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Abstract. In this paper, we present two content-adaptive rain and snow removal 
algorithms for single image based on filtering. The first algorithm treats rain 
and snow removal task as an issue of bilateral filtering, where a content-based 
saliency prior is introduced. While the other views the same task from the per-
spective of guided-image-filtering, and the guidance image is derived according 
to the statistical property of raindrops or snowflakes as well as image back-
ground content. A comparative study and quantitative evaluation with some 
main existing image assessment algorithms demonstrate better performance of 
our proposed algorithms. The main contributions of our works are twofold: 
firstly, to the best of our knowledge, our algorithms are among the first to intro-
duce image content information for single-image-based rain and snow removal; 
and secondly, we are also among the first to introduce quantitative assessment 
for single-image-based rain and snow removal tasks. 
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1 Introduction 

Computer vision of indoor situations has already been extensively studied, whereas 
vision algorithms that can handle complex and unpredictable behaviors caused by 
different weather conditions, such as rain, snow, fog, or haze, in outdoor situations 
still remain as challenging problems [1].  

Garg and Nayar [2] classified weather effects into two types: steady weather such 
as fog and haze, and dynamic weather such as rain and snow, based on the size of 
weather particles. In [3], an novel dehaze algorithm with dark channel prior was pro-
posed, it achieves pretty good performance for removing steady weather effects. 

However, for larger particles such as raindrops and snowflakes, reducing or remov-
ing the weather effects while preserving scene information is a different and difficult 
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task due to two main reasons: firstly, the visual appearance of raindrops or snowflakes 
depends both on their backgrounds and lighting conditions, which makes it difficult to 
build a general appearance model; and secondly, unlike steady weather conditions, 
rain and snow effects vary significantly over spatial and temporal domain [8]. 

Previous works for reducing the visibility of dynamic weather effects are primarily 
based on video, where physical and photometric properties of raindrops or snowflakes 
can be well employed over the whole video sequence [4-7]. Nevertheless, when only 
a single image is available, such as an image taken by a camera or downloaded from 
internet, algorithms for single-image-based rain/snow removal are essential.  

Fu [8] proposed a rain streak removal diagram with image decomposition and 
morphological component analysis. This method assumes that rain streaks distributed 
homogeneously over the image. However, if the raindrops distributed heterogeneous-
ly and sparsely, it is difficult or impossible to learn a dictionary for rain streaks. Then, 
Xu [9] and Zheng [10] introduced guided-image-filtering [11] for rain/snow removal, 
where different refined guidance images are proposed separately. Both of the two 
algorithms ignored image content itself as well as statistical property of raindrops and 
snowflakes, and will inevitably introduce blurring artifacts to non-rain texture details. 

In this paper, we propose two novel content-adaptive algorithms for single-image-
based rain and snow removal. The first uses a content-based saliency a priori to seg-
ment original image, then different parts in resulting image correspond to regions with 
different perception intensity. Thus an easy but effective strategy is to adjust filter 
parameters adaptively. The other employs a guided-image-filtering based algorithm to 
remove rain and snow for single image, where the guidance image is derived from the 
statistical chromatic and the photometric properties of raindrops or snowflakes. 

A comprehensive analysis is performed and quantitative comparison with two fa-
mous existing image assessment standards - visual information fidelity (VIF) metric 
[12] and feature-similarity (FSIM) index [13] are also carried out. Experimental re-
sults demonstrate the effectiveness and efficiency of our proposed algorithms.  

The remainder of this paper is organized as followings: in section II and III, the de-
tails of our proposed two algorithms - bilateral filtering based algorithm with saliency 
a prior and guided-image-filtering based algorithm with statistical property are well 
explained; then in section IV, a comprehensive comparison analysis and quantitative 
evaluation is conducted; finally, section V concludes this paper. 

