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Abstract. In this paper, we investigate the exponential synchroniza-
tion of coupled stochastic and switched neural networks (CSSNNs) with
mixed time-varying delays. By exerting impulsive controller to the con-
sidered dynamical systems in each switching interval, and combining the
multiple Lyapunov theory, we obtain a class of sufficient exponential syn-
chronization criteria in terms of nonlinear equations and LMIs, which are
easy to check. A simple example is presented to show the application of
the criteria obtained in this paper.
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1 Introduction

Synchronization is an important and interesting collective behavior in coupled
networks, and the study on synchronization of coupled neural networks can help
us understand brain science and design coupled neural networks for real world
applications. So synchronization of coupled neural networks has become a hot
topic and been extensively investigated in recent years [1-8]. It is well known that
time delays are unavoidable in the information processing of neurons due to var-
ious reasons, so most of the above-mentioned literatures are on synchronization
of delayed neural networks.

It should be noted that because of link failures and the creation of new links in
the information processing of neurons, the communication topology may change
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in time, thus it is more natural and important to design switching signal when
modeling real-world networks. There have been some works on the synchroniza-
tion of switched neural networks, see for example, [9-11]. On the other hand,
impulsive control has been proved to be an important and economical control
method, because it acts only at the discrete times and synchronize the cou-
pled systems quickly. Recently, hybrid impulsive switched systems have received
increasing attentions due to their wide applications in various fields, one can
refer to [12,13]. Zhang et al. have investigated in [13] the exponential synchro-
nization of coupled impulsive switched neural networks by using average dwell
time approach and comparison principle, but the coupling is linear and coupling
delay was not taken into account in the associated networks. As discussed in
[14], sometimes state variables xi(t) may be unobservable, but g(xi(t)) can be
observed easily, so nonlinear coupling is more practical. Additionally, Haykin
pointed out in [15] that synaptic transmission is a noisy process brought on by
random fluctuations from the release of neurotransmitters and other probabilis-
tic causes. Practically, the stochastic phenomenon often appears in the electrical
circuit design of neural networks. Hence, stochastic disturbances should also be
considered in the dynamical behaviors of neural networks. However, the authors
of [13] did’t consider stochastic perturbation either.

Motivated by above discussions, this paper aims to analyze the exponential
synchronization of nonlinearly coupled impulsive switched neural networks with
stochastic perturbation and mixed time-varying delays. The rest of this paper
is organized as follows: in Section 2, we first give the problem statement, and
then present some definitions, lemmas and assumptions required throughout this
paper; in Section 3, we will give a novel criterion to ensure the exponential syn-
chronization for the considered neural networks in terms of LMIS and nonlinear
equations; in Section 4, a simple example is provided to show the application of
the theoretical results obtained in this paper.

2 Preliminaries

In this paper, we consider the following switched coupled neural networks with
stochastic perturbations and impulsive effects:

⎧
⎪⎪⎨

⎪⎪⎩

dxi(t) = [−Cxi(t) + Bf̃(t, xi(t)) + Df̃(t, xi(t − τ(t)))]dt

+g̃(t, xi(t), xi(t − ρ(t)))dw(t) +
N∑

j=1

aij,σ(t)h̃(xj(t))dt, t �= tk,lk

xi(tk,lk) = (1 + μlk)xi(t−k,lk
), t = tk,lk

(1)

where t ∈ [tk, tk+1), i = 1, · · · , N, xi(t) = [xi1(t), · · · , xin(t)]T ∈ R
n is the state

of the ith node at time t; τ(t), ρ(t) are the time-varying connected delay of neurons
and coupled delay of nodes, respectively, and satisfying 0 < τ(t) < τ, 0 < ρ(t) < ρ
with τ, ρ are positive constants; σ(t) : [0,+∞) → M = {1, 2, · · · ,m} is a piece-
wise right-continuous function representing the switching signal. The switching
time instants tk satisfy 0 = t0 < t1 < · · · < tk < tk+1 < · · · , lim

k→+∞
tk = +∞
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and inf
0≤k<∞

{tk+1 − tk} ≥ ℵ where ℵ = max{τ, ρ}; {tk,lk , lk ∈ N
+} ⊂ [tk, tk+1)

are impulsive instances satisfying tk < tk,1 < tk,2 < · · · < tk,lk < · · · < tk+1,
and xi(t+k,lk

