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Abstract. We present a generic method for turning passively secure
protocols into protocols secure against covert attacks. The method adds
a post-execution verification phase to the protocol that allows a misbe-
having party to escape detection only with negligible probability. The
execution phase, after which the computed protocol result is already
available for parties, has only negligible overhead added by our method.
The checks, based on linear probabilistically checkable proofs, are done in
zero-knowledge, thereby preserving the privacy guarantees of the original
protocol. Our method is inspired by recent results in verifiable computa-
tion, adapting them to multiparty setting and significantly lowering their
computational costs for the provers.
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1 Introduction

Any multiparty computation can be performed in a manner that the participants
only learn their own outputs and nothing else [24]. While the generic construc-
tion is expensive in computation and communication, the result has sparked
research activities in secure multiparty computation (SMC), with results that
are impressive both performance-wise [9, 11, 17, 20], as well as in the variety of
concrete problems that have been tackled [10, 14, 16, 21]. From the start, two
kinds of adversaries — passive and active — have been considered in the con-
struction of SMC protocols, with highest performance and the greatest variety
achieved for protocol sets secure only against passive adversaries.

Verifiable computation (VC) [22] allows a weak client to outsource a compu-
tation to a more powerful server that accompanies the computed result with a
proof of correct computation, the verification of which by the client is cheaper
than performing the computation itself. VC could be used to strengthen proto-
cols secure against passive adversaries— after executing the protocol, the parties
could prove to each other that they have correctly followed the protocol. If the
majority of the parties are honest (an assumption which is made also by the
most efficient SMC protocol sets secure against passive adversaries), then the
resulting protocol would satisfy a strong version of covert security [2], where any
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deviations from the protocol are guaranteed to be discovered and reported. Un-
fortunately, existing approaches to VC have a large computational overhead for
the server/prover. Typically, if the computation is represented as an arithmetic
circuit C, the prover has to perform Ω(|C|) public-key operations in order to
ensure its good behaviour, as well as to protect its privacy.

In this paper we show that in the multiparty context, with an honest majority,
these public-key operations are not necessary. Instead, the verifications can be
done in distributed manner, in a way that provides the same security properties.
For this, we apply the ideas of existing VC approaches based on linear proba-
bilistically checkable proofs (PCPs) [25], and combine them with linear secret
sharing, which we use also for commitments. We end up with a protocol transfor-
mation that makes the executions of any protocol (and not just SMC protocols)
verifiable afterwards. Our transformation commits the randomness (this takes
place offline), inputs, and the communication of the participants. The commit-
ments are cheap, being based on digital signatures and not adding a significant
overhead to the execution phase. The results of the protocol are available after
the execution. The verification can take place at any time after the execution;
dedicated high-bandwidth high-latency communication channels can be poten-
tially used for it. The verification itself is succinct. The proof is generated in
O(|C| log |C|) field operations, but the computation is local. The generation of
challenges costs O(1) in communication and O(|C|) in local computation.

We present our protocol transformation as a functionality in the universal
composability (UC) framework. After reviewing related work in Sec. 2, we de-
scribe the ideal functionality in Sec. 3 and its implementation in Sec. 5. Before
the latter, we give an overview of the existing building blocks we use in Sec. 4.
The computational overhead of our transformation is estimated in Sec. 6.

Besides increasing the security of SMC protocols, our transformation can be
used to add verifiability to other protocols. In Sec. 7 we demonstrate how a
verifiable secret sharing (VSS) scheme can be constructed. We compare it with
state-of-the-art VSS schemes and find that despite much higher genericity, our
construction enjoys similar complexity.

2 Related Work

The property brought by our protocol transformation is similar to security
against covert adversaries [2] that are prevented from deviating from the pre-
scribed protocol by a non-negligible chance of getting caught. A similar transfor-
mation, applicable to protocols of certain structure, was introduced by Damg̊ard
et al. [18]. Compared to their transformation, ours is more general, has lower
overhead in the execution phase, and is guaranteed to catch the deviating par-
ties. Our transformation can handle protocols, where some of the results are
made available to the computing parties already before the end of the protocol;
this may significantly lower the protocol’s complexity [10]. A good property of
their construction is its black-box nature, which our transformation does not
have. Hence different transformations may be preferable in different situations.
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There have been many works dedicated to short verifications of solutions
to NP-complete problems. Probabilistically checkable proofs [1] allow to verify
a possibly long proof by querying a small number of its bits. Micali [31] has
presented computationally sound proofs, where the verification is not perfect,
and the proof can be forged, but it is computationally hard to do. Kilian [26]
proposed interactive probabilistically checkable proofs using bit commitments.
A certain class of linear probabilistically checkable proofs [25], allows to make
argument systems much simpler and more general.

In computation verification, the prover has to prove that, given valuations of
certain wires of a circuit, there exists a correct valuation of all the other wires
such that the computation is correct with respect to the given circuit. Verifiable
computation can in general be based not only on the PCP theorem. In [22], Yao’s
garbled circuits [37] are executed using fully homomorphic encryption. Quadratic
span programs for boolean circuits and quadratic arithmetic programs for arith-
metic circuits without PCP have first been proposed in [23], later extended to
PCP by [6], and further optimized and improved in [5, 29, 32]. Particular imple-
mentations of verifiable computations have been done for example in [5, 32, 35].

