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Preface

This volume of Lecture Notes in Computer Science, vol. 8866, constitutes the
Proceedings of the 11th International Symposium on Neural Networks (ISNN
2014) held during November 28–December 1, 2014 in Hong Kong and Macao,
the twin city, following the successes of previous events. Known as the Spe-
cial Administrative Regions of China, Hong Kong and Macao are two modern
metropolies situated on the southern coast of China by the Pearl River Delta.
ISNN is a prestigious annual symposium on neural networks with past events
held in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Bei-
jing (2008), Wuhan (2009), Shanghai (2010), Guilin (2011), Shenyang (2012) and
Dalian (2013). Over the past few years, ISNN has matured into a well-established
series of international conference on neural networks and their applications to
other fields. Following this tradition, ISNN 2014 provided an academic forum for
the participants to disseminate their new research findings and discuss emerging
areas of research. Also, it created a stimulating environment for the participants
to interact and exchange information on future research challenges and oppor-
tunities of neural networks and their applications.

ISNN 2014 received submissions from about 218 authors in 14 countries and
regions (Belgium, Canada, China, Czech Republic, Hong Kong, India, Japan,
Macao, Pakistan, Poland, Republic of Korea, Tunisia, UK and USA). Based on
the rigorous peer reviews by the ProgramCommittee members and the reviewers,
71 high-quality papers were selected for publications in the LNCS proceedings.
These papers cover all major topics of the theoretical research, empirical study,
and applications of neural networks research.

ISNN 2014 would not have achieved its success without the support and
contributions of many volunteers and organizations. We would like to express
our sincere thanks to The Chinese University of Hong Kong, and University of
Macau, to European Neural Network Society, International Neural Network So-
ciety, IEEE Computational Intelligence Society, and Asia Pacific Neural Network
Assembly for their technical co-sponsorship.

We would also like to sincerely thank the General Chair and General Co-
chairs for their overall organization of the symposium, members of the Advi-
sory Committee and Steering Committee for their guidance for every aspects
of the entire conference, and the members of the Organizing Committee, Spe-
cial Sessions Committee, Publication Committee, Publicity Committee, Finance
Committee, Registration Committee, and Local Arrangements Committee for
all their great efforts and time in organizing such an event. We would also like
to take this opportunity to express our deepest gratitude to the members of
the International Program Committee and all reviewers for their professional
review of the papers; their expertise guaranteed the high qualify of the technical
program of the ISNN 2014!



VI Preface

Furthermore, we would also like to thank Springer for publishing the proceed-
ings in the prestigious series of Lecture Notes in Computer Science. Meanwhile,
we also would like to express our heartfelt appreciations to the plenary and panel
speakers for their vision and discussions on the latest research development in the
field as well as critical future research directions, opportunities, and challenges.

Finally, we would also like to thank all the speakers, authors, and participants
for their great contribution and support that made ISNN 2014 a great success.

November 2014 Zhigang Zeng
Yangmin Li
Irwin King
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A Less Conservative Guaranteed Cost Stabilization  
of Time-Varying Delayed CNNs 

Mei Jiang(), Hanlin He, and Lu Yan 
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Abstract. This paper deals with the guaranteed cost stabilization problem of 
time-varying delayed cellular neural networks. By introducing the saturation 
degree function and applying the convex hull theory to handle the activation 
function, the main contribution of the paper lies in its proposal of a new control-
ler for time-varying delayed CNNs with guaranteed cost according to 
Lyapunov-Krasovskii theorem, which extends the earlier results and gets less  
conservative guaranteed cost stabilization. Then we make use of Schur com-
plement to convert the QMI (quadratic matrix inequality) to an LMI (linear  
matrix inequality) and thus it can be easily used as controller synthesis. The 
minimization of the guaranteed cost is further studied, and the corresponding 
LMI criterion to get the controller is given. Finally, numerical examples are 
given to show the effectiveness of the proposed controller and its corresponding 
minimization problem. 

Keywords: Time-Delayed Cellular Neural Networks (DCNNs) · Stabilization ·  
Convex hull · Guaranteed cost 

1 Introduction* 

As signal transmissions along cells in cellular neural networks (CNNs) usually cause 
time delays, the oscillation phenomenon or network instability may occurs in the in-
teraction between the neurons. The delayed-type CNNs (DCNNs) were proposed [1] 

and stability of DCNNs has attracted many reseachers’ attention recently. Many de-
lay-independent and delay-dependent stability criteria for DCNNs have been  
proposed over the past years, mainly based on Razumikhin techniques, the 
Lyapunov–Krasovskii functionals and linear matrix inequalities (LMIs) formulation 
[2-4]. However, the stability of many practical neural networks cannot always be 
guaranteed by these techniques. Zhou investigated global exponential stability with 
multi-proportional delays and present a new delay-dependent sufficient conditions to 
ensure global exponential stability [5]. Noticing the saturation property of the activa-
tion function in CNNs, many results have been proposed to the processing of saturat-
ed nonlinear terms over the past years. In [6-8] the saturated control is formulated into 
a convex combination of a feedback matrix and an auxiliary feedback matrix, but 
                                                           
  National Natural Science Foundation of China (Grant No. 61374003). 



4 M. Jiang et al. 

these papers do not give the effective method to search for the optimal auxiliary feed-
back matrix. Without free-weighting matrices, a new delay-dependent sufficient con-
dition for the exponential synchronization with memoryless hybrid feedback control 
are first established in terms of LMIs [9]. In [10-11], the authors presented the zoned 
discussion and maximax synthesis method (ZDMS) and considered guaranteed cost 
synchronization of DCNNs with ZDMS. 

In this paper, we mainly focus on the design of a new controller with guaranteed 
cost for time-varying delayed cellular neural networks. First, the activation functions 
are handled together with the convex hull theory. Then a less conservative guaranteed 
cost controller is derived by Lyapunov-Krasovskii functional method. With the help 
of Schur complements, the LMI criterion is obtained from transformation of QMI 
condition. Further, the minimization of the guaranteed cost and its’ corresponding 
LMI condition are derived. Analysis of the control cost and numerical examples are 
given to show the effectiveness of proposed method. 

2 Problem Statement 

The dynamic behavior of a continuous time-varying delayed CNNs can be described 
by the following state equations: 

                     (1) 

where ,  ( is a compact subset of ) are the state vectors with 

and without time delays, respectively.  is the control input (simply written 

as ).  represents the rate with which the th neuron 

will reset its potential to the resting state in isolation when disconnected from the 
network and external inputs, where .  are the inter-

connection matrices representing the weighting coefficients of the neurons, the  
conjunction matrices of the saturated parts. Here , . Satu-

rated function is the activation function of the neurons defined as 

follows: 

, ,  

As saturation exists, the system has strong nonlinear characteristics. So we should 
firstly process the saturated terms. Define saturation degree function 

, where 

                  (2) 
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,  are simply written as . Define . 

. Clearly we have  and .  de-

notes a diagonal matrix obtained from vector , we get , 

, so the system (1) can be rewritten as 

. 

Considering the set , then there are  

elements in it . Denote the element in  as . According to the convex 

hull theory, we have 

, , 

the system (1) can be changed into 

               (3) 

where , . 

Remark 1: If we can find the vector , then the convex combination of the right 
hand in Eq. (3) could be the smallest, then the designed controller based on the con-
vex combination could be less conservative.  

3 Design of the Guaranteed Cost Controller 

For the system (1), we select a commonly used quadratic cost function 

                      (4) 

where . Then we have the following theorem. 

Theorem 1: For the nonlinear system (1), if there exist a positive definite matrix 
 and a matrix  such that 

   (5) 

for all , then  is a guaranteed cost controller of the system 

(1), making the system globally asymptotically stable. And the upper bound of guar-
anteed cost  satisfies 

                     (6) 

where , . 
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Proof: Define a Lyapunov–Krasovskii functional , where 

, . 

It can be derived that 

 

 

Define , we get 

 

If the inequality (5) holds, then when , we have . Because  is 

radially unbounded, by the Lyapunov–Krasovskii theorem, the system (1) is globally 
asymptotically stable. Meanwhile, we can further get from the upper inequality 

. 

 is the upper bound of . This completes the proof of Theorem 1. 

Remark 2: The controller is robust to some extent. Suppose that there exists an un-
certain signal  in system (1), thus the system should be rewritten as  

                     (7) 

According to the proof of Theorem 1, . Suppose 

that , then we get . Thus, if 

, the system (7) is globally asymptotically stable.  

4 LMI Formulation 

Corollary 1: There exist a positive definite matrix  and a matrix  such 
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if and only if there exist a positive definite matrix  and a matrix  such 

that (5) is satisfied with , . 

Proof:  
Sufficiency: If (5) holds, according to Schur complement, we have 

         (9) 

Multiplying both sides of the matrix (9) by , then it follows that 

  (10) 

By substituting ,  into (10), we have (8).  

It is also easy to prove the necessity by using Schur complement lemma. So it 
completes the proof of Corollary 1. 

Remark 3: The following problem is the minimization of the guaranteed cost stabili-
zation control. Since only is undetermined in (8), the minimization of  is 

equivalent to the minimization of . Notice that if  be a random variable 

with , then it can de derived that . Hence, the 

essence of the minimization of  is the minimization of , which can be 

expressed as: , s.t. (8). for all . 

The above problem can be transformed into following LMI problem: 

, s.t.  and (8) for all .        (11) 

5 Analysis of the Control Cost 

If processing by the convex hull theory, where , we 

have . And it is known that , therefore  
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if , then ; 

if , then . 

Combining the two cases, we get . 

So the control cost of the controller designing with the convex hull theory is rela-
tively lower than the method of zoned discussion and maximum synthesis (ZDMS). 
Because the design of feedback control  via Lyapunov stability analysis is 
essentially counteracting the positive term emerging in the amplification process, and 
the convex hull theory doesn’t involve amplification, offering less conservative gain

of the controller. 

6 Simulations of Guaranteed Cost Stabilization 

6.1 Example of Guaranteed Cost Stabilization 

Consider DCNNs (1) with the following coefficient matrices:  

， ，  

and time delay . so we have . With the initial states cho-

sen as , . When , without loss of generality, we 

suppose the compact subset 

, 

hence . Now we use theorem 1 and corollary 1 to design 

the controller with guaranteed cost for the DCNN. We choose . Since 

there are 4 elements in . Hence, we get 16 blocks in the form of LMI (8). It is con-
venient to solve by the help of LMI toolbox of MATLAB: 

, , , 

thus  and . 

Then the states curves are shown in Fig. 1. 
We use  and to denote  and  in this case. According to the data of the 

states, we obtain , and . It's obvious that 

. 
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Fig. 1. Stabilization under the controller with guaranteed cost 

6.2 Minimization of the Guaranteed Cost 

To minimize the guaranteed cost’s upper bound , it has been elaborated in Re-
mark 3 that we can find the minimum of . According to (11), we should 

find the solution of 17 LMIs. The solution obtained is as follows 

, , , 

thus  and .  

The states curves are shown in Fig. 2. 
 

 

Fig. 2. Stabilization under minimal controller with guaranteed cost 
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In this section, we use  and to denote  and  in this case. According 

to the data of the states, we obtain , and , so 

. 

6.3 Results Analysis 

By the zoned discussion and maximum synthesis (ZDMS) method, we calculate the 
guaranteed cost  and its' upper bound , and the minimization of guaranteed 

cost  and its' upper bound . The results are listed as follows: 

, , , . 

As expected, the values obtained by our method are smaller than the corresponding 
ones obtained by ZDMS method.  

7 Conclusion 

In this paper, we mainly designed a new controller with guaranteed cost for time–
varying delayed cellular neural network. Firstly, we make use of the saturation degree 
function combining with the convex hull theory to handle saturated terms. Then we 
put forward the sufficient condition for the controller according to the Lyapunov–
Krasovskii theorem, and proved that the designed controller has certain robustness. 
Because the condition is a QMI, so we applied Schur complement lemma to convert it 
to an LMI to be easily solved by computer. We also discussed the minimization prob-
lem of guaranteed cost, trying to optimize the controller. Further, we proved the con-
trol cost of the designed controller is lower than the zoned discussion and maximum 
synthesis method. Finally, simulations demonstrate the effectiveness of the method. 
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Abstract. The almost automorphic solution is a generalization of the
almost periodic solution. In this paper, the almost automorphic solutions
of Cohen-Grossberg neural networks with delays are considered. Using
the semi-discretization method and the contraction mapping principle,
some sufficient conditions are obtained to ensure the existence and the
uniqueness of almost automorphic solutions to Cohen-Grossberg neural
networks with delays.

Keywords: Cohen-Grossberg neural network · Almost automorphic
solution · Contraction mapping principle

1 Introduction

In 1983, Cohen and Grossberg constructed an important kind of simplified neural
networks model which is now called Cohen-Grossberg neural networks (CGNNS)
[1]. This kind of neural networks is very general and includes Hopfield neural
networks, cellular neural networks and BAM neural networks as its special cases.
It has received increasing interest due to its applications in many fields such as
pattern recognition, parallel computing, associative memory and combinatorial
optimization. In recent years, the Cohen-Grossberg neural networks have been
widely studied and many useful and interesting results have been obtained (see
[6] and its references).

The concept of almost automorphy was introduced by Bochner [2] in 1964.
It is a natural generalization of the classical almost periodicity. According to
the properties of periodic functions, we know that periodic functions are all uni-
formly continuous. However, there exist some functions that have the similar
properties to periodic functions, and meanwhile they are not uniformly continu-
ous, such as f(k) = sign(cos2πkθ). This kind of function is almost automorphic.

This work was jointly supported by the National Natural Science Foundation of
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At present, the almost automorphic functions have been used in many differ-
ent kind of fields [3–5], [10,15,16], such as ordinary differential equation, partial
differential equation, integral equation and dynamic system and so on. In [5], the
authors studied a kind of partial differential equation based on biology, and the
natural function classes of the solutions about this kind differential equation are
almost automorphic functions. However, there is no paper discussed the almost
automorphic solution to Cohen-Grossberg neural networks, so it is meaningful
to discuss it and ours is the first one.

Generally speaking, the Cohen-Grossberg neural networks with delays can
be described as following:

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) − ∑n

j=1 dij(t)gj(xj(t − τj)) − Ii(t)
]

(1)

where i = 1, 2, · · · , n, xi(t) is the state variable associated with the ith neuron,
ai(·) is an amplification function and bi(·) represents a behaved function, dij(t)
presents the strength of connectivity between cells i and j at time t, the activa-
tion function gi(·) tells how the ith neuron reacts to the input, τi corresponds to
the time delay. The initial condition of (1) is xi(t) = ϕi(t), t ∈ [−τi, 0].

In reality for the applications of neural networks to some practical problems,
suchasexperiment, imageprocessing, computationalpurposesandsoon, it is essen-
tial to formulate a discrete-time system which is a version of the continuous-time
system. The discrete-time system is desired to preserve the dynamical character-
istics of the continuous-time system. There are many numerical schemes such as
Euler scheme and Runge-Kutta scheme that can be utilized to obtain the discrete-
time version of the continuous-time system. In this paper, we will use the semi-
discretization scheme to obtain the discrete-time analogues of the continuous-time
(1).The semi-discretization ideawas originally used in the partial differential equa-
tions and then introduced to the ordinary differential equations. It has been proved
that such kind of method can preserve the dynamical characteristics of the
continuous-time systems to some extent, we can find examples in [7]-[9].

Using the semi-discretization method, the model (1) can be written as:

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) − ∑n

j=1 dij(t)gj(xj([ t
h ]h − [ τj

h ]h)) − Ii(t)
]

(2)

t ∈ [nh, (n + 1)h), [ t
h ] = n, h is the discretization step-size, it is a fixed positive

real number.
In this paper, we consider the existence and the uniqueness of almost auto-

morphic solutions of (2).
The remainder of this paper is organized as following: some definitions and

assumptions are given in Section 2, and in Section 3, some sufficient conditions
are given to ensure the existence of the almost automorphic solutions of (2). In
the last section, Section 4, some conclusions about this paper are presented.

2 Preliminaries

For the readers’ convenience, we first give some definitions (for details, see
[11]-[14]).
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Definition 1. A continuous function f : R × X → R is called almost automor-
phic for x in compact subsets of X, if for every compact subset K of x and every
real sequence sn, there exists a subsequence snk

, such that

lim
n→+∞ f(t + snk

, x) = g(t, x) and lim
n→+∞ g(t − snk

, x) = f(t, x), t ∈ R, x ∈ K

Definition 2. A continuous f : Z × X → X is a called almost automorphic
sequence for x ∈ X if for every sequence of integer {n}, there exists a subsequence
{nl}l∈N , such that

f(n + hnl, x) → g(n, x) and g(n − hnl, x) → f(n, x), n ∈ Z and x ∈ X

The set of all such functions are denoted by AAS(Z × X → X), AAS for short.

The following are some assumptions which will be used later.
A1: ai(·), dij(·), and Ii(·) are almost automorphic to the variable t, and

0 < ai ≤ ai(·) ≤ ai.
A2 : for any x, y ∈ R, there exist some constants Ai, Lj , and Gj , such that

|ai(x) − ai(y)| < Ai|x − y|, |gj(x) − gj(y)| ≤ Lj |x − y|, |gj(x)| ≤ Gj .
A3 : There exist positive almost automorphic functions β

i
(t), βi(t), such

that ∀xi, yi ∈ R, i = 1, 2, · · · , n, the following inequality holds:

0 < β
i
(t) ≤ ai(xi(t))bi(xi(t)) − ai(yi(t))bi(yi(t))

xi(t) − yi(t)
≤ βi(t)

and β
i
= inft≥0 |β

i
(t)|, βi = supt≥0 |βi(t)|, bi(0) ≡ 0.

3 Main Results

According to A3, the model (2) can be written as following:

ẋi(t) = −ri(t)xi(t) + ai(xi(t))
[ ∑n

j=1 dij(t)gj(xj([ t
h ]h − [ τj

h ]h)) + Ii(t)
]

(3)

From (3) we can obtain:

xh
i (n + 1) = xh

i (n)e− ∫ (n+1)h
nh

ri(u)du + ai(x
h
i (n))

×
{∫ (n+1)h

nh

[∑n
j=1 dij(s)gj(xj(n − τ∗

j )) + Ii(s)
]
e− ∫ (n+1)h

s ri(u)duds
}

(4)
where xh

i (n) = xi(nh), and τ∗
j = [ τj

h ].
Let

Ri(n) = e− ∫ (n+1)h
nh ri(u)du,

Dij(n) =
∫ (n+1)h

nh
dij(s)e− ∫ (n+1)h

s
ri(u)duds,

Ei(n) =
∫ (n+1)h

nh
Ii(s)e− ∫ (n+1)h

s
ri(u)duds

then (4) is reformulated as:

xh
i (n + 1) = Ri(n)xh

i (n) +
∑n

j=1 ai(x
h
i (n))Dij(n)gj(xj(n − τ∗

j )) + ai(x
h
i (n))Ei(n)

(5)
Denote Ri = supn∈Z{Ri(n)}, Dij = supn∈Z{Dij(n)}, Ei = supn∈Z{Ei(n)}.
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Theorem 1. Suppose that the assumptions A1 − A3 hold, then there exists a
unique almost automorphic solution of (5) if

max
1≤i,j≤n

{Ri +
n∑

j=1

aiDijLj +
n∑

j=1

AiDijGj + AiIi} < 1.

Proof. There are three steps to complete the proof.
Step1. To start the proof, we show that Ri(n), Dij(n), Ei(n) are almost

automorphic for i, j = 1, 2, · · · , n, firstly.
For ri(t) is almost automorphic, then for any sequence tn, there exists a

subsequence tnl
such that ri(t+ tnl

) → ri(t) and ri(t− tnl
) → ri(t) for nl → ∞.

so

|Ri(n + tnl
) − Ri(n)| = |e− ∫ (n+1+tnl

)h

(n+tnl
)h ri(u)du − e− ∫ (n+1)h

nh ri(u)du|
= |e− ∫ (n+1)h

nh ri(u+tnl
)du − e− ∫ (n+1)h

nh ri(u)du| → 0

Thus Ri(n + tnl
) → Ri(n). Likewise, Ri(n − tnl

) → Ri(n).
Under assumption A1, dij(t) is almost automorphic and dij(t+ tnl

) → dij(t).
Let Dij(n) =

∫ (n+1)h

nh
dij(s)e− ∫ (n+1)h

s
ri(u)duds, then for {tnl

} ∈ Z,

|Dij(n + tnl
) − Dij(n)|

=
∣
∣ ∫ (n+1+tnl

)h

(n+tnl
)h dij(s)e− ∫ (n+1+tnl

)h
s ri(u)duds − ∫ (n+1)h

nh
dij(s)e− ∫ (n+1)h

s
ri(u)duds

∣
∣

≤ ∣
∣ ∫ (n+1)h

nh
dij(s + tnl

)[e− ∫ (n+1)h
s

ri(u+tnl
)du − e− ∫ (n+1)h

s
ri(u)du]ds

∣
∣

+
∣
∣ ∫ (n+1)h

nh
[dij(s + tnl

) − dij(s)]e− ∫ (n+1)h
s

ri(u)duds
∣
∣

→ 0.

Likewise, Dij(n− tnl
) → Dij(n). Then by the similar analysis, Ei(n+ tnl

) →
Ei(n), Ei(n − tnl

) → Ei(n). That is to say, Ai(n), Dij(n), Ei(n) ∈ AAS.
Step2. Consider the following equation:

xh
i (n + 1) = Ri(n)xh

i (n) + ai(xh
i (n))Ei(n) (6)

Next, we will show that (6) has a unique almost automorphic sequence solution.
Using the method of induction, according to (6), we can obtain

xh
i (n + 1) =

n∏
l=0

Ri(l)x
h
i (0) +

n∑
q=0

ai(x
h
i (n − q))

∫ (n+1−q)h

(n−q)h

Ii(s)e
− ∫ (n+1)h

s ri(u)duds

Let

x̃h
i (n) =

n−1∑

q=0

ai(x̃h
i (n − 1 − q))

∫ (n−q)h

(n−1−q)h

Ii(s)e− ∫ nh
s

ri(u)duds,

then

|x̃h
i (n)| ≤ |

n−1∑

q=0

ai
Ii

β
i

(e−qhβ
i − e−(q+1)hβ

i)| < |aiIi

β
i

(1 − e−nhβ
i)| < |aiIi

β
i

|.
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We can easily verify that
x̃h

i (n + 1) = Ri(n)x̃h
i (n) + ai(x̃h

i (n))Ei(n).
Let x̃h

i∗(n) =
∑n−1

q=0 ai(x̃h
i∗(n−1−q))

∫ (n−q)h

(n−1−q)h
Ii(s)e− ∫ (n−q)h

s
ri(u)duds, where

ai(x̃h
i (n + tnl

)) → ai(x̃h
i∗(n)), and ai(x̃h

i∗(n − tnl
)) → ai(x̃h

i (n)).
Then for any given sequence {tnl

} ∈ Z,

|x̃h
i (n + tnl) − x̃h

i∗(n)|
≤∑n−1

q=0

∣∣[ai(x̃
h
i (n − 1 − q)) − ai(x̃

h
i∗(n − 1 − q))

]
∫ (n−q)h

(n−1−q)h
Ii(s + tnl)e

− ∫ (n−q)h
s ri(u+tnl

)duds
∣∣

+
∑n−1

q=0

∣∣ai(x̃
h
i∗(n − 1 − q))

∫ (n−q)h

(n−1−q)h
[Ii(s + tnl) − Ii(s)]e

− ∫ (n−q)h
s ri(u+tnl

)duds
∣∣

+
∑n−1

q=0

∣∣ai(x̃
h
i∗(n − 1 − q))

∫ (n−q)h

(n−1−q)h
Ii(s)

[e− ∫ (n−q)h
s ri(u+tnl

)du − e− ∫ (n−q)h
s ri(u)du]ds

∣∣→ 0

So x̃h
i (n + tnl

) → x̃h
i∗(n). Likewise, x̃h

i∗(n − tnl
) − x̃h

i (n). Thus, x̃h
i (n) is almost

automorphic. In addition, x̃h
i (n+1) = Ri(n)x̃h

i (n)+ai(x̃h
i (n))Ei(n), then x̃h

i (n)
is the almost automorphic solution of (6).

Step3. Assume that

θ = max
1≤i≤n

aiIi

βi
, ω = max

1≤i≤n
{Ri + AiEi}, γ = max

1≤i≤n
{Ri +

n∑

j=1

aiDijLj}

Define a mapping F: AAS → AAS, x → Fx, Fx = ((Fx)2, · · · , (Fx)n)T ,

(Fx)i(n+1) = Ri(n)xh
i (n)+

n∑

j=1

ai(xh
i (n))Dij(n)gj(xj(n−τ∗

j ))+ai(xh
i (n))Ei(n).

Denote ‖x‖ = supn∈Z max1≤i≤n |xi(n)|, let Ω = {x : x is almost automor-
phic, ‖x − x̃‖ ≤ ω+γ

1−γ θ}, then ‖x‖ ≤ ‖x − x̃‖ + ‖x̃‖ = ω+1
1−γ θ.

∀x, y ∈ Ω, we have:

‖Fx − x̃‖ = sup
n∈Z

max
1≤i≤n

|Ri(n)(xh
i (n) − x̃h

i (n))

+
n∑

j=1

ai(x
h
i (n))Dij(n)gj(xj(n − τ∗

j )) + [ai(x
h
i (n)) − ai(x̃

h
i (n))]Ei(n)|

≤ Ri‖x‖ + Ri‖x̃‖ +

n∑
j=1

aiDijLj‖x‖ + AiEi‖x̃‖

≤ (Ri +
n∑

j=1

aiDijLj)‖x‖ + ω‖x̃‖

≤ ω + γ

1 − γ
θ
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‖Fx − Fy‖ = sup
n∈Z

max
1≤i≤n

{
|Ri(n)(xh

i (n) − yh
i (n))

+
n∑

j=1

[ai(x
h
i (n))gj(xj(n − τ∗

j )) −
n∑

j=1

ai(y
h
i (n))gj(yj(n − τ∗

j ))]Dij(n)

+[ai(x
h
i (n)) − ai(y

h
i (n))]Ii(n)|

}

≤ max
1≤i≤n

{
(Ri +

n∑
j=1

aiDijLj +

n∑
j=1

AiDijGj + AiIi)‖x − y‖
}

< ‖x − y‖

Then F is a construction mapping, thus (5) has a unique almost automorphic
solution which satisfies that ‖x − x̃‖ < ω+γ

1−γ θ. This completes the proof.

4 Conclusions

In this paper, the almost automorphic solutions of delayed Cohen-Grossberg
neural networks are investigated. The almost automorphic solution is a gener-
alization of the almost periodic solution, and it has been used in ordinary dif-
ferential equation, partial differential equation, integral equation and dynamic
system and so on. Our paper is the first one to discuss such solutions on Cohen-
Grossberg neural networks. By the contraction mapping principle, the existence
and the uniqueness of almost automorphic solutions are discussed, and some new
results are obtained.
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Abstract. In the error-backpropagation learning algorithm for spiking
neural networks, solving the differentiation of the firing time tα with
respect to the weight w is essential. Bohte et al. see the firing time tα as
a functional of the state variable x(t). But the differentiation of the firing
time tα with respect to the state variable x(t) is impossible to perform
directly. To overcome this problem, Bohte et al. assume that the state
variable x(t) is a linear function of the time t around t = tα. Then, it
seems that the solution of Bohte et al. is used by all related Literatures.
In particular, Ghosh-Dastidar and Adeli offer another explanation. In
this paper, we consider the firing time tα as a function of the time t and
the weight w and prove that the key formula for multiple spiking neural
networks is in fact mathematically correct through the implicit function
theorem.

Keywords: Spiking neuron · Error-backpropagation · Differentiation of
the firing time · Implicit function theorem

1 Introduction

In recent years, spiking neural networks (SNNs) are more biologically plausible
and often referred to as the third generation of neural networks [1]. SNNs have
been the subject of significant research and have been applied extensively and
successfully for practical applications [2–8]. The aim of this paper is to prove the
following equality of differentiations

∂tα

∂w
= −(

∂x

∂t
(t))−1 ∂x(t)

∂w
, at t = tα (1)
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which is a key formula in the error-backpropagation learning algorithm for
spiking neural networks and multiple spiking neural networks. To solve the dif-
ferentiation ∂tα/∂w, Bohte et al. use the chain rule

∂tα

∂w
=

∂tα

∂x(t)
∂x(t)
∂w

(2)

by considering the firing time tα as a functional of the state variable x(t) which
is a funtion of the weight w. The only and the most difficult problem for Bohte
et al. is solving ∂tα/∂x(t) since tα cannot be formulated in a standard form as
a functional of x(t). To overcome the problem, Bohte et al. [9] assume that the
state x(t) is a linear function of the time t around t = tα. Therefore, the Frechet
derivative

∂ta

∂x(t)
= lim

�x→∞
ta(x + �x) − ta(x)

�x

=
−�t

�x

= −(
∂x(t)

∂t
)−1, at t = tα

(3)

where �x and �t represent an infinitesimal change in x and t, respectively. It
seems that the solution of Bohte et al. is used by all related literatures [4,10–14],
whether for spiking neural networks or for multiple spiking neural networks. In
particular, Ghosh-Dastidar [4] et al. give another explanation. They consider
the relationship between the threshold value θ and the time t and assume that
there is a linear relationship between them around t = tα. As a result of the
consideration and the assumption, there is a relationship as follows

∂x(t)
∂t

=
∂θ

∂t
, at t = tα (4)

Moreover, they give the following equality

∂tα

∂x(t)
= −∂tα

∂θ
, at t = tα (5)

to model the opposite relationship between the state variable and threshold,
with respect to the firing time. From Eqs. (4) and (5), the Frechet derivative
becomes

∂tα

∂x(t)
= −(

∂x(t)
∂t

)−1, at t = tα (6)

Our contribution in this paper is to prove that the key equality (4) is in fact
mathematically correct for multiple spiking neural networks, without the help
of the linearity assumption. Spiking neural networks can be considered a special
case of multiple spiking neural networks. Hence, with the same method of this
paper, the key equality (4) is in fact mathematically correct for spiking neural
networks.
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The rest of this paper is organized as follows. In Section 2 we introduce the
spiking neuron and the multi-spiking neuron. Then, in Section 3 we describe the
errorback-propagation algorithm. Finally in Section 4, we devote to the proof of
the key equality.

2 Spiking Neuron and Multi-Spiking Neuron

In the spike response model (SRM), the output of a neuron is described by the
firing time of the spike it produced. The firing time tα of the postsynaptic neuron
is defined as the time when the state variable x(t) exceeds a given threshold from
low to high.

2.1 Spiking Neuron

In the spike response model (SRM) of spiking neuron, the state variable of
the postsynaptic neuron j is influenced by the spike times ti of its presynaptic
neurons i as follows:

xj(t) =
I∑

i=1

K∑

k=1

wk
ijε(t − ti − dk

ij) (7)

where wk
ij and dk

ij are the kth synaptic weight and the kth synaptic delay,
between the presynaptic neuron i and the postsynaptic neuron j, respectively.
The response function ε(·) is chosen as

ε(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t

τ
e
1−

t

τ t > 0

0 t ≤ 0

(8)

where τ is the time decay constant. The firing time tαj is defined as

tαj = min{t | xj(t) = θ ∧ x′
j(t) > 0} (9)

2.2 Multi-Spiking Neuron

In the spike response model (SRM) of multi-spiking neuron, the internal state
of the postsynaptic neuron j at time t is modeled as

xj(t) =
n∑

i=1

K∑

k=1

Gi∑

g=1

wk
ijε(t − t

(g)
i − dk

ij) + ρ(t − t
(f)
j ) (10)

where {t
(1)
i , t

(2)
i , . . . , t

(Gi)
i } are spikes produced by the presynaptic neuron i and

t
(f)
j is the timing of the most recent, the fth, output spike from neuron j prior

to time t. The refractoriness function ρ is chosen as
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ρ(t) =

⎧
⎨

⎩−2θe
−

t

τs t > 0
0 t ≤ 0

(11)

where θ is the neuron threshold value and τs is the time decay constant. The
firing time tαj is expressed as

tαj = {t | xj(t) = θ ∧ x′
j(t) > 0} (12)

From the description above, we can see that the spiking neural networks is a
special case of the multi-spiking neural networks. Therefore, we prove the key
equality (4) for multiple spiking neural networks.

3 Error-Backpropagation Learning Algorithm for
Multiple Spiking Neural Networks

For the sake of brevity, let us consider one layer multiple spiking neural networks
composed of I input neurons and J output neurons. The error function is defined
as

E(W ) =
1
2

J∑

j=1

Hj∑

h=1

(td(h)j − t
α(h)
j )2 (13)

where

W =

⎛

⎜
⎜
⎝

w1
11 . . . wK

11 . . . w1
I1 . . . wK

I1

w1
12 . . . wK

12 . . . w1
I2 . . . wK

I2

. . . . . . . . . . . . .
w1

1J . . . wK
1J . . . w1

IJ . . . wK
IJ

⎞

⎟
⎟
⎠ , t

d(h)
j represents the hth desired fir-

ing time, and t
α(f)
j is the hth actual firing time, namely an element of the set

{t | xj(t) = θ ∧ x′
j(t) > 0}. A simple and widely used supervised learning rule

for the weight W is the gradient descent method: Update each component wk
ij

of the present weight W iteratively by adding the following increment

�wk
ij = −η

∂E

∂wk
ij

= −η

Hj∑

h=1

∂E

∂t
α(h)
j

∂t
α(h)
j

∂wk
ij

(14)

where η is the learning rate.

4 Main Result

For the sake of simple representation, let the number of synaptic delays be
zero, and let the number of output neurons be one. Considering that the state
variable depends on not only the time t but also the weight W , we rewrite the
state variable

x(W, t) =
n∑

i=1

Gi∑

g=1

wiε(t − t
(g)
i ) + ρ(t − t(f)) (15)
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and the firing time

tα = {t | x(W, t) = θ ∧ x′
t(W, t) > 0} (16)

where W = (w1, w2, . . . , wn)T ∈ Rn, t ∈ R. Let D ⊂ Rn+1 be an open set, we
define a function

F (W, t) = x(W, t) − θ (17)

on D and rewrite the firing time

tα = {t | F (W, t) = 0 ∧ F ′
t (W, t) > 0} (18)

If a spiking neuron can fire, then there is a point (W 0, tα) ∈ Rn+1 such that

F (W 0, tα) = x(W 0, tα) − θ = 0 (19)

∂F (W 0, tα)
∂t

=
∂x(W 0, tα)

∂t
> 0 (20)

Furthermore, if the condition F ∈ C(1)(D) holds, by the implicit function theo-
rem, then there is a neighbourhood A × B of the point (W 0, tα), where B is an
open interval, such that:

(a) for all W ∈ A, the equality F (W, t) = 0 has a unique solution in B, denoted
by f(W );

(b) tα = f(W 0);
(c) f ∈ C(1)(A);
(d) when W ∈ A, ∂f(W )/∂wi = −∂F (W,t)

∂wi
/∂F (W,t)

∂t where t = f(W ) ∈ B .

Hence, we have

∂t

∂wi
= −(

∂x(W, t)
∂t

)−1 ∂x(W, t)
∂wi

, t ∈ B (21)

In particular, we have

∂tα

∂wi
= −(

∂x(W 0, tα)
∂t

)−1 ∂x(W 0, tα)
∂wi

(22)

which is what we want to prove in this section. Therefore, the task needed to
complete is to prove the condition F ∈ C(1)(D).

Theorem 1. Let D ⊂ Rn+1 be an open set. Let the component wi(i = 1, 2, . . . , n)
of the W be uniformly bounded and t ∈ (0, T ), where T is a constant. Then the
function F (W, t) ∈ C(1)(D).

Proof. To prove the function F ∈ C(1)(D), namely to prove that each partial
derivative of the function F is continuous on D.
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(1) We first prove that

∂F (W, t)
∂wi

=
Gi∑

g=1

ε(t − t
(g)
i ) (23)

is continuous on D. By the function ε(t− ti) = (t− ti)/τ · e(1−(t−ti)/τ) is contin-
uous on the point t1 ∈ (0, T ), we have that its finite sum function

∑Gi

g=1 ε(t −
t
(g)
i ) is continuous on the point t1 ∈ (0, T ). Therefore, for every ξ > 0 there is

a δ0 > 0, such that

|
Gi∑

g=1

(ε(t − t
(g)
i ) − ε(t1 − t

(g)
i )) |< ξ (24)

for all points t for which| t − t1 |< δ0. Let V = (W, t)T , by | t − t1 |< ‖V − V 1‖
and (24), we have that for the ξ > 0 there is a δ = δ0 > 0 such that

| ∂F (W, t)
∂wi

− ∂F (W 1, t1)
∂wi

|

= |
Gi∑

g=1

(ε(t − t
(g)
i ) − ε(t1 − t

(g)
i )) |< ξ

(25)

for all points V for which ‖V − V 1‖ < δ. Since the point (W 1, t1) is arbitrary,
∂F (W, t)/∂wi is continuous on D.

(2) Now we prove that

∂F (W, t)
∂t

=
n∑

i=1

Gi∑

g=1

wiε
′(t − t

(g)
i ) + ρ′(t − t(f)) (26)

is continuous on D. By ε′(t − ti) = 1/τ · (1 − (t − ti)/τ) · e(1−(t−ti)/τ) is con-
tinuous on the interval (0, T ), we have Mi = sup

t∈(o,T ),1≤g≤Gi

ε′(t − t
(g)
i ). Let

M = max
i

Mi and G = max
i

Gi. Let ε′
l(t) = (ε′(t − t

(l)
1 ), . . . , ε′(t − t

(l)
n ))T , where

1 ≤ l ≤ G and if l > Gi let ε′(t−t
(l)
i ) = 0. Then, for an arbitrary point (W 2, t2)

in D, we have

| ∂F (W, t)
∂t

− ∂F (W 2, t)
∂t

|= |
G∑

l=1

(W − W 2) · ε′
l(t) |

≤
G∑

l=1

‖W − W 2‖‖ε′
l(t)‖

(27)

Therefore, for every ξ1 > 0 there is a δ1 = ξ1/(
√

nMG) > 0, such that

| ∂F (W, t)
∂t

− ∂F (W 2, t)
∂t

|< δ1
√

nMG = ξ1 (28)

for all points W for which ‖W − W 2‖ < δ1. The wi is uniformly bounded on
D, namely existing a constant N such that | wi |< N (i = 1, 2, . . . , n). By the
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function ε′(t − ti) is continuous on the point t2 ∈ (0, T ), we have that its finite
sum function

∑Gi

g=1 ε′(t − t
(g)
i ) is continuous on the point t2 ∈ (0, T ). Thus for

the ξ2 = ξ1/(nN + 1) > 0, there is a δ2 > 0, such that

|
Gi∑

g=1

(ε′(t − t
(g)
i ) − ε′(t2 − t

(g)
i )) |< ξ2 (29)

for all points t for which | t − t2 |< δ2. By ρ′(t) = 2θ/τse
−t/τs is continuous on

the point t2, we have that for the ξ2 = ξ1/(nN + 1) > 0, there is a δ3 > 0,
such that

| ρ′(t − t(f)) − ρ′(t2 − t(f)) |< ξ2 (30)

for all points t for which | t − t2 |< δ3. Therefore, for the ξ1 > 0, there is a
δ4 = min{δ2, δ3}, such that

| ∂F (W 2, t)
∂t

− ∂F (W 2, t2)
∂t

|

= |
n∑

i=1

Gi∑

g=1

w2
i (ε′(t − t

(g)
i ) − ε′(t2 − t

(g)
i ))

+ ρ′(t − t(f)) − ρ′(t2 − t(f)) |

≤
n∑

i=1

| w2
i ||

Gi∑

g=1

(ε′(t − t
(g)
i ) − ε′(t2 − t

(g)
i )) |

+ | ρ′(t − t(f)) − ρ′(t2 − t(f)) |
<nNξ2 + ξ2 = ξ1

(31)

for all points t for which | t − t2 |< δ4. Let V = (W, t)T and ξ′ = 2ξ1. By
| t − t2 |< ‖V − V 2‖, ‖W − W 2‖ < ‖V − V 2‖, (28) and (31), we have that for
the ξ′ > 0, there is a δ′ = min{δ1, δ4}, such that

| ∂F (W, t)
∂t

− ∂F (W 2, t2)
∂t

|

≤ | ∂F (W, t)
∂t

− ∂F (W 2, t)
∂t

| + | ∂F (W 2, t)
∂t

− ∂F (W 2, t2)
∂t

|
<ξ1 + ξ1 = ξ′

(32)

for all points V for which ‖V − V 2‖ < δ′. Since the point (W 2, t2) is arbitrary,
∂F (W, t)/∂t is continuous on D.

Therefore, the function F ∈ C(1)(D).
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Abstract. In this paper, we consider the simplified memristor-based
neural networks with time-varying delay, under the framework of Fil-
ippov’s solution and differential inclusion theory, by structuring novel
Lyapunov functional and employing feedback control technique, adopt-
ing feedback controller, anti-synchronization criteria for memristor-based
neural networks with time-varying delay are derived, which depend
on the jumps parameter Ti, hence the proposed criteria are more gen-
eral than existing reference. Finally, an example is provided to show the
effectiveness of theoretical result.

Keywords: Memristor-based neural networks · Time delay · Feedback
control · Anti-Synchronization

1 Introduction

Memristor [1,2], which is known as the fourth circuit element, has been applied to
neural networks [3,4] to imitate human’s brain due to its memory and forgetting
ability. Recently, the dynamical behaviors of memritor-based neural networks
[5,6] have been extensively studied, especially, synchronization [7–9] or anti-
synchronization control problem. Different from traditional neural networks, the
model of memritor-based neural networks is differential equations with discon-
tinuous right-hand side, this make research of this kinds of neural networks
more difficult. Anti-synchronization control [12,13] of memritor-based neural
networks [10,11] is very useful in practical application, and it has been applied
to image processing, secure communication, and so on. In this paper, we give a
new anti-synchronization criteria for memristor-based neural networks by using
new analysis method.

The rest of this paper is organized as follows: In section 2, the model formu-
lation and some preliminaries are presented. In section 3, anti-synchronization
criteria for memristor-based neural network are derived by feedback control. An
example is given to demonstrate the validity of the proposed results in Section
4. Some conclusions are drawn in Section 5.
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 27–34, 2014.
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Notations. Throughout this paper, R denotes the set of real numbers, R
n

denotes the n-dimensional Euclidean space. For τ > 0, C([−τ, 0];Rn) denotes
the family of continuous function ϕ from [−τ, 0] to R

n with the norm ‖ϕ‖ =
sup−τ≤s≤0 max1≤i≤n |ϕi(s)|. Solution of memristor networks is considered in
Filippov’s sense, [·, ·] represents the interval. co(Q) denotes the closure of the
convex hull of Q, and function sign(·) denotes sign function.

2 Model Description and Preliminaries

According to the current-voltage characteristic of memristor, we consider sim-
plified memristor-based recurrent neural networks as follows:

ẋi(t) = − ci(xi(t)) +
n∑

j=1

aij(xi(t))fj(xj(t)) +
n∑

j=1

bij(xi(t))gj(xj(t − τ(t)))

+ Ii, t ≥ 0, i = 1, 2, · · · , n,

(1)

where fj(·) and gj(·) are activation functions, τ(t) is time-varying transmission
delay, it satisfies 0 < τ(t) ≤ τ , Ii is the external input, and the connection weight
coefficients satisfy:

aij(xi(t)) =
{

áij , |xi(t)| ≤ Ti,
àij , |xi(t)| > Ti,

bij(xi(t)) =
{

b́ij , |xi(t)| ≤ Ti,

b̀ij , |xi(t)| > Ti.
(2)

in which switching jumps Ti > 0, áij , àij , b́ij , b̀ij , i, j = 1, 2, · · · , n, are constants;
Remark 1 Actually, the memristive neural networks (1) with different non-

linearity of memductance functions evolve into different forms: a state-dependent
switched system or a state-dependent continuous system, in this paper, we con-
sider the state-dependent switched case.

Throughout this paper, we make the following assumptions:
(H1): Behaved function ci(x) is odd function and satisfies ċi(x) ≥ βi > 0,

i = 1, 2, . . . , n.
(H2): The function fj , gj , are odd functions, and satisfy Lipschitz conditions:

|fj(x) − fj(y)| ≤ hj |x − y|, |gj(x) − gj(y)| ≤ kj |x − y|, ∀x, y ∈ R

where hj , kj(j = 1, 2, . . . , n) are positive constants.
(H3): For any x ∈ R, there exist positive constants Mj , Nj , such that

|fj(x)| ≤ Mj , |gj(x)| ≤ Nj .

The model of memristor-based recurrent networks (1) are discontinuous,
hence, its solutions are considered in Filippov’s sense.

Definition 1. ([14]) For differential system dx
dt = f(t, x), where f(t, x) is dis-

continuous in x. The set-valued map of f(t, x) is defined as

F (t, x) =
⋂

δ>0

⋂

μ(N)=0

co[f(B(x, δ)\N)],
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where B(x, δ) = {y : ‖y−x‖ ≤ δ} is the ball of center x with radius δ; intersection
is taken over all sets N of measure zero and over all δ > 0; μ(N) is Lebesgue
measure of set N .

For convenience, we define some notations: aij = min{áij , àij}, aij = max{áij ,

àij}, bij = min{b́ij , b̀ij}, bij = max{b́ij , b̀ij}, a+
ij = max{|aij |, |aij |}, b+ij =

max{|bij |, |bij |}.
By applying the above theory of differential inclusion, the memristor-based

networks (1) can be written as the following: there exist γij(t) ∈ co(aij , aij),
δij(t) ∈ co(bij , bij), such that

ẋi(t) = − ci(xi(t)) +
n∑

j=1

γij(t)fj(xj(t)) +
n∑

j=1

δij(t)

gj(xj(t − τ(t))) + Ii, t ≥ 0.

(3)

The initial value associated with system (3) is φ(s) = (φ1(s), φ2(s), · · · , φn(s))T

∈ C([−τ, 0];Rn). Similar to (3), the response system can be rewritten as: there
exist γ̄ij(t) ∈ co(aij , aij), δ̄ij(t) ∈ co(bij , bij), such that

ẏi(t) = − ci(yi(t)) +
n∑

j=1

γ̄ij(t)fj(yj(t)) +
n∑

j=1

δ̄ij(t)

gj(yj(t − τ(t))) + Ii + ui(t), t ≥ 0.

(4)

The initial value associated with system (4) is ϕ(s) = (ϕ1(s), ϕ2(s), · · · , ϕn(s))T

∈ C([−τ, 0];Rn).
Define the anti-synchronization error as ei(t) = yi(t) + xi(t), from (3) and

(4), we have

ėi(t) = −c̃i(ei(t)) +
n∑

j=1

γij(t)f̃j(ej(t)) +
n∑

j=1

δij(t)g̃j(ej(t − τ(t)))+

n∑

j=1

(γ̄ij(t) − γij(t))fj(yj(t)) +
n∑

j=1

(δ̄ij(t) − δij(t))gj(yj(t − τ(t)))+

2Ii + ui(t),

(5)

where c̃i(ei(t)) = ci(ei(t)−xi(t))+ci(xi(t)); f̃i(ei(t)) = fi(ei(t)−xi(t))+fi(xi(t));
g̃i(ei(t − τ(t))) = gi(ei(t − τ(t)) − xi(t − τ(t))) + gi(xi(t − τ(t))). The feedback
controller ui(t) = −piei(t) − ηisignei(t) − 2Ii, and pi > 0, ηi > 0 are control
gains to be determined.

Definition 2. Systems (3) and (4) are said to be exponentially anti-synchronized
if there exist positive scalars α > 0 and β > 0 such that

|ei(t)| ≤ β‖φ + ϕ‖−αt, t ≥ 0.
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Lemma 1. ([15]) For −∞ < a < b ≤ +∞, let ψi(t) ∈ C([a, b];R), (i =
1, 2, · · · , n) satisfy the following integral delay inequality:
⎧
⎪⎨
⎪⎩

ψi(t) ≤ e−χ̆i(t−a)ψi(a) +
∫ t

a
e−χ̆i(t−s)[

∑n
j=1 χ̃ijψj(s) +

∑n
j=1 χ̂ijψj(s − τ(s))]ds,

t ∈ [a, b),

ψi(a + s) = σi(s) s ∈ [−τ, 0],

(6)

where χ̆i,χ̃ij and χ̂ij, (i, j = 1, 2, · · · , n) are positive constants. Assume that

−χ̆i +

n∑
j=1

(χ̃ij + χ̂ij) < 0, and ψi(t) ≤ M‖σ‖2, t ∈ [a − τ, a], i = 1, 2, · · · , n

then ψi(t) ≤ M‖σ‖2, t ∈ (a, b), where M > 0 is a positive constant.

3 Feedback Control for Memristor-Based Neural Network

Theorem 1. Under Assumptions (H1)− (H3), if there exists a constant α > 0,
such that the following inequalities hold:

a) ηi >

n∑

j=1

|áij − àij |hjTj +
n∑

j=1

|b́ij − b̀ij |Nj ;

b) − (pi + βi − α) +
n∑

j=1

(|áij |hj + |b́ij |kje
ατ ) < 0;

c) − (pi + βi − α) +
n∑

j=1

(|àij |hj + |b̀ij |kje
ατ ) < 0;

then the response system (4) will globally exponentially anti-synchronize with the
drive system (3) under the feedback controller.

Proof: Define a Lyapunov functional by

Vi = eαt|ei(t)|, i = 1, 2, · · · , n.

According the special character of memristive neural networks, we will divide
the proof into four steps.
Step 1. If |xi(t)| ≤ Ti, |yi(t)| ≤ Ti at time t, then from system (3) and (4), the
error system can be written as

ėi(t) = − c̃i(ei(t)) +
n∑

j=1

áij f̃j(ej(t)) +
n∑

j=1

b́ij g̃j(ej(t − τ(t)))−

piei(t) − ηisignei(t), t ≥ 0, i = 1, 2, · · · , n.

(7)
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Calculating the time derivative of V (t), we can get

V̇i(t) ≤ αeαt|ei(t)| + eαt(−βi − pi)|ei(t)| +
n∑

j=1

|áij |hje
αt|ej(t)|+

n∑

j=1

|b́ij |kje
ατeα(t−τ(t))|ej(t − τ(t))|

≤ (α − βi − pi)Vi(t) +
n∑

j=1

|áij |hjVj(t) +
n∑

j=1

|b́ij |kje
ατVj(t − τ(t)).

Let −χ̆i = α − βi − pi, χ̃ij = |áij |hj , χ̂ij = |b́ij |kje
ατ , we have

V̇i(t) ≤ −χ̆iVi(t) +
n∑

j=1

χ̃ijVj(t) +
n∑

j=1

χ̂ijVj(t − τ(t))

Since

|ei(t)| ≤ ‖ϕ + φ‖ ≤ ‖ϕ + φ‖e−αt, t ≤ 0, i = 1, 2, · · · , n.

One has

Vi(t) ≤ ‖ϕ + φ‖, t ≤ 0.

From condition (b) and Lemma 1, it follows that |ei(t)| ≤ ‖ϕ + φ‖e−αt, t ≥ 0.
Step 2. If |xi(t)| > Ti, |yi(t)| > Ti at time t, then the error system can be

written as

ėi(t) = − c̃i(ei(t)) +
n∑

j=1

àij f̃j(ej(t)) +
n∑

j=1

b̀ij g̃j(ej(t − τ(t)))−

piei(t) − ηisignei(t), t ≥ 0, i = 1, 2, · · · , n.

(8)

Similar to the proof of step 1, let −χ̆i = α−βi−pi,χ̃ij = |àij |hj , χ̂ij = |b̀ij |kje
ατ ,

then we have

V̇i(t) ≤ −χ̆iVi(t) +
n∑

j=1

χ̃ijVj(t) +
n∑

j=1

χ̂ijVj(t − τ(t)).

From condition (c) and Lemma 1, it follows that |ei(t)| ≤ ‖ϕ + φ‖e−αt, t ≥ 0.
Step 3. If |xi(t)| ≤ Ti, |yi(t)| > Ti at time t, the error system changes as

ėi(t) = − c̃i(ei(t)) +
n∑

j=1

àij f̃j(ej(t)) +
n∑

j=1

b̀ij g̃j(ej(t − τ(t)))+

n∑

j=1

(àij − áij)fj(xj(t)) +
n∑

j=1

(b̀ij − b́ij)gj(xj(t − τ(t)))

− piei(t) − ηisignei(t), t ≥ 0, i = 1, 2, · · · , n.

(9)
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Calculating the time derivative of V (t), one obtains:

V̇i(t) ≤ αeαt|ei(t)| + eαt[−βi|ei(t)| +
n∑

j=1

|àij |hj |ej(t)|

+
n∑

j=1

|b̀ij |kj |ej(t − τ(t))| +
n∑

j=1

|àij − áij |hj |xj(t)|

+
n∑

j=1

|b̀ij − b́ij |Nj − pi|ei(t)| − ηi].

Note that |xi(t)| ≤ Ti and condition (a), one has

V̇i(t) ≤ (α − βi − pi)Vi(t) +
n∑

j=1

|àij |hjVj(t) +
n∑

j=1

|b̀ij |kje
ατVj(t − τ(t)).

Let −χ̆i = α − βi − pi, χ̃ij = |àij |hj , χ̂ij = |b̀ij |kje
ατ , we can get

V̇i(t) ≤ −χ̆iVi(t) +
n∑

j=1

χ̃ijVj(t) +
n∑

j=1

χ̂ijVj(t − τ(t)).

In view of Lemma 1, it follows that |ei(t)| ≤ ‖ϕ + φ‖e−αt, t ≥ 0.
Step 4. If |xi(t)| > Ti, |yi(t)| ≤ Ti at time t, correspondingly, the error system

can be written as

ėi(t) = − c̃i(ei(t)) +
n∑

j=1

àij f̃j(ej(t)) +
n∑

j=1

b̀ij g̃j(ej(t − τ(t)))+

n∑

j=1

(áij − àij)fj(yj(t)) +
n∑

j=1

(b́ij − b̀ij)gj(yj(t − τ(t)))

− piei(t) − ηisignei(t), t ≥ 0, i = 1, 2, · · · , n.

(10)

Note that |yi(t)| ≤ Ti, similar to step 3, let −χ̆i = α − βi − pi, χ̃ij = |àij |hj ,
χ̂ij = |b̀ij |kje

ατ , one can obtain |ei(t)| ≤ ‖ϕ + φ‖e−αt, t ≥ 0.
Based on the above analysis, one always has |ei(t)| ≤ ‖ϕ+φ‖e−αt, for t ≥ 0,

if the conditions (a)-(c) in Theorem 1 hold, from the Definition 2, the proof is
completed.

4 An Illustrative Example

Example 1. onsider the following two-order mermristor-based recurrent neural
networks with time delay:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = −c1(x1(t)) + a11(x1(t))f1(x1(t)) + a12(x1(t))f2(x2(t))
+b11(x1(t))g1(x1(t − τ(t))) + b12(x1(t))g2(x2(t − τ(t))) + I1,

ẋ2(t) = −c2(x2(t)) + a21(x2(t))f1(x1(t)) + a22(x2(t))f2(x2(t))
+b21(x2(t))g1(x1(t − τ(t))) + b22(x2(t))g2(x2(t − τ(t))) + I2,

(11)
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where

a11(x1(t)) =
{

1.78, |x1(t)| ≤ 1,
1.68, |x1(t)| > 1,

a12(x1(t)) =
{

20, |x1(t)| ≤ 1,
19.5, |x1(t)| > 1,

a21(x2(t)) =
{

0.09, |x2(t)| ≤ 1,
0.1, |x2(t)| > 1,

a22(x2(t)) =
{

1.68, |x2(t)| ≤ 1,
1.78, |x2(t)| > 1,

b11(x1(t)) =
{−1.5, |x1(t)| ≤ 1,

−1.4, |x1(t)| > 1,
b12(x1(t)) =

{
0.1, |x1(t)| ≤ 1,
0.09, |x1(t)| > 1,

b21(x2(t)) =
{

0.09 |x2(t)| ≤ 1,
0.1, |x2(t)| > 1,

b22(x2(t)) =
{−1.5, |x2(t)| ≤ 1,

−1.4, |x2(t)| > 1,

and behaved functions ci(xi(t)) = xi(t), activation functions fi(xi) = gi(xi) =
sin(xi), i = 1, 2, τ(t) = 1, I1 = I2 = 0, we choose the control gains p1 = 23,
p2 = 25, η1 = η2 = 1, it is obvious that the conditions (a)-(c) in Theorem 1
hold. For numerical simulation, we take initial conditions as (φ1(t), φ2(t)) =
(0.1 ∗ sin(3t), 0.1 ∗ cos(2t)), (ϕ1(t), ϕ2(t)) = (0.5 ∗ sin(3t), 0.5 ∗ cos(2t)). Fig. 1
shows the anti-synchronization error states converge to zero, this verifies the
effectiveness of Theorem 1.
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Fig. 1. The error state trajectories of variables e1(t), e2(t)

5 Conclusion

In this paper, anti-synchronization control problem of memristor-based neu-
ral networks with time-varying delay has been studied, the analysis method
is different with references [10,11], four different cases have been discussed, the
proposed results depend on jumps parameter Ti, which are more general than
existing literature. Furthermore, an example is given to verify the proposed anti-
synchronization criteria, the analysis method in this paper may open up a new
view for memristor-based neural networks.
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Abstract. In this paper, adaptive pinning synchronization (i.e., leader-
following synchronization) is considered for an array of linearly coupled
inertial delayed neural network. By applying feedback control on a small
fraction of network nodes with the dynamical feedback gains turning
adaptively and combining the Lyapunov function method, an easy-to-
verify sufficient condition is derived for globally asymptotically synchro-
nization for the coupled network. Meanwhile, the coupling configuration
matrix is not necessary to be symmetric or irreducible. Finally, an illus-
trative example is given to show the effectiveness of the obtained theo-
retical results.

Keywords: Inertial delayed neural networks · Asymptotical synchro-
nization · Adaptive pinning control

1 Introduction

Synchronization of complex networks has received notable attentions in the past
decade due to its potential applications in various fields, see [1–3]. As a special
class of complex networks, neural networks have also been intensively inves-
tigated [4,5], where the network nodes are neurons and the network coupling
is the connection weight matrix. Synchronization of coupled neural networks
means multiple neural networks can achieve a common trajectory, such as a
common equilibrium, limit cycle or chaotic trajectory. Based on Lyapunov func-
tional methods, global synchronization was investigated in [6,7] for linearly and
diffusively coupled identical delayed neural networks.

Inertial electronic neural networks with one or two neurons were considered
in [8], where it was found that when the neuron couplings were of an inertial
nature, the dynamics could be more complex compared with the simpler behavior
displayed in the standard resistor-capacitor variety. The dynamical behaviors
of a single delayed neuron model with inertial terms were investigated in [9];
bifurcation problems were investigated in [10,11] for low-order neural networks.
While most of the published investigations in the literature concerning inertial
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 35–42, 2014.
DOI: 10.1007/978-3-319-12436-0 5
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neural networks are always focusing on small-scale neural networks with only
one or two neurons, the general network coupled by multiple neural networks
are rarely seen in the literature.

Recently, the authors in [12] considered the stability and existence of peri-
odic solutions for the general inertial BAM neural networks with time delays.
Furthermore, stability analysis was carried out in [13] for the general inertial
Cohen–Grossberg-type neural networks with time delays. While in [14], the sta-
bility of an inertial delayed neural network was investigated by matrix measure
strategies and drive-response synchronization was considered as an application
at the end of the paper. On the other hand, pinning synchronization of cou-
pled neural networks has been investigated, such as the synchronization of a
general weighted neural network with coupling delay was investigated in [15,16]
by adaptive pinning control. More studies concerning pinning synchronization
of neural networks can be found in [17,18] and references cited therein. Inspired
by the above discussions, this paper investigates the pinning synchronization of
coupled inertial delayed neural networks.

2 Model Description and Preliminaries

Consider an array of linearly coupled inertial delayed neural networks consisted
of N identical nodes with dynamics of the ith node described by the following
equation:

d2xi(t)
dt2

= − D
dxi(t)

dt
− Cxi(t) + Af(xi(t)) + Bf(xi(t − τ(t))) + I(t)

+ c
N∑

j=1

GijΓ
(dxj(t)

dt
+ xj(t)

)
+ ui(t), i = 1, . . . , N, (1)

where xi(t) = (xi1(t), . . . , xin(t))T ∈ R
n is the state vector of the ith neu-

ral network, and ui(t) is the control input imposed on the ith node; D =
diag{d1, . . . , dn}, C = diag{c1, . . . , cn} are constant positive definite matri-
ces. A = (aij)n×n and B = (bij)n×n denote the connection weight matrix
and the delayed connection weight matrix, respectively. The nonlinear func-
tion f(xi) = (f1(xi1), . . . , fn(xin))T is the activation function for the inertial
neural network; and I(t) = (I1(t), . . . , In(t))T is the external input vector. The
second derivative of xi(t) is called an inertial term of system (1). The positive
constant c is the network coupling strength and Γ is the inner coupling matrix.
G = (Gij)N×N is the constant coupling configuration matrix defined to be dif-
fusive: Gij ≥ 0(i �= j) and Gii = −∑N

j=1,j �=i Gij . The coupling matrix G is not
required to be symmetric or irreducible.

The initial conditions associated with system (1) are given as xi(ω) = φi(ω) ∈
C(1)([−τ, 0],Rn), i = 1, . . . , N , where C(1)([−τ, 0],Rn) denotes the set of all n-
dimensional continuous differentiable functions defined on the interval [−τ, 0]
with τ = supt≥0{τ(t)}.
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The isolated node of network (1) is given by the following inertial delayed
neural network:

d2s(t)
dt2

= − D
ds(t)
dt

− Cs(t) + Af(s(t)) + Bf(s(t − τ(t))) + I(t), (2)

where s(t) = (s1(t), . . . , sn(t)) ∈ R
n. The initial condition for system (2) is given

as s(ω) = ϕ(ω) ∈ C(1)([−τ, 0],Rn).
To proceed, the following assumptions and definition are given.

Assumption 1. The activation functions fi(·) : R → R, 1 ≤ i ≤ n are bounded
and satisfy Lipschitz condition, i.e., there exist constants Fi and Mi such that
|fi(x) − fi(y)| ≤ Fi|x − y| and |fi(x)| ≤ Mi for all x, y ∈ R.

Assumption 2. The time delay τ(t) ≥ 0 in systems (1) and (2) is a bounded
and differentiable function of time t satisfying τ̇(t) ≤ ρ < 1 for all t ≥ 0, where
ρ > 0.

Definition 1. The coupled inertial neural network (1) is said to be globally
asymptotically synchronizable to the goal trajectory s(t) if the discriminant rela-
tions limt→∞ ‖xi(t) − s(t)‖ = 0, i = 1, 2 . . . , N hold for all initial functions.

3 Main Results

In this section, we will investigate the global synchronization of the coupled
inertial neural network by adaptive pinning control. The feedback injections are
only placed on a small fraction of the total network nodes and the feedback gains
are turned adaptively.

By letting the synchronization error ei(t) = xi(t) − s(t), one can derive the
following error system:

d2ei(t)
dt2

= − D
dei(t)

dt
− Cei(t) + Ag(ei(t)) + Bg(ei(t − τ(t)))

+ c

N∑

j=1

GijΓ
(dej(t)

dt
+ ej(t)

)
+ ui(t) i = 1, . . . , N, (3)

where g(ei) = (f1(ei1 + s1) − f1(s1), . . . , fn(ein + sn) − fn(sn))T .
Next, by introducing the following variable transformation:

ri(t) =
dei(t)

dt
+ ei(t), i = 1, . . . , n,

the error system (3) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dei(t)
dt

= − ei(t) + ri(t),

dri(t)
dt

= − Cei(t) − Dri(t) + Ag(ei(t)) + Bg(ei(t − τ(t)))

+ c

N∑

j=1

GijΓrj(t) + ui(t),

(4)
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for i = 1, . . . , N , where C � C + In − D and D � D − In.
The pinning controller is designed as follows:

ui(t) = −σi(t)Γri(t) i = 1, . . . , N, (5)

where σi(t) is the time-varying feedback control gain designed as

σ̇i(t) =
{

σir
T
i (t)Γri(t), σi(0) > 0, for i ∈ Vpin,

0, σi(0) = 0, for i /∈ Vpin,

where σi > 0 is a constant and Vpin is the set of the pinning nodes.
Thus, under the control input (5), the error system (4) turns out to be the

following one
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dei(t)
dt

= − ei(t) + ri(t),

dri(t)
dt

= − Cei(t) − Dri(t) + Ag(ei(t)) + Bg(ei(t − τ(t)))

+ c

N∑

j=1

GijΓrj(t) − σi(t)Γri(t).

(6)

The coupled inertial neural network (1) can be synchronized if the above
error system (6) is globally asymptotically stable. The following theorem gives
the synchronization criterion.

Theorem 1. Under Assumptions 1 and 2, the coupled inertial neural network
(1) is globally asymptotically synchronized if there exists a positive definite matrix
P such that

Φ =
[

IN ⊗ [−P + (12F 2 + η)In] 1
2IN ⊗ (P − C)

∗ Q

]
< 0, (7)

where F = max
1≤i≤N

{Fi}, η > max
1≤i≤N

{
F 2

i

2(1−ρ)

}
is a positive constant, C � C +

In − D, D � D − In and Q = IN ⊗ (−D + AAT+BBT

2 + cG+GT

2 ⊗ Γ − M ⊗ Γ)
with M = diag{σ∗

1 , . . . , σ
∗
N} ≥ 0, in which σ∗

i = 0 for i ∈ Vpin and σ∗
i > 0 when

i /∈ Vpin.

Proof. To prove the result, one just need to show that the error system (6)
is globally asymptotically stable. Consider the following Lyapunov-Krasovskii
functional candidate:

V (t) =
1
2

N∑

i=1

eT
i (t)Pei(t) + η

N∑

i=1

∫ t

t−τ(t)

eT
i (s)ei(s)ds

+
1
2

N∑

i=1

rT
i (t)ri(t) +

N∑

i=1

(σi(t) − σ∗
i )2

2σi
. (8)
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Calculating the time derivative of V (t) along the trajectories of system (6),
one can obtain

V̇ (t) ≤
N∑

i=1

eT
i (t)P

( − ei(t) + ri(t)
)

+ η

N∑

i=1

eT
i (t)ei(t)

− η(1 − ρ)
N∑

i=1

eT
i (t − τ(t))ei(t − τ(t))

−
N∑

i=1

rT
i (t)Cei(t) −

N∑

i=1

rT
i (t)Dri(t) +

N∑

i=1

rT
i (t)Ag(ei(t))

+
N∑

i=1

rT
i (t)Bg(ei(t − τ(t))) + c

N∑

i=1

N∑

j=1

rT
i (t)GijΓrj(t)

−
N∑

i=1

σi(t)rT
i (t)Γri(t) +

∑

i∈Vpin

σi(t)rT
i (t)Γri(t)

−
∑

i/∈Vpin

σ∗
i rT

i (t)Γri(t).

It follows from Assumption 1 that

N∑

i=1

rT
i (t)Agi(ei(t)) ≤

N∑

i=1

(1
2
rT
i (t)AAT ri(t) +

1
2
F 2

i eT
i (t)ei(t)

)
(9)

and
N∑

i=1

rT
i (t)Bgi(ei(t − τ(t))) ≤

N∑

i=1

(1
2
rT
i (t)BBT ri(t)

+
1
2
F 2

i eT
i (t − τ(t))ei(t − τ(t))

)
. (10)

Combining inequalities (9) and (10), we have

V̇ (t) ≤
N∑

i=1

eT
i (t)

( − P + (η +
1
2
F 2

i )In

)
ei(t) +

N∑

i=1

eT
i (t)(P − C)ri(t)

+
N∑

i=1

rT
i (t)

( − D +
1
2
(AAT + BBT )

)
ri(t)

+c
N∑

i=1

N∑

j=1

rT
i (t)GijΓrj(t) −

N∑

i=1

σ∗
i rT

i (t)Γri(t)

= ψT (t)Φψ(t),

where ψ(t) = [eT (t), rT (t)]T . Thus, by LMI (7) we have V̇ (t) < 0 for ψ(t) �= 0,
which indicates that limt→∞ e(t) = 0 and limt→∞ r(t) = 0. Therefore, the
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pinning controlled network (6) can be globally asymptotically synchronized to
the objective trajectory.

4 Illustrative Example

In this section, one illustrative example is presented to demonstrate the effec-
tiveness of the obtained theoretical results.

Example 1. Consider the following coupling inertial delayed neural networks
with 12 nodes:

d2xi(t)
dt2

= − D
dxi(t)

dt
− Cxi(t) + Af(xi(t)) + Bf(xi(t − τ(t))) + Ii(t)

+ c
12∑

j=1

GijΓ
(dxj(t)

dt
+ xj(t)

)
+ ui(t), i = 1, . . . , 12, (11)

where xi(t) = (xi1(t), xi2(t))T , f(xi(t)) =
(
tanh(xi1(t)), tanh(xi2(t))

)T , I(t) =
(2, 4)T , 1 ≤ i ≤ 12 and the time delay τ(t) = 0.15et/(1+ et). So, it is easy to get
Fi = 1, τ = 0.15 and ρ = 0.0375. The coefficient matrices and inner coupling
matrix of (11) are given as

D = [ 2.6 0
0 2.4 ] , C = [ 4.6 0

0 3.8 ] , A =
[

0.2 −0.2
−0.4 0.3

]
, B =

[ −4 −5
−2 −5

]
, Γ = [ 6 1

1 4 ] .

The coupling matrix G is determined by the directed topology given in Fig. 1
with Gij = 0, 1(i �= j).

Fig. 1. Communication topology G and node 0 is the isolated objective node

Let the initial state of the objective system be φ̃ = [3,−3]T on the inter-
val [−0.15, 0] and initial functions for system (11) are chosen randomly. We use

the quantity E(t) =
√

(1/12)
∑12

i=1 eT
i (t)ei(t) to measure the quality of the syn-

chronization process. Setting the pinning node set Vpin = {3, 6, 7} (see Fig. 1),
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η = 0.5205 and the coupling strength c = 30, it is easy to check that the LMI
(7) has a positive definite solution. Theorem 1 ensures that the whole coupled
neural network system (11) can be synchronized to the given goal trajectory
asymptotically.

The objective trajectory of the pinning controlled system (1) is shown in
Fig. 2; and the state trajectories of (11) are given in Fig. 3. The synchroniza-
tion error and the pinning feedback gains σ3(t), σ6(t) and σ7(t) are illustrated,
respectively, in Fig. 4 and Fig. 5.
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Fig. 2. State trajectory s(t) in
system (2)
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Fig. 5. Variations of pinning feedback
gains

5 Conclusions

In this paper, the synchronization control problem of coupled inertial neural
network systems is formulated based on adaptive pinning control strategy. By
Lyapunov stability theory and LMI technique, some sufficient criteria have been
established for the global asymptotically synchronization of the coupled system.
A numerical example has been given to illustrate the usefulness of the obtained
results.
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Abstract. Recent experiments found that the spontaneous cortical
activity showed a dynamic firing pattern called neuronal avalanches, in
which the distribution of firing activity followed a power law and the
firing pattern was accompanied by nested θ-and β-/γ-oscillations. These
results provided important evidence that neural oscillations could be
formed during neuronal avalanches. The relationship between neuronal
avalanches and oscillations has not been discussed in previous models. In
this paper, we analyzed the relationship between neuronal avalanches and
nested oscillations. Our results showed that the excitation-inhibition bal-
ance was a crucial mechanism for the formation of oscillation, but it was
not enough for neuronal avalanches. The excitation-inhibition balance
and synaptic plasticity were both necessary for a neural network to access
the critical state and form neuronal avalanches. With the dynamic exci-
tatory and inhibitory synaptic transmission processes and STDP rule,
neuronal avalanches and nested oscillations could emerge simultaneously
in a neural network.

Keywords: Neuronal avalanches · Neural oscillations · Nested oscilla-
tions

1 Introduction

Recently, a set of experiments found a convincing evidence that the spontaneous
cortical activity had a dynamic firing pattern called ‘neuronal avalanches’ [1–4].
The experiment results showed that the spatio-temporal form of spontaneous
activities distributed according to a power law with exponent lies between −1
and −2, which supported the conjecture that the brain might operate at criti-
cality [1]. At the same time, the firing pattern was accompanied by nested θ-and
β-/γ- oscillations [5], which provided an important evidence that neural oscilla-
tions might be formed during individual neurons triggering action potential firing
in subsequent neurons [6–8]. So neuronal avalanches and nested oscillations give
us a new way to analyse mechanisms of neural oscillations [9,10].
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mental Research Funds for the Central Universities (Fund number: 2013YB76).
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The dynamic mechanism of neuronal avalanches is still in discussion. Previ-
ous models were mainly based on the mechanism of the sandpile model, seldom
considering the neural dynamics and the dynamic synaptic transmission process
[11–13]. Although neuronal avalanches showed a similar power law distribution
as other physical systems (such as a sandpile system), their mechanisms might
be different, because neurosystem has its typical properties which could not be
explained through the models of other physical systems [14,15]. What’s more,
these models had not discussed the relationship between the nested oscillations
and neuronal avalanches. In fact, there are many properties should be included
in the model according to the neuronal avalanches experiments: (a)the neuronal
avalanches predominantly depend on the GABAA and glutamatergic NMDA
receptor [5]; (b)the neural system access the critical state only under a typi-
cal excitatory and inhibitory ratio [1]; (c)the spatio-temporal form of neuronal
avalanches is accompanied by nested θ and β-/γ-oscillations [5].

Therefore, in this paper, we analysed the mechanisms of neuronal avalanches
and discussed the relationship between neuronal avalanches and nested oscil-
lations. The research was based on two neural network models, both of which
are important models for discussing oscillations and include dynamic neurons
and synaptic transmissions properties. Our results showed that the excitation-
inhibition balance and synaptic plasticity were both necessary for a neural net-
work to form neuronal avalanches. With the dynamic excitatory and inhibitory
synaptic transmission processes and STDP rule, neuronal avalanches and nested
oscillations could emerge simultaneously in a neural network.

2 Leaky Integrate-and-Fire Neurons Model

2.1 The Structure of the Model

The neural network is composed of NE = 400 pyramidal cells and NI = 100
interneurons, randomly connected with probability 20%. Both interneurons and
pyramidal cells are described as leaky integrate-and-fire (LIF) neuron model [16],

Cm
dVm

dt
= −gL(Vm − Vrest) + CmΔV

∑

i

δ(t − ti) + Isyn(t) (1)

If Vm > Vth, then a spike is discharged and Vm is reset to Vreset. Cm is
the capacitance, gL is the leak conductance, so the time constant τm = Cm/gL.
For pyramidal cells, Cm = 0.5nF and gL = 0.025μS, so that τm = 20ms. For
interneurons, τm = 10ms.

∑
i δ(t − ti) represents a random Poisson spike train,

�V = 1mV . The spike threshold Vth = −52mV , the leak (resting) membrane
potential Vrest = −70mV , and the reset potential Vreset = −59mV . The absolute
refractory period is 2ms (pyramidal cells) and 1ms (interneurons).

There are three types of synaptic currents in the model, including fast
excitatory synaptic current (AMPA-type), slow excitatory synaptic current
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(NMDA-type), and inhibitory synaptic current (GABAergic). All the three
synaptic currents are described as the following equation,

Isyn(t) = gsyn(V − Vsyn)s(t) (2)

where gsyn is the synaptic conductance, Vsyn is the corresponding reversal
potential, and s(t) describes the time course of synaptic currents. After a presy-
naptic spike, s(t) follows the following function with a latency of τl,

s(t) =
τm

τd − τr
[exp(− t − τl

τd
) − exp(− t − τl

τr
)] (3)

where τl is latency, τr is rise time and τd is decay time. See Table 1 for the
details on the parameters we used in the simulation.

Table 1. Synaptic parameters

gsyn (pyramids)
nS

gsyn (interneurons)
nS

Vsyn

mV
τl
mS

τr
mS

τd
mS

AMPA 0.19 0.3 0 1 0.5 2
NMDA 0.06 0.1 0 1 2 100
GABA 2.5 4 -70 1 0.5 5

2.2 Results

Rhythms of Oscillations. The population firing activity is calculated by the
number of firing neurons in each millisecond. As shown in Fig.1, the activity of
neurons in the network shows a γ-oscillation with rhythm of ca. 50Hz.

Fig. 1. The rhythm of firing activity calculated by Fast Fourier Transformation(FFT).
The result shows a γ-oscillation with rhythm of ca. 50Hz.
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Measurements of Neuronal Avalanches. In the experiments, neuronal
avalanches are characterized based on two terms, a frame and an avalanche [1].
Data are binned at width δt = 4ms. The firing activity during one time bin δt
is called a frame. A sequence of consecutively active frames that is preceded by
a bland frame and ended by a blank frame is called an avalanche. The number
of firing neurons in an avalanche is called the avalanche size. If the distribu-
tion of avalanches size follows a power law, then the network forms neuronal
avalanches.

In our simulation, the firing activity of the network might not form neuronal
avalanches, so here we call the number of firing neurons in consecutively active
frames as ‘number of consecutively active neurons’(NCANs) instead of ‘avalanche
size’. If the distribution follows a power law, then we call ‘avalanche size’ as in
the experiments.

Under this definition, the simulation results of this model show that the
cumulative probability distribution of NCANs is exponential (as shown in Fig.2),
which indicates that many neurons fire synchronously in most frames and the
firing state is in a super-critical state.

Therefore, a network with γ-oscillation firing pattern is not necessarily access
the critical state. Although the network can form a γ-oscillation with the
excitation-inhibition balance, it is not enough to form neuronal avalanches.

Fig. 2. The distribution of the number of consecutively active neurons(NCANs). The
left figure shows that the probability distribution is exponential. The right figure shows
that the cumulative probability distribution is exponential, which indicates that many
neurons fire synchronously in most frames and the firing state is in a super-critical
state.
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3 Simple Spiking Model with STDP

3.1 The Structure of the Model

We model a neural network of N = 500 coupled dynamic neurons. The coupled
structure is based on the neural model created by Izhikevich [17]. N neurons in
the network include the excitatory and inhibitory neurons with proportion of
4:1. Each neuron has M synapses connecting to other neurons. Each synapse of
each excitatory synapse randomly connects to a neuron, no matter whether the
postsynaptic neuron is excitatory or inhibitory. Each neuron is described by the
spiking model [8]:

{
dv
dt = 0.04v2 + 5v + 140 − u + I
du
dt = a(bv − u)

(4)

Here v denotes the membrane voltage of the neuron; u represents a membrane
recovery variable, which accounts for the activity of Na+ and K+. If v = 30mV ,
then v = c, u = u + d. For all the neurons, (b, c) = (0.2,−65). For excitatory
neurons, (a, d) = (0.02, 8) corresponding to cortical pyramidal neurons with the
regular spiking pattern. For inhibitory ones, (a, d) = (0.1, 2) corresponding to
cortical inter-neurons exhibiting fast spiking firing patterns.

The input signal variable I in the model is composed by two parts. One part
is the random input from the outside that a random chosen neuron will receive
a random input current at each time step. The other part is the spiking input
from the other neurons calculated by the synaptic weight. The delay time of the
inhibitory synapse is fixed to 1ms and the delay time of the excitatory synapse
is set between 1ms and tmax, in which tmax is tuned between 10ms and 30ms.

3.2 Spike-Timing-Dependent Plasticity (STDP) Rule

The synaptic connection in the network is modified according to the spike-
timing-dependent plasticity (STDP) rule [18]. If a spike from an excitatory
pre-synaptic neuron arrives at a postsynaptic neuron before the postsynaptic
neuron fired, then this synapse is potentiated (strengthened). On the contrary,
if the spike arrives after the postsynaptic neuron fired, the synapse is depressed.

The magnitude of potentiation or depression relies on the time interval
between the spikes. When a neuron fires, the variable STDP is reset to 0.1. Every
millisecond (one time step is one millisecond), STDP decreases by 0.95∗STDP ,
so that it decays to zero as 0.1e−t/20.

3.3 Results

Rhythms of Oscillations. The population firing activity is calculated by the
number of fired neurons in each millisecond. As shown in Fig.3, the activity of
neurons in the network shows a nested θ-and γ-oscillation, which is consistent
with the experiment results [5].



48 Y. Liu et al.

Fig. 3. The rhythms of firing are calculated by FFT. The result shows a nested θ-and
γ-oscillation.

Neuronal Avalanches. In the simulation, data are binned at width δt = 4ms.
Here, we have also tried the other time bins from 1ms to 10ms, and the results
show that the width of the time bin will not impact the distribution.

The probability distribution of NCANs displays a power law with character-
istic slope of −1.5 and the cumulative probability distribution is almost a line (as
shown in Fig. 4), which means the firing activity of the network form neuronal
avalanches. So here we can call ’avalanches size’ instead of NCANs in Fig. 4.
This distribution result is consistent with the experiment result [1].

Fig. 4. The distribution of neuronal avalanches size. The left figure shows that the
exponent of the probability distribution is −1.5. The right figure shows the cumulative
probability distribution.
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4 Conclusion

In this paper, the dynamic mechanism of neuronal avalanches and the relation-
ship between neuronal avalanches and oscillations were discussed based on two
neural network models.

In the leaky integrate-and-fire neurons model, we simulated a neural network
composed of pyramidal cells and interneurons with fast excitatory synaptic cur-
rent, slow excitatory synaptic current and inhibitory synaptic current. Our result
showed that the activity of neurons in this network formed a γ-oscillation. The
distribution of NCANs was exponential, which meant that many neurons fired
synchronously and the firing state was in a super-critical state.

In the spiking neural network model under the STDP rule, the simulation
result showed that the activity of neurons in this network formed a nested θ-and
γ-oscillation. At the same time, the size distribution of the neuronal avalanches
displayed a power law, which meant that the firing pattern was in the critical
state.

These results indicated that the excitation-inhibition balance was a crucial
mechanism for the formation of oscillation, but it was not enough for neuronal
avalanches. The excitation-inhibition balance and synaptic plasticity were both
necessary for a neural network to access the critical state and form neuronal
avalanches. With the dynamic excitatory and inhibitory synaptic transmission
processes and STDP rule, neuronal avalanches and nested oscillations could
emerge simultaneously in a neural network.
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Abstract. In this paper, we develop an online learning control for a class
of unknown nonaffine nonlinear discrete-time systems with unknown
bounded disturbances. Under the framework of reinforcement learning,
we employ two neural networks (NNs): an action NN is used to generate
the control signal, and a critic NN is utilized to estimate the prescribed
cost function. By using Lyapunov’s direct method, we prove the stabil-
ity of the closed-loop system. Moreover, based on the developed adap-
tive scheme, we show that all signals involved are uniformly ultimately
bounded. Finally, we provide an example to demonstrate the effectiveness
and applicability of the present approach.

Keywords: Neural network · Nonaffine system · Reinforcement learn-
ing · Online control

1 Introduction

Reinforcement learning (RL) is a type of machine learning in which an agent
revises its actions based on responses from dynamic environment [1,2]. The typi-
cal structure of implementing RL algorithm is the actor-critic architecture, where
the actor performs actions by interacting with its surroundings, and the critic
evaluates actions and offers feedback information to the actor, leading to the
improvement in performance of the subsequent actor [3,4].

Recently, RL is extensively used to derive the feedback control for nonlinear
systems [5–11]. Most of the existing literature develop the adaptive actor–critic
neural-network (NN)-based control to optimize the prescribed cost function for
affine nonlinear systems. Nevertheless, few of them propose adaptive actor–critic
NN-based control laws for nonaffine nonlinear systems, especially unknown non-
affine nonlinear discrete-time (DT) systems. Though there exist some researches
about nonaffine nonlinear DT systems, they either focus on the feedback con-
trol problem of nonlinear autoregressive moving average with exogenous inputs
(NARMAX) systems [12] or transfer the systems to NARMAX systems [13].
In comparison to state-form of nonaffine nonlinear systems, NARMAX systems
do not take the consideration with the inner structure of systems. Therefore,
this type of systems is less convenient than the state-form of nonaffine nonlinear
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 51–58, 2014.
DOI: 10.1007/978-3-319-12436-0 7
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systems for purposes of adaptive control using NNs. On the other hand, in real
engineering applications, control approaches of affine nonlinear systems do not
always hold for nonaffine nonlinear systems. Hence, control methods for nonaffine
nonlinear systems are necessary.

The objective of this paper is to develop an online learning control for a
class of nonaffine nonlinear DT systems with unknown bounded disturbances.
An action NN and a critic NN are employed to derive the control and the cost
function, respectively. The stability of the closed-loop system is verified by using
Lyapunov’s direct method. Furthermore, the overall adaptive scheme guarantees
all signals involved are uniformly ultimately bounded (UUB).

The paper is organized as follows. Preliminaries are provided in Section 2.
A generalized feedback-linearization-method for nonaffine nonlinear DT systems
is developed in Section 3. RL-based controller is designed in Section 4. Stability
analysis is presented in Section 5. Simulation results are given in Section 6 to
show the effectiveness of the developed control scheme. Finally, several conclu-
sions are provided in Section 7.

2 Preliminaries

Consider the nonaffine nonlinear DT system described by the form

x1(k + 1) = x2(k)
...

xn−1(k + 1) = xn(k)

xn(k + 1) = h
(
x(k), u(x(k))

)
+ d(k) (1)

where the state x(k) = [x1(k), . . . , xn(k)]T ∈ Ω ⊂ R
n, the control u(x(k)) ∈

R is a continuous function with respect to x(k). For convenience, we denote
υ(k) = u(x(k)). d(k) ∈ R is an unknown disturbance but bounded by a constant
dM > 0, i.e., ‖d(k)‖ ≤ dM . h

(
x(k), υ(k)

) ∈ R is an unknown nonaffine function
with h(0, 0) = 0.

Assumption 1. The state x(k) is available from measurement at the time k.

Assumption 2. Let thedesiredsystemtrajectorybexd(k)=[x1d(k), . . . , xnd(k)]T.
xid(k) is arbitrarily selected and satisfies thatxid(k+1) = x(i+1)d(k), i = 1, 2, ..., n.
The desired trajectory xd(k) is bounded over the compact region Ω.

Assumption 3. ∂h(x(k), υ(k))/∂υ(k) �= 0 for ∀(
x(k), υ(k)

) ∈ Ω × R with the
compact region Ω.

3 Feedback-Linearization-Method for Nonaffine Systems

From system (1), we have

xn(k + 1) = h
(
x(k), υ(k)

)
+ d(k)

= αυ(k) + F(
x(k), υ(k)

)
+ d(k) (2)
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where F(x(k), υ(k)) = h
(
x(k), υ(k)

) − αυ(k), and α > 0 is a design constant
(Note: α is actually an arbitrary positive constant. In order to get better per-
formance, we often choose α by experience). Define the control input υ(k) as

υ(k) =
(
υs(k) − υa(k)

)/
α (3)

where υs(k) is a feedback controller to stabilize linearized error dynamics, υa(k)
is an adaptive controller designed to approximate F(x(k), υ(k)) by using a two-
layer NN. From (2) and (3), we obtain

xn(k + 1) = F(
x(k), υ(k)

) − υa(k) + υs(k) + d(k). (4)

Due to the objective of controllers υs(k) and υa(k), we define
{

υa(k) = F̂(x(k), υ(k))
υs(k) = xnd(k + 1) + λ1en−1(k) + · · · + λne0(k)

(5)

where F̂(x(k), υ(k)) is an estimates of F(x(k), υ(k)), en−1(k), . . . , e0(k) are the
delayed values of the error en(k), λ1, . . . , λn are constant values selected such
that |zn + λ1z

n−1 + · · · + λn| is stable.
The approximation error of F(x(k), υ(k)) is defined as

F̃(x(k), υ(k)) = F̂(x(k), υ(k)) − F(x(k), υ(k)). (6)

Meanwhile, the tracking error of the system state is given as

ei(k) = x(i+1)d(k) − xi+1(k). (7)

Theorem 1. Let υs(k) be proposed as (5), and the tracking error ei(k) be given
as (7). Then, the error dynamics is derived as

e(k + 1) = Ae(k) + B
[F̃(x(k), υ(k)) − d(k)

]
(8)

where

e(k) =
[
e0(k), . . . , en−1(k)

]T
, A =

⎡

⎢
⎣

0 1 · · · 0
...

...
...

−λn −λn−1 · · · −λ1

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0
...
1

⎤

⎥
⎦ . (9)

Proof. By using Assumption 2 and (7), we obtain ei(k) = x(i+1)d(k)−xi+1(k) =
xid(k +1)−xi(k +1) = ei−1(k +1), i = 1, . . . , n−1. Meanwhile, from (4) to (6),
we can get en(k) = −λTe(k) + F̃(x(k), υ(k)) − d(k), where λ = [λn, . . . , λ1]T.
Noticing en(k) = en−1(k +1), we have en−1(k +1) = −λTe(k)+ F̃(x(k), υ(k))−
d(k). By rewriting the tracking error in the vector form defined as in (9), we can
derive (8). This completes the proof.

Remark 1: By the definition of the matrix A given in (9), one can conclude that
A is the Hurwitz matrix .

Define G(
x(k), υa(k), υs(k)

)
= F(

x(k), (υs(k) − υa(k))
/
α
) − υa(k). Now, we

show the existence of the solution of G(
x(k), υa(k), υs(k)

)
= 0.



54 X. Yang et al.

Theorem 2. Let Assumption 3 hold. Then, there exists υa(k) defined on Ω such
that G(

x(k), υa(k), υs(k)
)

= 0.

Proof. By using Assumption 3, we can obtain ∂G(
x(k), υa(k), υs(k)

)/
∂υa(k) =(

∂[h(x(k), υ(k))−αυ(k)]
/
∂υ(k)

) ·(∂υ(k)
/
∂υa(k)

)−1 =
(
∂h(x(k), υ(k))

/
∂υ(k)

)

×(−1/α) �= 0. By using Implicit Function Theorem, we can derive the conclusion.

4 Controller Design via Reinforcement Learning

4.1 Critic NN Design

A utility function depending on the tracking error e(k) is defined as

r(k) =

{
0, if ẽ(k) ≤ ε

1, if ẽ(k) > ε

where ẽ(k) = λTe(k), and ε > 0 is a prescribed threshold. The utility function
r(k) is considered to be the performance index: r(k) = 0 and r(k) = 1 represent
the good and poor tracking performances, respectively. The cost function J(k) ∈
R [6] is defined as J(k) = τNr(k + 1) + τN−1r(k + 2) + · · · + τk+1r(N), where
0 < τ ≤ 1 is a design parameter, and N is the horizon. Then, we can get J(k) =
τJ(k−1)−τN+1r(k). The prediction error is ec(k) = Ĵ(k)−τ Ĵ(k−1)+τN+1r(k),
where Ĵ(k) ∈ R is an approximation of J(k).

The output of the critic NN is given as

Ĵ(k) = ŵT
c (k)σ(ϑT

c x(k)) = ŵT
c (k)σc(x(k)) (10)

where ϑc ∈ R
n×s1 and ŵc(k) ∈ R

s1 are the weights of the critic NN, s1 is the
number of the nodes in the hidden layer. Since σ(vT

c x(k)) is initialized randomly
and kept constant, it is written as σc(x(k)).

By using the gradient-based adaptation to minimize the objective function
Ec(k) = eTc (k)ec(k)

/
2, we derive the weight update law for the critic NN as

ŵc(k + 1) = ŵc(k) + lc

[
− ∂Ec(k)

∂ŵc(k)

]

= ŵc(k) − lcσc(x(k))
[
ŵT

c (k)σc(x(k)) + τN+1r(k)

− τŵT
c (k − 1)σc

(
x(k − 1)

)]T
. (11)

where 0 < lc < 1 is the learning rate of the critic NN.

4.2 Action NN Design

The prediction error for the action NN is defined as ea(k) = Ĵ(k) − Jd(k) +
F̃(x(k), xd(k)). Because Jd(k) is often considered to be zero, the prediction error
becomes ea(k) = Ĵ(k) + F̃(x(k), xd(k)).
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The output of the action NN is given as

F̂(k) = ŵT
a (k)σ

(
ϑT

az(k)
)

= ŵT
a (k)σa(z(k)) (12)

where F̂(k) stands for F̂(x(k), xd(k)), ϑa ∈ R
(n+1)×s2 , ŵa ∈ R

s2 and s2 are
defined in the same way as in the critic NN, z(k) = [xT(k), xnd(k) + eT(k)λ]T ∈
R

n+1. Suppose F(k) = wT
a σa(z(k)) + ε(k), where F(k) = F(x(k), xd(k)), wa

is the ideal weight, ε(k) is the action NN approximation error. Define w̃a(k) =
ŵa(k) − wa. Then the function approximation error can be derived as

F̃(k) = F̂(k) − F(k) = w̃T
a (k)σa(z(k)) − ε(k). (13)

Remark 2: By using Theorem 2 and (5), we can conclude that F(x(k), υ(k)) is
actually a function with respect to x(k) and xd(k). Hence, in the rest of the paper,
we denote F(x(k), xd(k)) = F(x(k), υ(k)), F̃(x(k), xd(k)) = F̃(x(k), υ(k)).

Combining (6) and (13) and using Theorem 1, we derive w̃T
a (k)σa(z(k)) −

ε(k) = BT
(
e(k + 1) − Ae(k)

)
+ d(k). By using the gradient-based adaptation

to minimize Ea(k) = eTa (k)ea(k)
/
2 and noticing that d(k) is often chosen to be

zero, i.e., d(k) = 0, we obtain the weight update rule for the action NN as

ŵa(k + 1) = ŵa(k) + la

[
− ∂Ea(k)

∂ŵa(k)

]

= ŵa(k) − laσa(z(k))
[
ŵT

c (k)σc(k) + BT
(
e(k + 1) − Ae(k)

)]T
. (14)

where 0 < la < 1 is the learning rate of the action NN.

5 Stability Analysis

Assumption 4. Let the ideal out layer weights wa and wc be bounded as ‖wa‖ ≤
waM , ‖wc‖ ≤ wcM , where waM > 0 and wcM > 0. Let ε(k) be bounded by a
constant εM > 0 over the compact set Ω, i.e., ‖ε(k)‖ ≤ εM .

Assumption 5. The activation functions are bounded over the compact set Ω
as ‖σa(z(k))‖ ≤ σaM , ‖σc(x(k))‖ ≤ σcM , where σaM > 0 and σcM > 0.

Fact 1. Since the matrix A is Hurwitz, there exists P ∈ R
n×n satisfying ATPA −

P = −μIn, where μ > 0 is a constant. There exist two known positive constants �
and ρ (� < ρ) such that � ≤ BTPB ≤ ρ.

Theorem 3. Consider the nonaffine nonlinear system described by (1). Let
Assumptions 1–5 hold. Take the control input for system (1) as (3) with (5)
and the critic NN (10), as well as the action NN (12). Moreover, let the weight
update law for the critic NN and the action NN be (11) and (14), respectively.
Then, the tracking error e(k), the weight of the estimation error for the action
NN w̃a(k), and the weight of the estimation error for the critic NN w̃c(k) are
UUB as long as one of the following conditions hold:

(a) 0 < lc‖σc(x(k))‖2 < 1, (b) μ > 1,

(c) 0 < la‖σa(z(k))‖2 < 1, (d) 0 < τ <
√

2/2. (15)
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Proof. We provide an outline of the proof due to the space limit. Consider the
Lyapunov function candidate

L(k) = β1e
T(k)Pe(k) +

β2

lc
tr

(
w̃T

c (k)w̃c(k)
)

+
β3

la
tr

(
w̃T

a (k)w̃a(k)
)

+ β4‖ξc(k − 1)‖2 (16)

where βj > 0, j = 1, 2, 3, 4, and ξc(k − 1) = w̃T
c (k − 1)σc

(
x(k − 1)

)
.

By computing the first difference of L(k) defined as in (16), we derive

ΔL(k) ≤ − β1(μ − 1)‖e(k)‖2 + D2(k) − (β2 − 2β3 − β4)‖ξc(k)‖2
− (

β4 − 2τ2β2

)‖ξc(k − 1)‖2 − (
β3 − 2β1(ρ + η)

)‖ξa(k)‖2
− β2

(
1 − lc‖σc(x(k))‖2)‖ξc(k) + M(k)‖2

− β3

(
1 − la‖σa(z(k))‖2)‖N(k)‖2 (17)

where ξc(k) = w̃T
c (k)σc(x(k)), ξa(k) = w̃T

a (k)σa(z(k)), M(k) = wT
c σc(x(k)) +

τN+1r(k)−τŵT
c (k−1)σc(x(k−1)), N(k) = ŵT

c (k)σc(x(k))+ξa(k)−ε(k)−d(k),
η = ‖ATPB‖2, and

D2(k) = 2β2‖P (k)‖2 + 2β3‖wT
c σc(k) − ε(k) − d(k)‖2

+ 2β1(ρ + η)‖ε(k) + d(k)‖2,
and P (k) = wT

c σc(z(k)) + τN+1r(k) − τwT
c σc(x(k − 1)).

Using Assumptions 1–5 and Fact 1, we obtain

D2(k) ≤ (12β2 + 6β3)w2
cMσ2

cM + 6β2r
2
M

+
(
6β3 + 4β1(ρ + η)

)
(ε2M + d2M ) � D2

M (18)

where rM > 0 is the bound of |r(k)|, i.e., |r(k)| ≤ rM .
The parameters βi (i = 1, 2, 3) are selected to satisfy β1 < β3

/
2(ρ + η),

β2 = β4

/
2τ2, β2 > 2β3

/
(1 − 2τ2). Then, by using (15), we can derive that

(17) and (18) implies ΔL(k) < 0 as long as one of the following conditions
holds: ‖e(k)‖ > |DM |/√

β1(μ − 1), or ‖w̃a(k)‖ > |DM |
σaM

/√
β3 − 2β1(ρ + η), or

‖w̃c(k)‖ > |DM |
σcM

/√
β2 − 2τ2β2 − 2β3. By using standard Lyapunov extension

theorem [14], we can obtain that the tracking error e(k), the weight of the esti-
mation error for the action NN w̃a(k), and the weight of the estimation error for
the critic NN w̃c(k) are UUB.

6 Simulation Results

Consider the nonaffine nonlinear DT system given by

x1(k + 1) = x2(k)

x2(k + 1) = x2
1(k) + 0.15u3(k) + 0.08u(k) + sin(0.08u(k))

+ 0.01
(
x2(k) − x1(k)

)2
u(k) + 2x2(k) − x1(k) + 0.5 sin(3πk). (19)
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The desired system trajectory is xd(k) = [y(k), y(k + 1)]T, where y(k) =
0.8 sin(kπ/200)+0.8 cos(kπ/400). From (19), we have ∂h(x(k), u(k))/∂u(k) �= 0.
The initial state is x0 = [1, 0.31]T. Let λ1 = 1, λ2 = 0.25 (i.e., s2 + λ1s + λ2 is
stable). We select α = 2, μ = 2, τ = 0.7, ε = 0.008, la = 0.1 and lc = 0.001. The
initial weight for the inner layer is selected randomly within an interval of [0, 1]
and held constant. Meanwhile, the initial weights for the output layer is chosen
randomly within an interval of [−0.2, 0.2]. The structure of the action NN is
3–15–1. And the structure of the critic NN is 2–10–1. The computer simulation
results are shown by Figs. 1(a)–(d). Fig. 1(a) and Fig. 1(b) indicate the 2-norm
of the weights of the action NN and the critic NN, respectively. Fig. 1(c) presents
the control input. Fig. 1(d) shows the trajectories of x1(k) and x1d(k) (Since the
trajectories of x2(k) and x2d(k) is same with Fig. 1(d), we omit it here). From
simulation results, it is observed that the state x(k) tracks the desired trajectory
xd(k) very well, and all signals involved are bounded.
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Fig. 1. (a) 2-norm of the action NN weight ‖Ŵa‖ (b) 2-norm of the critic NN weight
‖Ŵc‖ (c) Control input u(k) (d) Trajectories of x1(k) and x1d(k)

7 Conclusion

We have developed an RL-based online learning control for unknown nonaffine
nonlinear DT systems with unknown bounded disturbances. By using Lyapunov’s
method, the stability of the closed-loop system is verified, and all signals involved
are UUB. The computer simulation results show that the online controller can
perform successfully control and attain the desired performance. In our future
work, we focus on deriving online control for nonaffine nonlinear CT systems.
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Abstract. Multistability and multiperiodicity of neual networks are
usually considered in the application of associative memory. In this
paper, we study the multistability and multiperiodicity of complex-
valued neural networks (CVNNs for short) with one step piecewise linear
activation functions. By separating the CVNN into its real and imagi-
nary parts and using state decomposition, we can easily increase the
storage capacity by using less neurons. Simulation results are given to
illustrative the effectiveness of the theoretical results.

Keywords: Complex-valued neural networks · Multistability ·
Multiperiodicity

1 Introduction

Recently, complex-valued neural networks (CVNNs for short), are proposed to
handle various applications involving complex-valued numbers, see [2,7,8,16,17]
and the references herein. Most of these literatures studied the mono-stability
and mono-periodicity of CVNNs. However, in some neurodynamic systems, there
exist multiple stable equilibrium points or periodic orbits. For example, when a
neural network is employed as an associative memory storage for pattern recog-
nition, the existence of multiple equilibrium points is a necessary feature. The
studies of multistability and multiperiodicity of recurrent neural networks have
attracted considerable research interests, see [1,3–6,13–15].

It is shown that the n-neuron recurrent neural networks with one step
piecewise linear activation function can have 2n locally exponentially stable equi-
librium points located in saturation regions (see [3,14,15]). In order to increase
storage capacity, in [13] the authors employed a stair-style activation function
with k steps and obtained the existence condition of (4k−1)n equilibrium points.
However, stair-style activation functions with k steps are quite more complicated

The work described in this paper was supported by the National Natural Science
Foundation of China under Grants 61273021 and 61403051 and grants from the
Research Grants Council of the Hong Kong Special Administrative Region, China
(Project nos. CUHK417209E and CUHK416811E).
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and difficult to implement than one step piecewise linear activation functions.
Since CVNNs can be separated into their real and imaginary parts, if we use
CVNNs in the design of multistate associative memory models, it is easy to
increase the storage capacity of the models. In recent years, some CVNN mod-
els have been applied in the design and synthesis of associative memory, see
[9,11,12]. In those papers, the multistate associative memory models are dis-
cussed by employing a class of amplitude-phase-type activation functions wich
are suitable for processing information meaningful in rotation around the origin
of coordinate. In this paper, we investigate the multistability and multiperiodic-
ity of CVNNs with real-imaginary-type one step piecewise linear complex-valued
activation functions which are suitable for dealing with complex information that
must have symmetry concerning. The existence conditions of multiple stable
equilibrium points and periodic orbits are obtained which improves a lot in the
design and synthesis in associative memory. The rest of this paper is organized
as follows: In Section 2 we give the description of the CVNN model as well as
some definitions and lemmas. In Section 3, we present the sufficient condition for
multistabilty and multiperiodicity of the CVNN models and extend the results
to complex-valued cellular neural networks. In Section 4, we provide a numerical
simulation to illustrative the effectiveness of the results. Section 5 concludes the
paper.

2 Model Description and Preliminaries

In this paper, we investigate the following CVNN model

ż(t) = −Dz(t) + Af(z(t)) + Bf(z(t − τ)) + u(t) (1)

where z = (z1, z2, · · · , zn)T ∈ Cn is the state vector, D = diag(d1, d2, · · · , dn) ∈
Rn×n with dj > 0 (j = 1, 2, · · · , n) is the self-feedback connection weight matrix,
A = (ajk)n×n ∈ Cn×n and B = (bjk)n×n ∈ Cn×n are, respectively, the connec-
tion weight matrix without and with time delays, f(z(t)) = (f1(z1(t)), f2(z2(t)),
· · · , fn(zn(t)))T : Cn → Cn is the vector-valued activation function whose ele-
ments consist of complex-valued nonlinear functions, τj (j = 1, 2, · · · , n) are
constant time delays, u(t) = (u1(t), u2(t), · · · , un(t))T ∈ Cn is the external input
vector-valued function with period ω.

We consider the following one step piecewise linear activation functions fj(z)
that can be separated into its real and imaginary part as follows::

fj(z) = fR
j (x) + if I

j (y)

where

fR
j (x) =

⎧
⎪⎨

⎪⎩

lRj , −∞ < x < qR
j

h(x), qR
j ≤ x ≤ pR

j

mR
j , pR

j < x < ∞
, f I

j (y) =

⎧
⎪⎨

⎪⎩

lIj , −∞ < y < qI
j

w(y), qI
j ≤ y ≤ pI

j

mI
j , pI

j < y < ∞
, (2)
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where

h(x) = lRj +
mR

j − lRj
pR

j − qR
j

(x − qR
j ), w(y) = lIj +

mI
j − lIj

pI
j − qI

j

(y − qI
j ), lRj < mR

j , lIj < mI
j .

Let C([t0 − τ, t0],Ω) be the Banach space of continuous functions φ : [t0 −
τ, t0] → Ω ⊂ Rn (Cn) with norm defined by ||φ||t0 = sup−τ≤θ≤0 ||φ(t0 + θ)||.
Definition 1. A set Ω is said to be an invariant set of CVNN (1), if the solution
z(t; t0, φ) of (1) with any initial condition φ(s) ∈ C([t0 − τ, t0],Ω), satisfies
z(t; t0, φ) ∈ Ω for t > t0.

Definition 2. A periodic orbit ẑ(t) is said to be a limit cycle of CVNN (1) if ẑ is
an isolated periodic orbit; that is, there exists ω > 0 such that ∀t ≥ t0, ẑ(t+ω) =
ẑ(t), and there exists δ > 0 such that ∀z(t) ∈ {z(t) | 0 < ||z(t) − ẑ|| < δ, t ≥ t0},
z(t) is not a point on any periodic orbit of neural network (11).

Definition 3. A periodic orbit ẑ(t) of CVNN (1) is said to be locally exponen-
tially periodic in region Ω if there exist constants α > 0 and β > 0 such that
∀t ≥ t0,

||z(t; t0, φ) − ẑ(t)|| ≤ β||φ − φ̂||t0 exp {−α(t − t0)}
where z(t; t0, φ) is the state of (1) with any initial condition φ(s) ∈ C([t0 −
τ, t0],Ω). When Ω = Cn, ẑ is said to be globally exponentially periodic.

Lemma 1. [10] Let H be a mapping on complete metric space (C([t0 − τ, t0],
Ω), || · ||t0). If H(C([t0−τ, t0],Ω)) ⊂ C([t0−τ, t0],Ω), and there exists a constant
γ < 1 such that ∀ϕ, φ ∈ C([t0 − τ, t0],Ω), ||H(ϕ) − H(φ)|| ≤ γ||ϕ − φ||t0 , then
there exists one unique ϕ̄ ∈ C([t0 − τ, t0],Ω) such that H(ϕ̄) = ϕ̄.

3 Main Results

Assume that N1∪N2∪N3∪N4 = {1, 2, 3, · · · , n}, N1, N2, N3 and N4 are mutually
exclusive sets, that is, Nj ∩ Nk = ∅ (j, k = 1, 2, 3, 4, j �= k). Let w = (xT, yT)T,
and
Ω1 = {w ∈ R2n| − ∞ < xj < qR

j , −∞ < yj < qI
j , j ∈ N1; −∞ < xj < qR

j , pI
j < yj < ∞,

j ∈ N2; p
R
j < x < ∞, −∞ < yj < qI

j , j ∈ N3; p
R
j < x < ∞, pI

j < yj < ∞, j ∈ N4}.

(3)
Theorem 1. CVNN (1) has 4n locally exponentially stable limit cycles located in Ω1

if ∀t ≥ t0 the following conditions hold

|uR
j (t)| < − dj max{|qR

j |, |pR
j |} + αR

j −
n∑

k=1,k �=j

[|aR
jk| max{|lRk |, |mR

k |} + |aI
jk| max{|lIk|, |mI

k|}]

−
n∑

k=1

[|bR
jk| max{|lRk |, |mR

k |} + |bI
jk| max{|lIk|, |mI

k|}],

|uI
j (t)| < − dj max{|qI

j |, |pI
j |} + αI

j −
n∑

k=1,k �=j

[|aI
jk| max{|lRk |, |mR

k |} + |aR
jk| max{|lIk|, |mI

k|}]

−
n∑

k=1

[|bI
jk| max{|lRk |, |mR

k |} + |bR
jk| max{|lIk|, |mI

k|}],

(4)
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where

αR
j = min{−aR

jj l
R
j + aI

jj l
I
j , −aR

jj l
R
j + aI

jjm
I
j , aR

jjm
R
j − aI

jj l
I
j , aR

jjm
R
j − aI

jjm
I
j} > 0,

αI
j = min{−aI

jj l
R
j − aR

jj l
I
j , aI

jj l
R
j + aR

jjm
I
j , −aI

jjm
R
j − aR

jj l
I
j , aI

jjm
R
j + aR

jjm
I
j} > 0.

Proof. By separating the state vector, connection weight matrix, vector-valued activa-
tion function and the external input vector of CVNN (1) into its real and imaginary
part, we have that ∀t ∈ [t0 − τ, t0], w(t) ∈ Ω1,

ẋj = − djxj +
∑

k∈N1∪N2

(aR
jk + bR

jk)lRk +
∑

k∈N3∪N4

(aR
jk + bR

jk)mR
k

−
∑

k∈N1∪N3

(aI
jk + bI

jk)lIk −
∑

k∈N2∪N4

(aI
jk + bI

jk)mI
k + uR

j (t),

ẏj = − djyj +
∑

k∈N1∪N2

(aI
jk + bI

jk)lRk +
∑

k∈N3∪N4

(aI
jk + bI

jk)mR
k

+
∑

k∈N1∪N3

(aR
jk + bR

jk)lIk +
∑

k∈N2∪N4

(aR
jk + bR

jk)mI
k + uI

j (t).

(5)

If j ∈ N1 and xj(t0) = qR
j , yj(t0) = qI

j , according to (4), we have

ẋj(t0) = −djq
R
j + aR

jj l
R
j − aI

jj l
I
j +

∑
k∈N1∪N2,k �=j

aR
jklRk +

∑
k∈N1∪N2

bR
jklRk +

∑
k∈N3∪N4

(aR
jk

+ bR
jk)mR

k −
∑

k∈N1∪N3

bI
jklIk −

∑
k∈N1∪N3,k �=j

aI
jklIk −

∑
k∈N2∪N4

(aI
jk + bI

jk)mI
k + uR

j (t) < 0,

ẏj(t0) = −djq
I
j + aI

jj l
R
j + aR

jj l
I
j +

∑
k∈N1∪N2,k �=j

aI
jklRk +

∑
k∈N1∪N2

bI
jklRk +

∑
k∈N3∪N4

(aI
jk

+ bI
jk)mR

k +
∑

k∈N1∪N3

bR
jklIk +

∑
k∈N1∪N3,k �=j

aR
jklIk +

∑
k∈N2∪N4

(aR
jk + bR

jk)mI
k + uI

j (t) < 0.

(6)

If j ∈ N2 and xj(t0) = qR
j , yj(t0) = pI

j , according to (4), we have

ẋj(t0) = −djqR
j + aR

jj lRj − aI
jjmI

j +
∑

k∈N1∪N2,k �=j

aR
jklRk +

∑

k∈N1∪N2

bR
jklRk +

∑

k∈N3∪N4

(aR
jk

+ bR
jk)mR

k −
∑

k∈N2∪N4

bI
jkmI

k −
∑

k∈N2∪N4,k �=j

aI
jkmI

k −
∑

k∈N1∪N3

(aI
jk + bI

jk)lIk + uR
j (t) < 0,

ẏj(t0) = −djpI
j + aI

jj lRj + aR
jjmI

j +
∑

k∈N1∪N2,k �=j

aI
jklRk +

∑

k∈N1∪N2

bI
jklRk +

∑

k∈N3∪N4

(aI
jk

+ bI
jk)mR

k +
∑

k∈N2∪N4

bR
jkmI

k +
∑

k∈N2∪N4,k �=j

aR
jkmI

k +
∑

k∈N1∪N3

(aR
jk + bR

jk)lIk + uI
j (t) > 0.

(7)

If j ∈ N3 and xj(t0) = pR
j , yj(t0) = qI

j , according to (4), we have

ẋj(t0) = −djpR
j + aR

jjmR
j − aI

jj lIj +
∑

k∈N1∪N2

(aR
jk + bR

jk)lRk −
∑

k∈N1∪N3,k �=j

(aI
jk + bI

jk)lIk

−
∑

k∈N2∪N4

(aI
jk + bI

jk)mI
k +

∑

k∈N3∪N4,k �=j

aR
jkmR

k +
∑

k∈N3∪N4

bR
jkmR

k + uR
j (t) > 0,
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ẏj(t0) = −djqI
j + aI

jjmR
j + aR

jj lIj +
∑

k∈N1∪N2

(aI
jk + bI

jk)lRk +
∑

k∈N2∪N4

(aR
jk + bR

jk)mI
k

+
∑

k∈N3∪N4,k �=j

(aI
jk + bI

jk)mR
k +

∑

k∈N1∪N3

bR
jklIk +

∑

k∈N1∪N3,k �=j

aR
jklIk + uI

j (t) < 0.

(8)

If j ∈ N4 and xj(t0) = pR
j , yj(t0) = pI

j , according to (4), we have

ẋj(t0) = −djp
R
j + aR

jjm
R
j − aI

jjm
I
j +

∑
k∈N1∪N2

(aR
jk + bR

jk)lRk +
∑

k∈N3∪N4,k �=j

aR
jkmR

k

+
∑

k∈N3∪N4

bR
jkmR

k −
∑

k∈N1∪N3

(aI
jk + bI

jk)lIk −
∑

k∈N2∪N4,k �=j

aI
jkmI

k

−
∑

k∈N2∪N4,k �=j

bI
jkmI

k + uR
j (t) > 0,

ẏj(t0) = −djp
I
j + aI

jjm
R
j + aR

jjm
I
j +

∑
k∈N1∪N2

(aI
jk + bI

jk)lRk +
∑

k∈N3∪N4,k �=j

aI
jkmR

k

+
∑

k∈N3∪N4

bI
jkmR

k +
∑

k∈N1∪N3

(aR
jk + bR

jk)lIk +
∑

k∈N2∪N4,k �=j

aR
jkmI

k

+
∑

k∈N2∪N4

bR
jkmI

k + uI
j (t) > 0. (9)

From Eq. (6)-(9), we can conclude that Ω1 is an invariant set, that is, ∀t ≥ t0 − τ ,
w(t) ∈ Ω1.

Let w(t) = w(t; t0, φ) and w(t) = w(t; t0, ψ) be two states of (5) with initial
conditions φ and ψ, respectively. Since dj > 0, we can choose a small ε such that
0 < ε < dj , 1 ≤ j ≤ n. Let

V (t) = eεt
2n∑

j=1

|wj(t) − wj(t)|.

By calculating the upper right Dini derivative of V (t) along (5), we can obtain that

V̇ (t) =eεt

[
ε

2n∑
j=1

|wj(t) − wj(t)| +
2n∑

j=1

(ẇj(t) − ẇj(t))sgn(wj(t) − wj(t))

]

=eεt
2n∑

j=1

(ε − dj)|wj(t) − wj(t)| < 0

and this means V (t) ≤ V (t0), thus we have

||w(t) − w(t))|| ≤ ||φ − φ0||t0 exp {−ε(t − t0)}. (10)

Let zt(φ) = z(t, φ) be a solution of (1) with z0 = φ ∈ Ω1. Since Ω1 is an invariant
set of CVNN (1), we have zt(φ) ∈ Ω1. Define a Poincaŕe mapping H : Ω1 → Ω1

by H(φ) = zω(φ).Then H(Ω1) ⊂ Ω1. We can choose a positive integer N such that
exp {−ε(Nω − t0)} ≤ γ < 1, thus from (10) we have

||H(φ) − H(φ0)|| ≤ ||φ − φ0||t0 exp {−ε(Nω − t0)} ≤ γ||φ − φ0||t0
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By Lemma 1, we conclude that there exists a unique fixed point φ̄ ∈ Ω1 such that
HN (φ̄) = φ̄. In addition,

HN (H(φ̄)) = H(HN (φ̄)) = H(φ̄).

that is, H(φ̄) is also a fixed point of HN . By the uniqueness of the fixed point of the
mapping HN , H(φ̄) = φ̄, i.e., zωφ̄ = φ̄. Let ẑ(t) = x̂(t)+ iŷ(t) be a state of (1) through
z0 = φ̄, then ((x̂(t))T, (ŷ(t))T)T is a state of (5), thus, ∀j = 1, 2, · · · , n, t + ω ≥ t0, we
have

˙̂xj(t + ω) = − djxj(t) +
∑

k∈N1∪N2

(aR
jk + bR

jk)lRk +
∑

k∈N3∪N4

(aR
jk + bR

jk)mR
k

−
∑

k∈N1∪N3

(aI
jk + bI

jk)lIk −
∑

k∈N2∪N4

(aI
jk + bI

jk)mI
k + uR

j (t),

˙̂yj(t + ω) = − dj ŷj(t + ω) +
∑

k∈N1∪N2

(aI
jk + bI

jk)lRk +
∑

k∈N3∪N4

(aI
jk + bI

jk)mR
k

+
∑

k∈N1∪N3

(aR
jk + bR

jk)lIk +
∑

k∈N2∪N4

(aR
jk + bR

jk)mI
k + uI

j (t).

Hence z̄(t) is an isolated periodic orbit of CVNN (1) with period ω. Since Ω1 has
4n elements, there are 4n limit cycles in Ω1, and from (10), we know that such 4n limit
cycles are locally exponentially stable. This completes the proof. �

Remark 1. In the design and applications of associative memory, to determine the
one step piecewise linear activation functions defined in Eq. (2), we shall first find
the location of the equilibrium points or periodic orbits. And then, we can carefully
choose parameters pR

j , pI
j , qR

j , qI
j , (j = 1, 2, · · · , n) such that the decomposed state space

defined in (3) just match the location of the equilibrium points or periodic orbits.

In CVNN (1) if the external input is a constant vector, that is, u(t) is replaced by
a constant vector u = (u1, u2, · · · , un)T, then we obtain the following CVNN:

ż(t) = −Dz(t) + Af(z(t)) + Bf(z(t − τ)) + u. (11)

Since the multistability of CVNN (11) is a special case of the multiperiodicity of
CVNN (1) with arbitrary period or zero magnitude, according to Theorem 1, we can
obtain the following corollary for the multistability of CVNN (11):

Corollary 1. CVNN (11) has 4n locally exponentially stable equilibrium points located
in Ω1 if ∀t ≥ t0 conditions (4) hold.

Let qR
j = qI

j = −1, pR
j = pI

j = 1, lRj = lIj = −1, mR
j = mI

j = 1 (j = 1, 2, · · · , n),
then the real and imaginary parts of activation functions fj(z) (j = 1, 2, · · · , n) of
CVNN (1) are degenerated to

fR
j (x) =

1

2
[|x + 1| − |x − 1|], fI

j (y) =
1

2
[|y + 1| − |y − 1|].

Then we obtain the following complex-valued cellular neural networks:

ż(t) = −Dz(t) + Af(z(t)) + Bf(z(t − τ)) + u (12)

and
ż(t) = −Dz(t) + Af(z(t)) + Bf(z(t − τ)) + u(t) (13)
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and we consider the following region

Ω2 = {w ∈ R2n| − ∞ < xj < −1, −∞ < yj < −1, j ∈ N1; −∞ < xj < −1, 1 < yj < ∞,

× j ∈ N2; 1 < x < ∞, −∞ < yj < −1, j ∈ N3; 1 < x < ∞, 1 < yj < ∞, j ∈ N4}

According to Theorem 1 and Corollary 1 we can obtain the multistability and
multiperiodicity conditions for CVNNs (12) and (13):

Corollary 2. CVNN (12) has 4n locally exponentially stable equilibrium points located
in Ω2 if ∀t ≥ t0 the following conditions hold

|uR
j | < −dj + αj −

n∑
k=1,k �=j

(|aR
jk| + |aI

jk|) −
n∑

k=1

(|bR
jk| + |bI

jk|),

|uI
j | < −dj + αj −

n∑
k=1,k �=j

(|aR
jk| + |aI

jk|) −
n∑

k=1

(|bR
jk| + |bI

jk|),
(14)

where αj = min{aR
jj + aI

jj , a
R
jj − aI

jj} > 0.
CVNN (13) has 4n locally exponentially limit cycles located in Ω2 if ∀t ≥ t0 the

above conditions hold.

Remark 2. The conditions in Corollary 2 include criteria for multistability and multi-
periodicity of real-valued cellular neural networks as special cases when aI

jk = bI
jk = 0,

uI
j = uI

j (t) = 0, j, k = 1, 2, · · · , n, e.g., Theorem 1 and Corollary 1 in [14].

4 Illustrative Examples

In this section, we give a numerical example to demonstrate the above result.

Example 1. Consider a two-neuron CVNN described as follows:

˙z(t) = −Dz(t) + Af(z(t)) + Bf(z(t − τ)) + u (15)

where

D =

(
2 0
0 1.5

)
, A =

(
4.8 + 1.5i 0.2 − 0.1i

−0.1 + 0.15i 4 + 2i

)
, B =

(
0.25 + 0.1i −0.15 − 0.2i
−0.2 + 0.2i −0.15 + 0.1i

)
,

u = (−2 + 0.8i, 0.4 − 0.6i)T,

fR
1 (x) =

⎧
⎪⎨
⎪⎩

−3, x < −1.5

1.5x − 0.75, −1.5 ≤ x ≤ 2.5

3, x > 2.5

, fR
2 (x) =

⎧
⎪⎨
⎪⎩

−3.5, x < −0.8

3.6x − 9.1, −0.8 ≤ x ≤ 1

3, x > 1

,

fI
1 (y) =

⎧
⎪⎨
⎪⎩

−2.5, x < −0.2

6.4y − 2.2, −0.2 ≤ x ≤ 0.5

2, x > 0.5

, fI
2 (y) =

⎧
⎪⎨
⎪⎩

−2.8, x < −0.6

3.6y − 0.6, −0.6 ≤ x ≤ 1.2

3.7, x > 1.2

.

It can be checked that the conditions in Corollary 1 hold. Thus, CVNN (15) has 16
locally exponentially stable equilibrium points. Simulation results with 100 random
initial states are depicted in Fig. 1 and Fig. 2.
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Fig. 1. Transient state of the real part of CVNN (15) in Example 1
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Fig. 2. Transient state of the imaginary part of CVNN (15) in Example 1
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Fig. 3. Transient state of the real part of CVNN (16) in Example 1
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Fig. 4. Transient state of the imaginary part of CVNN (16) in Example 1
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Consider another two-neuron CVNN described as follows:

˙z(t) = −Dz(t) + Af(z(t)) + Bf(z(t − τ)) + u(t) (16)

where u(t) = (−1.8 sin t + 0.6i sin(3t), −0.3 cos(2 − t) − 0.45i cos(t))T, D, A, B are the
same as in (15). It can be checked that the conditions in Theorem 1 hold. Thus, CVNN
(16) has 16 locally exponentially periodic orbits. Simulation results with 100 random
initial states are depicted in Fig. 3 and Fig. 4.