) = xi(tk,lk);μlk is the impulsive strength satisfying (1 + μlk)2 ≤ μ <
1; C = diag{c1, · · · , cn}, cl > 0(l = 1, · · · , n) denotes the rate with which the l-th
neuron xil(t) reset their potential to the resting state when disconnected from the
networks and inputs, B,D ∈ R

n×n denote the connection weight matrices of the
neurons, f̃(t, xi(t)) = (f̃1(t, xi(t)), · · · , f̃n(t, xi(t)))T ∈ R

n is the activation func-
tion of the neurons; g̃(t, xi(t), xi(t − ρ(t))) ∈ R

n×m is the noise intensity function
matrix; w(t) = (w1(t), w2(t), · · · , wm(t))T ∈ R

m is a Brownian motion defined on
a complete probability space (Ω,F , P ) with a nature filtration {Ft}t≥0 satisfying
E(wj(t)) = 0, E(w2

j (t)) = 1, E(wj(t)wk(t)) = 0 (j �= k). The configuration cou-
pling matrices Aσ(t) = (aij,σ(t))N×N are defined as follows: if there is a directed
edge from node j to node i, then aij,σ(t) > 0, otherwise, aij,σ(t) = 0, and aii,σ(t) =

−
N∑

j=1,j �=i

aij,σ(t) for i = 1, · · · , N ; h̃(xj(t)) = (h̃1(xj(t)), · · · , h̃n(xj(t)))T ∈ R
n is

the inner coupling vector function between two connected nodes i and j.
The initial condition of system (1) is given by xi(t) = ϕi(t) ∈ C([−ℵ, 0],Rn),

where C([−ℵ, 0],Rn) is the set of continuous functions from [−ℵ, 0] to R
n. Let s(t)

be a solution of the following stochastic delayed dynamical system of an isolate
neural network:

ds(t) = [−Cs(t)+Bf̃(t, s(t))+Df̃(t, s(t−τ(t)))]dt+g̃(t, s(t), s(t−ρ(t)))dw(t), (2)

which is the same as other neural networks. s(t) can be any desired state: equi-
librium point, a nontrivial periodic orbit, or even a chaotic orbit. In this paper,
we hope to force the network (1) to globally exponentially synchronize with s(t).
The initial condition (2) is given by s(t) = φ(t) ∈ C([−ℵ, 0],Rn).

Let ei(t) = xi(t)−s(t), f(t, ei(t)) = f̃(t, ei(t)+s(t))−f̃(t, s(t)), g(t, ei(t), ei(t−
τ(t))) = g̃(t, ei(t) + s(t), ei(t − τ(t) + s(t − τ(t))) − g̃(t, s(t), s(t − τ(t))), h(ej(t −
ρ(t))) = h̃(ej(t − ρ(t)) + s(t − ρ(t))) − h̃(s(t − ρ(t))); e(t) = (eT

1 (t),
· · · , eT

N (t))T , CN = IN ⊗C,BN = IN ⊗B,DN = IN ⊗D,A = A⊗In, F (t, e(t)) =
(fT (t, e1(t)), · · · , fT (t, eN (t)))T ,H(e(t − ρ(t))) = (hT (e1(t − ρ(t))), · · · , hT

