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Preface

The 8th International Conference on Provable Security (ProvSec 2014) was held
in Hong Kong, October 9–10, 2014. The conference was organized by The Uni-
versity of Hong Kong.

This year we have received 68 submissions from 20 different countries. This
figure is the second highest since the first ProvSec in 2007. Each submission
was reviewed by at least three, and on the average 3.2, Program Committee
members. The committee decided to accept 25 papers (including seven short
papers). The program also included two invited talks given by Dr. Michel Ab-
dalla titled “Password-Based Authenticated Key Exchange: An Overview” and
by Dr. Duncan Wong titled “Practical and Provably Secure Attribute Based
Encryption.”

We would like to thank all the people who contributed to the success of
ProvSec 2014. First, we would like to thank all authors for submitting their
works to ProvSec 2014. We deeply thank the 41 Program Committee members
(coming from 20 different countries) as well as the external reviewers for their
volunteer work of reading and discussing the submissions.

We also thank the Information Security and Forensics Society, which provides
an excellent platform for user registration using Paypal and credit card, the
general co-chairs Dr. Lucas C.K. Hui and Dr. S.M. Yiu, and the local organizing
staff, especially Ms. Catherine Chan, for their unlimited support for ProvSec.
This conference could not have been successful without their great assistance.

Last but not least, we would like to thank EasyChair for providing a user-
friendly interface for us to manage all submissions and proceedings files.

October 2014 Sherman S.M. Chow
Joseph K. Liu
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Password-Based Authenticated Key Exchange:

An Overview

Michel Abdalla

ENS, Paris, France�

Abstract. Password-based authenticated key exchange (PAKE) pro-
tocols are a particular case of authenticated key exchange protocols in
which the secret key or password used for authentication is not uniformly
distributed over a large space, but rather chosen from a small set of pos-
sible values (a four-digit pin, for example). Since PAKE protocols rely on
short and easily memorizable secrets, they also seem more convenient to
use as they do not require an additional cryptographic devices capable of
storing high-entropy secret keys. In this survey, we consider the problem
of designing authenticated key exchange protocols in the password-based
setting. In particular, we discuss the different security goals that one can
consider as well as different ways of realizing these goals. Finally, we re-
call some of the most recent results in the area and discuss some of the
issues regarding the implementation of these protocols.

Keywords. Password-based authentication, key exchange.

* DI/ENS, CNRS, and INRIA.



Practical and Provably Secure Attribute Based

Encryption

Duncan S. Wong

Exploratory Research Laboratory
ASTRI

duncanwong@astri.org

We discuss about the properties that are crucial to making an Attribute-Based
Encryption scheme practical, and investigate the techniques, which could be
used for constructing a provably secure Ciphertext-Policy Attribute-Based En-
cryption (CP-ABE) scheme, which possesses the properties we identified that
could make the scheme practical. In CP-ABE, a user’s decryption key is asso-
ciated with attributes which in general are not related to the user’s identity,
and the same set of attributes could be shared between multiple users. From
the decryption key, if the user created a decryption blackbox for sale, this ma-
licious user could be difficult to identify from the blackbox. Hence in practice,
a useful CP-ABE scheme should have some tracing mechanism to identify this
‘traitor’ from the blackbox. In addition, being able to revoke compromised keys
is also an important step towards practicality, and for scalability, the scheme
should support an exponentially large number of attributes. We refer to these
three important properties as (1) blackbox traceability, (2) revocation, and (3)
large universe. In this talk, we also describe one of the first CP-ABE schemes
of this type achieving the sub-linear overhead, and at the same time, attaining
the fully collusion-resistant traceability against policy-specific decryption black-
box against selective attackers in the standard model. We also discuss about
the proofing techniques, as well as the techniques applied in the construction of
our CP-ABE scheme for achieving large attribute universe, and retaining highly
expressivity on policies.



Table of Contents

Invited Paper

Password-Based Authenticated Key Exchange: An Overview . . . . . . . . . . 1
Michel Abdalla

Fundamental

Adaptive versus Static Security in the UC Model . . . . . . . . . . . . . . . . . . . . 10
Ivan Damg̊ard and Jesper Buus Nielsen

Impossibility of Surjective Icart-Like Encodings . . . . . . . . . . . . . . . . . . . . . . 29
Mehdi Tibouchi

Symmetric Key Encryption

On the Practical Security Bound of GF-NLFSR Structure with SPN
Round Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Guangyao Zhao, Lei Cheng, Chao Li, Ruilin Li, and Xuan Shen

Misuse-Resistant Variants of the OMD Authenticated Encryption
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Reza Reyhanitabar, Serge Vaudenay, and Damian Vizár

A Block-Cipher-Based Hash Function Using an MMO-Type
Double-Block Compression Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Shoichi Hirose and Hidenori Kuwakado

Authentication

Forward-Secure Sequential Aggregate Message Authentication
Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Shoichi Hirose and Hidenori Kuwakado

A Provable Secure Batch Authentication Scheme for EPCGen2 Tags . . . 103
Jiageng Chen, Atsuko Miyaji, and Chunhua Su

Signatures

Generic Transformation to Strongly Existentially Unforgeable Signature
Schemes with Leakage Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Yuyu Wang and Keisuke Tanaka



XVI Table of Contents

Bounded Pre-image Awareness and the Security of Hash-Tree Keyless
Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Ahto Buldas, Risto Laanoja, Peeter Laud, and Ahto Truu

Protocol

Verifiable Computation in Multiparty Protocols with Honest
Majority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Peeter Laud and Alisa Pankova

Public Key Encryption

Lossy Trapdoor Relation and Its Applications to Lossy Encryption and
Adaptive Trapdoor Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Haiyang Xue, Xianhui Lu, Bao Li, and Yamin Liu

Compact Public Key Encryption with Minimum Ideal Property of
Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Kazuki Yoneyama and Goichiro Hanaoka

Proxy Re-Encryption

RCCA-Secure Multi-use Bidirectional Proxy Re-encryption with
Master Secret Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Rongxing Lu, Xiaodong Lin, Jun Shao, and Kaitai Liang

Fine-Grained Conditional Proxy Re-Encryption and Application . . . . . . . 206
Yanjiang Yang, Haibing Lu, Jian Weng, Youcheng Zhang, and
Kouichi Sakurai

Predicate Encryption

Constructing Subspace Membership Encryption through Inner Product
Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Shuichi Katsumata and Noboru Kunihiro

Efficient (Anonymous) Compact HIBE from Standard Assumptions . . . . 243
Somindu C. Ramanna and Palash Sarkar

Attribute-Based Cryptosystem

Computationally Efficient Ciphertext-Policy Attribute-Based
Encryption with Constant-Size Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Yinghui Zhang, Dong Zheng, Xiaofeng Chen, Jin Li, and Hui Li



Table of Contents XVII

Attribute-Based Signcryption: Signer Privacy, Strong Unforgeability
and IND-CCA2 Security in Adaptive-Predicates Attack . . . . . . . . . . . . . . . 274

Tapas Pandit, Sumit Kumar Pandey, and Rana Barua

Short Papers

How to Use Pseudorandom Generators in Unconditional Security
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Koji Nuida

Equivalence between MAC, WCR and PRF for Blockcipher Based
Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Nilanjan Datta and Mridul Nandi

A Short Fail-Stop Signature Scheme from Factoring . . . . . . . . . . . . . . . . . . 309
Takashi Yamakawa, Nobuaki Kitajima, Takashi Nishide,
Goichiro Hanaoka, and Eiji Okamoto

Computational Soundness of Asymmetric Bilinear Pairing-Based
Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Kazuki Yoneyama

Timed-Release Computational Secret Sharing Scheme and
Its Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Yohei Watanabe and Junji Shikata

Deniable Version of SIGMA Key Exchange Protocol Resilient to
Ephemeral Key Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

�Lukasz Krzywiecki

Complete Robustness in Identity-Based Encryption . . . . . . . . . . . . . . . . . . 342
Hui Cui, Yi Mu, and Man Ho Au

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351



Password-Based Authenticated Key Exchange:
An Overview

Michel Abdalla

ENS, Paris, France�

Abstract. Password-based authenticated key exchange (PAKE) pro-
tocols are a particular case of authenticated key exchange protocols in
which the secret key or password used for authentication is not uniformly
distributed over a large space, but rather chosen from a small set of pos-
sible values (a four-digit pin, for example). Since PAKE protocols rely on
short and easily memorizable secrets, they also seem more convenient to
use as they do not require an additional cryptographic devices capable of
storing high-entropy secret keys. In this survey, we consider the problem
of designing authenticated key exchange protocols in the password-based
setting. In particular, we discuss the different security goals that one can
consider as well as different ways of realizing these goals. Finally, we re-
call some of the most recent results in the area and discuss some of the
issues regarding the implementation of these protocols.

Keywords. Password-based authentication, key exchange.

1 Introduction

Authenticated key exchange is an extremely useful tool in cryptography, allowing
users to establish a common secret which they can then use in applications to
achieve both privacy and authenticity. While several means of authentication
have been proposed, most of them rely on either the existence of a public-key
infrastructure or the availability of pairwise high-entropy secret keys.

Password-based authenticated key exchange (PAKE) protocols are a partic-
ular case of authenticated key exchange protocols in which the secret key or
password used for authentication is not uniformly distributed over a large space,
but rather chosen from a small set of possible values (a four-digit pin, for exam-
ple). Since PAKE protocols rely on short and easily memorizable secrets, they
also seem more convenient to use as they do not require an additional crypto-
graphic devices capable of storing high-entropy secret keys.

Due to their practicality, password-based key exchange protocols have been
very popular over the years. Unfortunately, the vast majority of protocols found
in practice do not account for the fact that passwords have low entropy and are
often subject to the so-called dictionary attacks. These are attacks in which an
adversary tries to break the security of a scheme by a brute-force method, by
� DI/ENS, CNRS, and INRIA.

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 1–9, 2014.
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2 M. Abdalla

trying all possible combinations of secret keys in a given small set of values (i.e.,
the dictionary). Although not very effective in the case of high-entropy keys,
dictionary attacks can be very damaging when the secret key is a password since
the attacker has a non-negligible chance of winning. Such attacks are usually
divided in two categories: off-line and online dictionary attacks.

To address the problem of dictionary attacks, several protocols have been
designed to be secure even when the secret key is a password. The goal of these
protocols is to restrict the adversary’s success to online dictionary attacks only,
in which the adversary must be present and interact with the system in order
to be able to verify whether its guess is correct. The security in these systems
usually relies on a policy of invalidating or blocking the use of a password if a
certain number of failed attempts has occurred.

In this survey, we consider the problem of designing authenticated key ex-
change protocols in the password-based setting. First, we recall in Section 2
the first seminal work in this area, namely the encrypted key exchange (EKE)
protocol by Bellovin and Merritt [13], together with its main variants. As the
security of existing EKE-based protocols relies on idealized models, such as the
random-oracle model [12], we review in Section 3 the main PAKE schemes with
a proof of security in the standard model. Finally, in Section 4, we briefly discuss
other issues such as universal composability, adaptive security, and recall some
of the most recent results in the area.

2 The Encrypted Key Exchange Protocol and Its Variants

The seminal work in the area of password-based key exchange is the encrypted
key exchange (EKE) protocol of Bellovin and Merritt [13] (see Fig. 1). In their
protocol, two users execute an encrypted version of the Diffie-Hellman key ex-
change protocol [23], in which each flow is encrypted using the password shared
between these two users as the symmetric key. Intuitively, since the elements to
which the encryption function is applied are chosen uniformly at random from
the underlying group, an adversary eavesdropping on the communication cannot
learn any additional information which would allow him to perform an off-line
dictionary attack.

Due to the simplicity of the EKE protocol, several other protocols were soon
proposed in the literature based on it [14, 31, 36, 40]. Unfortunately, due to the
lack of a proper security model for the analysis of PAKE schemes, these protocols
were only heuristically secure.

It was only in 2000 that Bellare, Pointcheval, and Rogaway [10], as well as
Boyko, MacKenzie, and Patel [17], proposed security models for PAKE schemes
and proved variants of the EKE protocol, under ideal assumptions, such as the
random-oracle model [12]. In addition to these, several other protocols were
proposed in the literature based on EKE protocol [6, 18, 19, 37], each with its
own instantiation of the encryption function. Currently, the simple password-
authenticated key exchange protocol in [6] (to which we refer as SPAKE) is
among the most efficient PAKE schemes based on the EKE protocol.
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Public information: (G, g, p), E ,D
Secret information: π

Alice (A) Bob (B)

x
R← Zp ; X ← gx y

R← Zp ; Y ← gy

X� ← Eπ(X) Y � ← Eπ(Y )
X�

−−−−−−−−−−−−−→
Y �

←−−−−−−−−−−−−−
SKA ← (Dπ(Y

�))x SKB ← (Dπ(X
�))y

Fig. 1. The encrypted key exchange protocol [13]. The protocol uses symmetric en-
cryption and decryption algorithms E and D and works over a finite cyclic group G of
prime order p generated by an element g.

The SPAKE scheme is a variation of the EKE protocol, in which the encryption
function Eπ(.) is replaced with a simple one-time pad function. More specifically,
whenever a user A wants to send the encryption of a value X ∈ G to a user
B, it does so by computing X · h1

π, where h1 is an element in G associated
with user A and the password π is assumed to be in Zp. The session identifier
is defined as the transcript of the conversation between A and B together with
their identities, and the session key is set to be the hash (random oracle) of the
session identifier, the password π, and the Diffie-Hellman key. The full description
of SPAKE is given in Fig. 2.

Public information: (G, g, p), h1, h2,H
Secret information: π ∈ Zp

Alice (A) Bob (B)

x
R← Zp ; X ← gx y

R← Zp ; Y ← gy

X� ← X · h1
π Y � ← Y · h2

π

X�

−−−−−→
Y �

←−−−−−
KA ← (Y �/h2

π)x KB ← (X�/h1
π)y

SKA ← H(A,B, π,X�, Y �,KA) SKB ← H(A,B, π,X�, Y �,KB)

Fig. 2. SPAKE: A simple password-based key exchange protocol [6]. SPAKE works over
a finite cyclic group G of prime order p generated by an element g.

As shown in [6], SPAKE is a secure PAKE scheme in the random-oracle model
[11] according to the definition in the indistinguishability-based model of Bellare,
Pointcheval, and Rogaway [10] if the computational Diffie-Hellman problem is
intractable in G.
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3 PAKE Protocols in the Standard Model

Even though EKE-based protocols are extremely efficient and easy to use, their
security relies fundamentally on a heuristic assumption, namely the random-
oracle model, in which hash functions are assumed to behave as a random or-
acle. Unfortunately, the random-oracle model is known not to be sound [20].
More precisely, there are several examples of schemes [9, 20, 28, 38] that can be
proven secure in the random-oracle model and for which there does not exist any
concrete instantiation of the hash function for which the scheme remains secure.
Hence, it is an important security goal to design schemes which do not rely on
any idealized model such as the random-oracle model.

The first protocols whose security proof did not rely on any idealized model
were proposed by Katz, Ostrovsky, and Yung (KOY) [34] based on the decisional
Diffie-Hellman assumption and by Goldreich and Lindell [27], who proposed a
solution based on general assumptions. While the former KOY protocol assumed
the existence of a common reference string, the protocol by Goldreich and Lindell
did not rely on any trusted setup assumption. Later, Gennaro and Lindell [26]
abstracted and generalized (under various indistinguishability assumptions) the
KOY protocol using the concept of smooth projective hash functions [22], which
became the basis of several other protocols [5, 7, 8, 16] in the literature. To un-
derstand how the Gennaro-Lindell protocol works, let us first review the concept
of smooth projective hash functions.

Smooth Projective Hash Functions. One of the main tools used in the
Gennaro-Lindell (GL) protocol is the notion of smooth projective hash functions
(SPHF, [22, 26]), which can be seen as a special type of zero-knowledge proof
system for an NP language. More precisely, the definition of SPHF requires
the existence of a domain X and an underlying NP language L such that it
is computationally hard to distinguish a random element in L from a random
element in X \ L. For instance, in the particular case of the PAKE scheme
in [21], the language L is defined as the set of triples {(c, �, π)} such that c
is an encryption of the password π with label � under a public key given in
the common reference string (CRS). The semantic security of the encryption
scheme guarantees computational indistinguishability between elements from L
and elements from X .

One of the key properties that make SPHF so useful is that, for a point x ∈ L,
the hash value can be computed using either a secret hashing key hk, or a public
projected key hp (depending on x [26] or not [22]) together with a witness w
to the fact that x ∈ L. Another important property of these functions is that,
given the projected key hp, their output is uniquely defined for points x ∈ L
and statistically indistinguishable from random for points x ∈ X \L. Moreover,
without the knowledge of the witness w to the fact that x ∈ L, the output of
these functions on x is also pseudo-random.

Overview of the GL Protocol. Now that we have informally introduced the
SPHF concept, we can finally review the GL PAKE protocol, whose detailed
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Public information (CRS): pk
Secret information: π

Alice Bob

(sk , vk)
R← SKG(1k)

l ← vk ‖A ‖B
cA = Enclpk (π; rA)

(l,cA)−−−−−→
hkB

R← HK(pk)

hpB

R← α(hk B, l , cA)

cB ← Enclpk (π; rB)
(hpB,cB)←−−−−−−−

hk A
R← HK(pk)

hpA

R← α(hkA, l , cB)
σA = Signsk (l , cA, cB, hpA, hpB)

(hpA, σA)−−−−−−−−→
abort if Vfvk ((l , cA, cB, hpA, hpB), σA) = 0

KA = HP(hpB, cA, l ‖π, rA) KA = H(hkB, cA, l , π)
KB = H(hk A, cB, l ‖π) KB = HP(hpB, cB, l , π, rB)

SK A = KA · KB SK B = KA ·KB

Fig. 3. An overview of the Gennaro-Lindell PAKE protocol [26]. (KG,Enc,Dec) are
the key generation, encryption, and decryption algorithms of a labeled public-key en-
cryption scheme [39]. (SKG,Sign,Vf) are the key generation, signing, and verification
algorithms of a one-time signature scheme [24]. (HK, α,H,HP) are the key generation,
key projection, hashing, and projected hashing algorithms of a family of smooth pro-
jective hash functions for the language L consisting of triples {(c, �, π)} such that c is
an encryption of the password π with label �.

description is given in Fig. 3. At a high level, the players in the GL protocol
exchange CCA-secure encryptions of the password, under the public-key found
in the common reference string, and then compute the session key by combining
smooth projective hashes of the two password/ciphertext pairs. More precisely,
the players first exchange ciphertexts consisting of encryption of their respective
passwords with respect to the label � containing their identities and the verifi-
cation key for a one-time signature scheme. Next, each player chooses a hashing
key for a smooth projective hash function for the language {(Enclpk (π), �, π)} and
sends the corresponding projected key to the other player. Each player can thus
compute the output of its own hash function with the help of the hashing key,
and the output of the other one using its knowledge of the randomness that was
used to generate the ciphertext of the password. To avoid attacks in which the
adversary generates new projection keys without modifying the corresponding
ciphertexts and projection keys, A also signs the transcript of the conversation.

To understand informally why this protocol is secure, first consider the case
in which the adversary plays a passive role. In this case, the pseudo-randomness
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property of the smooth hash function ensures that the value of the session key
will be computationally indistinguishable from uniform since the adversary does
not know the randomness that was used to encrypt the password. Now imagine
the case in which the adversary provides the user with an encryption of the wrong
password. In this case, the security of the protocol will rely on the smoothness
of the hash functions, which ensures that the session key will be random and
independent of all former communication. Thus, in order to be successful, the
adversary has to generate the encryption of the correct password. To do so, the
adversary could try to copy or modify existing ciphertexts. Since the encryption
scheme is CCA-secure, and thus non-malleable, modifying is not really a possi-
bility. Copying does not help either since either the label used for encryption will
not match (making the session key look random due to the smoothness prop-
erty) or the signature will be invalid (in the case where the adversary changes
the projection keys without changing the label and hence the verification key).
As a result, the only successful strategy left for the adversary is essentially to
guess the password and perform the trivial online dictionary attack, as desired.

Follow-Up Work. Due to its simplicity and generality, the KOY/GL PAKE
schemes [26, 34] have become the basis of several other PAKE schemes [5, 7, 15,
21,25,30,32,33,35]. Among these, the construction by Jiang and Gong (JG) [32]
and its generalization by Groce and Katz (GK) [30] are among the most efficient
PAKE schemes with a proof of security in the standard model according to the
definition in the indistinguishability-based model of Bellare, Pointcheval, and
Rogaway [10]. In particular, the GK/JG protocol only requires the exchange of
8 group elements and a total of 3 rounds. More recently, this result has been
slightly improved in [4].

4 Further Considerations

To conclude this survey, we now discuss some additional issues that one should
take into account when designing and implementing PAKE schemes, such as
universal composability and adaptive security.

Universal Composability. Most of the existing PAKE protocols, including the
ones mentioned so far, have proofs either in the indistinguishability-based secu-
rity model of Bellare, Pointcheval, and Rogaway (BPR) [10] or in the simulation-
based of Boyko, MacKenzie, and Patel (BMP) [17]. Even though these models
provide a security level that is sufficient for most applications, they fail to con-
sider some realistic scenarios such as participants running the protocol with dif-
ferent but possibly related passwords. To surmount these deficiencies, Canetti,
Halevi, Katz, Lindell, and MacKenzie [21] proposed an ideal functionality for
PAKE protocols in the UC framework which makes no assumption on the dis-
tribution on passwords used by the protocol participants. Since the KOY/GL
protocol is not known to achieve UC security, the authors of [21] also provided
a new scheme based on the GL construction [26] that securely realizes the ideal
functionality for PAKE under static corruptions .
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Since the work of Canetti, Halevi, Katz, Lindell, and MacKenzie [21], several
new constructions have appeared in the literature achieving UC security under
static corruptions [15, 30, 35]. Among these, the work of Benhamouda et al. [15]
is the most efficient one, only requiring only the exchange of 12 group elements in
total.

Adaptive Security. While the protocols in [15, 21, 30, 35] already achieve a
stronger notion of security than those in the BPR and BMP models, they are
only known to be secure in the presence of static adversaries, when the set of
corrupted players is known in advance. However, in reality, the adversary may
be able to corrupt parties adaptively and learn their internal states. To address
this issue, Barak, Canetti, Lindell, Pass, and Rabin (BCLPR) proposed in [8] a
simple and intuitive construction that uses general techniques from multi-party
computation. Even though their solution is very elegant, their protocol is quite
inefficient due to its generality. Since then, several new constructions have been
proposed [2, 3, 5]. While the construction in [2] is the most efficient and only
requires a single round, the one in [3] has been proven secure even without
assuming reliable erasures.

Trusted Setups. All of the PAKE protocols discussed in this survey have
security proofs in idealized models or assume the existence of a trusted common
reference string. There are, however, PAKE protocols which do not assume any
trusted setup assumption [27, 29]. While these results are outstanding from a
theoretical point of view, they are of limited interest for practice due to their
lack of efficiency.

Acknowledgments. The text of this survey was extracted from the Habilitation
à diriger des recherches (HDR) thesis by the author [1] and contains some minor
updates to take into account more recent work in the area. Its contents are based
on joint work with Fabrice Benhamouda, Olivier Blazy, Emmanuel Bresson,
Céline Chevalier, Dario Catalano, Olivier Chevassut, Pierre-Alain Fouque, Louis
Granboulan, and David Pointcheval.
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Adaptive versus Static Security in the UC Model�
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Abstract. We show that for certain class of unconditionally secure protocols and
target functionalities, static security implies adaptive security in the UC model.
Similar results were previously only known for models with weaker security
and/or composition guarantees. The result is, for instance, applicable to a wide
range of protocols based on secret sharing. It “explains” why an often used proof
technique for such protocols works, namely where the simulator runs in its head
a copy of the honest players using dummy inputs and generates a protocol execu-
tion by letting the dummy players interact with the adversary. When a new player
Pi is corrupted, the simulator adjusts the state of its dummy copy of Pi to be con-
sistent with the real inputs and outputs of Pi and gives the state to the adversary.
Our result gives a characterization of the cases where this idea will work to prove
adaptive security. As a special case, we use our framework to give the first proof
of adaptive security of the seminal BGW protocol in the UC framework.

1 Introduction

When defining and proving security of cryptographic protocols we want to capture
properties that would make our protocols applicable in real applications. Two aspects
are particularly important in this respect. First, a protocol usually is a part of larger sys-
tem and therefore we want a protocol to remain secure when composed, not only with
itself, but also with an arbitrary environment. Second, a protocol must remain secure,
even if some of the players are corrupted by an adversary. In a real scenario, one should
expect that the choice of which players to attack is made while the protocol is running,
i.e., we would like to have security against adaptive corruption rather than static, where
the choice is made before the protocol starts.

Capturing these goals in a definition is notoriously a difficult task, and this may be the
reason why general protocols for multiparty computation [12,3,9] were found a long
time before we had generally accepted definitions of security for which composition
results could be shown.

In 1991, Micali and Rogaway [14] as well as Beaver[2] put forward definitions. Like
virtually all subsequent work, these definitions use simulation-based security: given
only what the adversary is supposed to learn, it should be possible to simulate his view
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of the protocol. However, it was not until the work around 2000 of Canetti [5] (the uni-
versal composition (UC) framework) and independently Pfitzmann, Schunter and Waid-
ner [16] (reactive simulation) that security under arbitrary concurrent composition could
be expressed. A recent related, but different approach known as “constructive cryptog-
raphy” was initiated recently by Maurer [13]. This framework is also simulation-based
and gives security under composition, but is technically different from the UC model in
several ways.

It turns out that achieving adaptive security under, e.g., the UC definition is highly
non-trivial for protocols that are based on cryptographic assumptions (although the
problem can be solved at some loss of efficiency using so-called non-committing en-
cryption [7]).

Since these complications are tightly linked to the use of encryption in the protocol,
it was for a while believed in the folklore that for protocols that are information theo-
retically secure, static and adaptive security should be equivalent. This is not the case,
however, there are natural examples of information theoretically secure protocols that
are statically secure but not adaptively secure, as shown in [10].

In [6], a systematic study of the relation between static and adaptive security was
conducted. This was limited to definitions allowing only sequential, rather than concur-
rent composition. They found that, in most cases, static and adaptive security are not
equivalent. However, there was one important exception, namely that in the definition
from [14] (called the MR definition in the following), static and adaptive security are
equivalent.

Our contribution. It is natural to then ask what we can say about definitions that allow
for concurrent composition, such as UC. In view of the example from [10], one should
of course not expect adaptive to be equivalent to static in general; but it may be possible
to identify a class of protocols where equivalence holds, and where therefore we can
prove static security and get adaptive security only by verifying that the protocol is in
this class.

One might perhaps hope that the positive result from [6] on the MR definition could
help us, but this is not clear at all: the MR definition allows the simulator to be infinitely
powerful, where a UC simulator must be polynomial time. It considers only secure
function evaluation, where UC considers general reactive functionalities; and finally
the MR definition requires a protocol to have a certain “committal round” where all the
inputs become fixed, where the UC definition makes no such requirement.

In this paper, we borrow a high-level idea from the equivalence proof in [6], which
can be loosely described as follows: to do adaptive simulation, we start by running
the static simulator for the case where no player is corrupted. As soon as a corruption
occurs, we try to “rescue the situation” such that we can continue running the static sim-
ulator having corrected for the fact that a new player has been corrupted. We continue
in this way until the protocol halts.

Our technical contribution is to first identify the constraints on the static simulator
and the target functionality that one needs to make this work in the UC model and sec-
ond to resolve the difficulties arising from the differences between the MR and UC def-
initions. As a result, we show that for a certain class of unconditionally secure protocols
and target functionalities, static security implies adaptive security in the UC model. The
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constraints we need on the static simulator and the target functionality are quite natural
and allow the result to be applied, for instance, to a wide range of protocols for honest
majority based on secret sharing, including the BGW protocol from [3]. The result also
holds if the protocol uses one or more auxiliary functionalities, as long as they satisfy
the same constraint. The result therefore also covers the on-line phase of several recent
protocols in the pre-processing model [4,15,11].

To avoid confusion related to security of the BGW protocol, we want to clarify the
relation between our result and the recent security proof for this protocol, given by
Lindell and Asharov [1]. They prove static security and then notice that BGW satisfies
the MR definition, which by the result from [6] implies adaptive security (in the MR
definition). While this is true, it does not imply security in the UC model: first, as we
mentioned, an MR simulator has unbounded computing time while a UC simulator
must be polynomial time. Second, the equivalence result from [6] depends crucially
on the simulator being unbounded. Therefore there is currently no proof that the BGW
protocol is adaptively UC secure. However, using our result, such a proof can be derived
from the proof of static security. We make an assumption on the structure of the circuit
to be computed, namely that each output value is produced by a multiplication gate
– this can easily be achieved by adding dummy multiplications by 1 if needed. This
certainly simplifies the proof, but might in fact even be essential to get an efficient
adaptive simulator. It is so far open whether this is the case. However, we find find it
intriguing that even for a well known protocol like BGW, that is generally believed to
be “clearly” adaptively secure, a proof of this is a non-trivial step beyond static security.

From a more high-level point of view, our result “explains” why an often used proof
technique for such protocols works, namely where the simulator runs in its head a copy
of the honest players using dummy inputs and generates a protocol execution by letting
the dummy players interact with the adversary. When a new player Pi is corrupted, the
simulator patches the state of its dummy copy of Pi to be consistent with the real inputs
and outputs of Pi and gives the state to the adversary. Our result gives a characterisation
of the cases where this idea will work.

Since one of the constraints we impose on the static simulators is that one can effi-
ciently patch from a static simulation of a small set of parties to a static simulation of a
larger set of parties, our framework does not give adaptive security for free compared
to current proof strategies. However, our framework abstracts current proof techniques
and once and for all lifts all the technical details that are common for most proofs. We
hope and believe that our result will make it easier to prove adaptive UC security, as
it reduces the task to proving static security and checking whether the constraints we
require are satisfied.

2 The UC Framework

In this section we sketch the UC framework and define some shorthand notation which
we believe will make the upcoming proofs more clear.

In the framework from [5] the security of a protocol is defined by comparing its real-
life execution to an ideal evaluation of its desired behavior. The protocol π is modeled
by n interactive Turing Machines (ITMs), π = {P1, . . . ,Pn}, called the parties. In ad-
dition an ideal functionality is given. An ideal functionality is just an ITM. All parties
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can send messages to R and receive messages from R, using perfectly secure channels.
The input-output behavior of R models the communication resource available to the
parties in the protocol, and can, e.g., model perfectly secure, synchronous communica-
tion or authenticated asynchronous communication, but can be arbitrarily complex. In
the execution of π using communication resource R also an adversary A is present and
an environment Z modeling the environment in which A is attacking the protocol. The
environment gives inputs to honest parties, receives outputs from honest parties, and
can communication with A at arbitrary points in the execution. The adversary can see
and control the communication by interacting with R.1 The adversary can additionally
corrupted parties adaptively. When a party is corrupted, the adversary learns the entire
execution history of the corrupted party, including the random bits used, and will from
the point of corruption send messages on behalf of the corrupted party. Both A and Z
are PPT ITMs.

At the beginning of the protocol all parties, the communication resource, the adver-
sary, and the environment is given as input the security parameter k and random bits.
Furthermore the environment is given an auxiliary input z. At some point the environ-
ment stops activating with parties and outputs some bit. This bit is taken to be the output
of the execution. We use EXECπ,R,A,Z(k, z) to denote the output of Z in the execution.
We let EXECπ,R,A,Z denote the distribution ensemble {EXECπ,R,A,Z}k∈N,z∈{0,1}∗ .

One particular adversary is the so-called dummy adversary D. It simply works as
a channel between (π,R) and Z . As examples, if R outputs a message m to D, D
simply outputs m to Z , specifying that it is from the communication resource, and if Z
instructs to corrupt Pi, D will do so, and return the obtained information to Z . We use
REALπ,R,Z(k, z) to denote EXECπ,R,D,Z(k, z).

Second an ideal evaluation is defined, which is just another protocol plus communi-
cation resource being attacked by an adversary in an environment. In the ideal evalua-
tion again an ideal functionality F is present. However, now the input-output behavior
of F is a specification of the desired input-output behavior of the protocol. Also present
is an adversary S (a.k.a. the simulator), the environment Z , and n so-called dummy
parties D1, . . . ,Dn – all PPT ITMs. The only job of the dummy parties is to take inputs
from the environment and send them to the ideal functionality and vice versa. We call
δ = {D1, . . . ,Dn} the dummy protocol. Again the leakage seen by the adversary and
the influence that the adversary can except is defined by the input-output behavior of F,
i.e., by which messages F sends to S and and how F responds to messages from S. Note
that δ executed with F as communication resource is a trivially secure protocol with the
same input-output behavior as the ideal functionality F. For an environment Z we use
EXECδ,F,S,Z(k, z) to denote the output of Z after the execution. Since δ is a fixed pro-
tocol we can omit it in the notation. We let IDEALF,S,Z(k, z) = EXECδ,F,S,Z(k, z).

1 The leakage seen and influence allowed by A is defined by the input-output behavior of R. If
R models only authenticated communication it would send the transmitted messages also to
A. If it models secure communication it would not. If it models asynchronous communication
it could let A specify any delivery pattern, if it models synchronous communication it would
impose restrictions on the delivery patterns A may specify.
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We recall the definition of UC security. It can be proven that it is sufficient to prove
security against the dummy adversary, so we phrase the version where the adversary is
fixed to be D.

Definition 1 ([5]). We say that π securely realizes F in the R-hybrid model if there ex-
ists a PPT simulator S such that for all PPT environments Z we have that IDEALF,S,Z
and REALπ,A,Z are computationally indistinguishable. We say that there is statistical
security if IDEALF,S,Z and REALπ,A,Z are negligibly close for all environments Z , i.e.,
Z is not restricted to PPT. We say there is perfect security if IDEALF,S,Z = REALπ,A,Z
for all environments Z .

We use A � B to denote a system containing the two ITMs A and B and also use
this notation for larger systems. In the UC framework two ITMs A and B in the same
system of ITMs communicate by writing designated messages on the tapes of each
other, specifying the message and the identity of the sender. We would like a more
convenient terminology for this communication mechanism, so we will talk about A
and B being equipped by incoming ports (inports) and outgoing ports (outports). A port
is just a bit string pn, naming the port, plus a direction. Ports are connected by identity
of name and opposition of direction. I.e., if A has an outport pn and B has an identically
named inport pn then we say that A can send messages to B on pn. I.e., saying that A
sends m on pn, in A � B, is equivalent to saying that A writes (pn,m) on a tape of B.
Since ports are connected by names we clearly have that A � B = B � A.

Execution of an interactive system of ITMs works in a “sequentialized concurrent”
way, where only one ITM is active at a time. The activation is passed from one ITM
to the next when a message is sent to that ITM. Initially the environment is activated.
Which ITMs can write and read on which tapes and how activation is passed is specified
in great detail in the UC framework, but we will not need to address the particularities
to prove our result.

When a system of ITMs is closed, i.e., there are no outports without an identically
named inport, then it can be executed as described above, and we use the system also
to denote the family of random variables describing its execution, i.e., δ � F � S � Z =
EXECδ,F,S,Z and π � R � D � Z = EXECπ,R,D,Z .

If an interactive system has no protocol, then this will sometimes tacitly mean that the
protocol is the dummy protocol. Equivalently, a missing adversary sometimes denotes
the dummy adversary, i.e., F � S := F � δ � S and π � R := π � R � D.

If two interactive systems are open, but would become closed by adding an environ-
ment to the system, then we compare them by comparing them in all environments, i.e.,
a missing environment designates all environments. Formally, if F �S �Z = π �R�Z
for all environmentsZ , we write F�S perf≡ π�R. If F�S �Z and π�R�Z are negligibly
close for all environmentsZ , we write F�S stat≡ π �R. If F�S �Z and π �R�Z are neg-
ligibly close for all PPT environmentsZ , we write F�S comp≡ π �R. These notions can be
refined by restricting the class of environments. For instance, we write F�S comp≡ Env π�R
to mean that F � S � Z and π � R � Z are negligibly close for all PPT environments
Z ∈ Env.

We can rephrase the definition with the new notation as follows. We say that π se-
curely realizes F in the R-hybrid model if there exists a PPT simulator S such that
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F � S comp≡ π � R. We say that there is statistical security if F � S stat≡π � R. We say that

there is perfect security if F � S perf≡ π � R.
We will sometimes further overload notation like π �R � D � Z and use it to denote

the random variable describing the trace of the execution, i.e., (k, z) plus the ordered
list of the random tapes of all ITMs plus the ordered list of pairs (name,m) specifying
which messages were sent on which ports and in which order.

3 Adaptive versus Static Security Revisited

In this section, we show a general proof strategy for proving adaptive security. The idea
is to first prove static security and then construct, from the simulator S we built, a new
simulator S ′ for the adaptive case. Roughly speaking, the strategy for S ′ is to follow
the algorithm of S, but every time a new player Pi is corrupted, S ′ cooks up a view
for Pi that “looks convincing”, gives this to the environment, patches the state of S
accordingly and continues.

It turns out that there is a class of unconditionally secure protocols and functionalities
where this idea works and our goal will be to characterize this class and point out what
the procedure run by S ′ to handle corruptions must satisfy. We will consider the case
of perfect security first and later show that the results are also true in some cases for
statistical security.

So we will assume we are given protocol π, communication resource functionality

R, ideal functionality F, and simulator S such that π�R perf≡S�F for all static, unbounded
environments that corrupts only subsets from some adversary structure A. We write

π � R perf≡A,static S � F. We will assume synchronous protocols only.
We will need the following notation.

Definition 2. For an ITM A (ITM) that is part of an interactive system IS , the view of
A is a random variable, written VA(IS), and is defined to be the ordered concatenation
of all messages exchanged on the ports of A and of the random choices of A, i.e., a
random trace of IS restricted to the values seen by A. We use VA(IS|E) to denote
the view when conditioned on some event E occurring, and VA(IS)j to denote the
view truncated to contain only the values associated with the first j rounds – we only
consider synchronous protocols, so the notion of round is well defined.

Definition 3. For a player Pi in a protocol π running with communication resource R,
and environment Z , the conversation of Pi is a random variable, written ConvPi

(Z �
π � R), and is defined to be the ordered concatenation of all messages Pi exchanges
with honest players and R. For a set C of parities we let ConvC(Z � π � R) be the set
of ConvPi

(Z �π �R) for Pi ∈ C. Likewise, the conversation of Z , written ConvZ(Z �
π � R), is the ordered concatenation of all messages Z exchanges with honest players
in π and R. For conversations, we denote truncation and conditioning on events in the
same way as for views.

Note that the conversation of a party is a substring of its view. Also note that when a
player Pi is corrupted, its view becomes a substring of the conversation of Z , because
Z learns from the (up to now) honest Pi the entire view of Pi up to the corruption. We
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may think of ConvZ(Z � π � R) as the total information Z gets from attacking the
protocol. Recall, however that Z also chooses the inputs of honest players and learns
their outputs.

We will need to assume that the ideal functionality has a certain behavior. First it
must ensure that whenever it receives input or gives output, the time at which this hap-
pens is publicly known, i.e., the functionality leaks the information that a party just
received an output as well as the the name of that party. The second demand is meant to
capture the idea that the functionality should treat players who are corrupt but behave
honestly in the same way as if they were honest. We give an intuitive explanation after
the definition.

Definition 4. The ideal functionality F is said to be input-based if the following is sat-
isfied:

Honest Behavior Equivalence: Consider executions of F where some set A is cor-
rupted from the start and where a fixed (ordered) set of inputs IF are given to F
during the execution2. In any such execution the outputs produced by F and its
state at the end has the same distribution, in particular the distributions do not
depend on the corruptions that occur during the execution.3

Publicly known Input-Output Provision: Each time F receives an input from Pi, F
leaks a message specifying that some input from Pi has been received.4 Each time
F sends a private output to Pi, it also leaks a message, specifying that an output
was given, but not the value.

The “honest behavior equivalence” condition is essentially to the notion of a “well-
formed ideal functionality” [8] and can be intuitively explained as follows: an ideal
functionality knows which players are corrupt and its actions may in general depend
arbitrarily on this information. The condition puts a limitation on this: Consider first an
execution where all players outside A remain honest and F gets IF as input. Compare
this to a case where Pi �∈ A is corrupted, but F still gets the same inputs. This means in
particular that Pi sends the same inputs, so he “behaves honestly” towards F. Therefore,
the demand we make loosely speaking means that as long as a corrupt player behaves
honestly towards the functionality, the actions it takes will be the same as if that player
had been honest.

Our results will also be valid for a slightly more general case where the outputs
produced by F do not have to be the same in all executions, but the outputs in one

2 Notice that these inputs will arrive from different parties, depending on whether the player
giving input is honest or is controlled by the adversary/environment in the given execution.

3 Note that technically, in the UC framework F is informed of corruptions, so its state contains
information about who is corrupted and when. So strictly speaking, the state cannot be exactly
the same in all cases. However, we require that up to the fact that different sets of corrupted
players are stored, the state is exactly the same. This can be formalized by saying that F =
Fwrap(Fcore) for a core functionality Fcore which has honest behavior equivalence in the strict
sense plus a wrapper Fcore who is informed who is corrupted but does not forward it to the
core, but otherwise acts as a channel between its environment and the core.

4 By leaking a message we mean that the message is sent on the port connected to the adver-
sary/simulator.
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execution can be efficiently computed from IF and the outputs in any other execution.
For simplicity we do not treat this general case explicitly in the following.

We also need to make some assumptions on how the simulator S behaves, more
precisely on how it decides on the inputs it sends to F on behalf of corrupted players
(recall that once a player is corrupted, the simulator gets to decide which inputs this
player provides to F). We will assume that S uses a standard technique to decide on
these inputs, namely at the time where the input is given, it looks at the conversation of
the corrupt player and decides on its input based on this. This is formalized as follows:

Definition 5. The simulator S is conversation-based if the following is satisfied:

Conversation-based inputs: If S sends an input x to F on behalf of Pi in round j, it
computes x as x = Inpi(c) where Inpi is a PPT function depending only on the
protocol and c = ConvC(Z � S � F)j , where C is the set of corrupted parties.

Honest behavior implies correct inputs: If Pi is corrupt but has followed the proto-
col honestly then it is always the case that Inpi(c) equals the corresponding input
Pi was given from the environment. By a corrupt Pi following the protocol honestly,
we mean that the environment decides the actions of Pi by running a copy of the
code of the honest Pi on the inputs and messages that Pi receives in the protocol
and a uniformly independently chosen random tape.5

Corruption-consistent input functions: Consider the conversations c = ConvC(Z �
S�F)j of some corrupted parties, and consider the conversations c′ = ConvC′(Z�
S �F)j of some other set of corrupted parties, where both C and C′ are allowed to
be corrupted and C ⊂ C′. For all such c, c′ and all input functions Inpi for parties
in C, it must be the case that Inpi(c) = Inpi(c

′).

Note that input functions only have to be defined on conversations that actually occur
in π. Also note that the corruption consistency of the input functions model the follow-
ing reasonable intuition: consider a run of π that leads to certain inputs. Now suppose
we run π again with the same random coins, however some players that were honest
before are now corrupted, but are told to play honestly. Since all players make the same
moves in the two cases, it is reasonable to expect that the resulting inputs should be the
same, and this is what the corruption-consistency of the input functions implies. This is
in some sense the requirement that the input functions are “well-formed”.

A typical example of an input function is where Pi provide inputs by secret-sharing
them using polynomials of degree at most t. Here the input function reconstructs the
input from the shares held by honest players using Lagrange interpolation. If the pro-
tocol guarantees that the shares are consistent with some polynomial of degree at most
t, even if Pi is actively corrupt, then the input function only has to be defined on such
sets of shares and is indeed corruption consistent.

Now, suppose we are given an adaptive environment Z and we want to show that
the protocol is secure with respect to this environment. For this, we need to think about

5 It is slightly tricky to formally and generally define what “following the protocol honestly”
means, as an actively corrupted party takes all its instructions from the environment. However,
in our context the definition we give here will do, where we make a structural requirement on
the environment that it contains a copy of the honest party.
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how we can use a static simulator S. Of course, we cannot just run it against Z because
S does not know how to handle corruptions that occur in the middle of the protocol. So
instead, we will construct a family of static environments from Z .

For each set A that Z may corrupt, we construct an environment ZA. Informally,
what ZA does is that it corrupts set A, but initially, it lets all players in A play honestly.
It runs internally a copy of Z and lets it interact with the protocol as usual, where
the only difference is that players in A are run honestly by ZA instead of running by
themselves. When Z corrupts a player in A, ZA gives control of that player to Z and
continues, if the corrupted player is not in A, ZA outputs guess 0 and terminates. If Z
outputs a guess c ∈ {0, 1} without corrupting anyone outside A, then ZA outputs the
same guess c. A formal description is found below.

Agent ZA

Static environment constructed from Z.

1. Initially corrupt set A. Set up internally a (honest) copy P′
j of each player Pj ∈ A.

Also set up internally a copy of Z.
2. When the system executes and some Pj ∈ A is activated, then if Pj has not been

corrupted by Z (see next item) ZA does the following: ZA gives a copy of the
messages received by Pj to its internal copy P′

j and runs its code to decide (honestly)
what to send.

3. If Z decides to corrupt Pj ∈ A, ZA gives the current state of P′
j to Z and gives

(passive or active) control of Pj to Z. Note that this means that after this point any
messages meant for Pj (from R or from other players) are forwarded to Z and ZA

runs the code of Z to determine what messages Pj should send.
4. If Z decides to corrupt Pj �∈ A, ZA halts and outputs the guess 0.
5. If Z halts (having corrupted no player outside A) with guess c ∈ {0, 1}, ZA halts

and outputs guess c.

We know that S can do perfect simulation against any of the ZA we just defined
and this will be the basis of the adaptive simulator we construct later. Before we can
construct the adaptive simulator, we need some auxiliary lemmas on how S behaves
when interacting with the ZA’s.

Some notation: In the following s will denote an ordered sequence of players, and
A(s) will denote the set of players that occur in s. Es will be the event that the first
|s| corruptions done by the environment are exactly those in s (in the specified order).
Below, when we write views or conversations with subscript s, for instance as in VZ(Z�
π �R|Es)s, this means that if a corruption outside s occurs, we truncate the view at the
point where this corruption happens.

Finally, consider the copy of Z that is run internally by ZA(s) where we execute
ZA(s) � IS for some interactive system IS (such as π � R). We then let VZ(ZA(s) �
IS|Es) be its view, conditioned on Es. Since ZA(s) runs Z “in the head” it is clear that
VZ(ZA(s) � IS|Es) can be deterministically and easily extracted from VZA(s)

(ZA(s) �
IS|Es), we will write this as
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VZ(ZA(s) � IS|Es) = Extr(VZA(s)
(ZA(s) � IS|Es)) .

We can now show that assuming Es occurs, then S can be used to perfectly simulate
(a part of) the view Z sees in the protocol, because it can simulate the view of ZA(s):

Lemma 1. Assuming R is input based, we have

VZ(ZA(s) � S � F|Es)
perf≡VZ(Z � π � R|Es)s .

Proof. We have VZA(s)
(ZA(s) �S �F)

perf≡VZA(s)
(ZA(s) �π �R), since S is a good static

simulator. So the two distributions are also the same when conditioning on Es, that is,
we have

VZA(s)
(ZA(s) � S � F|Es)

perf≡VZA(s)
(ZA(s) � π � R|Es) . (1)

The two distributions remain equal if we apply the same deterministic function to
both of them, so if we apply Extr on both sides of (1) we get

VZ(ZA(s) � S � F|Es)
perf≡VZ (ZA(s) � π � R|Es) . (2)

Moreover, from the point of view of Z (and still conditioning on Es), the only dif-
ference between ZA(s) � π � R and Z � π � R is that in the first case the parties in A
are run honestly by ZA(s) until Z wants to corrupt them while in the second case they
run as honest players in π. This makes no difference to R since it is input based (by the
honest behavior equivalence property) and hence it makes no difference to Z either. So
we have

VZ(ZA(s) � π � R|Es)
perf≡ VZ(Z � π � R|Es)s . (3)

The lemma now follows from (2) and (3).

We also need to consider a connection between simulation against several different
ZA(s)’s: For a sequence of players s, we can append a player Pi (who is not in s) at the
end of the sequence. We write this new sequence as s, i, and define Es,i and A(s, i) as
before.

Lemma 2. Assuming R is input based, we have

VZ(ZA(s) � S � F|Es,i)
perf≡ VZ(ZA(s,i) � S � F|Es,i)s .

Proof. Since S is a good static simulator, we have by a similar argument as in the proof
of Lemma 1 that

VZ(ZA(s) � S � F|Es,i) = Extr(VZA(s)
(ZA(s) � S � F|Es,i)) (4)

perf≡ Extr(VZA(s)
(ZA(s) � π � R|Es,i)) (5)

= VZ(ZA(s) � π � R|Es,i) . (6)

Note that, assuming Es,i occurs, the only difference between ZA(s)�π�R and ZA(s,i)�
π � R is that in the latter case Pi is run honestly by ZA(s,i) whereas in the former it
plays honestly as party in the protocol. As R is input based, this makes no difference
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to R and hence also no difference to the view of Z as long as we only consider what
happens up to the point where Pi is corrupted. So we have

VZ(ZA(s) � π � R|Es,i)
perf≡ VZ(ZA(s,i) � π � R|Es,i)s . (7)

Using again that S is a good static simulator, it follows in that same way as before that

VZ(ZA(s,i) � π � R|Es,i)s
perf≡ VZ(ZA(s,i) � S � F|Es,i)s . (8)

The lemma now follows from (6), (7) and (8).

We now want to show that if we consider both the view of Z and the inputs and
outputs that F exchanges, we still have a similar result as in the previous lemma. This
does not have to be true in general, but is indeed true if S is conversation-based and if
F is input-based:

Lemma 3. Let StF(·) be the state of F after running in some interactive system. Then,
if S is conversation-based and F is input-based, we have

(VZ(ZA(s) � S � F|Es,i), StF(ZA(s) � S � F|Es,i))

perf≡(VZ (ZA(s,i) � S � F|Es,i)s, StF(ZA(s,i) � S � F|Es,i)s) .

Proof. We already have from Lemma 2 that the view of Z has the same distribution in
the two systems. We then prove the lemma by arguing that because S is conversation-
based, all inputs sent to F follow deterministically from the view of Z and will be the
same in both systems, so since F is input-based, the distribution of its state must be the
same as well.

In more detail, consider a view v for Z that occurs with non-zero probability (in both
systems). Note first that by public input-output provision of F, one can infer from v in
which rounds inputs were provided to F or outputs were sent, so these must be the same
in the two systems. Consider a particular input and say it comes from player Pj . We do
a case analysis:

Pj �∈ A(s, i) In this case Pj is honest throughout in both systems. This means Z pro-
vides the input directly to F so the input occurs in v and is the same in both systems.

Pj = Pi In the system ZA(s) � S � F, Pi is honest and Z provides directly to F the
input, say x, that occurs in v. In ZA(s,i) � S � F, Pi is corrupt but is told to play
honestly on input x as provided by Z . Then S decides on the input to F using the
input function on the conversations of the corrupted parties, and this will result in
x by the “honest behavior implies correct input” property.

Pj ∈ A(s) and has not been corrupted by Z when the input is provided In this
case, in both systems Z provides input x to Pj who plays honestly and S decides
the input to F using the input function on the conversations of the corrupted parties,
which will be x, again by the “honest behavior implies correct input” property.

Pj ∈ A(s) and has been corrupted by Z when the input is provided In this case S
will in both systems decide on the input using the input function on the conver-
sations of the corrupted parties. Note first that the messages a corrupted party has



Adaptive versus Static Security in the UC Model 21

exchanged with all players that Z has not corrupted yet is part of v and is therefore
the same in both systems (this includes at least all players outside A(s)). How-
ever, from the point of view of S, the conversation of a corrupted party is not the
same in the two systems: in ZA(s) � S � F, it consists of messages exchanged with
players outside A(s), while in ZA(s,i) � S � F it consists of a subset of these mes-
sages, namely those exchanged with players outside A(s, i). However, since the
input functions are corruption-consistent, the input computed by S is nevertheless
the same in the two systems.

In the following, we will consider a situation where we execute the system ZA(s) �
S � F until a point where Es,i has occurred. At this point, ZA(s) would halt. However,
by Lemma 3, as far as Z and the state of F is concerned, we might as well have been
running ZA(s,i) � S � F, and unlike ZA(s), ZA(s,i) would be able to continue even after
Pi is corrupted. So if we could somehow “pretend” that in fact it was the latter system
we ran, we would not have to stop when Pi is corrupted.

To help us do this trick, we consider an execution of ZA(s,i)�S�F where Es,i occurs.
Say that the values of VZ(ZA(s,i) � S � F|Es,i)s and StF(ZA(s,i) � S � F|Es,i)s are v
and w. We then define Dv,w to be the joint distribution of the states of ZA(s,i) and S
at the point where Pi is corrupted, given v and w. Note that since we assume that Es,i

occurred, the state of ZA(s,i) consists of a state of Z that is fixed by v and a view of Pi

who has been playing honestly so far. So we can think of the output of Dv,w as a view
of Pi plus a state of S.

Lemma 4. Consider an execution of the system ZA(s,i) �S �F until a point where Es,i

has occurred. Let

VZ(ZA(s,i) � S � F|Es,i)s = v and StF(ZA(s,i) � S � F|Es,i)s = w .

Let ioS be the string of inputs and outputs S has exchanged with F, and let ConvZ be
the conversation of Z in the execution. Then one can sample from the distribution Dv,w

if given ioS and ConvZ . In particular, Dv,w depends only on ioS and ConvZ .

Proof. Recall that ZA(s,i) consists of a copy of Z and copies of players in A(s, i).
However, since Es,i occurs, all players in A(s) have been corrupted earlier by Z , so
their entire view until they were corrupted by Z is part of ConvZ .

The sampling procedure we claim is now very simple: for each possible set of coins
for Pi and for S, we will test if these coins are consistent with the values of ioS and
ConvZ we are given. We do the test by simulating Pi and S running as part of the
system ZA(s,i)�S �F. This is possible because the given values ioS and ConvZ specify
the entire communication that Pi and S should have with F and Z . If the current random
coins lead to Pi or S sending a message that is inconsistent with ioS ,ConvZ , we throw
away this set of coins. Finally, we choose randomly a set of coins among those that
survived and output the resulting view of Pi and state of S.

Note that we only prove that one can sample from Dv,w, we do not claim that one can
sample efficiently from this distribution. In fact, this does not hold in general. In view
of the result of Lemma 4, we will write DioS ,ConvZ instead of Dv,w in the following.
We can now specify the final tool we need to build an adaptive simulator, namely the
sampling we have just seen must be possible to do efficiently:
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Definition 6. Consider a probabilistic algorithm Patch that takes as input strings ioS
and ConvZ of the form as specified in Lemma 4. Patch is said to be a good sampling
function if it satisfies the following:

– It is polynomial time computable.
– The output Patch(ioS ,ConvZ) is distributed according to DioS ,ConvZ .

We are now finally ready to specify the main result of this section:

Theorem 1. Assume we are given a simulator S for protocol π and functionality F
such that π � R perf≡A,static S � F. Assume further that S is conversation-based, F and
R are input-based, and that we are given a good sampling function Patch. Then there

exists a simulator S ′ such π �R perf≡A,adaptive S �F, i.e., π �R�Z perf≡A,adaptive S �F�Z
for all for all adaptive and synchronous environment Z corrupting only subsets from A.

Proof. We specify the algorithm of our adaptive simulator S ′. To do this, suppose that
if we are given a string ioS containing inputs and outputs that S has exchanged with
F on behalf of corrupted players in a set A. Suppose we are also given the inputs and
outputs ioi that some honest player Pi has exchanged with F in the same execution.
Then we can merge these strings in a natural way: we define Merge(ioS , ioi) to be the
string that contains, for every protocol round, the inputs to F that occur in either ioS or
ioi, and also outputs from F that occur in either ioS or ioi. Note that Merge(ioS , ioi) is
a string of inputs and outputs that S might have exchanged with F if A ∪ Pi had been
the corrupted set (and Pi had behaved honestly).

Agent S ′

Adaptive simulator constructed from S .

1. Set s be the empty sequence. Set ioS ,ConvZ to be the empty strings. Set up a copy
of S in its initial state. Tell S as input (in the preamble) that the empty set is the
corrupted set.

2. Whenever S ′ is activated, if the input is a request to corrupt a new player Pi, it goes
to the next step. Otherwise, it runs S on the input received and sends the output S
produces on the corresponding output port of its own. Messages exchanged with Z
are appended to ConvZ , inputs/outputs exchanged with F are appended to ioS .

3. Set s = s, i. Send a request to corrupt Pi to F and get s string ioi back. Set ioS =
Merge(ioS , ioi). Compute (vi,St′) = Patch(ioS ,ConvZ ). Put S in state St′, send
vi to the environment, append vi to ConvZ and go to Step 2.

To see that this simulation works, note first that it is obvious that ConvZ contains at
all times the conversation of Z so far, and that ioS contains at all times the inputs and
outputs we have exchanged with F so far.

We can now show the following
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Claim: whenever S ′ enters step 2 the state of Z,S and F are distributed exactly as in a
run of ZA(s) � S � F where Es occurs.

We show this by induction: the claim is trivial when we enter step 2 the first time
since here s is empty. So consider a later stage where we enter step 2, and write the
current s as s = s′, i. The previous time we entered step 2, by induction hypothesis,
the state of Z,S and F were distributed exactly as in a run of ZA(s′) � S � F where
Es′ occurs. During the following execution of step 2, S ′ simply ran S, so when the i’th
player is corrupted, the state of the state of Z,S and F were distributed exactly as in a
run of ZA(s′) �S �F where Es′,i occurs. Now, by Lemma 3, the views (and hence state)
of Z and the state of F are distributed as in a run of ZA(s′,i) � S � F where Es,i occurs.

Then Patch was run and the claim now follows by assumption on Patch, if we show
that the inputs ConvZ , ioS we use have the distribution they would have in ZA(s′,i) �
S � F, given the current values of the view of Z and the state of F. This is trivially true
for ConvZ as it follows deterministically from the view of Z . For ioS , note that the
inputs to F that occur in this string also follow deterministically from the view of Z , we
argued this in the proof of Lemma 3. But since F is input-based, the resulting outputs
from F will be the same regardless of whether we run ZA(s) or ZA(s′,i), and so ioS has
the desired distribution.

We can now argue that VZ (Z � π � R)
perf≡VZ(Z � S ′ � F) which clearly implies the

theorem.
We will consider the executions of step 2 one by one. In the first execution, by the

above claim, the state of Z,S and F are distributed exactly as in a run of ZA(s) � S � F
where Es occurs. But here s is the empty sequence so Es always occurs. In step 2, we
simply run S, so by Lemma 1, we obtain a perfect simulation of Z’s view until the point
where is halts or corrupts the first player. In particular, in the latter case, that player is
chosen with the distribution we would also see in a real execution of the protocol. When
we have executed step 3, again by the claim, the state of Z,S and F are distributed
exactly as in a run of ZA(s) � S � F where Es occurs, and where s now contains one
player. Again by Lemma 1, while executing step 2 we obtain a perfect simulation of
Z’s view from the point where it corrupts the first player until the point where is halts
or corrupts the second player.

Repeating this argument at most n times (since Z can corrupt only so many players),
we see that we get a perfect simulation of the entire view of Z .

Using Theorem 1. In order to use Theorem 1 on a concrete protocol, one has to first
construct a static simulator S, verify that is is conversation-based and that the target
functionality F is input-based. This is usually quite easy. Then one has to construct an
efficient procedure Patch. This may seem harder because the formal definition is quite
technical and involves two static environments constructed from an arbitrary adaptive
environment.

We therefore give an explanation in more “human” language of what Patch must be
able to do. Recall that when Patch is called, players in the sequence s were corrupted
earlier and a new player Pi has just been corrupted. We know ioS , i.e., all the inputs
and outputs that players in s, i have exchanged with the functionality F, and we know
ConvZ , that is, the protocol execution as seen by Z until now. Patch now has two tasks
that must be solved efficiently:
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The first one is to construct a complete view of Pi playing honestly in the protocol
until now, and this must be consistent with ioS and ConvZ . In particular, ioS contains
the inputs and outputs Pi has exchanged with F and ConvZ contains the messages that
Pi has sent to players who were corrupted earlier. The reason why this can be feasible
for, e.g., protocols based on secret sharing is that the corrupted players (actually, Z)
have seen less than t shares of the secrets of Pi. This leaves the secrets undetermined,
so when we now learn the actual secret values of Pi (from ioS), we are able to create a
full set of shares that is consistent with the secrets and the shares of the corrupt players.

The second task is to create a new state for the simulator S. This must be the state
as it would have looked if we had run S with all players in s, i being corrupt from the
start, but where Pi plays honestly until the current point in time.

We point out that UC proofs in the existing literature often use a strategy for building
a static simulator S that actually makes both tasks easier: Initially, S sets up a internally
copies of the honest players in the protocol, and gives them dummy inputs. It now
simulates by letting these “virtual players” execute the protocol with the corrupt players
(controlled by Z). The state of S is simply the state of the virtual players. Now, when
Pi is corrupted, Patch will compute how the view of the virtual copy of Pi should
change, now that we know its actual inputs, and will then update the state of the other
virtual players to make everything consistent, including ioS and ConvZ . This creates
the required view of Pi and the new state of S is the state of the updated virtual players,
except that of Pi. It is not hard to see that if one can show that Patch generates correctly
distributed states for the internal players, given ioS and ConvZ , then Theorem 1 applies
and we get adaptive security.

Extension to Statistical Security. It is not clear that Theorem 1 is true for statistical
security in general. But it not hard to see that it holds in an important special case:
suppose we can define an “error event”E such thatE occurs with negligible probability,
and we can make a static simulator S that simulates perfectly if E does not occur. Then
we can redo the proof of Theorem 1 while conditioning throughout on E not occurring.
We leave the details to the reader.

4 Adaptive UC Security of the BGW Protocol

The protocol. For simplicity we will only consider security of the passively secure
version of BGW. The analysis extend to the active case using known fairly standard
arguments from secret-sharing. We assume the reader is familiar with the protocol but
as a reminder, each secret value a in the computation is secret shared using a polynomial
fa of degree at most t of finite field F, where the protocol is secure against corruption of
t of the n players, and where t < n/2. Each player Pi then holds fa(i), and fa(0) = a.

To add secret shared values a, b, each player Pi locally computes fa(i)+fb(i) which
effectively means we now have secret shared a+ b using polynomial fa + fb.

To multiply secret shared values a, b, each player Pi locally computes fa(i)fb(i) =
(fafb)(i), and secret shares this value using a random polynomial gi, i.e., he sends
gi(j) to each player Pj . Let r1, ..., rn be the Lagrange coefficients with the property
that
∑n

i=1 rih(i) = h(0) for any h of degree less than n. Then each player Pj computes



Adaptive versus Static Security in the UC Model 25

cj =
∑n

i=1 rigi(j). If we define fc =
∑n

i=1 rigi, then since the degree of fafb is less
than n, it is not hard to see that fc(0) = fa(0)fb(0) = ab and that fc(j) = cj so that
we have effectively secret shared the product c = ab6.

Note that since each honest player contributes a random polynomial gi, this protocol
ensures that the polynomial used to secret share the product is a random polynomial of
degree at most t with the only constraint that it determines ab as the secret.

To compute a function securely, players secret share their inputs, work their way
through an arithmetic circuit computing there desired function and finally open the
results, by broadcasting their shares. For simplicity we will assume that each player Pi

has a single input xi and we want to compute a single public output y.

The functionality. The natural functionality one would expect this protocol to imple-
ment is one that gets input from all players, computes the desired function and outputs
the results to everyone. Such a functionality is clearly input based: as long as the inputs
it gets are the same, the result will be the same, regardless of who is corrupted.

The simulator. A static simulator for the protocol is very easy to describe: if the player
set A is corrupted from the start, then the simulator sets up internally dummy players
P̃i for each Pi �∈ A and gives them dummy inputs. The dummy players will execute the
code prescribed by the protocol.

The simulator now lets the dummy players execute the protocol with the players in
A, who are controlled by the environment. When a player in A secret shares his input,
the simulator reconstructs the input from the shares that are sent to the honest (dummy)
players, and passes these inputs to the functionality. This gives a perfect simulation of
all steps up to the phase where outputs are opened: the environment never sees more
than t shares of any value held by honest players, and hence in its view, there is no
difference between dummy and real players.

When an output y is about to be opened, the simulator gets the correct output y from
the functionality. The players hold a polynomial fy′ that represents the output, but of
course we cannot expect that y′ = y since y′ was computed from dummy inputs. The
simulator therefore computes a polynomial g of degree at most t with the property that
g(0) = y− y′ and g(i) = 0 for all Pi ∈ A. Note that if less than t players are corrupted
these constraints do not determine g, so a random polynomial satisfying the constraints
is chosen.

The simulator now pretends that in fact the polynomial fy = fy′ + g is held by the
players, which is possible as only the state of dummy players need to be changed. Now
the opening will indeed determine the correct y.

It is very easy to see that this is a perfect static simulator and that it is conversation
based.

An assumption on the circuit. Before we continue we describe an assumption we will
make on the structure of the circuit: we will assume that each output comes directly

6 This is actually not quite the original BGW multiplication protocol, but it is simpler to consider
this variant for our purposes. As discussed in the introduction, it is in fact unclear where the
protocol can be proven adaptively secure without this modification.
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out of a multiplication gate. This will make the proof below much easier and is perhaps
even essential. This can be assumed essentially without loss of generality: we can just
add multiplication by dummy value 1 if needed. The effect of this assumption is that the
polynomial that is opened is random of degree at most t with the only constraint that
it determines the correct output. In particular it is independent of all random choices
made by players earlier.

Patching the views. We now show how to construct the procedurePatch that is required
before we can use our main theorem to conclude adaptive security. So we assume that
a player Pk may be corrupted in any round during the protocol. If this happens, the
simulator learns the true value of the input xk and then it has to show the internal state
of Pk to the environment. For this, we patch the state of P̃k so that it is consistent with
xk and the rest of the values shown to the environment during the execution. Also the
state of the remaining dummy players must be patched to be consistent with the state
we created for Pk. We can then continue the static simulation from this point.

We describe here the case where Pk gets corrupted after the protocol is completed.
Then, handling corruption at an earlier stage will simply consist of only doing a smaller
part of the patching steps (namely up to the point where the player gets corrupted).
Basically, the way to patch the state is to recompute every honest dummy player’s share
which is affected by the input of Pk, while not changing any of the shares that corrupted
players have seen. This is done as follows:

- Input Sharing. Based on xk we compute a new random secret sharing of xk which
is consistent with the (strictly less than t) shares shown to the environment and
fxk

(0) = xk and updates the shares of the dummy players to be consistent with
fxk

.
- Addition or Multiplication by a constant. Here the players only do local compu-

tations so we can simply recompute all the shares of dummy players which were
affected by fxk

.
- Multiplication. The first round in the processing of a multiplication gate only has

local computations and hence, we recompute local value as above. Then in the
second round, new shares are distributed of the product of two polynomials fafb.
If fxk

is involved in one of these polynomials, we compute a new random secret
sharing of fa(0)fb(0) as it did for xk in input sharing. In the third and last round
the simulator is again able to recompute the shares of the dummy parties by local
computations. Recall that the recombination vector is independent of (fafb)(X); it
is the same for all polynomials of degree at most n, so it is indeed possible to redo
this step with the new product.

- Output Reconstruction. We are given the correct output value y. Note that the en-
vironment has already seen (points on) a polynomial fy that was created earlier.
Therefore we must patch the state such that Pk ends up holding fy(k) as his
share. Recall that in the real protocol, fy is produced by the multiplication gate
protocol. Our patching procedure applied to this gate produces a polynomial fi
for each player, and then the local recombination step determines a polynomial
f =

∑
i∈S rifi. Since the patching never changes the shares of players in C, we

have fyj(i) = f(i) for each Pi ∈ C. But we also need that fyj(k) = f(k), and this
is not guaranteed.
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To correct for this, note that there must exist an honest player Pi0 such that ri0 �= 0,
otherwise the corrupt players could reconstruct the product on their own. We now
choose a random polynomial g of degree at most t, subject to

g(0) = 0, g(i) = 0 for all Pi ∈ C, and g(k) = r−1
i0

(fyj(k)− f(k)).

This is possible since at most t− 1 players could be corrupted before Pk, so we fix
the value of g in at most t + 1 points. We now adjust the state of dummy player
P̃i0 , such that we replace its polynomial fi0 by fi0 + g. This keeps the state of
Pi0 internally consistent because fi0(0) = (fi0 + g)(0), and the shares of players
in C are unchanged. However, we have now replaced f by f + ri0g, and clearly
(f + ri0g)(k) = fyj(k) as desired.

It is not hard to see that Patch as described above indeed produces polynomials for
Pk and the remaining dummy players that are random, subject to the constraint that
they are consistent with xk , and the adversary’s view so far. We therefore conclude that
the protocol is adaptively secure.

Is the assumption on the circuit necessary? The intuitive reason why the above proof
technique needs the assumption that every output value comes from a multiplication
gate is as follows: When Patch is started, the environment has already been shown
Pk’s share of the output y, and this share is a result of a random choice that was made
by the static simulator earlier. But now Patch produces a view for Pk starting from
the input xk and working its way forward through the protocol, making several random
choices underway. This also leads to a share of y, but there is no reason to expect that
it will agree with the one the environment has seen, as it should. However, because the
polynomial used for y is produced from independent random choices from all honest
players, we can adjust the random choice of a dummy player so that Pk’s view will
indeed lead to the right share of y.

One way to see this is on a higher level is as follows: what Patch needs to do is find
random choices for Pk and the dummy players that are solutions to a set of equations
that describe what the choices must satisfy (namely the resulting views are consistent
with xk and the view of the environment). The multiplication gate assumption implies
that the equations are linear and easy to solve, and so certainly simplifies the proof.

If we do not make this assumption, the resulting equations do still have a solution,
because static security implies adaptive security in the MR definition, and this essen-
tially means that there is a patching procedure, which however is not guaranteed to be
efficient. At the time of writing, it is open whether an efficient solution exists. Note that
since the local computations of players involve multiplications, it is not clear that the
equations one needs to solve are linear.
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6. Canetti, R., Damgård, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus non-
adaptive security of multi-party protocols. J. Cryptology 17(3), 153–207 (2004)

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Comput-
ing, Philadelphia, Pennsylvania, May 22-24, pp. 639–648 (1996)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. In: Proceedings of the Thirty-Fourth Annual ACM Sym-
posium on the Theory of Computing, Montreal, Quebec, Canada, pp. 494–503 (2002)
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Abstract. Many cryptographic protocols based on elliptic curves rely
on the possibility of representing integer values or bit strings as elliptic
curve points, or vice versa, in an invertible way. The most practical ap-
proach proposed to achieve this for an elliptic curve E/Fq has been the
use of (piecewise) algebraic maps f : Fq → E(Fq) called (deterministic,
constant-time) “encoding functions”, for which numerous constructions
have been proposed in recent years, starting with the very simple en-
coding of Boneh and Franklin (CRYPTO 2001), which maps a value
u ∈ Fq to

(
(u2 − b)1/3, u

)
on the elliptic curve E : y2 = x3 + b over Fq,

q ≡ 2 mod 3. That encoding is almost a bijection between Fq and E(Fq),
which makes it very convenient for security proofs, as well as for appli-
cations like covertness, but it is only defined for a very limited class of
elliptic curves, all of them supersingular, and hence quite inefficient.

Since then, many other encoding functions have been proposed, and
constructions are known for all elliptic curves. They fit into two broad
families: Icart-like encodings, which are generalizations of the original
Boneh–Franklin encoding starting with a construction due to Icart
(CRYTPO 2009), and SWU-like encodings, related to the Shallue–van
de Woestijne construction (ANTS 2006). So far, however, almost none
of these numerous encodings has replicated the very useful bijectivity
property of the Boneh–Franklin encoding.

In this paper, we focus on Icart-like encodings, and investigate the
possibility of constructing such encodings f : Fq → E(Fq) that are almost
bijective like Boneh and Franklin’s, or achieve a weaker property like
“almost surjectivity” (in the sense that #f(Fq) = q + o(q)). And we
show that the lack of such constructions is no wonder: almost surjective
Icart-like encoding cannot exist to non-supersingular elliptic curves.

1 Introduction

Hashing toEllipticCurves. Many elliptic curve-based, andparticularly pairing-
based, cryptographic protocols require hashing to an elliptic curve group G: they
involve one or more hash functions H : {0, 1}∗ → G mapping arbitrary values to
points on the elliptic curve. For example, in the Boneh-Franklin identity-based en-
cryption scheme [4], the public key for identity id ∈ {0, 1}∗ is a point Qid = H(id)
on the curve. This is also the case in many other pairing-based cryptosystems in-
cluding IBE and HIBE schemes [1,23,27], signature and identity-based signature
schemes [3,5,6,10,42], identity-based signcryption schemes [7,32], passwords-based
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authentication protocols such as SPEKE [29] and PAK [8], as well as various sig-
nature schemes based on the hardness of the discrete logarithm problem, like [11],
when they are instantiated over elliptic curves.

In all of those cases, the hash functions are modeled as random oracles in
security proofs, but instantiating them in practice is not so easy. Boneh and
Franklin used an elliptic curve of a quite special form:

E : y2 = x3 + b (1)

over a finite field Fq with q ≡ 2 (mod 3), and defined their hash function
H : {0, 1}∗ → E(Fq) as H(m) = f

(
h(m)

)
for some random oracle h to Fq (for

which reasonable candidates can be proposed) and the function f : Fq → E(Fq)
defined by:

f(u) =
(
(u2 − b)1/3, u

)
.

The function f is almost a bijection between Fq and E(Fq) (it is injective and
only misses the point at infinity), which makes it easy to establish that the hash
function H is indifferentiable from a random oracle, and hence let security proofs
go through. Unfortunately, the curve (1) is supersingular, and hence unsuitable
for most applications as it requires much larger parameters than usual to achieve
the same security, due to the Menezes–Okamoto–Vanstone attack [33].

Elliptic Curve Point Encodings. Later on, the problem of constructing
“encoding functions” f using algebraic techniques to map base field elements
u ∈ Fq to elliptic curve points f(u) ∈ E(Fq) for more general classes of ellip-
tic curves E/Fq received considerable amount of attention. A number of meth-
ods [37,41,34,9,30,18,14,12,20,2] have been proposed to construct such functions
f , including, in particular, a method due to Shallue and van de Woestijne [36]
which applies to essentially all isomorphism classes of elliptic curves, and one due
to Icart [28] which is a broad generalization of the Boneh–Franklin appraoch.

In fact, as observed by Farashahi et al. [15], one can roughly classify proposed
constructions into two types: Icart’s function and its variants, collectively known
as “Icart-type encodings” on the one hand, and Shallue and van de Woestijne’s
construction and its variants, known as SWU-type encodings (or Ska�lba-type
encodings in the terminology of [38, Ch. 3]). The classification of Farashahi et al.
was somewhat informal, but can be formalized as follows, as suggested in [38,39].

For Icart-type encodings, which comprise about half of all proposed construc-
tions (including [4,28,30,14,12,13]), there exists a diagram:

C

P1 E

π
h

f=h◦π−1

(2)

where h : C → E is a covering of E over Fq, and π : C → P1 induces a bijection on
points (it is an exceptional cover of P1 in the terminology of Fried [21]). The map
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f : Fq ⊂ P1(Fq) → E(Fq) can then be defined on points as h ◦ π−1. Recently,
Couveignes and Lercier [13] proposed a more systematic study of a subset of
such constructions, which they call “parametrizations”, where the morphism π
is required to be multiradical.

The other class, SWU-type encodings (including [37,36,41,9,18,20,2]), arise
from several coverings:

C1 · · · C�

P1 E

π1

h1π� h�

f

(3)

where the πi’s are no longer bijections on points, but simply satisfy that
π1

(
C1(Fq)

)
∪ · · · ∪ π�

(
C�(Fq)

)
= P1(Fq). The map f : Fq ⊂ P1(Fq) → E(Fq)

can then be defined on points as f(u) = hi

(
π−1
i (u)

)
for the first index i such

that u ∈ πi

(
Ci(Fq)

)
. For all existing constructions of this type, the function

fields of the coverings πi are linearly disjoint quadratic extensions of Fq(u), so
that membership in the images πi

(
Ci(Fq)

)
(and their various Boolean combina-

tions) can be determined efficiently by evaluating quadratic characters.
Constructions of the same form have also been considered for obtaining maps

f : Fq → X(Fq) to points on curvesX/Fq of higher genus (especially hyperelliptic
curves of genus 2, since they are the most cryptographically significant).

Using Point Encodings. Unfortunately, almost none of the constructions men-
tioned above achieves the property that the Boneh–Franklin function had of be-
ing almost a bijection. For example, it was shown in [16,19] that Icart’s function
reaches a proportion of ≈ 5/8 of all points on its target curves, and similar
techniques can be used to prove that each individual construction reaches a
constant fraction of all curve points, strictly less than 1. The only exception
besides Boneh–Franklin is the genus 1 Fouque–Tibouchi encoding [20], whose
target curve is also supersingular.

A consequence of this lack of surjectivity is that the encoding functions to ordi-
nary curves cannot be used with the Boneh–Franklin hash function construction
to obtain indifferentiable hashing. If f : Fq → E(Fq) is Icart’s function, or any
of the other encodings to ordinary curves, then H(m) = f

(
h(m)

)
is easy to dis-

tinguish from a random oracle even when h is modeled as a random oracle to
Fq, just by checking whether the point falls in the relatively small image or not
(testing for that is easy due to the algebraic nature of f).

It was shown by Brier et al. [9] in the case of Icart’s function and by Farashahi et
al. [15] in general that indifferentiable hashing can nonetheless be achieved with
all of those functions f using the more involved construction

H(m) = f
(
h1(m)

)
+ f
(
h2(m)

)
, (4)

where h1 and h2 are independent random oracles to Fq. However, this comes at
the efficiency cost of requiring two evaluations of the function f (which usually
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have a complexity of one base field exponentiation each) instead of one for almost
surjective constructions like Boneh and Franklin’s.

More recently, another application of point encoding functions to elliptic
curves has surfaced: the problem of representing curve points as uniform ran-
dom bit strings, in order to obtain covertness guarantees for elliptic curve cryp-
tographic protocols used in anonymity or censorship circumvention applications
(e.g. to make network traffic using ECC indistinguishable from random traffic).
One idea, introduced by Bernstein et al. in [2], is to use an injective encoding func-
tion f : Fq → E(Fq) (examples of which have been proposed by Farashahi [14],
Fouque et al. [17] and Bernstein et al. themselves), and represent a random point
in E(Fq) as its unique preimage under f if it exists, using rejection sampling on
points which are not in the image of f . We then proposed a variant of that idea
in [40], supporting arbitrary curves and avoiding rejection sampling by taking
preimages under F : (u, v) �→ f(u)+f(v) instead (which is almost surjective and
has the requisite statistical properties by the results of Farashahi et al.).

Almost Surjective Encodings. It is easy to see that both elliptic curve hash-
ing and uniform bit string representation would be greatly simplified and signif-
icantly enhanced, from a performance viewpoint, if one could construct “almost
surjective” encodings like Boneh and Franklin’s to a larger class of elliptic curves,
particularly ordinary (i.e. non-supersingular) curves. More precisely, if an encod-
ing function f : Fq → E(Fq) has a large image in the sense that

#f(Fq) ≥ #E(Fq) ·
(
1− negl(q)

)
= q ·

(
1− negl(q)

)
, (5)

then it is regular, i.e. the distribution of f(u) for a close to uniform u ∈ Fq

is statistically close to uniform in E(Fq). If it admits the algebraic description
discussed above (of the form (2) or (3) with geometric maps of bounded degrees),
it is then easy to check using the framework of Brier et al. [9] that, like in
the Boneh–Franklin case, H : m �→ f

(
h(m)

)
is a hash function construction

indifferentiable from a random oracle when h is modeled as a random oracle to
Fq: this is simpler and typically twice as fast as construction (4). Similarly, one
gets an efficient close-to-uniform bit string representation algorithm for points in
E(Fq) by simply taking preimages under f : this is like Bernstein et al.’s approach
without the need for rejection sampling, and our approach without the overhead
from the more complicated function F .

In many ways, “almost surjective” encodings, if they exist, are thus optimal
from an efficiency standpoint and make simpler constructions possible. But we
know no example of them at all to ordinary curves. It is thus natural to ask
whether such functions can exist.

The goal of this paper is to partially settle this question in the negative. More
precisely, we prove that almost surjective encodings of Icart-type (2) can only
exist to elliptic curves which are supersingular, even if we relax the surjectivity
condition (5) to something weaker like #f(Fq) = q + o(q). We conjecture that
the impossibility result also holds for SWU-type encodings, but that case is not
covered by our proof.
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2 Almost Surjective Encodings of Icart Type

The original method proposed by Boneh and Franklin for hashing to the (su-
persingular) elliptic curve E : y2 = x3 + b over Fq with q ≡ 2 (mod 3) was
considerably simpler that other approaches considered later in the literature,
including in the previous sections of this paper: namely, simply map a value
u ∈ Fq to the well-defined curve point

(
(u2 − b)1/3, u

)
∈ E(Fq). This map is es-

sentially bijective, and its inverse (x, y) �→ y can also be used for efficient point
representation without rejection sampling.

The important property of that map, making those particularly simple con-
structions possible, is that it is almost surjective: it reaches all but negligibly
few points on E(Fq) (in that case, all but one), and in particular, its image size
is q + o(q). It is thus natural to ask whether a similar map can be constructed
for a more general class of elliptic curves, particularly ordinary curves, and this
section aims to settle that question in the negative.

More precisely, consider an elliptic curve E/Fq and an encoding f : Fq →
E(Fq) of Icart type, i.e. constructed, like Icart’s function [28] and Boneh and
Franklin’s function above, as described in (2): there exists a (smooth, proper,
geometrically integral) curve C/Fq and branched covers h : C → E, π : C → P1

defined over Fq such that π induces a bijection on points C(Fq)
∼−→ P1(Fq). The

encoding f is then defined on Fq ⊂ P1(Fq) as h ◦ π−1.

C

P1 E

π
h

f=h◦π−1

We assume further that the genus gC of the covering curve and the degree n = [C :
E] of the covering h are small compared to q; for example, the following bound
is sufficient (although usual constructions impose the stronger requirement that
gC and n be bounded independently of q):

q1/2 > 5(n+ 1)!gC . (6)

Then, we claim that if f is almost surjective, then E must be supersingular.
More precisely, we will prove the following.

Theorem 1. Let E, C and f be as above, and assume that the bound (6) is
satisfied. Then, at least one of the following assertions hold:

1. #f(Fq) ≤
(
1− 1

2n

)
q (and in particular, f is not almost surjective); or

2. #E(Fq) = q + 1 (and in particular, E is supersingular).

Moreover, while we have assumed that π induces a bijection on points, it will
be clear from the proof below that this is automatically satisfied whenever π
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itself is almost surjective (which is certainly necessary if we hope to define the
encoding f in the manner described above).

The proof idea is as follows. As has been observed in previous papers about the
image size of elliptic curve encodings [16,19,20], the Chebotarev density theorem
for function fields can be used to obtain estimates on #f(Fq) = #h

(
C(Fq)

)
− 1

in terms of Galois-theoretic properties of the covering h. Indeed, if we denote
by (Ĝ, G) the arithmetic-geometric monodromy pair of the covering (i.e. Ĝ is
the Galois group of the Galois closure of Fq(C)/Fq(E) and G is the subgroup
that fixes the field of constants), we have an estimates of the form #f(Fq) =(
1 − #S0

#G

)
q + O(q1/2), where S0 is the subset of elements in Ĝ that induce the

Frobenius automorphism on the field of constants (hence S0 is contained in a
coset of G) and have no fixed point when regarded as permutations of {1, . . . , n}.
The implicit constant in the big O depends only on n and gC . A consequence
of that estimate is that f can only be almost surjective if S0 = ∅, and it was
observed by H. W. Lenstra that this condition formally implies that h is a
bijection on points over Fq.

A more detailed proof with precise estimates is given in §4 after the necessary
background has been introduced in §3.

3 Background on the Chebotarev Density Theorem and
Exceptional Covers

Consider h : X → Y a branched covering of Fq-curves (i.e. a finite separable

morphism) of degree n = [X : Y ], and denote by h̃ : X̃ → Y its Galois closure.

The curve X̃ need not be defined over Fq: in general, it is defined over a certain

extension Fqm . The arithmetic-geometric monodromy pair (Ĝ, G) of the covering

h is given by Ĝ = Gal
(
Fqm(X̃)/Fq(Y )

)
and G = Gal

(
Fqm(X̃)/Fqm(Y )

)
. G is

a normal subgroup of index m in Ĝ and the quotient Ĝ/G ∼= Gal(Fqm/Fq) is
cyclic, generated by the Frobenius automorphism φq : x �→ xq of Fqm .

As we have mentioned, our approach relies on the Chebotarev density theorem
to estimate the size of the image of h on points. We use the following effective
estimate due to Kumar Murty and Scherk [31], where for any subset S ⊂ Ĝ
stable under conjugation, we let NY (S) be the number of unramified Fq-points

y of Y such that the Frobenius conjugacy class σy ⊂ Ĝ of h̃ at y is contained
in S. The number of unramified Fq-points of Y is denoted by NY (hence, NY =

NY (Ĝ) = NY (φqG)), and gX̃ , gY are the genera of the curves X̃, Y respectively.

Lemma 1. Let C ⊂ Ĝ be a conjugacy class whose restriction to the quotient
Ĝ/G = Gal(Fqm/Fq) is φq. Then:∣∣∣∣NY (C )− #C

#G
NY

∣∣∣∣ ≤ 2gX̃
#C

#Ĝ
q1/2 + 2

(
2gY + 1

)
#C q1/2 + 4#C ·

(
gX̃ +#Ĝ

)
.



Impossibility of Surjective Icart-Like Encodings 35

Now, we can give an estimate of the size of the image of h on points in
those terms. Indeed, an unramified Fq-point y of Y is in h

(
X(Fq)

)
if and only

if any element in the Frobenius class σy (whose restriction to Gal(Fqm/Fq) is
necessarily φq, since y is defined over Fq) acts on the geometric fiber at y with
at least one fixed point, and moreover, the number of fixed points is the number
of Fq-points of X above y.1 As a result, there are exactly NY (S1 ∪ · · · ∪ Sn)

unramified points in h
(
X(Fq)

)
, where Sk ⊂ φqG is the set of elements in Ĝ

whose restriction to Gal(Fqm/Fq) is φq and which have exactly k fixed point

when considered as permutations of the n-element transitive Ĝ-set Ĝ/H (H =

Gal
(
Fqm(X̃)/Fq(X)

)
). As a result, we obtain:

Corollary 1. Write s0 = #S0/#G. We have:∣∣#h
(
X(Fq)

)
−(1−s0)·#Y (Fq)

∣∣ ≤ 2
(
gX̃+2gY #Ĝ+Ĝ

)
q1/2+4

(
#Ĝ+1

)(
gX̃+#Ĝ

)
.

Proof. Let S+ = S1 ∪ · · · ∪ Sn = φqG \ S0. As we have seen, the number of
unramified points in h

(
X(Fq)

)
is NY (S+). Therefore, if we denote by d the

number of points in Y ramified in the covering, we have:∣∣#h
(
X(Fq)

)
− (1 − s0) ·#Y (Fq)

∣∣ ≤ ∣∣#h
(
X(Fq)

)
−NY (S+)

∣∣+∣∣NY (S+)−(1−s0)NY

∣∣+(1−s0)·
∣∣NY −#Y (Fq)

∣∣ ≤ 2d+
∣∣NY (S+)−(1−s0)NY

∣∣.
Now, the Riemann–Hurwitz formula for X̃ → Y ensures that d ≤ (2gX̃ −
2) − (2gY − 2)#Ĝ ≤ 2

(
gX̃ + #Ĝ

)
. Moreover, applying Lemma 1 to each of

the conjugacy classes forming a partition of S+ and summing, we get, since
1− s0 = #S+/#G:

∣∣NY (S+)− (1− s0)NY

∣∣ ≤ 2gX̃
#S+

#Ĝ
q1/2 + 2

(
2gY + 1

)
#S+q

1/2 + 4#S+ ·
(
gX̃ +#Ĝ

)

≤ 2
(
gX̃ + 2gY #Ĝ+#Ĝ

)
q1/2 + 4#Ĝ ·

(
gX̃ +#Ĝ

)
,

where we have used the trivial bound #S+ ≤ #Ĝ. The stated result follows
immediately.

We can see from this result that two important cases should be distinguished:
s0 = 0 on the one hand, and s0 > 0 on the other hand.

In the first case, we say that h is an exceptional cover [25]. All permutations in
φqG have at least one fixed point, and it is then an elementary group-theoretic
result that they all have exactly one fixed point2 (see [22, Lemma 13.1]); as
a result, all unramified Fq-points of Y have exactly one Fq-point of X lying

1 One can in fact state a more general result that also gives the number of Fq-points
of X above ramified Fq-points y, see e.g. [24, Lemma 2.2].

2 In particular, when X → Y is a nontrivial covering which is geometric (i.e. G = Ĝ),
φqG = G contains the identity which has n > 1 fixed points, and therefore it can
never happen that s0 = 0. This observation dates back to Jordan, and has many
interesting consequences [35].
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above them, and one can show that the same is true for ramified points as well.
Hence, the following holds (this is a special case of [24, Lemma 2.3]; see also [25,
Theorem 1.1] for a more general statement, also due to Lenstra, that applies to
higher dimensional varieties as well).

Lemma 2 (H. W. Lenstra). If s0 = 0, then h induces a bijection X(Fq)
∼−→

Y (Fq).

In the second, non-exceptional case, we clearly have s0 ≥ 1/#G ≥ 1/n!, but
it turns out that a much stronger bound holds, as has been shown by Guralnick
and Wan [26, Lemma 3.4].

Lemma 3 (Guralnick–Wan). If s0 �= 0, then s0 ≥ 1/n.

Finally, we will use the following technical upper bound on the genus gX̃ of
the Galois closure in terms of n and the genera gX , gY of X and Y themselves. It
follows from the Riemann–Hurwitz formula and Hilbert’s formula for the degree
of the ramification divisor.

Lemma 4 ([25, Lemma 4.5]). gX̃ ≤ 1 + #G · gX − 1− (n− 2)(gY − 1)

2
.

4 Proof of Theorem 1

We now turn to the proof of Theorem 1. Denote by (Ĝ, G) the arithmetic-

geometric monodromy group pair of the covering h : C → E, by h̃ : C̃ → E
the Galois closure of the covering, and by s0, as above, the proportion of ele-
ments in φqG which have no fixed point as permutations of the n-element Ĝ-set

Ĝ/H (where H is the Galois group of C̃ → C).
As we have just seen, two cases can happen: either h : C → E is an exceptional

cover (s0 = 0) or not (s0 �= 0). In the first case, Lemma 2 ensures that h induces
a bijection on points C(Fq)

∼−→ E(Fq). Since, on the other hand, π : C → P1 also
induces a bijection on points over Fq, we get #E(Fq) = #C(Fq) = #P1(Fq) =
q + 1, and thus, assertion 2 of Theorem 1 is satisfied.

In the second, non-exceptional case, Lemma 3 ensures that s0 ≥ 1/n. As a

result, Corollary 1 gives (denoting the genus of C̃ by gC̃):

#f(Fq) ≤ h
(
C(Fq)

)
≤ (1 − 1/n) ·#E(Fq) + 2

(
gC̃ +#Ĝ

)
q1/2 + 4

(
#Ĝ+ 1

)(
gC̃ +#Ĝ

)
≤ (1 − 1/n) · q + γq1/2 + γ2 with γ = 2(gC̃ +#Ĝ+ 1),

using the Hasse–Weil bound on #E(Fq). Hence:

#f(Fq)−
(
1− 1

2n

)
q ≤ − 1

2n
q + γq1/2 + γ2. (7)

Now, the largest root t+ of the quadratic polynomial 1
2nT

2 − γT − γ2 is given
by:

t+ = n ·
(
γ +

√
γ2 + 2γ2/n

)
≤ nγ · (1 +

√
2) ≤ 5n · (gC̃ +#Ĝ+ 1),
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since we necessarily have n ≥ 2 in this case. Moreover, by Lemma 4, we have
gC̃ ≤ 1 + #G · gC−1

2 , so if we bound #G and #Ĝ trivially by n!, we get:

t+ ≤ 5n

(
2 + n!

gC + 1

2

)
≤ 5n · n!gC + 10n ≤ 5(n+ 1)!gC .

Therefore, by condition (6), we have q1/2 > t+, and as a result, the right-hand
side of (7) is negative and assertion 1 holds, which completes the proof.
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Abstract. At ACISP 2009, Choy et al. proposed the generalised Feistel
nonlinear feedback shift register structure (GF-NLFSR). The main fea-
ture of GF-NLFSR containing n sub-blocks is that it can be parallelized
up to n-round for implementation, and meanwhile the provable security
bound against differential cryptanalysis (DC) and linear cryptanalysis
(LC) can be provided for n+1 rounds. Thus, it maybe suit for the light-
weight encryption environment, such as RFID tags, smart cards, and sen-
sor nodes. The practical security bound of GF-NLFSR with SPN round
function was further studied by Yap et al. at Africacrypt 2010, where
a differential bound for 2nr-round was provided, while for the linear
bound, only partial results for n = 2, 4 were presented. In this paper, we
eliminate such discrepancy between the practical differential and linear
bound of GF-NLFSR with SPN round function by demonstrating that a
unified bound could be proved using the “divide and conquer” strategy.
We further find a relationship between the truncated differential charac-
teristics and linear characteristics of GF-NLFSR, which builds a nice link
between the lower differential bound and linear bound of such construc-
tion, and demonstrate that proving the cipher’s resistance against either
DC or LC is enough to show its resistance against both DC and LC. We
hope that the result in the current paper will be useful when designing
ciphers based on GF-NLFSR structure with SPN round function.

Keywords: cryptography, block cipher, practical security, differential
cryptanalysis, linear cryptanalysis, GF-NLFSR, SPN.

1 Introduction

Differential cryptanalysis [1] and linear cryptanalysis [2] are the two most impor-
tant cryptanalytic methods for evaluating the security of modern block ciphers.
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And most block cipher constructions are now provided their resistance against
DC and LC. There are two general approaches to achieve this goal, the provable
security approach [3,4] and the practical security approach [5]. The first one
concentrates on the differential [6] probabilities and linear hull [4] probabilities,
while the second one focuses on the differential characteristic and linear charac-
teristic probabilities, which generally can be reduced to the lower bound of the
number of active S-boxes when the round function is SPN type [7].

The concept of practical security [5] was first proposed by Knudsen at FSE
1994 on Feistel ciphers. By evaluating the lower bound of the number of active
S-boxes in differential/linear characteristic [7], Kanda applied such concept on
Feistel ciphers with SPN round function, and his approach is based on the exact
proof. Recently, many new methods to evaluate such bound are further proposed,
such as the Mixed-Integer Linear Programming [8], searching algorithm [9], etc.
Given the number of sub-blocks n and the number of round r, these approaches
can be used to calculate the exact lower bound. However, they cannot provide
the lower bound for the general numbers n and r, and especially with the growth
of n and r, obtaining the bound would be very time-consuming.

At ACISP 2009, Choy et al. proposed a generalised Feistel nonlinear feedback
shift register structure (GF-NLFSR) [10]. GF-NLFSR containing n sub-blocks
(n-cell GF-NLFSR) can be parallelized for up to n rounds. Thus, it may be
suitable for the security algorithms in resource-limited environments such as
smart cards, RFID tags, and sensor nodes.

Although the security of GF-NLFSR against other cryptanalytic approaches
are evaluated by the authors, its resistance against the integral and impossible
differential cryptanalysis is carefully studied in [11,12]. Choy et al. provided the
provable security bound against DC and LC for any n + 1 rounds of an n-cell
GF-NLFSR [10]. In [13], Yap et al. further study the practical security bound
when GF-NLFSR is instanced with SPN round function. They provide a lower
differential bound for 2nr consecutive rounds, while for the linear bound, they
can only give some partial results for n = 2, 4. As an application, they present
two new block ciphers known as p-Camellia and p-SMS4, whose encryption speed
is improved greatly compared with Camellia and SMS4. For n = 2, GF-NLFSR
becomes the MISTY structure [14], and it is Li et al. in [15] that prove a unified
lower bound of the number of differential/linear active S-boxes of any consecutive
4r -round. However, there is still no general result for n ≥ 3.

The contribution of this paper is twofold. On one hand, by adopting the
“divide and conquer” strategy and studying the propagation of the mask values
for various rounds of GF-NLFSR, we present a lower bound of the number of
linear active sboxes that is consistent with the differential bound presented in
[13] for a general number n, and thus eliminate the discrepancy between the
differential and linear bound of GF-NLFSR with SPN round function. On the
other hand, we find a relationship between the truncated form of differential and
linear characteristics, which allows us to simplify the proof of such construction
against DC and LC, in other words, providing either the differential bound or
linear bound of GF-NLFSR with SPN is enough to show the cipher’s resistance
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against both DC and LC. This result is useful in the cipher design when adopting
the GF-NLFSR structure.

This paper is organized as follows: Section 2 introduces some preliminaries,
includes some notations, necessary definitions, and a brief introduction of GF-
NLFSR. GF-NLFSR’s practical security evaluation against LC is given in Section
3. In Section 4, we study the relationship between the truncated form of differ-
ential and linear characteristics, which indicates a nice link between the lower
linear bound and differential bound of GF-NLFSR with SPN round function.
Finally, Section 5 concludes this paper.

2 Preliminary

2.1 Notations

Let X = (x1, x2, . . . , xm), Y = (y1, y2, . . . , ym) ∈ Fm
2d , where d and m are some

integers, we use the following notations in the rest of this paper.
ΓX : mask value of X ;
ΔX : difference of X and X ′, ΔX = X ⊕X ′;
X ⊕ Y : bitwise exclusive-OR (XOR) of X and Y ;
X · ΓY : parity of bitwise product X and ΓY .

2.2 Definitions

In this subsection, we give several definitions which will be used in the rest of
this paper.

Definition 1. A differential active s-box is defined as an s-box whose input
difference is non-zero, while a linear active s-box is defined as an s-box whose
output mask value is non-zero. Note that if the s-box is bijective, then such s-box
given a non-zero output difference (resp.input mask value) is also a differential
(resp. linear) active s-box.

Definition 2. Let X = (x1, x2, . . . , xm) ∈ Fm
2d , then the bundle weight of X is

defined by

Hw(X) = #{i|xi �= 0}.

Given a linear transformation P : Fmd
2 → Fmd

2 , we use P to denote its matrix
presentation and PT to denote the transpose of P.

Definition 3. The differential branch number of P is defined as

Bd = min
ΔX �=0

(Hw(ΔX) +Hw(P ·ΔX)).

Definition 4. The linear branch number of P is defined as

Bl = min
ΓY �=0

(Hw(ΓY ) +Hw(P
T · ΓY )).
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2.3 GF-NLFSR

GF-NLFSR was proposed by Choy et al. at ACISP 2009. The i-th round of
GF-NLFSR is shown in Fig. 1. Let (Xi−1, Xi, . . . , Xi+n−2) be the input of the
i-th round, then the output is (Xi, Xi+1, . . . , Xi+n−1), and it satisfies

Xi+n−1 = F (Xi−1,Ki)⊕Xi ⊕Xi+1 ⊕ · · · ⊕Xi+n−2,

where F (·, ·) is the round function and Ki is the round key.

F

Xi

Ki

Xi-1 Xi+1 Xi+n-2

Xi+n-1

Xi

Xi+1 Xi+n-2Xi+n-3

Fig. 1. The i-th round of n-cell GF-NLFSR

In this paper, we only consider SPN-type round function. It contains three
layers, i.e., the round key addition layer, the substitution layer and the diffusion
layer. The round function can be represented as F (X,K) = P (S(X⊕K)), where,

S : Fm
2d → Fm

2d , X = (x1, x2, . . . , xm) �→ Z = S(X) = (s1(x1), . . . , sm(xm)),
P : Fmd

2 → Fmd
2 , Z = (z1, z2, . . . , zm) �→ Y = P (Z) = (y1, y2, . . . , ym), zi, yi ∈

Fd
2.
Assume that the round-key consists of independent and uniform random bits,

and it is XORed with the data, we neglect the effect of the round key addition
layer when considering the practical security evaluation of block ciphers. In the
rest of this paper, we denote the input (resp. output) of the i-th round function
by Xi−1 (resp. Yi−1), and denote the intermediate variable after the substitution
layer of the i-th round function by Zi−1, thus Y = F (x⊕K) = F (X) = P (S(X)),
Zi−1 = S(Xi−1) and Yi−1 = P (Zi−1).

For the n-cell GF-NLFSR structure with SPN round function, the minimum
number of linear active S-boxes over r -round is defined by

L(r) = min
(ΓY0,ΓY1,...,ΓYr+1) �=(0,0,...,0)

r−1∑
i=0

Hw(ΓZi).
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while the minimum number of differential active S-boxes over r -round is
defined by

D(r) = min
(ΔX0,ΔX1,...,ΔXr+1) �=(0,0,...,0)

r−1∑
i=0

Hw(ΔXi).

