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Abstract. Cryptographic pseudorandom generators (PRGs) can reduce
the randomness complexity of computationally secure schemes. Nuida
and Hanaoka (IEEE Trans. IT 2013) developed a security proof tech-
nique against computationally unbounded adversaries under the use of
cryptographic PRGs. However, their proof assumed unproven hardness
of the underlying problem for the cryptographic PRG. In the paper, we
realize a fully unconditional security proof, by extending the previous re-
sult to “non-cryptographic” PRGs such as the one by Impagliazzo, Nisan
and Wigderson (STOC 1994) based on graph theory rather than one-way
functions. In fact, our proof technique is effective only for some restricted
class of schemes; then we also propose a “dual-mode” modification of the
PRG to prove computational security even for schemes outside the class,
while keeping the unconditional security for schemes in the class.
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1 Introduction

Cryptographic pseudorandom generators (PRGs) can generate randomness for
computationally secure schemes. On the other hand, when the original scheme
is information-theoretically secure, it was expected that the security is degraded
to computational. Recently, Nuida and Hanaoka [14] developed a security proof
technique under the use of a cryptographic PRG, where the computational power
of adversaries are not assumed to be bounded. However, their proof still assumed
the unproven hardness of an underlying computational problem for the PRG (e.g.,
the hardness of the Decisional Diffie–Hellman (DDH) problem, for the PRG in
[4] used in the numerical example of [14]). The aim of the work is to remove the
latter kind of assumptions, realizing a fully unconditional security proof.

1.1 Our Contributions

In the paper, we remove the unproven assumptions in the previous result and
realize a fully unconditional security, by extending the result in [14] to “non-
cryptographic” PRGs. We use the PRG by Impagliazzo, Nisan and Wigderson
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[7], hereafter called an INW PRG, whose indistinguishability is based on un-
conditionally provable graph-theoretic properties rather than one-way functions
associated to cryptographic PRGs.

In fact, our proof technique (as well as the previous result in [14]) is effec-
tive only for some restricted class of schemes, and no security is guaranteed for
schemes outside the class. To resolve the issue, we also propose a technique of
combining the INW PRG with a cryptographic PRG, in such a way that the
security under the use of the resulting PRG is at least computational even for
schemes outside the class, while the unconditional security is kept for schemes in
the class. We call the resulting PRG a dual-mode PRG. Such a hybrid property is
also potentially useful when the security notion for the original scheme involves
both information-theoretically secure parts and computationally secure parts.

One may feel that, whenever the randomness complexity of an information-
theoretically secure scheme can be reduced by our technique using the INW
PRGs, the randomness complexity could also be reduced by modifying the indi-
vidual scheme directly. We emphasize that, even if it is true, our result provides
a unified way to reduce the randomness complexity, hence is still meaningful.

1.2 Related Work

Dubrov and Ishai (Sect. 3.2.1 of [3]) also mentioned that the randomness com-
plexity of some cryptographic processes can be unconditionally decreased by
using PRGs proposed in the same paper. However, the possible applications of
their result are restricted in comparison to our result; indeed, their result only
corresponds to Theorem 1 in the paper, but not to more general Theorem 2.

Our construction of dual-mode PRGs has in fact a flavor similar to several
“indistinguishability amplification” results such as Yao’s XOR lemma (e.g., [10]).
However, in contrast to those quantitative security improvements, our dual-mode
PRGs focus on qualitative properties (i.e., hybrid security property).

1.3 Organization of the Paper

In Sect. 2, we summarize the proof technique of the previous work [14] and its
problem, and then propose a solution by using the INW PRG. In Sect. 3, we
summarize the construction and properties of the INW PRGs. In Sect. 4, we
give a numerical example of our result. In Sect. 5, we propose the dual-mode
PRGs. Finally, in Sect. 6, we discuss other potential applications of our proposed
techniques. See the full version of the paper for some omitted details.

