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Abstract. In this paper, a new nonlinear neural network is proposed
to solving quadratic programming problems subject to linear equality
and inequality constraints without any parameter tuning. This nonlinear
neural network is proved to be stable in the sense of Lyapunov under
certain conditions. Simulation results are further presented to show the
effectiveness and performance of this neural network.
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1 Introduction

Quadratic programming (QP) studies problem of optimizing (minimizing or
maximizing) a quadratic function of several variables subject to linear equal-
ity or linear inequality constraints on these variables. It has been successfully
applied to various fields [1] such as transportation, energy, telecommunications,
and manufacturing. Traditional approaches to solve QP problems [2–8] include
interior point method, active set method, augmented Lagrangian method, conju-
gate gradient method and gradient projection method etc. However traditional
methods usually require much computational time and can not meet real-time
requirements in practical applications.

In 1986, based on a gradient method, Hopfield and Tank [9] in their paper
proposed a new approach to solve LP problem by using recurrent neural network.
The main advantage of this method is that it can be implemented by using ana-
log electronic circuits, possibly on a VLSI (very large-scale integration) circuit,
which can operate in parallel. In contrast with traditional approaches which may
involve an iterative process and require long computational time, this model can
potentially provide an optimal solution in real time. After their pioneer work
[9,10], numerous neural network models have been developed to solve optimiza-
tion problems, such as the Lagrangian neural network [11], the deterministic
annealing neural network [12], the projection neural network [13], the delayed
projection neural network [14], the dual neural network [15,16] and the primal-
dual neural network [17]. In 1988, Kennedy and Kan [18] developed a neural
network for solving nonlinear programming problems based on Karush-Kuhn-
Tucker (KKT) optimal conditions. By using a penalty parameter its solution
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usually approximates the optimal solution. Only when the penalty parameter
is very large, it is same as the exact solution. Later Maa and Shanblatt [19]
extended this penalty based method by using two-phase model and ensured that
the model converges to the optimal solution. However, their model is more com-
plex and still requires careful parameter selection. To overcome these drawbacks,
Xia [20] proposed a primal and dual model to solving this problem. Zhang and
Constantinides [11] invented a lagrangian neural network based on the idea of
lagrangian multiplier. In this model slack variables are introduced as new vari-
ables to deal with inequality constraints, this may lead to high dimension thus
require more computation. Unlike previous approaches using a fixed parameter,
Wang etc. [12] used a time-variant temperature to design a deterministic anneal-
ing neural network to resolve the linear programs. In International Symposium
on Mathematical Programming 2000, Nguyen [21] presented a novel recurrent
neural network model to solve linear optimization problem. Compared with Xia’s
model, Nguyen’s model not only retains the advantages of Xia’s model but also
have a more intuitive economic interpretation and much faster convergence. The
most interested thing for this model is its nonlinear dynamic structure and high
convergence speed. This paper will extend the Nguyen’s neural network model
to solving quadratic programming problems. For the background and details of
neural networks, we refer to [22–31].

The rest of this paper is organized as follows: Section 2 presents a nonlinear
neural network to solving quadratic problem and the convergence property of this
neural network. Section 3 studies the stability of the proposed dynamical neural
network and proves that this neural network is stable in the sense of Lyapunov
under certain conditions. Section 4 demonstrates the power and effectiveness of
the proposed neural network. In the end, Section 5 gives a summary of this paper
and points out some future research directions.

2 Model Description

Consider the QP Problem

Find x which minimizes : 1
2x

TQx + eTx,

subject to Dx = b,

Ax ≥ c,

x ≥ 0,

(1)

where x and e are n-dimensional vectors, Q is an n × n symmetric positive
definite matrix, D ∈ R

p×n, A ∈ R
m×n, b ∈ R

p×1, c ∈ R
m×1. We call this

problem as the primal QP problem.
The lagrangian function of this minimization problem can be written as

L(x,y, z) =
1
2
xTQx + eTx − yT (Dx − b) − zT (Ax − c), (2)

where z ∈ R
p
+ = {z ∈ R

p|z ≥ 0}, y ∈ R
m are Lagrangian multipliers. According

to the Karush-Kuhn-Tucker (KKT) conditions [32,33], x� is a solution of (1)



A New Nonlinear Neural Network for Solving QP Problems 349

if and only if there exist y� ∈ R
m, z� ∈ R

p
+ so that (x�, y�, z�) satisfies the

following conditions:

Qx� + e − DTy� − AT z∗ ≥ 0,

x�T
(
Qx� + e − DTy�−AT z∗

)
= 0,

b − Dx� = 0,

c − Ax� ≤ 0,

z�T (c − Ax�) = 0. (3)

We propose a recurrent neural network for solving the primal and dual problem
as follows:

ẋ = −Q(x + kẋ) − e + DT (y + kẏ) + AT (z + kż),x ≥ 0, (4a)

ẏ = b − D(x + kẋ), (4b)