The goal of our transformation is to provide security against a certain form of
active attackers. SMC protocols secure against active attackers have been known
for a long time [15, 24]. SPDZ [19, 20] is probably the SMC protocol set secure
against active adversaries with currently the best online performance, achieved
through extensive offline precomputations. Similarly to several other protocol
sets, SPDZ provides only a minimum amount of protocols to cooperatively eval-
uate an arithmetic circuit. We note that very recently, a form of post-execution
verifiability has been proposed for SPDZ [4].

3 Ideal Functionality

We use the universal composability (UC) framework [13] to specify our verifiable
execution functionality. We have n parties (indexed by [n] = {1, . . . , n}), where
C ⊆ [n] are corrupted for |C| = t < n/2 (we denote H = [n]\C). The protocol has
r rounds, where the computations of the party Pi on the �-th round are given
by an arithmetic circuit C�

ij over a field F, computing the �-th round messages

m�
ij to all parties j ∈ [n] from the input xi, randomness ri and the messages

Pi has received before (all values xi, ri,m
�
ij are vectors over F). We define that

the messages received during the r-th round comprise the output of the protocol.
The ideal functionality Fvmpc, running in parallel with the environment Z and
the adversary AS , is given in Fig. 1.

We see that M is the set of parties actually deviating from the protocol. Our
verifiability property is very strong — they all will be reported to all honest
parties. Even if only some rounds of the protocol are computed, all the parties
that deviated from the protocol in completed rounds will be detected. Also, no
honest parties (in H) can be falsely blamed. We also note that if M = ∅, then
AS does not learn anything that a semi-honest adversary could not learn.
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In the beginning, Fvmpc gets from Z for each party Pi the message
(circuits, i, (C�

ij)
n,n,r
i,j,�=1,1,1) and forwards them all to AS . For each i ∈ H [resp i ∈ C],

Fvmpc gets (input,xi) from Z [resp. AS ]. For each i ∈ [n], Fvmpc randomly generates
ri. For each i ∈ C, it sends (randomness, i, ri) to AS .
For each round � ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C�

ij to compute the message
m�

ij . For all j ∈ C, it sends m�
ij to AS . For each j ∈ C and i ∈ H, it receives m�

ji

from AS .
After r rounds, Fvmpc sends (output,mr

1i, . . . ,m
r
ni) to each party Pi with i ∈ H.

Let r′ = r and B0 = ∅.
Alternatively, at any time before outputs are delivered to parties, AS may send
(stop,B0) to Fvmpc, with B0 ⊆ C. In this case the outputs are not sent. Let r′ ∈
{0, . . . , r − 1} be the last completed round.
After r′ rounds, AS sends to Fvmpc the messages m�

ij for � ∈ [r′] and i, j ∈ C.
Fvmpc definesM = B0∪{i ∈ C | ∃j ∈ [n], � ∈ [r′] : m�

ij �= C�
ij(xi, ri,m

1
1i, . . . ,m

�−1
ni )}.

Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc, with M ⊆ Bi ⊆ C. Fvmpc

forwards this message to Pi.

Fig. 1. The ideal functionality for verifiable computations

4 Building Blocks

Throughout this paper, bold letters x denote vectors, where xi denotes the i-th
coordinate of x. Concatenation of x and y is denoted by (x‖y), and their scalar

product by 〈x,y〉, which is defined (only if |x| = |y|) as 〈x,y〉 = ∑|x|
i=1 xiyi.

Our implementation uses a number of previously defined subprotocols and
algorithm sets.

Message Transmission. For message transmission between parties, we use
functionality Ftr [18], which allows one to prove to third parties which messages
one received during the protocol, and to further transfer such revealed messages.
Our definition of Ftr differs from Damg̊ard et al.’s [18] Ftransmit by supporting
the forwarding of received messages, as well as broadcasting as a part of the outer
protocol. The definition of the ideal functionality of Ftr is shown in Fig. 2. The
real implementation of the transmission functionality is built on top of signa-
tures. This makes the implementation very efficient, as hash trees allow several
messages (sent in the same round) to be signed with almost the same computa-
tion effort as a single one [30], and signatures can be verified in batches [12]. An
implementation of Ftr is given in the full version of this paper [28].

Shamir’s Secret Sharing. For commitments, we use (n, t) Shamir secret
sharing [36], where any t parties are able to recover the secret, but less than
t are not. By sharing a vector x over F into vectors x1, . . . ,xn we mean that
each i-th entry xi ∈ F of x is shared into the i-th entries x1

i ∈ F, . . . , xn
i ∈ F of

x1, . . . ,xn. In this way, for each T = {i1, . . . , it} ⊆ [n], the entries can be restored

as xi =
∑t

j=1 bTjx
ij
i for certain constants bTj , and hence x =

∑t
j=1 bTjx

ij . The

linearity extends to scalar products: if a vector π is shared to π1, . . . ,πn, then
for any vector q and T = {i1, . . . , it}, we have

