
Chapter 22
Bayesian Estimation of Birnbaum–Saunders
Log-Linear Model

Elizabeth González Patiño

Abstract The Birnbaum–Saunders (BS) distribution was derived to model failure
times of materials subjected to fluctuating stresses and strains. Motivated by appli-
cations in the characterizations of materials, in 1991 Rieck and Nedelman proposed
a log-linear model for the BS distribution. This model has many applications, for
instance, to compare the median time life of several populations or to assess the
effect of covariates on accelerated life testing. In addition to the model studied under
the classical approach, we considered Markov chain Monte Carlo (MCMC) and we
made an implementation in WinBUGS to get a Bayesian approach under noninfor-
mative priori distribution. Similar results for both classical and Bayesian approaches
were obtained. This implementation was also adapted for censoring and we assessed
the influence of different percentages of censored data.

22.1 Introduction

Motivated by problems in airplanes due to the development and growth of a domi-
nant crack, in 1969 Birnbaum and Saunders proposed the Birnbaum–Saunders (BS)
distribution [2]. It describes the failure time T when some kind of accumulating
damage D(t) exceeds a threshold ω, i.e.,

T = Inf{t : D(t) > ω}.
Let T be the time until the occurrence of the failure, then T is a BS random variable
if its distribution is

FT (t) = Φ
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, t > 0, and α,β > 0.
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The probability density function (PDF) is given by
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(22.1)

where μ, α, and β are, respectively, position, shape, and scale parameters. The
parameter β also corresponds to the median value of the distribution. The functions
Φ(x) and φ(x) are the standard normal cumulative distribution function (CDF) and
PDF.

If t = x − μ, we can write the PDF (22.1) as

f (t ;α,β) = t + β
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, t > 0, and α,β > 0.

In 1991, Rieck and Nedelman [6] were interested in an application in which the main
interest was to study the time of failure for a material subjected to different patterns
of cycling forces. In order to do so, they proposed a log-linear model for the BS
distribution. The model’s principle is based on the empirical law

ln (N ) = a + bx, (22.2)

where N is the number of cycles to failure of the specimen and x is either stress
range per cycle, strain range per cycle, or the work per cycle.

According to Rieck and Nedelman (see [6]), under some assumptions, since N

can be considered as a random variable, the Eq. (22.2) may be rewritten as

N = ea+bxδ, (22.3)

with δ ∼ BS(α, 1).
Thereby, a log-linear model with an additive random effect is obtained by taking

logarithm in (22.3),
log (N ) = a + bx + log (δ),

where log (δ) has sinh-normal (SHN) distribution, SHN(α, 1).
The SHN distribution for a random variable T has distribution function given by

FX(x) = Φ

(
2

α
sinh

(
x − γ

σ

))
, x ∈ R, and α, σ > 0,

where Φ(x) is the standard normal CDF. This distribution is symmetric around the
location parameter γ , is unimodal forα ≤ 2 and bimodal forα > 2, and the mean and
variance are given by E(Y ) = γ and var(Y ) = σ 2ω(α), where ω(α) is the variance
when σ = 1. Other properties of SHN distribution can be checked in Rieck [5].

The SHN distribution is also called log-Birnbaum–Sanders with parameters α

and γ , denoted as log-BS(α, γ ), due to the relationship between the SHN and BS
distribution [7], proved by Rieck et al. [6] in the following theorem.
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Theorem 1 Let T be a random variable such as T ∼ BS(α,β). Then Y = log (T )
has SHN distribution with shape, location, and scale parameter given, respectively,
by α > 0, γ = log (β) and σ = 2, thus, Y = log (T ) ∼ SHN (α, γ , 2) with function
probability density given by

f (y;α, γ ) = 1

α
√

2π
cosh
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2

)
exp
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α2
sinh2

(
y − γ

2

)}
.

Due to the importance of this model to accelerate life testing or to compare the
median lives of several populations, our purpose is to review it under a Bayesian
perspective.

In order to make inferences we use posterior distribution generated from simula-
tions by MCMC with WinBUGS. Since we are working on a Bayesian framework,
it does not need large sample properties.