(eN (t − ρ(t))))T , G(t, e(t), e(t − τ(t))) = diag{g(t, e1(t), e1(t − τ(t))), · · · ,
g(t, eN (t), eN (t− τ(t)))}, dW (t) = 1N ⊗dw(t), where 1N = (1, 1, · · · , 1)T , σ(t) =
rk ∈ M, t ∈ [tk, tk+1). Then we can write the error system of the coupled neural
networks (1) in the following compact form when t ∈ [tk, tk+1):

⎧
⎨

⎩

de(t) = [−CNe(t) + BNF (t, e(t)) + DNF (t, e(t − τ(t)))dt
+G(t, e(t), e(t − τ(t)))dW (t) + Ark

H(e(t − ρ(t)))]dt, t �= tk,lk

e(tk,lk) = (1 + μlk)e(t−k,lk
). t = tk,lk

(3)

Definition 1. The dynamical neural networks (1) is said to be globally expo-
nentially synchronized to s(t) in mean square if for any initial condition xi(t0),
there exist constants λ > 0 and M > 1 such that the following inequality is
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satisfied for t ≥ t0:

E
( N∑

i=1

‖xi(t) − s(t)‖2
)

≤ M sup
t0−ℵ≤ι≤t0

E
( N∑

i=1

‖xi(ι) − s(ι)‖2
)
e−λ(t−t0).

Definition 2. [10]: An impulsive sequence ς = {t1, t2, · · · } is said to have aver-
age impulsive interval Ta if there exist positive integer δ and positive constant
Ta such that

T − t

Ta
− δ ≤ Nδ(T, t) ≤ T − t

Ta
+ δ, ∀T ≥ t ≥ 0,

where Nδ(T, t) denotes the number of impulsive times of the impulsive sequence
{t1, t2, · · · } on the interval (t, T ).

Assumption 1: Assume that there exist diagonal matrices L1 and L2 such
that for ∀x, y ∈ R

n, the function f̃(t, ·) and h̃(·) satisfy the following Lipschitz
conditions:

‖f̃(t, x) − f̃(t, y)‖ ≤ ‖L1(x − y)‖; ‖h̃(x) − h̃(y)‖ ≤ ‖L2(x − y)‖.

Assumption 2: Assume that there exist positive constants η1, η2 such that

trace
{

[g̃(t, x1, y1) − g̃(t, x2, y2)]T · [g̃(t, x1, y1) − g̃(t, x2, y2)]
}

≤ η1 ‖x1 − y1‖2 + η2 ‖x2 − y2‖2, ∀x1, y1, x2, y2 ∈ R
n, t ∈ R

+.

Lemma 1. [13]: Let 0 ≤ τi(t) ≤ τ, F (t, u, ū1, · · · , ūm) : R
+ × R × · · · × R

︸ ︷︷ ︸
m+1

be nondecreasing in ūi for each fixed (t, u, ū1, · · · , ūi−1, ūi+1, · · · , ūm), i = 1,
· · · ,m, and Ik(u) : R → R be nondecreasing in u. Suppose that

{
D+u(t) ≤ F (t, u(t), u(t − τ1(t)), · · · , u(t − τm(t)))

u(t+k ) ≤ Ik(u(t−k )), k ∈ N+

and
{

D+v(t) > F (t, v(t), v(t − τ1(t)), · · · , v(t − τm(t)))
v(t+k ) ≥ Ik(v(t−k )), k ∈ N+

where the upper-right Dini derivative is defined as D+y(t) = limh→0+
y(t+h)−y(t)

h .
Then u(t) ≤ v(t) for −τ ≤ t ≤ 0 implies that u(t) ≤ v(t) for t ≥ 0.