2 Preliminary Knowledge 

The intensity of rain and snow generally falls into four categories - light, moderate, 
heavy and violent (Fig. 1) - based on the rate of precipitation [14]. For images con-
taminated by raindrops or snowflakes with light or moderate intensity, it is difficult or 
impossible to learn a construction model accurately due to lack of useful information 
provided by single image as well as their sparse distribution and random directions. If 
images are contaminated with weather effects of heavy or violent intensity, although  
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Fig. 1. The visual appearances of rain under different intensities. From left to right: (a) a beauti-
ful girl in light rain; (b) a sitting man in moderate rain; (c) a building in heavy rain; and (d) 
crossroads in violent rain. 

we can coarsely separate weather effects from background via dictionary learning and 
sparse coding [8], details in background (especially edges and corners resembling rain 
streaks or snowflakes) are often eliminated at the same time, only for the reason that 
raindrops or snowflakes are highly mixed with similar texture in almost each patch of 
the image. Therefore, unlike conventional image restoration problems, single-image-
based rain/snow removal is not an easy and trivial task. However, algorithms based on 
edge-preserving filtering [11,15] provide a reliable solution.  

2.1 Bilateral Filtering 

As a simple, non-iterative scheme for edge-preserving smoothing, bilateral filtering is 
always the first step of computer vision based algorithms for different systems, such 
as vehicle tracking system, pedestrian detection and surveillance system [8], under 
rain or snow weather conditions. The basic idea of bilateral filtering is Gaussian dis-
tribution based averaging, which means that the intensity value at each pixel in an 
image is replaced by a weighted average of intensity values from nearby pixels [15]. 
However, the weights depend not only on Euclidean distance but also on the color 
intensity differences. This preserves sharp edges by systematically looping through 
each pixel and adjusting weights to the adjacent pixels accordingly [11].  

2.2 Guided Image Filtering 

In [11], He proposed a novel explicit image filter called guided filter. Derived from a 
local linear model, the guided filter computes the filtering output ܫ௚௨௜ௗ௘  by consider-
ing the content of guidance image ܫ, which can be the input image itself or another 
different image. In window ߱௞, the output pixel ݍ௜ can be represented as:                                                       ݍ௜ ൌ ܽ௞ܫ௜ ൅ ܾ௞,  ௞                                                       ሺ1ሻ߱߳݅׊

where ܽ௞ and ܾ௞ are defined as:                                    ܽ௞ ൌ ሺሺΣ௜אఠೖܫ௜݌௜ሻ/|߱| െ ௞ଶߪ௞തതതሻ/ሺ݌௞ݑ ൅ ሻ                                      ሺ2ሻ                                                             ܾ௞ߝ ൌ ௞തതത݌ െ ܽ௞ݑ௞                                                            ሺ3ሻ 

Here, ݌ is the filter input, ݑ௞ and ߪ௞ଶ are the mean and variance of ܫ in ߱௞, ݌௞തതത is 
the mean of ݌ in ߱௞, |߱| is the pixel number in ߱௞. 
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3 Bilateral Filtering Based Rain/Snow Removal with a Saliency 
Prior 

According to aforementioned description in section II, as a widely used method for 
rain and snow removal for single image, conventional bilateral filtering has two major 
drawbacks: firstly, it will produce staircase effects at edges, especially at contours of 
un-degraded objects, and secondly, the filter parameters remain the same for all parts 
of the image without any emphasis, which will introduce similar blurring effects or 
flatting performance to both dominant objects and redundant backgrounds.  

However, different parts of an image will cause different perception intensities to 
an observer: the salient parts, which always corresponding to dominant objects that 
are less influenced by raindrops or snowflakes, will lead to more perception intensity, 
whereas the less salient parts, which always corresponding to backgrounds or redun-
dant image content, will result in low perception intensity. Therefore, it is essential to 
adaptively adjust filter parameters based on image content, i.e. content-aware saliency 
information in an image. 

3.1 Content-Based Saliency Detection 

Normally, raindrops or snowflakes result in low perception intensity compared with 
prominent objects in an image, due to the fact that such weather effects are always 
highly mixed with backgrounds and sparsely distributed.  

