Some Topics in Probability Theory

Ju-Yi Yen and Marc Yor

Abstract We present a succinct discussion of a number of topics in Probability
Theory which have been of interest in recent years.

1 The Set of Martingale Laws

Consider, on the Skorokhod space of cadlag functions, all probabilities P which
make the canonical process of coordinates a martingale. Call .# this set. Clearly,
it is a convex set, and it may be of interest to characterize its extremal points. An
application of Hahn-Banach theorem (to the pair H'-BMO, and the fact that a BMO
martingale is locally bounded) allows to show that P in .# is extremal if and only if
any martingale under P may be written as the sum of a constant and of a stochastic
integral with respect to the canonical (martingale) process. A particularly illustrative
example is that of P = W, Wiener measure. Indeed, on one hand, from Lévy’s
martingale characterization of Brownian motion, it is easily shown that W is extremal
in .. On the other hand, it is a theorem (due to It6) that all Brownian martingales
may be written as the sum of a constant and of a stochastic integral with respect to
Brownian Motion. That these two properties hold for W is not a mere coincidence,
but is explained by the general statement above (Jacod and Yor 1977).

To our knowledge, the first author who tried to connect the two properties, namely:
extremality of P, and martingale representation property under P is Dellacherie
(1974, 1975). Dellacherie (1975) corrects Dellacherie (1974) partially, but the local
boundedness property which seems necessary for a correct proof is only found in
Jacod and Yor (1977).
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The use of the H'-BMO duality in this topic is reminiscent to that of the L'-L >
duality in the characterization of extremal probabilities, solutions of a (generalized)
moment problem. In fact, it is a theorem, according to Douglas and Naimark (inde-
pendently) the extremal points P of such a moment problem are those for which
the vector space generated by the functions defining the problem and the constant
function 1 is dense in L' (P). Yor (1978) explains how to relate the two frameworks
and extremality results.

2 Strong and Weak Brownian Filtrations

We shall say that a filtration .%; is strongly Brownian if it is the natural filtration of
a Brownian Motion. On the other hand, we shall say .%; is weakly Brownian if there
exists a Brownian Motion B for this filtration such that all martingales for this filtra-
tion may be written as the sum of a constant and a stochastic integral with respect to B
(but the integrand is predictable with respect to .%; ). Any strongly Brownian filtration
is weakly Brownian (It6’s theorem recalled in Sect. 1). It is natural to ask whether any
weakly Brownian filtration is strongly Brownian. The answer turns out to be negative:

e it is easily shown that on the canonical space of continuous functions, endowed
with any probability Q equivalent to Wiener measure W, the canonical filtration
is weakly Brownian; however, it has been shown by Dubins et al. (1996) that there
are infinitely many Q’s such that .%; is not strongly Brownian under Q;

e the filtration of Walsh’s Brownian Motion with N rays, for N > 3, is weakly but
not strongly Brownian, another result due to Tsirelson (1997). A posteriori, a clear
explanation of this result emerged as it was shown that M. Barlow’s conjecture
holds: for g, the end of a predictable set in a strong Brownian filtration, the pro-
gressive o-field up to g can only differ from the predictable one by, at most the
addition of a set. This is clearly not the case for Walsh’s Brownian motion with N
rays, N > 3, and g the last zero of this process before time 1;

e there exist time changes of the canonical Brownian filtration such that the time
changed filtration is weakly, but not strongly Brownian, a result due to Emery and
Schachermayer (1999).

3 Weak Brownian Motions of Any Given Order

Although the adjective weak is used again here, this topic has nothing to do with
topic in Sect. 2. It was suggested by a question of Stoyanov in his book of counter
examples (Stoyanov 1987): does there exist, for a given integer k, a process which
has the same k-dimensional marginals as Brownian Motion? The answer is yes, as
was proven by Follmer et al. (2000), by constructing probabilities Q equivalent to W,
the Wiener measure, such that the k-dimensional marginals of the canonical process
under Q are those under W.
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4 Martingales with One-Dimensional Brownian Marginals

Note that this topic differs from Sect. 3, where the processes constructed there are
not martingales, but, in general, semimartingales. For constructions of martingales,
see Albin (2008), Baker et al. (2011), Hamza and Klebaner (2007), Madan and Yor
(2002). There are at least two versions of these constructions, one where it is required
that the martingale is continuous, e.g., Albin (2008); the other where discontinuity
is allowed, e.g., Madan and Yor (2002).

