
Chapter 12
A Bayesian Approach to Predicting Football
Match Outcomes Considering Time Effect
Weight

Francisco Louzada, Adriano K. Suzuki, Luis E. B. Salasar, Anderson Ara
and José G. Leite

Abstract In this chapter we propose a simulation-based method for predicting foot-
ball match outcomes. We adopt a Bayesian perspective, modeling the number of
goals of two opposing teams as a Poisson distribution whose mean is proportional to
the relative technical level of opponents. Fédération Internationale de Football Asso-
ciation (FIFA) ratings were taken as the measure of technical level of teams saw well
as experts’ opinions on the scores of the matches were taken in account to construct
the prior distributions of the parameters. Tournament simulations were performed in
order to estimate probabilities of winning the tournament assuming different values
for the weight attached to the experts’ information and different choices for the se-
quence of weights attached to the previous observed matches. The methodology is
illustrated on the 2010 Football Word Cup.

12.1 Introduction

Predicting outcomes of football games has been the focus of research of several
researchers, mostly applied to championship leagues. For instance, Keller [8] has
fitted the Poisson distribution to the number of goals scored by England, Ireland,
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Scotland, and Wales in the British International Championship from 1883 to 1980.
Also, Lee [9] considers the Poisson distribution, but allows for the parameter to de-
pend on a general home-ground effect and individual offensive and defensive effects.
Moreover, Karlis [7] applied the Skellam’s distribution to model the goal difference
between home and away teams. The authors argue that this approach does not rely
neither on independence nor on the marginal Poisson distribution assumptions for
the number of goals scored by the teams. A Bayesian analysis for predicting match
outcomes for the English Premiere League (2006–2007 season) is carried out us-
ing a log-linear link function and noninformative prior distributions for the model
parameters.

Taking another approach, Brillinger [1] proposed to model directly the win, draw,
and loss probabilities by applying a trinomial regression model to the Brazilian 2006
Series A championship. By means of simulation, it is estimated for each team the
total points, the probability of winning the championship, and the probability of
ending the season in the top four places.

In spite of the vast literature directed to League Championship prediction, few
articles concern score predictions for the World Cup tournament (WCT) [5, 12,
13]. The WCT is organized by Fédération Internationale de Football Association
(FIFA, French for International Federation of Football Association), occuring every
4 years. Probably, the shortage of researches on the WCT is due to the limited
amount of valuable data related to international matches and also to the fact that few
competitions confronts teams from different continents.

A log-linear Poisson regression model which takes the FIFA ratings as covari-
ates is presented by Dyte and Clarke [5]. The authors present some results on the
predictive power of the model and also present simulation results to estimate proba-
bilities of winning the championship for the 1998 WCT. Volf [13], using a counting
processes approach, modeled the development of a match score as two interacting
time-dependent random point processes. The interaction between teams are modeled
via a semiparametric multiplicative regression model of intensity. The author has ap-
plied his model to the analysis of the performance of the eight teams that reached the
quarter-finals of the 2006 WCT. Suzuki et al. [12] proposed a Bayesian methodology
for predicting match outcomes using experts’ opinions and the FIFA ratings as prior
information. The method is applied to calculate the win, draw, and loss probabilities
for each match and also to estimate classification probabilities in group stage and
winning tournament chances for each team on the 2006 WCT.

In this chapter, we proposed a Bayesian method for predicting match outcomes
with use of the experts’ opinions and the FIFA ratings as prior information, but
differently from [12], for all 48 matches of the first phase (group stage in which
each team played three matches) the experts’ opinions were provided before the
beginning of 2010 WCT. The motivation for such purpose was the difficulty to get
the experts’opinions (four sportswriters contributed with their opinions) at the end of
each round of group stage. The drawback is that these matches were played within 15
days, mostly in different dates and times. For the second phase, the experts’ opinions
were provided before each round. Moreover, we incorporate a time-effect weights
for the matches, that is, we consider that outcomes of matches which were played
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first have less importance than the outcomes of more recent matches. An attractive
advantage of our approach is the possibility of calibrating the experts’ opinions as
well as the importance of previous match outcomes in the modeling, directing for
a control on the model prediction capability. Considering a grid of values for the
experts’ opinions weight a0 and for the last matches importance, the p′

i s values, we
can assess the impact of these weights on the model prediction capability.