5 Conclusion and Future Works

In this paper, we investigate the multistability and multiperiodicity of CVNNs with
one step piecewise linear activation functions. Since a complex-valued neuron contains
more information than the real-valued counterpart, we can easily increase the storage
capacity by using less number of neurons. This is quite helpful to the design and
application of associative memory and other applications. Future works include the
multistability and multiperiodicity of CVNNs with other types of activation functions
and the applications in associative memory.
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Abstract. In this paper, we investigate the exponential synchroniza-
tion of coupled stochastic and switched neural networks (CSSNNs) with
mixed time-varying delays. By exerting impulsive controller to the con-
sidered dynamical systems in each switching interval, and combining the
multiple Lyapunov theory, we obtain a class of sufficient exponential syn-
chronization criteria in terms of nonlinear equations and LMIs, which are
easy to check. A simple example is presented to show the application of
the criteria obtained in this paper.

Keywords: Coupled stochastic and switched neural networks · Expo-
nential synchronization · Mixed time-varying delays · Impulsive effects

1 Introduction

Synchronization is an important and interesting collective behavior in coupled
networks, and the study on synchronization of coupled neural networks can help
us understand brain science and design coupled neural networks for real world
applications. So synchronization of coupled neural networks has become a hot
topic and been extensively investigated in recent years [1-8]. It is well known that
time delays are unavoidable in the information processing of neurons due to var-
ious reasons, so most of the above-mentioned literatures are on synchronization
of delayed neural networks.

It should be noted that because of link failures and the creation of new links in
the information processing of neurons, the communication topology may change
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in time, thus it is more natural and important to design switching signal when
modeling real-world networks. There have been some works on the synchroniza-
tion of switched neural networks, see for example, [9-11]. On the other hand,
impulsive control has been proved to be an important and economical control
method, because it acts only at the discrete times and synchronize the cou-
pled systems quickly. Recently, hybrid impulsive switched systems have received
increasing attentions due to their wide applications in various fields, one can
refer to [12,13]. Zhang et al. have investigated in [13] the exponential synchro-
nization of coupled impulsive switched neural networks by using average dwell
time approach and comparison principle, but the coupling is linear and coupling
delay was not taken into account in the associated networks. As discussed in
[14], sometimes state variables xi(t) may be unobservable, but g(xi(t)) can be
observed easily, so nonlinear coupling is more practical. Additionally, Haykin
pointed out in [15] that synaptic transmission is a noisy process brought on by
random fluctuations from the release of neurotransmitters and other probabilis-
tic causes. Practically, the stochastic phenomenon often appears in the electrical
circuit design of neural networks. Hence, stochastic disturbances should also be
considered in the dynamical behaviors of neural networks. However, the authors
of [13] did’t consider stochastic perturbation either.

Motivated by above discussions, this paper aims to analyze the exponential
synchronization of nonlinearly coupled impulsive switched neural networks with
stochastic perturbation and mixed time-varying delays. The rest of this paper
is organized as follows: in Section 2, we first give the problem statement, and
then present some definitions, lemmas and assumptions required throughout this
paper; in Section 3, we will give a novel criterion to ensure the exponential syn-
chronization for the considered neural networks in terms of LMIS and nonlinear
equations; in Section 4, a simple example is provided to show the application of
the theoretical results obtained in this paper.

2 Preliminaries

In this paper, we consider the following switched coupled neural networks with
stochastic perturbations and impulsive effects:

⎧
⎪⎪⎨

⎪⎪⎩

dxi(t) = [−Cxi(t) + Bf̃(t, xi(t)) + Df̃(t, xi(t − τ(t)))]dt

+g̃(t, xi(t), xi(t − ρ(t)))dw(t) +
N∑

j=1

aij,σ(t)h̃(xj(t))dt, t �= tk,lk

xi(tk,lk) = (1 + μlk)xi(t−k,lk
), t = tk,lk

(1)

where t ∈ [tk, tk+1), i = 1, · · · , N, xi(t) = [xi1(t), · · · , xin(t)]T ∈ R
n is the state

of the ith node at time t; τ(t), ρ(t) are the time-varying connected delay of neurons
and coupled delay of nodes, respectively, and satisfying 0 < τ(t) < τ, 0 < ρ(t) < ρ
with τ, ρ are positive constants; σ(t) : [0,+∞) → M = {1, 2, · · · ,m} is a piece-
wise right-continuous function representing the switching signal. The switching
time instants tk satisfy 0 = t0 < t1 < · · · < tk < tk+1 < · · · , lim

k→+∞
tk = +∞
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and inf
0≤k<∞

{tk+1 − tk} ≥ ℵ where ℵ = max{τ, ρ}; {tk,lk , lk ∈ N
+} ⊂ [tk, tk+1)

are impulsive instances satisfying tk < tk,1 < tk,2 < · · · < tk,lk < · · · < tk+1,
and xi(t+k,lk

) = xi(tk,lk);μlk is the impulsive strength satisfying (1 + μlk)2 ≤ μ <
1; C = diag{c1, · · · , cn}, cl > 0(l = 1, · · · , n) denotes the rate with which the l-th
neuron xil(t) reset their potential to the resting state when disconnected from the
networks and inputs, B,D ∈ R

n×n denote the connection weight matrices of the
neurons, f̃(t, xi(t)) = (f̃1(t, xi(t)), · · · , f̃n(t, xi(t)))T ∈ R

n is the activation func-
tion of the neurons; g̃(t, xi(t), xi(t − ρ(t))) ∈ R

n×m is the noise intensity function
matrix; w(t) = (w1(t), w2(t), · · · , wm(t))T ∈ R

m is a Brownian motion defined on
a complete probability space (Ω,F , P ) with a nature filtration {Ft}t≥0 satisfying
E(wj(t)) = 0, E(w2

j (t)) = 1, E(wj(t)wk(t)) = 0 (j �= k). The configuration cou-
pling matrices Aσ(t) = (aij,σ(t))N×N are defined as follows: if there is a directed
edge from node j to node i, then aij,σ(t) > 0, otherwise, aij,σ(t) = 0, and aii,σ(t) =

−
N∑

j=1,j �=i

aij,σ(t) for i = 1, · · · , N ; h̃(xj(t)) = (h̃1(xj(t)), · · · , h̃n(xj(t)))T ∈ R
n is

the inner coupling vector function between two connected nodes i and j.
The initial condition of system (1) is given by xi(t) = ϕi(t) ∈ C([−ℵ, 0],Rn),

where C([−ℵ, 0],Rn) is the set of continuous functions from [−ℵ, 0] to R
n. Let s(t)

be a solution of the following stochastic delayed dynamical system of an isolate
neural network:

ds(t) = [−Cs(t)+Bf̃(t, s(t))+Df̃(t, s(t−τ(t)))]dt+g̃(t, s(t), s(t−ρ(t)))dw(t), (2)

which is the same as other neural networks. s(t) can be any desired state: equi-
librium point, a nontrivial periodic orbit, or even a chaotic orbit. In this paper,
we hope to force the network (1) to globally exponentially synchronize with s(t).
The initial condition (2) is given by s(t) = φ(t) ∈ C([−ℵ, 0],Rn).

Let ei(t) = xi(t)−s(t), f(t, ei(t)) = f̃(t, ei(t)+s(t))−f̃(t, s(t)), g(t, ei(t), ei(t−
τ(t))) = g̃(t, ei(t) + s(t), ei(t − τ(t) + s(t − τ(t))) − g̃(t, s(t), s(t − τ(t))), h(ej(t −
ρ(t))) = h̃(ej(t − ρ(t)) + s(t − ρ(t))) − h̃(s(t − ρ(t))); e(t) = (eT

1 (t),
· · · , eT

N (t))T , CN = IN ⊗C,BN = IN ⊗B,DN = IN ⊗D,A = A⊗In, F (t, e(t)) =
(fT (t, e1(t)), · · · , fT (t, eN (t)))T ,H(e(t − ρ(t))) = (hT (e1(t − ρ(t))), · · · , hT

(eN (t − ρ(t))))T , G(t, e(t), e(t − τ(t))) = diag{g(t, e1(t), e1(t − τ(t))), · · · ,
g(t, eN (t), eN (t− τ(t)))}, dW (t) = 1N ⊗dw(t), where 1N = (1, 1, · · · , 1)T , σ(t) =
rk ∈ M, t ∈ [tk, tk+1). Then we can write the error system of the coupled neural
networks (1) in the following compact form when t ∈ [tk, tk+1):

⎧
⎨

⎩

de(t) = [−CNe(t) + BNF (t, e(t)) + DNF (t, e(t − τ(t)))dt
+G(t, e(t), e(t − τ(t)))dW (t) + Ark

H(e(t − ρ(t)))]dt, t �= tk,lk

e(tk,lk) = (1 + μlk)e(t−k,lk
). t = tk,lk

(3)

Definition 1. The dynamical neural networks (1) is said to be globally expo-
nentially synchronized to s(t) in mean square if for any initial condition xi(t0),
there exist constants λ > 0 and M > 1 such that the following inequality is
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satisfied for t ≥ t0:

E
( N∑

i=1

‖xi(t) − s(t)‖2
)

≤ M sup
t0−ℵ≤ι≤t0

E
( N∑

i=1

‖xi(ι) − s(ι)‖2
)
e−λ(t−t0).

Definition 2. [10]: An impulsive sequence ς = {t1, t2, · · · } is said to have aver-
age impulsive interval Ta if there exist positive integer δ and positive constant
Ta such that

T − t

Ta
− δ ≤ Nδ(T, t) ≤ T − t

Ta
+ δ, ∀T ≥ t ≥ 0,

where Nδ(T, t) denotes the number of impulsive times of the impulsive sequence
{t1, t2, · · · } on the interval (t, T ).

Assumption 1: Assume that there exist diagonal matrices L1 and L2 such
that for ∀x, y ∈ R

n, the function f̃(t, ·) and h̃(·) satisfy the following Lipschitz
conditions:

‖f̃(t, x) − f̃(t, y)‖ ≤ ‖L1(x − y)‖; ‖h̃(x) − h̃(y)‖ ≤ ‖L2(x − y)‖.

Assumption 2: Assume that there exist positive constants η1, η2 such that

trace
{

[g̃(t, x1, y1) − g̃(t, x2, y2)]T · [g̃(t, x1, y1) − g̃(t, x2, y2)]
}

≤ η1 ‖x1 − y1‖2 + η2 ‖x2 − y2‖2, ∀x1, y1, x2, y2 ∈ R
n, t ∈ R

+.

Lemma 1. [13]: Let 0 ≤ τi(t) ≤ τ, F (t, u, ū1, · · · , ūm) : R
+ × R × · · · × R︸ ︷︷ ︸

m+1

be nondecreasing in ūi for each fixed (t, u, ū1, · · · , ūi−1, ūi+1, · · · , ūm), i = 1,
· · · ,m, and Ik(u) : R → R be nondecreasing in u. Suppose that

{
D+u(t) ≤ F (t, u(t), u(t − τ1(t)), · · · , u(t − τm(t)))

u(t+k ) ≤ Ik(u(t−k )), k ∈ N+

and
{

D+v(t) > F (t, v(t), v(t − τ1(t)), · · · , v(t − τm(t)))
v(t+k ) ≥ Ik(v(t−k )), k ∈ N+

where the upper-right Dini derivative is defined as D+y(t) = limh→0+
y(t+h)−y(t)

h .
Then u(t) ≤ v(t) for −τ ≤ t ≤ 0 implies that u(t) ≤ v(t) for t ≥ 0.

Lemma 2. [17]: For any real matrices X,Y and any positive matrix U , the
following inequality holds:

2XT Y ≤ XT UX + Y T U−1Y.
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3 Exponential Synchronization Analysis

Theorem: Under Assumptions 1-2, the coupled neural networks (1) can be
globally exponentially synchronized to s(t), if there exist positive constants
ε1,rk

, ε2,rk
, ε3,rk

, positive matrices Prk
∈ R

nN×nN satisfying Prk
≤ θrk

InN with
θrk

are positive constants, such that the following conditions are satisfied:

(H1) Φrk
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ11,rk
Prk

BN Prk
DN Prk

Ark
0 0

(BN )T Prk
−ε1,rk

InN 0 0 0 0
(DN )T Prk

0 −ε2,rk
InN 0 0 0

AT
rk

Prk
0 0 −ε3,rk

InN 0 0
0 0 0 0 Φ55,rk

0
0 0 0 0 0 Φ66,rk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

where rk ∈ M, Φ11,rk
= −2Prk

CN + ε1,rk
(LT

1 L1)N + η1θrk
InN + αrk

Prk
and

Φ55,rk
= ε2,rk

(LT
1 L1)N + η2θrk

InN − βrk
Prk

,Φ66,rk
= ε3,rk

(LT
2 L2)N − γrk

Prk
.

(H2) − α + lnμ
Ta

+ μ−δ(β + γ) < 0,

where α = min
rk∈M

{αrk
}, β = max

rk∈M
{βrk

}, γ = max
rk∈M

{γrk
}.

(H3) λ − lnΥ
Ta

> 0,

where λ is the sole positive solution of the equation −α + lnμ
Ta

+ λ + μ−δ(βeλτ +
γeλρ) = 0, Υ = μ−δ max{p

p , eλℵ}, p = max
rk∈M

{λmax(Prk
)}, p = min

rk∈M
{λmin(Prk

)}.

Proof: Define the following Lyapunov functions for system (3):

V (t) = eT (t)Prk
e(t), t ∈ [tk, tk+1), k ∈ N

+.

Differentiating V (t) along the trajectories of system (3) for t ∈ [tk, tk+1), we can
obtain

dV (t) = LV (t)dt + 2eT (t)Prk
G(t, e(t), e(t − τ(t)))dW (t). (4)

By applying the Itô’s formula to V̄ (t) we can obtain

LV (t) = 2eT (t)Prk
[−CNe(t) + BNF (t, e(t)) + DNF (t, e(t − τ(t)))]

+trace[GT (t, e(t), e(t − τ(t)))Prk
G(t, e(t), e(t − τ(t)))]

+2eT (t)Prk
Ark

H(e(t − ρ(t))).

By using Lemma 2 and Assumption 1 we get

2eT (t)Prk
BNF (t, e(t))

≤ 1
ε1,rk

eT (t)Prk
BN (Prk

BN )T e(t) + ε1,rk
FT (t, e(t))F (t, e(t))

≤ 1
ε1,rk

eT (t)Prk
BN (Prk

BN )T e(t) + ε1,rk
eT (t)(LT

1 L1)Ne(t). (5)
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Similar to (5), we can obtain the following inequalities:

2eT (t)Prk
DNF (t, e(t − τ(t)))

≤ 1
ε2,rk

eT (t)Prk
DN (Prk

DN )T e(t) + ε2,rk
eT (t − τ(t))(LT

1 L1)Ne(t − τ(t)), (6)

2eT (t)Prk
Ark

H(e(t − ρ(t)))

≤ 1
ε3,rk

eT (t)Prk
Ark

AT
rk

PT
rk

e(t) + ε3,rk
eT (t − ρ(t))(LT

2 L2)Ne(t − ρ(t)). (7)

According to Assumption 2 we have

trace[GT (t, e(t), e(t − τ(t)))Prk
G(t, e(t), e(t − τ(t)))]

≤ θrk

N∑

i=1

(
η1 ‖ei(t)‖2 + η2 ‖ei(t − τ(t))‖2

)

= θrk

(
η1 eT (t)e(t) + η2 eT (t − τ(t))e(t − τ(t))

)
. (8)

It follows from (5)-(8) that for t ∈ [tk, tk+1),

LV (t) ≤ eT (t)
{

− Prk
CN − (Prk

CN )T +
1

ε1,rk

Prk
BN (Prk

BN )T

+ε1(LT
1 L1)N +

1
ε2,rk

Prk
DN (Prk

DN )T +
1

ε3,rk

Prk
Ark

AT
rk

Prk
+ θrk

η1InN

+αrk
Prk

}
e(t) − αrk

eT (t)Prk
e(t) + βrk

eT (t − τ(t))Prk
e(t − τ(t))

+eT (t − τ(t))
[
ε2,rk

(LT
1 L1)N + θrk

η2InN − βrk
Prk

]
e(t − τ(t))

+eT (t − ρ(t))
[
ε3,rk

(LT
2 L2)N − γrk

Prk

]
e(t − ρ(t))

+γrk
eT (t − ρ(t))Prk

e(t − ρ(t))
≤ −αrk

V (t) + βrk
V (t − τ(t)) + γrk

V (t − ρ(t)). (9)

Integrating on both sides of (9) from t to t + t for any t > 0 and taking
mathematical expectation. Let m(t) = EV (t), associating with the properties of
the Itô’s integral and Dini derivation, we can derive from (9) that

D+m(t) ≤ −αrk
m(t) + βrk

m(t − τ(t)) + γrk
m(t − ρ(t)), t ∈ [tk, tk+1).

When t = tk,lk , we can easily derive that

m(tk,lk) = (1 + μlk)2E[eT (t−k,lk
)Prk

e(t−k,lk
)] ≤ μm(t−k,lk

).

For any ε > 0, let y(t) be a unique solution of the following delay system:
⎧
⎨

⎩

ẏ(t) = −αy(t) + βy(t − τ(t)) + γy(t − ρ(t)) + ε, t �= tk,lk

y(tk,lk) = μy(t−k,lk
), t = tk,lk

y(t) = m(t), tk − ℵ ≤ t ≤ tk.
(10)
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By the formula for the variation of parameters, it follows from (10) that for
t ∈ [tk, tk+1),

y(t) = P (t, tk)y(tk)+
∫ t

tk

P (t, s)
[
βy(s−τ(s))+γy(s−ρ(s))+ε

]
ds, (11)

where P (t, s), t, s > tk is the Cauchy matrix of the linear system

{
ẏ(t) = −αy(t), t �= tk,lk

y(tk,lk) = μy(t−k,lk
), t = tk,lk .

(12)

According to the representation of Cauchy matrix, one can get the following
estimation:

P (t, s) = e−α(t−s)μNδ(s,t) ≤ μ−δe−α∗(t−s),

where α∗ = α − lnμ
Ta

. Define s(ς) = ς − α∗ + μ−δ(βeςτ + γeςρ). From (H2) we
know s(0) = −α∗ + μ−δ(β + γ) < 0. Since ṡ(ς) > 0 and lim

ς→+∞ s(ς) = +∞, there

exists a unique λ > 0 such that s(λ) = 0, i. e., λ − α∗ + μ−δ(βeλτ + γeλρ) = 0.
Let ξ = μ−δ‖y(tk)‖ℵ = μ−δ sup

tk−ℵ≤t≤tk

‖y(t)‖. In the following, we shall prove the

following inequality is satisfied:

y(t) < ξe−λ(t−tk) +
ε

α∗μδ − β − γ
, tk −ℵ ≤ t ≤ tk+1. (13)

It is obvious that y(t) ≤ μδξ < ξ < ξe−λ(t−tk) + ε
α∗μδ−β−γ

for tk − ℵ ≤ t ≤ tk.
When tk < t < tk+1, we will prove the inequality (13) is still satisfied by the
way of contradiction. If there exists a t∗ ∈ (tk, tk+1) such that

y(t∗) ≥ ξe−λ(t∗−tk) +
ε

α∗μδ − β − γ
, (14)

and

y(t) < ξe−λ(t−tk) +
ε

α∗μδ − β − γ
, t ∈ (tk −ℵ, t∗) (15)

Note that τ(t) ≤ τ, ρ(t) ≤ ρ and eλτβ + eλργ = μδ(α∗ −λ), then by some simple
computation, we can derive from (11) and (15) that

y(t∗)

< ξe−α∗(t∗−tk) +

∫ t∗

tk

μ−δe−α∗(t∗−s)[ξ(eλτβ + eλργ)e−λ(s−tk) +
α∗μδε

α∗μδ − β − γ

]
ds

= ξe−λ(t∗−tk) +
ε

α∗μδ − β − γ
− ε

α∗μδ − β − γ
e−α∗(t∗−tk)

< ξe−λ(t∗−tk) +
ε

α∗μδ − β − γ
,

which contradicts with (14). Thus, (13) is always satisfied for tk − ℵ ≤ t < tk+1.
Let ε → 0, one can obtain y(t) ≤ ξe−λ(t−tk). Then it follows from Lemma 1 that
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m(t) ≤ y(t) ≤ ξe−λ(t−tk) = μ−δ‖m(tk)‖ℵe−λ(t−tk) for tk ≤ t < tk+1. We will
show by induction that

m(t) ≤ μ−δΥk‖m(t0)‖ℵe−λ(t−t0), tk ≤ t < tk+1, (16)

where Υ = μ−δ max{p
p , eλℵ} and p = max

rk∈M
{λmax(Prk

)}, p = min
rk∈M

{λmin(Prk
)}.

When t ∈ [t0, t1),m(t) ≤ μ−δ‖m(t0)‖ℵe−λ(t−t0). Assume (16) holds for 1 ≤ k ≤
j, j ∈ N

+, then we will show that (16) holds for k = j + 1. Since

m(t) ≤ μ−δΥj‖m(t0)‖ℵe−λ(tj+1−ℵ−t0) = μ−δΥjeλℵ‖m(t0)‖ℵe−λ(tj+1−t0)

for tj+1 − ℵ ≤ t < tj+1, and note that tj+1 < tj+1,1, which follows that

m(tj+1) = E(eT (tj+1)Prj+1e(tj+1)) = E(eT (t−j+1)Prj+1e(t
−
j+1))

≤ p

p
m(t−j+1) ≤ p

p
μ−δΥj‖m(t0)‖ℵe−λ(tj+1−t0),

then it follows that

‖m(tj+1)‖ℵ ≤ ΥΥj‖m(t0)‖ℵe−λ(tj+1−t0) = Υj+1‖m(t0)‖ℵe−λ(tj+1−t0).

Thus we can get

m(t) ≤ μ−δ‖m(tj+1)‖ℵe−λ(t−tj+1) ≤ μ−δΥj+1‖m(t0)‖ℵe−λ(tj+1−t0)e−λ(t−tj+1)

= μ−δΥj+1‖m(t0)‖ℵe−λ(t−t0), tj+1 ≤ t < tj+2

Thus, (16) can be derived for ∀t ∈ [tk, tk+1) and ∀k ∈ N
+ by the induction

principle. For an arbitrarily given t > t0,∃k ∈ N
+, such that t ∈ [tk, tk+1). Note

that k ≤ Nδ(t, t0), then it follows from (16) that

m(t) ≤ μ−δΥk‖m(t0)‖ℵe−λ(t−t0) ≤ μ−δΥNδ(t,t0)‖m(t0)‖ℵe−λ(t−t0)

≤ μ−δΥδ+
t−t0
Ta ‖m(t0)‖ℵe−λ(t−t0) =

(Υ
μ

)δ

‖m(t0)‖ℵe−λ∗(t−t0),

where λ∗ = λ − lnΥ
Ta

> 0. Then we have

pE(‖e(t)‖2) ≤ m(t) ≤
(

Υ

μ

)δ
‖m(t0)‖ℵe−λ∗(t−t0) ≤ p

(
Υ

μ

)δ
E(‖e(t0)‖2

ℵ)e−λ∗(t−t0),

which follows that

E
( N∑

i=1

‖xi(t) − s(t)‖2
)

≤ M sup
t0−ℵ≤ι≤t0

E
( N∑

i=1

‖xi(ι) − s(ι)‖2
)
e−λ∗(t−t0),

where M = p
p (Υ

μ )δ > 1. This shows that the dynamical network (1) is globally
exponentially synchronized to s(t) in mean square. This completes the proof.
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4 Numerical Simulation

Example 1. In system (1), we select f̃(t, xi(t)) = (f̃1(t, xi(t)), f̃2(t, xi(t)))T and
f̃1(t, xi(t)) =

√
2

8 xi1(t)+
√

3
8 (|xi2(t)+1|−|xi2(t)−1|), f̃2(t, xi(t)) =

√
6

8 (|xi2(t)+1|
− |xi2(t) − 1|), which follows that L1 = diag{0.25, 0.75}, L2 = diag{0.5, 0.25}.
Let μlk = −0.1 for ∀lk ∈ N

+, and C1 = 4.5I2, C2 = 3.8I2,

g̃(t, xi(t), xi(t − τ(t))) = 0.1 = diag{xi(t), xi(t − τ(t))}, τ(t) = 0.3sint,

ρ(t) = 0.2cost, B1 =
(

0.8 0.9
−0.6 0.8

)
, B2 =

(
1 0.5

−0.9 1

)
,D1 =

(
0.5 0.4
0.8 0.5

)
,

D2 =
(

0.9 0.5
0.6 0.8

)
, A1 =

⎛

⎝
−0.9 0.5 0.4
0.8 −1 0.2
0.5 0.5 −1

⎞

⎠ , A2 =

⎛

⎝
−1 0.4 0.6
0.6 −1.1 0.5
0.4 0.6 −1

⎞

⎠ .

Assuming that the coupled neural networks switches in a random order between
two networks, i. e., M = {1, 2}. The switching scheme is shown in Fig. 1. Select
α1 = 4.5, β1 = γ1 = 0.42, α2 = 4.25, β2 = γ2 = 0.78, then by using Mat-
lab LMI tool we can obtain ε1,1 = 1.3931, ε1,2 = 1.2767, ε2,1 = 0.5423, ε2,2 =
0.9266, ε3,1 = 1.4451, ε3,2 = 3.1661, θ1 = 2.1717, θ2 = 1.6614, p = 0.6353, p =
1.3182. The impulsive sequence is constructed by taking Ta = 4.6 and δ = 4,
then by solving the nonlinear equation −α + lnμ

Ta
+ λ + μ−δ(βeλτ + γeλρ) = 0,

we can get λ = 0.3431. So by virtue of the Theorem in this paper, it can be
concluded that the considered network can be exponentially synchronized onto
the objective trajectory. The following Figure shows that the errors between the
networks’ states and converge to zero under the given conditions.
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Fig.1. The switching scheme Fig.2. The state variablesxir(t)

5 Conclusion

The exponential synchronization of switched coupled neural networks with mixed
time-varying delays and stochastic disturbances is investigated in this paper.
The main contribution of this paper contains three aspects. Firstly, as discussed
in the section of Introduction, the network model considered in this paper is
more practical in real world. Secondly, different from the average dwell time
approach used in many existing literatures, there is no upper bound for switching
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interval, which is only assumed to be greater than the maximum of delays. As
for the impulsive scheme, the named average impulsive interval is utilized to get
less conservative synchronization criterion. Thirdly, by using multiple Lyapunov
function, we have shown that the exponential synchronization can be achieved
by solve some LMIs and nonlinear equations, which are easy to check.
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Abstract. Aiming at the problems for predicting the building indoor tempera-
ture so as to set up a reasonable indoor environment, four building indoor  
temperature prediction models were established in this paper. The theory of 
Support Vector Machine (SVM) and the LibSVM toolbox were used to predict 
the indoor temperature. The experimental results shown that the prediction ef-
fect of the model which the input are the outdoor temperature, the solar radia-
tion, the wind speed and the time series, the output is the indoor temperature is 
the best. It’s really effective to use the support vector regression (SVR) model 
to predict the building indoor temperature. This predicting method based on 
SVM can be promoted and applied in the field of prediction. 

Keywords: Building indoor temperature · Time series prediction · SVM ·  
Kernel function · LibSVM toolbox 

1 Introduction 

In recent years, with the increase of the urban buildings and the modernization build-
ings, the research of the building indoor temperature has been widely carried out 
throughout the world [1]. It’s very important to predict the building indoor tempera-
ture so as to set up a reasonable indoor environment and save the energy and resource, 
the most importantly, it’s really convenient to create an appropriate living environ-
ment by predicting the indoor temperature [2]. 

The current predicting methods mainly include the linear regression method, the 
exponential smoothing method, the analytic hierarchy process method, and the neural 
network method and so on [3]. Among these predicting methods, a new method of 
machine learning, support vector machine (SVM) based on the statistical theory, was 
put forward by Vapnik and other researchers. SVM has been successfully applied in 
many areas such as the building energy consumption simulation, the power grid load 
and the gas load predicting because of its excellent learning ability [4]. The building 
indoor temperature prediction can be also regarded as a complex nonlinear approxi-
mation problem between the building indoor temperature characteristic and its influ-
ence factors. 
                                                           
 Dalian Maritime University, Dalian 116026, China.  
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Therefore, the theory of SVM was attempt to applied in the building indoor tem-
perature prediction in this paper. On the basis of the establishment of the building 
indoor temperature prediction models, the theory of SVM was applied in an office 
building indoor temperature prediction so as to test the feasibility and validity of this 
predicting method based on SVM. 

2 The Theory of SVM 

2.1 SVM for Regression Estimation 

SVM is a method of machine learning, which built its approximation function based 
on underlying concepts that rise from the statistical learning theory as well as on a set 
of input/output examples that come up from process under analysis. SVM has been 
widely used in practice for the classification and regression problems. SVM was orig-
inally used for the classification purposes but its principle can be easily extended to 
the task of the regression and the time series prediction [5]. This method has been 
proven to be very effective for addressing the general purpose classification and re-
gression problems. Because of it’s out of the scope of this paper to explain the theory 
of SVM completely, and the theme of this paper is the building indoor temperature 
prediction which is a regression estimation problem, so this paper focuses on the 
theory of support vector regression (SVR) which is the theory of SVM for regression  
estimation.  

The basic idea of SVR is to introduce the kernel function, and map the input space 
into a high dimensional feature space by a nonlinear mapping, in final, the original 
nonlinear regression problem performs a linear regression problem in this feature 
space [6]. 

Suppose that all the input parameters of the SVR model compose a vector *
iX  ( i  

represents one input sample), and all the output parameters of the SVR model com-

pose a vector *
iY  ( i  represents one output sample). 

In order to improve the calculation efficiency, and prevent individual data from 
overflowing during the calculation, input and output parameters should be normalized 
as follows: 
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When the total number of the sample is N , the sample set is defined as 
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=
. Therefore, the SVR model approximates the relationship between the 

input and output parameters using the following form: 
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 ( ) ( )Y f X w X bφ= = × +  (3) 

Where ( )Xφ  represents the high-dimensional feature space which is non-linearly 

mapped from the input space X , the coefficients w  and b  are estimated by mi-
nimizing the regularized risk function, as shown in Eq. (4): 
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In Eq. (4), the first term 
2

w  is called regularized term. Minimizing 
2

w  will 

make a function as flat as possible. The second term is the empirical error measured 
by the ε -insensitive loss function, which is defined as Eq. (5). This defines a ε  
tube (Fig. 1) so that if predicted value is within the tube, the loss is zero, while if pre-
dicted point is outside the tube, the loss is the magnitude of the difference between the 
predicted value and the radius e of the tube. C  is penalty parameter, which is a regu-
larized constant to determine the trade-off between training error and model flatness. 
To get the estimations of  w  and b , Eq. (5) is transformed to the primal objective 

function (6) by introducing positive slack variables iξ  and *
iξ . 
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By introducing kernel function ( , )iK X X , the dual form of Eq. (6) is obtained 

as: 
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Fig. 1. The parameters for the support vector regression 

where iα , *
iα  are Lagrange multipliers, i  and j  represent different samples 

respectively. Thus, the function (3) becomes the following explicit form: 
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( ) ( ) ( , )
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i
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=
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Through selecting the appropriate kernel function, the non-linear relation between 
the building cooling load and its correlative influence parameters based on SVM is 
established. After the prediction output Y  from the SVR model is gotten, it should 
be transformed into the actual prediction value by Eq. (9): 

 * * *
min max min( )Y Y Y Y Y= + × −  (9) 

where Y  is the predicted value of the actual value *Y . 

2.2 The Network Structure of SVR 

Here K  is the Kernel function, iα
 
and *

iα
 
are the parameters of the model, s  is 

the total number of the sample characteristic, iX  data vector is for network learning, 

X  is an independent vector. The parameters of the SVR model are determined with 
maximizing the objective of function. The structure of model is shown in Fig. 2. 
 

 

Fig. 2. The network structure of the SVR model 
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2.3 Choosing Kernel Function and Evaluation Indices 

Any function satisfying Mercer’s condition can be used as the kernel function, and the 
typical kernel functions include linear function, polynomial function, Gaussian func-
tion and Sigmoid function [7]. Among these functions, the Gaussian function can map 
the sample set from the input space into a high dimensional feature space effectively, 
which is good for representing the complex non-linear relationship between the output 
and input samples. Because of the above advantages, in this paper, Gaussian function 
is also selected as the kernel function, whose expression is shown as follows: 

 
2

( , ) exp( )i iK X X X Xγ= − −  (10) 

where γ  is the width parameter of the Gaussian kernel function. 

The evaluation indices of the SVR model adopted throughout this paper are the mean 
square error (MSE) and mean relative error (MRE), which are defined as follows: 
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where iY  is the predicted value of the actual value *
iY , N is the sample number. 

3 The Application of the SVR Model 

3.1 The Establishment of the Building Indoor Temperature Prediction Model 

Generally speaking, the main influence factors of the building indoor temperature are 
the outdoor temperature, the solar radiation and the wind speed. The structure of the 
building indoor temperature prediction model is shown in Fig. 3 below. 
 

 

Fig. 3. The structure of the building indoor temperature prediction model 
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As is shown in Fig. 3 above, apparently, the primary influence factor of  
the building indoor temperature is the outdoor temperature, the secondary influence 
factors are the solar radiation and the wind speed and so on. Because of the the 
building indoor temperature is changing with the time, so the time series should be 
considered into the building indoor temperature prediction model. 

Based on the analysis above, the sample data of the prediction model can be estab-
lished. The input data of the sample data includes the outdoor temperature, the solar 
radiation, the wind speed and the time series. The output data of the sample data in-
cludes the indoor temperature. So the four corresponding building indoor temperature 
prediction model can be established as is shown in Tab. 1 below. 

Table 1. The four building indoor temperature prediction models 

Prediction Model (Output)  Prediction Model (Input)

Model 1   M  , , ,T L W t  

Model 2   M  , ,T L t  

Model 3   M  , ,T W t  

Model 4   M  ,T t  

 
As is shown in Tab. 1 above, the indoor temperature is defined as M , it’s the out-

put of the prediction model. The outdoor temperature is defined as T , the solar 
radiation is defined as L , the wind speed is defined as W  and the time series is 
defined as t , they are the input of the prediction model. 

3.2 Choosing the Sample Data 

After the four building indoor temperature prediction model was established, so the 
next step is to choose the sample. 

The form of the sample is divided into the input sample and output sample. 
Apparently, the input sample includes the outdoor temperature T , the solar radiation 
L , the wind speed W  and the time series t , the output sample only includes the 
indoor temperature M . 

The variety of the sample is divided into the training and predicting sample. The 
training sample would be trained in the SVR model, and then, after the predicting 
sample has been predicted in the SVR model, the output of the SVR model would be 
the predicted vlaue. Afer that, the predicted vlaue can be compared with the actual 
value. 

The training sample presents the sample data which is range from May 1 to May 5 
during this five days, the training sample data was acquired per ten minutes, so the 
total number of the training sample points is 720. Apparently, the input training sam-

ple includes the outdoor temperature trainT , the solar radiation trainL , the wind speed 
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trainW  and the time series traint , the output training sample only includes the indoor 

temperature trainM . 

The predicting sample presents the sample data which is range from May 6 to May 
10 during this five days, the predicting sample data was also acquired per ten minutes, 
so the total number of the predicting sample points is also 720. Apparently, the input 

predicting sample includes the outdoor temperature predictT , the solar radiation 

predictL , the wind speed predictW  and the time series predictt , the output predicting 

sample only includes the indoor temperature predictM . 

Because of the total number of all the sample points is 1440, is too large, so the 
part of the training and predicting sample is displayed in this paper as is shown in 
Tab. 2 and Tab. 3 below. 

Table 2. The part of the training sample data 

No 
Input Output 

trainM /℃ 
   trainT /℃

 trainL /lx trainW /m/s traint /min 

1 11.1 9 0.9 0 14.2 
2 11.2 9 1.3 10 14.4 

…… …… …… …… …… …… 
720 13.3 14 1.4 1430 15.5 

 

Table 3. The part of the predicting sample data 

No 
Input Output   

predictM /℃
   predictT  /℃ predictL /lx predictW /m/s predictt /min 

1 15.5 14 2.5 0 16.3 
2 15.6 14 2.8 10 16.4 

…… …… …… …… …… …… 
720 14.4 9 1.4 1430 15.3 

3.3 The Application of the SVR Model Based on LibSVM Toolbox 

LibSVM toolbox is a simple software toolbox which is easy to use for the classifica-
tion and regression problems. LibSVM toolbox was designed by Chih-Jen Lin who is 
a professor of the Nation Taiwan University. The algorithm of LibSVM is the sequen-
tial minimal optimization (SMO) algorithm. The program scale of LibSVM toolbox is 
small, it’s convenient to do the secondary research and develop. The number of the 
parameters which are need to adjust is very less, the function of the cross validation is 
provided by LibSVM, so it’s easy to be extended. Therefore, LibSVM toolbox is well 
known around the world for the uses of the classification and regression. 
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Therefore, LibSVM toolbox was used for predicting the building indoor tempera-
ture in this paper. LibSVM and MATLAB were combined to apply in the building 
indoor temperature prediction. The corresponding SVR predicting steps based on 
LibSVM toolbox are as follow: 

• Step 1: Scaling the sample data. The scope of all the sample data should be scaled 
to the range [0,1] . 

• Step 2: Choosing the kernel function. The Gaussian kernel function was selected in 
LibSVM, and choose any three parameters ( , , )C γ ε  to train the scaled sample. 

• Step 3: Determing the best parameters. The three parameters ( , , )C γ ε  would be 

adjusted by the SMO algorithm so as to find the best three parameters. 
• Step 4: Establishing the final model. The final SVR model would be established by 

the determined best three parameters ( , , )C γ ε . 

• Step 5: Predicting the target value. The scaled sample data would be put into the 
final SVR model, then, the output of the final SVR model is the predicted value. 

• Step 6: Reverse scaling the predicted value. The scope of the predicted value of the 
range [0,1] should be reverse scaled to the actual range, like [15.1, 23.8] . 

The final predicted value would be acquired after finished the six steps. The 
corresponding contrast curves between the predicted value and actual value of the 
four prediction models are shown in Fig. 4 below. 

 

   
                        (a)  Model 1                        (b)  Model 2 

   
                      (c)  Model 3                        (d)  Model 4 

Fig. 4. The contrast curves between the predicted value and actual value of the four models 
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4 The Analysis of the Experimental Results 

According to the mentioned above in this paper, the best three parameters ( , , )C γ ε  

is (2,0.5,0.01) . As is shown in Fig. 4 above, the contrast time scope between the 

predicted value and actual value is range from May 6 to May 10 during this five days. 
The overall predicting effect of the four models is well. Apparently, the predicting 
effects of the model 1 and model 2 are the best. In order to compare the differences 
between the predicting effects of the four models better, the corresponding predicted 
relative error curves of the four prediction models are shown in Fig. 5 below. 
 

  
                         (a)  Model 1                       (b)  Model 2 

  
                         (c)  Model 3                       (d)  Model 4 

Fig. 5. The predicted relative error curves of the four models 

As is shown in Fig. 5 above, the scope the overall predicted relative error of the 
four models is about 5%. Apparently, the predicted relative error of the model 3 and 
model 4 changed with the time more acuter than the model 1 and model 2. In order to 
make a quantitative comparison between the predicting effects of the four models, the 
corresponding predicted evaluation indices of the four prediction models are shown in 
Tab. 4 below. 

Table 4. The predicted evaluation indices of the four models 

Evaluation Indices MSE  MRE /% 
Model 1 0.2859 1.8695 
Model 2 0.4326 2.8536 
Model 3 0.8116 3.2693 
Model 4 0.8854 3.4677 
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As is shown in Tab. 4 above, the predicted MSE  and MRE  of the model 1 are 

the minimum. The minimum 0.2859MSE = , the minimum 1.8695%MRE = . 
Apparently, the more are the MSE  and MRE  closer to 0 , the better is the 
predicted performance. Therefore, the predicted performance of the building indoor 
temperature prediction model 1 is the best. 

5 Conclusion 

The theory of SVM was used to apply in the building indoor temperature prediction in 
this paper. First of all, the four building indoor temperature prediction models were 
established in this paper. And then, based on LibSVM toolbox and MATLAB, the 
sample data was trained in the four prediction models, the output of the four 
prediction models is the target predicted value. In final, the predicted value and actual 
value were compared by a series evaluation indices so as to evaluate the predicted 
performance of the four models. The experimental results shown that the predicted 
performance of the building indoor temperature prediction model 1 is the best. It’s 
really effective to use the SVR model to predict the building indoor temperature. The 
successful application of SVM on the building indoor temperature prediction 
presented the SVM’s feasibility and validity. 

Acknowledgements. The authors wish to thank “The Fundamental Research Funds 
for The Central Universities” for its support. 

References 

1. Li, J.H., Luo, X., Huang, C., Song, Y.: Block Model and Numerical Simulation for Predict-
ing Indoor Temperature Distributions. Journal of Engineering Thermophysics 28(2), 124–
126 (2007) 

2. Ji, X.L., Li, G.Z., Dai, Z.Z.: Influencing Factors and The Research Progress on Forecasting 
and Evaluating Indoor Thermal Comfort. Journal of Hygiene Research 32(3), 295–299 
(2003) 

3. Sun, B., Yao, H.T.: The Short-term Wind Speed Forecast Analysis Based on The PSO-
LSSVM Predict Model. Journal of Power System Protection and Control 40(5), 85–89 
(2012) 

4. Yang, J.F., Cheng, H.Z.: Application of SVM to Power System Short-term Load Forecast. 
Journal of Electric Power Automation Equipment 24(2), 30–32 (2004) 

5. Wang, H.Q., Lei, G.: A Method for Forecasting Wind Speed by LIBSVM. Journal of 
Science Technology and Engineering 11(22), 5440–5442 (2011) 

6. Tang, W.H., Li, W.F.: Application of Support Vector Machines Based on Time Sequence in 
Logistics Forecasting. Journal of Logistics Science Technology 28(113), 8–11 (2004) 

7. Zhang, Q., Yang, Y.Q.: Research on The Kernel Function of SVM. Journal of Electric 
Power Science and Engineering 28(5), 42–45 (2012) 
 



Towards the Computation
of a Nash Equilibrium

Yu Lu(B) and Ying He

School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
y.lu.3@research.gla.ac.uk, yingh@dcs.gla.ac.uk

Abstract. Game theory has played a progressively more noticeable and
important role in computer science topics, such as artificial intelligence,
computer networking, and distributed computing, in recent years. In this
paper, we provide a preliminary review of where efforts on this topic have
been focused over the past several decades and find that currently, the
most remarkable interface between algorithmic game theory and theo-
retical computer science is the computational complexity of computing
a Nash equilibrium.

Keywords: Game theory · Multi-agent systems · Nash equilibrium ·
Computational complexity

1 Introduction

There is a long-lasting and close relationship between game theory and computer
science. This type of relationship has become closer and more essential over the
last decade due to the advent of the Internet. Strategic behaviour has become
relevant to the design of computer systems, and considerable economic activity
now takes place on computational platforms. We focus our attention on the
concept of Nash equilibrium, explained below, which is one of the most important
and arguably one of the most influential solution concepts in game theory.

Game theory is used to mathematically describe reasoning in strategic cir-
cumstances. In game theory, Nash equilibrium is a formal rule for predicting a
game involving two or more players, where each player is supposed to under-
stand others’ strategies to create a stable situation and no player can benefit
from changing only his or her own strategy unilaterally. If each player has cho-
sen a strategy and no player can benefit by changing his or her strategy while the
other players keep theirs unchanged, then the current set of strategy choices and
the corresponding payoffs constitute a Nash equilibrium. Nash equilibrium has
been universally considered and accepted as one of the most important concepts
in the research of many subjects involved with game theory.

The rapid development of the Internet and distributed systems and the
research of their cooperative environments have made the theory of Nash equi-
librium one of the essential constituents of computer science. In the past few
years, algorithmic issues of related problems have become the main focus of the
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 90–99, 2014.
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intersection between the disciplines of theoretical computer science and algorith-
mic game theory. Naturally, the study of computing the algorithmic complexity
of Nash equilibrium and related topics has become one of theoreticians’ favourite
topics. This topic has attracted many researchers, led to the derivation of many
novel methodologies, and demanded extensive mental efforts. New and advanced
methods have been created and applied to solve various forms of such problems.

The remainder of this paper is organised as follows. We provide some back-
ground information in Section 2.Then,we review the related literature in Section 3.
We demonstrate the recent convergence of Nash equilibrium and theoretical com-
puter science inSection4. InSection5,weprovidean in-depthdiscussionof thecom-
putational issues for finding the Nash equilibrium. Finally, we conclude in Section 6
with unresolved questions and directions for future research.

2 Background

2.1 Game Theory and Nash Equilibrium

Game theory is used to mathematically describe reasoning in strategic circum-
stances, in which the outcome of a participant’s achievement in making decisions
relies on the decisions of someone else. It is a branch of applied mathematics that
is often used in economics as well as other fields, such as international relations,
political science, and computer science. As presented in [1], the purpose of games
is to help us understand economic behaviour by predicting how players will act
in each particular game.

To realise games, we must employ a natural and ultimately mathematical lan-
guage, which lead the games to be viewed as merely a collection of mathematical
formulas to the general population. Fortunately, game theory is concerned with
everyday economic life, and thus, it cannot live in vain as immortal. In fact, this
theory borrows terminology from problems based on competition, confrontation
and decision making, such as chess, poker, and war. Although game theory may
initially sound purely theoretical, it has significant practical significance. Spe-
cialists consider economic and social problems, such as playing chess, and the
game itself often contains profound truth.

Game theory is mathematical in nature and constitutes a branch of operations
research. It studies games, thought experiments modelling various situations of
conflict [1]. One commonly studied model aims to capture two players interacting
in a single round. To further discuss Nash’s significant contribution, the problem of
non-cooperative games must first be considered. At present, almost all textbooks
on game theory refer to the classical example of the “prisoner’s dilemma”; the
examples provided in books are typically highly similar, exhibiting only slight dif-
ferences. The prisoner’s dilemma demonstrates why two suspects might not coop-
erate even though it is in their best interest to do so.

In its classical form, the prisoner’s dilemma is presented as follows. Two
suspects are under arrest, and the police have inadequate evidence for a final
judgment of guilty. Having separated both prisoners, the police visit each of them
to offer the same deal. If one testifies (defects from the other) for the prosecution
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against the other and the other remains silent (cooperates with the other), the
defector is let go and the silent accomplice receives the full 10-year sentence.
If both cooperate, both prisoners are sentenced to only six months in jail for a
minor charge. If each defects the other, each receives a five-year sentence. Each
prisoner must choose to either defect the other or cooperate. Each is assured that
the other would not know about the defect before the end of the investigation.
How should the prisoners act? Table 1 can summarise the prisoner’s dilemma:

Table 1. The Prisoner’s Dilemma

Prisoner B cooperate Prisoner B defect

Prisoner A cooperate Each serves 6 months A: 10 years & B: goes free
Prisoner A defect A: goes free & B: 10 years Each serves 5 years

There are two prisoners, one choosing a row and one choosing a column; the
choices of a prisoner are his actions, and the prisoners receive the corresponding
payoffs shown in the table: the first and second numbers denote the payoff of the
row and column, respectively. The predictions made by game theorists regarding
prisoner behaviour are called equilibrium. One such prediction is the pure Nash
equilibrium, in which each prisoner chooses an action that is the best response
to the other prisoner’s choice. For example, the best response is the highest
payoff for the prisoner in the row or column chosen by the other prisoner. In our
example, the only pure Nash equilibrium is when both prisoners choose “defect”.
The payoff matrix of the prisoner’s dilemma is shown in Table 2.

Table 2. Payoff Matrix

Cooperate Defect

Cooperate (0, 0) (-5, 1)
Defect (1, -5) (-4, -4)

2.2 Computational Complexity

The theory of computational complexity is a part of the theory of computation
that classifies computational problems based on their intrinsic level of difficulty.
From this perspective, a computational problem is typically not intractable for
computers. Informally, “a computational problem can be viewed as an infinite
collection of instances together with a solution for every problem instance” [1].

After Nash’s theorem was published in 1951, numerous researchers have
sought algorithms for computing the Nash equilibrium. In the case of a zero-
sum game, such as the rock-paper-scissors game, the Nash equilibrium results
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from the contribution of John von Neumann in the 1920s that it can be proposed
with respect to linear programming. Although linear programming was only fully
implemented in the 1970s, linear programs can be settled effectively. In the case
of a non-zero-sum game, various algorithms have been formulated during the
last 50 years. Unfortunately, “all of them are either of unknown complexity, or
known to have to need exponential time in the worst case” [1].

One can assume that finding the mixed Nash equilibrium is an NP-complete
problem, as there no algorithm for computing the mixed Nash equilibrium has
been proposed to date. However, the situation is not that simple. The mixed Nash
equilibrium is unlike any NP-complete problem because according to Nash’s the-
orem, this problem always has a solution [2]. In contrast, NP-complete problems,
such as SAT, “draw their intractability from the possibility that a solution might
not exist, and this possibility is used heavily in the NP-completeness proof” [1].

Because NP-completeness is not an option, one must reconsider the path
leading to NP-completeness to understand the complexity of mixed Nash equi-
librium. Namely, we must define a class of problems that contains some other
well-known hard problems along with the mixed Nash equilibrium and then
prove that the mixed Nash equilibrium is complete for that class. Indeed, in this
essay, we introduce a proven significant finding that the mixed Nash equilibrium
is PPAD-complete, where PPAD is a subclass of NP that contains several impor-
tant problems that are suspected to be hard. “All problems in PPAD share the
same style of proof that every instance has a solution” [1].

3 Literature Review

Over the past few years, computational complexity in game theory has become
increasingly important for solving natural questions. This focus began at the
start of the 1970s, and game theorists have devoted significant effort to investi-
gating the complexity of playing particular highly structured games [3,4]. These
types of games are often zero-sum games containing a large state space; how-
ever, such games can be succinctly expressed due to the simple rules managing
the state interaction. Therefore, the solutions of general categories of games
obtained via research are often concerned with complicated languages. Particu-
lar highly structured games can be expressed accurately using such languages.
“Algorithms for analysing this more general class of games strategically are a
necessary component of sophisticated agents that are to play such games” [5].

Non-cooperative game theory can represent relatively enormous classes of
strategic environments and provide refined conceptions of underlying under-
standing to resolve these games. These games are notion activities for realising
and predicting the reaction of rational strategic individual players. The predicted
outcome of the game is the equilibrium, and the well-known solution concept is
the refined concept of Nash equilibrium. Determining its complexity been recog-
nised as a most fundamental computational problem whose complexity is wide
open and the most important concrete open question on the boundary of P
today [6]. Nash proved that every game has a Nash equilibrium [2]. This is,
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the individuals’ strategies have distributions in terms of each individual’s best
strategy is considering the other individuals’ strategies in the game. This sig-
nificant generality theorem constitutes the fundamental equilibrium concept of
Nash equilibrium game theory, and all succeeding developments and improve-
ments originated from this generality theorem.

Generality is an attractive characteristic for computing the Nash equilibrium.
Such a model must also be normal and reliable for calculating the actions of a set
of participants, e.g., the pure Nash equilibrium is more suitable than the mixed
Nash equilibrium because a pure Nash equilibrium does exist. However, there is
one more computational requirement for computing the Nash equilibrium: the
Nash equilibrium should be computationally efficient when used to calculate how
a set of participants tends to act. This requirement results from the notion that
“if computing a particular kind of equilibrium is an intractable problem, of the
kind that take lifetimes of the universe to solve on the world’s fastest computers,
it is ludicrous to expect that it can be arrived at in real life” [1]. This notion
leads to the following significant question: Is there an efficient algorithm for
computing the mixed Nash equilibrium?

Because this question remains unresolved, significant specific progress has
been made in calculating the complexity of relative questions. For example,
2-person zero-sum games can be solved using linear programming in polynomial
time [7]. As another example, determining the existence of a joint strategy where
each player obtains an expected payoff of at least k is NP-complete in a concisely
representable extensive form game where both players receive the same utility
[8]. Similarly, in 2-player general-sum normal-form games, determining the exis-
tence of a Nash equilibrium with certain properties is NP-hard [9]. Finally, the
complexity of best-responding, of guaranteeing payoffs, and of finding an equi-
librium in repeated and sequential games has been studied in [10–14].

The computational problem of finding the Nash equilibrium was recently
determined to be PPAD-complete [1], and thus presumably intractable, for the
case of 4 players; this result was subsequently extended to three players [15,16]
and two players [17,18]. In particular, the combined results of [1,17,19] establish
that the general Nash equilibrium problem for normal-form games, which is the
standard and most explicit representation, and for graphical games, which are an
important succinct representation, can be reduced to 2-player games. Two-player
games can in turn be solved by several techniques, such as the Lemke-Howson
algorithm [20,21], a simplex-like technique that is empirically known to behave
well, even though exponential counterexamples do exist [22]. The authors in [23]
extended these results to all known classes of succinct representations of games
and to more sophisticated concepts of equilibrium.

Several decades earlier, it was rather predictable to understand the
complexity of computing equilibrium algorithmic game theory “given our field’s
obsessions, but it also entails an important contribution to the other side, as algo-
rithmic issues have influenced and shaped the debate on equilibrium
concepts”[24]. We now recognise that computing Nash equilibrium is PPAD-
complete. Therefore, the most significant question in this field is now whether
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there is a polynomial-time approximation scheme (PTAS) for computing the
Nash equilibrium. A negative answer has been obtained for relative multiplica-
tive approximation when negative payoffs are allowed [25]. A quasi-polynomial
time approximation scheme for this problem has been known for some time [26];
in fact the algorithm in [26] is of a special type called oblivious, as it examines
possible solutions without looking at the game except to check the quality of the
approximation. It can be shown [27] that the algorithm in [26] is nearly optimal
among oblivious algorithms.

4 Computing a Nash Equilibrium

4.1 Who Cares About It?

There are many famous practical uses of computing the Nash equilibrium in the
field of economics and game theory, such as forecasting the result and evaluating
appropriate constraint standards of a model, contrasting empirical outcomes
with model predictions, testing the design of a mechanism, and automatically
generating conjectures and counterexamples.

Computer scientists and game theorists also focus on finding the Nash equi-
librium. The initial incentive was the implementation of automatic game-playing
programs, such as for chess; a sample of modern applications is reviewed by [28].
For example, “automated agents - anything from a physical robot to an auto-
mated bidding strategy in an Internet auction - are often programmed to opti-
mise some payoff function while participating in a competitive or cooperative
environment” [29]. Accurate and computationally efficient algorithms for com-
puting the Nash equilibrium are essential applications for controlling and oper-
ating such agents to reach decisions automatically.

Finally, complexity theorists have been attracted by problems related to com-
puting the Nash equilibrium because they include several of the most natural
problems believed to be medium hard, i.e., between easy and difficult. Their
studies have resulted in many advancements in the intersection of algorithmic
game theory and complexity theory.

4.2 Why Studying the Complexity of It?

A majority of games are more complex than the prisoner’s dilemma, and their
Nash equilibriums are more difficult to compute. However, John Nash was the
first scientist to verify that every game must have a Nash equilibrium. Most
explanations of the concept of equilibrium entail individuals deciding equilib-
rium. For example, the thought that markets implicitly compute a solution to
a significant computational problem goes back to Adam Smith’s notion of the
invisible hand, if not earlier. If every participant is reasonable in a limited man-
ner, then equilibrium cannot be explained as a reliable prediction unless it can
be calculated with a rational attempt. Rigorous intractability results thus cast
doubt on the predictive power of equilibrium concepts [30].
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From a virtual implementation perspective, a method, which is essentially
designed, was improved to be computationally and easily addressed or controlled
as well as easy to run and play. Thus, on this basis, participants should not
need to perform hard and complex calculations. Many researchers believe that
although the Nash equilibrium for a specific market may be difficult to obtain,
it will precisely explain all activities and strategies in the market as soon as it
is found.

4.3 How Difficult is It?

The authors in [1] proved that the Nash equilibrium is rather difficult to compute
for several games. In some cases, the Nash equilibrium cannot be computed in
a finite amount of time even when using all of the computers and computing
resources around the world. Considering such situations, human beings playing
the game probably have not found it either.

In the context of real life, business competitors in commercial activities or
drivers on a high road actually do not commonly compute the Nash equilibrium
for their specific games and subsequently take their corresponding counter-plan.
However, when one player changes his or her counter-plan, the other players will
also change their counter-plans accordingly, which will force the first player to
change his or her counter-plan one more time, and so on. This nature of responses
will eventually converge to the Nash equilibrium.

Many complexity theorists have demonstrated that the Nash equilibrium is
classified in a collection of problems that has been systematically researched in
algorithmic computer science: those whose answers might be difficult to calculate
but whose correctness is still reasonably easy to prove. The simplest accepted
form of an example of these problems in mathematics is the factoring of a large
number. The answer looks to require testing a large number of various distinct
probabilities while proving that a given solution only requires multiplying several
numbers at the same time.

4.4 What is the Complexity of It?

Generally, the procedures are rather unexpectedly more complex than the above
example of computing prime numbers in the situation of finding Nash
equilibrium. Any person who is interested in computer science will acknowl-
edge the collection of problems whose answers can be proven efficiently: it is
the class of complexity that complexity theorists and computer researchers call
NP. Daskalakis demonstrated that the Nash equilibrium is classified to a sub-
collection of NP and that it contains difficult problems such that an answer to
one problem can be modified to solve any other problem.

The algorithm specialist will imply that it belongs to a complexity class
called NP-complete. However, the fact that there exists a Nash equilibrium at
all times makes it unsuitable to be considered as NP-complete. Actually, it is
classified to another complexity class named PPAD-complete. That result is one
of the biggest yet in the approximately 10-year-old field of algorithmic game
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theory [31]. It formalises the suspicion that the Nash equilibrium is not likely to
be an accurate predictor of rational behaviour in all strategic environments.

In terms of the unpredictability of the Nash equilibrium, there are three
routes that one can go. One is to say, we know that there exist games that are
hard, but maybe most of them are not hard. In that situation, we can seek to
identify classes of games that are easy, that are tractable [32]. The second route
is to “find mathematical models other than Nash equilibrium to characterise
markets - models that describe transition states on the way to equilibrium,
for example, or other types of equilibrium that are not so hard to calculate”
[32]. Finally, “it may be that where the Nash equilibrium is hard to calculate,
some approximation of it - where the players’ strategies are almost the best
responses to their opponents’ strategies - might not be” [32]. In those cases, the
approximate equilibrium could describe the behaviour of real-world systems.

5 Discussion

Nash equilibrium is the main universally and frequently used equilibrium concept
in game theory. The insight into Nash equilibrium is that it describes a likely
stable situation of game playing. It is a fixed point where each player holds
correct beliefs about what other players are doing, and plays a best response
to those beliefs. The Nash equilibrium is unique because a Nash equilibrium
occurs in game playing whenever each player has only finitely many possible
deterministic strategies and we allow for mixed strategies.

In many games, thoughts with respect to the Nash equilibrium require a
deep understanding of an individual’s activity. However, as many scientists have
noted, the Nash equilibrium experiences several problems. For instance, there
exists a flaw in the repeated prisoner’s dilemma in terms of the Nash equilib-
rium in game playing. It is rather difficult to present a situation in which rea-
sonable participants are supposed to play the Nash equilibrium in such a game
but unreasonable participants who collaborate for a short time obtain a better
outcome. In addition, if a game is played only once, then why should the solution
converge to the Nash equilibrium when there are numerous Nash equilibriums?
In fact, participants of a game do not have a means of distinguishing which one
of multiple Nash equilibriums tends to occur.

As one might expect, extensive work has been performed in the field for
evolving progressive solutions of game models. Numerous alternatives to and
improvements of Nash equilibrium have been proposed, including rationalisabil-
ity, sequential equilibrium, trembling hand perfect equilibrium, proper equilib-
rium, and iterated deletion of weakly dominated strategies. Although a number
of alternatives achieve success to some extent, none of these solutions address
the following three problems, all originating from concerns of computer science
perspectives on Nash equilibrium.

First, game theory focuses on the participant itself strategically. Reasonable
participants choose strategies that are best responses to strategies chosen by
other player, and the focus in distributed computing has been on problems such
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as fault tolerance and asynchrony. It cannot solve problems with defective or
unpredicted activities, nor can it solve problems with individuals conspiring with
each other. However, we look for both situations in games, such as large game
playing. Second, computational efficiency is also a consideration when discussing
it. Solution concepts must be developed and improved to resolve resource limited
agents. For example, this issue is critical for cryptography. Finally, it assumes
that participants have a universal understanding of the complex factors of the
game and of every possible decision that can be taken in each state and every
participant in the game. However, this assumption is not rational in many situ-
ations, such as in large auctions performed through the Internet at all times.

6 Concluding Remarks

The Internet and distributed systems owe much of their complexity to a large
number of individuals who manage them and make them work. These individuals
have distinct and often contradictory focuses and concerns. Thus, these individu-
als are rational and their communications are naturally strategic. Thus, concepts
from computer science and game theory are essential to understand these com-
munications. Nash equilibrium provides individuals with an accurate approach to
making a prediction about the activities of strategic individuals in circumstances
of contradiction. However, the reliability of it as a structure for action calculation
relies on whether it is computationally efficient. Why should we presume that a
set of reasonable individuals act in a way that requires exponential computation
time? Motivated by this question, we study the computational complexity of the
Nash equilibrium in this paper.
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Abstract. The AC motor control by neural networks includes the reconstruction 
errors in a certain degree, which can cause the non-convergence in the control 
results. To learn the complete system dynamics of the sensorless PMSM, a neu-
ral network adaptive speed control strategy is proposed to eliminate the NN  
reconstruction errors. A robust modification term, which is a function of estima-
tion error and an additional tunable parameter, is introduced to guarantee the 
asymptotic stability of the speed estimation. A rotor-flux-oriented vector con-
trol is employed as the basic control strategy for the sensorless PMSM drive 
system. The simulation results demonstrated the validity and feasibility of the 
proposed control strategy. 

Keywords: Neural network adaptive speed control · Permanent magnet syn-
chronous motor (PMSM) · NN reconstruction error · Robust modification term · 
Speed estimation 

1 Introduction* 

In recent years, permanent magnet synchronous motors (PMSM) are widely used in 
high-performance applications such as industrial robots and machine tools, because 
PMSMs have the advantages of compact size, high-power density, high air-gap flux 
density, high-torque/inertia ratio, high torque capability, high efficiency and free 
maintenance. In the applications of PMSM, the use of the high resolution speed and 
position sensors increase the size of the machine, raise the cost of control system and 
require additional cabling. Especially, the measurements are highly sensitive to inac-
curacies of faults which could affect sensor. The desire to eliminate the use of sensors 
from PMSM applications has resulted in the several techniques for sensorless motor 
operation [1-4].  

                                                           
This work was supported by the National Natural Science Foundation of China (Grant Nos. 
61074073 and 61034005), the Fundamental Research Funds for the Central Universities 
(Grant Nos. N130504002 and N130104001), and SAPI Fundamental Research Funds (Grant 
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The various techniques have been proposed to estimate the speed and position for 
sensorless AC motor control, such as a motor’s physical model based method [1], 
back-electromotive force (Back-EMF) based method [2], model reference adaptive 
system (MRAS) based method [3] and extended Kalman filter (EKF) based  
method [4]. However, all the system uncertainty can not be removed, and it can not be 
used in the control objects where the distribution is not given. 

Recently, due to online learning capabilities, parallel distributed structure and iden-
tification of the nonlinear dynamics, neural networks (NNs) are commonly utilized 
for the control of nonlinear discrete-time systems such as motor control systems [5-8]. 
A diagonally recurrent NN (DRNN)-based observer is designed to perform the rotor 
position estimation of the sensorless PMSM [9]. A rotor speed observer based on an 
Elman NN, which is the feedback NN, is proposed in [10]. A two-layer, online-
trained NN stator current observer is used as the adaptive model for the MRAS esti-
mator which requires the rotor magnetic flux information [11]. These studies have 
attempted to solve the speed and position estimation problem using NN estimator 
under assuming that there are no NN reconstruction errors [9-11]. In these cases, the 
estimation result based on the back propagation algorithm may not be convergent or 
remain bounded to the optimal control. 

In this paper, a NN based robust speed estimation strategy of sensorless PMSM is 
presented. First, a NN adaptive identification method of the sensorless PMSM system 
with the elimination of the NN reconstruction errors is developed. To learn the un-
known nonlinear system, a stable adaptive weight update law is proposed for tuning 
the nonlinear system estimator. The robust modification term, which is a function of 
estimation error and an additional tunable parameter, is applied to guarantee asymp-
totic stability. Next, a NN speed estimation method using the adaptive identified  
system parameters is studied. Therefore, the convergence of the NN based speed es-
timator is demonstrated by considering the NN reconstruction errors of PMSM speed 
control system in contrast to previous works [9-11]. 

2 Mathematical Model of PMSM and Estimation Strategy 

The d q− model cannot be utilized directly in the sensorless motor control because 

the estimation error of rotor position is not taken into account [2,3]. The mathematical 
model of sensorless PMSM in the estimated rotating -δ γ  frame is derived as (1) 
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where, kω  and kθ are the d q−  axis rotor speed and position, sω  and sθ  are the -δ γ  

axis rotor speed and position. kθΔ is a position estimation error, that is, lag theta be-

tween d q−  frame and -δ γ  frame; mψ  and P  represent the flux linkage and the 

number of magnet pole pairs of the rotor; di  and qi  are the d q−  axis components of 

the stator current. du  and qu  are the d q−  axis components of the stator voltage, iδ  

and iγ  are the -δ γ  axis components of the stator current. , ,s LR J T  and sL  are the 

stator resistance, inertia moment, load torque and stator inductance, respectively.  
If the sensorless control is correct, sθ  of -δ γ  frame is convergent to kω  of d q−  

frame, the position estimation error kθΔ  is also convergent to zero, and all electro-

magnetic parameters of -δ γ  frame can be processed on the d q−  frame[3]. Equa-

tion (1) can be written as 
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From (1) and (2), we obtain the discrete time system identification model, 
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The control objective is to ensure that the servo drive system tracks a desired target 
despite of NN reconstruction errors. In the transient state, the speed and position esti-
mation scheme proposed in this paper is shown in Figure 1. 

 

 

Fig. 1. Control strategy for speed and position estimation of sensorless PMSM 
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3 NN Based System Identification and Speed Estimation  

In order to develop the NN system identifier, the system dynamics (3) are rewritten as 

 ( 1) ( ( ), ( ))x t h x t u t+ =  (4) 

The function ( ( ), ( ))h x t u t  in (4) has a NN representation of a compact set. A NN 

implementation can be made as follows 

 ( 1) [ ( ) ( ( ) ( ))] ( )T Tx t v t w t z t tη μ ε+ = +  (5) 

where ( )( ) n m lw t + ×∈ ℜ  and ( ) l nv t ×∈ ℜ  are the constant ideal weight matrices. ( )μ   is 

a tangent sigmoid function. ( )η   is a linear function. ( )tε  is the bounded NN func-

tional approximation error. ( )z t  is the NN input and is denoted by 

 ( ) [ ( ) ( )]T T Tz t x t u t=  (6) 

where ( )x t  is the system state and ( )u t  is the system input. ( 1)x t +  is the NN output. 

For a simple consideration, ( ) ( )Tw t z t  is denoted as ( )z t . From above consideration, 

(5) can be written as follows 

 ( 1) ( ) ( ( )) ( )Tx t v t z t tμ ε+ = +  (7) 

Additionally, bounds of the output layer weights are taken as || ( ) || mv t V≤  for a con-

stant mV  while NN activation functions are bounded such that || ( ( ))|| mz tμ μ≤  for a 

constant mμ . 

  The NN based system identification scheme is defined as 

 ˆ ˆ( 1) ( ) ( ( )) ( )Tx t v t z t b tμ+ = −  (8) 

where ˆ( 1)x t +  is the estimated system state vector, ˆ( )v t  is the estimation of the ideal 

weight matrix ( )v t  and ( )b t  is the robust modification term defined as 

 
ˆ( ) ( )

( )=
( ( ) ( ) )T

s

t x t
b t

x t x t C

λ
+


 
 (9) 

where ˆ( )= ( ) ( )x t x t x t−  is the system identification error, ˆ( )tλ ∈ℜ  is an additional 

tunable parameter and 0sC >  is a constant. 
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Next, the identification error dynamics are written as 
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where ˆ( ) ( ) ( )v t v t v t= − .  

Assumption 1. The bounded NN functional approximation error term ( )tε  in (7) is 

assumed to be upper bounded by a function of estimation error such that 

 *( ) ( ) ( ) ( ) ( )T T
mt t t x t x tε ε ε λ≤ =    (11) 

 * ˆ( ) ( )t tλ λ λ= −  (12) 

where *λ  is a bounded constant target value such that *|| || mλ λ≤ . 

The tuning laws for ˆ( )v t  and ˆ( )tλ  are estimated as follows 

 ˆ ˆ( 1) ( ) ( ( )) ( 1)T
sv t v t z t x tα μ+ = + +  (13) 
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where 0sα >  is a NN learning rate and 0sγ >  is a design parameter. The local as-

ymptotic stability of the update laws (13) and (14) and the stability analysis of the 
system identification scheme are proved from Lyapunov theory. 

 
Theorem 1. Let the NN based identification scheme proposed in (8) be used to identi-
fy the system dynamics (4), and let the parameter update law given in (13) and (14) be 
used for tuning the NN weights and the robust modification term, respectively. In the 
presence of bounded uncertainties, the state estimation error ( )x t  is asymptotically 

stable while the NN parameter estimation errors ( )v t  and ( )tλ  are bounded,  

respectively. 
 

Proof. Consider the following positive definite Lyapunov function defined as 

 
2~ ~ ~ ~ ~
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T T
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whose first difference is given by 
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To solve equation (16), (10) can be rewritten as follows 
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where 
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Considering *|| || mλ λ≤  and 
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, we can obtain a relation as 

follows 
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In the next step, we define the change of variables as 
1 1 1( ) ( ) /t tψ ψ β

−
=  and 

2 2 2( ) ( ) /t tψ ψ β
−

= , where 
1β  and 

2β  are constants. Additionally, the design parame-

ters are selected as 2
s s mγ α μ= , 2 2

1 / (8 )s mα β μ≤  and 
2 1/β δ β= , where 0δ >  is a 

constant. Using these relations and new variables, applying the C-S inequality, (19) 
can be rewritten as 
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There 0LΔ ≤  provided 
1 min{ , , , }s s s sa b c dβ ≤  and 1/ 4δ <  where (1 1 4 ) / 2sa δ= + − , 

(1 1 4 ) / 2sb δ= − − , / (1 )sc δ δ= +  and 2 2(1 2( )) / ( )s m m m md λ λ λ λ= − + + . 
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~ ~

( ), ( )x t v t  and 
~

( )tλ  are bounded by the provided 
~ ~

0 0( ), ( )x t v t  and 
~

0( )tλ  bounded in 
the compact set. The upper bound relating to the NN reconstruction error can be re-
duced by increasing the number of hidden layer neurons[12,13].  

The relationship of system input and output for NN is as follows  

 

( ) [ ( ), ( )]

ˆ( ) [ ( ), ( ), ( )]

ˆ ˆ( ) [ ( 1), ( 1)]

d q

d q

d q

x t i t i t

u t u t u t t

y t i t i t

ω

 =
 =


= + +

 (21) 

NN of 3
5,5,2N  is selected from (15) and shown in Figure 2.  

 

 

Fig. 2. NN structure used in online system identification 

The implementation of NN speed estimator can be described as follows 

 ( 1) ( ( ), ( ), ( ))k d q kt f i t i t tω ω+ =  (16) 

Because ( )f   is a static nonlinear function, any kind of static NN can be used to 

approximate the nonlinear function. So, we adopt a feedforward multilayer NN in this 
paper. For the design of the NN speed estimator, a feedforward multilayer NN of 

3
3,13,1N  is designed from the consideration of (16) [6, 9].  

4 Simulations and Analyses 

In order to verify the proposed control strategy, a control model of pulse width modu-
lation (PWM) inverter-fed PMSM drive system is built in MATLAB/SIMULINK 
R2012a platform. Simulation studies are carried out with a 10-kHz control frequency. 
The PMSM electrical and mechanical parameters used in the simulation are listed in 
Table 1. 
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Table 1. Parameters for motor and inverter systems in simulations 

Quantity Symbol Value 

Nominal power 2kg m⋅  
n

P  1hp(3-phase) 

Stator resistance Rs 1.5 Ω  

Stator self inductance L L Ld q s= =  0.05H 

Voltage constant 
m

λ  0.314V.s/rad 

Rated torque 
e

T  3.6Nm 

Rotor inertia J  0.003kgm2 

Friction coefficient 
m

β  0.0009Nm/rad/sec 

Nominal speed(electrical) 
r

ω  377rad/sec 

Number of poles P  4 

Rated current I  4A 

Rated voltage V  208V 

Rated frequency f  60Hz 

Torque constant 
t

K  0.95Nm/A 

Resolution of the encoder n  10000p/r 

 
The current estimation results using the conventional current estimation method 

and proposed system identification method are shown in Figure 3. 

               
   (a) current estimation by conventional NN.    (b) current estimation by proposed method. 

Fig. 3. The current estimation using the conventional method and the proposed method 

In order to verify the performance of the proposed speed control algorithm, several 
simulations are carried out on the various operating conditions. In order to evaluate the 
speed estimation performance, we also give the corresponding simulation results under 
the PMSM vector control with the incremental encoder as the speed sensor. In order to 
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compare the superiority, the proposed method is compared with the speed estimation 
results obtained from conventional NN speed estimator under the same simulation 
conditions. The simulations are realized in low speed and high speed to show the supe-
riority of the proposed method. The simulation results are shown in Figure 4. 

In the control of static NN, the accuracy of control results can be improved by in-
creasing the number of hidden layer neurons [21]. The speed estimation results  
according to the different hidden layer neuron number are shown in Figure 5. 

 

              

            (a1)50rpm                                      (b1)50rpm 

               
          (a2)1200rpm                                     (b2)1200rpm 
Comparison between conventional NN estimator      Comparison between proposed method  
and incremental encoder based speed calculation      and incremental encoder based speed  

Fig. 4. Comparison of estimation results between the proposed method and conventional meth-
od (actual speed (smooth line), estimated speed(rough line)) 

              
       a) Hidden layer neurons 9                 b) Hidden layer neurons 13 

Fig. 5. Simulations for the number selection of the hidden layer neurons. Actual speed(smooth 
line) and estimated speed(rough line). 
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5 Conclusion 

In this paper, a novel NN based speed control strategy of sensorless PMSM drive with 
the consideration of the NN bounded NN functional approximation errors has been 
developed. The proposed speed estimation strategy is composed with two process: 
online asymptotic NN system identification and offline NN speed estimation. The 
results obtained from the Lyapunov theory and the simulations show that the pro-
posed online system identification results converge to the target values of an ideal 
system. The current error obtained from online system identification does not exceed 
0.2%. When the hidden layer has the neurons of thirteen, NN speed estimation result 
has a good performance. The simulation results show that the proposed control strate-
gy can eliminate the NN reconstruction errors and has the higher robustness and accu-
racy than the previous method. 
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Abstract. In this paper, a novel fault estimation methodology is proposed for a 
class of interconnected nonlinear continues-time systems with triangular forms. 
In the distributed fault estimation architecture, a fault detector is utilized to gen-
erate a residual between the subsystem and its detector or observer. Moreover, a 
threshold for distributed fault detection and estimation in each subsystem is de-
signed. Due to the universal approximation capability of the radial basis func-
tion neural networks, it is used to estimate the unknown fault dynamics.  
The time-to-failure is determined by solving the adaptive law from the current 
time instant to a failure threshold. Finally, the proposed methods are verified in 
the simulation. 

Keywords: Adaptive fault estimation · Fault detection · Fault threshold · Radial 
basis function neural networks 

1 Introduction* 

More recently, the investigations on fault detection and estimation (FDE) have re-
ceived considerable attention because a fault at any given occurrence can be detected 
which is needed in order to prevent catastrophic failure. Most successful results of 
fault detection (FD) have been established for linear system [1-2], while some other 
fruitful FD techniques for nonlinear systems were also presented [3-5]. Typically, a 
novel unified model-based fault detection and prediction (FDP) scheme was devel-
oped for nonlinear multiple input multiple output (MIMO) discrete-time systems  
in [5]. 

It is noticed that an efficient FDE scheme is to utilize the adaptive control strategy. 
Analytical results in [6] guaranteed that the unknown fault dynamics would be  

                                                           
This work was supported by the National Natural Science Foundation of China (Grant Nos. 
61473070, 61433004), the Fundamental Research Funds for the Central Universities (Grant 
Nos. N130504002 and N130104001), and SAPI Fundamental Research Funds (Grant No. 
2013ZCX01). 
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estimated by updating the online approximator (OLA) parameters and utilizing the 
adaptive control law. Two adaptive fault-tolerant control (FTC) schemes were devel-
oped in [7] for parametric strict feedback systems to deal with the effects of the actua-
tor failures. Generally speaking, these control techniques in [3-7] can be used to de-
tect and estimate faults for a large kind of nonlinear systems. However, these FDE 
approaches are not established with respect to large-scale interconnected systems. In 
fact, the interconnected characters are common phenomena in various practical sys-
tems. One passive FTC law and two active FTC laws were designed in [8] to ensure 
the controlled synchronization of the complex interconnected neural networks in the 
presence of sensor faults. Recently, designs of distributed fault detection schemes for 
these interconnected systems have been developed by using multi-block kernel partial 
least squares [9] and rigorous analysis [10]. Many results were established for nonlin-
ear systems with triangular elements [11-14]. However, the approaches in [11-14] did 
not extend the strategies into the systems with the interconnected terms. Altogether, 
few results on adaptive FDE are available on block triangular interconnected system, 
which motivate us to consider interconnected terms in this paper. 

In this paper, a novel fault detector is utilized to generate a residual between the 
subsystem and its detector. Specifically, it is worth mentioning that the FDE schemes 
proposed in this paper aim at the interconnected systems which contain block triangu-
lar forms. Subsequently, by solving the adaptive law at the current time instant against 
a failure threshold, the remaining useful life or time-to-failure (TTF) is determined. 
Finally, a numerical example is used to verify the effectiveness of the proposed  
method. 

2 Problem Description and Preliminaries 

2.1 Nonlinear Interconnected System Description 

Consider the nonlinear continuous time systems in block-triangular forms with N  
interconnected subsystems which may be subject to faults occurring at time 0t , in 

which the dynamics of the i th−  subsystem comprised of in  states are described as 
 

 

( )
( ) ( )
( ) ( ) ( )

, , , , 1

, , , ,

, 0 ,

,1

, 1, , 1

,
i i i i

i i

i j i j i j i j i

i n i n i n i i i i n i

i i n i i n

i i

x f x x j n

x f x b u x x

d x t t h x

y x

+
 = + = −

 = + + Δ

 + + Ψ −


=

 


 (1) 

where , ,1 ,[ , , ]T j
i j i i jx x x R= ∈ , 1, ,i N=  , 1, ,j =  1in −  and 

, ,1 ,[ , , ] i

i i

nT
i n i i nx x x R= ∈  are the local state vectors , iu  is the local control input 

vector of the i th−  subsystem, ix  are the vectors of interconnected states which 

contain the states vectors of other subsystems, ( ), : in
i jf R R⋅ → , 1, 2, , ij n=   are 
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unknown smooth functions, ib  is a known constant with 0ib ≠  , ( ) : in
i R RΔ ⋅ →  is 

an unknown interconnection function representing the effect of the other subsystems 
on the i th−  subsystem. From a qualitative viewpoint, the term ( ) ( )0 it t hΨ − ⋅  rep-

resents the local fault, ( )0t tΨ −  stands for the time profiles which reflect the types 

of fault, and ( )ih ⋅  is the description of fault function, ( )id ⋅  stands for the bounded 

uncertainties in the state equation and includes external disturbances as well as  

modeling errors and other possibly errors, ( )i id d⋅ ≤  where id  is a known positive 

constant. 
Throughout this paper, the time profiles is chosen similarly to the fault diagnosis 

procedure in [11] which is described as 

 ( ) ( )0

0

0

0

0,

1 ,ik t t

if t t
t t

e if t t− −

<Ψ − = 
− ≥

 (2) 

where ik  is an unknown constant that represents the rate when a fault occurs. Gener-

ally speaking, a smaller value of ik  indicates that the fault is an incipient fault while 

a larger value of ik  stands for an abrupt type. This time profile definition would cap-
ture some of the commonly occurring fault dynamics in a nonlinear system [11]. 

Furthermore, because only abrupt faults will be considered all over this paper, the 
time profiles could be represented as 

 ( ) 0
0

0

0,

1,

if t t
t t

if t t

<
Ψ − =  ≥

 (3) 

2.2 NN Approximation and Some Preliminaries 

RBFNN is used to approximate an arbitrary unknown function ( )NNf y  

 ( ) ( )NN Tf y yθ ϕ=  (4) 

where qy R∈  is the input variable of the RBFNN, [ ]1, ,
T

lθ θ θ=   is the weight 

vector with the RBFNN node number l , ( )yϕ  is the smooth basis function vector 

which is denoted as ( ) ( )1 ,y yϕ ϕ=  ( ),
T

l yϕ  . 

From equation (4), it yields 

 ( ) ( ) ( )* *NN Tf y y yθ ϕ ε= +  (5) 

where θ ∗  is the ideal constant weight and ( )yε ∗  is the optimal approximation error 

with its bound ( )yε ε∗ ≤ , where ε  is a known constant. 
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Assumption 1: There exist a set of known constants 0, 1, ,ij iM j n> =   for 

1 2, inX X R∀ ∈ , the unknown smooth functions ( )1ijf X , ( )2ijf X , fault functions 

( )1ijh X , ( )2ijh X  and the unknown interconnection function ( )3i XΔ , ( )4i XΔ  

satisfy the following Lipschitz conditions 
 

 ( ) ( )1 2 1 2ij ij ijf X f X M X X− ≤ −  

 ( ) ( )1 2 1 2i i ih X h X H X X− ≤ −  

 ( ) ( )3 4 3 4i i iX X L X XΔ − Δ ≤ −  

In this paper, ⋅  denotes the absolute value and ⋅  denotes the 2-norm. 

Assumption 2: The state vectors , ,1 ,[ , , ] i

i i

nT
i n i i nx x x R= ∈ ,  1, ,i N=   of each 

subsystem remain bounded before the occurrence of an unknown fault. 
Our objective is to design a fault threshold to detect the fault, and then, to estimate 

the unknown fault in the case that make sure all the signals are bounded after the oc-
currence of a fault. 

3 Fault Detection and Estimation 

Rewritten (1) in the state space form 

 
( )( ) ( )

( ) ( ) ( )
, , ,1 , , , ,

1

, 0 ,

+ ,

+ +

i

i i i

i i

n

i n i i n i i i j i j i j i i i n i
j

i i i n i i i n i i i

x A x K x B f x C x x

C d x C t t h x C b u

=
= + + Δ

Ψ − +


 (6) 

where ( ) ( )

1

1 1

0 0
i i

i
i i

i

i n n

in n n

k

A I

k

− × −

×

 − 
=  
 
−  





, 
1

i

i

i

in

k

K

k

 
 =  
 
 

 , [0 1,0 ]T
ij

j

B =   ,

0

0

1

iC

 
 
 =
 
 
 


. 

The FDE for each subsystem is designed as 

 ( )( ) ( ), , ,1 , , , ,
1

ˆˆ ˆ ˆ ˆ ,
i

i i i

n

i n i i n i i i j i j i j i i i n i i i i
j

x A x K x B f x C x x C b u
=

= + + + Δ +  (7) 

Define , ˆ
ii i n ie x x= − , where ,1 ,2 ,, , , i

i

T n
i i i i ne e e e R = ∈  , ,1 ,ˆ ˆ ˆ[ , , ]

i

T
i i i nx x x= ∈  

inR . Under healthy operating conditions, the residual dynamics are expressed as 

( ) ( )( ) ( ) ( ) ( ), , , , , , , ,
1

ˆˆ ˆ, ,
i

i i i

n

i i i i j i j i j i j i j i i i n i i i i n i i i i n
j

e A e B f x f x C x x C x x C d x
=

= + − + Δ − Δ +  (8) 
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Consider a Lyapunov function 2T
i i i iV e Pe=  for the i th−  subsystem. Its time de-

rivative is given by 

 
( ) ( ) ( )(
( )) ( ) ( )( )

, ,

, , , , , ,
1

1
,

2

ˆˆ ˆ,

i i

i

i

T T T T
i i i i i i i i i i i i n i i i i i n i

n
T

i i n i i i i j i j i j i j i j
j

V e P A A P e e PC d x e PC x x

x x e P B f x f x
=

= + + + Δ

−Δ + −



 (9) 

Based on Assumption 1, we have 

 ( ) ( )( ), , , , ,
1

ˆ =
in

T T T
i i i j i j i j i j i j i i i i i i i i i i

j

e P B f x f x e n M Pe n e M P e
=

− ≤  (10) 

 ( ) ( )( ), ,
ˆˆ, ,

i i

T T
i i i i i n i i i n i i i i ie PC x x x x L e P eΔ − Δ ≤   (11) 

where { }1max , , , 1, ,i i ij iM M M j n= =   and ˆ
i i ie x x= − . 

Substituting (10)-(11) into (9) leads to 

 21
2

2
T T

i i i i i i i i iV e R e L e P e d≤ − + +   (12) 

where ( )T
i i i i i i i i i iR P A A P n M P I PP= − + + + .  

Then, choose the Lyapunov function for the interconnected system as 
1

N

ii
V V

=
= . 

Construct a positive definite Q  whose elements are 

 
( )min ,

,

i

ij

i i j j

R i j
Q

P L P L i j

λ == 
− − ≠

 (13) 

Therefore, one gets 

 ( ) 2 2
min

1 1

2 2 2
N N

T
i i

i i

V Q z z d cV dλ
= =

≤ − + ≤ − +     (14) 

where [ ]1 2, , , Nz e e e=  , [ ]1 2, , , NP diag P P P=   and c =  ( ) ( )min max2Q Pλ λ− . 

We can always select a positive constant 0V  to make sure ( ) 00V V< . Thus, we 

get 

 ( ) ( ) 2
0 0

1

1
2

2

Nt c tct
i

i

V t V e e d dτ τ− −−

=

< +   (15) 

This implies that 
( ) ( )

( )2 20

0
1min min

1
2

2

ct Nt c t
i

i

V e
z e d d

P P
τ τ

λ λ

−
− −

=

< +  . 

 
Therefore, if the detection threshold is chosen as 
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 ( ) ( )
( ) 20

0
1min min

1
2

2

ct Nt c t
i

i

V e
e d d

P P
τρ τ

λ λ

−
− −

=

= +   (16) 

No fault will be detected as long as the interconnected system is working in healthy 
operating conditions. In other words, when the detection residual exceeds the detection 
threshold ρ , a fault is declared active in the interconnected system. 

In this paper, we assume that the fault only occurs in i th−  subsystem. For the 
i th−  subsystem in which fault occurs, considering (3), we know that ( )0 =1t tΨ − . 

Rewrite the fault subsystem as 

 
( )( ) ( )

( ) ( )
, , ,1 , , , ,

1

, ,

+ ,

+ +

i

i i i

i i

n

i n i i n i i i j i j i j i i i n i
j

i i i n i i i n i i i

x A x K x B f x C x x

C d x C h x C b u

=

= + + Δ

+


 (17) 

The following novel fault estimators are developed 

 ( )( ) ( ) ( ), , ,1 , , , , ,
1

ˆˆˆ ˆ ˆ ˆ ˆ+ , +
i

i i i i

n

i n i i n i i i j i j i j i i i n i i i i n i i i
j

x A x K x B f x C x x C h x C b u
=

= + + Δ +  (18) 

The derivative of the fault residual is given as 

 
( ) ( )( ) ( )

( ) ( ) ( )
, , , , , ,

1

, , ,

ˆ ,

ˆˆˆ ˆ,

i

i

i i i

n

i i i i j i j i j i j i j i i i n i
j

i i i n i i i i n i i i n i i

e A e B f x f x C x x

C x x C h x C h x C d

=

= + − + Δ

− Δ + − +


 (19) 

We introduce an unknown intermediate variable ( ),ˆ
ii i nh x . And then, it can be ap-

proximated by RBFNN 

 ( ) ( ), ,ˆ ˆ
i i

T
i i n i i i n ih x xθ ϕ ε= +  (20) 

where iε  is the optimal approximation error. 

Adding and subtracting ( ),ˆ
ii i i nC h x  on the right side of (19), we have 

 
( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
, , , , , , ,

1

, , ,

ˆˆ ˆ, ,

ˆ ˆ

i

i i

i i i

n

i i i i j i j i j i j i j i i i n i i i i n i
j

T
i i i n i i i n i i i i i i n i

e A e B f x f x C x x C x x

C h x C h x C d C xθ ϕ ε
=

= + − + Δ − Δ

+ − + + +




 (21) 

where ˆ
i iθ θ θ= −  is the RBFNN parameter estimation error. 

Consider the following Lyapunov function 
1

N

q
q

V V
=

= , where 2T
q q q qV e P e=  

2T
q q qθθ θ γ+   and 0qθγ > are known constants. Since only the i th−  subsystem is 
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under unhealthy operation, we obtain ( ) 0q tθ =  for q i≠ . Note that ( )i id d⋅ ≤ . 

Based on Assumption 1, the time derivative of V  is  

 

( )

( )} ( )
1

,

1

2

1 ˆˆ
i

N
T T T T
q q q q q q q q q q q q q q

q

T T T T
q q q q q i i i i i i n i i i i i i

i

V e P A A P e n M e P e e P C

d L x H e e PC x e PC
θ

θ ϕ θ θ ε
γ

=

≤ − + + +


× + + + − +



 
 (22) 

By using the properties of 2-norm and the inequality 2 22ab a b≤ + , one can obtain 

 ( ) 2 4T T
q q q q q q q q qe P C d e P P e d≤ + , ( )T T

q q q q q q q q q qn M e P e e n M P I e≤  (23) 

 ( )T T
q q q q q q q q qe P C H e e H P I e≤ , ( ) 2 4T T

i i i i i i i i ie PC e PP eε ε≤ +  (24) 

Choose the following update law as 

 ˆ ˆT
i i i i i i i iC Peθθ γ ϕ μ θ= −

 (25) 

where 0iμ >  is a known constant. 

Substituting (23)-(25) into (22), it gives 

 

22

1

2 22

1 1

2 4 2

1 1 1

2 4 4 2

N
T T i
q q q q q q q q i

q i
q i

T T i
i if i i i i i i

i

V e R e L P e x d

e R e d L P e x

θ

θ

μ θ
γ

με θ
γ

=
≠

 ≤ − + + − 
 

− + + + +

  


 (26) 

where ( )T
q q q q q q q q q q q qR P A A P n M P I P P H P I= − + + + +  and ( T

if i i i iR P A A P= − +

)2 i i i i i i iPP n M P I H P I+ + + . 

Construct a positive definite fQ  whose elements are 

 

( )
( )

min

min

,

,

,

qj

q

f
if

q q q q

R q j i

Q R q j i

P L P L q j

λ

λ

 = ≠
= = =


− − ≠

 

Therefore, it yields 

 [ ] [ ] 2 22 2
1 2 1 2

1

1 1
, , , , , , 2

2 2 4 2

N
Tf i i

N N i i
ii i

V e e e Q e e e d
θ θ

μ μθ ε θ
γ γ =

≤ − − + + +    (27) 

Denote
22 2

1

1
2

4 2

N
i

i
ii

D d
θ

με θ
γ =

= + + , ( ) ( )min max
f fc Q Pλ λ= − − and  , maxc =  

{ }, ic μ . The time derivative of V  becomes 
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 ,V c V D≤ − +  (28) 

By integrating (28) over [ ]0, t , we get 

 ( ) ( ) ( )
0

1
0

2

t c tctV t V e e Ddτ τ− −−≤ +   (29) 

Therefore, the detection residuals and the NN estimation errors are bounded. 
 

Theorem 1: Consider the nonlinear continuous time systems in block-triangular forms 
with N  interconnected subsystems. The fault threshold is defined as (16) to monitor 
the whole system. After a fault is detected, the RBFNN estimator is initiated and adap-
tive law (25) is used to update the unknown RBFNN weight vector parameter. Then, 
the parameter estimation error iθ  and the FD residual , 1, ,me m N=   will be 

bounded after the occurrence of a fault. 
In the event of a fault, consider the solution of the RBFNN parameter adaptive law 

(25) to analytically determine TTF as shown in the following 

 ( ) ( ) ( )0

0

( ) ( )
0

ˆ ˆi i
tt t t T

i i i i i it
e t e Pe dμ μ τθ θ γ τ ϕ τ τ− − − −= +   (30) 

where 0t  is the instant when a fault occurs and it is determined in the process of fault 

detection. From the property of the RBFNN’s basis function, we know that ( )iϕ ⋅  is 

bounded. The detection residual is also bounded from the present Theorem 1. Thus, 
the second term of above equation is bounded if the t  is in a finite interval. Suppose 

that ft  is the time at which the system is failure. The ( )î ftθ  can be represented as 

 ( ) ( ) ( ) ( )0

0

( ) ( )
0

ˆ ˆf i f i f
t t t tT

i f i i i i it
t Pe t t e d e t

μ τ μθ γ ϕ τ θ− − − −= +  (31) 

By solving the definite integral equation (31), one gets 

( ) ( ) ( )( ) ( )0 0( ) ( )
0

ˆ ˆ1 i f i ft t t tT
i f i i i i i it Pe t t e e tμ μθ γ ϕ μ θ− − − −= − +  

Define ( )îj ftθ  and ijϕ  as the j th−  element of ( )î ftθ  and the NN basis func-

tion, respectively. It can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( )( )0( )
0

ˆ ˆi ft tT T
ij f i i i ij i i i i ij it Pe t t e t e t tμθ γ ϕ μ θ γ ϕ μ− −= + −  

After substituting ( )îj ftθ  with maxijθ , it results in 

( ) ( )
( ) ( ) ( )

0( ) max

ˆ
i f

T
t t i ij i i i ij

T
i ij i i i ij

Pe t t
e

t Pe t t

μ μ θ γ ϕ
μ θ γ ϕ

− − −
=

−
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where maxijθ  is the failure limit regarding the parameter of estimated fault function, 

in terms of maximum value of the RBFNN parameter. 
Further mathematical manipulations would give us 

 
( ) ( ) ( )

( ) ( )max

ˆ1
ln

T
i ij i i i ij

f oT
i i ij i i i ij

t Pe t t
t t

Pe t t

μ θ γ ϕ
μ μ θ γ ϕ

−
= +

−
 (32) 

Thus, the equation (32) calculates TTF by applying the estimated fault magnitude 
at the current time instant and the failure threshold. 

4 Simulation Example 

To validate the effectiveness of the proposed method, we consider the continues time 
interconnected systems with 3 subsystems 

         
( ) ( )
( ) ( )

11 11 11 11 11 12

12 12 11 12 1 1 1 1 1 11 12, + ,

x f x g x x

x f x x b u d h x x

= +


= + + + Δ




 

 
( ) ( )
( )

21 21 21 21 21 22

22 22 21 22 2 2 2 2,

x f x g x x

x f x x b u d

= +


= + + + Δ




 

 
( ) ( )
( )

31 31 31 31 31 32

32 32 31 32 3 3 3 3,

x f x g x x

x f x x b u d

= +


= + + + Δ




 (33) 

where ( )1 0if ⋅ = , ( )1 1ig ⋅ = , 1,2,3i = , 1 1b = , ( )12f ⋅ = 11 11 112sin 0.36sin cosx x x− , 

2 0.7b = , 3 1.2b = , 1 110.01sind x= , 1 21 210.36sin cosx xΔ = , ( )22 212sin 3.8f x⋅ = −  

21 21sin cosx x× , 2 0d = , 3 0d = , 2 11 11 31 310.18sin cos 3.6sin cosx x x xΔ = + , 

( )32 31 31 312sin 1.44sin cosf x x x⋅ = − , 3 21 211.44sin cosx xΔ =  and ( )1 11 12,h x x  stands 

for an unknown fault function which will be approximated in the later. 
To design an adaptive law conveniently, we consider the case in which abrupt fault 

only occurs in the first subsystem. This implies that ( )0 1t tΨ − =  when 0 .t t≥  

Throughout this simulation, we utilize RBFNN to approximate the unknown fault 
function. The node numbers of the RBFNN are chosen as 1,1 1,212, 20l l= = . The cen-

ters and widths are selected on a regular lattice in the respective compact sets. The 

RBFNN ( ) ( )ˆ ˆT
i i it xθ ϕ  contains 12 nodes with the centers lμ  evenly spaced in 

[ ]3,3− × [ ]2, 2− [ ]1.5,1.5× −  and its width is 5. 

The initial conditions are chosen to be ( )11 0 1x = , ( )12 0 1x = − , ( )21 0 0.5x = , 

( )22 0 0.5x = − , ( )31 0 0.5x = , ( )32 0 1x = , ( ) ( )ˆ 0 0.2 1, 2,3i I iθ = =  with I  is an identity 

matrix, 0.5iP I= . 
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                   (a)                                         (b) 

Fig. 1. (a) Detection residual of the subsystem 1 and threshold 
         (b) Estimated fault magnitudes and actual fault mafnitudes 

 
A fault is initiated at time 0 2 st =  in the first subsystem which is expressed as 

( ) ( ) ( )( )0

0

0.10 1 12
11 0

0,

0.03 1 ,t t

if t t
t t h x

e x if t t− −

<Ψ − =  − ≥
 

The computer simulation results are given in Fig. 1. To show the performance of 
the FD estimator, the detection residual of the first subsystem is represented in  
Fig. 1 (a). We utilize a fault threshold of 0.54  unit magnitude. The residual is below 
the threshold at the time interval [0, 2.5]t ∈ , but it starts to increase and eventually it 

reaches the detection threshold at 4.0st = . The RBFNN is turned on to estimate the 
unknown fault dynamics by tuning the parameter iθ  online. Moreover, as observed in 

Fig. 1 (b), it can be concluded that the RBFNN is able to approximate the unavailable 
fault dynamics with a small error while the fault is detected.  

5 Conclusion 

In this paper, we focus on the structure of adaptive fault detection and estimation for a 
class of large-scale nonlinear system. In contrast to various existing schemes, the 
proposed strategy is designed based on the fact that the input is in block-triangular 
forms without satisfying the so-called matching condition. A new FD is used to gen-
erate a residual between the subsystem and its observer. The local online 
approximator is initiated while the detection residual of one subsystem exceeds its 
detection threshold. Finally, a simulation example is employed to illustrate the effec-
tiveness of the proposed schemes. 
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Abstract. We propose singular value decomposition (SVD) algorithms
for very large-scale matrices based on a low-rank tensor decomposition
technique called the tensor train (TT) format. By using the proposed
algorithms, we can compute several dominant singular values and cor-
responding singular vectors of large-scale structured matrices given in a
low-rank TT format. We propose a large-scale trace optimization prob-
lem, and in the proposed methods, the large-scale optimization problem
is reduced to sequential small-scale optimization problems. We show that
the computational complexity of the proposed algorithms scales loga-
rithmically with the matrix size if the TT-ranks are bounded. Numerical
simulations based on very large-scale Hilbert matrix demonstrate the
effectiveness of the proposed methods.

Keywords: Big data processing · Curse-of-dimensionality · Eigenvalue
decomposition · Singular value decomposition · Optimization · Tensor
network · Matrix product states

1 Introduction

The singular value decomposition (SVD) is an important matrix factorization
technique in wide areas of numerical sciences and engineering. By using the SVD,
one can solve linear least squares problems, compute the best low-rank approxi-
mation of matrices, compute the pseudo-inverse of matrices, and find a common
subspace, just to list a few. The SVD has a wide range of applications in signal
processing, multivariate statistics, systems biology, finance, image processing,
and so on [1].

In this paper, we propose algorithms for computing K dominant singular val-
ues and corresponding singular vectors of large-scale matrices. Standard methods
for computing all the singular values and singular vectors of a P ×Q matrix with
P ≥ Q take O(PQ2) computational costs, and O(PK2) for computing K ≤ Q
singular values [1]. However, if the size of the matrix grows exponentially as
P = Q = 2N , the computation of SVD is intractable by desktop computers and
standard algorithms. A Monte-Carlo algorithm [2] can be used, but its accu-
racy is not high enough, and it still suffers from the curse-of-dimensionality for
computing singular vectors.
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 121–130, 2014.
DOI: 10.1007/978-3-319-12436-0 14
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On the other hand, the proposed algorithms apply a low-rank tensor approxi-
mation technique which is called the tensor train (TT) format [3]. The basic idea
underlying the TT format is to reshape matrices and vectors into high-order ten-
sors, i.e., multi-way arrays, and compress them in low-parametric tensor formats.
Then, all the numerical operations including the matrix-by-vector multiplication
can be performed in a distributed way within a computational cost that scales
logarithmically with the matrix size [3]. We refer to [4–6] for modern low-rank
tensor approximation techniques, other types of tensor networks, and recent
advances of tensor decomposition methods for big data analysis.

In this paper, we show that the singular value decomposition can be efficiently
computed by solving a specific type of trace optimization problem. Then, in order
to solve the large-scale optimization problem, the K orthonormal singular vectors
are efficiently represented in block TT format [7–9]. We employ the alternating
least squares (ALS) [8,10] and modified alternating least squares (MALS) [10,11]
schemes for solving the large-scale optimization problem. In the ALS and MALS
schemes, the large-scale optimization problem is reduced to sequential small
optimization problems for which any standard optimization algorithms can be
applied.

This paper is organized as follows. In Section 2, we propose the trace opti-
mization problem for computing K dominant singular values and corresponding
singular vectors. And we describe the TT decompositions of large-scale matrices
and vectors. In Section 3, we describe the proposed algorithms with graphical
illustration. In Section 4, we present the simulation results demonstrating the
effectiveness of the proposed methods in computing the SVD of Hilbert matrix
of huge sizes. In Section 5, we provide conclusions and discussions.

2 Tensor Train Formats for Solving Large-Scale
Optimization Problem

2.1 Trace Maximization Problem for SVD

We assume that P ≥ Q without loss of generality. The K ≤ Q dominant sin-
gular values and corresponding singular vectors of a matrix A ∈ R

P×Q can be
computed by solving the following trace maximization problem:

maximize
U,V

trace
(
UTAV

)

subject to UTU = VTV = IK .
(1)

The maximization problem (1) is derived from the eigenvalue decomposition
(EVD) of the following (P + Q) × (P + Q) matrix

B =
[

0 A
AT 0

]
∈ R

(P+Q)×(P+Q) . (2)

It is known that the largest K ≤ Q eigenvalues of B are same to the K dom-
inant singular values of A, and corresponding eigenvectors are equivalent to
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W0 = 2−1/2
[
UT

0 , VT
0

]T ∈ R
(P+Q)×K , where U0 = [u01,u02, . . . ,u0K ] ∈ R

P×K

and V0 = [v01,v02, . . . ,v0K ] ∈ R
Q×K denote the left and right dominant singu-

lar vectors of A. The EVD of B can be computed by solving the block Rayleigh
quotient maximization problem

maximize
W

trace
(
WTBW

)

subject to WTW = IK .
(3)

However, the problem (3) incurs larger computational and memory costs than
(1) due to the size of B. Proposition 1 shows the equivalence of the solutions of
(1) and (3).

Proposition 1. For K ≤ Q ≤ P , the solution of the maximization problem (1)
is equivalent to that of (3).

Proof. Let W = 2−1/2[UT,VT]T ∈ R
(P+Q)×K , then we have trace(WTBW) =

trace(UTAV). First, we can show that

max{trace(WTBW) : WTW = IK} ≥ max{trace(UTAV) : UTU = VTV = IK} .

Next, we can show that the maximum value of trace(WTBW) is obtained by
trace(UTAV) when U and V are equal to the K dominant singular vectors.

2.2 Tensor Train Decompositions

An Nth order tensor X is a multi-way array of size I1 × I2 × · · · IN , where In
denotes the size of the nth mode. The (i1, i2, . . . , iN )th entry of X is denoted by
xi1,i2,...,iN or X(i1, i2, . . . , iN ). The mode-n unfolding of a tensor X ∈ R

I1×···×IN

is denoted by X(n) ∈ R
In×I1···In−1In+1···IN . The mode-(M, 1) contraction of ten-

sors A ∈ R
I1×I2×···×IM and B ∈ R

IM×J2×J3×···JN is defined by

C = A • B ∈ R
I1×I2×···×IM−1×J2×J3×···×JN (4)

with entries

C(i1, i2, . . . , iM−1, j2, j3, . . . , jN ) =
IM∑

iM=1

A(i1, i2, . . . , iM )B(iM , j2, j3, . . . , jN ) .

Tensors and tensor operations can be represented by tensor network diagrams
as in Figure 1. The number of edges connected to a vertex shows the order of
the tensor, and the connections between vertices represent contraction between
tensors. We refer to [12,13] for further notations of tensor operations.

In TT format, a large-scale matrix A ∈ R
I1I2···IN×J1J2···JN is tensorized into

a higher-order tensor A ∈ R
I1×J1×I2×J2×···×IN×JN , and it is represented as

contracted products
A = A(1) • A(2) • · · · • A(N), (5)
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(a) vector, matrix, tensor (b) A • B (c) tensorization of x

Fig. 1. Graphical representations of (a) a vector, a matrix, a 3rd order tensor, (b)
contracted product of two 3rd order tensors, and (c) tensorization of a vector

where A(n) ∈ R
RA

n−1×In×Jn×RA
n are 4th order tensors called TT-cores and RA

n

are called TT-ranks. We suppose that RA
0 = RA

N = 1. Moreover, in TT format, a
group of large-scale singular vectors U = [u1,u2, . . . ,uK ] ∈ R

I1I2···IN×K is ten-
sorized and permuted to a higher-order tensor U ∈ R

I1×I2×···×In−1×K×In×···×IN ,
and it is represented as contracted products

U = U(1) • U(2) • · · · • U(N), (6)

where the TT-cores U(m) ∈ R
RU

m−1×Im×RU
m ,m �= n, are 3rd order tensors and

the nth TT-core U(n) ∈ R
RU

n−1×K×In×RU
n is a 4th order tensor. We suppose that

RU
0 = RU

N = 1.
We call (5) as the matrix TT format and (6) as the block-n TT format. Figure

2 shows tensor network diagrams representing a matrix A ∈ R
I1···I5×J1···J5 in

matrix TT format, and a group of vectors U ∈ R
I1···I5×K in block-4 TT format.

(a) (b)

Fig. 2. Graphical representations of (a) a matrix in matrix TT format and (b) a group
of vectors in block-4 TT format

Note that the storage cost for the block TT decomposition is O(NIR2 +
IR2K), where I = max(In) and R = max(RU

n ), whereas the original group
of vectors has O(INK) storage complexity. In the same way, the matrix TT
decomposition compresses original data dramatically as well.

3 Algorithms Based on Block TT Decomposition

Let P = I1I2 · · · IN and Q = J1J2 · · · JN . We assume that A ∈ R
I1I2···IN×J1J2···JN

is given in matrix TT format (5). We apply the alternating least squares (ALS)
[8] and modified alternating least squares (MALS) [10] methods for solving the
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large-scale optimization problem (1). We suppose that the left and right singular
vectors U = [u1,u2, . . . ,uK ] and V = [v1,v2, . . . ,vK ] in (1) are represented in
block TT format. The ALS algorithm for SVD is described in Algorithm 1. The
ALS and MALS schemes are depicted graphically in Figure 3 via tensor network
diagrams.

Algorithm 1. ALS algorithm for SVD based on block TT format
Data: A ∈ R

I1I2···IN×J1J2···JN in matrix TT format, K ≥ 2, δ ≥ 0
Result: Left singular vectors U ∈ R

I1I2···IN×K and right singular vectors
V ∈ R

J1J2···JN×K in block-N TT format, TT-ranks RU
1 , RU

2 , . . . , RU
N−1

for U and RV
1 , RV

2 , . . . , RV
N−1 for V.

1 Initialization: Block-N TT tensors U and V with small TT-ranks and
orthogonalized TT-cores ;

2 repeat
3 for n = N, N − 1, . . . , 2 do right-to-left half sweep

// Optimize

4 Fix all the TT-cores except U(n) and V(n), compute(
(U

(n)

(2) )
T, (V

(n)

(2) )
T
)

=

argmax
U(n),V(n)

{
trace

(
(U(n))TAnV

(n)
)

:
(
U(n)

)T
U(n) =

(
V(n)

)T
V(n) = IK

}

// Separate

5 Compute δ-truncated SVD: [U1,S1,V1] = SVDδ

(
U

(n)

({1,2}×{3,4})
)
,

[U2,S2,V2] = SVDδ

(
V

(n)

({1,2}×{3,4})
)
;

6 Update RU
n−1 = rank(V1), RV

n−1 = rank(V2);

7 Update U(n) = reshape(VT
1 , [RU

n−1, In, RU
n ]),

V(n) = reshape(VT
2 , [RV

n−1, Jn, RV
n ]);

8 end
9 for n = 1, 2, . . . , N do left-to-right half sweep

10 Perform left-to-right half sweep in the same way
11 end

12 until a stopping criterion is met ;

Specifically, in the ALS, at nth micro-iteration, the singular vectors U and
V are represented in block-n TT format. We define

U<n = U(1) • U(2) · · · • U(n−1) ∈ R
I1×I2×···×In−1×Rn−1 ,

U>n = U(n+1) • U(n+2) · · · • U(N) ∈ R
Rn×In+1×In+2×···×IN ,

with U<1 = U>N = 1. Then, we have U = U<n • U(n) • U>n. Note that
U = UT

(n). Via the mode-n unfolding of U, we can derive the following linear
equation [9,12]

U = UT
(n) = U�=nU(n), (7)
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(a) ALS (b) MALS

Fig. 3. Illustration of the (a) ALS and (b) MALS schemes based on block TT format
during right-to-left half sweep

where
U�=n =

(
(U<n

(n))
T ⊗ IIn ⊗ (U>n

(1) )
T
)

∈ R
I1I2···IN×RU

n−1InR
U
n

and U(n) = (U(n)
(2) )

T. Similarly, it holds that V = VT
(n) = V �=nV(n), where V �=n

and V(n) are defined in the same way. The trace in (1) is rewritten by

trace
(
UTAV

)
= trace

(
(U(n))TAnV(n)

)
, (8)

where An = (U�=n)TAV �=n ∈ R
RU

n−1InR
U
n ×RV

n−1JnR
V
n has much smaller sizes than

A when the TT-ranks are not large.
Moreover, the orthogonality constraint, UTU = IK , on U is equivalent to

the orthogonality constraint (U(n))TU(n) = IK on the nth TT-core if each
core tensor is orthogonalized as follows [12]. For 1 ≤ m < n, the mth TT-core
U(m) ∈ R

RU
m−1×Im×RU

m is called left-orthogonalized if U(m)
(3) (U(m)

(3) )T = IRU
m

. For

n < m ≤ N , the mth TT-core is called right-orthogonalized if U(m)
(1) (U(m)

(1) )T =
IRU

m−1
. The δ-truncated SVD step of the ALS guarantees the left- and right-

orthogonality of the TT-cores, and it determines the block TT-ranks adaptively
during iteration. In Figure 3, the half-filled circles represent the orthogonalized
TT-cores.

At each iteration, any standard SVD algorithms can maximize (8) and com-
pute the nth TT-cores, which takes O(IR2K2) computational complexity, where



Singular Value Decomposition Based on Tensor Train 127

I = max({In, Jn}) and R = max({RU
n , RV

n }). In this step, the matrix An

don’t need to be computed explicitly. Instead, the matrix-by-vector products
A

T

nx and Any can be computed efficiently in a recursive way [10]. At last,
the total computational cost for the right-to-left and left-to-right iterations is
O(NIR2K2 +NI2R3K +NI2R4) when R = max({RU

n , RV
n , RA

n }), which scales
logarithmically with the matrix size.

The MALS scheme is almost similar to the ALS except that it merges
two neighboring TT-cores into one supercore as U(n,n+1) = U(n) • U(n+1) ∈
R

RU
n−1×In×In+1×RU

n and V(n,n+1) = V(n) • V(n+1) ∈ R
RV

n−1×Jn×Jn+1×RV
n . After

optimization of the supercore, it is separated by the δ-truncated SVD, which
guarantees orthogonality and TT-rank adaptivity.

4 Simulation

The Hilbert matrix H ∈ R
P×P is a symmetric matrix with entries hi,j = (i +

j −1)−1, i, j = 1, 2, . . . , P . With P = 2N , we consider the rectangular submatrix

A = H(:, 1 : 2N−1) ∈ R
2N×2N−1

in MATLAB notation. We compared performances of six SVD methods for com-
puting the K dominant singular values and corresponding singular vectors of A.
(i) The LOBPCG [14] computes eigenvalues Λ = diag(σ2

1 , . . . , σ
2
K) and eigenvec-

tors V of the matrix ATA ∈ R
2N−1×2N−1

, and then computes the left singular
vectors by U = AVΛ−1/2. (ii) The MATLAB function SVDS applies the Fortran
package ARPACK [15] to the matrix B (2). (iii) The ALS and MALS algorithms
for SVD solve the maximization problem (1) as described in the previous section.
(iv) The ALS and MALS schemes are also implemented for computing the EVD
of ATA by maximizing the block Rayleigh quotient [8].

It is usually difficult to load a large-scale full matrix on the computer memory.
Instead, we use an explicit matrix TT representation of A, which can be derived
from the matrix TT representation of Toeplitz matrices [16]. In this step, we
transform the generating vector of Hilbert matrix into block TT format with
K = 1 via the DMRG method [17] with relative approximation error 10−9. In
Figure 4(a), we can see that the maximum of matrix TT-ranks, max{RA

n }, is
bounded by 15 for all 10 ≤ N ≤ 25.

Figure 5 compares computational times taken by the six SVD algorithms
described in the begining of this section. The tolerance parameter for the rela-
tive residual was set at ε = 10−8. All the values are averages over 30 repeated
Monte Carlo simulations. The two standard algorithms, LOBPCG and SVDS,
use the full matrix, which is too large to load on the memory when N ≥ 14. We
can see that the rates of increase of LOBPCG and SVDS are exponential with N .
On the other hand, the increase rates of the rest four block TT-based algorithms
are polynomial with N . We note that the two block TT-based EVD methods
denoted by ALS-EIG and MALS-EIG show larger computational costs than
the other two block TT-based SVD methods denoted by ALS-SVD and MALS-
SVD, because the EVD methods use ATA whose matrix TT-ranks increase to
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(a) (b)

Fig. 4. (a) Maximum value max(RA
n ) of estimated matrix TT-ranks of the rectangular

submatrix A ∈ R
2N×2N−1

of Hilbert matrix, for 10 ≤ N ≤ 25. (b) Maximum value
max(RV

n ) of block TT-ranks of the group of right singular vectors V ∈ R
J1J2···JN×K ,

for K = 10 and 10 ≤ N ≤ 25.

{(RA
n )2} and require truncation. Figure 4(b) shows that the maximum of the

block TT-ranks of the right singular vectors when K = 10 is bounded for all
10 ≤ N ≤ 25.

Fig. 5. Computational cost of the SVD algorithms for computing (a) K = 5 and (b)
K = 10 dominating singular values and corresponding singular vectors of the 2N ×2N−1

submatrix A of Hilbert matrix with 10 ≤ N ≤ 25

5 Conclusions and Discussions

We proposed SVD algorithms for very large-scale structured matrices based
on TT formats. Unlike previous researches based on TT format for symmetric
eigenvalue problems, we proposed a trace maximization problem and efficient
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SVD algorithms which can be applied to non-symmetric matrices. Once the
large-scale matrix is given in matrix TT format, the proposed methods compute
the K singular values and corresponding singular vectors by solving the proposed
trace maximization problem. The ALS and MALS schemes reduce the large-
scale optimization problem into sequential small optimization problems, and the
computational complexity scales logarithmically with the matrix size.

In the simulation experiments, we demonstrated that the proposed algo-
rithms compute K = 5, 10 singular values of the 225 × 224 submatrix of Hilbert
matrix on desktop computer within a feasible computational time. We are per-
forming further experiments with other kinds of large-scale structured matrices
such as Toeplitz matrix and Hankel matrix. Moreover, general tensor networks
including the Hierarchical Tucker and PEPS [4–6] are very promising tools for
big data analysis.
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Abstract. This paper presents results of the common spatial pattern (CSP) 
based electroencephalogram (EEG) analysis on dissociated brain organization 
for single-digit addition and multiplication. Alpha band EEG oscillations, which 
have been corroborated to be modulated by arithmetic strategies, are employed 
for feature extraction based on CSP. Experimental results have confirmed the 
dissociation between single-digit addition and multiplication. It is indicated that 
the dissociation originates from different cortical areas across subjects, such as 
IPS, parieto-occipital, and fronto-parietal regions. 

Keywords: Dissociation · Arithmetic strategy · Fronto-parietal network · EEG 
analysis · Alpha band ERD 

1 Introduction 

Dissociations among arithmetic operations, initially observed in lesion studies, have 
led to the postulation of different strategies used in mental arithmetic. Retrieval of 
answers from long-term memory and procedural solutions, such as counting or trans-
formation, have been identified as two main strategies used by individuals in order to 
perform simple or more complex calculations at a functional level. Simple multiplica-
tions such as 2×4, which are learned by rote at school, are solved by retrieval.  On the 
contrary, simple additions such as 2+4 are usually taught to use procedural strategy. 
However, the solution of single-digit additions is ambiguous in the domain of numeri-
cal cognition. While some studies suggest that retrieval is more likely used in addi-
tions, others believe that single-digit additions are solved through manipulations of 
internal quantity representations just like subtractions [1].  

As a matter of fact, the most frequent dissociation, corroborated in normal people 
by functional magnetic resonance imaging (fMRI) studies, is between multiplications 
and subtractions rather than multiplications and additions, presumably correlating 
with the obscureness of additions per se. Only one fMRI study has explored the  
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dissociation between single-digit multiplication and single-digit addition [2]. In the 
context of the relative short duration (around one second) and considering several 
phases (number coding, calculation, result production) in the arithmetic operations, 
electroencephalogram (EEG) recording may have advantage over fMRI due to the 
better temporal resolution (millisecond).  Hence, compared with fMRI, EEG, espe-
cially induced EEG, i.e. event-related synchronization (ERS) and desynchronisation 
(ERD), is more engaged in the analysis of the dissociation between operations. Previ-
ous findings have consistently demonstrated the high suitability of the ERD method to 
uncover stable individual differences in human brain activation patterns during per-
forming cognitively demanding tasks [3].  

Although the existing EEG studies have provided some insights into the neural cor-
relate of dissociations among operations, variations in alpha ERD between single-
digit addition and multiplication have not been reported so far. Some previous studies 
were underpinned by the fact that both single-digit addition and multiplication were 
solved by retrieval. This however is controversial. One of the root causes involves 
that the traditional EEG analysis has always been implemented across subjects, de-
spite the individual variability such as mathematical abilities and people's brain acti-
vation patterns when engaged in performing cognitively demanding tasks [4]. Based 
on the dissociation postulation derived from the lesions studies and the theoretical 
models such as encoding-complex model [5], together with the findings that oscilla-
tions at alpha frequency band are modulated by procedural strategies [6], we expected 
that the brain activation patterns in the alpha band are different for single-digit multi-
plication and single-digit addition. Moreover, finding out in what way the ERD/ERS 
could be maximized for one class against the other would provide information regard-
ing where the dissociation originates from. Accordingly, the common spatial pattern 
(CSP) algorithm [7], a popular method in brain-computer interfaces (BCI) using 
ERD/ERS in the classification of motor imagery, is employed in this study. The algo-
rithm maximizes the variance for one class and at the same time minimizes the  
variance for the other class. Hence, based on the modulation of EEG oscillations at 
alpha band by strategy use, the common spatial pattern (CSP) algorithm can be con-
ducted on multiple overlapped time windows to provide evidence for the existence of 
the dissociation and information on the origination of the dissociation between single-
digit addition and multiplication.   

2 Materials and Methods 

2.1 Subjects 

Six right-handed healthy students (5 males and 1 female) studied at Southeast Univer-
sity without known calculation difficulties were recruited as subjects for this experi-
mental study. Exclusion criteria included left handedness, neurological illness, and 
history of brain injury. All subjects were asked to read and sign an informed consent 
form before experiments and the study was approved by the Academic Committee of 
the Research Center for Learning Science, Southeast University, China. 
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2.2 Experiment Paradigm 

A delayed verification paradigm was employed to explore the strategy dissociation 
between the two operations (Fig. 1). Participants silently produced either the solutions 
of single-digit multiplication and single-digit addition problems or store operands. On 
account of the operand-order effect in single-digit multiplications (due to the Chinese 
multiplication table that contains only smaller-operand-first problems), which has 
been observed in Mainland Chinese subjects [8], smaller-operand-first problems (e.g., 
3×4 or 7×8) were exclusively included. Thus, non-zero problems consisted of 28 pos-
sible combinations of operands ranging from 2 to 9 in each operation (i.e., problems 
ranging from 2×9 to 8×9 in multiplication or 2+9 to 8+9 in addition). Ties (e.g., 3×3 
or 3+3) were excluded due to their uniqueness. Consequently, there were 28 problems 
in each operation, and each problem was repeated 4 times, resulting in 112 trials in 
each operation.  

 

Fig. 1. Schematic depiction of a trial  

Previous research has shown strong evidence of interference among arithmetic op-
erations when subjects had to switch among them. To reduce such interference, addi-
tion problems and multiplication problems were presented in separate blocks. Such 
repetitions of a small number of arithmetic problems in each block would result in the 
use of different cognitive strategies in solving the problems (e.g., calculation at the 
beginning and memorization for the repeated problems), and the number storage task 
could serve as the control condition in each block, with all operand combinations in 
arithmetic operations also used for the storage condition. There are two blocks for 
each operation (additions and multiplications). Problems were randomly presented 
within a block, with the constraint that consecutive problems did not have a common 
operand or the same solution. 

2.3 EEG Recording and Preprocessing  

The EEG data were recorded by a 60-channel Neuroscan using the international 10-20 
system with sampling rate 1000 Hz. Reference electrodes were located at the bilateral 
mastoids of subjects, and electro-oculographic (EOG) signals were simultaneously 
recorded by four surface electrodes to monitor ocular movements and eye blinks.  
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Only the trials with correct response were kept for the further analysis. Prior to the 
calculation of the spatial filters, all EEG channels were filtered with a pass-band be-
tween 8–13Hz. Alpha band has been chosen because alpha band ERD has been an 
important indicator of procedural strategy. The focus has been put on the interval of 
1600ms since the presentation of the operands, i.e., the production of the results. Fea-
tures were extracted using sliding windows, each of which consisted of 1000 samples, 
representing 1s of EEG data. Sliding window positions were incremented by 100 
samples, each window overlapping the previous by 900 samples.  

2.4 Feature Extraction Using CSP 

The common spatial pattern (CSP) algorithm is highly successful in constructing spa-
tial filters for detecting ERD/ERS effects, especially in BCI [7]. Given two distribu-
tions in a high-dimensional space, the CSP algorithm finds directions (i.e., spatial 
filters) that maximize the variance for one class and at the same time minimize the 
variance for the other class. The method used to design such spatial filters is based on 
the simultaneous diagonalization of two covariance matrices [9]. As a result the CSP 
algorithm outputs a decomposition matrix and a vector of corresponding eigenvalues. 
With the projection matrix R (C is the number of channels), the decomposi-
tion (mapping) of a trial R  (N is the number of samples per channel) is  
given as 

 T    (1) 

The interpretation of  is two-fold: each column of  is a stationary spatial filter, 
whereas each column  of the matrix  T can be seen as a spatial pattern, 
i.e., the time-invariant EEG source distribution vector.  