5 Explicit Skorokhod Embedding

The problem is now well known: given a centered probability © on R, find a stopping
time 7 of Brownian motion B, such that Br is u distributed and B; 7 is a uniformly
integrable martingale. Although J. Obt6j found 21 different solutions scattered in the
literature (Obt6j 2004), few of them are explicit, as in general, the authors proceed
by finding solutions for simple 1’s then pass to the limit.

sup
Azéma-Yor found that if 7, := inf{z : §; > H, (B,)}, where S, =s <t By, and
the Hardy-Littlewood function H,,(x) is defined as:

1

() = n(lx, 00)) Jix,00)

tdu(t),

then 7, solves Skorokhod problem for p (Azéma and Yor 1979). To prove this
result, Azéma and Yor (1979) use first-order stochastic calculus, whereas Rogers
(1981) uses excursion theory. Madan and Yor (2002) remarked that for a family u;
such that the corresponding Hardy-Littlewood family is pointwise increasing in f,
the Brownian motion B taken at those stopping times is a martingale.

6 Peacocks and Associated Martingales

We say that a process X; is a peacock (:PCOC) if, when composed with any convex
function, the expectation of the obtained process is increasing in ¢. It is a consequence
of Jensen’s inequality that a martingale is a peacock. Conversely, it is a deep theorem
due to Kellerer (1972) that a peacock is a process which has the same one-dimensional
marginals as a martingale. Moreover, this martingale may be chosen Markovian.
Thus, at least, two questions arise:

1. How to create peacocks in a systematic way? One answer is: the arithmetic average
of a martingale is always a peacock. The original example of this seems to be due
to Carr et al. (2008) who took for a martingale the geometric Brownian motion;
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2. Given a peacock, how to associate to it a martingale with the same marginals?
So far, there does not seem to exist a general answer. But, in their monograph,
Hirsch, Profeta, Roynette, and Yor exhibit a number of general cases where some
construction may be done (Hirsch 2011).

7 (Brownian) Penalisations

Consider W, the Wiener measure and H;, positive, a family of adapted probability
densities (with respect to the canonical filtration). This allows to create a family W,
of probabilities on .%;. The penalisation problem is to find whether, as r — oo, W,
when restricted to %y, for fixed s, converges weakly, and if so to describe the limit
law. Two monographs have been devoted to this problem: Roynette and Yor (2009)
and Najnudel et al. (2009), the first is a collection of examples, the second aims at
finding general convergence criterions.

8 Martingales with the Wiener Chaos Decomposition

It is a well-known result, due to Wiener, that every L>-martingale for the Brownian
filtration may be written as the sum of a series of multiple integrals with respect
to Brownian motion, with the series of squares of (deterministic) integrands, inte-
grated with respect to Lebesgue measure on their corresponding sets of definitions,
converging. A similar result is true for the martingale of the compensated Poisson
process. For a long time, it was thought that these were the only two martingales with
Wiener chaos decomposition. But, Emery (1989) showed that Azéma’s martingale,
i.e., the projection of Brownian motion on the filtration of Brownian signs up to
time ¢, also satisfies this property. See also Azéma and Yor (1989) for another proof.
Emery (1989) considered more generally some martingales solutions of so-called
structure equations, some of which also enjoy the Wiener chaos decomposition; he
also wrote a synthesis Emery (1991).

9 Asymptotics of Planar Brownian Windings

A number of limit theorems (in law) for additive functionals of one- or two-
dimensional Brownian motion have been obtained throughout the years. This is
in particular the case for the winding number of planar Brownian motion up to
time 7, which, when multiplied by log% converges in law toward a standard Cauchy
variable Spitzer (1958). This result admits a number of multivariate extensions, in
particular: with the same normalization —2—the vector of n Brownian winding

. . log(1)” .
numbers around different points converges in law toward a random vector with
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(linked) Cauchy marginals Pitman and Yor (1986). The dependence between the
different Cauchy marginals may be explained from the Kallianpur and Robbins
(1953) asymptotic theorem: normalized by @, the time spent in an integrable
Borel set by two-dimensional Brownian motion up to time ¢ is asymptotically expo-
nentially distributed.

10 How to Modify the Burkholder-Davis-Gundy Inequalities
up to Any Time?

A version of the BDG inequalities is: for any positive p, the supremum of the absolute
value of Brownian motion up to a stopping time 7" has L? moment which is equiv-
alent to that of +/7. How could one modify this result when 7 is replaced by any
random time L? A technique consists in making L a stopping time and to con-
sider the semimartingale decomposition of Brownian motion stopped at L. Then, an
extension of Fefferman’s inequality allows to obtain the desired variants. For details,
see Yor (1985).
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