Achcar and Martinez [1] made an exploration of Bayesian methods for this model
using a noninformative prior density for the parameters and found expressions for
the marginal posterior densities through Laplace’s methods for approximation of
integrals.

In this work, we use a parametric priori density function and construct the max-
imum likelihood function to make a simple implementation on WinBUGS. This
implementation was also adapted for censoring.

A life data set of 46 observations corresponding to the biaxial fatigue test of Brown
and Miller, developed in 1978 [3], is used to compare the estimation under classical
and Bayesian perspective.

22.1.1 Model

The generalization of Birnbaum–Saunders log-linear model is

Yi = x&
i β + εi , i = 1, · · ·, n, (22.4)

where

• Yi is the logarithm of the observed failure time Ti , {i = 1, · · ·, n}, Ti ∼ BS(αi ,βi)
and the distribution of Ti depends on p explanatory variables -xi = (xi1, · · ·, xip);

• β = (β1, · · ·,βp) is the vector of unknown parameters associated with the
explanatory variables;

• εi is the random error of the model with εi ∼ log-BS(α, 0), i.e., εi ∼ SHN(α, 0, 2),
{i = 1, · · ·, n}.
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22.2 Estimation

Rieck and Nedelman in [6] proposed point estimation of parameters of the model
(22.4) by maximum likelihood and least squares (LS). In this work, we consider
MCMC simulations to get posterior densities of parameters of interest.

22.2.1 Maximum Likelihood (ML)

Consider n independent observations y1, y2, · · · , yn under the model (22.4) , where
εi ∼ SHN(α, 0, 2). The likelihood function for ϕ = (β&,α)& is given by

L(ϕ; yi , xi) =
n∏

i=1
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(22.5)

The log likelihood function is expressed as

l(ϕ; yi , xi) ∝ −n ln α +
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Considering
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the expression (22.6) may be rewritten as
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The score functions for β and α are given respectively by
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From (22.7) it is possible to obtain an expression for the maximum likelihood
estimation (MLE) of α2 in terms of MLE vector β, given by

α̂2 = 4

n

n∑
i=1

sinh

(
yi − xi

&β̂

2

)
.

However, the MLE of β must be obtained numerically. The authors propose an iter-
ative procedure to obtain these estimators based on ordinary least squares estimators
(LSE).

22.2.2 Least Squares (LS)

According to Rieck and Nedelman in [6], the estimation by ordinary LS produces
explicit solutions for ϕ in (22.4). Although LS is not as efficient as ML, the estimates
are unbiased. The β estimate is highly efficient for small values of α.

In model (22.4), E[εi] = 0 and Var [εi] = 4ω(α). Since the observationsy1, · · ·, yn
are independent, Cov(εi , εj ) = 0 {i, j = 1, · · ·, n}, and so the best linear unbiased
estimator is

ϕ̂ = (X&X)−1X&Y,

with covariance matrix Cov(ϕ̂) = 4ω(α)(X&X)−1, and an unbiased estimator for

ω(α) is ω̂(α) = ∑n
i=1

(yi−X&
i β̂)2

4(n−p) .

22.2.3 Bayesian Approach

For the Bayesian approach, we assumed independent priors gamma density function
for the shape parameter, α ∼Gama(ξ0, δ0) and normal density function with mean
zero for the parameters of the linear predictor coefficients, βi ∼ N(0, σ 2

bj ), {j =
1, · · ·,p}. Thus, a priori density of ϕ is given by

π (ϕ) = π (α, β) ∝ αδ0−1 exp{−αξ0}
p∏

j=1

exp
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}
, j = 1, · · ·,p.

Combining this expression with the likelihood function (22.5), we obtain the posterior
density

π (ϕ|yi , xi) = π (α, β|yi , xi) ∝
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From (22.8), it is not simple to find the marginal posterior density for the model’s
parameters analytically. Notwithstanding, with WinBUGS, we may get the posterior
density simulated by MCMC.

In the case of one explanatory variable, μ = xi
&β = β0 + β1x, the posterior

density has the form

π (α,β0,β1|yi , xi) ∝
∏n

i=i
Wiα
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2σ 2
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2σ 2
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}
.