∑t
j=1 bTj〈πij , q〉 = 〈π, q〉.
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Ftr works with unique message identifiers mid, encoding a sender s(mid) ∈ [n], a
receiver r(mid) ∈ [n], and a party f(mid) ∈ [n] to whom the message should be
forwarded by the receiver (if no forwarding is foreseen then f(mid) = r(mid)).
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from
all (other) honest parties, store (mid,m, r(mid)), mark it as undelivered, and output
(mid, |m|) to the adversary. If the input of Ps(mid) is invalid (or there is no input), and
Pr(mid) is honest, then output (corrupt, s(mid)) to all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid)
from all honest parties, store (mid,m, bc), mark it as undelivered, output (mid, |m|) to
the adversary. If the input of Ps(mid) is invalid, output (corrupt, s(mid)) to all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m, r)
send (mid,m) to Pr; mark (mid,m, r) as delivered. For each undelivered (mid,m, bc),
send (mid,m) to each party and the adversary; mark (mid,m, bc) as delivered.
Forward received message: On input (forward,mid) from Pr(mid) after (mid,m) has
been delivered to Pr(mid), and receiving (forward,mid) from all honest parties, store
(mid,m, f(mid)), mark as undelivered, output (mid, |m|) to the adversary. If the input
of Pr(mid) is invalid, and Pf(mid) is honest, output (corrupt, r(mid)) to all parties.
Publish received message: On input (publish,mid) from the party Pf(mid) which at
any point received (mid,m), output (mid,m) to each party, and also to the adversary.
Do not commit corrupt to corrupt: If for some mid both Ps(mid), Pr(mid) are
corrupt, then on input (forward,mid) the adversary can ask Ftr to output (mid,m′) to
Pf(mid) for any m′. If additionally Pf(mid) is corrupt, then the adversary can ask Ftr

to output (mid,m′) to all honest parties.

Fig. 2. Ideal functionality Ftr

We note that sharing a value x as x1 = · · · = xk = x is valid, i.e. x can
be restored from xi1 , . . . , xit by forming the same linear combination. In our
implementation of the verifiable computation functionality, we use such“sharing”
for values that end up public due to the adversary’s actions.

Linear PCP This primitive forms the basis of our verification. Before giv-
ing its definition, let us formally state when a protocol is statistically privacy-
preserving.

Definition 1 (δ-private protocol [8]). Let Π be a multiparty protocol that
takes input x from honest parties and y from adversarially controlled parties. The
protocol Π is δ-private against a class of adversariesA if there exists a simulator
Sim, such that for all adversaries A ∈ A and inputs x,y,

∣
∣Pr

[
AΠ(x,y)(y) =

1
]−Pr

[
ASim(y)(y) = 1

]∣
∣ ≤ δ.

Definition 2 (Linear Probabilistically Checkable Proof (LPCP) [6]).
Let F be a finite field, υ, ω ∈ N, R ⊆ F

υ × F
ω. Let P and Q be probabilistic

algorithms, and D a deterministic algorithm. The pair (P, V ), where V = (Q,D)
is a d-query δ-statistical HVZK linear PCP for R with knowledge error ε and
query length m, if the following holds.

Syntax. On input v ∈ F
υ and w ∈ F

ω, algorithm P computes π ∈ F
m. The

algorithm Q randomly generates d vectors q1, . . .qd ∈ F
m and some state
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information u. On input v, u, as well as a1, . . . , ad ∈ F, the algorithm
D accepts or rejects. Let V π(v) denote the execution of Q followed by the
execution of V on v, the output u of Q, and a1, . . . , ad, where ai = 〈π, qi〉.

Completeness. For every (v,w) ∈ R, the output of P (v,w) is a vector π ∈ F
m

such that V π(v) accepts with probability 1.
Knowledge. There exists a knowledge extractor E such that for every vector

π∗ ∈ F
m, if

Pr
[
V π∗

(v) accepts
] ≥ ε then E(π∗,v) outputs w such that (v,w) ∈ R.

Honest Verifier Zero Knowledge. The protocol between an honest prover ex-
ecuting π ← P (v,w) and adversarial verifier executing V π(v) with common
input v and prover’s input w is δ-private for the class of passive adversaries.

Similarly to different approaches to verifiable computation [5, 6, 23, 29, 32], in
our work we let the relation R to correspond to the circuit C executed by the
party whose observance of the protocol is being verified. In this correspondence,
v is the tuple of all inputs, outputs, and used random values of that party.
The vector w extends v with the results of all intermediate computations by
that party. Differently from existing approaches, v itself is private. Hence it is
unclear how the decision algorithm D can be executed on it. Hence we do not
use D as a black box, but build our solution on top of a particular LPCP [5].

The LPCP algorithms used by Ben-Sasson et al. [5] are statistical HVZK.
Namely, the values 〈π, qi〉 do not reveal any private information about π, unless
the random seed τ ∈ F for Q is chosen in a bad way, which happens with
negligible probability for a sufficiently large field. In [5], Q generates 5 challenges
q1, . . . , q5 and the state information u with length |v|+2. Given the query results
ai = 〈π, qi〉 for i ∈ {1, . . . , 5} and the state information u = (u0, u1, . . . , u|v|+1),
the following two checks have to pass:

a1a2 − a3 − a4u|v|+1 = 0, (∗)
a5 − 〈(1‖v), (u0, u1, . . . , u|v|)〉 = 0. (∗∗)

Here (∗) is used to show the existence of w, and (∗∗) shows that a certain
segment of π equals (1‖v) [5]. Throughout this work, we reorder the entries of π
compared to [5] and write π = (p‖1‖v) where p represents all the other entries
of π, as defined in [5]. The challenges q1, . . . , q5 are reordered in the same way.