ż = −A(x + kẋ) + c, z ≥ 0, (4c)

where k is a positive constant. The architecture of the proposed neural network
model is shown in Fig. 1. The proposed neural network consists of two layers of
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Fig. 1. Block diagram of the neural network (4a, 4b, and 4c)

neurons, i.e., primal neurons and dual neurons. The outputs from one layer are
the inputs to the other layer. The inputs of the primal neurons are composed
of the dual neuron’s outputs and their derivatives, while the inputs of the dual
neurons are composed of the primal neuron’s outputs and their derivatives. Due
to the involvement of these derivatives, this neural network model is a nonlin-
ear dynamic system. The convergence property of the system is stated by the
following theorem.
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Theorem 1: If the neural network whose dynamics guided by the differential
equations (4a, 4b, and 4c) converges to a steady state (x�,y�, z�), then x� will
be the optimal solution of the primal QP problem and the Lagrangian multipliers
y� and z� the optimal solution of the dual of the QP problem.

Proof. Let xi be the ith component of x, then the equation (4a) can be written
as

dxi

dt
= {(−Q(x + k

dx
dt

) − e) + DT (y +
dy
dt

) + AT (z + k
dz
dt

)}i if xi > 0, (5)

dxi

dt
= max{{(−Q(x+k

dx
dt

)−e)+DT (y+
dy
dt

)+AT (z+k
dz
dt

)}i, 0} if xi = 0. (6)

Note that (6) is to ensure that x will bounded from below by 0. Let x�, y� and
z� be the limit of x(t), y(t) and z(t) respectively. In other words

lim
t→∞x(t) = x� (7)

lim
t→∞y(t) = y� (8)

lim
t→∞ z(t) = z� (9)

By the definition of convergence, we have dx�

dt = 0, dy�

dt = 0 and dz�

dt = 0. From
Eqns. (5) and (6) we conclude that

0 = {(−Q(x�) − e + DTy� + AT z�)}i if x�
i > 0 (10)

0 = max{{(−Q(x�) − e + DTy� + AT z�)}i, 0} if x�
i = 0 (11)

In other words:
(−Q(x�) − e + DTy� + AT z�

)
i
≤ 0 (12)

x�
i

(−Q(x�) − e + DT y� + AT z�
)
i
= 0 (13)

or
(
Q(x�) + e − DTy� − AT z�

) ≥ 0 (14)

x�T
(−Q(x�) − e + DTy� + AT z�

)
= 0 (15)

Similarly, from Eqns. (4b) and (4c), we have:

Dx� − b = 0 (16)
Ax� − c ≥ 0 (17)

z�T (Ax� − c) = 0 (18)

By KKT conditions in (3) and conditions provided in (15-18) we have shown
that x� and (y�, z�) are the optimal solutions for the problem (1) and its dual
problem respectively. This concludes the proof.
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3 Stability Analysis

It’s easy to prove that the differential equations (4a), (4b) and (4c) are equivalent
to the following second order differential equations:

(I + kQ + k2DTD + k2ATA)ẍ +
(Q + 2kDTD + 2kATA)ẋ +

(DTD + ATA)x − (DTb + AT c) = 0. (19)

Suppose the entity DTD+ATA is non-singular, we introduce a transformation
x = u + (DTD + ATA)−1(DTb + AT c), then we have ẋ = u̇ and ẍ = ü . By
this transformation, the ordinary differential equation (19) can be written as

(I + kQ + k2DTD + k2ATA)ü + (Q + 2kDTD + 2kATA)u̇
+(DTD + ATA)u = 0 (20)

Now we would like to study the stability of the equation (20).
Generally we study the stability of the following second order ordinary dif-

ferential equation

Lü + Mu̇ + Nu = 0. (21)

where L, M and N are all positive definite.
First we consider the simplified second order ordinary differential equation

ü + Mu̇ + Nu = 0. (22)

where M and N are both positive definite.

Theorem 2: If the coefficient matrices M and N of the system (22) are both
positive definite, then this dynamic system is global asymptotic stable.

Proof. If we set u1 = u, u2 = u̇, we have the system
{
u̇1 = u2,

u̇2 = −Mu2 − Nu1.

In order to show the global asymptotic the stability of (22), we only need to

show the real parts of the eigenvalues of P are negative, where P =

(
0 I

−N −M

)
.

Suppose λ ∈ C
n be an eigenvalue of P with the corresponding non-zero eigen-

vector v = (v1,v2), by the definition of eigenvector, we have
(

0 I

−N −M

) (
v1

v2

)
=

(
v2

−Nv1 − Mv2

)
= λ

(
v1

v2

)
.

Since N is positive definite, P is non-singular. This concludes that λ can not
be an eigenvalue of P. Since λ �= 0 and v2 = λv1, we claim that v1 �= 0 and
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v2 �= 0. Without loss of generality we may assume that v∗
1 · v1 = 1, where

∗ denotes complex conjugate transpose. Using this assumption, we can write
λ2 = v∗

1λ
2v1 = v∗

1λv2 = v∗
1(−Nv1 − Mv2) = −v∗

1Nv1 − λv∗
1Mv1, where we

have used the identity λv1 = v2 and λv2 = −Nv1 − Mv2. Since N is positive
definite, the entity β = v∗

1Nv1 is positive real. Similarly, the entity α = v∗
1Mv1

is positive because of the positive definiteness of M. Substitute these scalars into
the equation λ2 = −v∗

1Nv1 − λv∗
1Mv1, we have a quadratic equation of λ, i.e.,

λ2 + αλ + β = 0.