We used the predictive distributions to perform a simulation based on 10, 000
runs of the whole competition, with the purpose of estimating various probability
measures of interest, such as the probability that a given team wins the tournament,
reaches the final, qualifies to the knockout stage and so on.

The chapter is outlined as follows. In Sect. 12.2, we present the probabilistic
model and expressions for priors and posterior distribution of parameters, as well
as for predictive distributions. In Sect. 12.3, we present the method used to esti-
mate the probabilities of winning the tournament. In Sect. 12.4, we give our final
considerations about the results and further work.

12.2 Probabilistic Model

In the current format, the WCT gathers 32 teams, where the host nation(s) has a
guaranteed place and the others are selected from a qualifying phase which occurs in
the 3-year period preceding the tournament. The tournament is composed by a group
stage followed by a knockout stage. In the group stage, the teams play against each
other within their group and the top two teams in each group advance to the next
stage. In the knockout stage, 16 teams play one-off matches in a single-elimination
system, with extra time of 30 min (divided in 2 halves of 15 min each) and penalty
shootouts used to decide the winners when necessary.

The probabilistic model is derived as follows. Consider a match between teams
A and B with respective FIFA ratings RA and RB . In the following we shall assume
that, given the parameters λA and λB , the number of goals XAB and XBA scored by
team A and B, respectively, are two independent random variables with

XAB | λA ∼ Poisson
(
λA

RA

RB

)
, (12.1)

XBA | λB ∼ Poisson
(
λB

RB

RA

)
. (12.2)

In this model, the ratings are used to quantify each team’s ability and the mean
number of goals A scores against B is directly proportional to team A’s rating and
inversely proportional to team B’s rating. IfA and B have the same ratings (RA = RB),
then the mean score for that match is (λA, λB). So, the parameterλA can be interpreted
as the mean number of goals team A scores against a team with the same ability and
an analogous interpretation applies to λB .

We first consider the prior distribution formulation. In order to formulate the prior
distribution, a number of experts provide their expected final scores for the incoming
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matches which we intend to predict. This kind of elicitation procedure is natural and
simple, since the model parameters are directly related to the number of goals and the
requested information is readily understandable by the respondents not requiring any
extra explanation. We have adopted multiple experts since we believe it aggregates
more information than using only one expert.

Assuming independent experts’opinions and following a Poisson distribution, we
shall obtain the prior distribution for the parameters using a procedure analogous to
the power prior method [2] with the historical data replaced by the experts’ expected
scores. The proposed elicitation process is based on the assumption that the experts
are able to provide plausible outcomes for the incoming matches that could be ob-
served but in fact were not. This elicitation process is in accordance with the Bayesian
paradigm for prior elicitation as discussed in [6] and [3] as we will see later in this
section. Moreover, although the independence assumption is taken mainly because
of mathematical simplicity, we can argue that, at least approximately, the indepen-
dence assumption holds in our case since the selected experts work at different media
and do not maintain any contact.

Suppose we intend to predict a match between teams A and B. Consider that s
experts provide their expected scores for m incoming matches of team A and B.
Denote by yi,j the j th expert’s expected number of goals scored by team A against
opponent OAi and by zi,j the expected number of goals scored by team B against
opponent OBi , i = 1, . . . ,m, j = 1, . . . , s.