This linear interactive proof can be converted to a zero-knowledge succinct
non-interactive argument of knowledge [6]. Unfortunately, it requires homomor-
phic encryption, and the number of encryptions is linear in the size of the circuit.
We show that the availability of honest majority allows the proof to be completed
without public-key encryptions.

The multiparty setting introduces a further difference from [5]: the vector v
can no longer be considered public, as it contains a party’s private values. We
thus have to strengthen the HVZK requirement in Def. 2, making v private to the
prover. The LPCP constructions of [5] do not satisfy this strengthened HVZK
requirement, but their authors show that this requirement would be satisfied if
a5 were not present. In the following, we propose a construction where just the
first check (∗) is sufficient, so only a1, . . . , a4 have to be published. We prove
that the second check (∗∗) will be passed implicitly. We show the following.
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Theorem 1. Given a δ-statistical HVZK instance of the LPCP of Ben-Sasson
et al. [5] with knowledge error ε, any n-party r-round protocol Π can be trans-
formed into an n-party (r + 8)-round protocol Ξ in the Ftr-hybrid model, which
computes the same functionality as Π and achieves covert security against ad-
versaries statically corrupting at most t < n/2 parties, where the cheating of any
party is detected with probability at least (1 − ε). If Π is δ′-private against pas-
sive adversaries statically corrupting at most t parties, then Ξ is (δ′+ δ)-private
against cover adversaries. Under active attacks by at most t parties, the number
of rounds of the protocol may at most double.

Theorem 1 is proved by the construction of the real functionality in the next
section, as well as the simulator presented in [28]. In the construction, we use
the following algorithms implicitly defined by Ben-Sasson et al. [5]:

– witness(C,v): if v corresponds to a valid computation of C, returns a witness
w such that (v,w) ∈ RC .

– proof(C,v,w): if (v,w) ∈ RC , it constructs a corresponding proof p.
– challenge(C, τ): returns q1, . . . , q5,u that correspond to τ , such that:

• for any valid proof π = (p‖1‖v), where p is generated by proof(C,v,w)
for (v,w) ∈ RC , the checks (∗) and (∗∗) succeed with probability 1;

• for any proof π∗ generated without knowing τ , or such w that (v,w) ∈
RC , either (∗) or (∗∗) fails, except with negligible probability ε.

5 Real Functionality

The protocol Πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn

doing the work of parties P1, . . . , Pn, and the functionality Ftr. The internal
state of each Mi contains a bit-vector mlci of length n where Mi marks which
other parties are acting maliciously. The protocol Πvmpc runs in five phases:
initialization, execution, message commitment, verification, and accusation.

In the initialization phase, the inputs xi and the randomness ri are commit-
ted. It is ensured that the randomness indeed comes from uniform distribution.
This phase is given in Fig.3. If at any time (corrupt, j) comes from Ftr, each
(uncorrupted) Mi writes mlci[j] := 1 (for each message (corrupt, j)) and goes to
the accusation phase.

In the execution phase, the parties run the original protocol as before, just
using Ftr to exchange the messages. This is given in Fig.4. If at any time at
some round � the message (corrupt, j) comes from Ftr (all uncorrupted machines
receive it at the same time), the execution is cut short, no outputs are produced
and the protocol continues with the commitment phase.

In the message commitment phase, all the n parties finally commit their
sent messages c�ij for each round � ∈ [r′] by sharing them to c�1ij , . . . , c

�n
ij ac-

cording to (n, t + 1) Shamir scheme. This phase is given in Fig. 5. Let v�
ij =

(xi‖ri‖c11i‖ · · · ‖c�−1
ni ‖c�ij) be the vector of inputs and outputs to the circuit C�

ij

that Mi uses to compute the �-th message to Mj . If the check performed by Mj

fails, then Mj has received from Mi enough messages to prove its corruptness
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Circuits: Mi gets from Z the message (circuits, i, (C�
ij)

n,n,r
i,j,�=1,1,1) and sends it to A.

Randomness generation and commitment: Let R = [t+1]. For all i ∈ R, j ∈ [n],
Mi generates rij for Mj . Mi shares rij to n vectors r1

ij , . . . , r
n
ij according to (n, t+ 1)

Shamir scheme. For j ∈ [n], Mi sends (transmit, (r share, i, j, k), rk
ij) to Ftr for Mk.

Randomness approval: For each j ∈ [n] \ {k}, i ∈ R, Mk sends (forward, (r share, i,
j, k)) to Ftr for Mj . Upon receiving ((r share, i, j, k), rk

ij) for all k ∈ [n], i ∈ R, Mj

checks if the shares comprise a valid (n, t+1) Shamir sharing. Mj sets ri =
∑

i∈R rij .
Input commitments: Mi with i ∈ H [resp. i ∈ C] gets from Z [resp. A] the input xi

and shares it to n vectors x1
i , . . . ,x

n
i according to (n, t + 1) Shamir scheme. For each

k ∈ [n] \ {i}, Mi sends to Ftr (transmit, (x share, i, k),xk
i ) for Mk.