In this section, we successfully introduce a saliency a priori for bilateral filtering. 
Different from the conventional bilateral filtering, our method can adaptively adjust 
filter parameters based on the intensity of saliency.  

For the computation of saliency map, we use context-aware method [17] proposed 
by Goferman as our pre-processing step. The literatures on saliency detection contain 
nearly 65 vision attention models in the last 25 years [16], and we explain here why 
context-aware method is selected. Firstly, note that we have emphasized content-
adaptive in this paper, and therefore methods designed for saliency detection only for 
dominant objects, regardless of surrounding context information, such as spectral 
residual approach [18] and global contrast based method [19], fall outside the scope 
of this paper. Secondly, of the existing methods for content-based saliency detection, 
methods based on symmetric surround or combined features introduced in [20] appear 
to be the closest in spirit to the context-aware saliency detection utilized here. How-
ever, only limited principles of human visual attention from psychology are utilized in 
[20], whereas [17] realized all of them mathematically. Fig. 2 demonstrates the sali-
ency detection results. 

 

             
        (a)                 (b)                (c)                (d) 

Fig. 2. Ground-truth images with rain/snow and their corresponding saliency map 
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3.2 Ordered Sample Clustering for Histogram of Saliency Map 

For the saliency map from section 3.1, larger pixel values represent high salient re-
gions of the original image, while smaller ones correspond to low salient regions.  

With ordered sample clustering algorithm, the histogram of saliency map can be 
partitioned into several segments, and each segment represents a specific saliency 
intensity level. In this paper, we used the well-known "optimal partition method (i.e. 
fisher method)" to separate the image histogram into several segments. The basic idea 
of "optimal partition" is minimizing the increment of sum of deviation squares of the 
ordered sample after segmentation. 

Fig. 3(a) illustrates the clustering result for saliency map histogram of Fig. 2(b) 
(clustered into 3 categories). Fig. 3(b) illustrates the image segmentation of Fig. 2(a) 
according to clustering result, each segmented region corresponding to a specific 
segment of histogram of saliency map. 

 

 

Fig. 3. Image segmentation according to ordered sample clustering to histogram of saliency 
map. (a) is the histogram of saliency map, the two breaking points are 75 and 101. (b) is image 
segmentation results. 

3.3 Adaptive Parameter Adjustment 

The performance of bilateral filtering depends on three parameters: filter width, 
standard deviations of geometric spread and photometric spread. The geometric 
spread ߪௗ  controls the extent of low-pass filtering: a large value blurs more, and 
vice versa. Similarly, the photometric spread ߪ௥ in the image range is set to achieve 
the desired amount of combination of pixel values. Therefore, it is reliable to allocate 
smaller filter parameters in the regions of high saliency, while in the low salient re-
gions, larger parameters are preferable.  

In our experiment, initial values for these three parameters, i.e. filter half-width, ߪௗ, and ߪ௥ are set as 5, 3, and 0.1, respectively. For regions of lower saliency in the 
next level, we will increase each parameter by 2, 5, and 5 times, separately. The re-
sults are shown in Fig.4. Compared with conventional bilateral filtering method, our 
algorithm can preserve more image-related information (content) and remove 
raindrops and snowflakes with higher accuracy. 
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Fig. 4. Weather removal results for Fig. 3(a) and Fig.3(c) with refined bilateral filtering 

4 Guided-Image-Filtering Based Rain/Snow Removal with 
Statistical Chromatic Property 

Guided-image-filtering achieved good performance for dehaze. After that, feasible 
and practical extensions have been applied towards rain and snow removal [9,10]. 
Conventional revised guided-image-filtering algorithms are all based on the principle 
to preserve more useful details, especially edges. Here, we present a new method to 
extract guidance image based on statistical properties of raindrops/snowflakes. 