The features used for classification can be obtained by decomposing (filtering) the 
EEG according to (1). Variance is calculated for each of the CSP channels (band 
power) and the logarithm is applied to yield a feature vector for each sample point as 
follows: 

 ƒ log ∑   (2) 

The signals (p = 1,…, 2m), which maximize the difference of variance of class 1 
versus class 2, are the m first rows and m last rows of  . In practice m is usually set 
to 3, i.e., three eigenvectors from both ends. In this study, a projection matrix is gen-
erated at each time point, and a linear discriminant analysis (LDA) classifier is used to 
find a linear separation between the two arithmetic operations. For proper estimation 
of the classification accuracy, the dataset of each subject is divided into a training set 
and a testing set. This training/testing procedure is repeated 10 times with different 
random partitions into training and testing sets (i.e., 10-fold cross-validation). 
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2.5 Neurophysiological Outcome – Visualization of Dissociation 

It is assumed in the current neurophysiological models that the alpha amplitude is 
inversely related to the activated cortical neuronal populations, and the alpha ERD 
can be regarded as a correlate of cortical activation [10]. Thus the first column of the 
CSP pattern matrix  T , i.e., the vector which gives maximum ERD of 
addition against multiplication, has been used to visualize the dissociation between 
the two difference operations. 

3 Results and Discussions 

The accuracy in classifying addition and multiplication operations using CSP features 
is shown in Fig. 2. The accuracy has reached 0.8 for all subjects (above 0.9 for S1 and 
S3) except for S4 (above 0.7) across the duration of interest. This indicates that the 
CSP features are good at identifying the arithmetic strategies used in addition and 
multiplication. To further explore from where such divergence originates and elabo-
rate the development of the dissociation over time, the first pattern,  , at a certain 
time point from each subject, which describes the most influential presumed sources 
of the dissociation, is displayed in Fig. 3. Since the duration of interest is constituted 
of converting the stimuli into appropriate internal codes and retrieving or calculating 
the answer (reporting the answer is omitted due to the delayed verification paradigm), 
the two stages are discussed separately. 

 

  

Fig. 2. Accuracy curve of the classification between the two operations. The x-axis represents 
the time interval since the presentation of the operands. The 1s segment before each time point 
has been used for feature extraction. 
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S1 S2 S3 S4 S5 S6 

  

  

  

  

  

  

  

Fig. 3. The visualization of the CSP patterns at seven time points (at 1s, 1.1s, 1.2s, 1.3s, 1.4s, 
1.5s and 1.6s since the presentation of the operands). The 1s segment before each time point 
has been used for feature extraction.  

3.1 Focus on the Parieto-Occipital Cortex  

Regarding the neurophysiological outcome, the presumed sources for all subjects, ex-
cept for subjects S5 and S6, disclose the divergence between additions and multiplica-
tions in all cortical areas, with a pronounced focus on the parieto-occipital cortex at an 
earlier stage (the first 4 time points), although the specific location is slightly varied 
across the individuals. The profile is consistent with the one established in the previous 
studies [6, 11] which explored the divergence between procedural problems and re-
trieval problems (but not multiplication vs. addition). The dissimilarity primarily lies in 



 CSP-Based EEG Analysis on Dissociated Brain Organization 137 

the laterality, with the latter characterized with bilateral parieto-occipital patterns.  In 
view of the group analysis implemented in the previous studies, the average across 
individuals could result in the obscureness of the individual variability in brain activa-
tion areas. However, the subjects in this paper demonstrated different laterality. Higher 
alpha ERD may reflect the higher engagement of task-related cortical resources, i.e., 
the parieto-occipital cortex in the current case. The topography focus could be natural-
ly associated with the intraparietal sulcus (IPS) , which is systematically activated 
whenever numbers are manipulated, and with increasing activation as the task puts 
greater emphasis on quantity processing [12]. To further inspect the earlier stage of 
subjects S5 and S6, a smaller time window with 450ms length was employed, which 
comprised of at least 3 cycles of alpha band signal. This is in considerations of the 
individual variability in the calculation speed, and the accuracy and the patterns are 
shown in Fig. 4. With a smaller time window, the pattern demonstrated a similar 
parieto-occipital pattern as other subjects. Brain activation in 1 second time window 
could probably involve the frontal cortex, provided that the cognition performance of 
the subject has a strong reliance on executive processes and working memory at calcu-
lation stage. The dissociation pattern on parieto-occipital cortex coincides with the 
encoding-complex model [5],  which posits the number representation depends on the 
context, e.g., verbal code for memory retrieval of arithmetic facts and the analogue 
magnitude code for numerical representation.  

 

 
 

 
 

Fig. 4. Accuracy curve and the visualization of the CSP patterns at the first 4 time points of S5 
and S6, with 450ms time window used for feature extraction 

At the later stage (the last 3 time points), the brain activation began to diverge 
among the four subjects who exhibited the similar focus at the earlier stage. While 
two subjects (S3 and S4) preserved the former pattern, the other two subjects (S1 and 
S2) demonstrated a shift from the parietal cortex to the fronto-parietal region. The 
pattern for S3 and S4 indicated the parietal cortex was consistently involved through-
out the calculation procedure of addition.  
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3.2 Engagement of the Fronto-Parietal Network 

In spite of the high classification accuracy, the pattern in subjects S1, S2, S5 and S6 is 
divergent from the other two subjects at the later stage, with a focus on fronto-parietal 
network. Neuroimaging studies have corroborated that contrasted with memory re-
trieval procedural strategies reliably activated fronto-parietal regions. Then the issue 
arises with regard to why the dissociation between the two operations could originate, 
exclusively from IPS (S3, S4) or earlier from IPS and later from fronto-parietal re-
gions (S1, S2, S5 and S6).  Fmri studies have revealed that the recruitment of parietal 
brain in arithmetic problem solving dynamically changes as a function of training and 
development. With human brain development and the acquisition of linguistic compe-
tencies, there is increasing recruitment of the parietal cortex during calculation, cou-
pled with reduction of activity in bilateral regions of the frontal cortex [12]. The acti-
vation of the fronto-parietal cortex (for S1, 2 and 5) indicated a stronger demand for 
cognition functions such as executive processes and working memory while solving 
addition. The differential degree of expertise may lead to the differential extent of 
parietal specialization [13].   

4 Conclusion 

The present high-resolution EEG study shows the CSP algorithm is able to capture 
different strategies involved in solving two operations which are learned by different 
strategies in childhood. Through the alpha band ERD analysis, the findings in this 
paper suggest that the dissociation between single-digit addition and multiplication 
indeed exists, and originations develop over the different stages of mental arithmetic. 
The dissociation originates differently across subjects, which is probably related with 
the individual trajectory of learning and developmental processes leading to the dif-
ferential degree of expertise. The EEG analysis based on the CSP algorithm creates an 
opportunity for elaborating the brain activation dissociation at different stages at indi-
vidual level, regardless of individual variability. Future research could further explore 
whether such different engagement correlates with mathematical capability. 
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Abstract. Fully probabilistic design of decision strategies (FPD)
extends Bayesian dynamic decision making. The FPD specifies the deci-
sion aim via so-called ideal - a probability density, which assigns high
probability values to the desirable behaviours and low values to undesir-
able ones. The optimal decision strategy minimises the Kullback-Leibler
divergence of the probability density describing the closed-loop behaviour
to this ideal. In spite of the availability of explicit minimisers in the corre-
sponding dynamic programming, it suffers from the curse of dimension-
ality connected with complexity of the value function. Recently proposed
a lazy FPD tailors lazy learning, which builds a local model around the
current behaviour, to estimation of the closed-loop model with the opti-
mal strategy. This paper adds a theoretical support to the lazy FPD and
outlines its further improvement.

Keywords: Decision making · Lazy learning · Bayesian learning · Local
model

1 Introduction

Adecisionmaker (artificial or human) formswith its environment a closeddecision-
making (DM) loop and aims to influence the closed-loop behaviour by a sequence
of its actions. The behaviour is characterised by a collection of observed, selected
and considered variables. The decision maker can only use incomplete knowledge
and faces random dynamic changes of the environment. DM understood in this
way is wide spread and covers stochastic and adaptive control, fault detection as
well as inference tasks like estimation, filtering, prediction, classification, etc. The
mentionedDMimportance andwidthhave naturally stimulated a search forwidely
applicable normative DM theories. A long-term development has singled out the
Bayesian DM theory [3,4,9,29] as the most promising candidate.

The Bayesian DM provides well-justified solutions of DM tasks but the “curse
of dimensionality” [1] limits its applicability and approximations are mostly
inevitable. Approximate non-linear estimation and filtering [7,8,27,30] and
approximate dynamic programming [4,31,34] are thus unavoidable, permanently-
evolving, complements of the basic DM theory. Practically successful techniques
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 140–149, 2014.
DOI: 10.1007/978-3-319-12436-0 16
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mostly rely on local approximations around the current realisation of the
behaviour. This applies to learning, with lazy learning being its typical represen-
tative [5,20], to adaptive control [13,23] and other techniques like case-based rea-
soning [10]. Their success or failure strongly depends on a proper specification of
the neighbourhood of the current behaviour. The neighbourhood must be narrow
to allow a simple and rich modelling containing relevant information learnt within
the closed DM loop. To our best knowledge, no established methodology compa-
rable in the width to the underlying DM theory exists. Mostly they either support
a subset of DM problems or use a trial and error method.

Fully probabilistic design (FPD) of DM strategies is an extension of the
Bayesian DM [12,16,17]1 describes the closed-loop behaviour by a joint proba-
bility density (pd) of the involved variables, exactly as the Bayesian DM does. It,
however, expresses the DM aims via a decision-maker-adopted ideal pd quanti-
fying desirability of behaviours. The strategy design then reduces to a minimisa-
tion of the Kullback-Leibler divergence (KLD, [19]) of the involved pds over the
optional strategies. The FPD promises simpler approximations of the unfeasible
strategy design as it provides an explicit minimiser in dynamic programming.
The rare attempts, e.g. [14], only partially exploited the potential offered by this
feature. They are still too much of ad hoc nature and cumbersome. A substan-
tial progress towards an approximate FPD has been recently made, [22]. The
proposed lazy FPD uses the current ideal pd for weighting the past data records
when learning a local model of the optimally closed loop. This treatment over-
comes weaknesses of the lazy learning, which: a) serves well to prediction but
rarely to dynamic DM; b) is sensitive to a measure quantifying the proximity
of behaviours, and c) relies on availability of data records close enough to the
current one. The present paper adds a theoretical insight into the technique and
improves the lazy FPD using Sanov-type analysis [28]. Section 2 recalls the lazy
FPD and Section 3 formulates the addressed problems. Section 4 solves them.
Section 5 contains illustrative example and Section 6 offers concluding remarks.

Throughout, x is a set of x-values; all sets are subsets of finite-dimensional
spaces; S, O, . . . are mappings; x ∈ x denotes a possible realisation of a random
variable X; x ∈ x is a specific realisation of X; probability density (pd) is Radon-
Nikodým derivative with respect to a measure d•; pds having different identifiers
in arguments are taken as different; τ, t ∈ t ≡ {1, . . . , T} label discrete time;
xn

m = (xt)n
t=m and xn = xn

0 describe finite sequences.

2 Lazy FPD

The lazy FPD selects a decision strategy, which makes a probabilistic description
of the closed decision loop close to a pre-specified closed-loop ideal. Instead
of the traditional learning of an environment model followed by the strategy
optimisation, the lazy FPD uses the currently observed data to estimate, which
of simple parametric models provides the closed-loop model near the given ideal.
1 Re-invented in [33], studied in control [11] and used in brain research [32].
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The designed strategy is then a marginal of the found closed-loop model. The
next text formalises this.

The inspected DM problem deals with sequences of possible realisations xT of
random environment responses xτ ∈ xτ , t ∈ t. The realised sequence of responses
xT reacts on the realisation aT of actions generated by a randomised strategy,
Sτ : aτ−1, xτ−1 → aτ , τ ∈ t. The action, aτ , and the environment response, xτ ,
forms the data, dτ , observable at time τ ∈ t. Pds ST ≡ (St(at|at−1, xt−1))T

τ=1 =
(Sτ (aτ |dτ−1))T

τ=1 describe the strategy. The individual pds in the sequence ST

are decision rules forming the strategy.
Let us consider the current time t ∈ t delimits the past (when data sequence

dt−1 was observed) and the future, which includes the current inspected DM
stage. The current time splits behaviour and all involved pds in their past and
future parts. The data considered in the closed DM loop are samples from a
closed-loop-describing pd CT =

∏T
τ=1 Cτ (dτ |dτ−1). In the inspected stage, the

past and the future closed-loop models are distinguished. The future ideal closed-
loop model, given by the joint pd

ITt = It
(
dT

t |dt−1
)

=
T∏

τ=t

It(dτ |dt−1, dτ−1
t ), t ∈ t, (1)

quantifies the DM aim. Its factors It(dτ |dτ−1) for τ ≥ t may differ from the
past ideal factors Iτ for τ < t. Notice that the behaviour evolution within the
planning periods starts at the realised dt−1. The future closed-loop model CT

t =
Ct

(
dT

t |dt−1
)

describes the DM loop formed by the environment and the future
strategy ST

t . The strategy making CT
t close to the future ideal pd ITt = It(dT

t |dt−1)
(1) is searched for. The lazy FPD uses: i) the observed data realisations dt−1; ii)
the given ideal pd (1); iii) a class of parametric models

Mt

(
dT

t |dt−1, θ
)

=
T∏

τ=t

Mt(dτ |dt−1, dτ−1
t , θ), θ ∈ θ, (2)

serving for extrapolation of the past realised closed-loop behaviour dt−1. Note
that the parametric closed-loop models (2) can be simple as the future closed-
loop model Ct(dT

t |dt−1) has to be (approximately) valid only for the behaviours
prolonging the past dt−1.
Design concept of the lazy FPD : The lazy FPD uses the data realisation for
assigning such a posterior pd P(θ|dt−1) to respective parameters θ ∈ θ in (2) so
that the model Ct(dT

t |dt−1) =
∏T

τ=t Ct(dτ |dτ−1) describes the closed loop with
the desired strategy. Its future-describing factors are predictors

Ct(dτ |dt−1, dτ−1
t ) ≡

∫

θ

Mt(dτ |dt−1, dτ−1
t , θ)P(θ|dt−1) dθ (3)

constructed from the parametric model (2) and the posterior pd P(θ|dt−1). The
pd St

(
at|dt−1

)
=

∫
x

Ct

(
dt|dt−1

)
dxt gained from the predictor (3) is the current
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estimate of the properly tuned decision rule. The action at is sampled from it
and the response xt is observed.

The randomised strategy arising from the lazy FPD cares about the explo-
ration conditioning any successful learning. For a well-peaked P

(
θ|dt−1

)
, the

predictors (3) can be approximated by plug in a point estimate of θ into the
models Mt

(
dτ |dτ−1, θ

)
(2).

Neither the local model of the environment working in the closed loop nor
the future strategy optimal with respect to the future ideal are known. Thus, the
parameters θ ∈ θ pointing to the models (2), which guarantee the closeness of
the future closed-loop model (3) to the given future ideal pd (1), are unknown.
As such, they should be learned in the Bayesian way. The already observed data
realisations dt−1, however, do not origin from the closed loop tuned with respect
to the ideal pd ITt (1). The lazy FPD faces this serious obstacle by learning the
unknown parameter θ ∈ θ via the weighted Bayes rule. It maps a prior pd P(θ)
on the posterior pd, ∀θ ∈ θ, as follows

P
(
θ|dt−1

) ∝ P(θ)
t−1∏

τ=1

M
Wt(d

τ )
t (dτ |dτ−1, θ) (4)

Wt

(
dτ

) ∝ It(dτ |dτ−1) and ∝ denotes proportionality.

After using at taken from St(at|dt−1) =
∫

xt

∫
θ

Mt(dt|dt−1)P(θ|dt−1) dθ dxt the
response xt is observed and the learning step (4) is repeated for time t + 1.

3 Questions Connected with the Lazy FPD

The weights Wt(dτ ) chosen in (4) are intuitively plausible. The weight is the
higher the more the realised subsequence dτ fits the ideal factor It(dτ |dτ−1)
to which closed-loop models (2) with highly probable parameter values should
approach. Promising experimental results, partially reported in [22], support this
intuition.

The intuition leaves aside the natural questions: i) Is the use of the weights
Wt in (4) the proper and, ideally, only one? ii) How to normalise the weights
(4) to get the adequately peaked posterior pd P(θ|dt−1)? iii) What happens if
the processed data realisations indeed come from the properly tuned closed loop
describable by the parametric model (2), i.e. what is the asymptotic behaviour
under time-invariant circumstances?

The formal inspection of the weighted Bayes rule (4) with a novel choice of
the weights presented in the next section forms the paper core and answers the
questions above.

4 Answers to the Formulated Questions

The following normalisation of the weights (4) is inspected

Wt(dτ ) =
It(dτ |dτ−1)
Cτ (dτ |dτ−1)

, (5)
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where Cτ (dτ |dτ−1) is the pd describing the realisations of the closed-loop
behaviour for τ ≤ t − 1. It can be obtained via the standard Bayesian learn-
ing using either a specific parametric model or the model (2). The latter option
needs a sort of forgetting [18] coping with the approximate nature of the simple
models (2), [15]. For a time-invariant ideal pd, it can alternatively be approxi-
mated by the predictors (3) obtained when the planning started at times τ < t.

The normalisation (5) has resulted from the Sanov-type analysis [28] of the
posterior pd. It is extended here so that it is applicable to the posterior pd
obtained in the closed DM loop with the weighted Bayes rule (4). Its idea is
often masked by the focus on difficult but technical problems. The common
essence is, however, simple. The posterior pd is re-written as

P(θ|dt−1) ∝ exp[−(t − 1) × sample mean of a data function depending on θ]

and a law of large number, ergodic arguments or martingale theory [21] are used
to show that this sample mean converges to a function bounded from below.
Then, it is easy to see that the posterior pd P(θ|dt−1) may concentrate only on
θ ∈ θ minimising this function.

The next proposition formalises this way assuming that the time moment
t ∈ t is fixed and the past data dt−1 are described by the pd

∏t−1
τ=1 Cτ (dτ |dτ−1).

Proposition 1 (On the Weighted Bayesian Learning). Let

ln
( It(dτ |dτ−1)

Mt(dτ |dτ−1, θ)

)
, τ < t, (6)

be essentially bounded for all θ ∈ θ. Then, the weighted Bayes rule (4) using the
weights (5) provides for t → ∞ the same posterior pd as that obtained by the
standard Bayes rule applied to data sampled from the closed-loop described by
the ideal pd It(dτ |dτ−1).

Proof. For any θ ∈ θ, the posterior pd obtained from (4) can be given the form

P(θ|dt−1) ∝ P(θ) exp
[

− (t − 1)

the sample mean Ωt−1(d
t−1,θ)︷ ︸︸ ︷

1

t − 1

t−1∑
τ=1

Wt(d
τ ) ln

( It(dτ |dτ−1)

Mt(dτ |dτ−1, θ)

)

︸ ︷︷ ︸
Lτ

(
dτ ,θ
)

]
, (7)

exploiting the fact that the proportionality ∝ in (7) defines the same posterior
pd even when the right-hand side is multiplied by any positive θ-independent
factor. The following innovations Nτ are zero-mean, uncorrelated and essentially
bounded due to the assumed bounded-ness of (6), [24],
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Nτ (dτ , dτ−1, θ) ≡ Eτ

[
Lτ |dτ−1]− Lτ

(
dτ , dτ−1, θ

)
with

Eτ

[
Lτ |dτ−1] ≡

∫

dτ

Lτ

(
dτ , dτ−1, θ

)
Cτ (dτ |dτ−1) ddτ

=

∫

dτ

It(dτ |dτ−1) ln
( It(dτ |dτ−1)

Mt(dτ |dτ−1, θ)

)
ddτ

︸ ︷︷ ︸
Hτ (dτ−1,θ)

≥ 0, due to the Jensen inequality, [26].

The decomposition exists due to the essential bounded-ness of Hτ (dτ−1, θ) and
splits Ωt−1(dt−1, θ) into the mean of non-negative terms Hτ (dτ−1, θ) and sample
average of innovations Nτ (dτ , θ), τ ≤ t − 1, which almost surely converges for
t → ∞ to their zero expectation [21]. Thus, the support of the posterior pd
concentrates (quickly due to the factor −(t − 1)) on minimisers θP ∈ θ of 1/(t −
1)

∑t−1
τ=1 Hτ (dτ−1, θ): the weighted learning singles out the parametric models as

if the data dt−1 was sampled from the ideally tuned closed loop described by the
pd

∏t−1
τ=1 It(dτ |dτ−1) and processed by the usual Bayes rule [2].

Corollary 1 (Asymptotic Optimality of the Lazy FPD). Let the function
(6) be essentially bounded. Then, the predictor of the closed-loop behaviour (3),
obtained via the weighted Bayes rule (4) with the weights (5), asymptotically
almost surely fulfils the inequality, ∀θ ∈ θ:
∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Ct(dt|dt−1)

)
ddt ≤

∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θ)

)
ddt. (8)

Proof. According to Proposition 1, the support θP ⊂ θ of P(θ|dt−1) asymptoti-
cally concentrates on minimisers θP ∈ θ of

∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θ)

)
ddt.

Thus, for any θP ∈ θP and any θ ∈ θ
∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θP)

)
ddt ≤

∫

dt

It(dt|dt−1) ln
( It(dt|dt−1)

Mt(dt|dt−1, θ)

)
ddt.

Multiplying this inequality by the posterior pd P(θP|dt−1) > 0, integrating over
its support θP, using the Jensen inequality and taking into account that by
definition P(θP|dt−1) assigns unit probability to θP give the claim (8).

Even when the function (6) is essentially bounded, the values of Wτ (dτ ) can
be too large. Thus, it is reasonable to limit them from above by W ∈ (1,∞).
Corollary 1 implies that it is always possible to select such W that the limitation
is almost surely inactive. Then, the asymptotic results hold even when using it.

5 Illustrative Example

The example illustrates that the proposed weighting indeed improves properties
of the lazy FPD. A Markov chain with two states x ∈ x ≡ {1, 2} and four
actions a ∈ a ≡ {1, 2, 3, 4} is considered. The ideal pd expressing preferability
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Table 1. The simulated system

F(xt|at, xt−1) at = 1 at = 2 at = 3 at = 4

F(xt = 1|at, xt−1 = 1) 0.9975 0.0196 0.0196 0.9901
F(xt = 2|at, xt−1 = 1) 0.0025 0.9804 0.9804 0.0099
F(xt = 1|at, xt−1 = 2) 0.0196 0.9901 0.9967 0.0196
F(xt = 2|at, xt−1 = 2) 0.9804 0.0099 0.0033 0.9804

Table 2. The decision rule found

S(at|xt−1) xt−1 = 1 xt−1 = 2

S(at = 1|xt−1) 0.4607 0.1148
S(at = 2|xt−1) 0.0292 0.3241
S(at = 3|xt−1) 0.0293 0.4463
S(at = 3|xt−1) 0.4808 0.1148

of the state value 1 was selected. The simulated system in given in Table 1. The
proposed weighting (5), bounded from above by the value W = 3, was compared
with the standard solution (called un-normalised), which takes the weight W
in (4) equal to the ideal pd It(xτ , aτ |xτ−1). The designed strategy is given in
Table 2.

Fig. 1 provides samples of simulated closed-loop behaviour when both weight-
ing variants were applied to the same realisation of the underlying random gen-
erator. Fig. 2 provides the corresponding time course of weights. The strategy
with the proposed weighting (5) reaches the desirable state xτ = 1 in 91% cases
while 65% of units occurred when using un-normalised ideal pd as the weight.

The limited simulation experience: i) supports the theoretical arguments; ii)
shows that the proposed weighting tends to provide (often significant) improve-
ment; iii) indicates that the proposed weighting substantially speeds up the
learning of the optimal decision rule while the presented significant difference
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Fig. 1. Simulated behaviour: normalised weight (left), un-normalised weight (right)
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Fig. 2. Time course of the weight: normalised (left) and un-normalised (right)

in quality diminishes in long run; iv) confirms that the used approximation of
the past closed-loop model influences visibly the result quality; v) reveals that
very high values of the weight Wτ may occur due to the “practical” violation
of assumed essential boundedness; vi) shows that the learning of the closed-loop
model with a data-dependent forgetting behaves well.

6 Concluding Remarks

The weights are used properly and no other correct way seems to exist. The
proposed normalisation of the weights is conceptually unique – the unambiguous
approximate choice of the numerator in (5) stays open. The asymptotics, when
the time-invariance makes its inspection meaningful, is the correct one: when the
ideal situation It(dτ |dτ−1) = Cτ (dτ |dτ−1) occurs, the weight Wt = 1 is reached.

Assumption (6) on the logarithmic ratio excludes parametric models that
assign zero probability to data realisations, which are accepted as possible by
the selected ideal pd. It can be weakened to the requirement on boundedness of
the second moments. Algorithmically, it is connected with the upper bound W
on weights Wt. Sensitivity to specific values of W seems to be low.

If almost no past data can be interpreted as coming from the optimally tuned
closed loop, then Wτ << 1, τ ≤ t − 1, and the posterior pd becomes flat. This
makes the one-step-ahead predictor of the closed-loop behaviour (3) flat, too.
This situation enhances the explorative nature of actions generated from it, as
desirable.

The choice (5) resembles the trick well-known in Monte Carlo evaluations
when a feasible “proposal” pd is used [6]. The past closed-loop model plays
its role. The analogy is, however, mechanical and seems to bring no tangible
consequences.
Open problems: i) A decision, which of mentioned approximations of Cτ (dτ |dτ−1)
is better is to be made or an alternative option found. ii) Closed-loop stability is
the major unsolved issue – the approximation of the ideal dynamics It(dt|dt−1) by



148 M. Kárný et al.

the closed-loop model Ct(dt|dt−1) does not guarantee it; iii)The result guarantees
that the one-step-ahead predictor of the closed-loop behaviour approximates the
one-step-ahead ideal pd. In truly dynamic cases, the receding horizon strategy [25]
can be immediately designed: it suffices to handle blocks od decisions. Other, more
efficient ways of coping with DM dynamics have to be developed.
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Kárný, M. (eds.) Computer-Intensive Methods in Control and Signal Processing,
pp. 181–193. Birkhäuser (1997)
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Abstract. Radial basis function (RBF) based-identification proportional–
integral–derivative (PID) can automatically adjust the parameters of PID con-
troller with strong self-organization, self-learning and self-adaptive ability. 
However, the compound controller has complex weight updating algorithm and 
large calculation. Memristor, applied well to the investigation of storage circuit 
and artificial intelligence, is a nonlinear element with memory function. Thus, it 
can be introduced to RBF neural network as electronic synapse to save and up-
date the synaptic weights. This paper builds a model of memristive RBF-PID 
(MRBF-PID), and proposes the updating algorithm of weight upon 
memristance. The proposed MRBF-PID is used for the control of a nonlinear 
system. Its controlling effect is showed by numerical simulation experiment.  

Keywords: Memristor · Radial basis function neural network · PID controller · 
Simulink model 

1 Introduction 

Based on the completeness of circuit, Chua proposed theoretically the notion of 
memristor in 1971 [1]. In 2008, a team at HP Labs announced that the physical model 
of memristor had been realized, which verified the existence of memristor [2-3], and 
attracted major research fields’ attention. By reason of memristor’s non-volatile 
memristive behavior and dynamic change resistance characteristic, we can primely 
introduce it into, for example, storage circuit, neural network and pattern recognition 
etc. Memristor has nanoscale size, which can greatly simplify the circuit by being 
applied in the large scale integrated circuit. 

PID controller is the primary means of control in industrial control systems. In 
traditional PID controller, once the parameters are identified in the process, they can 
not be adjusted any more; therefore, systems can not achieve perfect controlling 
effect. Radial basis function neural network (RBF) is a local approximation network. 
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It has many excellent properties, such as fast convergence, strong generalization abil-
ity and simple structure. It can approximate continuous functions with arbitrary preci-
sion. RBF-PID is a combination of radial basis function neural network and the  
traditional PID controller. It boasts not only the ability to dynamically control the 
parameters of PID system, but also the ability to optimize the system parameters and 
improve the controlling effect through neural networks’ self-learning ability.  

This paper is organized as follows. Section 2 gives a brief overview on the PID 
controller based on RBF network. Section 3 introduces HP Memristor Model. 
Memristive RBF-PID Model is proposed in Section 4. Numerical simulation re-
sults are presented in Section 5. Finally, Section 6 concludes the work. 

2 PID Controller Based on RBF Network 

2.1 RBF Network 

RBF network was proposed in 1988 [5], which possessed good generalization ability 
and simple network structure. We supposed that RBF network was provided with n 
input nodes, M hidden layer nodes and one output node. The structure is shown in 
Fig. 1. 
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Fig. 1. RBF neural network structure 

Generally we select the appropriate hidden layer activation function (Radial Basis 
Function, namely RBF) in accordance with the need. Gaussian function is used in this 
paper.  

By the structure of RBF network, the input vector of the first layer is X=[x1, x2,…, 
xn]

T. The output vector of hidden layer, namely Radial basis vector, is H=[h1,h2,…, 
hm]T, where hj is Gaussian function: 

2

2
exp( ), ( 1,2,..., )

2
j

j
j

x C
h j m

b

−
= − =                      (1) 

In above equation, m represents the number of the hidden layer neuron. 
Cj=[cj1,cj2,…,cji,…,cjn]

T,(i=1,2,…,n) denotes the center vector of jth neuron. bj denotes 
the basis width of jth neuron’s RBF, which determines the width of basis function 
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around the center. ||X-Cj|| is the norm of vector X-Cj, denoting the distance between X 
and Cj. 

Assuming that the weight vector of hidden layer to output layer is 
W=[w1,w2,..,wm]T. Since the mapping from hidden layer to output layer is linear, then 
the network output is formed by a linearly weighted sum of the number of basic func-
tions in the hidden layer. 

0
( )

mT
m i iy k W H w h= =                           (2) 

Performance index function of RBF neural network is : 

21
( ( ) ( ))

2 mJ y k y k= −                             (3) 

In order to minimizing the error objective function between desired output of RBF 
network and actual output, we use gradient descent to adjust system parameters. Itera-
tive algorithm is as follows: 

 

[ ( ) ( )]

( ) ( 1) [ ( 1) ( 2)]

j m j
j

j j j j j

J
w y k y k h

w

w k w k w w k w kη α

∂Δ = − = − ∂
 = − + Δ + − − −

               (4) 
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b b

b k b k b b k b kη α

 −∂Δ = − = −
∂


= − + Δ + − − −

                   (5) 
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[ ( ) ( )]

( ) ( 1) [ ( 1) ( 2)]

i ji
ji m j

ji j

ji ji ji ji ji

x cJ
c y k y k w

c b

c k c k c c k c kη α

− ∂Δ = − = − ∂
 = − + Δ + − − −

                (6) 

In that, η (0,1) is learning rate. α (0,1) is momentum factor. Jacobian matrix algo-
rithm, namely the sensitivity information of object’s output towards control input, is: 

1

21

( )( )

( ) ( )

m jim
j jj

j

c xy ky k
w h

u k u k b=

−∂∂ ≈ =
∂Δ ∂Δ                        (7) 

Where x1=▽u(k). 

2.2 RBF-PID 

PID controller based on RBF neural network is shown in Fig. 2. 
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Fig. 2. RBF-PID controller 

In the PID controller, its parameters are auto-updated by adjusting the weights of 
the neural network itself. In order to obtain accurate and optimal performance indica-
tors, we adopt incremental PID controller in this paper. Its control error is: 

( ) ( ) ( )error k rin k y k= −                             (8) 

The three inputs of RBF-PID are: 

(1) ( ) ( 1)xc error k error k= − −                            (9) 

(2) ( )xc error k=                                (10) 

(3) ( ) 2 ( 1) ( 2)xc error k error k error k= − − + −                 (11) 

The algorithm of Incremental PID controller is: 

 ( ) ( 1) (1)( (2) (3)p i du k u k k xc k xc k xc= − + + +                 (12) 

The standard adjusting neural network is: 

21
( ) ( )

2
E k error k=                               (13) 

kp ,ki, kd are adjusted online in accordance with gradient descent in RBF-PID  
controller. 

( ) (1)
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p p p p
p p

i i i i
i i
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k y u k u

E E y u y
k error k xc

k y u k u

η η η

η η η

η η η

∂ ∂ ∂ ∂Δ ∂Δ = − = − = ∂ ∂ ∂Δ ∂ ∂Δ
 ∂ ∂ ∂ ∂Δ ∂Δ = − = − = ∂ ∂ ∂Δ ∂ ∂Δ
 ∂ ∂ ∂ ∂Δ ∂Δ = − = − =

∂ ∂ ∂Δ ∂ ∂Δ

          (14) 

In above equation, ηp , ηi and ηd denote the learning rate of proportional, integral and 
differential, respectively, and they are used to adjust  the three parameters of PID 
controller online by RBF neural network. 
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3 Memristive RBF-PID Model 

3.1 HP Memristor Model 

In 1971, Prof. Chua, according to completeness of the circuit theory, proposed the 
notion of memristor. In 2008, HP Labs has proposed the memristor model, in which 
impurity is linearly drifted. The model is realized by adding metal oxide (TiO2) be-
tween two metal electrodes, including doped layer (TiO2-x) and non-doped layer 
(TiO2), in which doped layer contains a part of oxygen vacancies and possesses lesser 
resistance, and non-doped layer is pure oxide and possesses larger resistance. Accord-
ing to the article [4], the charge-controlled memristor model with boundary conditions 
is as follow:  

1

1 2

2

, ( ( ) )

(0) ( ) , ( ( ) )

, ( ( ) )

off

on

R q t c

M R kq t c q t c

R q t c

<
= + ≤ <
 ≥

                    (15) 

where 

2

( )on off v onR R R
k

D

μ−
=                                  

          

    
1 2

(0) (0)
,off on

R R R R
c c

k k

− −
= =  

The details and the illustrate of parameters see [4]. 

3.2 Memristve Electronic Synapse 

Since memristor appeared, because of its continuous memory function, nanometer 
size and non-volatile property while power off, it is often applied in artificial intelli-
gence and memory circuit. Neural synapse, as the connection between neurons, needs 
to be modified and saves its weight constantly in the operational process of network. 
Due to the similarity between the memristor and synapse, memristive neural network 
is implemented by applying memristor as electronic synapse. The electronic synapse 
is introduced in RBF network in this paper. For RBF neural network, the update for-
mulas of weight w, center vector C and basic width b can all be expressed as follows: 

( ) ( 1)w k w k w= − + Δ                             (16) 

which denotes variation of the parameters in each iteration. 
It is known that charge-controlled memristor model has been shown as formula 

(15). Then we can obtain: 

1 2( ) ( 1) ( ), ( )M t M t kq t c q t c= − + ≤ ≤                    (17) 
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Imposing pulse voltage on memristor, whose amplitude is V and duration is t, we 
acquire the amount of charge flowing through it. 

( )
( )

v t
q t

M t

ΔΔ =                                 (18) 

Updated formula of memristance is: 

( 1) ( ) ( ) ( )
( )

v t
M t M t k M t M t

M t

Δ+ = + = + Δ                (19) 

While the memristor is used as electronic synapse, the state variable x is considered as 
synaptic weight in the precious research. Since x (0,1), the weight can only vary in 
the range of (0,1). In actual artificial neural networks, weight’s range is (-1, 1). There-
fore there are some defects when x is seen as weight. Memristance is as synaptic 
weight in this article by being linearly mapped in the range of (-1, 1). 

2 on off

on off off on

R R
W M

R R R R

+
= +

− −
                          (20) 

Because of  that Roff is far greater than Ron, the above equation is rewritten as: 

2
1

off

W M
R

≈ − +                              (21) 

Combining Eq. (21) and (19), the updated formula of weight in RBF neural net-
work based on memristor is as follows: 

2

4
( 1) ( )

1 ( )off

kv t
w t w t

w tR

Δ+ = −
−

                          (22) 

3.3 Memristive RBF-PID Controller 

In RBF neural network, the mapping from input layer to hidden layer is nonlinear, 
while the mapping from hidden to output layer is linear. According to the introduction 
in the second part, the argument of radial basis function network is Euclidean distance 
between input and neuron center vector. In order to facilitate memristor as electronic 
synapse, the Euclidean distance of input vector and weight vector from input layer  
to hidden is seen as argument of RBF network in this paper, namely the neuron’s 
center vectors are assigned to connecting line connected with input layer, which can 
make it convenience to adjust weight. What’s more, memristor is used inside hidden 
neuron to adjust basic width of RBF. Structure of memristive RBF network is as  
follows: 
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Fig. 3. Structure of memristive RBF network 

By combining the above memristive RBF neural network and PID, memristive 
RBF-PID is constituted. Each time the updated weights are mapped to memristance 
and saved, they are translated into change of memristance, and accumulation in  
the process of updating weight is accomplished. We can save computational quantity 
and reduce the computational complexity with this method.  

There are mainly PID control loop and memristive RBF (MRBF) neural network. 
The structure is same as fig. 2. Based on original RBF-PID, this article introduces 
memristor to RBF neural network to control PID system adaptively. In our model, 
MRBF identifies the PID system and obtains identifying information, which is ex-
ported to the PID control loop. The parameters of PID controller, i.e. Kp Ki and Kd, 
are regulated automatically with gradient descent.  

4 Numerical Simulation Results 

Nonlinear time-vary system is used as controlled object in this paper. The system 
formula is: 
 

( ) ( 1) ( 1)
( )

1 ( 1)

a k y k u k
y k

y k

− + −=
+ −

                          (23) 

 
0.1( ) 0.1(1 )ka k e−= −                              (24) 

 
The memristive parameters are set to: Ron=40, Roff=8000, D=10-8, μv=10-14, p=10. 

The desired system output is square yd(t)=0.5square(2πt), and y is actual output. The 
momentum factor of RBF network is α=0.05, and its learning efficiency is η=0.25. 
The initial center vector of hidden layer is 3×6 matrix with value 0.1, and its initial 
basic width is 6×1matrix with value 0.9, and the initialization of weights from hidden 
to output layer is 6×1matrix with value 0.1. The learning efficiency of proportional 
unit, integral unit and derivative unit in PID is initialized with ηp=0.15，ηi=0.15 and 
ηd=0.15, respectively. The results are shown. 
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           (a) the output of system               (b) chang of the parameters 

Fig. 4. The result of simulation 

In Fig. 4, The results indicate that MRBF-PID can reach steady state quickly and 
track input real-time in time-varying difference system compared with conventional 
PID controller. PID parameters of MRBF-PID adjust automatically with the change of 
system. When the iterations are 99, the system completes the training. However, the 
PID parameters of conventional PID controller are fixed with value 0.15 and it is not 
convergent.  

The above results show that the proposed MRBF-PID controller can realize the 
tracking control for system, and possesses fast response speed and good robustness. It 
can adjust PID parameters real-time in the process of running to reach perfect control 
effect. 

5 Conclusion and Discussion 

This paper reports the application of memristor into RBF-PID network as neural syn-
apse, realizing the weight’s preservation and accumulation in the network and the 
simulation of the related properties. This paper uses memristor mapping for weights 
of synapse, and realizes the positive and negative polarity of weight. It’s a novel at-
tempt in the field of memristive synapse. Memristor is a nanodevice which can sim-
plify circuit, increase the connection density of network, and reduce the physical size 
of a system in the aspect of hardware realization. Memristor also has important char-
acteristics, such as passive, non-volatile, dependence upon history. As synapse has 
similar characteristics, it’s reasonable to apply memristor in neural network as elec-
tronic synapse. 
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Abstract. This paper deals with the finite-time stability problem for
switched static neural networks with time-varying delay. Firstly, the con-
cept of finite-time stability is extended to switched static neural net-
works. Secondly, based on Lyapunov-like functional method, a sufficient
criterion is derived, which can guarantee the finite-time stability of the
considered systems. Moreover, the obtained conditions can be simplified
into linear matrix inequalities conditions for convenient use. Finally, a
numerical example is given to show the effectiveness of the proposed
results.

Keywords: Finite-time stability · Static neural networks · Switched
systems · Time-varying delay · Linear matrix inequalities

1 Introduction

According to whether neuron states (the external states of neurons) or local
fields states (the internal states of neurons) are selected as basic variables, neural
networks can be classified as static neural networks or local field neural networks
[1], and the two models are not always equivalent [2]. Actually, the static neural
networks have been widely used to solve various optimization problems, such
as some linear variational inequality problems. Compared with the extensive
investigation of the stability problem of local field neural networks, the static
neural networks have got less attention [3–9].

Considering the switched happened in neural networks, switched neural net-
works are proposed, and some results have been put forward on the stability
analysis of the switched neural networks [10,11]. Furthermore, the stability
and passivity analysis are considered for switched neural networks with time-
varying delay in [12,13], and the stability analysis is investigated for discrete-
time switched neural networks in [14–16]. The global exponential stability is
concerned for switched stochastic neural networks with time-varying delays in
[17]. The synchronization control is studied for switched neural networks with
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 159–166, 2014.
DOI: 10.1007/978-3-319-12436-0 18
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time delay in [18,19]. As well known, integration and communication delays are
unavoidably encountered in neural networks, then it is important and valuable
to study the switched neural networks with time delay.

In many practical applications, the dynamical behavior over a fixed finite
time interval is paid more attention for a system. For example, the property
that the state does not exceed a certain threshold in a finite time interval with
a given bound on the initial condition, which is corresponding to the finite-time
stability. Now, concepts of finite-time stability have been proposed for several
decades [20], and the definition of finite-time stability has been extended to the
definition of finite-time bounded by taking the presence of external disturbances
into account [21]. Most recently, several valuable results have been proposed
for the finite-time problems of neural networks. The finite-time boundedness
stability is studied for neural networks with parametric uncertainties in [22], and
for uncertain neural networks with Markovian jumps in [23,24]. The problem of
finite-time state estimation is investigated for neural networks with time-varying
delays in [25]. To the best of the authors’ knowledge, there is few work on the
finite-time stability of static neural networks.

Motivated by the above analysis, this paper considers finite-time stability of
the switched static neural networks (SSNNs) with time-varying delay. Firstly, the
concept of finite-time stability is extended to switched static neural networks.
Then, employing the proper model transformation and Lyapunov-like functional,
a sufficient condition is presented for the finite-time stability of switched static
neural networks.

2 Problem Formulation

Consider the following static neural networks with time-varying delay:

ẋ(t) = −Ax(t) + f(Wx(t − τ(t)) + J),
x(t) = ϕ(t), − τ ≤ t ≤ 0, (1)

where x(·) = [x1(·), x2(·), · · ·, xn(·)]T ∈ R
n is the neuron state vector, f(x(·)) =

[f1(x1(·)), f2(x2(·)), ···, fn(sn(·))]T ∈ R
n denotes the neuron activation function,

J = [j1, j2, ···, jn]T ∈ R
n is a constant input vector. A = diag{a1, a2, ···, an} ∈

R
n×n is a positive diagonal matrix, and W = [WT

1 , WT
2 , · · ·,WT

n ]T ∈ R
n×n is

the delayed connection weight matrix. τ(t) is a time-varying delay satisfying
0 ≤ τ(t) ≤ τ and τ̇(t) ≤ μ, ϕ(t)(−τ ≤ t ≤ 0) is the initial condition.

As in [12,13], we study the following switched static neural networks com-
posed of the system (1) as the individual subsystems:

ẋ(t) = −Aβx(t) + f(Wβx(t − τ(t)) + J),
x(t) = ϕ(t), − τ ≤ t ≤ 0. (2)

Where β is a switching signal, which is unknown a prior and takes its valued
in the finite set E = 1, 2, · · · , N . Throughout this paper, we assume:

Assumption 1. The each neuron activation function in system (2) is assumed
to be bounded and satisfy
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l−i ≤ fi(x) − fi(y)
x − y

≤ l+i , ∀x, y ∈ R, x �= y, i = 1, 2, · · ·, n, (3)

where l−i and l+i are some known constants. Define li = max{|l−i |, |l+i |}, and let
L = diag{l−1 , l−2 , · · · , l−n }, L = diag{l+1 , l+2 , · · · , l+n }, and L = diag{l1, l2, · · · , ln}.

Remark 1. Assume that Wβ is invertible and WβAβ = AβWβ holds, then (2) can
be easily transformed to the following local neural networks by y(t) = Wβx(t)+J .
However, in many application, the two models are not equivalent.

Under Assumption 1, there is an equilibrium x∗ of (2). For simplicity, let
z(·) = x(·) − x∗, then system (2) can be transformed into

ż(t) = −Aβz(t) + g(Wβz(t − τ(t))),
z(t) = ψ(t), − τ ≤ t ≤ 0. (4)

where z(·) = [z1(·), z2(·), ···, zn(·)]T is the state vector of the transformed system
(4), ψ(t) = ϕ(t) − x∗ is the initial condition, and the transformed neuron acti-
vation functions is g(Wkz(·)) = [g1(Wβ1z(·)), g2(Wβ2z(·)), · · · , gn(Wβnz(·))]T =
f(Wβz(·) + Wβx∗ + J) − f(Wβx∗ + J). It is clear that gi(·) satisfy:

l−i ≤ gi(x)
x

≤ l+i , ∀x ∈ R, x �= 0, i = 1, 2, · · ·, n. (5)

Based on the analysis above, we know that the stability analysis of system
(2) on equilibrium is changed into the zero stability problem of system (4). We
are now to introduce the notion of the finite-time stability for the system (4)
and an employed lemma in this paper.

Definition 1. Given a positive matrix R, three positive constants c1, c2, T with
c1 < c2, the switched static neural networks (4) is said to be finite-time stable
with respect to (c1, c2, T,R), if for any switched rule,

sup
θ∈[−τ,0]

zT (θ)Rz(θ) ≤ c1 =⇒ zT (t)Rz(t) < c2,∀t ∈ [0, T ].

Lemma 1. (The Jensen Inequality) For any constant matrix R = RT ≥ 0,
scalar τ > 0 and vector function x(·) : [−τ, 0] → R

n such that the following
integrals are well defined, then

− τ

∫ t

t−τ

xT (s)Rx(s)ds ≤ −
[ ∫ t

t−τ

x(s)ds

]T

R

[ ∫ t

t−τ

x(s)ds

]
. (6)

3 Main Results

In this section, we will present the finite-time stability criteria for the considered
SSNNs (4).
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Theorem 1. Under the Assumption 1, the SSNNs (4) is finite-time stable with
respect to (c1, c2, T,R), if there exists a scalar α > 0, matrices P > 0, Q >
0, T > 0, S > 0, and diagonal matrix U ≥ 0 such that the following inequalities
hold for k = 1, 2, · · · , N :

Ξk =

⎡

⎣
Γk
11 S Γk

13

∗ Γk
22 Γk

23

∗ ∗ Γk
33

⎤

⎦ < 0, (7)

eαT ϑc1
λmin(P̄ )

< c2, (8)

where

Γk
11 = −PAk − AkP + Q + WT

k LTLWk + τ2AkSAk − S − αP,

Γk
22 = −(1 − μeατ )Q − S − 2WT

k LULWk,

Γk
13 = −τ2AkS + P, Γk

23 = WT
k LU + WT

k LU,

Γ33 = τ2S − (1 − μeατ )T − 2U,

ϑ = λmax(P̄ ) + τeατλmax(Q̄) + τeατ max
k∈E

(λmax(T̄k))

+2τ3eατ max
k∈E

(λmax(S̄1
k) + λmax(S̄2

k)),

with P̄ = R− 1
2 PR− 1

2 , Q̄ = R− 1
2 QR− 1

2 , T̄k = R− 1
2 WT

k LTLWkR− 1
2 , S̄1

k =
R− 1

2 AkSAkR− 1
2 , and S̄2

k = R− 1
2 WT

k LSLWkR− 1
2 .

Proof. Firstly,we introducethe indicator functionξ(t) = [ξ1(t), ξ2(t), · · · , ξN (t)]T ,
where ξk(t) = 1(k = 1, 2, · · · , N) when the k-th subsystem is activated, otherwise,
it is zero. Then, the SSNNs (4) can be rewritten as

ż(t) =
N∑

k=1

ξk(t)[−Akz(t) + g(Wkz(t − τ(t))). (9)

Obviously, it follows that
∑N

k=1 ξk(t) = 1 under any switching rule. Now,
choose a Lyapunov-like functional candidate for system (9) as:

V (z(t)) = V1(t) + V2(t) + V3(t) + V4(t), (10)

where

V1(t) = zT (t)Pz(t), V2(t) =
∫ t

t−τ(t)

eα(t−s)zT (s)Qz(s)ds,

V3(t) = τ

∫ 0

−τ

∫ t

t+θ

eα(t−s)żT (s)Sż(s)dsdθ,

V4(t) =
N∑

k=1

ξk(t)
∫ t

t−τ(t)

eα(t−s)gT (Wkz(s))Tg(Wkz(s))ds.



Finite-Time Stability of Switched Static Neural Networks 163

Calculating the derivative of Vi(i = 1, 2, 3, 4) along the solution of system (9)
yields

V̇1(t) =
N∑

k=1

ξk(t){2zT (t)P [−Akz(t) + g(Wkz(t − τ(t)))]}, (11)

and

V̇2(t) ≤ αV2(t) + zT (t)Qz(t) − (1 − μeατ )zT (t − τ(t))Qz(t − τ(t)). (12)

Using Lemma 1, it can be deduced that

V̇3(t) ≤ αV3(t) + τ2
N∑

k=1

ξk(t){[−Akz(t) + g(Wkz(t − τ(t)))]T S[−Akz(t)

+g(Wkz(t − τ(t)))]} − [z(t) − z(t − τ(t))]T S[z(t) − z(t − τ(t))],(13)

and it follows that

V̇4(t) ≤ αV4(t) +
N∑

k=1

ξk(t){gT (Wkz(t))Tg(Wkz(t))

−(1 − μeατ )gT (Wkz(t − τ(t)))Tg(Wkz(t − τ(t))). (14)

From the inequality condition (5), we know that there exists a diagonally
matrix U ≥ 0 such that:

N∑

k=1

ξk(t)2[g(Wkz(t − τ(t))) − LWkz(t − τ(t))]T U

×[LWkz(t − τ(t)) − g(Wkz(t − τ(t)))] ≥ 0, (15)

and

gT (Wkz(t))Tg(Wkz(t)) ≤ zT (t)WT
k LTLWkz(t). (16)

Considering (11)-(16), then we can obtain

V̇ (z(t)) ≤
N∑

k=1

ξk(t)ηT
k (t)Ξkηk(t) + αV (z(t)), (17)

It is clear that the inequality (7) in Theorem 1 can guarantee

V̇ (z(t)) ≤ αV ((z(t)). (18)

Multiplying the above inequality (18) by eαt, and then integrating it from 0
to t, with t ∈ [0, T ], we have

V (z(t)) ≤ eαtV (z(0)) ≤ eαT V (z(0)). (19)
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According to the definition of V (z(t)) in (10), it can be calculated

V (z(0)) ≤ ϑ sup
θ∈[−τ,0]

zT (θ)Rz(θ), (20)

where ϑ is defined in Theorem 1 before. On the other hand, we can get

V (z(t)) ≥ λmin(R− 1
2 PR− 1

2 )zT (t)Rz(t) � λmin(P̄ )zT (t)Rz(t). (21)

The inequalities (19)-(21) lead to

zT (t)Rz(t) ≤ eαT ϑ

λmin(P̄ )
sup

θ∈[−τ,0]

zT (θ)Rz(θ) ≤ eαT ϑc1
λmin(P̄ )

. (22)

Condition (8) in Theorem 1 implies, for all t ∈ [0, T ], zT (t)Rz(t) < c2.
Therefore, the proof follows.

Remark 2. Clearly, Theorem 1 are independent on the switching rule. That is,
Theorem 1 holds for any switching rule. Moreover, the conditions in Theorem 1
are not standard linear matrix inequalities (LMIs). Once we have fixed a value
of α, the condition (7) can be turned into LMIs and then solved by Matlab LMI
toolbox.

On the other hand, we can easily check that the condition (8) in Theorem 1
can be guaranteed by the following LMIs conditions:

γ1I < P < γ2I, Q < γ3I, T < γ4I, S < γ5I, (23)
−c2γ1π1e

−αT + c1[(γ2 + γ3)π1 + (γ4 + γ5)π2 + γ5π3] < 0, (24)

where γi(i = 1, 2, 3, 4, 5) are positive scalars and πj(j = 1, 2, 3) is defined as

π1 = λmax(R−1), π2 = max
k∈E

(λmax(R− 1
2 WT

k LLWkR− 1
2 )),

π3 = max
k∈E

(λmax(R− 1
2 AT

k AkR− 1
2 )).

4 A Numerical Example

In this section, a numerical example is given to illustrate the validity of the
proposed results. Consider SSNNs (9) with the following parameters:

A1 =
[

2.2 0
0 2.1

]
, A2 =

[
2.1 0
0 1.9

]
, W1 =

[
3.5 1.2

−1.0 3.5

]
, W2 =

[
3.1 0.9

−1.1 3.2

]
,

The activation functions are defined as g1(t) = tanh(0.3t), g2(t) = tanh(0.5t),
and the time-varying delay is τ(t) = 0.8 + 0.3 sin(t). It means that

τ = 1.1, μ = 0.3, L = 0, L = L =
[

0.3 0
0 0.5

]
.
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The other parameters are chosen as c1 = 1, c2 = 10, T = 10 and R = I.
By Matlab LMI toolbox, solving the inequalities (7), (23) and (24) for α = 0.01
gives the feasible solutions:

P =
[

2.2086 −0.3598
−0.3598 2.0523

]
, Q =

[
2.0215 −0.0904

−0.0904 1.6474

]
,

T =
[

0.9932 −0.4279
−0.4279 0.9769

]
, S =

[
0.3108 0.0104
0.0104 0.0033

]
,

which satisfy the condition (8). According to Theorem 1, we can conclude that
the concerned SSNNs is finite-time stable with respect to (1, 10, 10, I) for any
switching rule.

Remark 3. Notice that the conditions (23) and (24) are dependent on the size
of c2, then we can also get the optimal lower bound of c2 to guarantee the finite-
time stability by solving a simple optimal problem. For example, we can obtain
the optimal lower bound of c2 is 3.9351.

5 Conclusions

This paper has studied the problem of finite-time stability for switched static
neural networks. The Lyapunov-like function method and LMIs technique
are developed to derive a sufficient criterion, which can guarantee the finite-
time stability of SSNNs. In the end, a numerical example is provided to show
the effectiveness of our proposed theoretical results. In the further investigations,
we will search the other analysis technique to obtain the less conservative results,
and consider some control problems of SSNNs in finite-time sense.
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Zhengzhou University of Light Industry (201BSJJ006).
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Abstract. Utilization bounds for schedulability are one of the simplest ap-
proaches for admission control in real-time systems. Even though they are not 
resource optimal, they offer the advantages of simplicity and computational ef-
ficiency. Liu and Abdelzaher proposed a universal bound that was customized to 
any fixed-priority scheduling policy by choosing the corresponding load metric. 
In this paper, we extend Liu and Abdelzaher’s work by combining different 
fixed-priority scheduling policies, and give their non-utilization bounds. We 
have considered the combination of deadline monotonic scheduling (DMS), 
shortest-job-first scheduling (SJF), and velocity monotonic scheduling (VMS). 
The reason why we take this combination is because we can take advantage of  
the merits of each scheduling policy and at the same time overcome their 
shortcomings.  

Keywords: Fixed priority scheduling · Deadline Monotonic Scheduling (DMS) ·  
Shortest-Job-First scheduling (SJF) · Velocity Monotonic Scheduling (VMS) 

1 Introduction 

Utilization test is an indirect schedulability test, which does not compute the delays, but 
rather tests system resource utilization in order to determine the task schedulability.  
A new task can be admitted only if the utilization is lower than a pre-defined bound. 
This can be done very efficiently with an O(1) computational complexity. Even though 
utilization-based schedulability test is simple in terms of concept and computational 
complexity, it has some limitations. For example, the feasibility condition is sufficient 
but not necessary (i.e., pessimistic). Also, it imposes unrealistic constrains upon the 
timing characteristics of tasks (e.g., deadline is equal to period). Fixed-priority sched-
uling nowadays is one of the most adopted techniques for implementing real-time 
applications. 

We briefly review some of the fixed-priority scheduling methods published in  
the literature here. In the seminal work of Liu and Layland [1], they derived the 
well-known 69% utilization bound for rate monotonic scheduling (RMS) on a single 
processor system, where relative deadlines of periodic tasks are equal to their periods. 
Since then, many real-time scheduling algorithms have been proposed in the literature. 
 

 



168 G. Chen and W. Xie 

Bini and Buttazzo [2] extended the utilization bounds to multiprocessor real-time 
systems, and they considered resource constraints and presented a single-stage utiliza-
tion bound that was less pessimistic than Liu and Layland’s work. Kuo and Mok [3] 
improved the Liu and Layland’s bound by collapsing harmonic tasks into one chain. 
They proved that the bound is a function of the number of the harmonic chains and not 
the number of individual tasks. This bound was further improved by considering in-
formation specific to the task set such as the actual values of task periods [4]. Liu and 
Abdelzaher [5] derived a general expression for a non-utilization-based schedulability 
bound. The bound applies to a generalized abstract load metric that is defined for a 
given system as a function of its particular scheduling policy. 

In this paper, we propose to combine different fixed-priority scheduling policies and 
give their non-utilization bounds. This is based on Liu and Abdelzaher’s previous work 
where they derived non-utilization bounds for arbitrary fixed-priority policies. The 
combinations of different fixed-priority scheduling policies open a new avenue for 
real-time admission control, and they can make use of the advantages of existing 
fixed-priority scheduling policies and at the same time overcome their disadvantages. 
Simulation results confirm that the proposed method in this paper is a feasible approach 
for fixed-priority real-time admission control. 

2 An Existing Method 

Liu and Abdelzaher [5] derived a general expression for a non-utilization-based 
schedulability bound. Consider a task model in which aperiodic tasks arrive at a system 
of multiple resources. Each task Ti has a relative end-to-end deadline Di, which defines 
its maximum acceptable total latency in the system. The task requires multiple pro-
cessing stages, collectively denoted by set Gi. The execution time of task Ti on stage 

ij G∈ is denoted as 
i jC . It was assumed that a fixed-priority scheduling policy 

should be used. The priority was assigned monotonically decreasing in some function 
x() of the task, The value of the function x for task Ti  is denoted as xi . The choice of the 
function x can be arbitrary as long as it is always positive.  

 
The Universal Feasible Region Theorem: Consider a system scheduled by a fixed 
priority scheduling policy, where priorities are monotonically decreasing in some 
function x. Let xi be the value of x for some task Ti, which traverses N stages and has an 
end-to-end deadline Di. Let the abstract load at stage j be denoted by 

,i j
j

i i

C
M

x
=  .                                 (1) 

Ti meets its end-to-end deadline as long as the following condition is true: 

(1 / 2)

1
i

j j i

j G j i

M M D

M x∈

−
≤

−                              (2) 
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where Gi is the set of multiple processing stages for task Ti. An admission controller 
should ensure that 

(1 / 2)
min( )

1
i

j j i

i
j G j i

M M D

M x∈

−
≤

−                         (3) 

where the minimization is carried out over the set of active tasks, or over the set of tasks 
in the current busy period.       

This theorem quantifies, for the first time in real-time computing literature, a uni-
versal schedulable region that is applicable to an arbitrary scheduling policy as a 
function of its priority definition x. 

3 Proposed Method 

The above theorem is intended to a single fixed-priority scheduling policy. In this 
section, we would like to extend it to a combination of existing scheduling policies. 
Specifically, we will study deadline monotonic scheduling (DMS), shortest-job-first 
scheduling (SJF), and velocity monotonic scheduling (VMS). Other existing schedul-
ing methods will be left for future research. The main reason why we use a combination 
of two existing scheduling policies is because we can take advantage of the merits of 
each scheduling policy and at the same time overcome their shortcomings. It is ex-
pected that, by tuning the combination factorα , we can achieve improved scheduling 
results for fixed-priority tasks. 

We briefly give some explanations about DMS, SJF and VMS here. In DMS, tasks 
are assigned priorities according to their deadlines; the task with the shortest deadline 
being assigned the highest priority.  Deadline-monotonic priority assignment is a 
priority assignment policy used with fixed priority pre-emptive scheduling. In SJF, a 
scheduling policy selects the waiting process with the smallest execution time to exe-
cute next. SJF is advantageous because of its simplicity and because it maximizes 
process throughput (in terms of the number of processes run to completion in a given 
amount of time). It also minimizes the average amount of time each process has to wait 
until its execution is complete. In VMS, priorities are set proportionally to the ratio of 
the end-to-end deadline to the number of stages to be traversed. Priority is higher when 
the deadline lower and when the number of stages to be traversed is more. If two tasks 
have the same end-to-end deadline but a different number of stages to traverse, the one 
with more stages should be given a higher priority. 

The priority xi should be different for different scheduling policies. For DMS, we 
can select

i ix D= , where Di is the end-to-end deadline. For SJF, we can select

,i i j
j

x C=  , where 
,i jC   is the execution time of job i on stage j. For VMS, we can 

choose i
i

i

D
x

l
= , where | |i il G= is the number of stages task Ti will be processed on.  

Since equation (2) holds for any choice of xi, we can combine two fixed-priority 
scheduling policies P1 and P2 and select xi based on a linear combination of P1 and P2.  
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For example, P1 and P2 can be any of DMS, SJF, and VMS.  There are three different 
combinations by selecting any two scheduling policies, and they are DMS-VMS, 
DMS-SJF, and SJF-VMS. The priority xi for the combinations can be given as 

1 2(1 )i i ix x xα α= × + − ×                             (4) 

where 0 1α≤ ≤ , and 1
ix and 2

ix  are the priorities of the two combined scheduling 

policies. If we combine DMS with SJF, then 

,(1 )i i i j
j

x D Cα α= × + − ×                           (5) 

If we combine SJF with VMS, then 

, (1 ) /i i j i i
j

x C D lα α= × + − ×                          (6) 

If we combine DMS with VMS, then 

(1 ) /i i i ix D D lα α= × + − ×                          (7) 

Therefore 

1
( )

(1 ) /
i

i
i i

D
f l

x lα α
= =

+ −
                           (8) 

It is easy to know that  

1
m in ( )

(1 ) / m in ( )i
i

i
i

f l
lα α

=
+ −

.                       (9) 

Interestingly, if we choose 1/ 2α = , then we have 
 

(1 1/ ) / 2i i ix D l= × +                              (10) 

and 

22
( )

1 1 / 1
i i

i
i i i

D l
f l

x l l
= = =

+ +
.                        (11) 

This is a very simple function, which takes very few flops of computation. Fig. 1 shows 
this function. It can be seen that ( )if l is monotonically increasing. 

Since the universal feasible region theorem proposed in [5] is valid for any ix , it is 

also valid for a combination of existing fixed-priority scheduling policies. Theorem 1 

states that the priority ix  in this paper is greater than or equal to the priority '
ix  for 

VMS in [5]. Therefore, we have '( ) ( )i if l f l≤ , which is true for any [0,1]α ∈ . 
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Fig. 1. A plot of the function ( )if l  

Theorem 1: Let Di be the end-to-end deadline of task Ti, ix be its priority, | |i il G=  

be the number of stages to be processed, and '
ix  be the priority defined in [5] for VMS. 

If we combine DMS with VMS, then, for any fixed [0,1]α ∈ , 

 
'( (1 ) / ) / ( ( 1) 1) /i i i i i i i i ix D l D l l D l xα α α= × + − = × − + ≥ =                 (12) 

and 

'
'

( ) ( )i i
i i

i i

D D
f l f l

x x
= ≤ =                           (13) 

The above discussion only considers a combination of two existing real-time 
scheduling policies. It is expected that an even better scheduling policy can be achieved 
by combining several existing scheduling policies. For example, 

1 2
1 2

P
i i i p ix x x xα α α= + + ⋅ ⋅ ⋅ +                            (14) 

where p
ix is the priority of the pth scheduling policy and 

0pα ≥ and 
1

1.0
P

p
p

α
=

=                               (15) 

When p=3, we can combine three existing fixed-priority scheduling policies such as the 
combination of DMS, SJF and VMS. 

4 Experimental Results 

In this section, we conducted some experiments in order to simulate the feasibility of 
the proposed scheduling policies for fixed-priority tasks. We assume that the compu-
tation time of different stages is independent, and end-to-end deadlines are selected 
uniformly from a range. The arrival process is Poisson. The priority is kept constant for 
all execution stages of the same task. We performed experiments by combining any two 
of the existing scheduling policies (DMS, SJF and VMS). These combinations are 
DMS-VMS, DMS-SJF, and SJF-VMS. The number of stages of a task is set to be 10, 
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and the probability that a task selects a stage is p=0.5. The average stage load is ap-
proximately equal. In our experiments, no deadline misses were observed. This verifies 
the correctness of the proposed methods in this paper.  

We have done experiments for [0,1]α ∈ with a step of 0.2 and different combina-
tions of existing scheduling policies DMS-VMS, DMS-SJF, and SJF-VMS. Fig. 2 
shows the average stage-utilization after admission control for the three combinations 
of fixed-priority scheduling policies. From the figures, it can be seen that α can bal-
ance the trade-off between the two combined scheduling methods. As α increases, the 
average stage-utilization increases for DMS-VMS and DMS-SJF, but it decreases for 
SJF-VMS. 

 

 

Fig. 2. The average stage-utilization after admission control for the combination of fixed-priority 
scheduling policies DMS-VMS, DMS-SJF and SJF-VMS, respectively 

We have calculated the average stage-utilization for the three combinations of 
fixed-priority scheduling policies DMS-VMS, DMS-SJF, and SJF-VMS when 

0 .5α = . The input workload is varied from 40% to 200% of a single stage capacity. 
This means that the sum of computation times of all tasks generated over the duration 
of the experiment is varied from 40% to 200% of the length of the experiment. Fig. 3 
shows the curves of our three combinations. It can be seen that the curves of 
DMS-VMS, DMS-SJF, and SJF-VMS lie between the two curves of the original 
scheduling policies. For example, the curve of DMS-VMS lies between the curves of 
DMS and VMS. In general, SJF is not as good as DMS and VMS, and it is not as good 
as our combined scheduling policies DMS-VMS, DMS-SJF, and SJF-VMS as well.  

 

 

Fig. 3. The average stage-utilization after admission control for the combination of fixed-priority 
scheduling policies DMS-VMS and the two original scheduling policies DMS and VMS, 
DMS-SJF and the two original scheduling policies DMS and SJF, and SJF-VMS and the two 
original scheduling policies SJF and VMS, respectively 
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We multiply a constant K to the combined priority as i ix Kx=  for K=1.0, 10.0 and 

100.0. Fig. 4 shows the curves of our three combinations DMS-VMS, DMS-SJF and 
SJF-VMS for different values of K. From these figures it can be seen that the constant 
K=10.0 is a good choice for all three combinations DMS-VMS, DMS-SJF and 
SJF-VMS. In addition, the constant K=10.0 is much better than K=1.0 in these three 
figures. This indicates that multiplying a constant to the combined priority is a feasible 
choice for real-time admission control. It should be noted that we have chosen 

0 .5α = for this set of experiments.  
 

 
Fig. 4. The average stage-utilization after admission control for the combination of fixed-priority 
scheduling policies DMS-VMS, DMS-SJF, and SJF-VMS, respectively 

We also test the performance of our proposed method by combining three existing 
fixed-priority policies (DMS, SJF and VMS).  The scaling factors satisfy 

0pα ≥ and 
3

1

1.0p
p

α
=

=                          (16) 

In this experiment, we set 1 / 3pα = . Fig. 5 shows the average stage-utilization after 

admission control for the combination of DMS-SJF-VMS. From the figure it can be 
seen that DMS-SJF-VMS is better than SJF and VMS. However, it is not as good as 
DMS. It is expected that by tuning the combination factors, we can achieve even better 
results.  

 

 

Fig. 5. The average stage-utilization after 
admission control for the combination of 
fixed-priority scheduling policies DMS-
SJF-VMS 

Fig. 6. The average stage-utilization after 
admission control for the combination of 
fixed-priority scheduling policies DMS- 
SJF-VMS 
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We multiply a constant K to the combined priority as i ix Kx=  for K=1.0, 10.0 and 

100.0. Fig. 6 shows the curve of our combination DMS-SJF-VMS for different values 
of K. From the figure it can be seen that the constant K=10.0 is a good choice for 
DMS-SJF-VMS. In addition, the constant K=10.0 is much better than K=1.0 in the 
figure. This indicates that multiplying a constant to the combined priority is a feasible 
choice for real-time admission control. 

5 Conclusions 

Understanding the end-to-end temporal behavior of distributed systems is a funda-
mental concern in real-time computing. Meeting timing requirements is critical to 
many computer applications. These real-time systems employ a schedulability test to 
determine whether each task can meet its deadline.  

In this paper, we extend Liu and Abdelzaher’s non-utilization bound to a combina-
tion of existing scheduling methods. For example, we can combine any two of the 
DMS, SJF, and VMS scheduling policies. From these three scheduling policies, we can 
have DMS-VMS, DMS-SJF and SJF-VMS as the combined scheduling policies. The 
main reasons why we combine two different fixed-priority scheduling policies are 
because we can take advantage of the merits of the two existing scheduling methods, 
and at the same time reduce their shortcomings. Simulation results demonstrate that 
this is a feasible method for real-time admission control.  

Future work will be done in the following ways. We can derive the non-utilization 
bounds for periodic tasks, where tighter bounds could be found. In addition, we may try 
to find the optimal function x in order to improve the derived bounds for real-time 
scheduling. It would also be interesting to study the scheduling policies for dynamic 
priority tasks.  
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Abstract. The inherent dynamic hysteresis, including rate-dependent and 
stress-dependent hysteresis, hinders the performance of smart actuators. In this 
paper, two methods are introduced to model the dynamic hysteresis of smart ac-
tuators based on fuzzy tree. The first method is to describe the rate-dependent 
hysteresis directly with fuzzy tree and the second is to propose a stress-
dependent Preisach model by building the relations between compress stress 
and the density function of the Preisch model with fuzzy tree. Simulation results 
show that both methods can satisfactorily describe rate-dependent or stress-
dependent hysteresis. 

Keywords: Smart actuators · Dynamic hysteresis · Rate-dependent · Stress-
dependent · Fuzzy Tree · Preisach model 

1 Introduction 

Smart actuators, including giant magnetostrictive actuators (GMA), piezoelectric 
actuators (PZT) and shape memory actuators (SMA), are widely used for micro-
positioning and micro-vibration control in fields of aerospace, manufacturing, etc. 
However, smart actuators exhibit dominant hysteresis nonlinearity. What’s more, the 
hysteresis is dynamic, that is, the output displacement of smart actuators depends on 
the rate of the input signal, or the compress stress that is imposed on the actuators. 
This poses a significant challenge in the analysis and design of systems with smart 
actuators. 

Dynamic hysteresis models can be classified into physics-based models and phe-
nomenological models. Physics-based models are based on the physical mechanism of 
systems, and phenomenological models are based on the input-output of systems. The 
most popular Preisach model [1] [2] and computing intelligence techniques [3] [4] [5] 
are phenomenological hysteresis models.  

Mao et al. [6] proposed a tree-structured-based method (fuzzy tree method for 
short), and this method is suitable to solve complex nonlinear problems. In this paper, 
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based on the fuzzy tree, two modeling methods are introduced to describe dynamic 
hysteresis of smart actuators. One is to describe the rate-dependent hysteresis directly 
with fuzzy tree and another is to propose a stress-dependent Preisach model by build-
ing the relations between the compress stress and the density function of the Preisch 
model with fuzzy tree. Simulation results show that both methods can satisfactorily 
describe rate-dependent or stress dependent hysteresis. 

This paper is organized as follows: In Section 2, the fuzzy tree method and the 
Preisach model are introduced. In Section 3, approaches of modeling the hysteresis of 
smart actuators with fuzzy tree are presented. In Section 4, modeling performance is 
verified by comparison between the outputs of the models and the actuators. Finally, 
concluding remarks are stated in Section 5. 

2 Fuzzy Tree Method and Preisach Model 

2.1 Fuzzy Tree 

Fuzzy tree is a special type of T-S (Takagi-Sugeno) fuzzy models. T-S models can be 
described by the following fuzzy rules: 

R l : If 1x is 1
lM , 2x is 2

lM  ,…, nx is l
nM , then T ˆ( )l ly = c x , 1,2,...,l m= , where the 

input vector [ ]T

1,..., n
nx x R= ∈x , 

TT 1ˆ 1, nR + = ∈ x x is the augmented input vector,
T 1

0 1[ , , ]l l l n
l nc c c R += ∈c  , l

iM is the fuzzy set corresponding to the variable ix , 
and m is the total rule number. 

The membership function of l
iM  is ( )l

i iM x . For an input x, the final output of the 

fuzzy model is: 

T

1 1

ˆ( ) ( ) ( )( ) ,
m m

l l l l
l l

y yμ μ
= =

= = x x x c x  (1)

where
1

( ) ( ) / ( )
m

l j
l

j

M Mμ
=

= x x x ,

1

( ) ( )
n

l l
i i

i

M M x
=

= ∏x , 1,2,...,l m= . 

The main idea of the fuzzy tree method is that the input space is partitioned based 
on a binary tree, and thus irregular fuzzy subspaces are obtained. Piecewise linear 
functions defined on the subspaces corresponding to the leaf vertexes of the binary 
tree are used as the consequent parts of the fuzzy rules. The number of fuzzy rules 
equals the number of leaf vertexes, so it is insensitive to the dimension of inputs and it 
is suitable to solve high-dimension and complex nonlinear problems. 

Let T denotes a binary tree, (T)r denotes the root vertex of T . For each vertex

Tt ∈ , ( )l t and ( )r t  represent respectively the left and right child of vertex t , and 

( )p t  represents the parent of vertex t . If t has no children, it is called leaf vertex. T
denotes the set of all leaf vertexes of T . The depth of vertex t  means the number of 
the ancestors of t . Moreover, the depth of T indicates the maximum depth of the 
vertexes of T . 
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In the fuzzy tree method, the partition of the input space is adaptive. At the high 
density nonlinear part of input data set, the partition will be finer; at the other part, the 
partition will be relatively rough. The partition corresponds to a binary tree. In each 
subspace represented by a leaf vertex, the nonlinear function is approximated by an n-

dimensional hyper-plane T ˆ( ) ( )t ty =x c x , where T T 1ˆ [1, ] nR += ∈x x . If approximation 

errors meet the requirements, stop the partition of this subspace. The hyper-plane 
T ˆ( ) ( ) 0t t tg θ= − =x c x  is used as the discriminant function to judge whether the sub-

space is divided, where tθ  denotes the gravity center of the corresponding output 

data in this subspace. The subspace is divided into two smaller subspaces according to 
( ) 0tg ≤x  and ( ) 0tg ≥x , and the fuzzy region is defined near the part ( )=0tg x . 

The following rules can be obtained after the fuzzy partition of the input space: 

R l : If x is
lt

N , then T ˆ( ) ,
l lt ty = c x  (2)

where Tlt ∈  ,
T

0 1, , ,l l l

l

t t t
t nc c c =  c   are the linear parameters,

lt
N is a fuzzy set de-

fined on the fuzzy subspace 
lt

χ , and the corresponding membership function is de-

noted as ( )
lt

N x . Thus each fuzzy rule is corresponding to a fuzzy subspace which is 

represented by leaf vertexes. 
If the normalized membership function of ( )

lt
N x is denoted as ( )

lt
μ x , that is,

T
( )= ( ) / ( )

l l l lt t t tN Nμ ∈x x x , the output will be the same as that of T-S fuzzy models: 

T

T

ˆ ˆ( ) ( )( ) .
l l

l

t t
t

y μ
∈

=x x c x


 (3)

Membership functions corresponding to each vertex of the binary tree are defined 
as: 

(T) ( ) 1rN ≡x  , if t is a root vertex , (4) 

( )
ˆ( ) ( ) ( )t p t tN N N=x x x , if t is not a root vertex ,

 (5) 

where the instrument membership function corresponding to vertex t  is defined as:  

T
( ) ( )

1ˆ ( ) ,
ˆ1 exp[ ( )]t

t p t p t

N
α θ

=
+ − −

x
c x

 (6)

where ( )p tθ  is the gravity center of the corresponding output data on the parent vertex 

of t . It is defined as: 

T
( ) ( )

1
( )

( )
1

ˆ( )( )
,

( )

M
i i

p t p t
i

p t M
i

p t
i

N

N
θ =

=

=




x c x

x
 (7)
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tα is the width of the fuzzy region. For a left vertex, tα α= − , for a right vertex, 

tα α= ,α is a positive number. ix is an input sample, 1,2, ,i M=  . 

Suppose { }1 2T , , , Lt t t=  , denotes
1 2

TT T T
T , , ,

Lt t t
 =  c c c c  , the linear parameters 

T
~c in fuzzy rules are solved by the recursive least square method: 

1 1 1 1 T
1T T T

1 1 T

1 1 T 1

( ( ) )

, 0,1, , 1 ,( )

1 ( )

i i i i i i
i

i i
i i

i i i i
i

y

i M

+ + + +
+

+ +

+ + +

 = + −


= −
= − +

c c S X X c

S X X S
S S

X S X

  
 

  
 

 (8)

where 0
T 0=c  , 0 λ=S I , λ  is a positive number, which is large enough. I is an iden-

tity matrix, and 

1 2

T

T T T

T T T

( ) ( ) ( )
ˆ ˆ ˆ( ) , ( ) , , ( ) .

( ) ( ) ( )
L

l l l

l l l

i i i
t t ti i i i

i i i
t t t

t t t

N N N

N N N
∈ ∈ ∈

 
 =  
 
 
  

x x x
X x x x

x x x
  

   (9)

2.2 Preisach Model 

The Preisach model [1] is a weighted superposition of delayed relay operators. For a 

pair of thresholds ( , )β α with β α≤ and the initial configuration { 1,1}ζ ∈ − , for the 

input ([0, ])u C T∈  and [0, ]t T∈ , the output of the delayed relay operator


[ ]ˆ ,f uβαγ ζ=  is defined as: 

1 if  ( )<

( ) 1 if  ( )> ,

( )  if ( )

u t

f t u t

f t u t

β
α

β α−

−


 ≤ ≤

  (10)

where ( )
0, 0
limt t

ε ε
ε−

> →
− and (0 )f ζ− =  

The Preisach plane is defined as: 

{ }( , ) |P Pβ α β α= ∈ ≤ . (11)

For [ ]( 0, )u C T∈ and a Borel measurable initial configuration 0ζ of all operators, 

{ }0 : 1,1Pζ → −  the Preisach model Γ is defined as: 

0 0 ,ˆ, ( ) ( , ) , ( , ) ( )Pu t u t d dβ αζ μ β α γ ζ β α β α      Γ =  ,  (12)
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where the weighting function ( , )μ β α is called the Preisach density function. The 

Preisach model is a static one, and thus it cannot describe dynamic hysteresis.  

3 Modeling Dynamic Hysteresis with Fuzzy Tree 

The fuzzy tree method can be used to describe dynamic hysteresis of smart actuators. 
The first method is to describe the rate-dependent hysteresis directly with fuzzy tree, 
another method is to propose a stress-dependent Preisach model by building the rela-
tions between compress stress and the density functions of the Preisch model with 
fuzzy tree. 

3.1 Method I: Modeling Rate-Dependent Hysteresis with Fuzzy Tree 

The discrete model based on fuzzy tree is:   

ˆ( 1) ( ( ), ( 1), , ( 1);

( ), ( 1), , ( 1))

y k f x k x k x k m

y k y k y k n

+ = − − +
− − +



 , (13)

where ( )x k  and ( )y k  are respectively the input and output of the actuator at time 
k , with orders m  and n , and ˆ( 1)y k +  represents the output of the model at time 

1k + . The essential of the model is that it predicts the output at the next time using 
the input and output information at current and historical times.  

In order to describe the rate-dependent hysteresis, the input signals should excite all 
the modes in the frequency range sufficiently. Gaussian random signal, random binary 
signal, pseudo random binary signal, and sinusoidal scanning signal can be used for 
excite the actuators for model identification. The details of the identification process 
can be found in [7]. 

3.2 Method II: Modeling Stress-Dependent Hysteresis with Fuzzy-Tree-Based 
Preisach Model 

The compressive stress opposed on smart actuators is equivalent to the mechanical 
load on smart actuators. Then the static Preisach model can be modified to describe 
stress-dependent hysteresis by including mechanical load m into the density function. 
The stress-dependent Preisach model can be written as: 

( ) [ ]( ) ( ) ( ) ( )0 0 .Ξ , , , β αPy t u ζ m t μ β α m γ u ζ β α t dβdα= =    ,, , ,   (14)

Due to the great variation of mechanical load, the density function in (14) would be 
severely influenced by the variable m. To overcome this drawback, another form of 
(14) is proposed as: 

( ) [ ]( ) ( )( ) ( ) ( )0 0 ,Ξ , , , β αPy t u ζ m t μ β α g m γ u ζ β α t dβdα= =    ,, , ,  (15)
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where g (m) is a function of the mechanical load m. If the amplitude of g (m) has a 
small variation, then the power series expansion of the density function in (15) with 
respect to g (m) is: 

( )( ) ( ) ( ) ( )0 1, , , , .μ β α g m μ β α g m μ β α= + +  (16)

Keep the first two terms of (16) and substitute it into (15): 

( ) [ ]( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

0 , 0

1 , 0

Ξ , , , ,

, ,

  ,

β αP

β αP

β αP

y t u ζ m t μ β α g m γ u ζ β α t dβdα

μ β α γ u ζ β α t dβdα

g m μ β α γ u ζ β α t dβdα

= =   

=   

+   






, , ,

, ,

, ,

 (17)

( )0 ,μ β α  in (17) should coincide with ( ),μ β α  of the Preisach model in (12), then 

(17) can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( )1 , 0 ,, β αα βy t y t g m μ β α γ u ζ β α t dβdα≥= +     , ,  (18)

where ( )y t  stands for the part with no mechanical load. The second term in (18) 

represents the variation part with different stresses.  
Denote ( )jg m  as the value of ( )g m  with mechanical load jm . Each ( )jg m  can 

be identified with the method in [8]. Then ( )g m  can be identified with fuzzy tree to 

describe the relations between the load m and the density function of stress-dependent 
Preisach model. 

4 Modeling Performance 

In this section, the above two modeling methods are used to describe the dynamic 
hysteresis loops of GMAs. The modeling results are compared with experimental data 
to reveal the performance. The two GMAs used in experiments are manufactured by 
Beihang University. The output displacements of the GMAs are measured by eddy 
current sensor. The dSPACE system DS1103 was used for data acquisition, and the 
sampling frequency is 10 kHz. The power amplifier that drove the GMA at different 
frequencies worked in voltage mode, and the one that drove the GMA with different 
mechanical load worked in current mode.   

4.1 Performance of Method I  

The hysteresis loops measured in experiments at different frequencies and those simu-
lated with the identified fuzzy tree are shown in Fig. 1. It is obvious that the fuzzy tree 
can describe the rate-dependent hysteresis. Table 1 lists the root mean square error, 
which is defined as: 



 Modeling Dynamic Hysteresis of Smart Actuators with Fuzzy Tree 181 

( )2

1

ˆ( ) ( )

RMSE ,

M

k

y k y k

M
=

−
=


 
(19)

where ( )y k is the GMA’s output measured in experiment at time k , ˆ( )y k is simulat-

ed with the fuzzy tree, M is the number of data. 

 

 

 

Fig. 1. Model validation (Solid line: data obtained from experiment; dot: data obtained from 
model) 

Table 1. RMSE of method I 

Frequency 5Hz 10Hz 15Hz 20Hz 25Hz 

RMSE/μm 0.5977 0.7537 0.7753 1.0747 1.5480 

Frequency 30Hz 75Hz 80Hz 95Hz  
RMSE/μm 0.8085 0.8966 1.0873 0.6455  
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4.2 Performance of Method II 

The hysteresis loops with different mechanical load measured in experiments and 
those simulated with the identified stress-dependent Preisach model based on fuzzy-
tree are shown in Fig. 2. It is obvious that the Preisach model with fuzzy tree can 
describe the stress-dependent hysteresis. Table 2 lists the root mean square error. 
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Fig. 2. Model validation (Solid line: data obtained from experiment; dashed: data obtained from 
model) 

Table 2. RMSE of method II 

Load 0kg 10kg 20kg 30kg 40kg 50kg 

RMSE/μm 0.0850 0.1495 0.1736 0.1534 0.2103 0.2418 

5 Conclusion 

The hysteresis in engineering practices always has dynamic effects, such as the rate- 
dependent and stress-dependent hysteresis effects in smart actuators. The fuzzy tree 
method is insensitive to the dimension of inputs, and it is suitable to describe high 
dimensional and complex nonlinear systems. 

In this paper, taking giant magnetostrictive actuators as the study object, we intro-
duced two modeling methods to describe dynamic hysteresis of smart actuators based 
on the fuzzy tree. The first method is modeling the rate-dependent hysteresis directly 
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with fuzzy tree. Another method is proposing a stress-dependent Preisach model by 
building the relations between compress stress and the density functions of the 
Preisch model with fuzzy tree. Simulation results show that both methods can satis-
factorily describe rate-dependent or stress dependent hysteresis. 

It should be noted that the methods introduced in this paper can also be used to 
model other smart actuators, such as piezoelectric actuators and shape memory actua-
tors, etc. 
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Abstract. This paper presents a model predictive control (MPC)
method based on a recurrent neural network for control of autonomous
underwater vehicles (AUVs) in a vertical plane. Both kinematic and
dynamic models are considered in the trajectory tracking control of the
AUV. A one-layer recurrent neural network called the simplified dual
neural network is applied for real-time optimization to compute opti-
mal control variables. Simulation results are discussed to demonstrate
the effectiveness and characteristics of the proposed model predictive
control method.

Keywords: Model predictive control ·Autonomousunderwater vehicles ·
Simplified dual neural network

1 Introduction

Autonomous underwater vehicles (AUVs) have attracted much attention in
recent years. There has been a considerable interest over the last few years for
marine vehicle motion control; e.g., set-point control, trajectory tracking, and
path-following control. The trajectory tracking control refers to the problem of
steering a vehicle to follow a given route. The trajectory tracking control of
underwater vehicles is one of the most important parts in AUV control [1].

For AUV trajectory tracking control, A recurrent neuro-fuzzy system is used
to model the inverse dynamics of the AUV and then utilized as a feedforward
controller to compute the nominal torque in [2], and a PD feedback controller is
constructed as a feedback controller to compute the error torque to minimize the
system error along the desired trajectory. In [3], an adaptive switching control
method is proposed for position trajectory-tracking and path-following control of
AUV. In this method, motion parameters are estimated and backstepping con-
trol algorithm is used, then switching algorithm is designed for tracking control
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and following control. In [4], an observer is designed for velocity estimation, then
the tracking control is implement based on the estimated velocity. In [5], model
prediction control method and genetic algorithm are combined for controller
designing. Line of sight tracking of AUV is realized by using the proposed con-
troller. In [6], A vision system is implemented to obtain the deviation between
AUV and the tracked target. Trajectory tracking control is divided into path
planning, attitude control and position control that are implemented based on
the vision information.

Model predictive control (MPC) is an optimization-based advanced control
method and entails extensive online computation of real-time solutions to formu-
lated optimization problems [7]. For large-scale and realtime optimization prob-
lems, recurrent neural networks emerged as promising computational models for
real-time optimization problems. For example, in [8], a one layer general projec-
tion neural network is presented for solving convex optimization problems. In
[9], another one-layer neural network was presented for pseudoconvex optimiza-
tion problems. These recurrent neural network models are shown to perform well
in terms of convergence property and model complexity. Some studies on MPC
based on recurrent neural networks were carried out. In [10], the simplified dual
network is applied for solving real-time quadratic optimizations in various MPC
approaches. In [11], a two-layer recurrent neural network is applied for solving
reformulated minimax optimization problems of robust MPC approaches. These
neurodynamics-based MPC approaches are developed to improve the computa-
tional efficiency and control performance substantially.

2 Problem Formulation

In this section, the kinematic and vertical dynamic models of the Taipan-2 AUV
are presented, and the formulation of driving the vehicle in the vertical plane
to track a trajectory is stated. The mathematical model of an AUV in six DOF
can be described as follows:

η̇ = J (η) ν
Mv̇ + C (v) v + D (v) v + g (η) + τd = τ
y = η

(1)

where η = [x y z φ θ ϕ]T denotes the vehicle location and orientation in the earth-
fixed frame, ν = [u v w p q r]T is the vehicle’s velocity and angular rate vector
expressed in the body-fixed frame, y is the output of the system, J (η) is the
kinematic transformation matrix expressing the transformation from the body-
fixed frame to earth-fixed frame. In this paper, we consider the AUV kinematic
model in the vertical plane only which can be expressed as follows:

ẋ = u cos θ

ż = −u sin θ (2)
θ̇ = q
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In this research, for the control design purpose, we simplify the full model
by neglecting the stable roll motion. Then the simplified vertical plane dynamic
model can be written as:

u̇ =
Fu − du

mu

q̇ =
Γq − mprpr − dq

mq

(3)

where Fu is the force along the x axis, Γq is the torque acting on the pitch angle
θ; mu = m − Xu̇,mq = Iyy − Mq̇,mpr = −Izz, du = −Xuuu |u| + m(qw − vr +
zg(pr)), dq = −Mqqq |q|−Muquq−Muwuw+(zgmg − zbbg) sin θ+mzg (wq − vr) ;
X, Z, and M represent the dynamic derivative coefficients of the vertical plane
dynamics of Taipan-2; the terms m, b and I are the mass, buoyancy, and moments
of inertia of the vehicle, respectively; zg and zb are the location of the center of
gravity and the center of buoyancy along the zB axis with respect to the axis of
propulsion. All the coefficients involved here are listed in Table 1.

Table 1. Hydrodynamic dimensional coefficients of the Taipan AUV

Xuu = −4.00kg m−1 Xu̇ = −5.070kg

Zuq = −37.327kg rad−1 Zww = −350.00kg m−1

Zuuδs = −4.4913kg m−1 rad−1 Zuw = −40.750kg m−1

Zuuδb = 4.4913kg m−1 rad−1 Zẇ = −50.700kg

Muw = 10.280kg Muq = −34.192kgmrad−1

Mqq = −200.00kg m2 rad−2 Mq̇ = −18.020kg m2 rad−1

Muuδs = −16.874kg rad−1 Muuδb = −8.4729kg rad−1

zg = 0.01757m Iyy = 10.900kg m2

zb = 0.00316m m = 50.7kg
g = 9.81m s−1 b = 50.9kg

For the Taipan-2 AUV, considering both its kinematics and dynamics in the
vertical plane, we define the state vector x = [x z θ u q]T and the input vector
u = [Fu Γq]

T .
By using Euler discretization, the AUV model can be transformed into a

discrete-time model in the following form:

x (k + 1) = f (x (k)) + g (x (k)) u (k)
y (k) = Cx (k) (4)

where x (k) ∈ �n is the state vector; u (k) ∈ �m is the input vector; y (k) ∈ �p

is the output vector; f (·) and g (·) are nonlinear functions, and C ∈ �p×n. The
system is subject to the constraints:

umin ≤ u (k) ≤ umax,

Δumin ≤ Δu (k) ≤ Δumax,

xmin ≤ x (k) ≤ xmax,

ymin ≤ y (k) ≤ ymax,

(5)
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MPC is an iterative optimization technique: at each sampling time k, measure
or estimate the current state, then obtain the optimal input vector by solving
a real-time optimization problem. For model (4), the following cost function is
commonly used in MPC for calculation:

J (k) =
N∑

j=1

‖r (k + j|k) − y (k + j|k)‖2Q

+
Nu−1∑

j=0

‖Δu (k + j|k)‖2R
(6)

where r (k + j|k) denotes the reference vector for output, y (k + j|k) denotes the
predicted output vector, and Δu (k + j|k) denotes the input increment vector,
Δu (k + j|k) = u (k + j|k) − u (k − 1 + j|k), N and Nu are prediction horizon
and control horizon (N > Nu > 0), respectively. Q and R are appropriate weight-
ing matrices, ‖·‖ denotes the Euclidean norm of the corresponding vector. The
first term in (6) represents the error between the predicted output and the ref-
erence output while the second term considers the control energy. Hence with
appropriate N , Nu, Q and R, the cost function (6) can also guarantee closed-
loop stability. According to model (4), future state x (k + j|k), j = 1, 2, ..., N
at sampling instant k can be predicted by using the optimal input obtained at
previous time instant, i.e., u (k + j|k − 1) , j = 1, 2, ..., Nu:

Define the following vectors:

x̄ (k) =
[
x (k + 1|k) . . . x (k + N |k)

]T
∈ �Nn

ū (k) =
[
u (k|k) . . . u (k + Nu − 1|k)

]T
∈ �Num

ȳ (k) =
[
y [k + 1|k] . . . y (k + N |k)

]T
∈ �Np

r̄ (k) =
[
r (k + 1|k) . . . r (k + N |k)

]T
∈ �Nn

Δū (k) =
[
Δu (k|k) . . . Δu (k + Nu − 1|k)

]T
∈ �Num

(7)

Then the predicted output ȳ (k) can be expressed in the following form:

ȳ (k) = C̃
(
GΔū (k) + f̃ + g̃

)
(8)

hence, the original optimization problem (6) becomes:

min
∥
∥
∥r̄ (k) − C̃

(
GΔū (k) + f̃ + g̃

)∥
∥
∥
2

Q
+ ‖Δū (k)‖2R

s.t. Δūmin ≤ Δū (k) ≤Δūmax,

ūmin ≤ ū (k − 1) + ĨΔū (k) ≤ūmax,

x̄min ≤ f̃ + g̃ + GΔū (k) ≤x̄max,

ȳmin ≤ C̃
(
f̃ + g̃ + GΔū (k)

)
≤ ȳmax,

(9)
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Problem (6) can be rewritten as a time-varying quadratic programming (QP)
problem:

min 1
2ΔūTWΔū + cTΔū,

s.t. l ≤ EΔū ≤ h. (10)

The solution to the QP problem (10) gives optimal control increment vector
Δū (k) whose first element Δu (k) can be used to calculate the optimal control
input

3 Neurodynamic Optimization

In recent years, various neural network models have been developed as goal-
seeking solvers for QP problems. The essence of neural computation lies in
its parallel and distributed information processing. In particular, the simplified
dual network showed superior performances in MPC applications. This neu-
ral network model is applied for solving (10), whose dynamic equations can be
described as:
State equation

ε
dz

dt
= −Ev + h(Ev − z).

Output equation
v = W−1(ET z − c). (11)

where z is the state vector, v is the output vector and h is an activation function
defined as

h(xi) =

⎧
⎨

⎩

li, xi < li;
xi, li ≤ xi ≤ hi;
hi, xi > hi.

(12)

The simplified dual network has a single-layer structure with totally 3Num+
2Np neurons. The MPC scheme for formation control of multi-robot systems
based on the simplified dual network is summarized as follows:

1. Let k=1. Set control time terminal T , prediction horizon N , Control horizon
Nu, sample period t, weight matrices Q and R.

2. Calculate process model matrices G, f̃ ,g̃, C̃ and neural network matrices
W , c, E.

3. Solve the convex quadratic minimization problem (10) by using the simplified
dual neural network to obtain the optimal control action Δuk.

4. Calculate the optimal input vector ū(k) and implement the first element
u(k |k ).

5. If k < T , set k = k+1, go to step 2;otherwise end.
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4 Simulation Resultss

In this section, simulation results are discussed to demonstrate the effectiveness
of the proposed MPC scheme for the AUV control based on both its kinematics
and dynamics.The AUV is supposed to move in the vertical plane to track a
sine trajectory with the orientation of tangential direction. x = t, z = −sin(t),
θ = atan(cos(t)) The initial inputs are (Fu, Γq) = (5, 1) and the initial position
and orientation are (x z θ u q) = (0.1,-0.05,π/4, 0,0) , the output matrix is C = I.
Both prediction horizon N and the control horizon Nu are 10, Q = 10I, R = I
and the sample time Ts = 0.01s. For the discrete-time model (4), we have the
following g (x) and f (x):

g (x) = T s

⎡

⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0

0.01793 0
0 0.3458

⎤

⎥
⎥
⎥
⎥
⎦

∈ �5×2

f (x) =

⎡

⎢
⎢
⎢
⎢
⎣

x (k)
z (k)
θ (k)
u (k)
q (k)

⎤

⎥
⎥
⎥
⎥
⎦

T

+ T s

⎡

⎢
⎢
⎢
⎢
⎣

u (k) cos θ (k)
-u (k) sin θ (k)

q (k)
u1u (k) |u (k)|

q (k) (q1 |q (k)| + q2u(k)) + q3 sin θ (k)

⎤

⎥
⎥
⎥
⎥
⎦

T

Coefficients involved in f (x) are u1 = −0.0717, q1 = −6.9156, q2 = −1.1823,
q3 = −0.2476. Figs. 1-3 illustrated the practical positions and the target posi-
tions of x axis, z axis and angle around the y axis. Figs. 4-5 shown the input
incremental and the control inputs. The results show that with a proper input,
the AUV can reach tracking a given nonlinear route with a satisfactory precision.
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5 Conclusions

This paper presents an MPC approach to steering a class of autonomous under-
water vehicles in the vertical plane to track a given route. Based on an AUV
model in the vertical plane, the MPC problem is formulated as a time-varying
quadratic optimization problem which can be repeatedly solved by using a single-
layer globally convergent recurrent neural network called the simplified dual neu-
ral network. Simulation results show that the proposed method is able to control
the AUV in the vertical plane with a good performance. The three-dimensional
control of AUVs deserves further investigations.
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Abstract. It is known that, in feed-forward nets, the degree of neural correlation 
generally increases with firing rate. Here, we study the correlations of neurons 
that are part of a homogeneous global feedback network, under the influence of 
partially correlated external input. By using numerical simulations of a network 
of noisy leaky integrate-and-fire neurons with delayed and smoothed spike-
driven feedback, we obtain a non-monotonic relationship between the correla-
tion coefficient and the strength of inhibitory feedback connections. This  
non-monotonic relationship can be explained by the interplay between the mean 
rate and the regularity of firing activity caused by the inhibitory feedback con-
nections. We also show that this non-monotonic relationship is robust in both 
sub-threshold and supra-threshold dynamic regimes, for low and moderate in-
ternal noise levels, as well as when the network is heterogeneous. Our results 
point to a potent functional role for feedback as a modulator of correlated activ-
ity in neural networks.   

Keywords: Feedback · Correlation · Oscillation · Heterogeneity 

1 Introduction 

The properties of the correlations of spiking activity of neurons are critical for under-
standing sensory and cortical processing [1-3]. The mechanisms underlying correla-
tions and the influence of neural connectivity on these correlations continues to attract 
the attention of theorists and computational neuroscientists [1,4-7]. It has been ob-
served, both in experimental systems and in computational models of varying com-
plexity, that the correlations within a population of neurons are influenced not only by 
the magnitude of correlations of the external stimuli, but also by the direct interac-
tions and dynamic states within the population [4,8-10].  

Inhibition is beneficial for controlling the timing and probability of action potential 
generation, as well as for generating high frequency activity in cortex [8]. We expect 
global inhibitory feedback to couple the activity of cells, thereby increasing the corre-
lations. On the other hand, this feedback reduces the firing rate, which would likely 
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lead to the opposite effect [1]. Interestingly, our computational study of networks of 
stochastic leaky integrate-and-fire (LIF) neurons reveals that the correlation coeffi-
cient is a non-monotonic function of the strength of the feedback gain: the correlation 
coefficient drops with weak feedback gain, and rises after the strength of feedback 
gain exceeds a threshold. We discuss this non-monotonic relationship for networks in 
different dynamic regimes.  

To understand the increase of the correlation coefficient when the feedback gain is 
sufficiently strong, we study the effect of gain on oscillations, which in turn affects 
correlations. We calculate the power spectral densities of spike trains as a function of 
feedback gain and analyze peaks in the gamma range. Gamma oscillations have been 
shown to enhance correlated activity of neurons [8,11]. Therefore, we quantify gam-
ma oscillations by the degree of  these spectral peaks [12,13] and evaluate the influ-
ence of inhibitory feedback on this coherence.  

Since parameter heterogeneity often reduces correlations [14,15], we further inves-
tigate the robustness of the non-monotonic relationship in the presence of heteroge-
neity. Together our findings point to the importance of the regime of firing, feedback  
strength, oscillation characteristics, and network heterogeneity to understand the  
degree of pairwise correlations. 

2 Model and Numerical Methods  

In this paper, we investigate firing correlations in a network with inhibitory feedback. 
The network has two interacting layers. The N excitatory LIF neurons, which receive 
external stimuli, provide excitatory input to an inhibitory LIF neuron population, 
which feeds its output back to all the excitatory neurons via a global delayed inhibito-
ry feedback loop.  

Each excitatory neuron receives an input (t)iI  from a sensory neuron composed 
of the following components [4]: 

 ( ) ( ) 1 ( ) ( )i E i i c gI t t c t c t Iμ η σ ξ ξ = + + − + +   (1) 

where Eμ denotes the base current and (t)iη  is an internal Gaussian white noise of 
zero-mean and intensity ED . The next term stands for the external noise, and consists 
of two Gaussian low-pass filtered (0-150Hz, eight-order Butterworth filter) noise 
processes of unit variance: (t)iξ is a noise specific to each neuron and (t)cξ  is 
shared by all neurons. These two noise processes are scaled by the input correlation 
coefficient c  to determine the degree of shared input of all the excitatory neurons. 
We set 0.6c =  throughout our study.    

The last term in Eq. 1 represents the inhibitory feedback generated by the inhibito-
ry neuron, which is calculated by the convolution of a delayed α function and the 
spike train Iy  of the inhibitory neuron:  
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 ( ) ( ) ( )
D

g II t G y t d
τ

α τ τ τ
∞

= −  (2) 

Here Dτ  is half the transmission delay around the feedback loop. We use the spike 
train cross-correlogram (CCG) [16,17] to compute the pairwise spike correlations: 

 1 0

( ) ( )
( )

( )

M L
k k
i j

k t
ij

i j

y t y t
CCG

M L

τ
τ

τ λ λ
= =

+
=

−


 (3) 

where M is the number of trials or realizations, L  is the duration of every trial, and 

iλ  and jλ are the firing rates of neurons i and j , respectively. The term L τ−  is 
used to correct for the degree of overlap. The auto-correlograms (ACG), are calculat-
ed similarly as the CCG, but by letting i j= . The pairwise spike correlation ( ijC ) of 
the two neurons i  and j is estimated by the ratio of the area of the CCG within a 
certain range of lags defining a window T  to the geometric mean area of the ACG 
over the same window. All CCGs and ACGs are corrected by subtracting the shift 
predictor SPT. When T is large enough, ijC  saturates to a steady value, which is 
defined here as the pairwise correlation coefficient of neurons i  and j . Finally, the 
correlation coefficient Cor of the network reported in our results below is obtained 
by averaging the pairwise correlation coefficients over all pairs of excitatory neurons. 
The parameter values chosen in our work are: 100N = , 4D msτ = , 0.2σ = ,

100T = . 

3 Results 

We now explore the relationship between the correlation coefficient of the network 
and the inhibitory feedback gain using the numerically generated spike trains of excit-
atory neurons in the first layer. First, a sub-threshold base current 0.9Eμ =  with low 
internal noise 0.112ED =  is chosen. In this case, spikes are solely induced by noise. 
As shown in Fig. 1 (top), Cor first drops to a lower level for small values of the 
feedback G , but later rises after G  exceeds some threshold value. Afterwards, a 
stable and relatively high level of pairwise correlation is maintained with further in-
creases in G . The non-monotonic curve thus reveals a minimum correlation coeffi-
cient of the network for a moderate value of the feedback strength.  

We then consider the supra-threshold regime, where Eμ  is raised to 1.2Eμ = . 
The curve of Cor  vs G  in Fig. 1 (bottom) remains non-monotonic as in the sub-
threshold regime. Moreover, since correlation is proportional to firing rate in feed-
forward networks [1], over the whole range of the values of feedback gain selected in 
the simulations, the correlated activity measured by Cor  in the supra-threshold re-
gime is significantly higher than in sub-threshold regime.  

To further explain the non-monotonic relationship between the correlation coeffi-
cient of the network and the strength of inhibitory feedback, we calculate the spike 
train power spectrum and the firing rate of a single excitatory neuron in the network 
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Fig. 5. The heterogeneous networks are compared to the homogeneous ones 

4 Discussion 

Correlations are at the center of many controversies about the coding and processing 
of neural information. In the present paper, we have shown that the relationship be-
tween the network-averaged pairwise correlation coefficient of spiking activity and 
the strength of the global inhibition in that network is non-monotonic. We find that, as 
the magnitude of the inhibitory feedback increases, the firing rate first decreases, 
causing a drop in correlation. However, beyond a certain magnitude, the feedback 
coupling increases the correlation. In particular, the inhibitory feedback begins to 
elicit asynchronous network oscillations. This spectral coherence counteracts the drop 
in firing rate, leading to an increase in correlation. This is true in both the sub-
threshold and supra-threshold regimes, i.e. when each cell can (supra) or can’t (sub) 
fire periodically in the absence of feed-forward and feedback inputs (i.e. when it has 
sufficient bias or not). The non-monotonic relationship also holds at low or high in-
ternal noise in either regime. The structure of our model also enables us to predict that 
this will be the case if the external noise intensity changes. The effects presented here 
are also likely to occur in non-sensory systems characterized by closed neural loops 
functioning as oscillators, such as the basal ganglia.  

The non-monotonic relationship is not only robust over a range of noise intensities 
and biases, but also when the network is heterogeneous. Gaussian-distributed firing 
thresholds or feedback gains yield moderately smaller correlation values, but the cor-
relation-vs-gain non-monotonicity is preserved. Apart from heterogeneity, different 
forms of plasticity in the feedback pathway would, to lowest order, have an effect 
similar to distributed gain values, and thus we may expect that plasticity will also 
reduce correlation – this will be explored in future work.   
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Abstract. It is known in statistics that the linear estimators using the
rank-based Wilcoxon approach in linear regression problems are usually
insensitive to outliers. Outliers are the data points that differ greatly
from the pattern set by the bulk of the data. Inspired by this, Hsieh
et al introduced the Wilcoxon approach into the area of machine learn-
ing. They investigated four new learning machines, such as Wilcoxon
neural network (WNN) etc., and developed four descent gradient based
backpropagation algorithms to train these learning machines. The perfor-
mances of these machines are better than the ordinary nonrobust neural
networks. However, it is hard to balance the learning speed and the sta-
bility of these algorithms which is inherently the drawback of gradient
descent based algorithms. In this paper, a new algorithm is used to train
the output weights of single-layer feedforward neural networks (SLFN)
with its input weights and biases being randomly chosen. This algo-
rithm is called Wilcoxon-norm based robust extreme learning machine
or WRELM for short.

Keywords: Extreme learning machine · Wilcoxon neural network ·
Wilcoxon-norm based robust extreme learning machine

1 Introduction

It is said that the modern age of neural network began with the work of McCul-
loch and Pitts in 1943. Since then, some popular and powerful artificial neural
networks (ANN) have been proposed, such as self organizing map (SOM) [1],
radial basis function neural networks (RBF) [2], and support vector machines
(SVMs) [3] etc. Several learning algorithms have been proposed in the literature
for training the aforementioned learning machines [1]-[5]. Among these machines,
one simple structure is multilayer perceptron artificial neural networks (MLP).
Some offline algorithms have been introduced to learn the weights and biases of
MLP. One well known gradient descent based batch learning algorithm is the
back propagation [4]. In order to improve the convergence speed of BP algo-
rithm, several improvements were made in [5,6]. It has been approved that a
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 200–209, 2014.
DOI: 10.1007/978-3-319-12436-0 23
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single-hidden layer feedforward neural network (SLFN) with additive hidden
nodes and with a nonpolynomial activation function can approximate any func-
tion in a compact set [7]. Huang et al further rigorously proved that SLFNs with
randomly assigned input weights and hidden neurons’ biases and with almost
any nonzero activation functions can universally approximate any continuous
function on any compact input sets [8]. Based on this concept, the extreme
learning machine (ELM) algorithm was proposed for batch learning [8,9]. Later,
Liang et al developed an online sequential learning machine algorithm for SLFNs
with additive or RBF hidden nodes in a unified framework which is referred to
as online sequential extreme learning machine (OS-ELM) [10]. Both the ELM
algorithm and OS-ELM algorithm are based on the principle of least square
error minimization, so the performances of these algorithms are easily affected
by outliers. In other words, these algorithms are not robust. Inspired by differ-
ent mechanisms, two robust algorithms were proposed, namely least trimmed
squares (LTS) [21] and rank-based Wilcoxon neural networks [20]. In this paper,
performances of both robust and nonrobust algorithms will be compared with
the algorithm we proposed.

This paper is organized as follows. Section 2 reviews the Wilcoxon neural
network proposed by Hsieh and discusses some related problems. Section 3 illus-
trates the basic background of ELM and the introduced WRELM. The experi-
mental results are conducted in Section 4. Finally, some conclusions are included
in Section 5.

2 Wilcoxon SLFN

2.1 Wilcoxon Norm

The Wilcoxon norm of a vector will be used as the objective function or disper-
sion function for Wilcoxon learning machines. In order to define the Wilcoxon
norm of a vector, a score function is introduced. A score function is a nondecreas-
ing function φ : [0, 1] → �1 which satisfies

∫ 1

0
φ(u)du = 0 and

∫ 1

0
φ2(u)du = 1.

The score aφ(·) associated with the score function φ is defined by

aφ(i) = φ

(
i

N + 1

)
, i = 1, 2, · · · , N

where N is a fixed positive integer. Hence aφ(1) � aφ(2) � . . . � aφ(N). It can
be shown that the following function is a pseudonorm (seminorm) on �N :

‖e‖W =
N∑

i=1

a(R(ei))ei =
N∑

i=1

a(i)e(i) (1)

where e = [e1, . . . , eN ]T ∈ �N , R(ei) denotes the rank of ei among e1, . . . , eN ,
e(1) ≤ . . . ≤ e(N) are the ordered values of e1, . . . , eN , a(i) = φ[i/(N + 1)], and
φ(u) =

√
12(u − 0.5). We call ‖e‖W defined in (1) the Wilcoxon norm of the

vector e.
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2.2 Wilcoxon Neural Network

Consider the single-hidden layer Wilcoxon neural network with n + 1 nodes in
its input layer, m nodes in its hidden layer, and p nodes in its output layer.

Let the input vector be x = [x1, x2, . . . , xn, 1]T ∈ �n+1, and let vij denote
the connection from the ith input node to the jth hidden node. The input uj

and output rj of the jth hidden node are respectively given by

uj =
n+1∑

i=1

vjixi, rj = f(uj), for j = 1, 2, · · · ,m

where f is the activation function of hidden nodes.
Let wkj denote the connection weight from the output of the jth hidden node

to the kth output node. Then, the output of kth output node tk and final output
yk are respectively given by

tk =
m∑

j=1

wkjrj , yk = tk + bk, for k = 1, 2, · · · , p

where bk is the bias of the kth output node.
Suppose we are given the training data set, {(xi, di)}N

1 with xi ∈ �n+1 and
di ∈ �p, where N is the number of training data, xi = [x1i, . . . , xni, 1]T is the
ith input vector, and di is the desired output for the input xi. In the WNN, the
approach is to choose network weights (v and w) that minimize the Wilcoxon
norm of the total residuals

D(v,w) =
p∑

k=1

N∑

i=1

a(R(ei,k))ei,k =
p∑

k=1

N∑

i=1

a(i)e(i),k (2)

where ei,k = di,k − ti,k, R(ei,k) denotes the rank of the residual ei,k among
e1,k, . . . , eN,k and e(1),k � . . . � e(N),k are the ordered values of e1,k, . . . , eN,k.

The neural network used above is the same as that used in traditional artifi-
cial neural network, except the bias terms at the output node. The main reason
is that the Wilcoxon norm is a pseudonorm instead of the usual norm. ‖e‖W = 0
implies that e1 = · · · = eN . So, without the bias terms, the resulting predic-
tive function with small Wilcoxon norm of total residuals may deviate from the
desired function by constant offsets. The bias term bk is estimated by the median
of the residuals at the kth output node, i.e., bk = med1�i�N{dki − tki}.

In [20], the proposed gradient descent based algorithm can effectively train
WNN, however, there are some practical issues involved in its application. Firstly,
the synaptic weights are initially set to small random values, so that the nodes
are not saturated. Secondly, the learning rate parameter severely affects the
speed of convergence. In this paper, we use an algorithm in linear regression to
train WNN which will be discussed in the following section.
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3 Wilcoxon-Norm-Based Robust Extreme Learning
Machine

In this section, a brief description of the ELM algorithm developed by Huang
et al is given first. Then the WRELM algorithm is introduced.

3.1 ELM Algorithm

In supervised batch learning, the learning algorithms use a finite number of
input-output samples for learning networks’ parameters. For N arbitrary dis-
tinct samples (xi, yi) ∈ �n × �p, standard SLFNs with m hidden neurons and
activation function (or radial basis function) g(x) are modeled as

m∑

j=1

wj G(aj , bj ,xi) = yi, for i = 1, · · · , N (3)

where aj and bj are the learning parameters of hidden neurons and wj is the
weight connecting the jth hidden node to output neurons. For additive hidden
neuron with the activation function g(x) (e.g., sigmoid or threshold), G(aj , bj ,x)
is given by [10]

G(aj , bj ,x) = g(aj · x + bj), bj ∈ �.

For RBF hidden neuron with Gaussian activation function g(x), G(ai, bi, x) is
given by G(aj , bj ,x) = g

(‖x−aj‖
2b2j

)
, bj ∈ �.

Equation (3) can be written compactly as H · W = Y
H is called the hidden layer output matrix of the network [8]. The ith column

of H is the ith hidden node’s output vector with respect to inputs x1,x2, . . . ,xN .
By minimizing the objective function ‖H · W − Y ‖22, we can get the estima-

tion of output weights of hidden layer

W = arg min
W

‖H · W − Y ‖22 = H+Y (4)

where H+ is the P-M pseudo inverse of H.

3.2 Description of the Proposed WRELM

Like ELM algorithm, if the weights and biases of the input layer of WNN are
randomly chosen, the dimension of the parameters to be learned in WNN could
be greatly reduced. Based on the above principle, the WRELM algorithm is
proposed.

After the input weights and the hidden layer biases are arbitrarily chosen,
single-layer Wilcoxon neural network can be simply considered as a linear system

yi,k = bk + Hi · wk + ei,k, for i = 1, · · · , N, k = 1, · · · , p
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where Hi is the ith row of hidden layer output matrix H, and wk ∈ �m×1 to be
learned is the weight connecting the hidden neurons to the kth output neuron,
and ei,k is a random variable with density fk and distribution function Fk. In
its general form, Jaeckel’s rank dispersion function can be stated as

DR(ek) =
n∑

i=1

ei,k a[R(ei,k)] (5)

where a(1) � a(2) � . . . � a(N) is a set of scores generated by a(i) = ϕ(i/(n+1))
and ei,k = yi,k −Hi ·wk. One usually used score function is φ(u) =

√
12(u−0.5).

Some other forms of score functions can been found in [12,13,18]. It is easy to
prove that DR(e) is an even (DR(e) = DR(−e)) and location free (DR(e) =
DR(e − γI)) dispersion function. Jaeckel shows that DR(e) is a nonnegative
continuous, and convex function of W = [w1, . . . ,wp] which attains its minimum
with bounded W if X has full rank [13].

We denote the rank based estimator of wk by w̃k which is

w̃k = arg min
wk

DR (Yk − H · wk) = arg min
wk

‖Yk − H · wk‖W (6)

where ‖·‖W is a pseudonorm defined in (1).
In order to minimize DR (Yk − H · wk), we need to compute its partial deriva-

tive with respect to wk which exists almost everywhere [14]

∇DR =
∂DR

∂wk
= −S (Yk − H · wk) = −HT a (R (Yk − H · wk)) .

Thus w̃k is the solution to the following R-normal equations

HT a (R (Yk − H · wk)) = 0N (7)

Let wk0 denote the true parameters which satisfy R-normal equations and
the scale factor

τk =
(√

12
∫ +∞

−∞
f2

k (x) dx

)−1

, k = 1, · · · , p

where fk is the p.d.f. of the noise ek. If the following requirements are satis-
fied, the dispersion function DR(·) can be approximated by a quadratic function
Q(·) [15]

Q(Yk − H · wk) =
1

2τk
(wk − wk0)

T
HT H (wk − wk0)

− (wk − wk0)
T

S (Yk − H · wk0) + D (Yk − H · wk0) .

1. The density fk is absolutely continuous and its Fisher information I(fk) =
∫ +∞

−∞
[
f

′
k(x)

]2
/fk(x)dx < ∞.

2. lim
N→∞

N−1XT X = Σ, where X is an N ×m design matrix and Σ is a m ×m

positive definite matrix.
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3. lim
N→∞

max
1≤i≤N

x2
iq/

∑N
j=1 x2

jq → 0 for all q = 1, · · · ,m.

The following estimate minimizes Q(·) [16]

w̃k(t + 1) = w̃k(t) + τk(t)(HT H)−1HT a(R(Yk − H · w̃k(t)))

The scale factor τk(t) needs to be estimated. One estimate of
∫ +∞

−∞ f2
k (x)dx is

by Schuster who first obtained a kernel type of estimate of fk(x) [17]

f̃k(x) =
1

Nh

N∑

i=1

K

(
x − ei,k

h

)

where h is the kernel bandwidth and K(·) is a uniform kernel function

K(x) =
{

1, x ∈ [−1/2, 1/2]
0, otherwise

Then δk =
∫ +∞

−∞ f2
k (x)dx can be estimated by

δ̂k = 1/N2h

N∑

i=1

N∑

j=1

I (|ei,k − ej,k| < h/2).

A modified version of the above estimate, δ̂k,c is proposed in [14] to ease the
computation [22]

δ̂k,c =
1

Nc
+

1
N(N − 1)h

N∑

i=1

N∑

j �=i

K(
ei,k − ej,k

h
)

where c is a fixed constant. When h = c/
√

N , the modified δ̂k,c is consistent of
δk [14].

4 Illustrative Examples

In this section, we compare the performances of five neural networks for both arti-
ficial regression problem and two other real world benchmark nonlinear regres-
sion examples. In those examples, in order to test the generalization capability
of the learned machines, the machines are tested by another set of training data
without noise or outliers. The five learning machines compared here are two
nonrobust neural networks, namely standard ANN and ELM in [8], three robust
neural networks, namely LTS in [21], original Wilcoxon neural network in [20]
and WRELM. All these illustrative simulations are conducted in Matlab 6.5
running on a Pentium IV 2.0 GHz and 512 MB RAM personal computer.

For a fair comparison, each neural network’s hidden layer nodes have the
same activation functions, and the same number of hidden nodes.
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4.1 Artificial Problem

In this simulation, the true function is given by the Hermite function [20]

y = 1.1 · (1 − x + 2x2) · e−x2/2, x ∈ [−5, 5].

A training data set (xi, yi) with 100 data is generated, where xi’s are uni-
formly randomly distributed in the interval [−5, 5]. The gross error model used
for modeling outliers is Dε = 0.85 · G + 0.15 · H, where G � N(0, 1) and
H � N(0, 0.1). For all the machines concerned, the number of hidden layer
nodes is 20 and the activation functions of the hidden nodes are sigmoid func-
tions.

The learning rate η used in BP training algorithm of ANN is 0.008, in LTS
algorithm 0.003, and in BP algorithm of WNN 0.001. The number of training
epochs for ANN is 8,000, and for LTS is 80,000, and for WNN is 8,000. The
trainings of the aforementioned three algorithms are time consuming, while the
WRELM is trained only 5 epochs in neglectable time.

The simulation results are shown in Fig. 1. For highly corrupted data as
shown in Fig. 1(a), LTS, WNN and WRELM are robust to outliers and they are
not affected by outliers. While the performances of least square based ANN and
ELM as shown in Fig. 1(b) are severely affected by outliers. In this example, the
performance of WRELM is almost as good as other two robust algorithms, but
WRELM converges pretty faster.
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Fig. 1. Simulation results of some non-robust and robust algorithms in Example 1

4.2 Real World Benchmark Regression Problems

1) Fuel Consumption Prediction of Automobiles [19]: In this example, a regres-
sion benchmark problem is studied, namely, auto-mpg. This problem is to
predict city-cycle fuel consumption of different models of car by 3 multivalued
discrete and 4 continuous input attributes and one continuous output attributes.
The dataset contains 392 data. In our simulation, about 3/4 of the total data
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are randomly chosen to form the training data set and the remaining data to
form the testing data set. The corrupted training data set is formed by keep the
normalized input attributes unchanged but with 5% randomly chosen output
attribute values replaced by random values from a uniform distribution defined
on [-100,100]. The testing data set remains unchanged. For simplicity, the eight
input attributes are normalized to the range [-1,1].

In this simulation, the learning rate in BP algorithm of WNN is 0.01, in BP
algorithm of ANN is 0.001, and in LTS algorithm is 0.001, they are all chosen by
trial and error. Fig. 2 shows that compared to ELM and ANN, the three robust
algorithms LTS, WNN and WRELM achieves good generalization performance
when there exists outliers. It can be further seen from Fig. 2(b) that WRELM
algorithm archives least RMSE for the testing data in just a few training epochs.

2) Abalone Age Prediction [19]: This problem has 4177 cases predicting the
age of abalone from physical measurements. The age of abalone is determined
by cutting the shell through the cone, staining it, and counting the number of
rings through a microscope which is a boring and time-consuming task. Other
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Fig. 2. Performance comparison of the concerned algorithms in Example 2 (the training
epochs for ANN and LTS x25, and for WNN x50)

Table 1. Performance Comparison for the Methods in Example3

Time(Seconds) Training Testing η Epochs #Nodes
Algorithms

Mean Dev Mean Dev Mean Dev

ANN 28.9195 0.4107 6.8668 0.0002 2.5747 0.0734 0.0002 600 20

ELM [8] 0.0142 0.0001 6.8065 0.0566 2.5983 0.0114 - 1 20

LTS [21] 283.9649 55.9718 7.2171 0.0037 2.2730 0.0207 0.0002 5,000 20

WNN [20] 24.9874 0.6430 7.0637 0.0699 2.0355 0.0151 0.001 500 20

WRELM 1.3656 0.0001 7.0506 0.0674 2.0028 0.0149 - 5 20

ANN 36.8601 1.0196 6.4117 0.0020 2.4861 0.1030 0.0002 600 30

ELM [8] 0.0237 0.0001 6.3159 0.0001 2.4635 0.0010 - 1 30

LTS [21] 356.6765 145.3539 6.6625 0.0023 2.1135 0.0025 0.0002 5,000 30

WNN [20] 32.2266 1.1770 6.5274 0.0002 1.9847 0.0002 0.001 500 30

WRELM 1.3780 0.0001 6.5198 0.0002 1.9727 0.0004 - 5 30
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8 measurements, which are easier to obtain, are used to predict the age. The 8
measurements are sex, length, diameter, height, whole weight, viscera weight,
shell weight and rings. For simplicity, the eight input attributes are normalized
to the range [-1,1]. In this regression problem, about 75% of the total data are
randomly chosen to form the training data set with 10% of the total training
data are corrupted by keep the input attributes unchanged but output values
are replaced by random values from a uniform distribution defined on [0,50].

Table 1 summarizes the results for this benchmark regression problem in
terms of training time, training RMSE and testing RMSE for each network with
different number of nodes. We run each of the concerned five algorithms 10 times.
The learning rate of BP algorithm of ANN, LTS and WNN are chosen by trial
and error in consideration of converge speed and stability. The input weights
and biases of hidden layer nodes of ELM and WRELM are of the same at each
simulation, and they are chosen randomly in range [-1,1]. From Table 1, we can
see that although the training time of ELM is neglectable and the RMSE of
training uncorrupted data set of ELM is the smallest among the five algorithms,
its RMSE of testing data is pretty large. In other words, the ELM network is
not robust to outliers. WRELM algorithm has fastest convergence speed with
smallest RMSE of testing data among the other four algorithms.