Yap et al. have presented a result for the minimum number of differential
active S-boxes of n-cell GF-NLFSR structure.

Proposition 1. 1 ([13]) The minimum number of differential active S-boxes for
2nr-round n-cell GF-NLFSR cipher with bijective SPN round function satisfies

D(2nr) ≥ Bd × r + �r/2�.

However, for the linear bound, Yap et al. only gave some results for n = 2, 4
and Bl = 5 [13], and some bounds are not tight enough. Li et al. presented a new
linear bound for the general case (any 4r consecutive rounds and no concrete
value for Bl) of MISTY structure (2-cell GF-NLFSR) [15], and proved that the
bound is consistent with the case of Feistel structure with SPN round function.

3 Practical Security Evaluation against LC

In this section, we study the practical security of the GF-NLFSR structure with
SPN round function against LC. By studying the relationship of the mask values
between different rounds, we present a linear bound for a general number n for
GF-NLFSR using the “divide and conquer” strategy.

Similar to the Feistel structure [16,17], there exists a duality between differ-
ential characteristic and linear characteristic in GF-NLFSR. Fig. 2 shows the
duality of n-cell GF-NLFSR. Thus, for a differential characteristic, we have

ΔYi = ΔXi+1 ⊕ΔXi+2 ⊕ · · · ⊕ΔXi+n, i ≥ 0. (1)

while for a linear characteristic,

ΓXi+n = ΓYi ⊕ ΓYi+1 ⊕ · · · ⊕ ΓYi+n−1, i ≥ 0. (2)

Li et al. have proved the following result:

Proposition 2. ( [15]) Let ΓXi−1 and ΓYi−1 �= 0 be the mask value of the input
Xi−1 and output Yi−1 in the i-th round, where i ≥ 1, then

Hw(P
T · ΓXi−1) +Hw(P

T · ΓYi−1) ≥ Bl.

For convenience, we adopt the following useful definition introduced in [15].

1 This proposition is presented as Theorem 3 in [13] without detail proof.
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F
Xi

Yi

Xi+1

F
Yi+1

Xi+n

F
Yi+n

F
Xi

Yi

Xi+1

F
Yi+1

Xi+n

F
Yi+n

Yi

Yi+n-1

Xi+1 Xi+2 Xi+n-1

Fig. 2. GF-NLFSR structure (Left) and its Dual structure (Right)

Definition 5. For a GF-NLFSR structure with SPN round function, let Or =
(Yi, Yi+1, . . . , Yi+r−1) be the output of the (i + 1)-th, (i + 2)-th, . . . , (i + r)-th
round functions, and ΓOr = (ΓYi, ΓYi+1, . . . , ΓYi+r−1) be the corresponding
mask value of Or, then the truncated form (or pattern) of ΓOr is defined by a
binary sequence (ai, ai+1, . . . , ai+r−1), where ai+j = 0 if ΓYi+j = 0 and ai+j = 1
if ΓYi+j �= 0, j = 0, 1, . . . , r − 1.

In this paper, we do not consider the trivial (all zero) case for any (n + 1)-
round linear characteristic, since for the (i + 1)-th round, if ΓYi �= 0, we will
have ΓXi �= 0, and there exist at least 2 non-zero terms in Equation (2), thus
the pattern of any (n+ 1)-round linear characteristic satisfies:

n∑
j=0

ai−j ≥ 2, i ≥ n. (3)

where ai−j (0 ≤ j ≤ n) follows Definition 5.
Based on Equation (2) and Proposition 2, we can obtain the following Lemma:

Lemma 1. The minimum number of linear active S-boxes for any consecutive
n+ 1 rounds ( w.l.o.g., denote from 0 to n) n-cell GF-NLFSR cipher with SPN
round function satisfies:

L(n+1) ≥
{
Bl, if an = 1;
2, if an = 0.
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where ai (0 ≤ i ≤ n) follows Definition 5.

Proof. 1. If an = 1, ΓYn �= 0, according to Proposition 2,

L(n+1) = Hw(ΓZ0) +Hw(ΓZ1) + · · ·+Hw(ΓZn)

= Hw(P
T · ΓY0) +Hw(P

T · ΓY1) + · · ·
+Hw(P

T · ΓYn−1) +Hw(P
T · ΓYn)

≥ Hw(P
T · (ΓY0 ⊕ ΓY1 ⊕ · · · ⊕ ΓYn−1)) +Hw(P

T · ΓYn)

= Hw(P
T · ΓXn) +Hw(P

T · ΓYn)

≥ Bl.

2. If an = 0, ΓYn = 0, then ΓXn = 0, according to Equation (2), there must
exist at least 2 non-zero terms in ΓY0, ΓY1, . . . , ΓYn−1. Therefore,

L(n+1) = Hw(ΓZ0) +Hw(ΓZ1) + · · ·+Hw(ΓZn)

= Hw(P
T · ΓY0) +Hw(P

T · ΓY1) + · · ·
+Hw(P

T · ΓYn−1) +Hw(P
T · ΓYn)

≥ 2.

��

Lemma 2. For n-cell GF-NLFSR cipher with SPN round functions, the min-
imum number of linear active S-boxes in any 2n consecutive rounds (w.l.o.g.,
denote from 0 to 2n− 1) satisfies

L(2n) ≥
{
Bl;
Bl + 1, if a2n−1 = 1.

Proof. We consider the first n+1 rounds at first, there exist the following 2 cases
according to Lemma 1.

1. If an = 1 (see Fig.3), according to Lemma 1, L(n+1) ≥ Bl, then L(2n) ≥
L(n+1) ≥ Bl. Now if a2n−1 = 1, L(2n) ≥ L(n+1) + 1 ≥ Bl + 1.

a0 a2n-1an

1
n+1

1

Fig. 3. Compute L(2n) when an = 1

2. If an = 0, then there must exist at least 2 nonzero terms in a0, a1, . . . , an−1.
Now we denote the last nonzero term by aj (1 ≤ j ≤ n− 1), i.e., aj+1, aj+2,
. . . , an are equal to 0. Then we consider the sequence (aj , aj+1, . . . , aj+n),
there also exist 2 cases:
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a0 a2n-1an

0
 n+1

111
aj aj+n

n+1

10
aj+1

Fig. 4. Compute L(2n) when an = 0 and aj+n = 1

a0 a2n-1an

0
n+1

011
aj an+j

n+1

1
an+k

n+1

10
aj+1

Fig. 5. Compute L(2n) when an = 0 and aj+n = 0

(a) if aj+n = 1 (see Fig.4), then according to Lemma 1, for (aj , aj+1, . . . ,
aj+n), L(n+1) ≥ Bl. Combined with another nonzero term in a0, a1, . . . ,
aj−1, L(2n) ≥ 1 + L(n+1) ≥ 1 + Bl. Now if j = n − 1, then a2n−1 =
aj+n = 1, and L(2n) ≥ 1 + L(n+1) ≥ 1 + Bl; if j < n− 1 and a2n−1 = 1,
then L(2n) ≥ 1 + L(n+1) + 1 ≥ Bl + 2.

(b) if aj+n = 0 (see Fig.5), according to Equation (2), there exist at least
1 nonzero term in (an+1, . . . , an+j−1), denote the last nonzero term by
an+k, 1 ≤ k ≤ j−1, so (ak, . . . , an+k) constitute a (n+1)-round sequence,
and L(n+1) ≥ Bl. Now if a2n−1 = 1, then we can know that j < n − 1,
and L(2n) ≥ L(n+1) + 1 ≥ Bl + 1.

To sum up, for any 2n consecutive rounds, there exist at least one (n+1)-round
sequence which can meet the first condition of Lemma 1. So L(2n) ≥ Bl. Fur-
thermore, if a2n−1 = 1, then L(2n) ≥ L(n+1) + 1 ≥ Bl + 1. ��
Lemma 3. For n-cell GF-NLFSR cipher with SPN round functions, the min-
imum numbers of linear active S-boxes in any 2n+1 consecutive rounds satisfies:

L(2n+1) ≥ Bl + 1.

Proof. Without loss of generality, we consider the first 2n rounds. According to
Lemma 2, we can divided it into the following 2 cases:

1. If a2n = 1, since for (a0, a1, . . . , a2n−1), we have L(2n) ≥ Bl according to
Lemma 2, so L(2n+1) ≥ Bl + 1;

2. If a2n = 0, among the (n+1)-round sequence (an, an+1, . . . , a2n), there exist
at least 2 nonzero terms, denote the first nonzero term by an+j , 0 ≤ j ≤ n−2,
then (aj , aj+1, . . . , an+j) is a (n+1)-round sequence, which ends with 1, and
its minimum number of linear active S-boxes is L(n+1) ≥ Bl. Combined with
another nonzero term in (an+j+1, an+j+2, . . . , a2n−1), we can deduce that
L(2n+1) ≥ Bl + 1, as Fig.6 shows. ��

Lemma 4. For n-cell GF-NLFSR cipher with SPN round functions, the mini-
mum numbers of linear active S-boxes in any 4n consecutive rounds satisfies:

L(4n) ≥ 2Bl + 1.
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a0 a2nan

1
n+1

01
n+1

an+j

Fig. 6. Compute L(2n+1) when a2n = 0

Proof. We can use the “divide and conquer” strategy to get the bound. First,
we divide the longer-round sequence into small portions properly, make all the
lower bounds of these portions are already known to us, then the lower bound
can be expressed by the combination of these bounds.

Without loss of generality, let’s consider the first 4n rounds. Note that (a0, a1,
. . . , a4n−1) can be split into 2 parts, i.e., (a0, a1, . . . , a2n−1) and (a2n, a2n+1,
. . . , a4n−1). According to Lemma 2, there exist the following 2 cases:

1. If a2n−1 = 1 (see Fig.7), then according to Lemma 2, for (a0, a1, . . . , a2n−1),
L(2n) ≥ Bl + 1, and for the second part (a2n, a2n+1, . . . , a4n−1), L(2n) ≥ Bl.
Thus L(4n) ≥ L(2n) + L(2n) ≥ 2Bl + 1.

a0 a2n-1 a4n-1an a3n

  2n
  2n

a2n

1

Fig. 7. Compute L(4n) when a2n−1 = 1

2. If a2n−1 = 0, we move a2n−1 from the first part to the second part, i.e., the
4n-round sequence is split into (a0, a1, . . . , a2n−2) and (a2n−1, a2n, . . . , a4n−1)
(as Fig.8 shows). Since a2n−1 = 0, the minimum number of linear ac-
tive S-boxes of the first part (a0, a1, . . . , a2n−2) is consistent with that of
(a0, a1, . . . , a2n−1), i.e., L(2n−1) = L(2n) ≥ Bl. For the second part (a2n−1, a2n
, . . . , a4n−1), according to Lemma 3, we have L(2n+1) ≥ Bl+1. Thus, L(4n) ≥
L(2n−1) + L(2n+1) ≥ Bl + (Bl + 1) ≥ 2Bl + 1. ��

a0 a2n-1 a4n-1an a3n

  2n+1
  2n-1

a2n-2

0

2n

Fig. 8. Compute L(4n) when a2n−1 = 0

Now the lower bound of the linear active S-boxes for n + 1, 2n, 2n + 1 and
4n consecutive rounds have been obtained, then we can get the lower bound for
longer consecutive rounds using a similar approach as in [7,15].

Theorem 1. For n-cell GF-NLFSR cipher, the minimum numbers of linear ac-
tive S-boxes in any 2nr consecutive rounds satisfies:

L(2nr) ≥ Bl × r + �r/2�.
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Proof. According to Lemma 2 and Lemma 4, L(2n) ≥ Bl and L(4n) ≥ 2Bl + 1.
Let q = �r/2�, then r − 2q ≥ 0, and

L(2nr) = L(2nr−4nq+4nq)

≥ L(2n(r−2q)) + L(4nq)

≥ Bl × (r − 2q) + (2Bl + 1)× q

= Bl × r + q

= Bl × r + �r/2�.

��

4 Links between the differential and Linear Bounds of
GF-NLFSR

In this section, we study the relationship between the lower linear bound and
the lower differential bound of GF-NLFSR.

First, we present the following Proposition.

Proposition 3. Let ΔXi−1 �= 0 and ΔYi−1 be the differences of the input Xi−1

and output Yi−1 in the i-th round of GF-NLFSR structure, where i ≥ 1, then

Hw(ΔXi−1) +Hw(ΔYi−1) ≥ Bd.

Proof. Since Zi−1 = S(Xi−1) and Yi−1 = P · Zi−1, then

Hw(ΔXi−1) = Hw(ΔZi−1) and ΔYi−1 = P ·ΔZi−1,

thus Hw(ΔXi−1) +Hw(ΔYi−1) = Hw(ΔZi−1) +Hw(P ·ΔZi−1) ≥ Bd. ��

For convenience, we define the pattern of differences as follows, which is similar
to the pattern of linear mask value defined in Definition 5.

Definition 6. For a GF-NLFSR structure with SPN round function, let Ir =
(Xi, Xi+1, . . . , Xi+r−1) be the input of the (i + 1)-th, (i + 2)-th, . . . , (i + r)-
th round functions, and ΔIr = (ΔXi, ΔXi+1, . . . , ΔXi+r−1) be the correspond-
ing difference of Ir, then the pattern of ΔIr is defined by a binary sequence
(bi, bi+1, . . . , bi+r−1), where bi+j = 0 if ΔXi+j = 0 and bi+j = 1 if ΔXi+j �= 0,
j = 0, 1, . . . , r − 1.

Based on Equation (1) and Proposition 3, we can get D(n+1) as shown in the
following lemma.

Lemma 5. The minimum number of differential active S-boxes for any n + 1
consecutive rounds (w.l.o.g., denote from 0 to n) n-cell GF-NLFSR cipher with
SPN round function satisfies:

D(n+1) ≥
{
Bd, if b0 = 1;
2, if b0 = 0.

where bi (0 ≤ i ≤ n) follows Definition 6.
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Proof. 1. If b0 = 1, ΓX0 �= 0, according to Proposition 3,

D(n+1) = Hw(ΔX0) +Hw(ΔX1) + · · ·+Hw(ΔXn)

≥ Hw(ΔX0) +Hw(ΔX1 ⊕ΔX2 ⊕ · · · ⊕ΔXn)

= Hw(ΔX0) +Hw(ΔY0)

≥ Bd.

2. If b0 = 0, ΔX0 = 0, then ΔY0 = 0, according to Equation (1), there must
exist at least two non-zero terms in ΔX1, ΔX2, . . . , ΔXn. Therefore,

D(n+1) = Hw(ΔX0) +Hw(ΔX1) + · · ·+Hw(ΔXn) ≥ 2.

��

Note that for the (i + 1)-th round, if ΔXi �= 0 we have ΔYi �= 0. For any
(n + 1)-round differential characteristic (except the all-zero case), since there
exist at least 2 non-zero differences according to Equation (1), the pattern of the
differences satisfies

n∑
j=0

bi+j ≥ 2, i ≥ 0, (4)

where bi+j follows Definition 6.
If a binary sequence can satisfies Equation (3) (resp. Equation (4)), we call it

a possible pattern of linear mask values (resp. differences).
To further facilitate our description, for a given binary sequence Er = (e0, e1,

. . . , er−2, er−1), we denote its reverse sequence by
←−Er, where

←−Er = (er−1, er−2, . . . ,
e1, e0), r ≥ n + 1. If Er is a possible pattern of linear mask values, the mini-
mum number of linear active S-boxes corresponding to Er is denoted by LEr .
Respectively, if it is a possible pattern of differences, then the minimum number
of differential active S-boxes is denoted by DEr .

Lemma 6. Let Ωr denote all the t (≥ 1) possible patterns of linear mask values
for r (≥ n+1) consecutive rounds of GF-NLFSR with SPN round function, and

define
←−
Ωr = {←−Ωr

j | Ωr
j ∈ Ωr, 0 ≤ j ≤ t − 1}, then ←−

Ωr contains all the possible
patterns of differences, and vice versa. Furthermore, for Ωr

j ∈ Ωr (0 ≤ j ≤ t−1),

LΩr
j
≥ fj(Bl) ⇐⇒ D←−

Ωr
j

≥ fj(Bd),

where fj(·) denotes a polynomial.

Proof. Assume Ωr
j ∈ Ωr (0 ≤ j ≤ t−1) is a possible pattern of the r-round linear

characteristic such that it satisfies Equation (3), i.e., Ωr
j = (e0, e1, . . . , er−2, er−1),

and

ek+n + ek+n−1 + · · ·+ ek+1 + ek ≥ 2 (r ≥ n+ 1, 0 ≤ k ≤ r − n− 1).
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If
←−
Ωr

j is not a possible pattern of a differential characteristic, there will exist at
least one index l (0 ≤ l ≤ r−n−1) such that el+el+1+ . . .+el+n−1+el+n = 1,
thus for the same l, we have el+n + el+n−1 + . . . + el+1 + el = 1, which is
contradictory to the fact that Ωr

j satisfies Equation (3).

Note that
←−−
(
←−
Ωr

j ) = Ωr
j , and if Ωr

j satisfies Equation (3),
←−
Ωr

j must satisfy Equa-
tion (4) at the same time, and vice versa. That is to say, if a binary sequence is
a possible pattern of a linear characteristic, then its reverse sequence must be a
possible pattern of a differential characteristic, and vice versa. The relationship
is shown in Figure 9.

Furthermore, a long sequence Ωr
j (r > n+ 1) can be split into several subse-

quences, assume that Ωr
j = Ωr0

j ‖ Ωr1
j ‖ · · · ‖ Ω

rq−1

j , where r = r0+r1+· · ·+rq−1

and ri ≤ n + 1, 0 ≤ i ≤ q − 1. And for the subsequence Ωri
j (0 ≤ i ≤ q − 1), if

the corresponding lower linear bound LΩ
ri
j

≥ Bl, then according to Proposition

2 and Proposition 3, we can get that for its reverse sequence, the corresponding
lower differential bound DΩ

ri
j

≥ Bd; while if the lower linear bound is some pos-

itive integer (e.g., when the number of terms is less than n+1, the lower bound
is evaluated by the minimum number of non-zero terms), then for its reverse
sequence, the lower differential bound is the same value. The lower linear bound
of Ωri

j can be denoted by ciBl + di, where ci ∈ {0, 1}, 0 ≤ di ≤ n, cidi = 0 and
ci + di �= 0. To sum up,

LΩr
j
≥

q−1∑
i=0

LΩ
ri
j

≥
q−1∑
i=0

(ciBl + di) = fj(Bl),

and

D←−
Ωr

j

≥
q−1∑
i=0

D←−−
Ω

ri
j

≥
q−1∑
i=0

(ciBd + di) = fj(Bd).

Thus, the only difference between the corresponding lower linear bound of Ωr
j

and the corresponding lower differential bound of
←−
Ωr

j is the difference between
Bl and Bd, which demonstrates that

LΩr
j
≥ fj(Bl) ⇐⇒ D←−

Ωr
j

≥ fj(Bd).

��

According to Lemma 6, for a given binary sequence Ωr
j (r ≥ n + 1, 0 ≤ j ≤

t− 1), if we have gotten LΩr
j
(resp. DΩr

j
), then we can get D←−

Ωr
j

(resp. L←−
Ωr

j

) just

by switching Bl and Bd.

Example 1. In [15], Li et al. have given the lower linear bound of 2-cell GF-
NLFSR. For instance, given a binary sequence Ω6

6 = (1, 0, 1, 1, 1, 0), LΩ6
6
≥ Bl+2.

Then, according to Lemma 6, we have D←−
Ω6

6

≥ Bd + 2, which can be proved as

follows: since
←−
Ω6

6 = (0, 1, 1, 1, 0, 1), by Lemma 5, the lower differential bound of
(0, 1, 1) is 2, and for (1, 0, 1), the lower differential bound is Bd, so D←−

Ω6
6

≥ 2+Bd.
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Fig. 9. Links between non-trivial possible patterns of difference and linear mask

In general, we have the following result.

Theorem 2. For r (≥ n + 1) consecutive rounds of n-cell GF-NLFSR cipher
with SPN round function, if its lower linear bound L(r) ≥ f(Bl), then D(r) ≥
f(Bd), and vice versa.

Proof. Let Ωr denote all the t (≥ 1) possible patterns of linear mask values
corresponding to r (≥ n + 1) consecutive rounds of n-cell GF-NLFSR cipher

with SPN round function. According to Lemma 6,
←−
Ωr contains all the possible

patterns of the r-round differential characteristic.
Let LΩr

j
≥ fj(Bl), f(Bl) = min{fj(Bl)}, f(Bd) = min{fj(Bd)}, 0 ≤ j ≤ t− 1,

then

L(r) ≥ f(Bl) ⇐⇒ LΩr
j
≥ f(Bl), 0 ≤ j ≤ t− 1

⇐⇒ D←−
Ωr

j

≥ f(Bd), 0 ≤ j ≤ t− 1

⇐⇒ D(r) ≥ f(Bd).

��

Example 2. Lemma 1 and Lemma 5 can be viewed as a valid example for r =
n+ 1.

Remark 1. Note that the lower linear bound in Theorem 1 is consistent with
the lower differential bound as Proposition 1 shows. Furthermore, according
to Theorem 2, for any r (≥ n + 1) consecutive rounds of n-cell GF-NLFSR,
if we get the lower linear bound L(r) ≥ f(Bl), then we can know the lower
differential bound is D(r) ≥ f(Bd), and vice versa. This result demonstrates that,
for ciphers adopting GF-NLFSR structure with SPN round function, to evaluate
its practical security bounds against DC and LC, it only needs to evaluate one
of the two lower bounds, and then the other one can be directly deduced. This
result is useful in the cipher designment when using such structure.
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5 Conclusion

This paper focuses on the practical security evaluation of the GF-NLFSR struc-
ture with SPN round function against linear cryptanalysis. By studying the
relationship of the mask values between different rounds, we present a lower
bound of the number of linear active S-boxes for n-cell GF-NLFSR using the
“divide and conquer” strategy, and this bound is consistent of its differential
lower bound provided by a previous result. Furthermore, we find a relationship
between the truncated differential and linear characteristic, which demonstrates
that providing either the differential bound or linear bound is enough for GF-
NLFSR with SPN round function to show its resistance against both DC and
LC. This result is useful in the cipher designment when adopting the GF-NLFSR
structure.
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Misuse-Resistant Variants of the OMD
Authenticated Encryption Mode
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Abstract. We present two variants of OMD which are robust against
nonce misuse. Security of OMD—a CAESAR candidate—relies on the as-
sumption that implementations always ensure correct use of nonce (a.k.a.
message number); namely that, the nonce never gets repeated. However,
in some application environments, this non-repetitiveness requirement
on nonce might be compromised or ignored, yielding to full collapse of
the security guaranty. We aim to reach maximal possible level of robust-
ness against repeated nonces, as defined by Rogaway and Shrimpton
(EUROCRYPT 2006) under the name misuse-resistant AE (MRAE).
Our first scheme, called misuse-resistant OMD (MR-OMD), is designed
to be substantially similar to OMD while achieving stronger security
goals; hence, being able to reuse any existing common code/hardware.
Our second scheme, called parallelizable misuse-resistant OMD (PMR-
OMD), further deviates from the original OMD design in its encryption
process, providing a parallelizable algorithm, in contrast with OMD and
MR-OMD which have serial encryption/decryption processes. Both MR-
OMD and PMR-OMD are single-key mode of operation. It is known that
maximally robust MRAE schemes are necessarily two-pass, a price paid
compared to a one-pass scheme such as OMD. Nevertheless, in MR-OMD
and PMR-OMD, we combine the two passes in a way that minimizes the
incurred additional cost: the overhead incurred by the second pass in our
two-pass variants is about 50% of the encryption time for OMD.

Keywords: authenticated encryption, misuse-resistance, OMD, CAE-
SAR competition.

1 Introduction

An authenticated encryption scheme (AE) is a symmetric-key scheme that guar-
antees confidentiality (privacy) and authenticity (integrity) of data at the same
time. Classical authenticated encryption schemes were based on the generic com-
position paradigm: combining a traditional encryption scheme for privacy with
a message authentication code (MAC) for integrity. Generic composition based
schemes were formally analysed for the first time in [2], and more recently, fur-
ther investigated in [17].

The syntax and security notions for authenticated encryption, as a primitive
of its own right, were originally formalized in [2,3,14], and further developed to
include different variations in [10, 20, 22, 23].
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Once the topic started to be investigated more, it became clear that there
is a need for dedicated authenticated encryption schemes—designs that would
provide higher security levels, efficiency or other desired features, in particular,
being easier to use and less prone to implementation errors/attacks, compared
to the generic composition-based schemes. This is backed by the fact that the
generic composition paradigm is neither the most efficient (it requires processing
the inputs at least twice) nor the most robust to implementation errors [17,25].

In this line, one of the most commonly known schemes is the GCM algo-
rithm, which was originally introduced in [16] and standardized by NIST [9] as
a blockcipher mode of operation for AE. GCM is a representative example of a
nonce-based, one-pass AE scheme which supports “associated data”—data that
are logically bound to the plaintext, need to be authenticated, but not to be en-
crypted. Other prominent standard algorithms in this category include CCM [8],
OCB [15,21, 22], and EAX [4], which are specified in ISO/IEC 19772:2009.

Lately, authenticated encryption has received a lot of attention through the
recent CAESAR competition [5]. There were 57 submissions to the first round
of CAESAR, from which (at the time of writing this paper) 7 were withdrawn
due to major attacks. The proposed CAESAR candidates vary in design and
advertise different features, such as, being super efficient, single-pass (online),
fully or partially nonce-misuse-resistant; online misuse-resistant, and so on.

One of the CAESAR candidates is the Offset Merkle-Damgård (OMD)—a
nonce-based, single-pass mode of operation for authenticated encryption with
associated data that uses a compression function as its lower-level primitive. To
the best of our knowledge, OMD is the only candidate that uses a compres-
sion function (in particular, those of SHA-256 and SHA-512). The majority of
other candidates are (AES) blockcipher-based or permutation-based, and some
use round functions of AES. OMD has some promising features, among them,
are provable security in the standard model based on the well-known PRF as-
sumption on the compression function and high bit-security level (127 bits and
255 bits for OMD-sha256 and OMD-sha512, respectively). Being able to take
advantage of the Intel SHA instructions on next-generation processors [26] also
seems to be quite interesting.

However, we notice that the security of OMD relies on the assumption that
implementations always ensure correct use of nonce (a.k.a. message number);
namely that, the nonce never gets repeated, otherwise security will fully collapse.
While the nonce-based security is sufficient and desirable in many situations,
it is not rare that in practice nonces are misused due to poor or erroneous
implementations; e.g., a random IV with bad randomness generator might be
used instead of the nonce, a counter with a short cycle of repetition can be used
as a nonce, or the nonce can even be set to a constant.

Providing robustness against such nonce-misuse scenarios has motivated de-
velopment of nonce-misuse-resistant AE schemes—an AE scheme, that retains
most of its security even if the nonces are not used properly. There are two
different categories of such schemes with different levels of robustness.
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The first is the category of two-pass schemes that can provide maximal se-
curity in the presence of nonce reuse. These schemes make a first pass over
all data (message and authenticated data) to compute a tag (or IV) and then
uses the result (IV) to parametrize a second pass for encryption. The first such
(two-pass) scheme is the synthetic-IV (SIV) construction described in [23]; other
examples are HBS [13] and BTM [12]. When the nonce is reused, these two-pass
schemes only leak minimal additional information compared to semantically se-
cure encryption schemes—the leaked information being the fact that a plaintext
together with its associated data are exactly repeated.

The second category are the one-pass (online) AE schemes that promise some
limited level of misuse resistance; the first such scheme is McOE [11], followed
by several other designs, such as those in [1, 7]. Being online is considered as
an advantage in many applications, but it must be noted that such online AE
schemes will reveal much more information compared to the two-pass scheme;
namely, the ciphertext reveals to the adversary whether two messages share a
common prefix when the nonce is reused. This is intrinsic to deterministic online
encryption.

Aiming to keep the good features of OMD as far as possible and making it
robust to nonce reuse, we introduce two variants of OMD, called misuse-resistant
OMD (MR-OMD) and parallelizable misuse-resistant OMD (PMR-OMD). We
aim to reach maximal possible level of robustness against repeated nonces, as
defined by Rogaway and Shrimpton [23] under the name misuse-resistant AE
(MRAE), so similar to the previously known schemes in this category (e.g., SIV,
HBS and BTM) our constructions are also two-pass. The main motives that
influenced design of MR-OMD are the struggle to have a construction that is
very similar to OMD (so that common code and hardware can be reused) and to
have an efficient, provably secure MRAE scheme at the same time. The design of
PMR-OMD further deviates from OMD, providing a fully parallelizable variant,
in contrast with OMD and MR-OMD which have serial encryption process.

In MR-OMD and PMR-OMD, the two passes are combined in a way that
minimizes the incurred additional cost: using a keyed compression function with
(n + m)-bit input and n-bit output, for processing a message M with associ-
ated data A, MR-OMD and PMR-OMD only need |M |/(n + m) more calls to
the compression function compared to OMD, where |M | is the bit length of M .
Noticing that the encryption pass in OMD requires 1+ |M |/m compression func-
tion calls, and considering m = n (as suggested in OMD), the overhead incurred
by the second pass in our two-pass variants is about 50% of the encryption time
for OMD. We note that the overhead is independent of A as it is processed in
the same way in all these algorithms.

Compared with SIV which requires two keys, MR-OMD and PMR-OMD only
uses a single key (as is also the case for HBS and BTM). Compared to HBS and
BTM which use polynomial-based hashing and need general finite field multipli-
cations in their IV generation part, MR-OMD and PMR-OMD use compression
function-based hashing process and only need doubling (multiplication by 2) op-
eration in GF(2n) which can be easily and efficiently implemented as shown in
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Section 2. Avoiding polynomial based hashing seems to be an advisable prac-
tice due to the recent attacks and issues of such schemes as recently described
in [18, 24]. We note that all these two-pass schemes have the same high-level
generic structure (called “Scheme A4” in [17]); what differs is the design of the
IV generation and encryption processes.

There is also another subtle difference between the design of our variants
of OMD with those of SIV, HBS and BTM; namely, while the latter schemes
are designed to be deterministic AE (DAE) and incorporate nonce (if used)
and associated data as the header information, our schemes treat the nonce
and associated data differently from the beginning. As stated by Rogaway and
Shrimpton [23] “the MRAE goal is conceptually different from the DAE goal,
the former employing an IV and gaining for this a stronger notion of security.
The header and the IV are conceptually different, the one being user-supplied
data that the user wants authenticated, the other being a mechanism-supplied
value needed to obtain a strong notion of security.”

2 Preliminaries

Notations. For a finite set S, by x
$←− S we denote that x is chosen from

S uniformly at random. Any string is a binary string. Let {0, 1}n denote set
of all binary strings of length n and let {0, 1}∗ denote the set of all finite-
length strings. For two strings X and Y , X ||Y and XY denote the result of
concatenating the two strings. For an n-bit binary string X = X [n − 1] · · · X [0],
let X [i · · · j] = X [i] · · · X [j] denote a substring of X , for 0 ≤ j ≤ i ≤ m − 1; let
msb(X) = X [n−1] and lsb(X) = X [0]. Let 1n0m denote concatenation of n ones
by m zeros. For a non-negative integer i let 〈i〉m denote binary representation
of i by an m-bit string.

The special symbol ⊥ means that a variable is undefined and it also signifies
an error. Let |Z| denote the cardinality of Z if Z is a set, and the length of Z in
bits if Z is a binary string. The empty string is denoted by ε and we let |ε| = 0.
For X ∈ {0, 1}∗ let X1||X2 · · · ||Xm

b←− X denote partitioning X into blocks Xi

such that |Xi| = b for 1 ≤ i ≤ m − 1 and |Xm| ≤ b. Let |X |b = �|X |/b	 denote
length of X in b-bit blocks and let ||X ||b = max{1, |X |b}.

For two binary strings X = X [m − 1] · · · X [0] and Y = Y [n − 1] · · · Y [0], the
notation X ⊕ Y denotes bitwise xor of X [m − 1] · · · X [m − 1 − �] and Y [n −
1] · · · Y [n − 1 − �] where � = min {m − 1, n − 1}. That is, X ⊕ Y is the result of
xoring first � msb bits of X and Y and dropping the rest (if any) for the longer
string. When m = n, this simply denotes the conventional bitwise xor of two
strings. For any string X , define X ⊕ ε = ε ⊕ X = ε. The notation X ⊕msb Y
stands for bitwise xor X ||0L−m ⊕ Y ||0L−n, where L = max {m, n}. In other
words, we xor the the shorter string to the longer one, aligning the strings by
their leftmost bits.

The Finite Field with 2n
Points. Let (GF (2n), ⊕, .) denote the Galois Field

with 2n points. When considering a point α in GF (2n) it can be represented in
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any of the following equivalent ways: (1) as an integer between 0 and 2n − 1, (2)
as a binary string αn−1 · · · α0 ∈ {0, 1}n, or (3) as a formal polynomial α(X) =
αn−1Xn−1 + · · · + α1X + α0 with binary coefficients. The addition “⊕” and
multiplication “.” of two field elements in GF (2n) are defined as usual (e.g.
see [22]). For GF (2256), we use P256(X) = X256 + X10 + X5 + X2 + 1, and
for GF (2512) we use P512(X) = X512 + X8 + X5 + X2 + 1 as the irreducible
polynomials used in the field multiplications. We point out that it is easy to
multiply an arbitrary field element α by the element 2 (i.e. X), as shown in [6].

3 Security Definitions

The insecurity of a scheme Π is measured using the resource parametrized func-
tion Advxxx

Π (r), denoting the maximal value of the adversary’s advantage —
Advxxx

Π (r) = maxA {Advxxx
Π (A)} — over all adversaries A, against the xxx

property of a primitive or scheme Π , that use resources bounded by r. Let A be
an adversary that returns a binary value; by Af(.)(X) ⇒ 1 we refer to the event
that A on input X and access to an oracle function f(.) returns 1.

Syntax and Security of Keyed Compression Functions. We denote a
keyed compression function by F : K × ({0, 1}n × {0, 1}m) → {0, 1}n, where m
and n are two positive integers, and the keyspace K is a non-empty set of strings.
The notations FK(H, M) = F (K; H, M) are equivalent. We can alternatively
think of FK as a single argument function whose domain is {0, 1}n+m and write
FK(H ||M) = FK(H, M). Given a keyless compression function F ′ : {0, 1}n ×
{0, 1}b → {0, 1}n (e.g. sha-256 : {0, 1}256 × {0, 1}512 → {0, 1}256) we convert it
to a keyed compression function F by dedicating k bits of its b-bit input block
to the secret key; i.e. we define FK(H, M) = F ′(H, K||M). For example in the
case of sha-256 we have n = 256 and we will set k = 256 which will give us
m = 512 − k = 256. We assess the security of compression functions in the sense
of pseudorandom function security described below.

Pseudorandom Functions (PRFs) and Tweakable PRFs. We denote by
Func(m, n) = {f : {0, 1}m → {0, 1}n} the set of all functions from m-bit strings
to n-bit strings and by Func(M, n) = {f : M → {0, 1}n} the set of all functions
from a set M to n-bit strings. A random function R

$← Func(m, n) is a function
selected uniformly at random from Func(m, n). We define a random function R′

with input from set M and n-bit output in a similar manner.
Let FuncT (m, n) be the set of all functions

{
f̃ : T × {0, 1}m → {0, 1}n

}
,

where T is a set of tweaks. A tweakable random function (RF) with the tweak
space T , m-bit input and n-bit output is a map R̃ : T × {0, 1}m → {0, 1}n

selected uniformly at random from FuncT (m, n); i.e. R̃
$←− FuncT (m, n). We use

R̃〈T 〉(.) and R̃(T, .) interchangeably, for every T ∈ T . Notice that each tweak T

names a random function R̃〈T 〉 : {0, 1}m → {0, 1}n and distinct tweaks name
distinct (independent) random functions.
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Let F : K × {0, 1}m → {0, 1}n be a keyed function and let F̃ : K × T ×
{0, 1}m → {0, 1}n be a keyed and tweakable function, where the key space
K is some nonempty set. Let FK(.) = F (K, .) and F̃

〈T 〉
K (.) = F̃ (K, T, .). Let

A be an adversary. Then we define Advprf
F (A) = Pr

[
K

$← K : AFK(.) ⇒ 1
]

−

Pr
[
R

$← Func(m, n) : AR(.) ⇒ 1
]

and Advp̃rf
F̃

(A) = Pr
[
K

$← K : AF̃
〈.〉
K

(.) ⇒ 1
]
−

Pr
[
R̃

$← FuncT (m, n) : AR̃〈.〉(.) ⇒ 1
]
. The resource parametrized advantage func-

tions are defined accordingly, considering that the adversarial resources of inter-
est here are the time complexity (t) of the adversary and the total number of
queries (q) asked by the adversary (note that we just consider fixed-input-length
functions, so the lengths of queries are fixed and known). We say that F is
(t, q; ε)-PRF if Advprf

F (t, q) ≤ ε. We say that F̃ is (t, q; ε)-tweakable PRF if
Advp̃rf

F̃
(t, q) ≤ ε. Extending these definitions for variable-input-length functions

is straightforward; namely, for a VIL function G : K × D → {0, 1}n, with a
non-empty key space K and message space D = {0, 1}∗, the ideal primitive to
which a randomly selected function GK is compared will be R

$← Func(D, n).
The resource of interest in this case is the total length of all processed queries
in n-bit blocks σ for some positive n.

IV-Based Encryption Schemes. An IV-based encryption scheme is a privacy-
only scheme, with a special security notion, as for example the CBC mode.
We say that an encryption scheme Π = (K, E , D) is an IV-based encryption
scheme if the encryption function E takes a tuple (K, IV, M) as input, such
that K ∈ K, IV ∈ {0, 1}τ for some fixed positive τ and M ∈ {0, 1}∗. We call
IV the initialization vector. The notations E(K, IV, M), EK(IV, M) and E IV

K (M)
are used interchangeably. We also assume that if C = E IV

K (M), then we have
|C| = |M | + τ and C = IV||C; i.e. the IV is a part of the ciphertext. We
define the advantage of an adversary A in breaking the $-privacy of Π as
Advpriv$

Π (A) = Pr
[
K

$←− K : AE$
K(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]
with $(·) being a

random string oracle that on input M returns a random string of length |M |+ τ

and E$
K returning E IV

K with IV $←− {0, 1}τ . It is assumed, that the adversary never
asks a query outside the proper message space of Π . Note that in the priv$
security game, the IV is chosen by the challenger. We remark that we make use
of an IV-based scheme as a building block for our misuse-resistant scheme.

Syntax of an AEAD Scheme. A nonce-based authenticated encryption with
associated data (AEAD) is a symmetric key scheme Π = (K, E , D). The key
space K is some non-empty finite set. The encryption algorithm E : K × N ×
A × M → C ∪ {⊥} takes four arguments, a secret key K ∈ K, a nonce N ∈ N ,
an associated data (a.k.a. header data) A ∈ A and a message M ∈ M, and
returns either a ciphertext C ∈ C or a special symbol ⊥ indicating an error. The
decryption algorithm D : K × N × A × C → M ∪ {⊥} takes four arguments
(K, N, A,C) and either outputs a message M ∈ M or an error indicator ⊥.
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For correctness of the scheme, it is required that D(K, N, A,C) = M for any
C such that C = E(K, N, A, M). It is assumed that if algorithms E and D receive
parameter not belonging to their specified domain of arguments they will output
⊥. We write EK(N, A, M) = E(K, N, A, M) and DK(N, A,C) = D(K, N, A,C).

In this paper we assume that the message and associated data are binary
strings of arbitrary but finite length; i.e. M = {0, 1}∗ and A = {0, 1}∗ and
the key and nonce are some fixed-length binary strings, i.e. N = {0, 1}|N | and
K = {0, 1}k for positive integers |N | and k (the nonce length and the key length).
We assume that |EK(N, A, M)| = |M | + τ for some positive fixed constant τ .
Moreover, we will have IV||C = C where |C| = |M | and |IV| = τ . We call C
the core ciphertext and IV the initialization vector (or IV for short). The IV is
not to be confused with the nonce. The IV here is generated by the encryption
algorithm and is in fact a form of authentication tag.

Nonce Respecting and Nonce Misusing Adversaries. We say that an
adversary A is nonce-respecting if it never repeats a nonce in its encryption
queries. That is, if A queries the encryption oracle EK(·, ·, ·) with the queries
(N1, A1, M1) · · · (N q, Aq, M q) then N1, · · · , N q must be distinct. If there are at
least two queries (N i, Ai, M i) and (N j , Aj , M j) that share the same nonce, i.e.
N i = N j, then we say that A is a nonce-misusing (or a nonce-reusing) adver-
sary. Note that adversaries of both types may repeat nonces in their decryption
queries.

AE security. To establish the security of MR-OMD scheme, we use the all-in-
one MRAE security notion introduced in [23]. As shown in [23], the all-in-one
security notion is equivalent to the conventional two-requirement security notion
(that combines IND-CPA for privacy and INT-CTXT for integrity), as put forth
in [2, 3, 14].

Definition 1. Let Π = (K, E , D) be a nonce based AEAD scheme. The MRAE-
advantage of an adversary A in attacking the scheme Π is defined as:

Advmrae
Π (A) = Pr

[
K

$←− K : AEK(·,·,·),DK(·,·,·) ⇒ 1
]

− Pr
[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]
.

To prevent trivial wins, we forbid A to ask a query (N, A,C) of the decryp-
tion oracle, after obtaining result C upon query (N, A, M) from the encryption
oracle; we also assume that A never repeats an encryption query (N, A, M). On
query (N, A, M), the random-bit oracle $(·, ·, ·) returns a random string of length
|M | + τ if the inputs N, A and M belong to the respective input domains and ⊥
otherwise. The ⊥(·, ·, ·) oracle returns ⊥ on every query.

The resource-based advantage function Advmrae
Π (r) is parametrized by adver-

sarial resource vector r = (t, σA, σM , qe, qd) where t denotes the time complexity,
σA = (

∑qe

i=1 |Ai|+
∑qd

j=1 |Aj |) is the total length of associated data in all queries,
σM = (

∑qe

i=1 |M i|+
∑qd

j=1 |Cj −τ |) is the total length of plaintexts in all queries,
qe denotes the maximal number of encryption queries and qd the maximal num-
ber of decryption queries made by the adversary.
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Clearly, the MRAE security notion implies the nonce-respecting security; the
latter being a special case of the former, where adversary cannot repeat the
nonce and hence no query to the encryption oracle is repeated. We denote the
conventional nonce-respecting notion by “nr-ae” and let the related resource-
parametrized advantage function be Advnr-ae

Π (r), measuring the maximal inse-
curity over all “nonce-respecting” adversaries A with resources bounded by r.
We sometimes use simplified notation for adversary’s oracles and the choice
of the key in a security game. For a scheme Π = (K, E , D), the notations
K

$←− K : AEK(·,·,·),DK(·,·,·) and AΠK(·,·,·),Π−1
K

(·,·,·) are equivalent.

4 Specification of MR-OMD

MR-OMD is a compression function mode of operation for nonce-misuse resistant
AEAD. It has the following parameters.

– keyed compression function F : K × ({0, 1}n × {0, 1}m) → {0, 1}n

– IV length τ < n

where the key space K = {0, 1}k and m ≤ n.
Let MR-OMD-F denote the MR-OMD mode of operation using a keyed com-

pression function FK : {0, 1}n×{0, 1}m → {0, 1}n with m ≤ n and an unspecified
tag length. We let MR-OMD[F, τ ]denote the MR-OMD mode of operation using
the keyed compression function FK and the IV of length τ . The encryption al-
gorithm of MR-OMD[F, τ ] takes four input arguments (secret key K ∈ {0, 1}k,
nonce N ∈ {0, 1}|N |, associated data A ∈ {0, 1}∗, message M ∈ {0, 1}∗) and
outputs C = IV||C ∈ {0, 1}|M|+τ . The decryption algorithm of MR-OMD[F, τ ]
inputs four arguments (secret key K ∈ {0, 1}k, nonce N ∈ {0, 1}|N |, associ-
ated data A ∈ {0, 1}∗, ciphertext IV||C ∈ {0, 1}∗) and either outputs the whole
M ∈ {0, 1}|C| at once or an error message ⊥.

A schematic representation of the encryption algorithm of MR-OMD[F, τ ] is
shown in figure 1. The construction of the decryption algorithm is similar to the
encryption except that the ciphertext is first decrypted using IV from the input
and then the IV from input is compared to IV′ computed over the associated
data and decrypted message. Figure 2 shows the algorithmic description of the
encryption and decryption algorithms of MR-OMD[F, τ ]

Computing the masking values. As seen from the description of MR-OMD
in Figure 1, before each call to the underlying keyed compression function, we
xor a masking value Δ. Seven different sets of masking values are used:

– masks ΔN,i,j for j ∈ {0, . . . , 5} are used in the IV generation process,
– masks Δ̄IV,i are used in the encrypt/decryption process.

In the following, all multiplications are in GF (2n), ntz(i) denotes the number
of trailing zeros (i.e. the number of rightmost bits that are zero) in the binary
representation of a positive integer i.
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Initialization. Let L∗ = FK(0n, 0m); L(0) = 8 · L∗, and L(i) = 2 · L(i − 1) for
i ≥ 1. The rule to compute L(i) is described as a part of the initialization,
because these values can be precomputed and stored in a table. Further on
let ΔN,0,0 = FK(N ||10n−1−|N |, 0m); ΔN,0,1 = FK(N ||10n−1−|N |, 0m) ⊕ L∗.

Masking sequence for IV generation. For i ≥ 1 let ΔN,i,0 = ΔN,i−1,0 ⊕
L(ntz(i)); and ΔN,i,1 = ΔN,i−1,1⊕L(ntz(i)). For i ≥ 1 and j, j′ ∈ {0, . . . , 5}:
ΔN,i,j = ΔN,i,j′ ⊕ (〈j〉n ⊕ 〈j′〉n) · L∗.

Masking sequence for encryption. Let Δ̄IV,0 = FK(IV||10n−1−τ , 0m)⊕6·L∗.
We have Δ̄IV,i = Δ̄IV,i−1 ⊕ L(ntz(i)) for i ≥ 1.

5 Security Analysis

We analyse the security of MR-OMD in two cases: (1) as a MRAE, considering
adversaries that are nonce-reusing; (2) in the case that adversaries are nonce-
respecting. As MR-OMD is designed as a nonce-misuse resistant scheme, we first
focus on analysing the security bounds in the nonce-misuse scenario. Clearly,
an upper-bound for the MRAE insecurity (i.e. MRAE advantage) also upper-
bounds the insecurity in the nonce-respecting case. Intuitively, the latter can be
lower than the former.

5.1 Security in the Case of Nonce Misuse

Theorem 1 gives the MRAE security of MR-OMD. The high-level structure of the
proof is similar to those of previous MRAE schemes following the synthetic-IV
(SIV) design paradigm [23], such as HBS [13] and BTM [12], but the details differ.
We first prove the security in the information-theoretic setting using tweakable
random functions. To obtain the information-theoretic security, we prove security
of MR-OMD.HASH as a PRF and that of MR-OMD.E as a secure IV-based
encryption scheme. Consequently, we prove security of MR-OMD in the MR-AE
sense using the previous two results. A complexity-theoretic security bound is
then determined by instantiating the tweakable random functions using the XE
construction from [21].

Theorem 1. Fix n ≥ 1 and τ ∈ {0, 1, · · · , n}. Let F : K×({0, 1}n ×{0, 1}m) →
{0, 1}n be a PRF, where the key space K = {0, 1}k for k ≥ 1 and 1 ≤ m ≤ n.
Then

Advmrae
MR-OMD[F,τ ](t, σ, qe, qd) ≤ Advprf

F (t′, 2σ) + 3.5σ2

2n
+ 0.5q2e

2τ
+ qd

2τ

where qe and qd are, respectively, the number of encryption and decryption
queries, t′ = t + cnσ for some constant c and σ is the total number of calls
made to the underlying compression function F .
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Fig. 1. The encryption process of MR-OMD[F, τ ] and PMR-OMD[F, τ ] using a keyed
compression function FK : ({0, 1}n × {0, 1}m) → {0, 1}n with m ≤ n. (Top) The
process of generating the IV. Both associated data and message are parsed into n + m
bit blocks and padded if needed as shown. (Bottom) The encryption process (upper
part for MR-OMD and lower for PMR-OMD). The output ciphertext is IV||C. For
operations ⊕ and ⊕msb see our convention in Section 2.
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1: Algorithm Initialize(K)
2: L∗ ← FK(0n, 0m)
3: L

(2)
∗ ← 2 · L∗

4: L
(4)
∗ ← 2 · L

(2)
∗

5: L
(6)
∗ ← L

(4)
∗ ⊕ L

(2)
∗

6: L(0) ← 2 · L
(4)
∗

7: for i ← 1, 2, · · · do
8: L(i) = 2.L(i − 1)
9: return

1: Algorithm HASHK(N, A, M)
2: b ← n + m

3: A1||A2 · · · Aa−1||Aa
b← A

4: M1||M2 · · · Mt−1||Mt
b← M

5: ΣA ← 0n; ΣM ← 0n

6: ΔM ← FK(N ||10n−1−|N|, 0m)
7: ΔA ← ΔM ⊕ L∗
8: for i ← 1 to a − 1 do
9: ΔA ← ΔA ⊕ L(ntz(i))
10: Left ← Ai[b − 1 · · · m]
11: Right ← Ai[m − 1 · · · 0]
12: ΣA ← ΣA ⊕ FK(Left ⊕ ΔA,Right)
13: if |Aa| = b then
14: ΔA ← ΔA ⊕ L

(2)
∗

15: Left ← Aa[b − 1 · · · m]
16: Right ← Aa[m − 1 · · · 0]
17: ΣA ← ΣA ⊕ FK(Left ⊕ Δ,Right)
18: else if |A| > 0 then
19: ΔA ← ΔA ⊕ L

(4)
∗

20: A∗
a ← Aa||10b−|Aa|−1

21: LeftA∗
a[b − 1 · · · m]

22: Right ← A∗
a[m − 1 · · · 0]

23: ΣA ← ΣA ⊕ FK(Left ⊕ ΔA,Right)
24: for i ← 1 to t − 1 do
25: ΔM ← ΔM ⊕ L(ntz(i))
26: Left ← Mi[b − 1 · · · m]
27: Right ← Mi[m − 1 · · · 0]
28: ΣM ← ΣM ⊕FK(Left⊕ΔM ,Right)
29: if |Mt| = b then
30: ΔM ← ΔM ⊕ L

(2)
∗

31: Left ← Mt[b − 1 · · · m] ⊕ ΣA

32: Right ← Mt[m − 1 · · · 0]
33: IV ← FK(Left ⊕ ΔM ,Right)

34: else
35: ΔM ← ΔM ⊕ L

(4)
∗

36: M∗
t ← Mt||10b−|Mt|−1

37: Left ← M∗
t [b − 1 · · · m] ⊕ ΣA

38: Right ← M∗
t [m − 1 · · · 0]

39: IV ← FK(Left ⊕ ΔM , Right)
40: return IV[n − 1 · · · n − τ ]

1: Algorithm EK(N, A, M)
2: if |N | > n − 1 then
3: return ⊥
4: M1||M2 · · · M�−1||M�

m← M
5: IV ← HASHK(N, A, M)
6: Δ ← FK(IV ||10n−1−τ , 0m)
7: Δ ← Δ ⊕ L(0) ⊕ L

(6)
∗

8: H ← 0n

9: H ← FK(H ⊕ Δ, 〈τ〉m)
10: for i ← 1 to � − 1 do
11: Ci ← H ⊕ Mi

12: Δ ← Δ ⊕ L(ntz(i + 1))
13: H ← FK(H ⊕ Δ, Mi)
14: C� ← H ⊕ M�

15: C ← IV||C1||C2|| · · · ||C�

16: return C

1: Algorithm DK(N, A,C)
2: if |N | > n − 1 or |C| < τ then
3: return ⊥
4: IV||C1||C2 · · · C�−1||C�

m← C

5: H ← 0n

6: Δ ← FK(IV ||10n−1−τ , 0m)
7: Δ ← Δ ⊕ L(0) ⊕ L

(6)
∗

8: H ← FK(H ⊕ Δ, 〈τ〉m)
9: for i ← 1 to � − 1 do
10: Mi ← H ⊕ Ci

11: Δ ← Δ ⊕ L(ntz(i + 1))
12: H ← FK(H ⊕ Δ, Mi)
13: M� ← H ⊕ C�

14: IV′ ← HASHK(N, A, M)
15: if IV′ = IV then
16: return M ← M1||M2|| · · · ||M�

17: else
18: return ⊥

Fig. 2. Definition of MR-OMD[F, τ ]. The function F : K×({0, 1}n×{0, 1}m) → {0, 1}n

is a keyed compression function with K = {0, 1}k and m ≤ n. The IV length is
τ ∈ {0, 1, · · · , n}. Algorithms E and D can be called with arguments K ∈ K, N ∈
{0, 1}≤n−1, and A, M,C ∈ {0, 1}∗.
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Remark 1. We can verify that σ = �σA/(m+n)	+�σM/(m+n)	+�σM/(m)	+∑qe

i=1 1|Mi|=0 +
∑qd

j=1 1|Cj|=τ + qe + qd.

Proof. The proof is obtained by combing Lemma 3, Lemma 1 and Lemma 2 in
subsection 5.1.1 with Lemma 4 and Lemma 5 in subsection 5.1.2. ��

5.1.1 Generalization of MR-OMD Based on Tweakable Random
Functions
We define the scheme MR -OMD[R̃, τ ], a generalization of MR-OMD[F, τ ] that
uses a tweakable random function R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n. The
tweak space T consists of seven mutually exclusive sets of tweaks; namely,
T = N × N × {0} ∪ N × N × {1} ∪ N × N × {2} ∪ N × N × {3} ∪
N ×N×{4} ∪ N ×N×{5} ∪ IV ×N, where N = {0, 1}|N | is the set of nonces,
IV = {0, 1}τ is the set of IV-s and N is the set of positive integers.

Lemma 1. Let MR -OMD [R̃, τ ] be the MR-OMD scheme that uses tweakable
RF R̃. Then

Advprf
MR -OMD[R̃,τ ].HASH

(σ) ≤ 0.5σ2

2n

where σ =
∑q

i=1(|Ai|m+n + ||M i||m+n) is the total number of calls to the under-
lying tweakable RF R̃ in all q queries asked by a nonce-misusing adversary.

The proof of the lemma follows from that of the well-known hash-then-PRF
paradigm. A brief outline of the proof is as follows. We first observe that using
different nonces makes the outputs of the HASH algorithm completely inde-
pendent. Among queries with the same nonce, the HASH algorithm behaves as
a true RF unless there is a collision on the input to the final tweakable RF.
We bound the probability of this collision by an exhaustive case-analysis. The
complete proof is provided in the full version of the paper [19].

We introduce a new notation which makes the security analysis better struc-
tured. We split the encryption algorithm MR -OMD[R̃, τ ].EK(N, A, M) into two
parts. First part computes IV = MR -OMD[R̃, τ ].HASHK(N, A, M). The sec-
ond part comprises all the steps after computing the IV. We can formalize the sec-
ond step as MR -OMD[R̃, τ ].ĒK(IV, M), so that, if we simplify the notation, we
have EK(N, A, M) = ĒK(HASHK(N, A, M), M). MR -OMD[R̃, τ ].D̄K(IV, M) is
defined in a similar manner.

Lemma 2. Let MR -OMD[R̃, τ ] be the MR-OMD scheme that uses tweakable
RF R̃. Then

Advpriv$
MR -OMD[R̃,τ ].Ē

(qe) ≤ 0.5q2e
2τ

where qe is the number of all encryption queries asked by the adversary.

The proof is based on the observation that, unless an IV is used twice, the
algorithm MR -OMD[R̃, τ ].Ē has the same output distribution as the random
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bits oracle. We bound the advantage of an adversary by the upper bound of the
probability of IV collision. The complete proof is provided in the full version of
the paper [19].

Lemma 3. Let MR -OMD[R̃, τ ] be the MR-OMD scheme that uses tweakable
RF R̃. Let A be an MR-AE adversary attacking MR -OMD[R̃, τ ]. Let qe be the
number of encryption queries and qd the number of decryption queries made by
A and let σ be the total number of calls to the underlying tweakable RF R̃ in all
A’s queries. Then there exist adversaries E and R, such that

Advprf
MR -OMD[R̃,τ ].HASH

(R)+Advpriv$
MR -OMD[R̃,τ ].Ē

(E) ≥ Advmrae
MR -OMD[R̃,τ ](A)− qd

2τ

where E asks at most qe queries and R asks at most q = qe + qd queries in total.
Both E and R are limited to a total number σ of calls to underlying tweakable
RF R̃ in all their queries.

Proof. For the sake of readability, we shall refer to MR -OMD[R̃, τ ] by Π through-
out this proof. The proof proceeds in two steps.

In the first step, we consider the scheme Π̄ , which is the same as Π , except
that we replace the algorithm Π.HASH by Func({0, 1}|N |×{0, 1}∗×{0, 1}∗, τ).

We first bound p̄ = Pr
[
A

Π̄
R̃,ρ

(·,·,·),Π̄−1

R̃,ρ

(·,·,·)
⇒ 1

]
− Pr

[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]
=

p̄1 + p̄2 with p̄1 = Pr
[
A

Π̄
R̃,ρ

(·,·,·),Π̄−1

R̃,ρ

(·,·,·)
⇒ 1

]
− Pr

[
A

Π̄
R̃,ρ

(·,·,·),⊥(·,·,·) ⇒ 1
]

and p̄2 = Pr
[
A

Π̄
R̃,ρ

(·,·,·),⊥(·,·,·) ⇒ 1
]

− Pr
[
A$(·,·,·),⊥(·,·,·) ⇒ 1

]
. We prove upper

bounds for the terms p̄1 and p̄2. To bound p̄2, we construct an adversary E for
attacking the priv$ security of Π̄.Ē from A. The construction of the adversary E
and the bound are obtained similarly as in [23]. We deduce p̄2 ≤ Advpriv$

Π̄.Ē (E).
The bound of p̄1 is obtained in a similar manner as in [23], however instead
of revealing to the adversary A the secret key for the encryption we reveal
the tweakable RF R̃. The adversary A is left to guess the correct IV for the
decryption queries. If we consider all queries made by A, we have p̄1 ≤ qd/2n.
We then have p̄ ≤ Advpriv$

Π̄.Ē (E) + qd/2τ .

The second step of the proof is based on the observation that Advmrae
Π (A) =

p̄+Pr
[
A

Π
R̃
(·,·,·),Π−1

R̃

(·,·,·)
⇒ 1

]
−Pr

[
A

Π̄
R̃,ρ

(·,·,·),Π̄−1

R̃,ρ

(·,·,·)
⇒ 1

]
. We construct an

adversary R for attacking Π.HASH as PRF, that uses A as a subroutine simi-
larly as in [23]. The adversary R uses its own oracle (which is either Π.HASH or
a corresponding random function) to compute IVs and simulates Π.Ē for A. We
let R choose a tweakable RF R̃ and point out, that the challenger for R picks
its own tweakable RF R̃′. This way R in fact always simulates Π with some
R̃∗ ∈ FuncT (m + n, n) for A. This is the case because the sets of tweaks used in
the algorithms Π.HASH and Π.Ē are disjoint. We show that the distribution of
the tweakable RF R̃∗ observed by A is uniform using a counting argument. We
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deduce Advmr−ae
Π (A) ≤ p̄ + Advprf

Π.HASH(R). The complete proof is provided
in the full version of the paper [19]. ��

5.1.2 Instantiating Tweakable RFs with PRFs
The proof of Theorem 1 is completed in the same way as in [6]. First, the

tweakable RF R̃ is replaced by a tweakable PRF F̃ : K×T ×({0, 1}n×{0, 1}m) →
{0, 1}n, where K = {0, 1}k. This will increase the security bound as shown in
Lemma 4.

Lemma 4. Let R̃ : T × ({0, 1}n × {0, 1}m) → {0, 1}n be a tweakable RF and
F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be a tweakable PRF. Then we have
Advmrae

MR -OMD[F̃ ,τ ](t, qe, qd, σ) ≤ Advmrae
MR -OMD[R̃,τ ](qe, qd, σ) + Advp̃rf

F̃
(t′, σ) where

qe and qd are, respectively, the number of encryption and decryption queries,
t′ = t + cnσ for some constant c and σ is the total number of calls to the
underlying tweakable PRF F̃ in all queries asked by the MR-AE adversary.

Consequently, we instantiate the tweakable PRF from an ordinary PRF by
the means of xoring a mask to (a part of) the input of the PRF, exactly as in [6].
The masking function ΔK(T ) = ΔK(α, i, j) outputs an n-bit mask as described
in Section 4. The transition from tweakable PRFs to PRFs with xor-masks being
exactly the same, we use the result on security bound from [6].

Lemma 5. Let F̃ : K × ({0, 1}n × {0, 1}m) → {0, 1}n be a function family
with key space K. Let F̃ : K × T × ({0, 1}n × {0, 1}m) → {0, 1}n be defined by
F̃

〈T 〉
K (X ||Y ) = FK((X ⊕ Δ(T ))||Y ) for every T ∈ T , K ∈ K, X ∈ {0, 1}n

, Y ∈
{0, 1}m and ΔK(T ) is the masking function of MR-OMD as defined in Sec-
tion 4. If F is PRF then F̃ is tweakable PRF; more precisely Advp̃rf

F̃
(t, q) ≤

Advprf
F (t′, 2q) + 3q2

2n .

For the proofs for both Lemma 4 and Lemma 5, the reader can refer to [6] and [15].

5.2 Security in the Nonce-Respecting Case

Intuitively, one would expect that the security bound in the nonce-respecting
setting should be somewhat better than the one in the nonce-reuse case. Indeed,
we have Advnr-ae

MR-OMD[F,τ ](t, σ, qe, qd) ≤ Advprf
F (t′, 2σ) + 3σ2

2n + 0.5q2
e

2τ + qd

2τ , which
confirms this intuition. The proof of this bound on adversarial advantage in
nonce-respecting scenario can be found in the full version of the paper [19].

6 Parallelizable MR-OMD

The MR-OMD scheme described in section 4 is designed to be substantially similar
to OMD; hence, being able to share a lot of common code/hardware, while achiev-
ing different (stronger) security goals than OMD itself. This similarity also implies
that the encryption/decryption process in MR-OMD is serial as it is in OMD.
However, we notice that the two-pass construction (in contrast to OMD which
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is one-pass) also opens up the possibility of having a parallelizable encryption/
decryption process. For this purpose, we propose PMR-OMD. PMR-OMD uses the
same algorithms Initialize and HASH as MR-OMD, while the encryption/
decryption algorithm uses counter mode. Schematic visualisation can be found in
Figure 1. This replacement will of course get us further from the original OMD,
which may be inconvenient in hardware implementations; however, in software im-
plementations, the parallel execution might be exactly what we want, especially in
general purpose CPUs with multiple cores. The PMR-OMD is almost fully paral-
lelizable, with a single bottleneck in processing the final message block in its HASH
algorithm. The results of security analysis of MR-OMD apply to PMR-OMD as
well, since the two schemes are identical to big extent and the security analysis of
counter mode and original OMD encryption is essentially the same. For a complete
discussion refer to the full version of the paper [19].
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Abstract. Methods to construct a hash function using an existing block
cipher recently attract some interests as an approach to implement a hash
function on constrained devices. It is often required to construct a hash
function whose output length is larger than that of the underlying block
cipher to provide sufficient level of collision resistance with the use of an
existing block cipher. This article presents a new mode of double-block
compression function, which is based on the mode proposed by Jonsson
and Robshaw at PKC 2005. The mode can be instantiated with a block
cipher whose key-length is larger than its block-length such as AES-
192/256, PRESENT-128, etc. This article also provides provable security
analyses to an iterated hash function using the proposed mode and the
MDP domain extension. The security properties discussed are collision
resistance, preimage resistance, pseudorandom-function property of the
keyed-via-IV mode, and the indifferentiability from a random oracle.

1 Introduction

Background. A cryptographic hash function transforms strings of arbitrary length
to strings of fixed length. It usually consists of a compression function and do-
main extension. A compression function is a function from strings of fixed length
to strings of fixed smaller length. Domain extension specifies how to process input
strings of arbitrary length using a given compression function. A cryptographic
hash function of this type is called an iterated hash function.

Most of the iterated hash functions are classified into two types according to
their compression-function construction: block-cipher-based and permutation-
based. The methods to construct block-cipher-based compression functions are
further classified into dedicated and using existing block ciphers. The former
includes most of the widely deployed or well-known hash functions such as
MDx [25,26], SHA-x [8], Whirlpool [24] and so on. On the other hand, the
latter attracts some interests as an approach to implement a hash function on
constrained devices [4,27]. This is the topic of this article.

The collision resistance of a hash function producing n-bit digests is at most
O(2n/2) due to the birthday attack. To provide sufficient level of collision resis-
tance with the use of existing block ciphers, it is necessary to construct a com-
pression function whose output length is larger than that of the underlying block
ciphers. There have been several proposals for modes to construct double-block
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compression functions [6,11,13,15]. One line of research is to present a general
model and discuss security properties in a unified way [22]. We are interested in
another line of research: identifying modes of practical interest.

Our Contribution. We first present a mode of compression function based on
the mode proposed by Jonsson and Robshaw [13]. Then, we provide provable
security analyses to an iterated hash function using the proposed compression
function and the MDP domain extension [12] in terms of collision resistance
(CR), preimage resistance (PR), pseudorandomness as a function (PRF), and
indifferentiability from a random oracle (IRO).

CR, PR and IRO are discussed in the ideal cipher model, and PRF is discussed
in the standard model. Birthday-type lower bounds are given to its CR and IRO.
These bounds are optimal up to some constant factors for this kind of iterated
hash functions. A lower bound optimal up to a constant factor is also given to its
PR. The keyed-via-IV (KIV) mode is shown to be a PRF if the underlying block
cipher is a pseudorandom permutation (PRP) under rather mild related-key
attacks.

The proposed mode requires an underlying block cipher with its key length
larger than its block length, which is similar to that of abreast-/tandem-DM [15]
and Hirose mode [11]. The advantage of the proposed mode over them is that
the key input of the underlying block cipher only receives the chaining value. It
prevents attackers from manipulating the key inputs directly. It also enables the
reduction of the PRF property of the hash function to the PRP property of the
underlying block cipher. The advantage of the proposed mode over MDC-2/4 [6]
is that the security reductions are settled and, in particular, optimal security
levels (up to some constants) are achieved for CR, PR and IRO.

Related Work. Security properties such as collision resistance and preimage re-
sistance of existing double-block modes have also been analysed in the ideal
cipher model. Steinberger gave a lower bound on CR of MDC-2 [28], which is
quite lower than the birthday bound. Optimal birthday-type lower bounds were
obtained on CR of abreast-DM and Hirose modes [9,11,16]. A nearly optimal
lower bound was obtained on CR for tandem-DM [19]. Optimal lower bounds
on PR were obtained for abreast-DM, tandem-DM and Hirose modes [1].

Özen and Stam [22] presented a general model of double-block modes using
one or two calls to a 2n-bit-key and n-bit-block block cipher, and discussed CR
and PR of the modes in this model. Strictly, our analysis of CR is not covered
by theirs since our analysis accepts a block cipher with variable-length key.
Furthermore, they discussed neither IRO nor PRF.

There are some proposals to construct double-block iterated hash functions
using a block cipher. Naito [21] proposed a scheme using a 2n-bit-key and n-bit-
block block cipher. He also presented a birthday-type lower bound on IRO of the
hash functions in the ideal cipher model. Kuwakado and Hirose [14] proposed a
scheme suitable for lightweight block ciphers. They discussed the preimage resis-
tance of the hash function and the PRF property of its keyed mode in the stan-
dard model. Lee and Stam [18] recently showed that the iterated hash function
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using the double-block compression function called MJH [17] has asymptotically
optimal collision resistance in the ideal cipher model.

Organization. Section 2 gives some notations and definitions of security prop-
erties used and discussed in the paper. The proposed double-block mode is pre-
sented in Sect. 3. The iterated hash function composed of the compression func-
tion with the MDP domain extension is also presented in this section. Collision
resistance and preimage resistance are discussed in Sect. 4. Pseudorandomness
of the KIV mode is discussed in Sect. 5. IRO is discussed in Sect. 6.

2 Preliminaries

2.1 Notations

Let F (X ,Y) be the set of all functions with domain X and range Y. Let P (X )
be the set of all permutations on X . Let BC(n, κ) be the set of all (n, κ) block
ciphers, where n and κ represent their block size and key size, respectively.

Let Σ = {0, 1}. Let Σ∗ =
⋃∞

i=0 Σ
i, (Σn)+ =

⋃∞
i=1 Σ

ni, and (Σn)≤i =⋃i
j=0 Σ

nj.
For binary strings x and y, let x‖y be their concatenation. For simplic-

ity, for M1,M2, . . . ,Ml ∈ Σn, M1‖M2‖ · · · ‖Ml will be denoted by M[1,l] or
M1M2 · · ·Ml.

Let φ be the permutation on Σk defined by φ(xL‖xR) = xR‖xL for every xL

and xR in Σk/2.

2.2 Collision Resistance and Preimage Resistance

Let HE be a hash function using a block cipher E. The collision resistance and
preimage resistance of a block-cipher-based hash function are often discussed in
the ideal cipher model [3]. We follow this convention.

In the ideal cipher model, the underlying block cipher E is assumed to be
uniformly distributed over BC(n, κ). An encryption/decryption operation is an
encryption/decryption query to the oracle E. Without loss of generality, it is
assumed that an adversary does not make any query to which it already knows
the answer.

Let A be an adversary trying to find a collision for HE, that is, a pair of
distinct inputs mapped to the same output by HE . The col-advantage of A
against HE is given by

AdvcolHE (A) = Pr[AE = (M,M ′) ∧HE(M) = HE(M ′) ∧M �= M ′] ,

where E is uniformly distributed over BC(n, κ). It is assumed that A makes all
the queries necessary to compute HE(M) and HE(M ′). Let AdvcolHE (q) be the
maximum col-advantage over all adversaries asking at most q queries.
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Let A be an adversary trying to find a preimage of a given output v for HE .
The pre-advantage of A against HE is given by

Advpre
HE (A) = Pr[AE(v) = M ∧HE(M) = v] ,

where E is uniformly distributed over BC(n, κ). It is assumed that A makes
all the queries necessary to compute HE(M). Let AdvpreHE (q) be the maximum
pre-advantage over all adversaries asking at most q queries.

2.3 Pseudorandom Function and Permutation (PRF & PRP)

Let f ∈ F (K×X ,Y) be a keyed function from X to Y with key space K. Let A
be an adversary which has oracle access to a function from X to Y and outputs
0 or 1. The prf-advantage of A against f is given by

Advprff (A) =
∣∣Pr[AfK = 1]− Pr[Aρ = 1]

∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
F (X ,Y).

Let f ∈ F (K × X ,X ) be a keyed function. Then, the prp-advantage of A
against f is given by

Advprpf (A) =
∣∣Pr[AfK = 1]− Pr[Aρ = 1]

∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
P (X ).

2.4 PRF & PRP under Related-Key Attacks

The PRF and PRP under related-key attacks are formalized by Bellare and
Kohno [2]. Let Φ ⊂ F (K,K). Let A be an adversary which has oracle access
to g(key(·,K), ·), where g ∈ F (K × X ,Y), K ∈ K and key ∈ F (Φ × K,K)
such that key(ϕ,K) = ϕ(K). A asks a pair of ϕ ∈ Φ and x ∈ X as a query,
and obtains g(ϕ(K), x). For simplicity, g(key(·,K), ·) is denoted by (g,K). The
prf-rka-advantage of A against f ∈ F (K × X ,Y) restricted by Φ is given by

Advprf -rkaΦ,f (A) =
∣∣∣Pr[A(f,K) = 1]− Pr[A(ρ,K) = 1]

∣∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
F (K × X ,Y).

Let P (K×X ,X ) be the set of all keyed permutations on X with key space K.
The prp-rka-advantage of A against f ∈ F (K × X ,X ) restricted by Φ is given
by

Advprp -rka
Φ,f (A) =

∣∣∣Pr[A(f,K) = 1]− Pr[A(ρ,K) = 1]
∣∣∣ ,

where K is uniformly distributed over K and ρ is uniformly distributed over
P (K × X ,X ).
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2.5 Indifferentiability from Random Oracle

The notion of indifferentiability is introduced by Maurer et al. [20] as a gen-
eralized notion of indistinguishability. It is tailored to security analysis of hash
functions by Coron et al. [7].

Let C be an algorithm with oracle access to an ideal primitive F . In the
setting of this article, C is an algorithm to construct a hash function using F
with fixed input length. Let H be a variable-input-length (VIL) random oracle
and S be a simulator which has oracle access to H. SH tries to behave like F in
order to convince an adversary that H is CF . Let A be an adversary with access
to two oracles. The indiff-advantage of A against C with respect to S is given
by

AdvindiffC,S (A) =
∣∣∣Pr[ACF ,F = 1]− Pr[AH,SH

= 1]
∣∣∣ .

3 Construction

Let E ∈ BC(n, k), where k is an even integer such that n ≤ k ≤ 2n. We con-
sider constructions of an iterated hash function with the following compression
function F : Σk ×Σn → Σk based on E:

F (hi,Mi) = trk/2(Ehi(Mi)⊕Mi)‖trk/2(Ehi(σ(Mi))⊕ σ(Mi)) .

σ : Σn → Σn is an involution with no fixed points, that is, σ = σ−1 and
σ(Mi) �= Mi for any Mi ∈ Σn. trk/2 : Σn → Σk/2 outputs k/2 least significant
bits of the input. F is depicted in Fig. 1. It is based on the mode proposed
by Jonsson and Robshaw [13], and its upper or right half has the structure of
the Matyas-Meyer-Oseas (MMO) mode. It can be instantiated with AES with
256-bit or 192-bit key.

MDP [12] is adopted for domain extension. Let π be a permutation on Σk

with at most few fixed points. For 1 ≤ i ≤ N , let Mi ∈ Σn. F ◦
π : Σk × (Σn)+ →

Σk is an iterated hash function such that F ◦
π (IV ,M1‖ · · · ‖MN) = hN , where

h0 = IV is a fixed initial value, hi = F (hi−1,Mi) for 1 ≤ i ≤ N − 1, and
hN = F (π(hN−1),MN ). Notice that h1 = F (π(IV ),M1) if N = 1. For M ∈ Σ∗,
an unambiguous padding function pad : Σ∗ → (Σn)+ is necessary to apply F ◦

π

to M . F ◦
π is illustrated in Fig. 2.

E

E

Mi

hi−1 hi

σ

trk/2

‖
trk/2

Fig. 1. Compression function F

F

M1 MN−1 MN

IV F π F

Fig. 2. Hash function F ◦
π
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4 Collision Resistance and Preimage Resistance

In this section, the collision resistance and preimage resistance of F ◦
π is evaluated

in the ideal cipher model. The followings are assumed here:

– When adversary A makes an encryption query (K,X), A receives Y such
that EK(X) = Y and also gets for free Y ′ = EK(σ(X)).

– When A makes a decryption query (K,Y ), A receivesX such that EK(X) =
Y and also gets for free Y ′ = EK(σ(X)).

4.1 Collision Resistance

The theorem given below implies that the collision resistance of F ◦
π is optimal

up to some constant factor.

Theorem 1. For 1 ≤ q < 2n−1,

AdvcolF◦
π
(q) ≤ q

2k/2(1− q/2n−1)
+

q2 + 2q

2k(1 − q/2n−1)2
.

Example 1. The upper bound of Theorem 1 is 0.5 if q = 2125.7 for (n, k) =
(128, 256) and if q = 294.5 for (n, k) = (128, 192).

It is easy to see that AdvcolF◦
π
(q) ≤ AdvcolF (q) + AdvpreF (q). Upper bounds on

AdvcolF (q) and AdvpreF (q) are given in Lemmas 1 and 2, respectively. The upper
bound on AdvpreF (q) is not so tight but suffices for our purpose.

Lemma 1. For 1 ≤ q < 2n−1,

AdvcolF (q) ≤ q

2k/2(1− q/2n−1)
+

(
q

2k/2(1− q/2n−1)

)2

.

Proof. Let A be any collision-finding adversary against F asking at most q
queries to E. For 1 ≤ i ≤ q, making the i-th query, adversary A obtains some
(Ki, Xi, Yi) and (Ki, σ(Xi), Y

′
i ) such that EKi(Xi) = Yi and EKi(σ(Xi)) = Y ′

i .
Let Wi = trk/2(Yi ⊕Xi)‖trk/2(Y ′

i ⊕ σ(Xi))).
Let Col1,i be the event that Wi = φ(Wi). Let Col2,i be the event that Wi ∈⋃i−1
j=1{Wj , φ(Wj)}. If A succeeds in finding a collision for F just after the i-th

query, then either Col1,i or Col2,i occurs. For the two events,

Pr[Col1,i] ≤
2n−k/2

2n − (2i− 1)
and Pr[Col2,i] ≤

(2n−k/2)22(i− 1)

(2n − (2i− 2))(2n − (2i− 1))
.

The probability that A finds a collision for F is bounded above by

q∑
i=1

(Pr[Col1,i] + Pr[Col2,i]) ≤
2n−k/2q

2n − (2q − 1)
+

(2n−k/2)2q(q − 1)

(2n − (2q − 2))(2n − (2q − 1))

≤ 2n−k/2q

2n − 2q
+

(
2n−k/2q

2n − 2q

)2

.

��
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Lemma 2. For 1 ≤ q < 2n−1,

AdvpreF (q) ≤ 2q

2k(1− q/2n−1)2
.

Proof. Let A be any preimage-finding adversary against F asking at most q
queries to E. For 1 ≤ i ≤ q, making the i-th query, adversary A obtains some
(Ki, Xi, Yi) and (Ki, σ(Xi), Y

′
i ) such that EKi(Xi) = Yi and EKi(σ(Xi)) = Y ′

i .
Let Wi = trk/2(Yi ⊕Xi)‖trk/2(Y ′

i ⊕ σ(Xi))).
Let T be the given digest. Let Prei be the event that Wi = T or φ(Wi) = T .

Then,

Pr[Prei] ≤
(2n−k/2)2 · 2

(2n − (2i− 2))(2n − (2i− 1))
.

The probability that A finds a preimage of T for F is bounded above by

q∑
i=1

Pr[Prei] ≤
(2n−k/2)2 · 2q

(2n − (2q − 2))(2n − (2q − 1))
≤ (2n−k/2)2 · 2q

(2n − 2q)2
.

��

4.2 Preimage Resistance

With the technique of “super query” introduced by [19], it can also be proved
that the preimage resistance of F ◦

π is optimal up to a constant factor in the ideal
cipher model.

Theorem 2.
AdvpreF◦

π
(q) ≤ q

2k−4(1− 21−n)
.

Proof. Let A be any preimage-finding adversary against F asking at most q
queries to E. Here, we call the queries normal queries. It is assumed that, if A
makes 2n−2 normal queries with respect to a key, then it is given for free the
remaining 2n−1 pairs of plaintexts and ciphertexts with respect to the same key.
This event is called a super query.

Let PreN be the event that a preimage is obtained by some normal query. Let
PreS be the event that a preimage is obtained by some super query. Then,

AdvpreF◦
π
(q) ≤ Pr[PreN] + Pr[PreS] .

For PreN, the probability that a preimage is obtained by a normal query is
at most (2n−k/2/2n−1)2 · 2 = 1/2k−3. Since A makes at most q normal queries,
Pr[PreN] ≤ q/2k−3.

On the other hand, for PreS, the probability that a preimage is obtained by
a super query is at most

2n−k/2

2n−1
· 2n−k/2

2n−1 − 1
· 2 · 2n−2 ≤ 2n+1

2k(1 − 21−n)
.

Since A makes at most q/2n−2 super queries, Pr[PreS] ≤ q/(2k−3(1−21−n)). ��
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5 Keyed Hashing Mode

We consider a keyed hashing mode of F ◦
π : keyed-via-IV (KIV) mode. It is ob-

tained simply by replacing the initial value IV with secret key K, that is,
F ◦
π (K, ·), where K ∈ Σk.
For this mode, it is assumed that the inputs satisfy the following property.

Let M ⊂ (Σn)+ be the domain of the KIV mode of F ◦
π . For any positive integer

l, for any M[1,l] and M ′
[1,l] in M∩ Σnl, Ml �= σ(M ′

l ) if M[1,l−1] = M ′
[1,l−1]. Let

us call this property σ-free. It is easy to see that the KIV mode of F ◦
π cannot be

a PRF if its domain is not σ-free.
The following theorem implies that the KIV mode of F ◦

π is a PRF if E is a
PRP under related-key attacks with respect to Rel = {id , φ, π, π◦φ}, where id is
the identity permutation on Σk. Let Pπ,φ = {x ∈ Σk |π(x) = x∨π(x) = φ(x)}.

Theorem 3. Let A be a prf-adversary against the KIV mode of F ◦
π . Suppose

that the domain of the KIV mode of F ◦
π is σ-free. Suppose that A runs in time

at most τ , and makes at most q queries, and each query has at most � message
blocks. Suppose that q ≤ λ2n/e for some positive constant λ < 1, where e is the
base of the natural logarithm. Then, there exists a prp-rka-adversary B against
E such that

AdvprfF◦
π
(A) ≤ �q · Advprp -rka

Rel,E (B) + � q

(
|Pπ,φ|
2k

+
1

2k/2

)
+

� 2k/2

1− λ

(e q
2n

)2n−k/2+1

.

B makes at most q queries restricted by Rel and runs in time at most τ+O(�qTE),
where TE represents the time required to compute E.

It is easy to make Pπ,φ small. For example, Pπ,φ is empty if π(xL‖xR) =
(xL ⊕ cL)‖(xR ⊕ cR), where xL, xR, cL, cR ∈ Σk/2 and cL and cR are distinct
constants.

The last term of the upper bound in Theorem 3 is Ω(1) for
√
� q = Ω(2n/2)

if k = 2n. If k = 2n − 2c for some constant c, then it is Ω(1) for �1/(2
c+1)q =

Ω(2n/(1+2−c)).
Theorem 3 directly follows from the succeeding three lemmas.
Let A be an adversary with access to m oracles (u1,K1), (u2,K2), . . . ,

(um,Km), where ui ∈ F (K × X ,Y) and Ki ∈ K for 1 ≤ i ≤ m. Each query
by A is directed to just one of the m oracles. Let us define the following nota-
tion: 〈(uj ,Kj)〉mj=1 = (u1,K1), (u2,K2), . . . , (um,Km). The m-prf-rka-advantage
of A against h under Φ-related-key attacks is defined as follows:

Advm-prf-rka
Φ,h (A) =

∣∣∣Pr[A〈(h,Kj)〉mj=1 = 1]− Pr[A〈(ρj ,Kj)〉mj=1 = 1]
∣∣∣ ,

where Kj ’s are independent random variables uniformly distributed over K, and
ρj ’s are independent random keyed functions uniformly distributed over F (K×
X ,Y).

Lemma 3. Suppose that there are q balls and t bins. Each ball is placed in a
bin chosen independently and uniformly at random. Let m be a positive integer
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and λ be a real such that 0 < e q
m t ≤ λ < 1. Then, some bin contains m or more

balls with probability at most

t

1− λ

( e q

m t

)m
.

Proof. Omitted due to the page limit. ��

Lemma 4. Let f(K,x) = trk/2(EK(x) ⊕ x). Let A be a prf-adversary against
the KIV mode of F ◦

π . Suppose that the domain of the KIV mode of F ◦
π is σ-free.

Suppose that A runs in time at most τ , and makes at most q queries, and each
query has at most � message blocks. Then, there exists a prf-rka-adversary B
against f with access to q oracles such that

AdvprfF◦
π
(A) ≤ � · Advq- prf -rkaRel,f (B) + � q

(
|Pπ,φ|
2k

+
1

2k/2

)
.

B makes at most q queries restricted by Rel and runs in time at most τ+O(�qTE),
where TE represents the time required to compute E.

Proof. For i ∈ {0, 1, . . . , �} (� ≥ 1), let Ii : (Σ
n)≤� → Σk be a random function

such that

Ii(M[1,l]) =

{
α0(M[1,l]) if 1 ≤ l ≤ i,

F ◦
π (α1(M[1,i]),M[i+1,l]) if i+ 1 ≤ l ≤ � ,

where α0 and α1 are independent and random functions; α0 is uniformly dis-
tributed over F ((Σn)≤i, Σk), and α1 is uniformly distributed over

{α |α ∈ F ((Σn)i, Σk) and α(M[1,i−1]‖σ(Mi)) = φ(α(M[1,i]))} .

Notice that α0 and α1 are independent and random elements uniformly dis-
tributed over Σk if i = 0. Then,

AdvprfF◦
π
(A) =

∣∣Pr[AI0 = 1]− Pr[AI� = 1]
∣∣ .

A prf-rka-adversary B with q oracles 〈(uj ,Kj)〉qj=1 is constructed using A as a
subroutine. B first selects i ∈ {1, . . . , �} uniformly at random. Then, B runs A.
B simulates a random function β uniformly distributed over F ((Σn)≤i−1, Σk)

via lazy sampling. B answers to the t-th query of A, M (t) = M
(t)
[1,l], as follows:

1. If 1 ≤ l ≤ i− 1, then B returns β(M (t)).
2. Suppose that i ≤ l ≤ �. Let

p = min
{
t′ | t′ < t ∧

(
M

(t′)
[1,i−1] = M

(t)
[1,i−1] ∨M

(t′)
[1,i−1] = M

(t)
[1,i−2]‖σ(M

(t)
i−1)
)}

.

(a) Suppose that l = i. If p �= ⊥, then B returns

– up(π(Kp),M
(t)
i )‖up(π(Kp), σ(M

(t)
i )) if M

(p)
[1,i−1] = M

(t)
[1,i−1], and



80 S. Hirose and H. Kuwakado

– up(π(φ(Kp)),M
(t)
i )‖up(π(φ(Kp)), σ(M

(t)
i )) if M

(p)
[1,i−1] =

M
(t)
[1,i−2]‖σ(M

(t)
i−1).

Otherwise, B returns ut(π(Kt),M
(t)
i )‖ut(π(Kt), σ(M

(t)
i )).

(b) Suppose that i+ 1 ≤ l ≤ �. If p �= ⊥, then B returns

– F ◦
π (up(Kp,M

(t)
i )‖up(Kp, σ(M

(t)
i )),M

(t)
[i+1,l]) if M

(p)
[1,i−1] = M

(t)
[1,i−1],

and
– F ◦

π (up(φ(Kp),M
(t)
i )‖up(φ(Kp), σ(M

(t)
i )),M

(t)
[i+1,l]) if M

(p)
[1,i−1] =

M
(t)
[1,i−2]‖σ(M

(t)
i−1).

Otherwise, B returns F ◦
π (ut(Kt,M

(t)
i )‖ut(Kt, σ(M

(t)
i )),M

(t)
[i+1,l]).

Now, suppose that B is given oracles 〈(f,Kj)〉qj=1, whereKj ’s are independent

random variables uniformly distributed over Σk. Then,

up(π(Kp),M
(t)
i )‖up(π(Kp), σ(M

(t)
i )) = F ◦

π (Kp,M
(t)
i )

up(π(φ(Kp)),M
(t)
i )‖up(π(φ(Kp)), σ(M

(t)
i )) = F ◦

π (φ(Kp),M
(t)
i )

and

F ◦
π (up(Kp,M

(t)
i )‖up(Kp, σ(M

(t)
i )),M

(t)
[i+1,l]) = F ◦

π (Kp,M
(t)
[i,l])

F ◦
π (up(φ(Kp),M

(t)
i )‖up(φ(Kp), σ(M

(t)
i )),M

(t)
[i+1,l]) = F ◦

π (φ(Kp),M
(t)
[i,l]) .

Therefore, we can say that A has oracle access to Ii−1, and

Pr
[
B〈(f,Kj)〉qj=1 = 1

]
=

1

�

�∑
i=1

Pr[AIi−1 = 1] .

Next, suppose that B has oracle access to 〈(ρj ,Kj)〉qj=1, where ρj ’s are inde-

pendent random functions uniformly distributed over F (Σk × Σn, Σk/2), and
Kj’s are independent random variables uniformly distributed over Σk. Since the
domain of F ◦

π is σ-free, B can successfully simulate Ii to A if φ(Kj) �= Kj and
{π(Kj), π(φ(Kj))} ∩ {Kj, φ(Kj)} is empty for every 1 ≤ j ≤ q. Let Bad be the
event that φ(Kj) = Kj or {π(Kj), π(φ(Kj))} ∩ {Kj, φ(Kj)} is not empty for
some j. Then,

Pr
[
B〈(ρj ,Kj)〉qj=1 = 1

]
= Pr[¬Bad] Pr

[
B〈(ρj ,Kj)〉qj=1 = 1

∣∣∣¬Bad]+ Pr
[
Bad ∧B〈(ρj ,Kj)〉qj=1 = 1

]
=

Pr[¬Bad]
�

�∑
i=1

Pr[AIi = 1] + Pr
[
Bad ∧B〈(ρj ,Kj)〉qj=1 = 1

]
=

1

�

�∑
i=1

Pr[AIi = 1]− Pr[Bad]

�

�∑
i=1

Pr[AIi = 1] + Pr
[
Bad ∧B〈(ρj ,Kj)〉qj=1 = 1

]
.
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From the discussions above,

Advq- prf -rkaRel,f (B) =
∣∣∣Pr [B〈(f,Kj)〉qj=1 = 1

]
− Pr

[
B〈(ρj ,Kj)〉qj=1 = 1

]∣∣∣
≥ 1

�

∣∣Pr[AI0 = 1]− Pr[AI� = 1]
∣∣− Pr[Bad]

=
1

�
AdvprfF◦

π
(A)− Pr[Bad] .

Thus,

AdvprfF◦
π
(A) ≤ � ·Advq- prf -rkaRel,f (B) + � · Pr[Bad]

≤ � ·Advq- prf -rkaRel,f (B) + � q

(
|Pπ,φ|
2k

+
1

2k/2

)
.

B makes at most q queries and runs in time at most τ +O(�qTE). ��

Lemma 5. Let f(K,x) = trk/2(EK(x)⊕x). Let A be a prf-rka-adversary against
f with m oracles. Suppose that A runs in time at most τ and makes at most
q queries restricted by Rel. Suppose that q ≤ λ2n/e for some positive constant
λ < 1. Then, there exists a prp-rka-adversary B against E such that

Advm- prf -rka
Rel,f (A) ≤ m · Advprp -rka

Rel,E (B) +
2k/2

1− λ

(e q
2n

)2n−k/2+1

.

B makes at most q queries restricted by Rel and runs in time at most τ+O(q TE),
where TE represents the time required to compute E.

Proof. Let K1, . . . ,Km be independent random variables uniformly distributed
over Σk. Let ρ1, . . . , ρm be independent and random keyed functions uniformly
distributed overF (Σk×Σn, Σk/2). Let�1, . . . , �m be independent randomkeyed
permutations uniformly distributed over P (Σk × Σn, Σn), and let �̃j(·, x) =
trk/2(�j(·, x) ⊕ x) for 1 ≤ j ≤ m. Then,

Advm- prf -rka
Rel,f (A) ≤

∣∣∣Pr [A〈(f,Kj)〉mj=1 = 1
]
− Pr

[
A〈(�̃j ,Kj)〉mj=1 = 1

]∣∣∣+∣∣∣Pr [A〈(�̃j ,Kj)〉mj=1 = 1
]
− Pr

[
A〈(ρj ,Kj)〉mj=1 = 1

]∣∣∣ .

LetOi bem oracles such that (f,K1), . . . , (f,Ki), (�̃i+1,Ki+1), . . . , (�̃m,Km)
for 0 ≤ i ≤ m. Notice that O0 = 〈(�̃j ,Kj)〉mj=1 and Om = 〈(f,Kj)〉mj=1.

A prp-rka-adversary B is constructed using A as a subroutine. The algorithm
of B with an oracle (u,K) is given below, where u is either E or �. � is a
random keyed permutation uniformly distributed over P (Σk ×Σn, Σn), and K
is a random variable uniformly distributed over Σk.

1. selects i from {1, 2, . . . ,m} uniformly at random.
2. runs A with oracles (f,K1), . . . , (f,Ki−1), (ũ,K), (�̃i+1,Ki+1), . . . ,

(�̃m,Km) by simulating (f,K1), . . . , (f,Ki−1), and (�̃i+1,Ki+1), . . . ,
(�̃m,Km), where ũ(·, x) = trk/2(u(·, x) ⊕ x).
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3. outputs A’s output.

Then,

Pr
[
B(E,K) = 1

]
=

1

m

m∑
i=1

Pr
[
AOi = 1

]
and

Pr
[
B(�,K) = 1

]
=

1

m

m−1∑
i=0

Pr
[
AOi = 1

]
.

Thus,

Advprp -rka
Rel,E (B) =

1

m

∣∣Pr [AOm = 1
]
− Pr

[
AO0 = 1

]∣∣ .

B makes at most q queries and runs in time at most τ +O(q TE).
It is possible to distinguish �̃j and ρj only by the fact that there may be

(2n−k/2 + 1)-collision for ρj(·, x) ⊕ x. Thus, since A makes at most q queries,∣∣∣Pr [A〈(�̃j ,Kj)〉mj=1 = 1
]
− Pr

[
A〈(ρj ,Kj)〉mj=1 = 1

]∣∣∣ ≤ 2k/2

1− λ

(e q
2n

)2n−k/2+1

,

which follows from Lemma 3. ��

5.1 An Example of Padding for σ-Free Inputs

In this subsection, σ is assumed to be a permutation onΣn such that σ(x) = x⊕c
for some non-zero constant c. The permutation is denoted by σc.

Let pad be a padding function such that

pad(M) = M‖10d+n/2‖lenn/2(M) ,

where d is a minimum non-zero integer such that |M |+ d ≡ n− 1 (mod n), and
lenn/2(M) is the n/2-bit binary representation of |M |. It is easy to see that pad

is σc-free if, for example, c = 1n/2‖0n/2.

6 Indifferentiability from Random Oracle

We show that F ◦
π is indifferentiable from a VIL random oracle in the ideal cipher

model with pad and σc given in the previous section.

Theorem 4. Let E ∈ BC(n, k). Let Pπ be the set of fixed points of π. Let A be
an adversary that asks at most qV queries to the VIL oracle, qe queries to the
encryption oracle and qd queries to the decryption oracle. Let � be the maximum
number of message blocks in a VIL query. Suppose that q = �qV + qe + qd <
2n−1/3. Then, in the ideal cipher model, AdvindiffF◦

π ,S (A) is bounded from above by

q

2k/2(1 − 3q/2n−1)
+
9q2 + 2(|Pπ | − 1)q

2k(1− 3q/2n−1)2
+

q2

4(2k − 2k/2 − 6q − |Pπ |+ 4)
+

q

2n−1
,

where the simulator S is given in Figure 3. S makes at most 2(qe + qd) queries
and runs in time O((qe + qd)

2).
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Proof. Omitted due to the page limit. ��

Theorem 4 implies that the query complexity to differentiate F ◦
π from a VIL

random oracle is Ω(min{2k/2, 2n}), which is optimal up to a constant factor.

Example 2. The upper bound of Theorem 4 is 0.5 if q = 2124.3 for k = 256 and
if q = 293.5 for k = 192. Though IRO implies CR, Theorem 1 gives a slightly
better bound for CR than Theorem 4.

The simulator S given in Figure 3 simulates the ideal cipher by lazy evaluation.
P(s) (C(s)) is the set of plaintexts (ciphertexts) which are available for the reply
to the current query with the key s. Es(x) and Ds(x) are ⊥ for any s ∈ Σk

and x ∈ Σn initially. They get defined by the queries of the adversary and the
corresponding oracle replies. V is the set of the keys in the queries so far.

The simulator keeps a tree, which initially consists of the root IV . T is the
set of the nodes in the tree so far. During the simulation, for example, new nodes
F (s, x) = t0‖t1 and F (s, σ(x)) = t1‖t0 are created by an encryption query (s, x)

if s ∈ T , and they augment the tree together with the edges s
x−→ t0‖t1 and

s
σ(x)−→ t1‖t0.
The procedure extend(s) uses the VIL random oracleH and evaluates F ◦

π (IV , ·)
for the message, if any, corresponding to the path in the tree from the root IV
to s such that s is the chaining value fed into final F through π. Owing to the
padding pad, the message is unique if it exists. The procedure path(s) returns
the message. lb(M̃) is the last block of pad(M̃). fhalf and shalf give the first
half and the second half of the input string, respectively.

7 Implementation

We implemented the proposed compression function by instantiating the ideal
cipher E with AES-192 or AES-256. The involution σ was defined with the
bitwise complement of the first byte of Mi. The throughput of the compression
function was measured on the Intel Core i7-2600S, the Intel Core i7-2600, and
the Intel Core i7-2720QM, which support the AES instruction set (AES-NI). The
GNU Compiler Collection version 4.4.5 or 4.4.6 was used for code compilation.
The result is shown in Table 1. In the serial implementation, after the topside
encryption is finished, the downside encryption is performed. In the pipelined
implementation, each round of two encryption functions is interleaved. In both
of implementations, the key schedule is performed only once. The throughput
of our hash function will approach asymptotically to these values for sufficiently
large data.

The result showed that the pipelined implementation was better. The In-
tel manual [10] recommends to process 4 or 8 blocks in parallel for optimized
throughput since the hardware that supports the four AES round instructions
is pipelined. Bos et al. [5] pointed out that constructions such as the DM con-
struction gave an advantage on exploiting such a hardware feature. Our hash
function can also gain the benefit of the hardware feature by interleaving each
round of two encryption functions.
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Initialize:

1: V ← ∅; T ← {IV }; P(s) ← Σn; C(s) ← Σn;

Interface E(s, x):
300: if Es(x) = ⊥ then
310: if s ∈ T then
320: Es(x)

$← C(s); Es(σ(x)) $← C(s) \ {Es(x)};
330: t0 ← trk/2(Es(x)⊕ x); t1 ← trk/2(Es(σ(x))⊕ σ(x));
331: if t0 = t1 ∨ {t0‖t1, t1‖t0} ∩B 
= ∅ then abort;

340: T ← T ∪ {t0‖t1, t1‖t0};
341: extend(t0‖t1); extend(t1‖t0);
350: else
360: Es(x)

$← C(s); Es(σ(x)) $← C(s) \ {Es(x)};
370: V ← V ∪ {s}; P(s) ← P(s) \ {x, σ(x)}; C(s) ← C(s) \ {Es(x), Es(σ(x))};
380: return Es(x);

Interface D(s, x):

500: if Ds(x) = ⊥ then
510: if s ∈ T then
520: Ds(x)

$← P(s); Es(σ(Ds(x)))
$← C(s) \ {x};

530: t0 ← trk/2(Ds(x)⊕ x); t1 ← trk/2(σ(Ds(x))⊕ Es(σ(Ds(x))));
531: if t0 = t1 ∨ {t0‖t1, t1‖t0} ∩B 
= ∅ then abort;

540: T ← T ∪ {t0‖t1, t1‖t0};
541: extend(t0‖t1); extend(t1‖t0);
550: else
560: Ds(x)

$← P(s); Es(σ(Ds(x)))
$← C(s) \ {x};

570: V ← V∪{s}; P(s) ← P(s)\{Ds(x), σ(Ds(x))}; C(s) ← C(s)\{x, Es(σ(Ds(x)))};
580: return Ds(x);

Subroutine extend(s):

700: s̃ ← π(s); M̃ ← path(s̃); x ← lb(M̃);
710: if x 
= ⊥ ∧ Es̃(x) = ⊥ then � if M̃ exists

720: t′0
$← Σn−k/2; t′1

$← Σn−k/2;
721: t0 ← t′0‖fhalf(H(M̃)); t1 ← t′1‖shalf(H(M̃));
722: Es̃(x) ← t0 ⊕ x; Es̃(σ(x)) ← t1 ⊕ σ(x);
723: if Es̃(x) = Es̃(σ(x)) ∨ {Es̃(x), Es̃(σ(x))} 
⊂ C(s̃) then abort;

730: V ← V ∪ {s̃}; P(s̃) ← P(s̃) \ {x, σ(x)}; C(s̃) ← C(s̃) \ {Es̃(x), Es̃(σ(x))};

Fig. 3. Pseudocode for the simulator S. B = V ∪ T ∪ π−1(V ∪ T ) ∪ π(T ) ∪ Pπ.
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Table 1. Throughput [cycles/byte]

k 192 256

Core i7 2600S 2600 2720QM 2600S 2600 2720QM

serial 7.07 8.43 6.44 9.07 11.09 8.21

pipelined 6.44 8.06 5.84 8.00 9.80 7.26
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Abstract. The notion of forward-secure sequential aggregate message
authentication was introduced by Ma and Tsudik in 2007. It is suitable
for applications such as audit logging systems and wireless sensor net-
works. Ma and Tsudik also constructed a scheme with a MAC function
and a collision resistant hash function. However, the notion has not been
fully formalized and the security of the scheme has not been confirmed. In
this paper, forward-secure sequential aggregate message authentication
schemes and their security are formalized. Then, a generic construction
with a MAC function and a pseudorandom generator is presented. It is
also shown that the construction is secure if the underlying primitives
are secure.

1 Introduction

Background. Message authentication is one of the most basic and important roles
of cryptography. The cryptographic functions such as HMAC [8] and CMAC [17]
are widely used for this purpose in various applications.