In the following, we shall assume the probability density functions as the initial
information about the parameters given by

π0(λA) ∝ λ
δ0−1
A exp{−β0λA} and π0(λB) ∝ λ

δ0−1
B exp{−β0λB}, (12.3)

where δ0 > 0 andβ0 ≥ 0. Note that if δ0 = 1/2 andβ0 = 0 we have the Jeffreys’prior
for the Poisson model, if δ0 = 1 and β0 = 0 we have an uniform distribution over
the interval (0, ∞) and if δ0 > 0 and β0 > 0 we have a proper gamma distribution.
The first two cases are usual choices to represent noninformative distribution for the
parameter.

Updating this initial prior distribution with the experts’expected scores, we obtain
the power prior of λA

π (λA|D0) ∝ λ

a0

m∑
i=1

s∑
j=1

yi,j+δ0−1

A exp
{
−
(
a0s

m∑
i=1

RA

ROAi

+ β0

)
λA

}
, (12.4)

where 0 ≤ a0 ≤ 1 represents a “weight” given to experts’information and D0 denotes
all the experts’ expected scores. Thus, if 0 < a0 ≤ 1, the prior distribution of λA is

λA|D0 ∼ Gamma

⎛
⎝a0

m∑
i=1

s∑
j=1

yi,j + δ0, a0s

m∑
i=1

RA

ROAi

+ β0

⎞
⎠ ,

and if a0 = 0 the prior for λA is the initial Jeffreys’ prior (12.3) and corresponds
to disconsider all the experts’ information. In particular, if a0 = 1 the prior for λA
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equals to the posterior which would be obtained if all the expected scores were in
fact real data. Thus, the a0 parameter can be interpreted as a degree of confidence
in the experts’ information.

The elicitation of the prior distribution (12.4) can also be viewed in the light of
the Bayesian paradigm of elicitation [6], when we consider the likelihood for the
experts’ information

L′(λA|y1,1, . . . , ym,s) ∝
m∏
i=1

s∏
j=1

[
λ
yi,j
A exp

{
− λA

RA

ROAi

}]a0

(12.5)

and combine it with the initial noninformative prior distribution (12.3) by applying
the Bayes theorem. The likelihood (12.5) provide information for the parameter
through the experts’ information, which are treated like data, i.e, we assume them to
follow a Poisson distribution.

Analogously, the prior distribution of λB is

π (λB |D0) ∝ λ

a0

m∑
i=1

s∑
j=1

zi,j+δ0−1

B exp
{
−
(
a0s

m∑
i=1

RB

ROBi

+ β0

)
λB

}
. (12.6)

It is important to note that by the way the experts present their guesses there is
possibility of contradictory information. There is some literature on prior elicitation
of group opinions directed towards to remove such inconsistencies. According to
O’Hagan et al. [10], they range from informal methods, such as Delphi method [11],
which encourage the experts to discuss the issue in the hope of reaching consensus,
to formal ones, such as weighted averages, opinion polling, or logarithmic opinion
pools. For a review of methods of pooling expert opinions see [6].

Now the posterior and predictive distributions are presented. Our interest is to
predict the number of goals that team A scored against team B, using all the avail-
able information (hereafter denoted by D). This information is originated from two
sources: the experts’ expected score and the actual scores of matches already played.
So, we may be in two distinct situations: (i) we do have the experts’ information but
no matches have been played, and (ii) we have both the experts’ opinions and the
scores of played matches.

In situation (i), we only have the experts’ information. So, from the model (12.1)
and the prior distribution (12.4), it follows that the prior predictive distribution of
XAB is

XAB ∼ NB

⎛
⎜⎜⎝a0

m∑
i=1

s∑
j=1

yi,j + δ0,

a0s
m∑
i=1

RA

ROAi

+ β0

a0s
m∑
i=1

RA

ROAi

+ RA

RB
+ β0

⎞
⎟⎟⎠ , k = 0, 1, . . . ,

(12.7)

where NB(r , γ ) denotes the negative binomial distribution with probability function
given by
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f (k; r , γ ) = Γ (r + k)

k!Γ (r)
(1 − γ )kγ r , k = 0, 1, . . . ,

with parameters r > 0 and 0 < γ < 1.
Analogously, from model (12.2) and the prior distribution (12.6), it follows that

the prior predictive distribution of XBA is given by

XBA ∼ NB

⎛
⎜⎜⎝a0

m∑
i=1

s∑
j=1

zi,j + δ0,

a0s
m∑
i=1

RB

ROBi

+ β0

a0s
m∑
i=1

RB

ROBi

+ RB

RA
+ β0

⎞
⎟⎟⎠ , k = 0, 1, . . . .