1.4 Notations and Terminology

A directed edge of an (undirected) graph is an edge, with distinction of the two
end vertices as the source and the destination. We say that a graph is δ-regular,
if each vertex is adjacent to precisely δ edges. For a binary rooted tree T , let
r(T ), V (T ) and L(T ) denote the root of T , the set of vertices of T , and the set



How to Use Pseudorandom Generators in Unconditional Security Settings 293

of leaves of T ordered from left to right, respectively. For each v ∈ V (T ), let
v↑, v← and v→ denote its parent vertex, left child vertex and right child vertex
(if exist), respectively. For two random variables R1,R2, let Δ(R1,R2) denote
their statistical distance; Δ(R1,R2) := (1/2)

∑
x |Pr[x ← R1] − Pr[x ← R2]|.

For any map F , let [F ] denote an algorithm to compute the value of F .

2 A Framework for Our Unconditional Security Proof

Here we explain the previous proof technique in [14] on which our result is based.
We consider the following abstract security game for a cryptographic scheme:

1. The challenger generates an object α by using an output of a random source
r ← R. We denote the function to compute α by F1; i.e., F1(r) = α.

2. The adversary obtains some information β ∈ B on α and give it to the attack
algorithm A. We denote the function to compute β by F2; i.e., F2(α) = β.
Then the adversary sends the output γ ∈ C of A(β) to the challenger.

3. The challenger decides, from γ and α, whether the adversary wins or not.
We denote the function to make the decision by F3; i.e., F3(α, γ) = 1 if the
adversary wins, and F3(α, γ) = 0 otherwise.

The success probability of the adversary’s attack (i.e., the winning probability
of the adversary in the game above) relative to random source R is defined by

SuccA,R := Pr
r←R

[α = F1(r); β = F2(α); γ ← A(β); δ = F3(α, γ) : δ = 1]

= Pr
r←R

[β = F2(F1(r)); γ ← A(β); δ = F3(F1(r), γ) : δ = 1] .

Let RU denote the uniformly random source, and let RP denote the output
distribution of a given PRG. We suppose that the scheme is secure if RU is
used, i.e., SuccA,RU is sufficiently small for any possible attack algorithm A.
Our goal here is to prove that the scheme is still secure if the PRG RP is
used; i.e., SuccA,RP is sufficiently small. For the purpose, it suffices to show that
|SuccA,RU − SuccA,RP | is sufficiently small for any possible A. For each β0 ∈ B
and γ0 ∈ C, let Fβ0,γ0 denote the map with input r that outputs 1 if F2(F1(r)) =
β0 and F3(F1(r), γ0) = 1, and outputs 0 otherwise. Then the argument in [14]
implies that SuccA,R =

∑
β0∈B, γ0∈C Pr[γ0 ← A(β0)] Pr[Fβ0,γ0(R) = 1] and

|SuccA,RU − SuccA,RP |
≤

∑

β0∈B, γ0∈C

Pr[γ0 ← A(β0)]
∣
∣
∣Pr[Fβ0,γ0(RU ) = 1]− Pr[Fβ0,γ0(RP ) = 1]

∣
∣
∣ .

Now we introduce the following two conditions, where we fix values T and ε:

Condition 1. The PRG is indistinguishable in the following sense; if the com-
plexity of an algorithm D with 1-bit output is bounded by T , then we have

Δ(D(RU ),D(RP )) =
∣
∣
∣Pr[D(RU ) = 1]− Pr[D(RP ) = 1]

∣
∣
∣ ≤ ε .
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Condition 2. The map Fβ0,γ0 for any β0 ∈ B and γ0 ∈ C above satisfies that
the complexity of the algorithm [Fβ0,γ0 ] is bounded by T .