5 Conclusion

In this paper, a robust ELM-like learning machine was proposed, which called
Wilcoxon-norm based robust extreme learning machine or WRELM for short.
Like ELM algorithm, after the input weights and the hidden layer biases are cho-
sen randomly, single-layer WNN can be simply considered as a linear system, so
the output weights can be tuned by well studied robust linear regression methods.
Based on this principle, the new robust algorithm called WRELM was introduced.
Performance of WRELM was compared with ANN, ELM, LTS, and WNN on both
artificial regression problem and some real world benchmark regression problems.
The results indicate that WRELM algorithm, like WNN algorithm and LTS algo-
rithm, is robust to outliers, but with no additional vital parameters, such as learn-
ing rate in gradient based algorithms, to been decided. The WRELM algorithm
can converge fast and is stable with good generalization capability.
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Abstract. We present an artificial synaptic plasticity (ASP) mechanism
that allows artificial systems to make associations between environmental
stimuli and learn new skills at runtime. ASP builds on the classical neural
network for simulating associative learning, which is induced through a
conditioning-like procedure. Experiments in a simulated mobile robot
demonstrate that ASP has successfully generated conditioned responses.
The robot has learned during environmental exploration to use sensors
added after training, improving its object-avoidance capabilities.

Keywords: Synaptic plasticity · Classical conditioning · Artificial
neural networks

1 Introduction

Natural environments change often, which makes adaptation an essential survival
skill for most organisms. Like animals, robotic systems may also find themselves
in ever-changing environments. The need for more effective artificial intelligence,
capable to overcome environmental changes, has led researchers to find inspira-
tion in nature’s solutions for adaptation, such as animals’ reflexive behaviors
[2,5], and the human brain [1] and its hormonal mechanisms [7,9].

In nature, the ability to learn new behaviors by means of associations between
external stimuli is known to be essential for adaptation in a variety of animals,
including humans [4]. However, to date, most works on adaptive systems seem
to ignore this fact, seeking to adapt only the system’s native behaviors and
overlooking the need of a system that autonomously learn new ones [1,2,5,7,9].

In this paper, we propose a mechanism for allowing artificial systems to
autonomously learn new skills based on environmental feedback and on its pre-
existing skills. Our approach consists in an artificial synaptic plasticity (ASP)
mechanism that builds on the classical artificial neural network (ANN) [3] for
simulating associative learning. The system learns at runtime, through a proce-
dure analogous to classical conditioning [8], to associate different environmental
stimuli and use newly available information to solve problems in ways it was
not trained for. We have evaluated ASP in a simulated mobile robot, which has
successfully expressed conditioned responses.
© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 213–221, 2014.
DOI: 10.1007/978-3-319-12436-0 24
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This paper is organized as follows: Section 2 introduces ASP’s biological
inspiration, followed by its implementation in Section 3. We present experimental
results in Section 4 and conclude in Section 5.

2 Biological Background

2.1 Classical Conditioning

Classical conditioning, first documented by Pavlov [8], is an important form of
learning that involves the association of a behavioral response with an event that
normally does not trigger that response. In his most famous experiment, Pavlov
conditioned a dog to salivate on the ringing of a bell, after repeatedly ringing
the bell whenever he presented food to the dog.

Pavlov argued that some reflexes are “hard-wired” and, therefore, do not need
to be learned. For example, dogs do not need to learn to salivate when they smell
food. This kind of reflex, which is native and automatic, is called unconditioned
response (UR) and is triggered by an unconditioned stimulus (US). In Pavlov’s
dog example, the smell of food is an US that triggers salivation as an UR.

By contrast, the ringing of a bell is considered a neutral stimulus (NS),
because it naturally produces no salivation in dogs. After pairing the bell sound
with food smell, association occurs and it becomes a conditioned stimulus (CS),
being able to trigger salivation by itself as a conditioned response (CR). Unlike
URs, a CR can be extinguished after learned, for example, the dog will diminish
its salivation response to the bell if food is repeatedly presented on the absence
of the bell sound and vice-versa.

2.2 Synaptic Plasticity

At neural level, associative learning happens when a neuron is simultaneously
excited by a strong and a weak electrical stimulus. This process gives rise to
a phenomenon known as long-term potentiation (LTP), which strengthens the
communication between two neurons [4]. LTP takes place at the synapse, which
is the structure that connects two neurons and allows neural communication.
However, LTP is not the only process that affects synapses’ efficiency. Long-term
depression (LTD) is a process similar to LTP, but instead of strengthening, it
weakens synapses capability to transmit signals between neurons.

Synapses’ ability to change their strength in signal transmission according to
neural activity level, called synaptic plasticity or Hebbian plasticity, is known to
play an important role in classical conditioning [4]. As a simplified example of
this relation, a weak electrical stimulus could come from a CS, such as the ringing
of a bell for Pavlov’s dog, whereas a strong electrical stimulation could come from
an US, such as the smell of food for Pavlov’s dog. The target neuron (i.e., the
one receiving these stimulations), in turn, could be a neuron that meaningfully
contributes for triggering the dog’s salivation response.

The pairing of both weak (from the bell) and strong (from the food) electrical
stimulus generates LTP, which makes the target neuron more responsive to the
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weak stimulus. In the future, the weak stimulus will be able to activate the target
neuron by itself, allowing the bell’s sound to trigger the salivation response. If
CS and US are repeatedly presented in the absence of each other, LTD occurs,
leading the dog to no longer respond to the bell sound.

3 Artificial Synaptic Plasticity

We propose to simulate the neural mechanism of classical conditioning in the
classical feedforward ANN [3]. As discussed in Section 2, the neural mecha-
nism of classical conditioning consists in strengthening the signaling efficiency
of synapses, which are represented as weights in the classical ANN. We argue
that it is possible to generate an artificial synaptic plasticity (ASP) for artifi-
cial systems by gradually changing the ANN’s weights according to the activity
coincidence of its inputs.

In feedforward ANNs, the input value of a neuron i, known as net input, is
given by Equation 1, where xj is the output of neuron j, wij is the weight that
connects neurons j and i, and bi is the bias of neuron i.

neti = bi +
∑

j

xjwij . (1)

The association process induced by ASP takes place after the ANN’s training
phase, during the system’s operational cycle. Each input of the ANN is consid-
ered an external stimulus, which may be an artificial conditioned stimulus (ACS)
or an artificial unconditioned stimulus (AUS). Therefore, the ANN’s inputs are
divided into two groups: the AUS group, depicted by the vector u, of size p; and
the ACS group, depicted by the vector c, of size q. Together, these two stimuli
vectors compose the input vector x of the ANN, with size p + q. A particular
ACS cannot be an AUS at the same time and vice-versa. Therefore

x = [u1, u2, ..., up, c1, c2, ..., cq]T ;

neti = bi +
p∑

k=1

ukwik +
q∑

j=1

cjwij .

Consider, for now on, that the variables k ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q}
are reserved for indexing AUS and ACS elements, respectively. Also, for the
following explanation, we assume that the ANN’s inputs are normalized in the
range [0,1] and that the higher the value of an input, the higher its influence for
generating the behavior of interest.

ASP’s methodology consists in gradually changing the first-layer weights of
ACSs, so that they become able to activate neurons of the second layer by
themselves with the same pattern that AUSs would. Thus, each weight wij con-
necting ACS inputs to the second layer should be updated by a delta Δwij , so
that wij(t+1) = wij(t)+Δwij(t), where wij(t) is the value of wij at time t. Note
that this updating rule excludes weights wik that are related to AUS inputs.
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The value of Δwij should consider not only the amount by which a given pat-
tern is associated, determined by LTP, but also the amount by which the same
pattern is extinguished/dissociated, determined by LTD. The variables Δa (asso-
ciation amount) and Δd (dissociation amount) control the level of association,
reinforcing it (if Δa > Δd) or diminishing it (if Δd > Δa), so that

Δwij = αj(Δaij − Δdij) , (2)

where αj ∈ [0, 1] is the constant that determines the rate at which the ANN
associates or dissociates stimulus cj , and is called as the association rate (AR)
of stimulus cj . Hence, αj = 0 means that no association will occur, and the
closer αj is to 1 the faster the system associates cj .

The value of wij cannot be increased/decreased indefinitely, because the
ANN’s outcome could be very different from the outcome produced by AUSs,
diverging from the concept of classical conditioning. To avoid that, wij must be
kept in a range [w′

ij , w
′′
ij ], where w′

ij is the initial value of wij and w′′
ij is the

desired conditioned value of wij . Hence, the closer wij is from a w′′
ij , the closer

it is from a complete association. Analogously, the closer wij is from w′
ij , the

closer it is from a complete dissociation. Therefore

Δaij = (w′′
ij − wij) × assocj , (3)

Δdij = (wij − w′
ij) × dissocj , (4)

where the variables assocj (association factor) and dissocj (dissociation factor),
both in the interval [0,1], dictate the degree of synaptic-activity coincidence
between cj and u. We will return to these variables later on.

According to our definition, the value of w′′
ij should allow cj to activate

neuron i of the second layer with the same pattern that vector u would, which
implies in Equation 5 (remember that {x ∈ x | 0 < x < 1}). The constant
sjk ∈ [0, 1] is the sensitivity of stimulus cj to stimulus uk. The matrix that maps
the sensitivity between vectors c and u should be calibrated according to the
designer’s judgment, depending on the purpose of the associative learning and
the architecture of the ANN. If correctly calibrated, the SM (sensitivity matrix)
can prevent the system from learning “superstitions”, i.e., patterns that are no
more than random coincidences.

w′′
ij =

∑

k

sjkwik . (5)

In biological synaptic plasticity, association between a pair of CS and US
occur when their values are simultaneously high, and it is analogous for ASP.
Therefore, the higher the values of an ACS cj and an AUS uk, the higher the
association between both (i.e., the higher the association factor assocj). How-
ever, cj may be associated with more than one AUS, at different sensitivity
values. Thereafter, it is more correct to state that assocj is proportional to the
average signal strength of u weighted by the respective sensitivities. This implies
that

assocj = cj
∑

k

s′
jkuk , (6)
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where s′
jk = sjk/

∑
k sjk. Analogously, the dissociation (i.e., the extinction of an

association) of an ACS cj with an AUS uk should occur when these stimuli are
no longer paired. Therefore, the smaller the value of cj and the higher the mean
of u weighted by the respective sensitivities, the higher the dissociation between
both (i.e., the higher the dissociation factor dissocj):

dissocj = (1 − cj)
∑

k

s′
jkuk . (7)

Also, according to classical conditioning, the higher the ACS and the smaller
the AUS, the higher the dissociation; however, we have omitted it in the first
version of ASP and considered it as future work. By replacing Equations 3, 4, 6
and 7 in Equation 2 and simplifying, we find

Δwij = αj

[
cj(w′′

ij − wij) − (wij − w′
ij)(1 − cj)

] ∑

k

s′
jkuk , (8)

where w′′
ij is given by Equation 5. If a particular pair of associated stimuli, say cj

and uk, have high input values at the same time, a net-input extrapolation may
occur. This is because after being associated with uk, cj is able to mimic the
effect of uk in the ANN. Therefore, if both inputs are high, the neural network
will receive a total input twice as high as it would if association had not occurred.
So, the net input value must be restricted according to Equation 9, where v and
v are, respectively, the minimum and maximum values that v can assume.

bi +
∑

j

xjw
′
ij < neti < bi +

∑

j

xjw′
ij . (9)

4 Experimental Evaluation

In this section, we evaluate ASP in a multi-stimulus association case. A robot
is equipped with distance and touch sensors, but is trained (by means of the
backpropagation algorithm [3]) to recognize and avoid obstacles using only touch
sensors. Environmental exploration provides a natural conditioning, since it is
probable that at least one distance sensor will measure high proximity to obsta-
cles whenever a collision occur. By means of ASP, the robot is expected to
gradually associate collision with proximity at runtime and eventually start to
use information from the distance sensors to avoid obstacles before colliding.

4.1 Experimental Setup

We have used the robot simulator Webots [6] to simulate the Pioneer 2 robot1,
which is equipped with 16 distance sensors plus 5 custom touch-sensors. Figure 1a
shows the architecture of the ANN that controls the robot’s movements, whose
inputs come from the sensors depicted in Figure 1b. The first five inputs,
1 http://www.mobilerobots.com

http://www.mobilerobots.com
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AUS

u1

· · ·

u5

c1

· · ·

c16

ACS

Left

Right

(a) Neural network that controls the robot.
Inputs are divided into unconditioned (vector
u) and conditioned (vector c) stimuli. Out-
puts provide the speeds for the left and right
wheels in radians per second.

(b) Aerial view of robot’s sen-
sors disposition. Red lines repre-
sent distance-sensor rays and blue
spheres represent the contact area of
touch sensors.

Fig. 1. Robot controller setup

representing AUS, come from the touch sensors and assume only binary val-
ues, where one means that a collision has been detected and zero means the
opposite. The last 16 inputs, representing ACS, come from the distance sensors
and assume integer values from 0 to 1024, where the higher the input value
the closer the robot is to an obstacle. The robot’s maximum detection range is
0.5 meters.

The robot was placed in a 4m2 box with a narrow and curved corridor leading
to two dead ends, where it was initialized in three different positions and evalu-
ated for five ARs: 0, 0.001, 0.01, 0.1 and 1. AR zero represents the execution of
the pure ANN implementation, i.e., when there is no associative learning at all.
In order to investigate performance variation deriving from noise error (simu-
lated by Webots), we have executed each setup combination (3 initial positions
and 5 ARs) 30 times, each for 5 minutes.

The SM has been configured to prevent the robot from associating random
coincidences. For example, if the robot occurs to be near the left wall while
touching the wall at its front, it may associate its left distance sensors with its
frontal touch sensors, which is a mistake. Therefore, for this particular experi-
ment, the SM should map the disposition of the robot’s sensors, so that distance
sensors are associated with the nearest touch sensor. Table 1 depicts the SM used
in this experiment. Some distance sensors, such as c3, are close to two touch sen-
sors and, thus, have their sensitivity divided between them. By contrast, c6 and
c11 are relatively far from all touch sensors, so they have no sensitivity mapping.
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Table 1. Sensitivity matrix (zeroed cells were omitted)

Touch Distance Sensors
Sensors c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

u1 0.2 0.4 0.4 - - - - - - - - - - - - -
u2 - - 0.4 0.4 0.2 - - - - - - - - - - -
u3 - - - - - - 0.1 0.4 0.4 0.1 - - - - - -
u4 - - - - - - - - - - - 0.2 0.4 0.4 - -
u5 - - - - - - - - - - - - - 0.4 0.4 0.2

4.2 Results

Figure 2 counts all detected collisions during a complete run for each initial
position of the robot. The number of collisions when ASP is used with AR 0.01
is about 70% smaller than when it is not used. The difference is even greater for
AR 1.0, when the number of collisions is about 96% smaller than without ASP.

Outcomes for AR 0.001, however, are not as good as the results observed for
the other ARs. This is because, when under AR 0.001, the robot got trapped in
a corner from where it could not easily escape due to the disposition of its touch
sensors. The trapping was persistent in runs starting from position 3 (causing the
high collision count) and more occasional for runs starting from positions 1 and
2 (causing the high standard deviations). Despite trapping, results for the other
ARs (0.01, 0.1 and 1.0) present a consistent decrease in number of collisions, with
low standard deviation. Also, the lines are very close to each other, suggesting
that outcomes are the same regardless the robot’s start position.
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Fig. 2. Count of all detected collisions during an complete run

The robot’s behavioral changes were beyond our expectations. Because of
locomotion difficulty in the dead ends of the narrow corridor, the robot had
to move more “carefully” in order to make a turn without touching the walls.
As consequence, the more we increased the AR, the more time the robot spent
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making the turn in the dead ends, and the less it collided. This “cautiousness” is
a positive collateral-effect that was neither deliberately designed, nor predicted.

The explored area is another unexpected and positive collateral-effect. When
running without ASP, the robot’s vision-range was limited to touch, so it could
not perceive alternative (and perhaps better) paths to avoid an obstacle. As
consequence, the robot kept doing laps in a small space. By contrast, when using
ASP, the increased vision-range of the distance sensors improved the robot’s
space-awareness, which doubled the robot’s explored area.

In addition to this experiment, we have also performed experiments for eval-
uating ASP regarding the dissociation process, i.e., when the robot forgets the
association learned. Videos of all experiments are available on-line2.

5 Conclusion and Future Work

We have presented an artificial mechanism of synaptic plasticity for generat-
ing associative learning in artificial systems through a conditioning-like process.
Experiments with ASP successfully generated a conditioned response, allowing
the robot to learn a new skill at runtime: use its distance sensors to avoid obsta-
cles before bumping into them. This improved the robot’s locomotion efficiency,
allowing it to explore a bigger area and preventing physical damage.

For future work, we plan to use ASP for triggering and memorizing artificial
emotions in computer systems. Neuroscientific findings indicate that emotions
are essential for intelligent behavior and fast decision making in humans [4].
As for animals, emotions may be also valuable for artificial intelligence [5,7,9].
We hypothesize that ASP could be used for generating emotive conditioned
responses, so that the system could adapt its behavior according to its past
“emotional experiences” in relation to a particular place, entity or object.

In addition, we plan to test ASP with a real mobile robot in a physical
environment in order to provide more realistic evaluation on its efficacy.
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Abstract. This paper, by using the dynamic regression model (ARIMAX) mod-
els and predicts the tourist date from 1979 to 2004 in Zhejiang Province, and 
makes stationary test and white noise test of the residual date generated by the 
above analysis. The innovation point of this paper is that it is suitable to estab-
lish dynamic regression by cointegration test and proves the data of the residual 
data validation is stationary. Further testing and analysis of residual data, finds 
that the residual data can establish auto-regression model. This method has 
made full use of data information. Thus the paper presents that the prediction 
effect of the combination of the dynamic regression model and the residual auto 
regressive model is superior to that of the prediction model of the ARMA mod-
el. This combination model has better adaptability, greatly improves the pre-
dicted effect of the model. 

Keywords: The dynamic regression model (ARIMAX) · Cointegration test ·  
Residual autoregressive model · Time series analysis 

1 Introduction 

The so-called time series analysis is a list of ordered date which is recorded in accord-
ance with the time.This method makes prediction and tries to control the future devel-
opment of things or system by observing, studying and finding the developing law of 
the time series.This is how the time series analysis works. Time series analysis has 
been widely used in daily life and production, such as weather forecast, yield estima-
tion, stock movements, etc. 

For a set of data{ }tX ,ARIMA is the preferred model [1]. The model was put for-

ward by Box and Jenkins in1976, which was developed from unary time series to 
binary. However, this model is a stable multi-series model, which shows strict re-
quirements for the stability of each component in the stationary time series. In this 
model, both the input time series and studied time series should be steady, which, 
however is very difficult to achieve in many cases. 

The concept Cointegration wasput forward by Engle and Granger in 1987 [2]. The 
condition of stationary was historically relaxed. It requires only a certain linear com-
bination of data setsbe stationary, in other words,that is to insure their auto-regression 
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residual data be stationary.Cointegration theory has greatly promoted the develop-
ment of multivariate time series. The later Johansen cointegration test, proposed by 
Johansen and Juselius [3], is a method testing thecointegration relationship under the 
VAR (vector auto-regression) system. 

In 2005,Yinyin Wu, using the method of Gibbs mined abnormal points in the 
ARIMAX model [4].Yuanzheng Wang andYajing Xu made the ARIMAX model a 
skilled use in multiple stationary time seriesin 2007 [5]. In 2008, Hui Zeng and others 
applied the residual auto-regressive model to solve the forecasting analysis and pre-
diction of the non-stationary time series of economic [6]. In this paper, by the combin-
ing of the dynamic regression model and the residual auto-regressive model, we  
update the ARMA model and improve its prediction accuracy. 

2 Dynamic Regression Model and Residual Auto-Regressive 
Model 

2.1 Dynamic Regression Model 

Assuming that the output variable (the dependent variable sequence) { }tY  and the 

input variable sequences (independent variable sequence){ }1tX ,{ }2tX , ,{ }ktX

are all stationary, the establishing of regression model of the output and input se-
quences is the first thing to do: 
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In formulary (1), ( )i BΦ is the i-th polynomial in regression coefficients of input 

variables; ( )i BΘ is the i-th polynomial in moving mean coefficients of input varia-

bles; il is the i-th hysteretic order of input variables;{ }tε is regression residual se-

quence. Sequences{ }tY  and sequences{ }1tX ,{ }2tX , ,{ }ktX , are all stationary, 

and Linear combination of stationary sequence remains stable, so the residual se-
quence is a stationary sequence, we have 
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If necessary, we can use ARMA model to extract relevant information of residual 

sequence{ }tε , then a model shown as following:  
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This model is called dynamic regression model and abbreviated ARIMAX. In formu-
lary(3), ( )BΦ is the polynomial in regression coefficients of residual sequence; 

( )BΘ is the polynomial in moving mean coefficients of residual sequence; ta is mean 

zero white noise sequence. 

2.2 Engle-Granger Two Step Cointegration Check 

EG check works like this: estimating coefficient with the ordinary least square regres-
sion among independent variables, and testing tin stability of regression residual, if 
the residual data is stationary, then the two variables have cointegration relationship. 
Otherwise, they have no cointegration relationship.Therefore the EG test hypothesis 
can be represented as: 

0H :There is not cointegration relationship between binary non-stationary series  

1H :There is cointegration relationship between binary non-stationary series  

Due to the fact that the cointegration relationship is mainly determined by inspect-
ing the stability of the regression residual series, thus the above assumption is equiva-
lent to: 

0H :Regression residual sequence{ }tε is non-stationary 

1H :Regression residual sequence{ }tε is stationary 

2.3 Residual Auto-Regressive Model 

The construction thought of Residual autoregressive model is firstly extracting main 
deterministic information sequence by decomposing method of certainty factors: 

 t t ttx X S ε= + +  (4) 

In formulary (4), tT  is trend effect imitation (this paper usesa dynamic regression 

model), tS is seasonal effect imitation. 

Considering the factor that the extraction ofdeterministic information by the de-
composition method may not be sufficient enough, we need totest autocorrelation of  
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residual sequence. If the test result shows no significant autocorrelation between the 
residual sequences, then the deterministic regression model has fullyextracted infor-
mation and the analysis can be stopped.Otherwise, the result will show that the  
deterministic regression model is inadequate for information extraction.Then we can 
consider fitting regression model on the residual sequence and further extracting the 
information: 

 1 -1= + +t t p t p taε εφ φε − +  (5) 

Then, we can get the following model shown as following: 
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Formulary (6) is called residual auto-regressive model. 

3 Modeling Process 

3.1 Process of Establishing Dynamic Regression Model 

• Plotting data on a graph, and defining image direction; 
• Determining the order of model and establishing dynamic regression model;  
• Cointegration test and white noise teston the regression residuals, confirming 

whether to continue modeling. 

3.2 Process of Establishing Residual Auto-Regressive Model 

• Processing abnormal points with residual data; 
• Determining autocorrelation coefficient and partial autocorrelation coefficient of 

the residual data  
• Setting up residual auto-regressive model; 
• Model test; 
• Forecasting application and comparing effect. 

4 The Example Analysis and Contrast 

In this paper, based on the number of inbound tourism in zhejiang province in 1979-
1979 (table 1) [7], and by using the SAS software, we set up data files and predict the 
number of inbound tourism in 2005-2007. 
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Table 1. Zhejiang inbound tourist arrivals in 1979-1979 (ten thousand people) 

year People(Ten thousand） year People(Ten thousand） 

1979 9.31 1994 61.27 
1980 13.89 1995 67.27 
1981 17.17 1996 72.9 
1982 18.03 1997 81.15 

1983 18.43 1998 81.96 
1984 21.31 1999 94.78 
1985 27.29 2000 112.59 
1986 29.4 2001 146.95 
1987 33.01 2002 204.18 
1988 39.27 2003 181.8 
1989 29.41 2004 276.67 
1990 49.62 2005 348.01 
1991 55.41 2006 426.83 
1992 68.54 2007 511.18 
1993 72.84     

 
According to the data in the table 1 we draw a sequence diagram, as shown in  

Fig 1. The sequence seen from the diagram is exponential growth trend. It proves that 
sequence is non-stationary. 

 

Fig. 1. sequence diagram of the number of inbound tourism from 1997 to 2004 
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Data, on the number of inbound tourism on Fig. 1, shows remarkable autocorrela-
tion. According to the sequence of ACF figure, data shows has 3 order truncation and 
establish dynamic regression model (ARIMAX) by using SAS software: 

 1 1 2 2 3 3t t t t tX X X Xβ β β ε− − −= + + +  (7) 

Then residual data can be shown as following: 

 1 1 2 2 3 3( )t t t t tX X X Xε β β β− − −= − + +  (8) 

We need to getfitting data and the residual data,then map the dynamic regression 
model (Fig 2) and residual sequence diagrams (Fig 3) 

 

Fig. 2. Fitting effect of dynamic regression mode 

 

Fig. 3. Residual sequence diagrams 
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Observing the Fig 3, residual data in 2003 is found to be abnormal point. Accord-
ing to the relevant information in 2003, it is found that in 2003 we were in a special 
period of SARS. In order to prevent SARS, most provinces in China's implemented a 
strict entrance number control, thus the number of inbound tourism was greatly re-
duced.To improve the accuracy of forecast data, the data in 2003 is regarded as the 
abnormal points.  

For abnormal point 1tε + [8], We can use 
tε

∧
 instead of 1tε + , that is : 

 12t t tε ε ε
∧

−= −  (9) 

According to the measures for the handling of abnormal points, here we use 
2 36.61 15.25 59.97× − = to replace 46.92− , then we have a new residual se-
quence diagrams (Fig 4) 

 

Fig. 4. New residual sequence diagrams 

Using SAS program, stationary test (Fig 5) and white noise test (Fig 6) were carried 
out on the residual data. 

As you can see the residual data in Fig 5, the autocorrelation coefficient of residual 
data after 2 order fell on confidence intervaland gradually tends to zero. It shows  
that residual data is stable [9]. The dynamic regression model can be established.  
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Fig. 5. Residual autocorrelation test 

 
Fig. 6. White noise test 

According to the dynamic regression model parameter, we establish tX model of the 

number of inbound tourism: 

 1 2 30.8518074 0.3360194 0.0481506t t t t tX X X X ε− − −= + + +  (10) 

The next task is to check if the residual data is the data for white noise  
sequence [10]. If residual data is white noise sequence, we may think the model is 
reasonable and suitable for prediction. Otherwise, it means that there is useful infor-
mation in the residual sequence that has not been put forward, we should further 
transform the model. The value of Prwith a value of 0.0074 in Fig 6 is less than 0.05, 
and the instructions for the extraction of information is not complete, so we need to 
consider improving the original model using the residual data model. 

As is shown in Fig. 7, the parameter estimated value is less than 0.0001 and has a 
very significant effect, and the produced residual sequence via examining is proved to 
be white noise sequence.White noise testing Pr values in Fig. 7 are respectively 
0.9089, 0.8985, 0.9666, all figures are greater than 0.05. Residual data is white noise,  
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Fig. 7. Parameter estimation and White noise test 

and the establishment model is reasonable, soAR(1) model can be established for data 

sets{ }tε : 

 10.89604t t taε ε −= +  (11) 

By the studying of dynamic regression model of the data and the residual data of 
residual autoregressive model, the combination model can be represented as: 

 
1 2 3
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t t t
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 (12) 

Then: 

1 2 3 10.8518074 0.3360194 0.0481506 0.89604t t t t t tx X X X aε− − − −= + + + +
 
(13)

 

By using combination model, we can forecast the data of 2005, 2006 and 2007 data 
and compare the predicting data of the ARMA model [7] (table 2). 

Table 2. The predicted results contrast table 

year truth 
predict data of the 

ARMA model 
Relativeerror

predict data of the 
combination model 

relativeerror 

2005 348.01 318.11 8.60% 348.21 0.05% 

2006 426.83 397.09 7.00% 435.75 2.08% 

2007 511.18 482.64 5.60% 527.81 3.25% 

5 Summary 

As shown from the analysis results of ARMA models prediction,the relative error of 
the three years’ data from 2005 to 2007 are 8.60%, 7.00% and 5.60%. While,that of 
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the combined model prediction are 0.05%, 2.08% and 3.25%. Combination model 
greatly improves the accuracy of prediction and shows combination of the dynamic 
regression model and residual auto-regression model has better adaptability. But the 
relative errors of combination model prediction areslightly declines, thus this combi-
nation model can only be adapted to the short-term forecast. There is also room for 
improvement for long-term forecasts. 
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Abstract. Recent advances in dual averaging schemes for primal-dual
subgradient methods and stochastic learning revealed an ongoing and
growing interest inmaking stochastic and online approaches consistent and
tailored towards sparsity inducing norms. In this paper we focus on the
reweighting scheme in the l2-Regularized Dual Averaging approach which
favors properties of a strongly convex optimization objective while approx-
imating in a limit the l0-type of penalty. In our analysis we focus on a regret
and convergence criteria of such an approximation. We derive our results
in terms of a sequence of strongly convex optimization objectives obtained
via the smoothing of a sub-differential and non-smooth loss function, e.g.
hinge loss. We report an empirical evaluation of the convergence in terms
of the cumulative training error and the stability of the selected set of fea-
tures. Experimental evaluation shows some improvements over the l1-RDA
method in the generalization error as well.

Keywords: Stochastic learning · l0 penalty · Regularization · Sparsity

1 Introduction

In this paper we investigate an interplay between l2-Regularized Dual Averaging
(RDA) approach [18] in the context of stochastic learning and parsimony con-
cepts arising from the application of sparsity inducing norms, like the l0-type of
penalty. Learning with ‖x‖0 pseudonorm regularization is a NP-hard problem
[10] and is feasible only via the reweighting schemes [3], [5], [16] while lacking a
proper theoretical analysis of convergence in the online and stochastic learning
cases. Some methods, like [7], consider an embedded approach where one has
to solve a sequence of QP-problems, which might be very computationally- and
memory-wise expensive while still missing some proper convergence criteria.

There are many important contributions of the parsimony concept to the
machine learning field, e.g. understanding the obtained solution or simplified and
easy to extract decision rules. Many methods, such as Lasso and Elastic Net,
were studied in the context of stochastic and online learning in several papers
[15], [18], [4] but we are not aware of any l0-norm sparsity inducing approaches
which were applied in the context of Regularized Dual Averaging and stochastic
optimization.
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-12436-0 26
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In many existing iterative reweighting schemes [5], [9] the analysis is pro-
vided in terms of the Restricted Isometry (RIP) or the Null Space Properties
(NSP) [8]. In this paper we are trying to provide a supplementary analysis
and sufficient convergence criteria for learning much sparser linear Pegasos-like
[14], [13] models from random observations. We use the l2-Regularized Dual
Averaging approach and a sequence of strongly convex reweighted optimization
objectives to accomplish this goal. The solution of every optimization problem
at iteration t in our approach is treated as a hypothesis of a learner which
is induced by an expectation of a non-smooth loss function (e.g. hinge loss)
f(w) � Eξ[l(w, ξ)], where the expectation is taken w.r.t. the random sequence
of observations ξ = {ξτ}1≤τ≤t. We regularize it by a re-weighted l2-norm at
each iteration t. This approach in case of satisfying the sufficient conditions will
converge to a global optimal solution w.r.t. our objective and the loss function
which is generating a sequence of stochastic sub-gradients endowing our dual
space E∗ [12].

This paper is structured as follows. Section 2 describes our reweighted l2-
RDA method. Section 2.3 gives an upper bound on a regret for the sequence of
strongly convex optimization objectives under the setting of stochastic learning.
Section 3 presents our numerical results and Section 4 concludes the paper.

2 Proposed Method

2.1 Problem Definition

In the Regularized Dual Averaging approach for stochastic learning developed
by Xiao [18] we approximate the expected loss function f(w) � Eξ[l(w, ξ)] on
a particular random question-answer sequence {ξτ}1≤τ≤t, where ξτ = (xτ , yτ )
and yτ ∈ {−1, 1}. In this particular setting the loss function is regularized by a
general convex penalty and hence we are minimizing the following optimization
objective:

min
w

φ(w)

s.t. φ(w) � 1
t

t∑

τ=1

f(w, ξτ ) + Ψ(w), (1)

where Ψ(w) can be either a strongly convex ‖ ·‖2 norm or a non-smooth sparsity
promoting ‖ · ‖1 norm.

In our particular setting we are dealing with the squared l2 norm and Ψ(w) �
λ‖w‖22. For promoting additional sparsity we add to the l2-norm the reweighted
‖Θ

1/2
t w‖22 term such that we have Ψt(w) � λ‖w‖22+‖Θ

1/2
t w‖22. At every iteration

t we will be solving a separate λ-strongly convex instantaneous optimization
objective conditioned on a diagonal reweighting matrix Θt.

To solve problem in Eq.(1) we split it into a sequence of separated optimiza-
tion problems which should be cheap to compute and hence should have a closed
form solution. These problems are interconnected through the sequence of dual
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variables g̃τ ∈ ∂f(w, ξτ ), τ ∈ 1, t which are averaged w.r.t. to the current iter-
ate t. Because we are working with the non-smooth hinge loss the reweighted
l2-regularization is imposed via a composite smoothing term which is being grad-
ually increased with every iteration t.

According to a simple dual averaging scheme [12], [18] we can solve Eq.(1)
with the following sequence of iterates wt+1:

wt+1 = arg min
w

{
t∑

τ=1

〈g̃τ , w〉 + tΨt(w) + βth(w)}, (2)

where h(w) is an auxiliary strongly convex smoothing term and {βt}t≥1 is a non-
negative and either constant or increasing input sequence, which in case of non-
strongly convex Ψt(w) function entirely determines the convergence properties
of the algorithm. In our reweighted l2-RDA approach we use a zero βt-sequence1

such that we omit the auxiliary smoothing term h(w) which is not necessary
since our Ψt(w) function is already smooth and λ-strongly convex. Hence the
solution for every iterate wt+1 in our approach is given by

wt+1 = arg min
w

{〈ĝt, w〉 + ‖Θ
1/2
t w‖22 + λ‖w‖22}, (3)

where for derivations we do average stochastic sub-gradients as ĝt = 1
t

∑t
τ=1 g̃τ .

We will explain the details regarding recalculation of Θt in the next subsection.

2.2 Algorithm

In this subsection we will outline our main algorithmic scheme. It consists of
a simple initialization step, computation and averaging of the subgradient g̃τ ,
evaluation of the iterate wt+1 and finally recalculation of the reweighting matrix
Θt+1. In Algorithm 1 we do not have any explicit sparsification mechanism for
the iterate wt+1 except for the auxiliary function ”Sparsify” which utilizes an
additional hyperparameter ε to truncate the final solution wt or any other w
below the desired number precision as follows:

w(i) :=
{

0, if |w(i)| ≤ ε,
w(i), otherwise,

(4)

where w(i) is i-th component of the vector w. In general we do not restrict our-
selves to a particular choice of the loss function f(wt, ξt) but as it was mentioned
before we stick to the hinge loss for the completeness. In comparison with the
simple l2-RDA approach [18] we have one additional hyperparameter ε, which
enters the closed form solution for wt+1 and should be tuned or adjusted w.r.t.
the iterate t as described in [3] and highlighted in [2].

In Algorithm 1 we perform an optimization w.r.t. to the intrinsic bias term
b, which doesn’t enter our decision function

ŷ = sign(wT x), (5)
1 we assume β0 = λ and βt = 0, t ≥ 1 for completeness.
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Algorithm 1. Stochastic Reweighted l2-Regularized Dual Averaging
Data: S, λ > 0, k ≥ 1, ε > 0, ε > 0, δ > 0

1 Set w1 = 0, ĝ0 = 0, Θ0 = diag([1, . . . , 1])
2 for t = 1 → T do
3 Select At ⊆ S, where |At| = k
4 Calculate g̃t ∈ ∂f(wt, At)
5 Compute the dual average ĝt = t−1

t
ĝt−1 + 1

t
g̃t

6 Compute the next iterate w
(i)
t+1 = −ĝ

(i)
t /(λ + Θ

(ii)
t )

7 Recalculate the next Θ by Θ
(ii)
t+1 = 1/((w

(i)
t+1)

2 + ε)
8 if ‖wt+1 − wt‖ ≤ δ then
9 Sparsify(wt+1, ε)

10 end

11 end
12 return Sparsify(wT+1, ε)

but is appended to the final solution w. The trick is to append every input
xt in the subset At with an additional feature column which will be set to
1. This will alleviate the decision function with an offset in the input space.
Empirically we have verified that sometimes this design has a crucial influence
on the performance of a linear classifier.

2.3 Theoretical Guarantees

In this subsection we will provide the theoretical guarantees for the upper bound
on the regret of the function φt(w) � f(w, ξt)+Ψt(w), such that for any w ∈ R

n

we have:

Rt(w) =
t∑

τ=1

(φτ (wτ ) − φτ (w)). (6)

In this case we are interested in the guaranteed boundedness of the sum gen-
erated by this function applied to the sequences {ξ1, . . . , ξt} and {Θ1, . . . , Θt}.
From [12] and [18] we know that a particular gap function defined as δt =
maxw{∑t

τ=1(〈g̃τ , wτ − w〉 + Ψt(wt) − Ψt(w))} is an upper bound for the regret

δt ≥
t∑

τ=1

(φτ (wτ ) − φτ (w)) = Rt(w) (7)

due to the convexity of f(w, ξt) [1]. In the next theorem we will provide the
sufficient conditions for the boundedness of δt if the imposed regularization is
given by the reweighted λ-strongly convex term ‖Θ

1/2
t w‖22 + λ‖w‖22. Due to the

page limitations the proof of the following theorem is not included hereafter but
provided online2.
2 ftp://ftp.esat.kuleuven.be/pub/stadius/vjumutc/proofs/proofs rl2rda.pdf

ftp://ftp.esat.kuleuven.be/pub/stadius/vjumutc/proofs/proofs_rl2rda.pdf
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Theorem 1. Let the sequences {wt}t≥1, {ĝt}t≥1 and {Θt}t≥1 be generated by
Algorithm 1. Assume ‖Θ

1/2
t+1w‖2 ≥ ‖Θ

1/2
t w‖2 for any w ∈ R

n, Ψt(wt) ≤ Ψ1(w1),
‖gt‖∗ ≤ G, where ‖ · ‖∗ stands for the dual norm and constant λ > 0 is given for
all Ψt(w). Then:

Rt(w) ≤ G2

2λ
(1 + log (t)). (8)

Our intuition is related to the asymptotic convergence properties of an iterative
reweighting procedure discussed in [7] where with each iterate of Θt our approx-
imated norm becomes ‖Θtw‖2 � ‖w‖p with p → 0 thus in a limit applying the
l0-type of a penalty. This implies pt+1 ≤ pt and ‖w‖pt+1 ≥ ‖w‖pt

. In the next
theorem we will relax the sufficient conditions on Ψt(wt) and Θt. This will intro-
duce into the bound a new term which governs the accumulation of an error
w.r.t. these conditions.

Theorem 2. Let the sequences {wt}t≥1, {gt}t≥1 and {Θt}t≥1 be generated by
Algorithm 1. Assume ‖Θ

1/2
t w‖2 −‖Θ

1/2
t+τw‖2 ≤ ν1/τ and Ψt+τ (wt+τ )−Ψt(wt) ≤

ν2/τ for some τ ≥ 1, ν1, ν2 ≥ 0 and w ∈ R
n, ‖gt‖∗ ≤ G, where ‖ · ‖∗ stands for

the dual norm and constant λ > 0 is given for all Ψt(w). Then:

Rt(w) ≤ log (t)(λν1 + ν2) +
G2

2λ
(1 + log (t)). (9)

The above bound boils down to the bound in Theorem 1 if we set ν1, ν2 to zero.

3 Simulated Experiments

3.1 Experimental Setup

For all methods in our experiments we use a 2-step procedure for tuning hyper-
parameters. This procedure consists of Coupled Simulated Annealing [17] initial-
ized with 5 random sets of parameters for the first step and the simplex method
[11] for the second step. After CSA converges to some local minima we select
a tuple of hyperparameters which attains the lowest cross-validation error and
start the simplex procedure to refine our selection. On every iteration step for
CSA and simplex method we proceed with a 10-fold cross-validation. In l1-RDA
and our reweighted l2-RDA we are promoting additional sparsity with a slightly
modified cross-validation criteria. We introduce an affine combination of the val-
idation error and obtained sparsity in proportion 90% : 10% where sparsity is
calculated as

∑
i I(|w(i)| > 0)/d.

All experiments with large-scale UCI datasets [6] were repeated 50 times
(iterations) with the random split to training and test sets in proportion 90% :
10%. Every iteration all methods are evaluated with the same test set to provide
a consistent and fair comparison in terms of the generalization error and obtained
p-values of a pairwise two-sample t-test. In the presence of 3 or more classes we
perform binary classification where we learn to classify the first class versus all
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others. For CT slices3 dataset we performed a binarization of an output yi by
the median value. For URI dataset we took only ”Day0” subset as a probe. For
evaluation of the Algorithm 1 for UCI datasets we set T = 1000, k = 1, δ = 10−5

and other hyperparameters λ, ε and ε were determined using the cross-validation
tuning procedure described above. For extremely sparse datasets with d 
 n,
like Dexter and URI we increased k by 10 times. Information on all public UCI
datasets one can find in [6].

3.2 Numerical Results

In this subsection we will provide an outlook on the performance of l1-RDA,
our reweighted l2-RDA and Pegasos [14] methods. We provide the results of the
Pegasos approach for the completeness and a fair comparison in terms of the
affected generalization error w.r.t. the obtained sparsity. In Table 1 one can see
generalization errors with standard deviations (in brackets) for different UCI
datasets.

Table 1. Performance

Dataset Generalization (test) errors
(re)l2-RDA l1-RDA Pegasos

Pen Digits 0.0745** (±0.02) 0.1043 (±0.04) 0.0573 (±0.02)

Opt Digits 0.0680** (±0.03) 0.0554 (±0.03) 0.0356 (±0.01)

Semeion 0.0619* (±0.03) 0.0414 (±0.02) 0.0549 (±0.02)

Spambase 0.1228* (±0.02) 0.1205 (±0.02) 0.0989 (±0.02)

Shuttle 0.0744* (±0.02) 0.0734 (±0.02) 0.0488 (±0.02)

CT slices 0.0643* (±0.02) 0.0845 (±0.13) 0.0478 (±0.01)
Magic 0.2242 (±0.01) 0.2259 (±0.02) 0.2254 (±0.01)

CNAE-9 0.0109** (±0.01) 0.0172 (±0.02) 0.0448 (±0.02)

Covertype 0.2670* (±0.01) 0.2715 (±0.03) 0.2791 (±0.01)

Dexter 0.0922* (±0.02) 0.0956 (±0.01) 0.0765 (±0.01)

URI 0.0458** (±0.01) 0.0623 (±0.03) 0.0388 (±0.01)

In Table 1 one can find asterisk symbols next to the results of our method
((re)l2-RDA). These symbols indicate p-values < 0.05 of a pairwise two-sample
t-test on generalization errors. Here p-values are reflecting the statistical signifi-
cance of having the null-hypothesis true: the equivalence of normal distributions
from which the test errors are drawn. By having two asterisk symbols we assume
strong presumption against null hypothesis w.r.t. both competing methods, and
by having one asterisk symbol - to at least one of them. Analyzing Table 1 we can
conclude that for the majority of UCI datasets we are doing equally good w.r.t.
l1-RDA method and the significance of the obtained difference is quite high.
One can see that for some datasets our reweighted l2-RDA approach is doing
better than Pegasos as well. This phenomenon could be understood from the
underlying sparsity pattern which is likely to be very sparse for some datasets,
for instance CNAE-9.
3 Originally it is a regression problem.
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3.3 Sparsity and Stability

In this subsection we will provide some of the findings which highlight the
enhanced sparsity of the reweighted l2-RDA approach as well as the consis-
tency and stability for the selected set of features (dimensions). In Table 2 one
can observe the evidence of an additional sparsity promoted by the reweight-
ing procedure which in some cases significantly reduce the number of non-zeros
in the obtained solution. We do not provide any results for the Pegasos-based
approach because it consists of a generic l2-norm penalty and a projection step
which all together do not provide sparse solutions. In Table 2 we provide the
statistical significance of the given result by an asterisk symbol. By analyzing
the results on immediately imply that in cases where we are performing equally
good or slightly worse the p-values are quite high. Next we perform several

Table 2. Sparsity
∑

i I(|w(i)| > 0)/d

Dataset (re)l2-RDA l1-RDA

Pen Digits 0.12* (±0.06) 0.09 (±0.11)

Opt Digits 0.16* (±0.09) 0.24 (±0.07)

Semeion 0.13* (±0.08) 0.19 (±0.05)
Spambase 0.35 (±0.07) 0.34 (±0.08)
Shuttle 0.32 (±0.17) 0.32 (±0.10)

CT slices 0.26* (±0.08) 0.21 (±0.05)

Magic 0.22* (±0.05) 0.34 (±0.15)

CNAE-9 0.02* (±0.01) 0.03 (±0.03)

Covertype 0.06* (±0.03) 0.09 (±0.06)

Dexter 0.08* (±0.07) 0.17 (±0.06)

URI 0.0012* (±0.0011) 0.0027 (±0.0007)

series of experiments with UCI datasets to reveal the consistency and stability
of our algorithm w.r.t. the selected sparsity patterns. For every dataset first we
tune the hyperparameters with all available data. We run our reweighted l2-RDA
approach and l1-RDA [18] method 100 times in order to collect frequencies of
every feature (dimension) being non-zero in the obtained solution. In Figure 1
we present the corresponding histograms. As we can see our approach results
in much more sparser solutions which are quite robust w.r.t. a sequence of ran-
dom observations. l1-RDA approach lacks these very important properties being
relatively unstable under the stochastic setting.

In the next experiment we adopted a simulated setup from [4] and created
a toy dataset of sample size 10000, where every input vector a is drawn from
a normal distribution N (0, Id×d) and the output label is calculated as follows
y = sign(aT w∗ + ε), where w

(i)
∗ = 1 for 1 ≤ i ≤ �d/2� and 0 otherwise and the

noise is given by ε ∼ N (0, 1). We run each algorithm for 100 times and report
the mean F1-score reflecting the performance of sparsity recovery. F1-score is
defined as 2precision×recall

precision+recall , where
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(a) Reweighted l2-RDA on OptDigits
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(b) l1-RDA on OptDigits
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(c) Reweighted l2-RDA on CNAE-9
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(d) l1-RDA on CNAE-9

Fig. 1. Frequency of being non-zero for the features of Opt Digits and CNAE-9
datasets. In the left subfigures (a,c) we present the results for the reweighted l2-RDA
approach, while the right subfigures (b,d) correspond to l1-RDA method.

precision =
∑d

i=1 I(ŵ(i) �=0,w(i)
∗ =1)

∑d
i=1 I(ŵ(i) �=0)

, recall =
∑d

i=1 I(ŵ(i) �=0,w(i)
∗ =1)

∑d
i=1 I(w

(i)
∗ =1)

.

Figure 2 shows that the reweighted l2-RDA approach selects irrelevant features
much less frequently as in comparison to l1-RDA approach. As it was empiri-
cally verified before for UCI datasets we perform better both in terms of the
stability of the selected set of features and the robustness to the stochasticity
and randomness.

The higher the F1-score is, the better the recovery of the sparsity pattern. In
Figure 3 we present an evaluation of our approach and l1-RDA method w.r.t. to
ability to identify the right sparsity pattern as the number of features increases.
We clearly do outperform l1-RDA method in terms of F1-score for d ≤ 300. In
conclusion we want to point out some of the inconsistencies that we’ve discovered
comparing our F1-scores with [4]. Although the authors in [4] use a batch-version
of the accelerated l1-RDA method and a quadratic loss function they obtain very
low F1-score (0.67) for the feature vector of size 100. In our experiments all F1-
scores were above 0.7. For the dimension of size 100 our method obtains F1-score
≈ 0.95 while authors in [4] have only 0.87.
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(a) Reweighted l2-RDA
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(b) l1-RDA

Fig. 2. Frequency of being non-zero for the features of our toy dataset (d = 100).
Only the first half of features do correspond to the encoded sparsity pattern. In the
left subfigure (a) we present the results for the reweighted l2-RDA approach, while the
right subfigure (b) corresponds to l1-RDA method.
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Fig. 3. F1-score as the function of the number of features. We ranged the number of
features from 20 to 500 with the step size of 20.

4 Conclusion

In this paper we presented a novel and promising approach, namely Reweighted
l2-Regularized Dual Averaging. This approach helps to approximate very effi-
cient l0-type of a penalty using a proven and reliable simple dual averaging
scheme. Our method is suitable both for online and stochastic learning, while
our numerical and theoretical results mainly consider only stochastic setting.
We provided theoretical guarantees of the boundedness of the regret under dif-
ferent conditions and demonstrated the empirical convergence of the cumulative
training error (loss). Experimental results validate the usefulness and promising
capabilities of the proposed approach in obtaining much sparser and consistent
solutions while keeping the convergence of Pegasos-like approaches at hand.
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For the future we consider to improve our algorithm in terms of the acceler-
ated convergence discussed in [4], [12], [18] and develop some further extensions
towards online and stochastic learning applied to the huge-scale4 data.
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Abstract. Perceptual learning is the improvement in performance on a
variety of simple sensory tasks through practice. Based on the perceptual
model, with the lateral interaction applied to the neurons of the middle
layer, a neural network is developed to simulate the transition of per-
ceptual mode from global perception to local perception in the process
of Chinese characters learning. Using some Chinese characters with the
same structure to train the network, the components and radicals of the
Chinese characters can be extracted through the local perceptual mode.
The perceptual learning process under the damage of neural connections
is also simulated, and the result are coincident with the somatosensory
cortex changes experiment on owl monkeys. It is a self-organization pro-
cess, in which the lateral interaction among the neurons are the core
mechanism.

Keywords: Perceptual learning · Lateral interaction · Neural network ·
Self organization

1 Introduction

Sensory perception is a learned trait. The brain strategies we use to perceive the
world are constantly modified by experience. With practice, we subconsciously
become better at identifying familiar objects or distinguishing fine details in
our environment [1]. The perception of Chinese characters reflects the charac-
teristics of learning. Researches on the students whose mother language is not
Chinese showed that the global strategy is commonly used at the first stage of
Chinese learning [2]. Chinese characters are most pictures symbolizing an idea
or object, so beginners often try to setup a relationship between the characters
with some pictures that already exist in the brain. The relationship is impor-
tant for students to remember these Chinese characters, while they often lost
some strokes. For the learners at intermediate and advanced level, the radicals
of Chinese characters and their position play an important role in the process

The paper was supported by MOE Youth Fund Project of Humanities and Social Sci-
ences (Project No.11YJC840006) and Fundamental Research Funds for the Central
Universities (Fund number: 2013YB76).

c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 243–251, 2014.
DOI: 10.1007/978-3-319-12436-0 27



244 J. Chen et al.

of perception [3]. While for the learners whose mother language is Chinese, they
can quickly separate every components of a Chinese character, instead of learn
it as a whole.

Therefore, Chinese characters can be perceived by two basic mode: global to
local (global perception) and local to global (local perception). The simulation
results of perceptual model [4] and the behavior experiments both show that the
local perception is more efficient than global perception. The transition from
global perception to local perception corresponds to the change of the weight
distribution in the neural system. How does the weight distribution transfer from
one state to the other one in the actual learning process? This is a self-organizing
process, while what is the neural dynamic mechanisms in the process?

Lateral interaction is one of neural mechanism which has been applied in
many models with self-organization features. H. Kohonen proposed SOM model
in 1982 [5], which well simulated some self-organizing processes in brain. Erwin
et al. showed that SOM model can explain the formation process of the rhesus
monkey’s primary visual cortex [6]. Xing et al. simulated children’s acquisition
of Chinese characters, and the simulation results are well consistent with the
behavior experiment in consistency and regulation [7]. In this paper, lateral
interaction is applied to the perceptual model [4], and a perceptual learning
model is developed. The model can simulate the transition of perceptual mode
in the Chinese characters learning process, and the result are coincident with
behavior and physiological experiments.

2 The Neural Network Model

2.1 Network Structure

The perceptual learning model is composed of three layers, including the input
layer X, the middle layer Y and the output Z as shown in Fig. 1. The middle
layer includes 4 receptive fields RF1, RF2, RF3 and RF4. The input layer, the
output layer and each receptive field are all composed of 40 × 40 neurons. The
neurons of the input layer Xmn connects to the corresponding neurons Yi,mn in
the 4 receptive fields RFi with the weights of ui,mn. And the 4 neurons Yi,mn of
the middle layer transfer the integrated signal to the neurons Zmn of the output
layer with the weights of vi,mn.

The receptive fields of the middle layer compete with each other. When the
input Xmn �= 0, the 4 neurons connected with Xmn in every receptive field com-
pete with each other and there is only one neuron Yc,mn is activated. In each
receptive field, there are lateral interaction between neurons within neighbor-
hood.

2.2 The Adjustment of the Weights from the Input Layer to the
Middle Layer

The lateral interaction is applied to the middle layer, so there are two factors that
change the weight U from the input layer to the middle layer. One factor is the
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Fig. 1. The schematic diagram of the perceptual learning neural network model. The
input and the output layer are 40 × 40 neurons. The middle layer is composed of
4 receptive fields, each of which is a 40 × 40 neurons. The 4 receptive fields in the
middle layer compete with each other. While in each receptive field, there are lateral
interactions between neurons.

input from the outside, and the other factor is the competition and cooperation
in the middle layer. The weight adjustment on the input from the outside is
according to the Pseudo-Hebb learning rule with the equations as follows,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θi(t) = α · min{ci(t − 1), ..., ci(t − h)} + (1 − α) · max{ci(t − 1), ..., ci(t − h)}
ci(t) =

∑
m,n

ui,mn(t) · xmn − θi(t)
{

Yi(t) = tanh(k · ci(t)), for ci(t) ≥ 0
Yi(t) = 0, for ci(t) < 0

ue
i,mn(t) = ue

i,mn(t − 1) + η · (Yi(t) · xmn · ui,mn(0) − Yi
2(t) · ue

i,mn(t))

(1)

where the last equation shows the weight adjustment on the input from the
outside, and the superscript e denotes external.

The interaction among the receptive field of the middle layer is determined
by both the input from the outside and the current state of the system. The
interaction can be divided into two stages, the first stage is competition and the
second stage is cooperation. Each neuron Xmn in the input layer connects to four
neurons in the middle layer Y1,mn, Y2,mn, Y3,mn, Y4,mn, and the corresponding
weights are u1,mn, u2,mn, u3,mn, u4,mn. If the input from outside xmn �= 0, and
xmn · uc,mn ≥ xmn · ui,mn for ∀i, then it is defined that Yc,mn wins out, which is
the competition process.
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The winner neuron stimulates its neighborhood neurons to enhance the weight
from the input layer to the middle layer, which is the cooperation process. The
radius of neighborhood is Nc,mn and its size changes with time according to the
equation, Nc,mn = β ·xmn ·uc,mn ·S, where S = 40, β(t) is the parameter denotes
the size of the neighborhood. The distance of the winner neurons determines the
magnitude of the lateral interaction. Here the interaction obeys Gaussian distri-
bution, that if m′n′ is the winner neuron, the change of the weight of mn is:

ΔuI(m′n′)
c,mn = xm′n′ · uc,m′n′ · 1√

2πσ
exp(− d2

2σ2
) (2)

where d =
√

(m − m′)2 + (n − n′)2. So based on the lateral interaction, the
weights uc,mn of all the winner neurons are

ΔuI
c,mn =

∑

m′,n′
ΔuI(m′n′)

c,mn

The total change of weight is the sum of the weight change from the inter-
layer and the intra-layer, that is

ui,mn(t) = ui,mn(t − 1) + Δui(t) = ui,mn(t − 1) + Δue
i,mn(t) + ΔuI

i,mn(t)

Considering the normalization of the weight from the input layer to the middle
layer,

ui,mn(t) =
ui,mn(t)

∑

j

uj,mn(t)

the output of the middle layer is yi,mn(t) = xmn · ui,mn(t).

2.3 The Adjustment of the Weights from the Middle Layer to the
Output Layer

Similar with the perceptual model [4], the weights from the middle layer to the
output layer are adjusted by the perceptron rule. Each training process includes
three steps of computing the output, adjusting the weight and normalization
with the equations as follows,

⎧
⎪⎨

⎪⎩

zmn(t) = hardlim(vmn(t) · ymn(t) − ρ)
vmn(t) = vmn(t − 1) + ξ · (xmn(t) − zmn(t)) · y′

mn(t)
vi,mn(t) = vi,mn(t)/

∑

j

vj,mn(t)
(3)

where vmn = (v1,mn, v2,mn, v3,mn, v4,mn), ymn = (y1,mn, y2,mn, y3,mn, y4,mn)′.

3 The Results of Simulation

3.1 Initial State

This paper discuss how perceptual learning modifies the perceptual mode. Based
on the perceptual model [4], suppose the initial state is the global perception, and
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the initial distribution of the weights ui,mn is random, i.e. ui,mn = rand(0 ∼
1),∀i,m, n. Then theweights are normalized asui,mn = ui,mn/

∑

j

uj,mn ∀i,m, n,

as shown in Fig. 2.

Fig. 2. The initial weights ui,mn(0) normalized by
∑
i

ui,mn = 1

3.2 The Model is Trained by Single Chinese Character

A Chinese character is used to train the network. The parameters in the eq.1-eq.4
are θi(0) = 50, η = 0.5, h = 5, k = 0.1, α = 0.2, ρ = 0.3, σ = Nc,mn(t),ξ = 0.5,
β = 0.1. The weights ui, the outputs of each receptive field and the output layer
are shown in Fig. 3.

Fig. 3. One Chinese character is used to train the perceptual learning model. (a) the
outputs of the middle layer and the output layer; (b) The weights U .

At the beginning of training, the output of each neuron in the middle layer
is mainly the basic outline of the Chinese character. As the training carrying
on, each receptive field turns to sensitive to some part of the character and then
realize the local perceptual mode. From the results of the perceptual model we
know that the local perceptual mode is more efficient than the global perceptual
mode. In fact, here the input signal can reappear in the output layer only after
9 times of training.
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3.3 The Model Is Trained by Multiple Chinese Character

Some Chinese characters with the same structure are used to train the network.
The perceptual mode changes from global mode to local mode, and the partial
feature of the Chinese characters can be extracted. Ten Chinese characters with
left-right structures, as shown in Fig. 4a, are selected to train the network,
randomly picking one each time. The parameters are the same with above except
β = 0.35. The changes of weights U in 40 times of training are shown in Fig. 4b.
The outputs of the middle layer and the output layer are shown in Fig. 4c.
Similarly, another 10 Chinese characters with top-bottom structures are used to
training the network, and the results are shown in Fig. 5.

Fig. 4. (a) Training Sampleten Chinese characters with left-right structures. (b) Ran-
domly choose Chinese characters to train the network. The weights U changes with
time. (c) Two outputs of the middle layer and the output layer.

After training, the weights of the receptive fields change from the random
distribution to the block distribution. So each receptive field turns to sensitive
to some part of the character and then realize the local perceptual mode. If
the input Chinese character is with left-right structure or up-down structure, the
components and radicals of the Chinese characters can be extracted through the
local perceptual mode.

3.4 The Perceptual Learning Model Under the Damage of Neural
Connections

In certain brain regions, the damage of neural connections will injure its func-
tion. So we also simulate the perceptual learning process under the damage of
neural connections. How do the weights redistribute in this process is discussed.
The parameters are the same with above except β(t) = 0.35 − (0.35 − 0.1) · t/40.
For the first 10 times, the connection in the network is intact. At t = 11, the con-
nections are damaged as u4,mn = 0,∀m,n, and then training the model 30 times,
the changes of the weights are shown as Fig. 6.
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Fig. 5. (a) Training Sampleten Chinese characters with top-bottom structures. (b)
Randomly choose Chinese characters to train the network. The weights U changes
with time. (c) Two outputs of the middle layer and the output layer.

Fig. 6. Before and after the damage of neural connections, the changes of the weights
U during the training. For the first 10 times, the connection in the network is intact
and the weights change from the random distribution to the block distribution. At
t = 11, the connections between the input layer to the receptive field RF4 are damaged,
so the sensitive area of RF4 will be covered by the sensitive area of RF1 and RF2, whose
sensitive areas are near to the sensitive area of RF4 before damaged.
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When the connections between the input layer to the receptive field RF4

are damaged, the sensitive area of RF4 will be covered by the sensitive area of
RF1 and RF2, whose sensitive areas are near to the sensitive area of RF4 before
damaged. This results are coincident with the somatosensory cortex changes
experiment on owl monkeys [8].

4 Conclusion and Discussion

Based on the perceptual model, with the lateral interaction applied to the neu-
rons in the middle layer, perceptual learning network is developed to simulate
the transition of perception mode in the Chinese characters learning process.
Train the model with one or several Chinese characters, the weight distribution
evolves from global perception to local perception. Using some Chinese charac-
ters with the same structure to train the network, the components and radicals of
the Chinese characters can be extracted through the local perceptual mode. The
perceptual learning process under the damage of neural connections is also sim-
ulated, and the result are coincident with the somatosensory cortex experiment
on owl monkeys.

AnothermethodbasedonNMF(non-negativematrixfactorization) [9] istrained
using self-made Chinese character, and all the meaningful features are extracted.
But when training this model with actual Chinese character which is used above,
not all the extracted sections are meaningful. On the other hand, there is no any self
organization in NMF, which is just an algorithm. The evolvement of the weights
between input layer and middle layer in our perceptual learning model is character-
izedby self-organization.Although theweights are only local adjustedwith random
distribution initially, the whole weights of the network tends to a block distribution
to perceive the local information of the input signal.
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Abstract.This paper presents a hierarchical algorithm for solving large-scale 
traveling salesman problem (TSP), the algorithm first uses clustering algorithms 
to large-scale TSP problem into a number of small-scale collections of cities, 
and then put this TSP problem as a generalized traveling salesman problem 
(GTSP), convert solving large-scale TSP problem into solving GTSP and sev-
eral small-scale TSP problems. Then all the sub-problems will be solved by ant 
colony algorithm and At last all the solutions of each sub-problem will be 
merged into the solution of the large-scale TSP problem by solution of GTSP. 
Experimental part we uses the traditional ant colony algorithm and new algo-
rithm for solving large-scale TSP problem, numerical simulation results show 
that the proposed algorithm for large-scale TSP problem has a good effect, 
compared with the traditional ant colony algorithm, the solving efficiency has 
been significantly improved. 

Keywords: Traveling salesman problem · Ant colony algorithm · Affinity 
propagation clustering · K-means algorithm · Generalized traveling salesman 
problem 

1 Introduction* 

Traveling Salesman Problem (TSP) is one of the most typical combinatorial optimiza-
tion problems in computer science and operations research. Given a set of cities and 
the distance between them, the goal is to find a lowest cost loop (this loop is called a 
Hamiltonian circuit) that starts from a certain city, visits each city and the city only be 
visited once, finally returns to the start city. The algorithm to solve TSP problem can 
be divided into two categories: exact algorithms and heuristic algorithms (or approx-
imate algorithms). The exact algorithm ensures to find the optimal solution in a finite 
number of steps. Today, people can solve TSP problem from hundreds to thousands 
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of cities with the exact solution. Among the exact solutions, Branch and bound [1], 
branch and cut [2], cutting-plane or facet-finding algorithms [3], branch and price [4] 
and the Concorde algorithm [5] are the most typical exact algorithms for TSP prob-
lem. TSP problem is a well-known NP-hard combinatorial problems, namely it is 
difficult to obtain the optimal solution for the large-scale TSP problem [6]. Therefore, 
the heuristic algorithm is usually used to obtain the quasi-optimal solution. The LK 
algorithm with a simple local search presented by Lin and Kernighan is the represen-
tation of the heuristic algorithm for the large-scale TSP problem [7-10]. In recent 
years, more and more swarm intelligence optimization algorithms are being used to 
solve the TSP problem. Ant colony system proposed by Dorigo is considered the most 
representative method [11]. But the existed swarm intelligence optimization algo-
rithms are so limited to the scale that cannot be applied to solve the large-scale TSP 
problem. 

This paper presents a hierarchical method based on an ant colony algorithm for 
solving large scale TSP problem. The idea of this algorithm is using clustering algo-
rithm to large-scale TSP problem. The large-scale TSP problem is clustered into some 
small-scale TSP problems. The normal TSP problem is converted into a generalized 
traveling salesman problem (GTSP) [12]. So, solving large-scale TSP problem is 
transformed into solving GTSP and several small-scale TSP problems. 

2 Description of the Algorithm 

This paper presents a hierarchical solving algorithm which can effectively solve the 
large-scale TSP. The hierarchical solving is refers to using clustering algorithm to 
large-scale TSP problem firstly, and then the large-scale TSP problem is divided into 
some city groups. So the original large-scale TSP problem is transformed into GTSP 
problem. This algorithm needs to obtain an optimal solution of the GTSP problem. 
However, due to the large scale of the TSP problem, the city number in each clustered 
group is still very large. Hence we need to use the clustering algorithm to the city 
group again. The second clustering equals to cluster the center of the city group. If the 
number of city (center) group is still very large after clustering the center, we continue 
to cluster layer by layer till the final number of the clustering center is so small that 
ant colony system algorithm can handle effectively. The process of clustering will 
stop when the average number of cluster and the final size of each group are less than 
40. The procedure is shown in Figure 1. On the first layer, the clustering algorithm is 
used to large-scale TSP problem. The large scale cities are clustered into multiple city 
groups. And then the center of each group is regarded as a city. If the number of clus-
ters is greater than 40, then perform clustering on the second layer. This process con-
tinues till the number of city group is less than 40. Finally GTSP problems algorithm 
is applied to obtain the connection order between the groups on the last layer, which 
is the m-th layer. Solving the shortest loop of the cities in each group on the last layer 
and the shortest loop is used as the connection order between the groups on the higher 
layer. This process continues till the connection order between the cities on the first 
layer is solved. 
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2.1 Selection of Clustering Algorithm 

Ant colony algorithm for small-scale TSP problems (such as 40 cities TSP problem) 
has a high performance. If the large-scale TSP problem can be divided into several 
sub-problems and the number of cities in each sub-problem is less than 40, ant colony 
algorithm can be used to solve each small sub-problem respectively. Finally the solu-
tion of each small sub-problem can be merged as the solution of original large-scale 
TSP problems. This method will greatly improve the performance of the algorithm for 
the large-scale TSP problem. How to decompose a large-scale TSP problem into sub-
problems becomes the key of the algorithm.  
 

 

Fig. 1. Schematic diagram of hierarchical clustering for large scale TSP 

This article chooses two different clustering algorithms to cluster the cities. One is 
the affinity propagation (AP) clustering algorithm [13], and the other is the K-means 
clustering algorithm [14].  Both these algorithms have some advantages and disad-
vantages: AP clustering algorithm need not to pre-define the number of the cluster. 
But the computational complexity of AP algorithm is high, which is 2( )O N n⋅ . N is 

the number of the iterations and n is the number of the cities. Therefore, AP cluster-
ing algorithm often requires long time when n  is relatively large. While K-means 
algorithm need to set the clustering number but the computational complexity is rela-
tively low, which is ( )O N k n⋅ ⋅ . N is the number of iterations, n is the number of 

city, and k is the number of clusters. The computation time of K-means clustering 
algorithm for big data is smaller than AP algorithm. So, integrated the advantages and 
disadvantages mentioned above, this paper uses the AP clustering algorithm for TSP 
problem with less than 3000 cities and the K-means clustering algorithm for more 
than 3000 cities. 
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2.2 Determine the Connection Order between Groups 

In order to obtain the desired optimal solution of GTSP problem on the last layer, we 
improve the ACS algorithm proposed in literature [11]. The principle of the improved 
ACS algorithm is almost the same as the algorithm in literature [11]. But there is one 
difference: the next city selected by ant colony algorithm in Literature [11] is unvisit-
ed, While the selected city in improved ACS algorithm is not only unvisited but also 
not in the same group of the visited cities. For example, in Figure 2, when an ant in 
the first group selects the next city, the next city cannot be selected from the first 
group. It can be selected from the second or the third group. Assuming that the ant 
selects the next city from the second cluster, then the other city can only be selected 
from the third cluster, and then return to the start city. Figure 2 shows the shortest 
circuit obtained by improved ACS which connection order is1 2 3 1→ → → . The 
three large ellipses are obtained by clustering algorithm. 

2.3 Determine the Boundary City of the Cluster 

The boundary city of each group is determined according to the connection order 
between groups. That is to determine the nearest two cities in adjacent groups. Set 
group a  and group b ( , 1, 2, ,a b c=  and a b≠ ) are two adjacent groups according to 

the connection order. a
i au V∈  is the city in group a  and b

j bu V∈  is the city in group

b . We can determine the boundary city of group a  and b with equation (1). 

,
{ , } arg min ( , )

a b
i a j b

a b a b
k l i j

u V u V
u u d u u

∈ ∈
=                     (1) 

Where a
ku  is the boundary city in group a  and b

lu  is the boundary city in group b . 

( , )d ⋅ ⋅  represents the Euclidean distance between the two cities. As shown in Figure 3, 

the black point is the boundary city of each group. 

 

Fig. 2. Connection order between the cluster and the cluster 
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2.4 Solve the Optimal Path within the Group 

Using the above method in section 2.3 determines the boundaries cities of each group. 
Each group has two border cities. We will solve the shortest path in each group, in 
which the endpoints are the boundary cities. For convenience this paper changes the 
shortest path problem with fixed endpoints into a shortest Hamilton circuit problem. 
The latter is solved by the traditional ACS algorithm. The procedure is as follows: 
when an ant selects the next city, if the current city is one of two boundary cities and 
the other boundary city has not been visited, and then jump directly to the other 
boundary city. As shown in Figure 4 the black points are the boundary cities. The ant 
travels from the fifth city, through the sixth, seventh to the eighth city (boundary city). 
And then skips to the third city (boundary city). And then travels back to the original 
city. Finally set up an optimal path (solid lines). 
 

 

Fig. 3. Schematic diagram of Border City 

 

Fig. 4. Schematic diagram of optimal path 



 Hierarchical Solving Method for Large Scale TSP Problems 257 

2.5 Merge the Path 

After solved the shortest path in each group, we merge the shortest path according to 
the connection order between groups to set up a feasible solution of large-scale TSP 
problem. As shown in Figure 5, the solid line plus the dot line constitute a feasible 
solution of original TSP problem. 

 

Fig. 5. Quasi-optimal path of TSP problem 

3 Experimental Results 

To evaluate the performance of the proposed algorithm, computational experiments 
are conducted to compare the performance of traditional Ant Colony System algo-
rithm with the proposed algorithm. The test problems are a standard collection of 
TSPs selected from the Library of Traveling Salesman Problems [15]. In our simula-
tion experiments, all programs are implemented in Java software on a workstation 
with 4G memories, Intel (R) Xoon (R) CPU. Because ACS algorithm cannot directly 
obtain the solution of large-scale TSP problem, we use the original ACS algorithm to 
ten TSP problems out of TSP standard database which have relatively small scales 
and the two experimental data in the literature [16]. They are Pr107、pr136、 

Pr299、Pcb442、U574、D657、Rat783、Pr1002、D2103、Pr2392、Block107、
Block364. In the name of the test problems, the letter represents the type of the prob-
lem and the number represents the scale of the problem. We set parameters of the 
ACS algorithm as follows: ant number 10m = , real number 1α = , 4β = ,

0 0.8q = ,

0.1γ = , 0.1ρ = , and the iteration number is 1000. We execute 10 times for each 

problem. Table 1 shows the experimental results of the ACS algorithm.  
The problem Block107 and Block364 in table 1 are a kind of machining data. We 

use Concorde to obtain the optimal solution of them. The error is obtained according 
to the equation (2). 

( ) / 100%Err Ave opt opt= − ×                        (2) 
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And we use the proposed algorithm to the 12 standard test problems mentioned above 
and six large-scale TSP problems. These six large-scale TSP problems are Rl11849、
Brd14051、D15112、D18512、Pla33810、Pla85900. We set parameters of the 
proposed Algorithm as follows: ant number 10m = , real number 1α = , 4β = ,

0 0.8q =
, 0.1γ = , 0.1ρ = , and the iteration number is 500. We execute 10 times for each prob-

lem. Table 2 shows the experimental results of the proposed algorithm, in which the 
error is obtained according to the equation (2). Figure 6 shows the errors of the two 
algorithms (black is the error of the ACS algorithm, gray is the error of the proposed 
algorithm), Figure 7 shows the run time of the two algorithms (dot line is the run time 
of the ACS algorithm, solid line is the run time of the proposed algorithm). N is the 
label of the TSP problem. 
 

Table 1. Experimental results of ACS algorithm 

N TSP Optimal Best Average Error (%) Time (s) 
1 Pr107 44303 44524 45042 1.668 18 
2 Pr136 96772 98243 99152 2.459 30 
3 Pr299 48191 49586 51642 7.161 140 
4 Pcb442 50778 53822 54901 8.120 309 
5 U574 36905 40833 41655 12.870 517 
6 D657 48912 56011 57244 17.034 682 
7 Rat783 8806 10315 10853 23.245 956 
8 Pr1002 259045 297530 299256 15.522 1574 
9 D2103 80450 88525 89225 10.907 6837 

10 R2392 378032 459847 461623 22.112 9367 
11 Block107 2769 2826 2854 2.059 18 
12 Block364 3011 3166 3189 5.148 208 

 
 
Table 3 shows the results of the proposed algorithm for solving randomly generat-

ed TSP problem. The horizontal and the vertical ordinate of cities in the randomly 
generated TSP problem are integer numbers in the interval[0, ]n . n  is the scale of 

TSP problem. Ratio is given by equation (3). 

best
ratio

n n
=

                                  
(3)

 

Where best  is the best solution of the TSP problem obtained by the proposed algo-
rithm. This ratio represents the quality of the optimal solution of TSP problem. John-
son et al. [17] obtained the 0.7124 0.0002ratio= ±  in 1996. This indicates that the 

obtained ratio is closer to 0.7124 0.0002± , the solution of the TSP problem is better. 
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Fig. 6. Errors comparison 

Table 2. Experimental results of the proposed algorithm 

N TSP C  Optimal Best Average Error(%) Time(s) 

1 Pr107 6 44303 44663 45251 2.169 4 

2 Pr136 8 96772 96922 97335 0.581 5 

3 Pr299 13 48191 50273 50498 4.787 17 

4 Pcb442 13 50778 54838 55326 8.957 32 

5 U574 18 36905 39228 39411 6.790 54 

6 D657 18 48912 52665 53234 8.836 71 

7 Rat783 23 8806 9453 9505 7.938 147 

8 Pr1002 27 259045 275911 277768 7.228 136 

9 D2103 40 80450 89712 90169 12.080 258 

10 Pr2392 55 378032 419476 421630 11.532 247 

11 Block107 7 2769 2865 2874 3.467 4 

12 Block364 13 3011 3315 3339 10.100 26 

13 Rl11849 300 923288 1052300 1056325 14.409 582 

14 Brd14051 350 469385 507713 507876 8.200 714 

15 D15112 400 1573084 1707900 1714300 8.977 845 

16 D18512 500 645238 702630 706110 9.434 1018 

17 Pla33810 900 66048945 75055791 75317000 14.032 2853 

18 Pla85900 2100 142382641 159269135 159543976 12.052 13470 

C is the cluster number 
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Fig. 7. Comparison of time between two algorithms 

Table 3. The results of randomly generated TSP problem 

TSP 
City num-

ber 

Trial

 number

Average 

ratio
Time 

R1000 

R10000 

R100000 

R400000 

R900000 

R2500000 

1000 

10000 

100000 

400000 

900000 

2500000 

     10

     10

      5

      5

      5

      1

0.784

0.785

0.783

0.782

0.781

0.782

        105 

404 

16847 

62404 

143014 

425925 

4 Conclusions 

TSP problem is a well-known NP-hard combinatorial problem. Ant colony system 
algorithm for large scale TSP problem has some shortcomings, such as slower con-
vergence speed and longer runtime. Especially when the scale of TSP problem is 
relatively large, ant colony system algorithm cannot solve the problem in expected 
time. This paper presents a hierarchical algorithm based on clustering algorithm for 
solving large-scale TSP problem. First of all, through clustering algorithm to decom-
pose large-scale traveling salesman problem into several small scale traveling sales-
man problem. And then, traditional ant colony algorithm is used to solve each small 
traveling salesman problem. Finally, the optimal path of sub-problems merged into a 
quasi-optimal solution of the TSP problem. The experimental results show that the 
proposed algorithm for traveling salesman problem, especially for cities distribution 
has clustering characteristics, will obtain good results. With the scale of the TSP prob-
lem increases, the advantage of the presented algorithm becomes more significant. 
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Abstract. The Gaussian Process (GP) model is used widely in many
hard machine learning tasks. In practice, it faces the challenge from scal-
ability concerns. In this manuscript, we proposed a domain decomposi-
tion method in GP learning. It is shown that the GP model itself has the
inherent capability of being trained through divide-and-conquer. Given a
large GP learning problem, it can be divided into smaller problems. By
solving the smaller problems and merging the solutions, it is guaranteed
to reach the solution to the original problem. We further verified the
efficiency and the effectiveness of the algorithm through experiments.

Keywords: Gaussian process · Domain decomposition · Machine
learning

1 Introduction

Recently considerable researches have been devoted to the study of the Gaus-
sian Process (GP) model. With flexible non-parametric nature, the GP model
provides a powerful statistical tool and has been routinely used to solve many
difficult machine learning problems [1–3].

Unfortunately in practice, the GP model faces the challenge of computational
scaling. The model requires the solution of a dense positive definite linear system
Ac = y. The computational cost is O

(
n3

)
(suppose A is an n × n matrix) by

direct solvers, which is prohibitive for large tasks. To deal with the difficulty,
one line of work suggests to use sparse or low-rank approximations [4–7]. These
approximated methods significantly reduce the computation, but they generally
do not provide the optimal solution.

To seek a quick yet optimal solution, people have explored the conjugate gra-
dient method [8,9]. The method modifies the components of the solution succes-
sively, until convergence is achieved. If rank (A) = r, it converges in r + 1 steps.
The computational complexity is O

(
rn2

)
. While this represents an improve-

ment for some problems, unfortunately the rank of the matrix may not be small.
Unfortunately in GP learning, The matrix A is typically full rank and again the
complexity becomes O

(
n3

)
.

c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 262–269, 2014.
DOI: 10.1007/978-3-319-12436-0 29
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In this paper, we consider a different iterative approach, a domain decompo-
sition method. We show the GP model itself has the capability of being trained
in a divide-and-conquer manner. That is, for a large GP problem, we can divide
the problem into smaller ones. By solving these smaller GP tasks and merging
the solutions, it is guaranteed to reach the optimal solution. This line of research
has attracted considerable research in GP models recently [10,11].

A word on notation: A lower-cased k and φ denote a kernel function, and a
capital letter denotes a matrix (e.g. K and Φ). A bold lower-cased letter denotes
a vector (e.g. c, f), and a corresponding normal letter with subscript i refers
to the i-th entry (e.g. ci). 0 denotes a vector of all 0’s. Furthermore, let A be
an n × n matrix and c be an n × 1 vector. If s1, s2 ⊆ {1, · · · , n}, then As1,s2 is
a matrix obtained from A by keeping only the rows with indices in s1 and the
columns with indices in s2, and cs1 is a vector obtained from c by keeping the
elements with indices in s1.

2 Gaussian Process Model

Given a set of input vectors X = {x1, · · · ,xn} and a set of observed output
scalars y = (y1, · · · , yn)T . We are concerned with the problem of seeking a
function f which explains the relationship between each pair of x and y:

y = f (x) + ε,

where ε is an additive i.i.d. Gaussian noise with a mean 0 and a variance σ2
n.

With this function, we are able to give the output vector f∗ corresponding with
a set of testing inputs X∗ = {x∗

1, · · · ,x∗
m}.

In Gaussian processes, under some prior, the joint distribution of the observed
target values and the function values for X∗ is given by

[
y
f∗

]
∼ N

(
0,

[
ΦX,X + σ2

nI ΦX,X∗
ΦX∗,X ΦX∗,X∗

])
.

Here ΦX,X∗ denotes the n × m matrix of the covariances evaluated at all pairs
of training and testing points. The i, j-th entry is given by φ

(
xi,x∗

j

)
where φ is

a predefined symmetrical positive definite function. The similarity holds for the
entries of ΦX,X , ΦX∗,X and ΦX∗,X∗ .

The key predictive equation for f∗ for GP learning is

f∗|X,y,X∗ ∼ N (
f̄∗, cov (f∗)

)

where
f̄∗

.= E [f∗|X,y,X∗] = ΦX∗,X

[
ΦX,X + σ2

nI
]−1

y (1)

and
cov (f∗) = ΦX∗,X∗ − ΦX∗,X

[
ΦX,X + σ2

nI
]−1

ΦX,X∗ .
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Another way to look at the solution in equation (1) is to see it as a linear
combination of n kernel functions:

f̄ (x∗) =
n∑

i=1

ciφ (xi,x∗) , x∗ ∈ X∗ (2)

where
c = (c1, · · · , cn)T =

(
ΦX,X + σ2

nI
)−1

y. (3)

We need to solve a linear system to train a GP model. The computational
cost is O

(
n3

)
by direct solvers, where n is the number of input points. For large

problems (e.g. n > 10, 000), the cost becomes expensive.

3 Domain Decomposition in GP

To provide scalability to the GP model, we propose a divide-and-conquer method
in GP learning. Algorithm (1) uses a sub-routine GP naive, which has three
input arguments. The first is a training input set X. The second is the observed
output y. The last is a testing input set X∗. It has two outputs. The first is a
function f̄ by equation (2). The second is a vector of predicted function values
by equation (1).

Algorithm 1. GP Learning by Divide-and-Conquer.
1: s = {1, · · · , m}.
2: Divide s into subsets: s = s1 ∪ · · · ∪ s�.
3: t = 0, f̄ = 0.
4: repeat
5: t = t + 1.
6: for j = 1 to � do

7:
(
f̄ t

sj , f̄
t
s−sj

)
= GP naive

(
Xsj ,ysj , Xs−sj

)
.

8: ysj = 0, ys−sj = ys−sj − f̄ t
s−sj .

9: f̄ = f̄ + f̄ t
sj .

10: end for
11: until f̄ converges
12: return f̄

This algorithm divides the training data X into � different subsets and then
solves the whole problem iteratively. At step 7, it treats one subset Xsj

as the
training set and the rest Xs−sj

as the testing set, and returns a solution f̄sj
.

It is expected that the input-output relationship cannot be explained fully by
f̄sj

for all the data, so it updates the observations y, extracting the part of
the observations that has been explained by f̄sj

in step 8. Then the updated
observations will be used in the next round training process. Accordingly, the
solution f̄sj

is added to f̄ in step 9.
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4 Justification

To show the correctness of algorithm (1), one needs to observe the actual com-
putation of the algorithm, which involves solving a linear system in equation
(3). Denote A = ΦX,X + σ2

nI, and equation (3) becomes the problem of solving
c = A−1y. Then we re-write the actual computation of algorithm (1) as in algo-
rithm (2). This algorithm is a variant of block Gauss-Seidel method in solving
linear systems [12], and we omit the discussion here.

Algorithm 2. Computation in GP Learning.
1: s = {1, · · · , m}
2: Divide s into subsets: s = s1 ∪ · · · ∪ s�.
3: t = 0, c = 0.
4: repeat
5: t = t + 1, ct = 0.
6: for j = 1 to � do
7: Solve ct

sj by Asj ,sjc
t
sj = ysj .

8: ysj = 0,ys−sj = ys−sj − As−sj ,sjc
t
sj .

9: csj = csj + ct
sj .

10: end for
11: until c converges
12: return c

4.1 Preliminaries and Definitions

Algorithm (2) can be analyzed as successive alternating projections in Hilbert
space, based on the work of [13–15].

Lemma 1. For any n×n positive definite matrix A, there exist n points1 x1, · · · ,
xn in some space Rd and a kernel function k defined on Rd, such that Aij =
k (xi,xj).

With this lemma, we can see that the problem of finding a solution to Ac = y
has been changed to the problem of finding a function f =

∑n
j=1 cjk (xj , ·) such

that f (xi) = yi for all xi.
Furthermore, given a kernel function k (x,x′) and a finite set of distinct points

X = {x1, · · · ,xn} in Rd, let HK denote the function space induced by k:
⎧
⎨

⎩

n∑

j=1

ajk (xj , ·) : a1, · · · , an ∈ R

⎫
⎬

⎭

endowed with the inner product

〈f, g〉 =
n∑

i,j=1

aibjk (xi,xj)

1 The x1, · · · ,xn here have a slightly different meaning from those in section 2.



266 W. Li et al.

where

f =
n∑

i=1

aik (xi, ·) and g =
n∑

j=1

bjk (xj , ·) .

Given Xi ⊆ X (1 ≤ i ≤ �), let Hi denote the subspace of functions in HK asso-
ciated with Xi:

Hi =

{

f ∈ HK : f =
∑

x∈Xi

cxk (x, ·) , where cx ∈ R

}

.

4.2 Interpolation Operator and Orthogonal Projection

The definitions of orthogonal projection and interpolation operator in a Hilbert
space are as follows.

Definition 1. (Orthogonal Projection) Let V be a closed subspace of a Hilbert
space H. The linear operator P : H → V is called the orthogonal projection onto
V if for any f ∈ H and any v ∈ V

〈v, f − Pf〉 = 0,

where 〈·, ·〉 denotes the inner product in H.

Definition 2. (Interpolation Operator) Let X1, · · · ,X� be subsets of X, such
that ∪�

i=1Xi = X. Given f ∈ HK , define interpolation operators Pi : HK →
Hi, i = 1, · · · , � by

Pif =
∑

x∈Xi

cxK (x, ·)

and
(Pif) (z) = f (z) for all z ∈ Xi.

With the definition, we can see Pi is the orthogonal projection onto Hi.

Lemma 2. Let Xi ⊆ X, (1 ≤ i ≤ �) be a finite set of distinct points in Rd and
Pi denote the interpolation operator defined above. Then Pi is the orthogonal
projection from HK onto Hi.

Now algorithm (2) can be seen as a version of alternating projections. Each
execution of step 7 and step 8 corresponds to an orthogonal projection from HK

onto subspace Hi.

4.3 A Domain Decomposition Approach

We study the orthogonal projection onto the intersection U ∩V of the two closed
subspaces U and V of a general Hilbert space H. Denote the projection by Pu∧Pv,
and based on von Neumann’s alternating projection theorem [16] we have:

lim
t→∞ (PuPv)t

f = (Pu ∧ Pv) f,
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where the convergence is in the norm of H and f ∈ H. The theorem generalizes
to any finite number of subspaces. From [17], the algorithm is linearly converged.

Based on the justification, we have a domain decomposition approach. It
generates a sequence {f�t+i}, where t = 1, · · · and i = 1, · · · , � via

f0 = f and f�t+i = f�t+i−1 − Pif�t+i−1.

And the sequence of approximations is given by:

f̄0 = 0 and f̄ �t+i = f̄ �t+i−1 + Pif�t+i−1.

The algorithms (1) and (2) exactly follow this approach.

5 Results

We compared the domain decomposition approach, and the conjugate gradient
method in GP learning. Three datasets from CMU text mining group were used.
The 20-newsgroups dataset has about 19, 000 pages in 20 classes. The webkb
dataset has about 8, 300 pages in 7 classes. The 7-sectors dataset has about
4, 600 pages in 7 classes. In each experiment, the matrix KX,X was computed
from the dataset X with a Gaussian kernel. Then we got the matrix A = K+σ2

nI.
The vector y was set with document’s class labels. We solved Ac = y for the
parameters c. For domain decomposition, we set the size of each subsystem to
be 1, 000.
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Fig. 1. Comparison of the domain decomposition (DD) method and the conjugate
gradient (CG) method

Figure (1)(a)-(c) depicts the results. In each sub-figure, the horizontal axis
is the iterations and the vertical axis depicts the relative residuals after each
iteration. We can see that the domain decomposition (DD) approach reaches an
acceptable residual in much fewer iterations than the conjugate gradient (CG)
method. In each iteration the complexities of the methods are similar, and the
DD method actually runs quicker than the CG method.
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6 Conclusion

In this paper, we studied a divide-and-conquer method in training Gaussian
Process and related models [18,19]. It divides a large learning problem into small
problems and solves these small problems iteratively. The process converges with
at least a linear rate.

We justified the algorithm as alternating projections in Hilbert space. This
divide-and-conquer property is inherent in GP model. It equips the model with
the ability in handling large problems.

Acknowledgments. The work is partially supported by Macao Polytechnic Insti-
tute (RP/ESAP-01/2014) and The Science and Technology Development Fund, Macao
SAR, China (044/2010/A).
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Abstract. Better interpretation about the contents in high-resolution remote 
sensing images can be obtained by using multiple features of various types. In 
order to process large image data sets with high feature dimensions, the very ef-
ficient algorithm of kernel extreme learning machine is employed to in our 
study to build image classifiers. In order to avoid the overflow problem, the 
classification strategy is improved by training classifiers on different features 
independently and then fusing the classification results. The effectiveness of the 
proposed classification approaches are shown by the experimental results 
achieved on a realistic remote sensing image data set.  

Keywords: Classification · Kernel extreme learning machine · Remote sensing ·  
Multiple features  

1 Introduction 

For decades, remote sensing images have been very important sources for people to 
learn about the earth. The knowledge in remote sensing images that can be extracted 
using image classification approaches is generally referred as land use and land cover 
(LULC) information. LULC information is important in many aspects including envi-
ronment protection, city management and planning, resource survey, natural disaster 
prevention and so on.  

Thanks to the development of remote sensing techniques in recent years, remote 
sensing images with much higher spatial resolution and much more spectral bands 
become available. And this may lead to more accurate classifications. However, high-
er feature dimensions also lead to two major problems. First, the computation burden 
will be largely increased. Therefore the processing time will be lengthened and the 
efficiency becomes a problem. Furthermore, the data sizes of high resolution remote 
sensing images are usually very large as compared to the storage and processing abili-
ties of common computers. So the overflow problem may also happen during the 
processing of remote sensing image data. 
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In order to avoid these problems in remote sensing image classifications, algo-
rithms which are followed to establish image classifiers should be highly efficient. 
There are many successful applications of support vector machine (SVM) in tasks of 
remote sensing image classification [1-3]. Extreme learning machine (ELM), which is 
“extremely” fast, is also a guaranteed choice for obtaining LULC information [4, 5]. 
In our study, an improved version of ELM, the kernel ELM (k-ELM) [6], is em-
ployed. Highly efficient classification algorithms can tackle the efficiency problem of 
image classification, while the classification strategies should also be optimized to 
avoid the overflow problem. Therefore, we develop a multi-feature classifier fusion 
approach.  

2 Classifier for Multiple Features 

2.1 Multiple Features 

Image classification accuracy is heavily relied on the feature dimension of the image 
data set. Since the spectral features have its limitation, it’s quite necessary to include 
some higher level image features in the classification processes. In our study, we 
made use of texture features and shape features, in addition to the original spectral 
features.   

 
A. Texture features based on Gray-Level Co-Occurrence Matrix (GLCM) 
The GLCM technique is a standard technique for extracting texture features from 
remote sensing images [7]. There are several different texture measures, which can 
represent the gray-level difference between neighboring pixels. In order to extract 
GLCM features, first there has to be a base image. As for remote sensing images with 
multiple spectral bands, there are many ways to build different base images. Then 
moving windows are used to define the neighborhoods of pixels in the image, and 
pixels with different gray levels in the window are counted to form the GLCM. In 
order to capture multi-scale characteristics, the GLCM texture measures should be 
computed using moving windows of different sizes. Therefore, by selecting different 
base images, different moving window sizes and different textural directions, many 
sets of texture measures can be calculated. So it’s quite convenient to extract high 
dimension texture features from remote sensing images. 

B. Morphological Profiles (MPs) 
Morphology is another way to express the spatial information of the remote sensing 
images [8]. There are two fundamental morphological operators, known as erosion 
and dilation. These two operators are applied to an image with a basic shape, called a 
structuring element (SE). When applied to an image, the erosion operator can produce 
output images showing where the SE fits the objects in the image, and the dilation 
operator can produce output images showing where the SE hits the objects in the im-
age [9]. Therefore, morphological operators can produce features that are related to 
the shapes of the objects in images. The erosion and dilation operators can be com-
bined into another two operators, which are more widely used for extracting shape 
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features of images. These two operators are known as opening and closing. The open-
ing and closing operators, as well as the erosion and dilation operators, can be per-
formed with different SEs. The dimension of morphological features is determined by 
the number of SEs and the number of morphological operators that have been applied 
to the images.  

2.2 Principles of k-ELM 

K-ELM is a development from ELM, which is a very fast learning algorithm for sin-
gle-layer feed-forward networks (SLFNs). The forward function of a SLFN can be 
expressed as 

( ), 1, 2,...,k o i ky W g W x b k K= ⋅ ⋅ + =                     (1) 

where xk is the kth input in a sample set with the size of K, and yk is the corresponding 
output of the network. Wi and Wo are two matrix containing the input and output con-
nection weights of the network, while b is a vector representing the biases of the hid-
den-layer neurons. For an M-input N-output SLFN with L hidden-layer neurons, the 
size of Wi, Wo and b are L×M, L×N and L×1 respectively. The Sigmoid-type activation 
function of the hidden-layer neurons is denoted as g(). Following the learning algo-
rithm of ELM, both Wi and b will be randomly assigned in previous and only Wo need 
to be tuned using the training samples {xk, tk}, where tk represents the desired output. 
And this process can be implemented in a very simple way that  

-1 ( )T T
oW TH T H H H+= =                        (2) 

where H+ is the Moore–Penrose generalized inverse of the hidden-layer output matrix 
H [10] and 

[ ]1 2( ), ( ), ..., ( )i i i K L K
H g W x b g W x b g W x b

×
= ⋅ + ⋅ + ⋅ +

 
1 2[ , ,..., ]KT t t t=  

Then the output of the SFLN can be calculated following 

 -1( ) ( )T T
iy T H H H g W x b= ⋅ ⋅ +                          (3) 

In k-ELM, the ‘kernel trick’ [11] is made use of. The activation functions of the 
hidden-layer neurons will be replaced by kernel functions. The kernel function for a 
SLFN can be defined as 

( , ) ( ) ( )T
i iG x x g W x b g W x b= ⋅ + ⋅ ⋅ +                       (4) 

Furthermore, according to the ridge regression theory, a regularization term is added 
to improve the generalization ability of the learning process and the forward  
function can be rewritten as 
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1 1 1 1
-1 -1

1

( , ) ... ( , ) ( , )

= ( ) ( )= ( )

( , ) ... ( , ) ( , )

K
T T

i

K K K K

G x x G x x G x x
I I

y T H H H g W x b T
c c

G x x G x x G x x

   
   + ⋅ + +   
      

     (5) 

where c is the regularization parameter and I is a unity matrix.  
In k-ELM, the activation functions and the number of hidden-layer neurons need 

not to be known, while only the kernel function needs to be defined in previous. The 
random feature mappings in ELM, which are implemented by the activation functions 
and input connection weights, are replaced by kernel mappings. Therefore, as a learn-
ing algorithm, k-ELM is more stable than basic ELM.   

2.3 Classifier Based on k-ELM 

In order to build a k-ELM based classifier for remote sensing images, the numbers of 
input neurons and output neurons in the SFLN will be set equally to the feature di-
mension and class number of the image. The features of a given sample (usually a 
pixel) will be assigned to the input neurons, and the outputs can be calculated as a 
vector following (5). The class label of the sample can be predicted as the index of the 
output node which has the highest output.  

A k-ELM classifier can also be probabilistic. The outputs in (5) can be rescaled into 
the range of [0, 1] as 

min

max min

, 1,2,...,n
n

y y
p n N

y y

−
= =

−
                       (6) 

where yn is the nth element of the vector y in (5), namely the output of the nth output 
neuron. ymin and ymax are the minimum and maximum values among the N outputs. 
Then pn can be considered as the probability that the input sample may belong to the 
nth class. It’s quite convenient to build soft classifiers using k-ELM, and this is bene-
ficial to our classification tasks.  

3 Feature Fusion Based on k-ELM 

Both the diversity and the dimension of image features are important conditions for 
generating accurate classification. The traditional approach for the integration of mul-
tiple features is known as vector stacking (VS), which concatenate the multiple fea-
tures and feed them into a classifier as a vector. This approach may suffer a lot from 
the aforementioned efficiency and overflow problems. In order to chase high classifi-
cation accuracies, feature dimensions are increased with the help of various feature 
extraction techniques. Then the efficiency and overflow problems will be even more 
serious, which is known as the curse of dimensionality. Besides the application of fast 
learning algorithms, such as k-ELM, new classification strategies are also required.  
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Instead of classifying the image in a very high dimension feature space, we divide 
the features into sub-sets and classify the image based on different feature sets. Then 
we fuse the classification results achieved on different features. Two fusion strategies 
[12], as illustrated in Fig. 1, are implied in our study. 
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Fig. 1. Classifications of k-ELM classifiers following different strategies 

A. Certainty voting 
Multiple k-ELM classifiers are established on different feature sets. After training, 
these classifiers can give their individual predictions about the class label of an un-
known sample, which is usually a pixel in the image. The classifications of these clas-
sifiers are not necessarily the same. If a pixel is identified as the same class by all the 
classifiers, it’s considered as a reliable classification. If a pixel is an unreliable one, its 
class label will be decided by comparing the classification certainty degree of differ-
ent sub feature space classifiers. This process is known as certainty voting.  

The sub-features of a target sample can be express as xf. Assuming the original fea-
ture space has been divided into F sub spaces, there will be F different classifiers. The 
certainty degree of these k-ELM classifiers for an unknown sample can be defined as 

1

1
1

1
[ ( ) ( )], 1,2,...,

N

f n f n f
n

C q x q x f F
n

−

+
=

= − =                 (7) 

where qn represent the probabilistic outputs pn in a descending order. The class label 
of the sample will be decided according to the classifier achieving highest certainty 
degree on this sample.  

B. Probabilistic fusion 
Certainty voting is a ‘winner takes all’ strategy, while probabilistic fusion is more 
moderate. In probabilistic fusion, the finial classification is calculated based on all the 
classifiers’ outputs. The certainty degree of each k-ELM classifier is considered as the 
weight of the probabilistic output. Subsequently, the weighted probabilistic outputs of 
the k-ELM classifiers are fused for the final classification. This process can be ex-
pressed as 
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1

1
( ), 1,2,...,

F

n f n f
f

p C p x n N
F =

= =                       (8) 

where pn(xf) is the probability calculated from the fth set of features, denoted as xf, 
following (5) and (6). And the class label with the highest probability will be assigned 
to the sample.  

4 Experiments 

The aim of our study is to obtain LULC information about a landslide affected region 
along Yangtze River, from a high resolution Worldview-II [13] remote sensing image. 
Before classification, the image has been enhanced using techniques such as 
pansharpening [14]. The enhanced image of the region is illustrated in Fig.2. There 
are totally 28 features. Pixel values in the four spectral bands of the image are consid-
ered as spectral features. The dimension of the GLCM texture features is 16, eight for 
contrast and eight for energy. An eight-dimension morphological profile has also been 
produced. 

The objects in the image can be categorized into seven basic LULC types, namely 
water body, forests, bare fields, rocks, roofs, roads and landslides. Some parts in the 
image can be classified via visual interpretation. These classified regions are also 
illustrated in Fig. 2. Training samples and testing samples are selected from these 
regions out of the same image. In our experiments, there are 2330 pixels in the train-
ing set and 1664 pixels in the testing set.  

The k-ELM classifiers are trained on the training set and their performances are 
evaluated on the testing set. The accuracies reported in table 1 confirmed the previous 
arguments that classification accuracies are highly relied on the variety and dimension 
of features. The highest accuracy can be obtained when all the 28 features are in-
volved in the classification process. The best sub feature set is the combination  
between spectral features and shape features.  

 

  

Fig. 2. The enhanced image of the study region (left) and the visual interpretation results (right) 

 

In order to verify the effectiveness of the classification approaches proposed, k-ELM 
classifiers based on the texture feature set and the spectral-shape combinational feature 
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set are fused, following the strategies of certainty voting and probabilistic fusion, re-
spectively. As reported in table 2, the results show that the classification fusion ap-
proaches can produce classifications as accurate as, and even more accurate than the 
vector stacking approach. The classification accuracies and processing time of an ELM 
classifier and a SVM classifier are also listed in table as benchmarks.      

Table 1. Comparisons of classification results achieved on different features  

Features Training Accuracy Testing Accuracy 
Spectral+Shape+Texture 99.48% 96.88% 
Spectral 89.31% 85.28% 
Shape 91.85% 88.34% 
Texture 56.14% 49.28% 
Spectral+Shape 98.28% 96.39% 
Spectral+Texture 96.70% 94.41% 
Shape+Texture 96.05% 92.79% 

Table 2. Comparisons among different feature fusion strategies 

Fusion Strategy Training Time Testing Accuracy 
ELM classifier 277.0ms 94.29% 
SVM classifier 423.2ms 96.27% 
Vector stacking 282.5ms 96.88% 
Certainty Voting 276.6ms 94.95% 
Probabilistic Fusion 276.9ms 97.06% 

5 Conclusion 

The performance of remote sensing image classification is heavily relied on image 
features. However, high resolution and high dimension advanced remote sensing im-
ages may also bring efficiency and overflow problems. The efficiency problems can 
be eased using faster learning algorithm for the classifier, while the overflow prob-
lems can be avoid by using the multiple features separately. Therefore, we came up 
with multi-classifier fusion approaches based on k-ELM in our study. The proposed 
classification approaches are testified on a worldview-II image data set, and the re-
sults show that fusion approaches can obtain comparably accurate classifications, 
while the risk of overflow is much lower. 
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Abstract. We study optimization of the regularized least-squares clas-
sification algorithm, and proposes an early-stopping training procedure.
Different from previous empirical training methods which separate model
selection and parameter learning into two stages, the proposed method
performs the two processes simultaneously and thus reduces the training
time significantly. We carried out a series of evaluations on text cate-
gorization tasks. The experimental results verified the effectiveness of
our training method, with comparable classification accuracy and signif-
icantly improved running speed over conventional training methods.

Keywords: Machine Learning · Kernel Methods · Iterative
Regularization

1 Introduction

Supervised learning has been widely studied recently [1]. It is used to predict
an object’s category that is unknown. We have some training objects’ category
information at hand. Some external mechanisms are assumed which provide the
correct class labels. We are interested in the task of seeking a computer algorithm
that takes labeled training data as input and outputs a classifier which performs
well in predicting the labels of the unlabeled objects.

Many methods have been developed. Among them, the support vector
machines (SVM) algorithm [2,3] and a family of related kernel methods have
attracted much attention. Although with significant empirical success, such algo-
rithms face a challenge of scalability. To address the issue, this paper studies the
speed-up of an alternative to SVM, the regularized least-squares classification
(RLSC) algorithm. We propose an early-stopping training method for RLSC.
The method performs iteratively, with each iteration involving limited compu-
tation. Comparing with conventional training procedures, the proposed method
saves significant computation yet without losing classification accuracy.

2 Background

2.1 Support Vector Machines

Consider the binary classification setting for given data X = {x1, · · · ,xm} that
are vectors in a space Rd with their class labels Y = {y1, · · · , ym} where each
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 278–285, 2014.
DOI: 10.1007/978-3-319-12436-0 31



Early-Stopping Regularized Least-Squares Classification 279

yi ∈ {−1,+1}. SVM is based on the principle of finding a hyperplane that
separates the two classes by the maximal margin.

Besides the geometric viewpoint, SVM can also be explained by Tikhonov
regularization theory [4,5].

min
f∈HK

1
m

m∑

i=1

[1 − yif (xi)]+ + γ ‖f‖2K

Here [1 − yf (x)]+ = max (1 − yf (x) , 0) is a hinge function used to measure the
empirical loss. K is a kernel function. ‖f‖K is the norm of f in HK , where the fea-
ture space HK is the completion of

{
g|g (x) =

∑
cu

cuku (x) ,u ∈ Rd, cu ∈ R}
.

γ is a positive regularization parameter trading off the empirical loss and the
complexity of the solution. By minimizing the loss and the complexity simulta-
neously, we wish to find a stable solution that fits the training data well.

The non-differentiability of the hinge loss brings much difficulty in compu-
tation. To get the solution, we need to solve a quadratic program. Although
special techniques have been proposed [6], the inherent nature still poses a chal-
lenge when SVM is applied to large scale problems.

2.2 RLSC: An Alternative to SVM

An alternative is to replace the non-differentiable hinge loss by a differentiable
squared loss: V (y, f (x)) = (y − f (x))2. Hence,

min
f∈HK

1
m

m∑

i=1

(yi − f (xi))
2 + γ ‖f‖2K .

By the representer theorem [7–9], the solution to this model also possess the
form f (x) =

∑m
i=1 cik (x,xi) and each ci comes from a linear system:

(K + γmI) c = y, (1)

where K is an m×m kernel matrix with Kij = k (xi,xj) (1 ≤ i, j ≤ m) and vec-
tor y = (y1, · · · , ym)T . This leads to the regularized least-squares classification
algorithm (RLSC) [10–12].

RLSC and SVM only differ in the loss function, and have similar empirical
performances [10,11]. On the other hand, different from SVM which solves a
quadratic program, RLSC only needs to solve a system of linear equations that
is usually less demanding in computation, and hence provides a potentially faster
alternative to SVM.

2.3 Model Selection and Parameter Learning

When applying kernel machines in practice, a necessary step is to determine
the value of γ. This model selection process is often done by grid search. The
given data is split into a training set and a validation set. People try different
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regularization parameter values, learn parameters, and evaluate its performance
on the validation set. We repeat the processes by enumerating all values in a given
set of regularization parameters, and return a classifier with the best result on
the validation set.

One shortcoming of the training procedure is that the computation of param-
eters cannot be re-used. Each time given a new value of γ, the parameter learning
has to start from scratch. It is time consuming as we need to try different γ tens
of times. The situation becomes even worse when the kernel selection problem is
also a concern, where we often need to train and evaluate hundreds of classifiers
or more.

3 Early Stopping RSLC

Different from SVM and standard RLSC which use a regularization parameter
for model selection, we study a new method to train RLSC. For simplicity, we
call the standard RLSC training algorithm derived from solving equation (1) as
RLSC-Tik, and call our algorithm as RLSC-ES.

Instead of training and evaluating many classifiers, RLSC-ES uses an itera-
tive scheme. After each iteration, RLSC-ES returns a classifier with less empirical
error on the training set. To avoid over-fitting, the classifier is evaluated until
no improvement can be made on the validation set. By RLSC-ES, the model
selection and parameter learning processes are merged, which reduces the com-
putation significantly.

3.1 Algorithm

Start from equation (1). The linear equation can be regarded as a regularized
alternative to Kc = y. Practically, the condition number [13] of the kernel
matrix K is usually high, which makes the solution sensitive to the changes of
y. Suppose c∗ is the solution to Kc = y. A small perturbation in y could bring
a large change to c∗ and thus make the solution unstable. To lessen the effect
from this ill-posedness, regularization techniques are often used, among which
Tikhonov regularization is well-known [4]. As in equation (1), the addition of
γmI improves the well-posedness of K by decreasing its condition number which
helps to improve the stability of c∗.

Besides Tikhonov regularization, a number of other techniques are possible,
for example, Landweber iterative regularization [14]. Starting from an initial
guess of c, the Landweber method computes the next approximated solution to
c recursively. Repeating the process, the solution converges to a least-squares
solution of Kc = y. The iterative method exhibits a “self-regularization prop-
erty” in the sense that the early termination of the iterative process has a reg-
ularizing effect. The iteration index plays the role of the regularizing parameter
γ, and the stopping rule plays the role of model selection.

Motivated by Landweber regularization, we resort to the following technique.
In literature it belongs to a category called “early stopping methods” [15]. It is
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a form of regularization used when a model, such as a neural network, is trained
by on-line gradient descent. The data is split into a training set and a validation
set. Gradient descent is applied to the training set. After each iteration through
the new training set, the network is evaluated on the validation set. The model
with the best performance in validation is kept for subsequent testing.

This technique is simple but efficient to deal with the problem of over-fitting.
Early stopping effectively limits the scope of a solution model, imposes a regu-
larization, and thus effectively lowers the VC dimension in learning [2].

Algorithm 1. Early-Stopping RLSC
1. s = {1, · · · , m}
2. Divide s into subsets sj , j = 1, · · · , �.
3. t = 0, c = 0, cbest = 0
4. repeat
5. t = t + 1, ct = 0
6. for j = 1 to � do
7. Solve ctsj by Ksj ,sjc

t
sj = ysj .

8. y = y − Ks,sjc
t
sj

9. csj = csj + ctsj
10. end for
11. if c performs better on validation set then
12. cbest = c
13. end if
14. until a certain number of iterations reaches
15. return cbest

The detailed algorithm is shown in Algorithm (1). It is based on a variant
of block Gauss-Seidel method [13]. The learning algorithm and the convergence
property can be understood as alternating projections in a reproducing kernel
Hilbert space [16], which is omitted in this paper.

To speed up the convergence, we divide the matrix K into a number of blocks
along the diagonal and solve the equations with the blocks one by one. Step 6 to
step 10 form one iteration of block Gauss-Seidel method. After each iteration,
the empirical error on the training set decreases. We evaluate the performance
of the resulting classifier on the validation set and records the best solution so
far (steps 11 to 13). After a fixed number of iterations, the best solution is kept
and used for future classification.

The major computation comes from the modification of the residual in step 8.
The total computation of Ks,sj

ct
sj

, 1 ≤ j ≤ � roughly requires O
(
m2

)
by direct

matrix-vector multiplications. For linear kernels, this can be reduced to O (dm),
which is generally smaller than O

(
m2

)
. For other kernels, we may resort to fast

matrix-vector multiplication methods [17], which may simplify the computation
to a linear complexity in certain applications.

The major memory consumption comes from the storage of Ks,sj
in step 8.

The memory requirement is O
(
m2

)
if we store the whole coefficient matrix K. It



282 W. Li

is also possible to store only one Ks,sj
at a time, which requires only an O

(
m2

�

)

storage. When the fast matrix-vector multiplication methods are applicable or
linear kernels are used on sparse data such as in text categorization, the memory
requirement can be substantially reduced.

The most desirable property of this training procedure is that it performs
model selection and parameter learning simultaneously. It uses the number of
iterations for model selection. It shares the idea as in iterative regularization
methods [14], which provide admissible filter factors. In our algorithm, mov-
ing into the next iteration is equivalent to changing to a different model. After
each iteration, the parameters are also automatically updated from the previous
parameters with limited computation. In this way it avoids the heavy computa-
tion of repeating model selection and parameter learning in separate stages.

4 Experiments

4.1 Accuracy

To evaluate the performance of RLSC-ES, we carried out a series of empiri-
cal studies. Our experiment was on the 20-newsgroups data set, which collects
news postings from twenty categories. Each category has roughly 1, 000 docu-
ments. The documents are represented by TFIDF weights. We compared the
classification accuracy of SVM, RLSC-Tik, and RLSC-ES. All algorithms used
a linear kernel. Thirty values which cover a reasonably large range of regular-
ization parameters were tried, and the one with the best performance on the
validation set was chosen.

We treated each class as the positive category; while treating all others as
the negative. We carried out ten runs. In each run we randomly selected 30%
of both positive and negative documents as the training set, selected 10% as
validation set, and used the rest 60% as testing set.

Both the classification precision and the F1.0 values averaged from ten runs
were recorded. Here

F1.0 =
2 × #(TP )

2 × #(TP ) + # (FP ) + # (FN)

where # (TP ) is the number of documents a classifier correctly assigns to the
positive category (true positives), # (FP ) is the number of documents a classifier
incorrectly assigns to the category (false positives), and # (FN) is the number
of documents that belong to the positive category but are not assigned to the
category by the classifier (false negatives).

Table (1) depicts the results on twenty different positive categories. It is quite
evident that SVM and RLSC-ES have similar accuracy.

4.2 Speed

Knowing the comparable classification accuracies, we’d like to investigate the
speed of the algorithms on the text corpus. We recorded their running time with
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Table 1. Classification accuracy (F1.0 and Precision) on 20-newsgroups

SVM RLSC-Tik RLSC-ES

alt.* 0.759/0.982 0.683/0.979 0.751/0.981
comp.gra* 0.696/0.974 0.666/0.973 0.707/0.974
comp.os* 0.713/0.974 0.682/0.972 0.712/0.973
comp.ibm* 0.641/0.969 0.586/0.966 0.639/0.967
comp.mac* 0.736/0.977 0.701/0.975 0.736/0.977
comp.win* 0.757/0.979 0.755/0.979 0.778/0.980
misc.* 0.744/0.978 0.679/0.974 0.727/0.976
rec.autos 0.818/0.983 0.796/0.981 0.821/0.983
rec.motor* 0.880/0.988 0.867/0.987 0.881/0.988
rec.base* 0.881/0.988 0.876/0.988 0.888/0.989
rec.hoc* 0.931/0.993 0.930/0.993 0.934/0.993
sci.crypt 0.875/0.988 0.854/0.986 0.870/0.987
sci.ele* 0.686/0.974 0.654/0.971 0.692/0.973
sci.med 0.824/0.984 0.815/0.983 0.835/0.985
sci.space 0.858/0.987 0.836/0.985 0.854/0.986
soc.rel* 0.796/0.980 0.966/0.978 0.790/0.979
talk.guns* 0.808/0.983 0.780/0.981 0.811/0.983
talk.mid* 0.904/0.991 0.895/0.990 0.906/0.991
talk.misc* 0.721/0.981 0.631/0.977 0.721/0.980
talk.rel* 0.548/0.977 0.453/0.975 0.575/0.977

training data sets of different sizes (from 1, 000 to 18, 000). The time was recorded
on a conventional linux workstation. Only the training time was counted; while
the input/output time was neglected.

For SVM, we used an implementation of SVMperf that is specially optimized
for linear kernels [18]. We recorded the time for ten different runs and calculated
the average for problems with the same training size. For RLSC-Tik, we imple-
mented it in MATLAB and used Cholesky factorization to solve linear systems.
We recorded the time for training sizes from 1, 000 to 10, 000. For larger sizes, we
didn’t finish the training on our workstation and used a theoretically estimated
running time. RLSC-ES was also implemented in MATLAB.

We observed significantly improved speed by RLSC-ES for large-scale tasks.
From figure (1), RLSC-Tik is the fastest when the training set is less than 3, 000.
When a problem gets larger than 7, 000, it becomes the slowest. SVMperf also
reported excellent performance. RLSC-ES is the fastest with more than 3, 000
documents. For a problem with 18, 000 documents, RLSC-ES finished training
with tens of seconds. Comparatively, SVM requires hundreds of seconds and
RLSC-Tik needs thousands of seconds, partially because these two algorithms
need to evaluate dozens of regularization parameters to get a solution.
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Fig. 1. Running time in log-scale on 20-newsgroups with different-sized training sets

5 Conclusion

Motivated by the recent research in kernel-based methods [19,20], in this paper
we investigate the speed-up of regularized least-squares classification. We present
an iterative approach with ideas tracing back to modern iterative regularization.
The training method allows us to perform model selection and parameter learn-
ing simultaneously and provides a faster solution.

One noteworthy point is to decide when to stop the training process. In
this paper we proposed to use cross validation to determine this iteration index
and has acquired good empirical results. In future work, new criteria will be
investigated with the hope of seeking more direct theoretical guidance.

Acknowledgments. The work is partially supported by Macao Polytechnic Insti-
tute (RP/ESAP-01/2014) and The Science and Technology Development Fund, Macao
SAR, China (044/2010/A).
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Abstract. A Z-type model for real-time solution of complex ZLE (i.e.,
complex-valued Zhang linear equation or termed complex-valued time-
varying linear equation) is proposed and analyzed in this paper. Different
from conventional G-type model, such a Z-type model utilizes adequately
the first-order time-derivative information of time-varying coefficients,
and eliminates a predefined vector-valued error function rather than a
scalar-valued error function to zero. The state vector of such a Z-type
model globally and exponentially converges to the unique theoretical
time-varying solution-pair of complex ZLE. Computer-simulation results
further verify and illustrate the effectiveness, efficiency and novelty of
the proposed Z-type model.

Keywords: Z-type model · G-type model · Complex ZLE (complex
Zhang linear equation) · Global exponential convergence

1 Problem Formulation and Solvers

In mathematics, the problem of complex ZLE (or termed complex-valued time-
varying linear equation) can be generally formulated as

A(t)x(t) = b(t), (1)

where nonsingular coefficient matrix A(t) ∈ C
n×n and vector b(t) ∈ C

n are
smooth and differentiable at any time instant t ∈ [0,+∞) (here notations C

n×n

and C
n denote n × n- and n-dimensional complex-valued sets, respectively),

x(t) ∈ C
n is the unknown complex time-varying vector to be obtained in real

time. Considering that any complex matrix/vector can be seen as the combi-
nation of its real and imaginary parts [i.e., notated by subscripts re and im,
respectively], we can rewrite problem (1) evidently and equivalently as

[Are(t) + jAim(t)][xre(t) + jxim(t)] = bre(t) + jbim(t), (2)
c© Springer International Publishing Switzerland 2014
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where
A(t) = Are(t) + jAim(t) ∈ C

n×n with Are(t), Aim(t) ∈ R
n×n,

x(t) = xre(t) + jxim(t) ∈ C
n with xre(t), xim(t) ∈ R

n,

b(t) = bre(t) + jbim(t) ∈ C
n with bre(t), bim(t) ∈ R

n,

and j =
√−1 denotes the imaginary unit.

By considering that real or imaginary parts of the left-side and right-side of
equation (2) are equivalent, the following time-varying coupled linear equations
can be further refined from equation (2) as

{
Are(t)xre(t) − Aim(t)xim(t) = bre(t)
Are(t)xim(t) + Aim(t)xre(t) = bim(t) (3)

or
U(t)y(t) = w(t) (4)

with

U(t) =
[
Are(t) −Aim(t)
Aim(t) Are(t)

]
, y(t) =

[
xre(t)
xim(t)

]
, w(t) =

[
bre(t)
bim(t)

]
.

From the above problem reformulation procedure, we can evidently conclude
that complex ZLE problem (1) can be solved via solving the time-varying coupled
linear equations depicted in (3) or equivalently (4). It is emphasized here that,
to ensure the existence of the unique complex time-varying solution at any time
instant t ∈ [0,+∞) for problem (1), the following condition has to be satisfied
according to Cramer’s law:

det (U(t)) �= 0, (5)

where operator det(·) denotes the determinant of a square matrix. This condi-
tion guarantees the non-singularity of the coefficient matrix and the uniqueness
of the theoretical solution. Besides, it is worth pointing out here that Zhang
problem solving is the real-time solution of a time-varying problem related to
division (or generalized division), where the divisor or generalized divisor (or
say, denominator or generalized denominator) may be time-varying as well and
may pass through zero, which originally causes the notorious division-by-zero
problem that can now be conquered. By considering that the determinant of
U(t) may vary and pass through zero in practical applications, the complex-
valued time-varying linear equation solving is potentially a Zhang problem (i.e.,
complex-valued Zhang linear equation) solving; and finding solutions of such
Zhang problems (e.g., ZLE) is a future research direction.

1.1 Expanded Z-Type Model

In order to monitor the solving process of complex ZLE (1) via time-varying
coupled linear equation (4), we can firstly consider the vector-valued Z-type
error function (or say, Z function) [1,2]:

e(t) = U(t)y(t) − w(t) ∈ R
2n,
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of which each element can be positive or negative (and even lower-unbounded).
Expanding classical Z-type model [1] leads to the following complex Z-type model
depicted in implicit dynamics:

U(t)ẏ(t) = −U̇(t)y(t) − γΦ(U(t)y(t) − w(t)) + ẇ(t), (6)

where Φ(·) : R2n → R
2n denotes an activation-function processing array [1]. Note

that φ(·) indicates a scalar-valued processing unit of array Φ(·), and it should be
a monotonically-increasing odd activation function. Besides, two kinds of such
activation functions are discussed in the ensuing section. State vector y(t) ∈ R

2n

of Z-type model (6), starting from initial condition y(0) ∈ R
2n, is proved to

globally converge to theoretical solution-pair y∗(t) = [y∗
1(t), · · · , y∗

n(t),
· · · , y∗

2n(t)]T ∈ R
2n, which constitutes the theoretical solution to problem (1);

i.e., complex time-varying theoretical solution x∗(t) = x∗
re(t)+jx∗

im(t) of complex
ZLE (1) is

[y∗
1(t), y

∗
2(t), · · · , y∗

n(t)]T + j[y∗
n+1(t), y

∗
n+2(t), · · · , y∗

2n(t)]T.

1.2 Expanded G-Type Model

For comparison, an expanded G-type model is developed correspondingly to
solve complex ZLE (1). According to the authors’ previous researches [1,2], the
G-type model can be generalized as follows:

ẏ(t) = −γUT(t)Φ(U(t)y(t) − w(t)). (7)

2 Convergence Analyses and Results

In this section, three theorems on convergence properties of Z-type model (6)
are presented for real-time solution of complex ZLE (1). The analyses include
the situations of using linear or power-sigmoid activation functions.

Theorem 1. Consider complex ZLE problem (1). If a monotonically-increasing
odd activation-function array φ(·) is used, then state vector y(t) ∈ R

2n of Z-type
model (6), starting from any initial state y(0) ∈ R

2n, converges to theoretical
solution-pair vector y∗(t) = [x∗T

re (t), x∗T
im (t)]T of equation (2), which constitutes

time-varying theoretical solution x∗(t) = x∗
re(t) + jx∗

im(t) to problem (1).

Proof. For Z-type model (6), we can define a Lyapunov function (or say, Lya-
punovian) candidate v(t) = ‖e(t)‖22/2 � 0, and its time-derivative is thus

v̇(t) =
dv(t)
dt

= eT(t)
de(t)
dt

= −γeT(t)Φ(e(t)) = −γ

2n∑

i=1

ei(t)φ(ei(t)).

With φ(·) being a monotonically-increasing odd activation function, we have

ei(t)φ(ei(t))

⎧
⎨

⎩

> 0, if ei(t) > 0,
= 0, if ei(t) = 0,
> 0, if ei(t) < 0,
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which guarantees the negative-definiteness of v̇(t). By Lyapunov theory, e(t)
globally converges to zero. In view of e(t) = U(t)y(t)−w(t) = U(t)(y(t)− y∗(t))
and U(t) being nonsingular for any time instant t, we obtain that y(t) → y∗(t),
as t → +∞. That is, state vector y(t) of Z-type model (6) globally converges to
exact time-varying theoretical solution-pair vector y∗(t) = [x∗T

re (t), x∗T
im (t)]T of

complex ZLE (2); therefore the exact theoretical solution x∗(t) = x∗
re(t)+jx∗

im(t)
to complex ZLE problem (1) is achieved. The proof is thus complete. �

Theorem 2. Consider complex ZLE problem (1). If the array of linear activa-
tion function φ(ei) = ei is used, then state vector y(t) ∈ R

2n of Z-type model
(6), starting from any initial state y(0) ∈ R

2n, globally exponentially converges
to theoretical solution-pair vector y∗(t) = [x∗T

re (t), x∗T
im (t)]T of equation (2), which

constitutes time-varying theoretical solution x∗(t) = x∗
re(t) + jx∗

im(t) to (1).