At any time: if (corrupt, j) comes from Ftr, Mi writes mlci[j] := 1 and goes to the
accusation phase.

Fig. 3. The real functionality: initialization phase

For each round � the machine Mi computes c�ij = C�
ij(xi, ri, c

1
1i, . . . , c

�−1
ni ) for each

j ∈ [n] and sends to Ftr the message (transmit, (message, �, i, j), c�ij) for Mj .
After r rounds, uncorrupted Mi sends (output, c

r
1i, . . . , c

r
ni) to Z and sets r′ := r.

At any time: if (corrupt, j) comes from Ftr, each (uncorrupted)Mi writes mlci[j] := 1,
sets r′ := �− 1 and goes to the message commitment phase.

Fig. 4. The real functionality: execution phase

to others (but Fig. 5 presents an alternative, by publicly agreeing on c�ij). After

this phase, Mi has shared v�
ij among all n parties. Let v�k

ij be the share of v�
ij

given to machine Mk.
EachMi generatesw

�
ij = witness(C�

ij ,v
�
ij), a proof p

�
ij = proof(C�

ij ,v
�
ij ,w

�
ij),

and π�
ij = (p�

ij‖1‖v�
ij) in the verification phase, as explained in Sec. 4. The vector

p�
ij is shared to p�1

ij , . . . ,p
�n
ij according to (n, t+ 1) Shamir scheme.

All parties agree on a random τ , with Mi broadcasting τi and τ being their
sum. A party refusing to participate is ignored. The communication must be
synchronous, with no party Pi learning the values τj from others before he has
sent his own τi. Note that Ftr already provides this synchronicity. If it were not
available, then standard tools (commitments) could be used to achieve fairness.

Message sharing: As a sender, Mi shares c�ij to c�1ij , . . . , c
�n
ij according to (n, t +

1) Shamir scheme. For each k ∈ [n] \ {i}, Mi sends to Ftr the messages
(transmit, (c share, �, i, j, k), c�kij ) for Mj .
Message commitment: upon receiving ((c share, �, i, j, k), c�kij ) from Ftr for all k ∈
[n], the machine Mj checks if the shares correspond to c�ij it has already received.
If they do not, Mj sends (publish, (message, �, i, j)) to Ftr, so now everyone sees the
values that it has actually received from Mi, and each (uncorrupted) Mk should now
use c�kij := c�ij . If the check succeeds, then Mi sends to Ftr (forward, (c share, �, i, j, k))
for Mk for all k ∈ [n] \ {i},.

Fig. 5. The real functionality: message commitment phase
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All (honest) parties generate q�
1ij , . . . , q

�
4ij , q

�
5ij ,u

�
ij = challenge(C�

ij, τ) for

� ∈ [r′], i ∈ [n], j ∈ [n]. In the rest of the protocol, only q�
1ij , . . . , q

�
4ij , and

(u�
ij)|v|+1 will be actually used.

As a verifier, each Mk computes π�k
ij = (p�k

ij ‖1‖v�k
ij ) = (p�k

ij ‖1‖xk
i ‖

∑
j∈R rk

ji

‖c1k1i ‖ · · · ‖c�−1,k
ni ‖c�kij ), and then computes and publishes the values 〈π�k

ij , q
�
1ij〉,

. . . , 〈π�k
ij , q

�
4ij〉. Mi checks these values and complains about Mk that has in-

correctly computed them. An uncorrupted Mk may disprove the complaint by
publishing the proof and message shares that it received. Due to the linearity
of scalar product and the fact that all the vectors have been shared according
to the same (n, t+ 1) Shamir sharing, if the n scalar product shares correspond
to a valid (n, t+ 1) Shamir sharing, the shared value is uniquely defined by any
t+ 1 shares, and hence by the shares of some t+ 1 parties that are all from H.
Hence Mi is obliged to use the values it has committed before. The verification
phase for C�

ij for fixed � ∈ [r′], i ∈ [n], j ∈ [n] is given in Fig.6. For different C�
ij ,

all the verifications can be done in parallel.
As described, the probability of cheating successfully in our scheme is propor-

tional to 1/|F|. In order to exponentially decrease it, we may run s instances of
the verification phase in parallel, since by that time v�

ij are already committed.

This will not break HVZK assumption if fresh randomness is used in p�
ij .

During the message commitment and the verification phases, if at any time
(corrupt, j) comes from Ftr, the proof for Pj ends with failure, and all uncor-
rupted machines Mi write mlci[j] := 1.

Finally, each party outputs the set of parties that it considers malicious. This
short phase is given in Fig. 7.

6 Efficiency

In this section we estimate the overheads caused by our protocol transformation.
The numbers are based on the dominating complexities of the algorithms of linear
PCP of [5]. We omit local addition and concatenation of vectors since it is cheap.
The preprocessing phase of [5] is done offline, and can be re-used, so we do not
estimate the complexity here. It can be done with practical overhead [5].

Let n be the number of parties, t < n/2 the number of corrupt parties, r the
number of rounds, Ng the number of gates, Nw the number of wires, Nx the
number of inputs (elements of F), Nr the number of random elements of F, Nc

the number of communicated elements of F, and Ni = Nw −Nx −Nr −Nc the
number of intermediate wires in the circuit; then |v| = Nx +Nr +Nc.