Note that these two conditions are independent of the choice of the adversary’s
attack algorithm A; e.g., A may have unbounded complexity. From now, suppose
that the two conditions above are satisfied. Then we have the following bound:

|SuccA,RU − SuccA,RP | ≤
∑

β0∈B, γ0∈C

Pr[γ0 ← A(β0)] · ε

= ε
∑

β0∈B

∑

γ0∈C

Pr[γ0 ← A(β0)] = ε
∑

β0∈B

1 = |B| · ε ,
(1)

which is independent of the attack algorithm A, and is effective if |B| · ε is
sufficiently small (note that |B| depends heavily on the individual scheme).

2.1 Our First Contribution: Using “Non-Cryptographic” PRGs

We point out that, the argument in [14] supposed to use cryptographic PRGs
against distinguishers with bounded time complexity; consequently, Condition
1 requires some unproven assumptions (cf., P=NP? Problem), though (1) itself
was derived without any assumptions on the complexity of the attack algorithm
A. In other words, the security proof in [14] will be ineffective if an efficient
algorithm to distinguish the cryptographic PRG from random is found.

To resolve the issue, we use “non-cryptographic” PRGs (less frequently used in
cryptography), especially the one by Impagliazzo, Nisan and Wigderson [7] based
on expander graphs, hereafter called an INW PRG. The underlying complexity
measure is close to the space complexity rather than the time complexity, and
the hardness to distinguish the PRG from random is unconditionally provable by
graph-theoretic facts. Now Condition 1 becomes provable as well, therefore our
security proof under the use of the PRG is also made unconditional.

3 Impagliazzo–Nisan–Wigderson PRG

In the section, we summarize the construction and properties of the INW PRGs
denoted by GINW. Let �INW denote its seed length. The output set of GINW

is R =
∏

v∈L(T ) Rv where Rv is some set indexed by the leaves v of a binary

rooted tree T . For each v ∈ V (T ) \ L(T ), let Γv be a δv-regular graph with νv
vertices, and define Rv to be the set of the directed edges of Γv (δvνv edges in
total). See Sect. 1.4 for some notations. We say that a map f : X → Y is most
balanced, if |f−1(y1)| − |f−1(y2)| ∈ {−1, 0, 1} for any y1, y2 ∈ Y . Then for each
v ∈ V (T ) \ L(T ), we define a map GINW

v : Rv → Rv← × Rv→ in the following
manner. Given a directed edge xv ∈ Rv of Γv, let yv← and yv→ denote its source
and destination vertices, respectively. Then we map yv← and yv→ to an element
xv← ∈ Rv← and an element xv→ ∈ Rv→ by fixed, most balanced maps V (Γv) →
Rv← and V (Γv) → Rv→ , respectively. Now we define GINW

v (xv) := (xv← , xv→).
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Then GINW is constructed as follows. Given a seed s ∈ {0, 1}�INW , first we map
s to an element xr(T ) ∈ Rr(T ) by a fixed, most balanced map {0, 1}�INW →
Rr(T ). Secondly, we determine the elements xv ∈ Rv for v ∈ V (T ) \ {r(T )} by
successively applying the maps GINW

u for u ∈ V (T ) \L(T ) in an ascending order
with respect to the depth of u. Finally, we define GINW(s) := (xv)v∈L(T ) ∈ R.

To evaluate the indistinguishability of the INW PRG quantitatively, here we
fix a concrete computational model associated to the tree T as follows:

– In the model, an algorithm is equipped with a common memory M which
can take one of |M | possible states, as well as a processor associated to each
leaf of T (identified with the leaf itself) that has unbounded computational
power and unbounded local memory. Given an input r = (rv)v∈L(T ) for the
algorithm, the component rv is distributed to v ∈ L(T ) at the beginning.

– The execution of the algorithm consists of μ rounds, where μ is a parameter.
For each round, the first (leftmost) leaf is activated first, and each leaf is
activated after the execution of the previous leaf ends. Each leaf first reads
the current state of the common memory M , decides the new memory state
by using the current state of M and the local memory state of the leaf, and
updates the state of M accordingly (the local memory state is also updated).

– Finally, after the final round ends, the output of the algorithm is decided
according to the final state of the common memory M .