Some applications may require additional properties of message authentica-
tion schemes. One of the typical examples is to secure audit logging systems [4].
For audit logging systems, it is not sufficient only to detect forgeries of log entries.
It is also necessary to detect deletions and reorderings of log entries. Aggrega-
tion of authenticators called tags is useful for reducing memory consumption.
Another important property is forward security. It is achieved by updating secret
keys. With this mechanism, leakage of current secret keys by intrusion does not
compromise the security of past secret keys. These properties also seem useful
for wireless sensor netwoks.

The notion of forward-secure sequential aggregate message authentication (FS
SAMA) was presented by Ma and Tsudik [14]. Ma and Tsudik also proposed an
FS SAMA scheme in the same paper. Unfortunately, the notion of FS SAMA
has not been fully formalized, and the security of the Ma-Tsudik scheme has not
been discussed in detail.

The Ma-Tsudik scheme is composed of a MAC function and a cryptographic
hash function. The cryptographic hash function is required to be collision re-
sistant. Cryptanalytic results on hash functions [21,22] suggest that collision
resistance is difficult to be achieved. It is also shown that there exists a large
gap between collision resistance and onewayness (preimage resistance) in terms

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 87–102, 2014.
c© Springer International Publishing Switzerland 2014



88 S. Hirose and H. Kuwakado

of computational complexity theory [19]. Thus, it is preferable if a provably
secure FS SAMA scheme is constructed without collision resistance.

Our Contribution. Forward-secure sequential aggregate message authentication
schemes (FS SAMASes) and their security are formalized in this paper. In this
formalization, we assume, as Bellare and Yee did [4], that each secret key is used
to authenticate multiple messages during some time interval.

A simple generic construction with a MAC function and a pseudorandom
bit generator (PRG) is also proposed. The proposed scheme is a kind of linking
scheme. A new message is tagged together with the current tag for previous mes-
sages, which makes it possible to detect deletions and reorderings. The forward
secure PRG [5] is used for updating secret keys to achieve forward security.

Finally, it is shown that the generic construction is provably secure. More
precisely, the generic construction is shown to be secure if the underlying MAC
function is unforgeable and the underlying PRG is secure. It is also shown to
be secure if the underlying MAC function is a secure pseudorandom function
(PRF) and the underlying PRG is secure. Notice that the MAC functions such
as HMAC and CMAC are shown to be secure as a PRF [1,11].

Related Work. Forward security was first considered for key exchange proto-
cols [10]. It was then discussed in the context of public key schemes [3].

Bellare and Yee formalized forward secure symmetric key primitives and their
security notions [5]. Among them, they presented a generic construction of a
forward-secure message authentication scheme provably secure under its security
definition. Their scheme does not intend aggregation.

Ma and Tsudik presented the notion of forward-secure sequential aggregate
signature as well as forward-secure sequential message authentication [14].

Some forward-secure message authentication schemes were proposed with ap-
plication to audit logging systems. They are classified into two classes. Some
may be called numbering schemes and others may be called linking schemes.

A numbering scheme was proposed by Bellare and Yee [4]. Their scheme pro-
duces a tag for each message accompanied with a sequence number. Sequence
numbers are used to detect deletions or reorderings of messages. Prior to updat-
ing the logging system to a new stage, their scheme produces a tag for a special
message with a sequence number. It works as a marker of the end of the stage,
and is used to detect log truncation. Their scheme does not allow aggregation.

A linking scheme of Ma and Tsudik [15] is based on the scheme in their
previous paper [14]. Their scheme sequentially hashes tags of messages using
a collision-resistant hash function. Another linking scheme was proposed by
Schneier and Kelsey [18]. Their scheme sequentially hashes messages using a
collision-resistant hash function, and produces tags for the resultant digests.
These linking schemes allow aggregation but use a collision-resistant hash func-
tion.

The notion of aggregate message authentication codes was proposed by Katz
and Lindell [12]. They assume aggregation of multiple tags from different senders.
Deletions and reorderings of messages are out of scope.
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Eikemeier et al. [7] introduced the notion of history-free message authentica-
tion. They also presented two schemes for history-free sequential message au-
thentication. Their schemes sequentially aggregate multiple tags from different
senders. They can detect deletions and reorderings. Their schemes cover more
general settings than ours. Our scheme provides a simpler and more efficient so-
lution than their scheme for limited but still significant scenarios. Actually, both
of their schemes need a pseudorandom permutation: one scheme uses CMAC [17]
and the other scheme is composed of a MAC function and a pseudorandom per-
mutation. Thus, instantiation of their schemes always requires a block cipher. On
the other hand, our scheme is able to be instantiated only with a hash function.

Wang and Hong also proposed a sequential aggregate message authentication
scheme [20]. It uses pairing operations and its security is based on number-
theoretic assumptions.

A sequential aggregate signature scheme was proposed by Lysyanskaya et
al. [13]. It combines multiple signatures from different signers and the signers
are ordered.

Organization. Section 2 gives notations and definitions of some cryptographic
primitives. Section 3 presents definitions of an FS SAMAS and its security. It
also describes a generic construction of an FS SAMAS. Section 4 shows that the
generic construction is secure if the underlying primitives are secure.

2 Preliminaries

2.1 Notation

For a pair of elements e1 and e2 of a totally ordered set, let [e1, e2] denote the set
of elements e in the set such that e1 ≤ e ≤ e2. In particular, for integers n1 and
n2, let [n1, n2] denote the set of integers n such that n1 ≤ n ≤ n2. For variable
s and set S, let s � S denote that an element chosen uniformly at random from
S is assigned to s. For sequences x and y, x‖y represents their concatenation.
An empty sequence is denoted by ε. Let F (X ,Y) be the set of all functions with
domain X and range Y. A function F : K × X → Y is called a keyed function
with key space K. F (K, ·) is often denoted by FK(·).

2.2 Pseudorandom Function

A pseudorandom function (PRF) [9] is a keyed function F : K × X → Y. The
PRF F is called secure if it is intractable to distinguish FK with secret K
chosen uniformly at random and a function with domain X and range Y chosen
uniformly at random.

Let A be an adversary against F . A is given a function with domain X and
range Y as an oracle. A makes queries to the oracle one by one adaptively. A
query is an element in X and the reply is a corresponding image in Y. Finally,
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A outputs 0 or 1. The security of F is quantified by the advantage of A against
F , which is defined as

AdvprfF (A) =
∣∣Pr[AFK ⇒ 1]− Pr[Aρ ⇒ 1]

∣∣ ,

where K � K and ρ � F (X ,Y).
We often deal with adversaries against a PRF with independent multiple

oracles. Let

Advn-prfF (A) =
∣∣Pr[AFK1 ,...,FKn ⇒ 1]− Pr[Aρ1,...,ρn ⇒ 1]

∣∣ ,

where (K1,K2, . . . ,Kn) � Kn and (ρ1, ρ2, . . . , ρn) � F (X ,Y)n. The following
lemma is a paraphrase of Lemma 3.3 in [2]:

Lemma 1. Let A be an adversary against F with access to n oracles. Then, an
adversary A′ against F can be constructed with A as a subroutine such that

Advn-prfF (A) = n ·AdvprfF (A′) .

The running time of A′ is approximately the sum of the running time of A and
the time required to compute F to answer to the queries made by A. A′ makes
at most max{qi | 1 ≤ i ≤ n} queries to its oracle, where qi is the number of the
queries made by A to its i-th oracle.

2.3 MAC Function

A MAC function (MAF) [9] is a keyed function F : K×X → Y. The MAF F is
called secure if it is intractable to find a pair of message M and tag τ such that
τ = FK(M) with secret K chosen uniformly at random.

Let A be an adversary against F . A is given FK as an oracle. A makes queries
to the oracle one by one adaptively. A query is an element in X and the reply
is a corresponding image in Y. Finally, A outputs a pair (M, τ) ∈ X × Y. A
is successful in forgery if τ = FK(M) and A has not asked M as a query. The
security of F is quantified by the advantage of A against F , which is defined as

Advmac
F (A) = Pr[AFK is successful] ,

where K � K.
We also deal with adversaries against a MAF with independent multiple ora-

cles. Let
Advn-mac

F (A) = Pr[AFK1 ,...,FKn is successful] ,

where (K1,K2, . . . ,Kn) � Kn. A is successful in forgery if there exists some
i ∈ [1, n] such that τ = FKi(M) and A has not asked M as a query to FKi . The
following lemma is similar to Lemma 1:

Lemma 2. Let A be an adversary against F with access to n oracles. Then, an
adversary A′ against F can be constructed with A as a subroutine such that

Advn-mac
F (A) = n ·Advmac

F (A′) .
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The running time of A′ is approximately the sum of the running time of A and
the time required to compute F to answer to the queries made by A. A′ makes
at most max{qi | 1 ≤ i ≤ n} queries to its oracle, where qi is the number of the
queries made by A to its i-th oracle.

2.4 Forward-Secure Pseudorandom Bit Generator

Pseudorandom Bit Generator. A pseudorandom bit generator (PRG) [6] is
a length-expanding function G : {0, 1}� → {0, 1}�+l. The PRG G is called secure
if it is intractable to distinguish G(K) with K chosen uniformly at random and
a binary sequence of length (� + l) chosen uniformly at random.

Let A be an adversary against G. A takes a binary string of length (�+ l) and
outputs 0 or 1. The security of G is quantified by the advantage of A against G,
which is defined as

AdvprgG (A) = |Pr[A(G(K)) ⇒ 1]− Pr[A(s) ⇒ 1]| ,

where K � {0, 1}� and s � {0, 1}�+l.

Forward-Secure Pseudorandom Bit Generator. A forward-secure pseudo-
random bit generator (FS PRG) was formalized by Bellare and Yee [5]. It is a
stateful bit generator SGen = (seed, gen, l, n). The algorithm seed generates an
initial secret key K1 for a given security parameter �. The algorithm gen takes
a current secret key as input and produces a binary sequence of length l and a
new secret key. n is the number of calls to gen. Namely, (si,Ki+1) ← gen(Ki)
for 1 ≤ i ≤ n, where si ∈ {0, 1}l.

The security of an FS PRG is indistinguishability against adaptive attacks. Let
Exp

fsprg-b
SGen,A be an experiment given in Algorithm 1. An adversary A against SGen

works in two phases. The first phase is the query phase. In this phase, A gets
s1, s2, . . . , si′ for some i′ ≤ n. A is allowed to choose i′ arbitrarily. s1, s2, . . . , si′
are generated by gen or chosen uniformly at random. In the next phase, which
we call the try phase, A receives the secret key Ki′+1 and tries to tell whether
s1, s2, . . . , si′ are generated by gen or chosen uniformly at random. The advantage
of A against SGen is defined by

AdvfsprgSGen (A) =
∣∣∣Pr [Expfsprg-0SGen,A ⇒ 1

]
− Pr

[
Exp

fsprg-1
SGen,A ⇒ 1

]∣∣∣ .

Bellare and Yee also presented a generic construction of an FS PRG with a
PRG. Let G : {0, 1}� → {0, 1}�+l be a PRG. Let SGen[G,n] be an FS PRG
defined as follows:

– seed simply chooses K1 ∈ {0, 1}� uniformly at random.
– (si,Ki+1) ← gen(Ki) is simply defined by (si,Ki+1) ← G(Ki) for 1 ≤ i ≤ n.

SGen[G,n] is depicted in Figure 1.
The following theorem states that SGen[G,n] is a secure FS PRG if G is a

secure PRG:
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Algorithm 1. Experiment Expfsprg-bSGen,A, where b ∈ {0, 1}
i ← 1; note ← ε
K1 ← seed(1�)
repeat

(si,Ki+1) ← gen(Ki)
if b = 1 then

si � {0, 1}l
end if
(phase ,note) ← A(query, si, note)
i ← i+ 1

until (phase = try) ∨ (i > n)
b′ ← A(try,Ki,note)
return b′

K1 G

sn

G
K2

s1

G

s2

Kn Kn+1

Fig. 1. SGen[G, n]

Theorem 1 ([5]). Let A be an adversary against SGen[G,n]. Then, there exists
an adversary B against G such that

AdvfsprgSGen[G,n](A) ≤ 2n · AdvprgG (B) ,

where the running time of B is the sum of the running time of A and O(n(�+ l)).

3 Forward-Secure Sequential Aggregate MA Scheme

3.1 Definition

Scheme. A forward-secure sequential aggregate message authentication scheme
(FS SAMAS) is a stateful scheme SAM = (kgen, tag, verif, update, n). The algo-
rithms kgen, tag, verif and update are described below. n is the number of the
stages.

Key Generation. K1 ← kgen(1�).
For a given security parameter �, the algorithm kgen produces the master
secret key K1 for the first stage.

Update. (Si,Ki+1) ← update(Ki) for 1 ≤ i ≤ n.
The algorithm update takes Ki as input. It produces the secret tagging key
Si for the current stage and updates the master secret key to Ki+1 for the
next stage.
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Tagging. (〈τi,j , i〉, Ti,j) ← tag(Si, Ti,j−1,Mi,j) for 1 ≤ i ≤ n.
The algorithm tag takes tagging key Si, state Ti,j−1 and message Mi,j as
input. Ti,0 is an initial state. tag admits messages in M∪{Mfin} as inputs,
where M is a message space and Mfin �∈ M. Mfin is a special message
tagged only at the end of the current stage.

Verification. Let M = (M1,M2, . . . ,Mn) be the ordered sequence of the
tagged messages, where Mi = (Mi,1,Mi,2, . . . ,Mi,σi) and σi is the number
of the messages tagged in the i-th stage for 1 ≤ i ≤ n. Mi,j ∈ M for
1 ≤ j ≤ σi − 1 and Mi,σi = Mfin. Let (i, j) be a pair of integers such that
1 ≤ i ≤ n and 1 ≤ j ≤ σi. We define (i, j) ≤ (i′, j′) if and only if i < i′, or
i = i′ and j ≤ j′. The algorithm verif is defined as follows:

α ← verif(S[i1,i2], Ti1,j1−1,M[(i1,j1),(i2,j2)], 〈τi2,j2 , i2〉),

where
– S[i1,i2] = (Si1 , Si1+1, . . . , Si2),
– M[(i1,j1),(i2,j2)] = (Mi1,j1 , . . . ,Mi2,j2)

for 1 ≤ i1 ≤ i2 ≤ n, 1 ≤ j1 ≤ σ1, 1 ≤ j2 ≤ σ2 and j1 ≤ j2 if i1 = i2. For
(Ti1,j1−1,M[(i1,j1),(i2,j2)], 〈τi2,j2 , i2〉), the algorithm verif outputs valid if

– tag(Si, T̃i,j−1,Mi,j) returns (〈τ̃i,j , i〉, T̃i,j) for (i1, j1) ≤ (i, j) ≤ (i2, j2),

where T̃i1,j1−1 = Ti1,j1−1 and T̃i+1,0 = T̃i,σi for i1 ≤ i ≤ i2 − 1, and
– τ̃i2,j2 = τi2,j2 .

Otherwise, it outputs invalid.

Tagging Mfin at the end of the stages is a countermeasure against truncation
attacks [4,15]. A truncation attack is an attack simply deleting the tail of a
sequence of tagged messages and the corresponding tags. It cannot be detected
without any kind of end marker.

Aggregation. The aggregation is fairly straightforward and already implicit in
the description of the verification algorithm:

(Ti1,j1−1,M[(i1,j1),(i2,j2)], 〈τi2,j2 , i2〉)
← aggre(Ti1,j1−1,M[(i1,j1),(i2,j2)], τ[(i1,j1),(i2,j2)]) ,

where τ[(i1,j1),(i2,j2)] = (〈τi1,j1 , i1〉, . . . , 〈τi2,j2 , i2〉) is the sequence of the tags
to the messages of M[(i1,j1),(i2,j2)].

Security. The security of an FS SAMAS SAM = (kgen, tag, verif, update, n) is
existential unforgeability against adaptive attacks. Let Expfs-samac

SAM,A be the exper-
iment given in Algorithm 2. An adversary A against SAM works in two phases.
The first phase is the query phase. In this phase, A makes queries to tag(Si, ·, ·)
adaptively. A should respect the state: A should ask a new message along with
the current state returned by tag as a reply to the previous message. On the
other hand, A is allowed to repeat same messages. A is also allowed to control
when to proceed to the next stages and when to break into the system. If A de-
cides to break into the system during the a-th stage, then A receives the secret
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key Ka+1 of the next stage and enters into the second phase. This phase is the
try phase. In this phase, A tries to forge a pair of a sequence of messages and a
tag for some (consecutive) stage(s) prior to the break-in.

Let M = (M1,M2, . . . ,Ma) be the sequence of the messages made by A as
queries. For 1 ≤ i1 ≤ i2 ≤ a, let

V (M , i1, i2) ={
{(Ti1,u1−1,M[(i1,u1),(i2,u2)]) | 1 ≤ u1 ≤ σi1 , 1 ≤ u2 ≤ σi2} if i1 < i2,

{(Ti1,u1−1,M[(i1,u1),(i2,u2)]) | 1 ≤ u1 ≤ u2 ≤ σi1} if i1 = i2.

The forgery (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉) is successful if

– 1 ≤ i1 ≤ i2 ≤ a,
– verif(S[i1,i2], T

′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉) = valid, and

– (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

) �∈ V (M , i1, i2).

The security of FS SAMAS SAM is quantified by the probability that an
adversary A against SAM succeeds in forgery. The advantage of A against SAM
is defined by

Advfs-samac
SAM (A) = Pr

[
Expfs-samac

SAM,A ⇒ 1
]

.

Algorithm 2. Experiment Expfs-samac
SAM,A . M represents the sequence of all mes-

sages in the queries made by A.
i ← 1; note ← ε
K1 ← kgen(1�)
repeat

(Si,Ki+1) ← update(Ki)
(phase ,note) ← Atag(Si,·,·)(query,note)
i ← i+ 1

until (phase = try) ∨ (i > n)
(T ′

i1,j1−1,M
′
[(i1,j1),(i2,j2)]

, 〈τ ′
i2,j2 , i2〉) ← A(try,Ki,note)

if (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′
i2,j2 , i2〉) is a successful forgery then

return 1
else

return 0
end if

3.2 Generic Construction

Let F : {0, 1}l × {0, 1}∗ → {0, 1}t and G : {0, 1}� → {0, 1}l+�. An FS SAMAS
using F and G is presented below.

The message space M and the special message Mfin are defined as M =
{0‖M |M ∈ {0, 1}∗} and Mfin = 1, respectively.
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Key Generation For a given security parameter �, the key generation algo-
rithm simply selects K1 ∈ {0, 1}� uniformly at random.

Update (Si,Ki+1) ← G(Ki) for 1 ≤ i ≤ n.
Tagging (〈τi,j , i〉, τi,j) ← tag(Si, τi,j−1,Mi,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ σi,

where
– σi is the total number of the messages tagged in the i-th stage,
– τi,j = FSi(τi,j−1‖Mi,j),
– τ1,0 = 0t,
– τi,0 = τi−1,σi−1 for i ≥ 2,
– Mi,σi = Mfin, and Mi,j ∈ M for 1 ≤ j ≤ σi − 1.

The descriptions of the verification algorithm and the aggregation algorithm are
omitted since they are apparent from the definiton and the descriptions of the
other algorithms given above. The FS PRG with G is used for the key generation
and the update procedures.

Figure 2 depicts the tagging procedure for a sequence of messages.

S1

‖0t ‖

τ1,1

S1

τ1,2

F F S1

τ1,3

F S2

τ2,1

F

stage 1 stage 2

‖

S3

τ3,1

F

0‖M3,1

S3

τ3,2

F

stage 3

‖ ‖ ‖

0‖M1,1 0‖M1,2 1 1 1

Fig. 2. An example of the tagging procedure for a sequence of messages

4 Provable Security of Generic Construction

4.1 Summary

Let SAM[F,G, n] be the FS SAMAS using F and G proposed in the previous
section. The following theorem shows that SAM[F,G, n] is secure if F is a secure
MAF and G is a secure PRG.

Theorem 2 (Reduction to MAC and PRG). Let A be an adversary against
SAM[F,G, n]. Let μ be the sum of the maximum number of the queries made by
A and the maximum number of the messages in the output of A. Then, there
exist an adversary B against F and an adversary D against G such that

Advfs-samac
SAM[F,G,n](A) ≤ nμ(μ+ 3)

2
Advmac

F (B) + 2n · AdvprgG (D) .

B makes at most μ queries. The running times of B and D are approximately at
most the running time of Expfs-samac

SAM[F,G,n],A.
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It is easy to see that a secure PRF is a secure MAF. Thus, Theorem 2 also
implies that SAM[F,G, n] is secure if F is a secure PRF and G is a secure PRG.
However, the direct reduction of the theorem presented below is much tighter
than the reduction following from Theorem 2. In general, distinction is expected
to be much easier than forgery. Thus, the advantage of an adversary against F
regarding the PRF property is expected to be much larger than the advantage of
another adversary regarding the MAC property if their resources are comparable.

Theorem 3 (Reduction to PRF and PRG). Let A be an adversary against
SAM[F,G, n]. Let μ be the sum of the maximum number of the queries made by
A and the maximum number of the messages in the output of A. Then, there
exist an adversary C against F and an adversary D against G such that

Advfs-samac
SAM[F,G,n](A) ≤ n ·AdvprfF (C) + 2n · AdvprgG (D) +

μ2 + μ+ 2

2t+1
.

C makes at most μ queries. The running times of C and D are approximately at
most the running time of Expfs-samac

SAM[F,G,n],A.

The proof of Theorem 3 is omitted due to the page limit.

4.2 Proof of Theorem 2

The proof uses the technique in [16].
Let Expfs-samac-b

SAM[F,G,n],A be the experiment given in Fig. 3. Then, Expfs-samac-0
SAM[F,G,n],A

is equivalent to Expfs-samac
SAM[F,G,n],A. Thus,

Advfs-samac
SAM[F,G,n](A) = Pr

[
Expfs-samac-0

SAM[F,G,n],A ⇒ 1
]

.

Let Expfsprg-bSGen[G,n],D1
be the experiment given in Fig. 4. D1(query, Si, note) runs

Atag(Si,·,·)(query, note) and simulates tag(Si, ·, ·) to answer to the queries made
by A. D1(try,Ki, note) works as follows:

1. Runs A(try,Ki, note) and gets (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉).
2. If (T ′

i1,j1−1,M
′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉) is a successful forgery, then return 1.
Otherwise, return 0.

Then,

Pr
[
Expfs-samac-b

SAM[F,G,n],A ⇒ 1
]
= Pr

[
Exp

fsprg-b
SGen[G,n],D1

⇒ 1
]

,

which implies∣∣∣Pr [Expfs-samac-0
SAM[F,G,n],A ⇒ 1

]
− Pr

[
Expfs-samac-1

SAM[F,G,n],A ⇒ 1
]∣∣∣ = AdvfsprgSGen[G,n](D1) .

Thus,

Advfs-samac
SAM[F,G,n](A) ≤ Pr

[
Expfs-samac-1

SAM[F,G,n],A ⇒ 1
]
+AdvfsprgSGen[G,n](D1) .
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i ← 1; note ← ε
K1 � {0, 1}�
repeat

(Si,Ki+1) ← G(Ki)
if b = 1 then

Si � {0, 1}l
end if
(phase ,note) ← Atag(Si,·,·)(query,note)
i ← i+ 1

until (phase = try) ∨ (i > n)
(T ′

i1,j1−1,M
′
[(i1,j1),(i2,j2)]

, 〈τ ′
i2,j2 , i2〉) ← A(try,Ki,note)

if (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′
i2,j2 , i2〉) is a successful forgery then

return 1
else

return 0
end if

Fig. 3. Expfs-samac-b
SAM[F,G,n],A

The running time ofD1 is approximately the sum of the running time ofA and time
to simulate tag(Si, ·, ·) and verify whether (T ′

i1,j1−1,M
′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉) is
a successful forgery or not with respect to S[i1,i2]. It is at most the running time of

Expfs-samac
SAM[F,G,n],A. From Theorem 1, there exists an adversasry D such that

AdvfsprgSGen[G,n](D1) ≤ 2n ·AdvprgG (D) ,

where the running time of D is also approximately at most the running time of
Expfs-samac

SAM[F,G,n],A.

i ← 1; note ← ε
K1 � {0, 1}�
repeat

(Si,Ki+1) ← G(Ki)
if b = 1 then

Si � {0, 1}l
end if
(phase ,note) ← D1(query, Si,note)
i ← i+ 1

until (phase = try) ∨ (i > n)
b′ ← D1(try, Ki,note)
return b′

Fig. 4. Expfsprg-bSGen[G,n],D1
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Let B1 be the algorithm given in Fig. 5. B1 has oracle access to FS̃i
such that

S̃i is chosen uniformly at random from {0, 1}l for 1 ≤ i ≤ n. Then,

Pr [B1 ⇒ 1] = Pr
[
Expfs-samac-1

SAM[F,G,n],A ⇒ 1
]

.

i ← 1; note ← ε
K1 � {0, 1}�
repeat

(Si,Ki+1) ← G(Ki)

(phase ,note) ← Atag(S̃i,·,·)(query,note)
i ← i+ 1

until (phase = try) ∨ (i > n)
(T ′

i1,j1−1,M
′
[(i1,j1),(i2,j2)]

, 〈τ ′
i2,j2 , i2〉) ← A(try,Ki,note)

if (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′
i2,j2 , i2〉) is a successful forgery then

b′ ← 1
else

b′ ← 0
end if
return b′

Fig. 5. The algorithm B1 with oracle access to FS̃1
, FS̃2

, . . . , FS̃n
. B1 can simulate

tag(S̃i, ·, ·) by using FS̃i
.

Suppose that A outputs (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉) as a forgery in

the try phase, where M ′
[(i1,j1),(i2,j2)]

is{
(M ′

i1,j1 , . . . ,M
′
i1,σ′

i1

,M ′
i1+1,1, . . . ,M

′
i1+1,σ′

i1+1
, . . . ,M ′

i2,1, . . . ,M
′
i2,j2) if i1 < i2,

(M ′
i1,j1 , . . . ,M

′
i1,j2) if i1 = i2.

Then, during the verification of the forgery, B1 asks τ ′i,j−1‖M ′
i,j to FS̃i

and
gets the corresponding tag τ ′i,j = FS̃i

(τ ′i,j−1‖M ′
i,j) for (i, j) such that (i1, j1) ≤

(i, j) ≤ (i2, j2). If the forgery is successful, then

τ ′i2,j2 = FS̃i2
(τ ′i2,j2−1‖M ′

i2,j2) ∧ (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

) �∈ V (M , i1, i2) .

Suppose that the forgery (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

, 〈τ ′i2,j2 , i2〉) is successful. For
(i, j) such that (i1, 1) ≤ (i, j) ≤ (i2, σi2), let τi,j−1‖Mi,j be the queries made
by B1 to the oracle FS̃i

during the execution of A in the query phase, where
1 ≤ j ≤ σi.

If τ ′i2,j2−1‖M ′
i2,j2 is new, that is, it does not appear as a query during the

execution of A in the query phase, then
(
τ ′i2,j2−1‖M ′

i2,j2
, τ ′i2,j2

)
is a success-

ful forgery for FS̃i2
. Notice that there may exist some 1 ≤ j′2 < j2 such that

τ ′i2,j′2−1‖M ′
i2,j′2

= τ ′i2,j2−1‖M ′
i2,j2 .
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Suppose that τ ′i2,j2−1‖M ′
i2,j2

is not new. Two cases are considered: i1 < i2
and i1 = i2.

First, suppose that i1 < i2. Suppose that τi2,j−1‖Mi2,j = τ ′i2,j2−1‖M ′
i2,j2 for

some j ∈ [1, σi2 ]. Let d = min{j | τi2,j−1‖Mi2,j = τ ′i2,j2−1‖M ′
i2,j2

}. There are
three cases:

1. there exists a collision for FS̃i2
:

FS̃i2
(τi2,d−j−1‖Mi2,d−j) = FS̃i2

(τ ′i2,j2−j−1‖M ′
i2,j2−j)

and τi2,d−j−1‖Mi2,d−j �= τ ′i2,j2−j−1‖M ′
i2,j2−j for some j ∈ [1,min{j2, d}− 1],

2. there exists a collision for FS̃i2−1
and FS̃i2

:

(a) τi2,d−j2 = τ ′i2,0 = τ ′i2−1,σ′
i2−1

if d > j2, that is,

FS̃i2
(τi2,d−j2−1‖Mi2,d−j2) = FS̃i2−1

(τ ′i2−1,σ′
i2−1−1‖M ′

i2−1,σ′
i2−1

) ,

and
(b) τi2−1,σi2−1 = τi2,0 = τ ′i2,j2−d if d < j2, that is,

FS̃i2−1
(τi2−1,σi2−1−1‖Mi2−1,σi2−1) = FS̃i2

(τ ′i2,j2−d−1‖M ′
i2,j2−d) ,

or
3. d = j2 and τi2,d−j−1‖Mi2,d−j = τ ′i2,j2−j−1‖M ′

i2,j2−j for all j ∈ [0, d− 1].

For the case 3 above, cases for the i-th stage are considered for i1 < i < i2.
Without loss of generality, it is assumed that τi,σi = τ ′i,σ′

i
. There are also three

cases:

4. there exists a collision for FS̃i
: FS̃i

(τi,σi−j−1‖Mi,σi−j) = FS̃i
(τ ′

i,σ′
i
−j−1‖M ′

i,σ′
i
−j)

and τi,σi−j−1‖Mi,σi−j �= τ ′i,σ′
i−j−1‖M ′

i,σ′
i−j for some j ∈ [1,min{σi, σ

′
i} − 1],

5. there exists a collision for FS̃i−1
and FS̃i

:

(a) τi,σi−σ′
i
= τ ′i,0 = τ ′i−1,σ′

i−1
if σi > σ′

i, that is, FS̃i
(τi,σi−σ′

i−1‖Mi,σi−σ′
i
) =

FS̃i−1
(τ ′i−1,σ′

i−1−1‖M ′
i−1,σ′

i−1
), and

(b) τi−1,σi−1 = τi,0 = τ ′i,σ′
i−σi

if σi < σ′
i, that is, FS̃i−1

(τi−1,σi−1−1‖Mi−1,σi−1) =

FS̃i
(τ ′

i,σ′
i−σi−1‖M ′

i,σ′
i−σi

),
or

6. σi = σ′
i and τi,σi−j−1‖Mi,σi−j = τ ′i,σ′

i−j−1‖M ′
i,σ′

i−j for all j ∈ [0, σi − 1].

Suppose that the case 3 is encountered for i2 and that the case 6 is encountered
for every i such that i1 < i < i2. Then, cases for the i1-th stage are considered.
Without loss of generality, it is assumed that τi1,σi1

= τ ′i1,σ′
i1

. There are four
cases:

7. there exists a collision for FS̃i1
:

FS̃i1
(τi1,σi1−j−1‖Mi1,σi1−j) = FS̃i1

(τ ′i1,σ′
i1

−j−1‖M ′
i,σ′

i1
−j)

and τi1,σi1−j−1‖Mi1,σi1−j �= τ ′i1,σ′
i1

−j−1‖M ′
i,σ′

i1
−j for some j ∈ [0,min{σi1 −

1, σ′
i1 − j1}],
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8. i1 ≥ 2, σ′
i1
− j1 + 1 > σi1 and there exists a collision for FS̃i1−1

and FS̃i1
,

that is, FS̃i1−1
(τi1−1,σi1−1−1‖Mi1−1,σi1−1) = FS̃i1

(τ ′i1,σ′
i1

−σi1−1‖M ′
i1,σ′

i1
−σi1

),

9. i1 = 1, σ′
i1
− j1 + 1 > σi1 and FS̃i1

(τ ′i1,σ′
i1

−σi1−1‖M ′
i1,σ′

i1
−σi1

) = τi1,0 = 0t,
or

10. σ′
i1
− j1 + 1 ≤ σi1 and τi1,σi1−j−1‖Mi1,σi1−j = τ ′i1,σ′

i1
−j−1‖M ′

i1,σ′
i1

−j for all

j ∈ [0, σ′
i1
− j1].

The case 10 contradicts the assumption that (T ′
i1,j1−1,M

′
[(i1,j1),(i2,j2)]

) �∈ V (M ,

i1, i2).
Second, suppose that i1 = i2. Then, j1 ≤ j2. Suppose that τi1,d−1‖Mi1,d =

τ ′i1,j2−1‖M ′
i1,j2

for some d ∈ [1, σi1 ]. Then, there are three cases:

1. there exists a collision for FS̃i1
:

FS̃i1
(τi1,d−j−1‖Mi1,d−j) = FS̃i1

(τ ′i1,j2−j−1‖M ′
i1,j2−j)

and τi1,d−j−1‖Mi1,d−j �= τ ′i1,j2−j−1‖M ′
i1,j2−j for some j ∈ [1,min{d, j2}− 1],

2. i1 ≥ 2 and there exists a collision for FS̃i1−1
and FS̃i1

:

FS̃i1−1
(τi1−1,σi1−1−1‖Mi1−1,σi1−1) = FS̃i1

(τ ′i1,j2−d−1‖M ′
i1,j2−d) ,

or
3. i1 = 1 and FS̃i1

(τ ′i1,j2−d−1‖M ′
i1,j2−d) = τi1,0 = 0t.

Let B2 be an adversary with oracle access to FS̃1
, FS̃2

, . . . , FS̃n
. B2 first selects

one of the following strategies uniformly at random, and then runs B1 under the
strategy. Let μ1 be the total number of the queries made by B1 to the oracles
during the execution of A during the query phase. Let μ2 be the total number
of the queries made by B1 to the oracles during the verification of the forgery
by A.

– Stops just before the j-th query uj and returns (uj , τ
′
i2,j2), where μ1 + 1 ≤

j ≤ μ2.
– Stops just before the j-th query uj and returns (uj , 0

t), where 1 ≤ j ≤
μ1 + μ2.

– Stops just before the j-th query uj and returns (uj , τj′), where 1 ≤ j′ < j ≤
μ1 + μ2.

If B1 is successful, then at least one of the strategies listed above gives B2 a
successful forgery for FS̃i

for some i ∈ [1, n]. The number of the queries made
by B2 is μ ≥ μ1 + μ2. Thus, the number of the strategies are at most

μ+ μ+ μ(μ− 1)/2 = μ(μ+ 3)/2 .

Since B2 selects a strategy uniformly at random,

Advn-mac
F (B2) =

2

μ(μ+ 3)
Pr
[
BFS̃1

,...,FS̃n

1 ⇒ 1
]

.

The running time of B2 is approximately at most the running time of
Expfs-samac

SAM[F,G,n],A without computation of FS̃1
, . . . , FS̃n

. This completes the proof
with Lemma 2.
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16. Maurer, U.M., Sjödin, J.: Single-key AIL-MACs from any FIL-MAC. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

17. NIST Special Publication 800-38B. Recommendation for block cipher modes of
operation: The CMAC mode for authentication (2005)

18. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Transactions on Information and System Security 2(2), 159–176 (1999)

19. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

20. Wang, B., Hong, X.: Sequential message authentication code without random or-
acles. Cryptology ePrint Archive, Report 2013/444 (2013),
http://eprint.iacr.org/

21. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. In: Cryptology ePrint Archive, Report 2004/199
(2004), http://eprint.iacr.org/

22. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/


A Provable Secure Batch Authentication Scheme

for EPCGen2 Tags

Jiageng Chen, Atsuko Miyaji, and Chunhua Su

School of Information Science,
Japan Advanced Institute of Science and Technology, Japan

{jg-chen,miyaji,su}@jaist.ac.jp

Abstract. EPC Class1 Gen2 (EPCGen2) is an international industrial
standards for low cost RFID system used in many applications such
as supply chain and consumer service. While RFID technology offers
convenience and being employed in various applications in our society,
security and privacy issues are still the number one concern of most RFID
applications today. In this paper, we study the problems occurring where
a reader wants to authenticate and identify legitimate RFID EPCGen2
tags in a batch to guarantee the integrity of the products. Most of the
EPCGen2 tags are passive and have limited computational ability to
compute cryptographic functions. For this reason, to design a mechanism
to protect low-cost EPCGen2 tags from security and privacy risks is
a challenging task. We propose a provable secure batch authentication
scheme for EPCGen2 tags using the pseudo-random number generator
(PRNG) and cyclic redundancy check (CRC) code. Our ultra-lightweight
scheme which integrates the operations of EPCGen2 and only relies on
build-in CRC-16 and PRNG function with secret keys inside the tags. We
formally analyze security and privacy of the proposed scheme by using
mathematical modeling and proof. Our analysis shows that our scheme
provides strong ability to prevent existing possible attacks.

Keywords: RFID, batch authentication, pseudo-random number gen-
erators, security protocol.

1 Introduction

RFID system is widely applied in counterfeiting products and RFID-enable sup-
ply chain in recent years. An RFID system consists of RFID tags, an RFID
reader, and sometimes a back-end server. The communication channel between
the reader and the backend server is (usually) assumed to be secure while the
(wireless) channel between the reader and the tag is insecure. As the RFID reader
communicates with the tags using RF signals, RFID protocols may face various
security threats such as location privacy, authentication, and re-synchronization
between read and tags. EPCGen2 standardization which covers the whole RFID
architecture, from tag data structure to network communication specifications.
EPC tags are not provided of on-board batteries, but are passively powered

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 103–116, 2014.
c© Springer International Publishing Switzerland 2014
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through radio-frequency waves. The problem of authenticating tags in large-
scale RFID systems can be easily reduced to verifying each tag one by one.
However, this is not efficient enough for the practical usage for the extremely
busy supply chain. A number of different authentication protocols have been
proposed to address supply chain application.

There is scope for securing low cost devices. It is obviously that the level of
security may not be sufficient for sensitive applications. However there are many
low cost applications where there is no alternative in the practical industrial
applications. It is difficult for them to adapt the existing authentication proto-
cols using cryptographic primitives which require a lot of computation cost and
storage space. Thus, we need to find a novel way to guarantee the security and
privacy of such low-cost EPCGen2 tags.

The scenario of our scheme: We recognize that there are situations in which one
has to design security into systems with restricted capability so as to promote
low-cost widespread usage. In this paper, we concern with the security of uni-
versal EPCGen2 application. We focus on such a supply chain scenario in which
a batch of products are transported from one place to another. The receivers
who can be retailers or transportation service providers want to confirm that
the products are the original ones and none of them is lost during the outsourc-
ing supply chain procedures such as Third party logistics which is one of the
most dominating kind of supply chains that has been widely adopted by many
companies.

1.1 Related Works

To execute the authentication while maintaining the security and privacy-
preserving features in RFID system have been research for years. For the
lightweight tags, there are also many proposals such as using one-way hash
functions by Song et al. [16], performing authentication by hashing random chal-
lenges, tag identity, and/or secret key into one message [14], etc. However, hard-
ware implementations of hash functions such as SHA-1 and MD5 are generally
considered too expensive to be implemented on low-cost EPCGen2 RFID tags.
For this reason, lightweight solutions are needed for low-cost RFID tags such as
EPCGen2. Lightweight authentication protocols aim to achieve fast and cost-
efficient authentication through simple operations like bitwise XOR and binary
addition. In 2006, Juels and Weis proposed a multi-round lightweight authen-
tication protocol called HB+ [9], after that many improvements of the HB+
protocol such as Peinado in 2007 [12] and Gilbert et al. in 2008 [8].

In 2009, Sun and Ting presented the EPCGen2 protocol [17] for EPCGen2
standard in which each tag stores a string and shared with a back-end server.
Burmester et al. demonstrated an attack to break this protocol in 2009 [2]. Until
recent years, it still remains a challenging task to design a reasonable secure
and efficient solution for EPCGen2 application. Recently, there are some prac-
tical works focusing on the security of lightweight solutions for EPCGen2 tags,
such as pseudo-random number generator for EPCGen2 [11] and CRC-based
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solutions [7]. In recent years, there are some batch authentication methods for
RFID being proposed, Yang et al. [18] and Guo et al. [6] study the RFID batch
authentication issue and propose the first probabilistic approach to meet the
requirement of prompt and reliable batch authentications in large scale RFID
applications. However, their solutions are not light-weight to be used for EPC-
Gen2 tags authentication. In 2014, Qi et al. [19] proposed a batch recall protocol
for RFID-enable supply chain and industry manufacturers, there is a so-called
collector to recall the products based on public key technologies. In practical im-
plementation, the public key cryptography-based solutions are still too expensive
to be broadly applied to low-cost RFID tags.

1.2 Our Contributions and Organization

The security level of EPCGen2 heavily depends only on 16-bits PRNG which
makes RFID protocol potentially vulnerable up to a certain point, for example,
adversary can perform ciphertext-only attacks to exhaust the 16-bit range of
the components of protocol flows. Due to such a reason, we have to revisit the
security and privacy issues for EPCGen2 tags and find a way to do better based
on the limited computation resource of EPCGen2 tags.

– We first propose a provable secure scheme for batch authentication of EPC-
Gen2 RFID. The main contribution of our paper is that our scheme can apply
to EPCGen2 tags without modifying steps or components of the standard.

– Besides the efficiency for RFID authentication, our scheme uses very little
computational and memory resource which includes one PRNG and one CRC
along with a few conditional xors computation. The seed to be input to the
PRNG can be considered as if it is a key for the blocks cipher; in particular,
we forgo the need for key-separation for each tag.

– Different from related works of RFID authentication, we provide security
property between reader and back-end server. Our scheme can prevent unau-
thorized reader to attack against RFID system.

– We provide security and privacy proof and analysis to show the limits of the
adversary who tries to compromise our scheme.

The rest of the paper is organized as follows: Section 2 provides some pre-
liminaries to understand the technical details in our proposal. We propose our
provable secure batch authentication scheme in Section 3. We also provide the
security and privacy analysis and proof of our proposed scheme in Section 4. We
draw conclusions in Section 5.

2 Preliminaries

In this section, we give brief introduction of RFID system and EPCGen2 tags,
providing syntax definitions and security primitives such as pseudo-random num-
ber generator and cyclic redundancy check code.
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2.1 Brief Description RFID System and of EPCGen2 Tags

Our batch authentication relies on tag’s internal PRNG and cyclic redundancy
check.

– Passive Tag: RFID tags can be classified into two types, active or passive
depending on powering technique. While an active tag can generate power
by itself, a passive tag is not able to supply a power by itself. Therefore the
passive tag obtains power from the reading devices when it is within range
of some reading devices.

– Reader: A reader can read and re-write the data in a tag. A reader can
also obtain the tags contents through queries. After the reader queries to
a tag and receives some information from the tag, the reader forwards the
information to a back-end server.

– Back-end server : A back-end server is a computer which manages and stores
various information for authenticating of each tag, so as to determine a tags
identity from the information of a tag sent by an authenticated reader. But
if the reader can have enough memories and computational ability, the back-
end server is not a must in a RFID system.

EPCGen2 was adopted as 18000-6 international Standard by ISO/IEC. As a
result, RFID system will be able to be recognized without confusion. EPCGen2
tag has properties as follows [4]: Tag is passive and communication range is 2-
10m and it has on-chip Pseudo-Random Number Generator (PRNG) and Cyclic
Redundancy Code (CRC). It also has two 32-bit PIN for kill command for disable
the tag and access command to write into the tag or to read something in
password fields.

2.2 Security and Privacy Requirement for RFID Batch
Authentication

Security for Tag authentication: Theoretically, RFID authentication is insecure if
there exists a polynomial-time adversary such that one tag session on a legitimate
tag output OK but had no matching conversation with any reader session, with
non-negligible probability. That means the adversary can forge the tags and
pass the authentication processing. RFID tags may contain sensitive information
about the carrier in which the information should not be revealed to anyone,
especially to an attacker. In other words, tags should first authenticate the reader
validation before sending private data. Meanwhile, readers should also be able
to authenticate tags to prevent counterfeit tags.

Tag Privacy: In a typical RFID system, when an RFID reader queries an RFID
tag, it responds by sending its identifier to the reader; the reader can then request
further details by sending this identifier to a server. If unauthorized readers can
also get a tag identifier, then they may be able to determine the additional
information related to the tag. For example, if the information associated with
a tag attached to a passport, ID-card or medical record could be obtained by
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any reader, then the damage would be very serious. To protect against such
information leakage, RFID systems need to be controlled so that only authorized
readers are able to access the information associated with a tag.

2.3 Mathematical Definitions

Binary Fields: All the communication executed between reader and tags can be
represented as an element of GF(2n) as a polynomial over the field GF (2) of
degree less than n. The set {0, 1}n of bit strings can be considered as the finite
field GF(2n) consisting of 2n elements. A string an−1an−2 · · · a1a0 ∈ {0, 1}n cor-
responds to the polynomial an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0 ∈ GF (2n).

The addition in the field is just the addition of polynomials over GF(2) (that
is, bitwise XOR, denoted by ⊕. To define multiplication in the field, we fix
an irreducible polynomial f(x) of degree n over the field GF(2). Given two el-
ements a(x), b(x) ∈ GF (2n), their product is defined as a(x)b(x) mod f(x)-
polynomial multiplication over the field GF (2) reduced modulo f(x). We simply
write a(x)b(x) and a(x) · b(x) to mean the product in the field GF (2n). We use
the Arabic number to represent the polynomials. For example. “2” means x, “3”
means x+ 1, and “7” means x2 + x+ 1. When we write multiplications such as
2 · 3 and 72, we mean those in the field GF(2n).

Pseudo-randomNumberGenerator: Apseudo-randomnumber generator (PRNG)
can be defined as an function for generating a sequence of numbers that approxi-
mates the properties of random numbers. A deterministic function G : {0, 1}d →
{0, 1}m is a (t, ε) is a pseudo-random number generator (PRNG) if d < m, G(x)
andUm (Um is am-bit truly random string) are (t, ε) indistinguishable. In this pa-
per, we model the PRNG as a deterministic function G() : K×{0,1}m → {0,1}g.

CRC code Cyclic Redundancy Check code (CRC) is a kind of calibration method
that checks the correctness of data communication. In original usage of CRC,
the sender sents m-bit information data represented as a polynomial T (x), and
the receiver receives the data as D(x). For a given n, CRC code use a polynomial
g(x) as a generator, the sender moves T (x) left to k bits, and then makes XOR
operation with g(x). The remainder is the check number r(x). A CRC is called
an n-bit CRC when its check value is n-bits. Such a polynomial has highest
degree n, and hence n + 1 terms (the polynomial has a length of n + 1). The
remainder has length n. The CRC has a name of the form CRC − n.

3 Our Batch Authentication Scheme

There are some essential requirements of a good batch authentication scheme for
large-scale RFID systems. First, the authentication scheme should be efficient.
Second, the authentication result should be informative to support various ap-
plication demands. Knowing that whether there exist counterfeits in a batch of
tags or not is far from adequate, since the administrator of RFID systems may
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still resort to per-tag authentication to count how many counterfeits in a num-
ber of tags. Our protocol is designed for EPCGen2 RFID tags; therefore, the
requirement for implementing our protocol will not overload the capabilities of
the tags.

Our Proposal is inspired by the parallelized message authentication code [3]
and online cipher design [1] in which a cipher taking input of arbitrary length and
it can output ciphertext blocks as it is receiving the plaintext blocks. Specifically,
the i-th ciphertext block should only depend on the key and the first i plaintext
blocks. The system we built consists of EPCGen2 compliant RFID tags and
an EPCGen2 compliant RFID reader. Our protocol are limited to computing
an XOR sum of the RIFD internal processed data and using two extra CRC
computation calls. The sketch of our batch authentication scheme can be referred
to Fig 1.

Fig. 1. Parallelized computation for the responds of tags

3.1 Initialization

The back-end server storages tags’ identification information for the batch au-
thentication, such as EPC for each tag. So that it can identify a tag from the
information sent to an authenticated reader for tag. Reader generates differ-
ent random challenge message and sends tags during each different session. We
provide a table of notions which are used in our scheme as follows:

We consider an RFID system comprising of a single legitimate reader and a
set of n tags T = {t1, · · · , tn}, with some polynomials as security parameters.
We assume that reader and each tag share a secret string for the authentication,
here we denote it as ki. Our scheme is based the parallelizable computation for
each tag and allows reader to gather all the responds from tags for the batch
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Table 1. Notions used in our scheme

Notions Descriptions

ti i-th tag in a set of tags T

ki the secret key shared between reader and i-th tag

⊕ exclusive-or operation

|| concatenation of two inputs

Pr[A|B] the probability of event A given B

G() 16-bit pseudo-random number generator

CRC() cyclic redundancy check computation

authentication. We use the framework of XE and XEX constructions in [1,13],
which makes our constructions and secure proofs simple and easy to be analyzed.
For the secure communication and between reader and back-end server, we apply
a block cipher E() with shared key between server and reader as kr.

Typically, each tag is a passive transponder identified by a unique ID and
has only limited memory which can be used to store only several keys and/or
state information. The reader is composed of one or more transceivers and a
backend processing subsystem. In this paper, we assume that the reader is secure,
which means that an adversary cannot obtain any information about the RFID
system from the legitimate reader except the information obtained from RFID
communications and tags (in other words, the legitimate reader is a “black-boxh
to an adversary).

3.2 Tag’s Internal Processing

The internal processing of tag involves two function calls, one is for pseudo-
random number generator and the other is for CRC computation.

For a particular construction PRNG G() which consists of three major algo-
rithms (setup, next, refresh)for the pseudo-random number generation and in-
ternal state update, we let Pr[A(m,H)I(G) = 1] denote the probability that
adversary A outputs the bit 1 after interacting as above with the system. Here
I(G) stands for the ideal random process and note that we only use G in this
game to answer queries that are made while the compromised flag is set to true.
The details of the our PRNG are given as follows.

– setup: it is a probabilistic algorithm that outputs some parameters related
to the secret key ki of tag Ti for the generator.

– refresh: it is a deterministic algorithm that, given ki of tag Ti, a state ST ∈
{0, 1}n and an input I ∈ {0, 1}p, outputs a new state ST ′ = refresh(ST, I) =
refresh(ki, ST, I) ∈ {0, 1}n

– next: it is a deterministic algorithm that, given ki and a state ST ∈ {0, 1}n,
outputs a pair (ST ′;R) == (ki, ST ) where ST ′ ∈ {0, 1}n is the new state
and a pseudo-random number r ∈ {0, 1}g is the output.
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According to EPCGen2 standard [4], the CRC-16 algorithm maps arbitrary
length inputs onto 16-bit outputs as follows: an n-bit input p is first replaced by
a binary polynomial p(x) of degree n − 1, and then reduced modulo a specific
polynomial g(x) of degree 16 to a polynomial remainder r(x) : p(x) = q(x)g(x)+
r(x). The remainder has degree less than 16 and corresponds to a 16-bit number.
For EPCGen2, the polynomial g(x) is the irreducible polynomial: x16+x12+x5+1
(over the finite field GF(2) of two elements). CRC-16 will detect burst errors of
16-bits or less, any odd number of errors less than 16, and error patterns of length
2. For the CRC() function, we use it to generate the dummy mask for individual
tag. CRC() is an efficient checksum algorithm and the input to CRC() is divided
into groups, each has 16 bits. Each 16-bit group will be encoded one by one. The
output of each is a 16-bit encoded data. Each output will be combined together
to generate the mask.

We assume a fixed, polynomial-size tag set T = {t1, · · · , tn} and a reader RD
as the elements for an RFID system: S = {RD, T }. As to model the communica-
tion between tags and reader, we assume that the update process of new internal
state and secret-key, by an uncorrupted tag in a session run, automatically over-
writes (i.e., erases) its old internal state and secret-key to the PRNG. Each
uncorrupted tag and reader use fresh and independent random coins (generated
on the fly) in each session, in case it is an randomized algorithm enhanced by
their internal PRNG. We assume that the random coins used in each session are
erased once the session is completed (whether successfully finished or aborted).

3.3 Batch Authentication

Formally, we consider an RFID system comprising of a single legitimate reader
and a set of n tags T = {t1, · · · , tn}, where l is a polynomial in a security param-
eter p. The reader and the tags can be modeled as probabilistic polynomial time
interactive Turing machines. The RFID system (RD, T) is setup by a procedure,
denoted Setup(p, l). This setup procedure generates the system parameter such
internal keys for PRNG and the key for encryption. It may also setup an initial
backend database DB for R to store necessary information for identifying and
authenticating tags. We use para = (w, k1, ..., kn) to denote the RFID system
parameters. We assume that in the RFID system, the reader is secure; in other
words, the legitimate reader is a “black-boxh to an adversary.

The reader collects all the responding massage from all tags and make ag-
gregative computation to generate a authenticated massage and send it back to
back-end server for further processing. The supply chain service providers and
product manufacturers write a fix batch identification value w into each tag and
using it to compute CRC(w). In every tag, the value of w is different from each
other. We use CRC(w) to generate different mask value to avoid the collision in
the batch authentication. The sketch our scheme is illustrated in Fig. 2. At each
new single session between reader and tags, let S = G(016) and the PRNG and
CRC will be resumed to initial state.
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Batch Authentication Protocol for RFID EPCGen2 Tags

– Reader → tags : The reader sends a challenge message c to all tag to
initiate a session.

– Tags ti → reader : Let V [0] ← CRC(w)⊕ S), and Δ0 ← 3 · CRC(w)
Δ1 ← 2 · CRC(w).
After receiving the challenge message, for each tag ti ∈ T parse ki with c
runs its internal PRNG ai = Gi(c⊕ ki).
V [i] ← G(ai ⊕Δ0)⊕ V [i− 1]
R[i] ← G(V [i])⊕Δ1

Δ0 ← 2Δ0,Δ1 ← 2Δ1

The tag ti sends R[i] to the reader.
– Reader → back-end server: The reader gathers all the message from the

tags and computes M = Ek(Ek(Σ ⊕ 2d−132S)⊕R)⊕ 2d−17S and sends
M to the back-end server.
Here, R = R[1]⊕R[2]⊕ · · · ⊕R[n] and Σ

def
= k1 ⊕ k2 ⊕ · · · ⊕ kn.

– Server processing: The back-end server receives M from the reader who
gathers all the response from tags. The server perform verification by
checking if R⊕ Ekr(Σ ⊕ 2d−132S) = E−1

kr (M ⊕ 2d−17S), where the tag is
rejected if the equality is not true. After that, it can recover the further
information of the authenticated tags.

Fig. 2. Batch Authentication Scheme

The masking method in [3,13] enables us to produce many different values
of the mask Δ from just one secret value Δ = CRC(w). Namely, the masks
are produced as Δ = 2α3β7γ · R for varying indices of α, β and γ. To do this,
we need to choose our irreducible polynomial f(x) carefully. First, f(x) needs
to be primitive for the implementation of CRC() inside of tags, and is able to
generate the whole multiplicative group. Second, we make sure that log 2 · 3
and log 2 · 7 are both lager enough. Third, we check if log 2 · 3 and log 2 · 7 are
defer enough (modulo 2n−1). We impose these conditions to ensure that values
2α3β7γ do not collide or become equal to 1. Combining CRC-16 with pseudo-
random number generator can prevent the batch collision and tampering attacks
effectively, it avoids occupying the resource of back-end server, and reduce the
time complexity.

3.4 Post-Authentication Processing

By reconsidering the solution of batch authentication in another perspective, we
find it is not always necessary to ensure the genuineness of every single product
in a batch. It is acceptable if we guarantee the percentage of deactivated is
sufficiently small.

Typically, the reader and the tag would exchange data after completing the
authentication process. These data are sometimes considered private; for exam-
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ple, the tag used in a hospital would contain the records of its carrier. The threat
of eavesdropping attacks makes the tag carriers feel insecure about transmitting
sensitive data. To address this problem, we construct a mechanism to establish a
session key and use it to encrypt the sensitive data. We suggest that reader and
tags use the key stream generated by PRNG to encrypt the messages. Without
the secret key the adversary cannot decrypt the message break the encrypted
messages.

4 Security and Privacy Proofs of Tags Authentication

In this section, we provide the security and privacy proof for our batch authen-
tication scheme. For the security analysis, we show the security bound for an
adversary to forge the batch security. For the privacy analysis, we show that the
adversary has limited advantage to distinguishable two communication session
between reader and tags. This implicates that the adversary cannot do mali-
cious tracing against the tags. Here, we model the adversary as a polynomial
probabilistic Turing machine which tries to break the security and privacy of
our batch authentication scheme.

The core security element is the PRNG which provides the minimum security
property as follows which is shown in the existing result in [2,10]:

1. Probability of PRNG: The probability that a 16 bits pseudo-random number
drawn from the PRNG has value r is bounded by: 0.8/216 < Pr(G(ki) = r) <
1.25/216.

2. Drawing identical sequences: For a tag population of up to 10,000 tags, the
probability that any two or more tags simultaneously draw the same sequence
of 16-bit pseudo-random number is < 0.1%, regardless of when the tags are
energized.

3. Next random number prediction: A random number which is generated by
a tag PRNG is not predictable with probability better than 0.025%, given
the outcomes of all prior draws.

There is an important point here is that the adversary cannot attack our
scheme using the similar forging attack in message authentication codes using
the arbitrary length of messages to get a collision. The number of the tags are
determined pre-authentication. We prove our security and privacy as follows.
The interaction between an adversary A and the protocol participants occurs
only via oracle, which model the adversary capabilities in a real attack. During
the execution, the adversary may create several instances of a participant. Let
Ui denote the instance i of a participant U ∈ {RD, T }

Adversary runs a Setup(ti, ki) is a setup procedure which generates key ki for
a tag Ti and sets the tagfs initial internal state st0. It also associates the tag Ti
with its unique ID as well as other necessary information such as tag key and/or
tag state information as a record in the database of reader.
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4.1 The Security of our Scheme

In our analysis, we modify the security definition of our scheme from Rogaway
et al. [3,15]. The security notions also can be found in [5]. For our batch au-
thentication, the security refers to unforgablity of the aggregated tags which can
pass the authentication. Let {0, 1}n denote the set of strings whose length is a
positive multiple of n bits. Here, we model the pseudo-random number generator
as G : K×{0, 1}∗ → {0, 1}g is a function such that it is a permutation on every
tag’s n bits output, we can replace our PRNG calls with random permutations.
Second, we show that the batch authentication behaves exactly the same as the
ideal functionality for the security, as long as certain successful attacks from
adversary do not occur. The successful attack here means collisions of tag state
values, and the proof amounts to evaluating the probabilities of these attacks.

Let A be an adversary trying to distinguish G() from the family all tweakable
permutations with the same tweak space. Say that A runs in time t and makes
exactly q queries. Without loss of generality assume that A is deterministic.
Here, we define key space for PRNG as K, the adversary can make random
sample from the key space K to attack the PRNG and forge tags response.

Definition 1. We define the security using the advantage of an adversary A.

AdvG(A) = Pr
[
k

R← K : AG(k) = 1
]
− Pr

[
π

R← Perm(n) : Aπ(·) = 1
]

(1)

The above is the probability that adversary A outputs 1 when given an oracle
for G(k, ·), minus the probability that A outputs 1 when given an oracle for π(),
where k is selected at random fromK and π is selected at random from Perm(n).

If the adversary knows no additional information, the success probability is
surely 1/2g. If the adversary acquires function for CRC() by compromising a
tag or a reader, it will have some advantages in constructing the codewords.

The adversary will try to generate the collision to get the same value of V [j]
coming from different secret value inside RFID tags k1, k2, ..., kn and k′1, k

′
2, ..., k

′
n.

At the beginning, the adversary chooses k′1, k
′
2, ..., k

′
n from the key space K, and

uses the PRNG oracle to generate the collision to pass the batch authentication.
We can see that the outputs may be the same for a common mask for CRC-
16. So an PRNG G(ki) yields a pseudo-random generator of i − th tags, where
the permutation is determined by the input (i.e. the secret key of tag ki). Let
Perm(n) be the set of all such permutations to be distinguished from PRNG
G(). We notice that unless the collision occurs, the adversary cannot distinguish
an output of G from an output of Perm(n).

We want to model adversary’s behavior to forge tags. Adversary show find
some collisions in order to forge the targets tags without knowing their inter-
nal secret keys. Tagcoll(n) measures the probability of getting a collision when
the adversary sends challenge message to n tags. The tag collision means a col-
lision among the values R[1], R[2], · · · , R[n], where R[0] = 0n and each ki is
the PRNG input associated to tag i. Informally, CollisionM(n) measures the
probability of finding collision at the finalized computation for readeracross two



114 J. Chen, A. Miyaji, and C. Su

different batches of tags, T and T ′, each having n tags. This can be a ”non-
trivial” collision. That is, consider the 2n points at which the PRNG is applied
in processing the finalized M and M ′.

The adversary also can choose n elements at random key k′i and w
′ and then

there is the point to get the same output as the legal tags (the PRNG is applied
at this point). There are n responses from original tags R[1], · · · , R[n], other
responses from other faked tags R′[1], · · · , R′[n], Adversary can get some pairs
of the collision of finalized tag could coincide for a “trivialh reason: namely, we
know that R[i] = R′[j] if k′i = k′j and M = M ′. We say that there is a nontrivial
collision between T and T ′ if some other R[i] and R[j] happened to coincide.
Note that M-collisions include collisions with 0n, while CollisionM(n)s do not.
Also, both collisions do not include collisions within a single tag (or collisions
with all zero input) because both of these possibilities are taken care of by way
of n-collisions.

We can further to apply the PMAC security proof for our scheme. We can
make use of the theorem for parallel MAC construction in [3] and claim that
for aggregated M from n tags, the adversary queries all n tags and then the
advantage AdvG(A) is less than n2/2g, here g is the output length of PRNG.
For EPCGen2 tags, the advantage is less than n2/216.

4.2 The Privacy of our Scheme

Adversary who try to beak the privacy of tags should execute as the following
three phrases. The attack intentionally desynchronizes the tag from the reader
by sending the tag some messages.

1. Learning: An adversary sends m number of queries Qi for 1 ≤ i ≤ m to a
batch@of targeting tags, and records the tagfs response R[i]for1 ≤ i ≤ m.
Since the adversary is impersonating the reader, thus each time it will not
pass the check by the tag, and so each time the tag would update its stored
secret as ki = G(ki), from which ti will be derived in the next session.

2. Challenge: Query m times to random tags in {t1, · · · tn} and obtain their
response R and M

3. Guess: Check if t = ti. If so, then the adversary knows this was the tag it
queried during the learning phase i.e. Tb = T . Else, it knows that Tb = T ′.

Intuitively, an adversary can trace location of tags if response of tag is always
the same or similar pattern for each session. We can see that dummy masks
generated by CRC is similar to the all XE an XEX construction can be modeled
using the techniques in. For each query from reader, tags’ response are different
even the challenge message c is the same. This property guarantees the privacy
of our scheme. It is easy to prove that for individual tag, the privacy is well
preserved.

More formally, we discuss the batch privacy which preserve the privacy for the
whole batch of tags. We use AdvA

G(t, q, n, l) we denote the maximum advantage
taken over all distinguishers that run in time t and make q queries, each of at
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most l out of totally n tags. Based on the security proof of [13], we can claim that
for two pseudo-random function f1 : {0, 1}∗ → {0, 1}g and f2 : {0, 1}∗ → {0, 1}g,
the distinguishing advantage is at most n2/2g.

For the batch of RFID tags, adversary cannot distinguish from two queries
if the collision does not occur. As same in the security analysis, adversary can
access a PRNG oracle and use it to distinguish the queries. After get some priori
knowledge by sending the query, the advantage of adversary can be bounded as

AdvA
G(t, q, n, l) ≤ 39(n+q)2

2g + AdvA
Perm()(t, 4(n + q)) + (l+2)(q−1)2

2g according to
the proof of [1].

5 Conclusion and Future Works

The EPCGen2 standardized tags focuses on reliability and efficiency while prov-
ing only a very basic security level, which is at risk of security and privacy breach.
To overcome such risks is particularly challenging because the only security tool
that is available in this standard is a 16-bit PRNG. In this paper, we proposed
a scheme for EPCGen2 tags batch authentication which are provably secure. In
this paper we have studied the recently proposed EPCGen2 related schemes and
made some arguments on how to achieve maximum security and privacy levels
supported by this standard. We proposed a batch authentication RFID protocol
that provides strong anonymity and that complies with the EPCGen2 standard.
Finally, we examine the successful probability for an adversary to forge a batch
of tags and distinguish every responses in different session between reader and
tags. In the future work, we want to extend our scheme to more sophisticated
and practical scenarios, such as reader corruption, tag cloning (or more feasibly,
protocols to prevent swapping attacks, tag group authentication, anonymizer-
enabled RFID systems, and tag ownership transfer.
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Abstract. This paper presents an efficient transformation method that
converts fully leakage resilient signature schemes which are weakly exis-
tentially unforgeable into ones which are strongly existentially unforge-
able. To achieve our goal, we give a definition of leakage resilient
chameleon hash function and present a construction based on the leak-
age resilient hard relation. Then we combine leakage resilient chameleon
hash function with the technique presented by Steinfeld, Pieprzyk, and
Wang to obtain a generic transformation that works well in the bounded
leakage model.
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1 Introduction

1.1 Background

Signature schemes are said to be weakly existentially unforgeable (wEUF) if it is
hard to forge signatures on messages not signed before. But for some applications,
a stronger security called strong existential unforgeability (sEUF) is required
which also prevents forgery of new signatures on messages signed before.

If a signature scheme is existentially unforgeable (EUF) while the information
of signing keys and randomness may be leaked and the amount of leaked bits
is bounded, then it is said to be fully leakage resilient (FLR) in the bounded
leakage model. If only the information of the signing key is leaked, then the
scheme is said to be leakage resilient (LR).

The bounded leakage model was suggested by Akavia, Goldwasser, and Vaikun-
tanathan [1]. In this model, the adversary is allowed to learn some bounded
leakage on the secret information during the lifetime of the system. There has
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already been a great deal of research proposed for cryptographic primitives in
the bounded leakage model (c.f., [17,14,3,2,16,8,10]). However, most of the pre-
viously presented FLR signature schemes in this model just satisfies the wEUF
property. The only one that satisfies the sEUF property was proposed by Wang
and Tanaka [22]. We hope there may be a technique that can transfer wEUF-FLR
signature schemes to sEUF-FLR ones in the bounded leakage model.

Boneh, Shen, and Waters [6] presented a transformation that converts wEUF
signature schemes into sEUF ones based on chameleon hash function. However,
this transformation applies to a class of signature schemes called partitioned
signature schemes. Later works [21,20,5] proposed transformations that can con-
vert any signature scheme into an sEUF one. Another work by Huang, Wong,
and Zhao [13] presented such a transformation that keeps key pairs unchanged
by making use of strong one-time signature schemes. Note that all the transfor-
mations mentioned above need to change the key pairs or generate additional
randomness in the signing process. If we consider the leakage on signing keys
or randomness, the security of the signature schemes will not hold after being
converted by these methods.

1.2 Our Results

First, in this paper, we propose a new definition of LR chameleon hash func-
tion. For the standard chameleon hash functions [15,19], collisions can be found
efficiently by making use of the secret key, and it is hard to find any collisions
without knowing the secret key. In the case of LR chameleon hash function, it
is hard to find collisions even when a part of the information of the secret key
is leaked. To obtain the construction of LR chameleon hash function, we exploit
the representation assumption [9,4] and the Okamoto-style second preimage re-
sistant (SPR) relation [18] which satisfies the LR hard relation defined by Dodis
et al. [10]. Our construction of LR chameleon hash function inherits the prop-
erties of this instantiation of LR hard relation, and can tolerate any leakage of
length � = (1− o(1))L bits where L is the length of the secret key.

Then, we present a generic transformation from wEUF-FLR signature schemes
into sEUF-FLR ones based on theGeneralizedBoneh-Shen-Waters (GBSW) trans-
formation by Steinfeld, Pieprzyk, and Wang [20]. By substituting the standard
chameleon hash functions in the GBSW transformation for the LR chameleon
hash functions, we obtain a generic transformation from wEUF-FLR signature
schemes to sEUF-FLR ones and prove the security of the resulting schemes. If
the wEUF-FLR signature scheme with signing key of length L can tolerate leak-
age of �w bits, then the converted signature scheme is resilient to any leakage of
min{�, �w} bits. Assume that �w = (1− o(1))L (e.g., the signature scheme in [7]),
then we can obtain a signature scheme with signing key of length L′ = 2L which
can tolerate leakage of (12 − o(1))L′ bits.

Furthermore, by applying our technique to the wEUF-FLR signature scheme
in [12], we can obtain an �s-sEUF-FLR signature scheme with signing key of
length L′′ where �s = (1− o(1))L′′.
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As far as we know, this is the first generic transformation to sEUF(-FLR)
signature schemes in the bounded leakage model.

2 Preliminaries

Now we recall the definitions of LR hard relation and SPR relation [10].
As the same as in [10], we define a leakage oracle as Ok,�

x (·), where x is a
secret value, � is the leakage parameter, and k is the security parameter. The
adversary can adaptively access to learn leakage on the secret value. Every time
the adversary makes an efficient computable leakage query fi : {0, 1}∗ → {0, 1}�i
to the leakage oracle, the oracle answers with fi(x). It is required that the total
number of bits leaked is not more than �.

Definition 1. (LR Hard Relation [10]). A relation R with a probabilistic poly-
nomial time (PPT) sampling algorithm KeyGen(·) is an �-LR hard relation if
the following three properties hold.

– For any (y, x) ← KeyGen(1k), we have (y, x) ∈ R.
– There is a polynomial-time algorithm that decides if (y, x) ∈ R.

– For all PPT adversaries AOk,�
x (·) with access to the leakage oracle Ok,�

x (·),
we have that

Pr[R(y, x∗) = 1 | (y, x) ← KeyGen(1k);x∗ ← AOk,�
x (·)(y)] ≤ negl(k).

Before recalling the notion of SPR relation, we introduce the notion of average-
conditional min-entropy [11].

Definition 2. (Average-Conditional Min-Entropy [11]). The average-
conditional min-entropy of a random variable X conditioned on Y , denoted as
H̃∞(X | Y ) is

H̃∞(X | Y ) = −log(Ey←Y [maxx Pr[X = x | Y = y]]).

Definition 3. (Second-Preimage Resistant Relation [10]). A relation R with a
PPT sampling algorithm KeyGen(·) is second-preimage resistant if the following
three properties hold.

– For any (y, x) ← KeyGen(1k), we have (y, x) ∈ R.
– There is a polynomial-time algorithm that decides if (y, x) ∈ R.
– For all PPT adversaries A, we have that

Pr[R(y, x∗) = 1 ∧ x∗ �= x | (y, x) ← KeyGen(1k);x∗ ← A(y, x)] ≤ negl(k).

The average-case pre-image entropy of the SPR relation is defined to be
Havg(R) = H̃∞(X | Y ), where the random variables (X,Y ) are distributed
according to KeyGen(1k). In [10], the following theorem was shown.

Theorem 1. If R is SPR relation, then it is also an �-LR hard relation for
� = Havg(R)− ω(log k), where k is the security parameter.
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We now recall the definition of FLR signature schemes in the bounded leakage
model from [12,7,14].

A signature scheme consists of three PPT algorithms. KG is a randomized
algorithm that takes as input 1k and outputs a public/secret key pair (pk, sk).
Sign is a randomized algorithm that takes as input a signing key sk and a
message m and returns a signature σ. Verify is a deterministic algorithm that
takes as input a verification key pk, a message m, and a signature σ and returns
1 (accept) or 0 (reject). In addition to the correctness, we require the following
property.

Definition 4. (wEUF-FLR Signature schemes [12,7,14]). A signature scheme
(KG, Sign,Verify) is said to be wEUF and �-FLR in the bounded leakage model
if for any PPT adversary A, we have that Pr[A wins] ≤ negl(k) in the following
game:

1. Compute (pk, sk) ← KG(1k, �), set state = sk.
2. Run the adversary A on input tuple (1k, pk, �). The adversary may make

adaptive queries to the signing oracle and the leakage oracle, defined as fol-
lows:
– Signing oracle: On receiving a query mi, the signing oracle samples ri ←

{0, 1}∗, and computes σi ← Signsk(mi; ri). It updates state = state||ri
and outputs σi.

– Leakage oracle: On receiving a polynomial-time computable function fj :
{0, 1}∗ → {0, 1}�j , the leakage oracle outputs fj(state).

3. A outputs (m∗, σ∗) and wins if : (a) Verifypk(m
∗, σ∗) = 1, (b) m∗ was not

queried to the signing oracle, and (c)
∑

j �j ≤ �.

The definition of sEUF-FLR signature schemes is the same as the above one,
except the winning condition (b) being set as follows.

– the pair (m∗, σ∗) is new, that is, either m∗ was not queried to the signing
oracle, or it was and σ∗ is not the one(s) generated as a signature of m∗ by
the signing oracle.

Without loss of generality, we can assume that the adversary makes a leakage
query every time after making a signing query.

3 LR Chameleon Hash Functions

3.1 Our Definition

In this section we define LR chameleon hash function. This definition is an
extension of the notion of chameleon hash function [15,19].

LR chameleon hash function consists of three PPT algorithms (KGF ,TCF , F ).
KGF is a key generation algorithm that takes as input (1k, �), and outputs

(pkF , skF ), where pkF is the public key and skF is the secret key. F is a hash
function evaluation algorithm that takes as input pkF , a message m, and a
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randomizer r, and outputs a hash value h = FpkF (m; r). TC is a trapdoor collision
finder algorithm that takes as input skF , a message/randomizer pair (m, r)
and a second message m′, and outputs r′ = TCF (skF , (m, r),m

′) such that
FpkF (m; r) = FpkF (m

′; r′).
�-LR chameleon hash function must satisfy three properties, which are re-

versibility, random trapdoor collision, and LR collision-resistance.
The reversibility property is satisfied if r′ = TCF (skF , (m, r),m

′) is equivalent
to r = TCF (skF , (m

′, r′),m).
The random trapdoor collision property is satisfied if for a secret key skF , an

arbitrary message pair (m,m′), and a randomizer r, r′ = TCF (skF , (m, r),m
′)

has uniform probability distribution on the randomness space.
The LR collision-resistance property is satisfied if for any PPT adversary A,

we have

Pr[(pkF , skF ) ← KGF (1
k), ((m, r), (m′, r′)) ← AOk,�

skF
(·)
(pkF ) :

(m, r) �= (m′, r′) ∧ FpkF (m, r) = FpkF (m
′, r′)] ≤ negl(k),

where Ok,�
skF

is the leakage oracle as described in Section 2, to which A can
adaptively make queries to and learn leakage on skF . The total bits leaked
cannot be more than �.

3.2 SPR Construction

Before presenting our construction of LR chameleon hash function, we recall the
n-representation assumption [9,4] and the construction of the Okamoto-style
SPR relation [18], which was used by [3] and mentioned by many previous works
on leakage resiliency (e.g., [10,7]).

n-Representation Assumption. For any PPT adversary A, given h1, h2, ..., hn
which are random elements in G (cyclic group of order q), the probability that
A finds x = (x1, ..., xn) ∈ Zn

q and x∗ = (x∗1, ..., x
∗
n) ∈ Zn

q such that x �= x∗ and∏n
i=1 h

xi

i =
∏n

i=1 h
x∗
i

i is negligible.

Lemma 1 ([9,4]). The n-representation assumption holds under the hardness
of the discrete logarithm problem in G.

SPR Construction. Let G be a cyclic group of prime order q, n ≥ 2 and
h1, h2, ..., hn random elements in G, the construction of Okamoto-style SPR re-
lation is given in Figure 1.

Lemma 2 ([18,3,10,7]). Under the discrete logarithm assumption, the relation
R described in Figure 1 is SPR with average-case preimage entropy Havg(R) =
(n− 1)log(q).

Since R is SPR relation, we have the following lemma according to Theorem 1.

Lemma 3 ([10]). The SPR relation R described in Figure 1 is an �-LR hard
relation for � = (n− 1)log(q)− ω(log k), where k is the security parameter.
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– KeyGen(1k) : Output x = (x1, ..., xn) and y where x1, ..., xn←Zq, y =∏n
i=1 h

xi
i ∈ G.

– R(y, x) : Output 1 if y =
∏n

i=1 h
xi
i . Otherwise output 0.

Fig. 1. SPR Relation

3.3 Our Scheme

We present our construction of LR chameleon hash function in Figure 2.

– Key generation algorithm KGF (1
k) outputs pkF = (y,h = (h1, ..., hn)) and

skF = x = (x1, ..., xn) where G is a cyclic group of prime order q, n ≥ 2,
h1, ..., hn←G, x1, ..., xn←Zq and y =

∏n
i=1 h

xi
i ∈ G.

– Hash function evaluation algorithm FpkF (m,r) = (y
∏n

i=1 h
ri
i )J(m) ∈ G where

r = (r1, ..., rn) ← Zn
q and J denotes a strongly collision-resistant hash function

from {0, 1}∗ to Zq/{0}.
– Trapdoor collision finder algorithm TCF (skF , (m, r),m′) outputs r′ where r′ =

(r′1, ..., r
′
n) and r′i ≡ J(m)(xi + ri)/J(m

′)− xi (mod q) for i = 1, ..., n.

Fig. 2. LR Chameleon Hash Function

Claim. The scheme described in Figure 2 is �-LR chameleon hash function for
� = (n− 1) log(q)− ω(log k) if the discrete logarithm assumption holds.

Proof. First we argue that the collision found by TCF is correct (i.e, FpkF (m, r) =
FpkF (m

′, r′) if r′ = TCF (skF , (m, r),m
′)). According to the trapdoor colli-

sion finder algorithm described above, we have J(m′)(r′i + xi) ≡ J(m)(ri +

xi) (mod q) for i = 1, ..., n, which means that we have
∏n

i=1 h
J(m′)(xi+r′i)
i =∏n

i=1 h
J(m)(xi+ri)
i , equivalently, FpkF (m

′, r′) = FpkF (m, r).
Since r′i ≡ J(m)(xi+ri)/J(m

′)−xi (mod q) is equivalent to ri ≡ J(m′)(xi+
r′i)/J(m) − xi (mod q), if r′ = TCF (skF , (m, r),m

′) holds, r = TCF (skF ,
(m′, r′),m) holds as well, which means that the reversibility property is satisfied.
Furthermore, since r has uniform probability distribution on Zn

q , it is not hard
to see that r′ has uniform probability distribution on Zn

q . So our scheme satisfies
the random trapdoor collision property.

What we are left to do is to prove that our scheme satisfies the LR strong
collision-resistance property.

It is clear that the public key and private key of our scheme satisfies the
�-LR hard relation R stated in Section 3.2. We argue that given access to the
leakage oracle Lk,�

skF
(·) and the public key, if there exists a PPT adversary B
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that can find two pairs (m, r) and (m′, r′) such that (m, r) �= (m′, r′) and
FpkF (m, r) = FpkF (m

′, r′), then there exists a PPT adversary denoted by A that
can either break the �-leakage resiliency of R or n-representation assumption.

Consider that given access to Lk,�
skF

(·) and public key pkF , B can find (m, r)
and (m′, r′) where m �= m′ and FpkF (m, r) = FpkF (m

′, r′) with non-negligible
probability ε. We construct A that breaks the �-leakage resiliency of R.

Given h1, ..., hn, y (described in Section 3.2), A gives (h1, ..., hn, y) to B as a
public key. Every time getting the query fi(·) from B, A simulates the leakage
oracle of B, i.e, it sends the query to its leakage oracle Lk,�

x (·) and gives the answer
back to B. Since the number of leakage bits obtained by B should be less than �,
all of the queries from B can be answered. After getting the output of B denoted
by (m, r) and (m′, r′), A computes x∗i ≡ (J(m)ri − J(m′)r′i)/(J(m

′) − J(m))
(mod q) for i = 1, ..., n (As m′ �= m and J(·) is a strongly collision-resistant hash
function, we know the probability that (J(m′)−J(m)) mod q = 0 is negligible).
A outputs x∗ where x∗ = (x∗1, ..., x

∗
n).

If B has found the collision successfully, we have

n∏
i=1

h
J(m)xi+J(m)ri
i ≡

n∏
i=1

h
J(m′)xi+J(m′)r′i
i .

Let g be a generator of G and hi = gFi ∈ G (Fi ∈ Zq) for i = 1, ..., n, we have

g
∑n

i=1 FiJ(m)(xi+ri) = g
∑n

i=1 FiJ(m
′)(xi+r′i).

Furthermore, we have

g
∑n

i=1 FiJ(m)(x∗
i+ri) = g

∑n
i=1 FiJ(m

′)(x∗
i+r′i).

As a consequence, we have

n∑
i=1

Fixi ≡
n∑

i=1

Fix
∗
i ≡

n∑
i=1

Fi(J(m
′)r′i − J(m)ri)/(J(m)− J(m′)) (mod q),

which means that
∏n

i=1 h
x∗
i

i =
∏n

i=1 h
xi

i = y. So if B can find a collision suc-
cessfully with probability ε in polynomial time t, A can break the leakage hard
relation with the same probability in the same running time.

Now we consider another situation when messages are the same, i.e., B can
find (m, r) and (m, r′) where r �= r′ and FpkF (m, r) = FpkF (m, r

′) with non-
negligible probability ε. We can construct an adversary A′ that breaks the n-
representation assumption.

Given h1, ..., hn, A′ samples (x, y) where y =
∏n

i=1 h
xi

i and give y to B.
Since A′ owns x as the secret key, A′ can answer all the leakage queries from B
correctly. With probability ε, B outputs two pairs (m, r) and (m, r′) such that

r �= r′ and (y
∏n

i=1 h
ri
i )J(m) = (y

∏n
i=1 h

r′i
i )J(m). Since J(m) mod q �= 0, we have∏n

i=1 h
ri
i =

∏n
i=1 h

r′i
i . A′ outputs (r, r′) such that breaks the n-representation

assumption successfully with non-negligible probability ε, completing the proof.

Since the length of the secret key is L = n log q, we have that � = (1− o(1))L.
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4 Generic Transformationation

Let Σ = (KG, Sign,Verify) (with randomness space ΩΣ) be �w-FLR signature
that satisfies the wEUF property. F = (KGF , F,TCF ) (with randomness space
RF ) denotes the �-LR chameleon hash function described in Section 3.

We make use of the GBSW transformation [20] to convert Σ into another
signature scheme Σ′. The resulting signature scheme is shown in Figure 3. What
we do here is just substituting the standard chameleon hash functions used
in [20] for our �-LR chameleon hash functions. We will prove that the resulting
signature scheme satisfies the �s-sEUF-FLR property. Some parts of the proof
are similar to [20].

– KG′(1k):
1. Run (pk, sk) ← KG(1k).
2. Run (pkF , skF ) ← KGF (1

k).
3. Run (pkH , skH) ← KGF (1

k).
4. Output verification key pks = (pk, pkF , pkH , m′, σ′) and signing key sks =

(sk, skF ), where m′ and σ′ are arbitrary fixed strings.
– Sign′sks

(m):
1. Parse sks = (sk, skF ).
2. Randomly choose ω←ΩΣ , s←RF , and r′←RF .
3. Compute h = FpkF (m

′||σ′; r′).
4. Compute m̄ = FpkH (h; s).
5. Compute σ = Signsk(m̄;ω).
6. Compute r = TCF (skF , (m

′||σ′, r′),m||σ).
7. Output σ′ = (σ, r, s).

– Verify′(pks,m, σ′):
1. Parse pks = (pk, pkF , pkH , m′, σ′), and σ′ = (σ, r, s).
2. Compute h = FpkF (m||σ; r).
3. Compute m̄ = FpkH (h; s).
4. Output 1 if Verify(pk, m̄, σ) = 1 and output 0 otherwise.

Fig. 3. GBSW Transformation in the Bounded Leakage Model

Claim. The scheme described in Figure 3 is �s-sEUF-FLR signature for �s =
min{�, �w}.

Proof. For i = 1, ..., q, let mi be the ith signing query, σ′
i = (σi, ri, si) be the

answer to the ith signing query, hi = FpkH (mi||σi; ri), and m̄i = FpkF (hi; si). We
denote fi as the ith leakage query ofA. At some point,A outputs (m∗, (σ∗, r∗, s∗))
as the forgery. In the same way, h∗ = FpkH (m∗||σ∗; r∗) and m̄∗ = FpkF (h

∗; s∗).
If A wins the sEUF-FLR experiment with non-negligible probability ε, then

A outputs a forgery, which is one of the following three types with probability
ε/3 in the sEUF-FLR experiment.
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– type I forgery: m̄∗ /∈ {m̄1, ..., m̄q},
– type II forgery: there exists i∗ ∈ {1, ..., q} such that m̄∗ = m̄i∗ , but

(h∗, s∗) �= (hi∗ , si∗),
– type III forgery: there exists i∗ ∈ {1, ..., q} such that m̄∗ = m̄i∗ and

(h∗, s∗) = (hi∗ , si∗), but (m
∗, σ∗, r∗) �= (mi∗ , σi∗ , ri∗).

We now show how to construct PPT adversary AI against the �w-wEUF-FLR
property of Σ, and adversary AII and AIII against the �-LR collision-resistance
property of F , by making use of A. Each of the adversaries AI , AII , and AIII

succeeds if A outputs a type I, type II, and type III forgery, respectively.

Adversary AI . The challenger runs (pk, sk) ← KG(1k), sets state = sk, and
gives pk to AI .

Setup. AI runs (pkF , skF ) ← KGF (1
k), (pkH , skH) ← KGF , and sends pks =

(pk, pkF , pkH ,m
′, σ′) to A. m′ and σ′ are some arbitrary fixed strings.

Signing Queries. When A sends the ith signing query message mi to AI , AI

responds as follows:

1. Randomly choose si ← RF , r
′
i ← RF .

2. Compute hi = FpkF (m
′||σ′; r′i).

3. Compute m̄i = FpkH (hi; si).
4. Send m̄i to the signing oracle and obtain the signature σi = Signsk(m̄i;ωi),

where ωi ← ΩΣ . The signing oracle updates state = state||ωi.
5. Compute ri = TCF (skF , (m

′||σ′, r′i), (mi||σi)).
6. Store (m′, σ′

i = (σi, ri, si)) and return σ′
i to A.

Leakage Queries. When A makes its ith leakage query fi(·) to AI , AI sends
fi(·||skF ||(r′1, ..., r′i)) to the leakage oracle and obtains the answer fi(state||skF ||
(r′1, ..., r

′
i)) (although the order of state, skF , r

′
1, ..., r

′
i is different from the defi-

nition, but it does not affect the correctness of our proof). Then AI returns the
answer back to A.

Output. At some point, A outputs (m∗, (σ∗, r∗, s∗)). Then AI computes h∗ =
FpkH (m∗||σ∗; r∗) and m̄∗ = FpkF (h

∗; s∗), and outputs (m̄∗, σ∗).
Since the number of leaked bits obtained by A in each round is at most �s

and the leakage parameter of AI ’s leakage oracle is �w (which is larger than �s),
AI perfectly simulates the leakage oracle of A. What is more, since AI simply
follows the real signing procedure, it also perfectly simulates the real signing
oracle Sign of A.

As a result, if A outputs a type I forgery successfully, (m̄∗, σ∗) is valid and
m̄∗ /∈ {m̄1, ..., m̄q}, which means AI breaks the �w-wEUF-FLR of Σ successfully.

Adversary AII . The challenger runs (pkH , skH) ← KGF (1
k) and sends pkH to

AII .
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Setup. AI runs (pk, sk) ← KG(1k), (pkF , skF ) ← KGF (1
k), sets state = sk, and

sends pks = (pk, pkF , pkH) to A. m′ and σ′ are some arbitrary fixed strings.

Signing Queries. When A sends the ith signing query message mi to AII , AII

chooses ωi←ΩΣ , si←RF , and r
′
i←RF . Then it stores (mi, σi, ri, si) and returns

Σ′ = Signsks
(mi;ωi, si, r

′
i) back toA where sks = (sk, skF ). AII updates state =

state||ωi.

Leakage Queries. When A sends the ith leakage query fi(·) to AII , AII returns
fi(state||skF ||(r′1, ..., r′i))) to A.

Output. At some point, A outputs (m∗, (σ∗, r∗, s∗)). Then AII computes h∗ =
FpkH (m∗||σ∗; r∗) and m̄∗ = FpkF (h

∗; s∗). AII finds entry i∗ such that i∗ ∈
{1, ..., q}, m̄∗ = m̄i∗ , and (h∗, s∗) �= (hi∗ , si∗), and outputs (h∗, s∗) and (hi∗ , si∗).
If such an entry does not exist, AII aborts.

Since AII owns the signing key sks and generates the randomness itself, it
perfectly simulates the real signing oracle and leakage oracle of A. If A out-
puts a type II forgery, then AII breaks the collision-resistance property of F
successfully.

Adversary AIII . The challenger runs (pkF , skF ) ← KGF (1
k), and sends pkF to

AIII .

Setup. AIII runs (pk, sk) ← KG(1k), (pkH , skH) ← KGF (1
k), sets state = sk,

and sends pks = (pk, pkF , pkH ,m
′, σ′) to A. m′ and σ′ are some arbitrary fixed

strings.

Signing Queries. When A sends the ith signing query message mi to AIII , AIII

responds as follows:

1. Randomly choose ωi ← ΩΣ , s
′
i ← RF , and ri ← RF .

2. Compute m̄i = FpkH (h′i; s
′
i), where h

′
i is some arbitrary string.

3. Compute σi = Signsk(m̄i;ωi), and update state = state||ωi.
4. Compute hi = FpkF (mi||σi; ri).
5. Compute si = TCF (skH , (h

′
i, s

′
i), hi).

6. Store (m′, σ′
i = (σi, ri, si)) and return σ′

i to A.

Leakage Queries. When adversary A makes its ith leakage query which is fi(·),
AI sends f ′

i(state||·) to the leakage oracle, where

f ′
i(state||·) = fi(state|| · ||{TCF (·, (mj ||σj , rj),m′||σ′)}j=1,...,i).

So we have that

f ′
i(state||skF ) = fi(state||skF ||{TCF (skF , (mj ||σj , rj),m′||σ′)}j=1,...,i)

= fi(state||skF ||{r′j}j=1,...,i).

Then AIII returns the answer to A.
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Output. At some point, A outputs (m∗, (σ∗, r∗, s∗)). Then AIII computes h∗ =
FpkF (m

∗||σ∗; r∗), and finds entry i∗ such that i∗ ∈ {1, ..., q}, h∗ = hi∗ , and
(m∗||σ∗, r∗) �= (mi∗ ||σi∗ , ri∗). Then AIII outputs (m

∗||σ∗, r∗) and (mi∗ ||σi∗ , ri∗).
If such an entry does not exist, AIII aborts.

Since the number of leaked bits obtained by A in each leakage round is at
most �s and the leakage parameter of AIII ’s leakage oracle is �w (which is larger
than �s), all the leakage queries of A can be answered. What is more, according
to the reversibility property and trapdoor collision property, it is impossible for
A to distinguish the signatures and leakage given by AIII with those given by
the real signing oracle and the real leakage oracle. As a result, AIII perfectly
simulates the leakage oracle of A.

IfA outputs a type III forgery successfully,AIII breaks the �w-CLR collision-
resistance property of F successfully.

Remark 1. We set the leakage parameter as min{�, �w}. In fact, the number of
bits allowed to be leaked can be more than that. The signature schemes will
remain sEUF if the leaked bits of sk and ω1, ...ωq is less than �w, and the leaked
bits of skF and r′1, ..., r

′
q is less than �.

Remark 2. We also argue that if the original signature scheme can tolerate
leakage during the key generation, the sEUF-signature scheme converted by our
technique can also tolerate leakage during the key generation, i.e, the state of
Definition 4 can be initially set as the randomness used by the key generation
algorithm instead of sk (we refer the reader to the definition of [7]).

In fact, the randomness used to generate the key pairs of the LR chameleon
hash function (Figure 2) contains (h1, ..., hn) sampled from Gn and x sampled
from Zn

q . Since h1, ..., hn are public information and x is the secret key, all the
leakage queries on the randomness of KGF can be treated as the leakage queries
on the secret keys, which means that the security does not change while the
leakage during the key generation is allowed. Furthermore, we do not have to
consider the leakage on skH since pkH can be sampled directly without learning
knowledge of skH .

Remark 3. If we apply our technique to the (1 − o(1))L-wEUF-FLR signature
scheme proposed in [12] where L is the length of the secret key, we can obtain a
(1− o(1))L-sEUF-FLR signature scheme by setting skF = sk.

For the signature scheme in [12], a signature is generated as π ← P (crs, y,m,
x;ω), where P is a prover of LR non-interactive proof system (NIZK), crs is
the common reference string, (y, x) is sampled by KeyGen (c.f., Figure 1), m is
the message, and ω is the randomizer. (crs, y) is the verification key and x is
the secret key. If we set (pk, sk) = ((crs, y), x) and (pkF , skF ) = (y, x) in our
scheme, the resulting signature scheme is still sEUF-FLR. To prove this, we have
to face two problems. The first one is how AI can simulate the signing oracle
and leakage oracle without skF , and the second one is how AIII can simulate
the signing oracle and leakage oracle without sk.



128 Y. Wang and K. Tanaka

When it comes to the first problem, AI can simulate the signing oracle and
leakage oracle in the same way as AIII as we described in the proof before.
When it comes to the second problem, AIII can generate crs with a trapdoor
information τ , and it can use the simulator of the LR-NIZK proof system to
generate a proof by using τ instead of sk. Furthermore, since the simulator of
the LR-NIZK proof system can reduce leakage on both sk and w to leakage only
on sk, AIII can also simulate the leakage oracle.

We refer the reader to [12] for details of the definition of LR-NIZK and the
construction of the signature scheme.
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Abstract. We present a new tighter security proof for unbounded hash
tree keyless signature (time-stamping) schemes that use Merkle-Damg̊ard
(MD) hash functions with Preimage Aware (PrA) compression functions.
It is known that the PrA assumption alone is insufficient for proving
the security of unbounded hash tree schemes against back-dating at-
tacks. We show that many known PrA constructions satisfy a stronger
Bounded Pre-Image Awareness (BPrA) condition that assumes the exis-
tence of an extractor E that is bounded in the sense that for any efficiently
computable query string α, the number of outputs y for which E(y, α)
succeeds does not exceed the number of queries in α. We show that block-
cipher based MD-hash functions with rate-1 compression functions (such
as Davies-Meyer and Miyaguchi-Preneel) of both type I and type II are
BPrA. We also show that the compression function of Shrimpton-Stam
that uses non-compressing components is BPrA. The security proof for
unbounded hash-tree schemes is very tight under the BPrA assumption.
In order to have 2s-security against back-dating, the hash function must
have n = 2s + 4 output bits, assuming that the security of the hash
function is close to the birthday barrier, i.e. that there are no structural
weaknesses in the hash function itself. Note that the previous proofs that
assume PrA gave the estimation n = 2s + 2 log2 C + 2, where C is the
maximum allowed size of the hash tree. For example, if s = 100 (2100-
security) and C = 260, the previous proofs require n = 322 output bits,
while the new proof requires n = 204 output bits.

1 Introduction

Keyless time-stamping [10] was proposed by Haber et al in order to avoid key-
based cryptography and trusted third parties so that time stamps become ir-
refutable proofs of time. A collection of C documents is hashed down to a single
digest of a few dozen bytes that is then published in widely available media
such as newspapers. Merkle hash trees [12] enable creations of compact “keyless
signatures” of size O(logC) for each of the C documents. Every such signature
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consists of all sibling hash values in the path from a document (a leaf of the tree)
to the root of the tree. After the root hash value is published, it will be impos-
sible for anyone to back-date a new document in terms of creating a hash chain
from a new document to the already published hash value. In [1], a global-scale
hash-tree scheme was drafted where during every unit of time a large hash tree
is created co-operatively by numerous servers all over the globe and the root
value is published in newspapers.

The security of hash-tree schemes against back-dating can be reduced to
collision-resistance of the hash function. The first correct security proof was
published in 2004 [6], but this proof assumes that the size C of the global hash
tree (the capacity of the scheme) is limited and the number n of the output bits
of the hash function needed for 2s-security was n = 4s + 2 log2 C + 2, i.e. n
depends on C (Tab. 1). This means that if the maximum hash tree size is 260,
then for 2100-security against back-dating one has to use 522-bit hash functions.
The practical hash functions in such schemes might be 256-bit and twice larger
output size will double the amount of data in the system.

The tightest possible proof of security [5] against back-dating under the collision-
resistance assumption requires the output size n = 3s+ log2 C + 8, which in case
C = 260 and s = 100 gives n = 368 (Tab. 1), which is still too large if one desires to
use 256-bit hash functions in a global hash tree scheme. The proof in [5] has been
shown to be asymptotically optimally tight if the collision-resistance property is
used as the security assumption. So, the only way to obtain tighter security proofs
is to use stronger (or incomparable) security assumptions for hash functions.

In [4], a tighter security proof was presented that used a stronger assumption
called Pre-Image Awareness (PrA) (first proposed in [9]) instead of collision-
resistance. The PrA condition makes sense if the hash function uses ideal compo-
nents (ideal ciphers, random permutations, etc.). The proof under PrA required
hash size n = 2s+ 2 log2 C + 2. This might be valuable for high security require-
ments, but for the case of C = 260 and s = 100 gives n = 322, which is still too
large for using 256-bit hash functions, for example.

Therefore, in [4], a new non-standard and seemingly just slightly stronger than
PrA security assumption—Strong Pre-Image Awareness (SPrA)—was used to
obtain a tighter security proof with required hash size n = 2s+2 log2 log2 C+2,
which in case C = 260 and s = 100 gives n = 214. However, the SPrA is a new
assumption and not sufficiently studied. In contrast to the PrA condition, which
is known to hold for many cryptographic constructions of hash functions [9],
there are no similar proofs of SPrA. Considering the formal definition of SPrA,
such proofs might be hard to construct, mostly because the SPrA condition
involves arbitrary “parsing” functions.

In this work, we define another strenghtening of the PrA condition, the so-
called Bounded Pre-Image Awareness (BPrA) that assumes the existence of an
extractor E that is bounded in the sense that for any efficiently computable query
string α, the number of outputs y for which E(y, α) succeeds does not exceed the
number of queries in α. We show that many known PrA constructions actually
are BPrA. For example, we show that blockcipher based MD-hash functions with
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rate-1 compression functions (such as Davies-Meyer and Miyaguchi-Preneel) of
both type I and type II are BPrA. We also show that some compression functions
with uncompressing components (such as Shrimpton-Stam) are BPrA. There-
fore, the BPrA assumption is (at least for now) more justified in practice than
the SPrA assumption.

The security proof for unbounded hash-tree schemes is very tight under the
BPrA assumption, even tighter than under the SPrA assumption. In order to
have 2s-security against back-dating, the hash function must have n = 2s + 4
output bits (Tab. 1), assuming that the security of the hash function is close
to the birthday barrier, i.e. that there are no structural weaknesses in the hash
function itself. In the case of s = 100 this gives n = 204.

Table 1. Efficiency of security proofs, where n(C, T, s) is the required output size of
the hash function, assuming that the scheme uses hash trees of size C, is intended
for a time period of T units, and needs to be 2s-secure. The results of this work are
presented in bold.

Assumption Formula Required Output Size n n(260, 232, 100)

CR [6] t′
δ′ ≈ 2C

(
t
δ

)2
n = 2 log2 C + 4s+ 2 522

CR [5] t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 C + 3s+ 8 368

PrA [4] t′
δ′ ≈ 2C t

δ
n = 2(log2 C + s+ 1) 322

SPrA [4] t′
δ′ ≈ 4 log2 C

t
δ

n = 2(log2 log2 C + s+ 2) 216

BPrA t′
δ′ ≈ 4 t

δ
n = 2s+ 4 204

RO (bounded) t
δ
≥ 2n−1

CT
n = s+ log2 C + log2 T + 1 193

RO (unbounded) [4] t
δ
≥ 2

n−1
2 n = 2s+ 1 201

Tab. 1 summarizes the efficiency of the existing security reductions, in which
a t-time backdating adversary with success probability δ is converted to a t′-time
collision-finding adversary with success probability δ′. An n-bit hash function is
assumed to be 2n/2-secure, i.e. near to the birthday barrier. The third column of
Tab. 1 presents a formula for the required output size n of the hash function for
the time-stamping scheme to be 2s-secure. The last column presents the output
size in a particular case, where C = 260, T = 232, and s = 100. In addition to
the new security proof under the BPrA assumption, we also show in this work
that in the RO model bounded schemes are secure beyond the birthday barrier.

The paper is organized as follows. In Sec. 2, we provide readers with nec-
essary preliminary concepts and the state of the art in the security proofs of
hash tree schemes. In Sec. 3, we study the security proofs in the random oracle
model and present the motivation behind the new BPrA security condition. In
Sec. 4, we show that many of the block cipher based hash function construc-
tions (and also some constructions with non-compressing ideal components, e.g.
Shrimpton-Stam [14]) that have been proved to be PrA are actually BPrA and
hence these hash functions are much more secure for hash-tree time-stamping
than the previously known security proofs suggest.
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2 Preliminaries

2.1 Tightness of Security Proofs

The security of cryptographic schemes is measured by the amount of resources
needed for an adversary to break the primitive. Considering that the running
time t and the success probability δ of attacks against a scheme may vary, Luby
[11] proposed the time-success ratio t

δ as a measure for attacking resources. A
scheme is said to be S-secure, if the success probability δ of any t-time adversary
does not exceed t

S .
In a typical security proof for a scheme P built from a primitive Q, it is

shown that if Q is Sq-secure, then P is Sp-secure. Bellare and Rogaway [2,3] first
emphasized the importance of the tightness Sp/Sq of security proofs in practical
applications. Informally, tightness shows how much security of the primitive is
retained by the scheme. Security proofs are mostly reductions : an adversary for
P with running time t and success probability δ is transformed to an adversary
for Q with running time t′ and success probability δ′. This means that for having
t
δ -secure P, it is sufficient to use a t′

δ′ -secure Q.