Note that every eigenvalue of P satisfies the above equation. The solution of the
above equation is

λ1,2 =
1
2
(−α ±

√
α2 − 4β).

If α2 − 4β ≥ 0, the real parts of λ1,2 are:

Re{λ1,2} =
1
2
(−α ±

√
α2 − 4β).

Recall that α and β are positive, we claim that Re{λ1,2} are negative.
If α2 − 4β < 0, the real parts of λ1,2 are:

Re{λ1,2} = −1
2
α.

Since α is positive, it’s obviously that the real parts of λ1,2 are negative.
In all cases, we conclude that the real parts of λ1,2 are always negative.

Theorem 3: For the second order ordinary differential equation

Lẍ + Mẋ + Nx = 0,

if its coefficient matrices L, M and N are all positive definite, then it is asymp-
totic stable.

Proof. Note that for the positive definite matrix L, we have a decomposition
such that L = L

1
2L

1
2 and L−1 = L− 1

2L− 1
2 , where L

1
2 and L− 1

2 are positive
definite. Now we define the transformation x̃ = L

1
2x or x = L− 1

2 x̃, using this
transformation we have

LL− 1
2 ¨̃x + ML− 1

2 ˙̃x + NL− 1
2 x̃ = 0 (23)

Premultiplying L− 1
2 to both hands of equation, we get

¨̃x + L− 1
2ML− 1

2 ˙̃x + L− 1
2NL− 1

2 x̃ = 0 (24)

This system is exactly of the form used in Theorem 2, but instead of M and
N we now have L− 1

2ML− 1
2 and L− 1

2NL− 1
2 . If the later system is asymptotic

stable, it implies that (1) is asymptotic stable, since the two systems differ only
by a non-singular transformation. Therefore the global asymptotic stability of
(6) follows from Theorem 2.
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Theorem 4: If the matrix ATA or DTD is non-singular and k > 0, then the
neural network described by differential Eqns. (4a, 4b and 4c) is asymptotic
stable.

Proof. Since ATA or DTD is symmetric and non-singular, the matrices I +
kQ+ k2DTD+ k2ATA, Q+ 2kDTD+ 2kATA and ATA+DTD are positive
definite. By Theorem 3, we conclude that the dynamical system of (4a, 4b and
4c) is asymptotic stable in the sense of Lyapunov.

4 Simulation Results

To demonstrate the behavior and properties of the proposed nonlinear neural
network model, one example with four different initial vectors is simulated. The
simulation is conducted with MATLAB. We use the Euler method to solve the
neural system of ordinary differential equations (4a, 4b and 4c).
Consider the following quadratic programming problem:

Minimize 0.4x1 + 1.25x2
1 + x2

2 − x1x2 + 0.5x2
3 + 0.5x2

4,

subject to −0.5x1 − x2 + x4 ≥ −0.5,

x1 + 0.5x2 − x3 = 0.4,

x ≥ 0.

(25)

We tested the proposed neural network guided by (4a, 4b and 4c) with four
different initial vectors(four combination for feasible and infeasible vectors) for
the primal and dual problems:
case 1: x0 = (1, 1, 1.1, 2)T (feasible) and (y0, z0) = (−1, 1)(feasible),
case 2: x0 = (1, 1, 1.1, 2)T (feasible) and (y0, z0) = (1,−1)(infeasible),
case 3: x0 = (1, 2,−1,−2)T (infeasible) and (y0, z0) = (−3, 1)(feasible),
case 4: x0 = (−1, 2, 4, 3)T (infeasible) and (y0, z0) = (1,−1)(infeasible),
and the transient behaviors of x(t) are depicted in Fig. 2, Fig. 3, Fig. 4, Fig. 5
respectively.
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Fig. 2. Transient behavior of x(t) for case 1
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Fig. 3. Transient behavior of x(t) for case 2
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Fig. 4. Transient behavior of x(t) for case 3
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Fig. 5. Transient behavior of x(t) for case 4
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It can be seen that after about 80 iterations the vector x will converge to the
optimal solution x� = (0.2483, 0.3034, 0, 0)T for all cases.

5 Conclusions

This paper presents a new nonlinear neural network to solving quadratic pro-
gramming problems. It’s proved that this novel neural network is stable in the
sense of Lyapunov under certain conditions. Numerical simulation results show
the effectiveness and efficiency this neural network. Future research direction
include application the proposed neural network to solving the K-Winners-Take-
All (KWTA) problem [34–36] based on linear programming or quadratic pro-
gramming formulations, assignment problem [37,38] and maximum flow problem
[39,40], extension the nonlinear model to convex programming and more general
optimization problems.
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