A possible implementation for this with priors α ∼ Gama(0.001, 0.001) and βi ∼
N(0, 100) {j = 1, 2} is given below.

model
{
c<-10
for(i in 1:n)
{
u[i]=b0+b1*x[i]
logver[i]<--log(a)+log(cosh((y[i]-u[i])/2))-(2/pow (a,2))*
pow(sinh((y[i]-u[i])/2),2)
zeros[i]<-0
aux[i]<--logver[i]+c
zeros[i]˜dpois(aux[i])
}
b0˜dnorm(0,0.01)
b1˜dnorm(0,0.01)
a˜dgamma(0.001,0.001)
}

Censored Data In the case where random censoring is observed, with δi the failure
indicator variable (δi = 1 for failure and δi = 0 for censoring) under the model
(22.4), the likelihood function in terms of Wi and Zi is given by

L(ϕ; yi , xi) =∝
n∏
i=i

[
Wi

2
exp

{
−Z2

i

2

}]δi
[1 − Φ(Zi)]

1−δi ,

whereΦ(.) is the standard normal CDF. Combining with the priorπ (ϕ), the posterior
density can be obtained:

π (ϕ|yi , xi) ∝
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Simulations of marginal posterior densities can be obtained in WingBUGS with
the following implementation (considering one explanatory variable).

model
{
c<-10
for(i in 1:n)
{
u[i]=b0+b1*x[i]
logver[i]<-delta[i]*(-log(a)+log(cosh((y[i]-u[i])/2))
-(2/pow(a,2))*pow(sinh((y[i]-u[i])/2),2))+
(1-delta[i])*log(1-phi(2/a*sinh((y[i]-u[i])/2)))
zeros[i]<-0
aux[i]<--logver[i]+c
zeros[i]˜dpois(aux[i])
}
b0˜dnorm(0,0.01)
b1˜dnorm(0,0.01)
a˜dgamma(0.001,0.001)
}

22.3 Application

A data set of 46 observations from Brown and Miller’s biaxial fatigue test (1978) [3]
was analyzed by Rieck and Nedelman [6] and has been reviewed.

In the test, cylindrical specimens were subjected to axial loads and torsion on
constant amplitude cycles to failure . The response variable is the number of cycles
to the occurrence of failure N and the explanatory variable is the work per cycle in
Mj/m

3. Hence, the interest is to model the number of cycles until failure.
Figure 22.1 shows an asymmetric behavior of response variable indicating that

a Birnbaum–Saunders regression model can be appropriate. Let ni be independent
random variables such as Ni ∼ BS(α,μi), {i = 1, · · ·, n}. From empirical laws,
consider the model

ln (μi) = β0 + β1 ln (Wi), i = 1, · · ·, 46,

where x = log (Wc) and Wc is the work per cycle.
The results of the model fitted under classical perspective are shown in

Table 22.1. The second column corresponds to the numeric solution from the
analytical derivatives using the package optim from R.

Table 22.2 corresponds to the results under the Bayesian framework by the
WinBUGS’ implementation, considering distributions Gamma(0.001 ; 0.001) e
Unif(0;10) as priori distribution for α and N(0,100) for βj , {j = 1, 2}. Chains
with 21,000 iterations were considered, with just a spacing of length 10 to minimize
the problem of simulated series autocorrelation. To reduce the effect of initial points,
the first 1000 iterations were discarded.
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Fig. 22.1 As the histogram of
the response variable has an
asymmetric behavior, and it is
concentrated in the range
0–1000, a
Birnbaum–Saunders
regression model is
appropriate
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Table 22.1 Estimates of
Birnbaum–Saunders
log-linear model under
classical approach

Parameter optim (SE) MLE (SE) LQE (SE)

α 0.417 (0.043) 0.41

β0 12.208 (0.392) 12.280 (0.403) 12.289 (0.406)

β1 −1.654 (0.109) −1.671 (0.112) −1.673 (0.113)

For all situations, it was considered that α(0) = 0.5 and LSE for β(0)
0 = 12.211

and β
(0)
1 = −1.655 as initial values for simulations.

The convergence of the chains simulates was previously verified. Figures 22.2 and
22.3 correspond to posterior density function and its simulation history, according
to Table 22.2.