2.2 Security Properties of Hash Functions

In this paper, we study the security properties of hash functions HP that use
some kind of ideal functionality P (random permutations, random functions,
ideal ciphers, etc.) as an oracle. For example, in case of the Merkle-Damg̊ard
hash functions, the compression function and the output transform are often
assumed to be ideal objects. In this section, we describe some of the properties
of hash functions, starting from the strongest ones.

Random Oracles. By a random oracle R, we mean a function that is chosen
randomly from the set of all functions of type {0, 1}m → {0, 1}n. By the random
oracle heuristic we mean a security argument when an application of a hash
function (e.g. a time-stamping scheme, a signature scheme) is proved to be secure
in the so-called random oracle model, where the hash function is replaced with a
random oracle. The random oracle heuristic was first introduced by Bellare and
Rogaway [2]. Although it was proved later by Canetti et al [7] that the random
oracle heuristic fails in certain theoretical cases, proofs in the random oracle
model are still considered valuable security arguments, especially if no better
security proofs are known.

Pre-image Awareness. Pre-Image Awareness (PrA) of a (hash) function H
means, that if we first commit an output y and later come up with an input x,
such that y = H(x), then it is safe to conclude that we knew x before committing
y. This notion was first formalized by Dodis et al. [9] for hash functions HP that
are built using an ideal primitive P as a black box. For HP being PrA, there
has to be an efficient deterministic extractor E which when given y and the list
α of all previously made P -calls, outputs an input x, such that HP (x) = y, or
⊥ if E was unable to find such an x. The adversary tries to find x and y so that
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x �= E(α, y) and y = HP (x). A weaker form of PrA (so-called WPrA) allows E
output a set L of inputs x, and the adversary tries to find x, such that the query
L ← E(α, y) was made, y = HP (x), but x �∈ L. Obviously, WPrA becomes PrA
if the number of elements in L is limited to one, i.e. |L | ≤ 1. To define pre-image

Exppra
H,P,E,B:

x ← BP,Ex

y ← HP (x)
If Q[y] = 1 and V[y] �= x return 1,
else return 0

oracle P(m):
c ← P (m)
α ← α||(m, c)
return c

oracle Ex(y):
Q[y] ← 1
V[y] ← E(y, α)
return V[y]

Fig. 1. Preimage awareness experiment with the oracles P and Ex

awareness of HP in a precise way, we set up an experiment Exp (see Fig. 1),
specified as a game which an attacker B is trying to win. B is constrained to
oracle access to P , via a wrapper oracle P, which records all P -calls made by B
as an advise string α. Likely, the extractor E is also accessible through another
wrapper oracle Ex, which uses global arrays Q (initially ⊥ everywhere) and V

(initially blank). Q is used to record all input parameters to E; V is used to store
all successfully extracted values corresponding to E’s inputs. The adversary B
tries to output a value x such that HP (x) = y, Q[y] = 1 and V[y] �= x, i.e. E tried
to invert y, but was unsuccessful. As P- and Ex-calls are unit cost, the running
time of B does not depend on the running time of E. Note that PrA implies
collision-resistance [9], but WPrA does not.

Definition 1 (Pre-image Awareness). A function HP is S-secure pre-image
aware (PrA) if there is an efficient extractor E, so that for every t-time B:

Advpra
H,P,E(B) = Pr

[
1 ← Exppra

H,P,E,B

]
≤ t

S
. (1)

In [4], a stronger notion of Strong Pre-Image Awareness (SPrA) was presented
in which the Ex-oracle is allowed to use the “oldest” possible α. For example, if
we obtain x← Ext(y) (where x = x1x2 and x1, x2 ∈ {0, 1}n) for which the oracle
uses α, and later we call Ext(x1), the same α is used for extraction, because the
oracle remembers that x1 was created by just “parsing” x and it is thereby as old
as x and the use of α is justified. This new notion allows one to establish more
tight security proofs for hash-tree time-stamping than the PrA would allow.

Collision Resistance. Informally, the collision resistance of a hash function
HP means that it is infeasible for adversaries to find two different inputs x and
x′ that have the same hash value, i.e. HP (x) = HP (x′). This definition makes
sense only if the ideal primitive P contains some randomness, as the collisions
of fixed functions can always be “wired” into the adversary.

Definition 2 (Collision Resistance). A function HP is S-secure collision
resistant (CR) if for every adversary B with running time t:

Advcr
H,P (B) = Pr

[
x, x′ ← BP :x �= x′, HP (x) = HP (x′)

]
≤ t

S
. (2)
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Due to the so-called birthday bound, functions with n-bit output can only be
up to 2n/2-secure collision resistant.

2.3 Merkle-Damg̊ard Hash Functions

Merkle-Damg̊ard (or iterated) hash functions use a compression function F (m, v)
to iteratively compute a hash of an arbitrary size message m divided into equal
blocks m1, . . . ,m� of suitable size. The hash h = H(m) is computed as follows:
(1) h ← IV ; (2) for i ∈ {1, . . . , �} do: h ← F (mi, h); (3) and output H(m) = h.
Here, IV is a public and standard initial value. It has been proved [9] that if F
is PrA, then so is H .

2.4 Blockcipher-Based Hash Functions

Many hash functions are constructed from secure blockciphers. The most com-
mon approach for creating a 2n → n hash function is to use a blockcipher with
n-bit block and n-bit key and make a compression function that makes only a
single call to the blockcipher. Such constructions were first analyzed by Preneel
et al. [13] and are called rate-1 schemes. The most general approach is that of
Stam [15], where the compression function is defined by the following three steps:

1. Prepare key and plaintext: (k, x) ← Cpre(m, v);
2. Use the blockcipher: y ← Ek(x);
3. Output the digest: w ← Cpost(m, v, y).

There are two types of rate-1 compression functions.

Definition 3. A blockcipher-based rate-1 compression function FE is called
Type-I iff: (1) Cpre is bijective; (2) Cpost(m, v, ·) is bijective for all m, v; and
(3) Caux(·) = Cpost(C

−1
pre(k, ·), y) is bijective for all k, y.

Definition 4. A blockcipher-based rate-1 compression function FE is called
Type-II iff: (1) Cpre is bijective; (2) Cpost(m, v, ·) is bijective for all m, v; and
(3) C−1

pre(k, ·) (restricted to its second output v) is bijective for all k.

Type-I functions are preimage aware [9] and thus also collision-resistant. Type-
II functions become preimage-aware (and collision-resistant) when iterated as
Merkle-Damg̊ard hash functions [9].

2.5 Hash-Tree Schemes and Their Security Against Back-Dating

Hash trees were introduced by Merkle [12]. Let h: {0, 1}2n → {0, 1}n be a hash
function. By a hash-tree we mean a tree-shaped data structure that consists of
nodes labeled with n-bit hash values. Each node is either a leaf which means it
has no children, or an internal node with two child nodes (the left and the right
child). The hash value y of an internal node is computed as a hash y = h(y0, y1),
where y0 and y1 are the hash values of the left and right child, respectively.
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There is one root node that is not a child of any node. By r = T(x1, . . . , xm)
we mean that r is the root label of a hash tree T with leaves labeled with hash
values x1, . . . , xm.

Encoding the Leaves of a Hash Tree. Nodes of a hash tree can be named
in a natural way with finite bit-strings. The root node is named by the empty
string ��. If a node is named by �, then its left and right child nodes are named
by �0 and �1, respectively. The name � of a node is also an “address” of the node,
considering that one starts searching from the root node, and then step by step,
chooses one of the children depending on the corresponding bit in �.

Shape of a Hash Tree. Hash tree has a particular shape by which we mean the
set of all names of the leaf-nodes. For example, a balanced complete tree with
four nodes (Fig. 2, left) has the shape {00, 01, 10, 11}. If the root hash value
is denoted by r (instead of r��) and r� denotes the hash value of a node with
name �, then in this example, the relations between the nodes are the following:
r = h(r0, r1), r0 = h(r00, r01), and r1 = h(r10, r11). The shape {000, 001, 01, 1}
represents a tree with four leaves (Fig. 2, right) with the hash values being in
the following relations: r = h(r0, r1), r0 = h(r00, r01), and r00 = h(r000, r001).
Note also that any shape is a prefix-free code.

Fig. 2. Trees with shape {00, 01, 10, 11} (left) and {000, 001, 01, 1} (right)

Hash Chains. In order to prove that a hash value r� (where �1�2 . . . �m is
the binary code of �) participated in the computation of the root hash r, it is
sufficient to present all the sibling hashes of the nodes on the unique path from
r� to the root r. For example, in the left tree of Fig. 2, to prove that r01 belongs
to the tree, one has to present the hashes r00 and r1 that enable us to compute
r0 = h(r00, r01) and r = h(r0, r1). Hash chains are defined as follows [4]:

Definition 5 (Hash-Chain). A hash-link from x to r (where x, r ∈ {0, 1}n)
is a pair (s, b), where s ∈ {0, 1}n and b ∈ {0, 1}, such that either b = 0 and
r = h(x‖s), or b = 1 and r = h(s‖x). A hash-chain from x to r is a (possibly
empty) list c = ((s1, b1), . . . , (sm, bm)), such that either c = () and x = r; or there
is a sequence x0, x1, . . . , xm of hash values, such that x = x0, r = xm, and (si, bi)

is a hash-link from xi−1 to xi for every i ∈ {1, . . . ,m}. We denote by x
c� r

the proposition that c is a hash chain from x to r. Note that x
()� x for every

x ∈ {0, 1}n. By the shape �(c) of c we mean the m-bit string bmbm−1 . . . b2b1.

Hash-Tree Keyless Signature Schemes. The signing (time-stamping) proce-
dure runs as follows. During every time unit t (e.g. one second) the server receives



Bounded Pre-image Awareness and the Security 137

a list Xt = (x1, . . . , xm) of requests (n-bit hash values) from clients, computes
the root hash value r(t) = T(x1, . . . , xm) of a hash tree T and publishes r(t)
in a public repository R = (r(1), r(2), . . . , r(t)) organized as an append-only list.
Each request xi is then provided with a hash chain ci (the signature for xi) that
proves the participation of xi in the computation of the root hash value r(t). A
request x ∈ Xt is said to precede another request x′ ∈ Xt′ if t < t′. The requests
of the same batch are considered simultaneous. In order to verify the hash chain
ci (the signature) of a request xi, one computes the output hash value of ci (the
last hash value xm in the sequence) and checks whether xm = r.

Bounded and Unbounded Schemes. A hash-tree keyless signature (time-
stamping) scheme is said to be C-bounded, if the shape S of the hash tree is
assumed to be upper-bounded: |S | ≤ C and while verifying a hash chain c it
is checked if �(c) ∈ S. A hash-tree keyless signature scheme is (C, T )-strongly
bounded if it is C-bounded and also |R | ≤ T .

Security Against Back-Dating. Informally, we want that no efficient adver-
sary can back-date any request x, i.e. first publishing a hash value r, and only
after that generating a new “fresh” x (not pre-computed by the adversary), and

a hash chain c, so that x
c� r. We use the formal security condition from [4]

that involves a two-stage back-dating adversary A = (A1, A2). The first stage
A1 creates a public repository R of hash values that may be created in an arbi-
trary way, not necessary by using hash trees. The second stage A2 of A presents
a high-entropy x and a hash chain x

c� r with r ∈ R. The high entropy of x
is crucial because otherwise x could have been pre-computed or guessed by A1

before r is published and hence x could be in fact older than r and thereby not
really back-dated by A2. Therefore, only unpredictable adversaries (that produce
high-entropy x) are considered, i.e. x must be hard to guess for A2 even if the
contents of R and all the internal computations of A1 are known. There are many
ways to define unpredictability. We use the so-called strong unpredictability [4]:

Definition 6 (k-Strong Unpredictability). A back-dating adversary (A1,A2)
is k-strongly unpredictable if the conditional min-entropy H∞[x | R, a] of x
(back-dated by A2) is at least k bits, i.e. for every input of A2 and for any
possible value x0 of x, the probability of x = x0 is upper bounded by 1

2k
.

Definition 7 (Security against Back-Dating). A hash-tree keyless signature
(time-stamping) scheme is S-secure against back-dating if for every t-time k-
strongly unpredictable adversary (A1, A2) :

δ = Pr
[
(R, a)←A1, (x, c)←A2(R, a): x

c� R, �(c) ∈ S
]
≤ t

S
, (3)

where by x
c� R we mean that x

c� r for some r ∈ R, and a is an advice string
that contains possibly useful information that A1 stores for A2.

In the rest of this paper, we will restrict our back-dating adversaries to be (n−1)-
strongly unpredictable. This restriction is in practice justified by (i) the time-
stamped values x being hashes of much longer documents, containing significant
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amounts of new information, and (ii) the cryptographic hash functions suppos-
edly being good entropy extractors [4].

Existing Security Proofs and Their Tightness. The tightness of the exist-
ing security proofs is summarized in Tab. 1. The proofs of [6,5] use the collision-
resistance assumption and apply only to bounded time-stamping schemes. Their
tightness depends on the capacity C. Both proofs are in the form of a reduction:
a t-time backdating adversary with success probability δ is converted to a t′-time
collision-finding adversary with success probability δ′. An n-bit hash function is
assumed to be 2n/2-secure, i.e. near to the birthday barrier. The third column of
Tab. 1 presents a formula for the required output size n of the hash function for
the time-stamping scheme to be 2s-secure. The last column presents the output
size in a particular case, where C = 260, T = 232, and s = 100. Note that 232

seconds is about one hundred years. The proof under PrA assumption is from [4].
We see that even though PrA seems to be much stronger than CR, the required
output length is not much smaller. This is because the security loss is linear in
C and not in

√
C as in the case of the CR assumption. SPrA [4] allows much

more tight security reductions but has not been sufficiently studied yet. We also
see that the random oracle (RO) assumption makes proofs very tight and also
to hold for unbounded schemes. The RO proof for unbounded schemes is from
[4]. The bounded version is proved in this work.

Security Proofs for Unbounded Schemes. It is known that neither collision-
resistance [6] nor PrA [4] is sufficient for proving the security of unbounded time-
stamping schemes. The only known proof for unbounded schemes [4] uses the
random oracle assumption. In order to move forward in this direction, we first
examine the main ideas of the proofs in the random oracle model and see how
to generalize them for the assumptions weaker than RO.

3 Security in the Random Oracle Model

We first show that for bounded schemes the random oracle model enables security
beyond the birthday barrier, i.e. even when using a hash function with n output
bits, the security (against back-dating) we achieve is far beyond 2n/2.

Theorem 1. If h : {0, 1}2n → {0, 1}n is a random oracle, then the correspond-

ing (C, T )-strongly bounded hash-tree time-stamping schemes are 2n−1

CT -secure
against (n− 1)-strongly unpredictable back-dating adversaries.

Proof. Let A = (A1, A2) be a t-time (n − 1)-strongly unpredictable adversary
(Def. 6) and with success δ as defined in (3). Let t1 and t2 be the running times of
A1 and A2, respectively. Considering that (R, a) ← A1, and r ∈ R is an arbitrary
element of R, let Rr

1 ⊆ {0, 1}n be the set of all x-s so that the h-calls performed
by A1 induce a proper shape hash-chain from x to an r. Let R1 = ∪r∈RR

r
1. Note

that R ⊆ R1, as an empty hash-chain is always induced by any set of h-calls.
Note also that |R1 | ≤ CT , because |R | ≤ T and |Rr

1 | ≤ C for any r ∈ R.
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Now let x denote the hash-value back-dated by A2. The probability that

x ∈ R1 is upper-bounded by |R1|
2n−1 because A is (n − 1)-strongly unpredictable.

In case of x /∈ R1, in order to be successful, A2 has to make additional h-calls so
that a chain from x to r ∈ R is induced. A necessary condition that A2 has to
satisfy is that it has to find x′ = x′1‖x′2 such that x′1 /∈ R1 or x′2 /∈ R1 (this means
that A1 did not make h-calls with input x′), but h(x′) ∈ R1. The probability of

this condition does not exceed t2
|R1|
2n , hence, considering that |R1 | ≤ CT , and

t1 ≥ 1, the overall success probability of A is:

δ ≤ |R1 |
2n−1

+

(
1− |R1 |

2n−1

)
t2
|R1 |
2n

≤ CT

2n−1
+t2

CT

2n−1
≤ (1 + t2)

CT

2n−1
≤ t

CT

2n−1
.

Hence, t
δ ≥ 2n−1

CT . ��

The next theorem is from [4]. We repeat their proof in order to draw conclu-
sions about why it holds in the RO model but does not in the PrA-environment.

Theorem 2. If h : {0, 1}2n → {0, 1}n is a random oracle, then the correspond-

ing unbounded hash-tree schemes are 2
n−1
2 -secure against (n−1)-strongly unpre-

dictable back-dating adversaries.

Proof. Let A = (A1, A2) be a t-time (n − 1)-strongly unpredictable adversary
(Def. 6). Let t1 and t2 denote the running times of A1 and A2, respectively.
Assuming that (R, a) ← A1, let R1 ⊆ {0, 1}n be the set of all values of x such

that the h-calls performed by A1 induce a hash-chain x
c� r with r ∈ R. Note

that R ⊆ R1 and we assume without loss of generality that the advice a contains
R1.

Let x denote the (back-dated) hash value produced by A2. Due to the strong

unpredictability of A, we have Pr [x ∈ R1] ≤ |R1|
2n−1 . If x /∈ R1 then A2 has to make

h-calls that induce a chain x� r ∈ R. For that, A2 has to find x′ = x′1‖x′2 such
that x′1 /∈ R1 or x′2 /∈ R1 (i.e. A1 did not make h-calls with x′), but h(x′) ∈ R1.

This happens with probability that does not exceed t2
|R1|
2n . Hence, as |R1 | ≤ 2t1

and t1, t2 ≥ 1, the success probability of A is δ ≤ |R1|
2n−1 +

(
1− |R1|

2n−1

)
t2

|R1|
2n ≤

2t1
2n−1 +

t1t2
2n−1 ≤ (t1+t2)

2

2n−1 = t2

2n−1 , and as δ2≤δ ≤ t2

2n−1 , we have t
δ ≥ 2

n−1
2 . ��

The key factor of success of this proof is the ability to define the set R1 and
to estimate its size by |R1 | ≤ 2t1. In the PrA-type environment where the
hash function HP is not a random oracle, the computable (given the query-
sequence α) hash chains that lead to the hash values in R can be constructed
via the extractor E. We start applying E to the elements of R and after each
try x ← E(α, y) apply E also to the right and the left halves of x, until we
reach ⊥ in every branch. The problem is that the standard PrA assumption
does not guarantee that this iterative procedure will end. The new security
condition presented in the next section is motivated by the need to make this
iterative extraction-tree generation procedure to end eventually. This means that
E(α, y) �= ⊥ is allowed to hold only for a limited number of outputs y. This leads
to the following new variation of the Pre-Image Awareness security condition.
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4 Bounded Pre-image Awareness

We show that many known PrA constructions actually satisfy a new stronger
security condition called Bounded Pre-Image Awareness (BPrA) that assumes
the existence of a PrA-extractor E that is bounded in the sense that for efficiently
computable query strings α, the number of outputs y for which E(y, α) �= ⊥ does
not exceed the number of queries in α.

The security proof for unbounded hash-tree schemes turns out to be very tight
under BPrA. In order to have 2s-security against back-dating, the hash function
must have k = 2s+4 output bits, assuming that the security of the hash function
is close to the birthday barrier, i.e. that there are no structural weaknesses in
the hash function itself. In the case of s = 100, this gives k = 204.

4.1 Formal Security Condition

The BPrA security condition can be formalized as follows. We have to consider
the case where the output size of HP is larger than the input size of P . Thus,
in the extreme case where α contains all possible P -queries, it might be the
case that E is able to determine the inputs of more than |α | of outputs. Hence,
instead of requiring the condition |{y:E(y, α) �= ⊥}| ≤ |α | unconditionally, we
require this condition to hold for efficiently computable query-strings α.

Definition 8. A function HP : {0, 1}2n → {0, 1}n is S-secure Bounded Pre-
Image Aware (BPrA) if it is S-secure PrA, and for any t-time adversary α← AP

that produces a P -query list α the probability that |{y:E(y, α) �= ⊥}| > |α | does
not exceed t2

2n , where E is the extractor from the PrA condition.

This means that efficient adversaries with oracle access to P can only produce
query strings α such that the number of outputs y for which E(y, α) �= ⊥ is
bounded by the number of P -queries in α.

The bound t2

2n may seem ad hoc, but this is actually the natural birthday
bound, because in case of output collisions that may occur with probability
t2

2n , a single P -query in α may contribute to computing several different output
values.

4.2 Security Proof under BPrA

In order to establish a security proof with measurable tightness, we have to
assume a concrete BPrA-security of HP . As BPrA implies PrA and PrA implies
Collision Resistance, by using the birthday bound, no hash function with n-bit
output can be more than 2n/2-secure BPrA. Therefore, in the next proof, we
assume that the security of HP lies between 2n/3 and 2n/2.

Theorem 3. For unbounded time-stamping schemes with HP : {0,1}2n→{0,1}n
to be S-secure (S ≤ 2

n−1
2 − 2) against (n− 1)-strongly unpredictable back-dating

adversaries, it is sufficient that the hash function HP is 4S-secure BPrA.
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Procedure ExForestEx():
T := ∅
N := 2× “a time bound for A1”
For all r ∈ R do

ExTreeEx(r) .

Procedure ExTreeEx(y):
If y �∈ T and N > 0, then
T := T ∪ {y}
N := N − 1
If ⊥ �= Ex(y) = (y0, y1) then
Define y0, y1 as children of y
ExTreeEx(y0)
ExTreeEx(y1) .

endif
endif

Fig. 3. Procedures for extracting the set T from the published hash database R

Proof. Due to the BPrA assumption there exists an efficient bounded extractor
E. Let AP = (AP

1 , A
P
2 ) be a (n−1)-strongly unpredictable back-dating adversary

with running time t and success probability δ, such that t
δ ≤ 2

n−1
2 − 2. We

construct a PrA-adversary BP,Ex that first simulates (R, a) ← AP
1 so that all its

P -calls are executed through the P-oracle. Let α be the query string after such
simulation.

After that, the adversary builds a hash-forest T by using the ExForest proce-
dure described in Fig. 3 using the bound N = 2t. Due to the boundedness, with

probability 1 − t2

2n the number of non-leaf vertices of T is bounded by |α | ≤ t1
and hence, |T | ≤ 2t1 + 1 ≤ 2t = N and hence, such bound is never applied
during the procedure, which means that for all y ∈ T, the extraction call E(y)
has indeed been performed.

Finally, B simulates AP
2 so that all its P calls are executed through the P-

oracle. With probability δ we obtain a hash value x and a hash chain c such that
x

c� r for some r ∈ R. Due to the strong unpredictability of A, the probability
that x coincides with some of the extracted hash values r� is upper bounded by
2t

2n−1 = 4t
2n . Hence, with probability at least δ − t2

2n − 4t
2n we have a hash value

x �∈ T and a hash chain c = {(c1, b1), (c2, b2), . . . , (cm, bm)} with output hash
value r ∈ R ⊆ T. Let x0, x1, . . . , xm be the intermediate hash values (outputs of
hash links) as described in Def. 5. Let k be the smallest index such that xk−1 �∈ T

but xk ∈ T. For such k,{
HP(ck‖xk−1) = xk and Ex(xk) �= (ck‖xk−1) if bk = 0 ;
HP(xk−1‖ck) = xk and Ex(xk) �= (xk−1‖ck) if bk = 1 .

The output of B is (ck‖xk−1) if bk = 0 or (xk−1‖ck) if bk = 1. Hence, B with

time t′ ≤ 2t has success δ′ ≥ δ − t2

2n − 4t
2n = δ

2

(
2− 1

2n−1
t2+4t

δ

)
. Hence,

t′

δ′
≤ 4

t

δ
· 1

2− 1
2n−1

t2+4t
δ

≤ 4
t

δ
· 1

2− 1
2n−1

(
t
δ+2

)2 ≤ 4
t

δ
· 1

2− 1
2n−1

(
2

n−1
2

)2 = 4
t

δ
.
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Hence, if HP is 4S-secure BPrA, then t′
δ′ ≥ 4S and t

δ ≥ S, which means that
HP is S-secure against strongly unpredictable back-dating adversaries. ��

Corollary 1. Unbounded hash-tree schemes are 2s-secure against back-dating if
one uses 2s+2-secure BPrA hash functions with 2s+ 4 output bits.

This is close to the tightness achieved in the random oracle model. In our example
with s = 100, we conclude that 204 output bits are sufficient.

5 Existing PrA Constructions Are BPrA

We show that blockcipher based MD-hash functions with rate-1 compression
functions (such as Davies-Meyer and Miyaguchi-Preneel) of both type I and type
II are BPrA. We also show that some compression functions with uncompressing
components (such as Shrimpton-Stam [14]) are BPrA.

It is unknown whether a BPrA compression function is sufficient for the
Merkle-Damg̊ard construction to be BPrA. We define a new Unique P-query
(UPQ) property for HP , which as we show, the MD-construction preserves.

5.1 Unique P-Query Property (UPQ)

We model the compression function FP as a boolean (or arithmetic) circuit with
P -gates. The Merkle-Damg̊ard structure is modeled as a cascade of such circuits.
For every input x, we define αx as the set of P -queries that the cascade of FP

circuits makes in case of input x.
Fox every set α of P -queries, we define Hα as a function that is computed

exactly like HP , but instead of making P -queries, the answers are taken from α.
Obviously, Hα is only defined for those inputs x, for which αx ⊆ α. We denote
by Dα the set of all such inputs x. This is called the domain of Hα. The range
Rα is defined as Hα(Dα). Hence, H

α is a function of type Dα → Rα.

Definition 9. A hash function HP has the unique P-query property (UPQ),
if for every set α, there is a function ϕα:Rα → α, such that for any efficient
adversary α← AP , the function ϕα is injective with overwhelming probability.

5.2 Merkle-Damg̊ard is UPQ-Preserving

We show that if the compression function used in the Merkle-Damg̊ard construc-
tion has the UPQ property, then so does the iterated hash function.

Theorem 4. The Merkle-Damg̊ard transform is UPQ-preserving.

Proof. We use the property of the MD-transform that for every input x ∈ {0, 1}∗
and αx ⊆ α there is an input x′ of the last compression round such thatHα(x) =
Fα(x′). Hence, Rα = RH

α ⊆ RF
α . As F is UPQ, there is a (computably injective)

function ϕF
α :R

F
α → α. We simply define ϕα as the restriction of ϕF

α to Rα.
Obviously, ϕα is injective if ϕF

α is injective. ��
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5.3 UPQ and PrA Imply BPrA for Honest Extractors

We show that practical PrA constructions that are UPQ are also BPrA, but for
this we have to assume that the PrA-extractor for HP is honest :

Definition 10. An extractor E for HP is said to be honest if for every y and
for every query string α, it holds that E(y, α) �= ⊥ only if y ∈ Rα, i.e. if there is
x such that Hα(x) = y. We say that a function HP is honest preimage aware
(HPrA) if it is PrA with a honest extractor.

It is easy to verify that most extractors that have been constructed in the
PrA framework (like those in [9]) are honest in this sense. This is because given
the output value y and the P -query string α, the extractors (e.g. in [9]) mostly
traverse α in order to find suitable P -queries that together lead to y, and only in
that case, output the corresponding input x. The practical extractors never try
to just guess x and hope for being lucky. Note that the notion of honesty defined
in [9] is somewhat weaker than in Def. 10 and requires HP (x) = y instead of
Hα(x) = y, but it is easy to see that the extractors in [9] satisfy the stronger
version too.

Formally we can construct functions HP that may be PrA in the general sense
but not PrA when the extractor is required to be honest by Def. 10. For example,
in constructions like HP (x) = P (x) ⊕ P (x+ 1)⊕ P (x + 1) if (x, P (x)) ∈ α but
(x + 1, P (x + 1)) �∈ α then honest extractors on input y = P (x) are forced to
output ⊥ ← E(y, α) because y �∈ Rα. To avoid such dummy oracle queries, we
may assume that the constructions HP have the property that once y �∈ Rα,
for every x the probability PrP←Ω|α[H

P (x) = y] is negligible, where Ω | α
denotes the probability space of all P -oracles consistent with α. This means
that whenever y is not an output that can (formally) be computed from an
input x with the query string α then there are no inputs x that will lead to y
with high probability and hence cannot be guessed by dishonest extractors.

Theorem 5. If HP is UPQ and HPrA then it is BPrA.

Proof. If HP is HPrA then there is a honest PrA-extractor E. Hence, for every
α that is produced by an efficient adversary, {y:E(y, α) �= ⊥} ⊆ Rα. Hence, by
the UPQ property as Rα ↪→ α, we have |{y:E(y, α) �= ⊥}| ≤ |Rα | ≤ |α |. ��

Hence, to show that a Merkle-Damg̊ard hash function is BPrA, it is sufficient
to show that its compression function satisfies UPQ. In the following, we show
that many hash functions that have been proved to be PrA are actually BPrA.

5.4 The Type-I and Type-II Compression Functions Are BPrA

We prove that the rate-1 blockcipher-based hash functions that have been proved
to be PrA [9] are UPQ, which by Thm. 5 means that they are also BPrA.

Theorem 6.The rate-1 block-cipher based Type-I and Type-II compression func-
tions are UPQ.
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Proof. Assume thatHP is a rate-1 block-cipher based compression function that
is either of Type-I or Type-II. In both cases, the function Cpre is bijective and has
an inverse-function C−1

pre that transforms a pair (x, k) (as input of an E-query)

to the input (m, v) of the compression function HP .
Let α be any P -query string that consists of ideal cipher calls in the form

(xi, ki, yi), where yi = Eki(xi), or equivalently xi = E−1
ki

(yi). We define a func-
tion ϕα as follows. For any given output w ∈ Rα, the function ϕα(w) returns the
first query (xi, ki, yi) in α, such that Cpost(C

−1
pre(xi, ki), yi) = w. Such a query

must exist because of w ∈ Rα. Therefore, ϕα is correctly defined.
If ϕα(w) = (x, k, y) = ϕα(w

′) for some w,w′ ∈ Rα, then by the definition of
ϕα, we have w′ = Cpost(C

−1
pre(xi, ki), yi) = w, which means ϕα is injective. ��

Consequently, the Davies-Meyer, the Matyas-Meyer-Oseas, and the Miyaguchi-
Preneel compression functions as well as many others are UPQ. Due to the fact
that these constructions are HPrA, we conclude based on Thm. 5 that all Type-I
and iterated Type-II constructions are BPrA.

5.5 Shrimpton-Stam Is BPrA

The Shrimpton-Stam [14] compression function FP : {0, 1}n × {0, 1}n → {0, 1}n
involves independent random oracles f1, f2 and f3 of type {0, 1}n → {0, 1}n:

FP (c, x) = f3(f1(x)⊕ f2(c))⊕ f1(x) .

Theorem 7. The Shrimpton-Stam compression function is BPrA.

Proof. We define the mapping ϕ as follows to show that Shrimpton-Stam com-
pression function is UPQ. For any query string α and any input y ∈ Rα =
Fα(Dα) we search from α an f3-query (z3; y3) ∈ α for which there exists an
f1-query (x1; y1) ∈ α such that y = y3 ⊕ y1 and an f2-query (c; y2) such that
y1 ⊕ y2 = z3. There must be such a query because of y ∈ Rα. We define ϕ(y)
as the first such f3-query in α. Now, if ϕ(y) = (z3; y3) = ϕ(y′), then there are
f1-queries (x1; y1) and (x′1; y

′
1) such that y = y3 ⊕ y1 and y′ = y3 ⊕ y′1, and

f2-queries (c; y2) and (c′; y′2) such that y1 ⊕ y2 = z3 and y′1 ⊕ y′2 = z3. But then

f1(x1)⊕ f2(c) = f1(x
′
1)⊕ f2(c

′) , (4)

which is hard to satisfy for efficient adversaries, because this is equivalent of
finding collisions for the Dodis-Pietrzak-Punyia (DPP) compression function
Hf1,f2(m, v) = f1(m)⊕ f2(v) [8] which is about 2n/4-secure collision-free. ��

Note that the DPP compression function itself is not UPQ, because knowing
only five P -queries, say y1 = f1(m1), y2 = f1(m2), y3 = f1(m3), y

′
1 = f2(v1),

and y′2 = f2(v2) allows one to compute six different outputs of Hf1,f2 .
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Abstract. We present a generic method for turning passively secure
protocols into protocols secure against covert attacks. The method adds
a post-execution verification phase to the protocol that allows a misbe-
having party to escape detection only with negligible probability. The
execution phase, after which the computed protocol result is already
available for parties, has only negligible overhead added by our method.
The checks, based on linear probabilistically checkable proofs, are done in
zero-knowledge, thereby preserving the privacy guarantees of the original
protocol. Our method is inspired by recent results in verifiable computa-
tion, adapting them to multiparty setting and significantly lowering their
computational costs for the provers.

Keywords: Secure multiparty computation, Verifiable computation,
Linear PCP.

1 Introduction

Any multiparty computation can be performed in a manner that the participants
only learn their own outputs and nothing else [24]. While the generic construc-
tion is expensive in computation and communication, the result has sparked
research activities in secure multiparty computation (SMC), with results that
are impressive both performance-wise [9, 11, 17, 20], as well as in the variety of
concrete problems that have been tackled [10, 14, 16, 21]. From the start, two
kinds of adversaries — passive and active — have been considered in the con-
struction of SMC protocols, with highest performance and the greatest variety
achieved for protocol sets secure only against passive adversaries.

Verifiable computation (VC) [22] allows a weak client to outsource a compu-
tation to a more powerful server that accompanies the computed result with a
proof of correct computation, the verification of which by the client is cheaper
than performing the computation itself. VC could be used to strengthen proto-
cols secure against passive adversaries— after executing the protocol, the parties
could prove to each other that they have correctly followed the protocol. If the
majority of the parties are honest (an assumption which is made also by the
most efficient SMC protocol sets secure against passive adversaries), then the
resulting protocol would satisfy a strong version of covert security [2], where any
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deviations from the protocol are guaranteed to be discovered and reported. Un-
fortunately, existing approaches to VC have a large computational overhead for
the server/prover. Typically, if the computation is represented as an arithmetic
circuit C, the prover has to perform Ω(|C|) public-key operations in order to
ensure its good behaviour, as well as to protect its privacy.

In this paper we show that in the multiparty context, with an honest majority,
these public-key operations are not necessary. Instead, the verifications can be
done in distributed manner, in a way that provides the same security properties.
For this, we apply the ideas of existing VC approaches based on linear proba-
bilistically checkable proofs (PCPs) [25], and combine them with linear secret
sharing, which we use also for commitments. We end up with a protocol transfor-
mation that makes the executions of any protocol (and not just SMC protocols)
verifiable afterwards. Our transformation commits the randomness (this takes
place offline), inputs, and the communication of the participants. The commit-
ments are cheap, being based on digital signatures and not adding a significant
overhead to the execution phase. The results of the protocol are available after
the execution. The verification can take place at any time after the execution;
dedicated high-bandwidth high-latency communication channels can be poten-
tially used for it. The verification itself is succinct. The proof is generated in
O(|C| log |C|) field operations, but the computation is local. The generation of
challenges costs O(1) in communication and O(|C|) in local computation.

We present our protocol transformation as a functionality in the universal
composability (UC) framework. After reviewing related work in Sec. 2, we de-
scribe the ideal functionality in Sec. 3 and its implementation in Sec. 5. Before
the latter, we give an overview of the existing building blocks we use in Sec. 4.
The computational overhead of our transformation is estimated in Sec. 6.

Besides increasing the security of SMC protocols, our transformation can be
used to add verifiability to other protocols. In Sec. 7 we demonstrate how a
verifiable secret sharing (VSS) scheme can be constructed. We compare it with
state-of-the-art VSS schemes and find that despite much higher genericity, our
construction enjoys similar complexity.

2 Related Work

The property brought by our protocol transformation is similar to security
against covert adversaries [2] that are prevented from deviating from the pre-
scribed protocol by a non-negligible chance of getting caught. A similar transfor-
mation, applicable to protocols of certain structure, was introduced by Damg̊ard
et al. [18]. Compared to their transformation, ours is more general, has lower
overhead in the execution phase, and is guaranteed to catch the deviating par-
ties. Our transformation can handle protocols, where some of the results are
made available to the computing parties already before the end of the protocol;
this may significantly lower the protocol’s complexity [10]. A good property of
their construction is its black-box nature, which our transformation does not
have. Hence different transformations may be preferable in different situations.



148 P. Laud and A. Pankova

There have been many works dedicated to short verifications of solutions
to NP-complete problems. Probabilistically checkable proofs [1] allow to verify
a possibly long proof by querying a small number of its bits. Micali [31] has
presented computationally sound proofs, where the verification is not perfect,
and the proof can be forged, but it is computationally hard to do. Kilian [26]
proposed interactive probabilistically checkable proofs using bit commitments.
A certain class of linear probabilistically checkable proofs [25], allows to make
argument systems much simpler and more general.

In computation verification, the prover has to prove that, given valuations of
certain wires of a circuit, there exists a correct valuation of all the other wires
such that the computation is correct with respect to the given circuit. Verifiable
computation can in general be based not only on the PCP theorem. In [22], Yao’s
garbled circuits [37] are executed using fully homomorphic encryption. Quadratic
span programs for boolean circuits and quadratic arithmetic programs for arith-
metic circuits without PCP have first been proposed in [23], later extended to
PCP by [6], and further optimized and improved in [5, 29, 32]. Particular imple-
mentations of verifiable computations have been done for example in [5, 32, 35].

The goal of our transformation is to provide security against a certain form of
active attackers. SMC protocols secure against active attackers have been known
for a long time [15, 24]. SPDZ [19, 20] is probably the SMC protocol set secure
against active adversaries with currently the best online performance, achieved
through extensive offline precomputations. Similarly to several other protocol
sets, SPDZ provides only a minimum amount of protocols to cooperatively eval-
uate an arithmetic circuit. We note that very recently, a form of post-execution
verifiability has been proposed for SPDZ [4].

3 Ideal Functionality

We use the universal composability (UC) framework [13] to specify our verifiable
execution functionality. We have n parties (indexed by [n] = {1, . . . , n}), where
C ⊆ [n] are corrupted for |C| = t < n/2 (we denote H = [n]\C). The protocol has
r rounds, where the computations of the party Pi on the �-th round are given
by an arithmetic circuit C�

ij over a field F, computing the �-th round messages

m�
ij to all parties j ∈ [n] from the input xi, randomness ri and the messages

Pi has received before (all values xi, ri,m
�
ij are vectors over F). We define that

the messages received during the r-th round comprise the output of the protocol.
The ideal functionality Fvmpc, running in parallel with the environment Z and
the adversary AS , is given in Fig. 1.

We see that M is the set of parties actually deviating from the protocol. Our
verifiability property is very strong — they all will be reported to all honest
parties. Even if only some rounds of the protocol are computed, all the parties
that deviated from the protocol in completed rounds will be detected. Also, no
honest parties (in H) can be falsely blamed. We also note that if M = ∅, then
AS does not learn anything that a semi-honest adversary could not learn.
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In the beginning, Fvmpc gets from Z for each party Pi the message
(circuits, i, (C�

ij)
n,n,r
i,j,�=1,1,1) and forwards them all to AS . For each i ∈ H [resp i ∈ C],

Fvmpc gets (input,xi) from Z [resp. AS ]. For each i ∈ [n], Fvmpc randomly generates
ri. For each i ∈ C, it sends (randomness, i, ri) to AS .
For each round � ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C�

ij to compute the message
m�

ij . For all j ∈ C, it sends m�
ij to AS . For each j ∈ C and i ∈ H, it receives m�

ji

from AS .
After r rounds, Fvmpc sends (output,mr

1i, . . . ,m
r
ni) to each party Pi with i ∈ H.

Let r′ = r and B0 = ∅.
Alternatively, at any time before outputs are delivered to parties, AS may send
(stop,B0) to Fvmpc, with B0 ⊆ C. In this case the outputs are not sent. Let r′ ∈
{0, . . . , r − 1} be the last completed round.
After r′ rounds, AS sends to Fvmpc the messages m�

ij for � ∈ [r′] and i, j ∈ C.
Fvmpc definesM = B0∪{i ∈ C | ∃j ∈ [n], � ∈ [r′] : m�

ij �= C�
ij(xi, ri,m

1
1i, . . . ,m

�−1
ni )}.

Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc, with M ⊆ Bi ⊆ C. Fvmpc

forwards this message to Pi.

Fig. 1. The ideal functionality for verifiable computations

4 Building Blocks

Throughout this paper, bold letters x denote vectors, where xi denotes the i-th
coordinate of x. Concatenation of x and y is denoted by (x‖y), and their scalar

product by 〈x,y〉, which is defined (only if |x| = |y|) as 〈x,y〉 =
∑|x|

i=1 xiyi.
Our implementation uses a number of previously defined subprotocols and

algorithm sets.

Message Transmission. For message transmission between parties, we use
functionality Ftr [18], which allows one to prove to third parties which messages
one received during the protocol, and to further transfer such revealed messages.
Our definition of Ftr differs from Damg̊ard et al.’s [18] Ftransmit by supporting
the forwarding of received messages, as well as broadcasting as a part of the outer
protocol. The definition of the ideal functionality of Ftr is shown in Fig. 2. The
real implementation of the transmission functionality is built on top of signa-
tures. This makes the implementation very efficient, as hash trees allow several
messages (sent in the same round) to be signed with almost the same computa-
tion effort as a single one [30], and signatures can be verified in batches [12]. An
implementation of Ftr is given in the full version of this paper [28].

Shamir’s Secret Sharing. For commitments, we use (n, t) Shamir secret
sharing [36], where any t parties are able to recover the secret, but less than
t are not. By sharing a vector x over F into vectors x1, . . . ,xn we mean that
each i-th entry xi ∈ F of x is shared into the i-th entries x1i ∈ F, . . . , xni ∈ F of
x1, . . . ,xn. In this way, for each T = {i1, . . . , it} ⊆ [n], the entries can be restored

as xi =
∑t

j=1 bTjx
ij
i for certain constants bTj , and hence x =

∑t
j=1 bTjx

ij . The

linearity extends to scalar products: if a vector π is shared to π1, . . . ,πn, then
for any vector q and T = {i1, . . . , it}, we have

∑t
j=1 bTj〈πij , q〉 = 〈π, q〉.
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Ftr works with unique message identifiers mid, encoding a sender s(mid) ∈ [n], a
receiver r(mid) ∈ [n], and a party f(mid) ∈ [n] to whom the message should be
forwarded by the receiver (if no forwarding is foreseen then f(mid) = r(mid)).
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from
all (other) honest parties, store (mid,m, r(mid)), mark it as undelivered, and output
(mid, |m|) to the adversary. If the input of Ps(mid) is invalid (or there is no input), and
Pr(mid) is honest, then output (corrupt, s(mid)) to all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid)
from all honest parties, store (mid,m, bc), mark it as undelivered, output (mid, |m|) to
the adversary. If the input of Ps(mid) is invalid, output (corrupt, s(mid)) to all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m, r)
send (mid,m) to Pr; mark (mid,m, r) as delivered. For each undelivered (mid,m, bc),
send (mid,m) to each party and the adversary; mark (mid,m, bc) as delivered.
Forward received message: On input (forward,mid) from Pr(mid) after (mid,m) has
been delivered to Pr(mid), and receiving (forward,mid) from all honest parties, store
(mid,m, f(mid)), mark as undelivered, output (mid, |m|) to the adversary. If the input
of Pr(mid) is invalid, and Pf(mid) is honest, output (corrupt, r(mid)) to all parties.
Publish received message: On input (publish,mid) from the party Pf(mid) which at
any point received (mid,m), output (mid,m) to each party, and also to the adversary.
Do not commit corrupt to corrupt: If for some mid both Ps(mid), Pr(mid) are
corrupt, then on input (forward,mid) the adversary can ask Ftr to output (mid,m′) to
Pf(mid) for any m′. If additionally Pf(mid) is corrupt, then the adversary can ask Ftr

to output (mid,m′) to all honest parties.

Fig. 2. Ideal functionality Ftr

We note that sharing a value x as x1 = · · · = xk = x is valid, i.e. x can
be restored from xi1 , . . . , xit by forming the same linear combination. In our
implementation of the verifiable computation functionality, we use such“sharing”
for values that end up public due to the adversary’s actions.

Linear PCP This primitive forms the basis of our verification. Before giv-
ing its definition, let us formally state when a protocol is statistically privacy-
preserving.

Definition 1 (δ-private protocol [8]). Let Π be a multiparty protocol that
takes input x from honest parties and y from adversarially controlled parties. The
protocol Π is δ-private against a class of adversariesA if there exists a simulator
Sim, such that for all adversaries A ∈ A and inputs x,y,

∣∣Pr
[
AΠ(x,y)(y) =

1
]
−Pr

[
ASim(y)(y) = 1

]∣∣ ≤ δ.

Definition 2 (Linear Probabilistically Checkable Proof (LPCP) [6]).
Let F be a finite field, υ, ω ∈ N, R ⊆ Fυ × Fω. Let P and Q be probabilistic
algorithms, and D a deterministic algorithm. The pair (P, V ), where V = (Q,D)
is a d-query δ-statistical HVZK linear PCP for R with knowledge error ε and
query length m, if the following holds.

Syntax. On input v ∈ Fυ and w ∈ Fω, algorithm P computes π ∈ Fm. The
algorithm Q randomly generates d vectors q1, . . .qd ∈ Fm and some state
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information u. On input v, u, as well as a1, . . . , ad ∈ F, the algorithm
D accepts or rejects. Let V π(v) denote the execution of Q followed by the
execution of V on v, the output u of Q, and a1, . . . , ad, where ai = 〈π, qi〉.

Completeness. For every (v,w) ∈ R, the output of P (v,w) is a vector π ∈ Fm

such that V π(v) accepts with probability 1.
Knowledge. There exists a knowledge extractor E such that for every vector

π∗ ∈ Fm, if
Pr
[
V π∗

(v) accepts
]
≥ ε then E(π∗,v) outputs w such that (v,w) ∈ R.

Honest Verifier Zero Knowledge. The protocol between an honest prover ex-
ecuting π ← P (v,w) and adversarial verifier executing V π(v) with common
input v and prover’s input w is δ-private for the class of passive adversaries.

Similarly to different approaches to verifiable computation [5, 6, 23, 29, 32], in
our work we let the relation R to correspond to the circuit C executed by the
party whose observance of the protocol is being verified. In this correspondence,
v is the tuple of all inputs, outputs, and used random values of that party.
The vector w extends v with the results of all intermediate computations by
that party. Differently from existing approaches, v itself is private. Hence it is
unclear how the decision algorithm D can be executed on it. Hence we do not
use D as a black box, but build our solution on top of a particular LPCP [5].

The LPCP algorithms used by Ben-Sasson et al. [5] are statistical HVZK.
Namely, the values 〈π, qi〉 do not reveal any private information about π, unless
the random seed τ ∈ F for Q is chosen in a bad way, which happens with
negligible probability for a sufficiently large field. In [5], Q generates 5 challenges
q1, . . . , q5 and the state information u with length |v|+2. Given the query results
ai = 〈π, qi〉 for i ∈ {1, . . . , 5} and the state information u = (u0, u1, . . . , u|v|+1),
the following two checks have to pass:

a1a2 − a3 − a4u|v|+1 = 0, (∗)
a5 − 〈(1‖v), (u0, u1, . . . , u|v|)〉 = 0. (∗∗)

Here (∗) is used to show the existence of w, and (∗∗) shows that a certain
segment of π equals (1‖v) [5]. Throughout this work, we reorder the entries of π
compared to [5] and write π = (p‖1‖v) where p represents all the other entries
of π, as defined in [5]. The challenges q1, . . . , q5 are reordered in the same way.

This linear interactive proof can be converted to a zero-knowledge succinct
non-interactive argument of knowledge [6]. Unfortunately, it requires homomor-
phic encryption, and the number of encryptions is linear in the size of the circuit.
We show that the availability of honest majority allows the proof to be completed
without public-key encryptions.

The multiparty setting introduces a further difference from [5]: the vector v
can no longer be considered public, as it contains a party’s private values. We
thus have to strengthen the HVZK requirement in Def. 2, making v private to the
prover. The LPCP constructions of [5] do not satisfy this strengthened HVZK
requirement, but their authors show that this requirement would be satisfied if
a5 were not present. In the following, we propose a construction where just the
first check (∗) is sufficient, so only a1, . . . , a4 have to be published. We prove
that the second check (∗∗) will be passed implicitly. We show the following.
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Theorem 1. Given a δ-statistical HVZK instance of the LPCP of Ben-Sasson
et al. [5] with knowledge error ε, any n-party r-round protocol Π can be trans-
formed into an n-party (r + 8)-round protocol Ξ in the Ftr-hybrid model, which
computes the same functionality as Π and achieves covert security against ad-
versaries statically corrupting at most t < n/2 parties, where the cheating of any
party is detected with probability at least (1 − ε). If Π is δ′-private against pas-
sive adversaries statically corrupting at most t parties, then Ξ is (δ′+ δ)-private
against cover adversaries. Under active attacks by at most t parties, the number
of rounds of the protocol may at most double.

Theorem 1 is proved by the construction of the real functionality in the next
section, as well as the simulator presented in [28]. In the construction, we use
the following algorithms implicitly defined by Ben-Sasson et al. [5]:

– witness(C,v): if v corresponds to a valid computation of C, returns a witness
w such that (v,w) ∈ RC .

– proof(C,v,w): if (v,w) ∈ RC , it constructs a corresponding proof p.
– challenge(C, τ): returns q1, . . . , q5,u that correspond to τ , such that:

• for any valid proof π = (p‖1‖v), where p is generated by proof(C,v,w)
for (v,w) ∈ RC , the checks (∗) and (∗∗) succeed with probability 1;

• for any proof π∗ generated without knowing τ , or such w that (v,w) ∈
RC , either (∗) or (∗∗) fails, except with negligible probability ε.

5 Real Functionality

The protocol Πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn

doing the work of parties P1, . . . , Pn, and the functionality Ftr. The internal
state of each Mi contains a bit-vector mlci of length n where Mi marks which
other parties are acting maliciously. The protocol Πvmpc runs in five phases:
initialization, execution, message commitment, verification, and accusation.

In the initialization phase, the inputs xi and the randomness ri are commit-
ted. It is ensured that the randomness indeed comes from uniform distribution.
This phase is given in Fig.3. If at any time (corrupt, j) comes from Ftr, each
(uncorrupted) Mi writes mlci[j] := 1 (for each message (corrupt, j)) and goes to
the accusation phase.

In the execution phase, the parties run the original protocol as before, just
using Ftr to exchange the messages. This is given in Fig.4. If at any time at
some round � the message (corrupt, j) comes from Ftr (all uncorrupted machines
receive it at the same time), the execution is cut short, no outputs are produced
and the protocol continues with the commitment phase.

In the message commitment phase, all the n parties finally commit their
sent messages c�ij for each round � ∈ [r′] by sharing them to c�1ij , . . . , c

�n
ij ac-

cording to (n, t + 1) Shamir scheme. This phase is given in Fig. 5. Let v�
ij =

(xi‖ri‖c11i‖ · · · ‖c�−1
ni ‖c�ij) be the vector of inputs and outputs to the circuit C�

ij

that Mi uses to compute the �-th message to Mj . If the check performed by Mj

fails, then Mj has received from Mi enough messages to prove its corruptness
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Circuits: Mi gets from Z the message (circuits, i, (C�
ij)

n,n,r
i,j,�=1,1,1) and sends it to A.

Randomness generation and commitment: Let R = [t+1]. For all i ∈ R, j ∈ [n],
Mi generates rij for Mj . Mi shares rij to n vectors r1

ij , . . . , r
n
ij according to (n, t+ 1)

Shamir scheme. For j ∈ [n], Mi sends (transmit, (r share, i, j, k), rk
ij) to Ftr for Mk.

Randomness approval: For each j ∈ [n] \ {k}, i ∈ R, Mk sends (forward, (r share, i,
j, k)) to Ftr for Mj . Upon receiving ((r share, i, j, k), rk

ij) for all k ∈ [n], i ∈ R, Mj

checks if the shares comprise a valid (n, t+1) Shamir sharing. Mj sets ri =
∑

i∈R rij .
Input commitments: Mi with i ∈ H [resp. i ∈ C] gets from Z [resp. A] the input xi

and shares it to n vectors x1
i , . . . ,x

n
i according to (n, t + 1) Shamir scheme. For each

k ∈ [n] \ {i}, Mi sends to Ftr (transmit, (x share, i, k),xk
i ) for Mk.

At any time: if (corrupt, j) comes from Ftr, Mi writes mlci[j] := 1 and goes to the
accusation phase.

Fig. 3. The real functionality: initialization phase

For each round � the machine Mi computes c�ij = C�
ij(xi, ri, c

1
1i, . . . , c

�−1
ni ) for each

j ∈ [n] and sends to Ftr the message (transmit, (message, �, i, j), c�ij) for Mj .
After r rounds, uncorrupted Mi sends (output, c

r
1i, . . . , c

r
ni) to Z and sets r′ := r.

At any time: if (corrupt, j) comes from Ftr, each (uncorrupted)Mi writes mlci[j] := 1,
sets r′ := �− 1 and goes to the message commitment phase.

Fig. 4. The real functionality: execution phase

to others (but Fig. 5 presents an alternative, by publicly agreeing on c�ij). After

this phase, Mi has shared v�
ij among all n parties. Let v�k

ij be the share of v�
ij

given to machine Mk.
EachMi generatesw

�
ij = witness(C�

ij ,v
�
ij), a proof p

�
ij = proof(C�

ij ,v
�
ij ,w

�
ij),

and π�
ij = (p�

ij‖1‖v�
ij) in the verification phase, as explained in Sec. 4. The vector

p�
ij is shared to p�1

ij , . . . ,p
�n
ij according to (n, t+ 1) Shamir scheme.

All parties agree on a random τ , with Mi broadcasting τi and τ being their
sum. A party refusing to participate is ignored. The communication must be
synchronous, with no party Pi learning the values τj from others before he has
sent his own τi. Note that Ftr already provides this synchronicity. If it were not
available, then standard tools (commitments) could be used to achieve fairness.

Message sharing: As a sender, Mi shares c�ij to c�1ij , . . . , c
�n
ij according to (n, t +

1) Shamir scheme. For each k ∈ [n] \ {i}, Mi sends to Ftr the messages
(transmit, (c share, �, i, j, k), c�kij ) for Mj .
Message commitment: upon receiving ((c share, �, i, j, k), c�kij ) from Ftr for all k ∈
[n], the machine Mj checks if the shares correspond to c�ij it has already received.
If they do not, Mj sends (publish, (message, �, i, j)) to Ftr, so now everyone sees the
values that it has actually received from Mi, and each (uncorrupted) Mk should now
use c�kij := c�ij . If the check succeeds, then Mi sends to Ftr (forward, (c share, �, i, j, k))
for Mk for all k ∈ [n] \ {i},.

Fig. 5. The real functionality: message commitment phase
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All (honest) parties generate q�
1ij , . . . , q

�
4ij , q

�
5ij ,u

�
ij = challenge(C�

ij, τ) for

� ∈ [r′], i ∈ [n], j ∈ [n]. In the rest of the protocol, only q�
1ij , . . . , q

�
4ij , and

(u�ij)|v|+1 will be actually used.

As a verifier, each Mk computes π�k
ij = (p�k

ij ‖1‖v�k
ij ) = (p�k

ij ‖1‖xk
i ‖
∑

j∈R rk
ji

‖c1k1i ‖ · · · ‖c
�−1,k
ni ‖c�kij ), and then computes and publishes the values 〈π�k

ij , q
�
1ij〉,

. . . , 〈π�k
ij , q

�
4ij〉. Mi checks these values and complains about Mk that has in-

correctly computed them. An uncorrupted Mk may disprove the complaint by
publishing the proof and message shares that it received. Due to the linearity
of scalar product and the fact that all the vectors have been shared according
to the same (n, t+ 1) Shamir sharing, if the n scalar product shares correspond
to a valid (n, t+ 1) Shamir sharing, the shared value is uniquely defined by any
t+ 1 shares, and hence by the shares of some t+ 1 parties that are all from H.
Hence Mi is obliged to use the values it has committed before. The verification
phase for C�

ij for fixed � ∈ [r′], i ∈ [n], j ∈ [n] is given in Fig.6. For different C�
ij ,

all the verifications can be done in parallel.
As described, the probability of cheating successfully in our scheme is propor-

tional to 1/|F|. In order to exponentially decrease it, we may run s instances of
the verification phase in parallel, since by that time v�

ij are already committed.

This will not break HVZK assumption if fresh randomness is used in p�
ij .

During the message commitment and the verification phases, if at any time
(corrupt, j) comes from Ftr, the proof for Pj ends with failure, and all uncor-
rupted machines Mi write mlci[j] := 1.

Finally, each party outputs the set of parties that it considers malicious. This
short phase is given in Fig. 7.

6 Efficiency

In this section we estimate the overheads caused by our protocol transformation.
The numbers are based on the dominating complexities of the algorithms of linear
PCP of [5]. We omit local addition and concatenation of vectors since it is cheap.
The preprocessing phase of [5] is done offline, and can be re-used, so we do not
estimate the complexity here. It can be done with practical overhead [5].

Let n be the number of parties, t < n/2 the number of corrupt parties, r the
number of rounds, Ng the number of gates, Nw the number of wires, Nx the
number of inputs (elements of F), Nr the number of random elements of F, Nc

the number of communicated elements of F, and Ni = Nw −Nx −Nr −Nc the
number of intermediate wires in the circuit; then |v| = Nx +Nr +Nc.

Let S(n, k) denote the number of field operations used in sharing one field
element according to Shamir scheme with threshold k, which is at most nk

multiplications. We use S
−1

(n, k) to denote the complexity of verifying if the
shares comprise a valid sharing and recovering the secret, which is also at most
nk multiplications. Compared to the original protocol, for eachMi the proposed
solution has the following computation/communication overheads.

Initialization: Do Shamir sharing of one vector of length Nx in Nx ·S(n, t+1)
field operations. Transmit t+1 vectors of length Nr and one vector of length Nx
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Remaining proof commitment: As the prover, Mi obtains w�
ij and π�

ij =
(p�

ij‖1‖v�
ij) using the algorithms witness and proof . Mi shares p�

ij to p�1
ij , . . . ,p

�n
ij

according to (n, t + 1) Shamir scheme. For each k ∈ [n] \ {i}, it sends to Ftr

(transmit, (p share, �, i, j, k),p�k
ij ) for Mk.

Challenge generation: Each Mk generates random τk ← F and sends to Ftr the
message (broadcast, (challenge share, �, i, j, k), τk). If some party refuses to participate,
its share will just be omitted. The challenge randomness is τ = τ1 + . . . + τn.
Machine Mk generates q�

1ij , . . . , q
�
4ij , q

�
5ij ,u

�
ij = challenge(C�

ij , τ ), then computes

π�k
ij = (p�k

ij ‖1‖v�k
ij ) = (p�k

ij ‖1‖xk
i ‖

∑
j∈R rk

ji‖c1k1i ‖ · · · ‖c�−1,k
ni ‖c�kij ), and finally computes

and broadcasts 〈π�k
ij , q

�
1ij〉, . . . , 〈π�k

ij , q
�
4ij〉.

Scalar product verification: Each Mi verifies the published 〈π�k
ij , q

�
sij〉 for

s ∈ {1, . . . , 4}. If Mi finds that Mk has computed the scalar products correctly, it
sends to Ftr the message (broadcast, (complain, �, i, j, k), 0). If some Mk has provided
a wrong value, Mi sends to Ftr (broadcast, (complain, �, i, j, k), (1, sh�k

sij)), where
sh�k

sij is Mi’s own version of 〈π�k
ij , q

�
sij〉. Everyone waits for a disproof from Mk. An

uncorrupted Mk sends to Ftr the messages (publish,mid) for mid ∈ {(x share, i, k),
(r share, 1, i, k), . . . , (r share, |R|, i, k), (p share, �, i, j, k), (c share, 1, 1, i, k), . . . , (c share,
r′, n, i, k), (c share, �, i, j, k)}. Now everyone may construct π�k

ij and verify whether the
version provided by Mi or Mk is correct.
Final verification: Given 〈π�k

ij , q
�
sij〉 for all k ∈ [n], s ∈ {1, . . . , 4}, each machine Mv

checks if they indeed correspond to valid (n, t + 1) Shamir sharing, and then locally
restores a�

sij = 〈π�
ij , q

�
sij〉 for s ∈ {1, . . . , 4}, and checks (∗). If the check succeeds, then

Mv accepts the proof of Mi for C
�
ij . Otherwise it immediately sets mlcv[i] := 1.

Fig. 6. The real functionality: verification phase

Finally, each party Mi sends to Z the message (blame, i, {j |mlci[j] = 1}).
Fig. 7. The real functionality: accusation phase

to each other party. Do t+1 recoverings in (t+1) ·Nr ·S
−1

(n, t+1). The parties
that generate randomness do n ·Nr ·S(n, t+1) more field operations to compute
n more sharings and transmit n more vectors of length Nr to each other party.

Execution: No computation/communication overheads, except those caused by
the use of the message transmission functionality.

Message Commitment: Share all the communication in rn(n−1)·Nc ·S(n, t+
1) operations. Send to each other party rn vectors of length Nc. Do r(n − 1)

recoverings in r(n− 1) ·Nc · S
−1

(n, t+ 1) operations.

Verification: Compute the proof p of length (4 + Ng + Ni) in 18Ng + 3 ·
FFT (Ng) + logNg + 1 field operations [5], where FFT (N) denotes the com-
plexity of the Fast Fourier Transform which is c ·N · logN for a small constant
c. Share p in (4 + Ng + Ni) · S(n, t + 1) operations. Send a vector of length
(4+Ng+Ni) to every other party. Broadcast one field element (the τ). Generate
the 4 challenges and the state information in 14·Ng+log(Ng) field operations [5].
Compute and broadcast 4 scalar products of vectors of length (5 + Nw + Ng)
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(the shares of 〈(p‖1‖v), qs〉). Compute 4 certain linear combinations of t scalar
products and do 2 multiplications in F (the products in a1a2 − a3 − a4u).

Assuming Nw ≈ 2 · Ng, for the whole verification phase, this adds up to
≈ rn(2 ·S(n, t+1)Ng +3FFT (2Ng)+26nNg) field operations, the transmission
of ≈ 4rn2Ng elements of F, and the broadcast of 4rn2 elements of F per party.

If there are complaints, then at most rn vectors of length Nc should be pub-
lished in the message commitment phase, and at most rn vectors of length
(4 + Ng + Ni) (p shares), rn2 vectors of length Nc (communication shares),
n · (t+ 1) vectors of length Nr (randomness shares) and n vectors of length Nx

(input shares) in the verification phase (per complaining party).
As long as there are no complaints, the only overheads that Ftr causes is that

each message is signed, and each signature is verified.
The knowledge error of the linear PCP of [5] is ε = 2Ng/F, and the zero

knowledge is δ-statistical for δ = Ng/F. Hence desired error and the circuit size
define the field size. If we do not want to use too large fields, then the proof can
be parallelized as proposed in the end of Sec. 5.

7 Example: Verifiable Shamir Secret Sharing

In this section we show how our solution can be applied to [36], yielding a verifi-
able secret sharing (VSS) protocol. Any secret sharing scheme has two phases —
sharing and reconstruction — to which the construction presented in this paper
adds the verification phase.

To apply our construction, we have to define the arithmetic circuits used
in [36]. For i ∈ {1, . . . , n} let Ci be a circuit taking s, r1, . . . , rt ∈ F as inputs
and returning s +

∑t
j=1 rji

j . If s is the secret to be shared, then Ci is the
circuit used by the dealer (who is one of the parties P1, . . . , Pn) to generate the
share for the i-th party using the randomness (r1, . . . , rt). It computes a linear
function, and has no multiplication gates. According to the LPCP construction
that we use, each circuit should end with a multiplication. Hence we append a
multiplication gate to it, the other argument of which is 1. Let C be the union
of all Ci, it is a circuit with 1 + t inputs and n outputs.

In the reconstruction phase, the parties just send the shares they’ve received
to each other. A circuit computing the messages of this phase is trivial — it
just copies its input to output. We note that Ftr already provides the necessary
publishing functionality for that. Hence we’re not going to blindly follow our
VMPC construction, but use this opportunity to optimize the protocol. In effect,
this amounts to only verifying the sharing phase of the VSS protocol, and relying
on Ftr to guarantee the proper behaviour of parties during the reconstruction.
The whole protocol is depicted in Fig. 8.

A couple of points are noteworthy there. First, the reconstruction and verifica-
tion phases can take place in any order. In particular, verification could be seen
as a part of the sharing, making a 3-round protocol (in optimistic case). Second,
the activities of the dealer in the sharing phase have a dual role in terms of the
VMPC construction. They form both the input commitment step in Fig. 3, as
well as the execution step for actual sharing.
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Preprocessing. Parties run the Randomness generation and commitment and Ran-
domness approval steps of Fig. 3, causing the dealer to learn r1, . . . , rt. Each ri is shared
as ri1, . . . , rin between P1, . . . , Pn.
Sharing. Dealer computes the shares s1, . . . , sn of the secret s, using the randomness
r1, . . . , rt [36], and uses Ftr to send them to parties P1, . . . , Pn.
Reconstruction. All parties use the publish-functionality of Ftr to make their shares
known to all parties. The parties reconstruct s as in [36].
Verification. The dealer shares each si, obtaining si1, . . . , sin. It transmits them all
to Pi, which verifies that they are a valid sharing of si and then forwards each sij to
Pj . [Message commitment]
The dealer computes w = witness(C, s, r1, . . . , rt) and p = proof (C, (s, r1, . . . , rt),w).
It shares p as p1, . . . ,pn and transmits pj to Pj . [Proof commitment]
Each party Pi generates a random τi ∈ F and broadcasts it. Let τ = τ1+ · · ·+ τn. Each
party constructs q1, . . . , q4, q5,u = challenge(C, τ ). [Challenge generation]
Each party Pi computes aji = 〈(pi‖1‖si‖r1i‖ · · · ‖rti‖s1i‖ · · · ‖sni), qj〉 for j ∈
{1, 2, 3, 4} and broadcasts them. The dealer may complain, in which case
pi, si, r1i, . . . , rti, s1i, . . . , sni are made public and all parties repeat the computation
of aji. [Scalar product verification]
Each party reconstructs a1, . . . , a4 and verifies the LPCP equation (∗).

Fig. 8. LPCP-based VSS

Ignoring the randomness generation phase (which takes place offline), the com-
munication complexity of our VSS protocol is the following. In sharing phase,
(n−1) values (elements of F) are transmitted by the dealer and in the reconstruc-
tion phase, each party broadcasts a value. These coincide with the complexity
numbers for non-verified secret sharing. In the verification phase, in order to
commit to the messages, the dealer transmits a total of n(n − 1) values to dif-
ferent parties. The same number of values are forwarded. According to Sec. 6,
the proof p contains t + n + 4 elements of F. The proof is shared between par-
ties, causing (n − 1)(t + n + 4) elements of F to be transmitted. The rest of
the verification phase takes place over the broadcast channel. In the optimistic
case, each party broadcasts a value in the challenge generation and four values in
the challenge verification phase. Hence the total cost of the verification phase is
(n−1)(3n+ t+4) point-to-point transmissions and 5n broadcasts of F elements.

We have evaluated the communication costs in terms of Ftr invocations, and
have avoided estimating the cost of implementing Ftr. This allows us to have
more meaningful comparisons with other VSS protocols. We will compare our
solution to the 4-round statistical VSS of [27], the 3-round VSS of [33], and the
2-round VSS of [3] (see Table 1). These protocols have different security models
and different optimization goals, therefore also selecting different methods for
securing communication between parties. The number of field elements thus
communicated is likely the best indicator of complexity.

The 4-Round Statistical VSS of [27]. This information-theoretically secure
protocol uses an information checking protocol (ICP ) for transmission, which
is a modified version of ICP introduced in [34]. The broadcast channel is also
used.
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Table 1. Comparing the Efficiency of VSS Protocols (tr transmissions, bc broadcasts)

Rounds Sharing Reconstruction Verification

Ours 7 (n− 1) · tr n · bc (3n+ t+ 4)(n− 1) · tr + 5n · bc
[27] 4 3n2 · tr O(n2) · tr 0

[33] 3 2n · tr + (n+ 1) · bc 2n · bc 0

[3] 2 4n2 · tr + 5n2 · bc n2 · bc 0

In the protocol, the dealer constructs a symmetric bivariate polynomial F (x, y)
with F (0, 0) = s, and gives fi(x) = F (i, x) to party Pi. Conflicts are then re-
solved, leaving the honest parties with a polynomial FH(x, y) that allows the
reconstruction of s. The distribution takes 3n2 transmissions of field elements
using the ICP functionality, while the conflict resolution requires 4n2 broadcasts
(in the optimistic case). The reconstruction phase requires each honest party Pi

to send its polynomial fi to all other parties using the ICP functionality, which
again takes O(n2) transmissions.

The 3-Round VSS of [33]. Pedersen’s VSS is an example of a computa-
tionally secure VSS. The transmission functionality of this protocol is based on
homomorphic commitments. Although the goal of commitments is also to ensure
message delivery and make further revealing possible, they are much more pow-
erful than Ftr and ICP , so direct comparison is impossible. In the following, let
Comm(m, d) denote the commitment of the message m with the witness d. We
note that the existence of a suitable Comm is a much stronger computational
assumption than the existence of a signature scheme sufficient to implement Ftr.

To share s, the dealer broadcasts a commitment Comm(s, r) for a random r.
It shares both s and r, using Shamir’s secret sharing with polynomials f and g,
respectively. It also broadcasts commitments to the coefficients of f , using the
coefficients of g as witnesses. This takes 2n transmissions of field elements, and
(n+ 1) broadcasts (in the optimistic case). Due to the homomorphic properties
of Comm, the correctness of any share can be verified without further commu-
nication. The reconstruction requires the shares of s and r to be broadcast; i.e.
there are 2 broadcasts from each party.

The 2-Round VSS of [3]. This protocol also uses commitments that do not
have to be homomorphic. This is still different from Ftr and ICP : commitments
can ensure that the same message has been transmitted to distinct parties.

The protocol is again based on the use of a symmetric bivariate polynomial
F (x, y) with F (0, 0) = s by the dealer. The dealer commits to all values F (x, y),
where 1 ≤ x, y ≤ n and opens the polynomial F (i, x) for the i-th party. The re-
duction in rounds has been achieved through extra messages committed and sent
to the dealer by the receiving parties. These messages can help in conflict reso-
lution. In the optimistic case, the sharing protocol requires 4n2 transmissions of
field elements and 5n2 broadcasts. The reconstruction protocol is similar to [27],
with each value of F (x, y) having to be broadcast by one of the parties.

We see that the LPCP-based approach performs reasonably well in verifiable
Shamir sharing. The protocols from the related works have less rounds, and
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the 3-round protocol of [33] has also clearly less communication. However, for a
full comparison we would also have to take into account the local computation,
since operations on homomorphic commitments are more expensive. Also, the
commitments may be based on more stringent computational assumptions than
the signature-based communication primitives we are using. We have shown that
the LPCP-based approach is at least comparable to similar VSS schemes. Its low
usage of the broadcast functionality is definitely of interest.

8 Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols to covertly
secure ones, where a malicious party can skip detection only with negligible
probability. The protocol transformation proposed here is particularly attractive
to be implemented on top of some existing, highly efficient, passively secure SMC
framework. The framework would retain its efficiency, as the time from starting
a computation to obtaining the result at the end of the execution phase would
not increase. Also, the overheads of verification, proportional to the number of
parties, would be rather small due to the small number of computing parties in
all typical SMC deployments (the number of input and result parties [7] may be
large, but they can be handled separately).

The implementation would allow us to study certain trade-offs. Sec. 6 shows
that the proof generation is still slightly superlinear in the size of circuits, due
to the complexity of FFT. Shamir’s secret sharing would allow the parties to
commit to some intermediate values in their circuits, thereby replacing a single
circuit with several smaller ones, and decreasing the computation time at the
expense of communication. The usefulness of such modifications, and the best
choice of intermediate values to be committed, would probably depend to large
extent on the actual circuits.

Note that the verifications could be done after each round. This would give us
security against active adversaries in a quite cheap manner, but would incur the
overhead of the verification phase during the runtime of the actual protocol. The
implementation will allow us to evaluate the usefulness of such transformation.
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Abstract. Peikert and Waters proposed the notion of lossy trapdoor
function in STOC 2008. In this paper, we propose a relaxation of lossy
trapdoor function, called lossy trapdoor relation. Unlike the lossy trap-
door function, lossy trapdoor relation does not require completely recov-
ering the input but a public computable injective map of it. Interestingly,
the lossy trapdoor relation maintains the application of lossy trapdoor
function on the lossy encryption. Moreover, motivated by the construc-
tion of adaptive trapdoor relation proposed by Wee (Crypto 2010), we
introduce all-but-one verifiable lossy trapdoor relation which is in fact a
relaxation of all-but-one lossy trapdoor function.
– The lossy trapdoor relation can be constructed from discrete loga-

rithm related assumptions and subgroup membership assumptions
efficiently. We also give an efficient construction of all-but-one ver-
ifiable lossy trapdoor relation from DLDH assumption over pairing
group. As a byproduct, we propose an all-but-one lossy trapdoor
function directly based on DLDH assumption which partially solve
the open problem of Freeman et al. (PKC 2010).

– The lossy trapdoor relation has a direct application to the lossy
encryption and we propose new lossy encryptions based on three
subgroup membership assumptions. The all-but-one verifiable lossy
trapdoor relation can be used to construct adaptive trapdoor rela-
tion, which derives chosen ciphertext secure encryption.

Keywords: Lossy trapdoor relation, Lossy trapdoor functions, Lossy
encryption, Adaptive trapdoor relation.

1 Introduction

Peikert and Waters [20] proposed the notion of lossy trapdoor function (LTDF)
in STOC 2008. LTDF implies cryptographic primitives such as one-way trapdoor
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function [4], collision resistant hash function [8], oblivious transfer protocol [9],
chosen ciphertext secure public key encryption scheme[20], deterministic public
key encryption scheme [2], OAEP based public key encryption scheme [13], and
selective opening secure public key encryption scheme [11]. LTDFs can be con-
structed based on many assumptions[20] [5] [13] [24] [21], especially lattice-based
assumption [20].

Peikert and Waters [20] proposed a construction of LTDF, based on the De-
cisional Diffie-Hellman (DDH) assumption over a group of prime order p. But
the construction is inefficient since it requires a function index of size O(n2)
where n is greater than log p. Boyen et al. [3] shrank the function index of the
DDH-based construction from O(n2) to O(n) with common reference string and
pairing. But their method can only be applied to bilinear groups and their al-
gorithm requires computing pairing, which is an expensive operation. Freeman
et al. [5], [6] proposed a construction based on the d-linear assumption which is
a generalization of the DDH assumption. This construction is inefficient either
since the size of the function index is O(n2) where n is greater than d log p. Both
constructions use the ElGamal encryption variant, and the input are embedded
into the exponents of group elements. In order to recover the input, only one bit
(or a few bits) can be embedded into one group element. And n should be large
enough in order to make lossiness.

Freeman et al. [5], [6] proposed an efficient LTDF based on the decisional
composite residuosity (DCR) assumption over Z∗

Ns , for s ≥ 3. The underlying
technique is that, given the factorization of N , the subgroup discrete logarithm
(SDL) problem (given (1+N)xyN

s−1

mod Ns to compute x) is easy. Xue et al.
[24] shown a generic framework of DCR-based LTDF based on subgroup mem-
bership assumption with two special requirements. Let G = KL and (G,L) be
the instance of subgroup membership assumption. The first requirement is that
K’s order must be significantly larger than L’s order in order to make lossiness.
The second requirement is that the subgroup discrete logarithm problem is solv-
able with a trapdoor. The second requirement is too strong such that only DCR
[18] and Higher Residue [15] assumptions have this property.

But some cryptographic primitives do not require the recovering of the input,
such as the key encapsulation mechanism. We consider the relaxation of LTDF,
lossy trapdoor relation, which does not require the recovering of the input but
a public computable injective map of it. We also investigate whether the lossy
trapdoor relation maintains the applications of LTDF, such as lossy encryption
and adaptive trapdoor relation.

1.1 Our Contribution

In this paper, we propose a relaxation of lossy trapdoor function, called lossy
trapdoor relation (LR). Our institution is that the decapsulation algorithm of
key encapsulation mechanism dose not require completely recovering the ran-
dom string but the encapsulated key which is a function of the random string.
The lossy trapdoor relation, unlike the lossy trapdoor function, does not require
completely recovering the input but a public computable injective map of it.
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Interestingly, the lossy trapdoor relation maintains the application of lossy trap-
door function on the lossy encryption. Moreover, motivated by the construction
of adaptive trapdoor relation, we introduce all-but-one (ABO) verifiable lossy
trapdoor relation (VLR) which is a relaxation of all-but-one LTDF. In the fol-
lowing, we explain our result in details.

Lossy Trapdoor Relation and Verifiable Lossy Trapdoor Relation.
LTDFs require that, in the injective model, on input the trapdoor t and F (x),
there is an inverse algorithm to compute x. Lossy trapdoor relations relax this
requirement: on input the trapdoor t and F (x), there is an inverse algorithm to
compute H(x), where H is a public computable injective function. (H(x), F (x))
is the binary relation here. In the key encapsulation mechanism, we only need to
encapsulate an random string, but not to recover the it. This relaxation fulfills
the functionality requirement of the key encapsulation mechanism.

Wee [22] proposed the notion of adaptive trapdoor relation (H(x), f(x)). An
adaptive trapdoor relation is one that, given challenge f∗(x∗), it remains difficult
to compute H∗(x∗) even if the adversary is given access to an inverse algorithm
to compute H(x), except that the adversary cannot query the oracle on the chal-
lenge. Motivated by the construction of adaptive trapdoor relation, we introduce
all-but-one verifiable lossy trapdoor relation. Given an all-but-one lossy trapdoor
relation Glr(x), the inverse algorithm needs only to compute H(x) instead of the
input x. Given the trapdoor t,H(x) and Glr(y), there is an efficient algorithm
V er to check that if Glr(x) = Glr(y) or not.

Efficient Constructions of LR and VLR. There are efficient constructions of
LRs based on the DDH and d-linear assumptions. Since there is no requirement
to compute discrete logarithm over prime order group G, log |G| bits can be
embedded into the exponent of one group element. The LRs based on DDH and
d-linear assumptions contain only constant number of group elements. We also
propose a generic construction of LR based on subgroup membership assumption
without the requirement of subgroup discrete logarithm property. But we require
that the generators of subgroups must be public.

We propose efficient all-but-one VLR based on DLDH assumption over pairing
group. Although there is generic construction of all-but-one LTDF from LTDF in
[20], and thus all-but-one LTDF from d-linear assumption, the direct construc-
tion of all-but-one LTDF from d-linear assumption (d > 1) is unknown. Freeman
et al. [5] pointed out that it is not easy to construct all-but-one LTDF from d-
linear assumption directly for d ≥ 2, and left this as an open problem. The
main obstacle is the reduction of hidden lossy branch property to the discrete
logarithm assumption. In our construction, we apply the lossy tag to submatrix,
and it is feasible to reduce the hidden lossy branch property to the discrete loga-
rithm assumption. As a byproduct, we give an all-but-one LTDF directly based
on DLDH assumption and partially solve the open problem.

Lossy Encryption and Adaptive Trapdoor Relation. The lossy trapdoor
relation maintains the lossy encryption application of LTDF. These LRs above
derives efficient constructions of lossy encryptions based on discrete logarithm
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related assumptions and subgroup membership assumption. The lossy encryp-
tion based on DDH assumption is less efficient than that proposed by [1]. The
main difference is that, in our construction, we extract lost randomness by hash
function and then encrypt message, while the one in [1] use the lossiness directly.
By instantiating the subgroup membership assumption, our generic construction
derives three new efficient lossy encryptions.

We also give the construction of adaptive trapdoor relation from verifiable LR
and all-but-one VLR. One example of adaptive trapdoor relation is given based
on DLDH assumption over pairing group. Our result gives new insight of the
adaptive trapdoor relation.

1.2 Outline

This paper is organized as follows. In Sect. 2, we introduce the notations and
recall two definitions. In Sect. 3, we present the concept of lossy trapdoor re-
lation. In Sect. 4, we present concrete constructions of lossy trapdoor relation
and all-but-one verifiable lossy trapdoor relation based on the number theory
assumptions. In Sect. 5, we show lossy encryption based on lossy trapdoor rela-
tion. In Sect. 6, we give the adaptive trapdoor relation from all-but-one verifiable
lossy trapdoor relation. In Sect. 7, we conclude this paper.

2 Preliminaries

2.1 Definitions

Definition 1 (Lossy Encryption). A lossy encryption scheme is a tuple of
probability polynomial time (PPT) algorithms (Geninj, Genloss, Enc, Dec).

Geninj Output injective keys (pk, sk). The private key space is K.
Genloss Output lossy keys (pkloss,⊥).
Enc M×R → C. The message space is M. The random string space is R and

the ciphertext space is C.
Dec K × C → M.

These algorithms satisfy the following properties:

1. Correctness. For all m ∈ M and r ∈ R, Dec(sk, Enc(pk,m, r)) = m.
2. Indistinguishability of injective keys from lossy keys. The injective and lossy

public keys are computationally indistinguishable.

{pk|(pk, sk) ← Geninj} =c {pk|(pk,⊥) ← Genloss}

3. Lossiness of encryption with lossy keys. For any lossy public key pkloss, and
any pair of message m0,m1 ∈ M, there is

{Enc(pkloss,m0, r))|r ∈ R} =s {Enc(pkloss,m1, r))|r ∈ R}

We recall the definition of adaptive trapdoor relation given by Wee [22] here.
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Definition 2 (Adaptive Trapdoor Relations). A family of tag based adap-
tive trapdoor relations is a family of algorithms (TDG,FID, F

−1
ID ) that satisfies

the following properties:

Trapdoor Generation TDG. It outputs a random (ID, Td,H), where ID is
the function index, Td is the trapdoor and H is an injective map.

Public Evaluation FID. On input (ID,H), TAG and a random number r, it
computes (H(r), fID(TAG, r)), where (H(r), fID(TAG, r)) is the so called
relation.

Inversion F−1
ID . For all (ID, Td,H), TAG and y = FID(TAG, r), it computes

F−1
ID (Td, TAG,FID(TAG, r))) = H(r)

The above algorithms should satisfy the adaptive one-way property, i.e., for all
PPT adversary A the following probability is negligible:

Pr

[
s = s′ :

TAG∗ ← A(1k); (ID, Td) ← TDG(1k);

(s, y) ← FID(TAG∗, r,H)); s′ ← AF−1
ID (Td,·,·)

]
,

where A is allowed to query F−1
ID (Td, ·, ·) on any tag except TAG∗.

3 Lossy Trapdoor Relation

In this section, we propose the definition of lossy trapdoor relation and all-but-
one verifiable lossy trapdoor relation.

Informal Description. A collection of lossy trapdoor relations consists of two
families of functions. Functions in the first mode are injective, while functions in
the second are lossy, meaning that the size of their image is significantly smaller
than the size of their preimage. Functions {Flr} in two modes are indexed by
function index {σ}. The main relaxation is that: in both modes the evaluation
algorithm, on input x, compute the function Flr(σ, x) and the injective map
H(x); in the injective mode, given the trapdoor, the inverse algorithm computes
H(x) instead of x. In fact, the evaluation algorithm is a sample algorithm for
binary relation (H(x), Flr(σ, x)) here.

Definition 3 (Lossy Trapdoor Relation). A collection of (m, l)-lossy trap-
door relations is a 4-tuple of PPT algorithms (Sinj , Sloss, Flr , F

−1
lr ) such that:

1. Sample injective mode Sinj(1
n). On input security parameters, it outputs a

triple (σ, τ,H) ∈ {0, 1}∗ ×{0, 1}∗ × {0, 1}∗ where σ is a function index, τ is
a trapdoor, and H is a public computable injective map.

2. Sample lossy mode Sloss(1
n). On input security parameters, it outputs a

function index σ ∈ {0, 1}∗ and a public computable injective map H.
3. Evaluation algorithm Flr. For every function index σ produced by either Sloss

or Sinj, the algorithm Flr(σ, ·) computes a function fσ : {0, 1}m → {0, 1}∗
and a public computable injective map H : {0, 1}m → D with one of the two
following modes:



Lossy Trapdoor Relation 167

– Lossy: If σ is produced by Sloss, then the size of the image of fσ is at
most 2m−l.

– Injective: If σ is produced by Sinj, then the function fσ is injective.
4. Decapsulation algorithm F−1

lr . For every pair (σ, τ) produced by Sinj and
every f = fσ(x) for some x ∈ {0, 1}m, it computes F−1

lr (τ, f) = H(x).

In the above algorithms, the two ensembles {σ, σ ← Sloss(1
n)} and {σ, (σ, τ) ←

Sinj(1
n)} are computationally indistinguishable.

Remark 1. We do not require that the injective map H(·) here is invertible even
given the trapdoor. It is actually the lossy trapdoor function if H(·) is invertible
given the trapdoor. The lossy trapdoor function is a lossy trapdoor relation
associated with H(·) being the identity map.

Motivated by the construction of the adaptive trapdoor relation, we propose
the definition of all-but-one verifiable lossy trapdoor relation. In the adaptive
trapdoor relation, the challenger should provide the decryption oracle and should
check the well-formedness of the queried ciphertext. We add the all-but-one
and verifiable property in the lossy trapdoor relation in order to provide the
functionality of verification.

Definition 4 (All-but-one Verifiable Lossy Trapdoor Relation). A col-
lection of (m, l)-all-but-one lossy trapdoor functions is a 5-tuple of PPT algo-
rithms (ABOB, ABOGen, Glr, G

−1
lr , V er) such that:

1. Sample a branch ABOB. On input 1n, it outputs a value b∗ ∈ {0, 1}∗.
2. Sample a function ABOGen. For every value b∗ produced by ABOB, the

algorithm outputs a tuple (σ, τ, β,H) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}∗
where σ is a function index, τ is a trapdoor, β is a set of lossy branch, and
H is a public computable injective map.

3. Evaluation algorithm Glr. For any b and b∗ produced by ABOB, every σ
produced by ABOGen, it computes a function fσ,b : {0, 1}m → {0, 1}∗ and
an injective map H : {0, 1}m → D with one of the two following modes:
– Lossy: If b = b∗, then the size of the image of fσ,b is at most 2m−l.
– Injective: If b �∈ β, then the function fσ,b is injective.

4. Decapsulation algorithmG−1
lr . For any b and b∗ produced by ABOB, trapdoor

τ and fσ,b(x), it extracts H(x). For every x ∈ {0, 1}m, it holds that,

G−1
lr (τ, b, fσ,b(x)) = H(x).

5. Verification algorithm V er. For any (H(x), fσ,b(y)) ∈ D × {0, 1}∗, it output
1 if fσ,b(y) = fσ,b(x) and 0 otherwise. This is a public verification of the
binary relation (H(x), fσ,b(x)).

– In the above algorithms, the two ensembles {σ, (σ, τ, β) ← ABOGen(1n, b)}
and {σ, (σ, τ, β) ← ABOGen(1n, b∗)} are computationally indistinguishable.

– Any PPT algorithm A that receives an input (σ, b∗), where b∗ ← ABOB(1n)
and (σ, τ, β) ← G(1n, b∗), has only a negligible probability of outputting an
element b ∈ β \ {b∗}. We call this the hidden lossy branch property.

Remark 2. The all-but-one lossy trapdoor function is an all-but-one verifiable
lossy trapdoor relation.
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4 Instantiation of LR and All-But-One VLR

In this section, we first propose the lossy trapdoor relations from the DDH,
d-linear and subgroup membership assumptions and then give an all-but-one
verifiable lossy trapdoor relation from DLDH assumption over pairing group.

4.1 Instantiation of LR

DDH Based Lossy Trapdoor Relation
We use the ”matrix encryption” mechanism proposed by Peikert and Waters
in [20]. We just use the simple version of the 2 × 2 matrix encryption. In the
lossy model, the first column and second column compose a DDH tuple, first and
third column compose another DDH tuple. The image of function is decide by
r1x1 + r2x2 mod p, which is at most p. In the injective model, the first column
and second column compose an ElGamal like encryption, first and third column
compose another ElGamal like encryption.

Definition 5 (DDH Assumption). Let g be the generator of G, g1, g2, g3 are
chosen randomly in G. g1 = gr1 , g2 = gr2 and g3 = gr3 . The problem of deciding
whether r3 = r1r2 or not is the DDH problem and the DDH assumption asserts
that the DDH problem is hard.

We define LRDDH as 4-tuple of PPT algorithms (Sinj , Sloss, Flr , F
−1
lr ).

1. Sample injective mode Sinj. On input 1n, it chooses a cyclic group G =< g >
with order p. It samples random r1, r2, s1, s2 ∈ Zp. The function index is

c =

(
gr1 , gr1s1g, gr1s2

gr2 , gr2s1 , gr2s2g

)
.

The trapdoor is t = (s1, s2). The injective map is H : (x1, x2) ∈ Z2
p �→

(gx1 , gx2).
2. Sample lossy mode Sloss. On input 1n, it chooses a cyclic group G =< g >

with order p. It samples random r1, r2, s1, s2 ∈ Zp. The function index is

c =

(
gr1 , gr1s1 , gr1s2

gr2 , gr2s1 , gr2s2

)
.

The injective map is H : (x1, x2) ∈ Z2
p �→ (gx1 , gx2).

3. Evaluation algorithm Flr. Given a function index c = (cij)2×3 and the input
x = (x1, x2) ∈ Z2

p the algorithm outputs the function f(x) = (cx1
11c

x2
21 , c

x1
12c

x2
22 ,

cx1
13c

x2
23) and H(x) = (gx1 , gx2).

4. Decapsulation algorithm F−1
lr . Given the trapdoor t = (s1, s2) and the vector

f = (f1, f2, f3), it computes h = (f2/f
s1
1 , f3/f

s2
1 ).

Theorem 1. Under the DDH assumption, LRDDH is a (2 log p, log p)-lossy trap-
door relation.
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Proof. By Lemma 3.1 in [20], the matrix encryption of I2×2 and 02×2 are compu-
tationally indistinguishable under DDH assumption. Thus, the function indexes
in two modes are computationally indistinguishable under DDH assumption. The
decapsulation algorithm computes f2/f

s1
1 = gx1+r1s1x1+r2s1x2/gs1(r1x1+r2x2) =

gx1 and f3/f
s2
1 = gx2+r1s2x1+r2s2x2/gs2(r1x1+r2x2) = gx2 . The correctness of de-

capsulation algorithm holds. In the lossy mode, the function image is decided
by x1r1 + x2r2 mod p, the image size is at most p. ��

d-Linear Based Lossy Trapdoor Relation. In the following, we generalize
the construction above to the LR based on d-linear assumption. We will use
the notation and method in [5]. We denote the finite field of p elements by
Fp and the set of n × n matrices of rank k by Rkk(F

n×n
p ) (1 ≤ k ≤ n). For a

group G of order p, an element g ∈ G and a vector −→x = (x1, · · · , xn) ∈ Fn×n
p , let

g
−→x = (gx1 , · · · , gxn). For an n×nmatrixM = (mij) over F

n×n
p , let gM = (gmij ),

and (g1, · · · , gn)M = (
∏n

j=1 g
m1j

j , · · · ,
∏n

j=1 g
mnj

j ). For a matrix S = (gij) ∈
Gn×n and a vector −→x = (x1, · · · , xn) ∈ Fn×n

p , let S
−→x = (

∏n
j=1 g

xj

1j , · · · , g
xj

nj). It
satisfies that

(gM )
−→x = gM

−→x = (g
−→x )M .

We recall the d-linear assumption here. And the 2-linear assumption is also
known as the Decision Linear assumption (DLDH).

Definition 6 (d-linear Assumption). Let g be the generator of G with order
p and d ≥ 2 be an integer. We say that the d-linear assumption holds in G if the
distributions

{(g1, · · · , gd, gr11 , · · · , g
rd
d , gr1+···+rd) : g1 · · · , gd ← G, r1 · · · , rd ← Zp},

{(g1, · · · , gd, gr11 , · · · , g
rd
d , gs) : g1 · · · , gd ← G, r1 · · · , rd, s ← Zp},

are computationally indistinguishable.

We define LRd-linear as 4-tuple of PPT algorithms (Sinj , Sloss, Flr, F
−1
lr ).

1. Sample injective mode Sinj. On input 1n, it chooses a cyclic group G =< g >
with order p. It samples a random matrix M ∈ Rkn(F

n×n
p ). The function

index is S = gM . The trapdoor is t = M−1. The injective map is H : Fn
P →

Gn.
2. Sample lossy mode Sloss. On input 1n, it chooses a cyclic group G =< g >

with order p. It samples a random matrix M ∈ Rkd(F
n×n
p ). The function

index is S = gM . The injective map is H : Fn
P → Gn.

3. Evaluation algorithm Flr. Given a function index σ = c and the input −→x ∈
Fn
p , the algorithm outputs the function f(x) = S

−→x and H(x) = g
−→x .

4. Decapsulation algorithm F−1
lr . Given the trapdoor t = M−1 and the vector

f = (f1, · · · , fn), it computes h = f t.

Theorem 2. Under the d-linear assumption, LRd-linear is an (n log p, (n − d)
log p)-lossy trapdoor relation for n > d.
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Subgroup Membership Assumption (SMA) Based LR

Definition 7 (Subgroup Membership Assumption [7]). Let G be a finite
cyclic group with subgroup K and L, such that G = KL and K ∩ L = {1}. The
subgroup membership problem SM(G,L) asserts that, for any PPT distinguisher
D, the advantage

Adv
SM(G,L)

D = |Pr[A(G,L, x) = 1|x← L]− Pr[A(G,L, x) = 1|x← G \ L]|.

is negligible, where the probability is taken over coin tosses.

Xue et al. [24] proposed generic constructions of LTDFs based on SMA with
two special requirements. The first requirement is that K’s order must be sig-
nificantly larger than L’s order. The second requirement is that the subgroup
discrete logarithm problem is solvable with a trapdoor. The second requirement
is so strong that only DCR [18] and Higher Residue [15] assumptions have this
property.

In order to construct lossy trapdoor relation, we do not require subgroup
discrete logarithm property, but we require that generators for both subgroup
K and L must be public. Let k(resp. l) be a generator of group K (resp. L).
The lossy trapdoor relation based on subgroup membership assumption follows.
We define LRSMA as 4-tuple of PPT algorithms (Sinj , Sloss, Flr, F

−1
lr ).

1. Sample injective mode Sinj. On input 1n, it chooses a random r ∈ Z|L| and
computes c := klr. The function index is σ = (G, k, l, c). The trapdoor is
t = (|L|, |K|) and the injective map is H : x ∈ Z|K| �→ kx.

2. Sample lossy mode Sloss. On input 1n, it chooses a random r ∈ Z|L| and
computes c := lr. The function index is σ = (G, k, l, c), and the injective
map is H : x ∈ Z|K| �→ kx.

3. Evaluation algorithm Flr. Given a function index σ = (N, k, l, c) and input
x ∈ Z|K|, the algorithm outputs z = cx and injective map H(x) = kx.

4. Decapsulation algorithm F−1
lr . Given a function index (N, k, l, c), the trap-

door t = (t1, t2) and a message z, the algorithm computes and outputs
(zt1)t2 .

Theorem 3. Under the subgroup membership assumption with generators being
public, LRSMA is an (log |K|, log |K|− log |L|)-lossy trapdoor relation for n ≥ d.

4.2 VLR from DLDH over Pairing Group

Freeman et al. [5] noted that it is not easy to construct all-but-one LTDF from
d-linear assumption for d ≥ 2 and left it as an open problem. The main obsta-
cle is the reduction of hidden lossy branch property to the discrete logarithm
assumption. In our construction, we apply the lossy tag to submatrix, and it
is feasible to reduce the hidden lossy branch property to the discrete logarithm
assumption. The all-but-one verifiable lossy trapdoor relation ABOLRDLDH =
(ABOB,ABOGen,Glr , G

−1
lr , V er) is constructed below:
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1. Sample a branch ABOB. On input 1n, it outputs a uniformly distributed
b∗ ∈ Fp.

2. Sample a function ABOGen. On input a lossy branch b∗, it chooses a cyclic
pairing group G =< g > with order p. It samples random matrix M ∈
Rk2(F

3×3
p ). Denote

[
0 0
0 I2×2

]
by I∗, where I2×2 is the identity matrix. Let

A = (aij) = M − b∗I∗ The function index is

S = (sij) =

⎛⎝ga11 , ga12 , ga13

ga21 , ga22 , ga23

ga31 , ga32 , ga33

⎞⎠ .

The trapdoor is t = A. The injective map is H : Z3
p → G3.

3. Evaluation algorithm Glr. Given a function index σ = S and the input
x ∈ Z3

p , the algorithm outputs the function f(x) = Sx(gbI
∗
)x and H(x) =

(gx1 , gx2 , gx3).
4. Decapsulation algorithm G−1

lr . Given the trapdoor t = A and the vector

f = (f1, f2, f3), it computes H = f (A+bI∗)−1

.
5. Verification algorithm V er(S, b, h, f).Given input S = (sij), h = (h1, h2, h3),

b ∈ Fp, and f = (f1, f2, f3), the algorithm checks that

e(f1, g)
?
= e(s11, h1)e(s21, h2)e(s31, h3);

e(f2, g)
?
= e(s12, h1)e(s22g

b, h2)e(s32, h3);

e(f3, g)
?
= e(s13, h1)e(s23, h2)e(s33g

b, h3).

It outputs 1 if all the tests are passed, 0 otherwise.

Theorem 4. Under the DLDH assumption, ABOLRDLDH is a (3 log p, log p)-
all-but-one verifiable lossy trapdoor relation.

Proof. The lossy property and indistinguishability of two modes are guaranteed
by the DLDH assumption. We need to prove the verifiability property. Assume
that h = H(x) for some x ∈ Z3

p and f = (f1, f2, f3) = f(y) for some y ∈ Z3
p .

The verification algorithm computes

e(fi, g) = e(ga1iy1ga2iy2ga3iy3 , g)

= e(ga1i , gy1)e(ga2i , gy2)e(ga3i , gy3).

If f(x) = f(y), all the tests are passed, otherwise the tests are not passed.
Now, we need only to prove the hidden lossy branch property. For a random

chosen matrix M = (mij) ∈ F 3×3
p , m11 �= 0 with probability 1 − 1

p . Assume
that m11 �= 0 in the following. Apply Gaussian elimination algorithm on the

first column of M and get

⎛⎝m11, m12, m13

0, m22 − m21m12

m11
, m23 − m21m13

m11

0, m32 − m21m12

m11
, m33 − m31m13

m11

⎞⎠ . Denote the
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submatrix

(
m22 − m21m12

m11
, m23 − m21m13

m11

m32 − m21m12

m11
, m33 − m31m13

m11

)
by M . Since Rank(M) = 2 and

m11 �= 0, the rank of matrix M is 1. The eigenvalues of M is 0 and Tr(M). The
condition that M − (b∗ − b)I∗ is not invertible is equivalent to (b∗ − b) being an
eigenvalue of M . Thus, the lossy branch space is {b∗, b∗ − Tr(M)}.

We show that any adversary A that produces a different element of lossy
branch given S and a lossy branch b∗, can be used to compute the discrete
logarithm in G, contradicting the d-linear assumption. For a 3× 3 matrix M =
(mij) of rank 2 and any t ∈ Zp, let M(t) be the matrix of M with the last two
columns multiplied by t, M(t) is a uniform matrix of rank 2. Let (g, gt) be the
discrete logarithm challenge for G. Choose b∗ and compute S = gM(t)−b∗I∗

and
send S, b∗ to adversary A. If the adversary outputs lossy branch b with b �= b∗,
then b∗−b is Tr(M(t)), and we have, (m22−m21m12

m11
)t+(m33−m31m14

m11
)t = b+b∗.

Since m11 = 0 with probability 1
p and m22 − m21m12

m11
+m33 − m31m14

m11
= 0 with

probability 1
p , we can solve t with non-negligible probability. ��

Remark 3.

1. It is easy to generalize the above construction to the n × n matrix case for
n ≥ 3. Then we will get an (n log p, (n− 2) log p) all-but-one verifiable lossy
trapdoor relation. The proof just needs a trivial extension.

2. If M is an n × n matrix for n > 2 log p and the input is x ∈ {0, 1}n, then
the resulting lossy trapdoor relation is an (n, n− 2 log p)-all-but-one LTDF
based on the DLDH assumption. Although there is generic construction of
all-but-one LTDF from LTDF in [20], and thus all-but-one LTDF from d-
linear assumption, the direct construction of all-but-one LTDF from d-linear
assumption (d > 1) is unknown. Freeman et al. [5] left the problem of con-
structing all-but-one LTDF based on the d-linear assumption directly as an
open problem. We partially solve this open problem as a byproduct.