Proof. Let us review Z-type model (6), which can be rewritten as

U(t) ˙̃y(t) = −U̇(t)ỹ(t) − γΦ(U(t)ỹ(t)), (8)

where ỹ(t) = y(t) − y∗(t) denotes the difference between state vector y(t) and
time-varying theoretical solution-pair vector y∗(t). In addition, the relation
between ỹ(t) and e(t) is

‖ỹ(t)‖2 � 1√
λmin

‖U(t)(y(t) − y∗(t))‖2 � 1√
λmin

‖e(t)‖2,

where λmin > 0 denotes the minimal eigenvalue of the positive-definite matrix
UT(t)U(t) all over the time t ∈ [0,+∞). If linear activation function φ(ei) = ei

is used, then it follows from the corresponding Z-type design formula [1] that
e(t) = e(0)exp(−γt). Thus, one can have

‖y(t) − y∗(t)‖2 � 1√
λmin

‖e(0)‖2 exp(−γt),

which implies that state vector y(t) of Z-type model (6) globally converges to
time-varying theoretical solution-pair vector y∗(t) with exponential convergence
rate γ and thus theoretical solution x∗(t) = x∗

re(t) + jx∗
im(t) to problem (1) is

obtained. The proof is thus complete. �

Theorem 3. In addition to Theorems 1 and 2, if we use the array of power-
sigmoid activation function

φ(ei) =

{
ep

i , if |ei| � 1,
1+exp(−ξ)
1−exp(−ξ) · 1−exp(−ξei)

1+exp(−ξei)
, if |ei| < 1,

with suitable design parameters (e.g., odd integer p � 3 and ξ � 2), then
state vector y(t) ∈ R

2n of Z-type model (6), starting from any initial state
y(0) ∈ R

2n, superiorly converges to theoretical solution-pair vector y∗(t) =
[x∗T

re (t), x∗T
im (t)]T of equation (2), which constitutes time-varying theoretical solu-

tion x∗(t) = x∗
re(t) + jx∗

im(t) to problem (1), as compared with the situation of
using the array of linear activation function presented in Theorem 2.
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Proof. 1) For error range |ei| � 1
Power activation function φ(ei) = ep

i with p � 3 is used specifically for this
error range. It can be generalized from [1] that, if we use the power-sigmoid
activation function over error range |ei(t)| � 1, superior convergence can be
achieved for Z-type model (6), as compared with the situation of using the linear
activation function with exponential convergence rate γ.
2) For error range |ei(t)| < 1

Bipolar-sigmoid activation function φ(ei) = ((1 + exp(−ξ))/(1 − exp(−ξ))) ·
(1 − exp(−ξei))/(1 + exp(−ξei)) is used specifically for such an error range.
Review Lyapunov function candidate v(t) = eT(t)e(t)/2 and its time-derivative
equation once again. Over error range |ei(t)| < 1, we have |φ(ei)| � |ei| and then

v̇ps(t) = −γ

2n∑

i=1

ei(t)φ(ei(t))
{

< −γ
∑2n

i=1 e2i (t) = v̇li(t), if 0 < |ei(t)| < 1,

= −γ
∑2n

i=1 e2i (t) = v̇li(t), if ei(t) = 0,

which implies that, if the power-sigmoid activation function is used over error
range 0 < |ei(t)| < 1, superior convergence can also be achieved for Z-type
model (6), as compared to the situation of using the linear activation function
with exponential convergence rate γ.

Summarizing the above analyses of the two sub-cases, if we use the array
of power-sigmoid activation function to construct Z-type model (6), superior
convergence is achieved, as compared to the situation of using the array of linear
activation function. The proof is now complete. �

3 Simulative Verification and Comparison

In this section, two illustrative computer-simulation examples are presented to
illustrate the characteristics of the presented Z-type model (6). Note that both
Z-type model (6) and G-type model (7) are activated by the power-sigmoid
activation function array with design parameters p = 3 and ξ = 4.

Example 1. Let us consider the following coefficients of equation (1):
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(t) =

[
cos(12t) + j sin(8t) sin(12t) + j cos(8t)

− sin(12t) + j cos(8t) cos(12t) − j sin(8t)

]
,

b(t) =

[
sin(60t) + j sin(100t)
cos(60t) + j cos(100t)

]
.

(9)

It can be seen from Fig. 1(a) that, with randomly-generated initial state
y(0) ∈ R

4, state vector y(t) ∈ R
4 of Z-type model (6) globally converges to the

theoretical time-varying solution-pair vector [x∗T
re (t), x∗T

im (t)]T of problem (9) in
a rather short time. In contrast, as shown in Fig. 1(b), state vector y(t) ∈ R

4

of G-type model (7) does not fit well with the theoretical solution-pair vector
[x∗

re
T(t), x∗

im
T(t)]T with quite large computational errors. In summary, the exact

solution x∗(t) to problem (9) is achieved by Z-type model (6) with much better
accuracy. In addition, Fig. 2(a) shows that computational error ‖x(t) − x∗(t)‖2
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(a) x1(t) and x2(t) of Z-type model (6) solving (9)
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(b) x1(t) and x2(t) of G-type model (7) solving (9)

Fig. 1. Trajectories of Z-type model (6) and G-type model (7) with γ = 10 for solving
complex ZLE (9), where red-dotted curves denote theoretical-solution trajectories of
(9) and blue-solid curves denote solutions of Z-type model (6) and G-type model (7)

synthesized by Z-type model (6) decreases to zero rapidly, while Fig. 2(b) shows
once again that computational error ‖x(t)−x∗(t)‖2 synthesized by G-type model
(7) is rather larger. This illustrates the efficacy of the presented Z-type model
(6) for solving complex ZLE (9).

Example 2. Let us consider the following coefficients of equation (1):
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(t) =

[
sin(100t) + j exp(sin(100t)) exp(cos(100t)) − j cos(100t)
exp(sin(100t)) + j cos(100t) − sin(100t) + j exp(cos(100t))

]
,

b(t) =

[
cos(100t) + j sin(100t)

cos(1000t) + j sin(1000t)

]
.

(10)

It can be observed from Fig. 3 that, with randomly-generated initial state
y(0) ∈ R

4, residual error ‖A(t)x(t) − b(t)‖2 synthesized by Z-type model (6)
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Fig. 2. Computational error ‖x(t) − x∗(t)‖2 synthesized by Z-type model (6) and G-
type model (7) with parameter γ = 10 for solving complex ZLE (9)
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Fig. 3. Residual error ‖A(t)x(t) − b(t)‖2 synthesized by Z-type model (6) and G-type
model (7) with parameter γ = 1 for solving complex ZLE (10)
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Fig. 4. Residual error ‖A(t)x(t) − b(t)‖2 synthesized by Z-type model (6) and G-type
model (7) with parameter γ = 10 for solving complex ZLE (10)

for solving complex ZLE (10), decreases to zero within around 3 seconds, while
residual error ‖A(t)x(t) − b(t)‖2 synthesized by G-type model (7) is once again
rather large with drastic oscillation as time t goes on. Besides, the convergence
process can be accelerated by increasing design parameter γ for Z-type model
(6) for real-time solution of (10), which is illustrated in Fig. 4(a); i.e., residual
error ‖A(t)x(t)−b(t)‖2 synthesized by Z-type model (6) diminishes to zero within
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about 0.5 second. However, as shown in Fig. 4(b), residual error ‖A(t)x(t)−b(t)‖2
synthesized by G-type model (7) is still large in the steady-state situation. This
illustrates the efficacy of the presented Z-type model (6) for solving complex
ZLE (1) once more.

4 Conclusions

A Z-type model for complex-valued ZLE problems solving has been proposed,
developed and analyzed in this paper. Computer-simulation examples with com-
parison to the G-type model have further illustrated the effectiveness, efficiency
and novelty of the proposed Z-type model. Before ending this paper, it is worth
clarifying the contributions as follows. First, by reformulating complex-valued
ZLE (1) as (3) or (4), the solving process of complex-valued ZLE (1) can be
consistent with that of the conventional real-valued linear equations. Second, by
considering that the determinant of U(t) may vary and pass through zero, this
work provides a direction to the general division-by-zero problem solving.
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Abstract. Extreme learning machine (ELM) as one new learning algorithm has 
been proposed for single hidden-layer feed-forward neural network (SLFN). In 
contrast with the popular back-propagation (BP) algorithm, ELM often has ob-
viously faster learning speed and stronger generalization performance. Howev-
er, ELM lacks stability as the weights and biases between the input layer and 
the hidden layer are randomly assigned, and meanwhile, it often suffers from 
overfitting as the learning model will approximate all training instances well. In 
this article, a dynamic generation approach for ensemble of extreme learning 
machine (DELM) is proposed to overcome the problems above. Specifically, 
cross-validation and one target function are embedded into the learning phase. 
Experimental results on several benchmark datasets indicate that DELM is ro-
bust and accurate. 

Keywords: Extreme learning machine · Ensemble learning · Cross-validation ·  
Neural network · Generalization performance 

1 Introduction 

Extreme learning machine (ELM) as one new algorithm was proposed by Huang et al. 
[1] for single-hidden layer feed-forward network (SLFN). Unlike gradient decent-
based back-propagation (BP) algorithm [2], ELM doesn’t need to iteratively tune the 
parameters between the input layer and the hidden layer, but denotes their values 
randomly, then calculates the weights connecting the hidden layer and the output 
layer by least-square method [3]. It has been found that ELM often provides similar or 
better generalization performance at a much faster learning speed than those tradition-
al classifiers, including BP neural network (BPNN), support vector machine (SVM) 
and least-square support vector machine (LS-SVM) et al. [1,3-4]. In recent years, 
ELM has been widely applied to solve various real-world problems, such as face 
recognition [5], human action recognition [6], sales forecasting [7-8], credit scoring 
[9], bioinformatics [10] et al. 
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ELM promotes the learning speed and generalization performance of SLFN, how-
ever, it still suffers from two problems as following:  

• ELM lacks stability as the weights and bias between the input layer and the hidden 
layer are assigned randomly [11]. 

• ELM is apt to be overfitting as it will approximate all training instances well [12]. 

Ensemble learning could help alleviate the problems above to some extent [11-15]. 
The concept of ensemble learning was firstly proposed by Hansen and Salamon [13]. 
They found that a collection of different neural networks trained on the same task can 
significantly improve the generalization performance and robustness of the prediction. 
Krogh and Vedelsby [14] indicated that the generalization performance of ensemble is 
closely related with two factors: the average generalization error of each component 
learner and the average diversity among all component learners. That means a suc-
cessful ensemble classier should be both accurate and diverse. Based on this theory, 
Zhou et al. [15] further found that selecting some both accurate and diverse compo-
nents can often acquire better performance than using all. As for ensemble of ELM, 
Lan et al. [11] integrated several online sequential ELM (OS-ELM) and used their 
average value of outputs as the final measurement of network performance. They 
found the results of ensemble performs more stable than each OS-ELM. Sun et al. [7] 
proposed an ensemble algorithm of ELM named ELME which also integrates the 
average value of outputs belonging to multiple ELMs to predict sales amount. ELME 
can be seen as one simple weighted Bagging [16]. Liu and Wang [12] presented an 
ensemble based on ELM (EN-ELM) algorithm. EN-ELM puts cross-validation and 
prior information about the generalization performance, i.e., the norm of output 
weight matrix, of single ELM into the learning phase, and finally selects the top half 
component learners to make decision.   
   In this article, we combine the ideas of ref.[12] and ref.[14] to present an novel 
ensemble algorithm of ELM named DELM. Specifically, DELM dynamically gener-
ates component learners to guarantee each new inserted component can promote the 
quality of the current ensemble. First, the training set is averagely divided into K sub-
sets, and then K pairs of training and validation sets are obtained so that each training 
set consists K-1 subsets. Next, for the first pair of training and validation sets, one 
initial ELM is randomly generated and is put into the first sub-ensemble, then random 
ELMs are sequentially generated and are put into ensemble one by one, if the new 
inserted ELM can reduce the value of the target function, it will be reserved, other-
wise, it will be removed. The learning process stops until there are M ELMs in the 
sub-ensemble. The other pairs of training and validation sets implement the same 
learning procedure. At last, we use the K×M ELMs to constitute ensemble and to 
make decision for those unseen testing instances. It is worth noting that the target 
function in DELM is expressed as the difference between the average generalization 
error and the average diversity of all component learners, which is the same meas-
urement to evaluate the quality of ensemble learning presented in the ref. [14].  

The remaining of this article is organized as follows. Section 2 first briefly intro-
duces ELM algorithm, and then presents the proposed DELM ensemble learning  
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algorithm. Experimental results and discussions are given in Section 3. At last,  
Section 4 summarizes the contributions of this article. 

2 Methods 

2.1 Extreme Learning Machine 

As we know, in supervised learning, the learning algorithms always use a finite num-
ber of input-output instances for training. Suppose there are N arbitrary distinct train-
ing instances x , t R R , where  x  is one n×1 input vector and t  is one m×1 
target vector. If an SLFN with L hidden nodes can approximate these N samples with 
zero error, it then implies that there exist ,  and  , such that: 

 x ∑ , , x t , 1, … ,  (1) 

where  and    are learning parameters between the input layer and the hidden 
layer,  is the weight vector connecting the ith hidden node to the output node. Then 
Eq. (1) can be written compactly as: H T (2) 
where 

 H , … , , , … , , x , … , x , , x , , x, , x , , x  (3) 

      
... and   T t...t  (4) 

Here, , , x  denotes activation function which is used to calculate the output 
of the ith hidden node for the jth training instance. H is called hidden layer output 
matrix of the network, where its ith column denotes the ith hidden node’s output vec-
tor with respect to inputs x , x , … , x  and its jth line represents the output vector of 
the hidden layer with respect to the input  x . Fig. 1 gives the basic structure of one 
SLFN. 

In SLFN, the number of hidden nodes, L, will always be less than the number of 
training samples, N, and hence, the training error cannot be made exactly zero but can 
approach a nonzero training error . The hidden node parameters  and   need not 
be tuned during training and may simply be assigned with random values according to 
any continuous sampling distribution [1, 3]. Eq. (2) then becomes a linear system and 
the output weights  are estimated as: 

 H T (5) 
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where H  is the Moore-Penrose generalized inverse of the hidden layer output matrix 
H. H H H H   if  H H  is nonsingular or  H H HH if HH is 
nonsingular. Here,  is the minimum-norm least squares solution of Eq. (2) [1]. The 
ELM algorithm can then be summarized as: 

ELM Algorithm1: Given a training set x , t |x R , t R , 1,2, … , , 
activation function G(x), and hidden node number L. 

Step1: Assign random hidden nodes by randomly generating parameters ,   
according to any continuous sampling distribution, i=1, 2,…, L; 
Step 2:   Calculate the hidden layer output matrix H; 
Step 3:  Calculate the output weight  by H T. 

 

Fig. 1. The basic network structure of single-hidden layer feed-forward network (SLFN) 

It has been proved that training SLFN with randomly generated additive or RBF 
nodes with a wide range of activation functions by ELM algorithm can universally 
approximate any continuous target functions in any compact subset of the euclidean 
space  [1, 3]. In contrast with back propagation (BP) algorithm [2], ELM can usu-
ally produce better generalization performance with obviously faster training speed 
[1, 3-4].  

2.2 Dynamic Ensemble of Extreme Learning Machine 

ELM promotes learning speed and generalization performance of SLFN, however, it 
is still instable and apt to be overfitting [11-12]. Integrating multiple ELMs could help 
avoid both problems above [7, 11-12].  Krogh and Vedelsby [14] indicated that a 
sufficient and necessary condition the ensemble outperforms its component members 
is that component learners should be simultaneously accurate and diverse: 

                                                           
1 The source codes of ELM are available at the homepage of Huang: http://www.ntu.edu.sg/ 

home/egbhuang/. 
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  (6) 

where E is ensemble generalization error,  and  are average of generalization er-
rors and diversities of all component learners, respectively. To generate successful 
ensemble learning models, two aspects should be considered simultaneously.  

DELM uses Eq.(6) as target function to dynamically construct ensemble. To calcu-
late the average generalization error and diversity, cross-validation is adopted, where 
training set is used to train ELM, validation set is used to calculate the generalization 
error of each ELM and the diversity of multiple ELMs. Specifically, average diversity 
is detected by using disagreement measurement [17]. Disagreement measurement first 
runs each component learner on the validation set and acquires the corresponding 
binary prediction sequence, then compares the difference between every two sequenc-
es by counting their mismatched bits. Indeed, the average percentage of mismatched 
bits can be seen as their diversity. The average generalization error can be detected in 
the similar way. In DELM, each sub-ensemble, i.e., the component learners in each 
fold of cross-validation, sequentially generates ELMs to gradually decrease the value 
of the target function, i.e.,  Eq.(6), until the sub-ensemble consists M members. It is 
clear that each sub-ensemble might be overfitting, but when integrating all sub-
ensembles to make decision, the problem can be avoided. DELM algorithm can be 
summarized as: 

DELM Algorithm: Given a training set x , t |x R , t R , 1,2, … , , activation function G(x), hidden node number L, fold number K, and number of 
component learners in each sub-ensemble M. 

Step1: Divide the original training set  into K folds randomly; 
Step2: for i=1:K 

2.1: Set the ith fold as validation set and the other folds as training set; 
         2.2: Generate an ELM randomly, calculate its target function value E1 on the 

validation set, and put the ELM into sub-ensemblei; 
         2.3: Set flag=1; 
         2.4: while (flag<M) 
             2.4.1: Generate an ELM randomly, put it into sub-ensemblei, and calcu-

late the new target function value; 
             2.4.2: if the new target function value is lower than Eflag 
                   2.4.2.1 flag=flag+1; 
                   2.4.2.2  Set Eflag as the new target function value; 
                       2.4.3: else, remove the new ELM from sub-ensemblei;  
Step 3: Integrate all K×M ELMs to make decision for unseen testing instances. 
 

At the testing phase, we use majority voting to make the final decision. Suppose 
there is one C classes problem,  denotes the kth ELM in the mth sub-ensemble, 
and ,  is set to one if  predicts the testing instance as class c, otherwise, ,  is 
set to zero. Then the class label l of an testing instance can be calculated by the fol-
lowing formula: 

 argmax ∑ ∑ ,  (7) 
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Obviously, DELM takes advantage of  the target function to maximize the effi-
ciency and cross-validation to guarantee the completeness of training instances. Also, 
the dynamic generation procedure of DELM can be seen as one process of selective 
ensemble [15]. 

3 Experiments 

3.1 Datasets and Initial Parameters Settings 

The experiments are carried out on six benchmark datasets which come from UCI 
machine learning repository [18]. The detailed information of these datasets are sum-
marized in Table 1. 

Table 1. Datasets used in the experiments 

Dataset Instance number Feature number Class number 

Pima 768 8 2 
Balance 625 4 3 

Segmentation 2310 19 7 
Spambase 4597 57 2 
Waveform 5000 40 3 

letter 20000 16 26 

 
In the experiments, we compare the proposed DELM algorithm with ELM [1], 

ELME [7] and EN-ELM [12] algorithms. All experiments are implemented in the 
environment of Matlab 2013a. ELM adopts sigmoid function as activation function 
[3]. The number of hidden nodes are provided with different settings for different 
datasets, which will be given in next sub-section. To guarantee the impartiality of 
experimental results, 50 times’ 5-fold cross-validation is implemented for each algo-
rithm and the results are provided in the form of mean ± standard deviation. In addi-
tion, for three ensemble learning algorithms, they share one identical parameter, i.e., 
the number of component learners which participate in voting is 50. Due to both EN-
ELM and DELM adopt internal cross-validation, we set the number of folds as 5, too. 
That means the parameter K in EN-ELM should be assigned as 20 because only top 
half learners are used to vote, and the parameter M in DELM should be set as 10. 

3.2 Results and Discussions 

Table 2 presents the comparision results of four learning algorithms, where the 
running time denote the average value all over the 50 random runs. On the same 
dataset, different learning algorithms share the same hidden node number.  

From Table 2, we observe that three ensemble algorithms of ELM perform more 
accuracte and robust than ELM, although ELM is one faster learner. EN-ELM has 
similar classification performance with ELME, but consumes more training time as 
there exists much information interchange during the generation of component 
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learners. As for our proposed DELM, it often performs best on each dataset, not only 
acquires the highest classificaion accuracy, but also performs more stable which can 
be observed by the standard deviation of classification accuracy. DELM is both robust 
and accurate, however, it requires more training time as the continuous computation 
of the target function, as well the generation of lots of useless component learners.  
DELM can dynamically extract accurate and diverse ELMs to construct ensemble and 
to maximize the effeciency of ensemble. 

Table 2. Comparision of the experimental results on six datasets 

Dataset Algorithm Classification 
Accuracy (%) 

Running time (s) Hidden node 
number 

Pima ELM 76.30±0.70 0.06 50 
 ELME 76.84±0.66 2.50 50 
 EN-ELM 77.48±0.67 8.85 50 
 DELM 77.80±0.31 33.57 50 

Balance ELM 96.02±0.66 0.04 50 
 ELME 97.19±0.42 2.18 50 
 EN-ELM 96.74±0.71 7.84 50 
 DELM 97.35±0.47 29.89 50 

Segmentation ELM 93.56±0.24 0.31 100 
 ELME 94.22±0.19 13.77 100 
 EN-ELM 94.12±0.22 46.71 100 
 DELM 94.95±0.16 142.33 100 

Spambase ELM 90.21±0.26 0.69 100 
 ELME 90.81±0.13 30.48 100 
 EN-ELM 90.90±0.14 104.26 100 
 DELM 91.42±0.11 278.13 100 

Waveform ELM 84.06±0.31 0.74 100 
 ELME 86.23±0.25 32.89 100 
 EN-ELM 86.09±0.30 110.89 100 
 DELM 87.17±0.19 301.68 100 

letter ELM 82.04±0.19 7.6 200 
 ELME 83.06±0,09 365 200 
 EN-ELM 83.00±0.20 1205 200 
 DELM 83.47±0.08 2718 200 

 
We also investigate the effects of two important parameters in DELM, i.e., the 

number of component learners and the hidden node number. Both parameters are 
assigned from 10 to 100 with an increment of 10. When one parameter changes, all 
other parameters use the initial settings. Taking Balance dataset as an example, the 
change of classification accuracy with the change of two parameters are depicted in 
Fig.2 and Fig.3. 

From Fig.2, we observe that the classification accuracy increases rapidly until there 
are 40 component learners. Further injecting component learners could not obviously 
promote the classification accuracy. When there are 40-100 component learners in 
ensemble, the classification accuracies lie on a narrow range of [0.973, 0.974]. Fig.3 
shows when hidden node number is undersize or oversize, DELM both performs 
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poorly. A small hidden node number could not accurately approximate the targets and 
a large hidden node number is apt to overfit the training instances, consequently 
decreasing the generalization performance of the classifier. Therefore, these 
parameters should be pre-designed carefully according to the characteristics of data in 
real-world applications. 

 

Fig. 2. Change of classification accuracy with the increase of component learners in DELM on 
Balance dataset 

 

Fig. 3. Change of classification accuracy with the increase of hidden node number in DELM on 
Balance dataset 

4 Conclusions 

In this article, a novel ensemble algorithm of ELM named DELM is proposed. DELM 
integrates cross-validation and an target function to dynamically generate component 
learners of ensemble. The adoption of the target function guarantees the component 
learners are both accurate and diverse. The experimental results indicate that DELM 
is not only accurate, but also robust. DELM outperforms ELM and two previously 
proposed ensemble learning algorithms of ELM, though it needs to consume more 
time resources. In future work, we wish to accelerate DELM by introducing some 
prior knowledge. Also, the possibility of applying DELM to solve regression prob-
lems will be investigated. 
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Abstract. Saliency detection for images has become a valuable tool in applica-
tions like object segmentation, adaptive compression, and object recognition. In 
this paper, we propose a method for saliency detection that outputs full resolu-
tion saliency maps of the input images. The key idea is to exploit a computa-
tional process of divisive normalization that simulates the similar feature  
suppression in human primary visual cortex, and thereby is capable of generat-
ing visual saliency. The method, which only employs low-level features of col-
or and luminance, is simple and computationally efficient. We compare our  
method with five state-of-the-art saliency detection algorithms by use of psy-
chophysical patterns and natural images. Experimental results show that our 
method outperforms these five algorithms both on the psychophysical ground-
truth evaluation and on the eye fixations prediction task. 

Keywords: Saliency detection · Visual attention · Divisive normalization 

1 Introduction 

Visual saliency refers to the perceptual quality that makes an object or location stand 
out or pop out relative to its neighbors and thereby attract our attention. Typically, 
visual attention is either driven by fast, pre-attentive, bottom-up visual saliency, or 
controlled by slow, task-dependent, top-down cues [1].  

This paper is primarily concerned with the automatic detection of bottom-up visual 
saliency, which has already attracted intensive investigations in the area of computer 
vision in relation to robotics, cognitive science and neuroscience. One of the most 
influential algorithms of saliency detection was proposed by Itti et al. [2], which is 
designed based on the biological model of human early visual system. Itti et al.’s 
model (denoted ITTI) is able to detect salient objects and predict human fixations. 
However, it is ad-hoc designed and suffers from over-parameterization.  

Some recent approaches compute visual saliency in an information theoretic way. 
These information theory-based approaches include the attention model based on 
information maximization (denoted AIM) [3], and the graph-based visual saliency 
approach (denoted GBVS) [4]. While these approaches show good performance in 
saliency detection, they are computationally expensive for some real-world systems. 
Another kind of saliency algorithms are implemented in the frequency domain, which 
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are not at all biologically motivated, but they have fast computational speed. These 
algorithms include the so-called spectral residual approach [5], the saliency algorithm 
using binary spectrum of discrete cosine transform [6], and the approach using phase 
spectrum of quaternion Fourier transform (denoted PQFT) [7]. 

Most of current saliency detection methods generate saliency maps that have low 
resolution, or are expensive to compute. Moreover, some methods produce higher 
saliency values at object edges instead of generating maps that uniformly cover the 
whole object. Recently, a so-called frequency-tuned saliency algorithm (denoted FT) 
was proposed [8], which computes saliency maps by use of the Euclidean distance in 
the CIE LAB space between a given position’s value and the mean value of the whole 
image. Although this algorithm is simple to implement and can generate full resolu-
tion saliency maps, it is not based on any biological model, and thereby often fails to 
detect salient regions of images. 

In this paper, we introduce a method for salient region detection that employs a 
computational process referred to as divisive normalization. The method computes 
chromatic saliency values of all pixels of an image by use of color and luminance 
features. The divisive normalization simulates intra-cortical suppression among neu-
rons that are tuned to similar features, and thereby has biological plausibility. Our 
method offers three advantages over existing approaches: computational efficiency, 
full resolution, and uniformly highlighted salient regions with clear-cut shapes. The 
saliency map can be effectively used in accurate object segmentation, which is im-
portant for object recognition. We provide an objective and visual comparison of the 
accuracy of the saliency maps against five state-of-the-art methods using a group of 
psychophysical patterns as well as a 120 images dataset. 

The rest of this paper is organized as follows. Section 2 describes the proposed 
method for salient region detection and its biological plausibility. Section 3 presents 
the experiments and evaluates the consistency of the method with psychophysical 
patterns and human fixations. Finally, conclusions are given in Section 4. 

2 Proposed Method 

In human visual pathway, there exists a “color double-opponent” system. In the center 
of the receptive fields, neurons are excited by one color and inhibited by another, 
while the converse is true in the surround. Such spatial and chromatic opponency 
exists for the green/red and blue/yellow color pairs [9]. Recently, Li hypothesized that 
human primary visual cortex (V1) creates a bottom-up saliency map of the visual 
space and the contextual influence is necessary for saliency computation [10]. The 
dominant contextual influence in V1 is “iso-feature suppression”, i.e., nearby neurons 
tuned to similar features are linked by intra-cortical inhibitory connections [11]. Li’s 
hypothesis can explain “why a red flower is salient among green leaves”. In this sec-
tion, we propose a computational process of divisive normalization to simulate the 
iso-feature suppression in human visual system.  

We consider an M×N color image, where M and N are the number of rows and col-
umns respectively. To begin with, the input image is transformed into the CIE1976 
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LAB color space. The LAB space is preferred over other color spaces because it is 
perceptually uniform and similar to human psycho-visual space. In the LAB space, 
the dynamic range of luminance channel L* is 0 ~ 100 . The range of green/red op-
ponent channel a* is 128 ~ 127− , where negative and positive values indicate green 
and red respectively. The range of blue/yellow opponent channel b* is 128 ~ 127− , 
where negative and positive values indicate blue and yellow respectively.  

For the input image, the LAB transformation generates three biologically plausible 
channels: a luminance channel L, a green/red opponent channel A, and a blue/yellow 
opponent channel B. Next, we decompose channel A into a pair of sub-channels −A  

and +A , which are obtained by setting all positive and negative entries of matrix A to 

zeroes, respectively. Similarly, we decompose channel B into another pair of sub-
channels −B  and +B  , which are produced by setting all positive and negative en-

tries of matrix B to zeroes, respectively. From the definition of LAB color space, we 
can consider −A , +A , −B  and +B  as four color channels: green, red, blue and  

yellow.  
Then, we need to compute the energy of each color channel. In this work, the ener-

gy of each color channel is defined as the summation of the absolute value of all coef-
ficients in each color matrix, which can be formulated as 
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where Eg, Er, Eb and Ey are the energy of green, red, blue and yellow channels, respec-
tively. The divisive normalization that is performed on a matrix X, is defined as 

 
( , )

x y

x y
=


X
X

X
 , (2) 

where X  is the divisive normalized matrix. It should be noted that each coefficient 
of matrix X is divided by a summation of all coefficients in a way that models a sur-
round inhibition. Conforming to equation (2), we perform divisive normalization on 
each color matrix to simulate the iso-feature suppression, which can be written as 

 ( , ) ( , ) gx y x y E− −=A A , (3a) 
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 ( , ) ( , ) rx y x y E+ +=A A , (3b) 

 ( , ) ( , ) bx y x y E− −=B B , (3c) 

 + +( , ) ( , ) yx y x y E=B B . (3d) 

It is worth stating that the energy of each divisive normalized color matrix is equal 
to 1. This means that through divisive normalization, the coefficients of a low-energy 
channel are relatively magnified, whereas those of a high-energy channel are relative-
ly suppressed. As a result of divisive normalization, the iso-feature suppression in V1 
can be simulated. In fact, human cannot perceive those color features of very weak 
energy. Therefore, for the color channels of which the energy is less than 3% of pos-
sible maximum, we need to suppress them in some proper way or simply set them to 
zeros after divisive normalization. Afterwards, we recombine these four divisive nor-
malized color matrices into two color opponent channels as follows: 

 − += +A A A   , (4a) 

 +−= +B B B   . (4b) 

In order to compute visual saliency within a uniform energy scale among all color 
channels, the luminance channel is also subjected to divisive normalization: 

 

1 1

( , )
M N

x y

x y
= =

=


L
L

L

 . (5) 

To this end, we can form a divisive normalized image by use of L , A , and B , 
which can be considered as the result of the iso-feature suppression. 

The saliency value at a particular coordinate position in a given channel is defined 
as the absolute difference of the pixel intensity value to the mean intensity value of 
the channel. The final saliency map S is also of dimension M×N. The final saliency 
value for a given position is computed as the Euclidean norm of saliencies over dif-
ferent divisive normalized channels in the LAB color space. This calculation process 
can be formulated as 

 
22 2

( , ) ( , ) ( ( , ) ) ( ( , ) )x y x y m x y m x y mλ λ    = − + ⋅ − + ⋅ −    L BA
S L A B  

  , (6) 

where mL , m
A  and mB  are the mean values of the divisive normalized channel L

, A , and B , respectively. The parameter λ  is used to adjust the computation 
weights of saliency values of the two color channels. Considering the disparity in 
dynamic range between the luminance channel and two color channels in the LAB 
space, we set λ  to 2.55 (i.e., (128 127) /100+ ). Finally, the resulting saliency map 

S is normalized in the gray-scale interval [0, 255] for visibility. 
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Our divisive normalization-based saliency method is referred to as DN in this pa-
per. Note that our method does not downscale the input image to a lower resolution 
like other approaches [2][4][7]. In addition, our method does not require prior training 
bases in contrast to [3]. Also no parameter in our method requires tuning. Fig. 1 gives 
a visual comparison between the proposed saliency maps of some natural images and 
the maps generated by five state-of-the-art approaches: ITTI, GBVS, AIM, PQFT, 
and FT. It can be seen that our proposed DN method can generate full-resolution, 
uniformly highlighted salient regions, whereas PQFT, AIM, GBVS, and ITTI cannot. 
Note that FT, which is not motivated by any biological model, fails to highlight sali-
ent objects, particularly for those images with dark or bright regions.  

 

Fig. 1. Visual comparison of the generated saliency maps of natural images 

3 Experimental Validation 

In this section we compare the capability of psychophysical consistency and fixation 
prediction of our proposed DN method with five state-of-the-art saliency algorithms: 
the original Itti et al.’s saliency model (ITTI) [2], Harel et al.’s graph-based visual 
saliency (GBVS) [4], Bruce and Tsotsos’s attention model based on information max-
imization (AIM) [3], Guo and Zhang’s phase spectrum of quaternion Fourier trans-
form (PQFT) [7], and Achanta et al.’s frequency-tuned saliency approach (FT) [8]. 
These experiments can provide an objective evaluation as well as visual comparison 
of all saliency maps. All of the saliency approaches are based on the original Matlab 
implementations available on the author’s websites.  

3.1 Psychophysical Consistency 

In this subsection, we show the consistency of the proposed DN method with some 
psychophysical patterns. For each psychophysical pattern, we present comparisons 
with our method against five saliency algorithms mentioned above. 

Fig. 2 shows two psychophysical patterns of red-green and green-red color pop-
out. It can be seen that, a red bar among green bars as in the first pattern and a green 
bar among red bars as in the second pattern are salient objects. This is a fundamental 
task for the test of color saliency. It can be seen that the salient bars can pop out  



308 Y. Yu et al. 

relative to the distracters in the saliency maps generated by our DN method. However, 
other five methods cannot detect the salient objects correctly. 

Fig. 3 shows a group of psychophysical patterns of color pop-out. In each pattern, 
one salient object, which has a unique color, is present. It can be seen that the extent 
of visual saliency of the targets gradually decrease from the first image to the fourth 
one. This is a somewhat difficult task. For all four patterns, the disparity between 
saliency value of target and distracters of our proposed DN method is consistent with 
perception, but other 5 algorithms cannot correctly highlight these salient objects 
conforming to visual perception. This means that our proposed DN method is very 
sensitive to the variation of color and is consistent with human visual perception. 

 

Fig. 2. Responses to psychophysical patterns of red-green and green-red color pop-out 

 

Fig. 3. Responses to psychophysical patterns of color pop-out 
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3.2 Eye Fixation Prediction 

In this subsection, we validate the proposed saliency maps by use of the data set of 
120 color images from an urban environment and corresponding human eye-fixation 
data from 20 subjects provided by Bruce and Tsotsos [3]. These color images consist 
of indoor and outdoor scenes, of which some have very salient items, and others have 
no particular regions of interest. In order to quantify the consistency of a particular 
saliency map with a set of fixations of the image, we employ an objective evaluation 
metric that is referred to as receiver operating characteristic (ROC) area under the 
curve (AUC). Note that a number of published papers employed ROC-AUC score to 
evaluate a saliency map’s ability to predict human eye fixations (e.g., [3][7]). 

Following Tatler et al.’s approach [12], we compute the ROC-AUC score conform-
ing to the following procedure. For one image, the positive point set is composed of 
the fixated locations from all subjects on that image, whereas the negative point set is 
composed of the non-fixated locations of the image. Each saliency map is binarized 
by a particular threshold and thereby considered as a binary classifier. At a particular 
threshold level, a binary saliency map can be divided into the target (white) region 
and the background (black) region. The true positive rate (TPR) is the proportion of 
the positive points that fall in the target region of the binary saliency map. The false 
positive rate (FPR) can be calculated in the same way by using the negative point set. 
Varying the threshold yields an ROC curve of TPRs versus FPRs, of which the area 
beneath provides a good measure of the capability of the saliency map to accurately 
predict where human eye fixations occurred on an image. Since the AUC is a portion 
of the area of the unit square, its value will always be between 0 and 1.0. Chance level 
is 0.5, and perfect prediction is 1.0. 

In this test, we resize all images to 384×288px before computing the saliency 
maps. We compare our saliency maps generated from the proposed DN method to 
five state-of-the-art saliency approaches. An important note about these experiments 
is that the ROC-AUC score is sensitive to the number of fixations we use in calcula-
tion. Former fixations are more likely to be driven by bottom-up manner, whereas 
later fixations are more likely to be influenced by top-down cues [12]. We calculate 
the ROC-AUC scores for each image with respect to all fixations, and repeat the 
process but use only the first two fixation points. Table 1 lists the ROC-AUC score 
averaged over all 120 images for each saliency method. As expected, the ROC-AUC 
scores with only the first two fixations are higher than those with all fixations. It can 
be seen that in both tests our proposed DN method has the best capability for predict-
ing eye fixations. 

Fig. 4 gives the saliency maps for 7 sample images from the image data set, which 
provides a qualitative comparison of all saliency methods. A fixation density map,  
 

Table 1. The ROC-AUC performance of all six methods 

Method Proposed FT PQFT AIM GBVS ITTI 

All fixations 0.7765 0.7163 0.7751 0.7706 0.7127 0.7062 

First 2 fixations 0.7884 0.7204 0.7846 0.7777 0.7267 0.7182 
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Fig. 4. Qualitative analysis of results for the Bruce data set 

generated for each image by convolution of the fixation map for all subjects with a 
Gaussian filter, serves as ground truth. Analyzing the qualitative results, we can see 
that the proposed DN method is more predictive of human fixations. The regions 
highlighted by our proposed method overlap to a surprisingly large extent with those 
image regions looked at by humans in free viewing. In addition, our method generates 
clear-cut and uniformly highlighted salient regions as compared to other methods. 
Once again, we notice that FT is vulnerable by some dark or bright regions (e.g., the 
first two images). PQFT, AIM, GBVS and ITTI cannot generate full-resolution sali-
ency maps, and are easily distracted by branches (e.g., the last two images). 

We record the computational time cost per image in a standard desktop computing 
environment. Table 2 shows each method’s Matlab runtime measurements averaged 
over the data set. It can be noticed that, our proposed DN method use only 0.0853s on 
the average to compute a saliency map, which is significantly faster than AIM, 
GBVS, and ITTI. Although our DN method is slightly slower than FT and PQFT, it is 
more predictive of human fixations and can detect salient regions more accurately. All 
six saliency approaches are implemented in the Matlab R2012a environment on such 
a computer platform as Intel 3.3 GHz CPU with 8 GB of memory. 

Table 2. Computational time cost per image for all six methods 

Method Proposed FT PQFT AIM GBVS ITTI 

Time (s) 0.0853 0.0744 0.0793 5.0766 2.5957 1.1842 
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4 Conclusions 

This paper proposed a saliency detection method using low level features of color and 
luminance. We manifested that the color pop-out saliency of an image can be generat-
ed by using a divisive normalization approach performed on the features of color and 
luminance. The proposed method is simple, fast, and provides full resolution saliency 
maps with well-defined boundaries, which are important for salient object segmenta-
tion. Experiments in this paper showed that the proposed method outperforms state-
of-the-art saliency algorithms when evaluated by the ability to detect color pop-out 
saliency or predict human fixations. Actually, ROC-AUC score cannot fully reflect 
the advantage of our DN method over other saliency algorithms. Our future work will 
focus on applying the proposed DN method to salient object segmentation, which is 
important for object recognition. 
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Abstract. In this paper, a novel robust adaptive tracking control approach is 
presented for a class of strict-feedback single input single output nonlinear sys-
tems. In the controller design process, all unknown functions at intermediate 
steps are passed down, and only one neural network is used to approximate the 
lumped unknown function of the system at the last step. Although some similar 
design themes have been proposed, the approach presented in this paper is more 
reasonable and simpler. The most contribution in this paper is that a new con-
cept named “filter technique” is proposed for how to avoid generating new un-
known functions when derivation of virtual control law in the backstepping 
based control methods. So the neural network is just used to approximate the fi-
nite or less unknown functions and the good capabilities in function approxima-
tion of neural network are guaranteed. Stability analysis shows that the uniform 
ultimate boundedness of all the signals in the closed-loop system can be guaran-
teed, and the steady state tracking error can be made arbitrarily small by appro-
priately choosing control parameters. Simulation results demonstrate the  
effectiveness of the proposed scheme. 

Keywords: Filter technique · Neural network · Adaptive control · Nonlinear 
systems 

1 Introduction 

In the past years, backstepping based nonlinear adaptive control has been paid consid-
erable attentions and a great deal of progress had been achieved for the adaptive con-
trol of strict-feedback nonlinear systems with linearly parameterized uncertainty [1]. 
Although significant progresses have been made by combining backstepping method-
ology with neural network technologies, there are still some problems that need to be 
solved for practical implementations. The main drawback of the aforementioned con-
trol design methods is the problem of complexity [2]. That is, the complexity of the 
designed controller grows drastically as the system order increase, this phenomenon is 
caused by four reasons. The first reason is that the repeated differentiations of the 
virtual control laws in the traditional backstepping approach. The second reason is 
that neural network is used to approximate major terms of unknown functions.  
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The third reason is that with an increase of neural network nodes, the number of pa-
rameters to be estimated will increase significantly. The last reason is that the use of 
multiple approximators. All of above reasons make the complexity growing problem 
harder for implementation. 

For the first reason behind the complexity growing problem, in [3], the authors ad-
dressed a modification that obviated the repeated differentiations of the command 
derivatives by introducing command filter technique in the backstepping design. A 
dynamic surface control technique was proposed to solve the complexity growing 
problem in [4]. In addition, the virtual control laws were modeled as portions of un-
known functions that were approximated during operation in [5]. The point is that 
there is not only one question in the typical adaptive backstepping control, a new 
concept named “filter technique” is proposed for how to avoid generating new un-
known functions when derivation of virtual control law. That is, the virtual control 

law ia  include the elements of [ ]1 2, , , ix x x , while in the backstepping based con-

trol design process, it needs to calculate the derivative of the virtual control law, so it 

will generate new terms of unknown functions, i.e., 
i

j

j

a
x

x

∂
∂
 , where jx  for j i≤  is 

an element of the state vector. In order to solve this problem, the most contribution in 
this paper, a first-order filtering of the synthetic input is introduced at each step of the 
traditional backstepping approach. So the neural network is just used to approximate 
the finite or less unknown functions and the good capabilities in function approxima-
tion of neural network are guaranteed. Consequently, the second reason behind the 
complexity growing problem is removed. 

In many practical applications on the control of uncertain nonlinear systems, neural 
network based control methods are shown to be more efficient compared with other 
modern control techniques and many remarkable results have been obtained. The 
most useful property of neural network is their ability to approximate arbitrary linear 
or nonlinear mapping through learning. Although there are significant advantages  
by employing neural network to control uncertain nonlinear systems, these neural 
network based schemes suffered from some limitations. For example, many 
approximators are still used to construct virtual control laws and actual control law in 
these methods. That is, for solving the uncertainty of nonlinear systems, every virtual 
control laws and actual control law are constructed by at least one neural network to 
approximate the unknown functions. So, if the uncertain nonlinear systems order is 
more than three, the computational burden grows due to the adaptive computation of 
these approximators. Although some novel themes had been proposed for solving this 
problem in [4], I think there exist some problems in their literatures: (1) the virtual 
control laws are composed by parts of unknown function, it is unreasonable. (2) the 

control signal u  include the derivative of na , which requires the second derivative 

of 1na − , which requires the third derivative of 2na − , and so on, i.e., the repeated dif-
ferentiations of virtual control laws and generating new unknown functions. Another  
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central issue within approximation based adaptive control schemes is that the number 
of adaptation laws depends on the number of the neural network nodes. With an  
increase of neural network nodes to improve approximation accuracy, the number of 
parameters to be estimated will increase significantly. As a result, the on-line learning 
time will become prohibitively large. To solve this problem, the norm of the ideal 
weighting vector in neural network is considered as the estimation parameter instead 
of the elements of weighting vector. Thus, the number of adaptation laws is reduced 
considerably. So, both the third and the last reasons behind the complexity growing 
problem are removed. 

In this paper, a neural network approximation based adaptive control approach is 
presented for a class of uncertain strict-feedback nonlinear systems. The most contri-
butions are that a new concept named “filter technique” is proposed for how to avoid 
generating new unknown functions and a reasonable controller design procedure 
about using one approximator is proposed. In addition, by using a first-order filter, 
both problems of the repeated differentiations of the virtual control laws and generat-
ing new unknown functions are solved. These features guarantee that the computa-
tional burden of the algorithm can drastically be reduced and that the algorithm is 
convenient to implement in applications. Stability analysis shows that all the closed-
loop system signals are uniformly ultimately bounded, and the steady state tracking 
error can be made arbitrarily small by appropriately choosing control parameters. 
Theoretical result is illustrated by simulation results. 

2 Problem Formulation and Preliminaries 

Consider a class of uncertain nonlinear dynamical systems in the following form: 

( )
( )

1

1

1 1i i i i

n n n

x x f x i n
x u f x
y x

+= + ≤ ≤ − = +
=


                     (1) 

where [ ]1, ,
T i

i ix x x R= ∈ , 1, ,i n=  , u R∈  and y R∈  are system state varia-

bles, system input, and output, respectively; ( )i if x , 1, ,i n=  , are unknown smooth 

nonlinear functions. 
The control objective is to design an adaptive controller for the system (1), such that 
all the close-loop system signals remain uniformly ultimately bounded, and the sys-
tem output y  follows the reference signal ( )ry t . 

Notation 1. ⋅  stands for Frobenius norm of matrices and Euclidean norm of vec-

tors, i.e., given a matrix B  and a vector Q , the Frobenius norm and Euclidean 

norm are given by ( ) ==
ji ij

T bBBtrB
,

22
 and =

i iqQ 22
. 
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3 Controller Design and Stability Analysis 

In the following part, for the purpose of simplicity, the time variable t  and the state 
vector ix  will be omitted from the corresponding functions. 

Step 1: Let 1 1 rz x y= − , the derivative of 1z  is 

1 2 1 rz x f y= + −                            (2) 

The virtual control law 0
2a  is chosen as follows: 

0
2 1 1 ra k z y= − +                            (3) 

where 1k  is a positive real constant which will be specified later. 

Introduce a new state variable 2a  and let 0
2a  pass through a first-order filter with 

time constant 2e  to obtain 2a  

0
2 2 2 2e a a a+ =                            (4) 

Define the filter error as follows  

0
2 2 2p a a= −                             (5) 

Let 2 2 2z x a= −  and consider the (3)-(5), we can get  

1 2 2 1 1 1z z p f k z= + + −                          (6) 

Consider the following Lyapunov function candidate 

2 2
1 1 2

1 1

2 2
V z p= +                           (7) 

Differentiating 1V  yields 

2
1 1 1 1 2 1 2 1 1 2 2V k z z z z p z f p p= − + + + +                  (8) 

It is worth noting that  

( )2
2 2 1 2 2

2

, , , , ,r r r

p
p B z z p y y y

e
= − +                     (9) 

where ( )2B ⋅  is a continuous function and has a maximum value 2M  [3]. 

Using the facts that 

2
2 2

1 2 1 4

p
z p z≤ +                          (10) 
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2 2
2 2

2 2

1

2 2

p B
p B ≤ +                          (11) 

Apparently, if we choose 1 01k a− ≥ , 
2
2

0
2

1 1

4 2

M
a

e
≥ + +  and consider the (9)-(11), 

the (8) can be rewritten as  

2 2
1 0 1 0 2 1 2 1 1

1

2
V a z a p z z z f≤ − − + + +                  (12) 

Step i  ( 2 1i n≤ ≤ − ): Let i i iz x a= − , the derivative of iz  is 

1i i i iz x f a+= + −                         (13) 

The virtual control law 0
1ia +  is chosen as follows: 

0
1 1i i i i ia k z a z+ −= − + −                       (14) 

where ik  is a positive real constant which will be specified later. 

Introduce a new state variable 1ia +  and let 0
1ia +  pass through a first-order filter 

with time constant 1ie +  to obtain 1ia +  

0
1 1 1 1i i i ie a a a+ + + ++ =                         (15) 

Define the filter error as follows  

0
1 1 1i i ip a a+ + += −                          (16) 

Let 1 1 1i i iz x a+ + += −  and consider the (14)-(16), we can get 

1 1 1i i i i i i iz z p f k z z+ + −= + + − −                   (17) 

Consider the following Lyapunov function candidate 

2 2
1 1

1 1

2 2i i i iV V z p− += + +                        (18) 

Differentiating iV  yields 

2
1 1 1 1 1 1i i i i i i i i i i i i i iV V z z z z z p z f k z p p− + − + + += + − + + − +            (19) 

It is worth noting that  

( )1
1 1 1 2 1

1

, , , , , ,i
i i i i r r r

i

p
p B z p p y y y

e
+

+ + + +
+

= − +              (20) 

where ( )1iB + ⋅  is a continuous function and has a maximum value 1iM + . 
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Using the facts that 

2
2 1

1 4
i

i i i

p
z p z +

+ ≤ +                         (21) 

2 2
1 1

1 1

1

2 2
i i

i i

p B
p B + +

+ + ≤ +                       (22) 

Apparently, if we choose 01ik a− ≥ , 
2

1
0

1

1 1

4 2
i

i

M
a

e
+

+

≥ + + , the (19) can be rewrit-

ten as  

2 2
0 0 1 1

1 1 1 2

i i i

i l l l l i i
l l l

i
V a z a p z f z z+ +

= = =
≤ − − + + +                 (23) 

Step n: Let n n nz x a= − , the derivative of nz  is  

n n nz u f a= + −                            (24) 

Consider the following Lyapunov function candidate 

2 2
1

1 1

2 2n n nV V z θ−= + +                         (25) 

where ˆθ θ θ= − . Differentiating nV  yields 

( )1
ˆ

n n n n nV V z u f a θθ−= + + − −                     (26) 

Choose the actual control law as  

( )
1

2
1

ˆ
n n n nu k z z a θ−= − − + + −                     (27) 

one has 

( )
1

1 1
2 2 2 2

0 0 1
1 1 1

1 ˆ ˆ
2

n n n

n l l l l n n n
l l l

n
V a z a p z f k z z θ θθ

− −

+
= = =

−≤ − − + + − + − −  
      (28) 

Given a compact set nRΩ ⊂ , and let *W  and ε  be such that for any Z ∈Ω ,  

( )*

1

n
T

l l
l

z f W S Z ε
=

= +                        (29) 

where *ε ε≤ . 

the (28) can be rewritten as  

( ) 2
1

2 2 *
0 0 1

1 1

1 ˆ
2 4

n n

n l l
l l

S Zn
V a z a p ε θ θθ

−

+
= =

−≤ − − + + + + − 
           (30) 
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The adaptive law is chosen as 

0
ˆ ˆ 1kθ θ= − +                            (31) 

where 0k  is a positive constant. 
It is worth noting that  

2 20 0
0

ˆ
2 2

k k
k θθ θ θ≤ − +                        (32) 

Choose 0
02

k
a≥ , one has  

02n nV a V d≤ − +                          (33) 

where ( ) 2

* 201

4 2 2

S Z kn
d ε θ−= + + + . 

From (33), one has 

( ) ( ) ( )0 02
0

0 02 2
a t t

n n

d d
V t V t e

a a
− − 

≤ + − 
 

                (34) 

It follows that, for any ( )1 2

1 0 0b aμ > , there exists a constant 0>T  such that 

( )1 1z t μ≤  for all Ttt +≥ 0 , and the tracking error can be made small, since 1μ  

can arbitrarily be made small if the design parameters are appropriately chosen. 

4 Simulation Examples 

In this section, an example will be used to test the effectiveness of the proposed con-
troller. Consider the following nonlinear system: 

2
1 2 1

2 2
2 3 1 2

3 1 3

x x x
x x x x
x u x x

 = + = + +
= +





                              (35) 

The reference signal is given as ( ) ( )( )0.5 sin sin 1.5ry t t= + . The design 

paremeters of the above controller are 1 10k = , 2 5k = , 3 5k = , 2 0.01e = , 

3 0.01e = , 0 10k = . The simulations are run with the initial conditions 

( ) [ ]0 2,0,0
T

x =  and ( )ˆ 0 1θ = − . The simulation results are shown in Figs. 1-2. 

As it can be seen from the simulation results, good tracking accuracy and the stabil-
ity of the closed-loop system are guaranteed under the proposed controller. 
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Fig. 1. Output tracking performance (y—solid line and yr—dashed line) 

 

Fig. 2. The control law u  

5 Conclusion 

In this paper, the tracking control problem has been considered for a class of uncertain 
nonlinear systems with a strict-feedback structure. In the controller design process, 
only one neural network approximator is used to address the lumped unknown func-
tion of the system. In addition, by using the “filter technique”, both problems of the 
repeated differentiations of the virtual control laws and generating new unknown 
functions are solved. By this approach, the structure of the controller can be simpli-
fied observably, and the computational burden can be reduced drastically. The main 
feature of the control scheme proposed in this paper is simplicity. In particular, no 
matter how many neural network nodes are used, there is only one parameter to be 
updated online. The proposed controller is derived in the sense of Lyapunov function, 
thus the system can be guaranteed to be asymptotically stable. Simulation results 
demonstrate the effectiveness of the proposed scheme. 
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Abstract. Social risks in large-scale projects are ranked according to the results 
of risk assessment, and the order helps assign the resource priority for the high 
risk events. The common method of risk evaluation is mostly based on proba-
bility and consequences of risk events, but ignores the management properties 
of them. This paper combines rough sets theory and extenics theory, and then 
builds the extenics risk assessment model based on rough sets theory. This 
model eliminates some valueless indicators and evaluates their weights using 
the rough sets theory and calculates the risk grades by extenics evaluation. In 
the last part, this paper analyzes an airport construction project to prove the 
practicality and effectiveness of the model. 

Keywords: Risk assessment model · Rough sets theory · Extenics · Social risk 

1 Introduction 

Large-scale projects, such as nuclear power plant construction projects, airport con-
struction projects, etc. have a significant impact on local economy and environment. 
Recent years, more and more group unexpected incidents happened because of the 
phenomena of land requisition and demolishing, barbaric construction and ignorance 
the ecological environment in large-scale projects[1][2]. The research for risk assess-
ment model of social risk is necessary.  

Risk assessment is a process which sorts the risk events according to the value-at-
risk. The common method of risk evaluation is based on Probability and Consequenc-
es, which is denoted as ( , C)R f P P C= = × . The higher the score, the greater the 
risk[3]. This method just considers the natural properties of risk, but not considers the 
management properties, which means it ignores the management resources and their 
effects devoting to the project. The risk evaluation indexes are not comprehensive.  

Many researchers do a lot of researches on the selection of risk evaluation indexes 
in recent years. Haimes(1993) said the common method in analyzing risk is insuffi-
cient[4]. Ward(1999) stated the risk assessment model should consider the attributes 
of the response measures and the response time can be used in addition to the proba-
bility and consequences of risk[5]. Li Shaoming(2006) came up with a new model 
called Risk Management Priority Evaluation Model, which contained four indexes: 
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probability, urgency, controllability and management efficiency[3]. However, the 
current study exist two disadvantages: the first one is that the selection of indexes is 
unreasonable, most models focus on the objectivity and accuracy of risk evaluation 
methods but ignore the comprehensiveness and necessity of index system; the second 
one is that most evaluation methods are suitable for common two indexes, not apply 
to multi-index system. 

Extenics evaluation is a kind of method for multi-index models and it’s widely 
used in risk assessment in recent years[6]. The attribute reduction theory has good 
performance on selection of indexes and evaluation of index weight on the basis of 
rough sets[7]. This paper combines these two theories and builds the extenics risk 
assessment model based on rough sets theory. This model reduces risk evaluation 
indexes and evaluates their weights by rough sets theory and calculates the risk grade 
by extenics evaluation. Finally, this paper analyzes an airport construction project to 
prove the practicality and effectiveness of the model. 

2 Basic Concepts of Models 

2.1 Rough Sets Theory 

The rough sets theory introduced by Pawlak (1982) is a mathematical tool for approx-
imate reasoning for decision support and is particularly well suited for classification 
of objects[8][9]. 
 
Definition 1. Let ( , , , )S U R V f=  be an information system， r R∈ ，If satisfy the 

following equations： 

 ( { }) ( )ind R r ind R− =  (1) 

where attribute r  is redundant in attribute R , otherwise, attribute r  is necessary in 
attribute R , and the set consists of all necessary attributes in R  called the core of  
R , in symbols ( )red R . 

 
Definition 2. Let ( , , , )S U R V f=  be an information system, ,P Q R⊆ , the im-

portance of attribute R  is defined as： 

 
| || ( ) | | ( ) |

| |

p p r

r

Pos Q Pos Q
U

U

−−
=  (2) 

2.2 Extenics Evaluation 

Professor Cai Wen proposed the extenics in 1983. It is a new theory which calculates 
the evaluation system[6]. 
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Definition 3.  Define an ordered triad ( , , )R N c v=  as the basic element for describ-

ing things, called matter-element, where N represents the matter, c, the characteristics, 
v is the N’s measure about the characteristic, the expression (N)v c=  describes the 

relation between quality and quantity. A matter has many characteristic-elements, 
which can be described by n-dimensional matter-elements 

 

1 1 1

2 2 2

,

... ... ...

n n n

N c v R

c v R
R

c v R

   
   
   = =
   
   
      

 (3) 

The dynamic matter-element ( , , ), 1, 2,...,i i iR N c v i n= =  describes the change of 

matter N with time. 
 

Definition 4. The concept of distance in real variable functions has been generalized.  
The distance on real axis between point x and a given real interval 0 ,X a b=< >  is  

defined as  

 0

1
( , ) | | ( )

2 2

a b
x X x b aρ += − − −  (4) 

The formulas of dependent function can be defined as 

 0

0

( , )
( )

( , , )

x X
K x

D x X X

ρ
=  (5) 

where 0 0
0

0

( , ) ( , ),
( , , )

1,

x X x X x X
D x X X

x X

ρ ρ− ∉
=  ∈−

 (6) 

3 Establish the Risk Assessment Model 

Extension assessment method is based on a combination of qualitative and quantita-
tive analysis. This method uses extension dependence function to evaluate correlation 
degree about evaluation indexes to risk level, and then sorts the risk events due to the 
result. 

How to determine index weight is the key to extension assessment method, and the 
quality of selection of indexes decides the final result directly. This paper chooses 
rough sets theory to evaluate index weight, and establishes a multi-index risk assess-
ment model with extension assessment method. The steps are shown as follows: 

Step 1, establish extension assessment model according to extenics. Define Q as  
matter-element, R as basic risk field, in symbols 1 2( , ,..., )nR R R R= , where n is the 

number of risk events, C as initial evaluation risk index system, in symbols 
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1 2( , ,..., )lC c c c= , where l is the number of risk indexes, U as risk grade field, in sym-

bols 1 2( , ,... )mU u u u= , where m is the number of risk grades. 

Step2, determine sutra field and controlled field of risk grade. Define  

 

1 1 1 1 1

2 2 22 2

, , ,

,
( , , )

... ...... ...

,

j j j j j

j j j

j j j

l lj l lj lj

u c V u c a b

V a bc c
R U C V

c V c a b

   < >
   < >   = = =   
   

< >      

 (7) 

Where jU  represents risk grade, 1,2,...,j m= ; kc  represents the evaluation indexes 

of risk grade jU ; kjV  represents ju ’s value range on kc , the value range  

,kj kja b< > is sutra field of ju . Define  

 

1 1 1 1 1

2 2 22 2

, , ,

,
( , , )

... ...... ...

,

U U U

U U U
U U

l lU l lU lU

U c V U c a b

V a bc c
R U C V

c V c a b

< >   
   < >   = = =
   
   

< >      

 (8) 

Where U represents risk grade field, kUV  represents U’s value range on kC , the  

value range ,kU kUa b< >  is controlled field of U. 

Step 3, acquire data. Build evaluation Criteria and use expert evaluation method to 
get each risk event pR ’s values about revaluation indexes kC . It establishes pR ’s 

Matter-element model, 

 

1 1

22

,

( , , )
... ...

p p

p

p p lp

l lp

R c v

vc
Q R C V

c v

 
 
 = =  
 
  

 (9) 

Step 4, reduct initial evaluation index system through the attribute reduction theory 
which is on the basis of rough sets. Use formula (2) to evaluate weight of index kc , in 

symbols kα  

 
1

/
k k

l

k c c
k

U Uα
=

=   (10) 

And then establish the preferred evaluation risk index system. 
Step 5, use extension dependence function to evaluate the correlation degree of risk 
event pR ’s evaluation index kc to risk grade ju  according to formula (6), 
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( , )

( , )
( , ) ( , )

kp kj
k j

kp kU kp kj

v V
K c u

v V v V

ρ
ρ ρ

=
−

 (11) 

And then the correlation degree of risk event pR  to risk grade ju  is evaluated by 

 
1

( , ) ( , )
l

p j jk k
k

K R u K c uα
=

=  (12) 

And finally, get one risk event’s risk grade. 

 
0

0 {1,2,..., }
max ( , )j p jj m

K K R u
∈

=  (13) 

Where 0j  represents risk event pR ’s risk grade, and the degree is 
0j

K . 

4 Case Study 

4.1 Establish Initial Evaluation Risk Index System 

We identify 10 social risk events from one airport construction project in Beijing[2], 
as is shown in Table 1.  

Table 1. Risk events 

Symbols Risk event Symbols Risk event 

1R  Policy planning risk 
6R  Social environment risk 

2R  Public participation risk 
7R  Economic risk 

3R  Land requisition risk 
8R  Project management risk 

4R  Project technical risk 
9R  Public opinion risk 

5R  Natural environment risk 
10R  Project special risk 

 
The 10 risk events above make up a risk field 1 2 10( , , ..., )R R R R= . We define a five-

level risk degree field 1 2 3 4 5{ , , , , }U u u u u u= , including “very low”, “low”, “medium”, 

“high” and “very high”. Their corresponding scores are “0~2”, ”2~4”, “4~6”, “6~8” 
and “8~10”. 

In this case, we establish the initial evaluation indexes on the basis of other related 
researches, including probability, consequence, urgency, controllability, management 
costs and management efficiency.  

Get sutra field and controlled field of risk degree according to formula(9)(10), 
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where j =1,2,3,4,5, and when j is 1,2,3,4,5, 1 1,j ja b< > , 2 2,j ja b< > , 3 3,j ja b< > ,

4 4,j ja b< > , 5 5,j ja b< >  are 0, 2< > , 2, 4< > , 4, 6< > , 6,8< > , 8,10< > .  

4.2 Data Acquisition 

Get scores and grades of 6 evaluation indexes on 10 risk events through expert evalu-
ation method, the result is shown in Table 2. 

Table 2. Scoring and grade of evaluation indexes for each risk event 

 
1c  2c  3c  4c  5c  6c  

1R  5.5(3) 3(2) 4.5(3) 3.5(2) 3.5(2) 4.5(3) 

2R  7(4) 7(4) 1(1) 1.5(1) 6.5(4) 1.5(1) 

3R  5.5(3) 3.5(2) 5(3) 3(2) 2.5(2) 2(1) 

4R  5(3) 4.5(3) 4.5(3) 3.5(2) 1(1) 6(3) 

5R  5(3) 4.5(3) 4.5(3) 5(3) 1.5(1) 5(3) 

6R  3(2) 3.5(2) 2.5(2) 6.5(4) 7(4) 6.5(4) 

7R  5.5(3) 7(4) 2(1) 1.5(1) 7.5(4) 1.5(1) 

8R  6.5(4) 3(2) 3.5(2) 4.5(3) 5(3) 5.5(3) 

9R  7(4) 7.5(4) 3.5(2) 5(3) 4.5(3) 4.5(3) 

10R  3(2) 3(2) 5(3) 3(2) 3(2) 4.5(3) 

4.3 Prefer Evaluation Index System and Determine Their Weights 

Reduct the indexes through formula (1), the result is: 

1 2 3 4 5 6 7 8 9 10/ ( ) {{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }}U ind C R R R R R R R R R R=

1 1 10 2 7 3 4 5 6 8 9/ ( { }) {{ , },{ , },{ },{ },{ },{ },{ },{ }}U ind C c R R R R R R R R R R− =  
2 1 2 3 4 5 6 7 8 9 10/ ( { }) {{ },{ },{ },{ },{ },{ },{ },{ , },{ }}U ind C c R R R R R R R R R R− =

3 1 2 3 4 5 6 7 8 9 10/ ( { }) {{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }}U ind C c R R R R R R R R R R− =
 

4 1 2 3 4 5 6 7 8 9 10/ ( { }) {{ },{ },{ },{ , },{ },{ },{ },{ },{ }}U ind C c R R R R R R R R R R− =
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5 1 2 3 4 5 6 7 8 9 10/ ( { }) {{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }}U ind C c R R R R R R R R R R− =
 

6 1 3 2 4 5 6 7 8 9 10/ ( { }) {{ , },{ },{ },{ },{ },{ },{ },{ },{ }}U ind C c R R R R R R R R R R− =
 

1 2 3 4

5 6

/ ( ) / ( { }) / ( { }) / ( { }) / ( { })

/ ( { }) / ( { })

U ind C U ind C c U ind C c U ind C c U ind C c

U ind C c U ind C c

≠ − ≠ − = − ≠ −
= − ≠ −
According to Definition 2, index 3c and 5c can be deleted, the preferred evaluation risk 

index system is 1 2 4 6{ , , , }fC c c c c= . And we can get their weights through formula(2). 

 1

1

{ }| ( ) | | ( ) | 6 2
1

| | 10 5

C C c

c

Pos C Pos C
U

U

−−
= = − =  , Similarly , 

2 3 4

1

5c c cU U U= = = .  

And then use formula (10) to get weights: 1

2

5
α = ， 2

1

5
α = ， 4

1

5
α = ， 6

1

5
α =  

4.4 Determine Risk Grade 

For an example of a risk event 1R , we can calculate the correlation degree of 1R ’s 

evaluation index 1c  to risk grade 1u  through formula (11),  

1 1

| 5.5 (0 2) / 2 | (2 0) / 2
( , ) 0.4375

[| 5.5 (0 10) / 2 | (10 0) / 2] [| 5.5 (0 2) / 2 | (2 0) / 2]
K c u

− + − −= = −
− + − − − − + − −  

Similarly, the results of correlation degrees of 4 indexes to 5 risk grades are show 
in below: 

1 1 1 2 1 3 1 4 1( , ) { ( , ), ( , ), ( , ), ( , )} { 0.4375, 0.25, 0.3, 0.3571}lK c u K c u K c u K c u K c u= = − − − −  

2 1 2 2 2 3 2 4 2( , ) { ( , ), ( , ), ( , ), ( , )} { 0.25,0.5,0.1667, 0.1}lK c u K c u K c u K c u K c u= = − −  

3 1 3 2 3 3 3 4 3( , ) { ( , ), ( , ), ( , ), ( , )} {0.125, 0.25, 0.125,0.125}lK c u K c u K c u K c u K c u= = − −  

4 1 4 2 4 3 4 4 4( , ) { ( , ), ( , ), ( , ), ( , )} { 0.1, 0.5, 0.4167, 0.25}lK c u K c u K c u K c u K c u= = − − − −

5 1 5 2 5 3 5 4 5( , ) { ( , ), ( , ), ( , ), ( , )} { 0.3571, 0.625, 0.5625, 0.4375}lK c u K c u K c u K c u K c u= = − − − −
Use formula (12) to get 

1 1( , ) 0.4 ( 0.4375) 0.2 ( 0.25) 0.2 ( 0.3) 0.2 ( 0.3571) 0.3564K R u = × − + × − + × − + × − = −  
 

Similarly, 1 2( , ) 0.0133K R u = 1 3( , ) 0K R u = , 1 4( , ) 0.4K R u = − , 1 5( , ) 0.4679K R u = − . 

We use formula (13) to get the result: 
0

max{ 0.3564,0.0133,0, 0.4, 0.4679}jK = − − − . 

It means the risk grade of risk event 1R  is “low”, the correlation degree is 0.0133. 

The result of all the risk events’ grades and correlation degrees are shown in  
Table 3. 

4.5 Results Analyze 

We can get the result that the urgency and management costs are redundant indexes  
in social risk assessment. The preferred evaluation risk index system includes  
 



328 G. Gu et al. 

Table 3. Grade of risk events 

 Risk grade Correlation degree 
 low 0.0133 

 high 0 

 low 0.0333 

 medium 0.1 

 medium 0.225 

 low 0.0667 

 Very low -0.1 

 medium -0.05 

 high 0.1667 

 low 0.38 

 
probability, consequence, controllability and management efficiency, their weights 
are 0.4, 0.2, 0.2, 0.2. Use extension dependence function to analyze the data shown in 
Table 3, the result tells us that the grade of 2R and 9R are “high”, 4R , 5R and 8R  are 

“medium”, 1R , 3R , 6R and 10R are “low”, and 7R is “very low”. The order is

9 2 5 4 8 10 6 3 1 7R R R R R R R R R R> > > > > > > > > , so we should invest our resources to 

solve public opinion risk and public participation risk firstly, and manage economic 
risk at last. 

5 Conclusion 

Risk assessment is a major process of risk management. Because of the contradiction 
between limited resources and numerous risk events, we should sort risk events and 
utilize resources rationally to improve the efficiency of risk management. So we need 
not only to consider the probability and consequences of risk events, but also the 
management properties, such as management costs and management efficiency.  

A well performing risk assessment model uses reasonable evaluation indexes and 
scientific method to measure risk events’ grade. This paper prefers the initial evalua-
tion risk index system through rough sets theory, and calculates the grade of risk 
events combined with extension assessment method. Finally, this paper analyzes an 
airport construction project to prove the practicality and reliability of the model. 
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Abstract. Kernel parameters optimization is one of the most challeng-
ing problems on kernel Fisher discriminant analysis (KFDA). In this
paper, a simple and effective KFDA kernel parameters optimization
criterion is proposed on the basis of the maximum margin criterion
(MMC) that maximize the distances between any two classes. Actu-
ally, this MMC-based criterion is applied to the kernel parameters opti-
mization on KFDA and KFDA with Locally Linear Embedding affinity
matrix (KFDA-LLE). It is demonstrated by the experiments on six real-
world multiclass datasets that, in comparison with two other criteria, our
MMC-based criterion can detect the optimal KFDA kernel parameters
more accurately in the cases of both RBF kernel and polynomial kernel.

Keywords: Kernel parameter optimization · Maximum margin
criterion · Feature extraction · Kernel Fisher discriminant analysis
(KFDA) · Affinity matrix

1 Introduction

Fisher Discriminant Analysis (FDA) is a popular method for dimensionality
reduction. It tries to make the between-class scatter be maximized while the
within-class scatter be minimized in the lower dimensional space [1]. Kernel
Fisher discriminant analysis (KFDA) is the kernelized version of FDA [2],[3].
The main idea of KFDA is to map the input space to a higher dimensional
feature space where the corresponding sample classes can be linearly separated
so that we can conduct the FDA method in this projected feature space [4]. In
this case, kernel function is utilized to implement the inner product of two data
in the kernel space [5]. In fact, the parameters of the kernel function determine
the data distribution in the projected feature space, which directly influences the
performance of KFDA. Therefore, kernel parameters optimization is a critical
problem in KFDA.

In order to solve this kernel parameters optimization problem, two kinds of
optimization approaches have been suggested. One approach is the leave-one-out
or k-fold cross validation, the other is criterion based optimization method [6]. In
fact, the leave-one-out validation is rather time-consuming because of the large
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 330–337, 2014.
DOI: 10.1007/978-3-319-12436-0 37



Kernel Parameter Optimization for KFDA Based on the MMC 331

repetition computations [7]. On the other hand, there are many clustering criteria
based on the between-class scatter and the within-class scatter such as Hartigan
criterion [8], McClain and Rao criterion [9], and Friedman and Rubin criterion
[10]. However, these criteria are not so useful in kernel parameters optimization.
For example, Friedman and Rubin suggested a criterion for determining the
optimal number of clusters by using F = tr(Sw−1Sb). But it is is too complex
to be applied to the kernel parameters optimization since we cannot derive any
explicit expressions for the optimal kernel parameters.

In this paper, we propose a new criterion for KFDA kernel parameters opti-
mization based on the maximum margin criterion (MMC), which has been
already used for feature extraction. The main idea of the MMC is to maximize
the distances between classes in the kernel space [11]. That is, a pattern in the
kernel space should be close to those in the same class but be far from those in
different classes. By employing a simple formula, the MMC for kernel parameters
optimization can be expressed as the weighted sum of kernel functions. Thus,
the optimal solution can be easily calculated. Actually, this MMC-based crite-
rion does not depend on the classifiers or the dimensionality after the feature
extraction. It is demonstrated by the experiments on six real-world multiclass
datasets that, in comparison with two other possible criteria, the MMC-based
criterion can detect the optimal KFDA kernel parameters more accurately in
the cases of both RBF kernel and polynomial kernel.

The rest of the paper is organized as follows. We present the MMC-based
approach for kernel parameter optimization in two FDA methods in Section 2.
Section 3 contains its experimental results on six real-world datasets in compar-
ison with two other clustering criteria. Section 4 makes a brief conclusion, along
with directions for further research.

2 MMC-Based Approach for Kernel Parameters
Optimization

For clarity, we introduce some mathematical notations used throughout the
paper. xi ∈ R

d and zi ∈ R
r(1 ≤ r < d) are the i-th input data and its cor-

responding low dimensional projection or embedding (i = 1, 2, · · · , n), where n
is the number of samples, d is the dimensionality of the input data and r is the
reduced dimensionality. yi ∈ {1, 2, · · · , c} are the associated class labels, and c is
the number of classes. nl is the number of samples in class l, thus

∑c
l=1 nl = n.

X is defined as the matrix of collection of all samples, i.e., X = (x1, x2, ..., xn).

2.1 Maximum Margin Criterion

As defined in [11], the maximum margin criterion (MMC) can be given as

J =
1
2

c∑

i=1

c∑

j=1

ni

n

nj

n
d(Ci, Cj),
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where d(Ci, Cj) denotes the difference between class Ci and class Cj . One way
to measure this difference is that

d(Ci, Cj) = dis(μi, μj) − tr(Si) − tr(Sj),

where dis(μi, μj) is the Euclidean distance between μi and μj that are the mean
vectors of class Ci and class Cj , respectively. And tr(Si) means the scatter of
the class Ci, where Si is the covariance matrix of the class Ci.

In FDA, the within-class scatter matrix Sw and the between-class scatter
matrix Sb are defined as follows.

Sw =
c∑

l=1

∑

i:yi=l

(xi − μl)(xi − μl)T ;Sb =
c∑

l=1

nl(μl − μ)(μl − μ)T ,

where μ is the mean of all samples.
Applying Sw and Sb in FDA, the maximum margin criterion can be written

as
J = tr(Sb) − tr(Sw). (1)

Since tr(Sb) measures the overall variance of the class mean vectors, a large
tr(Sb) implies that the class mean vectors scatter in a large space. On the con-
trary, a small tr(Sw) implies that every class has a small spread. Thus, a large J
indicates that patterns are close to each other if they are from the same class but
are far from each other if they are from different classes. It is clear that the max-
imum margin criterion does not depend on the classifiers or the dimensionality
after feature extraction.

2.2 MMC for KFDA

We now apply the maximum margin criterion to kernel Fisher discriminant anal-
ysis (KFDA). Let φ : z ∈ R

d → φ(z) ∈ F be a nonlinear mapping from the input
space to a higher dimensional feature space F. KFDA is conducting FDA in the
feature space F [4]. Generally, the kernelization of a conventional method makes
use of a kernel function κ(.) which serves as the inner product in the higher
dimensional space, i.e., κ(x, y) =< φ(x), φ(y) >.

In KFDA, we need to calculate the top r generalized eigenvectors associated
with the top r generalized eigenvalues of the generalized eigenvalue problem:
Sφ

b ϕ = λSφ
wϕ, where Sφ

b and Sφ
w are the between-class scatter matrix and with-

in class scatter matrix in kernel space, respectively. Then, the MMC for KFDA
is changed as

J1 = tr(Sφ
b ) − tr(Sφ

w). (2)

According to [12], we have

Sφ
w =

1
2

n∑

i=1

n∑

j=1

Ww
i,j(φ(xi) − φ(xj))(φ(xi) − φ(xj))T ;

Sφ
b =

1
2

n∑

i=1

n∑

j=1

W b
i,j(φ(xi) − φ(xj))(φ(xi) − φ(xj))T .
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where, Ww
ij =

{
1/nl, if yi = yj = l,

0, if yi �= yj ,
and W b

ij =
{
1/n − 1/nl, if yi = yj = l,

1/n, if yi �= yj ,
.

So, we have

tr(Sφ
w) =

1
2

n∑

i=1

n∑

j=1

Ww
i,j [K(xi, xi) − 2K(xi, xj) + K(xj , xj)];

tr(Sφ
b ) =

1
2

n∑

i=1

n∑

j=1

W b
i,j [K(xi, xi) − 2K(xi, xj) + K(xj , xj)].

Let θ denote the set of kernel parameters, MMC for optimizing KFDA kernel
parameters is

J1(θ) =
1
2

n∑

i=1

n∑

j=1

Wij [K(xi, xi) − 2K(xi, xj) + K(xj , xj)], (3)

where Wij =

{
1/n − 2/nl, if yi = yj = l,
1/n, if yi �= yj ,

.

By maximizing J , the average margin is maximized. The optimal kernel
parameters set is

θ∗ = argmaxθJ1(θ).

This is an optimization problem of a unary function and can be solved by using
the optimal toolboxes in MATLAB.

2.3 MMC for KLFDA-LLE

In [13], we already established a new local fisher discriminant analysis method
with LLE affinity matrix (LFDA-LLE) considering the local information of the
data set. The local between-class scatter matrix and local within-class scatter
matrix are defined as,

S̃w = X(D − W̃ )XT ; S̃b = X(W̃ − B)XT ,

where D is the n × n identity matrix and B = (Bij)n×n with Bij = 1/n. Here, W̃
is the reconstruct matrix in the locally linear embedding (LLE) method satisfying
∑

j W̃ij = 1 and W̃ij = 0 if xj is not the k-th or less nearest neighbor of xi, where

xij is the j-th neighbor of xi. W̃ can preserve the local structure of the input
data. The KLFDA-LLE method is better than KFDA because of its locality
preserving property.

We can reexpress S̃w and S̃b as

S̃w =
1
2

n∑

i,j=1

Pw
i,j(xi − xj)(xi − xj)T , (4)

S̃b =
1
2

n∑

i,j=1

P b
i,j(xi − xj)(xi − xj)T , (5)
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where Pw
i,j = W̃i,j and P b

i,j = 1/n − W̃i,j . The theoretical derivations of Eq.(4)
and Eq.(5) are based on the fact that

∑
j W̃ij = 1.

Similar to Section 2.2, applying the MMC on LFDA-LLE, we have

J2(θ) =
1
2

n∑

i=1

n∑

j=1

Pij [K(xi, xi) − 2K(xi, xj) + K(xj , xj)], (6)

where P = P b − Pw.

3 Experimental Results

To test the performance of our MMC-based approach to kernel parameters opti-
mization for both KFDA and KFDA-LLE, we implement it on six real-world
datasets. For comparison, we choose two other criteria to learn the optimal kernel
parameters. The first compared criterion is the trace Sw criterion (O = tr(Sw)),
which has been one of the most popular indices suggested for use in clustering
context [14]. The second one is the statistical index of cluster recovery proposed
by Hartigan [8], i.e., H = log(SSB/SSW ), where SSB and SSW are the sums
of squared distances between and within the groups, respectively.

Our experimental procedure is given as follows. Firstly, we compute the
optimal kernel parameters for RBF kernel (κ(x, y) = exp

{−‖x − y‖2/σ2
}
) and

polynomial kernel (κ(x, y) = (xT y + 1)b). We then extract the features through
KFDA and KFDA-LLE on the training data, respectively. Finally, we conduct
the one-nearest-neighbor classification for the test data to evaluate these kernel
parameter optimization criteria.

We use the Iris, Wine, Seeds, Wisconsin Breast Cancer (WBC), Wisconsin
Diagnostic Breast Cancer (WDBC) and Landsat satellite (LS) datasets selected
from UCI Machine Learning Repository [15]. Actually, there are 16 missing val-
ues in WDBC and we just set them as zero. For simplicity, the first and second
classes of the Landsat satellite dataset which are called red soil and cotton crop
are used. Some basic numbers are listed in Table 1. For clarity, the numbers of
training and test sample points are denoted as ntraining and ntest. The num-
ber of training points of each dataset is about 60% of the number of the total
dataset.

Table 1. The basic numbers of five real-world datasets in the experiments

Dataset c d r n ntraining ntest

Iris 3 4 2 150 90 60
Wine 3 13 4 178 106 72
Seeds 3 7 2 210 126 84
WBC 2 9 2 699 420 279
WDBC 2 30 5 569 341 228
LS 2 36 6 1551 930 621
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We firstly implement the MMC-based approach to learn the optimal kernel
parameters for both KFDA and KFDA-LLE on the six datasets. In the same way,
we also implement the criteria O and H based approaches on the six datasets.
The optimization problem is solved using optimal function in MATLAB. The
kernel parameter interval of polynomial kernel and RBF kernel are set as [0, 10]
and [0, 5000], respectively. The kernel parameters of polynomial kernel and RBF
kernel learned by four criteria for each dataset are listed in Table 2 and Table 3,
respectively.

Table 2. The parameters of polynomial kernel learned by four criteria

Dataset Criterion O Criterion H MMC for KFDA MMC for KFDA-LLE

Iris 3.71 × 10−5 5.30 × 10−5 5.69 10.00
Wine 6.03 × 10−5 5.90 × 10−5 6.50 × 10−5 6.60 × 10−5

Seeds 5.02 × 10−5 2.68 6.27 5.78
WBC 3.04 × 10−5 1.41 1.38 5.10 × 10−5

WDBC 6.01 × 10−5 5.99 5.50 × 10−5 0.14
LS 6.01 × 10−5 5.20 × 10−5 0.66 4.74

Table 3. The parameters of RBF kernel learned by four criteria

Dataset Criterion O Criterion H MMC for KFDA MMC for KFDA-LLE

Iris 5000.00 5000.00 2.95 1.27
Wine 5000.00 4821.90 71.62 5.42
Seeds 5000.00 5000.00 6.65 2.00
WBC 5000.00 5000.00 29.56 9.80
WDBC 5000.00 5000.00 5000.00 109.78
LS 5000.00 5000.00 466.32 95.26

It should be noted that for Criterion O, the optimal kernel parameters of
RBF kernel are the maximum of the interval, which means the larger kernel
parameter the smaller tr(Sw).

Next, we implement the KFDA and KFDA-LLE approaches for dimensional-
ity reduction. Moreover, we use the 1-nearest-neighbour classifier for supervised
classification. In order to test and compare the performances of these optimiza-
tion approaches, we implement the above procedure for each dimensionality
reduction approach on a couple of randomly selected training and test sets with
the fixed numbers ntraining and ntest for 30 times. Table 4 lists the average Clas-
sification Accuracy Rates (CARs) of the kNN(k = 1) classifiers using feature
extracted through polynomial kernel with kernel parameters listed in Table 2
on each dataset. Table 5 lists the average Classification Accuracy Rates (CARs)
of the kNN(k = 1) classifiers using feature extracted through RBF kernel with
kernel parameters listed in Table 3 on each data set.
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Table 4. The average classification accuracy rates (CARs) of the kNN(k = 1) classifiers
with KFDA and KFDA-LLE using polynomial kernel with parameters learned by four
criteria

Dataset Criterion O Criterion H MMC for KFDA MMC for KFDA-LLE

Iris 0.8033 0.8111 0.9815 0.9900
Wine 0.8236 0.8292 0.8403 0.8772
Seeds 0.8083 0.9381 0.9952 0.9679
WBC 0.9613 0.9946 0.9728 0.9566
WDBC 0.6069 0.6272 0.9302 0.9680
LS 0.9714 0.9726 0.9988 1.0000

Table 5. The average classification accuracy rates (CARs) of the kNN(k = 1) classifiers
with KFDA and KFDA-LLE using RBF kernel with parameters learned by four criteria

Dataset Criterion O Criterion H MMC for KFDA MMC for KFDA-LLE

Iris 0.8967 0.8978 0.9522 0.9689
Wine 0.6778 0.6778 0.9628 1.0000
Seeds 0.8262 0.8262 0.9488 0.9948
WBC 0.9498 0.9498 0.9677 0.9785
WDBC 0.8904 0.8904 0.8904 0.9693
LS 0.9934 0.9934 1.0000 1.0000

Table 4 indicates that when the polynomial kernel is used, the maximum
margin criterion is better than Criterion O and Criterion H on all the datasets
except for the WBC dataset. This exceptional result may be related to the data
structure of the WBC dataset.

As for the RBF kernel, we can observe from Table 5 that, the maximum
margin criterion obtains improved classification results for all the six datasets,
especially for the Wine data and the Seeds data. Moreover, the KFDA-LLE
with MMC is much better than the other criteria because the local information
is taken into consideration. Comprehensively, the experimental results of the
RBF kernel are better than those of polynomial kernel. It is consistent with the
fact that the RBF kernel is applied more frequently than the polynomial kernel
in practice. Experimental results show that the maximum margin criterion is
effective for kernel parameter optimization for both RBF kernel and polynomial
kernel.

4 Conclusions

We have established a simple and effective criterion for KFDA kernel parameters
optimization based on the maximum margin criterion (MMC). We apply this cri-
terion to the kernel parameters optimization of both KFDA and KFDA-LLE for
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feature extraction. It is demonstrated by the experiments on six real-world mul-
ticlass datasets that, the MMC-based approach can detect the optimal KFDA
kernel parameters more accurately in the cases of both RBF kernel and poly-
nomial kernel than two other existing criteria. In the future, we will extend the
maximum margin criterion to the other kernel-based learning methods.
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Abstract. In this paper, we consider the binary quadratic programming
problems (BQP ). The unconstrained BQP is known to be NP-hard and
has many practical applications like signal processing, economy, manage-
ment and engineering. Due to this reason, many algorithms have been
proposed to improve its effectiveness and efficiency. In this paper, we
propose a novel algorithm based on the basic algorithm proposed in [1],
[2], [3] to solve problem BQP with Q being a seven-diagonal matrix. It
is shown that the proposed algorithm has good performance and high
efficiency. To further improve its efficiency, the neural network imple-
mentation is realized.

Keywords: Binary quadratic programming · NP-hard · Neural network

1 Introduction

We consider in this paper the following unconstrained binary quadratic program-
ming problem:

min
x∈{0,1}

1
2
xTQx + cTx, (1)

where Q = (qij)n×n is a symmetric matrix with zero elements in the main
diagonal, c ∈ R

n. There is no loss of generality in assuming the zero diagonal
because x2

i = xi(1 � i � n). The above problem, termed also as the pseudo-
Boolean programming problem is a classical combinational optimization problem
and is well known to be NP-hard (see [4]).

There exist many real-world applications of binary quadratic programming
in the field of signal processing, including financial data analysis [5], molecu-
lar conformation problem [6] and cellular radio channel assignment [7]. Many
combinational optimization problems, such as the Max-cut problem (see, e.g.,
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[7][8]), are special cases of problem BQP . Various exact solution methods of a
branch-and-bound framework for solving problem BQP and its variants have
been proposed in the literature (see, e.g., [3][7][10][11][12][13][14] and the refer-
ences therein).

We focus in this paper on the unconstrained binary quadratic programming
problems, where Q is a seven-diagonal matrix, denoted by BQP7 problems.
Identifying polynomially solvable subclasses of binary quadratic programming
problems not only offers theoretical insight into the complicated nature of the
problem, but also provides useful information for designing efficient algorithms
for finding optimal solution to problem BQP . More specifically, the properties of
the polynomially solvable subclasses provide hints and facilitate the derivation
of efficient relaxations for the general form of BQP .

The rest of the paper is organized as follows: First, in section 2, a new algo-
rithm is proposed to solve the problem BQP7. Then neural network implementa-
tion of this algorithm is addressed in section 3. To illustrate the effectiveness and
efficiency of this new algorithm, the computational experiments are performed
in section 4. Finally the conclusion is given.

2 A New Algorithm Proposed to Solve BQP7

Here, we proposed a novel algorithm to solve BQP7. In our algorithm, each
time when we set xi to 0 or 1, only a maximum of eight states of f(x) existed.
This can lead to limited calculation, and finally make the algorithm effective and
efficient.

Consider BQP7, the special case of binary quadratic problems, where Q in
Equ. (1) is a seven-diagonal symmetric matrix with zero diagonal elements:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 q12 q13 q14 . . . 0 0 0 0
q12 0 q23 q24 . . . 0 0 0 0
q13 q23 0 q34 . . . 0 0 0 0
q14 q24 q34 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 qn−3,n−2 qn−3,n−1 qn−3,n

0 0 0 0 . . . qn−3,n−2 0 qn−2,n−1 qn−2,n

0 0 0 0 . . . qn−3,n−1 qn−2,n−1 0 qn−1,n

0 0 0 0 . . . qn−3,n qn−2,n qn−1,n 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

For each xi, it can be set to either 0 or 1. That is to say, if we use enumeration
method, there will be 2n possibilities. With the increasing of the number of
dimension, calculation will grow exponentially. In our proposed algorithm, we
first set xi, xi−1 and xi−2 to 0 or 1, generating eight states of x (x = (x1, ..., xn))
and the corresponding eight states of f(x), for every two adjacent states of f(x)
(of which the high bit of vector x is different, like state (0) and state (1), state (2)
and state (3) in Table 1), only two polynomial terms are different, one is the
term contains variable xi−3 and the other is the constant term. When we further
set xi−3 = 0 or xi−3 = 1, the different two terms can be compared. Thus, we



340 S. Gu et al.

eliminate the bad state and keep the good one for next calculations.We can apply
the similar process for the remaining seven states. Therefore, each time when we
assign 0 or 1 to xi, there will be only eight states of f(x). The flow chart of our
algorithm is shown in Fig. 1 and the procedures of our algorithm are given in
detail as follows:

Start

Procedure 2.1, let i=n, 
generating a table of 

eight states of f(x) and 
x

i=i-1
If i<0

Procedure 2.2, for 
(i<n-3), upstate the 
eight states table

Procedure 2.3, get the 
optimal solution x and 

value f(x) from the 
last table

Output the results End

Yes

No

Fig. 1. The flow chart of the new algorithm

Since Q is a seven-diagonal matrix, f(x) takes the following form:

f(x) = q12x1x2 + q13x1x3 + q14x1x4 + q23x2x3 + . . . + qi−3,ixi−3xi + qi−2,ixi−2xi

+qi−1,ixi−1xi + . . . + qn−1,nxn−1xn + c1x1 + . . . + cixi + . . . + cnxn

Procedure 2.1: Generate eight states of f(x) by assigning 0 or 1 to xi, xi−1,
xi−2.

Step 1: xi = 0 or xi = 1
Obviously, when we set xi = 0, one state of f(x) will be generated, i.e.,
state (0). And another state of f(x) named state (1) will be obtained when
we set xi = 1. That is to say, totally two states of f(x) can be generated in
this case.

Step 2: xi−1 = 0 or xi−1 = 1
In this case, xi−1 can be either 0 or 1. By applying the consequences of step
1, we will obtain four states of x, namely, (0, 0), (0, 1), (1, 0) and (1, 1). It
means there are also four states of f(x), denoted by state (0), state (1),
state (2) and state (3) respectively.

Step 3: xi−2 = 0 or xi−2 = 1
Similarly, in this case, Based on the previous states obtained from step 2,
there will be eight states of f(x), denoted by state (0) to state (7). Its corre-
sponding states of x denoted by (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0) and (1, 1, 1) respectively, which is summarized in Table 1.



A Polynomial Time Solvable Algorithm to Binary Quadratic Programming 341

Table 1. Different states of f(x)

states (xi−2, xi−1, xi) f(x1, ..., xn)

state (0) (0, 0, 0) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+c1x1 + . . . + ci−4xi−4 + ci+1xi+1 + . . . + cnxn + ci−3xi−3

state (1) (0, 0, 1) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+c1x1 + . . . + ci−4xi−4 + ci+1xi+1 + . . . + cnxn + (ci−3 + qi−3,i)xi−3 + ci
state (2) (0, 1, 0) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+qn−1,nxn−1xn + c1x1 + . . . + ci−5xi−5 + ci+1xi+1 + . . . + cnxn

+(ci−4 + qi−4,i−1)xi−4 + (ci−3 + qi−3,i−1)xi−3 + ci−1

state (3) (0, 1, 1) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1n
+c1x1 + . . . + ci−5xi−5 + ci+1xi+1 + . . . + cnxn

+(ci−4 + qi−4,i−1)xi−4 + (ci−3 + qi−3,i−1 + qi−3,i)xi−3 + ci−1 + ci
state (4) (1, 0, 0) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+c1x1 + . . . + ci−6xi−6 + ci+1xi+1 + . . . + cnxn + (ci−5 + qi−5,i−2)xi−5

+(ci−4 + qi−4,i−2)xi−4 + (ci−3 + qi−3,i−2)xi−3 + ci−2

state (5) (1, 0, 1) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+c1x1 + . . . + ci−4xi−4 + ci+1xi+1 + . . . + cnxn + (ci−5 + qi−5,i−2)xi−5

+(ci−4 + qi−4,i−2)xi−4 + (ci−3 + qi−3,i−2 + qi−3,i)xi−3 + ci−2 + qi−2,i + ci
state (6) (1, 1, 0) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+c1x1 + . . . + ci−6xi−6 + ci+1xi+1 + . . . + cnxn + (ci−5 + qi−5,i−2)xi−5

+(ci−4 + qi−4,i−2 + qi−4,i−1)xi−4 + (ci−3 + qi−3,i−2 + qi−3,i−1)xi−3

+ci−2 + qi−2,i−1 + ci−1

state (7) (1, 1, 1) q12x1x2 + . . . + qi−4,i−3xi−4xi−3 + qi+1,i+2xi+1xi+2 + . . . + qn−1,nxn−1xn

+c1x1 + . . . + ci−6xi−6 + ci+1xi+1 + . . . + cnxn + (ci−5 + qi−5,i−2)xi−5

+(ci−4 + qi−4,i−2 + qi−4,i−1)xi−4 + (ci−3 + qi−3,i−2 + qi−3,i−1 + qi−3,i)xi−3

+ci−2 + qi−2,i−1 + qi−2,i + ci−1 + qi−1,i + ci

Procedure 2.2 Set xi−3 = 0 and xi−3 = 1. This is the key procedure of the
whole algorithm.

Step 1: xi−3 = 0
For state (0) and state (1) in Table 1, they are only different in the linear
term coefficient of xi−3 and the constant coefficient. Therefore we set xi−3 =
0, calculate f(x) of state (0) and state (1) respectively. Compare two results,
eliminate the bad state and preserve the good one as the new state (0).
Similarly, the new state (1) can be generated from state (2) and state (3)
by setting xi−3 = 0, the new state (2) is from state (4) and state (5) and
the new state (3) is from state (6) and state (7).

Step 2: xi−3 = 1
By applying the same updating process, when we set xi−3 = 1, calculate f(x)
of state (0) and state (1). Compare the results and choose the good one as
the new state (4). Similarly, we can obtain the new state (5) from state (2)
and state (3) by setting xi−3 = 1; the new state (6) is from state (4) and
state (5); and the new state (7) is from state (6) and state (7). Through
the above two steps, we will get a new table of eight states of f(x) and its
corresponding states of x.

Procedure 2.3 Set the remaining xi to 0 or 1.

Through applying Procedure 2.1 and Procedure 2.2, we can generate a table
of eight states of f(x) and its corresponding states of x for each time when
we set xi = 0 or xi = 1. After every variable in x is being set to 0 or 1, we
find out that the final table contains only constant coefficient of f(x) and its



342 S. Gu et al.

corresponding states of x, choose the optimal value and the corresponding
sequence of x is the optimal solution.

3 Implementation of Neural Network

To further improve the efficiency of our algorithm, a subset of neural networks is
implemented in this section. As we all known that a Hopfield neural network is
characterized by an energy function, which is uniquely specified by the weights
on the connections between the neurons and by the thresholds of the neurons.
That is to say, if we write f(x) as the same form of energy function, it can
always be represented by a neural network. Then a subset of neural networks
can be transformed to logic gate circuits through the next algorithm. The energy
function is of the following form:

E = −[
1
2

n∑

i=1

n∑

j=1

Tijxixj ] − [
n∑

i

Iixi] + K (2)

where Tij ∈ R is the weight associated with the connection from neuron i to
j, xi is the activation value of the neuron i, Ii ∈ R is the threshold of neuron i,
and K is a constant.

Neural network for multi-input AND, OR, NAND, NOR and XOR gates can
be constructed from the basis set [17], Table 2 gives the basis set of logic gates:

Table 2. Basis set of the neural network

Gate T and I

AND Tij = (1 − δ(i, j)) × ((A + B) × connected(i, j) − B × inputs(i, j))
Ii = −(2A + B) × output(i)
K = 0

OR Tij = (1 − δ(i, j)) × (A + B) × connected(i, j) − B × inputs(i, j))
Ii = −B × output(i) − A × input(i)
K = 0

NAND Tij = (1 − δ(i, j)) × (−A − B) × connected(i, j) − B × inputs(i, j))
Ii = (2A + B) × output(i) + (A + B) × input(i)
K = 2A + B

NOR Tij = (1 − δ(i, j)) × (−A − B) × connected(i, j) − B × inputs(i, j))
Ii = B
K = B

NOT Tij = −2J × (1 − δ(i, j))
Ii = J
K = J

By applying a linear time algorithm [18], a subset of neural networks defined
by binary quadratic programs can be transformed to the instance of the logic
simulation problem. We extend the 2-input logic gate circuits in [18] to multi-
input logic gate circuits. Firstly, rewrite the function f(x) in the same form as
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the energy function, then the corresponding neural network graph Gf can be
developed.

Consider the following example:

f(x) = − 27x1x2 − 32x1x3 + 39x1x4 − 36x2x3 + 35x2x4 + 6x2x5 + 9x3x4 − 20x3x5

− 30x3x6 − 32x4x5 − 42x4x6 − 13x4x7 − 60x5x6 − 31x5x7 + 42x5x8 − 31x6x7

+ 42x6x8 + 42x7x8 − 8x1 − 9x2 + 16x3 + 3x4 + 7x5 + 15x6 − 10x7 − 18x8

(3)

It can be rewritten as:

f(x) = − [27x1x2 + 32x1x3 − 39x1x4 + 36x2x3 − 35x2x4 − 6x2x5 − 9x3x4 + 20x3x5

+ 30x3x6 + 32x4x5 + 42x4x6 + 13x4x7 + 60x5x6 + 31x5x7 − 42x5x8 + 31x6x7

− 42x6x8 − 42x7x8] − [8x1 + 9x2 − 16x3 − 3x4 − 7x5 − 15x6 + 10x7 + 18x8]

The corresponding neural network graph Gf is shown in Fig. 2. Each circle
corresponds to a neuron. The name of the neuron is written in the upper half
and its threshold is indicated in the lower half. The link between neurons xi and
xj is denoted by Tij . Every neuron corresponds to a signal in the logic circuit.
A combinational logic circuit is constructed through the following procedure.

x1

x2

x3

x4

x5

x6

x7

x8
39

-32

35
-36

6

-20
-32

-60

-31

-13

-31
42

42

42-42

9

-303

16

-10

7815

7

-8

-9

-27

Fig. 2. The neural network Gf of function f(x)

Let xn be the primary output neuron of Gf , which has equal edge weights
incident to xn. The threshold of xn and the weights on its edges can be uniquely
determined according to Table 2:

Case 1: w > 0. From Table 2, only in GAND and GOR, the edges incident
on the primary output neuron have positive edge weights. Therefore, gate xn

could be an AND or OR gate. Again, from Table 2, if w < −In, then the gate
is AND type with A + B = w and −(2A + B) = In, i.e., A = −(w + In),
B = 2w + In. If w > −In, then the gate is OR type with A + B = w and
−B = In, i.e., A = w + In, B = −In.

Case 2: w < 0. The gate is NAND or NOR type. From Table 2, if −w < In,
then the gate is NAND type with −A−B = w and 2A+B = In, i.e., A = w+In,
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B = −2w − In. If −w > In, then the gate is NOR type with −A − B = w and
B = In, i.e., A = −w − In.
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Fig. 3. Transform of Gf to Gf \ x8

After gate xn being determined, let Cn be the circuit by deleting gate xn

from the original circuit and let ECn
and GCn

be the energy function and neural
network graph. The deleting rules are as follows:

If the edge linked to xn is more than two, since the weights on the edges
are equal [18]. Let xk be the vertices connected to xn, Ik be their thresholds,
and Tk be the weight between the connected circles. If xn is an AND gate, Ik
unchanged and Tk + B is the new edge weight. Similarly, for OR type, Ik and
Tk are modified to Ik +A and Tk +B, respectively; for NAND type, Ik −A−B
and Tk + B, respectively; and for NOR type, Ik − B and Tk + B, respectively.

Consider the above example Equ. (3), the specific implementation process is
shown in Fig. 3 and Fig. 4. The final logic circuit is shown in Fig. 5. We finally
obtain the primary input x1 and x2 of the circuit. Therefore, the logic circuit
corresponding to f(x) has x1 and x2 two inputs. Logic simulation of the circuit
with x1 = 1 and x2 = 1 yields x3 = 1, x4 = 1, x5 = 1, x6 = 0, x7 = 1, x8 = 1,
substituting these values into f(x) gives the minimum value of the quadratic
function Equ. 3.
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Fig. 5. The logic circuit of function f(x)
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4 Computational Results

In order to show the efficiency and effectiveness of the algorithm, the algorithm
was coded by C and run on a Inter (R) Core (TM) PC. Numerical results of
computational time are represented in Table 3.

Table 3. Computation time of BQP7

n 10 20 30 40 50 60 70 80 90 100

Ave 0.00279 0.00289 0.00330 0.00419 0.00539 0.00820 0.00828 0.01177 0.01290 0.01541

All instances are generated randomly. For the dimension n of Q from n = 10
to n = 100, ten tests have been performed and each test is the average com-
putational time (s) of 100 iterations. Also, we demonstrate that our algorithm
is effective and efficient with the polynomial feature. Fig. 6 shows the average
computational time for different dimensional BQP7. The curve in the figure
is approximately polynomial, which meanwhile directly reveals the effectiveness
and high efficiency of our algorithm.
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Fig. 6. Average computational time for different dimensional BQP7

5 Conclusions

We proposed a new algorithm for solving binary quadratic programming prob-
lems with Q being a seven-diagonal matrix. To further improve the efficiency,
neural network implementation is realized. The illustration and analysis proved
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that the novel algorithm can solve the problem in polynomial time. And the
computational time results shows that with the increase of dimension its effec-
tiveness and efficiency is still considerable.
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A New Nonlinear Neural Network
for Solving QP Problems

Yinhui Yan(B)
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Abstract. In this paper, a new nonlinear neural network is proposed
to solving quadratic programming problems subject to linear equality
and inequality constraints without any parameter tuning. This nonlinear
neural network is proved to be stable in the sense of Lyapunov under
certain conditions. Simulation results are further presented to show the
effectiveness and performance of this neural network.

Keywords: Nonlinear neural network · Lyapunov stability · Quadratic
programming

1 Introduction

Quadratic programming (QP) studies problem of optimizing (minimizing or
maximizing) a quadratic function of several variables subject to linear equal-
ity or linear inequality constraints on these variables. It has been successfully
applied to various fields [1] such as transportation, energy, telecommunications,
and manufacturing. Traditional approaches to solve QP problems [2–8] include
interior point method, active set method, augmented Lagrangian method, conju-
gate gradient method and gradient projection method etc. However traditional
methods usually require much computational time and can not meet real-time
requirements in practical applications.

In 1986, based on a gradient method, Hopfield and Tank [9] in their paper
proposed a new approach to solve LP problem by using recurrent neural network.
The main advantage of this method is that it can be implemented by using ana-
log electronic circuits, possibly on a VLSI (very large-scale integration) circuit,
which can operate in parallel. In contrast with traditional approaches which may
involve an iterative process and require long computational time, this model can
potentially provide an optimal solution in real time. After their pioneer work
[9,10], numerous neural network models have been developed to solve optimiza-
tion problems, such as the Lagrangian neural network [11], the deterministic
annealing neural network [12], the projection neural network [13], the delayed
projection neural network [14], the dual neural network [15,16] and the primal-
dual neural network [17]. In 1988, Kennedy and Kan [18] developed a neural
network for solving nonlinear programming problems based on Karush-Kuhn-
Tucker (KKT) optimal conditions. By using a penalty parameter its solution
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 347–357, 2014.
DOI: 10.1007/978-3-319-12436-0 39
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usually approximates the optimal solution. Only when the penalty parameter
is very large, it is same as the exact solution. Later Maa and Shanblatt [19]
extended this penalty based method by using two-phase model and ensured that
the model converges to the optimal solution. However, their model is more com-
plex and still requires careful parameter selection. To overcome these drawbacks,
Xia [20] proposed a primal and dual model to solving this problem. Zhang and
Constantinides [11] invented a lagrangian neural network based on the idea of
lagrangian multiplier. In this model slack variables are introduced as new vari-
ables to deal with inequality constraints, this may lead to high dimension thus
require more computation. Unlike previous approaches using a fixed parameter,
Wang etc. [12] used a time-variant temperature to design a deterministic anneal-
ing neural network to resolve the linear programs. In International Symposium
on Mathematical Programming 2000, Nguyen [21] presented a novel recurrent
neural network model to solve linear optimization problem. Compared with Xia’s
model, Nguyen’s model not only retains the advantages of Xia’s model but also
have a more intuitive economic interpretation and much faster convergence. The
most interested thing for this model is its nonlinear dynamic structure and high
convergence speed. This paper will extend the Nguyen’s neural network model
to solving quadratic programming problems. For the background and details of
neural networks, we refer to [22–31].

The rest of this paper is organized as follows: Section 2 presents a nonlinear
neural network to solving quadratic problem and the convergence property of this
neural network. Section 3 studies the stability of the proposed dynamical neural
network and proves that this neural network is stable in the sense of Lyapunov
under certain conditions. Section 4 demonstrates the power and effectiveness of
the proposed neural network. In the end, Section 5 gives a summary of this paper
and points out some future research directions.

2 Model Description

Consider the QP Problem

Find x which minimizes : 1
2x

TQx + eTx,

subject to Dx = b,

Ax ≥ c,

x ≥ 0,

(1)

where x and e are n-dimensional vectors, Q is an n × n symmetric positive
definite matrix, D ∈ R

p×n, A ∈ R
m×n, b ∈ R

p×1, c ∈ R
m×1. We call this

problem as the primal QP problem.
The lagrangian function of this minimization problem can be written as

L(x,y, z) =
1
2
xTQx + eTx − yT (Dx − b) − zT (Ax − c), (2)

where z ∈ R
p
+ = {z ∈ R

p|z ≥ 0}, y ∈ R
m are Lagrangian multipliers. According

to the Karush-Kuhn-Tucker (KKT) conditions [32,33], x� is a solution of (1)
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if and only if there exist y� ∈ R
m, z� ∈ R

p
+ so that (x�, y�, z�) satisfies the

following conditions:

Qx� + e − DTy� − AT z∗ ≥ 0,

x�T
(
Qx� + e − DTy�−AT z∗

)
= 0,

b − Dx� = 0,

c − Ax� ≤ 0,

z�T (c − Ax�) = 0. (3)

We propose a recurrent neural network for solving the primal and dual problem
as follows:

ẋ = −Q(x + kẋ) − e + DT (y + kẏ) + AT (z + kż),x ≥ 0, (4a)

ẏ = b − D(x + kẋ), (4b)

ż = −A(x + kẋ) + c, z ≥ 0, (4c)

where k is a positive constant. The architecture of the proposed neural network
model is shown in Fig. 1. The proposed neural network consists of two layers of

＠

＠

＠

６

６

６

６

６

６

Fig. 1. Block diagram of the neural network (4a, 4b, and 4c)

neurons, i.e., primal neurons and dual neurons. The outputs from one layer are
the inputs to the other layer. The inputs of the primal neurons are composed
of the dual neuron’s outputs and their derivatives, while the inputs of the dual
neurons are composed of the primal neuron’s outputs and their derivatives. Due
to the involvement of these derivatives, this neural network model is a nonlin-
ear dynamic system. The convergence property of the system is stated by the
following theorem.
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Theorem 1: If the neural network whose dynamics guided by the differential
equations (4a, 4b, and 4c) converges to a steady state (x�,y�, z�), then x� will
be the optimal solution of the primal QP problem and the Lagrangian multipliers
y� and z� the optimal solution of the dual of the QP problem.

Proof. Let xi be the ith component of x, then the equation (4a) can be written
as

dxi

dt
= {(−Q(x + k

dx
dt

) − e) + DT (y +
dy
dt

) + AT (z + k
dz
dt

)}i if xi > 0, (5)

dxi

dt
= max{{(−Q(x+k

dx
dt

)−e)+DT (y+
dy
dt

)+AT (z+k
dz
dt

)}i, 0} if xi = 0. (6)

Note that (6) is to ensure that x will bounded from below by 0. Let x�, y� and
z� be the limit of x(t), y(t) and z(t) respectively. In other words

lim
t→∞x(t) = x� (7)

lim
t→∞y(t) = y� (8)

lim
t→∞ z(t) = z� (9)

By the definition of convergence, we have dx�

dt = 0, dy�

dt = 0 and dz�

dt = 0. From
Eqns. (5) and (6) we conclude that

0 = {(−Q(x�) − e + DTy� + AT z�)}i if x�
i > 0 (10)

0 = max{{(−Q(x�) − e + DTy� + AT z�)}i, 0} if x�
i = 0 (11)

In other words:
(−Q(x�) − e + DTy� + AT z�

)
i
≤ 0 (12)

x�
i

(−Q(x�) − e + DT y� + AT z�
)
i
= 0 (13)

or
(
Q(x�) + e − DTy� − AT z�

) ≥ 0 (14)

x�T
(−Q(x�) − e + DTy� + AT z�

)
= 0 (15)

Similarly, from Eqns. (4b) and (4c), we have:

Dx� − b = 0 (16)
Ax� − c ≥ 0 (17)

z�T (Ax� − c) = 0 (18)

By KKT conditions in (3) and conditions provided in (15-18) we have shown
that x� and (y�, z�) are the optimal solutions for the problem (1) and its dual
problem respectively. This concludes the proof.
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3 Stability Analysis

It’s easy to prove that the differential equations (4a), (4b) and (4c) are equivalent
to the following second order differential equations:

(I + kQ + k2DTD + k2ATA)ẍ +
(Q + 2kDTD + 2kATA)ẋ +

(DTD + ATA)x − (DTb + AT c) = 0. (19)

Suppose the entity DTD+ATA is non-singular, we introduce a transformation
x = u + (DTD + ATA)−1(DTb + AT c), then we have ẋ = u̇ and ẍ = ü . By
this transformation, the ordinary differential equation (19) can be written as

(I + kQ + k2DTD + k2ATA)ü + (Q + 2kDTD + 2kATA)u̇
+(DTD + ATA)u = 0 (20)

Now we would like to study the stability of the equation (20).
Generally we study the stability of the following second order ordinary dif-

ferential equation

Lü + Mu̇ + Nu = 0. (21)

where L, M and N are all positive definite.
First we consider the simplified second order ordinary differential equation

ü + Mu̇ + Nu = 0. (22)

where M and N are both positive definite.

Theorem 2: If the coefficient matrices M and N of the system (22) are both
positive definite, then this dynamic system is global asymptotic stable.

Proof. If we set u1 = u, u2 = u̇, we have the system
{
u̇1 = u2,

u̇2 = −Mu2 − Nu1.

In order to show the global asymptotic the stability of (22), we only need to

show the real parts of the eigenvalues of P are negative, where P =

(
0 I

−N −M

)

.

Suppose λ ∈ C
n be an eigenvalue of P with the corresponding non-zero eigen-

vector v = (v1,v2), by the definition of eigenvector, we have
(

0 I

−N −M

) (
v1

v2

)

=

(
v2

−Nv1 − Mv2

)

= λ

(
v1

v2

)

.

Since N is positive definite, P is non-singular. This concludes that λ can not
be an eigenvalue of P. Since λ �= 0 and v2 = λv1, we claim that v1 �= 0 and
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v2 �= 0. Without loss of generality we may assume that v∗
1 · v1 = 1, where

∗ denotes complex conjugate transpose. Using this assumption, we can write
λ2 = v∗

1λ
2v1 = v∗

1λv2 = v∗
1(−Nv1 − Mv2) = −v∗

1Nv1 − λv∗
1Mv1, where we

have used the identity λv1 = v2 and λv2 = −Nv1 − Mv2. Since N is positive
definite, the entity β = v∗

1Nv1 is positive real. Similarly, the entity α = v∗
1Mv1

is positive because of the positive definiteness of M. Substitute these scalars into
the equation λ2 = −v∗

1Nv1 − λv∗
1Mv1, we have a quadratic equation of λ, i.e.,

λ2 + αλ + β = 0.

Note that every eigenvalue of P satisfies the above equation. The solution of the
above equation is

λ1,2 =
1
2
(−α ±

√
α2 − 4β).

If α2 − 4β ≥ 0, the real parts of λ1,2 are:

Re{λ1,2} =
1
2
(−α ±

√
α2 − 4β).

Recall that α and β are positive, we claim that Re{λ1,2} are negative.
If α2 − 4β < 0, the real parts of λ1,2 are:

Re{λ1,2} = −1
2
α.

Since α is positive, it’s obviously that the real parts of λ1,2 are negative.
In all cases, we conclude that the real parts of λ1,2 are always negative.

Theorem 3: For the second order ordinary differential equation

Lẍ + Mẋ + Nx = 0,

if its coefficient matrices L, M and N are all positive definite, then it is asymp-
totic stable.

Proof. Note that for the positive definite matrix L, we have a decomposition
such that L = L

1
2L

1
2 and L−1 = L− 1

2L− 1
2 , where L

1
2 and L− 1

2 are positive
definite. Now we define the transformation x̃ = L

1
2x or x = L− 1

2 x̃, using this
transformation we have

LL− 1
2 ¨̃x + ML− 1

2 ˙̃x + NL− 1
2 x̃ = 0 (23)

Premultiplying L− 1
2 to both hands of equation, we get

¨̃x + L− 1
2ML− 1

2 ˙̃x + L− 1
2NL− 1

2 x̃ = 0 (24)

This system is exactly of the form used in Theorem 2, but instead of M and
N we now have L− 1

2ML− 1
2 and L− 1

2NL− 1
2 . If the later system is asymptotic

stable, it implies that (1) is asymptotic stable, since the two systems differ only
by a non-singular transformation. Therefore the global asymptotic stability of
(6) follows from Theorem 2.
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Theorem 4: If the matrix ATA or DTD is non-singular and k > 0, then the
neural network described by differential Eqns. (4a, 4b and 4c) is asymptotic
stable.

Proof. Since ATA or DTD is symmetric and non-singular, the matrices I +
kQ+ k2DTD+ k2ATA, Q+ 2kDTD+ 2kATA and ATA+DTD are positive
definite. By Theorem 3, we conclude that the dynamical system of (4a, 4b and
4c) is asymptotic stable in the sense of Lyapunov.

4 Simulation Results

To demonstrate the behavior and properties of the proposed nonlinear neural
network model, one example with four different initial vectors is simulated. The
simulation is conducted with MATLAB. We use the Euler method to solve the
neural system of ordinary differential equations (4a, 4b and 4c).
Consider the following quadratic programming problem:

Minimize 0.4x1 + 1.25x2
1 + x2

2 − x1x2 + 0.5x2
3 + 0.5x2

4,

subject to −0.5x1 − x2 + x4 ≥ −0.5,

x1 + 0.5x2 − x3 = 0.4,

x ≥ 0.

(25)

We tested the proposed neural network guided by (4a, 4b and 4c) with four
different initial vectors(four combination for feasible and infeasible vectors) for
the primal and dual problems:
case 1: x0 = (1, 1, 1.1, 2)T (feasible) and (y0, z0) = (−1, 1)(feasible),
case 2: x0 = (1, 1, 1.1, 2)T (feasible) and (y0, z0) = (1,−1)(infeasible),
case 3: x0 = (1, 2,−1,−2)T (infeasible) and (y0, z0) = (−3, 1)(feasible),
case 4: x0 = (−1, 2, 4, 3)T (infeasible) and (y0, z0) = (1,−1)(infeasible),
and the transient behaviors of x(t) are depicted in Fig. 2, Fig. 3, Fig. 4, Fig. 5
respectively.
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Fig. 2. Transient behavior of x(t) for case 1
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Fig. 3. Transient behavior of x(t) for case 2
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Fig. 4. Transient behavior of x(t) for case 3
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Fig. 5. Transient behavior of x(t) for case 4
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It can be seen that after about 80 iterations the vector x will converge to the
optimal solution x� = (0.2483, 0.3034, 0, 0)T for all cases.

5 Conclusions

This paper presents a new nonlinear neural network to solving quadratic pro-
gramming problems. It’s proved that this novel neural network is stable in the
sense of Lyapunov under certain conditions. Numerical simulation results show
the effectiveness and efficiency this neural network. Future research direction
include application the proposed neural network to solving the K-Winners-Take-
All (KWTA) problem [34–36] based on linear programming or quadratic pro-
gramming formulations, assignment problem [37,38] and maximum flow problem
[39,40], extension the nonlinear model to convex programming and more general
optimization problems.
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Abstract. The combined classification is an important area of machine
learning and there are a plethora of approaches methods for construct-
ing efficient ensembles. The most popular approaches work on the basis
of voting aggregation, where the final decision of a compound classi-
fier is a combination of discrete individual classifiers’ outputs, i.e., class
labels. At the same time, some of the classifiers in the committee do
not contribute much to the collective decision and should be discarded.
This paper discusses how to design an effective ensemble pruning and
combination rule, based on continuous classifier outputs, i.e., support
functions. As in many real-life problems we do not have an abundance of
training objects, therefore we express our interest in aggregation methods
which do not required training. We concentrate on the field of weighted
aggregation, with weights depending on classifier and class label. We
propose a new untrained method for simultaneous ensemble pruning and
weighted combination of support functions with the use of a Gaussian
function to assign mentioned above weights. The experimental analysis
carried out on the set of benchmark datasets and backed up with a sta-
tistical analysis, prove the usefulness of the proposed method, especially
when the number of class labels is high.

Keywords: Machine learning · Classifier ensemble · Classifier combi-
nation · Ensemble pruning · Weighted fusion · Untrained aggregation

1 Introduction

For a given classification task, we may often have more than a single classifier
available. What is interesting, the number of misclassified objects by all individ-
ual classifiers is typically small. From this we can conclude, that even if individual
classifiers do not have high quality, their union could form a reasonably good
compound classifier. The considered approach is called a multiple classifier sys-
tem (MCS), combined classifier or classifier ensemble and is considered as one
of the most vital fields in the contemporary machine learning [10].

During the ensemble design process, we must take into consideration several
important aspects, such as which classifiers to use, how to select the proper
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topology, or what would be the best method for combining their outputs. In this
work, we focus on two crucial steps: ensemble pruning and classifier combination.

For most considered problems, we can create / collect a huge number of clas-
sifiers. However, for ensemble to work properly it should be formed by mutually
complementary models of high individual quality. Adding new classifiers that
do not exploit a new area of competence do not improve the ensemble, only
increases the computational cost and reduces its robustness. The problem lies
on how to select a useful subgroup from a large pool of classifiers at hand.

However, one should note that these methods require specific criteria to eval-
uate the selected subgroup of classifiers, such as accuracy, AUC or diversity. Such
criteria do not often lead to a satisfactory results (as using accuracy may lead
to large and similar ensembles, while diversity will not take into account the
individual quality of models) and selecting a proper metric for a given problem
is not a trivial task.

When having selected a number of competent classifiers, one need to design a
combination rule in order to establish a collective decision of the ensemble. Such
a mechanism should be able to exploit the individual strengths of classifiers
in the pool, while at the same time minimizing their drawbacks. In literature,
two methods for classifier combination can be distinguished: methods that make
decisions on the basis of discrete outputs (class labels) returned by the individual
classifiers and methods that work with continuous outputs (supports returned
by the individual classifiers).

The former group consists of mainly voting algorithms [2], where majority
voting is still the most popular method used so far. Other works in this area
suggest to train the weights for controlling the level of importance assigned to
each vote.

The latter group of combination methods is based on discriminants, or sup-
port functions. In general the support function is a measure of support given
in favor of a distinguished class, as neural network output, posterior proba-
bility or fuzzy membership function. There are many approaches dealing with
this problem as [7], in which the optimal projective fuser was presented, or [8]
employing a probabilistic approach. Several analytical properties of aggregating
methods were discussed e.g. in [9]. Basically, the aggregating methods, which do
not require a learning procedure, use simple operators as the maximum, min-
imum, sum, product, or average value. Other works suggest to use a trained
combiner in order to efficiently establish weights [6]. However although this is
an efficient method, such an approach requires an extensive computational time
and additional training dataset - both of which are not often available in real-life
applications.

In this work, we introduce a novel method for simultaneous ensemble prun-
ing and weighted combination. We propose novel weighted aggregation operators
which do not require learning and have embedded pruning procedure that do
not require any criterion to work. We work on modification of two popular oper-
ators: average of supports and maximum of supports. Their main drawback lies
in lack of robustness to weak and irrelevant classifiers, and in minimizing the
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influence of other ensemble members. By using a Gaussian function to estimate
the weights for the entire ensemble, we achieve a smooth method for reduc-
ing, but not eliminating the influence of weaker classifiers. At the same time by
adjusting a threshold on the value of weights, we are able to prune the ensemble
by discarding incompetent learners.

2 Classifier Combination Methods

As in this work we concentrate on weighted combination of continuous outputs,
therefore let us assume that each individual classifier makes a decision on the
basis of the values of support functions.

2.1 Weighted Aggregation

Let Π =
{
Ψ (1), Ψ (2), ..., Ψ (n)

}
be the pool of n individual classifiers and Fi,k (x)

stands for a support function that is assigned to class i (i ∈ M = {1, ...,M}) for
a given observation x and which is used by the classifier Ψ (k) from the pool Π.

The combined classifier Ψ (x) uses the following decision rule

Ψ (x) = i if Fi(x) = max
k∈M

Fk(x), (1)

where Fk(x) is the weighted combination of the support functions of the indi-
vidual classifiers from Π for the class k .

In this work, we assume that weights are dependent on classifier and class
number. Weight wi,k is assigned to the k -th classifier and the i-th class. For a
given classifier, weights assigned for different classes could be different. In our
previous works, we have shown that this approach leads to a significant improve-
ment over traditional methods [6]. With this, we can formulate our combination
scheme as follows:

Fi(x) =
n∑

k=1

wi,kFi,k(x) and ∀i ∈ M
n∑

k=1

wi,k = 1. (2)

3 Untrained Ensemble Pruning and Weighted
Combination

In this work, we propose new untrained aggregation operators which could
exploit the competencies of the individual classifiers. The simple operators as
maximum or average usually behave reasonably well but their work could be
spoil by very imprecise estimators of the support functions used by only a few
classifiers from a pool. Therefore we propose the modifications of the mentioned
above operators which take into consideration all available support functions
returned by the individual classifiers from the pool, but the functions which
have the similar values to maximum or average have the strongest impact in
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the final value of the common support function calculated by using eq. 2. Addi-
tionally, we should notice that there may be some irrelevant classifiers in the
pool and that for a large pool of classifiers most of the weights will become very
small (in order to satisfy the condition from eq. 2). To deal with this problem,
we propose to embed an ensemble pruning algorithm to eliminate incompetent
classifiers. Then we normalize the weights for a reduced number of learners,
thus increasing their level of influence over the ensemble decision. We propose
to implement the pruning threshold φ, in order to discard all classifiers with
assigned weights wi,k ≤ φ.

