procedure path(s) returns
the message. lb(M̃) is the last block of pad(M̃). fhalf and shalf give the first
half and the second half of the input string, respectively.

7 Implementation

We implemented the proposed compression function by instantiating the ideal
cipher E with AES-192 or AES-256. The involution σ was defined with the
bitwise complement of the first byte of Mi. The throughput of the compression
function was measured on the Intel Core i7-2600S, the Intel Core i7-2600, and
the Intel Core i7-2720QM, which support the AES instruction set (AES-NI). The
GNU Compiler Collection version 4.4.5 or 4.4.6 was used for code compilation.
The result is shown in Table 1. In the serial implementation, after the topside
encryption is finished, the downside encryption is performed. In the pipelined
implementation, each round of two encryption functions is interleaved. In both
of implementations, the key schedule is performed only once. The throughput
of our hash function will approach asymptotically to these values for sufficiently
large data.

The result showed that the pipelined implementation was better. The In-
tel manual [10] recommends to process 4 or 8 blocks in parallel for optimized
throughput since the hardware that supports the four AES round instructions
is pipelined. Bos et al. [5] pointed out that constructions such as the DM con-
struction gave an advantage on exploiting such a hardware feature. Our hash
function can also gain the benefit of the hardware feature by interleaving each
round of two encryption functions.
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Initialize:

1: V ← ∅; T ← {IV }; P(s) ← Σn; C(s) ← Σn;

Interface E(s, x):
300: if Es(x) = ⊥ then
310: if s ∈ T then
320: Es(x)

$← C(s); Es(σ(x)) $← C(s) \ {Es(x)};
330: t0 ← trk/2(Es(x)⊕ x); t1 ← trk/2(Es(σ(x))⊕ σ(x));
331: if t0 = t1 ∨ {t0‖t1, t1‖t0} ∩B 
= ∅ then abort;

340: T ← T ∪ {t0‖t1, t1‖t0};
341: extend(t0‖t1); extend(t1‖t0);
350: else
360: Es(x)

$← C(s); Es(σ(x)) $← C(s) \ {Es(x)};
370: V ← V ∪ {s}; P(s) ← P(s) \ {x, σ(x)}; C(s) ← C(s) \ {Es(x), Es(σ(x))};
380: return Es(x);

Interface D(s, x):

500: if Ds(x) = ⊥ then
510: if s ∈ T then
520: Ds(x)

$← P(s); Es(σ(Ds(x)))
$← C(s) \ {x};

530: t0 ← trk/2(Ds(x)⊕ x); t1 ← trk/2(σ(Ds(x))⊕ Es(σ(Ds(x))));
531: if t0 = t1 ∨ {t0‖t1, t1‖t0} ∩B 
= ∅ then abort;

540: T ← T ∪ {t0‖t1, t1‖t0};
541: extend(t0‖t1); extend(t1‖t0);
550: else
560: Ds(x)

$← P(s); Es(σ(Ds(x)))
$← C(s) \ {x};

570: V ← V∪{s}; P(s) ← P(s)\{Ds(x), σ(Ds(x))}; C(s) ← C(s)\{x, Es(σ(Ds(x)))};
580: return Ds(x);

Subroutine extend(s):

700: s̃ ← π(s); M̃ ← path(s̃); x ← lb(M̃);
710: if x 
= ⊥ ∧ Es̃(x) = ⊥ then � if M̃ exists

720: t′0
$← Σn−k/2; t′1

$← Σn−k/2;
721: t0 ← t′0‖fhalf(H(M̃)); t1 ← t′1‖shalf(H(M̃));
722: Es̃(x) ← t0 ⊕ x; Es̃(σ(x)) ← t1 ⊕ σ(x);
723: if Es̃(x) = Es̃(σ(x)) ∨ {Es̃(x), Es̃(σ(x))} 
⊂ C(s̃) then abort;

730: V ← V ∪ {s̃}; P(s̃) ← P(s̃) \ {x, σ(x)}; C(s̃) ← C(s̃) \ {Es̃(x), Es̃(σ(x))};

Fig. 3. Pseudocode for the simulator S. B = V ∪ T ∪ π−1(V ∪ T ) ∪ π(T ) ∪ Pπ.
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Table 1. Throughput [cycles/byte]

k 192 256

Core i7 2600S 2600 2720QM 2600S 2600 2720QM

serial 7.07 8.43 6.44 9.07 11.09 8.21

pipelined 6.44 8.06 5.84 8.00 9.80 7.26
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