Lemma 2. [17]: For any real matrices X,Y and any positive matrix U , the
following inequality holds:

2XT Y ≤ XT UX + Y T U−1Y.
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3 Exponential Synchronization Analysis

Theorem: Under Assumptions 1-2, the coupled neural networks (1) can be
globally exponentially synchronized to s(t), if there exist positive constants
ε1,rk

, ε2,rk
, ε3,rk

, positive matrices Prk
∈ R

nN×nN satisfying Prk
≤ θrk

InN with
θrk

are positive constants, such that the following conditions are satisfied:

(H1) Φrk
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ11,rk
Prk

BN Prk
DN Prk

Ark
0 0

(BN )T Prk
−ε1,rk

InN 0 0 0 0
(DN )T Prk

0 −ε2,rk
InN 0 0 0

AT
rk

Prk
0 0 −ε3,rk

InN 0 0
0 0 0 0 Φ55,rk

0
0 0 0 0 0 Φ66,rk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

where rk ∈ M, Φ11,rk
= −2Prk

CN + ε1,rk
(LT

1 L1)N + η1θrk
InN + αrk

Prk
and

Φ55,rk
= ε2,rk

(LT
1 L1)N + η2θrk

InN − βrk
Prk

,Φ66,rk
= ε3,rk

(LT
2 L2)N − γrk

Prk
.

(H2) − α + lnμ
Ta

+ μ−δ(β + γ) < 0,

where α = min
rk∈M

{αrk
}, β = max

rk∈M
{βrk

}, γ = max
rk∈M

{γrk
}.

(H3) λ − lnΥ
Ta

> 0,

where λ is the sole positive solution of the equation −α + lnμ
Ta

+ λ + μ−δ(βeλτ +
γeλρ) = 0, Υ = μ−δ max{p

p , eλℵ}, p = max
rk∈M

{λmax(Prk
)}, p = min

rk∈M
{λmin(Prk

)}.

Proof: Define the following Lyapunov functions for system (3):

V (t) = eT (t)Prk
e(t), t ∈ [tk, tk+1), k ∈ N

+.

Differentiating V (t) along the trajectories of system (3) for t ∈ [tk, tk+1), we can
obtain

dV (t) = LV (t)dt + 2eT (t)Prk
G(t, e(t), e(t − τ(t)))dW (t). (4)

By applying the Itô’s formula to V̄ (t) we can obtain

LV (t) = 2eT (t)Prk
[−CNe(t) + BNF (t, e(t)) + DNF (t, e(t − τ(t)))]

+trace[GT (t, e(t), e(t − τ(t)))Prk
G(t, e(t), e(t − τ(t)))]

+2eT (t)Prk
Ark

H(e(t − ρ(t))).

By using Lemma 2 and Assumption 1 we get

2eT (t)Prk
BNF (t, e(t))

≤ 1
ε1,rk

eT (t)Prk
BN (Prk

BN )T e(t) + ε1,rk
FT (t, e(t))F (t, e(t))

≤ 1
ε1,rk

eT (t)Prk
BN (Prk

BN )T e(t) + ε1,rk
eT (t)(LT

1 L1)Ne(t). (5)



74 Y. Wang and J. Cao

Similar to (5), we can obtain the following inequalities:

2eT (t)Prk
DNF (t, e(t − τ(t)))

≤ 1
ε2,rk

eT (t)Prk
DN (Prk

DN )T e(t) + ε2,rk
eT (t − τ(t))(LT

1 L1)Ne(t − τ(t)), (6)

2eT (t)Prk
Ark

H(e(t − ρ(t)))

≤ 1
ε3,rk

eT (t)Prk
Ark

AT
rk

PT
rk

e(t) + ε3,rk
eT (t − ρ(t))(LT

2 L2)Ne(t − ρ(t)). (7)

According to Assumption 2 we have

trace[GT (t, e(t), e(t − τ(t)))Prk
G(t, e(t), e(t − τ(t)))]

≤ θrk

N∑

i=1

(
η1 ‖ei(t)‖2 + η2 ‖ei(t − τ(t))‖2

)

= θrk

(
η1 eT (t)e(t) + η2 eT (t − τ(t))e(t − τ(t))

)
. (8)