The proposed operators are called NP-AVG and NP-MAX and can be calcu-
lated according to the Alg. 1. The only difference is the calculation of the F i(x).
For NP-AVG it is calculated according to

F i(x) =

N∑

k=1

Fi,k

N
, (3)

and for NP-MAX using the following formulae

F i(x) = max
k∈M

Fi,k. (4)

Algorithm 1. General framework for ensemble pruning and weight calculation
Require: Π - pool of n elementary classifiers

Fi,k(x) - support function value for each class i returned by each individual classifier
k from Π
φ - pruning threshold

Ensure: wi,k(x) - weights assigned to each support function Fi,k(x) which could be
used in eq.2

1: for i := 1 to M do
2: w := 0
3: Calculate F i(x) according to eq. 3 for NP-AVG or according to eq. 4 for NP-

MAX
4: for k := 1 to n do
5: wi,k(x) = 1

σ
√
2π

exp
(−(Fi,k(x)−F i(x))

2σ2

)

6: w := w + wi,k(x)
7: end for
8: for k := 1 to n do
9: if wi,k ≤ φ

10: discard the k-th classifier
11: end for
12: return pruned pool of p classifiers
13: for k := 1 to p do

14: w :=
wi,k(x)

w

15: end for
16: end for
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The only parameters of the proposed operators is σ which equivalent of stan-
dard deviation in normal distribution, and a pruning threshold φ.

4 Experimental Investigations

The aims of the experiment was to check the performance of the two proposed
aggregation operators N-AVG and N-MAX and to compare them with several
popular methods for aggregating classifiers.

4.1 Datasets

In total we chose 10 well known datasets from the UCI Repository [4]. For
datasets with missing values (autos, cleveland and dermatology), instances with-
out full set of features available were removed.

4.2 Set-up

As a base classifier, we have decided to use neural network (NN) - realized as a
multi-layer perceptron, trained with back-propagation algorithm, with number
of neurons depending on the considered dataset: in the input layer equal to
the number of features, in the output layer equal to the number of classes and
in the hidden layer equal to half of the sum of neurons in previously mentioned
layers. Each model was initialized with random starting values and their training
process was stopped prematurely after 200 iterations, in order to assure the initial
diversity of the pool and that we are working on weak classifiers.

The pool of classifiers used for experiments was homogeneous and consisted
of 30 neural networks.

As a reference methods we decided to use popular classifier combination algo-
rithms: majority voting (MV), maximum of support (MAX), average of supports
(AVG) and product (PRO).

For a pairwise comparison, we use a 5x2 combined CV F-test [1]. For assessing
the ranks of classifiers over all examined benchmarks, we use a Friedman ranking
test [3] and Shaffer post-hoc test [5]. For all statistical analysis, we use the
significance level α = 0.05.

4.3 Results

Firstly, we need to establish the level of influence of value of pruning threshold φ
on the quality of the ensemble. A grid search was performed for φ ∈ [0; 0.5] with
step = 0.05. The best parameter values according to the final accuracy and the
avg. size of the ensemble after pruning are given in Table 1. If φ = 0, then no
pruning was applied. We use the established values of this parameter for further
comparisons.

Results of the experiments, presented according to the accuracy and reduc-
tion rate of the examined methods, are given in Table 2. Outputs of Shaffer
post-hoc test over accuracy are given in Table 3.
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Table 1. Selecting the value of pruning threshold φ, and is influence on the size of the
ensemble. Numbers in brackets stands for a standard deviation in the ensemble size.

Dataset Best φ value Avg. size of the ensemble

NP-AVG NP-MAX NP-AVG NP-MAX

Autos 0.00 0.00 30 (0.00) 30 (0.00)
Car 0.3 0.25 21 (2.45) 19 (3.03)
Cleveland 0.00 0.00 30 (0.00) 30 (0.00)
Dermatology 0.15 0.10 19 (3.23) 16 (2.09)
Ecoli 0.10 0.15 17 (4.23) 18 (2.78)
Flare 0.2 0.15 13 (1.28) 12 (2.03)
Lymphography 0.00 0.00 30 (0.00) 30 (0.00)
Segment 0.2 0.15 20 (4.02) 18 (3.11)
Vehicle 0.05 0.05 17 (2.26) 17 (1.84)
Yeast 0.15 0.05 12 (3.72) 11 (2.39)

Table 2. Comparison of the classifier combination methods, with respect to their
accuracy [%]. Small numbers under accuracies stand for indexes of methods, from
which the considered one is statistically superior. Last row stands for the avg. rank
after the Friedman test.

Dataset MV1 MAX2 AVG3 PRO4 NP-AVG5 NP-MAX6

Autos 62.34 65.84 64.23 63.05 67.54 66.32
− 1,3,4 1,4 − ALL 1,3,4

Car 89.12 89.23 88.43 85.31 87.74 91.03
4,5 3,4,5 4,5 − 4 ALL

Cleveland 52.38 57.23 57.43 55.64 55.02 57.14
− 1,5,7 1,5,7 1 1 1,5,7

Dermatology 93.23 95.75 95.05 92.87 94.67 95.83
− 1,5,7 1,5 − 1 1,5,7

Ecoli 71.02 77.43 75.36 71.61 79.62 77.60
− 1,3,4,5 1,4,5 − ALL 1,3,4,5

Flare 74.31 72.69 75.72 73.12 73.90 77.12
2,4,5 − 1,2,4,5,6,7 2 2,4,5 ALL

Lymphography 82.27 80.32 80.87 79.32 81.12 80.32
ALL 5 5 − 2,5 5

Segment 86.23 86.74 87.54 85.62 86.89 91.21
4,5 4,5 1,2,4,5,7 4 4,5 ALL

Vehicle 66.43 74.03 72.63 67.90 70.12 73.87
− 1,3,4,5,7 1,4,5,7 1 1,4,5 1,3,4,5,7

Yeast 43.41 52.36 49.78 45.02 50.11 57.98
− 1,3,4,5,7 1,4,5 1 1,4,5 ALL

Avg. rank 4.51 3.21 5.72 6.48 7.62 2.78

Let’s present the conclusions derived from the experiments. The proposed
operators behaved reasonably well and outperformed, with statistical signifi-
cance, all of the traditional methods for 5 out 10 data sets. Modifications of
the average operator N-AVG was significantly better than the original one in 3
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out 10 experiments, while N-MAX (and N-AVG as well) was not significantly
better than the original maximum operator. The Shaffer test confirmed that the
combination rule which takes into consideration additional information (com-
ing e.g. individual classifier accuracy) can outperform untrained operators. This
confirmed our intuition, because the trained combination rule usually behave
better than untrained one, what was confirmed in the literature. This test also
showed that N-MAX is a slightly better than N-AVG, and what is interesting it
can outperform most of the traditional untrained approaches except maximum
operator. Analyzing characteristics of the used data benchmark sets we can sup-
pose that proposed operators work well especially for the classification task where
the number of possible classes is a quite high, but additional computer experi-
ments should be carried out to confirm this dependency. Each of the proposed
operators outperform majority voting for almost all data sets. We can conclude,
that in the case of an absence of additional learning examples (which can be
used to train the combination rule) the untrained aggregation is a better choice
than voting methods. This observation is also known and confirmed by other
researches as [11]. Our proposed methods allow to establish efficient weighted
combination rules with a low computational complexity. Trained fusers require
an additional processing time, which increases the complexity of the ensemble.
Our methods, due to their low complexity, seem as an attractive proposition for
real-life problems with limitations on processing time, e.g., ensembles for data
streams.

Table 3. Shaffer test for comparison between the proposed combination methods and
reference fusers. Symbol ’=’ stands for classifiers without significant differences, ’+’ for
situation in which the method on the left is superior and ’-’ vice versa.

hypothesis p-value

NP-AVG vs MV + (0.0423)
NP-AVG vs MAX = (0.3895)
NP-AVG vs AVG = (0.4263)
NP-AVG vs PRO + (0.0136)

NP-MAX vs MV + (0.0262)
NP-MAX vs MAX = (0.4211)
NP-MAX vs AVG + (0.0249)
NP-MAX vs PRO + (0.0097)

NP-AVG vs NP-MAX - (0.0314)

5 Conclusions

The paper presented two novel untrained aggregation operators which could
be used in the case of the absence of additional learning material to train the
combination rule. Otherwise the trained combination rule should be advised. The
proposed methods could be valuable alternatives for the traditional aggregating
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operators which do not required learning and should be used in the mentioned
above case instead of voting methods, of course in the case that we can access to
the support function values of individual classifiers. The computer experiments
confirmed that performances of the proposed methods are satisfactory compared
to the traditionally untrained operators, especially for tasks when the number
of possible classes is high. Therefore, we are going to continue the work on the
proposed models, especially we would like to carried out the wider range of
computer experiments which would define precisely the type of the classification
tasks when the N-AVG and N-MAX could be used.

Acknowledgments. This work was supported by the Polish National Science Center
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Abstract. In this paper, as an extension of real-valued orthogonal least-squares 
regression with tunable kernels (OLSRTK), a complex-valued OLSRTK is pre-
sented which can be used to construct a suitable sparse regression model. In or-
der to enhance the real-valued OLSRTK, the random traversal process and  
method of filtering center are adopted in complex-valued OLSRTK. Then, the 
complex-valued OLSRTK is applied to train complex-valued radial basis func-
tion neural networks. Numerical results show that better performance can be 
achieved by the developed algorithm than by the original real-valued OLSRTK. 

Keywords: Complex-valued radial basis function neural networks · Random 
traversal process · Repeat weighted boosting search · Filtering center 

1 Introduction* 

The complex-valued radial basis function neural networks (CVRBFNNs) were initially 
introduced in [1]. Since then, it has been extensively studied and many successful ap-
plications have been found in various fields such as image recognition [2], image seg-
mentation [12], circuit components modeling [3], signal processing [4,5,6,7,8] and 
pattern classification [13,14] etc. As is well known now, the selection of centers of 
neurons in hidden layer plays an important role in the learning process of CVRBFNNs. 
And the connection weights between neurons in output and hidden layers can be effi-
ciently computed by least-squares method after centers selected. Many learning algo-
rithms have been available in literature [1], [9,10] which can be efficiently applied to 
determine the centers of hidden neurons. Among them, the so-called K-means cluster-
ing algorithm is a popular one, where the number of centers is fixed in advance. This 
may lead to an unreasonable structure of CVRBFNNs. The orthogonal least-squares 
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(OLS) method for CVRBFNNs was introduced by S. Chen in [1]. Based on it, one can 
establish a sparse regression model. It is known that the centers obtained by OLS algo-
rithm must be chosen from samples. Nevertheless, in some situations, it should be 
more suitable that the centers come from outside of samples. In fact, a combination of 
some samples can be chosen as a center. The complex-valued gradient descent learning 
algorithm was proposed in [9]. It was not applicable to problems of which the gradient 
was difficult to calculate. In real domain, it was solved by the real-valued orthogonal 
least-squares regression with tunable kernels (OLSRTK), where a combination of 
some samples was chosen as a candidate center without gradient calculation [10]. Fur-
thermore, the center's parameters of each individual regressor were tuned in [11] by 
incrementally maximizing the training error reduction ratio (ERR) based on a guided 
random search algorithm. This algorithm was named as repeating weighted boosting 
search (RWBS) [11]. 

It is found that although the real-valued OLSRTK has some benefits, two aspects 
are ignored by them. Firstly, some training samples may be ignored when using 
RWBS to generate centers randomly from samples. Secondly, the decline rule, which 
centers should obey in OLS, is broken in RWBS.  

Motivated by these, an improved complex-valued OLSRTK is presented in this pa-
per in order that it can be applied in complex domain. Two adjustments are adopted to 
resolve the two issues mentioned above. Specifically, for the first one, a random tra-
versal process (RTP) is added; for the second one, a method of filtering center (FC) is 
utilized to ensure that the better center obeys the decline rule in OLS. Then, the im-
proved algorithm is employed to train CVRBFNNs to deal with some practical prob-
lems. Two examples are given to illustrate the effectiveness of the developed  
algorithm. The experimental results show that better performance can be achieved by 
our algorithm. 

2 Preliminaries 

Consider a problem of approximating N pairs of training samples x , , with x ,   and y , ,  by using the following model x x x ∑ x x
              

   (1) 

where M is the number of regressors; x x ;  is the connection weight; x  is the modeling error; and ·  denotes a regressor. Generally, the regressor 
uses the Gaussian function that maps , resulting in inaccurate phase approx-
imation. To overcome the above limitation, a Gaussian like fully complex function ·  [9] was used. Here we take the variant of origin ·  [9]: x x u x u

      
            (2) 

where the amplitude of samples are normalized to one; the constant scalar  is the 
spread of the th regressor and u  is the th kernel center. Let θ , , , e x , , x and P p , , p  with regression 
vector p x , , x , Eq. (1) can be rewritten as 
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 y Pθ e                        (3) 

Make an orthogonal decomposition of P as P WA, where A  is an upper tri-
angular matrix with the unit diagonal elements and W w , , w  with  w C  satisfies w w 0, if . Eq. (3) can be rewritten as  

 y WAθ e Wg e                     (4) 

where g , , . The sum of squares of  is  

 y y ∑ w w e e (5) 

According to Eq. (5), an ERR of candidate center x  with regard to w  can be de-
fined as x w w / y y

                         
(6) 

with w y/ w w . Define the orthogonal coefficients 

 w p / w w  (7) 

Here 1 M, 1  and w
 

is the orthogonal column vector correspond-
ing to th center. In OLS algorithm, the selection of the th center is as follows. For 1 M,  , ,  where , 1 1 records the index of th cen-
ter in samples. We use Eq. (6) and Eq. (7) to calculate 

 w p ∑ w  (8) 

 x w w / y y  (9) 

 x  (10) 

Then the th center is chosen as x
 

corresponding to the maximum of x . Its 

orthogonal column vector and ERR are w w
 

and x
 

respectively. 

The decline law in OLS is  

         

x x x x
x x         (11) 

3 Improved Algorithm with RTP and FC 

3.1 RTP 

In the training procedure of real-valued OLSRTK, the candidate centers are selected 
from samples randomly by RWBS. However, some training samples may be skipped 
in RWBS. The RTP is added in order that all samples can be learned. RWBS is to 
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repeat weighted boosting search (WBS) NG times. The description of WBS is as 
follows. 

Suppose an optimization problem is x . A population of  samples is 
selected randomly

 
from sample set X . Let x x and xx  with x x , , x . The 1 th point is obtained by computing a 

combination of x , , x :  

 x ∑ x  (12) 

where the distribution weightings  0 and ∑ 1. Then x
 

is defined 
as 

                x x x x                     (13) 

According to their ERR x   and x , x  is replaced by the better 
one between x

 
and x . The WBS process is stopped until the above iteration 

is repeated for NB times, or the following condition is satisfied: 

                            x x                           (14) 

where  is a small positive scalar. For example, suppose that X x , , x , P 3, NB 2 and NG 1. In the first iteration, one randomly selects 3 samples, 
e.g., x , x , x   from X to generate x

 
and x . If the termination condition 

is not satisfied, one goes to the second iteration and then randomly selects 3 points, 
e.g., x , x , x  from X  for further calculation. Then, the WBS and RWBS are 
stopped. We can see that x  is ignored in the process. Hence, we cannot make sure 
that the center selected by RWBS is the most appropriate one. 

RTP is to make sure that all samples are involved in the selection procedure. Sup-
pose that the sample set is x , x  and we are going to determine the th 
center. Hence, 1 centers have been selected. Some of the selected centers may 
come from samples and we assume that the number is . Others may be generated by 
Eq. (12) and Eq. (13), and the number is 1 . Define _  to 
record the number of samples which are not selected as centers, that is _ .  is a small positive scalar. The detailed RTP is as fol-
lows: 

For k=1:N   outer loop process  
Store samples which are not selected as centers in  
variable: _ . Set values for P  and NB  
respectively, then set 0 1/P ; 

Compute NG _ PP 1 ; 

For n=1:NG   RWBS  process  
If n==1  

  Select P  samples randomly 
from _  and  

delete them from _ . Then calculate  
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their ERR: x  , 1 ; 
Else x x  is regarded as an candidate center. Select 
the rest P 1  samples randomly

 
from _  and      

delete them from _ . Then calculate their 
ERR: x  , 1 ; 

End If 
For t=1:NB  WBS  process  

  Update the distribution weightings as follows: 

First, normalize ERR: x x / ∑ x  , 1PP , calculate  ∑ 1 xP , then compute: 1 ,  11 ,  1 ,  1    
Use Eq. (12) and Eq. (13) to generate x

 
and      x . If either of both obeys the decline rule, 

then find x , 1,  2. And If  x x , then x  is replaced by x ; 

If x x , exit WBS; 
End WBS 
Obtain local optimal center x ; 

End RWBS 
If n==NG && ((NG-1)*(Ps-1)+Ps)< avail_NumSam  

n=n+1; 
     _P _ NG 1 P 1 P ; 
     x  with the remainder _P  samples are as candidate 

centers. Then calculate their ERR; 
     _P 1; 

Implement WBS process again with the last P  samples; 
Obtain local optimal center x ; 

End If 
Obtain center x x  and its ERR: x ; 

If 1 x x  , exit outer loop; 

End outer loop 
3.2 FC 

The second stage of training CVBRFNNs is to determine the centers from the candi-
dates obtained by RWBS. However, according to Eq. (11), the decline law may be 
broken in RWBS. Suppose that x

 
is the first selected center, its ERR x  is 

the largest one among the candidate centers. Then we need to select the second center x . Its ERR is x . However, if x is from new points x ,  x
 

and it 
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has not been involved in the selection of determining the first center x . Hence, its x
 
might be

 
larger than x . This may break the decline rule in OLS. 

The method of FC is to delete new point which breaks the rule. Therefore we can 
ensure that all centers selected in the training obey the decline rule. Assume that it is 
in the calculation of the th center with 2, at the th loop in RWBS with 1 NG. The value of  _   is to show whether  x

 
obeys the decline 

law or not. If _  equals to 1, it means that x
 

obeys it. Otherwise, we 
cannot consider x . Similarly, _  is used for x . The idea of FC is as 
follows: 

For t=1：NB    WBS  process  

   Update the distribution weightings, Use Eq. (12) and 
Eq. (13) to generate x

 
and  x ; 

Set _ 0, _ 0; 
Calculate x  and x , with 1, , 1; 
For m=1:k-1  

If x x , _ _ 1; 
If x x , _ _ 1; 

End 
If _ 1, calculate x ; 

Otherwise,  set x 0; 
If _ 1 , calculate x ; 

Otherwise, set x 0; 
Then find x , 1,  2. And if          x x , then x  is replaced by x ;  

If x x , exit WBS; 
End WBS 
Find local optimal center x . 

4 Applications 

4.1 Modeling  

Consider a second order band-stop FIR digital filter. Its amplitude-frequency response 
function is described by 

 ∑  (15) 

where 1 denotes the order of filter. Its normalized amplitude-frequency response 
is  

 
1, 0, 0.250, 0.25 , 0.751, 0.75 ,  (16) 
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According to the frequency transforming equation 2 / , Eq. (16) corresponds 
to a band-pass filter when 0, 0.25  and 0.75 , .  And it corresponds 
to a stop-band filter when 0.25 , 0.75 . Totally 200 samples are produced, 
where the input vector is x , ,  and ω is randomly distributed 
in 0, . 100 samples are used for training and the others for testing. Tab. 1 shows 
the averaged experimental results for 100 times between real-valued OLSRTK and 
improved algorithm. It can be seen from Tab. 1 that our algorithm achieved better 
performance.  

Table 1.  Results of real-valued OLSRTK and our algorithm in Modeling 

         
         
          
          

          

4.2 Classification 

Two UCI datasets Iris and BLOGGER are further tested to show the performance of 
the developed algorithm. In Iris dataset, there are three classes of samples. We use 0, 
1 and 2 to represent the corresponding desired output, respectively. In BLOGGER 
dataset, there are two classes of samples. We use 0 and 1 to represent the correspond-
ing desired output, respectively. Since both of them are real-valued, it is necessary to 
transform them into complex ones:  

 
z · , x· / · ,  (17) 

where x is the input vector and  is the desired output. z  is adopted as the input 
vector of CVRBFNNs and   is the output of CVRBFNNs. The result is given in 
Tab. 2. It is also verified that better performance can be guaranteed by our algorithm. 

Table 2.  Results of real-valued OLSRTK and our algorithm in Classification 
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Abstract. The majority of current researches in Machine Translation field are 
focalized essentially on spoken languages. The aim is to find a most likely 
translation for a given source sentence based on statistical learning techniques 
which are applied to very big parallel corpora. In this work, we focused on ges-
ture languages especially on Sign Language in order to present a new methodo-
logical foundation for Sign Language Machine Translation. Our approach is 
based on Kernel Regression combined to Kernel Density Estimation method 
applied to Sign Language n-grams. The translation process is modelled as an  
n-gram to n-gram mapping with the consideration of the n-gram positions in the 
source and the target phrases. For doing so, we propose a new feature mapping 
process (Weighted Sub n-gram Feature Mapping) which is a modified version 
of the String Subsequence Kernel SSK feature mapping. The Weighted Sub  
n-gram aims to generate feature vectors mapping of both source and target n-
gram. Afterwards, to learn the function that map source n-grams to target  
n-grams, we used and compared four learning techniques (Gaussian Process 
Regressor, K-Nearest Neighbors Regressor, Support Vector Regressor with 
Gaussian Kernel and Kernel Ridge Regression) for the purpose to choose the 
efficient one which minimizes the SSE (Sum of Squared Error). Even so, to find 
solution to the pre-image problem, we rely on the De-Bruijn Multi Graph search 
applied on n-grams target. For the purpose to obtain the best translation, we re-
lied on the search of the most frequently observed bilingual n-gram alignment 
in term of the maximization of the translation probability. For unknown  
n-grams, we used kernel ridge regression for the purpose to predict the prob-
ability through learning the Density Estimation function of the bilingual  
n-grams alignments. We obtained encouraging experimental results on a small-
scale reduced-domain corpus. 

Keywords: Kernel ridge regression · String kernel · De-Bruijn · Kernel  
density estimation · Sign language · Gaussian process for regression ·  
KNN-Regressor · SVR Gaussian kernel · ASL signing space 
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1 Introduction 

Machine learning technology has progressively extended its application domain to 
reach Machine Translation field. However, in this field spoken languages are mainly 
used, there are few works that treat gesture languages such as Sign Language and this 
is due to the lack of sign language parallel corpora. In this work, we focused on the 
American Sign Language (ASL) as the primary means of communication for about 
one-half million deaf people in the US [3]. Especially, we are concentrated on the 
translation from English gloss text (without taking into account the signing space) to 
English gloss text that includes signing space information.  

The study [6] has shown that signing space information improves the translation 
understanding. A phenomenon in which signers use special hand movements to indi-
cate the location and movement of invisible objects (representing entities under dis-
cussion) in space around their bodies as shown in figure 1. Signing space information 
are frequent in ASL and are necessary for conveying many concepts. In other words, 
the translation process that integrates spatial information is more understandable than 
classical translation. This is due to also that deaf people have many difficulties related 
to the creation of a mental image that reflects the real meaning of the translated textu-
al information. 

 

 
 
 
 
 
 

Fig. 1. An Example of the sentential use of space in ASL. Nominal (cat, dog) are first associat-
ed with spatial loci through indexation. The direction of the movement of the verb (BITE)  
indicates the grammatical role of subject and object. 

 

In this context, we propose a new methodological foundation that aims to use Ker-
nel Regression methods in machine translation processing to generate translation that 
includes signing space information. For this purpose, we built a small-scale parallel 
corpora composed of both English gloss texts without signing space information and 
English gloss texts with signing space information in order to apply our methodology 
using Kernel Regression technique. The translation process is modeled as an n-gram 
to n-gram mapping with the consideration of the n-gram positions in the source and 
the target phrases.  

For doing so, we rely on our feature mapping process in order to generate feature 
vectors mapping of both source and target n-grams. To learn the function that map 
source n-gram to target n-grams, we used and compared four learning techniques 
(Gaussian Process Regressor, K-Nearest Neighbors Regressor, Support Vector 
Regressor with Gaussian Kernel and Kernel Ridge Regression) for the purpose to 
choose the efficient one(that minimizes the SSE). As a solution to the pre-image  
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problem, we rely on the De-Bruijn Multi Graph search applied on n-grams target. In 
fact, we are based on the search of the translation that maximizes the probability score 
of n-grams translation. For unknown n-grams, we used ridge regression for the pur-
pose to predict the probability through learning the Density Estimation function of the 
bilingual n-grams. The remainder of this paper is organized as follows. In section 2, 
we present some related works. Section 3 is dedicated to discuss our approach. Sec-
tion 4 introduces our experimental results. Finally, we conclude by a conclusion and 
some perspectives. 

2 Related Work 

Regression techniques can be used to model the relationship between strings. Howev-
er, there is the work of [4] which is based on a general regression technique for learn-
ing transductions using a string-to-string mapping. Wang [17] applies a string to 
string mapping approach to machine translation by using ordinary least squares re-
gression and n-gram string kernels on a small subset of the Europarl corpus. This 
work uses the pre-image model as a score to the standard statistical machine transla-
tion systems such as phrased-based search [9]. Furthermore, this approach loses some 
of main advantages of the regression approach, as proposed and cited in [4].Wang and 
Shawe-Taylor [18] used also later the L2 regularized least squares regression in ma-
chine translation. Although the translation quality they achieved still not better than 
Moses [8], which is accepted to be the state-of-the-art, they show the feasibility of the 
approach. Ergun Bicici [1] uses L2 regularized regression for sparse regression esti-
mation of target features and graph decoding to find translation results. Serrano and 
al. [12] work is based on the learning of the translation mapping by linear regression 
applied to constrained hotel front desk requests domain (corpora). Once the target 
feature vector is obtained, they use a multi-graph search to find all the possible target 
strings. We noticed that the majority of existing works use mainly regression or statis-
tical techniques on spoken languages corpora. Except, some works such as Daniel 
Stein [14] work that uses statistical approach on sign language machine translation on 
small-sized corpora.  

The Hung-Yu Su [7] work, relies on improving structural statistical machine trans-
lation for Sign Language with small corpus using thematic role templates as Transla-
tion Memory. Furthermore, we also observed that there are no studies that combine 
the statistical and regression approaches in Sign language machine translation. For 
this purpose, we follow the works of Cortes and al. [4], Wang and Shawe-Taylor [18], 
and P. Koehn [9] in order to derive benefit from statistical and regression approaches. 
Furthermore, we present a new methodological foundation of Hybrid technique which 
consists to combine the Kernel Regression and the Kernel Density Estimation ap-
proaches applied to small-size sign language corpora taking into a count the signing 
space informations. 
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3 Our Approach 

3.1 Problem Formulation 

Machine translation deals with the problem of mapping sentences x from a source 
language X  to a target language Y . Due to the complexity of the translation problem, 
the relationships between these two languages cannot be properly enumerated as a set 
of rules [12]. Let X and Y correspond to the token sets used to represent source and 
target N-Gram, then a training sample of m inputs can be represented as: (X1, Y1). . . 
(Xm, Ym)  X* ×Y*, where (xi, yi) corresponds to a pair of source and target language 
token string. Input N-Gram in X*are mapped via xto feature space Fx and the output 
string are mapped to Fy via the mapping y. The mapping can be defined implicitly 
by a positive symmetric Kernel Kx and Ky associated with the mappings x and 

y.Our goal is to find a mapping f: X* Y* that can convert a given set of source 
string to a set of target string that share the same meaning in the target language. In 
other words, a regression technique can be used to learn and to estimate the mapping 
g from X* to Fy. 

 
 
 
 
 

 

Fig. 2. The String-to-string mapping presented in Cortes work [4] 

 

Afterwards, given the target feature vector Fy obtained from the translation map-
ping, we compute its pre-image set φ . Figure 2 depicts a general scheme of the 
whole translation process. 

3.2 Our Feature Mapping Approach 

Standard learning systems (like neural networks or decision trees) operate on input 
data after they have been transformed into feature vectors d1. . . dn  D living in an m 
dimensional space. However, many techniques can be applied to these data points in 
order to analyze, to classify, to cluster, to interpolate or to derive useful informations 
in order to make predictions. There are many cases, however, where the input data 
cannot readily be described by explicit feature vectors: for example bio sequences, 
images, graphs and text documents. For such datasets, the construction of a feature 
extraction module can be as complex and expensive as solving the entire problem 
[11]. It is also possible to lose some important information during the feature extrac-
tion process.  

In general, the effectiveness of a system is closely related to the accuracy and the 
performance of the feature extraction process. We may cite that Kernel Methods can 

 x y g

X*

Fx Fy

Y*f
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be considered as an efficient alternative in the feature extraction process. However, 
the key idea behind the Kernel Methods is to build function that gives the inner prod-
uct between the mapped data points in a higher dimensional space. Afterwards, Sup-
port Vector Machine (SVM), Perceptron, PCA or Nearest Neighbor can be directly 
applied to this feature space in order to predict new data. In our context, we focused 
on the feature mapping process in String Kernels such as String Subsequence Kernels 
(SSK), N-Gram String Kernels or p-spectrum Kernel [10]. In fact, SSK is based on 
the work [16] mostly motivated by bioinformatics applications. It maps strings to a 
feature vector indexed by all k tuples of characters. The feature mapping used in 
SSK is for a string “s” [11]: ∑ : . (1)

The p-spectrum kernel maps strings according to the occurrences of common sub-
strings of length p. Even so, the n-grams Kernel maps strings (documents) into high 
dimensional feature vectors; each entry of the vector represents occurrence or non-
occurrence of a contiguous subsequence by a number. Unfortunately, these features 
mappers are not enough to generate a unique feature vector mapping. Recall that even 
in the theoretical situation this would not be possible since several n-grams can be 
built from different reordering of the same token counts.  

These n-grams have the same feature vector and therefore, we have no way to dis-
criminate among them. If we take the example shown in figure 3, without taking into 
account the weighting values assigned to each value of the table, we can deduce that 
all of the three rows has the same values but at different places: , ,  1,  1,  1,  1 ,  1,  1, , ,  1,  1 ,  1,  1,  1,  1, , ). If we  
apply cosine similarity for example, we conclude that: 
cosine ( , cosine ( ,  = cosine( , . 
 
 
 
 
 
 

Fig. 3. From N-Gram alignment (according to 2-gram position = 1) to feature vector mapping: 
a simple demonstration 

 

Obviously, this problem is solved by applying (2) which multiply the λ values by 
the “p” position of the token in the columns (see definition 1): 

 

([I-ENTER-ROOM]$)1=1, ($[TABLE])2=2, etc…. In this manner,, 2 ,  1,  1,  1,  1 ,  1,  1,3 , 4 ,  1,  1 ,  1,  1,  1,  1, 5 , 6 ), consequent-
ly cosine ( , !  cosine ( ,  ! = cosine ( , . 
 
Definition 1(Weighted Sub n-gram Feature Mapping). Let C be a corpus and Σ be a 
finite word in C. An N-Gram is a finite contiguous sequence of words from Σ,  
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separated by spaces designed by ($) symbol. Let n of n-gram is a positive number that 
define the count of contiguous words in a sequence separated by $ with n  {2..4}. 
For n-gram G, we denote by |G| the length of the n-gram G = g1…g|G|. The n-gram 
G[i:j] is the sub n-gram Gi…Gj of G. We say that h is a subn-gram of G, if there 
exist indices i=(i1…i| |) with 1≤ i1≤…≤i| |≤|G|, such that h G , for j = 1… |h| or h G i  for short. The length l(i) of the sub n-gram in G is i| |-i1 + 1. We denote by ω h the weight of h according to his position p {1…m} with m is the count of 
different word in C that start and end with space symbol ($). We now define the fea-
ture spaces mapping φ for an n-gram G is given by:  ∑ : . (2)

In summary, our feature mapping solution (2) is a weighted version of the feature 
mapping process used in SSK. Firstly, we generate all the n-grams (n=2...4) in the 
corpora according to their positions in the phrases as shown in the example in figure 3 
(I-ENTER-ROOM$TABLE, DOG$CAT, LEAF$FALLING: are all 2-GRAMs at 
position 1 in the three phrases). Secondly, for a "p" position n-gram, we split all then-
grams according to space symbol separator which is replaced by the "$" symbol as is 
mentioned in figure 3 (in the table).Finally, we apply (2) to generate the feature map-
ping vectors. These three steps are applied both for source and target phrases with 
n=2…4 and positions p=1…4. 

3.3 Denoising Data in Machine Translation 

We consider that our data are obtained by applying (2) in order to extract the feature 
mapping of both source and target n-gram. Let  be a data and let with M  1…m  be a set of m data where data are the count of n-gram source or target. We 
denote by k the count of the entire different token obtained by splitting the n-grams 
according to the space symbol separator which is replaced by the "$" symbol as is 
mentioned in figure 3 (in the table columns). By applying (3) respectively on the 
source and the target n-gram, we obtain a set of data points X for source and Y for 
target {x1…xm} X and {y1…ym} Y. In other words,  is considered as a data point 
with x and y coordinate that symbolize the alignment between the source and the 
target n-gram. 

δM  ω h λ: G . (3)

However, denoising is a technique used to reconstruct patterns eliminating noise from 
data. In our context, denoising means that we must choose the best translation from 
the source to the target n-gram in term of the most frequently observed alignment. For 
this purpose, we introduced the Kernel Density Estimation in order to choose the best 
n-gram translation (that maximizes the alignment probability)  (x,y) according to the 
position in both source and target corpus sentences. Let ( 1 (x1,y1), 2 (x2,y2)… n 
(xn,yn)) be an independent and identically distributed sample drawn from some distri-
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bution with an unknown density ƒ. We are interested in estimating the shape of this 
function ƒ. Its kernel density estimator is: 1

 (4)

Where K(•) is the kernel and h > 0 is a smoothing parameter called the bandwidth. In 
our context, we have used a Gaussian kernel. 

3.4 Learning the Regression Function 

Now in the machine translation process, given S = {(xi, yi): xi  X, yi  Y, i =1 ... m}, 
on a set of training n-gram samples  C (bilingual corpus , i.e. bilingual n-gram pairs 
S = {(xi, yi): xi  X, yi  Y, i =1…m}. We denote by δ  δMwithM  {1…m} in 
(3) of source n-gram feature mapping and we denote by δ in a similar way for the 
target n-gram. Let £: x δ  and ¥: y δ  are the feature mapping respectively 
of sourceδ  and targetδ  n-gram.Once the feature mapping is defined, the train-
ing problem is restated as a regression problem where a source n-gram to target n-
gram mapping must to be found, i.e. finding the translation mapping h: ¥ £  (5)

In other words, we try to learn the regression function h that can be a linear or a non-
linear function in the real practice. For this purpose, we used and compared some 
linear and nonlinear regression methods through kernel ridge regression (6), support 
vector Regressor with Gaussian kernel (nonlinear kernel) [2], Gaussian process 
Regressor [2] and K-Nearest neighbors Regressor. min || £ ¥|| || || with h be W for a linear regression (6) 

 ¥ £ £  (7) 

The solution to Eq. (9) is found by differentiating the expression and equaling it to 
zero to obtain the explicit solution of the ridge regression problem with (8) as the 
prediction formula: 
 ¥ ¥ £ £    (8) 

Our aim is to apply the appropriate regression method to the entire n-gram corpus 
at different positions p  [1...4] in order to find the best estimation of the translation. 
In fact, table 1 show that the Kernel Ridge Regression has the minimum SSE (Sum of 
Squared Error) value compared to Gaussian Process Regressor, SVR (Gaussian Ker-
nel) and KNN Regressor. This is due to that linear models can often outperform fan-
cier nonlinear models, especially in situations with small numbers of training data or a 
low signal-to-noise ratio [15]. 
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Table 1. A part of the SSE (Sum of Squared Error) results of the n-grams regression (2-gram) 
with 300 corpus phrases 

SSE / 2-gram 2-gram 
P1 P2 P3 P4 

SSE-Kernel Ridge Regres-
sion 

9.29263e3 1.52454899e4 8.167e3 5.793e2 

SSE-Gaussian Process 
Regressor 

1.5353374e5 1.13597150e5 3.7071e4 1.5906e3 

SSE-SVR (Gaussian Kernel 
Regressor 

2.21779207e6 1.21887605e6 1.867892e6 2.17080e5 

SSE-KNN Regressor 1.25842897e7 2.26991483e7 6.578504e6 3.97199e5 

3.5 Regression on the Density Estimation of the Bilingual n-Gram Alignment 

Our approach is based on the estimation of the most appropriate translation according 
to the different n-gram positions in the corpus sentences. In fact, we rely on the Ker-
nel Density Estimation process applied to bilingual n-gram at different positions for 
the purpose to find the most commonly observed translation in term of probability. 
However, to choose the best n-gram translation, we used (9): 

… ,  (9)

Picking , to bethe density estimation probability of the source n-gram 

translated to the n-gram target and let p be the set of n-gram positions in  

sentences with p  [1…4]. Unfortunately, we cannot compute the probability of the 
bilingual n-gram translation with unknown input n-grams. For this reason, we used 
Regression method through Kernel Ridge Regression in order to predict the unknown 
translation probability. 

3.6 The Pre-image Problem 

The pre-image problem consists of determining the predicted output: given z  FY, 
the problem is to find y Y*such that y(y) = z, see figure 2. In fact, based on the 
work of [4] in pre-image resolution, we used the same idea which relies on the De 
Bruijn graph, except that we are based on words instead of letters. We associate a 
vertex to each one of the entire different token obtained by splitting the n-grams to 
different words that could start or end with "$" symbol as is mentioned in figure 3 (in 
the table columns). The edges between all vertexes are weighted using (2). Each sen-
tence of the target corpora has a De Bruijn graph where the sum of all his edges 
weight is represented by (3). Note that there is an overlap between resembling De 
Bruijn graphs which makes possible to generate new links. For a new regression val-
ue, we employ a graph search method in order to find the best eulerian path (the near-
est value) in term of the sum of edges weight (3). 
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3.7 Our Algorithm 

Now we will describe each step of the algorithm in details: 

1- Words Decomposition: All of the aligned bilingual phrases are decomposed in 
order to obtain two set of words. The generated words contain a "$" symbol that 
can be placed before or after the words according to their original phrases loca-
tion for the purpose to represent the "space" symbol location. 

2- Feature Mapping: Let p  [1…4] be the positions of the n-grams used for both 
source and target phrases. For each p in [1…4], we generate all the n-gram with 
n 2 to 4 from the aligned bilingual corpora for both source and target phrases. 
We can now apply (2) formula in order to generate the feature mapping to all of 
the bilingual n-grams. 

3- Data Denoising: In our context, denoising means that we must choose the best 
translation from the source to the target n-gram in term of the most frequently ob-
served alignment. For this purpose, we apply (3) for each of the feature mapping 
of the source and the target n-grams in order to obtain a set of data points X for 
source and Y for target. For data denoising, we apply (4) then we choose the 
most frequently observed alignment. 

4- Choosing the learning method and learning the regression function: To learn 
the mapping function, we apply and we compute the SSE of the Kernel Ridge 
Regression (6) (7), the Gaussian Process Regressor [2], the SVR (Gaussian Ker-
nel) [2] and the KKN Regressor [2]. Afterwards, we choose automatically the 
method that has the best approximation results (minimum of SSE).For unknown 
input n-grams we used the same regression method (to learn the Density Estima-
tion function of the aligned bilingual n-grams) in order to predict the unknown n-
gram translation probability. 

5- Solving the pre-image problem: Now for a new input phrase, we apply step 2 
with (3) formula in order to predict the regression value (using (8) in the case of 
Kernel Ridge Regression) which is used in De Bruijn graphs to find the best 
eulerian path (the nearest value). 

6- Choosing the best translation: This step aims to choose the best translation 
from the generated 2-grams, 3-grams and 4-grams in term of maximizing the 
translation probability using (9). 

4 Experiment Evaluation 

We have carried out experiments on 300 ASL bilingual phrases corpus. The proposed 
system was trained on these phrases and tested on 100 different ASL phrases. We 
applied and compared bleu scores of the translation results with Kernel Ridge Regres-
sion, Gaussian Process Regressor, SVR (Gaussian kernel) and K-NN Regressor. As 
shown in table 2, using Kernel Ridge Regression we obtained encouraging result as 
87% score using the Bleu metric [5]. 
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Table 2. Results from 300 training bilingual ASL phrases with 100 different testing phrases 

 Kernel Ridge Regression GP Regressor SVR  K-NN Regressor 
BLEU  87% 68% 61% 49% 

5 Conclusion and Future Works 

The research described in this paper has laid a methodological foundation for future 
research in Sign Language Machine Translation based on kernel regression and kernel 
density estimation methods applied to ASL n-grams (with signing space 
informations). Our aim is to provide an efficient approximation function (in term of 
the minimum of SSE comparing Gaussian Process Regressor, K-Nearest Neighbors 
Regressor, Support Vector Regressor with Gaussian Kernel and Ridge Regression) 
that learns the mapping between the source and the target n-grams.  

For feature mapping, we proposed a new mapping process (Weighted Sub n-gram 
Feature Mapping) which is based on the String Subsequence Kernel SSK feature 
mapping. Even so, to find solution to the pre-image problem, we relied on the De-
Bruijn Multi Graph search applied on n-grams target. We are based on the search of 
the translation that maximizes the translation probability score of n-grams translation. 
For unknown n-grams, we used ridge regression for the purpose to predict the prob-
ability through learning the Density Estimation function of the aligned bilingual n-
grams. We report encouraging experimental results on a small-scale reduced-domain 
corpus with 87% BLEU score. The ultimate goal of our future research is to build a 
big American Sign Language Corpora (with signing space informations) in order to 
improve the translation quality in term of blue score. We also plan to enlarge the 
phrases length for the purpose to treat longer phrases (to reach 8 n-gram position and 
5-grams). 

References 

1. Biçici, E., Yuret, D.: L1 regularization for learning word alignments in sparse feature ma-
trices. In: Proceedings of the Computer Science Student Workshop (2010) 

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006). ISBN: 978-0-
387-31073-2 

3. Charles, A., Rebecca, S.: Reading optimally builds on spoken language implication for 
deaf readers. Learning research and development center University of Pittsburgh (2000) 

4. Cortes, C., Mehryar, M., Jason, W.: A general regression framework for learning string-to-
string mappings. In: Bakir, G.H., Hofmann, T., Sch, B. (eds.) Predicting Structured Data, 
pp. 143–168. The MIT Press (September 2007) 

5. Finch, A., Hwang, Y.-S., Sumita, E.: Using machine translation evaluation techniques to 
determine sentence-level semantic equivalence. In: IWP 2005 (2005) 

6. Huenerfauth, M., Lu, P.: Effect of spatial reference and verb inflection on usability of sign 
language animations. Springer-Verlag Univ. Access Inf. Soc. (2011). doi 10.1007/s10209-
011-0247-7 



384 M. Boulares and M. Jemni 

7. Hung-Yu, S., Chung-Hsien, W.: Improving structural statistical machine translation for 
sign language with small corpus using thematic role templates as translation memory. 
IEEE Transactions on Audio Speech, and Language Processing 17(7), 1305–1315 (2009) 

8. Koehn, P., Hoang, H.: Factored translation models. In: Proc. of EMNLP-CoNLL 2007 
(2007) 

9. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proc. of HAACL-
HLT 2003, pp. 48–54 (2003) 

10. Leslie, C., Eskin, E., Stafford, W.: The spectrum kernel: a string kernel forsvm protein 
classification. In: Pacific Symposium on Biocomputing, pp. 566–575 (2002) 

11. Lodhi, H., Saunders, C., Shawe-Taylor, J., Nello, C., Watkins, C.: Text Classification us-
ing String Kernels. Journal of Machine Learning Research 2, 419–444 (2002) 

12. Serrano, N., Andres-Ferrer, J., Casacuberta, F.: On a kernel regression approach to ma-
chine translation. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 
394–401 (2009) 

13. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. John 
Wiley & Sons, New York (1992) 

14. Stein, D., Schmidt, C., Hermann, N.: Analysis, preparation, and optimization of statistical 
sign language machine translation. Machine Translation 26(4), 325–357 (2012) 

15. Trevor, H., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Min-
ing, Inference and Prediction, 2nd edn. Springer (2009) 

16. Watkins, C.: Dynamic alignment kernels. Advances in Large Margin Classifiers, pp. 39–
50 (2000) 

17. Zhuoran, W., Shawe-Taylor, J., Sandor, S.: Kernel regression based machine translation. 
In Human Language Technologies. In: The Conference of the North American Chapter of 
the Association for Computational Linguistics, pp. 185–188 (2007) 

18. Zhuoran, W., Shawe-Taylor, J.: Kernel regression framework for machine translation: 
UCL system description for WMT 2008 shared translation task. In: Proceedings of the 
Third Workshop on Statistical Machine Translation, pp. 155–158 (2008) 

 



© Springer International Publishing Switzerland 2014 
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 385–392, 2014. 
DOI: 10.1007/978-3-319-12436-0_43 

Adaptive Intelligent Control for Continuous Stirred Tank  
Reactor with Output Constraint  

Dong-Juan Li1() and Yan-Jun Liu2 

1 School of Chemical and Environmental Engineering, Liaoning University of Technology, 
Jinzhou 121001, Liaoning, China 

ldjuan@126.com 
2 College of Science, Liaoning University of Technology, Jinzhou 121001, Liaoning, China 

liuyanjun@live.com 

Abstract. For a class of continuous stirred tank reactor with the output con-
straint and the uncertainties, an adaptive control approach is proposed based on 
the approximation property of the neural networks. The considered systems can 
be viewed as a class of pure-feedback systems. It is proven that all the signals in 
the closed-loop system are bounded and the system output is not violated by us-
ing Lyapunov stability analysis method. A simulation example is given to veri-
fy the effectiveness of the proposed approach.  

Keywords: Continuous stirred tank reactor · Adaptive control · The neural  
networks · Barrier Lyapunov function 

1 Introduction 

Recently, the adaptive control of uncertain nonlinear systems has attracted much 
attention. Based on the approximation of the fuzzy logic systems and the neural 
networks,  some significant works were obtained for nonlinear systems with 
completely unknonwn functions. In [1], chen et al desiged an adaptive output 
feedback neural control for nonlinaer SISO systems with time-delay. Based on the 
small gain theory, an adaptive fuzzy output feedback control was given in [2] for a 
class of nonlinear SISO systems with unmodelled dynamics. In [3], a robust adaptive 
neural network control algorithm was developed for uncertain nonlinear systems with 
unknown gain function and control direction. 

At present, the adaptive control for continuous stirred tank reactor (CSTR) has ob-
tained many interests. An adaptive tracking control method was studied in [4] to be 
applied in CSTR. In [5], H. G. Zhang et al provided an adaptive fuzzy sliding control 
to a general class of nonlinear systems and this method is used to control CSTR to 
verify the effectiveness. In [6, 7], two adaptive fuzzy control approaches were pro-
posed for CSTR and experiment results were given for validating the effectiveness. 
For SISO and MIMO CSTR with dead-zone, two adaptive neural network control 
approaches were presented in [8,9]. 
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A common restriction in the above approaches is that output constraint problem is 
not considered. To this end, two adaptive control were studied in [10] for nonlinear 
systems with output constraint by using Barrier Lyapunov function and the output 
constraint is not violated. Subsequently, the full state constraint problem was solved 
in [11] for a class of nonlinear systems. In [12], an adaptive neural output feedback 
control algorithm was proposed for a class of nonlinear systems with output constraint 
and unknown function. The results in [10-12] can be only to control a class of strict-
feedback systems. It is known that the pure-feedback systems are more complex than 
strict-feedback systems.  

In this paper, an adaptive neural network control problem is solved for a class of 
CSTR with uncertainties. The neural networks are used to approximate uncertain 
function of systems. The considered reactor can be viewed as a class of nonlinear 
pure-feedback systems with output constraint. To control this class of systems, the 
novel Barrier Lyapunov function is chosen and the mean-value theorem is correctly 
used to decompose the systems. Based on decomposed systems, a stable controller is 
designed. Using Lyapunov stability, it is proven that all the signals in the closed-loop 
system are bounded and the system output is not violated. A simulation example is 
illustrated to validate the feasibility of the approach. 

2 Problem Description 

Consider the following continuous stirred tank reactors: 

 

 

(1) 

where the meanings of some notations in system (1) were defined in [8]. 
Define the variables as follows in [8]. The equation (1) can be expressed as 

 

 

(2) 

where  and  denotes the dimensionless reactant concentration and mixture 

temperature, respectively;  is the dimensionless coolant flow rate; control target of 
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process is to use the coolant flow rate control reactant temperature ;  is 

the output of system be constrained in  with  being a constant.  

Define  

 

 

So, we rewrite (2) as 

 

(3) 

In this paper, the our goal is to construct an adaptive NN scheme such that  

follows the reference signal  to a small set and all the signals in the closed-

loop are retained to be bounded and output constraint is not violated.  
For the system (3), as follow assumptions and lemma are given. 

Assumption 1: There exist constants  satisfying  .  

Assumption 2: There exist constants  satisfying . 

Assumption 3: For , there exists constants  and  satisfying 

 and . 

Lemma 1 [4]: Suppose ,  is continuously differentiable and 

exists positive definite constant  satisfying . So, exists a 

continuously function  satisfying . 

Lemma 2 [12]：For any positive constant , for all of  ,exists  satisfy-

ing . 

Because unknown functions are contained in the system (3), in the design process 
of controller, in which the unknown term can not be utilized directly. Due to the in-
herent approximation ability of neural network, it has been successfully applied to the 
modeling and control problem of uncertain nonlinear systems. The approximation 
performance of neural network can be seen in [4]. 
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3 Controller Design and Stability Analysis 

An adaptive neural network controller is designed to stable the system in the subsec-
tion A. The detailed design procedure is given in the following. 

Step 1: Define the tracking error and  is 

 (4)

By Assumption 1, we have , which . 

According to lemma 1, we get  

 
(5)

Using the mean value theorem, there is  such that 

 
(6)

where , . According to Assumption 1, we 

know . Using (5) and (6), (4) can be rewritten as 

 (7)

By using the neural networks,  can be approximated as 

 (8)

where ,  denotes the ideal constant weight and 

 is the approximation error with constant. 

Let  be the estimate of  and let . Defined  and  

is the virtual control input to be defined as 
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(11)

where  is a design parameter. Its time derivative is 

 

(12)

Thus, we have 

 
(13)

Basis on (10) and (13), (12)can be repressed as  
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Design the adaptation laws as follows 
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 (19)

Step 2: Define the variable  and  is 

 (20)

where . 

The unknown function is approximated by RBF neural network 

 (21)

where ;  indicate the ideal constant weight,  is 

approximation error and . Let  be the estimate of  and build the actual 

controller as follows 
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(27)

Utilizing Young’s inequality, we obtain 

 
(28)
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Then, substituting (19), (28) and (29) into (27), we get  
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where  is chosen to satisfy . 

Let  and  

, (30) can be expressed as follows 
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The stability of the closed-loop system is pointed out by the following theorem. 
 

Theorem 1: Consider the system (1) and (2), Under the condition of hypothesis 1-3, 
the control scheme can guarantee that all the signals are bounded and the system out-
puts converge to a small neighbourhood of zero. 

 
Proof: The process of proof can be found in [9-10]. 
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nonlinear systems and with output constraints. Pure feedback system is decomposed 
by using the mean value theorem. Based on backstepping technique, the adaptive 
controller and adaptive law have been designed. We have shown that tracking error 
converges to zero within the neighborhood, all closed loop signals remain bounded 
and output-constraints are not violated. 
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Abstract. An identification model based on principal component analysis 
which can reflect thermal efficiency is proposed, in order to improve the opera-
tion efficiency of boiler. It can monitor the thermal efficiency online and  
estimate the key influential parameters. The monotonic relationship between 
thermal efficiency and SPE statistic is verified by large numbers of historical 
data. When the boiler’s operation efficiency decreases, the influential parame-
ters can be directly got by contribution plot method, which guide operators in 
real-time to adjust these and maintain boiler efficient operation. The practice 
shows that this method is feasible.  

Keywords: Industrial boiler · Principal component analysis · Operation optimi-
zation · Parameters adjusted 

1 Introduction 

Huge number and low operating efficiency are the present situation of China’s indus-
trial boiler system. There are many parameters, some of which are automatically con-
trolled by appropriate algorithm, but economical operation index is often ignored [1,3]. 
The control of relatively complex combustion systems is usually depended on artificial 
experience in the actual production. This may lead to unstable operation of boilers 
resulting in lower thermal efficiency, and a lot of energy is wasted. With wide appli-
cation of computer technology, large amounts of process data are collected. However, 
these data which contain information of process conditions are not well exploited. 
Finding useful information in such a large amounts of data has been noticed in indus-
trial community. Especially with the rapid development of data mining and data-driven 
technology, the combination of data analysis theory and industrial applications is 
constantly promoted [4-8]. 

Thermal efficiency is an economical operation index of boilers. Many factors in-
fluencing it exist, such as operational parameters, equipment status, climate conditions, 
and process is complex [3]. In the practical applications, mature control methods are 
mostly designed based on feedback regulation. The best operational efficiency of boiler 
is difficult to be determined as the changes of external factors, so designing a suitable 
controller for boiler efficiency is impossible. The application of data analysis method is 
more feasible which can find a better mode from the mass of historical data guiding 
manual operation. The multivariate statistical methods such as principal component 
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analysis(PCA), partial least square(PLS), canonical correlation analysis(CCA) and so 
on are the most commonly used.  

The factors that influence thermal efficiency usually have a certain correlation. Us-
ing these variables directly not only makes a higher computational complexity but also 
makes a non-optimal result. PCA is a typical statistical analysis theory [9-13]. It re-
duces the number of variables monitored, eliminates their correlation, and simplifies 
the complexity of characteristic analysis of original process. Another advantage is that 
completely free parameter limits, and final result is only influenced by data. Therefore, 
PCA is used in this paper. An optimization method based on PCA for the operation of 
boiler is proposed. PCA model is established by efficient samples of historical data. 
The relationship between thermal efficiency and squared prediction error (SPE, also 
called Q) statistic is verified by large numbers of historical data. The running status of 
boiler can be on-line monitored and when boiler’s operation efficiency decreases, the 
key influential parameters can be got by contribution plot method. It guides operators to 
make reasonable adjustments and the level of boiler operation is improved. 

2 PCA Theory and Modeling 

2.1 PCA Algorithm 

PCA is a method of data dimensionality reduction. It reduces the dimensionality un-
der the premise of keeping process information as much as possible. Uncorrelated 
characteristic signals’ data matrix is obtained.  

Suppose A is an n × m data matrix. It is normalized to develop matrix X according to 
formula (1).  
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In the formula, aij and xij represent each element of matrix X and A, respectively. bj 

andσj represent mean and standard deviation of column, respectively. Covariance 
matrix S of matrix A can be obtained according to formula (2). 
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The principal component analysis of matrix X is actually equivalent to the vector 
analysis of covariance matrix S. If the eigenvalues of S are arranged as follows

mλλλ ≥≥≥ 21 , eigenvectors mppp ,,, 21  corresponding to these eigenvalues are 

the load vectors of X. Doing eigenvalue decomposition of S, and arranging them by 
descending order, X can be written as formula (3). 
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         (3) 

Among it, P m × k composes to the former k eigenvectors of S. Each column of T n × k is 
called principal component. k is the number of principal component. E is residual 
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matrix. X’ changes are reflected in the former several load vectors’ directions. X’ 
projection on the last several load vectors will be very small which can be ignored. 

PCA divides original variable space into two subspaces--principal component sub-
space(PCS) and residual subspace(RS). Any sample can be decomposed into projec-
tions on PCS and RS. The formula is shown in (4). 
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Among it, X̂ is projection on PCS, X
~

is projection on RS. They are orthogonal and  
statistically independent.So PCA has natural advantage applied to process monitoring. 

Usually, SPE and T2 statistics are used to monitor samples [9]. If both of them are 
lower than their control limits, it shows that the status described by monitor samples is 
the same status described by PCA model, and vice versa.  

SPE statistic and its control limit SPEα are shown in formulas (5) and (6), respec-
tively. 
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normal distribution is at confidence level α. Principal component number of PCA 
model is k, andλj is the eigenvalue of covariance matrix S. 

T2 statistic and its control limit T2
α are shown in formulas (7) and (8), respectively. 
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Among it, { }1 , kdiag λ λΛ =  . , ;k n kF α− is the distribution critical value of F, 

when the freedom is k and n-k, the significant level is α. 

2.2 Determination of Principal Component Number 

In PCA model, cumulative percent variance(CPV)is commonly used to determine the 
number of principal component according to the percentage of cumulative sum of 
principal component variances. Principal component variances of data matrix are 
equivalent to the eigenvalues of covariance matrix, so cumulative contribution rate of 
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3 Experiment and Analysis 

3.1 Experimental Design 

Hot water boiler is used in this paper whose parameters are shown in Table 1. Its data of 
parameters are collected when boiler runs in normal operating conditions and stored in 
database. 

Table 1. Parameters table of hot water boiler 

serial 
number 

measuring point unit 
serial 

number 
measuring point unit 

1 effluent temperature ℃ 7 furnace negative pressure Pa 

2 effluent pressure MPa 8 exhaust smoke temperature ℃ 

3 water feeding pressure MPa 9 blast valve position % 

4 
water feeding tempera-

ture ℃ 10 air-induced valve position % 

5 effluent flow t/h 11 grate valve position % 

6 furnace temperature ℃ 12 coal supply valve position % 

 
Selecting 300 samples from database whose thermal efficiency is high for compos-

ing matrix A300×12. A is processed by PCA. According to CPV principle, 6 is principal 
component number. Here the value of CPV is 91.19% greater than 85%. When α=0.01, 
control limit of SPE and T2 are 6.4854 and 17.5329, respectively. Flow chart of project 
design is shown in Fig. 2. 

 

 

Fig. 2. Flow chart of project design 
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3.2 Statistics and Analysis of Thermal Efficiency 

Formula (8) shows that the control limit of T2 largely depends on the principal com-
ponent number k and samples’ number. For different number of samples, the control 
limit is different even if the same k. This has little significance for practical guidance. 
SPE statistic and its control limit are analyzed in this paper. For better achieving the 
experiment purpose, T2 statistic is considered. 

Over 100 samples are selected arbitrarily from database. Thermal efficiency is cal-
culated by the amount of inputs and outputs, and they are arranged from low to high. As 
known to us, the first 20 samples’ thermal efficiency is less than 62%, and others are 
higher than 70%. Values of two statistics are calculated of each sample to test the 
performance of PCA model. The result is shown in Fig. 3.  

 

   
                      a                                             b

 

Fig. 3. T2 and SPE statistics of samples 

It shows the relationship between statistics and their control limits. Straight lines are 
control limits of T2 and SPE statistics, respectively. Values of the first 20 samples are 
above control limits, and others are below. It shows that PCA model can better identify 
boiler efficiency. b also shows that values of SPE statistic decrease with boiler’s 
thermal efficiency increasing in general. Making a further analysis to verify. 

Historical data of one year is selected and grouped according to different thermal 
efficiency whose interval is 1%. SPE statistics of each group are calculated. The curve 
of boiler thermal efficiency and SPE statistic is shown in Fig. 4. 

SPE values decrease with boiler’s thermal efficiency increasing. When boiler’s 
thermal efficiency is over 70%, SPE is lower than limit, and the smaller of SPE, the 
higher of thermal efficiency. When boiler’s thermal efficiency is over 80% considered 
to be higher, the values of SPE are lower than 2. In conclusion, samples’ SPE values 
reflect the size of boiler’s thermal efficiency. When SPE values are larger than its 
preset value, boiler’s thermal efficiency is determined to be low. Due to the limitation 
of experiment, relevant conclusions need to be further analyzed and proved. 
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Table 3. Statistical values of each sample 

 A1 A2 A3 A4 A5 A6 A7 
boiler’s thermal efficiency 

(%) 
54.2 58.9 66.5 70.12 75.17 80.14 82.15 

SPE 26.094 12.798 8.259 3.659 1.008 0.371 2.151 
T2 22.073 7.963 15.43 11.51 9.18 5.64 5.356 

 

From this table, boiler’s thermal efficiency of A1 is 54.2%, and SPE and T2 statistics 
are all over their theoretical control limits. T2 statistics of A2～A7 do not exceed the 
control limit. SPE statistics of A4～A7 do not exceed the control limit. SPE and T2 
statistics present a downward trend with the improving of boiler’s thermal efficiency. 

For example, making an analysis for A3 using contribution plot of SPE and T2 sta-
tistics. SPE statistic is over control limit, and T2 statistic is not exceed control limit. 
Therefore just calculate the contribution plot of SPE is enough. The result is shown in 
Fig.5. The contribution value of water feeding temperature is the maximum, followed 
by the value of coal supply valve position. 

 
 

 

Fig. 5. Contribution plot of SPE statistic 

The parameter of water feeding temperature is uncontrollable, so it is ignored. Be-
cause of blast valve position is constant, larger coal supply valve position causes lower 
air-coal ratio leading to insufficient combustion of coal, so boiler’s thermal efficiency 
should be reduced. Through above analysis, the value of coal supply valve position is 
adjusted to about 40 initially. Two sets of samples A31 and A32 are collected after 
running a long time considering the delay and hysteretic nature of boiler.  
It is shown in Table 4. Their SPE and T2 statistics are calculated and recorded in  
Table 5. 
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Table 4. Parameter values after adjustment 

serial number parameters of samples A3 A31 A32 
1 effluent temperature 99.595 99.826 104.04 
2 effluent pressure 0.398 0.439 0.53 
3 water feeding pressure 0.468 0.508 0.597 
4 water feeding temperature 50.83 49.739 53.212 
5 effluent flow 449.83 444.097 440.451 
6 furnace temperature 765.41 754.948 796.701 
7 furnace negative pressure 0.010 1.042 -0.694 
8 exhaust smoke temperature 96.412 98.206 101.331 
9 blast valve position 49.363 49.363 49.363 
10 air-induced valve position 79.977 66.435 68.808 
11 grate valve position 39.835 38.368 38.136 
12 coal supply valve position 44.24 39.78 39.84 

Table 5. Statistical values of each sample after adjustment 

 A3 A31 A32 

boiler’s thermal efficiency(%) 67.7 74.8 75.19 
SPE 8.059 5.689 3.219 
T2 16.43 7.584 6.791 

 
It shows that after reducing coal supply valve position, SPE and T2 statistics are 

reduced and SPE statistics are less than control limit. Thermal efficiency of boiler is 
enhanced. It verifies the correctness of conclusion. 

4 Conclusion 

An operation optimization method of boiler based on PCA is proposed in this paper. An 
identification model which can reflect thermal efficiency is established based on his-
torical data. It is used to monitor boiler’s operating conditions online. When boiler’s 
operation efficiency decreases, influential parameters are directly obtained. This can 
guide operators work and improve the boiler’s efficiency. Through an application of 
hot water boiler, it shows that the method guides operation correctly and significantly 
improves the operating efficiency of boiler.  
 
Acknowledgment. This work was financially supported by “the Fundamental Research Funds 
for the Central Universities”. 
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Abstract. Recognizing an object from its background in a real-world
image is always a very challenging task. During the recognition process,
shape (or contour) information of an object is useful. In this paper, we
build a bio-inspired contour detection model which can organize the edge
information into a structured data form. Biological primary visual cor-
tex, which can be simulated by computer, is specialized in detecting
orientation of edge to producing a set of line segments. Then we propose
the concept of route that indicates a continuous part of the contour. The
set of line segments is divided into several routes which are the basic
processing units of following recognition steps.

Keywords: Orientation column · Line segments · Route · Line context ·
Object recognition

1 Introduction

The shape of a given object, which is generally stable, plays an important role in
object recognition. For the recognition utilizing the shape of an object, there are
usually three steps: contour detection, representation of the contour and shape
comparison. Many researchers built a lot of computational models to simulate
human vision for object recognition [1–4]. Some biologically inspired algorithms
were also proposed in the past concerning subjective contours [5,6].

The motivation of this paper is to design a recognition method based on line
segments, which are the contour detection results of our bio-inspired model [7].
Our method can effectively eliminate background interference when recognizing
objects in real-world images.

Concretely, the bio-inspired model is based on orientation selectivity of the bio-
logical primary visual cortex(V1). The contour of natural image can be
detected and output as a set of line segments in the model. Then a graph-based
algorithm is used to divide the set of line segments into several routes, which are our
basic processing units of recognition. After that, we improve our previous method
[8] that is similar to the well-known shape-context descriptor [9] for shape compari-
son. Once the background interference presents, the performance is not ideal when
the recognition is based on either shape-context or our previous method. Consider
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 405–413, 2014.
DOI: 10.1007/978-3-319-12436-0 45
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a template object Ot and a real-world image Ir. In this paper, we generate some
routes in Ir using a graph-based algorithm, and compare the line-context of each
route to that of Ot. Finally we can get several best-matched routes, which indicate
the contour of target object, from the real-world image with complex background.

The rest of this paper is organized as follows: Section 2 introduces the bio-
inspired model and the line-detection algorithm. Section 3 shows the graph-based
algorithm of dividing line segments into some routes. Section 4 describes the
shape comparison using improved line-context descriptor. Experimental results
are presented in section 5, and section 6 is the conclusion.

2 The Bio-inspired Model and Line-Detection Algorithm

2.1 Theoretical Basis in Biology

Hubel and Wiesel won the 1981 Nobel Prize for finding that simple cells in the
V1 area of primary visual cortex respond strongly to special orientations [10].
They proposed the concept of orientation column which consists of some simple
cells. The orientation selectivity of simple cells in each column vary systemati-
cally, and adjacent cells have approximate orientation preferences [11]. An array
of orientation columns can be regarded as a bio-inspired representation platform.
The whole framework of the image representation platform is shown in Fig. 1, the
left part shows several orientation columns and their receptive fields. Neighbour-
ing columns have overlapping receptive fields to guarantee that no information
is missed. In the middle part of Fig. 1, many GC/LGN cells under the column
layer perform edge detection, produce edge images and send the information
up to the simple cell layer. In biological theory, the LGN cells are the relays of
ganglion cells. In the right part of Fig. 1, the larger hexagon consists of 19 small
green hexagons denote the orientation column that can detect the orientations
range from 0◦to 180◦. In the receptive field of the column, the orientations of the
red curve can be detected. Finally, four corresponding simple cells are activated
and four red line segments are output to represent the orientation information.

Fig. 1. Framework of the hierarchical image representation platform
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2.2 Line-Detection Algorithm

(a) (b)

Fig. 2. (a) The array of orientation columns and the activated results of an image of
duck. The contour of duck is represented by some activated simple cells (also called
orientation chip here). (b) A real-world image, result of Canny detector and result of
our bio-inspired model.

Based on the aforementioned biological theories, the computational model
of orientation columns is shown in Fig. 2(a). Each small hexagon is a simple
cell (also called orientation chip in the model) and the larger black hexagonal
frame indicates an orientation column containing nineteen orientation chips.
Each of these nineteen orientation chips can detect one unique orientation so
that an orientation column can detect the orientations range from 0◦to 180◦.
When processing an image by this bio-inspired model, each column detects the
orientations in its own receptive field and the corresponding orientation chips
will be activated. Finally, each column outputs several line segments with these
orientations. Fig. 2(a) also shows a shape of a duck represented by some activated
cells. This bio-inspired model provides a scheme, with an image as the input while
a set of line segments as the output, to represent an object. Fig. 2(b). shows the
line-detection result of a real-world image. The result of the traditional Canny
edge detection algorithm [12] can also be seen. Obviously, the line-detection
result of bio-inspired model is more cleaner than that of Canny method.

3 A Graph-Based Algorithm of Dividing the Set of Line
Segments into Some Routes

3.1 The Graph and its Adjacent Matrix

After detecting line segments by the bio-inspired model, we utilize an undirected
graph G = (V,E) to represent an image. All the line segments are treated
as vertices vi ∈ V , and edges (vi, vj) ∈ E correspond to pairs of neighboring
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vertices. Each edge (vi, vj) ∈ E has a corresponding weight w((vi, vj)), which is
a non-negative measure of the distance between two line segments represented
by vi and vj .

We want to reaffirm that the goal to generate routes is to get some relatively
continuous parts of the contour of image. That is to say, two adjacent vertices
in the graph indicate that the two corresponding line segments are contiguous
on the contour of object. Based on this principle, two factors are considered to
calculate the distances between line segments.

The first is the included angle θ (range from 0 to π
2 ) of two line segments.

Two line segments with large included angle (closed to the right-angle) are not
considered contiguous on the contour. On the contrary, the smaller included
angle means that two line segments are more reasonable to be contiguous. For
the purpose of normalization, the first factor is finally denoted by FAC1 = 2θ

π
which is ranged from 0 to 1.

In order to clearly state the definition of the second factor, consider two
line segments denoted by Lm and Ln (ma, mb; na, nb are their end points).
Dlarge is the largest value in the set of point-to-point distances: {|mana|, |manb|,
|mbna|, |mbnb|}. The distance between the other two end points, which have
nothing to do with Dlarge, is denoted by Dsmall. We define the second factor as
FAC2 = Dsmall

Dlarge
(range from 0 to 1). There are three situations in Fig. 3 that

show how this factor works. The two line segments in situation I are obviously
adjacent because they are close to each other. The lines in situation II are too
far away from each other to be adjacent. In situation III, the two lines are almost
parallel, they belong to different contours although the distance and included
angle (FAC1) are both very small. So they also can’t be adjacent. The value of
FAC2 in situation I is small while the values in situation II and situation III are
large. So the value of FAC2 has the ability to measure the level of adjacency of
line segments.

Fig. 3. Three situations show how FAC2 works

The distance dij between two line segments (Li and Lj) is finally defined as
follow:

dij =

{
0 if i = j

α ∗ FAC1 + β ∗ FAC2 if i �= j
(1)
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where α and β are parameters adjusting the importance of FAC1 and FAC2.
It is important to emphasize that, the smaller distance between two line segments
means that they are more reasonable to be contiguous on the contour.

Based on equation (1), the distance between any two line segments in the
set can be calculated. Assuming that the size of the set of line segments is n,
a n×n distance matrix is generated. Then we connect each vertex with its two
nearest neighbors by edges. That is to say, for each vertex, there are two edges
which connect itself to its two nearest neighbors. Finally we build an adjacent
matrix An×n, the value of element aij is 1 if there exists a edge between vi and
vj , otherwise the value is 0. All elements in An×n are 1’s or 0’s (1 for adjacent
and 0 for not adjacent).

3.2 Generating Routes by Depth-First Search

In graph theory, a connected component (or just component) of an undirected
graph is a subgraph in which any two vertices are connected to each other by
paths. In our case, one connected component is a subset of line segments that
belong to a continuous part on the contour of image. So the connected compo-
nents of graph is equivalent to the routes we mentioned before.

Fig. 4. On the top row, the detected lines are overlaid in different colors on the original
images. The bottom row shows the corresponding route maps. Different routes are
drew in different colors, and we draw those routes, which contain more than eight line
segments, wider than others.

It is straightforward to compute the connected components of a graph in
linear time (in terms of the numbers of the vertices and edges of the graph)
using the classical depth-first search algorithm. So we can divide the set of line
segments into several routes which are the basic processing units for subsequent
steps. Fig. 4 shows the results of some images from ETHZ [13] data set. We high-
light those routes, which contain more than eight line segments, by increasing
the widths of them. The reason is that, the more line segments a route contains,
the more important it is in the final step of recognition.
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4 Shape Comparison Based on Route and Line-Context

Given a template object and some real-world images, the goal of this paper is to
recognize a target object in every image. Shape-context is a well-known method
which can be used for shape description and comparison. The key points under-
lying this technique are counting the pixels in a series of fan-shaped areas and
producing a 2D histogram to be used as a representation of pixels distributing
through the shape. In the environment of line segments, we use an improved
method which relied on line-context rather than shape-context.

Fig. 5. Line-context descriptor system

Table 1. Line-context matrix of a line segment

SECTOR
RING = 1 . . . RING = 4

0◦<δ ≤ 10◦ 10◦<δ ≤ 20◦ 20◦<δ ≤ 30◦ . . . 80◦<δ ≤ 90◦ . . .

. . .

0◦-45◦ 1 0 2 . . . 1 . . .
45◦-90◦ 2 3 1 . . . 2 . . .
90◦-135◦ 0 2 1 . . . 1 . . .

. . . . . . . . .
315◦-360◦ 1 0 2 . . . 1 . . .

Fig. 5 shows the system of line-context descriptor in the environment of line
segments. For each line segment, we treated it as the center line and establish
a polar coordinate system with four-layer concentric rings divided into eight
sections. Each of the 32 (4 × 8) sectors is called a BIN. In each BIN ij (the
jth sector in ith layer), we calculate the included angles between the center line
and every other line segments. Then we record the numbers of line segments in
9 intervals according to the values of included angles. For each line segment in
the set, we finally get a 3-D matrix which is shown in Table. 1.

For comparing the similarities of different contours, we firstly define the sim-
ilarity of two line segments. Consider the pth line segment lXp on the first shape
X and the qth line segment lYq on the second shape Y. Let Cpq ≡ C( lXp , lYq )
denote the cost of matching these two lines:

Cpq ≡ C(lXp , lYq ) =
1

IJK

I=8∑

i=1

J=4∑

j=1

K=9∑

k=1

∣
∣INTERX

i,j,k − INTERY
i,j,k

∣
∣

max(INTERX
i,j,k , INTERY

i,j,k)
(2)

Where X, Y denote two shapes, and I, J, K denote the number of layers,
the number of sections and the number of slope intervals of a bin respectively.
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INTERi,j,k is the number of line segments in the kth slope interval, which
belongs to jth section in ith layer. Given the set of cost Cpq between all pairs
of line segments lRp on route R and lTq on template T, we want to minimize the
average cost of matching,

H(π) =

∑
p C(lRp , lTπ(p))

P
(3)

subject to the constraint that the matching be one-to-one. The denominator P is
the number of line segments in route R. The result π(p), which can be calculated
using Hungarian algorithm, is a permutation such that (3) is minimized.

The classical shape-context method has a drawback: the recognition some-
times fails in the presence of large amounts of background noises. In this paper,
we compare the line-context of one route to that of the template object each
time. After comparing all the routes to the template, we choose those best-
matched routes (with the lowest cost value of equation (3)) that indicate the
most possible area of the target object.

5 Experiment

Fig. 6. Comparison of different methods. The last row shows our results and the multi-
colored curves are actually some best-matched routes in the images. The red frame
indicates the area of target object.

We experimented on the ETHZ [13] data set, which consists of 5 different
categories (each contains a template object). The advantage of our route-based
method is effectively eliminating background interference. Some results of a con-
trast experiment in Fig. 6 show the advantage of our method. In the first row
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Fig. 7. More recognition results of our method

of Fig. 6, each picture shows the result of directly comparing the shape-context
descriptor of template to that of the whole image where all sample points are
the midpoints of line segments. In the second row, we compared the line-context
descriptor of template to that of the whole image. And the results of our route-
based method are shown in the last row. Every route was compared to the tem-
plate and some best-matched routes represented by colorful curves in the last
row of Fig. 6 were chosen. Comparing to the method in this paper, the first two
methods cannot precisely detect the target objects because of the background
interference. Fig. 7 shows more recognition results of our method.

We compared the time performance of this method to our previous work [8]
whose model of line detection and module of shape comparison are different from
this paper. Fig. 8 shows the time comparisons on 40 samples of ETHZ data set.
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Fig. 8. The performance comparison between this paper and previous work [8]
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6 Conclusion

In this paper, we propose the concept of route which is our basic processing unit
of recognition. After utilizing a bio-inspired model to detect line segments, we
generate some routes using a graph-based algorithm. Finally, we measure the
similarities between every route and the template object, and choose the best-
matched routes which indicate the area of target object. The whole method,
which based on bio-inspired model and route, can effectively eliminate back-
ground interference in real-world images. In addition, the time performance is
also greatly improved.
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Abstract. In this paper, we investigate the notion that there may be
alternate methods, beyond typical rectilinear interpolations such as Bilin-
ear Interpolation, that have a greater suitability for use in visual/image
preprocessors for Artificial Neural Networks. We present a novel method
for down-sampling image data in preparation for a Feed-Forward Per-
ceptron system assisted by a neural usefulness metric, inspired by those
common to pruning algorithms. This new method achieves greater accu-
racy compared to the same system using by Bilinear Interpolation, and
has a reduced computational time.

Keywords: Artificial neural networks · Preprocessor · Image processing ·
Salience · Relevance assessment

1 Introduction

When building a high-throughput or real-time image processing system that uses
an Artificial Neural Network (ANN), it is common place to down-sample the
input image as part of the preprocessing or data preparation stage. The typical
reasons behind these choices are either that it is computationally cheaper to
resize the image than it is to have the larger ANN input layer, or that there
is an inability to learn/solve the task due to relevant signals getting lost in the
noise of the full image; as seen in the following extracts:

“The size of the captured image is 640 × 480, but due to the limited
computational power, it is used after resizing to 26×20 using the OpenCV
library.” [1, p. 1447]

“. . . the DVS128 retina has 16,384 elements, . . . [so] a relevant method of
reducing the data flow must therefore be employed, without losing infor-
mation relevant to the line-following task.” [2, p. 8]

Our issue with this practice is that both a considerable amount of information
is lost in the process (however, most is validly disposed of as it shows no/little
predictive value for the ANN), or that different regions of the image may benefit
from being presented at different resolutions. Such losses or inefficiencies may
reduce the effectiveness of the system or outright prevent it from working at a
given image resolution. This can be a greater problem when the developer has
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 414–422, 2014.
DOI: 10.1007/978-3-319-12436-0 46
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little (or no) a priori knowledge of what areas in the source images will prove
useful to the task required. Typically, they have to search multiple different
resolutions to find the suitable values so that the ANN can solve the problem.

Our hypothesised model is to automatically explore a large range of possible
resolutions and quantify how useful each pixel is, at each resolution. Using this
information, we generate a recommendation of which regions of the image are
resized to what resolutions and which regions have no need to be processed at
all as they serve no predictive benefit to the specified task.

2 Brief Overview

The process of constructing/training an ANN using our model is separated into
three stages: Salience Heat Mapping (SHM, section 4), Region Selection and
Optimisation (RSO, section 5), and traditional ANN training using the bespoke
preprocessor constructed in the first two stages.

The objective of SHM is to generate a heat map of the input scene, which
quantifies the predictive value of the different points in that scene. This infor-
mation can then be passed to the selection stage, RSO, where it can be used
to find which areas (both location and size) of the scene appear to have enough
predictive value to warrant preprocessing at run-time. The final objective is to
construct a preprocessor that can take advantage of this information to opti-
mally pre-process only the areas of the scene that provide suitable predictive
value, and at suitable resolutions; details in section 6.

3 Measuring an Input Units ‘Worth’

One of the first problems to solve was to find a suitable metric to determine
the usefulness of the individual datum generated by the preprocessor. As each
datum has a 1:1 relationship with each input unit of the ANN, determining
the usefulness of each input unit can be used as a representation of the data’s
usefulness, allowing us to use concepts that are common in pruning algorithms.

One metric we looked at for suitability is that of ‘Relevance Assessment’
[3,4]. In their work, they describe a method for measuring a unit’s functionality,
or relevance, as its contribution to minimising error [3, p. 1]. We can reinterpret
this as being a measure of how much a unit contributes to the overall accuracy
of the ANN against the given data-set.

For input and hidden units, the approximate relevance, ρ̂i, is computed dur-
ing an additional feed-back phase (similar to back-propagation) as

ρ̂i =
Ni∑

j

|wij ρ̂j | , (1)

where Ni is the set of neurons that use unit i as an input and wij is the weight
between them. For output units, using the linear error function (|ti − oi|), the
approximate relevance becomes

ρ̂i = −oi × sgn (ti − oi) , (2)

where ti is the target value for the current pattern, and sgn (x) the sign of x.



416 K.A. Greenhow and C.G. Johnson

The issue with this definition is that the output units relevance is dependant
on the latest input received by the ANN and the approximated relevance varies
considerably with time. Mozer and Smolensky attempted to rectify this issue by
an “exponentially-decaying time average of the derivative” [3, p. 4],

ρ̂i(t) = 0.8ρ̂i(t − 1) + 0.2�(t) , (3)

where �(t) is the approximated relevance from equations (1) or (2) at time t.
This makes the computed relevance dependant on the order in which the train-
ing set was presented. When applied to our system, this produced relevancies
that would react very slowly to the learning of the ANN. If the weighting was
adjusted towards newer values, to decrease the response time to learning, then
the variability would destabilise the system.

Other metrics like ‘Sensitivity Analysis’ [5], solve the temporal noise problem
by parsing the entire data-set then computing an overall value. This still leave
the sensitivities generated dependant on the patterns in the data-set; such that
a poor choice of patterns can result in useless sensitivities.

To resolve these issues, we defined ‘salience’ as the amount of contribution
by each input unit has to the output function of an ANN. The method we use
to quantify this is derived from Relevance Assessment mentioned above.

In our model, we are not interested in the contribution of the inputs to
the ANN’s predictive accuracy, but rather to the ANNs output function. We
found that disregarding the exponentially-decaying time average and defining the
relevance of each output unit to be exactly 1 instead produced suitable results,
reduced memory costs and avoided the previously aforementioned issues:

ρ̂i =

⎧
⎨

⎩

1 when unit i is an output unit,
Ni∑

j

|wij ρ̂j | otherwise. (4)

Finally, the units salience, Si is determined by normalising the approximate
salience using the hyperbolic tangent, to improve suitability,

Si = tanh(ρ̂i) . (5)

It is also possible to include a scaling factor prior to normalising if the approxi-
mated salience is too small or large. We chose this function due to the constraining
effects of back-propagation on theweights.Additionally, our interest in the salience
tends toward the order of magnitude as opposed to the absolute magnitude.

4 Salience Heat Mapping

For the first stage of the process, SHM, the developer is required to specify three
groups of information:

– The specific task with associated training and test sets
– An ANN topology and training regime (input layer size will be inferred from

the dimensionality of the preprocessor output and output layer size can be
inferred from the requirements of the task)
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– Values for resmin, resmax and resrep that specify the minimum and maximum
limits of search for resolution saliency (inclusive) and how many times to
repeat the process for averaging, respectively.

In this stage, an ANN using the topology specified will be generated for each
possible resolution (as all possible permutations in the range resmin . . . resmax,
inclusive) and trained against the training set for 5 epochs.1 The quality of that
resolution is quantified by Cohen’s kappa (κ, the agreement between the test set
defined class and the ANN predicted class) and input’s normalised computed
salience. The salience can be viewed as a heat map of each potential pixel at each
resolution. The salience maps are resized (by Bilinear Interpolation2) such that all
sides have a length of resg × resmin × resmax, where resg is a scaling value to pro-
vide suitable granularity of the final heat map.3 The rescaled saliency maps which
have κ > 0 can be combined into a single heat map by generating an average heat
map, weighted by κ. This process is then repeated resrep times. The resrep resul-
tant saliency maps are then averaged together, weighted by mean contributing κ
(average of only κ values greater than 0) to produce the final Salience Heat Map.

5 Region Selection and Optimisation

The second stage is to take the generated Salience Heat Map and select regions
that would provide the greatest contribution to predictive accuracy. This is done
in two parts; a region selection process followed by a performance optimising
process. Figure 1 shows an example heat map generated by SHM and the regions
selected by RSO.

Fig. 1. A heat map showing the saliency at various locations of the input image
space. The bright regions have been determined to be of greater salience for the task
(Section 7.2 and A). The red rectangles identify regions determined to be of high pre-
dictive value for use in the preprocessor.

1 An epoch consists of a complete showing of the training or test set in a random order.
2 In this paper we only use Bilinear Interpolation as we found that all other traditional

interpolation techniques either produced lower accuracies or had negligible difference
in accuracy at the cost of increased run-time.

3 resg = 5 seems to produce adequate results (found by trial and error).
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Prior to performing the selection process, it is beneficial to transform the
heat map produced prior such that the values min . . . max are normalised to the
range 0..1 if not already.

As part of the selection process, the salience of each possible region (each
pixel at all valid permutations of resolutions) is approximated by performing
a down sample on the Salience Heat Map of the area covered by that region.
The region with the highest predicted salience is then selected. The area on the
Salience Heat Map covered by the region is then set to 0 to prevent redundant
selections. This is repeated until there are no potential regions remaining with
a predictive salience greater than some threshold value.4

The way the Region Preprocessor functions requires a new Bilinear Inter-
polation call for each region provided (Section 6). This can have a significant
impact on performance, due to overheads incurred in the set-up of each inter-
polation process. The goal of the optimisation step is to combine regions at the
same resolution into single regions and then filter out the selected pixels, as the
runtime demand of the additional pixels is typically less than the overhead of
multiple interpolation calls.

First, all the regions are grouped together by resolution. At each resolution,
the minimum and maximum x and y coordinates of the regions are determined
and a new region that covers the bounding box is define, rbound. rbound is then
attached to a list of all the coordinates of the regions at this resolution, such
that each entry in the data structure takes the form {rbound, pixels = [(x0 −
x, y0 − y), (x1 − x, y1 − y), . . . , (xn − x, yn − y)]} (where x is the minimum value
for x at the current resolution, similarly for y).

6 Regioned Preprocessor

With the salient regions selected and optimised, the design of the preprocessor
is the last stage. For each region (representative of each resolution), the source
image is cropped and resized (by Bilinear Interpolation) so that the resultant
image has the same size as the rbound’s w and h properties and the top left pixel
corresponds to the pixel at coordinate rround → (x, y) at resolution of rh × rv.
This can be seen in the sample figures in Appendix A. Each point in the pixels
part of the map is then extracted from the resized image and return as a value
from the preprocessor. Care needs to be taken to make sure that the order the
pixel are returned in is consistent between runs for each ANN, but do not need
to be the same between different ANNs in the population.

7 Preliminary Results

We have used our model, as described above, to generate some preliminary
results. With this, we hope to demonstrate that our model is worth further
investigation and improvement as a candidate replacement for traditional inter-
polation techniques in preprocessors for ANN based image processors.
4 In our experimentation, we found a value 75% of the max value suitable.
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7.1 Test Methodology

Both of the tests, ours and the control, were run for 10 epochs. Each test was
repeated 500 times to produce a reliable average accuracy. The control test used
a traditional Bilinear Interpolation preprocessor set to down-sample to a 6 × 5
image and then normalise the pixels in preparation for the ANN.

We believe that, for our method to be considered successful it must have an
accuracy that is at least comparable to the Bilinear preprocessor whilst having a
significantly reduced time. We consider the rate of learning to solve the task as
of lower priority. The reasoning behind this is that we intend for our algorithm
to be used to improve runtime after learning has occurred, so that the processor
can be freed up to perform other tasks on a real-time system.

7.2 Task

The task we chose to perform was to detect the presence of a specific object
in a complex scene. The object position would always be centred vertically, but
could be positioned at either 25% or 75% horizontally, or not be present in the
scene at all. To add to the difficulty of the task, an object with no rotational
symmetry was used, and randomly orientated. See Appendix A.

7.3 Test and Training Set

The training set used in this preliminary experiment consisted of 600 randomly
generated images. Each image was generated from one of 17 possible back-
ground images and, where relevant, the object to be identified was overlaid
onto the image. Each image was in an RGB format, providing 3 colour chan-
nels. 200 images had the object on the left, 200 had the object on the right and
the remaining 200 were just the background. The scale of the object was not
altered, but the orientation was randomly assigned. To add suitable complexity
to the images (especially those with no object present) the backgrounds had
their brightness/contrast level altered by small random amounts.

The test set was produced by the same method, but with 50 of the each to
the three types (object on left, object on right, no object).

7.4 Test Environment

The test-rig used for our model was implemented to support both the traditional
preprocessors and our Regioned Preprocessor. The ANN was to predict which of
3 possible classes the input image belongs to. For this task, the ANN topology
was structured with 3 layers sized, I → 10 → 3 where I equals the number of
outputs provided by the related preprocessor (6 × 5 × 3 = 90 for Bilinear and
3 × 3 = 9 for Regioned).

The processing units (hidden and output units) implemented the model

yi = norm

⎛

⎝bi +
Ni∑

j

wijyj

⎞

⎠ , (6)
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where bi is the bias value for unit i, and norm (x) is the logistic function. The
task of normalising the input units was considered part of the preprocessing
stage, so the inputs units are implemented as the function f(x) → x.

To minimise the effect of background processes, non-essential processes where
shut down with the test where run in parallel on a multi-core CPU. Each CPU
core was assigned one test thread at any one time. Additionally, to mitigate disk
IO delays, all the test and training set images were preloaded into RAM.

7.5 Results

On this task our Regioned preprocessor outperformed the Bilinear preprocessor
in processing speed. Our Regioned method took a mean processing time of 0.6
ms compared to Bilinear’s 1.6 ms, a reduction of about 65% run-time. It can also
be seen (Fig 2) that the two methods eventually surpass an accuracy of 90%.
We also found that the ANN is able to learn how to solve the task at a faster
rate (probably due to the reduced noise in the input data) before converging and
with significantly less variation in the accuracy of the population.
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Fig. 2. These graph shows the accuracy of the ANNs at correctly classifying the values
of the test set after each epoch of learning. Outliers are defined as any value outside
1.5 × IQR. Positive and negative standard deviations are displayed independently.

8 Conclusions

We have shown that, when compared against Bilinear Interpolation on the given
task, our algorithm is able to learn to solve the task in fewer epochs and perform
the preprocessing computations in less time. This can be particularly relevant
to the construction of image processing systems that are required to run in
real-time, e.g. a robotic controller or environment monitoring system.
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9 Future Work

Our current implementation uses running averages and integer data types during
the selection of regions (Sec. 4). Changing the process to use floating-point and
using single step averages would reduce the rounding errors that accumulate.

We would also like to test our preprocessor on a greater variety of different
tasks to determine generality and suitability to these different types of tasks.

A Samples Images

Each image is divided into two sections. The left shows the original image, plus
the regions being processed in red. The right section shows the output after
processing. A.1 shows one complex backgrounds used. Backgrounds like A.2
where selected to increase the possibility of false-positives. Figures A.3 and A.4
show the same background with modified contrast/brightness.

Fig.A.1

Fig.A.2

Fig.A.3

Fig.A.4
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Abstract. In this paper, we propose a new method for image denoising. We use 
block matching 3D filtering (BM3D) to denoise the noisy image, and then 
denoise the noisy residual and merge this denoised residual into the denoised 
image. We can perform another BM3D to this merged image if the noise-level 
is still higher than a threshold. Our method performs similarly as the BM3D for 
Gaussian white noise, and it outperforms the BM3D, Poisson-Gaussian BM3D 
(PGBM3D), and Bivariate shrinking (BivShrink) for nearly all cases in our ex-
periments for signal dependent noise. The method does not assume the noise to 
be Gaussian alone, and it works well for a mixture of Gaussian and signal-
dependent noise. However, the computational complexity of the new method is 
twice and at most three-times that of the standard BM3D for image denoising.  

Keywords: Image denoising, Block matching 3D filtering (BM3D), signal-
dependent noise. 

1 Introduction 

Digital images are often contaminated by different types of noise, including Gassian 
white noise, salt-and-pepper noise, Laplacian noise, signal dependent noise, impulse 
noise, and so forth. There are a number of trade-offs in reducing noise in an image. 
For example, whether sacrificing some image details is acceptable if we want to re-
move more noise in the image. In order to make better decision, the characteristics of 
the noise and the details in the images should also be taken into account.  

In existing literature, the majority of denoising methods is dealing with Gaussian 
white noise, which can be modeled as:  

B = A + σn Z,                            (1) 

where A is the noise-free image and B the image corrupted with Gaussian white 
noise, Z has a normal distribution N(0; 1) and σn is the noise standard deviation. 
There are a number of methods to deal with this kind of noise.  Fathi and Naghsh-
Nilchi [1] proposed an efficient image denoising method based on a new adaptive 
wavelet packet thresholding function. Chatterjee and Milanfar [2] studied patch-based 
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near-optimal image denoising. Rajwade et al. [3] worked on image denoising using 
the higher order singular value decomposition. Motta et al. [4] proposed the iDUDE 
framework for gray scale image denoising. Miller and Kingsburg [5] studied image 
denoising using derotated complex wavelet coefficients. Sendur and Selesnick [6] 
proposed a bivariate wavelet denoising technique for images. Dabov et al. [7] pro-
posed a block matching 3D filtering (BM3D) technique for image denoising, which is 
the state-of-the-art in image denoising. Mäkitalo and Foi [8] developed a Poisson-
Gaussian BM3D (PGBM3D) method for denoising. Chen and Kegl [9] proposed an 
Image denoising technique using complex ridgelets. Chen et al. [10] developed a 
wavelet-based image denoising method using three scales of dependency in wavelet 
coefficients. Chen et al. [11] invented an image denoising method using neighbouring 
wavelet coefficients. Chen et al. [12] developed an image denoising method with 
neighbour dependency and customized wavelet and threshold. Cho and Bui [13] pro-
posed a multivariate statistical modeling technique for image denoising using wavelet 
transforms. Cho et al. [14] also studied Image denoising based on wavelet shrinkage 
using neighbour and level dependency. 

Even though Gaussian white noise is well studied, there exist other kinds of noise 
in real-life images. For example, CMOS and CCD sensors are two special devices that 
suffer from noise. In CMOS sensors, there exists fixed pattern noise and a mixture of 
independent additive and multiplicative Gaussian noise. We formulate this kind of 
noisy image B as: 

ZAkkAB )( 10 ++=                               (2) 

where ),( 10 kk  are two parameters to determine the noise levels, A is the noise-free 

image, and Z is the Gaussian white noise with N(0,1) distribution. Only a few papers 
exist in the literature for reducing this kind of noise ([15], [16], [17]). Hirakawa and 
Parks [15] proposed an image denoising method for signal-dependent noise. Bosco et 
al. [16] studied signal-dependent raw image denoising using sensor noise characteri-
zation via multiple acquisitions. Goossens et al. [17] developed a wavelet domain 
image denoising technique for non-stationary noise and signal-dependent noise. 

In this paper, we propose a new method for reducing this kind of noise. Our meth-
od is based on the block matching 3D filtering (BM3D) method [7], which is the 
state-of-the-art in image denoising. We perform the BM3D to the noisy image, and 
then conduct the BM3D to the noise residual. We merge these two denoised images 
and perform another BM3D to this merged image. Our new method is very simple, 
but it outperforms the standard BM3D [7], BivShrink [6] and Poisson-Gaussian 
BM3D (PGBM3D) [8] in term of peak signal to noise ratio (PSNR) for nearly all 
cases in our experiments for the mixture noise model discussed in this paper. 

2 Proposed Method 

In this paper, we propose a new method to reduce the noise in a noisy image. Our 
method deals with a mixture of the Gaussian white noise and the signal-dependent 
noise. Most denoising methods reduce the noise from the noisy images and only keep 
the denoised images. However, in our method, we denoise the noisy residual and 
merge this denoised residual into the denoised image. In this way, we can achieve 
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better denosing results because more fine features can be retained. We can still per-
form another denoising operation to this merged image if the noise-level is still higher 

than a threshold. The noise variance nσ can be approximated as [18]: 

6745.0

|)(| 1i
n

ymedian
=σ , ∈iy1 subband 1HH .              (3) 

where HH1 is the finest scale of wavelet coefficient subband. We only need to per-
form the wavelet transform on the noisy image for one decomposition scale in order 

to estimate nσ .   

In order to achieve better denoising results, we choose the BM3D algorithm [7] to 
reduce noise in our proposed method. The BM3D algorithm is divided in two major 
steps. The first step estimates the denoised image using hard thresholding during the 
collaborative filtering. The second step is based on both the original noisy image and 
the basic estimate obtained in the first step.  

The collaborative filtering can be summarized as follows:  
 

1. Locate the image patches similar to a given image patch and grouping them 
in a 3D block. 

2. 3D linear transform of the 3D block. 
3. Shrink the transform spectrum coefficients. 
4. Inverse 3D transformation.  

 

As a consequence, this 3D filtering can filter out all 2D image patches in the 3D 
block simultaneously. By reducing the noise, the collaborative filtering retains the 
finest details shared by grouped blocks and at the same time it preserves the essential 
unique features of each individual block. The filtered blocks are then returned to their 
original positions. Because there are overlapping in these blocks, we can obtain many 
different estimates for each pixel. Aggregation is a particular averaging procedure, 
which is exploited to take advantage of this redundancy in each 3D block. 

In summary, we list the steps of our new method in this paper as follows: 
 

1. Given the noisy image B, estimate the noise variance 1
nσ  from B according 

to equation (3). 

2. Perform BM3D to B as ),(3 1
1 nBDBMB σ= . Set 

1

~

255 BB ×=  since BM3D 

scales the output image to the range of [0,1]. 

3. Get the residual image 
~

2 BBB −= , and estimate the noise variance 2
nσ  from 

B2 according to equation (3). 
4. Perform BM3D as ),(3 2

2 nBDBMC σ= .  

5. Normalize 
)(

)( 2
~

1 Cmean

Bmean
CBC ×+= . Estimate noise variance 3

nσ  from C1 

according to equation (3). 

6. If 3
nσ >T (T=1.0), then )2/,(3 23

1 nnCDBMD σσ ×= . Here we use a bigger 

noise variance for BM3D because this can generate better denoising results.  
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7. Output DA ×= 255  since BM3D scales the output image to the range of 
[0,1]. Stop. 

8. If Tn ≤3σ , then output 
~

BA= . Stop. 

 
The major contribution of this paper is the following. We have taken advantage of 

the BM3D method, which is the state-of-the-arts in image denoising, for a mixture of 
the Gaussian white noise and the signal-dependent noise. Our new method can retain 
more fine features in the denoised images than other existing denoising techniques for 
image denoising. Experimental results show that our proposed method is similar to 
the BM3D method for Gaussian white noise, and it is better than the BivShink [6], the 
BM3D [7], and the Poisson-Gaussian BM3D (PGBM3D) [8] for the mixture noise 
model for nearly all cases in our experiments.  

The major limitation of our proposed method is that it is slower than the standard 
BM3D since it calls the BM3D for twice and at most three times. We are sacrificing 
some computation time in exchange for better image quality.  

3 Experimental Results 

We conducted a number of experiments in order to demonstrate the power of our 
proposed method in this paper. We tested our method with four grey-scale images: 
Fingerprint, House, Lena, and Pepper. These images are frequently used in other 
denoising papers in the literature. We compared our method with the BivShink, the 
BM3D, and the Poisson-Gaussian BM3D (PGBM3D). We considered both the Gauss-
ian white noise and the signal-dependent noise in our experiments. Tables 1-4 tabulate 
the peak signal to noise ratio (PSNR) of the denoising methods mentioned above for 
the seven images, respectively. The PSNR is defined as 

)
)),(),((

255
(log10

,

2

2

10  −
××=

ji

jiAjiB

NM
PSNR

                        (4) 

where NM × is the number of pixels in the image, and A and B are the noise-free 
and denoised images. Fig. 1 shows the original noisy images, and the images generat-
ed by BivShrink, BM3D, PGBM3D, and our proposed method. It can be seen that our 
proposed method is comparable to BM3D for Gaussian white noise, and it is nearly 
always better than all other methods compared in this paper for signal-dependent 
noise. It should be pointed out that the standard BM3D is better than our new method 
in one case for the image Fingerprint. However, such cases are really rare in our ex-
periments conducted in this paper. The PSNR improvement of our proposed method 
over standard BM3D sometimes can reach 5 dB. This indicates that our proposed 
denoising method in this paper is a good choice in enhancing real-life images. 

In standard BM3D, the noise variance  is a known parameter for the noisy im-

age. We estimate it by using equation (2) in this paper. Since we only need to perform 
the wavelet transform for one decomposition scale, the time to estimate  is fast. 

nσ

nσ
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Table 1. The peak signal to noise ratio (PSNR) of different denoising methods for image 
Fingerprint. The best results are highlighted in bold font. 

Noise Type Noise Level Noisy BivShrink BM3D PGBM3D Proposed 
 

Gaussian 

( ) 

20 20.10 28.56 28.83 26.48 28.83 
40 16.08 25.05 25.51 22.28 25.51 
60 12.56 23.17 23.75 21.64 23.75 
80 10.06 21.93 22.54 19.73 22.54 

100 8.12 21.01 21.55 17.74 21.55 
 

Signal  
Dependant 

 

(10,0.1) 20.26 27.11 27.39 25.72 27.16 
(10,0.3) 13.35 21.66 23.45 19.56 23.45 
(10,0.5) 9.54 18.45 21.44 15.63 21.84 
(10,0.7) 6.90 16.20 19.76 12.95 20.64 
(10,0.9) 4.88 14.39 17.77 11.38 18.97 

Table 2. The peak signal to noise ratio (PSNR) of different denoising methods for image 
House. The best results are highlighted in bold font 

Noise Type Noise Level Noisy BivShrink BM3D PGBM3D Proposed 
 

Gaussian 

( ) 

20 22.08 31.77 33.78 29.29 33.78 
40 16.06 28.62 30.64 27.32 30.64 
60 12.54 26.83 28.76 25.73 28.76 
80 10.04 25.58 27.15 24.37 27.15 

100 8.10 24.61 25.89 23.16 26.17 
 

Signal  
Dependant 

 

(10,0.1) 20.42 30.31 32.31 28.97 32.31 
(10,0.3) 13.59 23.44 27.06 21.32 27.06 
(10,0.5) 9.80 19.39 23.97 17.15 27.13 
(10,0.7) 7.17 16.58 21.29 14.38 25.30 
(10,0.9) 5.16 14.49 18.49 12.37 23.91 

Table 3. The peak signal to noise ratio (PSNR) of different denoising methods for image Lena. 
The best results are highlighted in bold font. 

Noise Type Noise Level Noisy BivShrink BM3D PGBM3D Proposed 

 
Gaussian 

( ) 

20 22.09 32.30 33.03 29.11 33.03 
40 16.08 29.20 29.82 27.03 29.82 
60 12.56 27.37 28.15 25.68 28.15 
80 10.06 26.05 26.82 24.74 26.82 

100 8.12 25.10 25.76 24.01 25.76 
 

Signal  
Dependant 

 

(10,0.1) 20.92 30.05 31.70 28.86 31.70 
(10,0.3) 14.26 22.42 26.27 21.36 28.87 
(10,0.5) 10.52 18.22 23.43 17.34 27.10 
(10,0.7) 7.91 15.38 21.13 14.63 25.75 
(10,0.9) 5.91 13,26 18.87 12.57 24.60 

 

nσ

),( 10 kk

nσ

),( 10 kk

nσ

),( 10 kk
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Table 4. The peak signal to noise ratio (PSNR) of different denoising methods for image 
Peppers. The best results are highlighted in bold font. 

Noise Type Noise Level Noisy BivShrink BM3D PGBM3D Proposed 
 

Gaussian 

( ) 

20 22.08 29.93 31.27 28.09 31.27 
40 16.06 26.44 27.64 25.26 27.64 
60 12.54 24.54 25.74 23.67 25.74 
80 10.04 23.27 24.37 22.32 24.37 

100 8.10 22.32 23.31 20.93 23.31 
 

Signal  
Dependant 

 

(10,0.1) 20.89 28.51 29.80 27.78 29.80 
(10,0.3) 14.19 21.83 24.35 20.65 26.40 
(10,0.5) 10.44 17.77 21.62 16.67 24.38 
(10,0.7) 7.83 14.98 19.51 13.92 22.84 
(10,0.9) 5.82 12.91 17.45 12.03 21.66 

 

 

Fig. 1. The noisy images, the denoised images by BivShrink, BM3D, PGBM3D, and the Pro-
posed method for Fingerprint, House, Lena, and Peppers, respectively 

nσ

),( 10 kk
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4 Conclusions 

Reducing noise in digital images corrupted with additive, multiplicative, and mixed 
noise is a very important topic in image processing. In this paper, we have proposed a 
new method for reducing the noise in the noisy image. Our method reduces the noise 
in the residual image and merges this denoised residual image into the previously 
denoised main image. In this way, more fine features in the image will be retained. 
Our new denoising method in this paper works well for both the Gaussian white noise 
and signal-dependent noise. In addition, it nearly always outperforms the BM3D, 
Poisson-Gaussian BM3D (PGBM3D), and Bivariate shrinking (BivShrink) for signal 
dependent noise. It achieves similar results as the BM3D for Gaussian white noise.  

Future research will be conducted in order to deal with other types of noise in the 
noisy 1D signals, 2D images, and 3D videos. We may replace the BM3D algorithm 
with our previous works ([9], [10], [11], [12], [13], [14]) for image denoising. We 
believe that our proposed method may be applied to multi-spectral or hyper-spectral 
satellite imagery as well. In addition, we will use other metrics to measure the image 
visual quality of the denoised images. For instance, we can use such metrics as 
MSSIM [20], VIF [21], MSE, etc.  
 
Acknowledgments. We would like to thank the authors of [6], [7], [8] and [19] for posting 
their denoising software on their websites. This work was supported by the Natural Sciences 
and Engineering Research Council of Canada (NSERC). 
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Abstract. In this paper, with the aid of Ma equivalence (ME), a
different-level simultaneous minimization (DLSM) scheme is proposed
and investigated for robotic redundancy resolution. Such a DLSM
scheme, combining the minimum kinetic energy (MKE) and minimum
acceleration norm (MAN) solutions via a weighting factor, can prevent
the occurrence of relatively high joint velocity/acceleration and can guar-
antee the final joint velocity of motion to be near zero. Simulation results
based on PUMA560 robot manipulator further substantiate the efficacy
and flexibility of the proposed DLSM scheme on robotic redundancy
resolution.

Keywords: Different-Level Simultaneous Minimization (DLSM) ·
Minimum Kinetic Energy (MKE) · Minimum Acceleration Norm (MAN) ·
Robotic redundancy resolution · Ma Equivalence (ME)

1 Introduction

As for the research of robotics, being a fundamental issue, the redundancy-
resolution problem (which closely relates to motion planning of redundant robot
manipulators) is described as that, given the desired end-effector path rd(t) ∈
Rm, the corresponding joint trajectory θ(t) ∈ Rn needs to be generated in
real time [1,2]. The pseudoinverse-based approach is the conventional and ana-
lytic solution to the redundancy-resolution problem [3–5]; i.e., in the form of one
minimum-norm particular solution plus a homogeneous solution. Evidently, such
an approach can readily solve the redundancy-resolution problem (because it
has an analytic-solution formulation). This characteristic has made the research
of this approach popular in the past decades [3–7]. Being different from the
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 431–438, 2014.
DOI: 10.1007/978-3-319-12436-0 48
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pseudoinverse-based approach, the quadratic-programming (QP) approach has
also been reported on robotic redundancy resolution, in which various recur-
rent neural networks are involved [1,2]. In general, by combining the QP-based
redundancy-resolution scheme and the corresponding neural-network solver, the
purpose of motion planning of redundant robot manipulator is thus achieved
[1,2,5]. Among these researches [1–8], an inspiring result was presented by Ma
et al. [6], showing a relationship between the minimum velocity norm (MVN)
scheme and its equivalent acceleration-level minimization scheme, i.e., the
so-called Ma equivalence (ME) relationship. Based on the ME, Ma further devel-
oped and investigated a balancing scheme [7] with the pseudoinverse-based for-
mulation for robotic redundancy resolution. Note that such a scheme but with
the QP-based formulation has recently been presented and investigated in [8].

Being a study case of the pseudoinverse-based approach in this paper, the
minimum acceleration norm (MAN) scheme [3,4] has been widely adopted for
robotic redundancy resolution at the joint-acceleration level. Such an MAN
scheme, minimizing the sum of squares of joint accelerations, is formulated as

θ̈ = J†(r̈d − J̇ θ̇), (1)

where θ̇ ∈ Rn and θ̈ ∈ Rn are the joint-velocity and joint-acceleration vectors,
respectively. In addition, J† ∈ Rn×m is the pseudoinverse of the Jacobian matrix
J ∈ Rm×n, J̇ is the time derivative of J , and r̈d ∈ Rm is the second-order time
derivative of the desired end-effector path rd.

However, the joint-velocity and joint-acceleration solutions synthesized by
the MAN scheme may be relatively large, and the final joint velocity of motion
may be nonzero. These drawbacks are undesirable in engineering applications. To
remedy the aforementioned phenomena, with the aid of the inspiring ME result
[6–8], this paper develops and investigates a different-level simultaneous mini-
mization (DLSM) scheme that combines the minimum kinetic energy (MKE) and
MAN solutions via a weighting factor. Computer simulations based on PUMA560
robot manipulator are further performed to show the efficacy and flexibility of
such a DLSM scheme. Before ending this section, it is worth pointing out the
main contributions of this paper as follows.

1) This paper proposes and investigates the different-level simultaneous mini-
mization (DLSM) scheme for redundancy resolution of robot manipulators,
which is based on the weighted combination of MKE and MAN solutions.
This is an important investigation for robotics.

2) In comparison with the single-criterion scheme, the DLSM scheme is more
flexible in the sense that the latter can yield any suitable combination of
MKE and MAN solutions if needed.

3) Simulation results are illustrated to substantiate that the proposed DLSM
scheme is effective and flexible on robotic redundancy resolution.

2 Different-Level Simultaneous Minimization (DLSM)

In this section, the different-level simultaneous minimization (DLSM) scheme
with the aid of ME is proposed, developed and investigated for robotic redundancy
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resolution. The resultant DLSM scheme is based on the weighted combination of
MKE solution and MAN solution. Note that, since the MKE and MAN schemes
are investigated originally at two different levels (i.e., the former corresponds
to the joint-velocity level, while the latter corresponds to the joint-acceleration
level), such a weighted-sum scheme is termed the DLSM scheme in this paper
for robotic redundancy resolution.

To lay a basis for further discussion, the MKE scheme, which minimizes
the weighted sum of squares of joint velocities, is formulated as θ̇ = J†

H ṙd =
H−1JT(JH−1JT)−1ṙd, where J†

H ∈ Rn×m denotes the weighted pseudoinverse
matrix, H ∈ Rn×n is the positive definite inertia matrix, ṙd is the time derivative
of the desired end-effector path rd, and superscript T denotes the matrix or vector
transposition. By generalizing the inspiring result of MVN-type equivalence in
Ma et al.’s work [6–8], the above velocity-level MKE scheme is mathematically
equivalent to the following acceleration-level minimization scheme:

θ̈ = J†
H(r̈d − J̇ θ̇) + (I − J†

HJ)H−1(J̇T(JH−1JT)−1 − ḢJ†
H)ṙd, (2)

where I ∈ Rn×n is the identity matrix and Ḣ denotes the time derivative of H.
Note that such an MKE-type equivalence (or termed, generalized Ma equiva-
lence, GME) is the basis of the development of the DLSM scheme in this paper.

As mentioned previously, the solutions of joint velocity and joint acceleration
synthesized by the MAN scheme (1) may be relatively large, and the final joint
velocity of motion may be nonzero (which is not acceptable for engineering
applications). To remedy the undesired phenomena encountered in the MAN
scheme, with the aid of the presented GME result, the following DLSM scheme
based on the weighted combination of MKE and MAN solutions is developed.

Definition. The DLSM scheme proposed in this paper is formulated as

θ̈(DLSM) =αθ̈(MKE) + (1 − α)θ̈(MAN)

=(αJ†
H + (1 − α)J†)(r̈d − J̇ θ̇)

+ α(I − J†
HJ)H−1(J̇T(JH−1JT)−1 − ḢJ†

H)ṙd,

(3)

where weighting factor α ∈ (0, 1) is used to scale the combination of the MKE
and MAN solutions. In addition, θ̈(MKE) and θ̈(MAN) correspond to the MKE
solution computed by (2) and the MAN solution computed by (1).

Explanation. Let us consider the general formulation of an acceleration-level
scheme for robotic redundancy resolution, i.e., θ̈ = J†(r̈d − J̇ θ̇) + (I − J†J)z,
where z ∈ Rn is an arbitrary vector usually selected by using some optimization
criteria [3,4]. By introducing a weighting factor α and choosing z as θ̈(MKE), the
following scheme can be developed:

θ̈ = J†(r̈d − J̇ θ̇) + α(I − J†J)θ̈(MKE), (4)

where θ̈(MKE) is obtained by (2). It can be generalized from JJ†
H = I ∈ Rm×m

that (I − J†J)J†
H = J†

H − J† and (I − J†J)(I − J†
HJ) = I − J†

HJ , (4) is refor-
mulated as

θ̈ = αθ̈(MKE) + (1 − α)θ̈(MAN), (5)
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where θ̈(MAN) is obtained by (1). Thus, substituting (2) and (1) into (5) yields
θ̈(DLSM) = (αJ†

H + (1 − α)J†)(r̈d − J̇ θ̇) + α(I − J†
HJ)H−1(J̇T(JH−1JT)−1 −

ḢJ†
H)ṙd, which is the DLSM scheme (3). The explanation is thus complete. �
Evidently, such a scheme (3) reduces to the pure MAN scheme when α → 0

(i.e., only the MAN purpose is considered) or to the acceleration-level MKE
scheme when α → 1 (i.e., only the MKE purpose is considered). In addition, the
proposed DLSM scheme (3) is more flexible in the sense that it can yield various
suitable combinations of MKE and MAN solutions (if needed). Such a scheme
resolved at the joint-acceleration level can thus achieve the MKE and MAN
purposes simultaneously. Note that, by using a suitable value of α, the proposed
DLSM scheme (3) can prevent the occurrence of relatively high joint velocity
and joint acceleration (which may be caused by the MAN scheme), and can
guarantee the final joint velocity of motion to be near zero. This characteristic
can be regarded as the actual significance of such a scheme (3).

Remark 1. It is worth mentioning here that, besides the aforementioned MAN
scheme, various pseudoinverse-type schemes have been developed and studied
for robotic redundancy resolution [3–5]. Thus, by means of the same way (i.e.,
the weighted combination of MKE and MAN schemes), various DLSM schemes
can also be developed for further investigation of motion planning of redundant
robot manipulators. In this paper, just the concept of different-level simultane-
ous optimization depicted in the pseudoinverse-type formulation is presented for
redundant robot manipulators. With the aid of (MVN-type or MKE-type) ME,
the presented weighted-sum approach can provide various choices on robotic
redundancy resolution from a single level to different levels naturally.

3 Simulative Verifications and Comparisons

In this section, computer-simulation results (including comparisons and observa-
tions) are illustrated to show the efficacy and flexibility of the proposed DLSM
scheme (3). Note that, in the simulations, the task duration is set as T = 10 s
and the initial state is set as θ(0) = [0,−π/4, 0, π/2,−π/4, 0]T rad. Specifically,
such a scheme is simulated for the PUMA560 end-effector tracking a circular
path with the radius being 0.25 m. Note that, for comparative purposes, the
pure MAN scheme (1) is also simulated in this example. The corresponding
simulation results are illustrated in Figs. 1 and 2, Table 1 and finally Fig. 3.

Figure 1 shows the simulation results, which are synthesized by the pure
MAN scheme (1). As seen from Fig. 1(a), the end-effector trajectory is close to
the desired circular path (with the maximal positioning error being less than
4.0 × 10−6 m), which illustrates that (1) is effective on robotic redundancy res-
olution. However, as illustrated in Figs. 1(b) through (d), the values of some
joint velocities and joint accelerations appear to be relatively large for engineer-
ing applications, and the resultant θ̇THθ̇ (corresponding to the kinetic energy)
and θ̈Tθ̈ (corresponding to the acceleration norm) are relatively large. Besides,
Fig. 1(b) shows that some final velocities are not zero after motion and are too
large for practical applications.
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Fig. 1. PUMA560 end-effector tracks a circular path synthesized by MAN scheme (1)

Figure 2(a) illustrates the motion trajectories of the PUMA560 robot manip-
ulator, which is synthesized by the proposed DLSM scheme (3) with α = 0.5.
Figures 2(b) through (d) correspond to joint velocity, joint acceleration, and
θ̇THθ̇ and θ̈Tθ̈ transients. As shown in Fig. 2(a), the simulated trajectory of
the PUMA560 end-effector is close to the desired circular path (in which the
maximal positioning error is less than 2.2778 × 10−6 m). In addition, Figs. 2(b)
and (c) show that the corresponding values of joint velocity θ̇ and joint acceler-
ation θ̈ are relatively small, as compared with those shown in Fig. 1. Thus, the
resultant θ̇THθ̇ and θ̈Tθ̈ given in Fig. 2(d) are smaller than those shown in Fig.
1(d), thereby implying that the MAN solution characteristic is still obtained
by using the proposed DLSM scheme (3). More importantly, Fig. 2(b) shows
that the joint velocities are near zero at the end of motion (with the absolute
value being |θ̇(T )| = [2.3186× 10−3, 2.3513× 10−2, 4.5981× 10−2, 2.0115× 10−2,
5.5819 × 10−2, 2.2245 × 10−5]T rad/s), which is acceptable for practical applica-
tions. These results substantiate the efficacy of the proposed DLSM scheme (3)
for motion planning of redundant robot manipulators.
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Fig. 2. PUMA560 end-effector tracks the circular path synthesized by the proposed
DLSM scheme (3) with α = 0.5

For further investigation, we also simulate the proposed DLSM scheme (3) by
using different values of α. Table 1 and Fig. 3 show the quantitative and qualita-
tive evaluations of such a scheme with different α values, respectively. On the one
hand, as seen from Table 1, the maximal end-effector positioning errors are small
enough (i.e., of order 10−6 m). In addition, the final joint velocities of motion
are near zero (shown in Table 1), which are suitable for practical applications.
On the other hand, as shown in Fig. 3, the values of θ̇THθ̇ and θ̈Tθ̈ are small,
which means that the MAN purpose is also achieved by using (3). Evidently,
Table 1 and Fig. 3 provide an intuitive result about the performance of the pro-
posed DLSM scheme (3) on robotic redundancy resolution. Besides, the related
simulation results (omitted because of space limitation) show that the θ̇ and θ̈
solutions via the proposed DLSM scheme (3) with different α values are small.
These results show again the efficacy of the proposed DLSM scheme (3). By
summarizing these results, the proposed DLSM scheme (3) with a suitable value
of α can prevent the occurrence of relatively high joint-velocity/acceleration,
and can guarantee the final joint-velocity of motion to be near zero.
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Table 1. Maximal end-effector positioning errors (m) and final joint velocities (rad/s)
when the PUMA560 end-effector tracks the circular path synthesized by the proposed
DLSM scheme (3) with different values of α used

α 0.1 0.2 0.3 0.4

positioning error 1.4856 × 10−6 1.6715 × 10−6 2.0331 × 10−6 3.5406 × 10−6

|θ̇1(T )| 6.3325 × 10−2 3.3347 × 10−2 9.5012 × 10−3 3.1014 × 10−3

|θ̇2(T )| 4.0734 × 10−2 3.4478 × 10−2 1.6349 × 10−2 3.7190 × 10−3

|θ̇3(T )| 3.4815 × 10−2 5.2343 × 10−2 2.5804 × 10−2 1.2449 × 10−2

|θ̇4(T )| 1.6168 × 10−1 7.2470 × 10−2 3.4660 × 10−3 2.2886× 10−2

|θ̇5(T )| 1.8812 × 10−1 1.1706 × 10−1 4.5357 × 10−2 1.3316 × 10−2

|θ̇6(T )| 5.6575 × 10−6 1.3016 × 10−5 1.9072 × 10−5 2.1983 × 10−5

α 0.6 0.7 0.8 0.9

positioning error 3.3771 × 10−6 1.4125× 10−6 2.0554 × 10−6 1.9342 × 10−6

|θ̇1(T )| 7.5610 × 10−4 1.9167 × 10−3 3.3026 × 10−3 1.3442 × 10−3

|θ̇2(T )| 4.1493 × 10−2 5.4359 × 10−2 5.2967 × 10−2 3.5061 × 10−2

|θ̇3(T )| 7.3764 × 10−2 9.2616 × 10−2 9.1463 × 10−2 5.7169 × 10−2

|θ̇4(T )| 6.6480 × 10−3 5.5930 × 10−3 7.9130 × 10−3 1.4460 × 10−3

|θ̇5(T )| 8.3348 × 10−2 9.5893 × 10−2 9.0577 × 10−2 6.0597 × 10−2

|θ̇6(T )| 2.0598 × 10−5 1.6269 × 10−5 8.5640 × 10−6 9.6910 × 10−7
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Fig. 3. Profiles of θ̇THθ̇ and θ̈Tθ̈ when the PUMA560 end-effector tracks the circular
path synthesized by the proposed DLSM scheme (3) with different values of α used

In summary, Figs. 1 through 3 and Table 1 (as well as the related simulation
results) have substantiated that the proposed DLSM scheme (3) is effective and
flexible on redundancy resolution of robot manipulators.

Remark 2. The weighting factor α is used to scale the combination of velocity-
level and acceleration-level solutions. Different α values can be chosen for dif-
ferent situations and/or requirements. For instance, to obtain a solution for a
situation in which MKE has more effect compared with MAN, we can set α to
have a larger value (e.g., 0.8 or 0.9). By choosing different values of α in the
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simulative tests (with results shown in Table 1 and Fig. 3), the value chosen for
α is determined by the requirements needed to obtain an acceptable end-effector
positioning error and solution realizability with a (near) zero final velocity.

4 Conclusions

By generalizing Ma et al.’s inspiring work (or termed, Ma equivalence) [6–8], this
paper has proposed and investigated the different-level simultaneous minimiza-
tion (DLSM) scheme (3), which combines the minimum kinetic energy (MKE)
solution (2) and minimum acceleration norm (MAN) solution (1) via a weighting
factor α, for robotic redundancy resolution. Computer-simulation results based
on PUMA560 robot manipulator have further shown that the proposed DLSM
scheme (3) with a suitable α value not only prevents the occurrence of relatively
high joint-velocity/acceleration, but also guarantees the final joint-velocity of
motion to be near zero. The efficacy and flexibility of the proposed DLSM scheme
(3) for robotic redundancy resolution have thus been substantiated.
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Abstract. In this paper, we present two content-adaptive rain and snow removal 
algorithms for single image based on filtering. The first algorithm treats rain 
and snow removal task as an issue of bilateral filtering, where a content-based 
saliency prior is introduced. While the other views the same task from the per-
spective of guided-image-filtering, and the guidance image is derived according 
to the statistical property of raindrops or snowflakes as well as image back-
ground content. A comparative study and quantitative evaluation with some 
main existing image assessment algorithms demonstrate better performance of 
our proposed algorithms. The main contributions of our works are twofold: 
firstly, to the best of our knowledge, our algorithms are among the first to intro-
duce image content information for single-image-based rain and snow removal; 
and secondly, we are also among the first to introduce quantitative assessment 
for single-image-based rain and snow removal tasks. 

Keywords: Rain removal · Snow removal · Bilateral filtering · Guided-image-
filtering · Outdoor vision 

1 Introduction 

Computer vision of indoor situations has already been extensively studied, whereas 
vision algorithms that can handle complex and unpredictable behaviors caused by 
different weather conditions, such as rain, snow, fog, or haze, in outdoor situations 
still remain as challenging problems [1].  

Garg and Nayar [2] classified weather effects into two types: steady weather such 
as fog and haze, and dynamic weather such as rain and snow, based on the size of 
weather particles. In [3], an novel dehaze algorithm with dark channel prior was pro-
posed, it achieves pretty good performance for removing steady weather effects. 

However, for larger particles such as raindrops and snowflakes, reducing or remov-
ing the weather effects while preserving scene information is a different and difficult 
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task due to two main reasons: firstly, the visual appearance of raindrops or snowflakes 
depends both on their backgrounds and lighting conditions, which makes it difficult to 
build a general appearance model; and secondly, unlike steady weather conditions, 
rain and snow effects vary significantly over spatial and temporal domain [8]. 