The adjacency matrix of graph Γv is a symmetric {0, 1}-matrix of size νv,
where the (i, j)-entry is 1 if and only if the i-th and the j-th vertices of Γv

are adjacent. Since Γv is a δv-regular graph, if we order the eigenvalues of the
adjacency matrix as λ1 ≥ λ2 ≥ · · · ≥ λνv , then λ1 = δνv . Now we define
λ(Γv) := max{|λ2|, |λνv |}. On the other hand, it is known that, for any integers
n,m ≥ 1, the statistical distance between the uniform random variable on [m] :=
{1, . . . ,m} and the output of any most balanced map [n] → [m] with uniformly
random input is ρ(n,m) := (n mod m) · (m− (n mod m))/(nm), where (n mod
m) is the remainder of n modulo m (see Lemma VI.1 of [14]). Now we have
the following results (whose proofs are similar to the original paper [7] and are
omitted due to the page limitation; see the full version for details):

Theorem 1. Let RU denote the uniform distribution on R, and let RP denote
the output distribution of GINW with uniformly random seed s ∈ {0, 1}�INW. Then
for any algorithm D described in the computational model above, we have

Δ(D(RU ),D(RP )) ≤ |M |μ
∑

v∈V (T )\L(T )

λ(Γv)

2δv
+Δdist ,

Δdist := ρ(2�INW , νr(T )δr(T )) +
∑

v∈V (T )\L(T )
v �=r(T )

ρ(νv↑ , νvδv) +
∑

v∈L(T )

ρ(νv↑ , |Rv|) .

Theorem 2. Let RU and RP be as in Theorem 1. In the situation of Sect. 2,
suppose that the algorithm [Fβ0,γ0 ] can be described in the computational model
above with common memories of size bounded by |M | and at most μ rounds
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Table 1. Comparison of seed lengths (here “Our result” shows the seed lengths by our
result; “Plain” shows the originally used random bits; “[14]” shows the seed lengths in
the previous result [14]; and the approximate values are written in scientific E notation)

N 103 104 105 106 107 108 109

m 614 702 789 877 964 1052 1139

Plain 9.21E6 1.05E8 1.18E9 1.31E10 1.44E11 1.57E12 1.70E13

[14] 6.87E6 9.72E6 1.33E7 1.75E7 2.25E7 2.83E7 3.51E7

Our result 3.09E5 4.90E5 6.65E5 8.67E5 1.14E6 1.40E6 1.68E6

for any β0 ∈ B and γ0 ∈ C. Then, without any assumption on hardness of
computational problems nor on the complexity of the algorithm A, we have the
following, where Δdist is defined as in Theorem 1:

|SuccA,RU − SuccA,RP | ≤ |B| ·
⎛

⎝|M |μ
∑

v∈V (T )\L(T )

λ(Γv)

2δv
+Δdist

⎞

⎠

We note that the bounds in Theorems 1 and 2 become better when λ(Γv)
becomes smaller. A graph Γv is called a Ramanujan graph, if λ(Γv) ≤ 2

√
δv − 1;

this is known to almost attain the theoretical lower bound of λ(Γv) (see e.g.,
Sect. 5.3 of [6]). For example, we can use Ramanujan graphs given by a part of
the result by Morgenstern [12] (see the full version of the paper for details):

Proposition 1 ([12]). For any positive integers L,D, there is an explicit con-
struction of a (2D + 1)-regular Ramanujan graph with 26DL − 22DL vertices.