It follows from (5)-(8) that for t ∈ [tk, tk+1),

LV (t) ≤ eT (t)
{

− Prk
CN − (Prk

CN )T +
1

ε1,rk

Prk
BN (Prk

BN )T

+ε1(LT
1 L1)N +

1
ε2,rk

Prk
DN (Prk

DN )T +
1

ε3,rk

Prk
Ark

AT
rk

Prk
+ θrk

η1InN

+αrk
Prk

}
e(t) − αrk

eT (t)Prk
e(t) + βrk

eT (t − τ(t))Prk
e(t − τ(t))

+eT (t − τ(t))
[
ε2,rk

(LT
1 L1)N + θrk

η2InN − βrk
Prk

]
e(t − τ(t))

+eT (t − ρ(t))
[
ε3,rk

(LT
2 L2)N − γrk

Prk

]
e(t − ρ(t))

+γrk
eT (t − ρ(t))Prk

e(t − ρ(t))
≤ −αrk

V (t) + βrk
V (t − τ(t)) + γrk

V (t − ρ(t)). (9)

Integrating on both sides of (9) from t to t + t for any t > 0 and taking
mathematical expectation. Let m(t) = EV (t), associating with the properties of
the Itô’s integral and Dini derivation, we can derive from (9) that

D+m(t) ≤ −αrk
m(t) + βrk

m(t − τ(t)) + γrk
m(t − ρ(t)), t ∈ [tk, tk+1).

When t = tk,lk , we can easily derive that

m(tk,lk) = (1 + μlk)2E[eT (t−k,lk
)Prk

e(t−k,lk
)] ≤ μm(t−k,lk

).

For any ε > 0, let y(t) be a unique solution of the following delay system:
⎧
⎨

⎩

ẏ(t) = −αy(t) + βy(t − τ(t)) + γy(t − ρ(t)) + ε, t �= tk,lk

y(tk,lk) = μy(t−k,lk
), t = tk,lk

y(t) = m(t), tk − ℵ ≤ t ≤ tk.
(10)
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By the formula for the variation of parameters, it follows from (10) that for
t ∈ [tk, tk+1),

y(t) = P (t, tk)y(tk)+
∫ t

tk

P (t, s)
[
βy(s−τ(s))+γy(s−ρ(s))+ε

]
ds, (11)

where P (t, s), t, s > tk is the Cauchy matrix of the linear system

{
ẏ(t) = −αy(t), t �= tk,lk

y(tk,lk) = μy(t−k,lk
), t = tk,lk .

(12)

According to the representation of Cauchy matrix, one can get the following
estimation:

P (t, s) = e−α(t−s)μNδ(s,t) ≤ μ−δe−α∗(t−s),

where α∗ = α − lnμ
Ta

. Define s(ς) = ς − α∗ + μ−δ(βeςτ + γeςρ). From (H2) we
know s(0) = −α∗ + μ−δ(β + γ) < 0. Since ṡ(ς) > 0 and lim

ς→+∞ s(ς) = +∞, there

exists a unique λ > 0 such that s(λ) = 0, i. e., λ − α∗ + μ−δ(βeλτ + γeλρ) = 0.
Let ξ = μ−δ‖y(tk)‖ℵ = μ−δ sup

tk−ℵ≤t≤tk

‖y(t)‖. In the following, we shall prove the

following inequality is satisfied:

y(t) < ξe−λ(t−tk) +
ε

α∗μδ − β − γ
, tk −ℵ ≤ t ≤ tk+1. (13)

It is obvious that y(t) ≤ μδξ < ξ < ξe−λ(t−tk) + ε
α∗μδ−β−γ

for tk − ℵ ≤ t ≤ tk.
When tk < t < tk+1, we will prove the inequality (13) is still satisfied by the
way of contradiction. If there exists a t∗ ∈ (tk, tk+1) such that

y(t∗) ≥ ξe−λ(t∗−tk) +
ε

α∗μδ − β − γ
, (14)

and

y(t) < ξe−λ(t−tk) +
ε

α∗μδ − β − γ
, t ∈ (tk −ℵ, t∗) (15)