4.1 Chromatic Property of Raindrops and Snowflakes 

In [4], a chromatic model for spherical raindrop is presented (also applicable for 
snowflakes). It pointed out that raindrop refracts a wide range of light, therefore the 
projection of raindrop in the image is much brighter than its background. Because of 
the difference in wavelength, blue light has a larger index of refraction and a wider 
field of view than red light. Therefore, a raindrop should refract a little more blue 
light coming from the background. Followed with [2,4], we further investigated the 
subtle difference of refraction to the appearance of raindrops and snowflakes. Accord-
ing to our statistical observations1, the intensity differences of R, G, and B channel 
caused by raindrops/snowflakes are roughly the same. 

4.2 Photometric Property of Raindrops and Snowflakes 

When a falling raindrop or a snowflake is captured by a camera, the intensity is a 
linear combination of irradiance of raindrops or snowflakes and the irradiance of 
background [9]. Their intensity values can be both expressed as:                                                   ܫ௥௦ ൌ න ௥௦തതതതఛܧ

଴ ݐ݀ ൅ ඵ ்ݐ௕തതത݀ܧ
ఛ                                                   ሺ4ሻ 

where ܫ௥௦ is the intensity value of a pixel effected by raindrops or snowflakes, ܧ௥௦തതതത is 
the time-averaged irradiance of a stationary raindrop or snowflake, ܧ௕തതത is the time-
averaged irradiance of background, ܶ is the exposure time and during the time ߬ a 
raindrop or a snowflake is passing through the pixel. 

                                                           
1 We verified these observations using two public videos from [21]. In each frame from the two 

videos, a fixed region of 50*50 is selected, and our observations are based on these 2500  
pixel sequences. 
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If we define Iୠ  as the background intensity, IE  as the intensity of a stationary 
raindrops or snowflakes at the time T. Eq.(4) can be simplified as:                                        ܫ௥௦ ൌ ாܫߙ ൅ ሺ1 െ ,௕ܫሻߙ where ߙ ൌ ߬/ܶ                                       ሺ5ሻ 

Eq.(5) provides a photometric model of raindrops and snowflakes. 

4.3 Refined Guidance Image Extraction 

Here, we proposed a new method for guidance image extraction based on both chro-
matic and photometric properties of raindrops or snowflakes. Firstly, extraction of 
guidance image can be achieved through following procedures: 

I. Smooth input image with bilateral filtering in R, G, B channels separately. The 
result images can be represented as ܫ௕௙_ோ, ܫ௕௙_ீ and ܫ௕௙_஻, respectively. 

II. Compute abstract differential images between three images from step I. Then 
we have three difference images: ܫோିீ, ீܫ ି஻ and ܫ஻ିோ. 

III. Use Eq.(6) to compute the mean image of ܫோିீ, ீܫ ି஻ and ܫ஻ିோ, ܫ௠௘௔௡ can be 
used as our first refined guided image.                                             ܫ௠௘௔௡ ൌ ሺܫோିீ ൅ ܫீ ି஻ ൅  ஻ିோሻ/3                                             ሺ6ሻܫ

In addition, we note that Eq.(5) is established for R, G and B channels. If ܥ indi-
cates a coordinate of the RGB space and ܫ௥௦ି஼ is the maximum value at RGB space 
of ܫ௥௦, ܫ௕ି஼  must be the maximum value at RGB space of ܫ௕ . This relation also holds 
for the minimum value of each vector at RGB space. Therefore, we have:                                           ܫ௥௦ି௠௔௫  ൌ ாି௠௔௫ܫߙ ൅ ሺ1 െ ௥௦ି௠௜௡ܫ                                           ௕ି௠௔௫                                       ሺ7ሻܫሻߙ ൌ ாି௠௜௡ܫߙ ൅ ሺ1 െ  ௕ି௠௜௡                                          ሺ8ሻܫሻߙ

According to aforementioned description ܫாି௠௔௫ ൌ ாି௠௜௡ܫ . Subtract (8) from (7):                            ܫ௙ ൌ ௥௦ି௠௔௫ܫ െ ௥௦ି௠௜௡ܫ ൌ ሺ1 െ ௕ି௠௔௫ܫሻሺߙ െ  ௕ି௠௜௡ሻ                           ሺ9ሻܫ

