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Abstract. In this paper, adaptive pinning synchronization (i.e., leader-
following synchronization) is considered for an array of linearly coupled
inertial delayed neural network. By applying feedback control on a small
fraction of network nodes with the dynamical feedback gains turning
adaptively and combining the Lyapunov function method, an easy-to-
verify sufficient condition is derived for globally asymptotically synchro-
nization for the coupled network. Meanwhile, the coupling configuration
matrix is not necessary to be symmetric or irreducible. Finally, an illus-
trative example is given to show the effectiveness of the obtained theo-
retical results.
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1 Introduction

Synchronization of complex networks has received notable attentions in the past
decade due to its potential applications in various fields, see [1-3]. As a special
class of complex networks, neural networks have also been intensively inves-
tigated [4,5], where the network nodes are neurons and the network coupling
is the connection weight matrix. Synchronization of coupled neural networks
means multiple neural networks can achieve a common trajectory, such as a
common equilibrium, limit cycle or chaotic trajectory. Based on Lyapunov func-
tional methods, global synchronization was investigated in [6,7] for linearly and
diffusively coupled identical delayed neural networks.

Inertial electronic neural networks with one or two neurons were considered
in [8], where it was found that when the neuron couplings were of an inertial
nature, the dynamics could be more complex compared with the simpler behavior
displayed in the standard resistor-capacitor variety. The dynamical behaviors
of a single delayed neuron model with inertial terms were investigated in [9];
bifurcation problems were investigated in [10,11] for low-order neural networks.
While most of the published investigations in the literature concerning inertial
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neural networks are always focusing on small-scale neural networks with only
one or two neurons, the general network coupled by multiple neural networks
are rarely seen in the literature.

Recently, the authors in [12] considered the stability and existence of peri-
odic solutions for the general inertial BAM neural networks with time delays.
Furthermore, stability analysis was carried out in [13] for the general inertial
Cohen—Grossberg-type neural networks with time delays. While in [14], the sta-
bility of an inertial delayed neural network was investigated by matrix measure
strategies and drive-response synchronization was considered as an application
at the end of the paper. On the other hand, pinning synchronization of cou-
pled neural networks has been investigated, such as the synchronization of a
general weighted neural network with coupling delay was investigated in [15,16]
by adaptive pinning control. More studies concerning pinning synchronization
of neural networks can be found in [17,18] and references cited therein. Inspired
by the above discussions, this paper investigates the pinning synchronization of
coupled inertial delayed neural networks.

2 Model Description and Preliminaries

Consider an array of linearly coupled inertial delayed neural networks consisted
of N identical nodes with dynamics of the ith node described by the following
equation:

2z i
Lot _ Ddf”dt(“ — Oy(t) + Af(a:(0) + Bf (eilt — (1)) + 1(0)
+CZ Gmr(dxﬂ j(t)) +u(t), i=1,...,N, (1)
where ;(t) = (2;1(t),..., 7, (t))T € R™ is the state vector of the ith neu-

ral network, and wu;(¢) is the control input imposed on the ith node; D =
diag{ds,...,d,}, C = diag{ei,...,c,} are constant positive definite matri-
ces. A = (@ij)nxn and B = (b;;)nxn denote the connection weight matrix
and the delayed connection weight matrix, respectively. The nonlinear func-
tion f(z;) = (fi(wi1),.-., fn(win))T is the activation function for the inertial
neural network; and I(t) = (I1(t),...,I,(t))7 is the external input vector. The
second derivative of z;(¢) is called an inertial term of system (1). The positive
constant c¢ is the network coupling strength and T is the inner coupling matrix.
G = (Gij)Nxn is the constant coupling configuration matrix defined to be dif-
fusive: G;; > 0(i # j) and Gy; = — Z;V:l’j# Gi;. The coupling matrix G is not
required to be symmetric or irreducible.