(12.8)

In situation (ii), assume that teamA has played k matches, the first against teamC1,
the second against team C2, and so on until the kth match against team Ck . Suppose
also that, given λA, XA,C1 , . . . ,XA,Ck

are independent Poisson random variables
with parameters λA

RA

RC1
, . . . , λA

RA

RCk

. Hence, from model (12.1) it follows that the

weighted likelihood is given by

Lp(λA|D) =
k∏

i=1

P
[
XA,Ci

= xiA
]pi ∝ exp

{
−λA

k∑
i=1

pi

RA

RCi

}
λ

k∑
i=1

xiApi

A , (12.9)

where xiA are the number of goals scored by A against the ith opponent, i = 1, . . . , k,
and p = (p1, . . . ,pk), 0 < pi < 1, is the vector of fixed weights assigned to each
match in order to decrease the influence of past matches.

From the likelihood (12.9) and the prior distribution (12.4), it follows that the
posterior distribution of λA is

λA|D ∼ Gamma

⎛
⎝a0

m∑
i=1

s∑
j=1

yi,j +
k∑

l=1

plx
l
A + δ0,

k∑
l=1

pl

RA

RCl

+a0s

m∑
i=1

RA

ROAi

+β0

⎞
⎠,

(12.10)

which implies by the model (12.1) that the posterior predictive distribution of XAB

is

XAB |D ∼ NB

⎛
⎜⎜⎜⎝a0

m∑
i=1

s∑
j=1

yi,j +
k∑

l=1

plx
l
A+δ0,

k∑
l=1

pl
RA

RCl

+a0s
m∑
i=1

RA

ROAi

+β0

k∑
l=1

pl
RA

RCl

+a0s
m∑
i=1

RA

ROAi

+ RA

RB
+β0

⎞
⎟⎟⎟⎠.

(12.11)

Analogously, the posterior distribution of λB is given by

λB |D ∼ Gamma

⎛
⎝a0

m∑
i=1

s∑
j=1

zi,j +
k∑

l=1

plx
l
B + δ0,

k∑
l=1

pl

RB

RDl

+a0s

m∑
i=1

RB

ROBi

+β0

⎞
⎠,

(12.12)
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where xlB is the number of goals team B scores against the lth opponent, Dl , l =
1, . . . , k. Hence, from the model (12.2) and the posterior (12.12), it follows that the
posterior predictive distribution of XBA is

XBA|D ∼ NB

⎛
⎜⎜⎜⎝a0

m∑
i=1

s∑
j=1

zi,j +
k∑

l=1

plx
l
B+δ0,

k∑
l=1

pl
RB

RDl

+a0s
m∑
i=1

RB

ROBi

+β0

k∑
l=1

pl
RB

RDl

+a0s
m∑
i=1

RB

ROBi

+ RB

RA
+ β0

⎞
⎟⎟⎟⎠ .

(12.13)

At this point, it is important to note that matches taken to construct the prior
distribution are distinct from those considered to the likelihood function, that is, the
matches already played have their contribution (though their final scores) included
in the likelihood function but not in the prior.