 

 

 

Fig. 5. Raindrops/Snowflakes removal results with guided image filtering: first row shows 
removal reuslt for sitting man in rain weather; secod row shows removal result for mailbox in 
snow weather. From left to right: ݁ܿ݊ܽ݀݅ݑ݃ܫ ,݊ܽ݁݉ܫ ,݂ܫ and weather removal result. 
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Obviously, ܫ௙  is not affected by weather effects. Therefore, final guidance image ܫ௚௨௜ௗ௔௡௖௘ can be represented as weighted combination of ܫ௠௘௔௡ and ܫ௙ (See Fig.5):                                              ܫ௚௨௜ௗ௔௡௖௘ ൌ ௠௘௔௡ܫߚ ൅ ሺ1 െ  ௙                                            ሺ10ሻܫሻߚ

5 Experiment and Result Analysis 

We have conducted both qualitative and quantitative experiments to assess our pro-
posed two algorithms with other state-of-art raindrop/snowflake removal algorithms. 
The goal of objective image quality assessment research is to provide computational 
models that can automatically predict perceptual image quality. In this paper, we will 
utilize VIF [12] and FSIM [13] to assess our raindrops/snowflakes removal results. 

5.1 Qualitative Comparison 

Fig.6 shows the weather effects removal results of several different filtering based 
methods2. The top row illustrates removal effects for raindrops, and the bottom row 
illustrates removal effects for snowflakes3. As can be seen, "GF" has good perfor-
mance for rain/snow removal, but it introduces more blurring artificial effects. "BF" 
can keep more detail information, but it always preserve more weather effects. Com-
pared with these two, "Xu" can keep more useful structure information, "Our I" can 
also keep more useful details and remove more weather effects. In addition, "Our II" 
outperforms "GF".  
 

 

         
       (a)              (b)                (c)                (d)               (e) 

Fig. 6. Illustration of weather effects removal results with different algorithms: (a-e) removal 
results with "BF", "GF", "Xu", "Our I" and "Our II", respectively. 

5.2 Quantitative Evaluation 

In this section, VIF and FSIM are utilized to evaluate the raindrops and snowflakes 
removal effects quantitatively. Test images (See Fig.7) are downloaded from [21], 
where weather effects are added to the ground truth video frames with advanced ren-
dering techniques [5]. Experimental results are presented in Table 1 and Table 2. 
                                                           
2 More results are available from the author's homepage http://www.yushujian.com/index.html.  
3 We denote bilateral filtering in [15] as BF, guided-image-filtering in [11] as GF, Xu's method 

in [9] as Xu, our two proposed algorithm as Our I and Our II in section 5.1 and section 5.2. 
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          (a)                     (b)                     (c)                     (d)  

Fig. 7. Two representative frames from two test videos: (a) and (c) are ground-truth images; (b) 
and (d) are ground-truth images with added weather effects 

Table 1. Averaged VIF value for video frames with different algorithms  

 BF GF Xu Our I Our II 
Video I 0.1444 0.1172 0.1463 0.1562 0.1484 
Video II 0.5378 0.5193 0.4463 0.6477 0.5745 

Table 2. Averaged FSIM value for video frames with different algorithms  

 BF GF Xu Our I Our II 
Video I 0.3219 0.3039 0.3218 0.3302 0.3360 
Video II 0.8180 0.7717 0.7553 0.8395 0.8119 

6 Conclusion 

In this paper, we have proposed two independent algorithms for raindrops/snowflakes 
removal in single image. Firstly, we successfully introduced a saliency-map-prior for 
bilateral filtering, the improved algorithm can automatically adjust filter parameters 
based on image content. In addition, we have also proposed a novel way for guidance 
image extraction based on properties of rain. The refined guided image filtering can 
achieve better performance than conventional version. Finally, we have conducted 
experiments to assess different rain streak removal methods both from subjective 
perspective and objective measurements. Experimental results demonstrate the effec-
tiveness and efficiency of our proposed algorithms. 
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