Previous works for reducing the visibility of dynamic weather effects are primarily 
based on video, where physical and photometric properties of raindrops or snowflakes 
can be well employed over the whole video sequence [4-7]. Nevertheless, when only 
a single image is available, such as an image taken by a camera or downloaded from 
internet, algorithms for single-image-based rain/snow removal are essential.  

Fu [8] proposed a rain streak removal diagram with image decomposition and 
morphological component analysis. This method assumes that rain streaks distributed 
homogeneously over the image. However, if the raindrops distributed heterogeneous-
ly and sparsely, it is difficult or impossible to learn a dictionary for rain streaks. Then, 
Xu [9] and Zheng [10] introduced guided-image-filtering [11] for rain/snow removal, 
where different refined guidance images are proposed separately. Both of the two 
algorithms ignored image content itself as well as statistical property of raindrops and 
snowflakes, and will inevitably introduce blurring artifacts to non-rain texture details. 

In this paper, we propose two novel content-adaptive algorithms for single-image-
based rain and snow removal. The first uses a content-based saliency a priori to seg-
ment original image, then different parts in resulting image correspond to regions with 
different perception intensity. Thus an easy but effective strategy is to adjust filter 
parameters adaptively. The other employs a guided-image-filtering based algorithm to 
remove rain and snow for single image, where the guidance image is derived from the 
statistical chromatic and the photometric properties of raindrops or snowflakes. 

A comprehensive analysis is performed and quantitative comparison with two fa-
mous existing image assessment standards - visual information fidelity (VIF) metric 
[12] and feature-similarity (FSIM) index [13] are also carried out. Experimental re-
sults demonstrate the effectiveness and efficiency of our proposed algorithms.  

The remainder of this paper is organized as followings: in section II and III, the de-
tails of our proposed two algorithms - bilateral filtering based algorithm with saliency 
a prior and guided-image-filtering based algorithm with statistical property are well 
explained; then in section IV, a comprehensive comparison analysis and quantitative 
evaluation is conducted; finally, section V concludes this paper. 

2 Preliminary Knowledge 

The intensity of rain and snow generally falls into four categories - light, moderate, 
heavy and violent (Fig. 1) - based on the rate of precipitation [14]. For images con-
taminated by raindrops or snowflakes with light or moderate intensity, it is difficult or 
impossible to learn a construction model accurately due to lack of useful information 
provided by single image as well as their sparse distribution and random directions. If 
images are contaminated with weather effects of heavy or violent intensity, although  
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Fig. 1. The visual appearances of rain under different intensities. From left to right: (a) a beauti-
ful girl in light rain; (b) a sitting man in moderate rain; (c) a building in heavy rain; and (d) 
crossroads in violent rain. 

we can coarsely separate weather effects from background via dictionary learning and 
sparse coding [8], details in background (especially edges and corners resembling rain 
streaks or snowflakes) are often eliminated at the same time, only for the reason that 
raindrops or snowflakes are highly mixed with similar texture in almost each patch of 
the image. Therefore, unlike conventional image restoration problems, single-image-
based rain/snow removal is not an easy and trivial task. However, algorithms based on 
edge-preserving filtering [11,15] provide a reliable solution.  

2.1 Bilateral Filtering 

As a simple, non-iterative scheme for edge-preserving smoothing, bilateral filtering is 
always the first step of computer vision based algorithms for different systems, such 
as vehicle tracking system, pedestrian detection and surveillance system [8], under 
rain or snow weather conditions. The basic idea of bilateral filtering is Gaussian dis-
tribution based averaging, which means that the intensity value at each pixel in an 
image is replaced by a weighted average of intensity values from nearby pixels [15]. 
However, the weights depend not only on Euclidean distance but also on the color 
intensity differences. This preserves sharp edges by systematically looping through 
each pixel and adjusting weights to the adjacent pixels accordingly [11].  

2.2 Guided Image Filtering 

In [11], He proposed a novel explicit image filter called guided filter. Derived from a 
local linear model, the guided filter computes the filtering output  by consider-
ing the content of guidance image , which can be the input image itself or another 
different image. In window , the output pixel  can be represented as:                                                       ,                                                        1  

where  and  are defined as:                                    Σ /| | /                                       2                                                                                                                          3  

Here,  is the filter input,  and  are the mean and variance of  in ,  is 
the mean of  in , | | is the pixel number in . 
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3 Bilateral Filtering Based Rain/Snow Removal with a Saliency 
Prior 

According to aforementioned description in section II, as a widely used method for 
rain and snow removal for single image, conventional bilateral filtering has two major 
drawbacks: firstly, it will produce staircase effects at edges, especially at contours of 
un-degraded objects, and secondly, the filter parameters remain the same for all parts 
of the image without any emphasis, which will introduce similar blurring effects or 
flatting performance to both dominant objects and redundant backgrounds.  

However, different parts of an image will cause different perception intensities to 
an observer: the salient parts, which always corresponding to dominant objects that 
are less influenced by raindrops or snowflakes, will lead to more perception intensity, 
whereas the less salient parts, which always corresponding to backgrounds or redun-
dant image content, will result in low perception intensity. Therefore, it is essential to 
adaptively adjust filter parameters based on image content, i.e. content-aware saliency 
information in an image. 

3.1 Content-Based Saliency Detection 

Normally, raindrops or snowflakes result in low perception intensity compared with 
prominent objects in an image, due to the fact that such weather effects are always 
highly mixed with backgrounds and sparsely distributed.  

In this section, we successfully introduce a saliency a priori for bilateral filtering. 
Different from the conventional bilateral filtering, our method can adaptively adjust 
filter parameters based on the intensity of saliency.  

For the computation of saliency map, we use context-aware method [17] proposed 
by Goferman as our pre-processing step. The literatures on saliency detection contain 
nearly 65 vision attention models in the last 25 years [16], and we explain here why 
context-aware method is selected. Firstly, note that we have emphasized content-
adaptive in this paper, and therefore methods designed for saliency detection only for 
dominant objects, regardless of surrounding context information, such as spectral 
residual approach [18] and global contrast based method [19], fall outside the scope 
of this paper. Secondly, of the existing methods for content-based saliency detection, 
methods based on symmetric surround or combined features introduced in [20] appear 
to be the closest in spirit to the context-aware saliency detection utilized here. How-
ever, only limited principles of human visual attention from psychology are utilized in 
[20], whereas [17] realized all of them mathematically. Fig. 2 demonstrates the sali-
ency detection results. 

 

             
        (a)                 (b)                (c)                (d) 

Fig. 2. Ground-truth images with rain/snow and their corresponding saliency map 
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3.2 Ordered Sample Clustering for Histogram of Saliency Map 

For the saliency map from section 3.1, larger pixel values represent high salient re-
gions of the original image, while smaller ones correspond to low salient regions.  

With ordered sample clustering algorithm, the histogram of saliency map can be 
partitioned into several segments, and each segment represents a specific saliency 
intensity level. In this paper, we used the well-known "optimal partition method (i.e. 
fisher method)" to separate the image histogram into several segments. The basic idea 
of "optimal partition" is minimizing the increment of sum of deviation squares of the 
ordered sample after segmentation. 

Fig. 3(a) illustrates the clustering result for saliency map histogram of Fig. 2(b) 
(clustered into 3 categories). Fig. 3(b) illustrates the image segmentation of Fig. 2(a) 
according to clustering result, each segmented region corresponding to a specific 
segment of histogram of saliency map. 

 

 

Fig. 3. Image segmentation according to ordered sample clustering to histogram of saliency 
map. (a) is the histogram of saliency map, the two breaking points are 75 and 101. (b) is image 
segmentation results. 

3.3 Adaptive Parameter Adjustment 

The performance of bilateral filtering depends on three parameters: filter width, 
standard deviations of geometric spread and photometric spread. The geometric 
spread  controls the extent of low-pass filtering: a large value blurs more, and 
vice versa. Similarly, the photometric spread  in the image range is set to achieve 
the desired amount of combination of pixel values. Therefore, it is reliable to allocate 
smaller filter parameters in the regions of high saliency, while in the low salient re-
gions, larger parameters are preferable.  

In our experiment, initial values for these three parameters, i.e. filter half-width, 
, and  are set as 5, 3, and 0.1, respectively. For regions of lower saliency in the 

next level, we will increase each parameter by 2, 5, and 5 times, separately. The re-
sults are shown in Fig.4. Compared with conventional bilateral filtering method, our 
algorithm can preserve more image-related information (content) and remove 
raindrops and snowflakes with higher accuracy. 
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Fig. 4. Weather removal results for Fig. 3(a) and Fig.3(c) with refined bilateral filtering 

4 Guided-Image-Filtering Based Rain/Snow Removal with 
Statistical Chromatic Property 

Guided-image-filtering achieved good performance for dehaze. After that, feasible 
and practical extensions have been applied towards rain and snow removal [9,10]. 
Conventional revised guided-image-filtering algorithms are all based on the principle 
to preserve more useful details, especially edges. Here, we present a new method to 
extract guidance image based on statistical properties of raindrops/snowflakes. 

4.1 Chromatic Property of Raindrops and Snowflakes 

In [4], a chromatic model for spherical raindrop is presented (also applicable for 
snowflakes). It pointed out that raindrop refracts a wide range of light, therefore the 
projection of raindrop in the image is much brighter than its background. Because of 
the difference in wavelength, blue light has a larger index of refraction and a wider 
field of view than red light. Therefore, a raindrop should refract a little more blue 
light coming from the background. Followed with [2,4], we further investigated the 
subtle difference of refraction to the appearance of raindrops and snowflakes. Accord-
ing to our statistical observations1, the intensity differences of R, G, and B channel 
caused by raindrops/snowflakes are roughly the same. 

4.2 Photometric Property of Raindrops and Snowflakes 

When a falling raindrop or a snowflake is captured by a camera, the intensity is a 
linear combination of irradiance of raindrops or snowflakes and the irradiance of 
background [9]. Their intensity values can be both expressed as:                                                                                                     4  

where  is the intensity value of a pixel effected by raindrops or snowflakes,  is 
the time-averaged irradiance of a stationary raindrop or snowflake,  is the time-
averaged irradiance of background,  is the exposure time and during the time  a 
raindrop or a snowflake is passing through the pixel. 

                                                           
1 We verified these observations using two public videos from [21]. In each frame from the two 

videos, a fixed region of 50*50 is selected, and our observations are based on these 2500  
pixel sequences. 
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If we define I  as the background intensity, IE  as the intensity of a stationary 
raindrops or snowflakes at the time T. Eq.(4) can be simplified as:                                        1 , where /                                        5  

Eq.(5) provides a photometric model of raindrops and snowflakes. 

4.3 Refined Guidance Image Extraction 

Here, we proposed a new method for guidance image extraction based on both chro-
matic and photometric properties of raindrops or snowflakes. Firstly, extraction of 
guidance image can be achieved through following procedures: 

I. Smooth input image with bilateral filtering in R, G, B channels separately. The 
result images can be represented as _ , _  and _ , respectively. 

II. Compute abstract differential images between three images from step I. Then 
we have three difference images: ,  and . 

III. Use Eq.(6) to compute the mean image of ,  and ,  can be 
used as our first refined guided image.                                             /3                                             6  

In addition, we note that Eq.(5) is established for R, G and B channels. If  indi-
cates a coordinate of the RGB space and  is the maximum value at RGB space 
of ,  must be the maximum value at RGB space of . This relation also holds 
for the minimum value of each vector at RGB space. Therefore, we have:                                            1                                        7                                            1                                           8  

According to aforementioned description . Subtract (8) from (7):                            1                            9  

 

 

 

Fig. 5. Raindrops/Snowflakes removal results with guided image filtering: first row shows 
removal reuslt for sitting man in rain weather; secod row shows removal result for mailbox in 
snow weather. From left to right: , ,  and weather removal result. 
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Obviously,  is not affected by weather effects. Therefore, final guidance image  can be represented as weighted combination of  and  (See Fig.5):                                              1                                             10  

5 Experiment and Result Analysis 

We have conducted both qualitative and quantitative experiments to assess our pro-
posed two algorithms with other state-of-art raindrop/snowflake removal algorithms. 
The goal of objective image quality assessment research is to provide computational 
models that can automatically predict perceptual image quality. In this paper, we will 
utilize VIF [12] and FSIM [13] to assess our raindrops/snowflakes removal results. 

5.1 Qualitative Comparison 

Fig.6 shows the weather effects removal results of several different filtering based 
methods2. The top row illustrates removal effects for raindrops, and the bottom row 
illustrates removal effects for snowflakes3. As can be seen, "GF" has good perfor-
mance for rain/snow removal, but it introduces more blurring artificial effects. "BF" 
can keep more detail information, but it always preserve more weather effects. Com-
pared with these two, "Xu" can keep more useful structure information, "Our I" can 
also keep more useful details and remove more weather effects. In addition, "Our II" 
outperforms "GF".  
 

 

         
       (a)              (b)                (c)                (d)               (e) 

Fig. 6. Illustration of weather effects removal results with different algorithms: (a-e) removal 
results with "BF", "GF", "Xu", "Our I" and "Our II", respectively. 

5.2 Quantitative Evaluation 

In this section, VIF and FSIM are utilized to evaluate the raindrops and snowflakes 
removal effects quantitatively. Test images (See Fig.7) are downloaded from [21], 
where weather effects are added to the ground truth video frames with advanced ren-
dering techniques [5]. Experimental results are presented in Table 1 and Table 2. 
                                                           
2 More results are available from the author's homepage http://www.yushujian.com/index.html.  
3 We denote bilateral filtering in [15] as BF, guided-image-filtering in [11] as GF, Xu's method 

in [9] as Xu, our two proposed algorithm as Our I and Our II in section 5.1 and section 5.2. 
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          (a)                     (b)                     (c)                     (d)  

Fig. 7. Two representative frames from two test videos: (a) and (c) are ground-truth images; (b) 
and (d) are ground-truth images with added weather effects 

Table 1. Averaged VIF value for video frames with different algorithms  

 BF GF Xu Our I Our II 
Video I 0.1444 0.1172 0.1463 0.1562 0.1484 
Video II 0.5378 0.5193 0.4463 0.6477 0.5745 

Table 2. Averaged FSIM value for video frames with different algorithms  

 BF GF Xu Our I Our II 
Video I 0.3219 0.3039 0.3218 0.3302 0.3360 
Video II 0.8180 0.7717 0.7553 0.8395 0.8119 

6 Conclusion 

In this paper, we have proposed two independent algorithms for raindrops/snowflakes 
removal in single image. Firstly, we successfully introduced a saliency-map-prior for 
bilateral filtering, the improved algorithm can automatically adjust filter parameters 
based on image content. In addition, we have also proposed a novel way for guidance 
image extraction based on properties of rain. The refined guided image filtering can 
achieve better performance than conventional version. Finally, we have conducted 
experiments to assess different rain streak removal methods both from subjective 
perspective and objective measurements. Experimental results demonstrate the effec-
tiveness and efficiency of our proposed algorithms. 
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Abstract. Bridge detection in panchromatic imagery is of great importance in ci-
vilian and military applications. Popular algorithms for bridge detection are often 
based on a priori knowledge to bridge structure or location features, where man-
ually-introduced decision rules are incorporated into a complex algorithm in  
spatial domain. Instead of knowledge-based approach in spatial domain, in this 
paper, we proposed a fast data-driven algorithm in compressed domain for pan-
chromatic satellite imagery. Our algorithm consists of two main steps: firstly, 
bridge region candidates detection with hierarchical saliency model in com-
pressed domain; and secondly, bridge region candidates validation with Local 
Binary Patterns (LBP) and Extreme Learning Machine (ELM). Experiments are 
conduced, and detection results demonstrate the effectiveness and efficiency of 
our proposed algorithm. The main contributions of our work are twofold: 1) to 
the best of our knowledge, we are among the first to introduce the concept of 
compressed domain techniques for bridge detection; and 2) compared with other 
knowledge-based algorithms, no assumptions are made beforehand for our  
algorithm, which makes it applicable for bridges of various cases. 

keywords: Bridge detection · Panchromatic satellite imagery · Remote sensing ·  
Compressed domain · Data-driven 

1 Introduction 

Automatic bridge detection is of great importance in both civilian areas and military 
affairs. Information on bridge location, orientation is essential for geographical data-
base maintaining, damage assessment caused by natural disasters, as well as battle-
field monitoring and military reconnaissance [1]. The purpose of this study focuses on 
automatically detecting bridges over water in panchromatic satellite imagery, and a 
new data driven algorithm in compressed domain is proposed. 

Literatures on bridge detection and extraction from satellite imagery is thin [6],  
and previous algorithms are typically based on knowledge-driven approach, where a 
priori knowledge from an observer or expert is introduced to support bridge region  
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(a)                            (b) 

Fig. 1. Bridge detection in panchromatic imagery with our proposed algorithm: (a) represents 
the original satellite data; (b) demonstrates bridge detection results 

segmentation or bridge candidate validation. In [3], the priori information on relative 
location relationship between river canals and concrete bridges are utilized to guide 
the low-level pre-processing step. [4] proposed a seed bridge points based segmenta-
tion algorithm to extract bridge region, where the seed points are detected with three 
basic observations. Then, in [5], a geometric model was exploited for detection task, 
where the author depicted bridge as two parallel segments with minimum length and 
maximum accepted angle difference. Followed by that, the author further proposed 
six manually-produced decision rules to define and classify segments as bridge [7].  

Almost for all knowledge-drive algorithms, the knowledge itself is not derived au-
tomatically, but introduced with human observation or common sense. Obviously, 
such algorithms require a highly generalized but accuracy model to describe bridges 
with various shapes, orientations, as well as backgrounds, in addition, a corresponding 
mathematical model is also essential. However, existing prior knowledge is not  
sufficient to generalize all cases, and it often causes misleading detection results to 
specific satellite imagery or bridges with certain structure [2].  

Apart from aforementioned problem, another issue which is urgent to be solved 
comes from massive amounts of incoming data. Although higher resolution results  
in more distinct visual features to describe kinds of targets in satellite imagery, a  
challenging problem is how to improve efficiency of  feature extraction and represen-
tation [8], since conventional algorithms are normally time consuming and computa-
tion demanding [9]. 

To overcome above two difficulties, in this paper, we proposed a novel data-driven 
algorithm in compressed domain for bridge detection from panchromatic satellite 
imagery (See Fig. 1). Different from knowledge based approach for bridge region 
segmentation, data-driven strategy is concerned in our algorithm, where bridge region 
candidates are extracted with a hieratical saliency detection method without any as-
sumption. In addition, different bridge region candidates are further validated with a 
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decision rule learned from Extreme Learning Machine (ELM) [10] based on well-
known Local Binary Patterns (LBP) [11] feature. 

The remainder of this paper is organized as follows: in section 2, we briefly  
describe the workflow for bridge detection algorithm from panchromatic satellite 
imagery; then, in 3, the details of our proposed algorithm, i.e. bridge region candi-
dates extraction (including image decomposition, mean-shift smoothing and hieratical 
saliency detection), bridge region candidates validation (including LBP feature  
extraction and representation as well as classifier training with ELM) are well ex-
plained; in section 4, experiments are conducted, results analysis are also performed; 
finally, section 5 concludes this paper and also outlines future work. 

2 Algorithm Overview 

2.1 Image Data Source 

The satellite images used are downloaded from "Google Earth". To verify the validity 
of our algorithm, we collected an image set of 1200 images. All of them are taken by 
"QuickBird" satellite along the shorelines of Florida, U.S., in addition, the bridges for 
our research are of different positions, orientations, as well as different kinds (includ-
ing road over water, road over road, walkway over water, etc.). Among them, we 
randomly selected 400 images for training, and reserved the rest 800 images as test 
set. In this paper, we only selected two images (Fig. 1(a)) from our test set to demon-
strate the superiority of our algorithm.  

2.2 Review to Image Processing in Compressed Domain 

The baseline block diagram of the JPEG2000 compression algorithm is shown in  
Fig. 2. According to [12], compressed domain is defined as anywhere in the compres-
sion or decompression procedure, after transform or before inverse transform. There-
fore, any computer vision algorithms, including bridge detection can be conducted in 
compressed domain from points 1 to 6 in Fig. 2. 
 

 

Fig. 2. Baseline block diagram of JPEG2000 

1

3

4

5 6 

2
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In our proposed algorithm, point 1 is determined to be the ideal place for our com-
pressed domain bridge detection algorithm based on three main reasons: firstly,  
entropy coder (points 3 and 4 in Fig. 2) will introduce serious destruction to spatial 
distribution of target features; secondly, since points 5, 6 are symmetry to points 1, 2, 
only points 1 and 2 are considered hereinafter; and thirdly, compared with implemen-
tation in point 1, implementation in point 2 is time consuming although it can pre-
serve similar performance. 

2.3 Overview to Our Proposed Algorithm 

The flowchart of our proposed algorithm is illustrated in Fig. 3. It can be decomposed 
into two main steps: 1) bridge region candidates detection and extraction; 2) bridge 
region candidates validation. In the pre-processing, wavelet coefficients are extracted 
in the JPEG2000 codec. In order to have a fast implement of our proposed frame-
work, only coefficients from low frequency subband (denoted as LL) is utilized for 
bridge region candidate extraction and ELM training. Experiment results and evalua-
tion analysis demonstrate the effectiveness and efficiency of our proposed algorithm. 
Detailed description to our algorithm is provided in section 3. 
 

 

Fig. 3. Flow chart of proposed algorithm 

3 Our Algorithm 

3.1 Bridge Region Candidates Detection 

Our bridge region candidates extraction is based on saliency detection in reconstruct-
ed bit-plane. Since bit-plane 6 and bit-plane 7 involve more details of targets infor-
mation (See Fig. 4), also because a real time implement is preferred, a weighted  
combination of bit-plane 6 and bit-plane 7 is utilized for candidates extraction, regard-
less of other bit-planes. 

Bridge region candidates detection

Bridge region validation
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Bit-Plane Reconstruction 
Fig. 4 demonstrates the eight bit-plane images for Fig. 1(a) after discrete wavelet 
transform (DWT) in JPEG2000 codec. It can be observed that bit-plane 6 I  and  
bit-plane 7  reflect more information of different regions1, thus a desired recon-
structed bit-plane  can be represented as:                                   1 , where 0 α 1                                1  

In our framework, we set α 0.9 for all images in dataset. Fig. 5(a) illustrates our 
reconstructed bit-plane. 

 

 

Fig. 4. Bit-plane images of Fig. 1(a) in gray level. First row from left to right: bit-plane 1 to bit-
plane 4; second row from left to right: bit-plane 5 to bit-plane 8. 

Mean-Shift Smoothing 
Before bridge region candidates detection, the reconstructed bit-plane is smoothed 
with Mean-Shift which is extensively studied in [16]. Typically, an image can be 
represented as a 2  lattice of  vectors. Therefore, each pixel  can be regarded 
as a  vector ( 2) in feature space , . Here  records pixel 
spatial information, and  is the range (pixel value) part of feature vector. 

Let  and  be the  input and output of Mean-Shift filter. For each pixel: 
1) Initialize 1 and , . 
2) Update ,  according to Eq.2 (  represents a kernel) until convergence, , . 

                                                  ΣΣ                                              2  

3) Assign , , . 
After mean shift filtering, each point converges into a point of convergence which 
represents the local mode of the density of the  space. This process will achieve a 
high quality, discontinuity preserving effect (See Fig. 5(b)). 

                                                           
1 We repeated the same experiment over 1200 images in our dataset, all of them share the same 

phenomenon. 
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           (a)                    (b)                      (c)                     (d)       

Fig. 5. Illustration of bridge region candidate extraction on smoothing reconstructed bit-plane. 
(a) is the reconstructed bit-plane image; (b) demonstrates smoothing effects with mean-shift to 
Fig. 5(a); (c) and (d) illustrate the saliency region with "spectral residual approach" in both gray 
level and color image of Fig. 1(a) 

Saliency Detection with "Spectral Residual Approach"  
The saliency detection method we used here is the well-known "spectral residual  
approach (SRA)" proposed by Hou [13]. According to Hou, information of the origi-
nal image can be interpreted as the sum of the innovation and prior knowledge.  
The innovation stands for the interesting part with possible targets (like bridges in  
our paper), whereas the prior part stands for redundant or irrelevant information  
related to the background and invariant environment, which can be compressed.  
Also, Hou pointed out that image log spectrum provides an approximate description 
to image information. 

Given an image , its log spectrum  can be represented as:                                                       log                                                       3  

where F represents Fourier Transform. Therefore, spectral residual  can be 
defined as:                                                                                                                4  

Here , where  denotes a local averaging filter. Using In-
verse Fourier Transform, we can construct the saliency map in spatial domain. 

The literatures on saliency detection contain nearly 65 vision attention models in the 
last 25 years [14], and we explain here why SRA is selected. Firstly, as we emphasized 
that our algorithm is data-driven, since SRA is independent of features and any other a 
priori knowledge of objects, it provides a reliable solution. In addition, SRA designed 
for saliency detection only for dominant objects, which also matches the scope of this 
paper. The final reason relates to the effectiveness and efficiency of SRA, since it can 
be implemented in 5 lines of Matlab codes [15]. Fig. 5(c),(d) demonstrate the saliency 
detection results with SRA. As it can be observed, a coarsely region involving bridge 
region and surrounding areas is detected and extracted thereby. 

3.2 Bridge Region Validation 

Obviously, regions extracted with saliency detection on smoothing reconstructed bit-
plane are not guaranteed to be bridges. Especially when the source image including 
complex backgrounds and other objects which share similar appearance to bridges 
(See Fig. 6). Therefore, it is essential to validate the bridges region with supplemen-
tary mechanism. In this part, a novel approach based on ELM and LBP is presented. 
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Fig. 6. Bridge region candidates detection results: (a) is source image; (b) is saliency detection 
result in smoothing reconstructed bit-plane; (c) is the corresponding saliency part in original 
panchromatic imagery. As it is shown, the three highlighted region share the similar appearance 
and both are detected in the last step. However, only red region is our desired.  

LBP Feature Extraction  
The feature descriptor we used in this step is Uniform LBP from LBP family [11]. 
LBP is considered here for three main reasons: firstly, as a data-driven system, object 
shape features, like ratio of long and wide axis, will not be considered; secondly, 
among the existing well-known statistical features, like co-occurrence matrix, Fourier 
descriptor, LBP is illumination invariant, which can effectively avoid the influence of 
weather effects which are commonly encountered in remote sensing imagery; and 
thirdly, LBP is convenient for computation, since only small neighborhood are in-
volved for each pixel, which makes real-time application possible. 

In our frameworks, instead of conventional LBP, Uniform LBP is used for feature 
extraction. Compared with conventional LBP, the main advantage of Uniform LBP 
relies on its property of generalization and dimensionality reduction, since we can use 
a vector of 59 dimension to generalize 90% of LBP patterns (See Fig. 7).   

 

       
          (a)                     (b)                    (c)                     (d)   

Fig. 7. Illustration of Uniform LBP descriptor: (a) is the bridge region from Fig. 1(a); (c) is the 
same region with 90 degree rotation; (b) and (d) demonstrate extracted Uniform LBP descriptor 
corresponding to (a) and (c), respectively. As can be seen, Uniform LBP is rotation invariant. 

Verification of Bridge Candidates with ELM 
We choose Extreme Learning Machine (ELM) based on single-hidden layer feed-
forward networks (SLFN) to validate the bridge targets. ELM usually demonstrates 
outstanding performance in other remote sensing targets detection/classification tasks 
[17]. In addition, compared to traditional classifier, such as Nearest Neighbor (NN), 
Back Propagation (BP) algorithm, Support Vector Machine (SVM), ELM is fast and 
more accurate [10, 18].  

In our frameworks, the bridge region candidates validation is regarded as a binary pat-
tern classification issue, since we are not interest in what the false alarms are, and the 
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samples for training various false alarms are not enough. As aforementioned, the training 
data were collected randomly from our dataset downloaded from "Google Earth" with 
total number of 400, which contains 512 typical false alarms and 493 bridge regions. 
After the training stage, the weighted vector is learned to discriminate two classes (bridge 
and non-bridge). The validation step (classification) consists of taking region of interests 
(ROIs) from coarsely bridge region in last step, computing the feature vectors and then 
applying the pre-computed ELM to verify the bridge targets.  

4 Experiments and Results Analysis 

In this section, extensively experiments are conducted. We tested our aforementioned 
algorithm on 800 images in our dataset. Among them, 1178 bridge targets were identified 
manually. With our proposed algorithm, we have successfully detected 1067 bridge tar-
gets with 132 false alarms. Some representative detection results are illustrated in Fig. 8. 
More results are available from http://www.yushujian.com/index.html. 

In addition, we also compared our algorithm with other two state-of-art algorithms 
for bridge detection in satellite imagery with high resolution [6, 7]. The comparison 
results are shown in Table.1.  

Table 1. Quantitative comparison results 

Methods Gedik [6] Trias-Sanz [7] Our algorithm 
Accuracy 41.50% 82.35% 90.58% 

Missing ratio 58.50% 17.65% 9.42% 
False ratio 10.53% 17.68% 11.01% 
Error ratio 69.03% 35.33% 19.43% 

 
Above criteria are defined as [19]:                          100%             5                                             100%                                       6                               100%               7                                                                 8  

As we can see, our proposed algorithm outperform algorithms proposed in [6, 7] for 
three criteria. At the same time, we have also compared ELM with SVM for classifi-
cation. Experimental results demonstrate that the training time with ELM is less than 
that with SVM by approximately 50%, and the detection accuracy with ELM is higher 
than that with SVM by three percents.  
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Fig. 8. More detection results illustration 

5 Conclusion 

In this paper, we proposed a novel algorithm for bridge detection on panchromatic 
satellite imagery based on data-driven methods in compressed domain. Compared 
with previous work, our algorithm can achieve better performance within less compu-
tation time. In addition, we are also among the first to introduce compressed domain 
processing techniques for bridge detection on satellite imagery. With saliency detec-
tion in smoothing reconstructed bit-plane, regions involving bridge can be coarsely 
extracted. After bridge candidates are extracted, ELM classification with LBP feature 
can provide a finer decision rule. Experiments demonstrate the superiority of our al-
gorithm in terms of computation time and accuracy.  
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Abstract. Nonnegative tensor factorization (NTF) has been widely
applied in high-dimensional nonnegative tensor data analysis. However,
existing algorithms suffer from slow convergence caused by the non-
negativity constraint and hence their practical applications are severely
limited. By combining accelerated proximal gradient and low-rank
approximation, we propose a new NTF algorithm which is significantly
faster than state-of-the-art NTF algorithms.

Keywords: CP (PARAFAC) decompositions · Nonnegative tensor fac-
torization · Accelerated proximal gradient

1 Introduction

matrix factorization (NMF) is a problem of factorizing a given nonnegative matrix
into two nonnegative, often lower-rank, matrices whose product optimally approx-
imates the given matrix. NMF has been widely applied in nonnegative data analy-
sis in order to provide more interpretable and meaningful representation of data
[4,9]. Particularly, NMF has the ability of learning parts of objects as only addi-
tion operations are permitted, which makes it very attractive and an almost indis-
pensable tool in many nonnegative data analysis tasks [4,9,17].

In contrast to matrices, high dimensional data, also referred to as tensors,
are more and more common in modern scientific research and engineering appli-
cations. For example, a color image with RGB channels form a 3rd-tensor, and
a clip of video forms a 4th-order tensor with additional dimension of frame.
Similar to matrix factorization, tensor decomposition is one of the most funda-
mental problem in tensor analysis [4,7]. In the meanwhile, Canonical Polyadic
(CP), also named as CANDECOMP/PARAFAC decomposition [3,6], has been
extensively studied in the last four decades and found many applications [4]. In
CPD a given tensor is represented as the sum of rank-1 tensors, which can be
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 459–468, 2014.
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viewed as an extension of singular value decomposition (SVD) in tensor field.
One major advantage of CPD is that it is essentially unique under mild condi-
tions [8,12], which makes it very useful in the case where only very limited a
priori knowledge is available on factors.

Due to the essential uniqueness of CPD, it is generally unnecessary to impose
additional constraints on the factors. However, uniqueness conditions are gener-
ally analyzed in noise-free. In practice the measured data are often corrupted by
noise. Proper constraints reflecting some a priori knowledge on components can
help us extract more interpretable components. Furthermore, the uniqueness of
CPD relies on certain conditions. In the case where the uniqueness conditions are
not satisfied, additional constraints help to extract specific components rather
than arbitrary ones. Hence constrained CPD has also gained increasing impor-
tance. Nonnegative tensor factorization (NTF, or equivalently nonnegative CPD)
is one of such an important topic, aiming to find compressed and parts-based rep-
resentation of high-order tensors by imposing nonnegativity on factors. It is well
known NMF algorithms often suffer from slow convergence due to the nonnega-
tivity constraints. This issue is further aggravated in NTF. In fact, the efficiency
has been a major bottleneck of NTF in practical applications. Motivated by
recently major progresses in NMF/NTF, we proposed a new NTF algorithm in
this paper, which can be significantly faster than existing NTF methods. While
the basic idea of NTF based on a proceeding LRA has been briefly introduced
in our recent overview paper [15], the detailed derivations are presented in this
paper.

The following notations will be adopted. Bold capitals (e.g., A) and bold low-
ercase letters (e.g., y) denote matrices and vectors, respectively. RI×J

+ denotes
the set of I × J nonnegative matrices. Calligraphic bold capitals, e.g. Y, denote
tensors. Mode-n matricization (unfolding, flattening) of a tensor Y ∈
R

I1×I2×···×IN is denoted as Y(n) ∈ R
In×∏p�=n Ip , which consists of arranging

all possible mode-n tubes (vectors) as the columns of it [7]. The Frobenius norm
of a tensor is denoted by ‖Y‖F = (

∑
i1i2···iN y2

i1i2···iN )
1
2 .

We use � and � to denote the Khatri-Rao product (column-wise Kronecker
product) and Hadamard product of matrices, respectively. We define

⊙
k �=n A

(k)

= A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1) . Readers are referred to [4,7] for
detailed tensor notations and operations.

2 NTF Using Accelerated Proximal Gradient

CP decomposition of a data tensor Y∈ R
I1×I2···×IN can be formulated as

Y =
∑J

j=1
λj a

(1)
j ◦ a(2)j · · · ◦ a(N)

j + E, (1)

where component (or factor, mode) matrices A(n) = [a(n)1 ,a(n)2 , · · · ,a(n)J ] ∈
R

In×J , n ∈ N = {1, 2, · · · , N}, consist of unknown latent components a(n)j
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(e.g., latent source signals) that need to be estimated, ◦ denotes the outer prod-
uct1, and E denotes the tensor of error or residual terms. As the scalar factors λj

can be absorbed into one factor matrix, e.g. A(N) by letting a(N)
j = λja

(N)
j , j ∈

J = {1, 2, . . . , J}, we also use Y ≈ �A(1),A(2), · · · ,A(N)� as a shorthand nota-
tion of (1), where λj = 1, ∀j, has been implicitly assumed.

By using the CP model (1), the mode-n matricization of Y has the form of

Y(n) ≈ A(n)B(n)T , (n ∈ N), (2)

where
B(n) =

⊙

p�=n
A(p) ∈ R

(
∏

p�=n Ip)×J . (3)

(2) is the foundation of standard alternating least squares methods (ALS) for
CPD. With above preliminaries, we formulate the NTF problem as follows:

min ‖Y −
J∑

j=1

a(1)j ◦ a(2)j · · · ◦ a(N)
j ‖2F

s.t. a(n)j ∈ R
In×1
+ , j ∈ J, n ∈ N.

(4)

To solve (4), we use the block coordinate descent method. That is, each time we
update only one factor matrix while remaining the others unchanged. Then (4)
is equivalent to

min
A(n)

f(A(n)) = ‖Y(n) − A(n)B(n)‖2F ,

s.t. A(n) ∈ R
In×J
+ ,

(5)

We update each A(n) by solving (5) alternatively for n ∈ N till convergence.
Note that (5) is also a basic sub-problem in NMF, which allows us to apply any
existing NMF update rules to solve (5).

Here we consider the accelerated proximal gradient (APG) method to solve
(5), which was originally proposed by Nesterov [10] for smooth optimization and
has proven to be a very efficient method for NMF [5]. Follow the analysis in [5],
f defined in (5) is convex and its gradient f ′ is Lipschitz continuous, that is, for
any matrices A1 and A2 with proper sizes there holds that

‖f ′(A1) − f ′(A2)‖F ≤ L‖A1 − A2‖F , (6)

where L = ‖B(n)TB(n)‖F is the Lipschitz constant. In the APG method two
sequences, i.e. {A(n)

k } and {Zk} in our case, are alternatively updated in each
iteration:

1 The outer product of two vectors a ∈ R
I , b ∈ R

T builds up a rank-one matrix
Y = a ◦b = abT ∈ R

I×T and the outer product of three vectors: a ∈ R
I , b ∈

R
T , c ∈ R

Q builds up a 3rd-order rank-one tensor: Y = a ◦b ◦ c ∈ R
I×T×Q, with

entries defined as yitq = aibtcq.
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A(n)
k = arg min

X≥0
φ(X)

= f(A(n)
k−1) + 〈f ′(A(n)

k−1),X − Zk〉 +
L

2
‖X − Zk‖2F

(7)

and
Zk+1 ← A(n)

k +
αk − 1
αk+1

(A(n)
k − A(n)

k−1), (8)

where k is the iteration number, φ is the proximal function of f on Yk, and 〈·, ·〉
is the inner product of two matrices. The update step size αk is chosen as

αk+1 =
1 +

√
4α2

k + 1
2

. (9)

By using the above update rules, an optimal convergence rate O( 1
k2 ) can be

achieved [5,10]. By using the Lagrange multiplier method to solve (7), optimal
A(n)

k is given as

A(n)
k ← P+

(
Zk − 1

L
(Y(n)B(n) − A(n)

k−1B
(n)TB(n))

)
, (10)

where P+(X) projects all negative entries of X to zeros, and B(n) is given in (3).
As the size of B(n) is often huge, the computation of B(n)TB(n) can be simplified
as

B(n)TB(n) = �
p�=n

(
A(p)TA(p)

)
. (11)

Repeating (10) and (8) alternatively till convergence we obtain optimal A(n)

minimizing f in (5) with the fast convergence rate O( 1
k2 ). Then repeat the above

procedure alternatively for all n ∈ N till convergence, all nonnegative factors will
be estimated. Based on the above analysis, we propose the NTF algorithm based
on AGP updates which is presented in Algorithm 1. It can be seen that in the
inner most iterations, the main computational load lies in the computation of
A(n)

k G, which is only O(InJ2). In the outer loops, however, the computation of
Y(n)B(n) is very expensive and has the complexity as high as O(J

∏
n In). It is

therefore imperative to reduce the computational complexity of this part.

3 Fast NTF Algorithm Based on Low-Rank
Approximation

To reduce the computational complexity of Y(n)B(n) we consider replacing the
huge matrix Y(n) by its low-rank approximations. This idea has been applied
to NMF and nonnegative tensor decompositions [11,16], where the low-rank
approximation is used to reduce the computational complexity and filter out
noise [16]. Here we consider similar idea. Suppose that �U(1),U(2), . . . ,U(N)� is
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Algorithm 1. NTF Based on the APG Method (NTF APG)
Require: Y, J .
1. while Not converged do
2. for n = 1, 2, . . . , N do
3. Compute B(n) and G = B(n)TB(n) using (3) and (11), respectively. C =

Y(n)B
(n), L = ‖G‖F .

4. α0 = 1, k = 1, and Z0 = A
(n)
0 = A(n).

5. repeat

6. A
(n)
k = P+

(
Zk − 1

L

(
C − A

(n)
k−1G

))
,

7. αk =
1+
√

4α2
k−1+1

2
,

8. Zk = A
(n)
k +

αk−1−1

αk
(A

(n)
k − A

(n)
k−1).

9. k ← k + 1
10. until a stopping criterion is satisfied
11. end for
12. end while
13. return A(n), n = 1, 2, . . . , N .

the optimal rank-J approximation2 to Y. Then Y is updated as Y ←
�U(1),U(2), . . . ,U(N)� before iterations, which leads to

Y(n)B(n) = U(n)

(
�

p�=n
(U(p)TA(p))

)
, (12)

from (2) and (3). Note that the time complexity of (12) is only about O(InJ2),
which is significantly less than the case without low-rank approximation of Y.

Due to the uniqueness of CPD, in the ideal noiseless case we should have
A(n) = U(n)PnDn, where Pn and Dn are a permutation matrix and a non-
singular diagonal matrix, respectively. This relationship may not hold if noise
exists. However, in this case A(n) is often close to U(n). So it is reasonable to use
P+(U(n)) as the initialization to achieve fast convergence. However, a key factor
to success of this initialization is that we need to remove the sign ambiguities
caused by scale ambiguities of CPD. In other words, we should adjust the signs
of factor matrices U(n) such that as many as possible entries are nonnegative.
To do this, we let

snj = sign(u(n)
i0j

),

where u
(n)
ij is the ij-th entry of U(n), i0 = arg maxi |u(n)

ij |, and the sign function
returns the sign of a number. Let

u(n)
j ← u(n)

j snj , u(N)
j ← u(N)

j snj , ∀n �= N. (13)

2 It can also be replaced by a rank-R approximation with R ≥ J which is obtained
by solving the unconstrained CPD (1). The key idea is that unconstrained CPD is
usually significantly faster than NTF algorithms.
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Algorithm 2. The FastNTF APG Algorithm
Require: Y, J , and any efficient unconstrained CPD algorithm Ψ.
1. �U(1),U(2), · · · ,U(N)� = Ψ(Y, J).
2. Adjust U(n) using (13) and let A(n) ← P+(U(n))
3. while Not converged do
4. for n = 1, 2, . . . , N do
5. Compute G = B(n)TB(n) and C = Y(n)B

(n) from (11) and (12), respectively.
L = ‖G‖F .

6. α0 = 1, k = 1, and Z0 = A
(n)
0 = A(n).

7. Repeat the procedure of line 5-10 in Algorithm 1
8. end for
9. end while

10. return A(n), n = 1, 2, . . . , N .

After this adjustment, U(n) are expected to be almost nonnegative and hence
P+(U(n)) can be a very good initialization for NTF algorithms, provided that
noise is mild (empirically, the SNR is higher 20dB) and the corresponding CPD
is essentially unique.

With above analysis, the fast NTF algorithm based on APG (FastNTF APG)
is presented in Algorithm 2. The time complexity of FastNTF APG is only about
O(J2In),whichissignificantlylowerthanNTF APGthatisofO(J

∏
p Ip).Ofcourse

an additional unconstrained CPD is required in FastNTF NTF. However, this step
generallycanbedoneveryefficientlyanditsignificantlyreducesthetimecomplexity
of subsequent NTF procedure. Moreover, it is worth noticing that the tricks intro-
duced in this section can be used to accelerate many existing NTF algorithms.

4 Simulations

In this section we present experimental results. All experiments were performed
on a computer with Intel i7 CPU (3.33GHz) and 24GB memory running 64bit
Windows 7. The MATLAB codes of FastNTF APG can be downloaded from
http://bsp.brain.riken.jp/TDALAB. The performance index Fit is defined as

Fit(Y, Ŷ) = 1 − ‖Y − Ŷ‖F /‖Y‖F ,

where Ŷ is an estimate of Y, Fit(Y, Ŷ) = 1 iff Ŷ = Y.
Simulation 1: Application of NTF in tensor displays. Tensor displays intro-

duced by Wetzstein et al. is a family of compressive light field displays comprising
all architectures to develop glasses-free 3D displays (stereoscopic displays) [14].
The authors showed that any light field emitted by an N -layer, M -frame tensor
can be represented by an Nth-order rank-M tensor. Hence NTF can be applied
to tensor displays, which allows multilayer, multiframe decompositions and com-
bines benefits of multiple layers and directional backlights. The major limitation
of this innovative framework is the considerable computation resources required
by the NTF algorithms [14]. In their implementation, the NTF algorithm based

http://bsp.brain.riken.jp/TDALAB
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Table 1. Performance comparison of the algorithms in the decomposition of a 5th-
order tensor for multiplayer light field displays

Algorithms NTF MU NTF HALS NTF APG FastNTF APG

Fit 0.85 0.84 0.85 0.87
Time (s) 1199 427 437 245

(a) Original Light Field (b) Reconstructed Light Field

Fig. 1. Performance of FastNTF APG in the decomposition of a light field tensor. We
set J = 50 and the Fit was 0.87.

on multiplicative update rules were adopted, which was very slow, and a GPU-
based solver was applied to approach satisfactory performance. In summary,
efficient NTF algorithms play a very important role in their technique of tensor
displays. Here we omitted the details about tensor displays but instead we sim-
ply decompose a light field tensor to evaluate the performance of the proposed
algorithm. We used the code published in their website3 to generate a light field
tensor with the size of 7 × 7 × 384 × 512 × 3. The proposed FastNTF AGP algo-
rithm was compared with the NTF based on multiplicative updates (NTF MU)
included in TensorToolbox [2], NTF using Hierarchical Alternating Least Squares
Algorithm (NTF HALS) [11], and the nPARAFAC algorithm in NWaytoolbox
[1], all with the maximum iteration number 100 except FastNTF APG. For all
algorithms J = 50 was set. In FastNTF APG, the maximum iteration number
was 500, and we used the CP-ALS algorithm [2] with 20 iterations to perform
unconstrained CPD. The result of a typical run of FastNTF AGP is shown in
Fig. 1. The performance averaged over 20 Monte-Carlo runs with random initial
conditions of the compared algorithms are shown in TABLE 1 (The nPARAFAC
algorithm ran out of memory in this experiment. To show the efficiency of pure
3 http://web.media.mit.edu/∼gordonw/courses/ComputationalDisplays/

TomographicLightFieldSynthesis-Code2.0.zip. More information is available at
http://web.media.mit.edu/∼gordonw/TensorDisplays/

http://web.media.mit.edu/~gordonw/courses/ComputationalDisplays/TomographicLightFieldSynthesis-Code2.0.zip
http://web.media.mit.edu/~gordonw/courses/ComputationalDisplays/TomographicLightFieldSynthesis-Code2.0.zip
http://web.media.mit.edu/~gordonw/TensorDisplays/
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Fig. 2. Performance of FastNTF AGP in the COIL-100 image clustering (we used the

first 20 objects only). The two t-SNE components of A(4) were used for visualization.
The clustering accuracy was as high as 90.0%.

APG, the NTF APG algorithm was also compared by setting the maximum
iteration number 50). It can be seen that the FastNTF APG algorithm not only
achieved the best Fit but also was significantly faster than the others. Note that
NTF HALS also adopted low-rank approximation technique and theoretically it
has the same time complexity as FastNTF APG. However, from the experimen-
tal results FastNTF APG converged faster than NTF HALS.

Simulation 2: Application of NTF in image clustering. In this experiment we
used NTF algorithms to extract features for image clustering. We used the data-
base COIL-100 which consists of 7200 color images of 100 objects, each of which
has 72 images taken from different directions. For simplicity we used images cor-
responding to the first 20 objects for clustering analysis. We generated a tensor
Y with 128 × 128 × 3 × 1440 using these images. Then NTF algorithms were
applied such that Y ≈ �A(1),A(2),A(3),A(4)�. Then two t-SNE [13] components
of A(4) were used for visualization and clustering. The K-means algorithm was
adopted for clustering. As K-means is prone to be affected by initial cluster cen-
ters, in each run we repeated clustering 20 times, each with a new set of initial
centers (see the help for K-means included in the MATLAB Statistics Toolbox).
The performance averaged 20 Monte-Carlo runs are detailed in TABLE 2. A
typical run of FastNTF APG was visualized in Fig. 2 where the corresponding
clustering accuracy was as high as 90%.
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Table 2. Performance comparison of the algorithms in COIL-100 (first 20 objects)
image clustering

Algorithms NTF MU nPARAFAC NTF HALS FastNTF APG

Time (s) 872 635 421 180
Fit 0.68 0.71 0.69 0.69

Accuracy(%) 79.2 78.1 80.2 80.6

5 Conclusion

We proposed a new fast nonnegative tensor factorization (NTF) algorithm by
combining accelerated proximate gradient (APG) and low-rank approximation
techniques. Theoretically, the APG method offers the optimal convergence rate
O( 1

k2 ). Low-rank approximation pre-processing avoids manipulating huge matri-
ces during iterations and suppresses noise. Simulations confirmed that the new
algorithm is significantly faster than state-of-the-art NTF algorithms.
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(61305028, 61202155, and U1201253), and the Fundamental Research Funds for the
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Abstract. The paper presents an original method of recognition of
patient’s intention to move of hand prosthesis during the grasping and
manipulation of objects. The proposed method is based on a 2-level
multiclassier system (MCS) with base classifiers dedicated to EMG and
MMG signals, and with combining mechanism using a dynamic ensemble
selection (DES) scheme and competence function. Competence function
of base classifier is determined using validation set in the two step proce-
dure. The first step consists in creating competence set using the methods
based on relating the response of the classifier with the response obtained
by a random guessing. In the second step, the competence set is gener-
alized to the whole feature space using the learning procedure based on
the Mamdani-type fuzzy inference system. The performance of MCS with
proposed competence measure was experimentally compared against four
benchmark classification methods using real data concerning the recogni-
tion of six types of grasping movements. The system developed achieved
the highest classification accuracies demonstrating the potential of MC
system for the control of bioprosthetic hand.

Keywords: Multiple classifier system · Fuzzy inference method · Biosig-
nals · Prosthetic hand

1 Introduction

Loss of hand significantly reduces the activity of human life. The people who have
lost their hands are doomed to permanent care. Restoring to these people even
a hand substitute makes their life less onerous. The hand transplantations are
still in a medical experiment, mainly due to the necessity of immune-suppression
(permanent, to the end of patient’s life). An alternative is to equip these people
with cybernetic prostheses. Existing active prostheses of hand (the bioprosthe-
ses) are generally controlled on myoelectric way - they react to electrical signals
that accompany the muscle activity (called electromyography signals - EMG
signals). Nevertheless, reliable recognition of intended movement using only the
EMG signals analysis is a hard problem. A recognition error increases along
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 469–478, 2014.
DOI: 10.1007/978-3-319-12436-0 52
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with the cardinality of movement repertoire (i.e. with prosthesis dexterity). The
natural solution to overcome this error is to improve the recognition method
[12], [13], [14], [15]. Another approach consists in additional use of a different
kind of modalities on recognition stage, i.e. to complement EMG signals with
another type of biosignals. The authors studied the fusion of EMG signals and
the mechanomyography signals (MMG signals), i.e. the mechanical vibrations
propagating in the limb tissue as the muscle contracts [10].

According to the author’s recent experience ([8], [9], [15]), increasing the effi-
ciency of the recognition stage may be achieved through the following activities:
(1) – by introducing the concept of simultaneous analysis of two different types of
biosignals (EMG and MMG signals), which are the carrier of information about
the performed hand movement; (2) – by the appropriate choice of feature extrac-
tion methods (biosignals parameterization) justified by the experimental results
of comparative analysis; (3) – through the use of multiclassifier system with the
heterogeneous base classifiers dedicated to particular registered biosignals; (4) –
through development of the paradigm of dynamic ensemble classifier selection
system using measures of competence in the selection and fusion procedures.
Taking into account above observations and suggestions, the paper aims to solve
the problem of recognition of the patient’s intention to move the multiarticulated
prosthetic hand during grasping and manipulating objects in a skillful manner,
by measuring and analyzing multimodal signals coming from patient’s body. The
adopted solution takes into consideration the advantages given by the fusion of
the EMG and MMG signals. The concept combines the recognition (of EMG
and MMG signals) performed by multiclassifier system working in the dynamic
ensemble selection (DES) fashions with measures of competence of base clas-
sifiers. The most DES schemes use the concept of classifier competence i.e. its
capability to correct activity (correct classification) on a defined neighbourhood
or local region of testing object.

In this study, the competence measure of base classifier is calculated in a
two-step procedure. In the first step, the set of competences at all points of
validation set (the competence set) is calculated. In the second step, this compe-
tence set is generalized into the whole feature space using Mamdani type fuzzy
inference system. This paper is divided into five chapters and organized as fol-
lows. Chapter 2 provides an insight into biosignals acquisition procedure and
method of feature extraction. Chapters 3 presents the key recognition algorithm
based on the multiclassifier system with the dynamic ensemble classifier selection
strategy. Chapter 4 presents experimental results confirming adopted solution
and chapter 5 concludes the paper.

2 Biosignal Acquisition and Feature Extraction

The recognition of movement intention on the basis of the myopotentials com-
prises three stages: (1) – the acquisition of the EMG signals; (2) – extraction of
the features differentiating the movements; (3) – the classification of the signals,
that is assigning the signals to a particular classes (particular movements).



Multiple Classifier System in the Control of Bioprosthetic Hand 471

Biosignal acquisition and analysis processes influence essentially on the
reliability of recognition of prosthesis motion control decisions. The acquisition
process should take into account the nature of the measured signals and their
measurement conditions. For the EMG signals the amplitude of voltages induced
on the patient body as a result of the influence of external electric fields, may
exceed more than 1000 times the value of useful signals. To overcome this diffi-
culty a differential measurement system was applied. In the case of MMG signals
the basic problem is to isolate the microphone sensor from the external sound
sources along with the best acquisition of the sound propagating in the patient’s
tissue.

After the acquisition stage, the recorded signals have the form of strings of
discrete samples. Their size is the product of measurement time and sampling
frequency. For a typical motion action, that gives a record of size between 3 and
5 thousand of samples (time of the order of 3-5 s, and 1 kHz sampling). This pri-
mary representation of the signals hinders the effective classification and requires
the reduction of dimensionality. This reduction leads to a representation in the
form of a signal feature vector. To determine the algorithm of features extrac-
tion, the database records were divided into 256 ms frames and then analyzed
in time and frequency using Short Time Fourier Transform (STFT).

The MMG histogram has two amplitude peaks: at the beginning and at the
end of the movement, and relatively low amplitude in the middle while the EMG
histogram shows a peak in the middle of the movement time span. The analyses
of histograms for the tested movements allowed selecting the localization of the
best signal features (the best points in time and frequency) securing the best
differentiation of the movements.

The resulting algorithm which allows creating input vectors with an adjustable
size, has the following form:
Step 1. Extract from the recorded EMG and MMG signals representing the
specified movements the 256 sample segments. Each extracted segment has new
time span (t ∈ [0, T ]);
Step 2. Apply the STFT to each segment;
Step 3. Choose as signal features the values from the STFT product corre-
sponding to the k (most representative) time slices;
Step 4. Repeat steps 2 and 3 for every channel;
Step 5. Use all the obtained (in steps 2 and 3) values as elements of the feature
vector representing the analyzed signal segment.

3 Multiple Classifier System

3.1 Preliminaries

In the multiclassifier system (MCS) we assume that a set of trained classifiers
Ψ = {ψ1, ψ2, . . . , ψL} called base classifiers is given. A classifier ψl is a function
ψl : X → M from a feature space X to a set of class labels M = {1, 2, . . . ,M}.
Classification is made according to the maximum rule
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Fig. 1. Flowchart of the proposed method for calculating the competence function

ψl(x) = i ⇔ dli(x) = max
j∈M

dlj(x), (1)

where [dl1(x), dl2(x), . . . , dlM (x)] is a vector of class supports (classifying func-
tion) produced by ψl. The value of dlj(x), j ∈ M represents a support given by
the classifier ψl for the fact that the object x belongs to the j-th class. Without
loss of generality we assume, that dlj(x) ≥ 0 and

∑
j dlj(x) = 1.

The ensemble Ψ is used for classification through a combination function
[5]. The proposed multiclassifier system uses dynamic ensemble selection (DES)
strategy with trainable selection/fusion algorithm. The basis for dynamic selec-
tion of classifiers from the pool is a competence measure C(ψl|x) of each base
classifier (l = 1, 2, . . . , L), which evaluates the competence of classifier ψl at a
point x ∈ X . For the training of competence it is assumed that a validation set

V = {(x1, j1), (x2, j2), . . . , (xN , jN )}; xk ∈ X , jk ∈ M (2)

containing pairs of feature vectors and their corresponding class labels is avail-
able.

The construction of the competence measure consists of the two steps. In
the first step, a competence set Cl (set of competences for validation objects) for
each classifier ψl in the ensemble is constructed:

Cl = {(x1, C(ψl|x1)), (x2, C(ψl|x2)), . . . , (xN , C(ψl|xN ))}. (3)

In the second step, the competence set (3) is used to construct the compe-
tence measure c(ψl, x). The flowchart of the proposed method for calculating the
competence measure of base classifier is shown in Fig. 1. The next two sections
describe the steps of the method in detail.

3.2 The Competence Set

The competence C(ψl|xk) of the classifier ψl at a validation point xk ∈ X from
the set (2) is defined as [14]:

C(ψl|xk) = 2 · djk(xk)
log(2)
log(M) − 1. (4)

The values of the function C(ψl|xk) lie within the interval [−1, 1], where
the interval limits −1 and 1 describe absolutely incompetent and absolutely
competent classifier, respectively. The function C(ψl|xk) was defined in such a
way because it satisfies the following criteria:
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– it is strictly increasing, i.e. when the support djk(xk) for the correct class
increases the competence C(ψl|xk) also increases,

– it is equal to −1 (evaluates the classifier as absolutely incompetent) in the
case of zero support for the correct class, i.e. djk(xk) = 0 ⇒ C(ψl|xk) = −1,

– it is negative (evaluates the classifier as incompetent) in the case where the
support for the correct class is lower than the probability of random guessing,
i.e. djk(xk) ∈ [0, 1

M ) ⇒ C(ψl|xk) < 0,
– it is equal to 0 (evaluates the classifier as neutral or random) in the case

where the support for the correct class is equal to the probability of random
guessing, i.e. djk(xk) = 1

M ⇒ C(ψl|xk) = 0,
– it is positive (evaluates the classifier as competent) in the case where the sup-

port for the correct class is greater than the probability of random guessing,
i.e. djk(xk) ∈ ( 1

M , 1] ⇒ C(ψl|xk) > 0,
– it is equal to 1 (evaluates the classifier as absolutely competent) in the case

of maximum support for the correct class, i.e. djk(xk) = 1 ⇒ C(ψl|xk) = 1.

3.3 Generalization Procedure

After the first step of the method the competence set (3) is given for each base
classifier ψl (l = 1, 2, ..., L) of an ensemble Ψ .

In the second step, based on the competence set, the competence function
c(ψl, x) is determined. In other words, information contained in the set Cl, i.e.
values of competence for validation points xk ∈ V, is generalized to the whole
feature space X which means supervised learning competence function of base
classifier ψl.

In this study original generalizing system or method of supervised learning
classifier competence is proposed. Method developed is based on Mamdani type
fuzzy inference system which is a way of mapping an input space to an output
space using fuzzy logic.

A fuzzy inference system applied to the supervised learning classifier com-
petence is formed by four components [7]: (1) – The competence set Cl that
describes the properties of the base classifier ψl for the validation set V; (2) –
The point x ∈ X which defines the problem and initiates the process of fuzzy rea-
soning; (3) – The set of fuzzy rules that determines the correspondence between
the competence set and the competence at x; (4) – A fuzzy reasoning method
which calculates a competence of classifier ψl at a point x using information
given by the set Cl.

Mamdani fuzzy model is based on the collections of IF-THEN rules with
both fuzzy antecedent and consequent propositions.

Taking into account the intuitive importance of competence of classifier ψl at
validation point xk and its distance from a point x to determine the competence
of ψl at x, we propose these two quantities as antecedent variables of Mam-
dani fuzzy inference system. Thus, we have the following antecedent variables
(D(x, xk) denotes Euclidean distance between x and xk and Dmax is a diameter
of data set):

u1 = D(x, xk), u1 ∈ [0,Dmax], u2 = C(ψl, xk), u2 ∈ [0, 1], (5)
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consequent variable:
y = c(ψl, x) (6)

and the resulting set of fuzzy rules (t = 1, 2, . . . , T denotes number of rule):

IF u1 is A
(t)
1 AND u2 is A

(t)
2 THEN y is B(t). (7)

From the perspective of computational complexity, we are interested in
declaring fuzzy sets A1, A2 and B with membership functions that are efficient
to evaluate. To this end, we use triangular and trapezoid fuzzy numbers for mod-
eling linguistic values of antecedent and consequent variables. The membership
functions of proposed fuzzy numbers are presented in Fig. 2.

Three fuzzy sets corresponding to values Close, Medium and Far of linguis-
tic variable Distance cover uniformly (in the logarithmic scale) the space of
antecedent variable u1.

The value 1/M corresponding to probability of random guessing plays the
key role in the fuzzy categorization of the space of antecedent variable u2 and
consequent variable y. The triangular fuzzy number corresponding to linguistic
term of classifier competence Neutral is constructed around this value and next
fuzzy sets are located to the left (Incompetent classifier) and to the right (Weak,
Competent and Very competent classifier) of this set. Such a concept of fuzzy
covering of input and output spaces leads to the set of 15 fuzzy IF-THEN rules,
which structure is presented in Table 1.

Table 1. Fuzzy rules for the Mamdani system

Close Medium Far

Incompetent Incompetent Neutral Neutral
Neutral Neutral Neutral Neutral
Weak Weak Neutral Neutral
Competent Competent Competent Weak
V. Competent V. Competent Competent Competent

M
M
4

3
M
1

M
M
4

)1(2
M

M
4

13
M2
1

b

Incompetent Neutral Weak Competent
Very 

Competent

Competence1

Close
Medium Far

maxD3/1
max)(D 2/1

max)(D 3/2
max )(D Distance

a

 

Fig. 2. Fuzzy partition with triangular and trapezoid membership functions for:
(a) – the first antecedent variable/consequent variable (competence at validation
point/competence at testing point), (b) – the second antecedent variable (distance
between testing and validation points)
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The Mamdani fuzzy inference system comprises five steps [2]: (1) fuzzification
of the input variables, (2) calculating the degree of fulfilment of rules, (3) impli-
cation from the antecedent to the consequent, (4) aggregation of the consequents
across the rules and (5) defuzzification.

3.4 Two-Level Multiclassifier System (2LMCS) with DES Scheme

DES based multiple classifier systems was constructed using proposed models of
the base classifiers competences. In this system first a subset of the classifiers
with the competences greater than the probability of random classification is
selected from the ensemble for each x

Ψx = {ψl1, ψl2, ..., ψlK}, c(ψlk, x) > 1/M. (8)

This step eliminates inaccurate classifiers and keeps the ensemble relatively
diverse. The selected classifiers are combined using a weighted vector of class
supports, where the weights are equal to the competences, viz. (j = 1, 2, . . . , M):

dj(x) =
K∑

t=1

c(ψlt, x) dlt,j(x). (9)

Since recognition of the patient’s intent is made on the basis of analysis
of two different biosignals (EMG and MMG), the multiple classifier system –
according to the proposed concept of the recognition method – consisits of two
submulticlassifiers: Ψ (EMG) and Ψ (MMG) – each of them dedicated to particular
types of data. It leads to the two level structure of MC system presented in Fig.
3, in which the DES method is realized at the first level, whereas combining
procedure at the second level is consistent with the continuous-valued dynamic
fusion scheme.

At the second level of 2LMCS, supports (9) are combined by the weighted
sum:

d
(MC)
j (x) = c(EMG)d

(EMG)
j (x) + c(MMG)d

(MMG)
j (x), (10)

Combiner
(selection & fusion)

Multiclassifier 1

. . . . . .
Features of
EMG signal

Combiner
(selection & fusion)

Multiclassifier 2

. . . . . .
Features of
MMG signal

Fuser Recognized class
of hand action

Fig. 3. Block diagram of the proposed multiclassifier system
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where weight coefficients c(EMG) and c(MMG) denote mean competence of base
classifiers from Ψ (EMG) and Ψ (MMG), respectively.

Finally, the 2LMCS system classifies x = (x(EMG), x(MMG)) using the max-
imum rule:

ψMC(x) = i ⇔ d
(MC)
i (x) = max

j∈M
d
(MC)
j (x). (11)

4 Experiments

In order to study the performance of the proposed method of EMG and MMG
signal recognition, some computer experiments were made. The experiments were
conducted in MATLAB using PRTools package. In the recognition process of the
grasping movements, 6 types of grips (tripoid, pinch, power, hook, column and
mouse grip) were considered. Our choice is deliberate one and results from the
fact that the control functions of simple bioprosthesis are hand closing/opening
and wrist pronantion/supination, however for the dexterous hand these functions
differ depending on grasped object [13].

Biosignals were registered using 3 EMG electrodes and 3 MMG microphones
located on a forearm. The dataset set consisted of 400 measurements, i.e. pairs
EMG and MMG signals segment/movement class. The values from STFT prod-
uct corresponding to the k = 3, 4, 5 most representative time slices were consid-
ered as feature vector. The training and testing sets were extracted from each
dataset using two-fold cross-validation. Half of objects from the training dataset
were used as a validation dataset and the other half were used for the training of
base classifiers. The experiments were carried out on healthy persons. Biosignals
were registered using 3 EMG electrodes and 3 MMG microphones located on a
forearm above the appropriate muscles. EMG and MMG signals were registered
in specially designed 16-channel biosignals measuring circuit (Bagnoli Desktop
EMG System made by DELSYS Inc.) with sampling frequency 1 kHz.

Three experiments were performed which differ in the biosignals used for
classification (EMG signals, MMG signals, both EMG and MMG signals).

The experiments were conducted using the set of the following ten base clas-
sifiers [3] : (1-2) linear (quadratic) classifier based on normal distributions with

  

     Tripoid grip                 Pinch grip              Power grip                 Hook grip                Column grip           Mouse grip 

Fig. 4. Types of grips
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Table 2. Classification accuracies of classifiers compared in the experiment. The best
score for each dataset is highlighted. (k denotes the number of time slices per channel)

EMG signals EMM signals EMG and EMM signals

k 3 4 5 3 4 5 3 4 5

SB (1) 77.2 79.3 85.7 47.8 49.8 52.4 82.5 87.4 92.7
MV (2) 74.5 80.5 83.2 43.5 46.8 51.2 81.8 87.6 92.1
LA (3) 78.3 84.6 85.1 46.8 45.3 50.6 83.1 88.2 91.9
PF (4) 78.9 85.2 85.9 47.9 50.3 54.2 84.9 89.2 92.8
2LMCS 79.8 84.3 86.2 48.4 49.6 55.6 85.5 90.2 95.3

1,2 1,2 2 2,3 2,3 1,2,3 1,2,3 1,2 1,2,3,4

the same (different) covariance matrix for each class, (3) nearest mean classifier,
(4-6) k-nearest neighbours classifiers with k = 1, 5, 15, (7) naive Bayes classi-
fier (8) decision-tree classifier with Gini splitting criterion, (9-10) feed-forward
back-propagation neural network with 1 hidden layer (with 2 hidden layers).

The performances of the DES system were compared against the following
four multiple classifier systems: (SB) – The single best classifier in the ensemble
[5]; (MV) – Majority voting (MV) of all classifiers in the ensemble [5]; (LA) –
DES-local accuracy (LA) system [11]; (PF) – DES system with potential function
as a generalization method (PF) [15].

5 Results and Conclusion

Classification accuracies (i.e. the percentage of correctly classified objects) for
methods tested are listed in Table 2. The accuracies are average values obtained
over 10 runs (5 replications of two-fold cross validation). Statistical differences
between the performances of the DES-CD and the four MC systems were eval-
uated using Dietterich’s 5x2cv test [1]. The level of p < 0.05 was considered
statistically significant. In Table 2, statistically significant differences are given
under the classification accuracies as indices of the method evaluated. These
results imply the following conclusions:

1. The 2LMCS system produced statistically significant higher scores in 21
out of 36 cases (9 datasets × 4 classifiers compared);

2. The multiclassifier systems using both EMG and MMG signals achieved
the highest classification accuracy for all datasets.

Experimental results indicate, that proposed methods of grasping movement
recognition based on the dynamic ensemble selection with Mamdani-type fuzzy
inference method for learning competence functions, produced accurate and reli-
able decisions, especially in the cases with features coming from the both EMG
and MMG biosignals.

The problem of deliberate human impact on the mechanical device using
natural biological signals generated in the body can be considered generally as
a matter of “human – machine interface”. The results presented in this paper
significantly affect the development of this field and the overall discipline of
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biosignal recognition. But more importantly, these results will also find practical
application in the design of dexterous prosthetic hand - in the synthesis of control
algorithms for these devices, as well as development of computer systems for
learning motor coordination, dedicated to individuals preparing for a prosthesis
or waiting for a hand transplantation [6].

Acknowledgments. This work was financed from the National Science Center
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Abstract. To improve radar detection of targets in the presence of sea clutter, 
polarization decomposition analysis is used to output data to a neural network. 
To detect the target in heavy sea clutter, the received signal of each range bin is 
decomposed for polarimetric analysis. By applying the decomposed signal to 
the Self Organizing Map (SOM) network, the bin that contains the actual target 
range bin is identified. In simulations the algorithm located the target success-
fully in conditions of both mild and heavy clutter. 

Keywords: Polarimetric decomposition · Self-organizing map · IPIX Radar da-
taset · Kohenen map 

1 Introduction 

The goal of marine surveillance is to detect targets, submarines, low-flying aircraft 
and small ships. Clutter is the term to denote unwanted echoes from the natural envi-
ronments especially, in case the reflected signal form the sea surface is sea clutter. 
However, these targets are close to the ocean surface and the radar beam is nearly 
horizontal, so interference from sea clutter (e.g., waves) can distort the reflected 
beams and thereby reduce detection accuracy. To overcome this problem, methods to 
locate the target in the presence of sea clutter have been proposed. One idea is to use 
Constant False Alarm Rate (CFAR) detector [1]. To detect the target in the presence 
of clutter, the clutter signal is represented as statistical model, and based on this mod-
el, the signal is applied to a CFAR algorithm. Also, by exploiting the fact that a sea 
clutter signal has chaotic characteristic, a received signal can be analyzed using neural 
network (NN) [2]. By applying the received signal of each range bin to the NN, the 
real target position can be identified. Recently, use of time-frequency analysis to de-
tect the target in sea clutter has been proposed [3].  
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However, each of these methods has a problem. Using CFAR algorithm is difficult 
when clutter is spiky because spike events can cause false alarms. NNs operate sell in 
the environments in which they were trained, but their detection accuracy degraded 
when used in other environments. Time-frequency analysis cannot detect slow target 
well. 

In this paper we proposed an algorithm that combines polarization decomposition 
analysis and an NN to maintain good detection accuracy in the presence of heavy sea 
clutter. The algorithm is designed to detect the target in the presence of spiky clutter 
by using the polarimetrically decomposed signal as the input for the NN. 

In section 2, we show the main idea of the polarimetric decomposition. In  
section 3 we introduce SOM network, an unsupervised learning network for cluster-
ing. In section 4 we explain how the proposed algorithm combines polarization de-
composition and NN to detect the target. In section 5 we present simulation results of 
proposed algorithm. In section 6 we conclude the paper. 

2 Polarimetric Decomposition  

Polarimetric decomposition use the difference of the polarimetric characteristics of 
the received signal from the targets from that of the sea clutter, to detect the target in 
presence of sea clutter. A scattering matrix shows whether the mixed signal represents 
a target and clutter or clutter only. Therefore, the target can be distinguished from the 
clutter by connecting each component of scattering matrix and to the corresponding 
physical mechanism. 

To identify the physical mechanism of the scattering matrix A, a scattering feature 
vector can be borrowed from vector signal estimation theory [4]. Pauli spin matrices 

1 0 1 0 0 1 0
2 , 2 , 2 , 2

0 1 0 1 1 0 0P

j

j

 −        
Ψ =         −        

        (1) 

were used to obtain the feature vector. 
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 is the scattering matrix.  
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The final term, ( )VH HVj A A−  disappear due to HV VHA A=  by reciprocal theo-

rem. 
Because the target is not a point target but a distributed target, the coherency ma-

trix [ ]C must be written as a feature vector. 

[ ] *

1

1 N

i

C k k
N =

= •                               (3)  

where N is the temporal or spatial averaging time or region and k  is the feature vec-

tor and *k  is the conjugate of the k . 

[ ]C  is related to cloude and pottier model obtained by unitary transform [5].  

1

2

3

0 0

[ ] [ ][ ][ ] [ ] 0 0 [ ]
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 < >= Λ =  
  

                   (4) 

where U  is unitary matrix, , 1, 2,3i iλ =  is the eigenvalues of  [ ]C  and H  

is the Hermition operator  
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             (5) 

We can calculate the eigenvalue 1 2 3, ,λ λ λ
 

and matrix U  and from the first row of 

the unitary matrix U  the , 1, 2,3i iα =  value can be calculated. The physical in-

formation can be obtained from the eigenvalue obtained by unitary transform and 

, 1, 2,3i iα =  of U . The eigenvalue is related to the polarimetric entropy. For ex-

ample, if 
1 2 3λ λ λ= = , entropy becomes 1(maximum value), which means that there 

is no noticeable scattering occur and if 2 3 0λ λ= = , entropy becomes 0 (minimum 

value), which means that one scattering mechanism dominates the others. 
The entropy is  

3

3
1

logi i
i

H P P
=

= −                              (6) 
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Where 
3

1

/i i j
j

P λ λ
=

=   

α  value is the parameter showing the kind of the scatterer. 

1 1 2 2 3 3P P Pα α α α= + +                         (7) 

Eq (6) and (7) yield the H - α  plane (Fig. 1) of each range bin signal [6]. 

 
 

 

Fig. 1. H-α  plane. Zone (Z) are described in the text 

The H - α  plane can be partitioned into zones that represent different forms of 
scattering, as follows. Zone 9(Z9): low entropy surface scattering. Z8: low  
entropy dipole scattering. Z7: low entropy multiple scattering events. Z6: medium 
entropy surface scatter. Z5: medium entropy vegetation scattering. Z4: medium entro-
py multiple scattering. Z3: high entropy surface scatter. Z2: high entropy vegetation 
scattering. Z1: high entropy multiple scattering [7]. The probability that a signal has a 
dominant scattering mechanism increases as signal entropy decreases. 

3 Self Organizing Map  

SOM is a form of unsupervised learning. In this paper, we use the Kohonen map 
which is one of the SOM network (Fig 2) [8]. By training the Kohonen map using  
the input as signal, high-dimension data can be projected to low-dimension data  
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(output node). Also, input data can be clustered using the weight matrix. When the 
input data and output node are clustered, the topological characteristics of output node 
are kept the same as the number of output nodes, so by use the weight matrix, we cans 
identify the representative value of the input signal.  

We use the 5 by 5 SOM in algorithm and SOM roles for clustering the H and 
α points, the 2 dimensional data. The size of the SOM is selected in heuristically. In 
50000 H and α points, the weight matrix saves the 25 point as the representative value 
of the H and α points and we can use that point as the criteria of the detection algo-
rithm. Details are showed in algorithm description section, section 4. 

 

 

Fig. 2. Basic concept of the Kohonen map 

4 Algorithm Description 

4.1 Remove Spikes from Sea Clutter Data 

Before applying the signal to the main algorithm, some spike events must be sup-
pressed to improve the detection accuracy. The HH polarization signal is somewhat 
higher than the VV signal; this phenomenon can be used to remove the sea spike. If 
for observation i, copolarization ratio is [9] 

( )1020log / , 1, 2,...,i HH VV i
r A A i t= =  .          (8) 

Where ir  exceeds a threshold, the observation is removed. 

4.2 Obtain the H - α  Plane of Each Range Bin 

To acquire the physical information from the signal polarimetric property, calculate 
Eq (6) and Eq (7) and plot the H - α  plane of each range bin.  
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4.3 Apply the H - α  Plane of Each Range Bin to 5 x 5 SOM 

Kohonen map is trained applying 2D data ( H ,α ) as the input. This training yields 
weight matrix that shows the clustering result.  

4.4 Select and Average the Five Lowest Weights 

H  Value and α  value are used to train the 5x5 SOM to obtain the 25 representa-
tive values of input data. To identify the dominant scattering mechanism, the weight 
point having the five lowest entropies are averaged. We can calculate this average 
value of each range bin, the range bin that has the lowest average to contain the target. 

Because this method uses five lowest values in the multiple representative value, 
rather than just one representative value [6], the proposed algorithm can maintain 
good accuracy even in presence of heavy clutter.  

5 Simulation Result  

We used two sets of sea clutter data obtained using McMaster IPIX radar (Table 1) 
[10]. Each dataset has 14 range bins; the target is a Styrofoam sphere wrapped in wire 
mesh. Because the distance between range gates is 15 m and the range resolution is 30 
m, except the real target position (primary target position), the target may be detected 
near the primary target range gate (secondary target position). In other word, The 
range bins where the targets are strongest detectable are called primary bins, while 
neigh-boring range bins where the targets may also be visible less than primary bins 
are called secondary bins[11]. 

Table 1. IPIX radar specifications and experiment environment 

Specifications Environment 
Frequency X-band Wave height 0.8-3.8 m 
PRF 1 kHz Wind speed 0-60 km/h 
Polarization Dual polarization Range 500-8000 m 
BW 25 MHz Grazing angle 0.2-3.5˚ 
Mode Stare, surveillance mode Target Known floating objects 

 
 
We use IPIX Radar data set files 54 and 310 (Table 2) for simulation to compare 

environments with heavy and moderate sea clutter, respectively. 
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Table 2. Specifications of the simulation environment 

Datum File 
 54 310 

Primary target position 8th bin range 7th bin range 
Secondary target position 7:10 bin range 6:9 bin range 

Wave height (m) 0.7 0.91 
Wind speed (km/h) 22 28 

 
The proposed algorithm detected the target well for both file 54 and file 310. File 

54 has a low sea wave height, so H - α  plane of the range bin that contains only  

clutter is very different form the H - α  plane of a range bin that contains both 

clutter and target (Fig. 3 a, b). File 310 has a moderate wave height, H - α  plane is 
not much affected by the presence of the target (Fig. 4 a, b). Nevertheless, in the re-
sult of the SOM (Fig. 5) the average of the five lowest weights of the range bin that 
include the target is lower than the same average of the other range bins (Fig 5). 

The averaged value of the 8th range bin that contains the target (8th range bin in 
file 54; 7th bin in file 310) was lower than that of the other range bins. 

 

 

 

(a) file 54, H - α  of the 2nd range bin 

 

(b) file 54, H - α  of the 8th range bin 

 

(c) file 54, SOM result of the 2nd range bin  

 

(d) file 54, SOM result of the 8th range bin 

Fig. 3. H-alpha plane and SOM result of no.file54 
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(a) file 310, H - α  of the 2nd range bin 

 
(b) file 310, H - α  of the 7th range bin 

(c) file 310, SOM result of the 2nd range 
bin 

 
(d) file 310, SOM result of the 7th range 

bin 

Fig. 4. H-alpha plane and SOM result of no.file310 

 

 
(a) the result of file 54 

Fig. 5. Average of the five lowest weights of each range bin 
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(b) the result of file 310 

Fig. 5. (Continued) 

6 Conclusion  

We proposed an algorithm that combines polarization decomposition theorem and an 
NN to detect a target in presence of heavy sea clutter. In simulations using the IPIX 
radar data set, the proposed algorithm detected targets well in both conditions of low 
and heavy sea clutter.  
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Abstract. In this paper, the variation between features of frames for
human action recognition is studied, and a new local descriptor extracted
among the differences of human silhouettes is posed. This descriptor is
represented by coarse histograms based on the distribution of sample
points on the outlines of difference silhouettes. The static reservoir is
employed as the classifier of human action. Two hyper-parameters, the
scaling parameter γ and the regularization parameter C are taken to
characterize a static reservoir, and the proper static reservoir for action
recognition is identified on the γ−C plane. We test our approach on two
commonly used action datasets, and the experimental results show that
the proposed method is effective.

Keywords: Image representation · Action classification · Difference
silhouette · Static reservoir · γ − C plane

1 Introduction

Human action recognition is one of the most important parts of human action
analysis which has been receiving increasing attention from computer vision
researchers. The recognition of human activities has a wide range of prospect
and potential economic value such as automatic surveillance, interactive applica-
tions and efficient searching actions [1]. For clarity, the process of human action
recognition can be divided into two stages: image representation and action clas-
sification [2]. The former course is aimed to extract certain areas in videos, and
then to obtain the features following. Thereafter a classification method should
be adopted for the next stage.

Shape and kinematics are two important cues in human movement analysis.
Precise kinematics is difficult to be extracted from image sequences of videos, so
humane actions are considered as a temporal process in which both the appear-
ances and the locations of human silhouettes continuously change over time.
However, it is not a good choice to directly adopt the features in each frame
as an isolated human gesture. Obviously, the features should be extracted from
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silhouette sequences with the consideration of space-time characteristics, so that
effective representation could be obtained.

Since the action classification problem is a practical pattern recognition prob-
lem, many classic methods such as supper vector machines (SVMs) [3,4] and
extreme learning machines (ELMs) [5], are used to resolve the problem of the
human action recognition. SVM has been widely used for researches, and is an
effective method for nonlinear classification problems. Although kernel method
can be applied for nonlinear problem, it is still difficult for SVM to adopt a
proper nonlinear mapping φ (x). ELM is a large-scale feed-forward neural net-
work with randomly generated hidden nodes, and it has been successful applied
to classification problems [6]. However, the structure of ELM is difficult to deter-
mine.

In this paper, difference silhouette is proposed as a new local descriptor
for image representation. Difference silhouettes extracted form silhouettes are
global representation, and the features are represented by collections of patches
of gestures. We further used histograms of polar coordinates which describe the
distribution of all the sample points on contours relative to the shape center.
Then we focus on the static reservoir for action classification, and the structure
of static reservoir can be easily determined with two hyper-parameters, γ and
C. A proper reservoir is identified on γ − C plane for action classification.

2 Human Action Descriptor Based on Difference
Silhouette

2.1 Difference Silhouette

In this section, without considering the problem of background subtraction, we
assume that silhouettes have already been extracted. F = {f1, · · · , fn} is used
to represent an silhouette sequence, where fi is a binary silhouette of frame i and
each binary pixel can be expressed by fi (x, y), i = 1, · · · , n. We define forward
difference silhouette (FDS) segment and backward difference silhouette (BDS)
segment as follows:

dF
j (x, y) = fi+Δ (x, y) − fi (x, y) ∩ fi+Δ (x, y) (1)

dB
j (x, y) = fi (x, y) − fi (x, y) ∩ fi+Δ (x, y) (2)

where dF
j (x, y) and dB

j (x, y) denote FDS segment and BDS segment, j ≤ n−Δ.
Then, DF =

{
dF
1 , · · · , dF

m

}
and DB =

{
dB
1 , · · · , dB

m

}
are used to represent the

FDS sequence and the BDS sequence, and difference silhouette (DS) is composed
of FDS and BDS. In many cases, difference silhouettes contain some noises which
are generated by the small differences between silhouettes. Therefore, filtering
methods, such as opening operation and wavelet denoising, are adopted to elim-
inate noise effects, and opening operation is employed in this paper. Fig. 1 gives
an example of generating FDS and BDS from two adjacent silhouettes.
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(a) (b)

Fig. 1. DS between two adjacent silhouettes. (a) The silhouette of different frames. (b)
Forward difference silhouette and backward difference silhouette extracted form (a).

2.2 Histogram for Difference Silhouette

According to the approach of computing FDS and BDS, the shifts of postures
between different frames are obtained by analyzing the differences of correspond-
ing shapes. In our approach, DS is considered as a collection of samples on out-
lines, and we assume that the shape of DS can be essentially expressed by a
finite subset of the points [7]. More practically, both of FDS and BDS are rep-
resented by a set of points sampled from contours which can be obtained by an
edge detector. The numbers of points on the shapes of DS are quite different, η
is introduced as the parameter of sample ratio which is set equal to 0.2. In the
process of sampling, we prefer to sample the shape with roughly uniform spacing,
and do not concern the key-points on contours such as maxima of curvature or
inflection points. Given pF

i,j as the jth sample point in dF
i , pB

i,j as the jth sample
point in dB

i , the corrsponding point set of DS can be represent as follows:

Pi =
{
pF

i,1, · · · , pF
i,αi

, pB
i,1, · · · , pB

i,βi

}
= {pi,1, · · · , pi,Ni

} (3)

where Ni is the number of sample points in DS. Fig. 2 (c) gives an illustration
of samples of DS form Fig. 2 (a) and Fig. 2 (b).

For all the sample points on the shape of DS, a coarse histogram is introduced
to describe the distribution of them. In this case, the center of each DS oi is
defined as the coordinate origin, and this center is computed as follows:

oi =
cj + cj+Δ

2
(4)

where cj is the center of binary silhouette fi, and cj+δ is the center of binary
silhouette fj+δ. For the center oi of DS, a histogram hi can be obtained as
follows:

hi (u) = # {pij : (pij − oi) ∈ bin (k)} (5)
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(d)

(a) (b)

(b)

Fig. 2. Polar histogram and shape context computation. (a) and (b) Difference silhou-
ette contours. (c) Contour sampling integration. (d) Polar histogram computation.

where pij is the jth sample point in Pi, k is the kth bin, and the bins are uniform
in polar coordinates. Here the polar radius r is divided into 3 equal lengths, and
the polar angle θ is divided into 12 equal parts. Fig. 2 (d) gives an example of
dividing the polar space.

According to the proposed approach, the polar histogram is used to represent
the human motion features in DS. With this descriptor lying in a low-dimensional
space, different human actions are expressed as irregular sequences of vectors.

A feature fusion computation gp =
m∑

i=1

hi is adopted for reducing the dimension

of time space, and this classification problem of time series can be replaced by
a general pattern recognition problem.

3 Static Reservoir for Human Action Classification

3.1 Static Reservoir

Classic multi-layer perception (MLP) models use adaptive basis functions with
sigmoid nonlinearities, which can adapt the parameters so that the regions of
input space over which the basis function vary corresponds to the data manifold.
A MLP model with one hidden layer can be expressed as follows:

y = wTsig

⎛

⎝
p∑

j

N∑

i

γw
ij · W ij

in uj +
N∑

i

γb
i · bi

⎞

⎠ + bo (6)
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where p is the dimension of input, uj is the jth input, and y is the output
matrix, N is the number of hidden layer neurons, the input weight connections
and bias are initialized to W ij

in and bi, i = 1, · · · , N , j = 1, · · · , p, respectively.
γw

ij is the local scaling parameter for the input weight W ij
in , and γb

i is the local
scaling parameter for the bias bi. The standard form of static reservoir can be
expressed as follows:

y = wTsig (γWinu) + bo (7)

where u is the input of the reservoir, bias vector b has been included in the
input matrix Win for convince, and the initial input u is converted into u =[
uT 1

]
. The input matrix Win is generated randomly, γ is the global input

scaling parameter as described before.
The activation matrix A and target output Y can be defined as follows:

A =
[
a1, · · · , a l

]T (8)

Y =
[
y1, · · · , y l

]T (9)

where a i = sig (γWinu i), u i is the input vector of training data, y i is the
classification result, and i is the index of training examples, 1 ≤ i ≤ l.

The Tikhonov-type regularization is used here, with a Cholesky decompo-
sition of matrix ATA + I/C ∈ RN×N , which is not related to the number of
training samples but the scale of the reservoir. The solution can be expressed as
follows:

ATA + I/C = LTL,Lz = ATY,LTw = z (10)

where z is the intermediate variable, L is the lower triangular matrix in Cholesky
decomposition.

Therefore, we select two hyper-parameters for static reservoir: the global
scaling parameter γ and the regularization parameter C. With γ and C, static
reservoir construction will be discussed in the next subsection.

3.2 Static Reservoir with γ − C Plane for Classification

As discussed in the previous section, we prefer using the scaling parameter γ
and the regularization parameter C to manage the magnitudes of the weights.
The global scaling parameter γ is adopted to restrict the original input weight
matrix Win which is generated at random. Therefore, the new input weight
connection γWin fully depends on the scaling parameter γ. The magnitudes of
output weights are determined by the regulation parameter C given the activa-
tion matrix A and target output Y . Therefore, we take the γ − C plane as an
evaluation of the static performance, and a reservoir can be constructed through
the computation of the classification accuracy with different parameters. The
static reservoir constructed with small γ and small C performances weak non-
linearity and small capacity, which lead to underfitting. On the contrary, large γ
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and large C denote strong complexity and overfitting. The two parameters are
greater than zero, and the plane should be established in logarithmic space [8].

In order to obtain effective working area of γ − C plane for classification
problem, the procedure of searching good γ − C pair should be settled. The
error measure can be defined as the error rate of the classification. A good pair
of γ and C can be obtained by many existing methods, such as the grid search
method or Nelder and the Meads downhill simplex method. For the experiments
in this paper, we use the gird search to solve the problem.

4 Experimental Results

Human action recognition experiments are carried out based on two datasets,
Weizmann dataset and KTH dataset. Weizmann dataset is first reported in [9],
and Fig. 3 gives several examples of this dataset. It contains 93 low-resolution
videos of 9 different persons, each performing 10 actions (one person perform
each of 3 different actions for twice). These actions include run, walk, skip, jack,
bend, jump, pjump, side, wave2, and wave1. Both the backgrounds and the view
point of this dataset are static. As the backgrounds of these videos are included
in the dataset, the silhouettes can be easily extracted from each frames. In order
to make fair comparisons with the results of other researches, we directly use
the foreground silhouettes included in the given dataset.

(a)

(b)

Fig. 3. Human action examples from Weizmann dataset. (a) Original image. (b) Sil-
houette image.

KTH human motion dataset has been introduced by Schuldt et al. in [3].
It contains 600 AVI files of 6 actions exhibited by 25 persons in 4 different
conditions: static background, scale variations, different clothes, and lighting
variations. The actions include walking, jogging, running, boxing, handwaving,
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and handclapping. Since the scenes in the KTH dataset are not fixed, and the
videos are grayscale, direct subtractions in these videos are not feasible. There-
fore we firstly use human detection method to localize the human figure, and
then applied background subtractions for the localized results. However, the
extracted silhouettes is still imperfect but available.

For different datasets, we use a fixed reservoir size (N = 100), and the input
of weight connections are now dependent on the hyper-parameter γ. The γ − C
plane is demonstrated by calculating the classification error. The two hyper-
parameters are combinations of exponentially growing sequences of γ and C.
Fig. 4 and Fig. 5 are the γ − C planes for the Weizmann and KTH datasets.
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Fig. 4. The process of static reservoir construction with γ − C plane for Weizmann
dataset

From the γ − C plane we can get the range of γ − C selection. In Weizmann
Dataset, we select γ = 210 and C = 25, the confusion matrices for Weizmann
dataset is shown in Fig. 6, and the classification accuracy is 98.75%. And in
KTH dataset, we select γ = 23 and C = 210, the confusion matrices for KTH
dataset is shown in Fig. 7, and the classification accuracy is 95.29%.

The recognition accuracy of Weizmann dataset and KTH dataset obtained
via the proposed approach is compared with works of other researchers as
reported in Table 1 and Table 2. The Weizmann is widely used by many
researchers, while only experimental results achieved under similar condition
are included in the comparison.
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Fig. 5. The process of static reservoir construction with γ −C plane for KTH dataset
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Fig. 6. Confusion matrix for classification results of Weizmann dataset
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Table 1. Recognition rates over Weizmann dataset

Method Accurancy

Our method 98.75%
Gorelick et al.[7] 97.50%
Gkalelis et al.[10] 96.00%
Niebles et al[11] 72.80%

Table 2. Recognition rates over KTH dataset

Method Accurancy

Our method 95.29%
Minhas et al.[5] 94.83%
Liu et al.[12] 94.00%
Ikizler et al.[4] 89.40%
Schuldt et al.[3] 71.70%

5 Summary and Future Work

In this paper, we proposed a new descriptor: difference silhouette for image repre-
sentation. DS obtained by the adjacent binary silhouettes is a coarse histogram
of the distribution with sample points on contours of DS. With the fusion of
DS as the features of actions, we use static reservoir for action classification. On
γ−C plane, the proper static reservoir is constructed. We demonstrate the effec-
tiveness of our method over two datasets, Weizmann dataset and KTH dataset.
The results of our method are comparable and even superior to the results over
these datasets.

One shortcoming of our approach is its dependence on silhouette extraction.
We observed that most of the confusion, especially in the KTH dataset, occurs
because of the imperfect silhouettes. However we should also note that, even
with imperfect silhouettes, our method achieves high recognition rates which
shows our method robustness to noise.

Future work includes application of view-invariance case, by means of ortho-
graphic projections of rectangular regions.
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Abstract. Traffic flow forecasting is a fundamental problem in trans-
portation modeling and management. Among various methods multi-
task neural network has been demonstrated to be a promising and effec-
tive model for traffic flow forecasting, while there are still two issues
unconsidered: 1) learning unrelated tasks together tends to reduce the
model’s performance; 2) how to define or learn the distance metric for
distinguishing related tasks and unrelated tasks. In this paper, a met-
ric learning based K-means method is proposed to group related tasks
together which effectively reduces the semantic gap between domain
knowledge and handcrafted feature engineering. Then for each group of
tasks, a deep neural network is built for traffic flow forecasting. Exper-
imental results show the metric-based grouping method clusters tasks
more reasonably with a better metric than classic Euclidean-based K-
means. The final results of traffic flow forecasting on real dataset show
the metric-based multi-task neural network outperforms the Euclidean-
based multi-task neural network.

Keywords: Metric learning · Traffic flow forecasting · Multi-task learn-
ing · Deep neural network · Metric-based MTGNN

1 Introduction

Intelligent Transportation Systems (ITS) have been the main solution to improve
transportation performance and relief traffic congestion. As one of the funda-
mental components in ITS, traffic flow forecasting (TFF) has been a hot spot
in transportation community for decades of years. Without accurate and effi-
cient traffic flow forecasting, none of the ITS can work well. So far, researchers
have proposed a variety of methods for traffic flow forecasting, such as time-
series model [1,14,21], Kalman filtering [15], simulation-based model [5], non-
parametric regression [17], support vector machine [4,9], bayesian network [19]
and neural network [6,7,11,12,16,18,20,23]. Given the good ability of nonlin-
ear representation for complicated systems, many researchers have developed
plenty of approaches based on neural network, such as fuzzy neural network
[23], wavelet-based neural network [11], graphical-lasso neural network [7], EMD-
based neural network [20], multi-task neural network [6,12], multi-task ensemble
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 499–507, 2014.
DOI: 10.1007/978-3-319-12436-0 55
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of neural networks [18]. Among these works, multi-task neural network seems to
be a popular trend in recent works. Jin et al. [12] proposes a multi-task neural
network for traffic flow forecasting, which incorporates traffic flows at contin-
uous multi-time into an output layer in neural network. Gao et al. [6] extends
multi-time neural network to multi-neighbor-link multi-time output layer.

There are still two issues unsolved in the real-life situation: first, aforemen-
tioned works do not consider the other inductive bias that learning unrelated
tasks together may reduce the model performance. So it should be conscious
in learning multiple tasks together. Second, the traffic networks in real-life are
always too complex to define the similarities between the “related links” or
“unrelated links” simply by network topological structure. In this paper, a
metric-based approach is proposed to group tasks into several clusters and in
each cluster one multi-task neural network is trained for traffic flow forecasting.

The rest of the paper is organized as follows. Section 2 introduces Multi-Task
Neural Network (MTNN) and discusses effects of “related tasks” and “unrelated
tasks” in multi-task learning. In Section 3, we propose a multi-task grouping
neural network for traffic flow forecasting based on metric learning algorithm.
Section 4 gives the experimental results. Conclusion is presented in Section 5.

2 Multi-Task Neural Network

Multi-Task learning [3] is an inductive transfer mechanism whose principle goal
is to improve generalization performance by leveraging the domain-specific infor-
mation contained in the training signals of related tasks. It does this by training
tasks in parallel while using a shared representation. With the representation of
a hidden layer shared by all output tasks, neural network is naturally used for
multi-task learning problems.

(a) Single-Task NN (b) Multi-Task NN

Fig. 1. Neural Network Architectures

As Fig. 1 shows, Fig. 1a is a single-task neural network. X and Y repre-
sent input layer and output layer, respectively. h1 and h2 represent the hidden
layers. Fig. 1b is a multi-task neural network whose output layer Y consists of
K tasks as shown. Besides multi-task learning on traditional neural network,
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Huang et al. [10] propose a deep neural network (DNN) architecture for traffic
flow prediction with deep belief network which outperforms most classic traffic
flow forecasting models. Experiments in Section 4 are constructed on both classic
neural network and deep neural network.

In Section 1, we have introduced the related works in multi-task neural net-
work. The inductive bias of “related” tasks that learning multiple related tasks
together tends to improve the performance by leveraging the domain knowledge
contained in training data of related tasks has been explored and demonstrated
by previous researches. On the other hand, the inductive bias of “unrelated”
tasks is unconsidered that noisy information contained in unrelated tasks tends
to reduce model’s performance. As a result, tasks need to be grouped into dif-
ferent groups by their relationships before put into multi-task learning model to
ensure the tasks in the same group are related.

3 Metric-Based Multi-Task Grouping Neural Network

In this section, a novel metric-based multi-task grouping neural network algo-
rithm is proposed to deal with the issues of task grouping in multi-task learning
and traffic flow forecasting.

3.1 Metric Learning

The metric learning problem is concerned with learning a distance function tuned
to a particular task, and has been shown to be useful when cooperates with
nearest-neighbor methods and other techniques that rely on distances or simi-
larities. Metric learning emerged in 2002 with the pioneering work of Xing et al.
[22] which formulates it as a convex optimization problem.

Suppose we have some training set of points {xi}ni=1 ⊆ R
d, and are given

information that certain pairs of them are “similar” or “dissimilar”:

S : (xi, xj) ∈ S if xi and xj are similar
D : (xi, xj) ∈ D if xi and xj are dissimilar

(1)

Thus, the goal of metric learning is to learn a Mahalanobis distance

d (x, x′) = dM (x, x′) = ‖x − x′‖M =
√

(x − x′)TM (x − x′) (2)

which make similar points close to each other and dissimilar points far away from
each other. A simple way to define a criterion for the desired metric is to constrain
that pairs of points (xi, xj) in S have small squared distance between them
while pairs of points in D have large distance. This gives the basic optimization
problem:

M = arg min
M

∑

(xi,xj)∈S ‖xi − xj‖2M
s.t.

∑

(xi,xj)∈D ‖xi − xj‖M ≥ 1,

M � 0.

(3)



502 H. Hong et al.

The optimization problem is convex which can be solved by gradient descent
techniques. More details can be found in works [2,13,22].

3.2 Metric-Based MTG Neural Network

To handle the issue of distinguishing between related tasks and unrelated tasks in
network-level traffic flow forecasting, a metric learning based multi-task grouping
neural network algorithm for traffic flow forecasting is proposed as shown in Fig. 2.

Fig. 2. Metric-based Multi-Task Grouping Neural Network

– Given the training set containing pairwise samples labeled by domain
experts, a better metric M is learned through metric learning method.

– Using the learned metric instead of traditional Euclidean metric, a metric-
based K-means clustering algorithm groups the T tasks into m groups. Tasks
in each group Gi are more “similar” or “related” than those in other groups.

– For each group, we build a multi-task deep neural network as its own traffic
flow forecasting model.

The multi-task neural network is a deep belief network with a multi-task
regression layer on top. Deep Belief Network (DBN) is the most common and
effective approach among all deep learning models. It is a stack of Restricted
Boltzmann Machines (RBM) having only one hidden layer for each RBM. The
learned unit activations of one RBM are input as the “data” for the next RBM
in the stack. Hinton et al. proposed a way to perform fast greedy layer-wise
trainning of DBN [8]. The RBM defines a probability distribution over hidden
variables (h) and visible variables (v) via an energy function:

− log P (v, h) ∝ E(v, h; θ)

= −
|V |∑

i=1

|H|∑

j=1

wijvijj −
|V |∑

i=1

bivi −
|H|∑

j=1

ajhj
(4)
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Then the conditional probability distributions of h and v can be computed as:

p(hj |v; θ ) = sigm(
|V |∑

i=1

wijvi + aj)

p(vi |h; θ ) = sigm(
|H|∑

j=1

wijhj + bi)
(5)

More details about the prediction model can be found in our previous work [10]
which is beyond the discussion of this work.

4 Experiment

4.1 Experiment Setting

In this paper, we use the highway traffic toll collection data of Anhui province in
China from Sep.2, 2010 to Sep.30, 2011. Input flows and output flows of all toll
stations are detected and uploaded every 15 minutes. The flows of all road sec-
tions can be gained through a micro traffic simulation model. The task of traffic
flow forecasting is to forecast the flows in next time interval based on historical
time series data. For the task grouping, we construct the feature space using the
traffic flows of 96 time interval. As the Fig. 3 shows, we choose top 10 sections
and 5 other sections according to their average daily flow as 15 tasks. Their IDs
are sorted by total traffic flow. Thus section1 has the highest traffic flow and
section15 has the lowest traffic flow. The neural network architecture adopted in
this section includes both traditional multi-task neural network and multi-task
deep neural network with deep belief network for traffic flow forecasting.

Fig. 3. Example: traffic flows of 15 sections

4.2 Experimental Results

In this subsection, we present mainly two parts of experimental results: task
grouping visualization and error rates of traffic flow forecasting.
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Table. 1 shows the grouping results of traditional Euclidean-based K-means
and metric-based K-means. The result of the metric-based method is similar with
the former one except for G1 and G2. The Eu-method groups Task1,2 together
and Task3−8 together. While the metric-method groups Task1,4,5,7 together and
Task2,3,6,8 into anotherGroup.As theEuclideanmetric treats each feature equally,
when used in high-dimension feature space the influence of each feature’s weight is
reduced. So the Eu-method tends to group sections with similar total flow together.

Table 1. Results of Tasks Grouping

G1 G2 G3 G4

Eu-Group 1, 2 3-8 9, 10 11-15

Met-Group 1, 4, 5, 7 2, 3, 6, 8 9, 10 11-15

(a) G1: T1, T4, T5, T7 (b) G2: T2, T3, T6, T8

(c) Tasks on Real-life Traffic Net-
work

(d) Forecasting Error Rates

Fig. 4. Results of Metric-based Multi-Task Neural Network

On the other hand, the metric-based method seems to group the tasks accord-
ing to other traffic patterns. Fig. 4a and Fig. 4b show the tasks of G1 and G2

using metric-based K-means. The traffic peaks of sections in G1 commonly come
earlier than those in G2. Fig. 4c may explain this interesting phenomenon that
road sections grouped in the same G (for example, road section 1, 4, 5, 7) are
located closely on geographical space and are on the same travel direction, that
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is to say they are upstream and downstream sections. As in traffic situation the
vehicles travel from upstream sections to downstream sections, the traffic flows
of sections on the same direction present a propagation trend on the time-space
dimension like Fig. 4a and Fig. 4b show. In addition, the two grouping methods
are applied with both traditional neural networks and deep neural networks.
As Fig. 4d shows, the metric-based grouping method works better than classic
Euclidean-based method both on both traditional neural network and deep neu-
ral network. Besides, the deep neural network achieves better performance than
classic neural network in this experimental setting as we have demonstrated in
precious work. According to the discussion above, metric-based grouping app-
roach is effective to represent potential traffic domain patterns and fit to the
complicated traffic situation. With a more reasonable grouping scheme, both
traditional neural network and deep neural network achieve better performance.

5 Conclusions

In this study, we propose a metric-based multi-task grouping neural network
algorithm for traffic flow forecasting. Firstly, a “better” metric is learned from
pairwise training set labeled by domain experts using metric learning method
which reduces the semantic gap between domain knowledge and handmade fea-
ture engineering. Secondly, a metric-based K-means algorithm is adopted to
group “related” tasks into groups. Thirdly, for each group G we build a multi-
task deep neural network for traffic flow forecasting.

As far as we know, this is the first work to consider the influence of “unre-
lated” tasks in multi-task learning neural network. We propose a novel metric-
based algorithm to deal with the distance metric between related tasks and
unrelated tasks. The task grouping method with learned metric seems to get a
reasonable grouping result and explores the potential patterns under the complex
traffic conditions. Results of our algorithm for traffic flow forecasting outperform
the traditional Euclidean-based algorithm with near 1% improvement which is
impressive for traffic flow forecasting problem.

As mentioned above, the metric-based multi-task neural network is a promis-
ing and effective algorithm and can be widely used in other applications. The
metric learning paradigm can be further adopted to other nearest-neighbor or
distance-based methods.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grant No.61103025.
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Abstract. Effective appearance models are one critical factor for robust object 
tracking. In this paper, we introduce foreground feature salience concept into the 
background modelling, and put forward a novel foreground salience-based cor-
rected background weighted-histogram (FS-CBWH) scheme for object repre-
sentation and tracking, which exploits salient features of both foreground and 
background. We think that background and foreground salient features are both 
crucial for object representation and tracking. Experimental results show that the 
proposed FS-CBWH scheme can improve the robustness and performance of 
mean-shift tracker significantly especially in heavy occlusions and large back-
ground variation scenes. 

Keywords: Target tracking · Weighted histogram · Foreground feature saliency 

1 Introduction 

Real-time object tracking has been extensively studied over the years, since it is an 
important step in many computer vision tasks such as human-computer interaction [1], 
robotics [2], video surveillance [3]. But there are still considerable difficulties, such as 
pose changes, illumination changes, occlusions. Many tracking algorithms have been 
proposed to overcome these challenges (e.g., GOA tracker [4], Kalman filter [5], par-
ticle filter [6] and mean-shift [8]). In recent years, because of the pretty good robustness 
to illumination, rotation, partial occlusion and low complexity, mean shift algorithms 
are used in object tracking by many researchers [8, 9, 10]. 

Effective appearance models are one critical factor for robust object tracking. In the 
conventional mean-shift tracking algorithm, object is represented by kernel-weighted 
color histogram. However, it is not always discriminative enough especially when 
object has similar feature with its background. To address this challenging problem, the 
background-weighted histogram (BWH) algorithm has been adopted to improve color 
histogram by Comaniciu et al. [7]. It decreases background interference from  
salient background features in the target model and candidate model. However in [9], 
Ning et al. proved the BWH transformation formula is equivalent to the standard 
mean-shift tracking. They proposed a corrected BWH (CBWH) algorithm to transform 
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only the target model but not the target candidate model. In [10] Wang et al. proposed 
to a novel weight calculation approach which incorporates the local background  
information. While these algorithms achieve relatively good effects, they often fail to 
track objects in challenging image sequences with drastic background appearance 
change and occlusion due to discriminative enough. 

Motivated by Comaniciu et al. [7]’s work, we propose foreground salience-based 
corrected background-weighted histogram (FS-CBWH) scheme. Compared to CBWH, 
FS-CBWH takes background and foreground salient features into account. Since 
foreground salience and background salience are both employed as 
weighted-histogram criterion, FS-CBWH scheme further improves the object repre-
sentation and tracking. Experimental results show that FS-CBWH outperform CBWH 
method in heavy  occlusions and large background variation, meanwhile FS-CBWH  
has more advantage than CBWH in the time cost. It is more robust and efficient. 

2 Related Works 

2.1 Background-Weighted Histogram 

Assume that we have an original background model { } 1,...,u u m
b b

=
=  (with

1
1

m

uu
b

=
= ) and its minimal non-zero entry *b of the background model in an 

image. The background window of the target is surrounded around it as a rectangular 
ring with a fixed three times of the target area. To get the model discriminative enough 
against the background is accomplished via a background-weighted histogram (BWH) 
procedure [8] as below:  

 
*

1...

min ,1u
u u m

b

b
τ

=

   =  
   

. (1) 

The uτ is the weight coefficient within histogram bin u, lower uτ are more prominent 

in the background and less important for the target representation. So it is used to 
transform the representations of both target model and target candidate model. Then the 

target model can be obtained as:  
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n
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τ δ

=
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  ,         (2) 

where uq′  represents the density of  feature u in target  model q′ , k(x) is an  iso-

tropic  kernel  profile, m is the number of feature bins, ix  (i=1,…n) is pixel position 

in target region centered at  original  position, δ is the Kronecker delta function,  
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( )ib x maps the pixel ix to the histogram bin index, h is the bandwidth, 1c′  is a 

normalization constant. Similarly, the target candidate model p′  can be got as: 

    { } ( )
2

21,...,
1

-
; -

hn
i

u u u iu m
i

y x
p p p c k b x u

h
τ δ

=
=

 ′ ′ ′ ′= =     
 

  , (3) 

where up′  represents  the  density  of  feature u in target candidate model p′ , 

ix  (i=1,… hn ) is the pixel position in the target candidate region centered at y, 2c′  is 

a normalization constant. 

2.2 Corrected Background-Weighted Histogram 

A corrected BWH (CBWH) algorithm is proposed by Ning et al. [9]. Rather than both 
transforming the target model and the target candidate model, it just transforms the 
target model. Ning et al. proved above BWH transformation result is identical to usual 
target representation under the mean shift tracking framework. Therefore, in CBWH 
algorithm the target candidate model still uses the original model as follows: 

 { } ( )
2

21,...,
1

-
; -

hn
i

u u iu m
i

y x
p p p c k b x u

h
δ

=
=

 = =     
 

  , (4) 

where up  represents the density of feature u in original target candidate model p , 

2c  is a normalization constant. 

Notwithstanding the demonstrated success of CBWH, no attempts have been made 
to directly exploit the foreground salience information. If background salient features 
are also foreground salient, foreground salience information is also critical for object 
tracking.  

3 The Proposed Scheme 

3.1 Foreground Salience Modelling  

Assume that we have a foreground model { } 1,...,u u m
f f

=
=  (with

1
1

m

uu
f

=
= ) and 

its maximal non-zero entry *f  and above original background model. We propose a 

foreground salience model in which the salience of feature in the target model as below:  

 { } *1,...,

1...

; max ,1u
u uu m

u m

f
S S S

f=
=

  
= =  

  
 , (5) 
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original image foreground saliency image 

Fig. 1. A sample of foreground salience image 

where S represents foreground salience model in target model and the uS is the sali-

ence coefficient. Those features with larger uS  are more prominent in the foreground 

and more important for the target representation. An example of foreground feature 
salience image is illustrated in Fig. 1.    

3.2 FS-CBWH 

We adopt foreground salience to transform the representation of original background 
model in order to select the salient foreground feature components in the background 
model. Thus we get a more complex representation of the background features, namely 
foreground salience-based background model (FSB): 

 { } 31,...,
;fg fg fg

u u u uu m
b b b C S b

=
= = , (6) 

where fg
ub   represents  the justified density  of  feature u in new background model 

fgb , 3C  is a normalization constant. 
Different from Comaniciu et al. ’ [7] background model, our FSB implicitly in-

cludes some feature salience information from the foreground. Assume that we have 

the minimal non-zero entry 
*
fgb  of the background model FSB in an image; we define 

a transformation for the representation of target model as follows: 

    
*

1...

min ,1fgnew
u fg

u u m

b

b
τ

=

   =       
 .     (7) 

The new
uτ  is the weight coefficient, lower new

uτ are more prominent in the background 

and less prominent in the foreground and less important for the target representation. 

Similarly in [9], new
uτ  is only used to transform the target model.  



512 D. Wang et al. 

(a) (b) (c)

Fig. 2. An example of the weight image example 

 

Fig. 3. Corresponding weights of the non-zero features in Fig. 2 

Then the new target model can be obtained as:  

            { } ( )
2

41,...,
1

; -
n

new new new new i
u u u iu m

i

x
q q q C k b x u

h
τ δ

=
=

 = =     
 

  ,      (8) 

where new
uq represents  the  density  of  feature u in target  model new

uq , 4C  is a 

normalization constant. 
An example of the weight image of CBWH and FS-CBWH is illustrated in Fig. 2. 

The corresponding weights of the non-zero features therein are shown in Fig. 3. We 
compute the Bhattacharyya similarities between the tuned target model and its sur-
rounding background region by CBWH and FS-CBWH for original image in Fig. 2. 
CBWH and FS-CBWH have Bhattacharyya similarity of 0.04 and 0.02 respectively, 
which implies that FS-CBWH can better distinguish the target from background. Since 
the weight of each feature in the target model for FS-CBWH is determined by the 
feature distinctiveness of background region and foreground region, the FS-CBWH 
scheme is more robust and discriminant against the background.  
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Fig. 4. Tracking results from Ping-Pong ball sequence. Rows 1, 2, and 3 are for standard 
Mean-Shift tracker, CBWH tracker, and our proposed tracker, respectively. The frame indexes 
are 1, 22, 26, 45 and 51. 

4 Experimental Results 

Our algorithm has been tested on two kinds of video datasets using standard mean-shift 
tracking algorithm, the CBWH algorithm and our FS-CBWH algorithm, One is the  
standard ping-pang ball test sequence used in [9], the  other  is  the  sequence  
obtained in [11]on WalkingWoman sequence.  

In the first video, the target moves quickly and undergoes sudden background 
change. The experimental results are shown in Fig. 4 and Table 1. For FS-CBWH, since 
it incorporates feature saliency to enhance the approximation of the target model, it is 
more discriminative and robust to sudden background change than others. Thus when 
the target touches the bat at frame 26, our method can successfully capture the target 
while the other two algorithms fail. Compared with other two algorithms, it shows our 
method is less sensitive to sudden background change. 

In the second experiment, the video is complex and challenging since the first car 
has the similar color to the women and partly occludes her. As far as target localization 
accuracy, the FS-CBWH performs best since the foreground salient features and 
background salient features are well exploited. The experimental results are shown in 
Fig. 5 and Table 1. Our algorithm can still track the object steadily even in such a 
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Fig. 5. Tracking results from WalkingWoman sequence. Rows 1, 2, and 3 are for standard 
Mean-Shift tracker, CBWH tracker, and our proposed tracker, respectively. The frame indexes 
are 22, 32, 54, 79 and 86. 

Table 1. Average error and average number of iterations 

Video 
sequences 

standard mean-shift CBWH FS-CBWH 

Average 
error 

Average 
number 
of itera-

tions

Average 
error 

Average 
number 
of itera-

tions

Average 
error 

Average 
number 
of itera-

tions 
ping-pang 

ball 
3.5619 3.9423 3.3872 3.2308 2.6358 3.0192 

walking 
woman 

33.8516 6.0 35.6829 4.9333 11.4839 4.123 

 
challenging scene while the other two algorithm loss the target in the end. It shows our 
method increases the discrimination between object and background, and is more 
robust to occlusion and similar background.  

From Table 1, our method need lest number of iterations. It means the proposed 
method converges more quickly and requires less computation.  
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5 Conclusion 

In this paper, we proposed foreground feature saliency concept. Based on this novel 
concept, we derived a more complex background model, foreground salience-based 
background model (FSB), and used it to propose a novel weighted-histogram scheme, 
foreground saliency-based background-weighted histogram (FS-CBWH) scheme. 
Then mean-shift tracking was performed. The major advantage of this scheme lies in 
that it encodes feature distinctiveness information from both background and fore-
ground. Our experiments demonstrated the proposed FS-CBWH scheme improves the 
efficiency and robustness of mean-shift tracker significantly. 
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Abstract. Effective appearance models are one important factor for robust object 
tracking. In this paper, a more elaborate object representation model via a simul-
taneous online feature selection and feature fusion algorithm is proposed, in 
which extended variance ratio  is used to select the most discriminative power 
features, and thereby account for appearance model using region covariance de-
scriptor which takes into account feature correlation information during tracking. 
Fusing all selected features, we get a more discriminative appearance model. 
Furthermore, our simultaneous online feature selection and feature fusion meth-
od is integrated into particle filter framework for robust tracking. Experimental 
results show that this proposed method is robust in heavy occlusions scenes and 
is able to handle variations in illumination and scale.  

Keywords: Target tracking · Particle filter · Feature selection · Feature fusion 

1 Introduction 

Appearance models are one important factor for object tracking. Extensive studies 
have been presented (e.g. color histogram [1], subspace method [2], and sparse repre-
sentation [3]). A good object representation should be robust to cope with pose 
change, scale variation, partial occlusion, illumination change etc. In order to success-
fully handle the object and background appearance variation in visual tracking, the 
object appearance model must be adapted over time.  

Online feature selection has become an important technique to model the appear-
ance in order to adapt to object and background appearance changes for visual track-
ing. Recently many adaptive feature selection techniques have been developed. Collins 
et al. [4] proposed to online select discriminative features from color feature spaces. 
Features are ranked according to variance ratio and the top N features are selected with 
each producing a likelihood map. Then Mean-shift is separately performed on each 
likelihood map to locate target. Finally, target is located by selecting the median  
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location. However, their method treats selected features independently within the 
Mean-shift framework; this can fail to track the target. Chen et al.[5] applied particle 
filtering for feature selection. Feature effectiveness depends on the Kullback-Leibler 
between foreground and background. By weighting all feature particles by the Kull-
back-Leibler observation model, a compound likelihood map is generated. Finally 
another particle filter is performed on previous compound likelihood image. Chen [5] 
et al. extended the work of Collins [4] et al. by feature weighting sum scheme, but 
their method  extracts single feature and ignores features covariance. 

Recently the success of  region covariance descriptor[6] addressing  appearance 
modelling inspires us to base our tracking method on it. We employ it to capture the 
correlations among selected features inside a region, instead of feature weighting sum 
scheme. It affords significant insensitivity to changes in illumination and scale.  

We also employ particle filters to track the target object. In summary, we proposed 
covariance-based particle filter with adaptive feature selection (CVPF-FS) tracking 
algorithm. It includes two stages. Firstly, the most discriminative power features is 
obtained by ranking the candidate features according to extended variance ratio score. 
Secondly, region covariance descriptor is constructed online from selected features 
forming covariance-based observation model, then a particle filter is applied to prop-
agate sample distributions over time. Experimental results show that the CVPF-FS 
method is robust in illumination and scale variations and heavy occlusions scenes.  

2 Particle Filter Algorithm 

The standard particle filter algorithm consists of the well-known two models: the 

observation model and the state transition model. Let ts and tz  denote the state of a 

target and its observation at time t respectively. Provided the state transition model 

1( | )t tp s s − and the observation model ( | )t tp z s and previous observations

0: 0,..., 1{z z }t tz −= , our goal is to estimate posterior distribution of unknown state ts :

0:( | )tp s z . By Bayes rule we can derive its recursive form as follows: 

  0: 1 1 0: 1 1( | ) ( | ) ( | ) ( | )t t t t t t t t tp s z p z s p s s p s z ds− − − −∝   ,  (1) 

where ( | )t tp z s is observation density, and 1( | )t tp s s − is state transition density. 

Observation density is generally multimodal so 0:( | )tp s z cannot be in closed 

form. By sequential Monte Carlo simulations, 0:( | )tp s z is approximated by normal-

ized weighted sample set{ }
1

,
Ni i

t t i
s w

=
. All sample particles are sampled from a pro-

posal importance distribution 1( | , )i i
t t tq s s z− , the weight associated with each particle 

is formulated as follows:  
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 1
1

1
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( | , )

i i i
i it t t t
t ti i

t t t

p z s p s s
w w

q s s z
−

−
−

∝  . (2) 

To avoid weight degeneracy, the particles are resampled to obtain the equal weight 

particle set
1

1
,

N
i
t

i

s
N =

 
 
 

.   

The proposal importance density is set as 1 1( | , ) ( | )t t t t tq s s z p s s− −=  for sim-

plicity, namely  condensation algorithms [7]. The Monte Carlo approximation of 

expectation， 0:1

1
ˆ ( | )

N i
t t t ti

x x E x z
N =

= ≈ ，is used for state estimation at time t.   

3 Adaptive Feature Selection 

3.1 Feature Likelihood Ratio 

Given a feature f , we first determine its direct background window: its surrounding 

neighborhood of three times the target area. Given normalized histograms  fgh  and

bgh  of specified feature space, we yield a set of tuned likelihood values [4] ( )L i    

that are defined as Eq. 3. A typical feature likelihood image is shown in Fig. 1. 

 ( ) ( )( )
( )( )

m ax ,
lo g

m ax ,
fg

b g

h i
L i

h i

δ
δ

=  , (3) 

where δ  is a small positive constant that avoid division by zero, and i is the feature  
bin. ( )L i  of the feature actually forms a new likelihood feature space.  

There are so many features can be as candidate feature, such as color, texture, 
shape contexts. We adopt color feature set proposed in [4]. It consists of linear com-
binations of RGB values. The candidate feature set be defined as: 

 1 2 3 1 2 3{ | , , { 2, 1,0,1,2}}F c R c G c B c c c= + + ∈ − − .   (4) 

There are totally 49 valid features in the feature set by discarding invalid features. 

3.2 Feature Discriminability Evaluation 

There are many potential feature selection criterions, such as variance ratio (VR) [4], 
KL divergence [8]. VR is the ratio of the between-class variance of the feature to the 
within-class variance of feature; it is according to the fact that the best feature is the 
one that best distinguishes the object from the background.    
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Original image Likelihood image 

Fig. 1. A typical feature likelihood image 

Different from [4], we do not reuse the initial color distributions. This is thought of 
as the extended variance ratio (EVR). EVR of each under the discrete probability  

fgh ′ for foreground and bgh′ for background in likelihood feature space is as follows: 

 

( ) ( )( )
( ) ( )

var ; / 2
, ,

var ; var ;

fg bg

fg bg

fg bg

L h h
EVR L h h

L h L h

′ ′+
′ ′ =

′ ′+
 . (5) 

The denominator of the EVR is the sum of the variances within foreground and back-
ground, it should be small so that the object and background are both tightly clus-
tered, while the numerator is the total variance over both foreground and background, 
it should be big so that the object and background are widely spread apart. We use Eq. 
5 to evaluate and rank all the features’ discriminative power according to extended 
variance ratio.   

3.3 Feature Selection Tracker  

In Collins’ [4]  tracker top-ranked K features likelihood maps are embedded in the 
Mean-shift [9] tracking algorithm. Then K estimates of object location are obtained. 
By naive median estimator, the median is chosen as final estimate of object location. 
We implement a Collins-like’ (CL) tracker. Different from naive median estimator 
[4], our tracker uses a weighted sum approach. The K estimates of object location are 
weighted by corresponding normalized feature EVR scores, so that in our compound 
final estimate, we increase the contribution from the more discriminative features.  

4 Feature Adaptive Covariance-Based Bayesian Tracking 

Our Collins-like’ tracker does not preserve the correlation information of the feature. 
To overcome this, we adopt region covariance to model the target for tracking. 
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4.1 Region Covariance Descriptor 

Here we adopt above top-ranked K features. Region covariance descriptor involves 
evaluation of correlation of the selected region. Consider a rectangular region likeli-
hood maps features. Region covariance descriptor is recently proposed and com-
monly used in the object detection, R of sizeW H× , we can extract W H k× ×
dimensional feature image as follows:  

 ( , ) ( , , )F x y R x yϕ= , (6) 

where ϕ  is feature mapping such as color, gradients and texture. ( , )x y denotes the 

pixel location, ( , )F x y is the k dimensional feature vector. let N  is the  number  

of  pixels  in  the  region R ,hence for rectangular region R containing N  

pixels, the all  k dimensional feature vector points be 1...{ }i i NF = , and the region 

covariance descriptor is given by: 

 
1

1
( )( )

1

N T
R i ii

C F F F F
N =

= − −
−  , (7) 

where F  is  mean value of iF . 