Let S(n, k) denote the number of field operations used in sharing one field
element according to Shamir scheme with threshold k, which is at most nk

multiplications. We use S
−1

(n, k) to denote the complexity of verifying if the
shares comprise a valid sharing and recovering the secret, which is also at most
nk multiplications. Compared to the original protocol, for each Mi the proposed
solution has the following computation/communication overheads.

Initialization: Do Shamir sharing of one vector of length Nx in Nx ·S(n, t+1)
field operations. Transmit t+1 vectors of length Nr and one vector of length Nx
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Remaining proof commitment: As the prover, Mi obtains w�
ij and π�

ij =
(p�

ij‖1‖v�
ij) using the algorithms witness and proof . Mi shares p�

ij to p�1
ij , . . . ,p

�n
ij

according to (n, t + 1) Shamir scheme. For each k ∈ [n] \ {i}, it sends to Ftr

(transmit, (p share, �, i, j, k),p�k
ij ) for Mk.

Challenge generation: Each Mk generates random τk ← F and sends to Ftr the
message (broadcast, (challenge share, �, i, j, k), τk). If some party refuses to participate,
its share will just be omitted. The challenge randomness is τ = τ1 + . . . + τn.
Machine Mk generates q�

1ij , . . . , q
�
4ij , q

�
5ij ,u

�
ij = challenge(C�

ij , τ ), then computes

π�k
ij = (p�k

ij ‖1‖v�k
ij ) = (p�k

ij ‖1‖xk
i ‖

∑
j∈R rk

ji‖c1k1i ‖ · · · ‖c�−1,k
ni ‖c�kij ), and finally computes

and broadcasts 〈π�k
ij , q

�
1ij〉, . . . , 〈π�k

ij , q
�
4ij〉.

Scalar product verification: Each Mi verifies the published 〈π�k
ij , q

�
sij〉 for

s ∈ {1, . . . , 4}. If Mi finds that Mk has computed the scalar products correctly, it
sends to Ftr the message (broadcast, (complain, �, i, j, k), 0). If some Mk has provided
a wrong value, Mi sends to Ftr (broadcast, (complain, �, i, j, k), (1, sh�k

sij)), where
sh�k

sij is Mi’s own version of 〈π�k
ij , q

�
sij〉. Everyone waits for a disproof from Mk. An

uncorrupted Mk sends to Ftr the messages (publish,mid) for mid ∈ {(x share, i, k),
(r share, 1, i, k), . . . , (r share, |R|, i, k), (p share, �, i, j, k), (c share, 1, 1, i, k), . . . , (c share,
r′, n, i, k), (c share, �, i, j, k)}. Now everyone may construct π�k

ij and verify whether the
version provided by Mi or Mk is correct.
Final verification: Given 〈π�k

ij , q
�
sij〉 for all k ∈ [n], s ∈ {1, . . . , 4}, each machine Mv

checks if they indeed correspond to valid (n, t + 1) Shamir sharing, and then locally
restores a�

sij = 〈π�
ij , q

�
sij〉 for s ∈ {1, . . . , 4}, and checks (∗). If the check succeeds, then

Mv accepts the proof of Mi for C
�
ij . Otherwise it immediately sets mlcv[i] := 1.

Fig. 6. The real functionality: verification phase

Finally, each party Mi sends to Z the message (blame, i, {j |mlci[j] = 1}).
Fig. 7. The real functionality: accusation phase

to each other party. Do t+1 recoverings in (t+1) ·Nr ·S−1
(n, t+1). The parties

that generate randomness do n ·Nr ·S(n, t+1) more field operations to compute
n more sharings and transmit n more vectors of length Nr to each other party.

Execution: No computation/communication overheads, except those caused by
the use of the message transmission functionality.

Message Commitment: Share all the communication in rn(n−1)·Nc ·S(n, t+
1) operations. Send to each other party rn vectors of length Nc. Do r(n − 1)

recoverings in r(n− 1) ·Nc · S−1
(n, t+ 1) operations.

Verification: Compute the proof p of length (4 + Ng + Ni) in 18Ng + 3 ·
FFT (Ng) + logNg + 1 field operations [5], where FFT (N) denotes the com-
plexity of the Fast Fourier Transform which is c ·N · logN for a small constant
c. Share p in (4 + Ng + Ni) · S(n, t + 1) operations. Send a vector of length
(4+Ng+Ni) to every other party. Broadcast one field element (the τ). Generate
the 4 challenges and the state information in 14·Ng+log(Ng) field operations [5].
Compute and broadcast 4 scalar products of vectors of length (5 + Nw + Ng)
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(the shares of 〈(p‖1‖v), qs〉). Compute 4 certain linear combinations of t scalar
products and do 2 multiplications in F (the products in a1a2 − a3 − a4u).

Assuming Nw ≈ 2 · Ng, for the whole verification phase, this adds up to
≈ rn(2 ·S(n, t+1)Ng +3FFT (2Ng)+26nNg) field operations, the transmission
of ≈ 4rn2Ng elements of F, and the broadcast of 4rn2 elements of F per party.