3. It is not easy to extend to the d-linear case for d ≥ 3. If d = 2, we have that
the rank of 2 × 2 submatrix M is 1 when Rank(M) = 2 and mii �= 0. If
d ≥ 3, it is not easy to decide which (n− d+1)× (n− d+1) submatrix has
rank 1 when Rank(M) = d.

5 Lossy Encryption

In [19], Peikert et al. defined dual-mode encryption with two modes. In the nor-
mal mode, the cryptosystem behaves normally, and in the lossy mode, the system
loses information of the message. In [1], Bellare et al. they defined the lossy en-
cryption, extending the definition of dual-mode encryption in [19] and meaning-
ful/meaningless encryption in [14]. Hemenway et al. [10] proposed construction
of lossy encryption based on statistically-hiding 2-round Oblivious Transfer and
derived lossy encryption schemes based on DDH, DCR and QR assumptions.

We now describe an instantiation of lossy encryption based on the lossy trap-
door relation and three concrete intances based on subgroup membership as-
sumption. Let LR = (Sinj , Sloss, Flr , F

−1
lr ) be a collection of (n, l)-lossy trapdoor
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relation associated with H : {0, 1}n → D. Let H be a universal family of hash
functions from {0, 1}n to {0, 1}k where k ≤ l − 2 log(1/ε) for some negligible
ε = negl(n). The lossy encryption LE is constructed below:

KeyGen: It generates an injective trapdoor relation (σ, τ,H) ← Sinj , and
chooses a hash function h from H. pk = (σ,H, h), sk = τ.

KeyGenloss: It generates a lossy trapdoor relation (σ,H) ← Sloss, and chooses
a hash function h from H. pkloss = (σ,H, h).

Enc: On input a message m ∈ {0, 1}k, it chooses r ∈ {0, 1}n uniformly at
random and computes: c1 = Flr(σ, r), c2 = m ⊕ h(H(r)). The ciphertext is
C = (c1, c2).

Dec: On input sk = τ , and a ciphertext C = (c1, c2), it computes T = F−1
lr (τ, c1)

and outputs c2 ⊕ h(T ).

Theorem 5. Under the assumption that LR is an (n, l)-lossy trapdoor relation,
the encryption scheme LE is a lossy encryption.

We need a generalized Leftover Hash lemma in order to prove the lossy property.

Lemma 1 (Lemma A.1 in [16]). Let X,Y be random variables such that
X ∈ {0, 1}n and the average min-entropy [16] H̃∝(X |Y ) ≥ k. H : {0, 1}n → D
is the one to one injective map. Let H be a family of universal hash family from
D to {0, 1}l, where l ≤ k − 2 log(1/ε). It holds that for h ← H and r ← {0, 1}l,

Δ((h, h(H(X)), Y )), (h, r, Y )) ≤ ε.

Proof of Theorem 8.We show that the above scheme LE satisfies three properties
of lossy encryption.

1. Correctness on real keys. For all m ∈ M and r ∈ R

Dec(sk, Enc(pk,m, r)) = h(F−1
lr (τ, Flr(σ, r))) ⊕ (m⊕ h(H(r))

= h(H(r)) ⊕ (m⊕ h(H(r)) = m.

2. Indistinguishability of injective keys from lossy keys. The computational in-
distinguishability is guaranteed by the indistinguishability of the two modes
of lossy trapdoor relation.

3. Lossiness of encryption with lossy keys. For any pkloss and any pair of mes-
sage m0,m1 ∈ M, we have that {Enc(pkloss,m0, r))|r ∈ R} =s

{Enc(pkloss,m1, r))|r ∈ R}. Since H is a one-to-one map, the average
min-entropy H̃∝(R|Flr(s,R)) ≥ n − (n − l) = l in the lossy mode. Since
k ≤ l − 2 log(1/ε), mb ⊕ h(H(R)) will be ε-close to uniform distribution by
Lemma 1. The statistical distance between {Enc(pkloss,m0, r))|r ∈ R} and
{Enc(pkloss,m0, r))|r ∈ R} will be 2ε. ��

This derives efficient lossy encryption schemes from the DDH, d-linear and
subgroup membership assumptions list in Section 4.1. Let LRSMA = (Sinj , Sloss,
Flr, F

−1
lr ) be the generic lossy trapdoor relation and (G = KL,L) be the sub-

group membership instance proposed in Section 4.1. The following LESMA is a
lossy encryption based on the SMA assumption.
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KeyGen: On the output of Sinj = (σ, t,H) = (G, k, l, c, t,H), it chooses a hash
function h from H : G→ {0, 1}log |K|−log |L|. The trapdoor is t. The injective
map is H : Z|K| → K. pk = (σ,H, h), sk = t.

KeyGenloss: On the output of Sloss = (σ,H) = (G, k, l, c,H), it chooses a
hash function h from H : G → {0, 1}log |K|−log |L|. The injective map is
H : Z|K| → K. pkloss = (σ,H, h).

Enc: On input a message m ∈ {0, 1}log |K|−log |L|, it chooses x ∈ Z|K| uniformly
at random and computes: c1 = Flr(σ, x) = cx, c2 = m ⊕ h(H(x)). The
ciphertext is C = (c1, c2).

Dec: On input sk = t, and a ciphertext C = (c1, c2), it computes T = F−1
lr (t, c)

and outputs c2 ⊕ h(T ).

The LRSMA above derives new efficient lossy encryption schemes by instantiat-
ing the subgroup membership assumption. We list three interesting instances of
subgroup membership assumptions here.

1. Let p = 2n + 1, where n = q0q1 and p, q0, q1 are distinct primes. The mul-
tiplication group Z∗

p has order 2n. We denote the subgroups of order q0,
q1 and n by Gq0 , Gq1 and Gn. The subgroup assumptions SM(Gn,Gq0)

and
SM(Gn,Gq1)

were suggested in [17]. If the length of q0 and q1 are not equal,
either SM(Gn,Gq0)

or SM(Gn,Gq1 )
can be used to construct lossy trapdoor

relation.
2. Let n be a composite number with two primes factors p, q and p > q. Let p′

be a prime and E be a elliptic curve defined over Fp′ such that #E(Fp′ ) = n.
We denote Gp and Gq the subgroup of E(F ′

p) with order p and q. If the length
of p and q are not equal, either SM(E(Fp′),Gp) or SM(E(Fp′),Gq) can be used
to construct lossy trapdoor relation.

3. Let a, b, c, d, p = 2ab+1 and q = 2cd+1 be primes, let n = pq, and let G be
the subgroup of Z∗

n with Jacobin symbol 1. Let K be the subgroup of order
bd and L be the subgroup of order ac. The subgroup assumptions SM(G,L)

was suggested in [7]. Note also that ac can be made much smaller than bd.

6 Adaptive Trapdoor Relation

In this section, we show an construction of adaptive trapdoor relation from ver-
ifiable lossy trapdoor relation and all-but-one verifiable lossy trapdoor relation.
Let LR = (LRinj , LRloss, Flr , F

−1
lr , V er1) be an (n, k1)-verifiable lossy trapdoor

relation and ABO = (ABOB,ABOGen,Glr , G
−1
lr , V er2) be an (n, k2)-all-but-

one verifiable lossy trapdoor relation. We require that the two lossy trapdoor
relations has the same public computable injective map H . We also require
that the residual leakage of the lossy and all-but-one lossy trapdoor relation is
(n − k1) + (n − k2) ≤ n − log(1/ε)), for some negligible ε = negl(n). The tag
space {0, 1}v of the resulting adaptive trapdoor relation is the same with the
branch space of ABO.

Trapdoor Generation. On input 1n, it makes query to LRinj(1
n), ABOGen

(1n, 0v) and gets (σ1, tdlr, H) and (σ2, tdabo, H), then returns ID = (σ1, σ2),
T d = (tdlr , tdabo), H.



Lossy Trapdoor Relation 175

Public Evaluation. On input ID = (σ1, σ2), TAG ∈ {0, 1}v and x ∈ {0, 1}n,
it makes query to Flr and Glr and gets (H(x), c1) ← Flr(σ1, x), (H(x), c2) ←
Glr(σ2, TAG, x). Return (H(x), TAG, c1, c2).

Inversion. On input (tdlr, tdabo) and (TAG, c1, c2), computes h = F−1
lr (tdlr , c1).

If V er1(σ1, h, c1) = 1 and V er2(σ2, TAG, h, c2) = 1, returns h, else returns
⊥.

Theorem 6. If k1+k2 ≥ n+log(1/ε)), LR is an (n, k1)-verifiable lossy trapdoor
relation and ABO is an (n, k2)-all-but-one verifiable lossy trapdoor relation, the
construction above is an adaptive trapdoor relation.

Proof. The correctness of the inverse algorithm is guaranteed by the correctness
of the decapsulation algorithm in lossy trapdoor relation. In the following, we
prove the adaptive one-ways property by describing a sequence of experiments
Game 0, Game 1, Game 2, and Game 3. We denote the challenge tag by
TAG∗, the challenge relation by (H∗(x), TAG∗, c∗1, c

∗
2) in these games.

Game 0. This game is identical to that in the original adaptive one-ways prop-
erty. That is, the trapdoor generation algorithm TDG outputs the function
indexes σ1 and σ2 with lossy branch 0v, and the corresponding trapdoor(tdlr,
tdabo). On input a query (TAG, c1, c2) from A, the inverse algorithm out-
puts the corresponding relation H(x) or ⊥. The challenge algorithm outputs
challenge relation (c∗1, c

∗
2) on tag TAG∗.

Game 1. The only difference with Game 0 is that the lossy branch is changed.
The all-but-one lossy trapdoor relation is chosen to have lossy branch TAG∗

rather than 0v. That is (σ2, tdabo) ← ABOGen(1n, TAG∗).
Game 2. The only difference with Game 1 is that the inversion oracle is changed.

The inverse algorithm is now done by using the all-but-one relation trap-
door tdabo rather than tdlr. The full description of inversion oracle is here: if
TAG = TAG∗, output ⊥. Compute h = G−1(tdabo, TAG, c1, c2) and check
that if V er1(σ1, h, c1) = 1 and V er1(σ2, TAG, h, c2) = 1; if so, output h,
otherwise output ⊥.

Game 3. The only change is the lossy trapdoor relation LR, in which we replace
the injective relation LRinj with a lossy one LRloss.

The adversary’s view is computationally indistinguishable inGame 0 andGame
1 with the replacement of lossy branch. This is guaranteed by the the indistin-
guishability of function indexes generated by different lossy branches. In Game
1 the adversary cannot find another lossy branch. This is guaranteed by the hid-
den lossy branch property of the all-but-one verifiable lossy trapdoor relation.

The only difference between Game 1 and Game 2 is the inverse algorithm.
They produce identical outputs. Since the inverse algorithm always outputs ⊥ in
both games if TAG = TAG∗, we may assume that TAG �= TAG∗. Additionally,
both implementations check that (h, c1) and (h, c2) satisfy binary relations, and
output ⊥ if not. It suffices to show that this h is unique. In both games, LR is in
the injective mode and ABO is injective on input branch TAG = TAG∗. Since
H is an injective map, h is unique.
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The only difference between Game 2 and Game 3 is that the injective mode
of LR is replaced by lossy model. Since the injective and lossy modes of the lossy
trapdoor relation are computationally indistinguishable, the adversary’s view in
Game 2 and Game 3 are indistinguishable.

In Game 3, the image size of both relations are at most 2n−k1 and 2n−k2 . The
random variable (TAG∗, c∗1, c

∗
2) takes at most 22n−k1−k2 values and n − (2n −

k1 − k2) = k1 + k2 − n ≥ log(1/ε)) bits information of H∗(x) is uncertain. We
have that the advantage of A in Game 3 is at most ε.

By the combination of the sequence of results, this theorem holds. ��

Adaptive Trapdoor Relation from DLDH. Using the result in Section 4.2,
we get an adaptive trapdoor relation based on DLDH assumption. Since 50
group elements are needed in the function index, the derived adaptive trapdoor
relation is inefficient. But our result gives new insight of the relation between
lossy trapdoor relation and adaptive trapdoor relation.

7 Conclusion

In this paper, we introduce the notion of lossy trapdoor relations and provides
several constructions from this primitive. Unlike the lossy trapdoor function,
lossy trapdoor relation does not require completely recovering the input but a
public computable injective map of it. The lossy trapdoor relation maintains the
application of lossy trapdoor function on the lossy encryption. We gave several
constructions based on DDH, DLDH and SMA assumptions. We also introduce
the all-but-one verifiable lossy trapdoor relation and an construction of adaptive
trapdoor relation from it.
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Abstract. Achieving shorter ciphertext length under weaker assump-
tions in chosen-ciphertext (CCA) secure public-key encryption (PKE)
is one of the most important research topics in cryptography. However,
it is also known that it is hard to construct a CCA-secure PKE whose
ciphertext overhead is less than two group elements in the underlying
prime-order group under non-interactive assumption. A naive approach
for achieving more compactness than the above bound is to use ran-
dom oracles (ROs), but the full RO has various ideal properties like
programmability. In this paper, we pursue how to achieve compact PKE
only with a minimum ideal property of ROs. Specifically, only with ob-
servability, we can give three CCA-secure PKE schemes whose cipher-
text overhead is less than two group elements. Our schemes are provably
secure under standard assumptions such as the CDH and DDH assump-
tions. This study shows that ideal properties other than observability are
not necessary to construct compact PKE beyond the bound.

Keywords: random oracle, observability, public key encryption, chosen
ciphertext security, ciphertext overhead.

1 Introduction

The aim of this paper is to clarify how small a ciphertext overhead can be
achieved with a minimum ideal property of random oracles (ROs). Ciphertext
overhead means the size of the ciphertext minus the size of the message. We find
that if a hash function has just one ideal property, observability [1, 2], there exist
chosen-ciphertext (CCA) secure public-key encryption (PKE) schemes whose
ciphertext overhead is less than two group elements in the underlying prime-
order group under a non-interactive standard assumption such as the decisional
Diffie-Hellman (DDH) assumption and the computational Diffie-Hellman (CDH)
assumption. Up to the present, there exists no such a compact PKE scheme in
the standard model (StdM), and it is hard to achieve without any ideal property
due to an impossibility result [3].
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1.1 Background

From the seminal work by Cramer and Shoup [4], many practical PKE schemes
without ROs have been proposed (e.g., [5–8]). However, all of these schemes need
at least two group elements ciphertext overhead. Also, Hanaoka et al. [3] show
a strong negative result that there is no algebraic black-box reduction from the
CCA security of PKEs which ciphertext overhead is one group element in prime
order groups and a string (i.e., less than 2|g| where |g| is the length of a group
element) to any non-interactive assumption. This result clarifies that to achieve
more compact ciphertext overhead than two group elements is very difficult with
known techniques.

On the other hand, ECIES [9] achieves one group element (|g|) ciphertext
overhead with the random oracle model (ROM) [10] and an interactive assump-
tion. The ROM is well studied as a useful approach to reduce ciphertext overhead
with the help of various ideal properties like programmability [1, 11] and observ-
ability [1, 2]. Indeed, we have CCA-secure PKE schemes with extremely compact
ciphertexts relying on ROs (e.g., [12–14]). However, the ROM has a well known
problem; ROs do not exist, and is not always instantiatable by real hash func-
tions. Canetti et al. [15, 16] show that there are digital signature schemes and
PKE schemes which are secure in the ROM but insecure if ROs are instantiated
by real hash functions. Thus, ROs are not implementable in reality, and relying
on such a strongly ideal primitive is undesirable.

Recently, Bellare et al. [17] try to solve the problem of ROs. They propose
a notion of hash functions, called universal computational extractor (UCE),
and provide secure instantiations of ROs in several cryptographic schemes with
UCEs. The notion of UCEs is a standard-model security attribute; and thus,
instantiated schemes are secure without ROs if UCE exists. Naturally, UCEs
are easily implemented by ROs. Also, an implementation of UCEs based on
the HMAC construction where the compression function is ideal is roughly dis-
cussed. Though existing implementations need ideal primitives, this does not
mean that there is no hope to implement UCEs without ideal primitives. Hence,
the assumption of UCEs does not conflict with the Canetti et al.’s impossibil-
ity result [15, 16], and to assume a given family of hash functions as a UCE is
hardly impractical. They show that several PKE schemes (e.g., OAEP [18]) are
secure with UCEs, and Matsuda and Hanaoka [19] proposed a CCA-secure PKE
scheme with UCEs. However, a compact CCA-secure PKE scheme is not known,
even with UCEs. Also, it is shown that some of known variants of UCEs do not
exist if indistinguishability obfuscation exists [20].

1.2 Our Contribution

We pursue a similar research goal to Bellare et al.; that is, to construct practical
and secure schemes with a family of hash functions which is different from ROs
(like UCEs) without conflicting the Canetti et al.’s impossibility result. Espe-
cially, we focus on constructing CCA-secure PKE which ciphertext overhead is
less than two group elements.
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Our approach is different from UCEs; that is, we achieve our goal with another
resource. Specifically, we use a class of hash functions which satisfies observability
and target collision-resistance (TCR). Observability [1, 2] guarantees that hash
values cannot be locally computed for any entity. It is usually represented as any
entity obtain hash values through an oracle access. It means that all of input
and output values of a hash function are visible for a simulator in the security
proof but not the adversary. It has been considered as one of ideal properties of
ROs.

We try to modify known secure PKE schemes in the StdM. In general, PKE
schemes secure in the StdM need large ciphertext overhead, especially in order
to obtain the CCA security. The most compact ciphertext overhead of known
CCA PKE schemes in the StdM is two group elements. We introduce first PKE
schemes with hash functions satisfying only observablity and TCR, which are
CCA-secure and achieve less than two group elements ciphertext overhead.

1.3 Our Technique

First, as a warm up to construct specific schemes, we show a design principle
of secure and compact PKE schemes. We propose two tricks to get compact
ciphertext overhead using observability of hash functions: base unification and
hashing verification-tag.

– The base unification trick means that when public parameter contains two
random group elements as g1 and g2 and the ciphertext contains two group
elements as gr1 and gr2 for randomness r, we can unite bases as g1 and g2 = gw1
for an exponent w and remove gr2 from the ciphertext. Then, the receiver
can reconstruct gr2 from gr1 and w by adding w to the secret key. Hence, the
ciphertext can be reduced by deleting gr2 . On the other hand, in the security
proof, though the simulator has to obtain gr2 without knowing w, it can be
done by the help of observability.

– The hashing verification-tag trick means that the sender applies a hash to
a component (called verification-tag) in order to verify the validity of the
ciphertext in the case that the verification can be done from the hashed
verification-tag and the secret key. Generally, a verification-tag needs to be
at least |g|. But, this technique can reduce it to just |TCR| where |TCR| is
the length of an output of a TCR hash function (i.e., it can be κ-bits for the
security parameter κ). Thus, ciphertext overhead is getting more compact.
For example, if we modify the Cramer-Shoup (CS) PKE [4] by this trick,
the modified scheme is also secure. Moreover, the hashing verification-tag
trick is more effective for PKE schemes using the twinning trick [21], such
as the Cash-Kiltz-Shoup PKE [21] and the Haralambiev-Jager-Kiltz-Shoup
(HJKS) KEM [8, 22].1

Next, we obtain new CCA-secure PKE schemes and KEM by assuming ob-
servability as follows:

1 [8] and [22] gave almost the same scheme based on the computational Diffie-Hellman
(CDH) assumption, independently.
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Compact PKE from the DDH Assumption. Our first scheme is based on
the CS PKE [4], applying both the hashing verification-tag trick and the base
unification trick. While the CS PKE has ciphertext overhead consisting of
3|g|, our scheme has only that consisting of |g|+ |TCR|. This scheme has an
advantage that it is proved to be secure by assuming observability and the
standard DDH assumption.

Optimally Compact KEM. Our second scheme is based on the Okamoto
KEM [23], applying the base unification trick. This scheme achieves more
compact ciphertext overhead than that of the first scheme. Ciphertext over-
head consists of only |g|, which is the same as the ElGamal PKE [24].2

We remark that ciphertext overhead consisting of one group element is con-
jectured as optimal length under the DDH assumption due to the generic
attacks on the discrete logarithm problem in the group. Moreover, the com-
putational complexity of encryption and decryption operations is very light,
which is comparable to the Kiltz KEM [7]. CCA-security is proved by as-
suming observability, the DDH assumption, and the existence of a pseudo-
random function with pairwise-independent random sources (πPRF). πPRF
is a stronger primitive than the ordinary PRF, which was introduced in [23].

Compact KEM from the CDH Assumption. Our third scheme is based
on the HJKS KEM [8, 22], applying the hashing verification-tag trick. While
security can be proved by assuming observability and the CDH assumption,
ciphertext overhead consists of |g| + |TCR| as the first scheme. Thus, we
can construct PKE schemes from the CDH assumption, where ciphertext
overhead is the same as the scheme from the DDH assumption.

The comparison of previous CCA-secure PKE schemes and our schemes is found
in Table 1.

1.4 Instantiability of Observable Hash Functions

It is clear that, like UCEs, observable hash functions can be instantiated from
(full) ROs because ROs naturally satisfy observability and TCR. Moreover, we
show theoretical instantiatiability of such functions without ROs. If hash func-
tions satisfy an additional property, it is (impractically) implementable in the
real world without any idealized building block. Specifically, though standard ob-
servability requires that adversaries cannot see input-output pairs of hash func-
tions, we consider a stronger observability that adversaries also can see input-
output pairs of hash functions. We call this property public observability. Public
observability of ROs is previously discussed in [26, 27].

An example of implementation of publicly observable hash functions is with
an on-line hash server and a keyed hash function as follows: The hash server
maintains a hashing key of the hash function, and returns a hash value cor-
responding to an input value by evaluating the specified hash function. Since

2 The original Okamoto KEM has ciphertext overhead consisting of 2|g|.
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Table 1. Comparison of previous CCA-secure PKE schemes and our schemes

Requirement Assumption Ciphertext
for Hash overhead

[4] TCR DDH 3|g| 768

[6] injection DBDH 2|g| 512

[7] GHDH or RO3 GHDH (GDH) 2|g| 512

[8] TCR CDH 2|g|+ |MAC| 640
[23] TCR DDH & πPRF 2|g| 512

[14] RO CDH |g| 256

Ours §4.1 Observability & TCR DDH |g|+ |TCR| 384

Ours §4.2 Observability & TCR DDH & πPRF |g| 256

Ours §4.3 Observability & TCR CDH |g|+ |TCR| 384

Part of this table is borrowed from [7] and [25]. |MAC| is the length of a
tag of a message authentication code. DBDH means the Decisional Bilinear
Diffie-Hellman assumption. For concreteness expected ciphertext overhead for
a 128-bit implementation is also given.

entities except the server do not know the hashing key, the hash evaluation is
not locally computed. Also, if the hash function satisfies TCR, both observabil-
ity and TCR are guaranteed. Note that a channel between users and the server
is not necessarily confidential, and an authenticated channel is enough because
input and output values are public.

We compare instantiability of observable hash functions with that of full ROs
and that of UCEs. Firstly, full ROs can be also instantiated by an on-line hash
server who maintains a universal table of input/output pairs and chooses a
random element for a new input. While, for observable hash functions, the server
just evaluates the underlying specific hash function and must not maintain any
table, the server must maintain a large table for full ROs. Thus, the instantiation
of observable hash functions is more efficient than full ROs. Next, it is shown that
UCEs can be constructed from indistinguishable obfuscation (iO) [28]. Though
UCEs are achievable in the StdM without an on-line hash server, known iO
candidates are impractical in efficiency such as [29–31]. Thus, the instantiation
of observable hash functions is also more efficient than UCEs, though there is a
disadvantage that communications between users and the server is necessary for
each hash evaluation.

Our CCA-secure PKE schemes and KEM are still secure if hash functions
are publicly observable because input-output pairs do not contain any secret
information in these schemes. Therefore, our schemes can (theoretically) enjoy
the standard model security while implementations are not practical due to the
on-line hash server.

3 The Kiltz KEM is secure in the StdM under the Gap Hashed Diffie-Hellman (GHDH)
assumption, and also secure in the ROM under the Gap Diffie-Hellman (GDH) as-
sumption.
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2 Preliminaries

In this section, we show the definition of observability, and some basic notions
of building blocks. Throughout this paper we use the following notations. If Set
is a set, then by m ∈R Set we denote that m is sampled uniformly from Set.
If ALG is an algorithm, then by y ← ALG(x; r) we denote that y is output by
ALG on input x and randomness r (if ALG is deterministic, r is empty). “|V |”
means the bit length of a value V . We say a function f(κ) is negligible (negl(κ))
in κ if for any c ∈ N there exists κ0 ∈ N such that for all κ > κ0 f(κ) < κ−c.

2.1 Observability and Target-Collision Resistance of Hash Functions

The difference between ordinary hash functions and observable hash functions
is whether hash values can be locally evaluated or not. Thus, evaluations of
observable hash functions are represented as an oracle access. Since the adversary
must pose inputs to the oracle in order to obtain hash values, input-output pairs
of functions are observed by the simulator in security proofs. How to evaluate
hash values depends on the hashing algorithm of the underlying hash function.
The following is the definition of observability.

Definition 1 (Observability). We say that a function H with a domain Dom
and a range Rng is observable if any entity obtains H(x) for x ∈ Dom through
an oracle OH who evaluates and outputs y = H(x), and for any probabilistic
polynomial-time (PPT) adversary A, Pr[(x ∈ Dom, y ∈ Rng) ← AOH ; H(x) =
y] ≤ negl(κ), where A must not pose x to OH .

We note that observability is an ideal property. Thus, we can suppose that
there exists OH like full ROs. An instantiation of observable hash functions using
a keyed hash function can be found in Section 1.4.

Definition 2 (Target-Collision Resistance). We say that a family of func-
tions H with a family of domains {Domκ}κ∈N and a family of ranges {Rngκ}κ∈N

is target-collision resistant if the following condition holds for a security param-
eter κ: For any PPT adversary A, Pr[H ∈R H; x ∈R Domκ; x

′ ← A(x,H);
x �= x′; H(x) = H(x′)] ≤ negl(κ).

2.2 Public Key Encryption

Definition 3 (Syntax for Public Key Encryption Schemes). A PKE
scheme consists of the following 3-tuple (Gen, Enc, Dec):

Gen : a key generation algorithm which on input 1κ, where κ is the security
parameter, outputs a pair of public and secret keys (pk, sk).

Enc : an encryption algorithm which takes as input public key pk and plaintext
m, outputs ciphertext CT .

Dec : a decryption algorithm which takes as input secret key sk and ciphertext
CT , outputs plaintext m or reject symbol ⊥.
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Definition 4 (CCA-security). A PKE scheme is CCA-secure if the follow-
ing property holds for security parameter κ; For any adversary A = (A1, A2),

|Pr[(pk, sk) ← Gen(1κ); (m0, m1, state) ← ADO(sk,·)
1 (pk); b ∈R {0, 1}; CT ∗ ←

Enc(pk,mb); b
′ ← ADO(sk,·)

2 (pk, CT ∗, state); b′ = b] − 1/2| ≤ negl(κ), where
DO is the decryption oracle which outputs m or ⊥ on receiving CT , state is state
information (possibly including pk, m0 and m1) which A wants to preserve. A
cannot submit the ciphertext CT = CT ∗ to DO.

3 Our Strategy

In this section, we show our strategy in order to construct compact PKE or
KEM beyond the HMS bound.

Most of PKE (or KEM) schemes in the ROM heavily depend on various ideal
properties of ROs such as programmability and perfect one-wayness. It is hard
to improve such schemes to rely only observability. Thus, we start from schemes
in the StdM, and consider a method to reduce the ciphertext length by using
observability. Specifically, we try to reduce ciphertext overhead into less than
2|g|. In this section, we propose two tricks.

Base Unification Trick. The CS PKE [4] (shown in Section 4.1), the
Kurosawa-Desmedt (KD) PKE [5] and the Okamoto KEM [23] (shown in Sec-
tion 4.2) have a common structure in the ciphertext; that is, for a randomness
r the ciphertext contains gr1 and gr2 where g1 and g2 are random group elements
included in the public key. To reduce ciphertext overhead, a simple idea is to
modify the derivation of g2 in the key generation as follows: w is chosen from
Zp, g2 is computed as gw1 and w is added to the secret key. By this modification,
the receiver can reconstruct gr2 with w as gr2 = (gr1)

w. Hence, it seems that the
ciphertext can be reduced by deleting gr2. These modifications can be under-
stood as the methods to reduce the ciphertext while retaining the validity of the
decryption. However, for the security proof, we cannot use w to simulate the
decryption oracle in the StdM because (g2)

r the part of the DDH tuple and so
the discrete logarithm of it cannot be known. Thus, this idea does not work in
the StdM.

Right then, how does it work by using observability? Our answer is positive.
Thanks to observability, the simulator can make use of the hash table. If the
encryption procedure contains the application of (g2)

r to a hash function, the
simulator can obtain (g2)

r by referring the hash table without knowing w. Hence,
one can directly obtain (g2)

r by knowledge of the hash function (for the simula-
tor) or can compute gr2 = (gr1)

w by a known discrete log w (for a receiver in the
scheme). The CS PKE, the KD PKE and the Okamoto KEM can be modified
like above by using observability.

Hashing Verification-Tag Trick. First, let’s observe the CS PKE. The ci-
phertext of the CS PKE contains v = (gx1

1 gx2
2 )r · (gy1

1 gy2

2 )rα to verify the validity
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of the decryption, we call such a content as a verification-tag. Then, we can
change the derivation of v into v′ = H ′((gx1

1 gx2
2 )r · (gy1

1 gy2

2 )rα) where H ′ is a
hash function. By this modification, the receiver can also verify gr1 and e as
checking whether v′ = H ′((gr1)

x1+y1α(gr2)
x2+y2α). Note that, the length of such

v′ (|TCR|) needs only κ-bits for a security parameter κ while v (without hash-
ing) consists of a group element. Specifically, when κ = 128, |v′| is 128-bit and
|v| is 256-bit. Hence, the ciphertext can be reduced. If we modify the CS PKE
as the derivation of v into v′ = H ′((gx1

1 gx2
2 )r(gy1

1 gy2

2 )rα) where H ′ is observable,
the modified scheme is also secure, and then, the ciphertext is reduced to |TCR|.

Next, let’s observe the HJKS KEM (shown in Section 4.3). It contains
verification-tags v1 = ((gx1)αgx2)r and v2 = ((gy1)αgy2)r where α is derived
from the ciphertext. With the twinning trick, the simulator can check the va-
lidity of v1 and v2 without knowing x1 or r. We can compress verification-tags
into one hash value as v = H(v1, v2). If H is observable, the simulator can find
v1 and v2 from the hash table with v posed for a decryption query. Thus, the
simulator can check validity of the compressed verification-tag with the twinning
trick. Though the size of verification-tags in the original scheme is 2|g|, the size
of the compressed verification-tag is only |TCR|.

4 Our Constructions

In this section, we show three new PKE or KEM schemes. All of our proposed
schemes use observability to beat the HMS bound on ciphertext overhead. Each
scheme has different advantages. The CS PKE is the best example to show
an effect of our tricks. Ciphertext overhead can be get more compact to |g| +
|TCR| from 3|g| with the base unification trick (reducing |g|) and the hashing
verification-tag trick (reducing |g|− |TCR|). We can achieve optimal length (|g|)
ciphertext overhead from the Okamoto KEM with the base unification trick.
Moreover, we give a CDH-based KEM schemes with same ciphertext overhead
(|g|+ |TCR|) as the modified CS PKE, which is obtained from the HJKS KEM
with the hashing verification-tag trick.

4.1 Compact CCA-secure PKE from the DDH Assumption

In this section, we firstly present a CCA-secure PKE scheme by applying the
hashing verification-tag trick and the base unification trick to the CS PKE.
This scheme achieves |g| + |TCR| ciphertext overhead and the CCA security
based on the DDH assumption, which is one of most standard number theoretic
assumptions.

Original Cramer-Shoup PKE. Firstly, we review the original CS PKE.
Let p be a prime and G be a finite cyclic group of order p. H : G3 → Zp is a

TCR hash function.
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Key generation : For input κ, output a public key pk = (g1, g2, g
x1
1 gx2

2 , gy1

1 gy2

2 , gz1 ,
H) and a secret key sk = (x1, x2, y1, y2, z) such that (g1, g2) ∈R G2 and (x1,
x2, y1, y2, z) ∈R Z5

p.
Encryption : For input a plaintext m ∈ G, generate randomness r ∈R Zp,

compute u1 = gr1, u2 = gr2 , e = m ·(gz1)r, α = H(u1, u2, e) and v = (gx1
1 gx2

2 )r ·
(gy1

1 gy2

2 )rα, and output the ciphertext CT = (u1, u2, e, v).
Decryption : For input a ciphertext CT = (u1, u2, e, v), compute α = H(u1, u2,
e). If ux1+y1α

1 · ux2+y2α
2 �= v, reject the decryption as an invalid ciphertext.

Otherwise, output the plaintext m = e · u−z
1 .

For the validity check of ciphertexts, the receiver needs both u1 and u2 because
he does not know r. Thus, the sender has to include both u1 and u2 in the
ciphertext. The CS PKE is CCA-secure under the DDH assumption and the
TCR hash function. For the definition of the DDH assumption, please refer to
[4].

Compact Cramer-Shoup PKE. We show our first scheme by applying the
hashing verification-tag trick and the base unification trick to the CS PKE.

Let p be a prime and let g be a generator of a finite cyclic group G of order
p. H : G3 → Zp and H ′ : G → {0, 1}k are TCR hash functions. To represent
observability, evaluations of H and H ′ are done through oracles OH and OH′

respectively.

Key generation : For input κ, output a public key pk = (g, gw, gx1gwx2 , gy1gwy2 ,
gz,OH , OH′) and a secret key sk = (w, x1, x2, y1, y2, z) such that (w, x1, x2,
y1, y2, z) ∈R Z6

p, where OH and OH′ means that oracle accesses to OH and
OH′ are given. (After that, we describe the oracle access to OH (or OH′ ) as
“compute H (or H ′)” for simplicity.)

Encryption : For input a plaintext m ∈ G, generate randomness r ∈R Zp,
compute u1 = gr, u2 = (gw)r, e = m·(gz)r, α = H(u1, u2, e), v = (gx1gwx2)r ·
(gy1gwy2)rα and v′ = H ′(v), and output the ciphertext CT = (u1, e, v

′).
Decryption : For inputs a ciphertextCT = (u1, e, v

′), compute α = H(u1, u
w
1 , e)

and H ′(u
x1+y1α+w(x2+y2α)
1 ). If v′ �= H ′(u

x1+y1α+w(x2+y2α)
1 ), reject the de-

cryption as an invalid ciphertext. Otherwise, output the plaintextm = e·u−z
1 .

Security. In this section, we show the security of the above scheme.

Theorem 1. If the original CS scheme is CCA-secure where H is TCR, then
the compact CS PKE is CCA-secure where H and H ′ are observable and TCR.

First, we give an intuition of the proof. We construct an adversary of the orig-
inal CS scheme from an adversary of the compact CS scheme. The simulation of
queries is almost the same manner as the original CS PKE. There is a difference
between the real CCA game and the simulation environment in the simulation
of the decryption oracle. The adversary of the original CS scheme decides the
result of the decryption by using the hash tables due to observability. In this
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case, the adversary may accept an invalid ciphertext, or rejects a valid cipher-
text. The first case occurs with a negligible probability because of TCR, and the
other case also occurs with a negligible probability because of observability.

Proof. By assuming a CCA adversary A for our compact CS scheme, we con-
struct a CCA adversary B for the original CS scheme. The construction of B is
as follows:

The input is pk = (g1, g2, X = gx1
1 gx2

2 , Y = gy1

1 gy2

2 , Z = gz1 , H). Let LH be the
hash table for H . LH contains tuples of (u1i , u2i , ei, H(u1i , u2i , ei)) (0 ≤ i ≤ qH)
where qH is the number of queries to H . Let LH′ be the hash table for H ′. LH′

contains tuples of (vi, H
′(vi)) (0 ≤ i ≤ qH′ ) where qH′ is the number of queries

to H ′.

Setting of public key : Choose a hash functionH ′ : G→ {0, 1}k from the fam-
ily of TCR hash functions H. Set the public key pk = (g1, g2, X, Y, Z,OH ,OH′)
where oracles OH and OH′ are simulated by B. Give pk to A.

Simulation of OH : For a query (u1, u2, e) to H , evaluate α = H(u1, u2, e),
add (u1, u2, e, α) to LH , and output α as the answer to the query.

Simulation of OH′ : For a query v to H ′, evaluate v′ = H ′(v), add (v, v′) to
LH′ and output v′ as the answer to the query.

Simulation of the decryption oracle : For a decryption query CT =
(u1, e, v

′) from A, check if there are tuples (u1, ∗, e, ∗) ∈ LH and (∗, v′) ∈ LH′

where ∗ means the wild-card. If not, reject CT as an invalid ciphertext. Other-
wise, find u2, α and v corresponding to (u1, u2, e, α) from LH and (v, v′) from
LH′ . Note that u2, α and v may be plurally found. Then, pose decryption queries
(u1, u2, e, v) for all combinations of u2 and v to DO of the original CS scheme.
If DO rejects all decryption queries, also reject CT as an invalid ciphertext.
Otherwise, receive m for one of decryption queries, and output m to A.

Simulation of the challenge ciphertext : For an encryption query (m0,m1)
from A, pose the encryption query (m0,m1), and receive the challenge cipher-
text CT ∗ = (u∗1, u

∗
2, e

∗, v∗). Compute v′∗ = H ′(v∗), and add (v∗, v′∗) to LH′ .
Output (u∗1, e

∗, v′∗) to A.

Final output : On receiving the guessed bit b from A, output b.

We show the validity of the simulation.
The simulation of OH , OH′ and the challenge ciphertext is perfectly same as

the compact CS scheme. Thus, A cannot distinguish the real CCA game from
the simulation by these queries.

The simulation of the decryption oracle may be distinguished from the real
CCA game if either of the following cases occurs:

Case 1. A poses an invalid ciphertext, but B does not reject the decryption.
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Case 2. A poses a valid ciphertext, but B rejects the decryption.

Firstly, Case 1 occurs if A poses CT = (u1, e, v
′) such that

– ((u1, u2, e, α) ∈ LH) ∧ ((v, v′) ∈ LH′ ) ∧ (v �= ux1+y1α
1 ux2+y2α

2 ) ∧ (H ′(v) =
H ′(ux1+y1α

1 ux2+y2α
2 )), and

– ((u1, u2, e, α) ∈ LH) ∧ ((v, v′) ∈ LH′ ) ∧ (logg1 u1 �= logg2 u2) ∧ (v =

ux1+y1α
1 ux2+y2α

2 ).

In the first event,Amust pose v such thatH ′(v) = H ′(ux1+y1α
1 ux2+y2α

2 ). By TCR
ofH ′, A cannot find v except the negligible probability. Next, the situation of the
second event is same as the proof of CCA-security of the original CS scheme. By
the similar information-theoretic analysis, this event also occurs with negligible
probability.

Secondly, Case 2 occurs if A poses CT = (u1, e, v
′) such that

– (H(u1, u2, e) = α) ∧ ((u1, u2, e, α) �∈ LH) ∧ ((v, v′) ∈ LH′) ∧ (v =
ux1+y1α
1 ux2+y2α

2 ), and
– ((u1, u2, e, α) ∈ LH)∧ (H ′(v) = v′)∧ ((v, v′) �∈ LH′ )∧ (v = ux1+y1α

1 ux2+y2α
2 ).

In the first event, A must find α without posing (u1, u2, e) to OH . Similarly, in
the second event, A must find v′ without posing v to OH′ . By observability of
H and H ′, these events occur with negligible probability.

Therefore, A cannot distinguish the real CCA game and the simulation except
negligible probability. If A wins with non-negligible probability, then B wins with
non-negligible probability. ��

4.2 Optimally Compact CCA-secure KEM

In this section, we present another CCA-secure (KEM) scheme by applying the
base unification trick to the Okamoto KEM. The main advantage of the scheme
is its very compact ciphertext, that is, only |g| ciphertext overhead. Hence, this
scheme achieves most compact (and optimal) ciphertext overhead. Moreover,
computational complexity for the encryption and decryption operation is lower
than the PKE scheme proposed in Section 4.1. This scheme needs an additional
assumption, πPRF, besides the DDH assumption.

Original Okamoto KEM. Firstly, we review the original Okamoto KEM.
Let p be a prime and G be a finite cyclic group of order p. H : G4 →

Zp is a TCR hash function. F is a πPRF with index (IG, fG) where IG ←
{(V,W, d)|(V,W, d) ∈ G2×Zp} and fG : (V,W, d) �→ V γ1+dγ2W with (γ1, γ2) ∈R

Z2
p.

Key generation : For input κ, output a public key pk = (g1, g2, g
x1
1 gx2

2 , gy1

1 gy2

2 , H,
F ) and a secret key sk = (x1, x2, y1, y2) such that (g1, g2) ∈R G2 and (x1,
x2, y1, y2) ∈R Z4

p.
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Encryption : Generate randomness r ∈R Zp, compute u1 = gr1, u2 = gr2, α =
H(gx1

1 gx2
2 , gy1

1 gy2

2 , u1, u2), v = (gx1
1 gx2

2 )r · (gy1

1 gy2

2 )rα and K = Fv(pk, u1, u2),
and output the ciphertext CT = (u1, u2) and the session key K.

Decryption : For input a ciphertext CT = (u1, u2) and the part of public
key (gx1

1 gx2

2 , gy1

1 gy2

2 ), if (gx1

1 gx2

2 , gy1

1 gy2

2 , u1, u2) �∈ G4, reject the decryption
as an invalid ciphertext. Otherwise, compute α = H(gx1

1 gx2
2 , gy1

1 gy2

2 , u1, u2),
v = ux1+αy1

1 ux2+αy2

2 and K = Fv(pk, u1, u2), and output the session key K.

For the derivation of session keys, the receiver needs both u1 and u2 because
he does not know r. Thus, the sender has to include both u1 and u2 in the
ciphertext.

Compact Okamoto KEM. Next, we show our second scheme by applying
the base unification trick to the Okamoto KEM.

Let p be a prime and G be a finite cyclic group of order p. H : G4 → Zp

is a TCR hash function. To represent observability, evaluations of H are done
through oracles OH . F is a πPRF with index (IG, fG) where IG ← {(V,W, d)|(V,
W, d) ∈ G2 × Zp} and fG : (V,W, d) �→ V γ1+dγ2W with (γ1, γ2) ∈R Z2

p.

Key generation : For input κ, output a public key pk = (g, gw, gx1gwx2 , gy1gwy2 ,
OH , F ) and a secret key sk = (w, x1, x2, y1, y2) such that g ∈R G and (w, x1,
x2, y1, y2) ∈R Z5

p.
Encryption : Generate randomness r ∈R Zp, compute u1 = gr, u2 = (gw)r,
α = H(gx1gwx2, gy1gwy2 , u1, u2), v = (gx1gwx2)r · (gy1gwy2)rα and K =
Fv(pk, u1, u2), and output the ciphertext CT = u1 and the session key K.

Decryption : For input a ciphertext CT = u1 and the part of public key
(gx1gwx2, gy1gwy2), compute α = H(gx1gwx2, gy1gwy2 , u1, u

w
1 ). If (g

x1gwx2 ,
gy1gwy2, u1, u

w
1 ) �∈ G4, reject the decryption as an invalid ciphertext. Other-

wise, compute v = u
x1+αy1+w(x2+αy2)
1 and K = Fv(pk, u1, u

w
1 ), and output

the session key K.

Security. In this section, we show the security of the above scheme.

Theorem 2. If the DDH assumption on G holds, and F is a πPRF with index
(IG, fG) where IG ← {(V,W, d)| (V,W, d) ∈ G2 × Zp} and fG : (V,W, d) �→
V γ1+dγ2W with (γ1, γ2) ∈R Z2

p, then the compact Okamoto KEM is CCA-secure
where H is observable and TCR.

The proof of Theorem 2 will be given in the full paper. The difference from
the proof of the original Okamoto KEM is in the base unification, and can be
solved as the proof of Theorem 1 similarly.

4.3 Compact CCA-secure PKE from the CDH Assumption

In this section, we present a CCA-secure PKE scheme by applying the hashing
verification-tag trick to the HJKS KEM. This scheme achieves the same length



190 K. Yoneyama and G. Hanaoka

of ciphertext as the transformed CS PKE (i.e., under the DDH assumption)
though the scheme relies on the CDH assumption which is weaker than the
DDH assumption.

Original Haralambiev-Jager-Kiltz-Shoup KEM. Firstly, we review the
original HJKS KEM. The HJKS KEM uses the twinning trick.

Let p be a prime and G be a finite cyclic group of order p. H : G → Zp is a
TCR hash function. f : G → {0, 1} is a hardcore bit function for Diffie-Hellman
key in G.

Key generation : For input κ, output a public key pk = (g, gx1 , gx2 , gy1, gy2 , gz1 ,
. . . , gzk , H, f) and a secret key sk = (x1, x2, y1, y2, z1, . . . , zk) such that g ∈R

G and (x1, x2, y1, y2, z1, . . . , zk) ∈R Zk+4
p .

Encryption : Generate randomness r ∈R Zp, compute u = gr, α = H(u),
v1 = ((gx1)αgx2)r, v2 = ((gy1)αgy2)r, and K = (f((gz1)r), . . . , f((gzk)r)),
and output the ciphertext CT = (u, v1, v2) and the session key K.

Decryption : For input a ciphertext CT = (u, v1, v2), compute α = H(u). If
v1 �= ux1α+x2 or v2 �= uy1α+y2 , reject the decryption as an invalid ciphertext.
Otherwise, output the session key K = (f(uz1), . . . , f(uzk)).

For the twinning trick, v1 and v2 are doubly verified. For definitions of the
CDH assumption and the S2DH assumption, please refer to [8].

Compact Haralambiev-Jager-Kiltz-Shoup KEM. Next, we show our
third scheme which is applied the hashing verification-tag trick to the HJKS
KEM.

Let p be a prime and let g be a generator of a finite cyclic group G of order p.
H : G → Zp and H ′ : G2 → {0, 1}k are O-TCRHFs. To represent observability,
evaluations of H and H ′ are done through oracles OH and OH′ respectively.
f : G→ {0, 1} is a hardcore bit function for Diffie-Hellman key in G.

Key generation : For input κ, output a public key pk = (g, gx1 , gx2 , gy1, gy2 , gz1 ,
. . . , gzk ,OH ,OH′ , f) and a secret key sk = (x1, x2, y1, y2, z1, . . . , zk) such
that g ∈R G and (x1, x2, y1, y2, z1, . . . , zk) ∈R Zk+4

p .
Encryption : Generate randomness r ∈R Zp, compute u = gr, α = H(u), v1 =

((gx1)αgx2)r, v2 = ((gy1)αgy2)r, v = H ′(v1, v2) and K = (f((gz1)r), . . . ,
f((gzk)r)), and output the ciphertext CT = (u, v) and the session key K.

Decryption : For input a ciphertext CT = (u, v), compute α = H(u) and
H ′(ux1α+x2 , uy1α+y2). If v �= H ′(ux1α+x2 , uy1α+y2), reject the decryption as
an invalid ciphertext. Otherwise, output the session key K = (f(uz1), . . . ,
f(uzk)).

Security. In this section, we show the security of the above scheme.

Theorem 3. If the CDH assumption on G holds, then the compact HJKS KEM
is CCA-secure where H and H ′ are observable and TCR.
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The proof of Theorem 3 will be given in the full paper. The difference from
the proof of the original HJKS KEM is in the hashing verification-tag, and can
be solved as the proof of Theorem 1 similarly.

5 Comparison

In this section, we give the efficiency comparison of our schemes and previous
CCA-secure PKE and KEM schemes (i.e., the CS PKE, the Boyen-Mei-Waters
(BMW) PKE, the Kiltz KEM, the HJKS PKE, the Okamoto KEM, and the
Abe-Kiltz-Okamoto PKE).

Our first scheme is based on the CS PKE. It has mainly two advantages
compared with the CS PKE. Firstly, this scheme needs one less regular expo-
nentiation for the decryption operation than that of the CS PKE. This benefit
comes from that all exponentiations in the decryption are computed on the base
u1. By using Pippenger’s algorithm [32], these computations can be batched
as one multi-exponentiation. Secondly, ciphertext overhead of this scheme is
|g| + |TCR|. The BMW PKE achieves both the HMS bound (2|g|) and the
CCA-security. However, our scheme achieves more compact ciphertext overhead
than this bound. Also, the BMW PKE needs a pairing computation for the de-
cryption operation. Thus, even assuming a bilinear pairing takes three times as
long as a regular exponentiation, this scheme has the advantage of computa-
tional complexity for the decryption operation. The first scheme can be proved
only under the DDH assumption.

Our second scheme is based on the Okamoto KEM. Though the scheme needs
the assumption of πPRF as the Okamoto KEM, it achieves less ciphertext over-
head than the first scheme, which equals ciphertext overhead of the ElGamal
PKE and optimal ciphertext length. Also, computational complexity for both
the encryption and the decryption operation is same as the lowest complexity of
previous schemes. Such an optimally compact ciphertext is due to the assump-
tion of πPRF. However, since there is no previous study about how πPRF is
stronger than PRF explicitly, the assumption of πPRF may be too strong.

Our third scheme is based on the HJKS KEM. The most attractive point of
the scheme is that it relies on just the CDH assumption which is weaker than
the DDH assumption. Also, though previous secure schemes with O-TCRHFs
under the CDH assumption (such as the HJKS PKE) needs ciphertext overhead
consisting of 3|g| or 2|g| + |MAC|, this scheme needs just |g| + |TCR|. It is
same ciphertext overhead as the first scheme which is proved under the DDH
assumption though the key size is very large.
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Abstract. Bidirectional proxy re-encryption allows ciphertext transfor-
mation between Alice and Bob via a semi-trusted proxy, who however
cannot obtain the corresponding plaintext. Due to this special property,
bidirectional proxy re-encryption has become a flexible tool in many
dynamic environments, such as publish subscribe systems, group com-
munication, and cloud computing. Nonetheless, how to design a secure
and efficient bidirectional proxy re-encryption is still challenging. In this
paper, we propose a novel bidirectional proxy re-encryption scheme that
holds the following nice properties: 1) constant ciphertext size no matter
how many times the transformation performed; 2) master secret secu-
rity in the random oracle model, i.e., Alice (resp. Bob) colluding with
the proxy cannot obtain Bob’s (resp. Alice’s) private key; 3) Replayable
chosen ciphertext (RCCA) security in the random oracle model. To the
best of our knowledge, our proposal is the first bidirectional proxy re-
encryption scheme that holds the above three properties simultaneously.

Keywords: bidirectional proxy re-encryption, replayable chosen-
ciphertext attack, random oracle model, multi-use.

1 Introduction

Proxy re-encryption (PRE) [2] allows a secure ciphertext transformation in a way
that a semi-trusted proxy can use a re-encryption key delegated from Alice (and
Bob) to re-encrypt a ciphertext under Alice’s public key into a new ciphertext
that Bob can decrypt by using his own private key. However, the proxy cannot
do any decryption on the ciphertexts of either Alice or Bob. If the re-encryption
key can be used to do the re-encryption in both directions, the PRE scheme is
called bidirectional; otherwise, it is called unidirectional. Both types of PRE have
their own interesting applications. In this work, we shall focus on bidirectional
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proxy re-encryption (BPRE), as it still encounters many research challenges
when applied to practical scenarios.

The applications of BPRE mainly include publish/subscribe systems [9], ve-
hicular communications [14], group communications [12,7], and cloud computing
[17,15,10,8]. All these applications work in a dynamic environment which requires
the PRE scheme to hold multi-usability and constant ciphertext size. In other
words, it demands that the transformed ciphertext can be further transformed
while the ciphertext size keeps the same.

To the best of our knowledge, there are only few BPRE schemes [2,5,11,16]
satisfying the above requirements. However, those previously reported schemes in
[2,5,11] suffer from the so-called collusion attack, i.e., Alice (resp. Bob) colluding
with the proxy can obtain Bob’s (resp. Alice’s) private key. In practice, collusion
resistance is crucial, especially when Alice (resp. Bob) uses the same private
key to perform decrypting and signing, and she (resp. he) wants to delegate
the decryption rights while keeping the signing rights. In general, the security
notion dealing with the collusion attack is called master secret security proposed
by Ateniese et al. [1]. Recently, Weng and Zhao [16] proposed two BPRE schemes
based on pairings. One is multi-use but with only CPA secure, the other is CCA
secure but not multi-use. Meanwhile, it has been showed that replayable chosen
ciphertext (RCCA) security is also crucial in the applications of distributed
storage [5]. Therefore, in this paper, to address the above challenges, we would
like to propose the first scheme with multi-useability, constant ciphertext size,
and RCCA security.

1.1 Related Work

At EUROCRYPT 1998, Blaze, Bleumer and Strauss [2] proposed the first BPRE
scheme (named BBS98) base on ElGamal encryption [6]. Later on, Canetti and
Hohenberger [5] proposed the first (R)CCA-secure BPRE scheme (named CH07)
by using pairings. At PKC 2011, Matsuda, Nishimaki and Tanaka [11] proposed
a new pairing-free CPA-secure bidirectional scheme (named MNT10). All of the
above schemes hold multi-usability and constant ciphertext size, but they all
suffer from the collusion attack. The main reason that the collusion attack works
is that the re-encryption key is computed by skA/skB, where skA and skB are
the private keys of Alice and Bob, respectively. It is easy to see that once skA
(resp. skB) and skA/skB are put together, skB (resp. skA) would be revealed.

Recently, Weng and Zhao [16] proposed two new BPRE schemes by using
pairings. The first one (named WZ11a) is multi-use, CPA-secure and master secret
secure, and the second one (named WZ11b) is multi-use, CCA-secure, and master
secret secure. To obtain master secret security, the re-encryption key is computed
by sk′A/sk

′
B, where sk

′
A and sk′B are not the private keys but the decryption

keys of Alice and Bob, respectively. The analogous relations between skA and
sk′A can be found in the identity-based encryption [13,3], where the private key
generator’s master secret key and the user’s private key can be considered as
the analogies skA and sk′A, respectively. Clearly, knowing sk

′
A does not hurt the

secrecy of skA.
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In Table 1, we summarize the existing BPRE schemes in terms of secrecy of
message, master secret security, multi useability and their complexity assump-
tions. From this table, we can see that our proposal would be the only one that
can hold the desired properties at the same time.

Table 1. Summary of bidirectional proxy re-encryption schemes

BBS98[2] CH07[5] MNT10[11] WZ11a[16] WZ11b[16] Our proposal

RCCA � � � � � �
CAa DDH DBDH re-applicable LTDFs DBDH 1-AwDBDHI mDBDH

MSSb � � � � � �
CA — — — DL DL DL

MUc � � � � � �

a CA denotes “Complexity Assumption”.
b MSS denotes “Master Secret Security”.
c MU denotes “Multi-Useability”.

The rest of this paper is organized as follows. In Section 2, we give the defi-
nitions, security models of BPRE. Then, we present our proposal in Section 3,
including the description, security analysis and computation comparison. Finally,
we draw our conclusions in Section 4.

2 Definitions

2.1 Definition of Bidirectional Proxy Re-encryption

Definition 1 (Bidirectional Proxy Re-Encryption). A Bidirectional proxy
re-encryption scheme is a tuple of probabilistic polynomial time (PPT) algo-
rithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

– KeyGen(1κ) → (pk, sk). On input of the security parameter 1κ, the key gen-
eration algorithm KeyGen outputs a public key and private key pair (pk, sk).

– ReKeyGen(sk1, sk2) → rk1,2. On input of two private keys sk1 and sk2, the
re-encryption key generation algorithm ReKeyGen outputs a bidirectional re-
encryption key rk1,2. Since it is bidirectional, ReKeyGen(sk2, sk1) can be
easily computed from ReKeyGen(sk1, sk2) via a public function F . For in-
stance, F is the inversion of ReKeyGen(sk1, sk2) in [2,5,16].
In general speaking, this algorithm is interactive, involving the delegator,
delegatee and proxy.

– Enc(pk,m) → C. On input of a message m from the message space and a
public key pk, the encryption algorithm Enc outputs a ciphertext C.
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– ReEnc(rk1,2, C1) → C2. On input of a re-encryption key rk1,2 and a cipher-
text C1, the re-encryption algorithm ReEnc outputs a re-encrypted ciphertext
C2 or a special symbol reject.

– Dec(sk, C) → m. On input of a private key sk, and a ciphertext C, the
decryption algorithm Dec outputs a message m or a special symbol reject.

Correctness. For any message m in the message space and any key pairs
(pk, sk), (pk′, sk′) ← KeyGen(1κ), the following two conditions must hold:

Dec(sk, Enc(pk,m)) = m and Dec(sk′, ReEnc(rk, C)) = m,

where rk is generated by ReKeyGen(sk, sk′) or F(ReKeyGen(sk′, sk)), and C is
the ciphertext for message m under pk from algorithm Enc or ReEnc if the
bidirectional proxy re-encryption scheme is multi-use.

2.2 Replayable Chosen Ciphertext Security for Multi-use
Bidirectional Proxy Re-encryption

The replayable chosen ciphertext security for multi-use BPRE is defined by the
following RCCA game played between a challenger C and an adversary A. As
usual, the challenger C does not answer any queries which the adversary A can
answer by itself using the secret it has been supplied, and returns only one answer
for the same query. Moreover, the adversary A should decide which party will be
corrupted before the game starts. In other words, our RCCA security is defined
in the static model.

Setup: The challenger C sets up the system parameters, and initializes one
empty table Tk which will be used to record all key pairs.

Phase 1: The adversary A can issue the following queries adaptively.

– Public key generation oracle Opk: C takes a security parameter 1κ, runs
KeyGen(1κ) to generate a key pair (pki, ski), gives pki to A and records
(pki, ski) in the table Tk. In the following, ski is the corresponding pri-
vate key of pki.

– Private key generation oracle Osk: On input of pki by A, C searches for
pki in the table Tk, and returns ski.

– Re-encryption key generation oracle Ork: On input of two different public
keys (pki, pkj) by A, C returns the re-encryption key rki,j =
ReKeyGen(ski, skj). It is required that both pki and pkj are corrupted
or uncorrupted.

– Re-encryption oracle Ore: On input of (pki, pkj , C) by A, C returns the
re-encrypted ciphertext C′ = ReEnc(ReKeyGen(ski, skj), C).

– Decryption oracle Odec: On input (pki, Ci), C returns Dec(ski, Ci).

Challenge: Once A decides that Phase 1 is over, it outputs two equal length
plaintexts m∗

0, m
∗
1 from the message space, and an uncorrupted public key

pk∗ on which it wishes to challenge. C picks a random bit b ∈ {0, 1} and sets
C∗ = Enc(pk∗,m∗

b). It sends C
∗ as the challenge to A.
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Phase 2: This phase is almost the same as Phase 1 but with the following
restrictions.
– Ore: On input of (pk1, pk2, C1) by A, if (pk1, C1) is a derivative of

(pk∗, C∗), and pk2 is corrupted, C outputs reject. We say (pk1, C1)
is a derivative of (pk∗, C∗) if one of the following conditions holds.
• (pk1, C1) = (pk∗, C∗).
• (pk, C) is a derivative of (pk∗, C∗), and (pk1, C1) is a derivative of
(pk, C).

• (pk1, C1) ← Ore(pk, pk1, C), where (pk, C) is a derivative of (pk∗, C∗).
• The adversary A can use the re-encryption keys from Ork to trans-
form ciphertexts under pk∗ to that under pk by running ReEnc, and
Odec(pk1, C1) ∈ {m∗

0,m
∗
1}.

– Odec: On input of (pki, Ci), if the output is m
∗
0 or m∗

1, C returns reject.
Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game

if b = b′.

We refer to such an adversary A as an RCCA adversary. We define adversary
A’s advantage in attacking multi-use BPRE as the following function of the
security parameter κ: AdvRCCA

MBPRE(1
κ) = |Pr[b = b′] − 1/2|. Using the RCCA

game, we can define RCCA security of multi-use BPRE.

Definition 2 (RCCA Security). If for any PPT RCCA adversary A the func-
tion AdvRCCA

MBPRE(1
κ) is negligible, the multi-use bidirectional proxy re-encryption

scheme is RCCA-secure.

2.3 Master Secret Security for Multi-use Bidirectional Proxy
Re-encryption.

The master secret security for multi-use BPRE is defined by the following MSS
game played between a challenger C and an adversaryA. As usual, the challenger
C does not answer any queries which the adversary A can answer by itself using
the secret it has been supplied, and returns only one answer for the same query.
Moreover, all the public keys involved in the following oracles (except Opk) are
from Opk. It is worth mentioning that in the MSS game, the adversary does not
need to decide the corrupted user before the game starts. In other words, our
master secret security is defined in the adaptive model.

Find: The adversary A can issue the following queries adaptively.
– Public key generation oracle Opk: C takes a security parameter 1κ, runs

KeyGen(1κ) to generate a key pair (pki, ski), gives pki to A and records
(pki, ski) in the table Tk. In the following, ski is the corresponding pri-
vate key of pki.

– Private key generation oracle Osk: On input of pki by A, C searches for
pki in the table Tk, and returns ski.

– Re-encryption key generation oracle Ork: On input of (pki, pkj) by A, C
returns the re-encryption key rki,j = ReKeyGen(ski, skj).
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– Re-encryption oracle Ore: On input of (pki, pkj , C) by A, C returns the
re-encrypted ciphertext C′ = ReEnc(ReKeyGen(ski, skj), C).

– Decryption oracle Odec: On input of (pki, Ci), C returns Dec(ski, Ci).
Output: If A outputs a private key of a public key that has not been queried

to Osk, A wins the game.

We also define AdvMSS
MBPRE(1

κ) = Pr[A Wins] for the security parameter κ as
that in RCCA security.

Definition 3 (Master Secret Security). If for any PPT MSS adversary
A the function AdvMSS

MBPRE(1
κ) is negligible, the multi-use bidirectional proxy re-

encryption scheme is MS-secure.

2.4 Bilinear Groups

In this subsection, we briefly review the definitions about bilinear maps and
bilinear map groups, which follow those in [3,4].

1. G and GT are two (multiplicative) cyclic groups of prime order q;
2. g is a generator of G;
3. e is a bilinear map e : G×G → GT .

Let G and GT be two groups as above. An admissible bilinear map is a map
e : G×G → GT with the following properties:

1. Bilinearity: For all P,Q,R ∈ G, e(P ·Q,R) = e(P,R) · e(Q,R) and e(P,Q ·
R) = e(P,Q) · e(P,R).

2. Non-degeneracy: If e(P,Q) = 1 for all Q ∈ G, then P = O, where O is a
point at infinity.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group GT and an efficiently computable bilinear
map as above. We denote BSetup as an algorithm that, on input the security
parameter 1κ, outputs the parameters for a bilinear map as (q, g,G,GT , e), where
q ∈ Θ(2κ).

2.5 Complexity Assumptions

The security of our proposal is based on the modified decisional bilinear Diffie-
Hellman assumption and discrete logarithm assumption. Since the latter assump-
tion is quite well-known, we only give the definition of the former assumption in
this paper.

Definition 4 (Modified Decisional Bilinear Diffie-Hellman
Assumption). Let (q, g,G,GT , e) ← BSetup(1k). The modified decisional bi-
linear Diffie-Hellman problem (mDBDH) in (G,GT ) is defined as follows: given
tuple (g, ga, g1/a, gb, gc, T ) ∈ G5 × GT as input, decide whether S = e(g, g)abc.
An algorithm A has advantage ε in solving the mDBDH problem in (G,GT ) if

|Pr[A(g, ga, g1/a, gb, gc, e(g, g)abc) = 0]− Pr[A(g, ga, g1/a, gb, gc, T ) = 0]| ≥ ε,
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where the probability is taken over the random choices of a, b, c ∈ Zq, S ∈ G and
the random bits of A.

We say that the (t, ε)-modified decisional Bilinear Diffie-Hellman assumption
holds in (G,GT ) if no t-time algorithm has advantage ε at least in solving the
mDBDH problem in (G,GT ).

3 Our Proposal

3.1 Description

The system parameters are (q, g, h, e,G,GT ), where (q, g, e,G,GT ) are from
BSetup, and h is a random element from G. Furthermore, it requires two secure
cryptographic hash functions H1 : {0, 1}∗ → {0, 1}κ and H2 : {0, 1}∗ → {0, 1}κ,
where κ is a security parameter.

– KeyGen: Select random x1, x2, z1 ∈ Zq, Next, compute X1,g = e(g, g)x1 ,
X1,h = e(g, h)x1 ,X2 = gx2 , Z1 = gz1 , z2 = (x1−z1)/x2 mod q, and Z2 = gz2 .
The public key is

pk = (X1,g, X1,h, X2, Z1, Z2),

and the private key is
sk = (x1, x2, z1, z2).

– ReKeyGen: On input two private keys sk = (x1, x2, z1, z2) and sk′ = (x′1, x
′
2,

z′1, z
′
2), it outputs the re-encryption key

rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

The re-encryption key can be computed efficiently by the method in [2,5].
– Enc: On input pk = (X1,g, X1,h, X2, Z1, Z2) and m ∈ GT , do the following

steps.
• Choose random r from Zq.
• Compute

u1 = gr, u2 = Xr
2 , v = Xr

1,h ·m, u3 = Xr
1,g,

u4 = H1(v||u3)r, u5 = H2(v||u3)r

Note that the item u5 is only useful in the security proof.
• Output C = (u1, u2, v, u3, u4, u5) as the ciphertext.

– ReEnc: On input a re-encryption key rk = (rk1, rk2) = (z1/z
′
1

mod q, z2/z
′
2 mod q) and a ciphertext C = (u1, u2, v, u3, u4, u5) under key

pk = (X1,g, X1,h, X2, Z1, Z2), the proxy performs as follows.
• Check whether

e(u1, H1(v||u3)) = e(g, u4) (1)

e(u2, H2(v||u3)) = e(g, u5) (2)

e(u1, Z1) · e(u2, Z2) = u3 (3)

all hold. If not, abort; otherwise, do the next steps.
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• Compute u′1 = urk1
1 , u′2 = urk2

2 , u′4 = urk1
4 , and u′5 = urk1

5 .
• Output (u′1, u

′
2, v, u3, u

′
4, u

′
5) as the re-encrypted ciphertext.

Note that
u′1 = urk1

1 = grz1/z
′
1 , u′2 = urk2

2 = grx2z2/z
′
2

u′4 = urk1
4 = H1(v||u3)rz1/z

′
1 , u′5 = urk2

5 = H2(v||u3)rz1/z
′
1

– Dec: On input a private key (x1, x2, z1, z2) and any ciphertext C = (u1, u2, v,
u3, u4, u5), the decryptor performs as follows.
• Check whether Equalities (1), (2), (3) all hold. If not, abort; otherwise,
do the next steps.

• Compute m = v/(e(uz11 , h) · e(uz22 , h)). Note that if the ciphertext C is
from Enc, we have that

v/(e(uz11 , h) · e(uz22 , h)) = e(h, gx1r) ·m/(e(h, gz1r) · e(h, gz2x2r)) = m;

if the ciphertext C is from ReEnc, we have that

v/(e(uz11 , h) · e(uz22 , h)) = e(h, gx
′
1r) ·m/(e(h, gz

′
1r) · e(h, gz

′
2x

′
2r)) = m.

• Output the message m.

3.2 Security Analysis

Theorem 1. If the mDBDH assumption holds in G, our proposal is RCCA-
secure in the random oracle model. In particular, we have

AdvRCCA
MBPRE(1

κ) ≤ AdvA
mDBDH(1

κ),

where AdvA
mDBDH(1

κ) is the advantage of that A breaks the mDBDH assumption
under the security parameter κ.

Proof. Assume there exists a RCCA adversary A that can break the RCCA
security of our proposal. Then we can build another algorithm B that can break
the mDBDH assumption (i.e., given g, ga, g1/a, gb, gc, T , it is hard to decide
T = e(g, g)abc) by playing the RCCA game with A. The details are as follows.
Before the game starts, B sets h = gb.

H1 Oracle: On input of (v, u3), check whether the tuple (v, u3, α1) exists in the
list LH1 . If yes, return (ga)α1 ; otherwise, it chooses a random α1 from Zq,
and then records (v, u3, α1) in the list LH1 , and return (ga)α1 . Note that if
the input (v, u3) is a part of the challenge ciphertext, then B just returns
gα1 .

H2 Oracle: On input of (v, u3), check whether the tuple (v, u3, α2) exists in the
list LH2 . If yes, return (g1/a)α2 ; otherwise, it chooses a random α2 from Zq,
and then records (v, u3, α2) in the list LH2 , and return (g1/a)α2 . Note that
if the input (v, u3) is a part of the challenge ciphertext, then B just returns
gα2 .

Phase 1: B builds the oracles as follows.
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– Opk: B chooses random elements z1, z2, x2 from Zq. If the public key is
uncorrupted, then B computes X1 = gz1((ga)x2)z2 and returns

pk = (X1,g, X1,h, X2, Z1, Z2)

= (e(g,X1), e(h,X1), g
x2 , gz1 , (ga)z2);

if the public key is corrupted, then B computes X1 = gz1(gx2)z2 and
returns

pk = (X1,g, X1,h, X2, Z1, Z2)

= (e(g,X1), e(h,X1), g
x2 , gz1, gz2).

At last, B records (pk,X1, z1, z2, x2) in Tk.
– Osk: On input of a corrupted public key pk by A, B gets (pk, z1, z2, x2)

from Tk. B returns sk = (z1 + x2 · z2 mod q, x2, z1, z2).
– Ork: On input of (pk, pk′) by A, B gets (pk, z1, z2, x2) and (pk′, z′1, z

′
2, x

′
2)

from Tk, and then returns

rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

Note that we have the following for the correctness.
• If the two public keys are both uncorrupted,

sk = (z1 + x2 · a · z2 mod q, x2, z1, z2 · a mod q)

and
sk′ = (z′1 + x′2 · a · z′2 mod q, a · x′2, z′1, z′2 · a mod q),

hence, rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

• If the two public keys are both corrupted,

sk = (z1 + x2 · z2 mod q, x2, z1, z2)

and
sk′ = (z′1 + x′2 · z′2 mod q, x′2, z

′
1, z

′
2),

hence, rk = (rk1, rk2) = (z1/z
′
1 mod q, z2/z

′
2 mod q).

– Ore: On input of C = (u1, u2, v, u3, u4, u5) and two public keys pk and
pk′, B first checks the well-formness as the real execution. If it does not
pass, abort; otherwise, do the followings.
• If the two public keys are both uncorrupted or corrupted, then B gets
the re-encryption key from Ork, and returns the result of ReEnc.

• Otherwise, do the followings.
∗ Find the items (pk,X1, z1, z2, x2) and (pk′, X ′

1, z
′
1, z

′
2, x

′
2) in Tk.

∗ Compute u′1 = u
z1/z2
1 , u′4 = u

z1/z2
4 , and u′5 = u

z1/z2
5 .

∗ Find the original decryptor pko of the ciphertext C by checking
e(u1, X1) = u3 for all items in Tk. Assume that the found item
is (pko, Xo1, zo1, zo2, xo2).
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∗ Compute gr = u
z1/zo1
1 , (ga)r = (u

z1/zo1
4 )1/α1 and (g1/a)r =

(u
z1/zo1
5 )1/α2 , where α1, α2 are the values in LH1 and LH2 corre-

sponding to (v, u3), respectively.
∗ If pko and pk′ are both corrupted or uncorrupted, then compute
u′2 = (gr)xo2·zo2/z2 . If pko is corrupted and pk′ is uncorrupted,
then compute u′2 = ((g1/a)r)xo2·zo2/z2 . If pko is uncorrupted and
pk′ is corrupted, then compute u′2 = ((ga)r)xo2·zo2/z2 .

∗ Output (u′1, u
′
2, v, u3, u

′
4, u

′
5) as the resultant ciphertext.

– Odec: On input of C = (u1, u2, v, u3, u4) under pk, B first checks the
well-formness as the real execution. If it does not pass, output ⊥; oth-
erwise, re-encrypt the ciphertext to the one under a corrupted public
key by querying Ore, then decrypt the resultant ciphertext by using the
corresponding private key.

Challenge: A sends C two messages m0,m1 from G and an uncorrupted public
key

pk∗ = (X∗
1,g, X

∗
1,h, X

∗
2 , Z

∗
1 , Z

∗
2 )

= (e(g, gz
∗
1 (ga)z

∗
2 ), e(h, gz

∗
1 (ga)z

∗
2 ), gx

∗
2 , gz

∗
1 , (ga)z

∗
2 ),

B chooses a random number b ∈ {0, 1}, and returns (u∗1, u
∗
2, v

∗, u∗3, u
∗
4, u

∗
5) as

the challenge ciphertext.

u∗1 = gc, u∗2 = (gb)x
∗
2 , v∗ = e(gb, gc)z

∗
1 · T x∗

2·z
∗
2 ·mb,

u∗3 = e(X∗
1 , g

c), u4 = (gb)α
∗
1 , u4 = (gb)α

∗
2 ,

where (X∗
1 , z

∗
1 , z

∗
2 , x

∗
2), α

∗
1 and α∗

2 are from Tk, LH1 and LH2 , respectively.
Note that if T = gabc, we have that v∗ = e(gb, gc)z

∗
1 ·T x∗

2·z
∗
2 ·mb = e(gb, X∗

1 )
c ·

mb.
Phase 2: Almost the same as that in Phase 1, except the restrictions in the

RCCA game.
Guess: A outputs the guess b′. If b′ = b, B decides T = e(g, g)abc; otherwise,

T �= e(g, g)abc.

It is easy to see that in the random oracle, the above simulation is perfect. Hence,
we obtain this theorem. ��

Theorem 2. If the DL assumption holds in G, our proposal is MS-secure in the
random oracle model. In particular, we have

AdvMSS
MBPRE(1

κ) ≤ AdvA
DL(1

κ)

e(1 + qsk)
,

where AdvA
DL(1

κ) is the advantage of that A breaks the DL assumption under the
security parameter κ, and qsk is the number of private key generation queries.

Proof. Assume there exists an MSS adversary A that can break the MS security
of our proposal. Then we can build another algorithm B that can break the DL
assumption (i.e., given g, ga, it is hard to compute a) by playing the MSS game
with A. The details are as follows.
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Find: B builds the oracles as follows.
– Hash oracles: Identical to the proof of Theorem 1.
– Opk: B chooses random elements z1, z2, x2 from Zq and decides θ ∈ {0, 1}

under Pr[θ = 1] = δ. If θ = 0, then B returns

pk = (X1,g, X1,h, X1, Z1, Z2)

= (e(g, gz1((ga)x2)z2), e(h, gz1((ga)x2)z2), (ga)x2 , gz1 , gz2);

if θ = 1, then B returns

pk = (X1,g, X1,h, X1, Z1, Z2)

= (e(g, gz1(gx2)z2), e(h, gz1(gx2)z2), gx2 , gz1, gz2)

At last, B records (pk, z1, z2, x2, θ) in Tk.
– Osk: On input of a public key pk by A, B gets (pk, z1, z2, x2, θ) from Tk.

If θ = 1, then B returns sk = (z1 + x2 · z2 mod q, x2, z1, z2); otherwise,
B outputs failure.

– Ork: On input of (pk, pk′) by A, B gets (pk, z1, z2, x2, θ) and (pk′, z′1,
z′2, x

′
2, θ

′) from Tk, and then returns rk = (rk1, rk2) = (z1/z
′
1 mod

q, z2/z
′
2 mod q).

– Ore: B can use the re-encryption keys from Ork to reply the queries.
– Odec: Identical to the proof of Theorem 1.

Output: A outputs a private key sk∗ = (x1, x2, z1, z2) of public key pk∗ that
has not been queried to Osk. B searches (pk∗, z∗1 , z

∗
2 , x

∗
2, θ

∗) in Tk, if θ
∗ = 1,

then B outputs failure; otherwise, B outputs a = x2/x
∗
2.

If B has not output failure, then the above simulation is perfect. On the other
hand, the probability of that B has not output failure is δqsk(1 − δ). The
maximize value of δqsk(1− δ) is 1/(e(1 + qsk)) when δ = 1− 1/(qsk +1). Hence,
we obtain this theorem. ��

4 Conclusion

In this paper, we have proposed a novel multi-use, bidirectional proxy re-
encryption with constant ciphertext size, master secret security and RCCA se-
curity. To the best of our knowledge, it is the first BPRE scheme holding the
above properties at the same time. There are still various future works left, e.g.,
how to design a pairing-free, multi-use BPRE scheme with constant ciphertext
size, master secret security, and RCCA security is still unknown.
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Abstract. Conditional proxy re-encryption (CPRE) enables delegation
of decryption rights, and is useful in many applications. In this paper, we
present a ciphertext-policy attribute based CPRE scheme, together with
a formalization of the primitive and its security proof. We further pro-
pose applying the scheme for fine-grained encryption of cloud data. This
application well implements the idea of cloud-enabled user revocation,
offering an alternative yet more feasible solution to the user revocation
issue when using attribute based encryption over cloud data. Features
of the application include little cost in case of user revocation, and high
user-side efficiency when users access cloud data.

Keywords: Conditional proxy re-encryption, Attribute-based encryp-
tion, User revocation, Cloud data.

1 Introduction

The notion of proxy re-encryption (PRE) was first introduced by Blaze, Bleumer
and Strauss [4]. In a PRE scheme, a semi-trusted proxy is given a re-encryption
key, thus able to translate ciphertexts under Alice’s public key into ciphertexts
under Bob’s public key. The proxy, however, cannot learn anything about the
messages encrypted under either key. This re-encryption procedure can be in-

tuitively depicted as E(pkA,m)
rkA→B−−−−−→ E(pkB ,m), where rkA→B denotes the

re-encryption key from Alice to Bob. In this setting, Alice is delegator and Bob
is delegatee, and PRE enables Alice to delegate her decryption right to Bob.

A weakness of traditional PRE is that the proxy can transform all of Alice’s
ciphertexts, without any discrimination. This is not satisfactory in many appli-
cations where fine-grained delegation of decryption rights is to be desired. As a
result, the concept of conditional proxy re-encryption (CPRE) [30,34] emerged,
which strengthens PRE such that transformation of ciphertexts by the proxy is
conditional: a ciphertext under Alice’s public key is generated with a value w,

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 206–222, 2014.
c© Springer International Publishing Switzerland 2014
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and the re-encryption key from Alice to Bob is associated with another value w′;
the ciphertext can be transferred to a ciphertext for Bob if and only if w = w′. In-

tuitively, the procedure is depicted as E(pkA,m,w)
rk

A
w′−→B−−−−−−→ E(pkB ,m). CPRE

turns out to be a useful primitive, and can find many applications. In this pa-
per, we show one such example: applying CPRE to achieve revocable fine-grained
encryption of data outsourced to cloud storage.

Indeed, it is commonly agreed that data entrusted to a cloud storage should
be encrypted in order to safeguard their secrecy against the cloud provider
[10,11,13], which may not be trusted by the data owner. However, encryption of
cloud data poses challenges. First of all, cloud storage services promise a power-
ful platform for sharing of data among a number of stakeholders. In practice data
sharing is often obliged to enforce fine-grained access control policies such that
different users have different access privileges. This leads to the first challenge
that encryption of cloud data must support fine-grained encryption competen-
cies such that users with different privileges possess different decryption rights.
Secondly, user revocation is another challenge arising from data sharing, where
some users should be deprived of their access rights in certain circumstances,
e.g., they resign from their duty. The usual solution to user revocation requires
to invalidate the existing key (used in data encryption) by re-generating the en-
crypted data with a new key, which is then re-distributed to the remaining valid
users. This is a prohibitively costly task, especially in the case of encryption of
cloud data where normally a large number of data are involved.

We are aimed to get over these challenges by encryption of cloud data with
CPRE and implementing cloud-enabled user revocation: the cloud server is ex-
ploited to act as the proxy, and thus is given a set of re-encryption keys, each
being from the data owner (who is the delegator) to an authorized user. When
a user requests some data from the cloud storage, the cloud server transforms
the data using the corresponding re-encryption key if the user is authorized.
User revocation is attained by simply erasing the revoked user’s re-encryption
key from the cloud server, requiring neither update of the encryption key and
re-distribution of the key, nor re-generation of cloud data.

While the above idea is promising, there remains an issue to be solved that the
majority of existing CPRE schemes such as [30,34,36] can only cope with simple,
keyword-based conditions, i.e., both w and w′ are a keyword or an “AND” con-
catenation of keywords. This is far from satisfactory in terms of fine-grainedness
required for encryption of cloud data. We are thus motivated to propose a new
CPRE scheme that is capable of handling more fine-grained conditions. In par-

ticular, our CPRE scheme can be denoted as E(pkA,m,P)
rk

A
A−→B−−−−−−→ E(pkB ,m),

where P is an access policy and A is a set of attributes, and transformation of ci-
phertext can be accomplished only if P is satisfied by A. Access policies P in our
scheme are expressive and can be any monotonic access structures, comparable
to those considered in attribute-based encryption (ABE) [6,16]. Following the
naming convention of ABE [6,16], our proposal is actually a ciphertext-policy
attribute based CPRE scheme, the first of its kind as far as we know.
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Organization. In Section 2, we review related work on PRE/CPRE. Formula-
tion of ciphertext-policy attribute based CPRE is presented in Section 3, and a
concrete scheme is given in Section 4, together with security analysis. In Section 5
we apply the scheme for encryption of cloud data, so as to realize cloud-enabled
user revocation. Section 6 concludes the paper.

2 Related Work

In this section, we review related work on PRE/CPRE, and defer the background
information as to encryption of cloud data to Section 5.2.

Mambo and Okamoto [26] firstly introduced the concept of delegation of de-
cryption right, as an alternative to the trivial decrypting-then-encrypting ap-
proach but with better performance. Blaze, Bleumer and Strauss [4] formalized
the concept of proxy re-encryption (PRE), and proposed the first bidirectional
PRE scheme (in which the delegation from Alice to Bob also allows for re-
encryption from Bob to Alice). The first unidirectional PRE schemes are due to
Ateniese et al. [1,2], and these schemes are based on bilinear pairing.

The schemes in [1,2,4] are only secure against chosen-plaintext attacks (CPA).
Canetti and Hohenberger [8] presented the first CCA-secure PRE scheme from
bilinear pairing, which is a bidirectional scheme. Later, Libert and Vergnaud
[24,25] presented a unidirectional PRE scheme with a weaker form of CCA se-
curity, namely, security under replayable chosen-ciphertext attacks (RCCA) [9].

Earlier PRE schemes rely on bilinear pairings, which are costly operations.
This motivates a different line of research, to construct PRE schemes without the
reliance on bilinear pairings. Deng et al. [14] probably was the first to come up
with a PRE scheme with this feature, which is CCA-secure bidirectional scheme.
The first unidirectional PRE scheme without bilinear pairings was due to Shao
and Cao [28], which was immediately succeeded by Weng et al. [35,36].

Conditional proxy re-encryption (CPRE) aims at restricting the transforma-
tion capability of the proxy, such that a transformation by the proxy can suc-
ceed only if the prescribed conditions are met. Earlier CPRE schemes [30,34,36]
can only accommodate simple, keyword-based conditions, where both the values
embedded with the delegator’s ciphertext and with the re-encryption keys are
a keyword or a “AND” concatenation of several keywords. As a result, these
CPRE schemes are not capable in enforcing finer-grained delegation of decryp-
tion rights.

Recently, Zhao et al. [38] proposed an attribute-based CPRE scheme, which
supports fine-grained conditions beyond keyword. Their scheme can be described

as E(pkA,m,A)
rk

A
P−→B−−−−−→ E(pkB ,m), where A is a set of attributes and P is

an access policy. Following the naming convention of key-policy ABE [16] and
ciphertext-policy ABE [6], their scheme is precisely key-policy attribute based
CPRE (as opposed to our ciphertext-policy attribute based CPRE). A subse-
quent scheme by Wang [31] is also key-policy attribute based CPRE, but with
enhanced expressiveness on access policy P such that it can be a non-monotonic
access structure.
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However, the key-policy attribute based schemes in [31,38] suffer from two
weaknesses. (1) Both schemes require to pre-define the total number N of at-
tributes admitted by the system, and the size of the system’s public key is linear
to N . In contrast, our scheme does not have this restriction, and any update
of N over the time does not affect the system setting at all. (2) Inheriting the
advantages of ciphertext-policy ABE (over key-policy ABE), ciphertext-policy
attribute based CPRE is more natural and flexible than its key-policy coun-
terpart in encryption of cloud data, as the former allows the data owner to
directly specify the access control policy associated with a ciphertext, under
which the ciphertext can be decrypted. It deserves noting that while it is pos-
sible to transform ciphertext-policy ABE into key-policy ABE and vice versa
[17], it is not clear whether the transformation techniques are applicable to key-
policy/ciphertext-policy attribute based CPRE schemes in [31,38]; our proposal
is certainly not a direct transformation of those two schemes, though we have
drawn on inspiration from [38].

We notice that the attribute based PRE constructions in [20,21,22] seem not
fully conforming to the usual notion of PRE, as they implement attribute-set
to attribute-set transformation, rather than individual to individual transforma-
tion. They can be viewed as an extension to the conventional PRE, with each of
the delegator and the delegatee is represented by a set of attributes. For more
information on PRE/CPRE, interested readers are referred to [39]. As a final
note, the proposal of dynamic credentials and ciphertext delegation for ABE [29]
also implements attribute-set to attribute-set transformation.

3 Model of Ciphertext-Policy Attribute Based CPRE

In this section, we formalize a model of ciphertext-policy attribute based condi-
tional proxy re-encryption and its security notions. We achieve the same expres-
siveness of access policies as in ABE schemes [6,16], and thus we use the same
notations of “policy” and “attribute” as theirs.

3.1 Preliminaries

Access Tree. In ciphertext-policy attribute based CPRE, a re-encryption key is
generated with a set of descriptive attributes A. An encryptor wishing to encrypt
a message specifies an access policy P and generates the ciphertext under P. For a
re-encryption key to be able to transform the ciphertext, its associated attributes
A must satisfy the access policy P. An access policy is expressed by an access
tree, where each leaf node represents an attribute and we use att(�) to denote the
attribute associated with leaf node �. Each non-leaf node of the tree represents
a threshold gate, described by its children and a threshold value. Let numn be
the number of children of a non-leaf node n, and tn be its threshold value, then
1 ≤ tn ≤ numn. When tn = 1, the threshold gate is an OR gate and when
tn = numn, it is an AND gate. The parent of a node n in the tree is denoted
by parent(n). The tree also defines an ordering among the children of a node,
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i.e., the child nodes of a node n are numbered from 1 to numn. The function
index(n) calculates such a unique number associated with a node n. Access tree
can express any access policy in the form of monotonic formulae.

Satisfying an Access Tree. Let T be an access tree with root rt. Denote by
Tn the subtree of T rooted at node n. Hence T = Trt. When a set A of attributes
satisfy the access tree Tn, it is denoted as Tn(A) = 1. Tn(A) is computed in a
recursive way as follows: if n is a non-leaf node, compute Tn′(A) for all child
nodes n′; Tn(A) returns 1 if and only if at least tn children return 1; if n is a
leaf node, then Tn(A) returns 1 if and only if att(n) ∈ A.

3.2 Model

A ciphertext-policy attribute based CPRE scheme consists of the following al-
gorithms.

Setup(1κ) → params: On input a security parameter 1κ, the setup algorithm
outputs public parameter params. For conciseness, below we assume that
params is implicit in the input of the rest algorithms.

KeyGen(u) → (pku, sku): On input a user identity U , the key generation algo-
rithm outputs a public/private key pair pku/sku for user u.

ReKeyGen(skA,A, pkB) → rk
A

A−→B
: On input the private key skA of the del-

egator, a set of attributes A and the public key pkB of a delegatee, the
re-encryption key generation algorithm outputs a re-encryption key rk

A
A−→B

from A to B issued upon A.
Enc1(pk,m) → c: On input a public key pk and a plaintext m ∈ M (M is an

appropriate message space), the first-level encryption algorithm outputs a
first-level ciphertext c.

Enc2(pk,m,P) → c̃: On input a public key pk, a messagem ∈ M and an access
policy P, the second-level encryption algorithm outputs a second-level cipher-
text c̃. Note that in the setting of PRE, it distinguishes between first-level
encryption and second-level encryption, and only second-level ciphertexts
could be transformed (into first-level ciphertexts).

ReEnc(rk
A

A−→B
, c̃A) → cB: On input a re-encryption key rk

A
A−→B

from A to

B associated with A, and a second-level ciphertext c̃A under public key
pkA and an access policy P, the re-encryption algorithm outputs a first-level
ciphertext cB under public key pkB if A satisfies P; otherwise, it outputs ⊥.

Dec1(sk, c) → m: On input a private key sk and a first-level ciphertext c under
pk, the first-level decryption algorithm outputs a plaintext m if pk/sk is a
valid key pair.

Dec2(sk, c̃) → m: On input a private key sk and a second-level ciphertext c̃
under pk and a certain access policy, the second-level decryption algorithm
outputs a plaintext m if pk/sk is a valid key pair.

Correctness. The correctness of a cipher-text attribute based CPRE scheme as-
serts that, for any m ∈ M, any P,A, any key pairs pkA/skA and pkB/skB, the
following holds if A satisfies P
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Dec1(skA,Enc1(pkA,m))) = m

Dec2(skA,Enc2(pkA,m,P))) = m

Dec1(skB,ReEnc(ReKenGen(skA,A, pkB),Enc2(pkA,m,P)))

= m

3.3 Security Notion

Security of ciphertext-policy attribute based CPRE is defined through the fol-
lowing security game between a challenger and an adversary A.

Setup. The challenger runs the Setup algorithm to generate public parameter
params, and then executes KeyGen with a random user identity O to get
a key pair pkO/skO. Finally, the challenger passes params and pkO to the
adversary A.

Phase 1. The adversary A makes a number of re-encryption key generation
queries on sets of attributes A1,A2, · · · ,Aq1 to the challenger. For each
query (which is on Aj), the challenger responds as follows. First, execute the
KenGen algorithm with a random user identity to obtain a public/private
key pair pkj/skj. Then execute ReKeyGen(skO,Aj , pkj) = rk

O
Aj−−→j

. Finally,

return pkj/skj and rk
O

Aj−−→j
to A.

Challenge. The adversary A submits two equal length messages m0 and m1,
together with a challenge access policy P∗ such that none of A1,A2, · · · ,Aq1

from Phase 1 satisfies P∗. The challenger flips a random coin b, executes
Enc2(pkO,mb,P

∗) = c̃∗, and returns the ciphertext c̃∗ to A.
Phase 2. A again makes a number of re-encryption key generation queries on

sets of attributes Aq1+1,Aq1+2,
· · · ,Aq2 to the challenger. For each query on Aj , the challenger responds as
follows. First, execute the KenGen algorithm with a random user identity to
obtain a public/private key pair pkj/skj. Then execute ReKeyGen(skO,Aj ,
pkj) = rk

O
Aj−−→j

. Finally, if Aj satisfies P∗, then return pkj and rk
O

Aj−−→j
to

the adversary; otherwise, return pkj/skj and rk
O

Aj−−→j
to A.

Guess. The adversary A outputs a bit b′, which is a guess on b.

Definition 1. [CPA Security] A ciphertext-policy attribute based CPRE scheme
is CPA (chosen plaintext attack) secure if for any PPT adversary A, it holds
that Pr[b′ = b] = 1/2 + ε(κ), where ε is a negligible function.

It is often to separately define first-level encryption security and second-level
encryption security in existing PRE/CPRE literature, e.g., [1,2,34,36]. Our for-
malization simultaneously captures both notations. On one hand, the challenge
ciphertext c̃∗ is a second-level ciphertext, thus second-level encryption security
is apparently captured. On the other hand, the adversary is allowed to obtain
re-encryption keys whose associated attributes satisfy the challenge access pol-
icy P∗ (in which case, A does not get the private keys of delegatees); thus the
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adversary itself can transform the challenge ciphertext into first-level ciphertexts
using these re-encryption keys, and this captures first-level encryption security.

Remark. CPA security suffices to meet the needs for encryption of cloud data
- the intended application of CPRE in this paper. Thus, we make our scheme
achieve CPA security only, but extending it to achieve CCA security should not
be a hard issue, given the generic techniques in the literature for constructing
CCA secure schemes, e.g., [12,18].

4 Our Scheme

In this section, we present our construction of a ciphertext-policy attribute based
CPRE scheme, as well as its security analysis.

4.1 The Construction

Our construction is based on the ciphertext-policy ABE scheme [6], but there
remains a big gap between the ABE scheme itself and our ciphertext-policy at-
tribute based CPRE scheme, considering the gap between public key encryption
and PRE. Let s ∈R S denote an element s randomly drawn from a set S. The
details of our scheme are as follows.

Setup(1κ): Determine a bilinear map e : G0 × G0 → GT , where G0 and GT

are cyclic groups of κ-bit prime order p; select g, h, which are generators of
G0, a cryptographic hash function H : {0, 1}∗ → G0. Then set params =
(g, h, e(g, g), H).

KeyGen(u): Pick xu ∈R Zp, and set (pku = gxu , sku = xu).
ReKeyGen(skA,A, pkB): Let skA = xA and pkB = gxB . Pick r, ri ∈R Zp, ∀i ∈

A, and set the re-encryption key as

rk
A

A−→B
= (k = g

xB
xA hr, ∀i ∈ A : {ki1 = gxA·rH(i)ri , ki2 = hri})

Enc1(pk,m): Pick s ∈R Zp, and compute

c = (m · e(g, g)s, e(g, pk)s)

Enc2(pk,m,P): Let pk = gx and P be an access tree T . The second-level en-
cryption algorithm proceeds as follows. It first selects a polynomial qn for
each node n (including the leaf nodes) in T . These polynomials are chosen in
a top-down manner, starting from the root node rt: for each node n, set the
degree dn of the polynomial qn to be dn = tn − 1, where tn is the threshold
value of node n. Starting with the root node rt the algorithm selects a ran-
dom s ∈R Zp and sets qrt(0) = s. Then it selects drt other random points to
define qrt completely. For any other node n, it sets qn(0) = qparent(n)(index(n))
and chooses dn other points to completely define qn.
Let L be the set of leaf nodes in T . Sets the ciphertext c̃ as

c̃ = (T , C = m · e(g, g)s, ∀l ∈ L : {Cl1 = gx·ql(0), Cl2 =

hql(0), Cl3 = H(att(l))ql(0)})
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ReEnc(rk
A

A−→B
, c̃A): Let c̃A = (T , C, ∀l ∈ L : {Cl1, Cl2, Cl3}) and rk

A
A−→B

=

(k, ∀i ∈ A : {ki1, ki2}). The re-encryption algorithm is a recursive procedure.
We first define an algorithm ReEncNdn(c̃A, rk

A
A−→B

) on a node n of T . If

node n is a leaf node then we let z = att(n) and define as follows: z /∈ A,
then ReEncNdn(c̃A, rk

A
A−→B

) = ⊥; otherwise ReEncNdn(c̃A, rk
A

A−→B
) = Fn,

where

Fn =
e(k, Cn1) · e(kz2, Cn3)

e(kz1, Cn2)

=
e(g

xB
xA hr, gxA·qn(0)) · e(hrz , H(z)qn(0))

e(gxA·rH(z)rz , hqn(0))

= e(g, g)xB.qn(0)

Let us now consider the recursive case when n is a non-leaf node. The algo-
rithm ReEncNdn(c̃A, rk

A
A−→B

) then proceeds as follows. For each child node

v of n, it calls ReEncNdv(c̃A, rk
A

A−→B
) and stores the output as Fv. Let Sn be

an arbitrary tn-sized set of child nodes v such that Fv �= ⊥. If no such a set ex-
ists then the node was not satisfied and ReEncNdn(c̃A, rk

A
A−→B

) = Fn = ⊥.

Otherwise, let the Lagrange coefficient#i,S for i ∈ Zp and a set S of elements
in Zp be #i,S(x) =

∏
j∈S,j �=i

x−j
i−j , and we compute

Fn =
∏
v∈Sn

F
�i,S′

n
(0)

v ,where
i=index(v),
S′
n={index(v):v∈Sn}

=
∏
v∈Sn

(e(g, g)xB.qv(0))�i,S′
n
(0)

=
∏
v∈Sn

(e(g, g)xB.qparent(v)(index(v)))�i,S′
n
(0)

=
∏
v∈Sn

(e(g, g)xB.qn(i))�i,S′
n
(0)

= e(g, g)xB.qn(0)

In this way, ReEncNdrt(c̃A, rk
A

A−→B
) for the root node rt can be computed.

If Trt(A) = 1, then we get ReEncNdrt(c̃A, rk
A

A−→B
) = e(g, g)xB.qrt(0) =

e(g, g)xB.s = Frt. As such, sets cB = (C,Frt) = (m · e(g, g)s, e(g, g)xB.s).
Dec1(sk, c): Decryption of the first level ciphertext is straightforward, and we

omit the details.
Dec2(sk, c̃): Let c̃ = (T ,m.e(g, g)s, ∀l ∈ L : {pkql(0), hql(0), H(att(l))ql(0)}).

First compute pks from {pkql(0)}l∈L following the access tree T , and then

gets m = m · e(g, g)s/e((pks)sk−1

, g).

4.2 Security Analysis

For security of the above scheme, we have the following theorem and the proof
will be provided in the full version due to limited space.
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Theorem 1. The above scheme is CPA secure (as specified in Definition 1) in
the generic group model assuming H is a random oracle and E is CPA secure.

5 Application: Encryption of Cloud Data

We present an application of our scheme: encryption of cloud data. We begin
with a discussion of the application scenario.

5.1 Application Scenario

We consider the following application scenario. To enjoy the advantages of cloud
storage services, a Data Owner (DO) establishes a cloud-based data sharing
platform, where the DO outsources her data to the cloud storage, and authorizes
a group of users to access the data. In particular, users are distinguished by their
functional roles (a functional role can be defined by a set of attributes), and are
granted access right according to their respective roles. The DO enforces fine-
grained access control over the cloud data, such that data are accessed by roles
based on the need-to-know basis (i.e., different roles have different access rights).

However, the DO does not fully trust the cloud, and wants to keep data
privacy against the cloud. Thus, the data uploaded to the cloud are encrypted
by the DO. Each authorized user is granted appropriate decryption right by the
DO as per her role. The system must support user revocation, such that once
an authorized user is revoked, her decryption capability is nullified immediately.

An Example. An example of DO and authorized users are a company and its
employees, respectively. The company moves its corporate data to the cloud for
management due to reduced cost, and allows employees to access data on the
need-to-know basis. In such a context, the company often needs to specify data
access control policies based on the roles that employees assume (rather than
on the identities of the employees). For example, an access control policy would
be “this data can only be accessed by executive manager from the purchasing
department”. As a result, the employees are distinguished by their roles, i.e.,
each user should be issued a role certificate, rather than identity certificate. The
need for user revocation occurs, when, e.g., an employee leaves the company. In
such a case, the role of that employee remains and will be taken by a substitute,
but the employee himself is revoked. Thus, we concern about user revocation,
rather than role (or attributes) revocation.

5.2 Encryption of Cloud Data with ABE, and User Revocation

To meet the need of enforcing fine-grained encryption of cloud data in the above
application scenario, attribute-based encryption (ABE), e.g., [6,16,32], is a prim-
itive having the potential to fulfil the objective. Indeed, a number of proposals in
the literature have suggested applying ABE to protect cloud data. Compared to
conventional public-key encryption, where a message encrypted under a public
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key can only be decrypted by a single corresponding private key, ABE is pecu-
liar in offering much finer-grained encryption/decryption capabilities: ABE is a
one-to-many encryption primitive, whereby data are encrypted with a system-
wide public key under certain access policy/attributes and each decryption key
is attached to certain attributes/access policy, such that the ciphertext can be
decrypted only if the attributes satisfy the access policy.

Even though ABE appears promising for encryption of cloud data, user revo-
cation poses a challenge. The difficulty is due to the fact that ABE is essentially
“group encryption”, and thus does not differentiate individual users. The ABE
schemes in [6,16,32] propose to include an “expiry time” attribute in the at-
tribute set, such that a decryption key can work only up to its associated expiry
time. However, such a mechanism cannot implement immediate revocation of
decryption capability. The ABE scheme in [27] supports negative constrains in
the access policy, which actually provides a means for attribute revocation by
negating the attributes to be revoked. Such a “negation” mechanism is not scal-
able for user revocation in encryption of cloud data, as each revoked user must
be explicitly treated as a distinct attribute and included in the ciphertext, mak-
ing it impractical when the number of revoked users grows large. Other variants
of ABE, such as predicate encryption (e.g., [19]) and functional encryption (e.g.,
[7,23]) are also restricted to these two revocation mechanisms.

There also exist “stateful” user revocation mechanisms which involve update
of the decryption keys, e.g., [3,33,37], which would entail re-generation of cloud
data and key re-distribution. Take [37] for example, it proposed applying KP-
ABE [16] for encryption of cloud data, and adopting the specific technique of
PRE scheme [4] to update users’ decryption keys in case of user revocation. The
advantage of such a user revocation approach is that the cloud is entrusted to
take up the majority of the workload for re-generation of cloud data and re-
distribution of new keys. Even though this has improved considerably over the
trivial solution whereby the encryptor is fully responsible for data re-generation
and key re-distribution, it is always preferable to avoid such a burden, as cloud
resources do not come free of charge to the customers. The user revocation
method in [29] works in a similar way, where the cloud has to re-generate the
encrypted cloud data in case of user revocation.