4 Example: Collusion-Secure Codes

In the section, we give a numerical example of our technique applied to a
collusion-secure code in [13] (with the number c = 3 of corrupted users), which is
the same as the example in [14] and has information-theoretic security. Roughly
speaking, in the abstract security game in Sect. 2, α is the collection of m-bit
words, one per each of the N users; β is the collection of the three words for
the corrupted users; γ is a word of length m on an expanded alphabet {0, 1, ?},
where ‘?’ means a bit erasure; and F3(α, γ) = 1 if and only if the “most suspi-
cious” user determined from α and γ is not a corrupted user. See the numerical
example in [14] for details. Then an analysis shows that, to bound the difference
|SuccA,RU − SuccA,RP | by a value εdiff , the seed length for the INW PRG be-
comes �INW ∼ 12 log2 N(log2 N + 4m+ log2(1/εdiff)) when N → ∞ (see the full
version of the paper), while �org := 15mN+m random bits are originally used in
total. On the other hand, for the choices of εdiff := 10−6 and other parameters as
the numerical example in [14], the seed lengths �INW are calculated as in Table
1. This table shows that our seed lengths are much shorter than the originally
required random bits and also significantly smaller than those in [14].
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5 Our Second Contribution: Dual-Mode PRGs

We note that, in the situation of Sect. 2, no security is guaranteed if the set B
(hence the right-hand side of (1)) is too large (though (1) itself holds uncondi-
tionally). To resolve the issue, in the section we propose a technique to modify
the INW PRG in such a way that, by using the resulting PRG, the information-
theoretic security is kept if B is sufficiently small, while at least computational
security is guaranteed even if B is too large. For two random variables R1,R2

on the output set R of the INW PRG GINW, let R1 ∗ R2 denote the random
variable on R computing the component-wise group operation ∗ for values of R1

and R2. We call RP ∗ RC the dual-mode PRG, where RC denotes the output
distribution of a cryptographic (computationally secure) PRG Gcomp. Then we
have the following result (deduced from the fact that both RU ∗RC and RP ∗RU

are identical to RU ; see the full version of the paper for details):

Theorem 3. Under the same assumptions as Theorem 2, we have:

– The value |SuccA,RU − SuccA,RP ∗RC | satisfies the same inequality as the
value |SuccA,RU − SuccA,RP | in Theorem 2.

– Suppose that the maps F1, F2 and F3 in Sect. 2, GINW and the operator ∗
in R are all polynomial-time computable. Then |SuccA,RU − SuccA,RP ∗RC |
is negligible for any probabilistic polynomial-time algorithm A.

As an example, we apply the dual-mode PRG to Shamir’s k-out-of-n secret
sharing scheme [17] over the field Fq. Let k′, 1 ≤ k′ < k, denote the number
of corrupted users. Then an analysis (see the full version of the paper) shows
that, to bound the bias of the k′ corrupted shares from uniform by εdiff = k−ω(1)

(negligible in k), the seed length for the part GINW of the dual-mode PRG is

�INW ∼ 12 log2 k(k
′ log2 q + ω(1) log2 k) (when k → ∞) ,

having lower order than the number �org ∼ k log2 q of the originally used ran-
dom bits if k′ = o(k/ log2 k). Now the corrupted shares are statistically close to
uniform (information-theoretic security) when at most k′ users are corrupted,
while these are computationally indistinguishable from uniform (at least compu-
tational security) even if more than k′ (and at most k − 1) users are corrupted.

6 Other Potential Applications

Finally, in this section, we discuss a possible application of our result to lossy en-
cryption [1,9,15] with small randomness space. In [5], Hemenway and Ostrovsky
showed that any lossy encryption scheme for which the randomness space for
encryption is smaller than the plaintext space can be converted into a (slightly)
lossy trapdoor function (e.g., [16]); and the latter is further converted (via other
results in [8,11]) into various cryptographic primitives such as CCA-secure en-
cryption and adaptive trapdoor functions. However, construction of such schemes
with small randomness spaces is difficult; the only known construction so far (to
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the author’s best knowledge) is the one based on the Damg̊ard–Jurik cryptosys-
tem [2]. Indeed, since the ciphertexts under a lossy key should be statistically
indistinguishable, a naive strategy of reducing the randomness space by crypto-
graphic PRGs is not effective. The author hopes that our unconditional proof
technique using “non-cryptographic” PRGs is effective to resolve the problem;
a detailed study is a future research topic.
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