12.3 Methods

In this section, we shall consider the competition divided into seven rounds, where
the first three rounds are in the group stage (first phase) and the last four in the
knockout stage (second phase). The four experts’ were asked for their expected final
scores for the matches in five distinct times: just before the beginning of tournament
and just before each of the four rounds in the knockout stage. At the beginning of
competition, experts provided their expected final scores for all matches in the group
stage at once, while in the knockout stage they provide their expected final scores
only for matches in the incoming round. To account for the mean experts’ opinion,
we have chosen a0 = 1/(3 ∗ 4) = 1/12 (for the group stage) and a0 = 1/4 (for
the knockout stage), in the sense that the posterior distribution of the parameter is
the same as that, which would be obtained if we took one observation equal to the
mean expected score from the sampling distribution. It is important to note that the
experts were selected from different sports media, in order to make their guesses as
independent as possible.

For the knockout stage, teams can play for additional 30 min if they remain level
after the 90 min regulation time and if the result persists the teams proceed to a
penalty shootout decision. For the extra time, we considered a Poisson distribu-
tion with parameter multiplied by one third to account for the shrinkage of time,
which is equivalent to 30 min of extra time. That is, one third of the overall match
time (90 min). For penalty shootout, we simulated a Bernoulli random variable
proportional to the ratio of parameter estimates (posterior means).

The exact calculation of probabilities is possible just for the case of a single match
prediction. We calculate the probabilities exactly from the predictive distributions.
The probabilities regarding qualifying chances, winning tournament chances
among others must be performed by simulation, since they may involves many
combinations of match results.
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Table 12.1 Relative differences (in %) of the De Finetti measure of our pool of experts fixing a0 at
0 and 0.25, relatively to a fictitious pool of perfect experts

Round 1st 2nd 3th 4th 5th 6th 7th

Pool of perfect experts 0.59 0.59 0.47 0.43 0.55 0.55 0.47

Pool of experts with a0 = 0.25 (in %) 10.67 7,69 34.29 9.22 16,43 8.49 3.41

Pool of experts with a0 = 0 (in %) 143.74 36.68 36.73 18.83 17.81 14.20 7,94

A method used to measure the goodness of a prediction is to calculate the De
Finetti distance [4] which is the square of the Euclidean distance between the point
corresponding to the outcome and the one corresponding to the prediction. It is useful
to consider the set of all possible forecasts given by the simplex set

S = {
(PW ,PD ,PL) ∈ [0, 1]3 : PW + PD + PL = 1

}
.

Observe that the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) ofS represent the outcomes
win, draw, and loss, respectively. Thus, if a prediction is (0.2, 0.65, 0.15) and the
outcome is a draw (0, 1, 0), then the De Finetti distance is (0.2 − 0)2 + (0.65 − 1)2 +
(0.15 − 0)2 = 0.185. Also, we can associate to a set of predictions the average of
its De Finetti distances, known as the De Finetti measure. So, we shall consider the
best among some prediction methods the one with the least De Finetti measure.

To assess the impact of the experts’ information on the quality of the predictions,
Table 12.1 displays the relative differences (in %) of the De Finetti measure of our
pool of experts fixing a0 at 0 and 0.25, denoting respectively the total absence of
experts’opinion and the amount of experts’ information as considered in our method,
relatively to a fictitious pool of “perfect” experts, who always forecast the exact score
for each one of the matches, with a0 fixed 0.25.

At the initial rounds, the use of experts’ information greatly improves predic-
tion, with the De Finetti measure with a0 = 0.25 always closer to the results of
the “perfect” experts’ opinion. However, as observed data enters the model, with
the progress of the competition, the gain of using expert information is decreasing.
This feature is in fully agreement with our initial motivation to consider experts’
information in our modeling: filling the lack of information when there is shortage
of objective information (data) available. Note that De Finetti measure without con-
sidering the experts’ opinion (a0 = 0) in the first and second round is much larger
than such measure for an equiprobable predictor, which assigns equal probability to
all outcomes. This is another evidence in favor of the usefulness of our modeling.
Our model also joined a prediction model competition for the matches of the group
stage of the 2010 WCT organized by the Brazilian Society of Operational Research,
the World Cup 2010 Football Forecast Competition, reaching the first place. The
inclusion of subjective information into our modeling through expert’s opinions was
crucial for such achievement. For the knockout stage matches, experts’ information
did not improve prediction, which can be explained in part by the small difference
of skill level between teams and by the lack of confidence on Spain and Netherlands
teams who defeated the traditional teams of Germany and Brazil, respectively.
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12.3.1 Predictions for the Whole Tournament