5.3 Cloud-Enabled User Revocation

From the above discussions, we can see that it is not yet practical to deploy ABE
for encryption of cloud data before a more satisfactory user revocation mecha-
nism is found. Based on our ciphertext-policy attribute based CPRE scheme, we
propose a cloud-enabled user revocation approach, with the basic idea as follows.
The cloud is enlisted as the proxy in CPRE, and holds the re-encryption keys
of all authorized users. As such, the cloud is empowered to transform encrypted
data records into ciphertexts under a user’s public key, if the user is autho-
rized and thus has a re-encryption key held by the cloud. To revoke a user, the
cloud simply erases the user’s re-encryption key and thus cannot transform en-
crypted data for the user any more. User revocation in this way incurs little cost,
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requiring no key update, no re-generation of cloud data, and no re-distribution
of keys. For clarity, Table 1 summarizes a comparison between our approach and
other user revocation approaches mentioned in Section 5.2.

Table 1. Comparison Results

Immediate
Revocation

No Key update
& data re-gen.

Scalability

Expiry time × � �
Negation � � ×
[3,33,37] � × �
Our approach � � �

� : can achieve;× : cannot achieve

5.4 Application Details

We show details on applying our proposed CPRE scheme for encryption of cloud
data in the above application scenario. Specifically, the application has the fol-
lowing procedures.

System Setup. The DO runs CPRE.Setup to establishes and publishes the pub-
lic parameter of the CPRE scheme.

The DO runs CPRE.KeyGen to generate a key pair pkO/skO for herself; like-
wise, each user u also generates a key pair pku/sku for himself. All public keys
are part of the public system parameters.

User Authorization. To authorize a user u, the DO decides a set of attributes
A according to u’s role; then executes rk

O
A−→u

= CPRE.ReKeyGen(skO,A, pku),

and sends rk
O

A−→u
to the cloud in a secret way. Note that rk

O
A−→u

can be under-

stood to be the role certificate for u. The cloud maintains a Re-encryption Key
Table (RKT) with each entry being a user identity along with his re-encryption
key, as shown below. As a result, the cloud adds a new entry (u, rk

O
A−→u

) to this

re-encryption key table.

User Identity Re-encryption Key

Alice rk
O

AA−−→A
Bob rk

O
AB−−→B

John rk
O

AJ−−→J
Mary rk

O
AM−−−→M

· · · · · ·
The cloud manages a RKT, which
contains the re-encryption keys of
all authorized users.
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Data Outsourcing . To outsource a data record m to the cloud, the DO deter-
mines the access policy P of the record, and then computes c̃ = CPRE.Enc2(pkO,
m,P). Finally, the DO uploads c̃ to the cloud.

Data Access. Suppose a user u wants to retrieve an encrypted data record c̃
from the cloud, the cloud first gets u’s re-encryption key rk

O
Au−−→u

from the RKT

(Re-encryption Key Table), and then computes cu = CPRE.ReEnc(rk
O

Au−−→u
, c̃),

and sends it to user u. At the user side, u gets m by computing m = CPRE.Dec1
(sku, cu).

User Revocation. To revoke an authorized user u, the re-encryption key of u
is simply erased from the re-encryption key table at the cloud side. Depending
on applications, either the cloud updates the re-encryption key table instructed
by the DO, or a management interface is provided to the DO so that she does
the deletion by herself.

It can easily see that the DO encrypts cloud data by the Enc2 algorithm and
decryption at the user side is by Dec1 algorithm. Enc1 and Dec2 are not used in
the application.

Remarks. We have the following remarks as to the above application. (1) We as-
sume that the cloud is semi-trusted in that it is considered an adversary mainly
to the secrecy of cloud data, but honest in managing cloud data, processing user
access requests, and other administrative activities. (2) When a user requests
data from the cloud, he needs to include his identity with the request, facili-
tating the cloud to determine the corresponding re-encryption key to use from
the Re-encryption Key Table. However, the cloud is not required to check the
authenticity of the request, namely, the cloud does not concern about one user
impersonating another. This is because each user’s re-encryption key is unique
and only pairs up with his own private key. (3) It should not be a surprise if there
are proposals in the literature suggesting to apply PRE/CPRE for encryption of
cloud data. The novelty of our proposal is that we actually utilize PRE/CPRE
for user revocation, and the CPRE scheme we proposed attains fine-grained-ness
comparable to ABE.

5.5 Security Considerations

The primary security concern in the above application is to protect data privacy
against the cloud, which is the motivation for encryption of cloud data (see
Section 1). This apparently achieved, because the cloud plays the role of proxy
in the CPRE scheme. As we have proved, the proxy in our CPRE scheme learns
nothing about the plaintext message. Hence, the application is secure, in terms
of keeping data privacy against the cloud.

5.6 Advantageous Features

One prominent feature of the application of our CPRE scheme for encryption
of cloud data is user-side efficiency. Recall that our CPRE scheme is based on
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bilinear map and achieves fine-grained encryption comparable to ABE. However,
at the user side, a user only needs to receive and decrypt a first-level ciphertext.
This results in high user-side efficiency in terms of both communication and
computation.

Specifically, let |GT | denote the bit length of an element in GT . Then the size
of a first-level ciphertext is 2|GT |, and Dec1 involves mainly 1 exponentiations in
GT , both are constant. Note that GT is an ordinary multiplicative group. This
means that the user-side computation is quite light-weight, and does not involve
paring operation, even though our scheme itself is built upon bilinear map. This
stands in contrast with all other proposals that apply ABE for encryption of
cloud data, which have to perform pairing operations at the user side. The
high efficiency and none-requirement of pairing support at the user side make
it possible to access cloud data using resource-constrained devices, e.g., mobile
phones, tablets.

The second feature is the efficiency of cloud-enabled user revocation. In case of
user revocation, all that is needed is to remove the revoked user’s re-encryption
key from the cloud, and none of key update, re-generation of cloud data, and
re-distribution of keys is incurred.

Thirdly, we view our way of realizing cloud-enabled user revocation by CPRE
as split of decryption capability, where decryption of a ciphertext requires the
cooperation between the cloud and a delegatee. We distinguish decryption capa-
bility split from decryption key split such as in [5]. The distinction between the
two is that the entity performing decryption capability split (i.e., the DO in our
application) does not necessarily know the secret of a delegatee, while the entity
for decryption key split must know the delegatee’s secret. Thus, the decryption
capability split mechanism in our application is advantageous in keeping the
delegatee’s secret for himself only. We realize that the method (for delegating
the workload of ABE decryption) in [15] is also possible to be applied to realize
cloud-enabled user revocation, but will result in decryption key split.

5.7 Disadvantages

We stress that our application of CPRE for implementing cloud-enabled user
revocation does not come at no cost. This approach requires the cloud to per-
form the ReEnc operation upon every data access request, which is expensive
(although it can be viewed as offloading the workload to the cloud). Indeed,
such online computation at the cloud side is inevitable in this application, but
could be greatly mitigated due to the following.

The actual deployment of the CPRE scheme should follow the common prac-
tice for public-key encryption, namely, the payload data is encrypted with a
random key under symmetric encryption, and the encryption key is encapsu-
lated with the public-key encryption (i.e., the Enc2 algorithm in our case). This
allows to amortize the overhead incurred by the key encapsulation. Specifically,
all data sharing the same access policy are encrypted by a common symmetric
encryption key; as a result, a ReEnc operation by the cloud may allow a user
to access many data records (rather than a ReEnc operation per data record).
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We stress that this does not necessarily require the data owner to manage the
symmetric encryption keys. Instead, she can obtain the encryption key corre-
sponding to an access policy by retrieving and decrypting (i.e.,Enc2) the related
key encapsulation ciphertext from the cloud, if the access policy in question has
already been used.

The overhead-amortization mechanism must support user revocation. To this
end, once a user is revoked, the data owner will use a new key for every access
policy when encrypting new data records (but leave the old encrypted data
records intact). This guarantees that the newly generated cloud records cannot
be decrypted by the revoked user. In principle, it is not a concern that a revoked
user can decrypt the data he had been entitled to before his revocation.

Caveat. It may seem that the schemes in [3,33,37] implementing “stateful” user
revocation mechanisms are advantageous over our application, from the perspec-
tive of online computation by cloud. In those schemes, little online computation
is required upon the cloud in responding to users’ data accesses. While it seems
that the high workload entrusted to the cloud due to user revocation in those
schemes could be performed offline, in practice it would be hard to arrange the
re-generation of cloud data offline so that it does not affect users’ online data
requests (consider that a user requests data while re-generation of cloud data is
in progress).

More importantly, the disadvantage of online computation in our application
can be understood to be a tradeoff for the unique feature of user-side efficiency
and the none-requirement of pairing support at the user side.

6 Conclusion

Encryption of cloud data is now commonly accepted as necessary to achieve data
privacy against the cloud. ABE well suits this task in terms of the fine-grained
encryption capability it can render, but without a satisfactory solution to the
user revocation issue. To solve this problem, we proposed a ciphertext-policy
attribute based CPRE scheme, and applied it to instantiate the cloud-enabled
user revocation approach. This application achieves access control over cloud
data with granularity comparable to ABE, yet incurring virtually no cost for user
revocation. This is advantageous over all existing solutions. Another feature of
our application is the high user-side efficiency in terms of both computation and
communication at the user side. There may be other proposals in the literature
using PRE/CPRE for encryption of cloud data, ours is probably the first to
apply it for user revocation purposes.
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Abstract. Subspace membership encryption is a generalization of inner
product encryptions, which was recently formalized by Boneh, Raghu-
nathan, and Segev in Asiacrypt 2013. The construction of this new pred-
icate encryption was motivated by the fact that traditional predicate
encryptions did not yield function privacy, a security notion introduced
by Boneh et al. in Crypto 2013. This newly defined security notion re-
quires that no information on the predicate associated to a given secret
key is revealed, beyond the absolute minimum necessary. Boneh et al.
gave a generic construction of the subspace membership encryption based
on any inner product encryption. However, our research shows that their
construction for subspace membership encryptions when the attribute
space is small was incorrect, and that it does not yield the attribute
hiding security, which is the baseline notion of security for predicate en-
cryptions. In this paper, we will first show why the construction does not
possess the attribute hiding security, and see that this can not be altered
through simple reconstruction. Then, we will formulate a generalized
construction of subspace membership encryptions by introducing prob-
ability distributions over the attribute and predicate space, and prove
that the attribute hiding security can not be satisfied even in the gener-
alized setting. We will consider the requirements for subspace member-
ship encryptions to yield the attribute hiding security, and evaluate them
probabilistically. Finally, we will present an extension of our generalized
construction, and show that it holds the attribute hiding security even in
small attribute spaces. However, in our extended generalized construc-
tion, function privacy was deprived, which was precisely the motivation
of formalizing subspace member encryptions in the first place. Although,
we did not succeed in constructing a subspace membership encryption
which both yields the attribute hiding security and function privacy,
we formalized a richer framework of construction of subspace member-
ship encryptions, and discovered a trade-off like relationship between
the two security notions, which presents possibility for a construction in-
between ours and Boneh et al.’s. Furthermore, our extended generalized
construction cuts open new perspectives in the construction of subspace
membership encryptions and enables us to make various choices on the
underlying inner product encryptions.

Keywords: predicate encryption, subspace membership encryption,
function privacy.
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1 Introduction

Predicate encryption is a new framework of the traditional public-key encryption
which offers wider possibilities in sharing encrypted messages. In traditional
public-key encryptions, a message encrypted with respect to a public key is
only decrypted by a particular individual who possessed a unique secret key
associated with the public key. However, in predicate encryptions, a message
can be decrypted by any individual who possesses a secret key that satisfies a
certain policy determined by the encryptor. This allows for more flexibility in
sharing encrypted messages, and provides many appealing applications.

Predicate encryption was first handled in [4,9], and many previous works can
be casted in this framework, e.g. IBE [6,7,14,15], ABE [8,10,13]. However, due
to the fact that they are more expressive than former public-key encryptions,
providing meaningful security notions are difficult. Beyond the trivial security
notion of payload hiding, which guarantees that no information on the message
is obtained from the associating ciphertext, an extension of the payload hiding
called the attribute hiding security was presented in [1,9]. This guarantees in ad-
dition that no essential information on the attribute associated with a ciphertext
can be obtained.

Recently, Boneh, Raghunathan, and Segev [2] presented a new security notion
called function privacy, which takes a step forward by requiring the secret key
to reveal no information on the corresponding predicate, beyond the absolute
minimum. This security notion was motivated by the need in providing predicate
privacy in public key searchable encryptions. Many existing predicate encryp-
tions do not yield function privacy, and formalizing such a security notion tends
to be difficult, owing to the fact that the formalization of function privacy varies
according to the family of predicates being used.

One of the most expressive and secured predicate encryption is the inner
product encryption, which supports the family of predicates corresponding to
the inner products of vectors in Zl

q. This was first presented by Katz, Sahai,
and Waters [9], and since then many researches have been made, e.g. [5,11,12].
However, inner product encryption does not yield function privacy due to its
functionality. In light of this, Boneh, Raghunathan, and Segev [3] formalized
a generalization of inner product encryptions called subspace membership en-
cryption, and succeeded in a generic construction of function private predicate
encryptions. Their method of construction is efficient in that it can easily be
constructed based on any underlying inner product encryption, and preserves
the security properties of the underlying scheme. Furthermore, since the pred-
icates used in subspace membership encryptions are of a wider class than that
of inner product encryptions, it allows for richer applications.

1.1 Our Contribution

On looking over at the construction of subspace membership encryptions ap-
peared in the proceeding version of Asiacrypt2013 [3] by Boneh, Raghunathan,
and Segev, a fatal mistake was discovered in the proof of the attribute hiding
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security for the construction in the small attribute space, and to our extent,
it seems difficult to correct it through simple modification1. Therefore, in this
paper, we first generalize the framework of their construction by introducing a
probability distribution over the attribute and predicate space, and prove that
even in the generalized setting the attribute hiding security can not be yielded.
More specifically, we will provide essential requirements for the baseline security
notion to hold, and evaluate them probabilistically.

Then, we will give an extension of our generalized construction of subspace
membership encryptions, and present a generic construction where the attribute
hiding property holds even in small attribute spaces. We will point out that
our construction does not yield function privacy, which was the primal motiva-
tion of Boneh et al. for formalizing subspace membership encryptions. However,
through the extended framework, we have discovered a trade-off like relationship
between the attribute hiding security and function privacy (and the size of the
underlying inner product encryption). This presents a possibility for an existence
of a construction method between that of ours and Boneh et al.’s. Furthermore,
our extended generalized construction of subspace membership encryptions of-
fers a new perspective in the construction method, and enables us to make wider
choices on the underlying inner product encryption.

1.2 Outline of the Paper

In Section 2 we will introduce the subspace membership encryption following
the works of [3]. In more detail, we will first provide the standard notions and
definitions of predicate encryptions. Then, we will show the construction method
of subspace membership encryptions given in [3], and point out the mistake in
the proof of the attribute hiding security. In Section 3, we will give a generalized
construction of subspace membership encryptions and show that the attribute
security does not hold even in the generalized setting. In Section 4, we will
extend the construction method given in Section 3 and compare it with other
constructions of subspace membership encryptions. In Section 5, we will discuss
the problem of our construction and see several open questions derived from this
work.

2 Subspace Membership Encryption and Its Construction

2.1 Notation

For an integer n ∈ N, [n] denotes the set {1, 2, . . . , n}. For an element d in a
probability distributionD, d← D denotes the process of sampling d according to

the distribution in D. Similarly, for a set S and an element x in the set S, x
$← S

denotes the process of sampling x according to the uniform distribution over S.
A function f(x) : N → R is negligible, when for any positive polynomial poly(x)
there exists an integer xpoly > 0 such that for all x > xpoly, |f(x)| < 1/poly(x).

1 Their scheme for the large attribute space is still secure.
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A function g(x) : N → R is super polynomial, when for any integer c > 0 there
exists an integer xconst such that for all x > xconst, g(x) > xc.

2.2 Predicate Encryption

We use the definition of Boneh et al. [3] with minor alterations.

Definition 1 (Predicate Encryption). A predicate encryption scheme for
the class of predicates F over the set of attributes Σ with message space M
consists of four randomized PPT algorithms Setup,KeyGen,Enc, and Dec
defined as follows:

1. Setup: Setup takes as input the security parameter 1λ and outputs public
key pp and a master key msk.

2. Key Generation: KeyGen takes as input the master secret key msk and
a predicate f ∈ F and outputs a secret key skf .

3. Encryption: Enc takes as input the public key pp, an attribute I ∈ Σ, and
a message M ∈ M and returns a ciphertext c.

4. Decryption: Dec takes as input a secret key skf and ciphertext c, and
outputs either M or ⊥.

Correctness requires the following conditions to hold with all but negligible
probability in λ for all λ ∈ N, for all (pp,msk) generated by Setup(1λ), for all
f ∈ F , for all secret keys skf ← KeyGen(msk, f), for all I ∈ Σ.

(1) If f(I) = 1, then Dec(skf ,Enc(pp, I,M)) = M.
(2) If f(I) = 0, then Dec(skf ,Enc(pp, I,M)) =⊥.

Beyond the standard notion of payload hiding, which guarantees that no efficient
adversary obtains information on the encrypted message, it is often necessary to
guarantee attribute hiding as well. This is a stronger notion than payload hiding,
which guarantees in addition that no efficient adversary obtains information on
the attribute associated with the ciphertext. We will follow the definition of
(weak) attribute hiding given by Boneh et al. [3].

Definition 2 (Attribute Hiding). A predicate encryption scheme Π for the
class of predicates F over the set of attribute Σ with message space M is at-
tribute hiding if for all PPT adversaries A, the advantage of A is negligible in
the security parameter λ. The advantage of adversary A is defined via a game
between an adversary and a challenger:

1. A(1λ) outputs a pair (I0, I1) ∈ Σ, and gives these to the challenger.
2. The challenger computes (pp,msk) ← Setup(1λ) and gives pp to the ad-

versary.
3. A requests keys for predicate fi ∈ F(i = 1, 2, . . . , Q) subject to the restric-

tion fi(I0) = fi(I1) = 0 to the challenger. For each query the challenger
sends back skfi ← KeyGen(msk, fi) to the adversary.

4. A submits two equal-length messages M0,M1 ∈ M to the challenger and
receives c ← Enc(pp, Ib,Mb).

5. A requests additional keys subject to the same restriction as before.
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6. A outputs b′.

The advantage of the adversary A is defined as |Pr[b = b′]− 1/2|.

In predicate encryption, further notion of security called function privacy is in-
troduced by Boneh et al. [2]. Function privacy requires that no efficient adversary
obtains information, beyond the absolute minimum necessary, on the identity of
predicate f associated with the secret key skf . However, we will not be handling
this security notion in depth in this paper, so those who are interested should
refer to [3] for further detail.

2.3 Subspace Membership Encryption

Subspace Membership Encryption (SME) is a predicate encryption formalized by
Boneh et al. [3], which generalizes the framework of inner product encryptions
(IPE). It supports the class of predicates F over an attribute space Σ = Sl,
defined as follows:

F = {fW : W ∈ Sm×l} , where fW(x) =

{
1 if Wx = 0 ∈ Sm

0 otherwise
.

Here m, l ∈ N are integers, S an additive group of order prime q, and x ∈ Sl

an attribute. m, l and q are functions of λ where m and l are traditionally
polynomials in λ. In addition, IPE can be seen as a special case of SME when
m = 1.

Boneh et al. [3] give a generic construction based on any IPE scheme in the
cases of large and small attribute spaces, and gives proofs for each of their
attribute hiding and function private properties. However, our research shows
that the proof given for the attribute hiding property for SME in the small
attribute space is incorrect, and a counterexample can be easily given. In this
section we will see how the attribute hiding property does not hold for small
attribute spaces.

Construction in Large Attribute Space First, we will take a look at the
construction of SME for a large attribute space (LA.SME) given by Boneh et
al. [3]. We note that a large attribute space is an attribute space Sl where the size
of order q of the additive group S is super polynomial in the security parameter
λ. In contrast, a small attribute space is an attribute space Sl where the size of
order q of the additive group S is polynomial in λ. We will follow the definition
of LA.SME given by Boneh et al. [3].

Definition 3 (LA.SME Algorithm). Let IP= (IP.Setup, IP.KeyGen, IP.Enc,
IP.Dec) be an IPE scheme with attribute set Σ = Sl and message space M.
Then a subspace membership encryption scheme SM= (SM.Setup, SM.KeyGen,
SM.Enc, SM.Dec) is constructed as follows:

1. Setup: SM.Setup takes the security parameter 1λ as input and outputs
public key pp and master key msk by running IP.Setup(1λ).



228 S. Katsumata and N. Kunihiro

2. Key Generation: SM.KeyGen takes master key msk and predicate fW(W

∈ Sm×l) as inputs. First, it samples s
$← Sm and computes v = WTs ∈ Sl.

Then, it computes skv ← IP.KeyGen (msk,v) and outputs skW(= skv).
3. Encryption: SM.Enc takes public key pp, an attribute x ∈ Sl, and a mes-

sage M ∈ M as inputs, and outputs a ciphertext c ← IP.Enc(pp,x,M).
4. Decryption: SM.Dec takes public key pp, a secret key skW, and a cipher-

text c as inputs, and outputs M ← IP.Dec (pp, skv, c).

The correctness of this construction is proven via the correctness of the underly-
ing IPE scheme. It suffices to show that the following conditions holds for every
W ∈ Sm×l and every x ∈ Sl.

(1) If fW(x) = 1, then it holds that Wx = 0. Hence, xTv = xT(WTs) = 0.
Due to the correctness of the underlying IPE, IP.Dec decrypts c correctly.
Therefore SM.Dec will correctly output M as required, which implies that
ciphertexts that should be correctly decrypted will always be correctly de-
crypted by SM.Dec.

(2) If fW(x) = 0, then it holds that Wx = e �= 0. Then, xTv = xT(WTs) =
eTs. Since s is a random vector chosen from an additive group Sl with order
prime q, the quantity xTv equals zero with probability 1/q. As q is super
polynomial in λ, 1/q is negligible in λ. Hence, ciphertexts that should not
be correctly decrypted will not be decrypted correctly by SM.Dec, with all
but negligible probability.

LA.SME is proven to be attribute hiding and function private, but we will not
get into great detail as readers may inform [3] for detailed explanation. Here we
will maintain ourselves to giving only an abstract of the proof.

Firstly, the attribute hiding property of LA.SME can be proven easily via the
attribute hiding property of the underlying IPE. This is easily understandable,
since the four PPT algorithms used in the SME scheme highly manipulates
that of IPE. Secondly, the function private property is proven from the fact
that a vector v corresponding to a predicate in IPE is a product of a random
vector s and a matrix W corresponding to a predicate in LA.SME. We will
remind the readers that function privacy requires no efficient adversary to obtain
information, beyond the absolute minimum, on the identity of the predicate
associated with the secret key. The intuition behind this is that even if some
information on predicate fv is revealed from the secret key skW = skv, as long
as W is masked by a random vector s, it reveals no information on predicate
fW, consequently meaning that the secret key skW reveals no information on
the predicate fW.

Construction in Small Attribute Space. Looking at the proof of the cor-
rectness of LA.SME, we can see that correctness requires 1/q to be negligible in
λ. In addition, when 1/q is not negligible in λ, it can also be seen that the proof
for the attribute hiding property does not hold either. To overcome this difficulty,
Boneh et al. refined LA.SME by introducing a new parameter τ(λ) ∈ N, and
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gave a construction of SME in a small attribute space (SA.SME) in the proceed-
ing version2 of Asiacrypt2013 [3]. A proof of the correctness and the attribute
hiding property was given, but our research shows that the proof given for the
latter is mistaken. Furthermore, it can be easily shown that in fact, SA.SME is
not attribute hiding.

The detailed construction of SA.SME is as follows. Here, we use the definition
of Boneh et al. [3].

Definition 4 (SA.SMEAlgorithm). Let IP =(IP.Setup, IP.KeyGen, IP.Enc,
IP.Dec) be an IPE scheme with attribute set Σ = Sl and message spaceM. Then
a subspace membership encryption scheme SMτ = (SM.Setup, SM.KeyGen,
SM.Enc, SM.Dec) parameterized by a parameter τ = τ(λ) ∈ N is constructed as
follows:
1. Setup: SM.Setup takes the security parameter 1λ as input and runs algo-

rithm IP.Setup(1λ) τ times. It outputs public key pp = (pp1, . . . , ppτ ) and
master key msk = (msk1, . . . ,mskτ ).

2. Key Generation: SM.KeyGen takes master key msk and predicate fW(W

∈ Sm×l) as inputs. First, it samples si
$← Sm(i ∈ [τ ]) independently τ

times and computes vi = WTsi ∈ Sl for each i. Then, it computes skvi ←
IP.KeyGen (mski,vi) and outputs secret key skW=(skv1 , . . . , skvτ ).

3. Encryption: SM.Enc takes public key pp, an attribute x ∈ Sl, and a

message M ∈ M as inputs, and samples M1, . . . ,Mτ
$← M subject to

M = M1⊕· · ·⊕Mτ . Then, it computes ci ← IP.Enc(ppi,x,Mi) and outputs
ciphertext c = (c1, . . . , cτ ).

4. Decryption: SM.Dec takes public key pp, a secret key skW=(skv1 , . . . ,
skvτ ), and a ciphertext c = (c1, . . . , cτ ) as inputs, and computes Mi ←
IP.Dec (ppi, skvi , ci). If Mi =⊥ for any i ∈ [τ ], then SM.Dec outputs ⊥.
Otherwise, it outputs M = M1 ⊕ · · · ⊕Mτ .

The correctness of this construction is proven the same way as the correctness
of LA.SME. It suffices to show that the following conditions holds for every
W ∈ Sm×l and every x ∈ Sl.
(1) If fW(x) = 1, then it holds that Wx = 0. Consequently, for every i ∈ [τ ],

xTvi = xT(WTsi) = 0. Due to the correctness of the underlying IPE,
IP.Dec decrypts each ciphertexts ci correctly. Thus, SM.Dec will correctly
outputM as required, which implies that ciphertexts that should be correctly
decrypted will always be correctly decrypted by SM.Dec.

(2) If fW(x) = 0, then it holds that Wx = e �= 0. Then, xTvi = xT(WTsi) =
eTsi. Since si is a random vector chosen from an additive group Sl with
order prime q, the quantity of xTvi equals zero with probability 1/q. SM.Dec
fails to output ⊥ if and only if xTvi = 0 for every i ∈ [τ ]. Therefore, the
probability for correctly decrypting the ciphertext by mistake is 1/qτ , which
is negligible in the choice of parameters. Hence, ciphertexts that should not
be correctly decrypted will not be correctly decrypted by SM.Dec, with all
but negligible probability.

2 In its full version, the constriction has been cut off.
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As shown above, SA.SME yields correctness. It is also proven that SA.SME
is function private [3]. However, as we will see in the next section, our research
shows that the proof for the attribute hiding property for SA.SME was incorrect,
and we will give proof of SA.SME not yielding the attribute hiding property. This
is a crucial problem for SA.SME, since the attribute hiding property is the most
fundamental security notion for predicate encryptions, i.e., even if it is function
private, it can not be called secure unless it is not attribute hiding.

2.4 Problem of SA.SME

Boneh et al. [3] gave proof for the attribute hiding property of SA.SME. The
proof considered a hybrid argument that basically followed the outline of the
proof of LA.SME, however, our research shows that the proof was incorrect. In
this section, we will devise an adversary where the advantage of the adversary
is 1, and show that SA.SME does not yield the attribute hiding property.

Before explaining how the adversary queries the challenger to disprove
SM.SME’s attribute hiding property, we will review some properties of SA.SME.
Since in SA.SME, the ciphertexts c and the secret keys skW are of the form
c = (c1, . . . , cτ ) and skW=(skv1 , . . . , skvτ ), following from the previous argu-
ment, each secret key skvi will correctly decrypt ciphertext ci associated with
attribute x by mistake with probability 1/q when fvi(x) = 0. Hence, even when
the adversary asks for a secret key skW associated with the predicate fW sat-
isfying fW(x0) = fW(x1) = 0 to the challenger, looking at each secret keys
individually, the adversary will obtain a secret key skvi that correctly decrypts
ci with probability 1/q.

Saying there exists an adversary with advantage 1, is equivalent to showing
there exists an adversary that can correctly decrypt the ciphertext c given by the
challenger while only querying predicates fW that suffices fW(x0) = fW(x1) =
0. In other words, it suffices to show that an adversary can obtain all the secret
keys skvi which correctly decrypts ci, i.e., the secret key skW that correctly
decrypts c, by only querying predicates fW with the above property.

To do so, the adversary will ask for a secret key skW associated with the
predicate fW satisfying fW(x0) = fW(x1) = 0 to the challenger, and if he
receives a secret key skvi that successfully decrypts ci, he will keep hold of it,
and if not, he will discard of it and ask for a new secret key. We note that when
the adversary asks for a new secret key skW, the associating predicate fW can
be the same as the previous predicate he queried, since each secret keys skvi

constituting skW are constructed via products of a random vector si and the
matrix W corresponding to the predicate fW.

Since the adversary obtains a secret key skvi which correctly decrypts ci with
probability 1/q for each i ∈ [τ ] by making one query, following from the coupon
collector’s argument, the adversary will be able to collect all the secret keys skvi

that correctly decrypts ci by querying no more than a polynomial in q number
of times. The mean of the number of queries needed to be made can be exactly
evaluated, however, the fact that the mean is polynomial in q is of importance
right now. When q is polynomial in the security parameter λ, a polynomial of q
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is a polynomial of λ. Therefore, when the attribute space is small, the adversary
will obtain the secret key skW that correctly decrypts c given by the challenger
through querying only a polynomial in λ number of times. Thus proving that
SA.SME is not attribute hiding.

The above argument holds for any size of τ , the number of shares of mes-
sages, as long as τ is polynomial in λ, since its size will only effect the number
of queries needed to be made insignificantly. This presents the difficulty of mod-
ifying SA.SME to yield the attribute hiding property. It can be seen that the
method of segmentation is not causing the problem, but the fact that SA.SME
inherits the properties of LA.SME is causing the problem. More specifically, it
is because each of the secret keys skvi constituting skW can be accidentally
obtained with probability 1/q through one query. When the attribute space is
large 1/q is negligible, but when it is small 1/q is no longer negligible, which
consequently deprives the attribute hiding property of SA.SME.

3 Generalized Construction of SME

As seen in the previous section, SA.SME does not yield the attribute hiding
property, and this can not be fixed through simple reconstruction. The problem
is not induced by the method of segmentation of SA.SME, but instead lies within
the construction of the secret keys, which can not be altered easily. As long as
each ciphertext ci associated with attribute x can be decrypted by a secret key
skvi associated with a predicate fW satisfying fW(x) = 0 with probability 1/q,
SA.SME will not yield the attribute hiding property no matter how we split
the messages, due to the fact that there exists an efficient attack to recover the
secret key skW. This essentially means that the problem is caused by the under-
lying properties of LA.SME. Therefore, we need to rethink the Key Generation
algorithm (and the Encryption algorithm) of LA.SME. In other words, we need
to argue whether there is a way to construct secret keys skW based on an under-
lying IPE scheme, where the secret keys skW that are not intended to decrypt
a specific ciphertext c, will not decrypt the ciphertext, with all but negligible
probability in the security parameter λ.

In this section, we will give a generalized construction of LA.SME, and prove
that such a construction of secret keys skW is in fact impossible even in the
generalized setting.

3.1 Preliminaries

We will introduce a probability distribution over the attribute and predicate
space, and denote the new attribute space as DG and the new predicate space
as DF , where each notations are defined as follows.

1. G : A set of all functions from Sl to Sl

2. DG : Some probability distribution over G
3. F : A set of all functions from Sm×l to Sl

4. DF : Some probability distribution over F
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We note that the set G and F are finite sets.
If we use these newly defined notations, the attribute space DGBRS considered

in [3] can be interpreted as an probability distribution where an identity function
gid : x → x is chosen with probability 1. Furthermore, the predicate spaceDFBRS

can be interpreted as a probability distribution where a function fs : W → WTs
defined for every s ∈ Sl is chosen with probability 1/ql.

When D is a probability distribution, Prd←D(“condition on d”) denotes the
probability of choosing d satisfying the given condition.

When U is a subset of a vector space V , U⊥ denotes the vector space of all
vectors that are orthogonal to the elements in U. When v ∈ V , 〈v〉 ⊆ V denotes
the vector space spanned by v.

Lastly, since we are handling linear algebra in finite fields, we will introduce
some properties of linear algebra in Zl

q which we will be using latter on in our
proof. For further detail, refer to Appendix A and the full version.

Lemma 1. When rank(W) = n for W ∈ Zm×l
q , the vector space W⊥ orthog-

onal to W is spanned by l − n linearly independent vectors. In other words,
dim(W⊥) = l− n.

Lemma 2. When a1, . . . , an are n linearly independent vectors in Zl
q, there

exists a vector v ∈ Zl
q satisfying the following condition.{

aTi v = 0, (i = 1, 2, . . . , k)
aTi v �= 0, (i = k + 1, . . . , n).

Lemma 3. There exists Nq(=
ql−1
q−1 ) + 1 vectors v0,v1, . . .vNq satisfying the

following condition, where v0 denotes the zero vector.{
〈v0〉 ∪ 〈v1〉 ∪ · · · ∪ 〈vNq 〉 = Zl

q,
〈vi〉 ∩ 〈vj〉 = 0, (∀i �= j).

3.2 Generalized SME

LA.SME can be expressed using the newly defined probability distributionDGBRS

and DFBRS . However, as we saw in the previous section, SA.SME does not yield
the attribute hiding property, since the probability of the incorrect secret key
correctly decrypting the ciphertext could not be negligible. To state this math-
ematically, for all W and x satisfying Wx �= 0 the following equation holds in
the LA.SME scheme.

Pr
f←DFBRS

,g←DGBRS

(f(W)Tg(x) = 0) = 1/q.

This property holds for SA.SME too, when we look at each of the secret keys skvi

constituting skW individually. Therefore, although SA.SME holds correctness,
since 1/q is not negligible in the security parameter λ when the attribute space
is small, it was not attribute hiding.
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We will define a more generalized construction of LA.SME called Generalized
SME (G.SME), and prove that we can not extend it to an attribute hiding
counterpart of SA.SME even in the generalized setting. Consequentially proving
that the above equation can not be fined to a degree where the right hand side
becomes negligible in λ. To state this more explicitly, we will begin by giving
the definition of G.SME.

Definition 5 (Generalized SME). Let IP = (IP.Setup, IP.KeyGen, IP.Enc,
IP.Dec) be an IPE scheme with attribute set Σ = Sl, message space M, and
DG , DF be some probability distribution over sets G and F . Then a subspace
membership encryption scheme SM = (SM.Setup, SM.KeyGen, SM.Enc,
SM.Dec) is constructed as follows:
1. Setup: SM.Setup takes the security parameter 1λ as input and outputs

public key pp and master key msk by running IP.Setup(1λ).
2. Key Generation: SM.KeyGen takes master key msk and predicate fW(W

∈ Sm×l) as inputs. First, it samples a function f ← DF and computes
v = f(W) ∈ Sl. Then, it computes skv ← IP.KeyGen(msk,v) and outputs
skW(= skv).

3. Encryption: SM.Enc takes public key pp, an attribute x ∈ Sl, and a mes-
sage M ∈ M as inputs. First, it samples a function g ← DG and computes
y = g(x) ∈ Sl. Then it outputs a ciphertext c ← IP.Enc(pp,y,M).

4. Decryption: SM.Dec takes public key pp, a secret key skW, and a cipher-
text c as inputs, and outputs M ← IP.Dec(pp, skv, c).

We note that if we let DG = DGBRS and DF = DFBRS , we obtain LA.SME. We
now need to further inspect the requirements for the probability distributions
DG and DF , in order for G.SME to hold correctness and the attribute hiding
property.

3.3 Requirements in Constructing G.SME

The problem of LA.SME was that when the attribute space was small, the
probability of the incorrect secret key correctly decrypting the ciphertext was
not negligible. Hence, in order for G.SME to yield correctness and the attribute
hiding property, the following two requirements must hold for large and small
attribute spaces.

Requirement 1 (Correct secret keys correctly decrypt ciphertexts).
For all pairs W and x satisfying Wx = 0, the following inequalities holds.

Pr
f←DF ,g←DG

(f(W)Tg(x) = 0) ≥ 1− δ,

where δ is a negligible function in the security parameter λ.

Requirement 2 (Incorrect secret keys do not decrypt ciphertexts). For
all pairs W and x satisfying Wx �= 0, the following inequalities holds.

Pr
f←DF ,g←DG

(f(W)Tg(x) = 0) ≤ ε,

where ε is a negligible function in the security parameter λ.
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Requirement 1 can be seen as a requirement for the correctness of G.SME to
follow. Requirement 2 can also be seen as a requirement for the correctness to
follow, but we point out that it has a more important relevance than that. To hold
correctness, ε does not necessarily have to be negligible in λ, since as we saw with
SA.SME, we can segment the messages in order to preserve the correctness for
small attribute spaces. However, since the attribute hiding property can not be
attained through changing the method of segmentation, ε needs to be negligible
in λ for the attribute hiding property to hold even in small attribute spaces.

We note that in LA.SME, the following equations holds.

Pr
f←DFBRS

,g←DGBRS

(f(W)Tg(x) = 0) = 1 for all W and x satisfying Wx = 0,

Pr
f←DFBRS

,g←DGBRS

(f(W)Tg(x) = 0) = 1/q for all W and x satisfying Wx �= 0.

We can see that Requirement 1 holds, but Requirement 2 does not, since 1/q
will not be negligible in the security parameter λ when the attribute space is
small.

3.4 Properties of Functions in DG and DF

When the attribute space DG and predicate space DF of G.SME meets the
Requirement 1 and 2, there are several strong properties we can state. We will
introduce them and give the intuition behind each properties. We will only give
proofs for the first two lemmas, and for the other lemmas it will be given in the
full version.

The following lemma informs that for linearly independent attributes of
G.SME, they maintain to be linearly independent with high probability after
being mapped to attributes of IPE by a function in DG .

Lemma 4. Let rank(W) = n. From Lemma 1, the vector space W⊥ orthogonal
to W is spanned by l−n linearly independent vectors. Denoting the l−n vectors
as u1,u2, . . . ,ul−n ∈ Sl, if l < 1

ε+δ , then the following inequality holds for all
τ ≥ ε+ δ.

Pr
gi←DG

(g1(u1), . . . , gl−n(ul−n) are linearly independent) ≥ 1− τ.

Proof. Let us assume that there exists a τ0 ≥ ε + δ satisfying,

Pr
gi←DG

(g1(u1), . . . , gl−n(ul−n) are linearly dependent) ≥ τ0.

This inequality can be rewritten as

Pr
gi←DG

(g1(u1) =

l−n∑
i=2

aigi(ui) for some ai ∈ Zq(i = 2, . . . , l − n)) ≥ τ0. (1)
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Since u1,u2, . . . ,ul−n are linearly independent, substituting k = n−1 in Lemma
2, there exists a vector v satisfying,{

uT
1 v �= 0,

uT
i v = 0, (i = 2, . . . , l− n).

Hence, if we consider a matrix W′ ∈ Sm×l whose rows are vT, we obtain{
W′u1 �= 0,
W′ui = 0, (i = 2, . . . , l− n).

Since from Requirement 1,

Pr
f←DF ,gi←DG

(f(W′)Tgi(ui) = 0) ≥ 1− δ

holds for all i = 2, . . . , l − n, the following inequality holds.

Pr
f←DF ,gi←DG

(f(W′)Tgi(ui) = 0 (i = 2, .., l− n)) ≥ (1 − δ)l−n−1. (2)

Using (2), we obtain

Pr
f←DF ,gi←DG

(f(W′)T
l−n∑
i=2

aigi(ui) = 0) ≥ (1− δ)l−n−1

for any ai ∈ Zq (i = 2, . . . , l − n). Combining this with (1), we have

Pr
f←DF ,g1←DG

(f(W′)Tg1(u1) = 0) ≥ τ0(1− δ)l−n−1.

Since δ $ 1, n ≥ 1, τ0 ≥ ε + δ, l < 1
ε+δ ,

τ0(1− δ)l−n−1 > τ0
(
1− (l − 2)δ

)
≥ (ε+ δ)

(
1− (l − 2)δ

)
= ε+

(
1− (l − 2)(ε+ δ)

)
δ > ε.

Therefore,

Pr
f←DF ,g1←DG

(f(W′)Tg1(u1) = 0) > ε. (3)

On the other hand, since W′u1 �= 0, the following inequality given by Require-
ment 2 must hold.

Pr
f←DF ,g1←DG

(f(W′)Tg1(u1) = 0) < ε.

However, this contradicts (3). Hence the proof is complete. �
The next lemma shows that, if the matrix W associated with the predicate

of SME satisfies rank(W) = n, then the vector mapped by a function from DF
belongs in a vector space spanned by n basis with high probability.
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Lemma 5. Let rank(W) = n. If l < 1
ε+δ , then for some linearly independent

vectors v1, . . . ,vn ∈ Sl, the following inequality holds for all μ ≥ δ
(ε+δ)(1−(ε+δ)) .

Pr
f←DF

(f(W) is a linear combination of v1, . . . ,vn) ≥ 1− μ.

Proof. Let us assume there exists μ0 ≥ δ
(ε+δ)(1−(ε+δ)) satisfying,

Pr
f←DF

(f(W) is not a linear combination of v1, . . . ,vn) ≥ μ0, (4)

for any linearly independent v1, . . . ,vn.
If we denote u1, . . . ,ul−n as the basis for the vector space W⊥ orthogonal to

W, from Lemma 1 and Lemma 4, we obtain

Pr
gi←DG

(A vector space orthogonal to g1(u1), . . . , gl−n(ul−n)

is spanned by n linearly independent vectors) ≥ 1− τ (5)

for all τ ≥ ε+ δ.
Therefore, from (4) and (5), we obtain

Pr
f←DF ,gi←DG

(f(W) is not a linear combination of the n vectors forming

the basis of the vector space orthogonal to g1(u1), . . . , gl−n(ul−n)) ≥ μ0(1− τ )

⇐⇒ Pr
f←DF ,gi←DG

(f(W)Tgi(ui) �= 0 for some i ∈ [l − n]) ≥ μ0(1− τ ).

Since this suffices for all τ ≥ ε+ δ, we get

Pr
f←DF ,gi←DG

(f(W)Tgi(ui) �= 0 for some i ∈ [l − n]) ≥ μ0(1− (ε + δ)).

Furthermore, since μ0 ≥ δ
(ε+δ)(1−(ε+δ)) ,

Pr
f←DF ,gi←DG

(f(W)Tgi(ui) �= 0 for some i ∈ [l − n]) ≥ δ

ε+ δ
. (6)

On the other hand, since ui is orthogonal to W, following from Requirement 1,

Pr
f←DF ,gi←DG

(f(W)Tgi(ui) = 0) ≥ 1− δ

must hold for every i.
Therefore,

Pr
f←DF ,gi←DG

(f(W)Tgi(ui) �= 0 for some i ∈ [l − n]) < 1− (1− δ)l−n.

Since l < 1
ε+δ , n ≥ 1, and δ $ 1, 1− (1− δ)l−n < 1− (1− (l− n)δ) < lδ ≤ δ

ε+δ .
Combining this with the above inequality gives us,

Pr
f←DF ,gi←DG

(f(W)Tgi(ui) �= 0 for some i ∈ [l − n]) <
δ

ε+ δ
.
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However, this contradicts (6). Thus completing the proof. �
The following lemma presents that, if the matrix W associated with the pred-

icate of SME satisfies rank(W) = 1, then a stronger property than lemma 5 can
be attained. It says that, if we do not distinguish between W and W′ satisfying
W⊥ = W′⊥, then each vector mapped by a function in DF will belong to a
different vector space with high probability.

Lemma 6. For every v ∈ Slq, if l <
1

ε+δ , then the following inequality holds for

all μ ≥ δ
(ε+δ)(1−(ε+δ)) for some W satisfying rank(W) = 1.

Pr
f←DF

(f(W) ∈ 〈v〉) ≥ 1− μ.

Furthermore, if we do not distinguish betweenW andW′ satisfyingW⊥ = W′⊥,
then such a W is unique.

Finally, we will show an generalization of lemma 6. This lemma suggests that
predicates W and W′ of SME satisfying W⊥ = W′⊥, will belong to a different
vector space when mapped by a function in DF with high probability. This is the
main lemma for proving that G.SME can not yield the attribute hiding property.

Lemma 7. Let c be a constant satisfying δc = ε + δ. If l < 1
ε+δ , then the

following inequality holds for all ν ≥ ε+δ1−c

1−(ε+3δ1−c) and for all W0,W1 ∈ Sm×l

satisfying W⊥
0 �= W⊥

1 .

max
v∈Sl

min{ Pr
f0←DF

(f0(W0) ∈ 〈v〉), Pr
f1←DF

(f1(W1) ∈ 〈v〉)} ≤ ν.

3.5 Proof of G.SME Not Yielding the Attribute Hiding Property

In order for G.SME to be applicable in small attribute spaces, Requirement 1
and 2 must hold when q is polynomial in the security parameter λ. Here we will
prove that no such G.SME exists. In other words, we will prove the following
proposition.

Proposition 1. Considering arbitrary probability distribution DG and DF , if
l < 1

ε+δ , then we can not construct a G.SME that both satisfies Requirement 1
and 2.

We note the condition l < 1
ε+δ is not of great importance due to the fact that

l is traditionally arranged as a polynomial in λ in real life applications. Hence,
proving Proposition 1 under such condition on l is sufficient enough to conclude
that G.SME does not yield the attribute hiding property.
Proof. Let us consider a matrix W with rank(W) = 2. Then, from Lemma 5,
for some linearly independent vector v1 and v2, the following inequality holds
for every μ ≥ δ

(ε+δ)(1−(ε+δ)) .

Pr
f←DF

(f(W) ∈ 〈v1,v2〉) ≥ 1− μ.
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Also, from Lemma 6, for each element ui in 〈v1,v2〉, there exists a matrix Wi

that is rank(Wi) = 1 satisfying,

Pr
f←DF

(f(Wi) ∈ 〈ui〉) ≥ 1− μ. (7)

On the other hand, since 〈v1,v2〉 consists of q2 elements, the following inequality
holds.

max
u∈〈v1,v2〉

Pr
f←DF

(f(W) = u) ≥ 1− μ

q2
. (8)

Let umax denote the u that attains the maximum value, and Wmax denote the
Wi of (7) when ui = umax. Then, from (8),

min{Pr(f(Wmax) ∈ 〈umax〉), Pr(f(W) ∈ 〈umax〉)} ≥ 1− μ

q2
.

Hence,

max
u∈Sl

min{Pr(f(Wmax) ∈ 〈u〉),Pr(f(W) ∈ 〈u〉)} ≥ 1− μ

q2
.

Observe that W⊥
max �= W⊥ since rank(Wmax) = 1 and rank(W) = 2. In addi-

tion, when q is polynomial in λ, we can make 1−μ
q2 sufficiently large, i.e., none

negligible in λ, by making μ adequately small. This contradicts Lemma 7.
Therefore, for arbitrary probability distribution DG and DF , it is impossible

for Requirement 1 and 2 to both satisfy, hence proving Proposition 1. �

4 Extended Construction of Generalized SME

We see that we can not yield the attribute hiding property when the attribute
space is small for SME whose attributes and predicates were simply constructed
through those of IPE, e.g., LA.SME and G.SME. Furthermore, this difficulty
could not be overcome by segmenting the encryption and decryption process,
e.g., SA.SME, due to the fact that it underlines the properties of LA.SME and
G.SME.

This can be understood as a consequence of SME using the same sets of
attributes as the underlying IPE. To be more specific, the problem was induced
because the attributes x of SME and the attributes y of IPE were of the same
size, i.e., the rows of the matrix W corresponding to the predicates of SME and
the columns of the vectors v corresponding to the predicates of IPE were of the
same size. Therefore, when converting a predicate fW of SME to the predicate
fv of IPE, since W was of a much larger class than v, information on W was
inevitably lost. Thus, Wx = 0 ⇔ vTy = 0 could not been satisfied, leading to
the loss in correctness and the attribute hiding property.

In this section, we will extend the idea of G.SME, by introducing a con-
struction of a SME who has a different attribute and predicate space than the
underlying IPE, and show that it can yield the attribute hiding property.
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4.1 Extended G.SME

Although in previous constructions of SME, the size of attributes used in SME
and IPE were of the same size, this restriction was no means necessary. In this
section, we will remove this restriction and extend our method of construction.

We will particularly choose attributes x for SME from the set Sl, and at-

tributes y for IPE from the set Sq
(m+1)l

. Furthermore, we prepare a function
fEG and gEG defined as,

fEG(Wi) = (0, · · · , 0, ui,1, . . . , ui,j , · · · , ui,ql , 0, . . . , 0)T ∈ Sq
(m+1)l

,

gEG(xj) = (0, . . . , v1,j , . . . , 0, vi,j , 0, . . . , vqml,j, . . . , 0)
T ∈ Sq

(m+1)l

,

where Wi is the i-th matrix with some given order in Sm×l, and xj is the j-th
vector with some given order in Sl. We note that the order in Sm×l and Sl is
arbitrary. Furthermore, ui,j and vi,j represents the (i − 1)ql + j-th element in
fEG and gEG respectively, and is defined as follows.

ui,j =

{
0 if Wixj = 0
1 otherwise

, vi,j =

{
0 if Wixj = 0
1 otherwise

.

Now we will introduce an extended construction of G.SME, and call it Extended
Generalized SME (EG.SME). We note that the definition of the set of functions
GEG and FEG slightly differs from the previous section’s in order to meet the
definition of EG.SME.

Definition 6 (Extended Generalized SME). Let IP = (IP.Setup,

IP.KeyGen, IP.Enc, IP.Dec) be an IPE scheme with attribute set Σ = Sq
(m+1)l

,
message spaceM, andDGEG ,DFEG be a probability distribution where the func-
tions gEG and fEG are chosen with probability 1 respectively. Then a subspace
membership encryption schemeSM=(SM.Setup, SM.KeyGen, SM.Enc, SM.Dec)
is constructed as follows:

1. Setup: SM.Setup takes the security parameter 1λ as input and outputs
public key pp and master key msk by running IP.Setup(1λ).

2. Key Generation: SM.KeyGen takes master key msk and predicate fW(W
∈ Sm×l) as inputs. First, it samples a function fEG ← DFEG and computes

v = fEG(W) ∈ Sq
(m+1)l

. Then, it computes skv ← IP.KeyGen(msk,v) and
outputs skW(= skv).

3. Encryption: SM.Enc takes public key pp, an attribute x ∈ Sl, and a
message M ∈ M as inputs. First, it samples a function gEG ← DGEG

and computes y = gEG(x) ∈ Sq
(m+1)l

. Then it outputs a ciphertext c ←
IP.Enc(pp,y,M).

4. Decryption: SM.Dec takes public key pp, a secret key skW, and a cipher-
text c as inputs, and outputs M ← IP.Dec(pp, skv, c).

The correctness and the attribute hiding property of EG.SME can be easily
shown. From definition, fEG(Wi)

TgEG(xj) = ui,jvi,j , and ui,jvi,j equals 0 if
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and only if Wixj = 0. Therefore, Wixj = 0 ⇔ fEG(Wi)
TgEG(xj) = 0 holds

for every Wi and xj , thus proving correctness. Furthermore, since correctness
always holds, the attribute hiding property can be proven by following a similar
argument in [3]. We point out the important fact that the size of q is irrelevant
to the correctness and the attribute hiding property of EG.SME.

4.2 Comparing with Other Schemes in Small Attribute Space

We successfully assigned the attribute hiding property to EG.SME. Table 1 lists
the type of schemes which we handled in this paper, and illustrates each of their
properties when the attribute space is small, i.e., when the size of q is polynomial
in the security parameter λ.

Table 1. Each scheme’s properties in small attribute spaces

Type of

Scheme Correctness
Attribute Hiding

Security
Function Privacy

Size of
Underlying IPE

LA.SME3 × × √
polynomial in λ

SA.SME
√ × √

polynomial in λ

G.SME depends on construction × depends on construction polynomial in λ

EG.SME
√ √ × exponential in λ

As we can see, LA.SME (Sec.2.3.1), SA.SME (Sec.2.3.2), and G.SME (Sec.3.2)
does not yield the attribute hiding security, the baseline security notion for pred-
icate encryptions. Its security is vital to the scheme and can not be overlooked,
even if they possess function privacy. On the other hand, EG.SME successfully
yields the attribute hiding security, however, function privacy is deprived. This
can be understood as a consequence of Wixj = 0 ⇔ fEG(Wi)

TgEG(xj) = 0
for all Wi and xi. Since the projection of the matrix Wi corresponding to the
predicate fW of SME to the vector vi = fEG(Wi) corresponding to the predi-
cate fvi of IPE is injective, if the underlying IPE is not function private, then
SME can not be function private. Furthermore, we point out that every type of
scheme expect EG.SME has a underlying IPE the size of a polynomial in q.

Compared with the other three schemes, because they do not possess the
attribute hiding security, one can say that EG.SME is more applicable in small
attribute spaces. However, taking in account the lack of function privacy and the
exponential size of the underlying IPE, we can not say that EG.SME is better
altogether.

5 Conclusion and Open Questions

As we saw with G.SME and EG.SME, a trade-off between the “Attribute Hiding
Security” and the “Function Privacy & Size of Underlying IPE” can be observed.

3 We note that LA.SME holds correctness and the attribute hiding security in large
attribute spaces.
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The intuition behind this is that function privacy requires the relationship of
SME predicates and IPE predicates to be ambiguous, but the attribute hiding
security requires the relationship of SME predicates and IPE predicates to yield
similar qualities, e.g., Requirement 1 and 2. Since the size of the predicates of
SME is much larger than those of IPE, in order to fulfill the function privacy’s
requirements, the size of the underlying IPE will inevitably becomes larger.

The methodology of EG.SME brings new perspective in the construction of
SME in small attribute spaces. In this paper we only considered attribute y for

IPE from the set Sq
(m+1)l

, which is exponential in the parameter q. In addition
the probability distribution DG and DF essentially consisted of one function
each, fEG and gEG. This can be improved, by considering polynomial sized IPE
and introducing new varieties of functions into the probability distribution.

The remaining question is whether there is an in-between construction of
G.SME (or SA.SME) and EG.SME which both yields the attribute hiding secu-
rity and function privacy, while the size of the underlying IPE is polynomial in q.
In addition, it will be helpful if we could mathematically state the assumption of
the trade-off like relationship between the attribute hiding security and function
privacy, because this will guide us to assess the necessary size of the underlying
IPE for SME to yield function privacy.
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A Qualities of Linear Algebra in a Finite Field Zl
q

We use linear algebra in the finite field Zl
q when constructing SME. However,

since the finite field Zl
q is not a metric space, we can not define inner products

in the usual sense, hence making it difficult to capture the property of linear
algebra in Zl

q. For an example, in Z3
2, if we take the inner product of vector

(1, 1, 0)T, it will equal 0. This violates the inner product property in the metric
space, i.e., xTx = 0 if and only if x = 0. Another example is, in Z3

3, a vector
space V⊥ orthogonal to a vector space V spanned by the vectors (1, 2, 1)T and
(1, 1, 0)T is spanned by vector (1, 2, 1)T. This violates the property V ⊕V ⊥ = Z3

3,
which always holds in the metric space. Furthermore, since in the finite field Zl

q,

V ⊕V ⊥ = Zl
q does not necessarily hold, we can not conclude dim(V )+dim(V ⊥) =

dim(Zl
q) without deliberation. Therefore, we will have to carefully prove each of

the seemingly obvious properties introduced in section 3.1. Proofs of Lemma 1,
2, and 3 are given in the full paper.
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Abstract. We present two hierarchical identity-based encryption
(HIBE) schemes, denoted as H1 and H2, from Type-3 pairings with
constant sized ciphertexts. Scheme H1 achieves anonymity while H2 is
non-anonymous. The constructions are obtained by extending the IBE
scheme recently proposed by Jutla and Roy (Asiacrypt 2013). Security
is based on the standard decisional Symmetric eXternal Diffie-Hellman
(SXDH) assumption. In terms of provable security properties, previous
direct constructions of constant-size ciphertext HIBE had one or more
of the following drawbacks: security in the weaker model of selective-
identity attacks; exponential security degradation in the depth of the
HIBE; and use of non-standard assumptions. The security arguments for
H1 and H2 avoid all of these drawbacks. Based on the current state-of-
the-art, H1 and H2 are the schemes of choice for efficient implementation
of (anonymous) HIBE constructions.

Keywords: constant-size ciphertext HIBE, asymmetric pairings, stan-
dard assumptions, dual-system encryption.

1 Introduction

Identity-based encryption (IBE) is a form of public key encryption where a
recipient’s identity itself is her public key. The corresponding decryption key
is generated and securely transmitted by a trusted authority called private key
generator (PKG). The concept of IBE was introduced by Shamir [31] and the
first constructions were proposed in [11,4]. In order to reduce the communication
and computation overhead on the PKG, the notion of hierarchical IBE ([16,17])
was introduced. HIBE imposes a tree-like structure on entities within the system
and provides the higher level entities the ability to delegate key generation to
lower-level entities without the involvement of the PKG.

This work presents two new HIBE schemes called H1 and H2. The literature
already contains several different HIBE schemes. So, the question arises as to
why new ones are needed? We argue below that previous direct constructions of
HIBE schemes had one or more drawbacks related to either efficiency or security.
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The new schemes overcome all these issues and are the candidates of choice
for any practical deployment. To understand this, discuss different security and
efficiency issues that arise while designing HIBE schemes.

Practical constructions of HIBE schemes are obtained from pairings. In partic-
ular, we focus on Type-3 pairings that have the most efficient implementations,
both in terms of computation and representation [6,33,15]. Less efficient alterna-
tives are Type-1 pairings or composite-order pairings. In addition to using Type-3
pairings, we are interested in obtaining HIBE schemes with constant-size cipher-
texts i.e., the length of the ciphertext is independent of the (variable) length of
the corresponding identity tuple. The first construction for CC-HIBE was given
by Boneh, Boyen and Goh [3]. This work introduced a way to hash identity vec-
tors into the pairing groups. Almost all known CC-HIBE schemes that appeared
later have either used this technique or a variant [7,8,22,30,12,25,20,28,9].

Several security-related issues crop up while building HIBE schemes: security
model, hardness assumptions and security degradation. Our goal is to obtain
HIBE secure against adaptive-identity attacks [4,16,32] without random oracles.
Another important security notion is anonymity [1] which requires that a ci-
phertext does not reveal any information about the recipient’s identity. Anony-
mous HIBE schemes are useful in constructing certain searchable encryption
primitives [1]. We focus on hardness assumptions that have widespread use in
cryptography (called standard assumptions). Examples of such problems are de-
cisional Diffie-Hellman (DDH), decisional bilinear Diffie-Hellman (DBDH) and
decisional linear (DLin) assumptions. These are unlike some other problems that
are tailor-made to suit the requirements of the particular scheme or parame-
terised by some quantity (arising in the construction). The latter type are called
non-static. Another point of interest is the tightness of the security reduction.
Tighter reductions have lower degradation values. Designing schemes that have
low degradation is important.

Prefix Decryption. In some HIBE schemes, a ciphertext for an identity vec-
tor can be decrypted by any entity possessing a secret key for a prefix of that
identity. Let us name this property prefix decryption. In constructions with sepa-
rate ciphertext elements corresponding to individual components of the identity
tuple, such as the one in [16], prefix decryption is facilitated – the ciphertext
can be truncated to obtain a valid ciphertext under the prefix identity vector
and thus can be decrypted using the corresponding key. We note that achiev-
ing constant-size ciphertexts and anonymity simultaneously results in the loss
of prefix decryption. Although it may seem that this restriction is somehow tied
to the property of anonymity, we would like to emphasise that this is a defini-
tional issue. That is, whether prefix decryption is allowed or not must reflect
in the HIBE definition. The definition we provide does not explicitly allow pre-
fix decryption. We stress that the prefix decryption property is absent in all
known HIBE constructions that concurrently attain constant-size ciphertexts
and anonymity. Furthermore, all known HIBE schemes possess at most two out
of the three features – constant-size ciphertexts, anonymity and prefix decryp-
tion.
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On the other hand, not having prefix decryption guards against key escrow to
some extent. An entity has the power to delegate keys to lower level entities but
cannot decrypt ciphertexts sent to the lower-level entities. This feature may be
useful in applications such as email. If the higher level entities are key generating
servers, user privacy will not be compromised in the event that any of these
servers is corrupted. Further, in primitives such as identity-based searchable
encryption obtained from anonymous HIBE schemes [1], this limitation does not
make any difference. For related discussions on this issue, the reader is refered
to [16] and [10].

1.1 Possible Approaches to the Construction of HIBE Schemes

We have argued above that among HIBE schemes, it is CC-HIBE which is of
practical importance and among the known CC-HIBE schemes, H1 and H2 are
the most suitable ones for practical deployment. As mentioned earlier, both
schemes are based on the recently proposed IBE due to Jutla and Roy [19]
(abbreviated JR-IBE).

It is quite natural that the construction of a HIBE scheme will be based on
an IBE scheme. To start with, it is desirable to avoid a security degradation
which is exponential in the depth of the HIBE. In the current state of the art,
this means that one has to follow the dual-system approach. So, any attempt to
construct a CC-HIBE should start with an IBE which has been proved secure
using the dual-system technique. However, not all IBE constructions have the
structure suitable for extension to CC-HIBE. The reason is that in the proof, a
crucial step is to argue that certain information (such as ciphertexts and keys)
are indepedently distributed in the attacker’s view even if the simulator does not
choose them independently. This is harder to ensure in a HIBE as the adversary
has access to more information that enables delegation. Some dual-system IBE
constructions [34,27] do not facilitate extension to a CC-HIBE. On the other
hand, known dual-system CC-HIBE constructions are secure under non-standard
assumptions [22,20,28].

HIBE schemes can also be obtained by specialising schemes for hierarchical
inner product encryption or predicate encryption; the downside is that the re-
sulting efficiencies are inferior to those of the schemes reported here. We believe
that HIBE is an important enough primitive to warrant research on obtaining
direct and efficient constructions of such schemes.

1.2 Extending JR-IBE to CC-HIBE

Schemes H1 and H2 extend the JR-IBE to anonymous and non-anonymous CC-
HIBEs respectively. At a top level, the identity-hashing technique of Boneh-
Boyen-Goh [3] (BBG-hash) is applied on JR-IBE. We work in the setting of
asymmetric pairings where ciphertext components are elements of G1 and key
components are elements of G2. BBG-hash of the identity is required to be
computed in both G1 and G2. During encryption, the BBG-hash is required to
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be computed in G1 and this requires adding some elements of G1 to the public
parameters.

In previous CC-HIBE schemes in the prime-order setting within the dual sys-
tem framework [20,28], anonymity appears as a by-product of the HIBE exten-
sion. The basic difficulty in making it non-anonymous was due to the following
dichotomy concerning key delegation. The BBG-hash for the key is computed in
G2. The hash is defined using certain elements of G2. During key delegation, the
hash has to be rerandomised and so the elements should be publicly available.
On the other hand, information about these elements must not be leaked be-
cause they form the source of randomness used to generate the semi-functional
components during simulation.

The problem described above does not arise in case of JR-IBE. The feature
of JR-IBE that makes extension to the non-anonymous CC-HIBE H2 possible is
as follows. The master secret consists of two elements whose linear combination
is used to mask the message during encryption. This is unlike previous (H)IBE
schemes where a single element was used for the purpose. The two elements
would be information theoretically hidden from an attacker’s view. So the secret
randomness for the semi-functional ciphertext space is provided by one of the
two elements.

Anonymity is achieved by keeping the elements required to compute the BBG-
hash in G2 to be secret and instead provide suitably randomised copies of these
elements in the user keys. Problems then arise while defining semi-functional
components and arguing about their well-formedness during simulation. For-
tunately, it turns out that the problems can be handled by using appropriate
algebraic relations. The technique of keeping certain elements hidden and provid-
ing their randomised version in the user keys closely follow the ideas introduced
in [5] to obtain anonymity. In H1 the elements that are kept hidden are exactly
the ones required to create the BBG-hash in G2. As a result, an adversary is
unable to create an identity hash in G2 and cancel it out with the BBG-hash of
the same identity in G1. This naturally leads to the scheme H1 being anonymous.

We note that a single-level instantiation of H2 provides a non-anonymous
variant of the JR-IBE with rerandomisable keys.

1.3 Comparison to Existing HIBE Schemes

Table 1 provides a comparison of H2 with all previously proposed non-anonymous
CC-HIBE schemes. Table 2 compares H1 with all previously proposed anonymous
HIBE schemes.

We fix some notation required to compare different parameters of HIBE con-
structions. h: maximum depth of the HIBE; �: length of the identity tuple; q:
number of key extraction queries. In [7], N is the number of bits in an identity
and k represents number of blocks of N/k bits. #pp, #msk, #cpr and #key
denote number of group elements in the public parameters, master secret, ci-
phertext and key respectively. Enc, Dec, KGen and Deleg indicate the efficiency
of encryption, decryption, key generation and delegation algorithms. For Type-3
pairing based schemes, PP and ciphertexts consist elements of G1; MSK and
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keys consist elements of G2. #pp = (a, b) means that there are a elements from
G1, G2 and b elements of GT . #cpr = (a, b) denotes a elements from G1 and
b elements from Zp where p = |G1|. We do not consider the GT element that
masks the message in our comparison as it is present in all constructions. Enc
= (a, b) indicates a scalar multiplications in G1 and b exponentiations in GT ;
‘Dec’ is measured in terms of number of pairings; ‘KGen’ and ’Deleg’ are given
by number of scalar multiplications in G2; ‘Assump’ denotes the set of underly-
ing complexity assumptions; Deg is a shorthand for security degradation. ‘Prefix
Dec’ indicates whether or not the HIBE supports prefix decryption. ‘Const #cpr’
denotes constant-size ciphertext.

In terms of security, H2 is comparable to [23] and [9]. The security of the
construction in [22] is based on sub-group decision assumptions that cannot be
considered to be standard assumptions. H2 achieves the best efficiency compared
to all other schemes. In terms of security and efficiency, there is no construction
that is comparable to H1.

Table 1. Comparison of non-anonymous CC-HIBE schemes based on pairings without
random oracles

Scheme [3] [7] [8] [22] [23] [9] H2

Pairing Type-1 Type-1 Type-1 Composite Type-1 Type-3 Type-3

Security selective-id adaptive-id selective+-id adaptive-id adaptive-id adaptive-id adaptive-id

Assump.
Decisional
h-wBDHI

h-wDBDHI* h-wDBDHI*
Subgroup
Decision

DLin d-Lin SXDH

Deg. 1 O((kq2N/k)h) 1 O(q) O(q) O(q) O(q)

#pp (h+ 4, 0) (h+ 3 + hk, 0) (2h+ 3, 1) (h+ 3, 1) (32h2 + 16h+ 25, 1) (2d(d+ 1)(h+ 2), d) (3h+ 9, 1)

#msk 1 1 1 1 5 d+ 1 2

#cpr (2,0) (2,0) (3,0) (2,0) (13,0) (2(d+1),0) (3,1)

#key h− �+ 2 (k + 1)(h− �) + 2 2(h− �+ 1) h− �+ 2 8h+ 5 (d+ 1)(h− �+ 2) 2(h− �) + 5

Enc (�+ 2, 1) (2,1) (�+ 2, 1) (�+ 2, 1) 32h+ 23 (d(d+ 1)(�+ 2), d) (�+ 4, 1)

Dec 2 2 2 2 13 2(d+ 1) 3

KGen h+ 2 2(h− �+ 1) 2h− �+ 2 2h− �+ 4 16h(h + �) + 10 d(d+ 1)(h+ 2) 2h+ 7

Deleg. �+ 2 2(h− �) 2h− �+ 1 2h− �+ 6 16h(h + �+ 1) + 10 d(d+ 1)(h+ 2) + d+ 1 2h+ 9

In absolute terms, the composite-order pairing based HIBE scheme of [22] has
fewer group elements compared to H2. But at reasonable security levels (say, 128
bits), the length of representations of elements would be at least 6 times that of
Type-3 pairing groups. The wide difference in the length of representations of
group elements more than adequately compensates for the absolute number of
group elements in composite-order HIBE schemes being lesser than that in the
newly proposed HIBE scheme.

From Table 1 and the previous discussion, the only non-anonymous HIBE
scheme which is comparable in efficiency and security to H2 is the Chen-Wee
scheme described in [9] for d = 1 whence d-Lin becomes DDH. But the scheme
in [9] is still less efficient compared to H2 in terms of ciphertext size and decryp-
tion time. A ciphertext will consist of 4 G1-elements whereas H2-ciphertexts
contain 3 G1-elements along with an element of Zp. If an element of G1 is
represented using two elements of Zp, then H2 ciphertexts consist of 7 Zp el-
ements as opposed to 8 in [9]. Certainly, H2 has shorter ciphertexts. While H2

has shorter ciphertexts and faster encryption and decryption algorithms, the
Chen-Wee scheme has shorter decryption keys and faster key generation and



248 S.C. Ramanna and P. Sarkar

delegation algorithms. For an encryption scheme, encryption and decryption
will be used more often than key generation and delegation, so, the advantage
of H2 over the Chen-Wee scheme outweighs the disadvantages.

The reader is refered to the full version [29] for a more concrete comparison.

Table 2. Comparison of anonymous HIBE schemes based on pairings without random
oracles

Scheme [5] [30] [12] [25] [20],[28] [24] H1

Pairing Type-3 Composite Composite Type-1 Type-3 Type-1 Type-3

Security selective-id selective-id adaptive-id selective-id adaptive-id adaptive-id adaptive-id

Assump. DLin,DBDH
�-wBDH*,
�-cDH

Subgroup
Decision

h-BDHE
Aug. h-DLin

LW1,LW2,DBDH
[20]:3-DH,XDH

[28]:A1
DLin SXDH

Deg. O(1) O(1) O(q) O(1) O(q) O(hq) O(q)

Prefix Dec. No No No No No Yes No

Const #cpr No Yes Yes Yes Yes No Yes

#pp (2(h2 + 3h+ 2), 1) (h+ 6, 1) (h+ 4, 1) (h+ 6, 1) (3h+ 6, 1) (4(9h+ 4), 1) (h+ 4, 1)

#msk h2 + 5h+ 7 h+ 4 2 4 h+ 6 18h+ 10 2h+ 6

#cpr (2h+ 5, 0) (3,0) (2,0) (4,0) (6,0) (9�+ 5, 0) (3,1)

#key (h+ 3)(3h− �+ 5) 3(h− �+ 3) 2(h− �+ 2) 3(h− �+ 4) 6(h− �+ 2) (4h− 2�+ 1)(9�+ 5) + 36(h− �) 4(h− �) + 10

Enc (2(�+ 3)(h+ 2) + 1, 1) (�+ 6, 1) (�+ 4, 1) (�+ 5, 1) (3(�+ 2), 1) 27� + 15 (�+ 4, 1)

Dec 2h+ 3 4 2 4 6 9�+ 5 3

KGen
h3 + h2(5− �)+
h(7− 3�)− 2� + 2

3h− 2�+ 2 4(h+ 2− 3�)(h+ 2(h− �+ 8)) 6h− 5� + 12 (2h+ 3)(27�+ 10) 2(2h− 2�+ 5)

Deleg. 5(h+ 2)(h+ 3) + 1 6(h− �) + 214(h− �) + 11 (4(h− �) + 25) 2(h− �+ 3) (9�+ 5)(6h�+ 14h− 2�2 − 8�+ 5) 4(h− �+ 5)

It is clear from Table 2 that all anonymous HIBE schemes possess either
constant-size ciphertexts or the prefix decryption property and not both. The
Boyen-Waters HIBE [5] has none of the two properties. The Okamoto-Takashima
scheme [24] supports prefix decryption and at the same time achieves anonymity
but at the cost of non-constant size of the ciphertext (the size is linear in the
depth of the identity). In addition, ciphertexts in their scheme reveal the length
of the recipient identity unlike the Boyen-Waters HIBE. H1, on the other hand,
is anonymous and has short ciphertexts but lacks prefix deryption. All other
efficiency parameters are better in case of H1.

We conclude that among anonymous HIBE schemes, H1 is the most efficient
scheme with all the standard provable properties. We emphasise that the effi-
ciency and provable security properties achieved for H1 have not been simulta-
neously achieved earlier, either for composite-order pairings, or, for prime-order
pairings. For use in practice, one may choose the Okamoto-Takashima scheme
or H1 according to whether the application requires prefix decryption or not.

Subsequent Work by Blazy et.al. A recent work [2] presents HIBE schemes
(both with and without anonymity) generically constructed via a tranformation
from message authentication codes (MAC). Security is based on the d-Lin as-
sumptions. Consider the case d = 1. For the schemes with public parameters
comparable to our schemes ciphertexts are larger than that of H1 and H2. They
also present a non-anonymous scheme with a tighter reduction and ciphertexts
shorter than H2-ciphertexts. But the public paramters are O(hn) where n de-
notes the length (in bits) of each identity.

A Note on Notation and Proof Technique. We have used the JR-IBE [19]
as the basic building block and consequently, our notation and proofs build on
that of [19]. This makes it easier for a reader to see the connections between our
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work and the IBE construction in [19]. Frameworks for presenting dual-system
constructions and proofs have been proposed [21,14]. Neither the JR-IBE nor
the constructions in the present work appear to fall within these frameworks.

Preliminaries. Before proceeding further we fix some notation.

x1, . . . , xk
R←− X indicates that elements x1, . . . , xk are sampled independently

from the set X according to some distribution R. The uniform distribution is
denoted U. For a (probabilistic) algorithm A, y ←− A(x) means that y is cho-
sen according to the output distribution of A on input x. A(x; r) denotes that
A is run on input x with its internal random coins set to r. For two integers
a < b, the notation [a, b] represents the set {x ∈ Z : a ≤ x ≤ b}. If G is a finite
cyclic group, then G× denotes the set of generators of G. A bilinear pairing is
given by a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where G1 = 〈P1〉, G2 = 〈P2〉 are
groups written additively and GT is a multiplicatively written group, all having
the same order p and e : G1 × G2 → GT is a bilinear, non-degenerate and ef-
ficiently computable map. In an asymmetric pairing, G1 �= G2. If no efficiently
computable isomorphisms between G1 and G2 are known, then such pairings are
called Type-3 pairings. The terms ‘Type-3 pairing’ and ‘asymmetric pairing’ are
used interchangeably in the rest of the paper.

Due to space constraints, we omit some basic definitions. Most of these are
standard. The full version [29] provides the definition of HIBE as consisting of
five probabilistic polynomial time algorithms – Setup, Encrypt, KeyGen, Delegate
and Decrypt. Also described are two games ano-ind-cpa and ind-cpa capturing
security against chosen plaintext attack for HIBE schemes [16]) with the former
additionally taking into account anonymity [13,12].

2 Jutla-Roy IBE with Ciphertexts in G1

In the IBE scheme of Jutla-Roy [19] (JR-IBE), ciphertext consists of elements
in G2 and keys contain elements from G1. For Type-3 pairings, elements of G1

have a shorter representation compared to the elements of G2. To reduce the
length of the ciphertext, one has to interchange the roles of the two groups. In
contrast, for a signature scheme, it would be advantageous to have the signature
to consist of elements fromG1. Since the JR-IBE is obtained from non-interactive
zero knowledge (NIZK) proofs via the idea of signatures, the scheme results in
ciphertext elements being in G2.

This section describes a “dual” of the Jutla-Roy [19] (JR-IBE-D) where ci-
phertexts live in G1 and keys in G2. We use a compact notation to denote
normal and semi-functional ciphertexts and keys. The group elements shown in
curly brackets { } are the semi-functional components. To get the scheme itself,
these components should be ignored.

Parameters: Choose P1
U←− G×

1 , P2
U←− G×

2 , Δ1, Δ2, Δ3, Δ4, c, d, u, e
U←−

Zp, b
U←− Z×

p , and set U1 = (−Δ1b+ d)P1, V1 = (−Δ2b+ e)P1, W1 = (−Δ3b+
c)P1, gT = e(P1, P2)

−Δ4b+u. The parameters are given by

PP : (P1, bP1, U1, V1,W1, gT )
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MSK : (P2, cP2, Δ1, Δ2, Δ3, Δ4, d, u, e)

Ciphertext: Consists of (C0, C1, C2, C3, tag) where

tag, s
U←− Zp, {μ

U←− Zp}
C0 = m · (gT )

s{e(P1, P2)
uμ},

C1 = sP1{+μP1}, C2 = sbP1,
C3 = s(U1 + idV1 + tagW1){+μ(d+ id · e+ tag · c)P1}.

Key: Contains five elements (K1, . . . ,K5) defined as follows.

r
U←− Zp, {γ, π

U←− Zp}
K1 = rP2, K2 = rcP2{+γP2}, K3 = (u+ r(d + ide))P2{+γπP2},
K4 = −rΔ3P2{− γ

bP2}, K5 = (−Δ4 − r(Δ1 + idΔ2))P2{− γπ
b P2} .

Note. In JR-IBE [19], b is mentioned to be an element of Zp. This is an oversight
and b should be an element of Z×

p as we have mentioned above. This is because
if b is zero, then division by b and consequently the definitions of the semi-
functional components will not be meaningful. Security of JR-IBE-D will follow
from the security of H1 we present in this work.

3 Our CC-HIBE Constructions

Both schemes H1 and H2 are based on a Type-3 prime-order pairing with group
order p. Identities are variable length tuples of elements from Z×

p with maximum
length h.

As is typical with BBG-type extensions the element V1 is replaced with h
elements V1,1, . . . , V1,h – one for each level of an identity. The set U1, (V1,j)j∈[1,h]

is used to create the identity hash – for an identity id = (id1, . . . , id�), the hash

is given by U1 +
∑�

j=1 idjV1,j . Element W1 will be retained to append the tag-
component to the hash. This replaces the hash in JR-IBE-D ciphertext without
affecting the number of elements in the ciphertext. Moreover, since the hash
is embedded in a single ciphertext component, only one tag is required. Note
that the keys in JR-IBE-D have two sub-hashes that when combined during
decryption cancels with the hash of the ciphertext.

In JR-IBE-D, each of U1, V1,W1 is split into two components kept as part
of the master secret. The two sets of components determine the sub-hashes
required in generating keys. Similarly, for the HIBE, we need to split V1,j for

all j ∈ [1, h] as V1,j = bΔ2,j + ej where Δ1,j , ej
U←− Zp. So the sub-hashes are

determined by the vectors v1 = (d, e1, . . . , eh) and v2 = (Δ1, Δ2,1, . . . , Δ2,h).
Rerandomisation of keys during delegation can be done in two possible ways –
make the encodings of vectors v1,v2 along with Δ3, c in G2 public; or provide
appropriately randomised copies of these elements in the key.

The second method retains the anonymity property leading to the scheme H1.
This is because the vectors v1,v2 can be used to test whether a given ciphertext is
encrypted to a particular identity or not. Keeping them secret naturally leads to
anonymity. The former method leads to the scheme H2 that has shorter keys and
faster algorithms compared to H1. But the efficiency comes at the cost of losing
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anonymity. Due to space constraints we only describe H1 and discuss its security.
A description of H2 followed by an outline of its security is provided in [29].

3.1 Scheme H1

We define H1 = (H1.Setup,H1.Encrypt,H1.KeyGen,H1.Delegate,H1.Decrypt) where
the algorithms are as follows.
H1.Setup(κ): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the
security parameter κ. Compute parameters as follows.

P1
U←− G×

1 , P2
U←− G×

2 , Δ1, Δ3, Δ4, c, d, u, (Δ2,j , ej)
h
j=1

U←− Zp, b
U←− Z×

p ,
U1 = (−Δ1b + d)P1, V1,j = (−Δ2,jb+ ej)P1 for j = 1, . . . , h,
W1 = (−Δ3b+ c)P1, gT = e(P1, P2)

−Δ4b+u,

PP : (P1, bP1, U1, (V1,j)
h
j=1,W1, gT )

MSK : (P2, cP2, Δ1, Δ3, Δ4, d, u, (Δ2,j, ej)
h
j=1)

H1.Encrypt(PP,M, id = (id1, . . . , id�)): Pick tag, s
U←− Zp and set the ciphertext

C = (C0, C1, C2, C3, tag) where

C0 = M · (gT )
s, C1 = sP1, C2 = sbP1, C3 = s(U1 +

∑�
j=1 idjV1,j + tagW1).

H1.KeyGen(MSK, id = (id1, . . . , id�)): Pick r1, r2
U←− Zp and compute the secret

key SKid = (S1,S2) for id, with S1 = ((Ki)i∈[1,5], (D1,j , E1,j)j∈[�+1,h]) and
S2 = ((Ji)i∈[1,5], (D2,j , E2,j)j∈[�+1,h]) where

K1 = r1P2, K2 = r1cP2, K3 =
(
u+ r1(d+

∑�
j=1 idjej)

)
P2,

K4 = −r1Δ3P2, K5 =
(
−Δ4 − r1(Δ1 +

∑�
j=1 idjΔ2,j)

)
P2,

D1,j = r1ejP2, E1,j = −r1Δ2,jP2 for j = �+ 1, . . . , h,

J1 = r2P2, J2 = r2cP2, J3 = r2

(
d+
∑�

j=1 idjej
)
P2,

J4 = −r2Δ3P2, J5 = −r2(Δ1 +
∑�

j=1 idjΔ2,j)P2,

D2,j = r2ejP2, E2,j = −r2Δ2,jP2 for j = �+ 1, . . . , h

H1.Delegate(id = (id1, . . . , id�), id�+1): Let id : id�+1 = (id1, . . . , id�+1). SKid:id�+1

is generated from SKid as follows.

r̃1, r̃2
U←− Z×

p ,
K1 ← K1 + r̃1J1,
K2 ← K2 + r̃1J2, K3 ← (K3 + id�+1D1,�+1) + r̃1(J3 + id�+1D2,�+1),
K4 ← K4 + r̃1J4, K5 ← (K5 + id�+1E1,�+1) + r̃1(J5 + id�+1E2,�+1),
D1,j ← D1,j + r̃1D2,j, E1,j ← E1,j + r̃1E2,j for j = �+ 2, . . . , h,

J1 ← r̃2J1, J2 ← r̃2J2, J3 ← r̃2(J3 + id�+1D2,�+1),
J4 ← r̃2J4, J5 ← r̃2(J5 + id�+1E2,�+1),
D2,j ← r̃2D2,j, E2,j ← r̃2E2,j for j = �+ 2, . . . , h,

setting r1 ← r1 + r̃1r2 and r2 ← r̃2r2. Note that the new values of r1 and r2

have uniform and independent distribution over Zp given that r1, r2
U←− Zp and
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r̃1, r̃2
U←− Z×

p . Hence the distribution of SKid:id�+1
is same as that of a freshly

generated key for id : id�+1 via the H1.KeyGen algorithm.
H1.Decrypt(C,SKid): Return M

′ computed as:

M ′ =
C0 · e(C3,K1)

e(C1, tagK2 +K3)e(C2, tagK4 +K5)
.

Correctness: It is rather straightforward to verify the correctness. We omit
calculations due to lack of space. The full version [29] contains details.

From a Dual System Perspective. One can see in Section 4 that the scalar
u, along with scalars d, c, ejj∈[1,h], define the semi-functional ciphertext space for

H1. These scalars provide the secret information for simulating semi-functional
components. A crucial requirement for a dual system proof is that these scalars
are statistically hidden from the adversary. Observe that the element gT in the
public parameters, information theoretically hides the element u. Similarly, el-
ements U1, V1,j ,W1 hide the scalars d, ej, c respectively. Further intuition with
respect to the dual-system proof and a sketch of how the various scalars interact
is provided in Section 4.

Anonymity and Constant-Size Ciphertexts. As mentioned in Section 1, a
CC-HIBE scheme achieving anonymity will not possess prefix decryption prop-
erty. In H1, it is not possible to decrypt the ciphertext for id with SKid′ (where
id′ is a prefix of id). The reason is that is no way to remove (or truncate)
the randomised components corresponding id \ id′ from the ciphertext (here,
id \ id′ denotes the suffix of id′ in id). More percisely, given the hash s(U1 +∑�

j=1 idjV1,j + tagW1) for id = (id1, . . . , id�) it is impossible to extract a hash

for id′ since we have no knowledge of sV1,j ’s.

3.2 Scheme H2

This section presents the second (non-anonymous) HIBE construction. As dis-
cussed in Section 3, two sub-hashes in the key are combined to form the identity-
hash required for cancellation with the ciphertext. The sub-hashes are deter-
mined by the vectors v1 = (d, e1, . . . , eh) and v2 = (Δ1, Δ2,1, . . . , Δ2,h). In order
to realise anonymity, these vectors are kept as part of the master secret in H1. It
turns out that we can obtain a non-anonymous scheme by making these vectors
public. The availablity of these vectors facilitates rerandomisation and hence
the keys no longer need extra components for this purpose. As a result, keys are
shorter and algorithms KeyGen, Delegate are more efficient in comparison to H1.

The method of followed here in obtaining a non-anonymous HIBE did not
work out for previously known anonymous HIBE schemes [28,20]. This is due
to the following reasons. The element GT would be of the form e(P1, P2)

α where
α is part of the master secret. P1 and P2 would be required for encryption and
delegation respectively as a result of which both P1 and P2 would be present in
PP. However, this leaks α information theoretically thus revealing the message
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too! The splitting of α here in terms of Δ4 and u precisely overcomes this prob-
lem. Furthermore, the public parameters information-theoretically hide these
scalars thus providing sufficient randomness during simulation to generate semi-
functional components.

We define H2 = (H2.Setup,H2.Encrypt,H2.KeyGen,H2.Delegate,H2.Decrypt)
where the algorithms are as follows.
H2.Setup(κ): Generate a Type-3 pairing (p,G1,G2,GT , e, F1, F2) based on the
security parameter κ. Compute parameters as follows.

P1
U←− G×

1 , P2
U←− G×

2 , Δ1,Δ3, Δ4, c, d, u, (Δ2,j , ej)
h
j=1

U←− Zp, b
U←− Z×

p ,
U1 = (−Δ1b+ d)P1, (V1,j = (−Δ2,jb+ ej)P1)j∈[1,h], W1 = (−Δ3b+ c)P1,

gT = e(P1, P2)
−Δ4b+u,

PP : (P1, bP1, U1, (V1,j)
h
j=1,W1, P2,Δ1P2,Δ3P2, dP2, cP2, (Δ2,jP2, ejP2)

h
j=1, gT )

MSK : (Δ4, u)

H2.Encrypt(PP,M, id = (id1, . . . , id�)): Identical to H1.Encrypt.

H2.KeyGen(MSK, id = (id1, . . . , id�)): Pick r
U←− Zp and compute the secret key

SKid = ((Ki)i∈[1,5], (Dj , Ej)j∈[�+1,h]) for id where,

K1 = rP2, K2 = rcP2, K3 =
(
u+ r(d+

∑�
j=1 idjej)

)
P2,

K4 = −rΔ3P2, K5 =
(
−Δ4 − r(Δ1 +

∑�
j=1 idjΔ2,j)

)
P2,

Dj = rejP2, Ej = −rΔ2,jP2 for j = � + 1, . . . , h.

H2.Delegate(id = (id1, . . . , id�), id�+1): Let id : id�+1 = (id1, . . . , id�+1). SKid:id�+1

is generated from SKid as follows.

r̃
U←− Z×

p ,
K1 ← K1 + r̃P2,

K2 ← K2 + r̃cP2, K3 ← (K3 + id�+1D�+1) + r̃(d+
∑�+1

j=1 idjej)P2,

K4 ← K4 − r̃Δ3P2, K5 ← (K5 + id�+1E�+1)− r̃(Δ1 +
∑�+1

j=1 idjΔ2,j)P2,

Dj ← Dj + r̃ejP2, Ej ← Ej − r̃Δ2,jP2 for j = �+ 2, . . . , h,

setting r ← r + r̃. Note that the distribution of SKid:id�+1
is same as that of a

freshly generated key for id : id�+1 via the KeyGen algorithm.
H2.Decrypt(C,SKid): Identical to H1.Decrypt.

Note. The encryption and decryption algorithms of H1 and H2 are identical and
hence the correctness of decryption for H2 follows from that of H1. The KeyGen
and Delegate algorithms for H2 are identical to the portion of the corresponding
algorithms for H1 which modify the S1-components of the key. The S2 compo-
nents of the key in H1 are not required in H2.

4 Security of H1

The scheme H1 is proved secure in the sense of ANO-IND-ID-CPA (described in
[29]) following the dual system methodology introduced by Waters [34]. We first
provide algorithms H1.SFEncrypt and H1.SFKeyGen that generate semi-functional
ciphertexts and keys (respectively) required for a dual system proof. In addition,
we need an algorithm PSFKeyGen that generates partial semi-functional keys



254 S.C. Ramanna and P. Sarkar

(refer to [28,29] for the underlying intuition). These are required only in the
security proof of H1 and not H2. The security of H2 is very similar to that of H1.
A sketch of the proof is provided in the full version [29].

H1.SFEncrypt(MSK, C): Suppose that C is given by (C = (C0, C1, C2, C3)) ←
H1.Encrypt(m, id = (id1, . . . , id�)). Pick μ

U←− Zp and modify the components of
C as follows.

C0 ← C0 · e(P1, P2)
uμ, C1 ← C1 + μP1, C2 ← C2,

C3 ← C3 + μ(d+
∑�

j=1 idjej + tag · c)P1.

Return the modified ciphertext C = (C0, C1, C2, C3).

H1.SFKeyGen(MSK,SKid): This algorithm takes in a normal secret key SKid =
(S1,S2) for identity id = (id1, . . . , id�) and generates a semi-functional key as
follows.

γ1, γ2, π, σ, (πj , σj)
h
j=1

U←− Zp,
K1 ← K1, K2 ← K2 + γ1P2, K3 ← K3 + γ1πP2,
K4 ← K4 − (γ1/b)P2, K5 ← K5 − (γ1π/b)P2,
D1,j ← D1,j + γ1πjP2, E1,j ← E1,j − (γ1πj/b)P2 for j = �+ 1, . . . , h,
J1 ← J1, J2 ← J2 + γ2P2, J3 ← J3 + γ2σP2,
J4 ← J4 − (γ2/b)P2, J5 ← J5 − (γ2σ/b)P2,
D2,j ← D2,j + γ2σjP2, E2,j ← E2,j − (γ2σj/b)P2 for j = �+ 1, . . . , h,

The resulting key SKid = (S1,S2) is returned.

PSFKeyGen(MSK,SKid): Returns a key SKid for identity id with S1-
components having semi-functional terms (generated according to H1.SFKeyGen
algorithm) and S2-components being normal (as returned by H1.KeyGen algo-
rithm).

It is straightforward to see that decryption of a semi-functional ciphertext by
a normal key or that of a normal ciphertext with a semi-functional key succeeds.
When both ciphertext and key are semi-functional, decryption results in an extra
masking factor of e(P1, P2)

γμ(tag+π) on the message. Decryption is only successful
if π = −tag whence the ciphertext and key become nominally semi-functional.

The following theorem states precisely the security guarantee we obtain for
H1.

Theorem 1. If (εDDH1, t1)-DDH1 and (εDDH2, t2)-DDH2 assumptions hold in G1

and G2 respectively, then H1 is (ε, t)-ANO-IND-ID-CPA-secure where ε ≤ εDDH1+
2q · εDDH2 + (2q/p), t1 = t+O(hρ) and t2 = t+O(hρ). ρ is the maximum time
required for one scalar multiplication in G1 and G2.

Proof Sketch. Fix any t-time adversary A . Let Greal denote the HIBE secu-
rity game ano-ind-cpa (described in [29]) and Gfinal be a game where all keys
are semi-functional and the challenge ciphertext is a semi-functional encryp-
tion of a random message to a random identity vector. The probability that
A wins in Gfinal is 1/2. To prove the theorem, we need to show a bound on

Advano-ind-cpaH1
(A ) = |Pr[A wins in Greal]− (1/2)| which is equivalent to bound-

ing |Pr[A wins in Greal]−Pr[A wins in Gfinal]|. In order to obtain this bound,
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we first define a sequence of games starting from Greal and making small changes
until we reach Gfinal. Define Gk,0, 1 ≤ k ≤ q similar to Greal except that chal-
lenge ciphertext is semi-functional, first k − 1 keys are semi-functional and k-th
key is partial semi-functional. In Gk,1, 0 ≤ k ≤ q, the challenge ciphertext is
semi-functional and first k keys are semi-functional. The game sequence is Greal,
G0,1, (Gk,0,Gk,1)

q
k=1, Gfinal. The advantage of A in winning Greal can now be

bounded in terms of its advantage in distinguishing between successive games.
This is done via reductions from the SXDH problem to the task of distinguish-
ing between successive games. Essentially, there are two kinds of reductions -
first and second. In the first reduction, we show that A ’s ability to distinguish
between Greal and G0,1 can be used to solve a DDH1 instance. The second reduc-
tion shows that an algorithm A that can distinguish between Gk−1,1 and Gk,0

for some k ∈ [1, q], can be used to construct an algorithm B2 solving DDH2.
Similar arguments hold for all values of k and also for the transition from Gk,0

to Gk,1. The final transition i.e, Gq,1 to Gfinal is done just by changing the way
information provided to A is generated so that the distribution of A ’s view in
the two games are statistically indistinguishable except with probability 2q/p..
We now provide an outline of each stage in the proof.

First Reduction: Suppose that B1 is a DDH1-solver. B1 simulates the game
using a DDH1 instance (G, P1, bP1, sbP1, P2, (s+μ)P1). The element b of the in-
stance corresponds to the scalar b of the scheme. B1 sets up the system normally
since it has all information required to do so. The master secret is also known
since none of its components depend on b. Furthermore, it cannot create semi-
functional keys as no encoding of b in G2 is provided. All the key extract queries
are answered normally. B1 sets the randomiser for the challenge ciphertext Ĉ
to be s (from the instance). Ĉ will be normal or semi-functional depending on

whether the instance is real i.e., μ = 0, or random (μ
U←− Zp).

Second Reduction: Suppose (G, P1, P2, rP2, cP2, (rc + γ)P2) is provided as
instance to the DDH2-solver B2. Here c corresponds to the scalar c in MSK.
Elements d, (ej)j∈[1,h] are set to random degree-1 polynomials in c. Scalar b is
chosen randomly from Z×

p . Let y = (d, e1, . . . , eh). The public parameters are
created differently since y is not known. Only its encoding in G2 i.e, yP2 is
known. Specifically U1, V1,j ,W1 are chosen at random from G1. Depending on
these and y, the corresponding Δ’s are implicitly set. Encodings of Δ’s can
be computed only in G2. This enables normal key generation as well as semi-
functional key generation. In its response to the k-th key extract query,B2 maps
r from the instance to the randomiser r1 in the key. Accordingly it generates
the key choosing r2 at random. If γ = 0, the key will be normal. Otherwise
the key is partial semi-functional and γ corresponds to the randomiser γ1 in the
semi-functional part. Moreover, a linear polynomial f(idk) in idk-components is
embedded in the semi-functional scalar π. This polynomial is determined by the
co-efficients of c in y. The coefficients of c in ej also determine πj respectively.
For the challenge ciphertext, B2 has to create semi-functional components which
depend on y. But y depends on c and encoding of c in G1 is not known. The
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only way out is to set tag = −f(îdβ) so that terms depending on c vanish. A
consequence is that B2 can only generate nominally semi-functional ciphertext
for idk. We then argue that the simulation is perfect.

Final Transition: It is required to show that Gq,1 and Gfinal are statistically
indistinguishable from the attacker’s point of view except for probability at most
2q/p. The generation of public parameters and keys provided to A are changed
ensuring that their form is equivalent to that in Gq,1 and they are independent
of the scalars u, d, (ej)j∈[1,h]. Consequently the challenge ciphertext is the only
place where these scalars come into play, especially in those components that
consist of the identity-hash and the message. Basically, the message and the id-
hash are masked by random quantities so that Gfinal is simulated. Refer to the
full version [29] for details of the proof.

5 Conclusion

We obtain two HIBE schemes with constant-size ciphertexts and full security
from the IBE scheme of Jutla and Roy. One achieves anonymity while the other
is non-anonymous with shorter keys. Compared to previous HIBE schemes, our
constructions provide very good efficiency with just 3 pairings for decryption and
3 group elements in the ciphertext. These are also the only CC-HIBEs achieving
security under standard assumptions and degradation independent of the HIBE
depth. In HIBE-related literature focussed on either constant-size ciphertexts or
anonymity or both, we believe that our constructions complete the picture.

Acknowledgement. We thank reviewers of a previous version of this paper for
providing useful comments.
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Abstract. Ciphertext-policy attribute-based encryption (CP-ABE) is
extremely suitable for cloud computing environment in that it enables
data owners to make and enforce access policies themselves. However,
most of the existing CP-ABE schemes suffer severe efficiency drawbacks
due to large computation cost and ciphertext size, both of which lin-
early increase with the complexity of access policies. Aiming at tackling
the challenge above, in this paper, we propose a CP-ABE scheme which
features constant computation cost and constant-size ciphertexts. The
proposed CP-ABE scheme is proven selective-secure in the random or-
acle model under the decision n-Bilinear Diffie-Hellman Exponent (n-
BDHE) assumption, where n represents the total number of attributes
in universe. In particular, the proposed scheme can efficiently support
AND-gate access policies with multiple attribute values and wildcards.
Performance comparisons indicate that the proposed CP-ABE scheme is
promising in real-world applications, especially for the scenarios where
computation and bandwidth issues are major concerns.

Keywords: Attribute-based encryption, Constant computation,
Constant-size ciphertexts, Cloud computing.

1 Introduction

Cloud computing is an increasingly popular computing paradigm and it can
provide flexible, inexpensive, and quality services. Furthermore, cloud computing
realizes the pay as you go environment in which various resources are made
available to users as they pay for what they use. Although the advantages of
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the new technology are desirable, data privacy and security issues have become
major concerns for individuals and organizations using such services. In order to
prevent potential threats to their data such as improper use by the cloud storage
server and unauthorized access by outside users, people would like to make their
private data only accessible to users authorized by them. However, in traditional
mechanisms based on access control lists, it is required that the storage server
should be in the same security domain as data owners and enforce access policies
himself. Therefore, those traditional methods are no longer suitable for cloud-
based data sharing, where the server is not fully trusted by users. In particular,
fine-grained data access control is necessary for cloud-based data sharing and
different levels of access privileges should be granted to different users according
to their attributes and roles. With the rapid development of cloud computing
technology, the above security issues are thrown into sharp focus. This motivates
researchers to consider a paradigm shift, where instead of trusting and being
dependent on service providers, data owners can make and enforce fine-grained
access policies themselves.

As a one-to-many public-key primitive, attribute-based encryption (ABE) is
very promising in implementing fine-grained data sharing systems in cloud com-
puting. In ABE systems, descriptive attributes and access policies, which are
associated with attribute secret keys and ciphertexts, are used to enable fine-
grained access control over encrypted data. A particular attribute secret key can
decrypt a ciphertext if and only if associated attributes and the access policy
match each other. ABE comes in two flavors called key-policy ABE (KP-ABE)
and ciphertext-policy ABE (CP-ABE). In KP-ABE, the access policy is enforced
in secret keys and ciphertexts are labeled with a set of attributes. In CP-ABE,
the roles of the attribute set and the access policy are swapped from what we
described for KP-ABE: every ciphertext is associated with an access policy, and
every secret key is associated with a set of attributes. Compared with KP-ABE,
CP-ABE is more suitable for cloud-based data sharing in that it enables data
owners to make and enforce access policies themselves.

Nevertheless, there remain several challenges to the application of CP-ABE
in cloud-based data sharing. On the one hand, in most of existing CP-ABE
schemes, the decryption cost incurred by bilinear pairing (pair) and exponenti-
ation (exp) operations linearly grows with the complexity of the access policy.
On the other hand, most of existing CP-ABE constructions have large-size ci-
phertexts, which leads to a large communication cost in data sharing. Therefore,
before wide deployments on cloud computing platforms, it is indispensable to
reduce the computation cost and ciphertext length of CP-ABE while keeping its
expressiveness.

To the authors’ knowledge, the AND-gate CP-ABE construction due to Chen
et al. [6] is most efficient1. It only needs three exp in encryption phase and two

1 Although the CP-ABE scheme in [26] has smaller ciphertexts than [6], it only sup-
ports AND-gate policy on positive and negative values without wildcards in essence,
which is denoted by AND+,−. It easily follows that the wildcards used in the ci-
phertext policy of [26] cannot play the role of “don’t care”.
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pair in decryption phase, and has constant-size ciphertexts. However, the AND-
gate policy in scheme [6] only supports three values of attributes: positive value,
negative value, and wildcards2, and we denote the policy by AND∗

+,−. In this
paper, we aim to give a more efficient CP-ABE scheme supporting AND-gate
policy with multiple values and wildcards, which is denoted by AND∗

m. It is
worth noting that AND∗

m is indeed more expressive than AND∗
+,−. In other

words, in the sense of the same expressiveness, AND∗
m based scheme is more

efficient than AND∗
+,− based one. We show this in the following.