The initial conditions associated with system (1) are given as z;(w) = ¢;(w) €
CH([-7,0],R™), i = 1,..., N, where C™)([—7,0],R") denotes the set of all n-
dimensional continuous differentiable functions defined on the interval [—T,0]
with 7 = sup,~{7(¢)}.
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The isolated node of network (1) is given by the following inertial delayed
neural network:
d?s(t) ds(t)

@ DT —Cs(t)+ Af(s(t)) + Bf (st — 7(t)) + I(t), (2)

where s(t) = (s1(¢), ..., sn(t)) € R™. The initial condition for system (2) is given
as s(w) = p(w) € CV([—7,0],R").
To proceed, the following assumptions and definition are given.

Assumption 1. The activation functions f;i(-) : R — R 1 < i < n are bounded
and satisfy Lipschitz condition, i.e., there exist constants F; and M; such that

|fi(z) = fi(y)| < Filz —y| and |fi(z)| < M; for all x,y € R.

Assumption 2. The time delay 7(t) > 0 in systems (1) and (2) is a bounded
and differentiable function of time t satisfying 7(t) < p < 1 for all t > 0, where
p> 0.

Definition 1. The coupled inertial neural network (1) is said to be globally
asymptotically synchronizable to the goal trajectory s(t) if the discriminant rela-
tions lims o ||2;(t) — s(t)|| =0, i =1,2..., N hold for all initial functions.

3 Main Results

In this section, we will investigate the global synchronization of the coupled
inertial neural network by adaptive pinning control. The feedback injections are
only placed on a small fraction of the total network nodes and the feedback gains
are turned adaptively.

By letting the synchronization error e;(t) = x;(t) — s(t), one can derive the
following error system:

d%ti?(t) - Dd%ft) — Ceq(t) + Ag(ei(t)) + By(ei(t — 7(t)))
N
—I—CZlGijI‘(deét(t) +ei(t)) +uilt) i=1,.. N,  (3)

where g<ei) = (fl(eil + 51) - f1(51)7 R fn(ein + Sn) - fn(sn))T
Next, by introducing the following variable transformation:

o dei(t) ] -
ri(t)—T—‘r@z(t), 1=1,...,n,
the error system (3) can be written as
dei(t) o . )
T ei(t) +ri(t),
A0 _ _ Geult) - Drift) + Agle) + Balest - 7)) (g

N
+c Z GijFTj(t) + u;(t),

Jj=1
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fori=1,...,N,where C2C+1I,—Dand D2 D —1I,.
The pinning controller is designed as follows:

uz(t) = —ai(t)Fm(t) = 1,...,N, (5)
where o;(t) is the time-varying feedback control gain designed as

: (t) — O—ir;r(t)l—‘ri(t), 01(0) > Oa for i € Vpina
ailt) = 0, 0i(0) =0, for i & Vyin,

where o; > 0 is a constant and V;, is the set of the pinning nodes.
Thus, under the control input (5), the error system (4) turns out to be the
following one

de;(t) ‘
e e;(t) +ri(t),
dréit) = — Cei(t) — D’l‘i(t) + Ag(ei(t)) + Bg(ei(t — T(t))) (6)
N
+c Z GijFTj(t) — O’i(t)FTi(t).

The coupled inertial neural network (1) can be synchronized if the above
error system (6) is globally asymptotically stable. The following theorem gives
the synchronization criterion.

Theorem 1. Under Assumptions 1 and 2, the coupled inertial neural network
(1) 4s globally asymptotically synchronized if there exists a positive definite matriz
P such that

@:

IN®[-P+ (3F* +n)I,] Iy © (P - C)] <0, (7)

* Q

2
where F = R {F;}, n > R {%} is a positive constant, C £ C +

I,—D,D2D—1, and Q = Iy ® (—D + AATEBET | (GiGT T _ M @T)
with M = diag{o7,...,o8} > 0, in which o} =0 for i € Vp;, and o} > 0 when
i & Vyin.