Based on our results, we note that the prior distribution for α does not appreciably
affect the results, the estimates are similar and the Deviance information Criteria
(DIC) for the model selection does not change considerably. We can also observe
similar estimates from the classical and Bayesian framewok. A residual analysis for
classical fit is presented by Dos Santos [4].

Table 22.2 Estimates of Birnbaum–Saunders log-linear model under Bayesian approach

Parameter/priori Mean SD Per. 2.5 Per. 97.5

α ∼ G(0.001;0.001) 0.4338 0.0474 0.3529 0.5376

β0 ∼ N(0,100) 12.19 0.4094 11.380 13.000

β1 ∼ N(0,100) −1.648 0.1142 −1.872 −1.422

DIC: 889.6 pD: 2.948

α ∼ U(0;10) 0.4388 0.0487 0.3561 0.5482

β0 ∼ N(0,100) 12.18 0.4146 11.380 13.010

β1 ∼ N(0,100) −1.648 0.1158 −1.878 −1.421

DIC: 889.7 pD: 2.939
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Fig. 22.2 Posterior densities and their simulation history. With prior α ∼ Gama(0.001; 0.001),
β0 ∼ N(0, 100) and β1 ∼ N(0, 100)

Fig. 22.3 Posterior densities and their simulation history. With prior α ∼ U(0; 10), β0 ∼ N(0, 100),
and β1 ∼ N(0, 100)

Censored Data In order to make inference in the presence of censored data, different
percentages of random censoring were considered for biaxial fatigue data set. The
observations were artificially censored. The estimates are shown in Table 22.3 and
marginal posterior densities for 10, 30 and 45 % of censored observation are presented
in Figs. 22.4, 22.5, and 22.6, respectively.

We notice that as the censure increases, there is low accuracy due to increase of
standard error. We also notice a smaller DIC for low percentage of censoring. From
the posterior density for α, the right tail becomes heavier when the percentage of
censoring increases.

22.4 Discussion

A motivation for this work was to fit the Birnbaum–Saunders log-linear model pro-
posed in 1991 by Rieck and Nedelman under a Bayesian approach and to compare
it with the usual classical fit, which is based on the asymptotical properties for the
estimator.
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Table 22.3 Results under Bayesian approach of model fitted BS log-linear model for random
censoring of biaxial fatigue data set

% Censoring Parameter Estim. SEa Lower bound Upper bound

α 0.437 0.051 0.351 0.550

10 % β0 12.450 0.431 11.600 13.310

β1 −1.709 0.119 −1.943 −1.473

DIC: 899.7 pD: 2.938

α 0.493 0.067 0.382 0.644

30 % β0 12.160 0.490 11.180 13.110

β1 −1.597 0.138 −1.864 −1.319

DIC: 924.4 pD: 2.902

α 0.550 0.088 0.410 0.752

45 % β0 11.890 0.577 10.740 13.010

β1 −1.488 0.164 −1.797 −1.151

DIC: 936.5 pD: 2.884
aStandard error

Fig. 22.4 Marginal posterior densities of BS log-linear model with 10 % of censoring

Fig. 22.5 Marginal posterior densities of BS log-linear model with 30 % of censoring

Fig. 22.6 Marginal posterior densities of BS log-linear model with 45 % of censoring
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In this study, we show the posterior density distribution assuming independent
priors—gamma density function for the shape parameter and normal density func-
tion with mean zero for the parameters of the linear predictor coefficients. Also we
consider right-censored data and in both situations, it is not easy to obtain analyt-
ical expressions for the marginal posterior densities for the parameters of interest.
However, we can see that WinBUGS is a useful tool because it allows one to obtain
marginal posterior densities considering MCMC with a simple implementation.

Based on the application results, large differences were not observed between the
classical and Bayesian framework. Furthermore in all situations, the Markov chains
converged quickly and the computational time was short. Notwithstanding, it could
be appropriate to conduct a simulation study to determine the optimal values for the
parameters of the priori density function.

Since the fit of the Birnbaum–Saunders log-linear model under a Bayesian
approach was suitable, it will be a good idea to make a Bayesian residual analysis.
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