Assume there are n attributes in universe and the attribute set is U =
{ω1, ω2, · · · , ωn}. Each attribute has multiple values, and suppose Si = {vi,1, vi,2,
· · · , vi,ni} is the multi-value set for ωi and |Si| = ni. In Table 1, we consider
an AND∗

m policy CP1 = v1,1 ∧ v2,1 ∧ v3,3 ∧ ∗, where the attribute ω4 asso-
ciated with “Gender” is not cared for. In other words, if someone’s attributes
match CP1 in terms of the first three attributes, he/she can decrypt the cipher-
texts under CP1 regardless of the gender. Note that n = 4, n1 = 4, n2 = 3,
n3 = 3, n4 = 2 in Table 1, and IS, CS and CE represent “Information Se-
curity”, “Computer Science” and “Communication Engineering”, respectively.
In order to realize the same expressiveness as CP1 based on AND∗

+,− pol-
icy, the ciphertext policy CP2 in Table 2 has to be adopted, where CP2 =
ω+
1 ∧ ω−1

2 ∧ ω−1
3 ∧ ω−1

4 ∧ ω+
5 ∧ ω−1

6 ∧ ω−1
7 ∧ ω−1

8 ∧ ω−1
9 ∧ ω+

10 ∧ ∗ ∧ ∗. Obviously,
the total number of attributes associated with AND∗

+,− is significantly larger
than that of AND∗

m, and this often leads to more storage overheads at users’
side because of attribute secret keys and public system parameters.

Table 1. An example of AND∗
m

Attributes ω1 ω2 ω3 ω4

Description Institution Department Duty Gender

Values

Univ. A IS Administrator Male
Univ. B CS Teacher Female
Univ. C CE Student �

Univ. D � � �

CP1 Univ. A IS Student ∗

Table 2. An example of AND∗
+,−

Attributes ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12

Description Univ. A Univ. B Univ. C Univ. D IS CS CE Administrator Teacher Student Male Female

Values
ω+
1 ω+

2 ω+
3 ω+

4 ω+
5 ω+

6 ω+
7 ω+

8 ω+
9 ω+

10 ω+
11 ω+

12

ω−
1 ω−

2 ω−
3 ω−

4 ω−
5 ω−

6 ω−
7 ω−

8 ω−
9 ω−

10 ω−
11 ω−

12

CP2 ω+
1 ω−

2 ω−
3 ω−

4 ω+
5 ω−

6 ω−
7 ω−

8 ω−
9 ω+

10 ∗ ∗

2 After a simple analysis, we know that the ciphertext policy of scheme [6] successfully
supports wildcards.
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In summary, to realize practical fine-grained data sharing systems, it is of
importance to construct CP-ABE schemes, which support AND∗

m policy and
enjoy constant computation cost and constant-size ciphertexts.

Our Contribution. We propose a CP-ABE scheme and prove its selective se-
curity against chosen plaintext attacks (CPA) in the random oracle model under
the decision n-Bilinear Diffie-Hellman Exponent (n-BDHE) assumption, where n
denotes the total number of attributes in universe.The proposed scheme enjoys de-
sirable properties of small and constant computation cost and ciphertext length.
It can efficiently support AND∗

m policy and hence is more preferable than previ-
ous CP-ABE constructions. Performance comparisons indicate that the proposed
CP-ABE scheme is extremely suitable for real-world applications, especially for
the scenarios where computation and bandwidth issues are major concerns.

Related Work. In order to improve the flexibility of users to share their data,
Sahai and Waters [25] introduced ABE as a fuzzy version of identity-based en-
cryption (IBE). Goyal et al. [10] further extended this idea and defined two
complementary notions of ABE: KP-ABE and CP-ABE. The first KP-ABE con-
struction [10] realized the monotonic access structure for key policies. To increase
the expressiveness, Ostrovsky et al. presented a KP-ABE scheme that supports
non-monotone key policies [22]. The first construction of CP-ABE supporting
tree-based access structure was proposed by Bethencourt et al. [4]. However, the
construction [4] was proven to be secure in generic group models. To overcome
this weakness, Cheung and Newport presented another CP-ABE construction
[7] and its security proof was given in the standard model. The construction
supports the AND∗

+,− ciphertext policy. Since ABE is promising in realizing
fine-grained data sharing systems, recent years have witnessed a number of vari-
ants of ABE. Such as accountable ABE [18,20], ABE with recipient-anonymity
[14,16,21,27], etc.

However, most of the previous ABE systems suffer severe efficiency drawbacks
in terms of the computation cost in encryption and decryption phases and the
size of ciphertexts, which usually grow with the number of attributes the user has
to hold for successful decryption. Considering the practical application scenar-
ios where users are resource-constrained with respect to computing power and
bandwidth, ABE schemes with low computation and communication costs have
received a lot of attention in recent years. The schemes [3,5,19,23] belong to KP-
ABE and those in [2,6,8,9,12,13,24,26,28] are CP-ABE. The results in [1] merge
the schemes in [3,13]. As the first ABE scheme with constant-size ciphertexts, the
CP-ABE construction proposed by Emura et al. [8] only supports ANDm pol-
icy without wildcards, where ANDm denotes the AND-gate policy supporting
multiple values without wildcards. Decryption is enabled only if the decryp-
tor’s attributes are identical to the access policy. Therefore, their scheme can
be simply implemented based on IBE schemes with the same efficiency by using
each user’s attribute list as his/her identity. Similarly, the CP-ABE schemes [24]
supporting ANDm and [12] supporting AND+ have the same disadvantage as
the scheme [8], where AND+ represents the AND-gate policy supporting single
positive value without wildcards. Herranz et al. [13] proposed a (�, n)-threshold
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CP-ABE scheme with constant-size ciphertexts. However, their scheme requires
n+�+1 exp in encryption phase and 3 pair and O(�2) exp in decryption phase.
Ge et al. [9] proposed a new (�, n)-threshold CPA-secure CP-ABE scheme with
constant-size ciphertexts, and then extended it to a CCA2-secure one. How-
ever, their schemes have quadratic attribute secret key size based on � and the
decryption cost still linearly grows with the number of normal attributes in uni-
verse in accordance with exp. Attrapadung et al. [2] proposed an inner product
encryption with constant-size ciphertexts and the decryption cost is linearly pro-
portional to the number of attributes involved in the access policy. Zhou et al.
[28] presented a CP-ABE scheme with constant-size ciphertexts and AND∗

+,−
policy while the decryption cost linearly grows with the number of attributes
in universe. Although outsourced ABE [11,15,17] can reduce the computation
cost of users, the systems have to introduce additional servers. Currently, the
CP-ABE construction proposed by Chen et al. [6] is most efficient. They con-
structed a CPA-secure CP-ABE scheme and then get a security-enhanced one.
Both schemes admit AND∗

+,− policy and enjoy constant computation cost and
constant-size ciphertexts.

Organization. The remaining of this work is organized as follows. Some pre-
liminaries are reviewed in Section 2. We then present the definition and security
model of attribute-based encryption in Section 3. Our CP-ABE construction to-
gether with its security results are described in Section 4. Security and efficiency
comparisons are given in Section 5. Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we first define the notations used in this paper and review some
cryptographic background. Then access policies are explained.

2.1 Notations

2.2 Cryptographic Background

Definition 1 (Bilinear Pairing). Let G be a cyclic multiplicative group of
some large prime order p, g ∈R G be a generator, and GT be a cyclic multiplica-
tive group of the same order, whose identity we denote as 1. We call ê a bilinear
pairing if ê : G×G → GT is a map with the following properties:

Table 3. Notations used throughout this paper

Notations Meanings

AND+ AND-gate policy supporting single positive value without wildcards

AND+,− AND-gate policy supporting positive and negative values without wildcards

AND∗
+,− AND-gate policy supporting positive and negative values with wildcards

ANDm AND-gate policy supporting multiple values without wildcards

AND∗
m AND-gate policy supporting multiple values with wildcards
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1. Bilinear: ê(ga, gb) = ê(g, g)ab for all a, b ∈ Z∗
p.

2. Non-degenerate: There exists g1, g2 ∈ G such that ê(g1, g2) �= 1.
3. Computable: There is an efficient algorithm to compute ê(g1, g2) for all

g1, g2 ∈ G.

Definition 2 (Decision (t, ε, �)-BDHE assumption). Security of our con-
struction is based on a complexity assumption called the Bilinear Diffie-Hellman
Exponent (BDHE) assumption. Let G be a bilinear group of prime order p, and
g, h two independent generators of G. Denote −→y g,α,� = (g1, g2, · · · , g�, g�+2, · · · ,
g2�) ∈ G2�−1, where gi = g(α

i) for some unknown α ∈ Z∗
p. An algorithm B that

outputs μ ∈ {0, 1} has advantage ε in solving the decision �-BDHE problem if

|Pr[B(g, h,−→y g,α,�, ê(g�+1, h)) = 1]− Pr[B(g, h,−→y g,α,�, Z) = 1]| ≥ ε,

where the probability is over the random choice of g, h in G, the random choice
α ∈ Z∗

p, the random choice of Z ∈ GT , and the random bits consumed by B. We
say that the decision (t, ε, �)-BDHE assumption holds in G if no t-time algorithm
has advantage at least ε in solving the decision �-BDHE problem in G.

2.3 Access Policy

An access policy W , namely a ciphertext policy in CP-ABE, is a rule that
returns either 0 or 1 given a set L of attributes. We say that L satisfies W if
and only if W answers 1 on L. Usually, notation L |= W is used to represent
the fact that L satisfies W , and the case of L does not satisfy W is denoted
by L �|= W . In our construction, we consider AND-gate policy AND∗

m. As a
generalization of the access policy AND∗

+,− in [7], AND∗
m is also adopted in

[21]. Formally, given an attribute list L = [L1, L2, · · · , Ln] and an access policy
W = [W1,W2, · · · ,Wn] =

∧
i∈IW

Wi, where IW is a subscript index set and
IW = {i|1 ≤ i ≤ n,Wi �= ∗}, we say L |= W if Li = Wi or Wi = ∗ for all
1 ≤ i ≤ n and L �|= W otherwise. It is noted that the wildcard ∗ in W plays the
role of “don’t care” value.

3 Syntax and Security Model

In this section, we review the syntax of attribute-based encryption and present
its security models.

3.1 Syntax of CP-ABE

In a practical ABE system, there are four entities: AA (Attribute Authority),
CSP (Cloud Service Provider), DO (Data Owner) and DU (Data User). AA is
in charge of issuing attribute secret keys for DO and DU. CSP is an entity that
hosts the encrypted files of DO. A CP-ABE system consists of four algorithms
Setup, KeyGen, Encrypt and Decrypt. They are detailed as follows:



Computationally Efficient CP-ABE with Constant-Size Ciphertexts 265

– Setup(1λ) → (PK,MK): The setup algorithm is run by AA. On input a se-
curity parameter λ, it returns the system public key PK which is distributed
to DO and DU, and the master key MK which is kept private.

– KeyGen(PK,MK,L)→ SKL: The key generation algorithm is run by AA.
On input the system public key PK, the master key MK and an attribute
list L, it outputs SKL as the attribute secret key associated with L.

– Encrypt(PK,M,W ) → CTW : The encryption algorithm is run by DO. On
input the system public key PK, a message M and an access policy W
specified by DO, it generates a ciphertext CTW as the encryption of M with
respect to W , which is outsourced to CSP.

– Decrypt(PK,CTW , SKL) → M or ⊥: The decryption algorithm is run by
DU. On input the system public key PK, a ciphertext CTW of a messageM
under W , and a secret key SKL associated with L, it outputs the message
M if L |= W , and the error symbol ⊥ otherwise.

3.2 Formalized Security Model for CP-ABE

Following schemes in [4,7,10], we use a notion called indistinguishability against
selective ciphertext-policy and chosen-plaintext attacks (IND-sCP-CPA) in the
proof of our construction. The formal definition is given based on the following
IND-sCP-CPA game, as shown in Fig. 1. The game involves an adversary A and
a challenger S.

Init: The adversary A commits to a challenge ciphertext policy W ∗.
Setup: The challenger S chooses a sufficiently large security parameter λ, and runs the Setup
algorithm to get a master key SK and the corresponding system public key PK. It retains SK and
gives PK to A.
Phase 1: In addition to hash queries, the adversary A issues a polynomially bounded number of
queries to the following key generation oracle:

– KeyGen Oracle OKeyGen: The adversary A submits an attribute list L, if L �|= W ∗, the
challenger S gives A the secret key SKL and outputs ⊥ otherwise.

Challenge: Once A decides that Phase 1 is over, it outputs two equal length messages M0 and M1

from the message space, on which it wishes to be challenged with respect to W ∗. The challenger S
randomly chooses a bit b ∈ {0, 1}, computes CTW∗ = Encrypt(PK,Mb,W

∗) and sends CTW∗ to A.
Phase 2: The same as Phase 1.
Guess: The adversary A outputs a guess bit b′ ∈ {0, 1} and wins the game if b′ = b.
The advantage of an adversary A in the IND-sCP-CPA game is defined as follows:

AdvIND-sCP-CPA
CP-ABE (A) = |Pr[ b′ = b ]−

1

2
|.

Fig. 1. The IND-sCP-CPA game

Definition 3. A CP-ABE scheme is said to be IND-sCP-CPA secure if no prob-
abilistic polynomial-time adversary can break the IND-sCP-CPA game with non-
negligible advantage.
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4 Proposed CP-ABE Scheme

4.1 Construction

– Setup(1λ): Let G and GT be two cyclic multiplicative groups of a large
prime order p. Suppose g is a generator of G and ê : G × G → GT is a
bilinear map. Assume there are n attributes in universe and the attribute
set is U = {ω1, ω2, · · · , ωn}. Each attribute has multiple values, and suppose
Si = {vi,1, vi,2, · · · , vi,ni} is the multi-value set for ωi and |Si| = ni. Define
two collision-resistant hash functionsH0 : Z∗

p×{0, 1}log2 n×{0, 1}log2 m → Z∗
p

and H1 : Z∗
p → G, where we assume that the universe of attribute values

can be encoded as elements in Z∗
p and m = maxni=1 ni. Also, AA chooses

x, y ∈R Z∗
p, and computes Xi,ki = g−H0(x||i||ki), Yi,ki = ê(g, g)H0(y||i||ki) for

1 ≤ i ≤ n and 1 ≤ ki ≤ ni. Finally, the system public key is published as
PK = 〈g, {Xi,ki , Yi,ki}1≤i≤n,1≤ki≤ni〉, and the master key is MK = 〈x, y〉.

– KeyGen(PK,MK,L): Let L be the attribute list for the user who obtains
the corresponding attribute secret key. AA chooses sk ∈R Z∗

p for the user.
Then for 1 ≤ i ≤ n, suppose Li = vi,ki , AA computes:

σi = σi,ki = gH0(y||i||ki)H1(sk)
H0(x||i||ki).

Finally, the corresponding attribute secret key is SKL = 〈sk, {σi}1≤i≤n〉.
– Encrypt(PK,M,W, ): To encrypt a message M ∈ GT under a ciphertext

policyW =
∧

i∈IW
Wi, where supposeWi = vi,ki , DO computes 〈XW , YW 〉 =

〈
∏

i∈IW
Xi,
∏

i∈IW
Y i〉 with 〈X i, Y i〉 = 〈Xi,ki , Yi,ki〉. Then, DO chooses

s ∈R Z∗
p and sets CTW = 〈W,C0, C1, C2〉, where C0 = M ·Y s

W , C1 = gs, and
C2 = Xs

W .
– Decrypt(PK,CTW , SKL): The ciphertext CTW = 〈W,C0, C1, C2〉 is de-

crypted by DU with an attribute secret key SKL = 〈sk, {σi}1≤i≤n〉 as fol-
lows. DU first checks whether L |= W . If not, the decryption algorithm
returns ⊥. Otherwise, DU computes σW =

∏
i∈IW

σi. Then, the message is
recovered as

M =
C0

ê(σW , C1) · ê(H1(sk), C2)
.

4.2 Correctness

If L |= W , the message can be successfully recovered according to the decryption
algorithm. Indeed, suppose the indexes satisfy Li = vi,ki , we have
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C0

ê(σW , C1) · ê(H1(sk), C2)

=
M · Y s

W

ê (σW , gs) · ê (H1(sk), Xs
W )

=
M · (

∏
i∈IW

Y i)
s

ê
(∏

i∈IW
σi, gs

)
· ê
(
H1(sk),

(∏
i∈W Xi

)s)
=

M ·
(∏

i∈IW
ê(g, g)H0(y||i||ki)

)s
ê
(∏

i∈IW
gH0(y||i||ki)H1(sk)H0(x||i||ki), gs

)
· ê
(
H1(sk),

(∏
i∈IW

g−H0(x||i||ki)
)s)

= M.

4.3 Security Analysis

Theorem 1. Assume that A makes at most qH1 queries to the random oracle
H1, and at most qK queries to the key generation oracle. If the decision (τ, ε, n)-
BDHE assumption holds in G, then the proposed construction is (τ ′, ε, n)-secure,
where τ ′ = τ +O(qH1 + nqK +m)τ1 +O(m)τ2 with m =

∑n
i=1 ni. Here, τ1 and

τ2 denotes the time complexity to compute an exponentiation in G and GT ,
respectively.

Proof. Suppose that there exists a τ -time adversary A, which breaks the pro-
posed scheme with AdvIND-sCP-CPA

CP-ABE (A) ≥ ε. We build a simulator S that has
advantage ε in solving the decision n-BDHE problem in G. S takes as in-
put a random decision n-BDHE challenge (g, h,−→y g,α,n, Z), where −→y g,α,n =
(g1, g2, · · · , gn, gn+2, · · · , g2n) and Z is either ê(gn+1, h) or a random element
in GT . The simulator S plays the role of the challenger in the IND-sCP-CPA
game, and interacts with the adversary A as follows.

Init. The simulator S receives a challenge access structure W ∗ =
∧

i∈IW∗ Wi

specified by the adversaryA, where IW∗ = {i1, i2, · · · , iw} with ω ≤ n represents
the attribute index set specified in W ∗. During the game, A will consult S for
answers to the random oracles H0 and H1. Roughly speaking, these answers are
randomly generated, but to maintain the consistency and to avoid collision, S
keeps two tables L1 and L2 to store the answers used.

Setup. The simulator S needs to generate a system public key PK. S chooses
j∗ ∈R {1, 2, · · · , w} and x, x′, y, y′ ∈R Z∗

p. Then, it does the following:

1. If ij ∈ IW∗ − {ij∗}, suppose Wij = vij ,kij
, then S computes:(

Xij ,kij
, Yij ,kij

)
=
(
g−H0(x||ij||kij

)g−1
n+1−ij

, ê(g, g)H0(y||ij||kij
)).

Also, for k �= kij , S computes:(
Xij ,k, Yij ,k

)
=
(
g−H0(x

′||ij ||k), ê(g, g)H0(y
′||ij ||k)).
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2. For ij∗ , suppose Wij∗ = vij∗ ,kij∗
, then S does the following:

(
Xij∗ ,kij∗

, Yij∗ ,kij∗
)
=

(
g
−H0(x||ij∗ ||kij∗ ) ∏

t∈IW∗−{ij∗}
gn+1−t, ê(g, g)

H0(y||ij∗ ||kij∗ )
ê(g, g)

αn+1 )
.

Also, for k �= kij∗ , S computes:(
Xij∗ ,k, Yij∗ ,k

)
=
(
g−H0(x

′||ij∗ ||k), ê(g, g)H0(y
′||ij∗ ||k)

)
.

3. If ij /∈ IW∗ , for 1 ≤ kij ≤ nij , S computes(
Xij ,kij

, Yij ,kij

)
=
(
g−H0(x||ij||kij

), ê(g, g)H0(y||ij ||kij
)).

Then PK = 〈g, {Xi,ki , Yi,ki}1≤i≤n,1≤ki≤ni〉 and S sends PK to A.

Phase 1. The adversary A makes the following queries.

– Hash Oracle OH0(·): When there is a query on H0 for input ‘·’, S first
looks if there is an item containing ‘·’ in L0. If it is, the previous defined
value is returned. Otherwise, it chooses r ∈R Z∗

p, adds the entry 〈·, r〉 to L0

and returns r.
– Hash Oracle OH1(sk): When there is a query on H1 for input sk, S first

looks if there is an item containing sk in L1. If it is, the previous defined
value is returned. Otherwise, it proceeds as follows:

• If sk corresponds to an attribute list L in the key generation oracle, S
adds the entry 〈sk, gijgz〉 to L1 and returns gijg

z, where z ∈R Z∗
p and

ij is associated with L and satisfies Lij /∈Wij .
• Otherwise, S randomly chooses ij ∈R {1, 2, · · · , n}, z ∈R Z∗

p, adds the
entry 〈sk, gijgz〉 to L1 and returns gijg

z.

– KeyGen Oracle OKeyGen(L): Suppose A summits an attribute list L in a
secret key query. If L �|= W ∗, there must exist ij ∈ IW∗ such that Lij /∈ Wij .
Without loss of generality, assume Lij = vij ,k̂ij

and Wij = vij ,kij
. S chooses

sk ∈R Z∗
p. Also, S computes σij = σij ,k̂ij

= gH0(y
′||ij ||k̂ij

)(gijg
z)H0(x

′||ij ||k̂ij
).

For t �= ij, S chooses z ∈R Z∗
p and computes σt as follows:

Case 1. If t ∈ IW∗ − {ij∗}, suppose Lt = vt,kt , S computes

σt = σt,kt = gH0(y||t||kt)(gij )
H0(x||t||kt)gn+1−t+ij (Xt)

−z.

Case 2. If t = ij∗ , suppose Lij∗ = vij∗ ,kij∗
, S computes σij∗ as

σij∗ = σij∗ ,kij∗
= g

H0(y||ij∗ ||kij∗ )
(gij )

H0(x||ij∗ ||kij∗ )( ∏
k∈IW∗−{ij∗ ,ij}

g−1
n+1−k+ij

)
(Xij∗ )−z.

Case 3. If t /∈ IW∗ , suppose Lt = vt,kt , S computes

σt = σt,kt = gH0(y||t||kt)(gijg
z)H0(x||t||kt).
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Finally, S returns SKS = 〈sk, {σi}1≤i≤n〉.
Challenge. The simulator S sets

xW∗ =
∑

t∈IW∗
H0(x||t||kt) =

ω∑

j=1

H0(x||ij ||kij ), yW∗ =
w∑

j=1

H0(y||ij ||kij ),

and defines 〈XW∗ , YW∗〉 as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XW∗ = Xij∗
∏

t∈IW∗−{ij∗ } Xt

=
(
g
−H0(x||ij∗ ||kij∗ ) ∏

t∈IW∗−{ij∗} gn+1−t

)
·
∏

t∈IW∗−{ij∗ } g−H0(x||t||kt)g−1
n+1−t

= g−xW∗ ,

YW∗ = Y ij∗
∏

t∈IW∗−{ij∗} Y t

= ê(g, g)
H0(y||ij∗ ||kij∗ )

ê(g, g)α
n+1

·
∏

t∈IW∗−{ij∗ } ê(g, g)H0(y||t||kt)

= ê(g, g)
∑w

j=1 H0(y||ij ||kij )+αn+1

.

The adversary A summits two messages M0 and M1 of equal length. The sim-
ulator S can challenge A as follows. S chooses b ∈R {0, 1}, and computes
C∗

0 = Mb · Y s
W∗ = MbZê(g, h)

yW∗ , C∗
1 = h, and C∗

2 = h−xW∗ .
It’s noted that the challenge ciphertext CTW∗ = 〈W ∗, C∗

0 , C
∗
1 , C

∗
2 〉 is a valid

encryption of Mb whenever Z = ê(gn+1, h). On the other hand, when Z is a
random element in GT , CTW∗ is independent of b in the adversary’s view.

Phase 2: The same as Phase 1.

Guess: The adversary A outputs a guess bit b′ of b. If b′ = b, the simulator S
outputs 1 in the decision n-BDHE game to guess that Z = ê(gn+1, h). Otherwise,
it outputs 0 to indicate that Z is a random element in GT . Therefore, if Z =
ê(gn+1, h), then CTW∗ is a valid ciphertext and we have

Pr[S(g, h,−→y g,α,n, ê(gn+1, h)) = 1 ] =
1

2
+ AdvIND-sCP-CPA

CP-ABE (A) ≥ 1

2
+ ε.

If Z is a random element in GT , the message Mb is completely hidden from A,
and we have

Pr[S(g, h,−→y g,α,n, Z) = 1 ] =
1

2
.

Therefore, S has advantage at least ε in solving the decision n-BDHE problem
in G within time τ . It easily follows that the time complexity of S is τ ′ =
τ +O(qH1 + nqK +

∑n
i=1 ni)τ1 +O(

∑n
i=1 ni)τ2. �

5 Performance Analysis

In this section, the previous CP-ABE schemes [1,2,6,8,9,12,13,24,26,28] with
constant-size ciphertexts and the proposed scheme are compared from the aspects
of security and efficiency. The ciphertext size of schemes [1,2,6,8,9,12,13,24,28]
and ours is 2|G| + |GT | and that of scheme [26] is |G| + |GT |. In Table 4, perfor-
mance comparisons are made in terms of the attribute private key size, the size of
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system public key and master key, the computation overheads of encryption and
decryption, the expressiveness of access policy, the adopted security model, and
assumptions. For simplicity, the multiplication cost over groups is ignored in Ta-
ble 4, where exp and pair represent an exponentiation operation and a pairing
operation, respectively. Let n be the total number of attributes in universe, � be
the number of attributes the user has, s be the number of attributes the user has
to hold in order to match the access policy, andN be the total number of attribute
values in the system. We denote the bit length of an element in a group G by |G|.
For asymmetric bilinear pairings [1,13], we use |G| to represent the average length
of |G1| and |G2|. In Table 4, SK, PK, and MSK stand for the attribute secret key,
the system public key, and the master secret key. The notation IP represents inner
product policy. Furthermore, s-STdM, f-STdM, s-ROM, aMSE-DDH, DBDH, and
q-BDHE stand for selective security in the standard model, full-security in the
standard model, selective-security in the random oracle model, the augmented
multi-sequence of exponents decisional Diffie-Hellman assumption, the decisional
bilinear Diffie-Hellman assumption, and the decisional bilinear Diffie-Hellman ex-
ponent assumption, respectively. Note that q has different values in different
schemes.

Table 4. Comparisons of CP-ABE schemes with constant-size ciphertexts

Schemes
Parameter Size Computation Cost

Policy Model Assumption
SK PK MSK Enc. Dec.

HLR (n+ s− 1)|G| (2m+ 1)|G|+|GT | |G|+ 2|Z∗
p| (n+ �+ 3 pair+(�2) exp Threshold s-STdM aMSE-DDH

[1,13] +(m− 1)|Z∗
p| 1) exp

GZC [9] 2n(n+ s)|G| (2n+ 2)|G|+|GT | |Z∗
p| 3 exp 2 pair+(2n) exp Threshold s-STdM q-BDHE

AL [2] (2n+ 5)|G| (n+ 2)|G|+|GT | |G| 4 exp 3 pair+(n− 1) exp IP s-STdM q-BDHE

ZHW [28] (2n+ 1)|G| (6n+ 1)|G| 2|Z∗
p| 2 exp (2�+ 1) pair AND∗

+,− s-STdM q-BDHE

HSM [12] (s+ 2)|G| (n+ 4)|G| |Z∗
p| 3 exp 2 pair AND+ s-STdM DBDH

TDM [26] (2s+ 1)|G| 2|G|+ 3n|GT | 3n|Z∗
p| 2 exp 2 pair AND+,− s-STdM DBDH

EM [8] 2|G| (N + 2)|G| + |GT | (N + 1)|Z∗
p| 3 exp 2 pair ANDm s-STdM DBDH

RD [24] 2|G| (N + 2)|G| + |GT | 2|G| 3 exp 2 pair ANDm f-STdM New

CZF [6] (n+ 1)|G| 2n|G| + 2n|GT | 4n|Z∗
p| 3 exp 2 pair AND∗

+,− s-STdM q-BDHE

Proposed n|G| + |Z∗
p| (N + 1)|G| + N |GT | 2|Z∗

p| 3 exp 2 pair AND∗
m s-ROM q-BDHE

In Table 4, all the CP-ABE schemes have small and constant-size ciphertexts.
However, the schemes in [1,2,9,13,28] suffer an efficiency drawback that the de-
cryption cost is not constant in terms of the the number of exp or pair. Although
enjoying constant computation costs, one drawback of schemes [8,12,24,26] is
that the access policy fails to support wildcards. To decrypt a ciphertext, DU’s
attributes need to be completely identical to the access policy. In essence, the
wildcards used in the ciphertext policy of [26] fail to play the role of “don’t
care”. The CP-ABE scheme [6] is very efficient in terms of ciphertext length and
computation costs while it only supports AND∗

+,−. The proposed CP-ABE con-
struction is comparable to other schemes and the access policy supports AND∗

m.
On the other hand, in all the schemes, only the scheme [24] achieves full security,
and the schemes [1,2,6,8,9,12,13,26,28] and ours are selective-secure. However,
the scheme [24] is proven secure under four new assumptions in composite order
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bilinear groups, which are denoted by New. The others are based on groups
of prime order. Notice that a fully-secure scheme is also presented in [2], and
it is proven secure under DBDH and D-Linear assumptions, where D-Linear
represents the decisional linear assumption. However, the ciphertext length is
9|G|+ |GT | and the decryption phase involves nine pair. The proposed scheme
is proven secure in the random oracle model, and others are proven secure in
the standard model. In addition, the scheme [1,13] is proven secure under the
aMSE-DDH assumption, which is not a standard one, and the schemes [2,6,9,28]
and ours are proven secure under the decisional BDHE assumption. The schemes
[8,12,26] are proven secure under the DBDH assumption. In general, the pro-
posed CP-ABE scheme enjoys desirable properties of small and constant com-
putation cost and constant-size ciphertexts, which is very suitable for practical
scenarios where computation and bandwidth issues are major concerns.

6 Conclusion

In this paper, to realize secure and efficient attribute-based data sharing systems,
we propose a CP-ABE scheme, which features small and constant computation
cost and constant-size ciphertexts and it can efficiently support AND∗

m policy.
The proposed scheme is proven selective-secure in the random oracle model under
the decision n-BDHE assumption, where n denotes the total number of attributes
in universe. In addition, extensive performance comparisons indicate that the
proposed CP-ABE scheme is extremely suitable for real-world applications.
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Abstract. An Attribute-Based Signcryption (ABSC) is a natural exten-
sion of Attribute-Based Encryption (ABE) and Attribute-Based Signa-
ture (ABS), where we have the message confidentiality and authenticity
together. Since the signer privacy is captured in security of ABS, it is
quite natural to expect that the signer privacy will also be preserved in
ABSC. In this paper, first we propose an ABSC scheme which is weak
existential unforgeable, IND-CCA2 secure in adaptive-predicates attack
and achieves signer privacy. Secondly, by applying strongly unforgeable
one-time signature (OTS), the above scheme is lifted to an ABSC scheme
to attain strong existential unforgeability in adaptive-predicates model.
Both the ABSC schemes are constructed on common setup, i.e the public
parameters and key are same for both the encryption and signature mod-
ules. Our first construction is in the flavor of CtE&S paradigm, except
one extra component that will be computed using both signature com-
ponents and ciphertext components. The second proposed construction
follows a new paradigm (extension of CtE&S), we call it ”Commit then
Encrypt and Sign then Sign” (CtE&StS). The last signature is done using
a strong OTS scheme. Since the non-repudiation is achieved by CtE&S
paradigm, our systems also achieve the same.

Keywords: Attribute-based encryption, Attribute-based signature,
Attribute-based signcryption, Commitment scheme.

1 Introduction

In the last couple of years, attribute-based encryption (ABE) has become a
privilege way for encrypting a message for many users. In this encryption, a
message is encoded with a policy and a key is labeled with a set of attributes.
This form of ABE is known as ciphertext-policy attribute-based encryption (CP-
ABE) and in its dual form, key-policy attribute-based encryption (KP-ABE), the
role of policy and the set of attributes are interchanged. Since its introduction
(Fuzzy Identity-Based Encryption) [35] till to date many schemes have been
proposed, some of them are CP-ABE [4,22,30,39,21], some of them are KP-ABE
[16,33,22,30,2], most of them are selectively secure under chosen plaintext attack
(CPA) [16,39,33,2], few of them are adaptively secure under CPA [30,22,32] and

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 274–290, 2014.
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very few of them are secure under chosen ciphertext attack (CCA) [30] for general
policies. But, there are techniques [9,7,40] to convert a CPA secure scheme to
CCA secure scheme. However, the schemes that are adaptively secure under
CCA in the standard model seem to be more powerful.

Side by side with ABE, attribute-based signature (ABS) also draws much
attention due to its versatility. Unlike the traditional signature scheme, it cap-
tures unforgeability for a policy (group of users) and signer privacy. Similar to
ABE, in attribute-based signature a message is signed under a policy and a key
is associated with a set of attributes. We call this form of ABS as CP-ABS
[31,26,23,27] and its dual form, where the role of the policy and the set of at-
tributes are reversed, is called KP-ABS [36]. Similar to the traditional signature,
ABS can be weak existential unforgeable1 [31,26,27,23] or strong existential un-
forgeable under chosen message attack (CMA). Most of the ABS [36] proposed so
far are weak existential unforgeable. But, by a simple technique [20] one can ob-
tain strongly unforgeable signature scheme from weak unforgeable scheme. Since
here the message is signed under a policy, similar to ABE there are two types of
unforgeability, selective-predicate [36,23] and adaptive-predicate [31,26,27].

Zheng [41] introduced the concept of signcryption that provides an efficient
way of achieving the message confidentiality and an authenticity together as
compared to “Sign then Encrypt” approach. But they have not given any formal
security proof as no formal security model was known to them. Then J.Baek
et al. [3] first formalized the security notion for signcryption. Later An et al.
[1] proposed the generic constructions of signcryption in three paradigm, “Sign
then Encrypt (StE)”, “Encrypt then Sign (EtS)” and “Commit then Encrypt
and Sign (CtE&S)”. As compared to StE and EtS paradigms, CtE&S has an
advantage that in Signcrypt (resp. Unsigncrypt) both the routines, Encrypt and
Sign (resp. Decrypt and Ver) can be executed in parallel, i.e., in CtE&S paradigm
both Signcrypt and Unsigncrypt run faster as compared to other two paradigms.
The generic constructions in [1] were proven in two users model in PKI setting,
but using some minor modification one can have the same security in multi user
setting. Since it’s debut several signcryption schemes [29,28,24,25,13,11,8] have
been proposed either in PKI setting or in IBE setting.

Meanwhile S.Haber et al. [17] first proposed the idea of combining public-key
schemes, where an encryption scheme and a signature scheme are combined to
have the common public parameters and the key. But the Encrypt and Decrypt
(resp. Sign and Ver) of the encryption (resp. signature) scheme were kept un-
changed in the combined scheme. The security model is called joint security of
the combined public-key schemes, where in message confidentiality the adver-
sary is given only the encryption component of the challenge message but not
the signature and in authenticity the adversary is has to forge a signature. In
both cases, the adversary will get access to some oracles. Later, Vasco et al.
showed in [37] that the IBE scheme [6] and the IBS scheme [19] can be com-
bined in the joint security model. However, in this joint security model semantic

1 Unless stated, existential unforgeable means weak existential unforgeable throughout
this paper.
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security of the message is not possible if the signature of the challenge message
is additionally given with the challenge ciphertext.

It is natural to ask whether signcryption can be extended to the context
of attribute-based cryptography. It was Gagné et. al. [15] who first answered
the question but the policy considered in their construction (called attribute-
based signcryption) was a threshold policy. Basically in their construction, the
structure of Fuzzy IBE in [35] and a new efficient threshold ABS were used as
encryption primitive and signature primitive respectively. Subsequently, Emura
et al. [14] proposed a dynamic attribute-based signcryption (ABSC), where ac-
cess structures of encryptors can be changed without re-issuing the secret keys of
the users. Both the signcryption scheme were shown to be secure (confidential-
ity and authenticity) under selective-predicate attack. Since ABSC is a natural

Table 1. Performance of our CP-ABSC scheme

Scheme CS Key size Signcryption size Signcrypt time Unsigncrypt time

[15] No 2|As|, 3|Ae| O(|ωs|+ |ωe|) O(|ωs|+ |ωe|) O(|ωs|+ d)
[14] No 2|As|, θe O(�s + |Ue|+ �) O(�s + |Ue|+�) O(�s + |Ue|+ �)
[10] Yes M|A|+ 2 2�s + �e + 4 O(�s) +O(�e) O(�s) +O(|IB |)
Our Yes M|A|+ 2 2�s + 2�e + 5 + ℘ Max{O(�s),O(�e)} Max{O(�s),O(|IB |)}

In table 1, CS and |A| stand for the common setup and cardinality of the set A respectively.

The schemes supporting the common setup have the single key extraction algorithm and in

this case, we use A to indicate the user set of attributes. Otherwise two set of attributes, As

and Ae are used respectively for signcryption and unsigncryption. In later case, the individual

key sizes are separated by comma (,). Let �s and �e respectively denote the size of the signer

policy Γs and receiver policy Γe. M stands for maximum # repetition of an attribute in an

access policy. Let ωs, ωe and d respectively represent the signing set of attributes, encryption

set of attributes and threshold value in [15]. Ue and � respectively denote the attribute universe

involved in encryption and length of verification key for OTS. θe = 2|Ae| + 2� + 1. The sizes

of the commitment and the one-time signature are described by ℘. Let |IB | be the minimum #

row in the receiver policy Γe labeled by the set B to compute the target vector 1. The key size

and signcryption size are measured by # group elements involved in the key and signcryption

respectively. The time for signcrypt is # exponentiations to construct a signcryption, whereas

the time for unsigncrypt is both # exponentiations and # pairings.

Table 2. Security features of our CP-ABSC scheme

Scheme Type SAS EAS Auth. Conf. NR SP APM

[15] KP Threshold Threshold wEUF-CMA IND-CCA2 No NK No
[14] CP MAT AGW sEUF-CMA IND-CCA2 Yes No No
[10] CP MSP MSP sEUF-CMA IND-CCA2 Yes Yes No
Our CP MSP MSP sEUF-CMA IND-CCA2 Yes Yes Yes

In table 2, the abbreviations SAS, EAS, Auth., Conf., NR, SP, APM, NK, MAT, MSP, AGW,

KP and CP stand for signing access structure, encryption access structure, signcryption unforge-

ability, confidentiality of message, non-repudiation, signer-privacy, adaptive-predicates model,

not known, monotone access tree, monotone span program, AND-gate with wildcard respectively,

key-policy and ciphertext-policy.
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extension of both ABE and ABS, and the signer privacy is preserved in ABS,
so the signer privacy property is supposed to be inherited in ABSC as well. But
the later ABSC scheme lacks the property of signer privacy.

Recently Chen et al. [10] proposed a scheme in combined public-key framework
but in attribute-based flavor. In their scheme the ABE and ABS modules have
the same public parameters and the key distribution. Their scheme is based on
the construction of Waters [39] and was shown to be secure (selectively) in the
joint security model. Then they extended it to have a combined attribute-based
signcryption (StE paradigm).

1.1 Our Approach and Contribution

Our constructions are almost in the flavor of CtE&S paradigm. In CtE&S
paradigm, a message m is first committed to (c̆, d̆), then the commitment part

c̆ and decommitment part d̆ are respectively signed to σ and encrypted to � in
parallel to produce the signcryption Υ := (c̆, σ, �). Similarly, in unsigncryption

the verification (to verify σ) and the decryption (to get the d̆) run in parallel

to extract the message as m := Open(c̆, d̆). But this generalized construction
[1] never achieves strong unforgeability (resp. CCA2 security) in the insider se-
curity model as long as the primitive encryption algorithm (resp. the primitive
sign algorithm) is probabilistic.

Our first CP-ABSC construction achieves signer privacy, adaptive-predicates
weak unforgeability, and adaptive-predicates IND-CCA2 security in the standard
model. Moreover, our constructions support the combined public-key environ-
ment of “Combined Public-Key scheme”, viz, both the primitives, encryption and
signature have a common setup, i.e., the public parameters and key are identical.
Suppose we want a signcryption for a message m under the policies2 (Γs, Γe).
Let σ := (S0, . . . ,S�s) be the signature for (c̆, Γs), generated by a primitive CP-

ABS, where (c̆, d̆) ←− Commit(m). Let �0 := (C0, . . . ,C�e) be the ciphertext

generated by a primitive CP-ABE that conceals d̆ under a policy Γe. To achieve
the CCA2 security, we first bind all the components Si’s and Ci’s through a
collision resistant hash function He : {0, 1}∗ −→ ZN to he := He(Γe, Γs, c̆, �0, σ).
Then we encode he using a secret se involved in the encryption of the primi-
tive CP-ABE and Boneh-Boyen hash technique [5] to an additional ciphertext
component C�e+1. This basically prevents the adversary A from changing the
challenge signcryption except the component C�e+1, but if it gets changed then
it will be recognized via a verification process. If the primitive CP-ABS scheme
is weak unforgeable and the commitment scheme has relaxed-binding property,
then proposed CP-ABSC scheme is shown to be weak unforgeable.

2 Γs and Γe are respectively signer policy (i.e., on whom behalf, signer signs m) and
receiver policy (i.e., who will be eligible for this plaintext m).
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Our second CP-ABSC scheme additionally achieves strong unforgeability in
adaptive-predicates attack3. First notice that in the former scheme the adversary
can modify the replied signcryption for a message (m,Γs, Γe) : since A has access

to key SKA with Γe(A) = True, so it can extract d̆ from � and then re-encrypts it
to get modified (new) signcryption for the same message (m,Γs, Γe). Therefore,
the former scheme does not achieve the strong unforgeability. The later scheme is
obtained by combining the former scheme and a strong one-time signature (OTS)
scheme. Essentially, we sign he||C�e+1 using strong OTS scheme to guarantee
that the signcryption for a message can not be altered even if the adversary
knows the unsigncryption key. Surprisingly, the strong unforgeability of this
CP-ABSC scheme relies only on the weak unforgeability of the primitive CP-
ABS scheme and the strong unforgeability of the primitive strong OTS scheme,
i.e., no more relaxed-binding property of the primitive commitment scheme is
required.

The primitive CP-ABE scheme considered here is a (CCA2) variant4 of CP-
ABE scheme of Lewko et al. in [22]. Our primitive CP-ABS scheme (in section 3)
has the similar structure as of ABS scheme in the combined public-key framework
[10] except - (a) the encoding from hash of message to group element, and (b)
the bilinear pairing groups. The ABS scheme of [10] was proven in selective-
predicate model, whereas ours is shown to be secure in adaptive-predicate model.
Since the adaptive security (confidentiality and authenticity) is one of the main
motivations of our work, we must require the adaptive-unforgeability of the
primitive CP-ABS scheme. Therefore, the ABS of [10] can not be applied directly
to our CP-ABSC schemes. Another reason for moving prime to composite order
pairing groups is to fit the ABS scheme to CP-ABE scheme of [22]. There are
many commitment schemes [12,18,34] suitable for our systems, but we use them
as a black box in our constructions.

Summary of Our Contribution. To the best of our knowledge, this is the
first scheme having strong unforgeability and IND-CCA2 security in adaptive-
predicates model. Since our solution supports CtE&S paradigm, Signcrypt and
Unsigncrypt run faster as compared to other paradigms, viz, EtS and StE . Our
system is based on the common setup, i.e the public parameters and key are
same for both the encryption and signature module. In addition it supports
non-repudiation, dynamic property and signer privacy. A details comparisons of
performance and the security features between our scheme and others are given
in table 1 and table 2. The proofs of confidentiality and unforgeability are based
on the dual system methodology of [38]. Due to space restriction, all the missing
proofs will be given in full version of this paper.

Discussion. We remark that our proposed solution is not generic. One may
think that applying the generic construction [1] it is possible but this is not the

3 We remark that adaptive-predicates IND-CCA2 security (resp. existential un-
forgeability) and IND-CCA2 security (resp. existential unforgeability) in adaptive-
predicates attack both carry the same meaning.

4 This is not explicitly given but the signcryption scheme implicitly contains it.
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case. Indeed, CtE&S paradigm preserves only weak unforgeability and5 IND-
gCCA2. But here our proposed scheme attains both strong unforgeability and
IND-CCA2 security in adaptive-predicates attack. Further, our solution supports
the common setup for encryption and signature, so the security proof can not
carry through as in CtE&S paradigm. For our system, the considered form of
ABS, where a signature is associated with a policy and key is labeled by a set
of attributes, is called CP-ABS.

1.2 Organization

This paper is organized as follows. Section 2 contains the preliminaries. A
CP-ABS scheme and its security are provided respectively in section 3 and
4. A adaptive-predicates weak unforgeable and IND-CCA2 secure CP-ABSC
scheme and its security are given respectively in section 5 and 6. In section 7,
our adaptive-predicates strongly unforgeable and IND-CCA2 secure CP-ABSC
scheme and its security are demonstrated.

2 Preliminaries

Basic notation, definitions and hardness assumptions are provided in this sec-
tion. For definition and security model of commitment scheme, ABS, strongly
unforgeable OTS and CP-ABSC, refer to [1], [26], [30] and appendix A respec-
tively. For access structure and linear secret sharing scheme, see [22].

Notation. Let [�] := {i ∈ N : 1 ≤ i ≤ �}, gT := e(g, g), where e is a bilinear
pairing. Let the vectors 1 and 0 respectively denote (1, 0, . . . , 0) and (0, 0, . . . , 0),
where the length of the vectors will be understood from the context. Let Y :=
(y1, . . . , yn) and W := (w1, . . . , wn) be two vectors, then Y .W denotes the dot
product of Y and W , i.e., Y .W :=

∑n
i=1 yiwi. For S ⊂ Z�s

N and α ∈ Z�s
N , we

define α + S := {α + β | β ∈ S}. For a set X , x
R←− X denotes that x is

randomly picked from X according to the distribution R. Likewise, x
U←− X

indicates x is uniformly selected from X . To better understand the schemes, we
use two subscripts, s and e respectively for encryption and signature. Through
out this paper, we will use the symbol Γ := (M,ρ) for monotone span programs,
where � × n stands for the order of the matrix M . For an access structure Γ
and a set attributes A, Γ (A) stands for boolean variable, i.e, Γ (A) = True if A

satisfies Γ , else Γ (A) = False. For a matrix Me (resp. Ms), the symbol M
(i)
e

(resp. M
(i)
s ) represents the ith row of the matrix Me (resp. Ms).

Composite Order Bilinear Groups. Let G be an algorithm which takes 1κ as
a security parameter and returns a description of a composite order bilinear
groups, J := (N := p1p2p3,G,GT , e), where p1, p2, p3 are three distinct primes
and G and GT are cyclic groups of order N and e : G×G → GT is a map such
that
5 IND-gCCA2 is a weaker security notion than IND-CCA2. For details refer to [1].
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1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(g
a, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT

Let Gp1 ,Gp2 and Gp3 respectively denote the subgroups of G of order p1, p2
and p3. Let hi ∈ Gpi and hj ∈ Gpj be arbitrary elements with i �= j, then
e(hi, hj) = 1. This property is called orthogonal property of Gp1 ,Gp2 ,Gp3 .

Hardness Assumptions. We describe here three Decisional SubGroup (DSG)
assumptions [22] for 3 primes, DSG1, DSG2 and DSS3 in composite order bilinear

groups. Let J := (N = p1p2p3,G,GT , e)
U←− G(1λ) be the common parameters

for each assumptions.

[DSG1]. Let g
U←− Gp1 , X3

U←− Gp3 , T0
U←− Gp1 , T1

U←− Gp1p2 . Define D :=
(J , g,X3)

[DSG2]. Let g,X1
U←− Gp1 , X2, Y2

U←− Gp2 , X3, Y3
U←− Gp3 , T0

U←−
Gp1p3 , T1

U←− G. Then set D := (J , g,X1X2, Y2Y3, X3)

[DSG3]. Let α, s
U←− ZN , g

U←− Gp1 , X2, Y2, Z2
U←− Gp2 , X3

U←− Gp3 , T0 :=

e(g, g)αs, T1
U←− GT . Define D := (J , g, gαX2, g

sY2, Z2, X3)

The advantage of an algorithm A in breaking DSGi, for i = 1, 2, 3 is defined by

AdvDSGi
A (κ) = |Pr[A (D, T0) = 1]− Pr[A (D, T1) = 1]|

We say that the DSGi assumption holds if for every PPT algorithm A , the
advantage AdvDSGi

A (κ) is at most negligible in security parameter κ.

3 Basic Ciphertext-Policy Attribute-Based Signature

Illustrated here is a basic ciphertext-policy attribute-based signature (CP-ABS)
scheme for monotone span program (MSP) in the composite order pairing groups
(N := p1p2p3,G := Gp1 × Gp2 × Gp2 ,GT , e), for 3 distinct primes p1, p2 and
p3. The subgroup Gp2 has no role in this scheme but it will be used to prove
the security. As we mentioned earlier that the proposed CP-ABS scheme has
the similar structure to that of [10] except some minor modifications, viz., the
encoding function from hash of messages to group elements and pairing groups.
To have the unforgeability of the ABS scheme in adaptive-predicate model, we
allow such modifications. In this basic CP-ABS construction, the policies, i.e.,
MSPs are restricted to have each entry of row labeling function ρs to be distinct.
In other word, the row labeling functions ρs of the monotone span programs
Γs := (Ms, ρs) are injective. From this basic CP-ABS construction one can
easily lift to full CP-ABS construction by a mechanism described in appendix
B.
Setup(1κ,U): It executes G(1κ) to have composite order bilinear groups descrip-
tor, J := (N := p1p2p3,G,GT , e) with known factorization p1, p2 and p3 of

N . It chooses g
U←− Gp1 , X3

U←− Gp3 , a, as, bs, α
U←− ZN and ti

U←− ZN for
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each attribute i ∈ U . It then sets us := gas , vs := gbs , Ti := gti for i ∈ U . Let
Hs : {0, 1}∗ −→ ZN be a hash function. The public parameters and master
secret are given by

PP := (J , g, ga, us, vs, gαT , {Ti}i∈U , X3, Hs)
MSK:= (α).

KeyGen(PP,MSK, A): It picks t
U←− ZN , R,R

′
0

U←− Gp3 . For each attribute

i ∈ A, the algorithm chooses Ri
U←− Gp3 and outputs the secret key

SKA := [A, K := gα+atR, L := gtR′
0, Ki := Ti

tRi, ∀i ∈ A].

Sign(PP ,m,SKA, Γs := (Ms, ρs)): Let Ms be an �s × ns matrix. Sup-

pose Γs(A) = True, then there exist IA ⊂ [�s] and {α(i)
s }i∈IA such

that
∑

i∈IA
α
(i)
s M

(i)
s = 1. It selects β

U←− {β = (β1, . . . ,β�s) ∈
Z�s
N |

∑
i∈[�s]

βiM
(i)
s = 0}. Suppose SKA := [A, K := gα+atR, L :=

gtR′
0, Ki := Ti

tRi, ∀i ∈ A], then it re-randomizes the key SKA as follows:

it picks t̂
U←− ZN and sets t̃ := t+ t̂

S̃KA := [A, K̃ := K.gat̂, L̃ := L.gt̂, K̃i := Ki.Ti
t̂, ∀i ∈ A]

:= [A, K̃ := gα+at̃R, L̃ := gt̃R′
0, K̃i := Ti

t̃Ri, ∀i ∈ A]

It picks rs, τ
U←− ZN , R̄, R̄0

U←− Gp3 and for each i ∈ [�s], it chooses R̄i
U←− Gp3 .

Then it computes hs := Hs(m||Γs). The components of signature are given by

(for i �∈ IA, it sets α(i)
s := 0)

S0 :=
(
K̃(uhs

s vs)
rsR̄, grsR̄0

)
Si :=

(
L̃α(i)

s (gτ )βiR̄i, (K̃ρs(i))
α(i)

s (Tρs(i))
τβiR̄′

i

)
for i ∈ [�s].

After simplification, it gives
S0 :=

(
gα+at̃(uhs

s vs)
rsR̃, grsR̃0

)
, where R̃ := RR̄, R̃0 := R̄0

Si :=
(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′

i

)
,

where R̃i := (R′
0)

α(i)
s R̄i, R̃′

i := R
α(i)

s +τβi

ρs(i)
R̄′

i

The final output (signature) is σ := (S0, {Si}i∈[�s])
Ver(PP ,m, σ, Γs): It first computes a verification text, then using this verification
text it will verify the signature. The following is the construction of verification

text: It picks us := (s, u2, . . . , uns)
U←− Zns

N and r
(i)
s

U←− ZN for i ∈ [�s]. It

computes hs := Hs(m||Γs). Let M
(i)
s denote the ith row of the matrix, Ms and

let λ
(i)
s := M

(i)
s .us. The verification text is given by

V 0 :=
(
gs, (uhs

s vs)
s, gαsT

)
V i :=

(
gaλ

(i)
s T

−r(i)s

ρs(i)
, gr

(i)
s

)
, for i ∈ [�s]

The final verification text is V := (V 0, {V i}i∈[�s])

Now, it computesΔs :=
e(S01,V01)

e(S02,V02)
∏�s

i=1(e(Si1,Vi1)e(Si2,Vi2))
and checksΔs

?
= V03.

It returns 1 if Δs = V03, else returns 0.
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Correctness.

Δs =
e(S01, V01)

e(S02, V02)
∏�s

i=1(e(Si1, Vi1)e(Si2, Vi2))

=
gαs+at̃s
T .e(uhs

s vs, g)
srs

e(uhs
s vs, g)srs

∏�s
i=1(e(Si1, Vi1)e(Si2, Vi2))

=
gαs+at̃s
T∏�s

i=1(e(g
t̃α

(i)
s +τβi , gaλ

(i)
s −r

(i)
s tρs(i)).e(gt̃αitρs(i)+τβitρs(i) , gr

(i)
s ))

=
gαs+at̃s
T∏�s

i=1 g
at̃λ

(i)
s α

(i)
s +aτλ

(i)
s βi

T

=
gαs+at̃s
T

g
at̃

∑�s
i=1 λ

(i)
s α

(i)
s +aτ

∑�s
i=1 λ

(i)
s βi

T

= gαsT

4 Security Proof of CP-ABS

Theorem 1. The proposed attribute-based signature scheme in section 3 is per-
fectly private.

Theorem 2. The proposed basic CP-ABS scheme is adaptive-predicate existen-
tial unforgeable if DSG1, DSG2 and DSG3 assumptions hold and Hs is a collision
resistant hash function.

5 Basic Ciphertext-Policy Attribute-Based Signcryption

In this section, we present our basic ciphertext-policy attribute-based signcryp-
tion (CP-ABSC) supporting monotone span programs. The scheme is based on
the composite order bilinear pairing groups. Here we consider two policies, sender
policy Γs := (Ms, ρs) and receiver policy Γe := (Me, ρe). Similar to section 3,
in our basic CP-ABSC scheme, both the row labeling functions ρs and ρe are
assumed to be injective. By applying the mechanism illustrated in appendix B,
a full CP-ABSC construction is easily obtained.

This construction is almost in the flavor of CtE&S paradigm. To construct
our scheme, we use any commitment scheme with hiding and relaxed-binding
properties, CCA2 version encryption scheme of [22] and the ABS scheme de-
scribed in section 3. Let ΠABS := (ABS.Setup,ABS.KeyGen,ABS.Sign,ABS.Ver)
and ΠCommit := (C.Setup,Commit,Open) be respectively the ABS scheme de-
scribed in section 3 and commitment scheme.
Setup(1κ,U): It runs CK ←− C.Setup(1κ), (ABS.PP ,ABS.MSK) ←−
ABS.Setup(1κ,U). It chooses ae, be

U←− ZN and sets ue := gae , ve := gbe . Let
He : {0, 1}∗ −→ ZN be a hash functions. The public parameters (combining
ABS.PP, CK and ue, ve, He) and master secret are given by

PP := (I, g, ga, us, ue, vs, ve, gαT , {Ti}i∈U , X3, Hs, He, CK)
MSK:= ABS.MSK = (α)
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KeyGen(PP,MSK, A): SKA ←− ABS.KeyGen(ABS.PP,MSK, A)
Signcrypt(PP,m,SKA, Γs := (Ms, ρs), Γe := (Me, ρe)): Let Ms (resp. Me) be an

�s×ns (resp. �e×ne) matrix. It runs (c̆, d̆) ←− Commit(m) (see footnote 6). The
Signcrypt algorithm has two part, Sign and Encrypt, both run in parallel except
the part C�e+1.

Sign : σ := (S0, {Si}i∈[�s]) ←− ABS.Sign(ABS.PP, (c̆||Γe),SKA, Γs :=
(Ms, ρs)), where the components are given by

S0 :=
(
gα+at̃(uhs

s vs)
rsR̃, grsR̃0

)
, where hs := Hs((c̆||Γe)||Γs)

Si :=
(
(gt̃)α

(i)
s (gτ )βiR̃i, (T t̃

ρs(i)
)α

(i)
s (T τ

ρs(i)
)βiR̃′

i

)
Encrypt : It picks ue := (se, u2, . . . , une)

U←− Zne

N and r
(i)
e

U←− ZN for i ∈ [�e].

Let M
(i)
e denote the ith row of the matrix, Me and let λ

(i)
e := M

(i)
e .ue. The

ciphertext components of the signcryption are given by

C0 :=
(
gse , d̆.gαseT

)
Ci :=

(
gaλ

(i)
e T

−r(i)e

ρe(i)
, gr

(i)
e

)
, for i ∈ [�e]

It sets �0 := (C0, {Ci}i∈[�e]) and computes he := He(Γe, Γs, c̆, �0, σ). Then,

it calculates the last component C�e+1 := (uhe
e ve)

se . Then it sets the cipher-
text part of the signcryption as � := (�0, C�e+1).

It outputs the signcryption Υ := (c̆, σ, �)
Unsigncrypt(PP , Υ,SKB, Γs := (Ms, ρs), Γe := (Me, ρe)): Let Ms (resp. Me) be
an �s × ns (resp. �e × ne) matrix. This algorithm consists of two routines, Ver
and Decrypt run in parallel.
Ver: flag ←− ABS.Ver(PP, (c̆||Γe), σ, Γs). If flag = 0, it returns ⊥
Decrypt: It computes he := He(Γe, Γs, c̆, �0, σ). Then it checks e(g, C�e+1)

?
=

e(uhe
e ve, C01) and if the equality does not hold, it returns ⊥. If Γe(B) �= True, it

returns ⊥, else there exist IB ⊂ [�e] and {α(i)
e }i∈IB such that

∑
i∈IB

α
(i)
e M

(i)
e =

1. Then, it picks r
U←− ZN , R0

U←− Gp3 and computes

Δe :=
e(K.(uhe

e ve)
r, C01)

e(grR0, C�e+1)
∏

i∈IB
(e(L,Ci1).e(Kρe(i), Ci2))α

(i)
e

Finally it returns the message m := Open(c̆, C02/Δe)

Correctness. It follows from the correctness of Ver and Decrypt routines. Since,
the correctness of Ver is immediate from that of ABS in section 3, we illustrate
here only the correctness of Decrypt.

6 For brevity, we just omit CK in Open and Commit algorithm throughout this paper.
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Δe =
e(K.(uhe

e ve)
r, C01)

e(gr, C�e+1)
∏

i∈IB
(e(L,Ci1).e(Kρe(i), Ci2))α

(i)
e

=
gαse+atse
T .e(uhe

e ve, g)
rse

e(uhe
e ve, g)rse

∏
i∈IB

((g
atλ

(i)
e −tρe(i)r

(i)
e

T )(g
tρe(i)r

(i)
e

T ))α
(i)
e

=
gαse+atse
T∏

i∈IB
gatα

(i)
e λ

(i)
e

T

=
gαse+atse
T

g
at

∑
i∈IB

α(i)
eλ

(i)
e

T

= gαseT

Open(c̆, C02/Δe) = Open(c̆, d̆) = m

Non-Repudiation (Publicly Verifiability). Since it is achieved by CtE&S
paradigm, our systems also achieve the same.

Dynamic property. In dynamic attribute-based system, a new attribute can be
added dynamically to the system without re-issuing the whole secret key of the
user. Here a user sends it’s one secret key component, viz, L := gtR′

0 to the
PKG and then PKG will send the secret key component corresponding to the
new attribute : Suppose att is a new attribute, then PKG computes Tatt := gtatt

by choosing tatt
U←− ZN , keeps tatt to itself and adds Tatt to PP. Then, it sets

Katt := LtattRatt by picking Ratt
U←− Gp3 and returns it to the user.

6 Security Proof of CP-ABSC

Theorem 3. The proposed attribute-based signcryption scheme in section 5 is
perfectly private. (The Signer Privacy for CP-ABSC can be defined in similar
manner as in CP-ABS. The details will be found in full version.)

Theorem 4. If DSG1, DSG2 and DSG3 assumptions hold, He is a collision
resistant hash function and ΠCommit has hiding property, then our proposed basic
CP-ABSC scheme in section 5 is adaptively secure.

Theorem 5. If DSG1, DSG2 and DSG3 assumptions hold for J , the primitive
commitment scheme ΠCommit has relaxed-binding property and Hs is a collision
resistant hash function, then the proposed basic CP-ABSC scheme in section 5
is adaptive-predicates existential unforgeable.

7 Extension to Strongly Unforgeable CP-ABSC

Here in this section, we describe our strongly unforgeable and IND-CCA2 secure
CP-ABSC scheme for access policies represented by the monotone span pro-
grams. This scheme follows almost the same structure of weak unforgeable and
IND-CCA2 secure CP-ABSC described in section 5. But to protect the signcryp-
tion from forging, we bind all the components by a strongly unforgeable OTS
scheme which we call “Commit then Encrypt and Sign then Sign” (CtE&StS)
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paradigm. Although the similar type of generic constructions using strongly un-
forgeable OTS scheme are available in the literature [9,20] in the context of ABE
and ABS, here we do not apply the OTS scheme in straightforward way because
of the following reasons: (a) we no more assume the relaxed-binding property
of the commitment scheme for strong unforgeability, and (b) to reuse the part
of IND-CCA2 security proof of the construction described in section 5 for the
current CP-ABSC construction.

We just give a short description of our strongly unforgeable and IND-
CCA2 secure CP-ABSC construction, since it follows the CP-ABSC in
section 5 and the idea of strongly unforgeable CP-ABS stated above.
Let ΠCommit := (C.Setup,Commit,Open) be a commitment scheme. Let
ΠwABS := (wABS.Setup,wABS.KeyGen,wABS.Sign,wABS.Ver) and ΠABE :=
(ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) be the CP-ABS scheme
and CP-ABE scheme respectively used in section 5. Let ΠOTS :=
(Gen,OTS.Sign,OTS.Ver) be a strong unforgeable OTS scheme. Demonstrated
below are only two routines, Signcrypt and Unsigncrypt as rest are same as in
section 5.

–Signcrypt(PP ,m,SKA, Γs, Γe) : It first runs (c̆, d̆) ←− Commit(m),
(verk, signk) ←− Gen(1κ). Then, it executes in parallel σw :=
(S0, . . . ,S�s) ←− wABS.Sign(PP, c̆||verk||Γe,SKA, Γs) and �0 :=

(C0, . . . ,C�e) ←− ABE.Encrypt(PP , d̆, Γe). Then it computes
he := He(Γe, Γs, c̆, verk, �0, σw), C�e+1 := (uhe

e ve)
se and σo ←−

OTS.Sign(he||C�e+1, signk). Now it sets the signature part of the sign-
cryption σs := (σw, σo, verk) and the ciphertext part of the signcryption
� := (�0, C�e+1). It returns the signcryption Υ := (c̆, σs, �).

–Unsigncrypt(PP, Υ,SKB, Γs, Γe) : It first parses Υ as (c̆, σs, �),
where σs := (σw, σo, verk). Then it runs in parallel flago ←−
OTS.Ver(σw , σo, verk), flagw ←− wABS.Ver(PP, c̆||verk||Γe, σw, Γs) and

d̆ ←− ABE.Decrypt(PP, �,SKB, Γe). If flago = 1 and flagw = 1, it returns

Open(c̆, d̆) else ⊥.

Correctness, Dynamic property and Non-repudiation. These are immediate from
that of section 5.

Theorem 6. The proposed CP-ABSC scheme in section 7 is perfectly private.

Theorem 7. If DSG1, DSG2 and DSG3 assumptions hold, He is a collision re-
sistant hash function, ΠCommit has hiding property and ΠOTS is a strong unforge-
able OTS scheme, then our proposed CP-ABSC scheme in section 7 is adaptively
secure.

Proof. The proof can be obtained by the similar approach as in proof of theorem
4 and the argument used for proving CCA2 security in [9].

Theorem 8. If DSG1, DSG2 and DSG3 assumptions hold for J , ΠOTS is a
strong unforgeable OTS scheme and Hs, He are collision resistant hash func-
tions, then the proposed basic CP-ABSC scheme in section 7 is existential strong
existential unforgeable.
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A Ciphertext-Policy Attribute-Base Signcryption

A.1 Definition

A ciphertext-policy Attribute-Base Signcryption(CP-ABSC) scheme consists of
four PPT algorithms - Setup, KeyGen, Signcrypt and Unsigncrypt.
Setup: Input: a security parameter κ and a universe of attributes U . Output:
public parameters PP and a master secret MSK.
KeyGen: Input: a set of attributes A, PP and MSK. Output: a secret key SKA

corresponding to A.
Signcrypt: Input: PP, a message m, SKA, a predicate Γs (signer policy) with
Γs(A) = True and another predicate Γe (receiver policy). Output: a signcryption
Υ for (Γe, Γs).
Unsigncrypt: Input: PP, a signcryption Υ , SKB , Γs and Γe with Γe(B) = True.
Output: a message m if Υ is valid else ⊥.

http://eprint.iacr.org/
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A.2 Adaptive-Predicates IND-CCA2 Security of CP-ABSC

A CP-ABSC scheme is adaptively secure (adaptive-predicates IND-CCA2 secure)
if no PPT adversary A has non-negligible advantage in this game:
Setup: The challenger B runs (PP ,MSK) ←− Setup(1κ,U) and gives PP to
A .
Query: The adversary A is given access to the oracles KeyGen(PP ,MSK, .),
Signcrypt(PP, ., .) and Unsigncrypt(PP, ., .).
Challenge: A provides two equal length messages m0,m1 and the chal-
lenge access policies (Γ ∗

s , Γ
∗
e ) s.t for each set of attributes A queried to

KeyGen(PP,MSK, .) oracle, Γ ∗
e (A) = False. B picks b

U←− {0, 1}. Then, it
signcrypts the challenge message mb using the challenge policies Γ ∗

s and Γ ∗
e and

gives the challenge signcryption Υb to A .
Query: Again, A is given access to KeyGen(PP,MSK, .), Signcrypt(PP , ., .)
and Unsigncrypt(PP, ., .) oracles but if A is a set of attributes queried
to KeyGen(PP,MSK, .) oracle and Υ is a unsigncryption query to
Unsigncrypt(PP , ., .) oracle, then Γ ∗

e (A) = False and Υ �= Υb.
Guess: A sends a guess b′ to B.
The advantage of A in above is AdvABSC−CCA

A (κ) =
∣∣Pr[b = b′]− 1

2

∣∣ .
A.3 Adaptive-Predicates Unforgeability of CP-ABSC

A CP-ABSC scheme is adaptive-predicates strong existential unforgeable if no
PPT adversary A has non-negligible advantage in this game:
Setup: Same as in A.2.
Query: The adversary A is given access to the oracles KeyGen(PP,MSK, .)
and Signcrypt(PP , ., .).
Forgery: The adversary outputs a signcryption Υ ∗ for (m∗, Γ ∗

s , Γ
∗
e ).

A succeeds in this game if (Υ ∗,m∗, Γ ∗
s , Γ

∗
e ) �= (Υ (i),m(i), Γ

(i)
s , Γ

(i)
e ), where Υ (i)

is the reply by Signcrypt oracle for (m(i), Γ
(i)
s , Γ

(i)
e ), Γ ∗

s does not accept any set
of attributes queried to KeyGen oracle and Unsigncrypt(PP, Υ ∗,SKB, Γ

∗
s , Γ

∗
e ) =

m∗, where Γ ∗
e (B) = True.

The advantage of A in above game is the success probability of A .

B Mechanism for Full Construction

Although the technique is available in [22] but for self-containment, in this sec-
tion we briefly demonstrate it. The mechanism described here is for both CP-
ABS and CP-ABSC supporting MSPs. For full construction, the row labeling
functions of span programs are not assumed to be injective. If we allow an at-
tribute to repeat in the span programs at most M time and the size of the
universe U is n, then the size of new universe U ′ for the full construction will
be nM. Basically in this full construction, for each attribute χ ∈ U , we consider
M copies of χ in U ′. To enumerate each copy, we assign a label say j to the
attribute say χ, i.e., U ′ := {(χ, j)|χ ∈ U , j ∈ [M]}. Similarly, for any access
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policy Γ := (M,ρ) if ρ(i) = χ and the attribute χ appears jth time, then we
label the ith row by (χ, j), i.e., we have a new row labeling function ρ′ defined
by ρ′(i) := (χ, j). Likewise if A is a set of attributes corresponding to U , then
A′ := {(χ, j)|χ ∈ A, j ∈ [M]} is the set of attributes for U ′. Then, we have
that the set of attributes A satisfies the policy (M,ρ) if and only if A′ satisfies
(M,ρ′). Due to this technique, the sizes of public parameters and key increase by
a factor linear to M, but the sizes of signature (resp. signcryption) and the cost
of sign and ver (resp. signcrypt and unsigncrypt) for CP-ABS (resp. CP-ABSC)
remain unchanged.
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Abstract. Cryptographic pseudorandom generators (PRGs) can reduce
the randomness complexity of computationally secure schemes. Nuida
and Hanaoka (IEEE Trans. IT 2013) developed a security proof tech-
nique against computationally unbounded adversaries under the use of
cryptographic PRGs. However, their proof assumed unproven hardness
of the underlying problem for the cryptographic PRG. In the paper, we
realize a fully unconditional security proof, by extending the previous re-
sult to “non-cryptographic” PRGs such as the one by Impagliazzo, Nisan
and Wigderson (STOC 1994) based on graph theory rather than one-way
functions. In fact, our proof technique is effective only for some restricted
class of schemes; then we also propose a “dual-mode” modification of the
PRG to prove computational security even for schemes outside the class,
while keeping the unconditional security for schemes in the class.
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1 Introduction

Cryptographic pseudorandom generators (PRGs) can generate randomness for
computationally secure schemes. On the other hand, when the original scheme
is information-theoretically secure, it was expected that the security is degraded
to computational. Recently, Nuida and Hanaoka [14] developed a security proof
technique under the use of a cryptographic PRG, where the computational power
of adversaries are not assumed to be bounded. However, their proof still assumed
the unproven hardness of an underlying computational problem for the PRG (e.g.,
the hardness of the Decisional Diffie–Hellman (DDH) problem, for the PRG in
[4] used in the numerical example of [14]). The aim of the work is to remove the
latter kind of assumptions, realizing a fully unconditional security proof.

1.1 Our Contributions

In the paper, we remove the unproven assumptions in the previous result and
realize a fully unconditional security, by extending the result in [14] to “non-
cryptographic” PRGs. We use the PRG by Impagliazzo, Nisan and Wigderson
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[7], hereafter called an INW PRG, whose indistinguishability is based on un-
conditionally provable graph-theoretic properties rather than one-way functions
associated to cryptographic PRGs.

In fact, our proof technique (as well as the previous result in [14]) is effec-
tive only for some restricted class of schemes, and no security is guaranteed for
schemes outside the class. To resolve the issue, we also propose a technique of
combining the INW PRG with a cryptographic PRG, in such a way that the
security under the use of the resulting PRG is at least computational even for
schemes outside the class, while the unconditional security is kept for schemes in
the class. We call the resulting PRG a dual-mode PRG. Such a hybrid property is
also potentially useful when the security notion for the original scheme involves
both information-theoretically secure parts and computationally secure parts.

One may feel that, whenever the randomness complexity of an information-
theoretically secure scheme can be reduced by our technique using the INW
PRGs, the randomness complexity could also be reduced by modifying the indi-
vidual scheme directly. We emphasize that, even if it is true, our result provides
a unified way to reduce the randomness complexity, hence is still meaningful.

1.2 Related Work

Dubrov and Ishai (Sect. 3.2.1 of [3]) also mentioned that the randomness com-
plexity of some cryptographic processes can be unconditionally decreased by
using PRGs proposed in the same paper. However, the possible applications of
their result are restricted in comparison to our result; indeed, their result only
corresponds to Theorem 1 in the paper, but not to more general Theorem 2.

Our construction of dual-mode PRGs has in fact a flavor similar to several
“indistinguishability amplification” results such as Yao’s XOR lemma (e.g., [10]).
However, in contrast to those quantitative security improvements, our dual-mode
PRGs focus on qualitative properties (i.e., hybrid security property).

1.3 Organization of the Paper

In Sect. 2, we summarize the proof technique of the previous work [14] and its
problem, and then propose a solution by using the INW PRG. In Sect. 3, we
summarize the construction and properties of the INW PRGs. In Sect. 4, we
give a numerical example of our result. In Sect. 5, we propose the dual-mode
PRGs. Finally, in Sect. 6, we discuss other potential applications of our proposed
techniques. See the full version of the paper for some omitted details.

1.4 Notations and Terminology

A directed edge of an (undirected) graph is an edge, with distinction of the two
end vertices as the source and the destination. We say that a graph is δ-regular,
if each vertex is adjacent to precisely δ edges. For a binary rooted tree T , let
r(T ), V (T ) and L(T ) denote the root of T , the set of vertices of T , and the set
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of leaves of T ordered from left to right, respectively. For each v ∈ V (T ), let
v↑, v← and v→ denote its parent vertex, left child vertex and right child vertex
(if exist), respectively. For two random variables R1,R2, let Δ(R1,R2) denote
their statistical distance; Δ(R1,R2) := (1/2)

∑
x |Pr[x ← R1] − Pr[x ← R2]|.

For any map F , let [F ] denote an algorithm to compute the value of F .

2 A Framework for Our Unconditional Security Proof

Here we explain the previous proof technique in [14] on which our result is based.
We consider the following abstract security game for a cryptographic scheme:

1. The challenger generates an object α by using an output of a random source
r ← R. We denote the function to compute α by F1; i.e., F1(r) = α.

2. The adversary obtains some information β ∈ B on α and give it to the attack
algorithm A. We denote the function to compute β by F2; i.e., F2(α) = β.
Then the adversary sends the output γ ∈ C of A(β) to the challenger.

3. The challenger decides, from γ and α, whether the adversary wins or not.
We denote the function to make the decision by F3; i.e., F3(α, γ) = 1 if the
adversary wins, and F3(α, γ) = 0 otherwise.

The success probability of the adversary’s attack (i.e., the winning probability
of the adversary in the game above) relative to random source R is defined by

SuccA,R := Pr
r←R

[α = F1(r); β = F2(α); γ ← A(β); δ = F3(α, γ) : δ = 1]

= Pr
r←R

[β = F2(F1(r)); γ ← A(β); δ = F3(F1(r), γ) : δ = 1] .

Let RU denote the uniformly random source, and let RP denote the output
distribution of a given PRG. We suppose that the scheme is secure if RU is
used, i.e., SuccA,RU is sufficiently small for any possible attack algorithm A.
Our goal here is to prove that the scheme is still secure if the PRG RP is
used; i.e., SuccA,RP is sufficiently small. For the purpose, it suffices to show that
|SuccA,RU − SuccA,RP | is sufficiently small for any possible A. For each β0 ∈ B
and γ0 ∈ C, let Fβ0,γ0 denote the map with input r that outputs 1 if F2(F1(r)) =
β0 and F3(F1(r), γ0) = 1, and outputs 0 otherwise. Then the argument in [14]
implies that SuccA,R =

∑
β0∈B, γ0∈C Pr[γ0 ← A(β0)] Pr[Fβ0,γ0(R) = 1] and

|SuccA,RU − SuccA,RP |

≤
∑

β0∈B, γ0∈C

Pr[γ0 ← A(β0)]
∣∣∣Pr[Fβ0,γ0(RU ) = 1]− Pr[Fβ0,γ0(RP ) = 1]

∣∣∣ .
Now we introduce the following two conditions, where we fix values T and ε:

Condition 1. The PRG is indistinguishable in the following sense; if the com-
plexity of an algorithm D with 1-bit output is bounded by T , then we have

Δ(D(RU ),D(RP )) =
∣∣∣Pr[D(RU ) = 1]− Pr[D(RP ) = 1]

∣∣∣ ≤ ε .
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Condition 2. The map Fβ0,γ0 for any β0 ∈ B and γ0 ∈ C above satisfies that
the complexity of the algorithm [Fβ0,γ0 ] is bounded by T .

Note that these two conditions are independent of the choice of the adversary’s
attack algorithm A; e.g., A may have unbounded complexity. From now, suppose
that the two conditions above are satisfied. Then we have the following bound:

|SuccA,RU − SuccA,RP | ≤
∑

β0∈B, γ0∈C

Pr[γ0 ← A(β0)] · ε

= ε
∑
β0∈B

∑
γ0∈C

Pr[γ0 ← A(β0)] = ε
∑
β0∈B

1 = |B| · ε ,
(1)

which is independent of the attack algorithm A, and is effective if |B| · ε is
sufficiently small (note that |B| depends heavily on the individual scheme).

2.1 Our First Contribution: Using “Non-Cryptographic” PRGs

We point out that, the argument in [14] supposed to use cryptographic PRGs
against distinguishers with bounded time complexity; consequently, Condition
1 requires some unproven assumptions (cf., P=NP? Problem), though (1) itself
was derived without any assumptions on the complexity of the attack algorithm
A. In other words, the security proof in [14] will be ineffective if an efficient
algorithm to distinguish the cryptographic PRG from random is found.

To resolve the issue, we use “non-cryptographic” PRGs (less frequently used in
cryptography), especially the one by Impagliazzo, Nisan and Wigderson [7] based
on expander graphs, hereafter called an INW PRG. The underlying complexity
measure is close to the space complexity rather than the time complexity, and
the hardness to distinguish the PRG from random is unconditionally provable by
graph-theoretic facts. Now Condition 1 becomes provable as well, therefore our
security proof under the use of the PRG is also made unconditional.

3 Impagliazzo–Nisan–Wigderson PRG

In the section, we summarize the construction and properties of the INW PRGs
denoted by GINW. Let �INW denote its seed length. The output set of GINW

is R =
∏

v∈L(T )Rv where Rv is some set indexed by the leaves v of a binary

rooted tree T . For each v ∈ V (T ) \ L(T ), let Γv be a δv-regular graph with νv
vertices, and define Rv to be the set of the directed edges of Γv (δvνv edges in
total). See Sect. 1.4 for some notations. We say that a map f : X → Y is most
balanced, if |f−1(y1)| − |f−1(y2)| ∈ {−1, 0, 1} for any y1, y2 ∈ Y . Then for each
v ∈ V (T ) \ L(T ), we define a map GINW

v : Rv → Rv← × Rv→ in the following
manner. Given a directed edge xv ∈ Rv of Γv, let yv← and yv→ denote its source
and destination vertices, respectively. Then we map yv← and yv→ to an element
xv← ∈ Rv← and an element xv→ ∈ Rv→ by fixed, most balanced maps V (Γv) →
Rv← and V (Γv) → Rv→ , respectively. Now we define GINW

v (xv) := (xv← , xv→).
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Then GINW is constructed as follows. Given a seed s ∈ {0, 1}�INW , first we map
s to an element xr(T ) ∈ Rr(T ) by a fixed, most balanced map {0, 1}�INW →
Rr(T ). Secondly, we determine the elements xv ∈ Rv for v ∈ V (T ) \ {r(T )} by
successively applying the maps GINW

u for u ∈ V (T ) \L(T ) in an ascending order
with respect to the depth of u. Finally, we define GINW(s) := (xv)v∈L(T ) ∈ R.

To evaluate the indistinguishability of the INW PRG quantitatively, here we
fix a concrete computational model associated to the tree T as follows:

– In the model, an algorithm is equipped with a common memory M which
can take one of |M | possible states, as well as a processor associated to each
leaf of T (identified with the leaf itself) that has unbounded computational
power and unbounded local memory. Given an input r = (rv)v∈L(T ) for the
algorithm, the component rv is distributed to v ∈ L(T ) at the beginning.

– The execution of the algorithm consists of μ rounds, where μ is a parameter.
For each round, the first (leftmost) leaf is activated first, and each leaf is
activated after the execution of the previous leaf ends. Each leaf first reads
the current state of the common memory M , decides the new memory state
by using the current state of M and the local memory state of the leaf, and
updates the state ofM accordingly (the local memory state is also updated).

– Finally, after the final round ends, the output of the algorithm is decided
according to the final state of the common memory M .

The adjacency matrix of graph Γv is a symmetric {0, 1}-matrix of size νv,
where the (i, j)-entry is 1 if and only if the i-th and the j-th vertices of Γv

are adjacent. Since Γv is a δv-regular graph, if we order the eigenvalues of the
adjacency matrix as λ1 ≥ λ2 ≥ · · · ≥ λνv , then λ1 = δνv . Now we define
λ(Γv) := max{|λ2|, |λνv |}. On the other hand, it is known that, for any integers
n,m ≥ 1, the statistical distance between the uniform random variable on [m] :=
{1, . . . ,m} and the output of any most balanced map [n] → [m] with uniformly
random input is ρ(n,m) := (n mod m) · (m− (n mod m))/(nm), where (n mod
m) is the remainder of n modulo m (see Lemma VI.1 of [14]). Now we have
the following results (whose proofs are similar to the original paper [7] and are
omitted due to the page limitation; see the full version for details):

Theorem 1. Let RU denote the uniform distribution on R, and let RP denote
the output distribution of GINW with uniformly random seed s ∈ {0, 1}�INW. Then
for any algorithm D described in the computational model above, we have

Δ(D(RU ),D(RP )) ≤ |M |μ
∑

v∈V (T )\L(T )

λ(Γv)

2δv
+Δdist ,

Δdist := ρ(2�INW , νr(T )δr(T )) +
∑

v∈V (T )\L(T )
v �=r(T )

ρ(νv↑ , νvδv) +
∑

v∈L(T )

ρ(νv↑ , |Rv|) .

Theorem 2. Let RU and RP be as in Theorem 1. In the situation of Sect. 2,
suppose that the algorithm [Fβ0,γ0 ] can be described in the computational model
above with common memories of size bounded by |M | and at most μ rounds
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Table 1. Comparison of seed lengths (here “Our result” shows the seed lengths by our
result; “Plain” shows the originally used random bits; “[14]” shows the seed lengths in
the previous result [14]; and the approximate values are written in scientific E notation)

N 103 104 105 106 107 108 109

m 614 702 789 877 964 1052 1139

Plain 9.21E6 1.05E8 1.18E9 1.31E10 1.44E11 1.57E12 1.70E13

[14] 6.87E6 9.72E6 1.33E7 1.75E7 2.25E7 2.83E7 3.51E7

Our result 3.09E5 4.90E5 6.65E5 8.67E5 1.14E6 1.40E6 1.68E6

for any β0 ∈ B and γ0 ∈ C. Then, without any assumption on hardness of
computational problems nor on the complexity of the algorithm A, we have the
following, where Δdist is defined as in Theorem 1:

|SuccA,RU − SuccA,RP | ≤ |B| ·

⎛⎝|M |μ
∑

v∈V (T )\L(T )

λ(Γv)

2δv
+Δdist

⎞⎠
We note that the bounds in Theorems 1 and 2 become better when λ(Γv)

becomes smaller. A graph Γv is called a Ramanujan graph, if λ(Γv) ≤ 2
√
δv − 1;

this is known to almost attain the theoretical lower bound of λ(Γv) (see e.g.,
Sect. 5.3 of [6]). For example, we can use Ramanujan graphs given by a part of
the result by Morgenstern [12] (see the full version of the paper for details):

Proposition 1 ([12]). For any positive integers L,D, there is an explicit con-
struction of a (2D + 1)-regular Ramanujan graph with 26DL − 22DL vertices.

4 Example: Collusion-Secure Codes

In the section, we give a numerical example of our technique applied to a
collusion-secure code in [13] (with the number c = 3 of corrupted users), which is
the same as the example in [14] and has information-theoretic security. Roughly
speaking, in the abstract security game in Sect. 2, α is the collection of m-bit
words, one per each of the N users; β is the collection of the three words for
the corrupted users; γ is a word of length m on an expanded alphabet {0, 1, ?},
where ‘?’ means a bit erasure; and F3(α, γ) = 1 if and only if the “most suspi-
cious” user determined from α and γ is not a corrupted user. See the numerical
example in [14] for details. Then an analysis shows that, to bound the difference
|SuccA,RU − SuccA,RP | by a value εdiff , the seed length for the INW PRG be-
comes �INW ∼ 12 log2N(log2N + 4m+ log2(1/εdiff)) when N → ∞ (see the full
version of the paper), while �org := 15mN+m random bits are originally used in
total. On the other hand, for the choices of εdiff := 10−6 and other parameters as
the numerical example in [14], the seed lengths �INW are calculated as in Table
1. This table shows that our seed lengths are much shorter than the originally
required random bits and also significantly smaller than those in [14].
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5 Our Second Contribution: Dual-Mode PRGs

We note that, in the situation of Sect. 2, no security is guaranteed if the set B
(hence the right-hand side of (1)) is too large (though (1) itself holds uncondi-
tionally). To resolve the issue, in the section we propose a technique to modify
the INW PRG in such a way that, by using the resulting PRG, the information-
theoretic security is kept if B is sufficiently small, while at least computational
security is guaranteed even if B is too large. For two random variables R1,R2

on the output set R of the INW PRG GINW, let R1 ∗ R2 denote the random
variable on R computing the component-wise group operation ∗ for values of R1

and R2. We call RP ∗ RC the dual-mode PRG, where RC denotes the output
distribution of a cryptographic (computationally secure) PRG Gcomp. Then we
have the following result (deduced from the fact that both RU ∗RC and RP ∗RU

are identical to RU ; see the full version of the paper for details):

Theorem 3. Under the same assumptions as Theorem 2, we have:

– The value |SuccA,RU − SuccA,RP ∗RC | satisfies the same inequality as the
value |SuccA,RU − SuccA,RP | in Theorem 2.

– Suppose that the maps F1, F2 and F3 in Sect. 2, GINW and the operator ∗
in R are all polynomial-time computable. Then |SuccA,RU − SuccA,RP ∗RC |
is negligible for any probabilistic polynomial-time algorithm A.

As an example, we apply the dual-mode PRG to Shamir’s k-out-of-n secret
sharing scheme [17] over the field Fq. Let k

′, 1 ≤ k′ < k, denote the number
of corrupted users. Then an analysis (see the full version of the paper) shows
that, to bound the bias of the k′ corrupted shares from uniform by εdiff = k−ω(1)

(negligible in k), the seed length for the part GINW of the dual-mode PRG is

�INW ∼ 12 log2 k(k
′ log2 q + ω(1) log2 k) (when k → ∞) ,

having lower order than the number �org ∼ k log2 q of the originally used ran-
dom bits if k′ = o(k/ log2 k). Now the corrupted shares are statistically close to
uniform (information-theoretic security) when at most k′ users are corrupted,
while these are computationally indistinguishable from uniform (at least compu-
tational security) even if more than k′ (and at most k − 1) users are corrupted.

6 Other Potential Applications

Finally, in this section, we discuss a possible application of our result to lossy en-
cryption [1,9,15] with small randomness space. In [5], Hemenway and Ostrovsky
showed that any lossy encryption scheme for which the randomness space for
encryption is smaller than the plaintext space can be converted into a (slightly)
lossy trapdoor function (e.g., [16]); and the latter is further converted (via other
results in [8,11]) into various cryptographic primitives such as CCA-secure en-
cryption and adaptive trapdoor functions. However, construction of such schemes
with small randomness spaces is difficult; the only known construction so far (to
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the author’s best knowledge) is the one based on the Damg̊ard–Jurik cryptosys-
tem [2]. Indeed, since the ciphertexts under a lossy key should be statistically
indistinguishable, a naive strategy of reducing the randomness space by crypto-
graphic PRGs is not effective. The author hopes that our unconditional proof
technique using “non-cryptographic” PRGs is effective to resolve the problem;
a detailed study is a future research topic.
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Abstract. In FSE’10, Nandi proved a sufficient condition of pseudo ran-
dom function (PRF) for affine domain extensions (ADE), a wide class
of blockcipher based domain extensions. This sufficient condition is sat-
isfied by all known ADE, however, it is not a characterization of PRF.
In this paper we completely characterize the ADE and show that weaker
security notions message authentication code (MAC) and weakly collision
resistant (WCR) are indeed equivalent to PRF.

Keywords: Affine Domain Extension, Blockcipher, MAC, PRF, WCR.

1 Introduction

During a message exchange protocol in the symmetric key setting, sender sends
a message M to the receiver along with a tag T = GK(M) where GK denotes
a message authentication code (MAC) with a shared key K. The pair (M,T )
is called a valid pair. This ensures the “integrity” of the message and the “au-
thenticity” of the sender by verifying validness of the received pair. G is called
(t, q, σ, ε)-mac if for any (t, q, σ)-forgery adversary F , i.e. it makes at most q
queries having at most σ blocks (inputs of the underlying blockcipher) with
(time) complexity at most t, has mac-advantage

Advmac
G (F) := Prrand(F),K [(M,T ) ← FGK , (M,T ) is a fresh valid pair]

at most ε. Here, rand(A) denotes the random coin of an algorithm A. Weak
Collision Resistant (WCR) [1] is a variant of collision security property of GK(·).
It is called (t, q, σ, ε)-wcr if any (t, q, σ)-collision adversary C has wcr-advantage

Advwcr
G (C) := Prrand(C),K [CGK = (M,M ′), GK(M) = GK(M ′), M �= M ′]

at most ε. A Pseudo Random Function (PRF) [9] over M is a keyed func-
tion GK over M, whose output distribution is “indistinguishable” from that of
random function R (output is uniformly distributed for every fresh queries) for
any computational adversary. More formally, it is called (t, q, σ, ε)-pseudorandom
function if for every (t, q, σ)-distinguisher D, the prf-advantage

Advprf
G (D) := Prrand(D),R[DR = 1]−Prrand(D),K∈R{0,1}k [DGK = 1]

is at most ε. One can similarly define prp-advantageAdvprp
G (D) when G is distin-

guished from a random permutation Π . Without loss of generality, throughout
the paper, we simplify distinguisher which makes exactly q distinct queries.

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 300–308, 2014.
c© Springer International Publishing Switzerland 2014
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1.1 (Affine) Domain Extension

A domain extension based on a keyed blockcipher EK (a keyed family of per-
mutation usually modeled to be PRP [13] or PRF) invokes EK several times
sequentially. In case of an affine domain extension (or ADE) [16], the inputs
(called intermediate inputs) to EK are determined by some affine functions of
the previous outputs (called intermediate outputs) of EK . The output of the
last invocation of the blockcipher is the final output. We denote a vector a by
(a1, . . . , at). Let a

tr denote its transpose (column) vector and a := (1, a1, . . . , at).
A matrix Cl×l = ((ci,j)) over F2n (or {0, 1}n is said to be lower-triangular if
ci,j = 0 for all 1 ≤ i ≤ j ≤ l.

Definition 1. A domain extension G is called Affine Domain Extension (ADE)
over M if for each message M ∈ M, we associate a lower-triangular matrix
Cl×l and ml×1, such that GK(M) = yl where yi’s are defined recursively as (1)
(x1, . . . , xl)

tr = A · (1 y1 . . . yl)
tr, A = (m C) and (2) EK(xi) = yi, 1 ≤ i ≤ l.

The matrix A is called coefficient matrix of M and the integer l := l(M) is
called the length of M . Similarly, we define Gπ(M) where π is a permutation.

A class of popular constructions like CBC-MAC [6], GCBC∗ [18], OMAC [10],
PMAC [8] etc. are some of such examples. For example, in case of CBC-MAC
applied to a three block messageM = (m1,m2,m3) the corresponding coefficient
matrix is (M trC) where c2,1 = c3,2 = 1 and all other entries are zero. The

original PRF bounds for the above were about σ2

2n or l2·Q2

2n [4,5,11,12,19,21] and
later [3,14,15,16,17,21,22] have been improved where � and σ are the longest and
total number of blocks present in all queries.

1.2 Our Contribution

We know that a PRF implies a message authentication code and weakly collision
resistant. However, the converse is not true in general. In this paper, we show
thatmessage authentication code (MAC) and weakly collision resistant
(WCR) are indeed equivalent to PRF for ADE based on blockcipher
modeled to be a PRP. Thus, we have a complete characterization of ADE.
The previously known sufficient condition [16] is not necessary.

Theorem [Main theorem of the paper]. Let G be a ADE based on a random
permutation Π over {0, 1}n. Then for any (t, q, σ)-distinguisher D there is a
(t′, q, σ)-forgery and (t′, q, σ)-collision adversaries F and C respectively such that

Advprf
GΠ (D) ≤ 4σ2

2n + 2min{Advwcr
GΠ (C), Advmac

GΠ (F)} where t′ ≈ t.

2 Estimation of Probability of a View

Suppose we have q messages (queried by an adversary), Mi ∈ M of length li in
n-bit blocks, 1 ≤ i ≤ q and their corresponding co-efficient matrix is given by Ai

= (mi Ci). Then the joint co-efficient matrix A := AM1,...Mq of the q messages
is given by the following partition matrix.
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⎛⎜⎜⎜⎜⎝
m1 C1 0 · · · 0
m2 0 C2 · · · 0
· · · · ·
· · · · ·
mq 0 0 · · · Cq

⎞⎟⎟⎟⎟⎠
t×(t+1)

.

Here t = tq and ti =
∑i

j=1 lj . To each π we asso-
ciate an intermediate input and output vectors
are xπ := (x1, . . . , xt) and yπ := (y1, . . . , yt) re-
spectively, where (I) A·y = x and (II) π(xi) = yi,
i ∈ [1..t] := {1, . . . , t}. Let Pn[y] denote the set
of all permutations π with y = yπ. So

Pn[y] = {π : π(xi) = yi, 1 ≤ i ≤ t, x = A · y}, |Pn[y]| = (2n − s)! (1)

where s denotes the number of distinct values of the output vector y. Let us
define collision relation coll(y) :=∼ over [1..t] of a vector y as i ∼ j if yi =
yj . It is an equivalence relation capturing the collisions of the elements of the
vector y. We define collπ = coll(yπ). We identify the tuples of distinct elements
w = (w1, . . . , wt) as set {w1, . . . , wt}. From the context it must be clear. Given
a subset T = {t1, . . . , tq} ⊆ [1..t] we define w[T ] by the sub-tuple (wt1 , . . . , wtq ).
For a matrix A, A[i, ·] and A[·, j] denote the ith row and jth column respectively.
Similarly we define the sub-matrices A[1..i, ·] or A[·, 1..j] etc.

Let V be the set of all tuples w = (w1, . . . , wq). The view of DO, denoted
view(DO), by the tuple (w1, . . . , wq) ∈ V where wi denotes the response of the
ith query, 1 ≤ i ≤ q. We say that a view w is realizable if PrO[view(D

O) = w] is
positive. The set of all realizable views is denoted by VO. We denote the truncated
view view(DO)[i] by the i-tuple (w1, . . . , wi) where view(DO) = (w1, . . . , wq),
i ≤ q.

Pr[view(DO)[i] = w] =
∑

v∈V:v[1..i]=w

Pr[view(DO) = v].

Note that, for v ∈ V , we have, PrR[view(DR)[i] = v[1..i]] = 2−ni. In this section
we provide an estimate of probability of realizing views where the oracle is an
affine domain extension G based on a random permutation Π on {0, 1}n.

Lemma 1. Let w = (w1, . . . , wq) = v[1..q] for some v ∈ V. Then either w is
not realizable (i.e. the probability of realizing w is zero) or

PrΠ [view(DGΠ

)[q] = w] =
∑
s≥1

Nw,s

P (2n, s)
(2)

where P (2n, s) = 2n(2n − 1) . . . (2n − s + 1) and Nw,s denotes the number of
output vectors y with s many distinct elements and yti = wi, 1 ≤ i ≤ q.

Due to page limit, we skip the proof of the above and also some of the re-
sults mentioned later. The proof can be found in [7]. To use the above lemma
we need to provide an estimate of Nv,s which can be done by identifying a
special equivalence relation ∼∗, called forced relation, such that there are suf-
ficient number of output vectors y inducing the forced collision relation, i.e.,
coll(y) =∼∗. Since for all these output vectors the s value is same with the num-
ber of equivalence classes of ∼∗, we will immediately have a lower bound of the
probability of the view. More precisely, if we can show the following: there is a
relation, called forced relation, with s + q many classes such that the number
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of output vectors y with yti = wi for all i is at least 2ns(1 − ε), then we have

PrΠ [view(DGΠ

)[q] = w] =
∑

s≥1
Nw,s

P (2n,s) ≥
2ns(1−ε)
P (2n,s+q) ≥ 1−ε

2nq .

2.1 Forced Relation

Let Vdist = {(w1, . . . , wq) ∈ V : wi’s are distinct}, Vcoll = V \ Vdist. We study
the following problem motivated from the probability computation of realizing
a view w = (w1, . . . , wq) ∈ Vdist as discussed above. Let A = (m C) be a
coefficient matrix with a strictly lower triangular matrix Ct×t and a vector mt×1

whose elements are from F2n . Let ∼ be an equivalence relation over [t].

Problem 1. Reduce the affine function A : y �→ A(y) := C · y +m, given that
(i) coll(y) =∼ and
(ii) y[T ] = w where T = (t1, . . . , tq), ti’s are distinct element from [t].

There may be different ways to reduce a system of affine equations. We reduce
the affine function by incorporating the given constraints as much as possible.
The equivalence relation is considered not to have any collision on T , i.e. for all
i �= j ∈ T , i � j, as we fix distinct final outputs wi’s. Let the leader set (consists
of one element from each equivalence class) of ∼ be L � T . We choose elements
of L := {i1, . . . , is} to be the minimum elements of the equivalence classes.

C · y +m = m+ (C[·, 1] · y1 + . . .+ C[·, t]yt)
= (m+

∑
ti∈Lf

wi

∑
j∼ti

C[·, j]) +
∑
i∈L

(
∑
j∼i

C[·, j])yi

= Ard[., 0] +
∑
i∈L

Ard[., i]yi

where rd = (∼, T, w) to denote that we reduce the matrix A using the triple rd.
We can complete the matrix Ard

t×(t+1) by defining Ard[., i] = 0 for all i �∈ {0}∪L.
Thus, we have

A(y) = x, coll(y) =∼, y[T ] = w

⇔ Ard[., 0] +
∑
ij∈L

Ard[., ij ]zj = x, zj ’s are distinct and different from w′
is

where zj = yij , 1 ≤ j ≤ s. In fact, given a solution z, we construct an unique
solution y as y[L] = z, y[T ] = w and the other yi’s are defined through the
relation ∼, i.e. yi = wj if i ∼ tj or yi = zj if i ∼ ij. This reduction helps to solve
y for the following equations:

coll(y) = coll(m+ C · y) = ∼, y[T ] = w. (3)

If we denote y[L] = z then the above equation is equivalently written as (i)
coll(Ard(z)) =∼, (ii) zi’s are distinct and different from wj ’s. Note that ∼ is
fixed for which no collision on T . To have a solution we have the following
immediate necessary condition:
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Ard[i, .] = Ard[j, .] ⇒ i ∼ j.

In fact, there are other different necessary conditions. However, we consider a
special equivalence relation which would satisfy all necessary conditions and also
gives several solutions of z and hence y.

Definition 2. We say that an equivalence relation ∼ over [t] is forced relation
w.r.t A, T and w if

Ard[i, .] = Ard[j, .] ⇔ i ∼ j, where rd = (∼, T, w). (4)

Note that there may not exist forced relation with no collision in T . Clearly, if ∼
is a forced relation with no collision in T then we have (i) (Ard[i, .]−Ard[j, .])z �= 0
for all i � j and (ii) zi’s are distinct and different from wj ’s. The number of such
z, equivalently y, is at least

2ns × (1−
(
s
2

)
+
(
t
2

)
+ st

2n
).

This can be easily seen as total possible choices without any constraint is 2ns

and number of z which does not satisfy a given constraint is 2n(s−1). The number
of constraint is at most

(
s
2

)
+
(
t
2

)
+ st which includes the distinct choices of z,

the number of pairs (i, j) for which i � j and different from wi’s. Now we prove
the existence of forced collision which may or may not have collisions in T . In
fact, we prove a more general statement which says the existence of extending a
given relation to a forced relation.

Lemma 2 (Extension Lemma). Given any relation ∼ satisfying the property
i ∼ j ⇒ Ard[i, ·] = Ard[j, ·] where rd = (∼, T, w) then there is a forced relation
∼′, denoted ExtA(∼), containing ∼.

Moreover, Ext can be defined in a way such that whenever ∼ is a forced colli-
sion w.r.t. A[1..t′, ·], T and w for some t′ ≤ tq then ∼′=∼ on [1..t′].

Corollary 1. If we choose ∼ to be an empty relation then from the above lemma:
there is always a forced collision relation.

3 Reducing Distinguishing to Forgery

A distinguisher D, distinguishing an ADE GΠ based on a random permutation

Π from a random function R, a forgery FGΠ

is defined as follows: D initially
keeps an equivalence relation ∼0, an empty coefficient matrix A0 and an empty
forbidden set F0. In addition with these, it also stores a vector w and t, initialized
to empty. Now, it runs D and responses as described below.