Note that τ(t) ≤ τ, ρ(t) ≤ ρ and eλτβ + eλργ = μδ(α∗ −λ), then by some simple
computation, we can derive from (11) and (15) that

y(t∗)

< ξe−α∗(t∗−tk) +

∫ t∗

tk

μ−δe−α∗(t∗−s)[ξ(eλτβ + eλργ)e−λ(s−tk) +
α∗μδε

α∗μδ − β − γ

]
ds

= ξe−λ(t∗−tk) +
ε

α∗μδ − β − γ
− ε

α∗μδ − β − γ
e−α∗(t∗−tk)

< ξe−λ(t∗−tk) +
ε

α∗μδ − β − γ
,

which contradicts with (14). Thus, (13) is always satisfied for tk − ℵ ≤ t < tk+1.
Let ε → 0, one can obtain y(t) ≤ ξe−λ(t−tk). Then it follows from Lemma 1 that
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m(t) ≤ y(t) ≤ ξe−λ(t−tk) = μ−δ‖m(tk)‖ℵe−λ(t−tk) for tk ≤ t < tk+1. We will
show by induction that

m(t) ≤ μ−δΥk‖m(t0)‖ℵe−λ(t−t0), tk ≤ t < tk+1, (16)

where Υ = μ−δ max{p
p , eλℵ} and p = max

rk∈M
{λmax(Prk

)}, p = min
rk∈M

{λmin(Prk
)}.

When t ∈ [t0, t1),m(t) ≤ μ−δ‖m(t0)‖ℵe−λ(t−t0). Assume (16) holds for 1 ≤ k ≤
j, j ∈ N

+, then we will show that (16) holds for k = j + 1. Since

m(t) ≤ μ−δΥj‖m(t0)‖ℵe−λ(tj+1−ℵ−t0) = μ−δΥjeλℵ‖m(t0)‖ℵe−λ(tj+1−t0)

for tj+1 − ℵ ≤ t < tj+1, and note that tj+1 < tj+1,1, which follows that

m(tj+1) = E(eT (tj+1)Prj+1e(tj+1)) = E(eT (t−j+1)Prj+1e(t
−
j+1))

≤ p

p
m(t−j+1) ≤ p

p
μ−δΥj‖m(t0)‖ℵe−λ(tj+1−t0),

then it follows that

‖m(tj+1)‖ℵ ≤ ΥΥj‖m(t0)‖ℵe−λ(tj+1−t0) = Υj+1‖m(t0)‖ℵe−λ(tj+1−t0).

Thus we can get

m(t) ≤ μ−δ‖m(tj+1)‖ℵe−λ(t−tj+1) ≤ μ−δΥj+1‖m(t0)‖ℵe−λ(tj+1−t0)e−λ(t−tj+1)

= μ−δΥj+1‖m(t0)‖ℵe−λ(t−t0), tj+1 ≤ t < tj+2

Thus, (16) can be derived for ∀t ∈ [tk, tk+1) and ∀k ∈ N
+ by the induction

principle. For an arbitrarily given t > t0,∃k ∈ N
+, such that t ∈ [tk, tk+1). Note

that k ≤ Nδ(t, t0), then it follows from (16) that

m(t) ≤ μ−δΥk‖m(t0)‖ℵe−λ(t−t0) ≤ μ−δΥNδ(t,t0)‖m(t0)‖ℵe−λ(t−t0)