If there are complaints, then at most rn vectors of length Nc should be pub-
lished in the message commitment phase, and at most rn vectors of length
(4 + Ng + Ni) (p shares), rn2 vectors of length Nc (communication shares),
n · (t+ 1) vectors of length Nr (randomness shares) and n vectors of length Nx

(input shares) in the verification phase (per complaining party).
As long as there are no complaints, the only overheads that Ftr causes is that

each message is signed, and each signature is verified.
The knowledge error of the linear PCP of [5] is ε = 2Ng/F, and the zero

knowledge is δ-statistical for δ = Ng/F. Hence desired error and the circuit size
define the field size. If we do not want to use too large fields, then the proof can
be parallelized as proposed in the end of Sec. 5.

7 Example: Verifiable Shamir Secret Sharing

In this section we show how our solution can be applied to [36], yielding a verifi-
able secret sharing (VSS) protocol. Any secret sharing scheme has two phases —
sharing and reconstruction — to which the construction presented in this paper
adds the verification phase.

To apply our construction, we have to define the arithmetic circuits used
in [36]. For i ∈ {1, . . . , n} let Ci be a circuit taking s, r1, . . . , rt ∈ F as inputs
and returning s +

∑t
j=1 rji

j . If s is the secret to be shared, then Ci is the
circuit used by the dealer (who is one of the parties P1, . . . , Pn) to generate the
share for the i-th party using the randomness (r1, . . . , rt). It computes a linear
function, and has no multiplication gates. According to the LPCP construction
that we use, each circuit should end with a multiplication. Hence we append a
multiplication gate to it, the other argument of which is 1. Let C be the union
of all Ci, it is a circuit with 1 + t inputs and n outputs.

In the reconstruction phase, the parties just send the shares they’ve received
to each other. A circuit computing the messages of this phase is trivial — it
just copies its input to output. We note that Ftr already provides the necessary
publishing functionality for that. Hence we’re not going to blindly follow our
VMPC construction, but use this opportunity to optimize the protocol. In effect,
this amounts to only verifying the sharing phase of the VSS protocol, and relying
on Ftr to guarantee the proper behaviour of parties during the reconstruction.
The whole protocol is depicted in Fig. 8.

A couple of points are noteworthy there. First, the reconstruction and verifica-
tion phases can take place in any order. In particular, verification could be seen
as a part of the sharing, making a 3-round protocol (in optimistic case). Second,
the activities of the dealer in the sharing phase have a dual role in terms of the
VMPC construction. They form both the input commitment step in Fig. 3, as
well as the execution step for actual sharing.
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Preprocessing. Parties run the Randomness generation and commitment and Ran-
domness approval steps of Fig. 3, causing the dealer to learn r1, . . . , rt. Each ri is shared
as ri1, . . . , rin between P1, . . . , Pn.
Sharing. Dealer computes the shares s1, . . . , sn of the secret s, using the randomness
r1, . . . , rt [36], and uses Ftr to send them to parties P1, . . . , Pn.
Reconstruction. All parties use the publish-functionality of Ftr to make their shares
known to all parties. The parties reconstruct s as in [36].
Verification. The dealer shares each si, obtaining si1, . . . , sin. It transmits them all
to Pi, which verifies that they are a valid sharing of si and then forwards each sij to
Pj . [Message commitment]
The dealer computes w = witness(C, s, r1, . . . , rt) and p = proof (C, (s, r1, . . . , rt),w).
It shares p as p1, . . . ,pn and transmits pj to Pj . [Proof commitment]
Each party Pi generates a random τi ∈ F and broadcasts it. Let τ = τ1+ · · ·+ τn. Each
party constructs q1, . . . , q4, q5,u = challenge(C, τ ). [Challenge generation]
Each party Pi computes aji = 〈(pi‖1‖si‖r1i‖ · · · ‖rti‖s1i‖ · · · ‖sni), qj〉 for j ∈
{1, 2, 3, 4} and broadcasts them. The dealer may complain, in which case
pi, si, r1i, . . . , rti, s1i, . . . , sni are made public and all parties repeat the computation
of aji. [Scalar product verification]
Each party reconstructs a1, . . . , a4 and verifies the LPCP equation (∗).

Fig. 8. LPCP-based VSS

Ignoring the randomness generation phase (which takes place offline), the com-
munication complexity of our VSS protocol is the following. In sharing phase,
(n−1) values (elements of F) are transmitted by the dealer and in the reconstruc-
tion phase, each party broadcasts a value. These coincide with the complexity
numbers for non-verified secret sharing. In the verification phase, in order to
commit to the messages, the dealer transmits a total of n(n − 1) values to dif-
ferent parties. The same number of values are forwarded. According to Sec. 6,
the proof p contains t + n + 4 elements of F. The proof is shared between par-
ties, causing (n − 1)(t + n + 4) elements of F to be transmitted. The rest of
the verification phase takes place over the broadcast channel. In the optimistic
case, each party broadcasts a value in the challenge generation and four values in
the challenge verification phase. Hence the total cost of the verification phase is
(n−1)(3n+ t+4) point-to-point transmissions and 5n broadcasts of F elements.