§On ith query Mi from D: It updates (i) the coefficient matrix Ai and ti from
Mi, Ai−1 and t[1..i− 1], (ii) the equivalence relation ∼i by running ExtAi(∼i−1)
for w[1..i− 1] = (w1, . . . , wi−1) and t[1..i− 1] = (t1, . . . , ti−1) and (iii) computes
the forbidden set

Fi = {Ai[a, 0]−Ai[b, 0]

Ai[a, k]−Ai[b, k]
: ∃k, a, b < ti, Ai[a, k] �= Ai[b, k], Ai[a, z] = Ai[b, z]∀z �= k}.
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1. If ti ∼i tj for some j < i then forge event sets true and forge by the pair
(Mi, wj) and stop.1

2. Otherwise, it forwards the query and obtains a response wi. If wi ∈ Fi then
abort (this can happen with low probability as the size of the forbidden
set would be bounded). The reason of considering forbidden set is to have
consistence update of forced collision pattern.

§ Finalization: If it neither aborts nor forges then it aborts and we would be
able to prove that, in this case, D can not distinguish GΠ from random function.
The more details of the above description is given below.

3.1 Computation of of Forging Probability of F

Input: A, T , W , ∼
Extension Algorithm ExtA(∼)

1 let T be the set of final output indexs, L is the set of smallest indexes
corresponding to an equivalence class which are not ∼-related to any
element of T .

2 If k ∈ T (Case : 1)
3 Add A∼[∗, j].wk to A∼[∗, 0]
4 Make A∼[∗, j] = 0
5 Add the pair (tk, j) to ∼
6 If k ∈ L (Case : 2)
7 Add A∼[∗, j] to A∼[∗, k]
8 make A∼[∗, j] = 0
9 Add the pair (k, j) to ∼

Algorithm 1: Extension Algorithm

Lemma 3. If ∼i is force collision relation with respect to A, w = (w1, . . . , wi−1)
and T = (t1, . . . , ti−1). Then if wi /∈ Fi, then force collision relation doesn’t
change.

We categorize the possible views of D into the following four classes - (i) collision
view Vcoll (collisions in wi values), (ii) random view Vrand = {(w1, w2, · · · , wq) :
∀i, j �= i, wi /∈ Fi and ti �

∗ tj } (iii) forbidden view Vforb = {(w1, w2, · · · , wi)
: wi ∈ Fi and ∀j ≤ i, k < j, tk �∗ tj } and (iv) forge view Vforge = {(w1, w2,
· · · , wi) : ∀k < i, wk /∈ Fk and ∃j < i, ti ∼∗ tj }. It is easy to see that, F forges

whenever the view of DGΠ

is a forge view and the probability that a random
view is forbidden has low probability. We skip the proofs as these are more or
less straightforward.

Lemma 4. Pr[view(DGΠ

) sets forge true] = Pr[F forges] ≤ Pr[C wins WCR].

Lemma 5. Pr[view(DR) ∈ Vforb] ≤ ε1 where ε1 =
(t2)
2n

1 Note that when we reduce for WCR game we can have the collision for this event as
GΠ(Mi) = GΠ(Mj).
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Theorem 1 (Main theorem of the paper). Let G be a ADE based on a
random permutation Π. Then for any distinguisher D there is a forgery and
collision adversaries F and C respectively such that

Advprf
G (D) ≤ 4σ2

2n
+ 2 · μ

where μ = min{Advwcr
G (C), Advmac

G (F)}.

Proof. Note that t ≤ σ the maximum number of blocks in all queries. Recall that
we have four types of disjoint views Vcoll, Vforb,Vforge and Vrand. Since for all
random views v ∈ Vrand, we have Pr[view(DG) = v] ≥ (1− ε)×Pr[view(DR) = v]
where ε ≤ 2σ2/2n (as shown before). Using the idea of coefficient H-technique we

have Advprf
G (D) ≤ ε+Pr[view(DR) ∈ Vforb ∪Vcoll] +Pr[view(DR) ∈ Vforge]. Now

from counting of Vcoll and lemma 5, we know that Pr[view(DR) ∈ Vforb∪Vcoll] ≤
(q2)+(

σ
2)

2n . Now we need to bound Pr[view(DR) ∈ Vforge]. Since the oracle of the
distinguisher is random function, not the ADE, we use the following relationship
for all forge views v = (w1, . . . , wi) (note that the first (i − 1)-tuple determines
the forge event and wi can be chosen freely) :

Pr[view(DG)[i− 1] = v[1..i− 1]] ≥ (1− ε)× Pr[view(DR)[i] = v[1..i− 1]].

Since the view (w1, . . . , wi−1) is actually a random view (as both forge and
forbidden did not occur before) we have the above inequality. So combining this,
we have

Advprf
G (D) ≤ 2σ2

2n
+

2σ2

2n
+

1

1− 2σ2

2n

× PrΠ [view(DG) ∈ Vforge] ≤
4σ2

2n
+ 2 ·Advmac

G (F)

Since we can assume that 4σ2 $ 2n, this proves our main theorem. Similarly
we have the result for weak collision resistant. ��

4 Conclusion and Acknowledgement
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collision resistant (WCR) are indeed equivalent to PRF for all PRP based Affine
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Abstract. Fail-stop signature (FSS) is information theoretically secure
digital signature in the sense that even if a signature is forged, the
signer can prove the forgery with overwhelming probability. There are
many known constructions of FSS schemes based on various assump-
tions. Among them, factoring-based schemes are important due to their
high reliability. However, known factoring-based FSS schemes generally
suffer from their large signature sizes, which are larger than |N |, where
|N | is the length of an underlying composite number.

In this paper, we propose a new factoring-based FSS scheme. For this
purpose, we propose a variant of the generic construction of FSS schemes
based on a bundling homomorphism. Specifically, we introduce a notion
of a collision resistant group generator, which can be seen as a variant of
a bundling homomorphism, and propose a generic construction of FSS
schemes based on it. Then we propose a construction of a collision resis-
tant group generator based on the factoring assumption. This yields the
first factoring-based FSS scheme whose signature size is smaller than |N |.

1 Introduction

1.1 Background

Digital signatures are analogues of handwritten signatures in the digital world
that ensure the validity of digital documents. Many researchers have attempted
to construct secure and efficient digital signature schemes. One main approach to
ensure security of digital signature schemes is to reduce them to computationally
difficult problems. However, such computational security becomes weaker as time
goes on due to developments of algorithms and hardware. On the other hand,
there exist documents for which we require digital signatures with strong and
long-term security such as official or financial documents.
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Fail-stop signatures (FSS) [13] are proposed to ensure such strong and long-
term security. An FSS scheme satisfies not only the computational unforgeability
as an ordinary digital signature scheme but also information theoretical security
in the following sense: even if a signature is forged, the signer can prove the
forgery with overwhelming probability without assuming the adversary’s compu-
tational power.

Many FSS schemes have been constructed based on various assumptions such
as the discrete logarithm assumption [12], the RSA assumption [9] and the fac-
toring assumption [13,7,4]. Among them, factoring-based schemes are important
due to their high reliability. However, though many factoring-based FSS schemes
have been proposed thus far, they are not very efficient. Specifically, their signa-
ture sizes are larger than |N |, where |N | is the length of an underlying composite
number. This is because they use an element of Z∗

N as a component of a signa-
ture, and |N |-bit string is needed to represent an element of Z∗

N . Therefore, we
cannot construct an FSS scheme whose signature size is smaller than |N | as long
as we use an element of Z∗

N as a component of a signature.

1.2 Our Contribution

In this paper, we propose the first FSS scheme which satisfies the following two
properties simultaneously:

1. A signature size smaller than |N |,
2. Security reducible to the factoring assumption.

Technical Overview. As mentioned above, it is impossible to construct an FSS
scheme whose signature size is smaller than |N | as long as we use an element of
Z∗
N as a component of a signature. To overcome this barrier, we use an element

of Z as a signature instead of an element of Z∗
N . However, this idea does not

work in the existing framework to construct FSS schemes based on a bundling
homomorphism [5]. This is because this framework requires a signature to be an
element of a finite group due to the domain of bundling homomorphism being a
finite group. Then we introduce a new primitive that we call a collision resistant
group generator, which can be seen as a variant of a bundling homomorphism
where the domain is Z. We propose a generic construction of FSS schemes based
on it as a variant of the existing framework. Finally, we construct a collision
resistant group generator based on the factoring assumption with respect to a
special type of RSA moduli, called semi-smooth RSA moduli [3]. As a result,
we obtain an FSS scheme based on the factoring assumption with respect to
semi-smooth RSA moduli whose signatures are short.

Variant Scheme. As a side result, we propose an FSS scheme that is secure
under the factoring assumption with respect to a more widely used type of RSA
moduli. Specifically, we consider N = PQ where P and Q are distinct strong
primes, i.e., (P−1)/2 and (Q−1)/2 are also primes. To the best of our knowledge,
this is the first FSS scheme under the factoring assumption with respect to this
type of RSA moduli.
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1.3 Related Work

The notion of FSS was first proposed by Waidner and Pfitzmann [13] in 1989. In
1992, van Heyst and Pedersen [12] proposed an efficient FSS scheme based on the
discrete logarithm assumption, that is still the most efficient known FSS scheme
even now. On the other hand, there had been no known efficient FSS scheme
based on the factoring assumption. Thus, in 2004, Schmidt-Samoa [7] proposed
an efficient FSS scheme based on the factoring assumption with respect to an
RSA modulus with the form N = P 2Q where P and Q are primes. In 2011,
Mashatan and Ouafi [4] proposed a more efficient FSS scheme by considering
RSA modulus with the form N = PQ such that a|P−1 and gcd(a,Q−1) = 1 for
an odd integer a. Theirs is the most efficient known FSS scheme whose security
is reduced to the factoring assumption.

In this paper, we do not consider schemes of [11] (which was later repaired by
[7]) , [10] and [8] since their security was not reduced to the factoring assumption
and they rely on stronger assumptions.

2 Preliminaries

Notation We use [n] to denote the set {1, . . . , n} for n ∈ N. If S is a finite set,

then we use x
$← S to denote that x is chosen uniformly at random from S. If

A is an algorithm, we use x ← A(y) to denote that x is output by A whose
input is y. We say that a function f(·) : N → [0, 1] is negligible if for all positive
polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say
f is overwhelming if 1− f is negligible. We say that a randomized algorithm A
runs in probabilistic polynomial time (PPT) if there exists a polynomial p such
that execution time of A with input length λ is less than p(λ). For x, y ∈ Z, we
use x|y to mean that x divides y. For N ∈ N, we denote bit-length of N by |N |.

Fail-Stop Signatures Intuitively, FSS is a digital signature scheme where even if a
signature is forged, the signer can prove the forgery. That is, compared with an
ordinary digital signature scheme, which consists of (PreKeyGen,KeyGen, Sign,
Verify) an FSS scheme has two additional algorithm ProveForgery which proves
that a signature is forgery and VerifyProof which verifies if a proof of forgery is
valid or not. There is a two security requirement for a fail-stop signature scheme:
verifier’s security and signer’s security. Signer’s security requires that for any
computationally unbounded cheating forger, a signer can prove its forgery with
overwhelming probability. Verifier’s security requires that any PPT cheating
signer cannot produce a proof of forgery for a signature produced by the signer.
We refer to [4] for the formal definition and omit it due to the page limitation.

3 Generic Construction of Fail-Stop Signature

A generic construction of an FSS scheme based on a bundling homomorphism
[5] is known. However, we do not use the generic construction directly in this
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paper. Instead, we propose a variant of the generic construction. Specifically, we
introduce a new primitive which we call a collision resistant group generator,
and propose a generic construction of FSS schemes based on it.

3.1 Collision Resistant Group Generator

Here, we define our new primitive, a collision resistant group generator. It is a
PPT algorithm that outputs a description of group G and an element g ∈ G
with an upper bound S of ord(g) so that h(x) := gx is collision resistant. The
formal definition is as follows.

Definition 1 Let GGen be a PPT algorithm which is given a security parameter
1λ and outputs a description of a group G, an element g ∈ G and an integer S
such that S > ord(g). We say that GGen is a collision resistant group generator
if for any PPT algorithm A, there exists a negligible function negl such that

Pr[gx = gy, x �= y, x, y ∈ Z : (x, y) ← A(G, g, S), (G, g, S) ← GGen(1λ)] < negl(λ).

We say that A breaks the collision resistance of GGen if the above probability is
non-negligible.

3.2 Proposed Generic Construction of Fail-Stop Signature Schemes

In this section, we construct an FSS scheme based on a collision resistant group
generator. The construction is as follows. We let a message space M be [M ] for
an integer M .

PrekeyGen(1λ, 1σ): It runs (G, g, S) ← GGen(1λ) and outputs a public parameter
PP := (G, g, S).

KeyGen(PP ): It chooses sk1
$← [22σ+3(M + 2)S] and sk2

$← [2σ+1S] and sets
pk1 := gsk1 and pk2 := gsk2 . It outputs a secret key sk := (sk1, sk2) and a
public key pk := (pk1, pk2).

Sign(PP, sk,m): It computes a signature s := sk1 +msk2 and outputs it. We
note that this is computed on Z.

Verify(PP, pk,m, s): It outputs 1 if m ∈ M, s ∈ Z and gs = pk1pk
m
2 hold.

Otherwise it outputs 0.
ProveForgery(PP, sk,m∗, s∗): It computes s := Sign(PP, sk,m∗) = sk1+m

∗sk2.
If s∗ = s, then it outputs ⊥, and otherwise outputs pr := s as a proof of
forgery.

VerifyProof(PP, pk,m∗, s∗, pr): It outputs 1 if gpr = gs
∗
and pr �= s∗ hold, and

otherwise outputs 0.

3.3 Security

Our generic construction is one-time secure if an underlying algorithm GGen is
a collision resistant group generator. Note that the formal security definition is
given in [4].
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Theorem 1 Our generic construction is one-time secure if GGen is a collision
resistant group generator.

We can divide this theorem to the following two lemmas.

Lemma 1 Our generic construction is secure for a verifier if GGen is a collision
resistant group generator.

Lemma 2 Our generic construction is one-time secure for a signer.

It is clear that Theorem 1 follows from Lemmas 1 and 2. Then we prove the
above two lemmas. Here, we give only a proof sketch due to the page limitation.
First, we prove the verifier’s security. Let A be a PPT adversary that breaks
the verifier’s security of the scheme. That is, A is given PP and outputs (s∗, pr)
such that gpr = gs

∗
. This clearly breaks the security of the collision resistance

group generator. Thus, such A does not exist.
Next, we move on to the signer’s security. A forger against the one-time se-

curity of our scheme obtains a public parameter PP = (G, g, S), public key
(pk1 = gsk1 , pk2 = gsk2) and a signature s = sk1 +msk2 for an arbitrary cho-
sen message m. We observe that conditioned on (pk1 = gsk1 , pk2 = gsk2), sk1
and sk2 have exponentially many possible values (in σ) since they are chosen
from an exponentially larger range than S > ord(g). Moreover, we want to claim
that sk1 and sk2 still have exponentially many possible values conditioned on
s = sk1 +msk2 in addition to (pk1 = gsk1 , pk2 = gsk2) since there is two vari-
ables sk1 and sk2 whereas only a single linear combination of them is given.
This is a similar idea to what is used in the construction based on bundling-
homomorphism. However, this idea cannot be applied to our case so simply. It
is true that if s has a “medium” value, then the number of possible values of sk1
and sk2 is exponentially large. However, if s is extremely small or large, then it
may reveal much information on sk1 and sk2. For example, if m = 1, and s = 2,
then we must have sk1 = sk2 = 1. Thus, to complete the proof, we prove that s
has a “medium” value (i.e., 2σ+1MS < s ≤ 22σ+3(M +2)S) with overwhelming
probability.

4 Constructions of Collision Resistant Group Generators

In this section, we give concrete constructions of collision resistant group genera-
tors. In our main construction, the underlying group is Z∗

N for an RSA modulus
N of special form which we call a semi-smooth RSA modulus [3]. By using this
collision resistant group generator in the above generic construction, we obtain
an FSS scheme whose signature size is small under the factoring assumption. We
also propose a variant of the above construction. Our variant is secure under a
more standard type of the factoring assumption that a product of strong primes
cannot be factorized. However, the signature size of the resulting FSS scheme is
larger than that in the above construction. Then we give the concrete construc-
tions of collision resistant group generators in the following.
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Main Construction. Our basic idea is to generate an RSA modulus N and
g ∈ Z∗

N so that x �→ gx is collision resistant. This idea is used in constructions
of factoring-based identification schemes and digital signature schemes in the
random oracle model [2,6]. To reduce the signature size, it is needed to keep
ord(g) small. For the purpose, we use a semi-smooth RSA modulus [3]. First, we
describe the definition and properties of semi-smooth RSA moduli.

An integer N = PQ is called a semi-smooth RSA modulus if P = 2pp′ + 1
and Q = 2qq′ + 1 are distinct odd primes with same length, where p′ and q′

are distinct odd primes and p and q are products of some distinct odd primes
smaller than a polynomially bounded integer B which satisfy gcd(p, q) = 1. Let
IGen(1λ) be an efficient algorithm which outputs a random semi-smooth RSA
modulus N . We assume that the bit-length of p′q′ is public and fixed regardless
of randomness of IGen.

We say that the factoring assumption holds with respect to IGen if for any
efficient adversary A, there exists a negligible function negl such that

Pr[A ∈ {P,Q} : N ← IGen(1λ), A ← A(N)] < negl(λ).

For 80-bit security, [3] proposed to set B = 215 and |p′q′| = 320. Note that the
attack described in [1] cannot be applied in this parameter setting.

We consider the structure of a multiplicative group Z∗
N for a semi-smooth RSA

modulus N . We define the group of quadratic residues as QRN := {u2 mod N :
u ∈ Z∗

N}. QRN is a cyclic group of order (P − 1)(Q − 1)/4 = p′q′pq. It follows
that there exists a unique subgroup of QRN of order p′q′, which we call the
semi-smooth subgroup and denote it by Gss. Let PB be the product of all odd
primes smaller than B. Then we have pq|PB. Therefore if we set u

$← Z∗
N and

g := u2PB mod N , then g is distributed uniformly in Gss, and g is a generator
of Gss with overwhelming probability.

The following Lemma is essential in the construction of a collision resistant
group generator. We omit the proof due to the page limitation.

Lemma 3 Let N = PQ = (2pp′ + 1)(2qq′ + 1) be a semi-smooth RSA modulus
and g be a generator of Gss. There exists an efficient algorithm Fact which is
given N , g and x, y ∈ Z such that gx = gy mod N .

Then we construct a collision resistant group generator GGen based on the
factoring assumption with respect to semi-smooth RSA moduli.

GGen(1λ): It runs N ← IGen(1λ), chooses u
$← Z∗

N and sets g := u2PB mod N

and S := 2|p
′q′|. Then it outputs (N, g, S). (Here, N is interpreted as a

description of the group Z∗
N .)

The following Lemma can be proven by using Lemma 3. The full proof is omitted
due to the page limitation.

Lemma 4 If the factoring assumption holds with respect to IGen, then GGen is
a collision resistant group generator.
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We let FSSOurs be the proposed FSS scheme where GGen is plugged in.

Variant Construction. In our main construction, we assume that semi-smooth
RSA moduli cannot be factorized. However, we cannot say that this is a standard
type of the factoring assumption and it might weaken the security of the scheme.
Here, we construct a collision resistant group generator based on the factoring
assumption for more standard type of RSA modulus: N = PQ where P and Q
are strong primes (i.e., (P − 1)/2 and (Q − 1)/2 are also primes). This type of
RSA modulus is widely used in the literatures. The idea is similar to that of
our main construction: If we choose g ∈ Z∗

N appropriately, then it is difficult to
find x and y such that gx = gy. The concrete construction is omitted due to the
page limitation. We let FSSVar be the proposed FSS scheme where the variant
construction is plugged in.

5 Discussion

Here, we discuss the efficiency and security of the proposed FSS schemes. We
compare our schemes with MO11 [4] since it is the most efficient known FSS
scheme based on the factoring assumption. The comparisons are given in Table
1. We consider 80-bit security (i.e., λ = σ = 80), and we set M = 2160 since we
may compress a message by using a collision resistant hash function. In FSSOurs,
we set |N | = 1024, |p′q′| = 320 and S = 2320, and in FSSVar we set |N | = 1024
and S = 21022. We assume that gα for k-bit integer α can be computed by 1.5k
multiplications.

In FSSOurs, a signature size is smaller and a signing is more efficient than in
MO11 though verification is less efficient. Specifically, FSSOurs is the first FSS
scheme based on the factoring assumption whose signature size is smaller than
|N |. In FSSVar, though the signature size is not smaller than that of MO11, the
signing is still more efficient. Note that the multiplication in signing is done on Z

in FSSOurs and FSSVar but on Z∗
N in MO11. Therefore, we cannot simply compare

them. However, in our schemes, m and sk2 are smaller than N , and thus, the
multiplication cost is smaller than that on Z∗

N .

Table 1. Comparison of the efficiency among factoring-based FSS schemes, where
λ = σ = 80, M = 2160, in MO11, N = PQ = (2ap + 1)(2q + 1) where P,Q, p, q are
primes and a is an odd integer such that p > 2a and Sign(#mult.) and Verify(#mult.)
denote the number of multiplications on Z∗

N (or Z in signing of our proposed schemes)
required for signing and verification, respectively.

Size of sk
(bits)

Size of pk

(bits)
Size of s
(bits)

Sign

(#mult.)

Verify

(#mult.)
Form of N

MO11 [4] 2, 048 2, 048 1, 024 240 320 (2ap+ 1)(2q + 1)
FSSOurs 1, 044 2, 048 643 1 1, 205 semi-smooth RSA modulus
FSSVar 2, 448 2, 048 1, 345 1 2, 258 product of strong primes
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The underlying assumption of all of these schemes is the factoring assumption.
However, the settings of N are different, and we cannot simply compare their
strengths. Nevertheless, we can say that the underlying assumption of FSSVar
(that a product of strong primes cannot be efficiently factorized) is the most
standard among them.
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Abstract. Asymmetric bilinear maps using Type-3 pairings are known
to be advantageous in several points (e.g., the speed and the size of a
group element) to symmetric bilinear maps using Type-1 pairings. Kre-
mer and Mazaré introduce a symbolic model to analyze protocols based
on bilinear maps, and show that the symbolic model is computationally
sound. However, their model only covers symmetric bilinear maps. In
this paper, we propose a new symbolic model to capture asymmetric bi-
linear maps. Our model allows us to analyze security of various protocols
based on asymmetric bilinear maps (e.g., Scott’s client-server ID-based
key exchange). Also, we show computational soundness of our symbolic
model under the decisional bilinear Diffie-Hellman assumption.

Keywords: formal method, computational soundness, asymmetric
bilinear pairing.

1 Introduction

Formal Methods, and Computational Soundness. The formal method is
a useful tool to analyze security of cryptographic protocols in the error-less and
automatic manner. Since the original work by Dolev and Yao [1], many protocols
have been analyzed by formal methods. In the Dolev-Yao (DY) model all values
and operations are represented symbolically. For example, a message is defined
as a symbolic term t, and symmetric-key encryption (SKE) of t with a key sk
is defined as a term {t}sk. If sk is unknown, then {t}sk is regarded as symbol
{�}sk that means the undeducible term regardless of the encrypted term. Thus,
the symbolic model is easier to analyze security than the ordinary cryptographic
way because it is highly-abstracted. This approach is mainly interested in au-
thentication and confidentiality properties, and has been used in the analysis of
several practical protocols. Conversely, the basic symbolic analysis does not a
priori carry any cryptographic computational security guarantees. That is, it is
not trivial whether a secure protocol in the symbolic model is also secure in the
computational setting. Since security of cryptographic protocols is often proved
under some computational assumption, there is a gap between security in the
symbolic model and in the computational model.

Abadi and Rogaway [2] give a bridge to the gap. They show that if a protocol
based on a strongly secure SKE is secure in their symbolic model, it is also secure
in the computational model. This property is called as computational soundness.

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 317–325, 2014.
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Hence, to prove computational soundness is very important when introducing a
new symbolic model.

Cryptographic Bilinear Maps. For upwards of ten years, cryptographic
protocols based on bilinear maps are widely studied. A bilinear map allows us
to compute element gabT in the target group from two distinct elements ga and
gb in the source group in the secure and efficient manner thanks to the power
of pairings. It is a fundamental tool to construct various high-functional pro-
tocols. There are two types of bilinear maps: one is symmetric, and the other
is asymmetric. Symmetric bilinear maps are implemented with Type-1 pairings,
and asymmetric bilinear maps are implemented with Type-2 or Type-3 pairings.
Most previous cryptographic schemes based on bilinear maps adopt the sym-
metric setting because of its simplicity. However, it is pointed out that Type-3
pairings are much faster and more compact to implement than Type-1 parings.
Additionally, some recent works like [3] indicate that Type-1 parings cannot be
securely implemented with practical parameters as follows: The known way to
implement type-1 pairings is to use supersingular curves. The attacks to dis-
crete logarithm computations for popular supersingular curves for pairings show
that using fields of characteristic 2 or 3 must be considered insecure. Thus, the
remaining way to securely and efficiently implement Type-1 parings is using
supersingular curves embedding degree 2 or 3 over GF (p) with large character-
istics. Concretely, for 128-bit security, while asymmetric pairings are achieved by
256-bit elliptic curves with embedding degree 12, symmetric pairings need 1024-
bit elliptic curves with embedding degree 3. Hence, asymmetric bilinear maps
are more desirable than symmetric bilinear maps to construct efficient protocols.
Indeed, recently, it is considered important to use the asymmetric setting when
designing protocols using bilinear maps.

Kremer and Mazaré [4] introduce a symbolic model to analyze protocols based
on bilinear maps, and show that the symbolic model is computationally sound.
Their model can be seen as an extension of the symbolic model with modular
exponentiation [5]. The soundness is proved under the decisional bilinear Diffie-
Hellman (DBDH) assumption and the semantic security of SKE. They show
Joux’s tripartite key exchange, and TAK-2 and TAK-3 protocols as applications
of their model. However, their model only covers symmetric bilinear maps.

1.1 Our Contribution

In this paper, we give a new symbolic model for asymmetric bilinear maps and
its computational soundness.

First, we define the symbolic model by extending the model for modular
exponentiation [5] and symmetric bilinear maps [4]. We adjust the syntax of
symbolic messages, capacity of the symbolic adversary, and symbolic equivalence
to the asymmetric bilinear map setting.

Next, we show computational soundness of our symbolic model under the
DBDH assumption. We modify the DBDH assumption for asymmetric bilinear
maps to the more generalized form (called the expanded DBDH assumption,



Computational Soundness of Asymmetric Bilinear Pairing-Based Protocols 319

Exp-DBDH). Based on the Exp-DBDH and a special semantic security of SKE,
we can prove computational soundness.

Finally, we give an example protocol based on asymmetric bilinear maps to
examine usefulness of our model. We consider a client-server ID-based authen-
tication [6], and show the very simple (computational) security proof of the
protocol with the combination of our symbolic model and soundness result.

This work can be seen as a milestone to analyze security of various protocols
based on asymmetric bilinear maps in simple and rigorous ways.

2 Extension of DBDH Assumption

In this section, we introduce an extension of the DBDH assumption. Such an
extension is useful to prove that the symbolic equivalence implies computational
indistinguishability.

2.1 Expanded Decisional Bilinear Diffie-Hellman Assumption for
Asymmetric Bilinear Group

First, we formulate the new assumption (called the expanded DBDH assump-
tion, Exp-DBDH). The “expansion” means that a distinguisher receives multiple
exponents and DH instances in G1 and G2, and is only required to distinguish
one of multiple challenges, while in the DBDH assumption just a single instance
and a challenge are given. To properly define such a situation, we must care
about whether some of multiple challenges are trivially derived from instances.
For example, if a′ ∈ Zp, g

b′
1 ∈ G1 and gc

′
2 ∈ G2 are given as a part of instances,

and e(g1, g2)
a′b′c′ ∈ GT is contained in challenges, then the distinguisher can

trivially distinguish the challenge from the random value. Thus, a condition to
avoid such a trivial case must be considered. The following is our definition:

Let κ be the security parameter and (G1, G2, GT , g1, g2, p) be an asym-
metric bilinear group. As the DBDH assumption, we define two experiments,
Expedbdh-real(D) and Expedbdh-rand(D). Let X = (xi)1≤i≤α, Y = (yi)1≤i≤β and
Z = (zi)1≤i≤γ be sets of elements which are randomly chosen from Zp. Let
F = (fi)1≤i≤δ be the set of polynomials based on power-free 3-monomials con-
sisting of elements of X , Y and Z, where each fi and the set of monomials
{a′b′c′|a′, b′, c′ ∈ X} ∪ {a′b′c′|a′, b′ ∈ X, c′ ∈ Y } ∪ {a′b′c′|a′, b′ ∈ X, c′ ∈ Z}
∪ {a′b′c′|a′ ∈ X, b′ ∈ Y, c′ ∈ Z} have no linear relation. A distinguisher D
is given inputs (x1, . . . , xα, g1, g

y1

1 , . . . , g
yβ

1 , g2, g
z1
2 , . . . , g

zγ
2 , R1, . . . , Rδ). Ri =

gfiT in Expedbdh-real(D), and Ri = griT in Expedbdh-rand(D), where gT = e(g1, g2)

and ri ∈R Zp. We define advantage AdvExp-DBDH(D) = |Pr[Expedbdh-real(D) =

1]−Pr[Expedbdh-rand(D) = 1]|, where the probability is taken over the choices of
X,Y, Z, (ri)1≤i≤δ and the random tape of D.

Definition 1 (Exp-DBDH Assumption). We say that the Exp-DBDH as-
sumption in (G1, G2, GT ) holds if for any PPT distinguisher D the advantage
AdvExp-DBDH(D) is negligible in security parameter κ.
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2.2 Relation between Assumptions

Next, we show that the Exp-DBDH assumption holds if the DBDH assumption
holds. The result is meaningful when δ is polynomially bounded in κ asymp-
totically. Since α, β, and γ are some constant numbers, δ can be polynomially
bounded.

Theorem 1. If for any distinguisherD1 of theDBDHassumption in (G1, G2, GT ),
AdvDBDH(D1) is negligible in κ, then for any distinguisher D2 of the Exp-DBDH
assumption in (G1, G2, GT ), AdvExp-DBDH(D2) is negligible in κ.

The proof of Theorem 1 uses the game hopping technique [7]. The initial game is
the same as Expedbdh-real(D2), and the final game is the same as Expedbdh-rand(D2).
We consider intermediate games that challenges ofD2 are gradually changed from
real values to random values. Specifically, in an intermediate game, gfiT is replaced
with griT . We can prove that the game and the previous game are indistinguishable
with the DBDH assumption. We constructD1 of the DBDH assumption such that
R in the DBDH assumption is set as Ri in the Exp-DBDH assumption. If R is the
real value (i.e.,R = gabcT ), thenRi is also the real value (i.e.,Ri = gfiT ). Otherwise,
Ri is a random value (i.e., Ri = griT ). We note that since fi and (X,Y, Z) are
linear independent because of the definition of the Exp-DBDH assumption, D1

can perfectly simulate the environment for D2. This change is indistinguishable
thanks to the DBDH assumption. Since all intermediate changes (i.e., δ games)
are indistinguishable, the initial game and the final game is also indistinguishable.

3 Our Symbolic Model

In this section, we introduce a symbolic model that covers asymmetric bilinear
maps. It is an extension of previous symbolic models for modular exponentia-
tions [5] and symmetric bilinear maps [4]. As such symbolic models our model
follows the Abadi-Rogaway logic [2].

3.1 Syntax

First, we formulate the syntax of symbolic messages.
LetNonce,Key andExponent be countable disjoint sets of symbols for mes-

sages, nonces, secret keys and exponents. DH instances appeared in the DBDH
and Exp-DBDH assumption (e.g., ga1 , g

bc
2 , gabcT ) are represented using power-free

monomials or polynomials. Let Poly be a set of power-free polynomials based on
power-free 3-monomials with variables in Exponent and coefficients in Z. Term
(t1, t2) represents the composition of terms t1 and t2, term {t}sk represents the ci-
phertext of t with secret key sk for SKE, and term gPoly

T represents the set of mod-
ular exponentiations of gT to the power of polynomials inPoly. The set ofmessage
expressions Msg is defined by the following grammar: Msg ::= Nonce | Key |
(Msg,Msg) | {Msg}Key | gPoly

1 | gPoly
2 | gPoly

T | {Msg}gPoly
T

. For simplicity, we

use a notation {Msg}gPoly
T

to represent the set of encryptionwith gPT forP ∈ Poly

where gPT is directly used as an element of Key. Indeed, some key extraction al-
gorithm like a hash function is applied to gPT , but we omit it.
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3.2 Symbolic Adversary

Next, we define capacity of the symbolic adversary. In this paper, we focus on
passive adversaries as in [5,4].

We use deduction relation (. For a finite set of terms E ⊆ Msg and a term
t ∈ Msg, E ( t means that t can be deduced from E by an eavesdropper.
Our deduction relation ( contains some extension of the basic DY inference
system [1]. By the following rules we can formulate the power of adversaries:

(1) :
t ∈ E

E � t
(2) :

E � (t1, t2)

E � t1
(3) :

E � (t1, t2)

E � t2
(4) :

E � t1 E � t2
E � (t1, t2)

(5) :
E � t E � sk

E � {t}sk
(6) :

E � {t}sk E � sk

E � t
(7) :

E � x E � gy1 E � gz2
E � gxyzT

(8) :
E � x E � y E � gz1

E � gxyzT

(9) :
E � x E � y E � gz2

E � gxyzT

(10) :
E � x E � y E � z

E � gxyzT

(11) :
E � gPT E � gQT

E � gλP+Q
T

(12) :
E � {t}gP

T
E � gPT

E � t

where sk ∈ Key, x, y, z, λ ∈ Zp, and P,Q ∈ Poly.
Rules (1), (2), (3), (4), (5) and (6) are the same as the DY rules, and these

guarantee security of SKE. Rules (7), (8), (9) and (10) correspond to four possible
ways to obtain an exponentiation gxyzT using asymmetric bilinear maps. The
different point from the setting of symmetric bilinear maps is in the rule (7). In
the symmetric setting, if (E ( x E ( gy1 E ( gz1) holds, E ( gxyzT holds. It
does not holds in the asymmetric setting because gyzT cannot be derived from gy1
and gz1 . Thus, such a rule is not contained, and the case g1 �= g2 is allowed (i.e.,
(7)). Rule (11) handles linear relations between polynomials. An adversary can

obtain gPQ
T by multiplying gPT and gQT , and can obtain gλPT by the exponentiation

of gPT to the power of λ. Rule (12) corresponds to the syntax of SKE when the

secret key is an element of gPoly
T .

3.3 Symbolic Equivalence

Next, we show a symbolic expression to represent information revealed via (.
We use patterns as the Abadi-Rogaway logic. If an adversary cannot deduce a
key sk from term t, and {t′}sk is contained in t, then the pattern of {t′}sk is
expressed with symbol {�}sk (i.e., cannot be decrypted). The pattern of term
t ∈ Msg and a finite set K is defined by the following inductive rules:

pattern((t′, t′′),K) = (pattern(t′,K), pattern(t′′,K))

pattern({t′}sk,K) =

{
{pattern(t′,K)}sk (if (t ( sk) ∨ (sk ∈ K))
{�}sk (otherwise)

pattern({t′}gP
T
,K) =

{{pattern(t′,K)}gP
T
(if (t ( gPT ) ∨ (gPT ∈ K))

{�}gP
T

(otherwise)

pattern(t′,K) = t′ (if t′ ∈ Nonce ∪Key ∪ gPoly
T )
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where t′ and, t′′ are sub-expressions of t. We say that two expressions t1 and t2 are
symbolically equivalent (written t1 ≡ t2) if and only if pattern(t1,K1) =
pattern(t2,K2).

3.4 Renaming of Expressions

If we try to connect symbolic equivalence and computational indistinguishabil-
ity, the definition of symbolic equivalence is too strong. For example, expressions
(t1, {t1}sk1) and (t2, {t2}sk2) are different in the sense of symbolic equivalence.
However, if t1 and t2, and sk1 and sk2 are chosen from the same distributions,
respectively, these two expressions must be indistinguishable in the sense of
computational indistinguishability. Thus, we must consider the renaming of ex-
pressions to remain equivalence.

For SKE the renaming rule is very simple. It is solved by allowing renaming
of key and nonce symbols. However, the renaming of exponents in polynomi-
als is not very easy because if we apply some simple rule, then it may make
symbolic equivalence too weak. For example, we consider term (gX1 , g

Y
2 , g

XY
2 ),

and renaming rule {XY �→ w} where X , Y , and w are elements in Poly,
and w is not contained in the terms. In this case, if w can be X + Y , then
it means that (gX1 , g

Y
2 , g

X+Y
2 ) is equivalent with (gX1 , g

Y
2 , g

XY
2 ). However, actu-

ally, an adversary can distinguish two terms by computing e(gX1 , g2) · e(g1, gY2 )
and e(g1, g

X+Y
2 ). To avoid such a situation, the renaming rule must preserve

linear dependence of expressions.
We recall the definition of linear dependence preserving injective renamings

of polynomials. We denote the set of all polynomials in term t by poly(t).

Definition 2 (Linear Dependence Preserving Injective Renamings). Let
σ : poly(t) → Poly be an injective renaming of the polynomials in term t. We say
that σ is linear dependence preserving if ∀P1, . . . , Pn ∈ poly(t), ∀a1, . . . , an, b ∈
Z, Σn

i=1aiPi = b ⇔ Σn
i=1aiPiσ = b.

We say that two expressions t1 and t2 are equivalent up to renaming (written
t1 ∼= t2) if there exists renaming σ such that t1σ ≡ t2.

4 Computational Soundness

In this section, we show computational soundness of our symbolic model. Com-
putational soundness guarantees that if a protocol using asymmetric bilinear
maps is secure in our symbolic model, then the protocol is also secure in the
computational model.

4.1 Well-Formedness

First, we need to restrict the use of bilinear maps only to produce well-formed
terms. Intuitively, it does not occur that for P and Q such that gPT and gQT occur
in term t exponents in P and Q contain a common exponent, and an exponent
in P or Q directly appears in t. Such a situation is an incorrect use of bilinear
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maps, and should be avoided. If such expressions are contained, then even if the
renaming of terms are equivalent up to renaming, it is easily distinguishable by
erasing the exponent that directly appears in t from P or Q. Thus, we forbid
such an incorrect use of bilinear maps.

The definition of well-formed terms is as follows:

Definition 3 (Well-Formed Terms). We say that term t is well-formed if for

any pair of P and Q such that gPT and gQT occur in t, P and Q have no common
exponent, or for any P such that gPT occurs in t, any exponent in P does not
directly appear in t.

4.2 Acyclicity

Next, we need to assume that for any term there is no encryption cycle (e.g., a
secret key is encrypted by the same key). Such an assumption can be removed
by strengthening IND-CPA∗ of SKE to add the key-dependent message secu-
rity [8]. However, in this paper, we forbid symbolic terms to contain key cycles
for simplicity.

The definition of acyclic terms is as follows:

Definition 4 (Acyclic Terms). We say that term t is acyclic if polynomial P
occurs as a secret key in t and is not a linear combination of other polynomials
that occur in t, and there exists a total order ≺ among keys used in t such that
for any subterm {t′}Key (e.g., Key is sk or gPT ) either Key is deducible from t
or for another key Key′ in t′ Key′ ≺ Key holds.

4.3 Soundness Result

Our main theorem states that distributions related to equivalent terms are com-
putationally indistinguishable.

Theorem 2. Let t1 and t2 be two acyclic well-formed terms, and t1 ∼= t2. The
underlying SKE satisfies IND-CPA∗, and the Exp-DBDH assumption in (G1, G2,
GT ) holds. Then, t1 and t2 are computational indistinguishable (written t1 ≈ t2).

The proof of Theorem 2 uses (a constant number of) transitivity of computa-
tional indistinguishability. First, we show that term ti and pattern(tj ,Kj) are
computationally indistinguishable using IND-CPA∗ of SKE. If we assume that
there exists a computational distinguisher between tj and pattern(tj ,Kj), we
can construct an adversary to break IND-CPA∗ and derive a contradiction. Next,
we show that pattern(t1,K1) and pattern(t2,K2) are computationally indis-
tinguishable using the Exp-DBDH assumption. If we assume that there exists
a computational distinguisher between pattern(t1,K1) and pattern(t2,K2), we
can construct a solver of the Exp-DBDH problem and derive a contradiction.
Finally, by transitivity we have t1 ≈ pattern(t1,K1) ≈ pattern(t2,K2) ≈ t2.
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5 Application

In this section, we show an application of our symbolic model and soundness
result.

5.1 Scott’s Client-Server ID-Based Authentication

Scott [6] firstly studied the design and security of key exchange protocols with
asymmetric bilinear maps. This paper is well known because the external Diffie-
Hellman (XDH) assumption is firstly introduced. As one of proposed protocols in
the paper, he introduces a client-server ID-based authentication protocol based
on asymmetric bilinear maps. We show the security of this protocol with our
symbolic model.

Protocol. (G1, G2, GT , g1, g2, p) is an asymmetric bilinear group. Let IDC be
a client’s ID, and IDS be the server’s ID. In initialization, the server generates
and keeps a master secret key z. The client privately keeps a short PIN α ∈ Zp.
For the secret key generation, the client registers his PIN α to the server, then
the server computes C = H1(IDC), S = H2(IDS) and Cz−α, where H1 is a
hash function {0, 1}∗ → G1 and H2 is a hash function {0, 1}∗ → G2. The server
sends a hardware token containing Cz−α to the client.

In an authentication session, the client chooses x ∈R Zp, inputs α and x to his
hardware token. The token computes and outputs X = e(Cz−α ·Cα, H(IDS))

x.
The client sends X to the server. The server chooses y ∈R Zp, computes Y =
e(C, S)yz, and sends Y to the client.

On receiving Y , the client computes the session key SK = Y x. Also, on
receiving X , the server computes the session key SK = Xy.

Security. We show that any passive adversary cannot distinguish the session
key and a random key; that is, any information of the session key is not leaked.

Since ranges of H1 and H2 are G1 and G2 respectively, C can be repre-
sented as gc1 for an exponent c, and S can be represented as gs2 for an expo-
nent s. Then, e(C, S) is also represented as gcsT . Since generators g1, g2 and
gT are not directly used in the protocol, we can deal with C, S and e(C, S)
as new generators (i.e., g′1 := C, g′2 := S and g′T := e(C, S)). A passive ad-
versary can see terms (g′1, g

′
2, g

′
T , g

′xz
T , g′yzT ). From our symbolic equivalence, we

have (g′1, g
′
2, g

′
T , g

′xz
T , g′yzT , SK) ∼= (g′1, g

′
2, g

′
T , g

′xz
T , g′yzT , g′PT ), where P is a ran-

dom and linear independent polynomial from (xz, yz). Moreover, by Theorem 2
these terms are also computationally indistinguishable, and the protocol is secure
against passive adversaries.
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Abstract. A secret sharing scheme is an important cryptographic prim-
itive. In this paper, we focus on a computational secret sharing (CSS)
scheme, which is a practical, simple secret sharing scheme, with timed-
release functionality, which we call a timed-release computational secret
sharing (TR-CSS) scheme. In TR-CSS, participants more than or equal
to a threshold number can reconstruct a secret by using their shares only
when the time specified by a dealer has come. Our TR-CSS can be re-
garded as a natural extension of Krawczyk’s CSS, and we finally succeed
to add timed-release functionality to Krawczyk’s CSS with small over-
head, which seems to be almost optimal. Moreover, we show our proposal
of TR-CSS is important for constructing threshold encryption and multi-
ple encryption with timed-release functionality in a generic and efficient
way.

1 Introduction

Shamir [12] and Blakley [2] independently proposed secret sharing schemes.
Krawczyk [7] proposed more practical secret sharing scheme, which is called
a computational secret sharing (CSS for short) scheme, under the assumption
that the adversary’s computational power is bounded. The share size of CSS is
significantly smaller than that in traditional secret sharing schemes (i.e. with
information-theoretic security).

Meanwhile, “time” is intimately related to our lives. As protocols associated
with “time”, timed-release cryptographic protocols introduced in [8] are well-
known. Informally, the goal of timed-release cryptography is to securely send
certain information into the future. For instance, in timed-release public key
encryption (TR-PKE for short), a sender transmits a ciphertext so that a receiver
can decrypt it when the time which the sender specified has come, and the
receiver cannot decrypt it before the time. So far, various researches on timed-
release cryptography have been studied (e.g., [10,4,3]).

From the above discussion, it is useful and important to consider a secret
sharing scheme with timed-release security, which is called a timed-release secret
sharing (TR-SS) scheme. Recently, Watanabe and Shikata proposed a TR-SS
scheme in the information-theoretic security setting [13]. They show that the
share size of their scheme must be also larger than or equal to the secret size as

S.S.M. Chow et al. (Eds.): ProvSec 2014, LNCS 8782, pp. 326–333, 2014.
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in traditional secret sharing schemes. In this paper, we deal with a CSS scheme
with timed-release functionality, which we call a timed-release computational
secret sharing (TR-CSS) scheme, from the aspect of efficiency. Specifically, as in
the case of TR-SS [13], we aim to achieve TR-CSS with the share size (almost)
equivalent to that of traditional CSS. TR-CSS is useful when one wants to add
timed-release property to any application of secret sharing schemes. In addition
to this, TR-CSS can also be used for adding timed-release functionality to other
cryptographic protocols.

Our Contribution. Our main purpose in this paper is to realize a secret shar-
ing scheme with timed-release functionality in a generic and efficient way in
terms of the share size. Specifically, we begin with newly formalizing a model
and a security notion of (k, n)-TR-CSS. In addition, we propose two kinds of
constructions of (k, n)-TR-CSS starting from identity-based encryption (IBE),
and we finally succeed to add timed-release functionality to traditional CSS —
especially for Krawczyk’s scheme [7]— with small overhead, which seems to be
almost optimal. Therefore, our study on TR-CSS can be regarded as a natural
extension of Krawczyk’s CSS in terms of both a model and constructions.

Moreover, we show TR-CSS can provide threshold encryption with timed-
release functionality from TR-CSS in a generic and efficient way. To realize
this, we consider constructing multiple encryption with timed-release function-
ality from TR-CSS based on Dodis–Katz paradigm [6], since Dodis and Katz [6]
showed threshold encryption can be constructed from multiple encryption in a
generic and simple way.

2 Preliminaries

Notation. If we write (y1, . . . , ym) ← A(x1, . . . , xn) for an algorithm A having
n inputs and m outputs, it means to input x1, . . . , xn into A and to get the

resulting output y1, . . . , ym. If X is a set, we write x
U← X to mean the operation

of picking an element x of X uniformly at random, and |X | denotes its cardinality.
If x is a string, then |x| denotes its bit-length. We use κ as a security parameter.
When we write negligible ε in κ, it means a function ε : N → [0, 1] where
ε(κ) < 1/g(κ) for any polynomial g and sufficiently large κ. Furthermore, in
this paper “probabilistic polynomial-time” is abbreviated as PPT. Let P :=
{P1, P2, . . . , Pn} be a set of IDs of all participants and W be a set of corrupted
participants. For any subset of participants J = {Pi1 , . . . , Pij} ⊆ P , uJ :=
(ui1 , . . . , uij ) denotes shares held by J . In addition, we consider a (k, n)-threshold
access structure Γ := (Q,F ), where Q := {Q ⊆ P | |Q| ≥ k} and F := {F ⊆
P | |F| ≤ k − 1}. S is a set of possible secrets with a probability distribution
PS , and we assume |S| = 2λ for simplicity (i.e. the length of a secret is λ bit),
where λ is a polynomial in κ.

Secret Sharing and Information Dispersal Algorithm. A secret sharing
scheme [12,2] and an information dispersal algorithm [9] with (k, n)-threshold
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access structures ((k, n)-SS and (k, n)-IDA for short, respectively)1 are used
for the distribution of a piece of information among n participants, in such a
way that the recovery of the information is possible in presence of k (≤ n)
participants. In (k, n)-SS, k participants can reconstruct the secret while any
k − 1 participants obtain no information on the secret from their shares. On
the other hand, in (k, n)-IDA, there are no restriction whatsoever about the
sets which are not in Q. Therefore, we can consider (k, n)-IDA as (k, n)-SS
without considering its security. (k, n)-SS (resp. (k, n)-IDA) Π consists of two-
tuple algorithms, SS.Share and SS.Recon (resp. IDA.Share and IDA.Recon).
SS.Share (resp. IDA.Share) takes a (k, n)-threshold access structure Γ = (Q,F )
and a secret (called as a file in the context of IDA) s ∈ S as input and then
outputs n shares (u1, . . . , un). SS.Recon (resp. IDA.Recon) takes at least k shares
uQ for Q ∈ Q as inputs and outputs a secret s. We say that Π has the perfect
correctness property if it meets the following condition: For all κ ∈ N, all s ∈ S,
and for all (u1, . . . , un) ← X.Share(1κ, Γ, s), it holds that s ← X.Recon(1κ, uQ)
for any Q ∈ Q, where X ∈ {SS, IDA}. Then, we can define Π as (k, n)-IDA
if it meets the above perfect correctness property. A lower bound on share size
required for (k, n)-IDA is |ui| ≥ λ

k , where λ is the bit-length of the file.
To give security formalization of (k, n)-SS, we consider the following Privacy

game as in [11]: W ← ∅; (s(0), s(1), st) ← A(chal); b
U← {0, 1}; (u1, . . . , un) ←

SS.Share(1κ, Γ, s(b)); b′ ← ACorrupt(·)(guess, st). Here, we require |s(0)| = |s(1)| =
λ, and st is state information. In addition, Corrupt(·) is a corrupt oracle which
takes an ID Pi as input, and then W ← W ∪ {Pi} and returns ui. A can query
to Corrupt(·) until |W| = k−1. We define the advantage of A in the above game

as AdvPrivacyΠ,A (κ) :=
∣∣Pr[b = b′]− 1

2

∣∣.
Based on the above game, we consider two security notions, perfect privacy

and computational privacy. These notion mean that no information is leaked
from subthreshold shares in an information-theoretic sense or in a complexity-
theoretic sense. Hereafter, we call (k, n)-SS with perfect privacy (k, n)-perfect
secret sharing ((k, n)-PSS for short), and we also call (k, n)-SS with computa-
tional privacy (k, n)-computational secret sharing ((k, n)-CSS for short). For-
mally, (k, n)-PSS is defined as follows. For ∃κ0 ∈ N and ∀κ ≥ κ0, (k, n)-SS Π is

said to be (k, n)-PSS if it has perfect correctness and AdvPrivacyΠ,A (κ) = 0 for any
computationally-unbounded adversary A. (k, n)-CSS is also defined as follows.
For ∃κ0 ∈ N and ∀κ ≥ κ0, (k, n)-SS Π is said to be ε-(k, n)-CSS if it has perfect

correctness and there exists a negligible ε in κ such that AdvPrivacyΠ,A (κ) < ε for any
PPT adversary A. Krawczyk proposed ε-(k, n)-CSS [7] and successfully reduced
the share size, which is λ

k + |K|, where |K| means the key size of the underlying
ε-FTG-CPA secure symmetric encryption2 used in the construction, respectively.

1 Secret sharing schemes with the (k, n)-threshold access structure is traditionally
called (k, n)-threshold secret sharing schemes.

2 As in [7], for simplicity, we also assume that the ciphertext-overhead is zero in the
following, since it can be achieved by carefully selecting symmetric encryption. The
notion of FTG-CPA is defined in [1] and we also use ε-FTG-CPA secure symmetric
encryption as a building block of TR-CSS.
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Identity-Based Encryption (IBE). IBE Σ consists of four-tuple algorithms
(IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) defined. IBE.Setup generates a
public parameter prm and a master secret keymk. IBE.KeyGen takes the master
secret key mk and an identity ID ∈ IDIBE as input and outputs a secret key
skID for ID. IBE.Enc takes the public parameter prm, an identity ID, and
a plaintext m ∈ MIBE as input and then outputs a ciphertext cID. IBE.Dec
takes a secret key skID for ID and a ciphertext cID as input and then outputs
a plaintext m or ⊥.

Symmetric Encryption (SE). SE Φ consists of three-tuple algorithms
(SE.KGen, SE.Enc, SE.Dec). SE.KGen generates a secret keyK ∈ KSE . SE.Enc
takes a secret key K and a plaintext M ∈ MSE as input and then outputs a
ciphertext C. SE.Dec takes a secret key K and a ciphertext C as inputs and
then outputs a plaintext M or ⊥.

3 Timed-Release Computational Secret Sharing

We propose a timed-release computational secret sharing (TR-CSS for short)
scheme. As in TR-PKE, we consider the presence of a time-server, whose role
is to periodically generate and broadcast time-signals. The time-server executes
a setup algorithm and a time-signal generation algorithm in TR-PKE, hence,
it is natural and reasonable that we assume these algorithms in TR-CSS. The
time-server do not have any interaction with any other entities, namely, it in-
dependently generates time-signals and only broadcasts them as in the case of
TR-PKE.

3.1 The Model of (k, n)-TR-CSS

We consider a TR-CSS with a (k, n)-threshold access structure ((k, n)-TR-CSS
for short). Informally, (k, n)-TR-CSS is executed as follows. First, a time-server
TS generates a master public key and a master secret key. Next, a dealer D
specifies future time, as D wants, when a secret can be reconstructed by at
least k participants (we call the time the specified time), and he generates n
shares from the secret by using the master public key. And, D sends shares
to corresponding participants, respectively, via secure channels. The time-server
TS periodically broadcasts a time-signal which is generated by using his secret
key. When the specified time has come, at least k participants can compute the
secret by using both their shares and the time-signal of the specified time. Let
T be a set of time. For any subset of participants J = {Pi1 , . . . , Pij} ⊆ P ,

u
(t)
J := (u

(t)
i1
, . . . , u

(t)
ij
), where u

(t)
i is Pi’s share at the specified time t.

A (k, n)-TR-CSS Ψ consists of four-tuple algorithms (Setup, Release, Share,
Recon) defined as follows: (mpk,msk) ← Setup(1κ) takes a security parameter
κ as input and outputs a master public key mpk and a master secret key msk.
ts(t) ← Ext(msk, t) takes the master secret keymsk and time t ∈ T as input and

outputs a time-signal ts(t) at time t. (u
(t)
1 , . . . , u

(t)
n ) ← Share(Γ,mpk, s, t) takes a
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Table 1. Left side: the Type-I Privacy game. Right side: the Type-II Privacy game.

W ← ∅; (mpk,msk) ← Setup(1κ); W = P ; (mpk,msk) ← Setup(1κ);

(s(0), s(1), t∗, st) ← A(chal,mpk,msk); (s(0), s(1), t∗, st) ← ARelease(msk,·)(chal,mpk);

b
U← {0, 1}; b

U← {0, 1};
(u

(t∗)
1 , . . . , u

(t∗)
n ) ← Share(Γ,mpk, s(b), t∗); (u

(t∗)
1 , . . . , u

(t∗)
n ) ← Share(Γ,mpk, s(b), t∗);

b′ ← ACorrupt(·)(guess, st). b′ ← ARelease(msk,·)(guess, u(t∗)
1 , . . . , u

(t∗)
n , st).

(k, n)-threshold access structure Γ = (Q,F ), a master public key mpk, a secret

s ∈ S and a specified time t as input, and then outputs n shares (u
(t)
1 , . . . , u

(t)
n )

at time t . s ← Recon(u
(t)
Q , ts(t)) takes at least k shares u

(t)
Q for Q ∈ Q and a

time-signal ts(t) at specified time t as inputs, and outputs a secret s. We say that
Ψ has the perfect correctness property if it meets the following condition: For
all κ ∈ N, all s ∈ S, (mpk,msk) ← Setup(1κ), all t ∈ T , all ts(t) ← Ext(msk, t),

and all (u
(t)
1 , . . . , u

(t)
n ) ← Share(Γ,mpk, s, t), it holds that s ← Recon(u

(t)
Q , ts(t))

for any Q ∈ Q.

Remark 1. In the case that a time-server does not exist (i.e., T = ∅, mpk is a
security parameter κ, and msk is an empty string), the model of (k, n)-TR-CSS
can be regarded as that of traditional (k, n)-SS. Namely, our model of TR-CSS
includes the model of traditional secret sharing schemes.

3.2 Security Definition of (k, n)-TR-CSS

To discuss security, we convert security notions of TR-PKE into those of CSS:
Even a curious time-server who colludes with at most k− 1 participants can ob-
tain no information on the secret; and all participants can obtain no information
on the secret without a time-signal at the specified time. Hence, we consider the
following two notions: privacy against a curious time-server (Type-I Privacy) and
privacy against participants (Type-II Privacy). To formalize these notion, we con-
sider the Type-I Privacy game and the Type-II Privacy game (see Table 1). In
both games, we require |s(0)| = |s(1)| = λ, and st is state information. Corrupt(·)
is a corrupt oracle, which is the same as that of the Privacy game in (k, n)-SS.
Release(msk, ·) is a time-signals generation oracle which takes time t as input,
and returns Ext(msk, t). A is allowed to access the above oracle at most qt times
at any time, however, it cannot submit the target time t∗ to Release(msk, ·)
after the chal stage. We define the advantages of A in the above games as
AdvType-I PrivacyΨ,A (κ) :=

∣∣Pr[b = b′]− 1
2

∣∣ and AdvType-II PrivacyΨ,A (κ) :=
∣∣Pr[b = b′]− 1

2

∣∣,
respectively. Then, we define Type-I Privacy and Type-II Privacy as follows.

Definition 1 (Type-I Privacy). For ∃κ0 ∈ N and ∀κ ≥ κ0, (k, n)-TR-CSS Ψ

meets ε-Type-I Privacy if there exists a negligible ε in κ such that AdvType-I PrivacyΨ,A (κ)
< ε for any PPT adversary A.
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Definition 2 (Type-II Privacy). For ∃κ0 ∈ N and ∀κ ≥ κ0, (k, n)-TR-
CSS Ψ meets (qt, ε)-Type-II Privacy if there exists a negligible ε in κ such that

AdvType-II PrivacyΨ,A (κ) < ε for any PPT adversary A, where qt is the number of
queries that A can issue to the oracle in the Type-II Privacy game.

Definition 3 (Security). (k, n)-TR-CSS Ψ is said to be (qt, ε1, ε2)-(k, n)-TR-
CSS if it has perfect correctness, ε1-Type-I Privacy and (qt, ε2)-Type-II Privacy.

3.3 Constructions of (k, n)-TR-CSS

We propose two kinds of constructions of (k, n)-TR-CSS. First, we propose a
generic construction. Our generic construction can be regarded as extension of
Krawczyk’s CSS [7]. The idea of our construction is to combine Krawczyk’s CSS
and IBE. LetΠ1 be (k, n)-SS,Π2 be (k, n)-IDA, Σ be IBE, and Φ be SE. Suppose
that T ⊆ IDIBE . Then, (k, n)-TR-CSS Ψ={Setup, Ext, Share, Recon} is con-
structed as follows. Setup: It computes (prm,mk) ← IBE.Setup(1κ), and then
outputs (mpk,msk) := (prm,mk). Ext : It computes skt ← IBE.KeyGen(mk, t),
and then outputs ts(t) := skt. Share: First, it computes K ← SE.Gen(1κ)
and C ← SE.Enc(K, s), and then it calculates ct ← IBE.Enc(prm, t,K). Fi-
nally, it generates (ũ1, . . . , ũn) ← IDA.Share (1κ, Γ, C) and (û1, . . . , ûn) ←
SS.Share(1κ, Γ, ct), and then it outputs u

(t)
i := (ũi, ûi) (1 ≤ i ≤ n). Recon :

It computes ct ← SS.Recon(1κ, ûQ) and C ← IDA.Recon(1κ, ũQ). Then, it com-
putes K ← IBE.Dec(skt, ct) and s = SE.Dec(K,C).

We can show that the resulting (k, n)-TR-CSS in the above construction is
secure, if given (k, n)-SS is (k, n)-PSS, IBE meets IND-ID-CPA [14], and SE meets
FTG-CPA [1], as follows (see [14] and [1] for security definitions of IBE and SE,
respectively). Due to space limitation, the proof will be given in the full paper.

Theorem 1. If given SE Φ is ε1-FTG-CPA secure, (k, n)-SS Π1 is (k, n)-PSS,
and IBE Σ is (qID, ε2)-IND-ID-CPA secure, then the resulting (k, n)-TR-CSS Ψ
in the above construction is (qt, δ1, δ2)-(k, n)-TR-CSS, where qt = qID, δ1 ≤ ε1
and δ2 ≤ ε1 + 2ε2.

Then, the share size in our generic construction of (k, n)-TR-CSS is given by

|u(t)i | = λ
k + |K| + COHIBE(κ), where COHIBE(κ) is the ciphertext-overhead

in IBE Σ. Note that the share size in our construction is only COHIBE(κ)-bits
longer than that in Krawczyk’s CSS. It means that we successfully added the
timed-release functionality to CSS with only the underlying IBE’s ciphertext-
overhead.

Next, we consider improving the above construction by focusing on currently
known efficient IBE. Our idea is to use the Waters’s IBE [14] and to slightly
modify the above generic construction as follows: For the three components of
the ciphertext of IBE, shares are generated by applying (k, n)-PSS to only one
component and by applying (k, n)-IDA to other ones to reduce the share size.

Let G and GT be groups of prime order p in which a generator is denoted
by g and e : G × G → GT be a bilinear map. We assume that each time
t := (t1, t2, . . . , t�) ∈ {0, 1}� is an � bit string, where ti (1 ≤ i ≤ �) is i-th bit
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of t. Π1, Π2 and Φ are the same as those in the above generic construction.

Setup: α
U← Zp and g, g2, u

′, u1, . . . , u�
U← G. Then, it outputs mpk := (g, g1(:=

gα), g2, u
′, u1, . . . , u�) and msk := gα2 . Ext : r1

U← Zp. Then, the time-signal ts(t)

at time t is constructed as ts(t) := (ts
(t)
1 , ts

(t)
2 ) = (gα2 (u

′∏�
i=1 u

ti
i )

r1 , gr1). Share:
First, it computes K ← SE.Gen(1κ) and C ← SE.Enc(K, s). Next, it com-

putes c
(0)
t := K · e(g1, g2)r2 , c(1)t := gr2 and c

(2)
t := (u′

∏�
i=1 u

ti
i )

r2 , where r2
U←

Zp. Then, it computes (ũ1, . . . , ũn) ← IDA.Share(1κ, Γ, C), (û
(0)
1 , . . . , û

(0)
n ) ←

SS.Share(1κ, Γ, c
(0)
t ), (û

(1)
1 , . . . , û

(1)
n ) ← IDA.Share(1κ, Γ, c

(1)
t ), and (û

(2)
1 , . . . , û

(2)
n )

← IDA.Share(1κ, Γ, c
(2)
t ). Finally, it outputs (u

(t)
1 , . . . , u

(t)
n ), where u

(t)
i := (ũi, û

(0)
i ,

û
(1)
i , û

(2)
i ) (1 ≤ i ≤ n).Recon : First, it computes C ← IDA.Recon(1κ, ũQ), c

(0)
t ←

SS.Recon(1κ, û
(0)
Q ), c

(1)
t ← IDA.Recon(1κ, û

(1)
Q ), and c

(2)
t ← IDA.Recon(1κ, û

(2)
Q ).

Then, it computes K = c
(0)
t

e(ts
(t)
2 ,c

(2)
t )

e(ts
(t)
1 ,c

(1)
t )

and s = SE.Dec(K,C).

Since Waters’s IBE meets IND-ID-CPA, then we immediately obtain the fol-
lowing theorem.

Theorem 2. Let q be the number of queries and ε be an upper bound of the
advantage of an adversary in IND-ID-CPA game of Waters’s IBE. If given SE
Φ is ε′-FTG-CPA secure and (k, n)-SS Π1 is (k, n)-PSS, then the resulting (k, n)-
TR-CSS Ψ in the above construction is (qt, δ1, δ2)-(k, n)-TR-CSS, where qt = q,
δ1 ≤ ε′ and δ2 ≤ ε′ + 2ε.

Then, the share size of the above construction of (k, n)-TR-CSS is given by

|u(t)i | = λ
k + |K|+ 2|G|

k , where |G| denotes the length of the element of G. Namely,
we can achieve the share size which is close to that of Krawczyk’s CSS when k
is sufficiently large. Moreover, Waters’s IBE is a simple, elegant and efficient
construction under the standard assumption. Hence, in the sense of the share-
overhead compared with Krawczyk’s CSS, we can say that this construction is
almost optimal.

3.4 Application to Construction of Threshold Encryption and
Multiple Encryption with Timed-Release Functionality

TR-CSS can provide threshold encryption [5] with timed-release functionality
(TR-TE for short). Since Dodis and Katz showed that multiple encryption can
be transformed to threshold encryption [6] and multiple encryption has many
other applications, we first consider multiple encryption with timed-release func-
tionality (TR-ME). In [6], multiple encryption is constructed from n PKEs, one-
time signature and (k, n)-CSS. We can construct TR-ME by replacing (k, n)-CSS
with (k, n)-TR-CSS in the above construction. This construction is more efficient
than a construction by replacing PKEs with TR-PKEs. Moreover, TR-ME from
(k, n)-TR-CSS can realize a combining algorithm with timed-release functional-
ity, whereas TR-ME from TR-PKE can realize a partial decryption algorithm
with timed-release functionality. Considering a scenario such that each secret
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key of TR-ME is co-located in different locations, the former has more suit-
able timed-release functionality than the latter. In addition, TR-ME can be also
transformed to TR-TE as in the case of multiple encryption, since timed-release
functionality have little or no effect on traditional security of multiple encryption
and threshold encryption. Due to space limitation of this paper, we will explain
the above results in details in a full version of this paper. Furthermore, we expect
that TR-CSS can be used in various applications of multiple encryption.
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Abstract. We propose modifications of SIGMA key exchange protocol
that provide the deniability property. Our proposition, based on ring
signatures, provide the possibility that a single party alone can produce
a simulated transcripts of the protocol without the peer participation.
Moreover we strengthen the SIGMA resulting session keys by additional
using of long-term keys in the Diffie-Hellman key exchange phase of the
protocol. Our proposition preserves the modular construction of the pro-
tocol, and does not change the number of the protocol rounds.

Keywords: authentication, key exchange, deniability, simultability, pri-
vacy, AKE protocol.

1 Introduction

In this paper we propose some modifications to SIGMA - Authenticated Key Ex-
change (AKE) protocol - that provide the deniability property, and strengthen
the security of the resulting session keys. AKE protocols allow parties mutually
identify themselves in order to establish a secretly share encryption key, used
to secure subsequent communication. SIGMA family of key exchange protocols
from IPsec [1] and the Internet Key Exchange (IKE) standards [2] is an elegant
example of AKE modular construction, that use cryptographic primitives: signa-
tures, message authentication codes, and pseudorandom functions, in such a way
that security of the established session key can be proved formally, provided that
underlying primitives are secure. However the signatures in SIGMA transcripts
may be used as undeniable proofs for third parties (other than those running
the protocol) that the communication with the signers took place. This in some
scenarios, could be regarded as a drawback. The deniability property for AKE
protocols guarantees that parties still can mutually identify themselves, but the
transcript of the protocol is not a proof that parties partake in the protocol
execution. Due to undeniable character of regular signatures in SIGMA, only a
different context of its deniability was studied in [3], where it was shown that
SIGMA is partially independent - so called peer-independent, i.e.: parties cannot
deny their participation in the protocol, but those, which sign their messages
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first, can deny their peer identity. Therefore, in this paper we take another ap-
proach, suggested in [3], for transforming the regular SIGMA into its deniable
version, by replacing regular signatures with ring signatures. Another aspect of
SIGMA analysed in the paper regards the security of the session key established
via protocol execution. SIGMA is proven to be secure in the Canetti-Crawczyk
(CK) model [4] assuming the ephemeral keys were not compromised. However
there are possible scenarios in which the ephemeral keys are leaked to the adver-
sary, e.g. (via badly implemented pseudorandom generators). Thus we strengthen
the session key security via long term static keys, preserving at the same time
compatibility with original SIGMA. Our contribution in this short paper is the
following:
– We extend the deniability notion model from [3] to capture the possibility of

a distinguisher algorithm to obtain the secret keys of parties. The knowledge
of those keys can change the distinguisher’s view, and influence its decisions.

– We propose a modified 3-round SIGMA, which uses ring signatures to pro-
vide the deniability (in our stronger model) for the protocol initiator. Simi-
larly, propose a modified 4-round SIGMA, which provides the deniability for
the protocol responder. Therefore we complement the results from [3], for
3-round and 4-round versions of SIGMA.

– We strengthen the SIGMA resulting session key by additional using of long
term certified keys in the Diffie-Hellman (DH) key exchange phase of the
protocol. We provide a security discussion in our slightly extended model of
CK [4], which additionally allows the adversary to query for ephemeral keys.

– Our extensions can be done optionally by the communicating parties pro-
viding compatibility with original SIGMA (unlike other deniable protocols
e.g. SKEME [5]).

2 Building Blocks and Background

Presented AKE protocols are based on Diffie-Hellman (DH) key exchange, so
we assume that corresponding computations are done within a group G = 〈g〉
of prime order q, where computational Diffie-Hellman assumption (CDH) holds.
We follow the general notation from [6]. Let I and R be two peer parties of
the key exchange protocol, then: (skI , pkI) and (skR, pkR) denotes pairs of long-
term secret/public keys of I and R respectively, randomly chosen according to
the key generating algorithm KGEN; SIGskI (m) denotes a signature ofm computed
by the means of a secret key skI of I; PRF is a pseudo-random function. MACk(m)
denotes a message authentication code of m computed by the means of a key
k. Moreover RSIGskI ,{pkI ,pkR}(m) denotes a ring signature of m computed by the
means of a secret key skI of I, and verifiable with public keys {pkI , pkR} of
parties I and R (we further describe ring signatures in Section 2.2).

2.1 Review of SIGMA Protocol

Let us briefly review the SIGMA protocol - the 3-round version denoted as Σ0

in [6]. The parties: an initiator I, and a responder R exchange messages (build
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on top of a predefined secure building blocks: signature schema SIG, message
authentication code MAC, and pseudorandom function PRF), in order to identify
themselves and to establish a secret session key.

The protocol messages for 3-round version of SIGMA:

M1 (I → R): s, gx

M2 (I ← R): s, gy, IDR, SIGskR(”1”, s, g
x, gy), MACk1(”1”, s, IDR)

M3 (I → R): s, IDI , SIGskI (”0”, s, g
x, gy), MACk1(”0”, s, IDI)

The protocol steps:

1. An initiator I chooses a session id s. Picks at random x ←$ Zq. Computes
ephemeral DH public key gx. Sends s, gx in Message 1 to a responder party.

2. The responder R picks at random y ←$ Zq. Computes ephemeral DH public
key gy. Computes a key (gx)y = gxy. Derives two keys k0 = PRFgxy (0), and
k1 = PRFgxy (1). Erases y, gxy from its memory. Computes MACk1(”1”, s, IDR),
and SIGskR(”1”, s, g

x, gy). Sends the session id s, its own identifier IDR, the DH
public key gy, the signature, and the mac in the message (”M2”) to I .

3. I computes the key (gy)x = gxy. Derives k0 = PRFgxy (0), and k1 = PRFgxy (1).
Erases y, gxy from its memory. Verifies MACk1(”1”, s, IDR). Retrieves the public
key of the party identified by IDR. Verifies SIGskR(”1”, s, g

x, gy). If one of the
above verifications fails, I aborts the session and outputs ”failure”. Otherwise
I computes MACk1(”0”, s, IDI), and SIGskI (”0”, s, g

x, gy). Sends s, IDI , the
signature, and the mac in the message (”M3”) to R. I completes the session
with public output (IDI , s, IDR) and the secret session key k0.

4. R verifies MACk1(”0”, s, IDI). Retrieves the public key pkI of the party iden-
tified by IDI . Verifies the signature SIGskI (”0”, s, g

x, gy). If one of the above
verifications fails, R aborts the session and outputs ”failure”. Otherwise R
completes the session with public output (IDR, s, IDI) and the session key k0.

As it was shown in [3], the protocol can be only considered as partially de-
niable for the responder, because his signature is produced before seeing the
identity of the initiator. The responder cannot deny his participation in the pro-
tocol, however he can deny its peer identity. Similarly, partial deniability for the
initiator was shown in [3] for 4-round version of SIGMA.

The protocol messages for 4-round version of SIGMA:

M1 (I → R): s, gx

M2 (I ← R): s, gy

M3 (I → R): s, IDI , SIGskI (”0”, s, g
x, gy), MACk1(”0”, s, IDI)

M4 (I ← R): s, IDR, SIGskR(”1”, s, g
x, gy), MACk1(”1”, s, IDR)

2.2 Review of Ring Signatures

Definition 1. A ring signatures RING is defined as a 4-tuple of the following
procedures: (STR,KGEN,RSIG,RVER): STR – structure generation – is a random-
ized algorithm that takes a security parameter ξ, creates an algebraic structure
G. KGEN – key generation – is a randomized algorithm that takes an algebraic
structure G, and produces a pair (sk, pk) over G interpreted as private/public
keys. RSIG – signing procedure – is a randomized algorithm that takes a message
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m, the secret key skj, and the set of public keys pk = {pk1, . . . , pkn}. It returns
a signature σ. We write σ ← RSIGskj ,pk(m). RVER – signature verification – is a
deterministic algorithm that takes a message m, a signature σ for m, and the
set of public keys pk. It returns a bit: 1 or 0 to indicate whether the signature σ
is valid, i.e. someone having a public key in a set pk indicated by σ has signed
m. We write d← RVER(m,σ, pk).

We assume that the ring schema is secure RING in the same sense in which SIG

is secure, i.e. no forger without the secret key should produce a verifiable ring
signature in the chosen-message scenario.

We define the anonymity of ring signatures by the game ExpAnon between
a challenger C and a distinguisher algorithm D. The challenger C setups the
system, knows all secret keys {sk1, . . . skn} and corresponding public keys Ω =
{pk1, . . . pkn} of all users {u1, . . . un}. We analyze the strongest adversary pos-
sible, which knows all the private keys of the users.

Experiment ExpAnon

1. D is given all private and public keys. D choses a ring, which is a subset Y ⊂ Ω.
2. D choses two public keys from Y (say pk0 and pk1), and a test message

m (this message could be the same or different from messages from query
stage). The challenger C draws a bit b at random, and creates a signature
σb = RSIGskb,Y (m). The signature σb is given to D.

3. D outputs a bit b̂.

We say that D wins in the experiment if b = b̂.

Definition 2. We define Adv(D) = |Pr[D(σ1) = 1] - Pr[D(σ0) = 1]| as the
advantage of D in ExpAnon. We say that the ring signatures is anonymous if the
advantage Adv(D) is negligible.

In this definition the adversary knows all parameters, including secrets, which
should not help him in winning in ExpAnon. The only unknown is the bit b drawn
in step 2).

3 Proposed Deniable Versions of SIGMA Protocol

In order to make SIGMA protocol deniable we observe the following: Suppose
we have two users with the following roles: a signer us, and a verifier uv. Let the
signer creates the ring signature σ = RSIGsks,{pks,pkv}(m) over the ring consisted
of both the signer us, and the verifier uv. The verifier uv can check the validity
of the resulting signature, and is convinced that it was really the signer us who
produced σ, hence the ring {pks, pkv} without element pkv consists with only
one public key pks belonging to the signer. Note that for the external observer
the resulting ring signature σ, validated by both public keys, is anonymous in
the sense of Definition 2.

In order to strengthen the session key security we assume that the ring signa-
ture scheme used in the protocol is defined in the same group G, in which DH
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key exchange computations of the protocol are done (we propose to use the ring
signature scheme from [7] which is unconditionally anonymous even if signing
keys are leaked). Thus we assume that each pair of secret/public keys (sk, pk) is
of the form (sk, gsk). For simplicity we denote by (skI , g

skI ), (skR, g
skR) the pairs

of secret/public keys of the parties I and R respectively.

3.1 Initiator Deniability - Detailed Description

The protocol messages:

M1 (I → R): s, gskIx

M2 (I ← R): s, gskRy , IDR, SIGskR (”1”, s, gskIx, gskRy), MACk1(”1”, s, IDR)

M3 (I → R): s, IDI , RSIGskI ,{pkI ,pkR}(”0”, s, g
skIx, gskRy), MACk1(”0”, s, IDI)

The protocol steps are analogous the the original 3-round SIGMA protocol.
Therefore we highlight only the differences.

1. M1, M2: Parties exchange DH keys gskIx and gskRy and the responder com-
mits to its identity with a regular signature SIG.

2. M3: The initiator commits to his identity with a ring signature RSIG.

3.2 Responder Deniability - Detailed Description

Here we propose the modified 4-round SIGMA protocol, which provides the
deniability property to the responder only.

The protocol messages:

M1 (I → R): s, gskIx

M2 (I ← R): s, gskRy

M3 (I → R): s, IDI , SIGskI (”0”, s, g
skIx, gskRy), MACk1(”0”, s, IDI)

M4 (I ← R): s, IDR, RSIGskR,{pkI ,pkR}(”1”, s, g
skIx, gskRy), MACk1(”1”, s, IDR)

1. M1, M2: Parties exchange DH keys,
2. M3: the initiator commits to its identity by regular signature SIG,
3. M4: the responder commits to its identity with ring signature RSIG.

4 Extended Deniability Model

We extend the formall definition of deniability property from [3] which follows
the general idea from [8]. Let π be a key-exchange protocol defined by a key
generation algorithm KGEN and interactive machines I and R. Consider an ad-
versary M which runs on input of a number of public keys pkpkpk = (pk1, . . . , pk�),
randomly chosen according to the key generating algorithm KGEN, and some
auxiliary input aux. The adversary can run concurrently a number of executions
with the honest parties, some as an initiator, others as a responder. The view of
M consists of: its internal randomness, the transcript of the entire interaction,
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and the session keys computed in all the protocols in which M participated. We
denote this view as ViewM(pkpkpk, aux). In our definitions we separate the denia-
bility feature for the initiator and the responder. Note that in some scenario it
suffices to provide the possibility of denying for one party only, e.g. an initiator
– a client to some Internet service.

Definition 3. We say that (KGEN, I, R) is an Initiator-strongly-deniable key
exchange protocol with respect to the class AUX of auxiliary inputs if for any
adversary M in the role of the responder, for any input of public keys pkpkpk =
(pk1, . . . , pk�) and any auxiliary input aux ∈ AUX, there exists a simulator
SIMM in the role of the initiator that, running on the same inputs as M,
produces a simulated view which is indistinguishable from the real view of M.

That is, consider the following two probability distributions, denoted as R for
real, and S for simulated, where pkpkpk = (pk1, . . . , pk�) is the set of public keys of
the honest parties:

RI = [(ski, pki) ← KGEN(1n); (aux,pkpkpk,ViewI
M(pkpkpk, aux)]

SI = [(ski, pki) ← KGEN(1n); (aux,pkpkpk, SIM I
M(pk, aux)]

then for all probabilistic poly-time machines Dist, secret keys sksksk = (sk1, . . ., sk�),
skM and all aux ∈ AUX

|Prx∈RI [Dist(x, sksksk, skM) = 1]| − |Prx∈SI [Dist(x, sksksk, skM) = 1]| ≤ negl(n).

Definition 4. We say that (KGEN, I, R) is an Responder-strongly-deniable key
exchange protocol with respect to the class AUX of auxiliary inputs if for any
adversary M in the role of the initiator, for any input of public keys pkpkpk =
(pk1, . . . , pk�) and any auxiliary input aux ∈ AUX, there exists a simulator
SIMM in the role of the responder that, running on the same inputs as M,
produces a simulated view which is indistinguishable from the real view of M.

That is, consider the following two probability distributions, denoted as R for
real, and S for simulated, where pkpkpk = (pk1, . . . , pk�) is the set of public keys of
the honest parties:

RR = [(ski, pki) ← KGEN(1n); (aux,pkpkpk,ViewR
M(pkpkpk, aux)]

SR = [(ski, pki) ← KGEN(1n); (aux,pkpkpk, SIMR
M(pk, aux)]

then for all probabilistic poly-time machines Dist, secret keys sksksk = (sk1, . . ., sk�),
skM and all aux ∈ AUX

|Prx∈RR [Dist(x, sksksk, skM) = 1]| − |Prx∈SR [Dist(x, sksksk, skM) = 1]| ≤ negl(n).

In the above definitions we propose the stronger notion of deniability: the dis-
tinguisher algorithm Dist takes as an input not only the distribution instance x
but is also given the set of secret keys, including the one of the denying party,
and the one of the adversary M. We want to stress that these keys, could really
change the way the Dist decides. Note, that in our approach we propose to use
the ring signatures from [7] (which are unconditionally anonymous) as a method
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for providing deniability. Now, if we use ring signatures which anonymity breaks
on signing key leakages, e.g. the scheme from [9] based on the proof of equation
of discrete logarithms, then the resulting AKE protocol is only deniable in the
sense of definition 1 from [3], but is not deniable in the sense of our stronger
definitions of deniability.

Theorem 1. The modified 3-round SIGMA protocol proposed in Section 3.1 is
initiator-strongly-deniable in the sense of Definition 3.

Proof. We build the simulator for some identity IDI with the public key pkI . The
simulator runs on the same input as M, according to the protocol till the step 3,
where it computes the message M3’: s, IDI , RSIGskM,{pkI ,pkM}(”0”, s, pk

x
I , g

skMy),

MACk1(”0”, s, IDI), instead of the regular message M3: s, IDI , RSIGskI ,{pkI ,pkM}(”0”,
s, gskIx, gskMy), MACk1(”0”, s, IDI). Note that the simulator easily computes k0, k1
because it computes gskIxskMy as pkxskMy

I . Now the only difference between dis-
tributions SI and RI are signatures: RSIGskM,{pkI ,pkM}(”0”, s, g

skIx, gskMy) vs.

RSIGskI ,{pkI ,pkM}(”0”, s, g
skIx, gskMy). So, if the distinguisher Dist distinguishes

between the two distributions with non negligible probability, it could be imme-
diately used as the distinguisher D to break the anonymity of the underlying
ring signature scheme. ��

Theorem 2. The modified 4-round SIGMA protocol proposed in Section 3.2 is
responder-strongly-deniable in sense of Definition 4.

Due to space constrains we omit the rest of proofs. We will present them in the
full version of the paper.

5 Extended Session Key Security

In order to strengthen security of the session key we slightly modify the CK
model (in the manner of eCK from [10]). We add two additional queries to
the CK model from [4]: Ephemeral Key Reveal(Pi, s) - reveals the ephemeral
secret key of the party. Long-Term Key Reveal(Pi, s) - reveals the static long-
term secret of the party. Note, that we are unable to prove the security of the
proposed modifications in eCK, hence the modified deniable protocol with ring
signatures, is not immune to key-compromise impersonation (KCI) attacks in
which the adversary reveals a long-term secret key of a party and then imper-
sonates others to this party. Indeed in the proposed modified deniable version
of SIGMA any initiator I knowing the long term secret key of the responder
can produce ring signature RSIGskR,{pkA,pkR}(”0”, s, pkA

x, gskRy) which is indistin-

guishable from RSIGskA,{pkA,pkR}(”0”, s, pkA
x, gskRy), thus making the responder

party R believe it communicates with the party A. To capture this, we modify
the security definition from [4] to cover uncorrupted parties for which Long-Term
Key Reveal queries were not issued. We subsequently modify the definition of the
exposed session. We say that a session s is exposed if the adversary A makes
Long-Term Key Reveal(P, s) query for a party in the session s. We have:
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Definition 5. A protocol π provides the session key security if for all adver-
saries A the following properties holds

P1 if two uncorrupted parties Pi and Pj, for which Long-Term Key Reveal
queries were not issued, complete matching session and Os,Pi and Os,Pj with
output (Pi, s, Pj) and (Pj , s, Pi) respectively then the session key K output
in these sessions is the same except with a negligible probability.

P2 A succeeds in distinguishing the output from its test query for not exposed
sessions with probability not more than 1

2 plus a negligible fraction.

Theorem 3. Under the DDH assumption in G, and assuming the security of
the underlying cryptographic functions SIG, RSIG, MAC, PRF the proposed 3-round
protocol from section 3.1 is secure in the sense of definition 5.

Theorem 4. Under the DDH assumption in G, and assuming the security of
the underlying cryptographic functions SIG, RSIG, MAC, PRF the proposed 4-round
protocol from section 3.2 is secure in the sense of definition 5.

References

1. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. RFC 2401
(Proposed Standard,) Obsoleted by RFC 4301, updated by RFC 3168 (November
1998)

2. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). RFC 2409 (Proposed
Standard), Obsoleted by RFC 4306, updated by RFC 4109 (November 1998)

3. Raimondo, M.D., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference
on Computer and Communications Security, pp. 400–409. ACM (2006)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

5. Krawczyk, H.: Skeme: a versatile secure key exchange mechanism for internet.
In: Ellis, J.T., Neuman, B.C., Balenson, D.M. (eds.) NDSS, pp. 114–127. IEEE
Computer Society (1996)

6. Canetti, R., Krawczyk, H.: Security analysis of ike’s signature-based key-exchange
protocol. IACR Cryptology ePrint Archive 2002, 120 (2002)
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Abstract. Complete robustness (CROB) was proposed to guarantee
that for a public key encryption scheme, decryption attempts will fail
with high probability if the wrong decryption key is used to decrypt
a ciphertext, even if the keys are maliciously generated by the adver-
sary. In this paper, we extend the notion of complete robustness to the
identity-based setting. We firstly formalize the CROB for identity-based
encryption, and present a generic construction achieving CROB from an
arbitrary identity-based encryption scheme. After that, we investigate
whether there exist some kind of relations between CROB and related-
key attack (RKA) security for the case of identity-based encryption. We
conclude that these two notions (CROB and RKA security) are sep-
arable for identity-based encryption, but with a slight modification to
our generic construction, an identity-based encryption scheme offering
complete robustness with security against related-key attacks can be
constructed from any identity-based encryption scheme.

Keywords: Identity-based encryption, CROB, RKA security.

1 Introduction

A crucial security requirement of encryption is providing privacy of the en-
crypted data, i.e. data privacy. To capture various requirements of data pri-
vacy,formalizations like indistinguishability or non-malleability [13] under either
chosen plaintext attacks (CPA) or chosen ciphertext attacks (CCA) [15] are pre-
sented. In recent years, user privacy has become an equally relevant concern,
which leads to anonymity, to be another pursued goal in encryption schemes.
Anonymity, also known as key privacy in public-key encryption, was introduced
in [4], meaning that a ciphertext does not leak any information about the public
key (or user identity) under which it was created, thereby making the commu-
nication anonymous. Under this scenario, a fundamental question was raised in
[1]: how does a legal user know whether an anonymous ciphertext is intended
for him or not? Furthermore, what will happen if a legal user uses its decryption
key on a ciphertext was not created for it? To address this issue, robustness was
put forward in [1], which guarantees that decryption fails with high possibility
if the “wrong” decryption key is used.
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Robust Encryption. Robustness (ROB), which has been implicitly applied to
applications such as bid privacy [20], consistency in searchable encryption [11],
anonymous broadcast encryption [3,17], and anonymous hybrid encryption [19],
ensures the property that a ciphertext cannot be correctly decrypted under two
different decryption keys. [1] detailed the formal definition of robustness, which
introduced two kinds of robustness in encryption: weak robustness (WROB)
and strong robustness (SROB), as well as the generic construction to obtain
them under the setting called general encryption, which includes both public-
key encryption (PKE) and identity-based encryption (IBE). Later, a stronger
notion called complete robustness (CROB) in [14] was put forward to provide
robustness guarantees in more challenging settings such as the encryption of
key-dependent messages [10] or messages encrypted under related keys [6], where
the adversary should not be able to find “collisions” in the scheme beyond those
which are already implied by the correctness property of the scheme. Also, [14]
introduced other robustness notions and explored their relationships.

RKA Security. In practice, an attacker might induce modifications in a
hardware-stored key by fault injection [9] or other means. When the attacker
can subsequently observe the outcome of the cryptographic primitive under this
modified key, we have a related-key attack (RKA). RKA was first conceived as
tools for the cryptanalysis of blockciphers [16,8], but the ability of attackers to
modify keys stored in memory via tampering [12,9] raises concerns that RKA
can actually be mounted to a master key of identity-based encryption, a signing
key of a certificate authority, or a decryption key, making RKA security impor-
tant for a wide variety of primitives. Efforts to achieve RKA security have been
made on a variety of cryptographic primitives [18,2,5,21,7] such as identity-based
encryption, public-key encryption, symmetric encryption, signature.

In this paper, the primitive we target is identity-based encryption, of which
the RKA security was firstly defined in [5], and we will consider it under chosen
ciphertext attack (CCA) security model, called CC-RKA.

Our Contributions. We give the definition of complete robustness in the
identity-based setting. In a CROB security game under public-key setting [14],
the honest key generation requirement is removed and it is viewed in the term
of the behavior of the encryption of decryption algorithms with respect to each
other. Roughly speaking, in CROB the adversary should not be able to find
“collisions” in the scheme beyond those already implied by the correctness of
the scheme. In identity-based encryption, the identities (like the public keys in
public-key encryption) are already chosen maliciously, so the natural extension
of considering complete robustness would allow the adversary to also choose
the master keys maliciously. Specifically, we require that in completely robust
identity-based encryption the adversary should not be able to “explain” a cipher-
text C of its choice as an encryption under: (1) with the same master keys, two
different maliciously generated decryption keys DK[id0], DK[id1] by revealing
the plaintext for id0 and the decryption key DK[id1] for id1; or (2) with the dif-
ferent master keys, two different maliciously generated decryption keys DK[id0],
DK’[id1] by revealing the plaintext for id0 and the decryption key DK’[id1] for
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id1 or two different maliciously generated decryption keys DK[id0], DK’[id0] by
revealing the plaintext for id0 and the decryption key DK’[id0] for id0. The rea-
son we consider the second case is that in practice, users may apply decryption
keys from different Private Key Generators using the same or different identities,
and later decrypt the incoming ciphertexts with them.

Besides, we show that CROB for identity-based encryption does not imply
security against related key attacks. In [14], it is implied that there exist some
relations between CROB and RKA security under public-key setting. We try to
explore whether such implication exists in IBE as well, and then we found that
in identity-based setting CROB does not inherit this property. To sustain our
claim, we demonstrate that an CROB secure IBE scheme could fail to achieve
RKA security under chosen ciphertext attacks.

Lastly, we present a generic construction of IBE scheme that achieves both
CROB-CCA security and CC-RKA security. Previously, we have discussed that
a CROB secure IBE scheme does not imply RKA security. Here we start from
a generic transform that takes a CCA secure IBE scheme and returns a CROB-
CCA scheme, followed by modifications to allow this generic construction to
provide CC-RKA security as well.

2 Preliminaries

In this section, we recall some basic notions and definitions about identity-based
encryption schemes and commitment schemes.

2.1 Identity-Based Encryption Scheme

An identity-based encryption scheme IBE is composed of the following four algo-
rithms [5]: parameter generation algorithm PG, master key generation algorithm
MPG, key generation algorithm KG, encryption algorithm Enc, and decryption
algorithm Dec. (Please see the full version of this paper for details.)

AI-CCA Security. Following the definition described in [1], we briefly revisit
the game of AI-CCA security, which models the usual indistinguishability and
anonymity under chosen ciphertext attacks (IND-CCA and ANON-CCA) of an
IBE scheme IBE in a single game. (Please see the full version of this paper for
details.)

2.2 Commitment Scheme

A commitment scheme CME is composed of the following three algorithms [5]:
parameter generation algorithm CPG, committal algorithm Com and determin-
istic verification algorithm Ver. (Please see the full version of this paper for
details.)

3 Modeling RKA Security and Robustness

In this section, we briefly revisit the security models of related-key attack security
and three kinds of robustness security, respectively.



Complete Robustness in Identity-Based Encryption 345

3.1 RKA Security

Related-Key Deriving Functions. Let K be the key space. Our definition
follows the notion of related-key deriving (RKD) functions given in [6]. (Please
see the full version of this paper for this part.)

Restricted related-key deriving functions. We define a few classes of functions
over the key space K. A set Φc = {φc}c∈K with φc(dk) = c is a set of constant
functions. A set Φa = {φa}a∈K with φa(dk) = a ∗ dk is a set of linear functions
where ∗ is multiplication or addition. A set Φaff = {φa,b}a,b∈K with φa,b(dk) =
a ∗ dk + b is a set of affine functions where ∗ is multiplication. A set Φpoly(d) =
{φq}q∈Kd[x] with φq(dk) = q(dk) is a set of polynomial functions, where q ranges
over the set Kd[x] of polynomials over K of degree at most d.

CC-RKA Security. On the basis of the games describing RKA security under
the chosen ciphertext attacks in [5], we define the games of CC-RKA security
for an identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec) in
the full version of this paper.

3.2 Robustness

As in identity-based setting, the identities are already chosen by the adversary,
we extend it to also allow the adversary to choose master keys maliciously. Since
it is possible that the adversary chooses the same master keys for two distinct
identities, in the Finalize procedure we divide the outputs of the adversary into
two cases. These modifications result in our complete robustness under chosen
ciphertext attacks (CROB-CCA), which we formalize under an identity-based
encryption scheme IBE in Fig.1.

The CROB advantage of an adversary, in this case, is AdvCROB-CCA
IBE =

Pr[CROB-CCAA
IBE ⇒ true].

proc Initialize proc Finalize()

List ← ∅ For each pair (mpk0, id0, M0, C0),
pars ← PG(1λ) (mpk1, id1, M1, C1) ∈ List
Return pars If (mpk0 = mpk1)
proc Enc(mpk, id, M , r) If (C0 = C1 �= ⊥) ∧ (id0 �= id1) ∧
C ← Enc(pars, mpk, id, M ; r) (M0 �= ⊥∧M1 �= ⊥) return true
List ← (mpk, id, M , C) ∪ List If (mpk0 �= mpk1)
proc Dec(mpk, id, DK[id], C) If (C0 = C1 �= ⊥) ∧ (M0 �= ⊥ ∧M1 �= ⊥)

M ← Dec(pars, mpk, id, DK[id], C) return true
List ← (mpk, id, M , C) ∪ List Return false

Fig. 1. Game defining CROB-CCA for IBE = (PG, MPG, KG, Enc, Dec)
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4 A Framework for CROB-Secure IBE Schemes

In this section, we describe a framework for creating completely robust IBE
schemes, and demonstrate that it cannot resist related-key attacks.

4.1 Generic Construction

Given an identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec)
and a commitment scheme CMT = (CPG, Com, Ver), we transform them to an
identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec) of which
the algorithms are depicted in Fig.2 without the first line and the last line in
Algorithm Dec(Pars, mpk, id, DK[id], c)).

4.2 Complete Robustness

Theorem 1. Let IBE = (PG, MPG, KG, Enc, Dec) be a secure identity-based
encryption scheme, and let IBE = (PG, MPG, KG, Enc, Dec) be the identity-
based encryption scheme resulting from applying the complete robustness trans-
form to IBE and a commitment scheme CMT = (CPG, Com, Ver). Then (1)
CROB-CCA: Let A be an adversary algorithm against the CROB-CCA security
of IBE. Then there is an adversary algorithm B against the the biding secu-
rity of CMT such that AdvCROB-CCA

IBE (A) ≤ AdvBinding
CMT (B). (2) IBE cannot

resist related-key attacks: Let A be an adversary algorithm against the CC-RKA
security of IBE. Then algorithm A wins in the CC-RKA security game.

Proof. The proof is straightforward. Please see the full version of this paper for
the details.

5 A Framework for RKA-Secure and Completely Robust
IBE Schemes

Here, we present a generic construction for creating completely robust IBE
schemes that can resist related-key attacks.

5.1 Construction

Let Verify be an algorithm checking the validity of DK[id] for id, which firstly
runs Enc(pars, mpk, id, m) under a randomly chosen message m to generate a
ciphertext C, then decrypts C with DK[id]. If Dec(pars, mpk, id, DK[id], C) =
m, it returns 1. Actually, Verify(pars, mpk, id, DK[id]) implies the correctness
of an identity-based encryption scheme.

Given an identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec)
and a commitment scheme CMT = (CPG, Com, Ver), we transform them to an
identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec) of which
the algorithms are depicted in Fig.2.

Note that it is required that mpk of id||mpk in KG(pars, mpk, msk, id||mpk)
should be recomputed with the corresponding private master key msk.
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Algorithm PG(1λ) Algorithm KG(Pars, mpk, msk, id)

pars ← PG(1λ) DK[id] ← KG(pars, mpk, msk, id||mpk)

cpars ← CPG(1λ) Return (id, DK[id])

Return Pars = (pars, cpars) Algorithm Dec(Pars, mpk, id, DK[id], c)

Algorithm MPG(pars) If Verify(pars, mpk, id, DK[id]) = 1 then
(msk, mpk) ← MPG(pars) M ← Dec(pars, mpk, id||mpk, DK[id], C)
Return (msk, mpk) If M = ⊥ then return ⊥
Algorithm Enc(Pars, mpk, id, M) M ||dec ← M
(com, dec) ← Com(cpars, id||mpk) If (Ver(cpars, id||mpk, com, dec) = 1)

C ← Enc(pars, mpk, id||mpk, M ||dec) then return M
Return c = (C, com) Else return ⊥

Else return ⊥

Fig. 2. An identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec) re-
sulting from an identity-based encryption scheme IBE = (PG, MPG, KG, Enc, Dec)
and a commitment scheme CMT = (CPG, Com, Ver)

5.2 Security Proof

Theorem 2. Let IBE = (PG, MPG, KG, Enc, Dec) be a secure identity-based
encryption scheme, and let IBE = (PG, MPG, KG, Enc, Dec) be the identity-
based encryption scheme resulting from applying the complete robustness trans-
form to IBE and a commitment scheme CMT = (CPG, Com, Ver). Then
(1) AI-CCA: Let A be an adversary algorithm against the AI-CCA security
of IBE. Then there is an adversary algorithm W against the WROB-CCA secu-
rity of IBE, an adversary algorithm H against the the hiding security of CMT ,
and an adversary algorithm B against the AI-CCA security of IBE such that
AdvAI-CCA

IBE (A) ≤ 2·AdvWROB-CCA
IBE (W) + 2·AdvHiding

CMT (H) + 3·AdvAI-CCA
IBE (B).

(2) CROB-CCA: Let A be an adversary algorithm against the CROB-CCA se-
curity of IBE. Then there is an adversary algorithm B against the the biding
security of CMT such that AdvCROB-CCA

IBE (A) ≤ AdvBinding
CMT (B). (3) CC-RKA:

Let A be an adversary algorithm against the CC-RKA security of IBE under the
restricted RKD functions. Then there is an adversary algorithm I against the
the AI-CCA security of PKE such that AdvCC-RKA

IBE (A) ≤ AdvAI-CCA
IBE (I).

Proof of Part 1 of Theorem 2. This part is the same as the first part of
Theorem 4.2 in [1], so we omit the proof here. For more details, please see that
in [1]. Note that it was observed in [14] that under public-key encryption, the
weak robustness assumption can be removed with a slight modification to the
original transform in [1].

Proof of Part 2 of Theorem 2. The same as that in Theorem 1.

Proof of Part 3 of Theorem 2. The proof proceeds with a sequence of
games. We start with Game 0 which is the real game, because complete robust-
ness makes more sense in the anonymous background, we modify the original
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CC-RKA security game according to our construction as showed in the full ver-
sion of this paper.

Game 1 is the same as Game 0 with the difference in the Dec procedure
that we modify “If Verify(pars, mpk, id, DK′[id]) = 1 then” to “If DK′[id] =
DK[id] then”. Due to the correctness of the Verify algorithm, Verify(pars, mpk,
id, DK′[id]) will fail with high probability if DK′[id] �= DK[id]. From this point
of view, related-key decryption queries can be reduced to normal decryption
queries. Game 2 to Game 5 are the same as Game 1 with the difference in the
description of the Dec procedure, which can be found in Figure 12 in [1] (See
proc Dec((C, com), id) of G1, G2, G3, G4). Game 6 and Game 7 are exactly
like Game 5 with the difference in the decryption of the LR procedure, which
can be found in Figure 12 in [1] (See proc LR(id∗0, id

∗
1, M

∗
0, M

∗
1) of G5, G6). For

the detailed analysis of Game 2 to Game 7, please see [1]. As a result, we have
AdvCC-RKA

IBE (A) ≤ AdvAI-CCA
IBE (I).

6 Conclusions

Complete robustness was firstly achieved in [14] in public-key encryption provid-
ing robustness in the more challenging environment such as messages encrypted
under related-key. However, robustness was formalized in [1] to guarantee that
in both public-key and identity-based encryption, decryption attempts fail with
high probability if the wrong decryption key is used to decrypt a ciphertext. Due
to this observation, in this paper, we extend the notion of complete robustness to
identity-based setting. After describing the security model of CROB in identity-
based encryption, we put forward a generic construction achieving CROB from
an arbitrary identity-based encryption scheme. Then we try to explore whether
CROB implies RKA security for identity-based encryption. Unfortunately, we
fail to find the existence of such kind of relationship for an underlying identity-
based encryption scheme. Nevertheless, with a slight modification to our generic
transform to achieve CROB from any identity-based encryption scheme, we can
achieve RKA security in completely robust identity-based encryption.
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