We use the predictive distributions to perform a simulation of 10, 000 replications of
the whole competition. The purpose of this simulation is to estimate probabilities that
a given team wins the tournament. The probabilities are estimated by the percentage
of times the event

Considering only the four finalists (Spain, Netherlands, Germany, and Uruguay)
we obtained, just before each round of the knockout stage, the winning tournament
probabilities assuming different values for the a0 weight attached to the experts’
information and different choices for the sequence of pi’s weights attached to the
previous observed matches. Table 12.2 presents the obtained results for this simula-
tion study. Various different time weighting values were considered within the range
(0, 1), including someone that, from the practical point of view, may not make sense,
but allows us to realize the impact of the pi’s in the winning tournament probabili-
ties. From these results, we can observe that, for a fixed value of a0, different values
for the pi’s does not alter significantly the predictions, particularly in the advanced
stages of the championship. On the other hand, for fixed values of the pi’s, we see
a noticeable influence on predictions according to changes in the a0 value. For in-
stance, observe the probabilities for Netherlands and Germany in the semifinals, and
Netherlands and Spain in the quarterfinals.

12.4 Final Remarks

In this chapter, we propose a Bayesian simulation methodology for predicting match
outcomes of the 2010 Football World Cup, which makes use of the FIFA ratings and
experts’ opinions. FIFA ratings system are based on previous 4-year performance of
teams. The drawbacks of this ratings system is the great changes in the formation of
teams in such a large period of time and the small number of games played between
teams of different continent in comparison with those played by teams of the same
continent. Other measures of strength of teams should be considered further and com-
pared with the FIFA ratings. Moreover, the development of two ratings for teams, pos-
sibly via experts’information or even FIFA documentation, one for attack and another
for defense, could improve prediction since there are teams which have strong defense
but weak attack and vice versa. A simple possibility to incorporate those abilities
would be to add one parameter for each team directly on the Poisson model, as it was
made for instance in [13]. This major embedding can be seen as a direct generalization
of our modeling and should be considered in future research in the field.

The prior distributions are updated every round, providing flexibility to the mod-
eling, once the experts’ opinion are influenced by all previous events to the match.
The use of expert’s opinions may compensate, at least in part, for the lack of in-
formation of the factors which can influence a football match during a competition,
such as tactic disciplines, team psychological conditions, referee, player injured or
suspended, amongst others.
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The method may be used to calculate the win, draw, and loss probabilities at each
single match, as well as to simulate the whole competition in order to estimate, for
instance, probabilities of classification at group stage, of reaching the knockout stage
or the final match, and of winning the tournament.

Moreover, the method presents a high performance within a simulation structure
since known predictive distributions are obtained. This enables a rapid generation
of predictive distribution values and consequently the probabilities of interest are
obtained quickly.

Overall, the Bayesian simulation methodology with different weight values for
the played matches and different weight values for the expert’s opinions provides a
better idea on the impact of the latest matches and the different weights assigned to the
experts’ opinion on the estimated probabilities of interest, evidencing the advantage
of incorporating time-effect weights for the match results. In our analysis the weights
of the experts’ opinion are fixed and known. As further work it may be considered
one distinct value of a0 for each expert and round allowing changes of the values
over the rounds.

One interpretation that can be made is that, for a particular expert, if a0 increases
over the rounds, the confidence of the information given by this expert increases as
well.

Alternatively, if a0 decreases, that means the information provided by this expert
in previous rounds were not reliable. Furthermore, we can assume that a0 is a random
variable and use a full hierarchical structure specifying a parametric distribution for
the parameter a0, like a beta distribution, as suggested in [2].
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