We have evaluated the communication costs in terms of Ftr invocations, and
have avoided estimating the cost of implementing Ftr. This allows us to have
more meaningful comparisons with other VSS protocols. We will compare our
solution to the 4-round statistical VSS of [27], the 3-round VSS of [33], and the
2-round VSS of [3] (see Table 1). These protocols have different security models
and different optimization goals, therefore also selecting different methods for
securing communication between parties. The number of field elements thus
communicated is likely the best indicator of complexity.

The 4-Round Statistical VSS of [27]. This information-theoretically secure
protocol uses an information checking protocol (ICP ) for transmission, which
is a modified version of ICP introduced in [34]. The broadcast channel is also
used.
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Table 1. Comparing the Efficiency of VSS Protocols (tr transmissions, bc broadcasts)

Rounds Sharing Reconstruction Verification

Ours 7 (n− 1) · tr n · bc (3n+ t+ 4)(n− 1) · tr + 5n · bc
[27] 4 3n2 · tr O(n2) · tr 0

[33] 3 2n · tr + (n+ 1) · bc 2n · bc 0

[3] 2 4n2 · tr + 5n2 · bc n2 · bc 0

In the protocol, the dealer constructs a symmetric bivariate polynomial F (x, y)
with F (0, 0) = s, and gives fi(x) = F (i, x) to party Pi. Conflicts are then re-
solved, leaving the honest parties with a polynomial FH(x, y) that allows the
reconstruction of s. The distribution takes 3n2 transmissions of field elements
using the ICP functionality, while the conflict resolution requires 4n2 broadcasts
(in the optimistic case). The reconstruction phase requires each honest party Pi

to send its polynomial fi to all other parties using the ICP functionality, which
again takes O(n2) transmissions.

The 3-Round VSS of [33]. Pedersen’s VSS is an example of a computa-
tionally secure VSS. The transmission functionality of this protocol is based on
homomorphic commitments. Although the goal of commitments is also to ensure
message delivery and make further revealing possible, they are much more pow-
erful than Ftr and ICP , so direct comparison is impossible. In the following, let
Comm(m, d) denote the commitment of the message m with the witness d. We
note that the existence of a suitable Comm is a much stronger computational
assumption than the existence of a signature scheme sufficient to implement Ftr.

To share s, the dealer broadcasts a commitment Comm(s, r) for a random r.
It shares both s and r, using Shamir’s secret sharing with polynomials f and g,
respectively. It also broadcasts commitments to the coefficients of f , using the
coefficients of g as witnesses. This takes 2n transmissions of field elements, and
(n+ 1) broadcasts (in the optimistic case). Due to the homomorphic properties
of Comm, the correctness of any share can be verified without further commu-
nication. The reconstruction requires the shares of s and r to be broadcast; i.e.
there are 2 broadcasts from each party.

The 2-Round VSS of [3]. This protocol also uses commitments that do not
have to be homomorphic. This is still different from Ftr and ICP : commitments
can ensure that the same message has been transmitted to distinct parties.

The protocol is again based on the use of a symmetric bivariate polynomial
F (x, y) with F (0, 0) = s by the dealer. The dealer commits to all values F (x, y),
where 1 ≤ x, y ≤ n and opens the polynomial F (i, x) for the i-th party. The re-
duction in rounds has been achieved through extra messages committed and sent
to the dealer by the receiving parties. These messages can help in conflict reso-
lution. In the optimistic case, the sharing protocol requires 4n2 transmissions of
field elements and 5n2 broadcasts. The reconstruction protocol is similar to [27],
with each value of F (x, y) having to be broadcast by one of the parties.

We see that the LPCP-based approach performs reasonably well in verifiable
Shamir sharing. The protocols from the related works have less rounds, and
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the 3-round protocol of [33] has also clearly less communication. However, for a
full comparison we would also have to take into account the local computation,
since operations on homomorphic commitments are more expensive. Also, the
commitments may be based on more stringent computational assumptions than
the signature-based communication primitives we are using. We have shown that
the LPCP-based approach is at least comparable to similar VSS schemes. Its low
usage of the broadcast functionality is definitely of interest.

8 Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols to covertly
secure ones, where a malicious party can skip detection only with negligible
probability. The protocol transformation proposed here is particularly attractive
to be implemented on top of some existing, highly efficient, passively secure SMC
framework. The framework would retain its efficiency, as the time from starting
a computation to obtaining the result at the end of the execution phase would
not increase. Also, the overheads of verification, proportional to the number of
parties, would be rather small due to the small number of computing parties in
all typical SMC deployments (the number of input and result parties [7] may be
large, but they can be handled separately).

The implementation would allow us to study certain trade-offs. Sec. 6 shows
that the proof generation is still slightly superlinear in the size of circuits, due
to the complexity of FFT. Shamir’s secret sharing would allow the parties to
commit to some intermediate values in their circuits, thereby replacing a single
circuit with several smaller ones, and decreasing the computation time at the
expense of communication. The usefulness of such modifications, and the best
choice of intermediate values to be committed, would probably depend to large
extent on the actual circuits.

Note that the verifications could be done after each round. This would give us
security against active adversaries in a quite cheap manner, but would incur the
overhead of the verification phase during the runtime of the actual protocol. The
implementation will allow us to evaluate the usefulness of such transformation.
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