Proof. To prove the result, one just need to show that the error system (6)
is globally asymptotically stable. Consider the following Lyapunov-Krasovskii
functional candidate:

V(t) = Z (t)Pe;(t +nz / i(s)ds

i: T(t)
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Calculating the time derivative of V(t) along the trajectories of system (6),
one can obtain

N N
)<3 e i(0)+ () + 0y el )ei(t)
= N =1
(=) Y el (t = r(O)eitt = (1)
N - N N
=Yl (OCe(t) = Yl (1) Dri(t) + Y rf () Ag(ei(t))
z;l i=1 v N i=
+ Y 1 (t)Bg(ei(t —7(t))) +CZZ ()Gi;Tr;(t)
=Y oty OTr(t) + Y ai(t)r! (OTri(t)
i=1 1€Vpin
- Z (t)Tr;(¢).
¢ Vpin

It follows from Assumption 1 that

Zr ) Agi(ei(t Z( (VAATr () + SF2L(0ei()  (9)

and

hE
=
U:J
s
Sﬁ
Mz

( ()BBTr(t)

- §FiQeiT(t —r(t)elt-7(1)).  (10)
Combining inequalities (9) and (10), we have

N

) < Ze —P+(n+ 1F2)I Jei(t) +ZeiT(t)(P— C)ri(t)
. 1 1=1
+Z”iT(t)( - D+ 5(AAT + BBT))ri(t)

N
+czzrf )GiTr(t) = > oir] (6)ri(t)
=1

=T () PY(t),

where 1(t) = [T (t),r7(t)]T. Thus, by LMI (7) we have V(t) < 0 for 4(t) # 0,
which indicates that lim; . e(t) = 0 and lim;_. () = 0. Therefore, the
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pinning controlled network (6) can be globally asymptotically synchronized to
the objective trajectory.

4 Illustrative Example

In this section, one illustrative example is presented to demonstrate the effec-
tiveness of the obtained theoretical results.

Example 1. Consider the following coupling inertial delayed neural networks
with 12 nodes:

dei(t) da;(t)
de? BT dt

ZG”F(dx] -(t)) Fug(t), i=1,...,12, (11)

— Cui(t) + Af (zi(t)) + Bf (zi(t — (1)) + Li(t)

where z;(t) = (21(t), 2i2(t))T, flai(t)) = (tanh(x“(t)),tanh(aziz(t)))T, I(t) =
(2,4)T,1 <4 <12 and the time delay 7(t) = 0.15¢' /(1 +¢?). So, it is easy to get
F;, =1, 7 = 0.15 and p = 0.0375. The coefficient matrices and inner coupling
matrix of (11) are given as

D=3 %], C=[% &%), A= 5% 0], B=[25], T=[%i].

The coupling matrix G is determined by the directed topology given in Fig. 1
with Gij = 0, 1(2 75 ])

Fig. 1. Communication topology G and node 0 is the isolated objective node

Let the initial state of the objective system be ¢~5 = [3,-3]T on the inter-
val [—0.15, 0] and initial functions for system (11) are chosen randomly. We use

the quantity E(t) = \/(1/12) S°12 €T (t)es(t) to measure the quality of the syn-

i=1"1%

chronization process. Setting the pinning node set Vi, = {3,6,7} (see Fig. 1),
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n = 0.5205 and the coupling strength ¢ = 30, it is easy to check that the LMI
(7) has a positive definite solution. Theorem 1 ensures that the whole coupled
neural network system (11) can be synchronized to the given goal trajectory
asymptotically.

The objective trajectory of the pinning controlled system (1) is shown in
Fig. 2; and the state trajectories of (11) are given in Fig. 3. The synchroniza-
tion error and the pinning feedback gains o3(t), og(t) and o7 (t) are illustrated,
respectively, in Fig. 4 and Fig. 5.

X4 (0x,0,i=1,..12

6 4
Times(sec) Times(sec)

Fig.2. State trajectory s(¢) in Fig.3. State trajectories xz;(t) in
system (2) system (11)
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Fig. 4. Time evolution of synchroniza- Fig. 5. Variations of pinning feedback
tion error E(t) gains

5 Conclusions

In this paper, the synchronization control problem of coupled inertial neural
network systems is formulated based on adaptive pinning control strategy. By
Lyapunov stability theory and LMI technique, some sufficient criteria have been
established for the global asymptotically synchronization of the coupled system.

A numerical example has been given to illustrate the usefulness of the obtained
results.
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