≤ μ−δΥδ+
t−t0
Ta ‖m(t0)‖ℵe−λ(t−t0) =

(Υ
μ

)δ

‖m(t0)‖ℵe−λ∗(t−t0),

where λ∗ = λ − lnΥ
Ta

> 0. Then we have

pE(‖e(t)‖2) ≤ m(t) ≤
(

Υ

μ

)δ
‖m(t0)‖ℵe−λ∗(t−t0) ≤ p

(
Υ

μ

)δ
E(‖e(t0)‖2

ℵ)e−λ∗(t−t0),

which follows that

E
( N∑

i=1

‖xi(t) − s(t)‖2
)

≤ M sup
t0−ℵ≤ι≤t0

E
( N∑

i=1

‖xi(ι) − s(ι)‖2
)
e−λ∗(t−t0),

where M = p
p (Υ

μ )δ > 1. This shows that the dynamical network (1) is globally
exponentially synchronized to s(t) in mean square. This completes the proof.
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4 Numerical Simulation

Example 1. In system (1), we select f̃(t, xi(t)) = (f̃1(t, xi(t)), f̃2(t, xi(t)))T and
f̃1(t, xi(t)) =

√
2

8 xi1(t)+
√

3
8 (|xi2(t)+1|−|xi2(t)−1|), f̃2(t, xi(t)) =

√
6

8 (|xi2(t)+1|
− |xi2(t) − 1|), which follows that L1 = diag{0.25, 0.75}, L2 = diag{0.5, 0.25}.
Let μlk = −0.1 for ∀lk ∈ N

+, and C1 = 4.5I2, C2 = 3.8I2,

g̃(t, xi(t), xi(t − τ(t))) = 0.1 = diag{xi(t), xi(t − τ(t))}, τ(t) = 0.3sint,

ρ(t) = 0.2cost, B1 =
(

0.8 0.9
−0.6 0.8

)

, B2 =
(

1 0.5
−0.9 1

)

,D1 =
(

0.5 0.4
0.8 0.5

)

,

D2 =
(

0.9 0.5
0.6 0.8

)

, A1 =

⎛

⎝
−0.9 0.5 0.4
0.8 −1 0.2
0.5 0.5 −1

⎞

⎠ , A2 =

⎛

⎝
−1 0.4 0.6
0.6 −1.1 0.5
0.4 0.6 −1

⎞

⎠ .

Assuming that the coupled neural networks switches in a random order between
two networks, i. e., M = {1, 2}. The switching scheme is shown in Fig. 1. Select
α1 = 4.5, β1 = γ1 = 0.42, α2 = 4.25, β2 = γ2 = 0.78, then by using Mat-
lab LMI tool we can obtain ε1,1 = 1.3931, ε1,2 = 1.2767, ε2,1 = 0.5423, ε2,2 =
0.9266, ε3,1 = 1.4451, ε3,2 = 3.1661, θ1 = 2.1717, θ2 = 1.6614, p = 0.6353, p =
1.3182. The impulsive sequence is constructed by taking Ta = 4.6 and δ = 4,
then by solving the nonlinear equation −α + lnμ

Ta
+ λ + μ−δ(βeλτ + γeλρ) = 0,

we can get λ = 0.3431. So by virtue of the Theorem in this paper, it can be
concluded that the considered network can be exponentially synchronized onto
the objective trajectory. The following Figure shows that the errors between the
networks’ states and converge to zero under the given conditions.
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Fig.1. The switching scheme Fig.2. The state variablesxir(t)

5 Conclusion

The exponential synchronization of switched coupled neural networks with mixed
time-varying delays and stochastic disturbances is investigated in this paper.
The main contribution of this paper contains three aspects. Firstly, as discussed
in the section of Introduction, the network model considered in this paper is
more practical in real world. Secondly, different from the average dwell time
approach used in many existing literatures, there is no upper bound for switching
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interval, which is only assumed to be greater than the maximum of delays. As
for the impulsive scheme, the named average impulsive interval is utilized to get
less conservative synchronization criterion. Thirdly, by using multiple Lyapunov
function, we have shown that the exponential synchronization can be achieved
by solve some LMIs and nonlinear equations, which are easy to check.
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