4.2 Bayesian Tracking 

Given the region covariance, we aim to compute ( | )t tp z s . Notice that the covari-

ance matrices are in general symmetric positive definite(SPD), thus the nonsingular  
covariance matrix can be formulated as a connected Riemannian manifold that has the 
Lie group structure. We adopt the Log-Euclidean Riemannian metric [10] for measur-
ing distance between covariance matrices, it is defined as: 

 log 1 2 1 2( , ) log( ) - log( )e C C C Cρ = , (8) 

where ⋅  is the Euclidean norm in the vector space. This metric maps the Riemann-

ian manifold to the Euclidean space, so complex matrix operations are avoided and it 
enables computational cost low. Hence, the measurement likelihood is formulated as: 

 

2

( )
2
cov

log( ) - log( )
( | ) exp( )i i T

t t

C C
p z s

σ
∝ − ,   (9) 

where TC and iC  are respectively the object covariance and particle image covari-

ance corresponding to each . The computation of the covariance descriptor is inten-
sive, but it can be computed efficiently using integral images [6]. 
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5 Experimental Results 

We compare the tracking results of our proposed CVPF-FS tracker with CL tracker in  
Section 3.3 and covariance-based particle filter (CVPF) tracker. The first sequence is 
WalkingWoman sequence [11]. In this video the woman undergoes partial occlusion. 
Sample frames are shown in Fig.2; it can be observed that the three trackers keep 
tracking the woman when the woman is partially occluded after frame 56 except CL 
tracker. Partial occlusion can make similar “noise” in the target region; therefore co-
variance could be used for further improvement of appearance models. Compared 
with CL tracker, covariance-based trackers are more robust to the occlusion. 
 

 

Fig. 2. Tracking results of WalkingWoman sequence. Rows 1, 2, and 3 are for CL tracker, 
CVPF tracker, and CVPF-FS tracker, respectively. Frame indexes are 5, 36, 56, 69, and 82. 

The second sequence is LeftBag sequence [12]. This video has obvious illumina-
tion and scale change. To represent the variability of appearance, adaptive feature 
selection will be useful. As shown in Fig. 3, although the CVPF tracker combines the 
advantage of covariance and particle filter, it begins to drift in frame 8. Whereas 
CVPF- FS tracker and CL tracker can lock target by robustly selecting features and 
updating target model. It is obvious that adaptive feature selection methods are more 
discriminative than no feature selection method. Moreover, our CVPF-FS tracker in 
frame 38 also captures this significant scale change. 

The third sequence is more complex ThreePastShop2cor sequence [12]; this video 
has illumination variation and heavy occlusions and similar background, these are the 
main challenges. Sample frames are shown in Fig.4. Our CVPF tracker can track the 
target well even with consecutive occlusions and other challenges. Since CVPF track-
er ignores adaptive feature selection, thus it drifts off the target in frame 181. Since 
CL tracker ignores feature correlation information, thus it fails to track the target in 
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frame 153 due to consecutive occlusions. Whereas CVPF-FS tracker combines the 
advantage of covariance and adaptive feature selection, it makes the appearance mod- 
el is more robust to the interference of similar background and partial occlusion. 

 

 
Fig. 3. Tracking results of LeftBag sequence. Rows 1, 2, and 3 are for CL tracker, CVPF 
tracker, and CVPF-FS tracker, respectively. Frame indexes are 3, 8, 13, 38, and 91. 

 

Fig. 4. Tracking results of ThreePastShop2cor sequence. Rows 1, 2, and 3 are for CL tracker, 
CVPF tracker, and CVPF-FS tracker, respectively. Frame indexes are 5, 32, 89, 153, and 181. 
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6 Conclusion  

We considered an appearance model based on the simultaneous feature selection and 
fusion. The extended variance ratio was used to select the most discriminative power 
features. Moreover we extended online feature selection process by computing the 
selected features region covariance, which can capture correlation information and is 
one efficient approach for feature fusion. In contrast to the existing feature selection 
tracking method and covariance tracking method, our method faithfully model the 
appearance of the target. Finally we embedded the new target model into particle 
filters to track the target. 
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Abstract. Error-related potential (ErrP) is a form of event-related
potential (ERP) that is triggered in the brain when a user either makes a
mistake or the application behaves differently from his/her intend. Unfor-
tunately, due to its short-time duration, low signal-to-noise ratio, non-
stationarity and transient characteristic, a single-trial extraction of ErrP
remains a difficult task. In this study, we propose the use of one-unit sec-
ond order blind identification with reference (SOBI-R) for extraction of
ErrP in the context of steady-state visual evoked potentials based brain-
computer interface (SSVEP-based BCI). Fractal features are extracted
from the one-unit SOBI-R data by means of Katz fractal dimensional. At
last, the ErrP classification is obtained using a regularized version of the
linear discriminant analysis (LDA). The proposed method was tested on
6 subjects data and achieved an average recognition rate of correct and
erroneous single-trials of 87.03% and 80.7%, respectively. These results
show that single-trial detection of ErrP is feasible for SSVEP-based BCI.

Keywords: Brain-computer interface (BCI) · One-unit second-order
blind identification with reference (SOBI-R) · Error-related potentials
(ErrP) · Steady-state visual evoked potentials (SSVEP)

1 Introduction

People with disabilities are confronted daily with obstacles to independent liv-
ing. Brain-computer interfaces (BCIs) can, to a certain extent, reduce these
limitations by providing a direct pathway between the human brain and control-
lable devices. Among all kinds of BCIs, the steady-state visual evoked potential
(SSVEP) based BCI is the most common due to its relatively high operation
speed and relatively little user training [1]. Nevertheless, SSVEP-based BCIs are
prone to errors in translating users intention into control signals. Yet, humans
have a strong ability to identify errors in a precise way. Several studies have
found the existence of error-related potentials (ErrP) in the EEG signal over
the fronto-central region of the scalp of subjects while perceiving errors and
these potentials can be used to correct the errors [2].

Researchers in BCI field are aware that errors can slow the interaction with
the system down and be frustrating. Thus having an accurate method to detect
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 524–532, 2014.
DOI: 10.1007/978-3-319-12436-0 58
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the error can improve the system in speed and become less frustrating. However,
only few studies have been done regarding the use of ErrP in BCI. Ferrez et al.
studied ErrPs in motor-imaginary BCI and trained a Gaussian classifier to rec-
ognize ErrPs, achieving an accuracy of 80% [3]. Dal Seno et al. investigated the
single-sweep detection of ErrP in a P300-based speller, achieving an accuracy of
around 60% [4]. Combaz et al. studied the amount of training data necessary for
accurate classification of ErrPs for P300-based BCI [5].

The low classification accuracies of the ErrP can be explained by its high
variation in the shape, size and inter-subject latency variability, and the nature
of this is still not certain [6]. In addition, a single-trial ErrP extraction remains
a difficult task because its short-time duration, low signal-to-noise ratio, non-
stationarity and transient characteristic. One approach to deal with this kind
of signals is the blind source separation (BSS). The BSS can ideally extract the
desired sources from the observed mixtures while discarding sources that are
of no interest. Moreover, making full use of the prior knowledge about ErrP,
constrained BSS algorithm with reference can be used. Therefore, in this paper
we propose the use of one-unit second-order blind identification (SOBI-R), a
robust BSS method to extract small-length signal, non-periodic, transient signals
[7], to obtain the ErrP from EEG data.

To the best knowledge of the authors, no report has been made of the use of
ErrP in SSVEP-based BCIs. Thus, the goal of this preliminary study is to eval-
uate the detection and classification accuracy of ErrP in the context of SSVEP-
based BCI and its possible application as an error detection mechanism for
assessing the real-time online performance of SSVEP-based BCI. In essence, to
evaluate its suitability to substitute a feedback from the user, proposed in our
previous work, as a faster and more elegant way of notifying the SSVEP-based
BCI system of errors in order to correct the output and\or modify the systems
parameters [8].

2 Materials and Methods

2.1 Data Recording

The EEG signals were recorded with an amplifier (g.USBamp, Guger Tech-
nologies, Graz, Austria) with 8 electrodes distributed according to an extended
10/20 international system (FCz, Cz, C1, C2, FC1, FC2, Fz, and CPz), with the
ground on the forehead and the reference on the left earlobe. The EEG signals
were digitized with a sampling frequency of 256Hz, powerline notch-filtered, and
band-pass filtered between 0.5 and 10Hz.

2.2 Experimental Design

In order to study the existence of ErrP in an SSVEP-based BCI context a Speller
was used. The proposed speller allows to the input 16 letters, ‘A to P’, as shown in
Fig. 1. The frequencies of these 16 targets ranged from 8 to 15.5Hz with increase
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steps of 0.5Hz. An LCD monitor (ViewSonic 22”, refresh rate 120Hz, 1680×1050
pixel resolution) was used as the visual stimulator, which was programmed in
Microsoft Visual C++ 2010 and DirectX SDK 2010.

Fig. 1. Graphical User Interface for the study of ErrP in SSVEP-based BCI Speller

The speller was programmed to automatically output a letter every 3 seconds
sequentially from A to P. The probability that the speller would output the
correct letter was set to 70% and the probability to output erroneously was set
30%. In case the speller does not output the correct letter it will continue to
output letters until it can output the correct one. After that, it will move to the
next letter in the sequence. This is done in order to elicit the subject’s error-
related potentials. In this situation there are always 16 correct outputs; however,
the number of errors depends on chance.

Six healthy subjects (aged from 22 to 29 years old) with normal or corrected-
to-normal vision participated in this study. The subjects were seated on a con-
fortable chair in front of the visual stimulator with a distance of around 60cm.

The subjects were asked to input the 16 characters (from A to P) by gazing at
the target frequency one at a time until the system output the desired character.
The subjects were not told that the system outputs the characters automatically,
in order to make them think that they were controlling the system. Each subject
did the experiment for 6 sessions.

2.3 One-Unit SOBI-R

The SOBI algorithm with reference is derived from the traditional BSS algorithm
[9]. Given N observed mixtures x (t) = [x1(t) x2(t) · · ·xn(t)]T , it can be modeled
as

x (t) = As(t) (1)

where A is an N × M unknown full column-rank mixing matrix and s(t) =
[s1(t) s2(t) · · · sn(t)]T are assumed to be independent source signals. BSS is the
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problem of estimating A and s(t). The BSS determines an M × N demixing
matrix W , with M output signals:

y(t) = Wx (t) = WAs(t) = s(t) (2)

Given a set of references, the SOBI with reference algorithm extracts only the
independent components (ICs) that are most relevant to the references. More-
over, for signals as the ErrP, only a single source needs to be extracted. In this
case the computation cost can be decreased greatly [7]. Hence, the objective of
the one-unit SOBI-R algorithm is then to identify a demixing vector, w (one col-
umn of the demixing matrix W ), which minimizes the contrast function defined
as

J(y) = −
τp∑

τ=τ1

(
wE

(
xxT

)
wT

)2
= −

τp∑

τ=τ1

E (y(t)y(t − τ ))2 (3)

where E(·) is the deterministic averaging operation and τ is time delay.
The one-unit SOBI-R algorithm can be summarized as follows:

Algorithm 1. One-unit SOBI-R
Input: μ and λ: initial values of Lagrange multipliers; η: update rate; ε: error limit

(in this project, ε = 0.01)
1: Whiten and decentralize all the observations, normalize the reference to zero mean

and unit variance;
2: Choose an initial vector, w0, where w0 �= 0;
3: repeat
4: Update μ and λ by μi+1 = μi + Δμ and λi+1 = λi + Δλ;
5: Calculate the first and second derivatives of the contrast function (3);
6: Update vector w to w i+1 = w i + Δw and normalize w as w = w/ ‖w‖;
7: Minimize |Ji+1(y) − Ji(y)|
8: until ‖Δw‖ ≥ ε
Output: w : demixing vector

Fig. 2. Block Diagram of the one-unit SOBI-R algorithm with reference
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2.4 Feature Extraction

Feature extraction is performed on the 1s long active segment after the system
output of a character rather than directly classifying the native EEG data with-
out feature extraction. It greatly affects the performance of the classification,
i.e. the better the extracted features, the higher the classification accuracy. In
this study, the active segments are first passed through the one-unit SOBI-R to
isolate the brain signal of interest, i.e. the ErrP. Hjorth parameters can be seen
as morphological characteristics of the signal. While Fractal dimension (FD)
describes the signal in terms of entropy.

Hjorth Parameters. Hjorth parameters [10] describe the signal characteristics
in terms of activity (variance of the signal), mobility (a measure of the mean
frequency) and complexity (a measure of the deviation from the sine shape). The
three parameters can be briefly described as follows:

Activity = var (x(t)) (4)

Mobility =

√
Activity (x′)
Activity (x)

(5)

Complexity =
Mobility (x′)
Mobility (x)

(6)

where x is the signal and x′ is the derivative of the signal.

Fractal Dimension. FD has a relation with the entropy, which in turn has a
direct relation with the amount of information inside a signal. FD can be seen as
the degree of irregularity or roughness of a signal. There are several methods for
calculating FD. In this study we used Katz method since it has been reported
to be more robust than others [11]. The Katz FD is derived directly from the
waveform and it can be defined as

FD =
log10 L

log10 d
(7)

where L is the total length of the curve and d is the diameter estimated as the
distance between the first point of the sequence and the point of the sequence
that provides the farthest distance.

2.5 Single-Trial Classification

In this study, a regularized version of the linear discriminant analysis (LDA)
was used for classification [12]. The hyperplane LDA discriminant function D(f )
maximally separates the feature distributions corresponding to two classes: D(f )
= wT f +b, where f is the feature vector to be classified, and w and b the normal
vector to the hyperplane and the corresponding bias, respectively. The two are



Single-Trial Detection of ErrP in SSVEP-BCI 529

computed by μ̂ = 1
2 (μ̂1 + μ̂2), w = Σ̃−1 (μ̂2 − μ̂1), b = −wT μ̂, where μ̂j is the

sample mean of class j, μ̂ is the sample global mean and Σ̃ is the regularized
sample covariance matrix, which is divided by the two classes. The regularization
aims to minimize the covariance estimation error E =

∣
∣
∣Σ − Σ̃

∣
∣
∣, with Σ being

the real covariance matrix, by penalizing very large and very small eigenvalues.

3 Results

The recorded EEG signals were analyzed using a time window of 1s, following
the output of character by the SSVEP-based BCI Speller. Since the correctness
of the output is known, it is easy to separate the EEG signals in erroneous and
correct responses. As described before, a band-pass filtering stage is applied to
the raw data before being fed to the one-unit SOBI-R algorithm. Fig. 3 shows
the signals from the electrodes after band-pass filtering, the reference signal and
the extracted signal with the one-unit SOBI-R algorithm, for an erroneous and
a correct response, for the same subject in a single-trial.

From the Fig. 3, we can see that the ErrP extracted from the erroneous
EEG is noticeably different from the correct response. The ErrP shows two
outstanding peaks: a negative one at around 200ms and a positive one at around
300 ms. These peaks correspond to the N2 and P3, respectively. While, the
correct output only has the P3 at around 300ms, which is the event-related
potential (ERP) that is present after the presence of a stimulus. These results
are consistent with the literature [2,3].

Ten-fold cross validation was used for classification tests of the ErrP data. In
essence, the dataset of all the experimental sessions for each subject was divided
randomly into ten subsets. The following procedure was repeated ten times. For
each subject, each time, one of the ten subsets is used as the testing data and the
remaining are used as training data. The average classification rate is evaluated
readily across all ten folds.

First, to verify the effectiveness of the proposed one-unit SOBI-R, we com-
pare the classification accuracy for FD without and with the proposed one-unit
SOBI-R. The results were found to be as shown in Table 1. The classification
accuracy without the proposed method was found to be 67.0%±3.69%, while the
classification accuracy with the one-unit SOBI-R increased to 84.9% ± 5.07%.
This indicates that the proposed method can improve the overall performance in
ErrP detection on average around 17.9%. Moreover, two-way ANOVA was per-
formed to verify if the results are significantly different. The p-value was found
to be 0.0001, which indicates that performance improvement is significant.

In addition, higher accuracy classification is expected if the extracted fea-
tures are better. Since the Hjorth parameters are popular among different feature
extraction approaches, it was done a comparison with the FD. The same experi-
ment as before was performed to evaluate the performance of the features. Table
2 shows the comparisons of the classification accuracy as well as the sensitivity
(true classification of ErrP) and specificity (true classification on non-ErrP) for
the two different features using LDA as a classifier.
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Fig. 3. EEG signals from different electrodes of one subject after output of a character
fed to the one-unit SOBI-R: a) erroneous output, c) correct output. The reference signal
and the extracted signal using the one-unit SOBI-R: b) erroneous output, d) correct
output.

Table 1. Comparison of ErrP classification accuracy between with and without one-
unit SOBI-R

Subject With one-unit SOBI-R Without one-unit SOBI-R
Accuracy

(%)
Accuracy

(%)

S1 91.5 70.0
S2 82.8 68.6
S3 84.7 64.9
S4 90.3 71.3
S5 78.4 65.8
S6 81.9 61.3

Mean 84.9 67.0
S. D. 5.07 3.69

p-value 0.0001
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Table 2. Comparison of classification of ErrP between Hjorth Parameters and Fractal
Dimension under LDA

Subject Fractal Dimension Hjorth Parameters
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

S1 91.5 86.8 93.2 83.0 81.9 84.1
S2 82.8 78.2 84.2 74.3 73.1 75.6
S3 84.7 79.1 87.2 81.7 81.0 83.1
S4 90.3 88.3 92.3 83.0 81.9 83.4
S5 78.4 74.1 80.1 75.1 72.3 75.5
S6 81.9 77.5 85.2 79.1 76.9 80.6

Mean 84.9 80.7 87.03 79.4 77.9 80.4
S. D. 5.07 5.61 5.01 3.89 4.40 3.93

It can be seen from the Table 2, the Fractal Dimension outperforms the
Hjorth Parameters for all the studied performance indices (accuracy, sensitivity
and specificity). Moreover, we can see from the table that it is easier for the
classifier to correctly classify to non-ErrP than ErrP (for both feature extraction
methods). This seems reasonable since far more examples of non-ErrP than ErrP
for training. Nevertheless, we can see that the average true classification of ErrP
and non-ErrP, sensitivity and specificity, respectively under Hjorth Parameters
is more uniform than Fractal Dimension. In addition, the average classification
accuracy of ErrP signal under Hjorth parameters is on average 9.4% higher
than without using the one-unit SOBI-R. Moreover, using two-away ANOVA,
the p-value was found to be 0.0012, which still indicates that the performance
improvement is significant by using the one-unit SOBI-R for ErrP extraction.
Accordingly, the one-unit SOBI-R is a potential method for single-trial detection
of short-time, transient biomedical signals such as the ErrP.

Since the setup of the experiment was similar to a real SSVEP-based BCI
experiment and the subjects believed that the system was translating their
intend, we can claim that the results show the feasibility of single-trial ErrP
extraction in the context of SSVEP-based BCI. However, in order to support
the claim the proposed method needs to be applied in real-time condition and
during actual SSVEP-based BCI control.

4 Conclusions

In this study, an one-unit SOBI-R is proposed for single-trial extraction of
ErrP for SSVEP-based BCI. The one-unit SOBI-R is a kind of constrained BSS
method that makes full use of a reference signal. The method is optimized for
extraction of short-time duration, low SNR, non-stationarity and transient char-
acteristic, which the case of several biomedical signals, such as the ErrP.

Experiment results on 6 subjects demonstrated that the proposed one-unit
SOBI-R can greatly improve the detection accuracy of single-trial ErrP.
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Moreover, the same results showed that FD provides better features than Hjorth
Parameters for ErrP classification.

In future works, the single-trial of ErrP detection will be incorporated in an
online error detection and correction mechanism for SSVEP-based BCI. More-
over, other classifiers instead of the regularized LDA will be employed to further
improve the performance.
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Abstract. This paper proposes a generalized regression neural networks
(GRNNS) with K-fold cross-validation (GRNNSK) for predicting the
displacement of landslide. Furthermore, correlation analysis is a fun-
damental analysis to find the potential input variables for a forecast
model. Pearson cross-correlation coefficients (PCC) and mutual informa-
tion (MI) are applied in the paper. Test on the case study of Liangshuijing
(LSJ) landslide in the Three Gorges reservoir in China demonstrate the
effectiveness of the proposed approach.
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1 Introduction

A landslide own is a geological phenomenon [see 1-4], which causes by the large
number of interacting factors. In this process, the stability of the slope changes
from a stable to an unstable condition [see 3-4]. Frequent landslides constitute
significant risk in the Three Gorges Reservoir area [see 5], which is located at
the upper reaches of the Yangtze River in China, causing damage that affects
people and property almost every year. Hence, there have been considerable
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researches in developing algorithms and technology for landslide [see 6] prediction
and warning. The evolution process of landslides [see 1-2] can be taken into
account an open nonlinear [see 7] dynamic system with the complexity and
uncertainty.

In recent years, a large number of approaches have been used in the problem
of displacement of landslide predicting [see 8-11], such as statistical, artificial
intelligent methods, linear or multiple regression and so on. A linear combination
model with optimal weight which is applied in landslide displacement prediction
[see 8]. Artificial neural networks (ANNS) are computational models and benefit
for the analysis and prediction of landslide hazards [see 9-11].

According to above researches, ANNS are qualified to predict displacement of
landslide. However, there exists some drawbacks, such as slow convergence rate
and local minimum traps. The general regression neural networks (GRNNS) is a
feed forward ANNS and originally proposed by [see 12]. GRNNS has ability in
approximating continuous functions. Then, It has been shown to be a competent
tool for predicting many engineering problems [see 13-14]. GRNNSK is applied
to two typical colluvial landslides in Three Gorges Reservoir in China, the LSH
and BSH landslides in this paper. Moreover, a comparative study is conducted
between the results obtained through GRNNSK and two ANNS models.

2 Forecast Data Analysis

2.1 PCC

Input variable selection is an initial, necessary step of the process of modeling
neural network and a proper selection can convince model accuracy. In this study,
we choose PCC [see 15] and MI [see 16] for selecting the input variables.

PCC can measure the strength of a linear association between two variables
X and Y , where the value ρ = 1 signifies a perfect positive correlation and
the value ρ = −1 signifies a perfect negative correlation. It is easily to find out
whether variable X and variable Y are correlated:

ρ = Cor(X,Y ) =
Cov(X,Y )

√
V ar(X)V ar(Y )

(1)

2.2 MI

MI [see 16] can be used to identify the linear and nonlinear statistical dependence
between a set of candidate input and output variables. MI between random
variables X and Y can be designed as:

MI =
∫ ∫

ϕX,Y (x, y) log[
ϕX,Y (x, y)

ϕX(x)ϕY (y)
]dxdy (2)

Where ϕX(x) and ϕY (y) are the marginal probability density functions of
X and Y , respectively. ϕX,Y (x, y) is the joint probability density function of X
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and Y . On account of the data used in this paper is not much, the kth nearest
neighbor approach is applied to estimate MI. This estimator is fit for small data
sets. And it is suggested to set k = 2 ∼ 4. Considering the size of the data
sample is small, we set k = 3 in this study.

2.3 Cross-Validation

Cross-validation [see 17] is a measure of assessing the performance of a predictive
model, and statistical analysis will generalize to an independent data set.

The K-fold cross-validation is a technique of dividing the original sample
randomly into K sub-samples. Then, a single sub-sample is regarded as the val-
idation data for testing the model, and the remaining K-1 sub-samples are used
as training data. An example of estimating a turning parameter γ with K-fold
cross-validation as follow:
step 1: Divide the data into K roughly equal parts;
step 2: For each i = 1, 2, 3, ...,K, fit the model with parameter γ to other K-1
parts, giving α̂−k(γ) and compute its error in predicting the kth part;

Ek(γ) =
∑

i∈kthpart

(yi − xiα̂
−k(γ))2 (3)

This gives the cross-validation error

CV (γ) =
1
K

K∑

i=1

Ei(γ) (4)

step 3: Do this for many values of γ and choose the value of γ that makes CV (γ)
smallest. In this paper, we set K = 10.

3 GRNNS

GRNNS is a variation of the radial basis neural networks ,which is introduced
to perform general (linear or nonlinear) regressions [see 13]. GRNNS figures out
the joint probability density function (PDF) of x and y with a training set. The
system is perfectly general, on account of the pdf is derived from the data with no
preconceptions about its form. If f(x, y) stands for the known joint continuous
probability density function of a vector random variable x and a scalar random
variable y, the conditional mean of y given X (also called the regression of y on
X) is given by

E[y|X] =

∫ ∞
−∞ yf(X, y)dy
∫ ∞

−∞ f(X, y)dy
(5)

When the density f(X,Y ) is unknown, it must usually be calculated from a
sample of observations of x and y. The probability estimator f̂(X,Y ) is based
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on sample values Xi and Yi of the random variables x and y. The number of
sample of observations is n, and the dimension of the vector variable x is p:

f̂(X,Y ) =
1

(2π)(p+1)/2σ(p + 1)
1
n

×
n∑

i=1

exp[− (X − Xi)T (X − Xi)
2σ2

]

× exp[− (Y − Yi)2

2σ2
]. (6)

The probability estimate f̂(X,Y ) is designed in a physical way, which allo-
cates sample probability of width σ for each sample Xi and Yi. The probability
estimate is the sum total of those sample probabilities. The scalar function D2

i

is defined,
D2

i = (X − Xi)T (X − Xi) (7)

and Y (X)i is:

Y (X)i =
∑n

i=1 Yi exp(− D2
i

2σ2 )
∑n

i=1 exp(− D2
i

2σ2 )
(8)

The resulting regression is straight suited to problems concerning numerical
data. Since the smoothing σ sets large, the estimated density is obliged to be
smooth and becomes a multivariate Gaussian with covariance σI in the limit.
On the contrary, a smaller value of σ lets the estimated density to assume non-
Gaussian shapes, so the wild points may play an important effect on the estimate.
An architecture of the GRNNS that consists of four layers: input layer, pattern
layer, summation layer, and output layer, which is shown in Fig. 1.

3x

1x

2x

nx

Input layer Pattern layer Summation layer Output layer

y

Fig. 1. Schematic diagram of a GRNNS architecture
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Fig. 2. LSJ displacement
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4 Case Study

4.1 Dataset

The formation of the landslides is very complicated, with the easy sliding loess
material, complex geologic structure, precipitation and human engineering activ-
ities. We choose the LSJ landslide as our first case study which is located in the
town of Yunyang, in the northeast of Chongqing city in China, and in the cen-
tre of the Three Gorges Dam of China. There are 24 GPS monitoring points
located on the landslide surface. The monitoring data at ZJG24 point is selected
to establish the prediction model.

Fig. 2 and Fig. 3 describe the temporal curves of the displacement, reservoir
level of LSJ landslide, spanning from April 6 2009 to May 25 2011. The data
of the sixth day, the sixteenth day, the twenty-sixth day of each month are
chosen. And total number of the displacement and reservoir level are 106. Fig. 4
depicts the temporal curves of rainfall, from April 6 2009 to June 16 2010. The
total number of rainfall data is 43, for the reason that the rest data record 0.
PCC, which are incline to solve up a linear relationship between two variables.

Then, we should handle relation among displacement, reservoir level and rain-
fall. So, we do the statistical analysis and compare the test results with those
mentioned in Section II. Then, data sets should be normalized into the inter-
vals [−1, 1]. In Table. 1, A presents relation between displacement and reservoir
level, B presents relation between displacement and rainfall, C presents relation
between reservoir level and rainfall.

Table 1. PCC and MI between and among displacement, reservoir level and rainfall

Parameter A B C

PCC 0.9338 0.1100 0.0091

MI 0.7236 -0.0063 0.1367

The relative high coefficients in Table. 1 confirms the close relationship
between the variables of displacement and reservoir level. Then, the variables
of displacement and reservoir level are as inputs for a forecast model.

4.2 Analysis and Results

The total number of data points in Fig. 2 and Fig. 3 are 106, and all of them
are divided into two groups. The first group including data 71 is taken for the
training process to build the forecasting model. The rest data is used for testing
data. All data sets should be normalized into the intervals [−1, 1]. The initial
parametric of neural network is very fundamental for results. GRNNS is a kind
of radial basis network that is often used for function approximation. GRNNS
can be designed very quick and return a new generalized regression neural net-
work. GRNNS has one remarkable advantage that is only one variable required
in the initial stage of building the structure of model.
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In this paper, GRNNS creates a two-layer network. The first layer has rad-
bas neurons, and calculates weighted inputs with dist and net input. The sec-
ond layer has purelin neurons. The cross-validation methodology is used to find
fittest value for parameter ‘spread’. The searching ranges for spread is as : spread
∈ [0.1, 20]. And it selects 10 − fold cross-validation. Then, 9 folds are used for
training and the last fold is used for evaluation. This process is repeated 10
times, leaving one different fold for evaluation each time. After training, the
best spread is equal to 0.2. In addition, two ANNS models, Back-Propagation
Neural Networks (BPNN), Radial Basis Function (RBF) are also used to fore-
cast landslide displacement for comparison purposes. In order to measure the
prediction performance, the root mean square error (RMSE) are used as the
criteria to evaluate the proposed models.

RMSE =

√√
√
√ 1

N

N∑

i=1

(Ŷi − Yi)2 (9)

where Ŷi is the predicted value for the time period i, Yi is the actual value for
the time for the same period, and N is the number of predictions. The comparison
between monitoring data and prediction results is shown in Fig. 5. Some points
of predicted displacement of GRNNSK, RBF and BPNN are similar. Form the
fifteenth point to the eighteenth point, the SVM and RBF are different from
GRNNSK. On the whole, the curve of predicted displacement of GRNNSK is
most close to the real data. The experience results show that, GRNNSK obtains
a lowest RMSE 51.7413 among three methods:RBF 78.9520 and BPNN 118.9718.
So GRNNSK gets best results for predicting displacement of landslide.
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5 Concluding Remarks

A novel short-term landslide displacement forecast approach has been proposed
in this paper. The capabilities of the GRNNSK is revealed by application to
a practical problem: LSJ landslide. Compared with RBF and BPNN, the test
result illustrated the effectiveness of the GRNNSK. Moreover, GRNNSK has
a better ability to forecast most of data except some points than RBF and
BPNN. As we known, landslides considered as an open nonlinear dynamic system
with complexity and uncertainty. It is difficult to set up prediction systems for
landslide, because it still remains important but largely unsolved problems. In
this paper, the displacement of landslide is regarded as the final results of all
factors. In future studies, we should pay some attention to some points, such
as more geologic factors information, GRNNS-based model and multi-step head
predict.
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Abstract. The main problem of one-class classification lies in selecting
the model for the data, as we do not have any access to counterexam-
ples, and cannot use standard methods for estimating the quality of the
classifier. Therefore ensemble methods that can utilize more than one
model, are a highly attractive solution which prevents the situation of
choosing the weakest model and improves the robustness of our recog-
nition system. However, one cannot assume that all classifiers available
in the pool are in general accurate - they may have some local areas
of competence in which they should be utilized. We present a dynamic
classifier selection method for constructing efficient one-class ensembles.
We propose to calculate the individual classifier competence in a given
validation point and use them to estimate competence of each classifier
over the entire decision space with a Gaussian potential function. Exper-
imental analysis, carried on a number of benchmark data and backed-up
with a thorough statistical analysis prove its usefulness.

Keywords: One-class classification · Classifier selection · Competence
measure

1 Introduction

One-class classification is among the most difficult areas of the contemporary
machine learning. It works with the assumption that during the training phase,
we have only objects originating from a single class at our disposal. As we have
no access to any counterexamples during the training phase, constructing an
efficient model and selecting optimal parameters for it becomes a very demanding
task. Therefore, methods that can improve the accuracy and robustness of one-
class classifiers are highly demanded. Among them a combined classification
seems as a promising direction [5].

In the last decade, we have seen a significant development of algorithms
known as multiple classifier systems. Their success lies in ability to tackle com-
plex tasks by decomposition, utilizing different properties of each model and
taking advantage of collective classification abilities. For ensemble to work prop-
erly two assumptions must be satisfied: base classifiers should be characterized
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by high individual quality and be at the same time mutually complementary.
This is the main reasoning behind the ensemble idea, but it can be realized in a
plethora of ways.

The most common approach is known as static selection. It concentrates on
creating a pool of base learners and then establishing a combination method
for efficient exploitation of the pool members. Firstly, one needs to prepare a
set of classifiers for a given task - they can be supplied with the problem (e.g.,
coming from different sensors in network) or must be carefully designed from the
dataset. Several different proposals exist on how to produce different classifiers
for one problem - obtaining heterogeneous ensemble is easier (as one need to
train several different models), while homogeneous requires manipulating input
information to obtain initial diversity among members. Then, one need to choose
appropriate combination method.

Second group is known as dynamic selection [4], where we assume that the
structure of the ensemble varies for each new incoming object. This is based
on the assumption, that each classifier has its own local area of competence [6].
Therefore, for classifying new object the most competent model(s) should be del-
egated. To establish the competence, a dedicated measure based on correctness of
classification is needed. As it can only be calculated locally for objects provided
during the training phase, one must extend it over the entire decision space.
Dynamic ensembles are divided into two categories: dynamic classifier selection
(DCS) [2] and dynamic ensemble selection (DES) [7]. First model assumes, that
for each new object we select the single classifier with highest competence and
the decision of the ensemble is based on the output of this individual classifier,
while in DES systems, one select l most competent classifiers and construct a
local sub-ensemble.

In this paper, we propose a DCS system dedicated to the specific nature of
one-class problems. Up to the best of authors knowledge, this is the first work
on dynamic ensembles for single-class task.

2 One-Class Classification

One-class classification (OCC) aims at distinguishing a given single-class from a
more broad set of classes. This class is known as the target concept and denoted
as ωT . All other objects, that do not satisfy the conditions of ωT are labeled as
outliers ωO. This may seem as a binary classification problem, but the biggest
difference lies in the learning procedure [9]. An OCC model needs to estimate
the classification rules without an access to counterexamples. At the same time,
it must display good generalization properties as during the exploitation phase
both objects from the target concept and unseen outliers may appear. OCC aims
at finding a trade-off between capturing the properties of the target class (too
fitted or too lose boundary may lead to high false rejection / false acceptance
rates) and maintaining good generalization (as it is easy to overfit model when
having only objects from a single class for training). There is a number of different
methods for OCC, that can be categorized in three groups: based on density
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estimation, based on clustering and based on optimizing the boundary volume.
Each of these methods can output significantly different shape of a decision
hyperplane (see Fig. 1).

a) b)

c) d)

Fig. 1. Exemplary differences between decision boundaries created by different one-
class classifiers: (a) Support Vector Data Description, (b) Parzen Density Data Descrip-
tion, (c) Minimum Spanning Tree Data Description, and (d) Principal Component
Analysis Data Description.

As we do not have any counterexamples at our disposal during the training
phase, selecting the best model and fitting its parameters can be hard and time-
consuming task [8]. At the same time more than one model may have desirable
properties for a given problem, especially in case of complex datasets. Therefore,
utilizing more than single model in an ensemble may improve the robustness of
the constructed system and prevent us from choosing a weaker model.

3 One-Class Ensemble with Dynamic Classifier Selection

Selecting the best model for an one-class classification task is often accompanied
by observations, that more than one type of classifier can be useful for analyzing
the given dataset. This assumptions are the basis of our proposal of one-class
dynamic classifier selection (OCDCS) system, in which we prepare a pool of
heterogeneous models and delegate one of them dynamically to the decision
area in which it is the most competent one.
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3.1 Preliminaries

The model deals with a one-class problem described by a set of class labels
Mocc = {ωT , ωO}. A one-class classifier Ψocc : X �→ Mocc produces the pair of
discriminant functions (dωT

(x), dωO
(x)) for a given object x ∈ X ⊆ Rn. Discrim-

inants are characterized by following properties: di(x) ≥ 0 and
∑

i di(x) = 1.
Classification is made with the usage of maximum rule. During the ensemble
training stage, we should have at our disposal a training set T S and a validation
set VS, both with objects described by feature vector x and with known true
class labels. In case of one-class classification both training and validation sets
consists only of objects belonging to the target concept ωT .

3.2 Measuring Classifier Competence

Using the provided VS, one may calculate the competence measure C(Ψocc|x). It
reflects the competence given classifier to correctly classify a given point x ∈ X .
However, this only gives us an outlook on the performance of the classifier for
given validation points. We would like to extend this to the entire decision space,
so one may select the most competent classifier for a given object. Following the
suggestion for multi-class problems, we use a two-step procedure for estimating
the competence of a given classifier for the entire decision space: (i) calculate
a source competence CSRC(Ψocc|xk) for each xk ∈ VS, (ii) extend these source
competencies for the entire decision space according to normalized Gaussian
potential function [10].

The normalized Gaussian potential function allows us to estimate the com-
petence of l-th one-class classifier over the entire space (and not only it part,
described by validation objects). This can be formulated as:

C(Ψocc|xn) =

∑
xk∈VS CSRC(Ψocc|xk)exp(−dist(xn, xk))2

∑
xk∈VS exp(−dist(xn, xk))2

, (1)

where xn is the new, incoming object to be classified and dist(xn, xk) is the
Euclidean distance between the new object and object from VS with already
known source competence.

Let’s define the method for calculating the source competence CSRC(Ψocc|xk)
based on the entropy criterion. The competence measure is a combination of the
absolute value of the competence and its sign. The value is inverse proportional
to the normalized entropy value of the discriminant values of given one-class
classifier, while the sign of the competence is determined by the correctness
of the classification of validation point xk. With this, one may calculate the
entropy-based competence function as follows:

CSRC(Ψocc|xk) = (−1)I{Ψocc(xk)�=jk} [1 − 1
log n

2∑

i=1

di(xk) log di(xk)], (2)

where j ∈ M and I{A} is the indicator of the set A.
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This competence measure satisfies the properties required for Gaussian-based
estimation of competence values over the decision space,i.e., −1 ≤ CSRC(Ψocc|xk)
≤ 1 and CSRC(Ψocc|xk) is a strictly increasing function of di(xk). If CSRC

(Ψocc|xk) < 0 then the considered classifier is deemed as incompetent, if its
value is grater than 0 that the considered classifier is deemed as competent, but
in the case that the value is equal 0 then the considered classifier is recognized
as neutral.

3.3 Dynamic Classifier Selection

We can easily extend the presented competence functions for classifier ensemble
system. Let us assume, that for a given pattern classification problem we have a
pool of L one-class classifiers at our disposal L = {Ψ1, Ψ2, . . . ΨL}. The robustness
and diversity of the one-class classification system could be improved by utilizing
a pool of different one-class models and dynamically selecting for each incoming
object the single most-competent classifier, i.e.,

C(Ψoccl
|xn) > 0 ∧ C(Ψoccl

|xn) = max
g=1,2,...,L

C(Ψoccg
|xn) (3)

4 Experimental Analysis

The aim of the experimental analysis was to investigate the usefulness of applying
DCS system in one-class classification problems and checking if it can outperform
single-model and static ensemble approaches.

4.1 Datasets

We have chosen 10 binary datasets described in Tab. 1. Due to the lack of
one-class benchmarks we use the canonical multi-class ones. The training set
was composed from the part of objects from the target class (according to cross-
validation rules), while the testing set consisted of the remaining objects from the
target class and outliers (to check both the false acceptance and false rejection
rates). Majority class was used as the target concept.

Table 1. Details of datasets used in the experimental investigation. Numbers in paren-
theses indicates the number of objects in the minor class in case of binary problems.

Name Objects Features Name Objects Features

Breast-cancer 286 (85) 9 Hepatitis 155 (32) 19
Breast-Wisconsin 699 (241) 9 Ionosphere 351(124) 34

Colic 368 (191) 22 Sonar 208 (97) 60
Diabetes 768 (268) 8 Voting records 435 (168) 16

Heart-statlog 270 (120) 13 CYP2C19 isoform 837 (181) 242
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4.2 Set-up

To apply the proposed OCDCS system, we need to have a pool of base classifiers.
We propose to construct them our of 5 heterogeneous models, that are presented
together with their parameters in Table 2.

Table 2. Details of one-class classification models and their parameters, that were
used as a base for the dynamic ensemble

Classifier Abbreviation Parameters

Nearest Neighbor Data Description NNdd frac. rejected = 0.05
Parzen Density Data Description PDdd frac. rejected = 0.05
Auto-Encoder Neural Network AENN hidden units = 10, frac. rejected = 0.1

Minimum Spanning Tree MST max. path = 20, frac. rejected = 0.1
Support Vector Data Description SVDD kernel = RBF, σ = 0.3, frac. rejected = 0.05

To put the obtained results into context, we compared our proposed method
(OCDCS) with reference approaches: Single Best (SB, using single model with
highest accuracy), Majority Voting (MV, standard voting based on discrete
outputs), Maximum (MAX, static selection of maximum support value) and
Average (AVG, using averaged values of support functions).

In order to present a detailed comparison among a group of machine learning
algorithms, one must use statistical tests to prove, that the reported differences
among classifiers are significant. For training/testing and a pairwise comparison
a 5x2 combined CV F-test is used, while Friedman ranking test [1] and Shaffer
post-hoc test [3] are used for comparing classifiers over multiple datasets. We fix
the significance level α = 0.05 for all comparisons.

To calculate the competence for OCDCS system, we need to have a validation
set VS. Therefore, for each iteration of 5x2 CV, we separate 20% of the training
data for validation purposes. The results are presented in Table 3, while results
of the Shaffer post-hoc test are depicted in Table 4.

4.3 Discussion

FAs we can see the proposed OCDCS outperformed all other reference meth-
ods for 6 out of 10 benchmark datasets. Let us have a closer look on these
experimental findings. In 2 cases (diabetes and hepatitis datasets) was unable
to outperform a single-best classifier from its pool. This can be explained by a
situation, in which we have a single dominant model (strong classifier). In such
cases this model outputs the best performance over the entire decision space
and applying dynamic selection cannot improve the ensemble performance. But
this is a quite rare situation in one-class classification. Usually the structure
of the target class is too complex to be handled by only one specific type of
classifier’s model. In 4 cases (breast-wisconsin, diabetes, hepatitis and voting
records datasets) the OCDCS ensemble was similar or slightly worse than the
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Table 3. Results of the experimental results with the respect to the accuracy [%] and
statistical significance. Small numbers under each method stands for the indexes of
models from which the considered one is statistically better.

Dataset SB1 MV2 MAX3 AVG4 OCDCS5

Breast-cancer 62.87 60.04 63.72 61.15 64.28
2 − 2,4 2 ALL

Breast-Wisconsin 83.29 83.29 85.10 80.94 84.73
4 4 1,2,4 − 1,2,4

Colic 73.28 72.15 75.37 72.48 77.13
2,4 − 1,2,4 − ALL

Diabetes 62.04 58.38 62.27 60.02 62.27
2,4 − 2,4 2 2,4

Heart-statlog 82.19 84.72 85.07 83.23 87.82
− 1,4 1,4 1 ALL

Hepatitis 55.63 54.29 55.91 52.28 55.28
2,4 4 2,4 − 2,4

Ionosphere 75.26 72.81 77.82 73.79 80.01
2,4 − 1,2,4 2 ALL

Sonar 85.27 86.17 86.72 86.48 88.58
− 1 1 1 ALL

Voting records 91.36 88.47 93.90 90.18 92.45
2,4 − ALL 2 1,2,4

CYP2C19 isoform 80.16 78.05 84.78 81.79 89.58
2 − 1,2,4 1 ALL

Rank 3.70 4.50 1.70 4.10 1.45

Table 4. Shaffer test for comparison between the proposed OCDCS and reference
methods. Symbol ’+’ stands for for situation in which the method on the left is superior.

hypothesis p-value hypothesis p-value

OCDCS vs SB + (0.0112) OCDCS vs MAX + (0.0319)
OCDCS vs MV + (0.0163) OCDCS vs AVG + (0.0103)

MAX operator. This can be explained by a situation, in which competence mea-
sure estimation becomes very sparse (for objects located far from the validation
points). This shows us, that there is a need for developing different methods of
competence estimation that can handle such situations. OCDCS was superior
to majority voting and average operator in all examined cases. OCDCS displays
statistically significant improvement over reference methods, when considering
its performance over multiple datasets.

5 Conclusions

We have presented a novel approach for constructing ensembles for one-class clas-
sification problems based on dynamic classifier selection. We described the com-
plete dynamic selection system designed for purpose of learning in the absence
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of counterexamples. To properly calculate the competence of one-class methods,
a competence measure based on evaluating the entropy of discriminant functions
was introduced. To estimate the competence of each classifier from the pool, we
proposed to use a Gaussian potential function. These steps allowed to create
an efficient ensemble system for one-class classification, that is able to exploit
the local competencies of classifiers from the pool, and delegate them to local
decision areas. We showed that our ensemble works very well with pool of het-
erogeneous classifiers, but there is no restrictions that prohibit for using OCDCS
with homogeneous classifiers.
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Abstract. The massive sensor data streams multi-dimensional analysis in the 
monitoring application of internet of things is very important, especially in  
the environments where supporting such kind of real time streaming data stor-
age and management. Cloud computing can provide a powerful, scalable stor-
age and the massive data processing infrastructure to perform both online and 
offline analysis and mining of the heterogeneous sensor data streams. In order 
to support high-volume and real-time sensor data streams processing, in this 
paper, we propose a massive sensor data streams multi-dimensional analysis 
strategy using progressive logarithmic tilted time frame for cloud based  
monitoring application. The proposed strategy is sufficient for many high-
dimensional streams analysis tasks using map-reduce platform of cloud compu-
ting. Finally, the simulation results show that proposed strategy achieves the 
enhancing storage performance and also can ensures that the total amount of da-
ta to retain in memory or to be stored on disk is small for achieving the perfor-
mance improvement of the massive sensor data streams analysis.  

Keywords: Massive data streams analysis · Multi-dimensional streams data 
processing · Progressive logarithmic tilted time frame · Cloud computing 

1 Introduction 

In recent years, an increasing number of emerging applications deal with a large 
number of heterogeneous sensor data objects in Internet of Things (IoT) because of a 
wide variety of sensor devices on sensing layer. Unlike traditional data sets, the sen-
sor data streams flow in and out of a computer monitoring system continuously and 
with varying update rates. They are temporally ordered, fast changing, massive, and 
potentially infinite. In order to process the continuously changing sensor data streams, 
the IoT application system terminal equipment must implement the massive sensor 
data storage and the powerful computing ability for real-time collection, dissemina-
tion and extracting of sensor data to users and administrators anytime and from any-
where. However, due to the continuity and infiniteness of the sensor data streams, the 
traditional sensor data processing model focuses on a relatively small scale historical 
data and is not able to meet the increasing data processing requirement of IoT system 
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because of some restricted factors such as memory capacity, data collection speed, 
transmission bandwidth and so on. As a result, the monitoring system was deployed 
based on Cloud computing platform that is a model for enabling convenient, on de-
mand network access to a shared pool of configurable computing resources [1]. It 
may be impossible to store an entire data stream or to scan through it multiple times 
due to the tremendous volume of the sensor data streams on the Cloud-based monitor-
ing application system. Moreover, the sensor data streams tend to be of a rather low 
level of abstraction, whereas most analysts are interested in relatively high-level dy-
namic changes, such as trends and deviations. To discover knowledge or patterns 
form data streams, it is necessary to develop multi-dimensional stream processing and 
analysis methods. In this paper, we proposed a massive sensor data streams multi-
dimensional analysis strategy using progressive logarithmic tilted time frame for 
cloud based monitoring application. The proposed strategy can realize the approxi-
mate representation of original sensor data streams by compressing the time dimen-
sion to reduce the storage space and the communication energy requirements. Using 
progressive logarithmic tilted time frame model, the simulation results show that pro-
posed strategy achieves the enhancing storage performance and also can ensure that 
the total amount of data to retain in memory or to be stored on disk is small. 

The rest of this paper is organized as follows: in section 2, we briefly review some 
closely related works. The proposed massive sensor data streams multi-dimensional 
analysis strategy is derived and discussed in section 3. The validity analysis and per-
formance evaluation are presented in section 4. Finally, the conclusions and future 
work directions are described in section 5.  

2 Related Works 

There have been a few of studies on the management of the sensor data streams using 
cloud computing. An increasing number of data-intensive application deals with con-
tinuously changing data streams from sensors. One requires the data processing system 
that can store, update, and retrieve large sets of multidimensional sensor data. The 
conventional information system technology cannot manage the continuously changing 
properties of the sensor data. Therefore, it is very necessary for managing massive and 
heterogeneous sensor data via combining the cloud computing and wireless sensor 
networks technology. Ref. [2] formally presented a comprehensive framework for 
managing the continuously changing data objects with insights into the spatiotemporal 
uncertainty problem and presented an original parallel-processing solution for effi-
ciently managing the uncertainty using the map-reduce platform of cloud computing. 
The proposed quantitative computation and cloud computing paradigm provide sound 
guidelines for any relevant application design where a scalable data management solu-
tion for a sensor and sensing system is required. However, the proposed framework 
provided only a theoretical and practical basis for parallel quantification and applica-
tion of the spatiotemporal uncertainty in a highly scalable manner. Many run-time data 
analysis tools can give the most up-to-date knowledge of the system to administrators. 
However, when troubleshooting a problem in depth, the offline data analysis function-
ality is necessarily required to get the complete knowledge for system diagnosis.  
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Ref. [3] proposed a high volumes of event stream indexing and efficient multi-keyword 
searching framework for cloud monitoring. By integrating the composite tree index 
structure to the run-time correlation engine framework, the analysts are able to further 
enhance the tool to perform offline data analysis tasks to provide a more sophisticated 
monitoring service in the cloud computing environment. The next generation of cloud-
oriented systems will require a novel approach to monitoring that crosses boundaries, 
federating millions of metrics from heterogeneous sensor sources. Michael Smit, Brad-
ley Simmons and Marin Litoiu presented and implemented an architecture using 
stream processing to provide near real-time, cross-boundary, distributed, scalable, 
fault-tolerant monitoring. The pluggable, extensible architecture allowed for metrics 
from existing sensors to be published as streams. These streams were made available to 
subscribers by push notifications, by pull polling, and by a pluggable architecture  
allowing the subscriber to provide their own component to manage streams. Architec-
turally, streams can be aggregated, and the entire monitoring infrastructure can be 
managed adaptively [4]. For analyzing the data streams from city sensing infrastruc-
tures, Ref. [5] introduced an algorithmic architecture for kernel-based modeling of data 
streams. The approach was focused on a kernel dictionary implementing a general 
hypothesis space which is update incrementally, accounting for memory and pro-
cessing capacity limitations. The presented implementation builds on top of the Map-
Reduce framework designed for robust distributed computation. The most research 
achievements focus on data streams analysis from the healthcare applications and the 
electric power grids. Zhang fan et al. proposed a task-level adaptive MapReduce 
framework for real-time streaming data in healthcare scientific applications. The 
framework extended the traditional Hadoop MapReduce and specifically addressed  
the varied arrival rate of big-data splits. The designer applied four scaling theorems and 
scaling corollaries to implement heterogeneous cloud platform for real-life healthcare 
scientific applications [6]. Sudip Misra and Subarna Chatterjee proposed social  
choice considerations in cloud-assisted WBAN (Wireless Body Area Network) archi-
tecture for post-disaster healthcare: data aggregation and channelization. Their work 
focuses on two fundamental research issues in this context- aggregation of health data 
transmitted by the local data processing units within the mobile monitoring nodes, and 
channelization of the aggregated data by dynamic selection of the cloud gateways [7]. 
In addition to these, there are more aspects for the healthcare services system [8], in-
cluding the rich media [9], the secure monitoring and sharing of generic data [10, 11]. 
For the data streams analysis of the power supply system, some researcher discussed 
how cloud computing model can be used for developing smart grid solutions. Flexible 
resources and services shared in network, parallel processing and omnipresent access 
are some features of Cloud Computing that are desirable for Smart Grid applications. 
Even though the Cloud Computing model is considered efficient for Smart Grids, it has 
some constraints such as security and reliability [12, 13]. A fundamental difference in 
the analysis of stream data from that of relational and warehouse data is that the stream 
data are generated in huge volume, flowing in and out dynamically and changing rap-
idly. Due to limited memory, disk space, and processing power, it is impossible to 
register completely the detailed level of data stream. Therefore, it is necessary for 
managing massive sensor data streams via combining the cloud computing, stream data 
compressed and mining technology. In this paper, we built a large-scale heterogeneous 
sensing data stream processing system based on cloud computing. The managing  
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platform has both the distributed storage technology of massive sensor data streams 
and the data streams compression algorithm based progressive logarithmic tilted time 
frame. 

3 Implementation of Massive Sensor Data Streams  
Multi-dimensional Analysis Strategy  

Stream data are generated continuously in a dynamic environment, with huge volume, 
infinite flow, and fast-changing behavior. To find interesting or unusual patterns, it is 
essential to perform multi-dimensional analysis with the faster response time. The 
proposed massive sensor data streams multi-dimensional analysis strategy includes 
the distributed compressed storage solution of data streams using progressive loga-
rithmic tilted time frame in cloud computing and the multi-dimensional analysis strat-
egy based on map-reduce. 

3.1 The Distributed Compressed Storage Solution of Data Stream Using 
Progressive Logarithmic Tilted Time Frame 

Due to limited memory, disk space, and processing power, it is impossible to register 
completely the detailed level of data. A realistic design is to explore several  
data compression technique. The stream data so constructed are much smaller than 
those constructed from the raw stream data but will still be effective for multi-
dimensional stream data analysis. The proposed strategy applied the progressive loga-
rithmic tilted time frame to achieve the distributed compressed storage solution of 
data stream in cloud computing.  

In stream data analysis, people are usually interested in recent changes at a fine 
scale but in long-term changes at a coarse scale. Naturally, we can register time at 
different levels of granularity. The most recent time is registered at the finest granu-
larity; the more distant time is registered at a coarser granularity; and the level of 
coarseness depends on the application requirements and on how old the time point is 
(from the current time). Such a time dimension model is called a tilted time frame. 
This model is sufficient for many analysis tasks and also ensures that the total amount 
of data to retain in memory or to be stored on disk is small.  

The proposed compressed data streams method is the progressive logarithmic  
tilted time frame model, where snapshots are stored at differing levels of granularity 
depending on the recency. Let timeEps _  be the clock time elapsed since the  
beginning of the stream. Snapshots are classified into different frame numbers  
( inumberFrame =_ ), which can vary from 0 to maxFrame _ where 

)_(log__)_(log 22 timeEpsmaxFramemaxCapacitytimeEps ≤≤− , maxCapacity _  
is the maximal number of snapshots held in each frame. Each snapshot is represented 
by its timestamp. The rules for insertion of a snapshot timeSpt _  (at time timeSpt _ ) 

into the snapshot frame table are defined as follows: (1) If ( timeSpt _  mod 
i2 )=0 but 

( timeSpt _  mod 12 +i ) ≠ 0, timeSpt _ is inserted into inumberFrame =_  if 



554 X. Song et al. 

maxFramei _≤ ; otherwise (i.e., maxFramei _≥ ), timeSpt _  is inserted into 
maxFrame _ . (2) Each slot has a maxCapacity _ . At the insertion of timeSpt _  into 

inumberFrame =_ , if the slot already reaches its maxCapacity _ , the oldest snap-
shot in this frame is removed and the new snapshot inserted.  

Consider the snapshot frame table of Fig. 1, where maxFrame _  is 5 and 

maxCapacity _  is 3. A example was explained how timestamp 64 was inserted into 

the table. We know (64 mod 62 )=0 but  (64 mod 72 ) ≠ 0, that is, 
6_ == inumberFrame . However, since this value of inumberFrame =_  exceeds 

maxFrame _ , 64 was inserted into frame 5 instead of frame 6. Suppose we now need 

to insert a timestamp of 70. At time 70, since (70 mod 12 )=0 but  (70 mod 22 ) ≠ 0, 
we would insert 70 into 1_ == inumberFrame . This would knock out the oldest 

snapshot of 58, given the slot capacity of 3. From the table, we see that the closer a 
timestamp is to the current time, the denser are the snapshots stored. 

 
frame number Snapshots( by clock time) 

0 69  67  65 

1 66  62  58  

2 68  60  52 

3 56  40  24 

4 48  16 

5 64  32 

Fig. 1. A progressive logarithmic tilted time frame table 

3.2 The Distributed Storage Architecture and Multi-dimensional Analysis 
Strategy Based on Map-reduce in Cloud Computing 

The Distributed storage architecture of the polymorphism sensor data stream in cloud 
computing environment is three-level storage architecture, as shown in figure 2.  

The operation support data layer is responsible for the storage and dynamic update 
of the sensor data streams (or the intermediate results). The operation result data layer 
is responsible for the storage and dynamic update of the final processing results. The 
historical data layer is responsible for the storage and additional update of the histori-
cal sensor data. The candidate historical data in the operation result data layer were 
stripped out and appended to the historical data layer after each time data processing. 
The central storage scheduling module controls respectively the three layers data col-
lection according to the relevant instruction and keeps the data consistency between 
the operation support data layer and the operation result data layer in the system oper-
ation process. The basic storage management layer provides the data acquisition and 
update services using the cluster distributed file system. 
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Fig. 2. The three-level storage architecture 

To ensure real-time processing of a large-scale heterogeneous sensor data streams 
in cloud computing, the intermediate results of the preprocessing historical data were 
distributed at each cache nodes for reducing the duplication processing of the histori-
cal sensor data and avoiding the frequent transmission between nodes. Each node 
redundantly received data stream, so the pending processing data of the node were 
filtered by Map stage and operated Reduce calculation in the node local cache. When 
the existing node’s local computing and storage resources cannot meet the real needs, 
the new increased node will be utilized for mobile cache data extension using the re-
division technology. Finally, the local calculation results were synchronized to the 
distributed storage area. The Map-Reduce process is shown in Fig. 3. 

 

 

Fig. 3. The workflow of the sensor data streams processing 



556 X. Song et al. 

4 Performance Evaluation  

In this section, the intermediate result local storage performance of proposed strategy 
was evaluated. The data flow velocity is 1MB/s (that is, the data is sent by 200B each, 
and 5000 sequence /s), the scale of the intermediate result is 50GB, Each test for  
10 times, each time 10 min, the experimental results is the average value. The Fig. 4 
shows the performance contrast for the LRU algorithm (Least Recently Used), the 
recent research RTMR algorithm [14], Naive algorithm and the proposed strategy 
(PLTTF). The memory read/write performance is improved 19.5% by the proposed 
strategy. The external storage read/write and memory hit rate performance are im-
proved 26.9% and 14.1% respectively. Entirety read/write performance is improved 
23.5%. 
 
 

Performance indicators Test method Experimental 
results 

Enhancing 
effect 

Memory read/write 
Read/write synchronization 

synchronization elimination(RTMR) 
synchronization elimination(PLTTF) 

75385.2t/s 
84506.8t/s 
90083.7t/s 

19.5% 

The external storage read/ write 
Big Table 

RTMR 
PLTTF 

4425.5t/s 
5111.4t/s 
5620.2t/s 

26.9% 

Memory hit rate 
LRU 

RTMR 
PLTTF 

66.7 % 
72.9% 
76.1% 

14.1% 

Entirety read/write performance 
Naive algorithm 

RTMR 
PLTTF 

73901.4t/s 
88608.5t/s 
91254.8t/s 

23.5% 

Fig. 4. The performance optimization of the intermediate result storage 

5 Conclusion 

In this paper, we have proposed and described a massive sensor data streams multi-
dimensional analysis strategy using progressive logarithmic tilted time frame for 
cloud-based monitoring application. The progressive logarithmic tilted time frame 
model is sufficient for typical time-related queries, and at the same time, ensures that 
the total amount of data to retain in memory and to be computed is small. Depending 
on the given application, the proposed strategy can provide a fading factor, such as by 
placing more weight on the more recent time frames. Furthermore, the Map-Reduce 
Processing Strategy of Massive Sensor Data Streams was presented for improving the 
real-time processing performance.  
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Abstract. The key to interpreting multi-electrode recorded neuronal spike trains 
are the firing patterns hidden in a population of neurons. Here, we present a 
new firing pattern detection method based on community structure partitioning 
method, in which we apply the genetic evolutionary algorithm to maximize 
modularity function Q. We propose a new genotype encoding method to repre-
sent the functional connections between neurons. Independent of prior 
‘knowledge,’ this method automatically finds the number and type of firing pat-
terns in neuronal populations, an advantage over current leading methods. 

Keywords: Optimization algorithm · Modularity function · Spike trains · Firing 
patterns 

1 Introduction  

Perceiving the external world and relating information, brain processes are detectable 
by the biochemical spikes generated by myriad synaptic connections between neu-
rons. The ordered firing of spikes forms spatio-temporal firing patterns. Analysis of 
these firing patterns is a core computational problem in neural information  
processing [1]. Since we cannot know in advance whether given firing patterns are 
meaningful, nor the number and type of patterns in the original spike trains, neural 
information processing relies on the performance of new pattern analysis methods. 

Clustering algorithm as an unsupervised machine learning method is undoubtedly 
an effective tool for detecting spike trains and uncovering their patterns. In recent 
years, some clustering algorithms have been proposed to treat data on firing patterns 
of spike trains [2,3]. A k-means algorithm to cluster multiple trials of recorded spike 
trains has been proposed [4]. A spectral clustering method has been applied to detect 
synchronization in spike trains [5]. Both these clustering algorithms require specify-
ing the number k of clusters. From these the k-means, FCM or spectral clustering 
algorithm are applied to cluster the spike trains in k classes. Dealing with the original 
data sets, we cannot know a priori the number of clusters. Artificial determination of 
cluster numbers tends to be highly subjective. Then a new method has been proposed, 
derived from the problem of community detection, which can self-determine the 
number of groups by maximizing the modularity function Q, and thus group the  
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corresponding firing patterns [6]. However, this method requires we calculate the 
value of Q when the total number of groups varies from 2 to N (N is the number of 
neurons), then select the maximum value of Q. Since community partitioning is an 
NP-hard problem, many traditional community partitioning methods can only find the 
local optimal value of Q [7]. 

In community structure detection, researchers have proposed many community 
partitioning methods based on optimized network modularity, using evolutionary 
algorithms, such as extremal optimization and genetic algorithm [8-10]. By encoding 
the network structures into chromosomes to calculate the global optimization value of 
Q, this approach avoids repeated calculation of the Q value that corresponds to vary-
ing numbers of modules. Community structure detection automatically recognizes the 
optimal number of modules. 

In this study, we applied the community partitioning method to the analysis of neu-
ronal spike trains, based on an evolution algorithm. We propose a new genotype en-
coding method that encodes the functional connections between neurons and possible 
divisions into various genotypes, a distinction from the existing community structure 
detection method based on genetic algorithms. Genetic algorithm approach uses  
the adjacency matrix graph. Since the correlation matrix between neurons is a 
weighted matrix, we implement genetic community partitioning based on the 
weighted matrix. Our tests on different spike train data sets show that this method can 
self-determine the number of patterns and detect the type of patterns. We then com-
pared our results with two other community partitioning methods, one of which is fast 
Newman community detection method [7]. The other is also a genetic-based commu-
nity partitioning method, but with a genotype encoding method which adopts the ran-
dom allocation principle (GA-random), different from the method proposed in this 
paper. We feel our method yields superior results. 

2 Method and Realization  

Before using the clustering algorithm to analyze the spike trains, pairwise relations 
between neurons must be computed, then an N*N similarity matrix can be inferred 
from pairwise relations [11,12]. N is the number of neurons (figure 1). Figure 1A is a 
raster plot of spike trains in the 10 seconds for 10 neurons. We used non-overlapping, 
short time windows (known as bins) to bin the spike trains (Fig. 1B). Each line repre-
sents neuronal spike trains. Each element represents the number of spikes in each bin. 
Then we use the vector similarity distance to calculate spike train similarity.  
Figure 1C represents the similarity relations between neurons. The thickness of lines 
represents the strength of similarity between two neuronal spike trains. Our method 
applies the following formula: 
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Xi is the number of spikes of xth neuron in the ith bin. The value of sxy varies from 
0 to 1.  The greater the value of sxy, the more similarity found between two given 
neurons. 

 

Fig. 1. Overview of construction of neuronal functional network. (A) Raster plot of ten neu-
ronal spike trains. (B) Binned spike trains matrix obtained from raster plot in A, bin size=1sec. 
(C) Neuronal functional network constructed according to similarity between spike trains. The 
location of neurons is arbitrary.  

Figure 1C shows an undirected graph composed of nodes and links. If this graph is 
divided into sub-graphs, we can then partition it with the graph clustering algorithm. 
In social network analysis, community structure partition method is a prominent 
graph clustering method. Researchers have carried out a great deal of research on this 
subject [13,14]. Many algorithms have been proposed to detect community structure, 
such as the earliest GN algorithm, fast Newman algorithm and hierarchical tree parti-
tioning method. But before the division of community, a key problem to be solved is: 
How to determine the number of networks in the community? Newman et al. pro-
posed a concept of modularity where the modularity Q is defined as:  
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The number of communities as pre-specified varies from 1 to N. The partitioning 
algorithm is used to divide the graph into several modules and calculate the corre-
sponding values of Q.  Last, we discover the maximum value of Q to determine the 
number of communities. However, the calculation Q’s value is an NP-hard problem. 
Many traditional algorithms can only find the local optimal value of Q. Therefore, 
various community detection algorithms based on evolutionary algorithm have been 
proposed to optimize Q. These methods do not require specified number of modules 
and have performed well. These algorithms are used in the binary network, represent-
ed by an adjacency matrix, the value of connections only taken as 0 or 1. Our  
similarity matrix is a weighted graph. If we convert the weighted graph to the  

Binned spike trains

Neuron #

A
B

C
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un-weighted graph, the parameter choices are difficult. Researchers are familiar with 
the problematic challenge of parameter choice. We carried out this study by dividing 
the network directly in a weighted graph. 

2.1 Genetic Algorithm 

Encoding and Decoding 
Genetic algorithm is a widely applied global searching optimization algorithm, as 
proposed by [15]. To use a genetic algorithm on dividing the network community, 
first we need to encode the structures of Figure 1C into different genotypes of genetic 
algorithm. 

 

Fig. 2. Genetic algorithm operation. (A) Neuronal network, as shown in Figure1C. (B) Gener-
ated genotype1 based on the encoding strategy proposed in this paper. The graph-based struc-
ture of the genotype is created. Ten neurons are automatically divided into two groups and the 
number of patterns is determined to be two. (C) Another genotype. 

Since neuronal similarity matrix is a weighted matrix, we encode the genotype ac-
cording to the node minimum similarity principle. Here, we prohibited node back-
searching. For example, if nodes 1 and 9 meet minimum similarity, then there is a link 
between nodes 1 and 9. At the same time, if the minimum similarity node of node  
9 is 1, then node 1 is the starting point of node 9, and it thus cannot be the ending 
point. It must to find another minimum similarity node, such as node 3, avoiding a 
back search. After all nodes have been searched, we get genotype1. It consists of ten 
nodes numbered in sequence. In the decoding step, we construct the connections be-
tween nodes according to genotype 1. If the value in the 1st position is 9, then we add 
a link between nodes 1 and 9. Ultimately, links form  a connection structure shown in  
Figure 2B. It can be inferred that Figure 2B contains two modules. Identification of 
the number of modules in the community structure, without need to specify in ad-
vance, is the greatest advantage of this approach. 

 
Crossover 
The crossover operation produces new generation of genotypes, which can then gen-
erate new network community structures. Here, based on the two genotypes, we  

Genotype1

Genotype2

A
B

C
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randomly select two positions and change their values. Two new chromosomes are 
then produced (Fig. 3A). New network structures can be generated according to new 
genotypes. We can compare the differences with the network shown in Figure 2B. 

 
Mutation 
In the genetic algorithm, the goal of mutation operation is to prevent genomic prema-
turity and early search stops. Here, we use two different mutation strategies. First, we 
choose a random position ‘i,’ to be mutated. The minimum similarity node j for node i 
is then searched. The value of position i is changed to j. Because sxy(i,j) is the mini-
mum, this means that in the clustering solution nodes i and j will be in the same mod-
ule. In the second approach, we choose a random position “i,’ and change its value to 
k, (1=<k<=N), and can be sure new genotypes will result. 

 

Fig. 3. (A) Crossover of two individuals and their graph-based representation. (B) Mutation 
operation and a new genotype generated. 

In the iteration process of genetic algorithms, there must be a fitness function to 
evaluate genotypes. Here, we also used the modularity function to restrain the genetic 
algorithm. At the decoding process, a different number k of components {s1, s2, s3... 
., sk} is provided. When calculating the value of Q, the larger Q’s value is, the better 
the community structure obtained. The number of modules corresponding to the max-
imum value of Q is the optimum value in the communities. In this paper, we use the 
global optimization ability of genetic algorithms to find the maximum value of Q. 

3 Experimental Results 

In this section we study the effectiveness of our approach on several spike trains data 
sets. 

Genotype1

Genotype2

A
B
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3.1 Synthetic Spike Train Data 

Firstly, we tested this method on a series of surrogate data sets. These data sets were 
artificially generated. The firing patterns were predetermined. The total comprised 4 
data sets. We created the first data set. The others are created by Fellous et al. (2004) 
(available from http://cnl.salk.edu/fellous/data/JN2004data/data.html). 

3.2 Multi-Electrode Recording Spike Train Data 

Subsequently, we applied this method to the multi-electrode recorded neuronal spike 
trains. The spike trains were recorded from the hippocampus in a rat which performed 
the U-maze behavioral task. The recording process was executed by the Institute of 
Brain Functional Genomics of East China Normal University. This behavioral exper-
iment and spike signal recording processes have been described previously [16,17]. 
The set of data set we used contained 24 neurons and a total of 75 trials. We selected 
the initial 10 trials to analyze. Each trial contains all 24 neurons. 

3.3 Results 

Table 1. The modularity function Q and iterative number of the four data sets 

 This paper  fastnewman GA-random 

Q value Iter num Q value Iter num Q value Iter num 
Data set 1 0.6135 1 0.6087 N/A 0.3482 28 
Data set 2 0.1810 1 0.1810 N/A 0.1461 5 
Data set 3 0.2172 5 0.1196 N/A 0.1775 20 
Data set 4 0.2477 2 0.2179 N/A 0.1712 24 

 
 

It can be seen from table 1, the modularity function Q obtained in this paper is 
generally larger than that from the other two methods. Results show that the partition-
ing obtained in this paper indicates strong community structure and the corresponding 
firing patterns are more accurate (Fig. 4). Compared with the genotypes based on 
random encoding strategy, using the encoding proposed in this paper needs few itera-
tions to get the larger value of modularity function Q. ‘N/A’ represents that this meth-
od does not need iterative computation. We illustrate the raster plot of firing patterns 
for the first two data sets. As we can see from Figure 4, the method proposed in this 
paper does depend on prior knowledge of pattern numbers. According to the self-
similarity between the spike trains, spike trains can be divided into two or three dif-
ferent types of firing patterns, which the human eye cannot distinguish. 
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Fig. 4. On the left spike trains are mixed. On the right the raster plot sorted by group 
membership, showing a meaningful firing patterns.  

In addition, we applied this method to the multi-electrode recorded spike trains. 
Since these data sets are original data, we cannot know how many firing patterns or 
what kinds of patterns are contained in the data sets. We can only compare with val-
ues of Q of different methods to analyze the performance of the methods. 

 

 

Fig. 5. Comparison of different value of Q of ten trials 

Figure 5 shows the values of Q from ten trials. The method proposed in this paper 
obtained the largest values of Q in several trials. Yet, the values of Q from random 
genotypes encoding may be larger than those in this paper for some trials in which 
community structures is not obvious, This is due to neuronal functional networks 
constructed from spike trains in which strong community structure may not exist,  
and corresponding value of Q is small. 
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Fig. 6. Detection results of first trial from multi-electrode recording spike trains 

Here, we illustrate the raster plot of first trial process. According to the method 
proposed in this paper, the maximum value of modularity function Q equal 0.3208 
and corresponding number of modules equals two. Then we obtain two groups of 
firing patterns, shown in Figure 6. Because we cannot know prior patterns in the orig-
inal data set, evaluating the pattern search method is a problem. 

We use short time windows to bin the spike trains into vectors. Different bin sizes 
may affect the number of spikes in each bin, resulting in different values for modu-
larity function Q. For our first trial on multi-electrode recorded spike trains, we set 
different bin sizes respectively and compared the corresponding value of Q. 

 

 

Fig. 7. Modularity function Q of different bin size 

Figure 7 shows that the selection of time windows has an influence on calculating 
modularity function Q, resulting in different values of Q. Without a standard method, 
selection of Q’s value is difficult. 

4 Conclusions 

We present a new search method for firing patterns in neuronal spike trains, based on 
genetic algorithms for detecting communities. To our knowledge, this is the first 
study using genetic optimal partitioning method to find spike train modules. Com-
pared to previous detection methods described in this paper, the values of Q obtained 
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by our approach are larger, indicating that partitioning results are more reasonable. 
However, the modularity function Q itself cannot identify some modules smaller than 
a certain scale. Some researchers have proposed new evaluation functions, such as 
density, community coefficient and so on [18]. In future research, we will target ap-
plication of evolutionary algorithms to optimize these evaluation functions and com-
pare them against the results of modularity function Q. 
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Abstract. This paper proposes a fast and effective image segmentation
algorithm by firstly clustering image pixels into a small number of super-
pixels and then merging these superpixels whose distances are below an
adaptive threshold together to get the final segmented fields. The adop-
tion of superpixels dramatically decreases the computation cost, while
the adaptive thresholding aims to select a reasonable segmentation from
a set of possible segmentations with hierarchical scales. The adaptive
threshold can be calculated with a fast sequential procedure. Experi-
ments on Berkeley Segmentation Data Set (BSDS500) demonstrate that
our proposed algorithm is competitive to other state-of-the-art segmen-
tation methods. Moreover, this segmentation framework can be improved
to excellent performance by using more elaborate superpixel algorithms.

Keywords: Image segmentation · Superpixels · Adaptive thresholding

1 Introduction

Image segmentation is a fundamental issue in computer vision, and it often
serves as the first step of some visual tasks (e.g., object recognition). Image seg-
mentation tries to partition an image into several meaningful and homogeneous
regions, with each region corresponding to a semantic object or background.

Clustering analysis is a popular method for image segmentation. The simplest
way is extracting a feature vector for each pixel and using the classic k-means
algorithm [1] to cluster these pixels into image segments (in the feature space).
Mean Shift (MS) algorithm [2] was originally proposed for the mode detection
of density functions, and it has successfully applied to clustering analysis, image
segmentation and visual detection/tracking since [3].

On the other hand, Normalized Cuts (N-Cuts) algorithm [4] constructs a
graph for each image, and converts the segmentation task to a graph partitioning
problem, which can further be reduced to a generalized eigenvalue problem (i.e.,
spectral clustering). Besides, Felz-Hutt algorithm [5] also measures the evidence
of objects’ boundaries by a graph-based representation of the image, and then
obtains the segmented objects by greedy decisions.

Recently, Arbelaez et al. [6] proposed the powerful “gpb-owt-ucm” algorithm,
which got the art-of-the-state performance on BSDS500. This algorithm utilizes
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 568–575, 2014.
DOI: 10.1007/978-3-319-12436-0 63
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the Oriented Watershed Transform (owt) to construct a set of initial regions
from the Global Probability of Boundary (gpb) signals. The output of gpb-owt-
ucm is a set of segmentations with hierarchical scales, which are represented by
the Ultrametric Contour Map (ucm).

In this paper we propose a simple but effective image segmentation algorithm.
It clusters image pixels into superpixlels, computes the distances between differ-
ent superpixels, and merges the superpixels whose distances are smaller than an
adaptive threshold. Its competitive performance is demonstrated by the experi-
ments on BSDS500. Beyond that, we also modify this framework by applying a
more elaborate superpixel algorithm, which gains more excellent segmentation
performance at the cost of relatively larger computation time.

The rest of this paper is organized as follows. Section 2 presents the overall
framework of our algorithm. The experimental results on BSDS500 are contained
in Section 3 for both the original fast algorithm and the modified fine version.
Finally, a brief conclusion is made in Section 4.

2 Algorithm Framework

The overall framework of our image segmentation algorithm is shown in Figure 1.
For an input image, we firstly cluster the image pixels into superpixels, then
define a distance function to measure the dissimilarities between different
superpixels, and finally merge the superpixels whose distances are smaller than
an adaptive threshold to get the image segments.

Original Image Super-Pixels Segmentation 
Superpixel Algorithm Distance Function 

Adaptive Thresholding 

Fig. 1. The framework of our image segmentation algorithm

2.1 Superpixels Generation

The huge number of pixels in an image make it time-consuming for the applica-
tion of some elaborate pixel-level features. The term superpixel [7] represents a
set of pixels which have high similar properties (e.g., position, color, texture, etc).
If we cluster the image pixels into superpixels, and extract features on superpixel-
level instead of pixel-level, then the number of features to be extracted can be
dramatically reduced, which will save a lot of computation time.
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Superpixels can be obtained by some typical clustering algorithms, like the
k-means or Means-Shift algorithm. However, we choose to generate superpixels
with the popular Simple Linear Iterative Clustering (SLIC) algorithm [8], due to
its linear computation complexity and competitive performance. The parameters
in the SLIC algorithm are set as S = 30 × 30 (the normal size of superpixels)
and λ = 15 (the spatial regularizer), which are selected by balancing the number
of superpixels, clustering appearance and spatial regularization.

It should be noted that, for a given segmentation algorithm, if we “tune”
some parameters to make it output over-segmentation (e.g., reduce the threshold
for boundary/contour map), the resultant over-segments can also be seen as
superpixels. Usually, this kind of superpixels is more effective than the simple
SLIC superpixels, but also more time-consuming, which will be demonstrated
by our following experiments.

2.2 Distance Function

Generally, the distance between two superpixels depends on their positions (e.g.,
center coordinates), region features (e.g., mean colors) and boundary intensity
(e.g., gradient). As we only merge adjacent superpixels in the next mergence
step, we will not bring the position information to the calculation of distance
directly, but only set the distance to infinity if two superpixels are not adjacent.

When two superpixels A and B are adjacent, their distance is composed
by the difference of region features and the intensity of their boundary. For
computational simplicity, we use the mean LUV colors in the A and B as the
region features, denoted as L(A) and L(B), and use the mean gradient amplitude
on the border line of A and B as the boundary feature, denoted as G(A,B).
Therefore, the distance between A and B can be calculated as follows:

D(A,B) = ||L(A) − L(B)|| + α · |G(A,B)| , (1)

where α is the regularizer for boundary intensity. Clearly, the features L(A), L(B)
and G(A,B) should be normalized to interval [0, 1] at first.

2.3 Adaptive Thresholding

After we compute the distances between different superpixels, we can obtain
the final image segmentation by merging similar superpixels whose distances are
below a particular threshold. The determination of this threshold is an important
issue. Some algorithms (like gpb-owt-ucm) avoid this problem by using a set of
thresholds and thus output a set of hierarchical segmentations. However, this is
not convenient in practical application. Here, we give a fast algorithm to select
a proper threshold adaptively for different images as follows.

Firstly, we need a criterion to estimate (not evaluate) the performance for a
given segmentation. For the simplicity of constructing a fast algorithm, we use the
mean WGSSEs (Within-Group-Sum-of-Squared-Error) of LUV color values plus
a regularization item of #groups to estimate the segmentation performance:
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Input : The distance matrix of superpixels: D = [D(i, j)]K0×K0 ,
The total number of pixels in the image: Ntotal,
The regularizer for segment nunmber: β

Output: The adaptive threshold for segmentation: Tbest

1 Count {S1(i), S2(i), N(i)}K0
i=1 for the current superpixel segmentation;

2 Compute the sum of WGSSEs: Sw =
∑K0

i=1[S2(i) − S2
1(i)

N(i)
];

3 Set Jbest = 1
Ntotal

Sw + β · K0 and Tbest = 0;

4 for K ← (K0 − 1) to 1 do
5 Find out (p, q) such that p �= q, and D(p, q) is the minimum value of D;

6 Let Sw = Sw − [S2(p) − S2
1(p)

N(p)

]− [S2(q) − S2
1(q)

N(q)

]
;

7 S1(p) ← S1(p) + S1(q), S1(q) = 0 ; // merge superpixel q to p
8 S2(p) ← S2(p) + S2(q), S2(q) = 0 ;
9 N(p) ← N(p) + N(q), N(q) = 0 ;

10 Update Sw = Sw +
[
S2(p) − S2

1(p)

N(p)

]
;

11 Compute Jtmp = 1
Ntotal

Sw + β · K;

12 if Jtmp < Jbest then // record the optimal threshold

13 Jbest = Jtmp;
14 Tbest = D(p, q);

15 end
16 for i ← 1 to K0 do // update the distance matrix

17 Set D(p, i) = D(i, p) = min
{
D(p, i), D(q, i)

}
;

18 Set D(q, i) = D(i, q) = ∞;

19 end

20 end
21 return The final Tbest

Algorithm 1. The fast sequential procedure for adaptive threshold

J(seg) =
1

Ntotal

∑

A∈seg

Sw(A) + β · K, (2)

where seg denotes a image segmentation, Ntotal is the total number of pixels in
the image, A is a segment in seg, K is the number of segments in seg, Sw(A)
is the WGSSE of segment A, and β is a regularizer. Note that small J(seg)
corresponds to good segmentation performance. If we denote S1(A) as the sum
of pixels’ color values in superpixel A, S2(A) as the sum of squared color values,
and N(A) as the number of pixels in A, then Sw(A) can be obtained by

Sw(A) =
∑

xi∈A

(xi − x̄)2 =
(∑

x2
i

)
− (

∑
xi)2

N(A)
= S2(A) − S2

1(A)
N(A)

. (3)

When two superpixels A and B are merged, we update A with

φ(A) ← φ(A) + φ(B), φ ∈ {S1, S2, N} (4)

and delete B to maintain S1, S2, N .
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Therefore, if we merge superpixels sequentially, for example, form small dis-
tances to large distances, then we can calculate J(seg) directly by only stor-
ing S1, S2, N and updating them sequentially. The detailed procedure of this
sequential algorithm is shown in Algorithm 1. Note that, due to the definition
of distances and the updating of distance matrix D on line-18, most elements
of D are infinities. Therefore, the minimization step on line-5 can be effectively
solved by a sparse representation of D, and this sequential procedure is very fast
and efficient.

3 Experimental Results

We test our proposed algorithm on the popular Berkeley Segmentation Data
Set (BSDS500) [6], which covers a variety of images with complex scenar-
ios and has manually produced ground-truth segmentation for each image. As
for the evaluation of segmentation performance, we use three different metrics,
i.e., the Segmentation Covering (SC), Probability Rand Index (PRI) and Vari-
ation of Information (VI) [6]. These three metrics have different characters, for
example, the PRI tends to over-segmentation, while the SC and VI encourage
under-segmentation. Therefore, an overall consideration of these three metrics
is necessary and reasonable. Note that, good segmentation corresponds to high
SC value, high PRI value, but low VI value.

In this section we firstly show the results of our fast segmentation algorithm
based on slic-superpixels, and then give the experiments for the modified fine
version based on ucm-superpixels.

3.1 Results for the Fast SLIC-Based Algorithm

In this subsection we use the simple and fast SLIC algorithm to generate the
superpixels. The hyper-parameters α and β are optimized on the BSDS500 train-
set. For example, α is set as α = 1. As for β, it is set as β = 1.8 for SC metric,
β = 1.0 for PRI metric and β = 5.1 for VI metric. These hyper-parameters are
fixed on the whole testset once obtained.

Some segmentation examples from BSDS500 testset are shown in Figure 2.
From this figure we can see that, the slic-based superpixels are just small image
patches with approximatively fixed size and high within-similarities. The final
segmentation images show that most superpixels are correctly merged, i.e., the
superpixels from the same semantic object are merged together, while the super-
pixels from different objects are keep intact. This indicates the effectiveness of
our distance function and adaptive thresholding.

Table 1 lists the mean scores of SC, PRI and VI on the whole BSDS500 test-
set, as well as comparisons with some other competitive segmentation algorithms.
The row “Human” denotes the segmentation scores gained by human beings.
From this table we can see that, the performance of our fast algorithm (denoted
as “SP-AdaThresh (slic-based)”) is very competitive. In fact, only the “gpb-
owt-ucm” algorithm gains better performance than our slic-based algorithm,
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(a) SC = 0.81002, PRI = 0.96086, V I = 0.86197

(b) SC = 0.70322, PRI = 0.97182, V I = 1.4959

Fig. 2. Segmentation examples for our fast slic-based algorithm. Left column: orig-
inal images. Middle column: superpixel images. Right column: segmentation images.

but its segmentation time is much longer than ours (about 4 minutes V.S. our
1 second). Besides, “gpb-owt-ucm” algorithm needs much more memory space
(about 8GB). Therefore, by comprehensive consideration of performance, time
and hardware, our “SP-AdaThresh(slic-based)” algorithm is competitive, and it
suitable to serve as the first step of some visual recognition tasks.

Note that, the segmentation time is obtained in our personal computer, with
3.2GHz 4-core Intel Core CPU, 8G Memory, Linux-3.5 OS, Matlab R2012b.

3.2 Results for the Fine UCM-Based Algorithm

By analyzing the results of the powerful “gpb-owt-ucm” algorithm, we find that
the Ultrametric Contour Map (UCM) is very effective though sophisticated.
These contour profiles can indicate the true boundaries between different objects
while filter out the noises and interference edges. If we threshold the “ucm” with
a small value, the resultant over-segmentation can serve as superpixels. These
ucm-based superpixels are much better than the simple slic-based superpixels.
Therefore, when the requirements for segmentation time or memory space are
loose, we can replace the slic-based superpixels with these powful ucm-based
superpixels, and follow the rest of the framework discussed above, then we can
obtain the fine ucm-based algorithm. In this paper the low threshold for ucm is
set as Tucm = 0.1, which is also optimized on the BSDS500 trainset.

Some segmentation examples of this ucm-based algorithm are shown in
Figure 3. From this figure we can see that, compared to slic-based superpixels,
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(a) SC = 0.84842, PRI = 0.95366, V I = 0.85223

(b) SC = 0.77393, PRI = 0.92299, V I = 0.85552

Fig. 3. Segmentation examples for our fine UCM-based algorithm. Left column:
original images. Middle column: superpixel images. Right column: segmentation images.

Table 1. Segmentation Results on BSDS500 testset

Method SC PRI VI

Human 0.72 0.88 1.17

Quad-Tree 0.32 0.73 2.46
N-Cuts [9] 0.45 0.78 2.23

Canny-owt-ucm [6] 0.49 0.79 2.19
Felz-Hutt [5] 0.52 0.80 2.21

Mean Shift [3] 0.54 0.79 1.85
gPb-owt-ucm [6] 0.59 0.83 1.69

SP-AdaThresh (slic-based) 0.55 0.80 1.90
SP-AdaThresh (ucm-based) 0.61 0.83 1.65

the ucm-based superpixels are more “close” to the truth: They are very coarse
on smooth regions, but very fine-grained on regions with abrupt changes. In
other words, these ucm-based superpixels focus on the regions with abundant
contours and can capture more boundary information. The good segmentation
results also indicate the effectiveness of these ucm-based superpixels.

The mean scores of this fine ucm-based algorithm are also listed in Table 1 as
“SP-AdaThresh(ucm-based)”. This ucm-based algorithm is even slightly better
than the “gpb-owt-ucm”, and its segmentation time is almost the same with
“gpb-owt-ucm” due to the fast sequential procedure for adaptive threshold.
Note that our algorithm outputs only one segmentation for each image, while
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“gpb-owt-ucm” outputs a set of hierarchical segmentations. Hence, our algorithm
is more competitive and more suitable for practical application.

4 Conclusions

We have established an effective framework for fast image segmentation. It
consists of clustering pixels into superpixels and merging superpixels whose dis-
tances are below an adaptive threshold. The experiments on BSDS500 demon-
strate its competitive performance for both the fast slic-based superpixels and
the fine ucm-based superpixels. Currently, the ucm-based algorithm is still time-
consuming and our future work will focus on speeding up this algorithm without
decreasing the segmentation performance.

Acknowledgments. This work was supported by the Natural Science Foundation of
China for Grant 61171138.
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Abstract. Stock price prediction is one of the most important topics in
financial engineering. In this paper, for stock closing price prediction, we
propose a diagonal log-normal generalized RBF neural network in which
the diagonal log-normal density functions serve as the RBFs. Specif-
ically, it utilizes the dynamic split-and-merge EM algorithm to select
the number of hidden units (or RBFs) as well as the initial values of
the parameters, and implements a synchronous LMS learning algorithm
for parameter learning. It is demonstrated by the experiments that the
diagonal log-normal generalized RBF neural network has a competitive
performance on stock closing price prediction.

Keywords: RBF neural network · Log-normal distributions · EM algo-
rithm · Stock price prediction

1 Introduction

Stock is one major security for the companies to raise money. The fluctuation of
stock prices influences investors’ profits and thus successful stock price prediction
or forecasting has been a hot topic in financial engineering. Actually, stock price
prediction is the act of trying to precisely forecast future prices based on previous
stock price data. However the stock price system is a complicated nonlinear
dynamic system [1], and it is affected by internal and external factors, such as
bank interest rates, national polices, the price index, performance of companies
and investors’ psychological reaction [2,3]. This uncertainty in the stock price
system imposes great challenges on the stock price prediction task.

The stock price data have a natural temporal ordering, thus time series anal-
ysis is a conventional method to predict stock prices. The classical techniques
for time series forecasting include moving average, exponential smoothing and
decomposition methods. However, those traditional methods cannot always have
good performance on time series forecasting, therefore there emerge many new
methods for time series forecasting, including generalized autoregressive condi-
tional heteroskedasticity (GARCH, Bollerslev(1986)) and artificial neural net-
works (ANNs) [2,4]. Due to their nonlinearity, adaptivity and generalization,
ANNs are widely applied on time series forecasting.
c© Springer International Publishing Switzerland 2014
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Particularly, RBF neural networks are majorly used for the stock price pre-
diction [5–7]. In fact, Radial basis function (RBF) neural network is a three-layer
feed forward neural network, firstly proposed by Broomhead and Lowe [8]. Radial
basis functions are a kind of special functions, with their responses monotonously
decreasing with the distance from a center. In comparison with the other ANNs,
the structure of RBF neural network is simple, and the speed of learning is
fast [10]. Due to its special structure, RBF neural network has a good ability
of local approximation. But certain disadvantages and limitations of RBF neu-
ral network were also found from its application on time series prediction. In
order to improve the performance of RBF neural network, the generalized RBF
neural network were proposed in [9,10]. It uses Gaussian distributions instead
of Gaussian kernel functions. Furthermore, the diagonal generalized RBF neu-
ral network was proposed to improve the learning and generalization ability via
the constraint of covariance matrices in a subspace [3,10]. Actually, the diago-
nal generalized RBF neural network is shown to have a better performance on
nonlinear time series prediction [10].

In finance, log-normal distributions are often used to describe the stock
prices. In fact, the Black-Scholes-Merton option pricing model assumes that stock
prices subject to log-normal distributions. In addition, due to their skewness and
long tails, log-normal distributions have the advantages to analyze stock prices
[11,12]. So, if the radial basis functions become log-normal probability densities
or distributions, the generalized RBF neural network can be more powerful for
stock price prediction. Therefore, in this paper, we propose the diagonal log-
normal generalized RBF neural network to predict stock prices, in which the
radial basis functions are log-normal distributions with the covariance matrixes
being diagonal.

The rest of this paper is organized as follow. In Section 2, we introduce log-
normal distribution and stock price data. We propose the diagonal log-normal
generalized RBF neural network and the LMS learning algorithm in Section 3.
Experimental results are contained in Section 4, and Section 5 gives a brief
conclusion.

2 Log-Normal Distribution and Stock Price Time Series

We begin with a brief introduction of log-normal distribution. Log-normal distri-
butions are obtained by the derivation of gaussian probability density functions,
but log-normal distributions are different from normal distributions. Firstly,
random variables of log-normal distributions are positive, but for normal dis-
tributions it takes both negative and positive values. Secondly, log-normal dis-
tributions are skewed to right and have a long right tail, in contrast normal
distributions are symmetrical at its maximum point.

For stock price time series, we draw the histograms of Shangzheng and Huaxia
stock closing prices as examples to illustrate stock price time series characteristics,
shown in Figure 1 (a) & (b), respectively. Shangzheng stock closing price data
range from 2000 to 3000, and Huaxia stock closing price data are from 6 to 14.
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Fig. 1. The histograms of Shangzheng and Huaxia stock closing price data. (a). The
histogram of Shangzheng stock closing price data. (b). The histogram of Huaxia stock
closing price data.

They are both positive. The Shangzheng and Huaxia stock closing price data are
asymmetric, and they are both skew to right. Regarding to these features, we
assume that stock price data sets subject to the log-normal distributions.

3 Diagonal Log-Normal Generalized RBF Neural
Network and LMS Learning Algorithm

3.1 Diagonal Log-Normal Generalized RBF Neural Network

The diagonal log-normal generalized RBF neural networks have three layers
including a input layer, a hidden layer and a output layer. The hidden unit acti-
vation functions are log-normal distributions instead of gaussian distributions,
and the mapping relationship between input and output takes the following form:

yl =
m∑

j=1

wjlRj(x), (1)

where input variables x ∈ Rn, outputs y ∈ Rp, the number of hidden units m,
and wjl is the weight between the jth hidden unit and the lth output unit.

Rj(x) =
1

(2π)
n
2 |Σj | 1

2
∏n

i=1 xi

exp{−1
2
(ln x − mj)T Σ−1(ln x − mj)}, (2)

where mj and Σj are the mean vector and covariance matrix of jth radial func-
tion.

3.2 LMS Learning Algorithm

In order to learn parameters of the network, we use a synchronous least mean
square error (LMS) learning algorithm to find parameters on training sets. Firstly
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the mean square error function of sample data takes the following form:

E =
1
2

N∑

t=1

p∑

l=1

[ytl − ŷtl]2 =
1
2

N∑

t=1

p∑

l=1

[ytl −
m∑

j=1

wjlRj(x)]2. (3)

Then we can get the partial derivatives of the error function E. The LMS learning
criteria is that:

Δwjl = η

N∑

t=1

(ytl − ŷtl)Rj(xt), (4)

Δmj = η
N∑

t=1

p∑

l=1

(ytl − ŷtl)wjlRj(xt)Σ−1(ln xt − mj). (5)

In order to improve the ability of generalization, we let the covariance matrix
be a diagonal matrix, i.e Σj = diag(σj1, ..., σjn) where σji > 0. The iterative
formula is as following forms:

Δσji =
η

2

N∑

t=1

p∑

l=1

(ytl − ŷtl)wjlRj(xt)[
1

σji
− (ln xti − mji)2

σ2
ji

]. (6)

We further discuss how to implement our proposed model. The number of
hidden units has big effects on results of learning, and specifying the number of
hidden units is not a easy work. In this paper we utilize the dynamic split-and-
merge EM algorithm [13,14] to initialize the number of hidden units and mean
vectors of radial basis functions. The initial covariance matrix Σj is set to be
a unit matrix. For the other parameters in our model, a better initialization is
necessary. We set the learning rate as following forms [3]:

η =

{
1.05 ∗ η Ek < Ek−1

η
10 Ek > Ek−1,

(7)

where the initial learning rate is set to be 10−3. For the stop criterion: | � E| =
|Ek − Ek−1| ≤ ε, where the value of ε is set to be 10−8. After the number of
hidden units and parameters of the network are initialized, we implement the
LMS algorithm to learn the parameters of radial basis functions and the weights
between the hidden layer and the output layer.

4 Experimental Results

In this section, we utilize the diagonal log-normal generalized RBF neural net-
works to predict Shangzheng, Huaxia, Shangzheng380, and Shangye stocks
closing prices (contained in Dazhijui software), with being compared with the
diagonal generalized RBF neural networks [3]. The radial basis functions are
log-normal distributions in our proposed model, but they are Gaussian distribu-
tions in the diagonal generalized RBF neural networks [3]. For convenience, our
proposed model is referred to as DLN-RBFNN, while the diagonal generalized
RBF neural network [3] is referred to as DG-RBFNN.
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Fig. 2. The skecthes of Shangzheng stock closing price data before and after the
preprocessing. (a). Shangzheng stock closing price data before the preprocessing (b).
Shangzheng stock closing price data after the preprocessing.

4.1 The Prediction Model

Let stock price time series be X = x1, x2, ...xi, ..., where xi > 0 and i = 1, 2, 3...L.
The stock price of future M days can be forecasted by previous D days’ stock
price. D is embedding dimensions. Generally, there are three ways of prediction,
including one-step prediction, i.e M = 1, multi-step prediction, i.e M > 1 and
roll prediction. Here, we just concentrate on one-step prediction.

We firstly generate 700 samples, and each sample is a D + 1 dimensions
vector. The input layer has D units and the output layer has one unit. We then
divide the 700 samples into two parts which contain 600 training samples and
100 test samples, respectively. Finally, we train the DLN-RBFNN on the training
samples, and verify its prediction performance on the test samples.

4.2 Stock Price Data Preprocessing

The stock price time series are nonlinear and non-stationary data, and such
non-stationary characteristics influence the prediction results. So, we can use the
difference method to smooth the stock price data before training the network.
The difference method is the following forms:

dt = exp (lnxt+1 − ln xt), (8)

In order to show the performance of stock price data preprocessing, we plot
the sketches of Shangzheng stock closing price data before and after the data
preprocessing, shown in Figure 2 (a) & (b), respectively. It can be observed that
the preprocessed stock price data are more stationary.

4.3 Prediction Results and Analysis

Here, we use Shangzheng, Huaxia, Shangzheng380 and Shangye stock closing
price data from 2011 to 2013 to generate training and test sets as described
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Table 1. The RMSEs of the diagonal log-normal generalized RBF neural network (refer
to DLG-RBFNN ) on Shangzheng, Huaxia, ShangZheng380, Shangye stock closing price
test data

Embedding Dimensions Shangzheng Huaxia ShangZheng380 Shangye

2
21.924 0.3092 43.3000 42.4223
±0.0205 ±0.0083 ±0.0149 ±0.0576

3
21.9930 0.3080 43.4687 42.6446
±0.0299 ±0.0019 ±0.0292 ±0.1652

4
21.8795 0.3396 44.0850 43.3931
±0.0144 ±0.0069 ±0.0579 ±0.1564

5
21.8838 0.3708 44.1925 43.4333
±0.0078 ±0.0118 ±0.0390 ±0.0867

in Section 4.1. For each pair of training and test sets, we train the the DLN-
RBFNN by using the LMS learning algorithm on the training data and then
verify it for the prediction on the test data, and finally use the root mean square
error (RMSE) and the correct rate (CR) of directional predictions to measure
the predicted results of raw stock prices. The RMSE takes the following form:

RMSE =

√√
√
√ 1

N

N∑

t=1

(x̂t − xt)2. (9)

Moreover, we adopt CR = 1
N

∑N
t=1 1( ˆdirt = dirt) as defined in [15], where the

dir takes the following form:

dir =

⎧
⎪⎨

⎪⎩

−1 Δxt < c0

0 c0 < Δxt < c1

1 Δxt > c1.

(10)

and Δxt = xt+1 − xt is the difference between two sequent stock prices.
Table 1 and Table 3 list the RMSEs and CRs of the DLN-RBFNN on four

stock closing price datasets, respectively. For comparison, Table 2 & Table 4 list
the RMSEs and CRs of the DG-RBFNN on four stock closing price datasets,
respectively. It can be seen from Tables 1 & 2 that the RMSEs of the DLN-
RBFNN are all less and more stable than those of the DG-RBFNN on the four
datasets. Moreover, The CRs of the LDG-RBFNN are all higher than those
of the DG-RBFNN on the four datasets. Therefore, these experimental results
demonstrate that our DLN-RBFNN as well as the LMS learning algorithm can
be successfully applied to stock price prediction, and have a competitive perfor-
mance on stock closing price prediction.
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Table 2. The RMSEs of the diagonal generalized RBF neural network (refer to DG-
RBFNN )on Shangzheng, Huaxia, ShangZheng380, Shangye stock closing price test
data

Embedding Dimensions Shangzheng Huaxia ShangZheng380 Shangye

2
23.2131 0.3371 46.2443 45.7020
±0.2280 ±0.0269 ±3.0463 ±1.4642

3
23.6499 0.3341 49.5989 48.6047
±0.8178 ±0.0020 ±5.4353 ±3.6431

4
24.1317 0.3582 51.8794 53.4201
±0.9475 ±0.0152 ±5.3981 ±2.9311

5
28.7286 0.7187 49.6149 60.3121
±2.2037 ±0.2224 ±3.9069 ±5.7065

Table 3. The CRs of the diagonal log-normal generalized RBF neural network (refer
to DLG-RBFNN )on Shangzheng, Huaxia, ShangZheng380, Shangye stock closing price
test data

Embedding Dimensions Shangzheng Huaxia ShangZheng380 Shangye

2 0.720 0.740 0.600 0.530

3 0.720 0.750 0.600 0.530

4 0.720 0.740 0.600 0.530

5 0.720 0.730 0.600 0.530

Table 4. The CRs of the diagonal generalized RBF neural network (refer to DG-
RBFNN )on Shangzheng, Huaxia, ShangZheng380, Shangye stock closing price test
data

Embedding Dimensions Shangzheng Huaxia ShangZheng380 Shangye

2 0.718 0.560 0.588 0.520

3 0.704 0.610 0.532 0.472

4 0.700 0.392 0.490 0.402

5 0.564 0.154 0.536 0.354

5 Conclusions

We have applied the diagonal log-normal generalized RBF neural network to
stock price prediction, and compared it with the diagonal generalized RBF
neural network which has gaussian distributions radial basis functions. It is
demonstrated by the experiments on four datasets that the diagonal log-normal
generalized RBF neural network has a competitive performance on stock closing
price prediction.
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Design of a Greedy V2G Coordinator Achieving
Microgrid-Level Load Shift
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Abstract. This paper designs a microgrid-level V2G (Vehicle-to-Grid)
coordinator capable of controlling the electricity flow from EV (Electric
Vehicle) batteries to a grid, aiming at achieving temporal and spatial
load shift in energy consumption. A bidding request specifies earliest and
latest arrival times, amount to sell, and plug-in duration, while the con-
troller creates an on-off schedule by which EVs are connected or discon-
nected to the grid on each time slot. After defining the search space made
up of all feasible solutions, a greedy scheduler traverses the space to find
an optimal slot allocation, which can enhance the demand-supply bal-
ance by means of minimizing the amount of surplus and lacking energy.
The schedule also tells EV owners when to come and be connected to the
microgrid. The performance evaluation result obtained from a prototype
implementation shows that the proposed scheme reduces the energy lack
by 49.0 % and the energy waste by 63.7 %, compared with the uncoor-
dinated scheduling strategy.

Keywords: Vehicle-to-grid · Battery discharge control · Surplus and
lacking energy · Exhaustive search · Demand-supply balance

1 Introduction

The smart grid technology makes the power network much intelligent and reli-
able, integrating sophisticated information and communication technologies [1].
It embraces a variety of grid entities chained from power generation to con-
sumption. In the meantime, EVs (Electric Vehicles) allow even the transporta-
tion system to be a part of the smart grid, as they are powered by electricity
stored in rechargeable batteries [2]. From the environmental aspect, they can
avoid burning fossil fuels and take advantage of diverse energy sources including
nuclear power and even renewable energies such as wind, sunlight, and the like,
to charge their batteries [3]. It is true that there are inherent drawbacks of short
driving range and long charging time [4]. However, low-cost overnight charging
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with sufficient plug-in duration can give enough energy economically to most
EVs for their daytime driving [5].

Not just restricted to their primary goal, namely, driving, EVs can be consid-
ered large-capacity batteries. EV batteries can send power back to the grid when
they are connected to the grid, possibly through the outlet in the parking area
[6]. Bidirectional chargers enable such V2G (Vehicle-to-Grid) technologies, while
large-scale deployment of EVs in the transportation opens a possibility of inte-
grating many intelligent control strategies for their charging and discharging [7].
With an appropriate control mechanism mainly implemented in EV aggregators,
the grid-connected EVs can help maintain grid reliability, balance supply-and-
demand, and bring many other benefits [10]. Moreover, EV batteries can be used
to integrate renewable energy sources into the grid, managing their fluctuation
problems, which usually lead to unpredictable excess and insufficient production
[8].

Practically, electricity flow from EVs to the main grid is not easily allowed
due to several reasons such as unverified reliability, price plan complexity, and
security issues. However, microgrids can autonomously implement their own V2G
strategies, charging and discharging EVs via regulation signals from grid-specific
control logic. In addition, it is important that EVs can move. That is, they can
achieve not just temporal but also spatial shift in power consumption. Even
EVs are parked most of the time during a day, they are highly likely to move at
least once for commute, shopping, and so on. If a microgrid, such as buildings,
shopping malls, and factories, consuming a significant amount of energy, can
consistently gather EVs during its peak time and get home-charged electricity
from them, its power provisioning cost will be correspondingly cut down. The
mobility of EVs brings better efficiency in consuming electricity cheaply charged
overnight.

EVs are usually charged to their full capacity during the night. A fully
charged EV can drive up to about 130 km in practice. However, the daily driving
distance for most vehicles hardly exceeds this limit. Hence, the rest of the stored
energy can be provided to other appliances or sold to a microgrid, which can
be different from the one the EV has been charged at. During the peak time,
the price rate gets higher, so the EV-stored energy can reduce the cost quite
much for each microgrid. Here, if multiple EVs gather at a single grid during a
specific time interval, not all electricity can be sold. On the contrary, if no EV
is available, the microgrid must use the expensive grid-supplying electricity. So
as to minimize the surplus and lacking energy, it is necessary to distribute EVs
over the time interval according to the power demand on the microgrid, taking
advantage of intelligent computer algorithms running on a robust reservation
mechanism.

In this regard, this paper designs an EV-to-microgrid electricity flow control
scheme which determines when EVs will be plugged-in to the grid and which
EVs will send electricity to the grid on each time slot. Here, each EV which
wants to sell its excessive energy to a microgrid is characterized by the earliest
and latest times it can be plugged-in, the amount of energy to sell, and how
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long it can stay once plugged-in. Here, the modern communication mechanism
essentially allows real-time two-way interaction between EVs and a microgrid. In
addition, current computing capability can achieve fast calculation even if an EV
changes its requirement. For the given parameter set, the potentially complex
search space, consisting of all feasible solutions, is clarified, and an exhaustive
search is designed to find an optimal schedule.

The rest of this paper is organized as follows: Section 2 reviews some related
work. Section 3 describes the proposed scheme in detail. After Section 4 demon-
strates and discusses the performance measurement results, Section 5 concludes
this paper with a brief introduction of future work.

2 Related Work

With the capability of bidirectional energy exchange, EVs can participate in
a frequency regulation service, when they are connected to the grid, be it a
global grid or an autonomous microgrid such as buildings, shopping malls, and
the like. [9] addresses a distributed V2G control scheme, mainly focusing on
frequency regulation, aiming at efficiently suppressing system frequency fluctu-
ation. Detecting a system-level frequency drop, the control mechanism reduces
the load by shifting EV charging or even makes EVs inject power back to the
grid. The authors consider two policies. The first part, called Battery SoC (State
of Charge) Holder is designed for EVs having enough SoC to potentially give to
the grid. The second one, called Charging with Frequency Regulation, works for
EVs currently participating in scheduled charging.

Next, [10] categorizes GIV (Grid Interconnected Vehicle) mechanisms into
centralized and decentralized ones. Decentralized schemes enforce each EV
locally to decide the energy amount for V2G services. On the contrary, in cen-
tralized schemes, with all information collected from EVs, the central server
controls the whole V2G-related actions in the system. In their scenario, as one
of the most important elements in ancillary services, power regulation is used to
keep the grid frequency and voltage within acceptable limits. Here, to participate
in the regulation service, EVs submit bids, specifying the amount of its regula-
tion power and price. Accepted EVs follow an on-line regulation signal from the
grid. The performance evaluation reveals that while the centralized optimization
achieves better regulation performance, it may suffer from long decision-making
time for a large number of EVs.

V2G also makes it possible for the connected EVs to provide potential stor-
age for the intermittent renewable energies, efficiently matching the difference
between time-of-generation and time-of-load [5]. During the plug-in time, EVs
supply a distributed spinning reserve according to the frequency deviation
resulted from temporal demand-and-supply imbalance. In addition, [8] analyzes
the effect of intelligent control, specifically, CHP (Combined Heat and Power).
In this design, the grid-connected EV batteries are charged during low-demand
hours and discharges guided by the real-time signal issued by the control system.
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The analysis result shows that EVs can absorb excess power from renewable ener-
gies and return the power when necessary, while night time charging can benefit
from abundant wind.

3 Electricity Flow Control

3.1 System Model

Figure 1 illustrates our system model. We mainly consider shopping malls, as
they consume much energy during their operation hours, and EVs visit flexibly
without tight restriction. For example, a shopper wants to visit a shopping mall
between 1 PM to 5 PM and stay for about 2 hours. In addition, the shopping
mall is assumed to be able to estimate its power demand using an appropriate
forecast mechanism and tries to buy as much electricity as possible from EVs
which will visit it. For the purchased energy, the shopping mall gives cash reward
or gift cards. Moreover, the reward level can be different according to the time-of-
purchase, that is, how much the mall saves energy cost by avoiding the expensive
peak rate. If there are no EVs available, the mall must use just the electricity
from its main power line. If we can arrange the visiting time of each EV, the
mall can better benefit from EV-stored energy, saving more money.

Main power lineControl logic

V2G
Microgrid

(shopping mall,
building, ..)

Fig. 1. System architecture

Shoppers, who want to sell electricity, submit their requests specifying their
earliest and latest arrival times as well as the amount to sell. In addition, the
plug-in duration, which corresponds to the stay time in the mall, is also given.
The control switch can connect or disconnect each EV according to control logic.
For each request, the server makes an electricity purchase plan and calculates its
efficiency in terms of surplus and unused amount of energy in EV batteries. Here,
like other scheduling policies [11], the time axis is divided into fixed-size time
slots. This makes the scheduling problem more manageable and its execution
time predictable. The EVs plugged-in to the grid are connected or disconnected
to the grid just on the time slot boundary. For each time slot, whose demand is
forecasted in advance, the scheduler selects the EVs to discharge to the microgrid
out of available ones.
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3.2 Scheduling Mechanism

Our task model can be explained with an example shown in Figure 2. In Figure
2(a), a bid request, Ri, consists of (Ei, Li, Ai, Di), where each element denotes
earliest arrival time, latest arrival time, amount to sell, and plug-in duration,
sequentially. With modern communication technologies, the interaction between
servers and clients, even in the case they are running on mobile devices, is very
common. In the example, the submitter of R0 can arrive between time 0 to time
2 according to the decision of the scheduler. The time scale is aligned with the
length of a time slot, for example, 0.5 hours. Once arrived, the driver stays in
the mall for 4 units for shopping and other activities. Here, we assume that the
amount of electricity flow from the EV to the grid is fixed and thus linear to the
time length during which the EV is connected to the grid. After all, the amount
to sell can be also represented by the number of time slots. Additionally, the
amount to sell and the plug-in duration of R2 is same. It implies that once the
R2 issuer is connected, the connection cannot be suspended.
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Fig. 2. Task model and electricity flow coordination

Without any coordination, EVs will arrive anytime they want. Figure 2(b)
illustrates the case each EV arrives at its earliest time and is connected to the
grid as many slots as the amount to sell without being disconnected. In the figure,
actual demand is plotted by a curve. For each slot, the number of connected EVs
corresponds to the amount of available EV-stored electricity on the grid. If it
is above the demand curve, the energy cannot be used but unavoidably wasted
(surplus amount). On the contrary, if it is below the demand curve, the lacking
part (lacking amount) is complemented only by the main power line. In Figure
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2(b), we can find not a little surplus and lacking energy for the given demand
curve. On the contrary, EVs arrive and are connected under the coordination
of a controller, the discrepancy between the demand curve and the amount of
available EV-stored energy will be much cut down as shown in Figure 2(c).

According to the schedule in Figure 2(c), R1 can be plugged-in at time slot
3, not its earliest arrival time 1. In addition, it is connected to the grid at time
slot 3 and disconnected at 4. Here, the R1 issuer can arrive at slot 3 and leave
at slot 7. Formally, speaking, for Ri, the EV can arrive during the interval from
Ei to Li, so the number of feasible arrival times is Li − Ei + 1. It is plugged-
in during Di slots and connected to the grid for Ai slots. We assume that Di

is fixed irrespective of when the EV arrives. It cannot be always valid, but its
dependency relation can be combined in the task model. After all, the number
of feasible connection/disconnection schedules for Ri, namely, Fi is calculated
as in Eq. (1).

Fi = (Li − Ei + 1) ×
(
Di

Ai

)
(1)

As a consequence, the size of the whole search space is shown in Eq. (2).
∏

Fi (2)

The scheduling problem is analogous to assigning resources to a task. As there
is no restriction on the maximum number of allocated resources, the allocation
of each resource is mutually independent. Our scheduler recursively builds an
allocation table with the precomputation of all feasible combinations of

(
Di

Ai

)
.

Reaching a leaf, a complete allocation is evaluated primarily in terms of lacking
amount. Actually, as the whole available amount of EV-stored energy is fixed for
the given bid set, a schedule lacking smallest has the smallest surplus. Here, the
price effect is not considered in this paper. However, many other constraints can
be integrated into our cost function. For each evaluation, if a solution is better
than the current best, the solution will replace it. Finally, after the whole search
space traversal, the best solution remains in the current best.

4 Experiment Result

This section measures the performance of the proposed scheme through a proto-
type implementation. Main performance metrics include lacking amount, surplus
amount, meet ratio, and consumption ratio. Lacking amount and surplus amount
are already explained in the previous section and they give an insight on energy
efficiency, indicating how close a schedule can make the amount of purchased
energy to the demand curve. They are measured on request basis. In addition,
the meet ratio denotes how much the demand is satisfied from the side of a shop-
ping mall. Next, the consumption ratio measures how much EV-stored energy
is consumed on the grid. Those metrics are measured according to not only the
number of EVs which are willing to sell energy but also power demand from the
microgrid side.
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In our experiment setting, the time slot is set to 0.5 hours, while the schedul-
ing window size is set to 14 slots. Actually, if the number of slots in the scheduling
window increases, the computation time can explode, especially when the num-
ber of EVs increases. For less than or equal to 14 slots, the execution time is
maintained within a reasonable range. Ri, Ei, Li, Ai, and Di are selected ran-
domly within 14 slots, with the restriction that Li is larger than Ei and Di is
larger than Ai. In addition, power demand for each slot distributes exponentially
with the given average. For each parameter setting, 20 sets are generated and
the results are averaged. We compare the performance with the uncoordinated
scheme. It employs no intelligent mechanism, but gives us a good reference to
compare and estimate how well our scheme works.

The first experiment measures the effect of the number of EVs to energy
efficiency, its result being plotted in Figure 3. In the y-axis, no scale unit is
explicitly given, but a single unit matches the amount of electricity which flows
from an EV to the grid during a single time slot. The experiment changes the
number of EVs, or interchangeably, tasks from the viewpoint of the scheduler,
from 2 to 6. The average demand per slot is 1.5. When there are just 2 tasks,
the difference between the two schemes remains at just 1.6, which corresponds
to 12.4 % improvement over the uncoordinated case. However, the performance
gap gets larger as the number of tasks increases, when the search space size
gets extended and the greedy search can find an efficient schedule. The proposed
scheme outperforms by 49.0 %. From the perspective of surplus amount, the
proposed scheme can reduce the amount of energy not used on the grid by up
to 63.7 % in the case of 6 tasks.

Next experiment measures the meet ratio and the consumption ratio also
according to the number of tasks, and its result is plotted in Figure 4. More
energy demand from the grid can be met when more EV-stored electricity is
available. Hence, with more tasks, the meet ratio increases for both cases. Our
scheme starts from 25 % for 2 tasks and reaches 65 % on 6 tasks, as shown in
Figure 4(a). On the contrary, the uncoordinated scheme hardly benefits from

 0

 5

 10

 15

 20

 2  3  4  5  6

La
ck

in
g 

am
ou

nt

Number of tasks

"Scheduled"
"Uncoordinated"

 0

 2

 4

 6

 8

 10

 2  3  4  5  6

S
ur

pl
us

 a
m

ou
nt

Number of tasks

"Scheduled"
"Uncoordinated"

(a) Lacking amount (b) Surplus amount

Fig. 3. Effect of the number of tasks to coordination efficiency



Design of a Greedy V2G Coordinator Achieving Microgrid-level Load Shift 591

the increase in the available EV-stored energy, obtaining just 17 % increase in
the meet ratio. Figure 4(b) plots the consumption ratio. For the given param-
eter range, both schemes are not significantly affected, but our scheme shows
better performance by from 33 to 40 %. This result indicates that the amount
of consumed electricity more depends on power demand from the grid.
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Figure 5 measures the effect of the power demand to the lacking amount and
the surplus amount. The experiment makes the per-slot power demand range
from 0.2 to 3.0, while the number of tasks is set to 5. Necessarily, according to
the increase in the energy demand from a microgrid, the lacking amount also
increases while the surplus amount decreases. Figure 5(a) shows that the lacking
amount is 0 until the demand is 0.6 for the proposed scheme and 0.2 for the
uncoordinated scheme. From those points, both schemes show almost the same
slope in their lacking amount. The lacking amount of the proposed scheme is
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37.0 % of that of the uncoordinated case when the demand is 1.0 and 90.7 %
when the demand is 3.0, while the absolute difference remains in the range of
2.6 to 4.1. In addition, coordinated scheduling achieves significant efficiency in
reducing the surplus amount as shown in Figure 5(b). The performance gap gets
larger according to the increase in the power demand, reaching 86.6 % when the
demand is 3.0.

5 Conclusions

Besides their original role of driving, EVs can be used for power regulation by
giving remaining electricity cheaply charged overnight back to the grid during
the daytime peak hours. The microgrid, such as shopping malls, can predict its
power demand with an appropriate forecast model and make an energy pur-
chase plan to avoid electricity consumption from the power vendor during the
expensive peak-rate interval. If many EVs are concentrated on a specific inter-
val, not every battery-stored electricity can be bought by the grid. If there are
not sufficiently available EVs, the grid cannot but use expensive grid-supplying
electricity. This problem can be efficiently alleviated based on sophisticated com-
putational intelligence and modern ubiquitous connectivity.

With an efficient coordination mechanism, it is possible to reduce such sur-
plus and lacking energy. In our service model, each bid request specifies earliest
and latest arrival times, amount to sell, and plug-in duration. The coordinator
builds and traverses the search space to find an optimal schedule, by which EVs
are connected to or disconnected from the grid, achieving an efficient temporal
and spatial load shift in power consumption. Importantly, the bidder is informed
of when it will arrive at the purchaser’s site. The experiment result shows that
the proposed scheme reduces the lacking amount by 49.0 % and the surplus
amount by 63.7 %, compared with the uncoordinated scheduling strategy. In
addition, on the high-demand interval, the surplus amount can be reduced by
up to 86.6 % with the coordinated V2G.

As future work, we are planning to design an integrative tour scheduler for EV
rent-a-cars which will visit multiple destinations. Here, some places are equipped
with charging facilities allowing EVs to be charged while the drivers are taking
a tour. Other places want to buy electricity from visiting EVs if available. In
this V2G-combined tour, an efficient visiting order can improve user-side profits,
giving more convenience to EV rent-a-car tourists. As the rate difference will get
larger between low-load and high-load hours due to demand response policy,
such an application will be more common in our daily lives.
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Abstract. To improve polarimetric synthetic aperture radar (PolSAR)
imagery segmentation accuracy, a modified non-negative matrix factor-
ization algorithm based on the support vector machine is proposed.
Focusing on PolSAR remote sensing images, the modified non-negative
matrix factorization algorithm with the neurodynamic optimization
achieves the image feature extraction. Compared with basic features,
such as the basic backscatter coefficient, structuring more targeted local-
ization non-negative character fits better for the physical significance of
remote sensing images. Furthermore, based on the new constructive fea-
tures, a support vector machine is employed for remote sensing image
classification, which remedies the small sample training problem. Simula-
tion results on PolSAR image classification substantiate the effectiveness
of the proposed approach.

Keywords: PolSAR · Non-negative matrix factorization · Image
segmentation · Support vector machine

1 Introduction

Image segmentation is regarded as a process of partitioning digital images into
multiple regions or objects. These objects provide more information than individ-
ual pixels since the interpretation of images based on objects is more meaningful
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than the interpretation based on individual pixel only [1]. The modern genera-
tion of SAR sensors offer possibilities for global environmental monitoring and
land-cover mapping at high-resolution scale using multi-polarization data. SAR
sensors could work with day and night ability, and is independent on the weather
condition [2]. Thus it has a unique advantage over other passive satellites.

There is now an increasing volume of fully polarimetric data due to the
launch of sensors capable of fully polarimetric imaging. Thus, automated image
segmentation and classification methods are desired to replace manual interpre-
tation, which is subjective and labor intensive. Cao [3] employed the H/A/α and
total backscattering power (SPAN) together to the complex Wishart clustering.
A region-based unsupervised segmentation algorithm for PolSAR imagery that
incorporate region growing and a Markov random field edge strength model was
designed and implemented [4]. Neural networks are also adopted in the PolSAR
processing. An Evolutionary robust radial basis function network based classifier
is presented by Ince et al. [5]. Because of its superiority for small sample learn-
ing problems, support vector machine (SVM) has great advantages for remote
sensing image processing. This is because obtaining a lot of ground true train-
ing samples in a remote sensing image will take a lot of manpower and other
resources. Furthermore, most SVM models are employed in the visible spectrum
[6]. Thus, that how to use the advantage of SVM for PolSAR image segmentation
is still needed to be explored.

In addition, more and more PolSAR image information, such as texture,
decomposition matrix etc. [7], are needed in the segmentation process to improve
the accuracy. Most algorithms already reported in the literatures only could deal
with the basic data type. How to find the best feature for image segmentation
is a new challenge. In this study, the modified non-negative matrix factorization
algorithm is proposed to construct the feature vectors for the classifier. Then the
support vector machine is adopted to complete the classification process.

The remainder of this paper is organized as follows. Section II presents some
preliminaries on Polarimetric SAR data processing. Section III describes the
modified non-negative matrix factorization algorithm. The PolSAR classifica-
tion algorithm based on the support vector machine is presented in section IV.
Section V highlights the potential of the proposed approach through experimen-
tal examples. Concluding remarks are presented in Section VI.

2 Preliminaries of PolSAR Data Processing

Basic PolSAR images are often constructed by the complex scattering matrix
[S] produced by a target under study with the objective to infer its physical
proprieties, which could be expressed as

S =
[

Shh Shv

Svh Svv

]
(1)

The measured scattering matrix [S] is transformed by the Pauli decomposi-
tion [8]. If the conventional orthogonal linear (h,v) basis considers as the Pauli
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basis |S|a = 1√
2

[
1 0
0 1

]
, |S|b = 1√

2

[
1 0
0 −1

]
, |S|c = 1√

2

[
0 1
1 0

]
, |S|d = 1√

2

[
0 −1
1 0

]
,

[S] can be expressed as,

S =
[

Shh Shv

Svh Svv

]
= α[S]a + β[S]b + γ[S]c (2)

where α = (Shh +Svv)/
√

2, β = (Shh −Svv)/
√

2, γ =
√

2Shv. Hence by means of
the Pauli decomposition, all polarimetric information in S could be represented
in a single RGB image by combining the intensities |α|2 →Red, |β|2 →Blue, and
|γ|2 →Green, which determines the power scattered by different type of scatter-
ers such as single- or odd-bounce scattering, double- or even-bounce scattering,
and orthogonal polarization returns by the scattering.

In order to simplify the analysis of the physical information provided by
eigenvectors decomposition, three secondary parameters are defined as a function
for second-order polarimetric descriptors 〈[T3]〉: entropy H, anisotropy A and
mean alpha angle α, which are expressed as follows:

H = −
3∑

i=1

pi log3 (pi), (3)

A =
λ2 − λ3

λ2 + λ3
, (4)

α =
3∑

i=1

piαi, (5)

where pi is the eigenvector, and also called the probability of the eigenvalue λi.
It represents the relative importance of this eigenvalue with respect to the total
scattered power, since

SPAN = |Shh|2 + |Svv|2 + 2|Shv|2 =
3∑

k=1

λk . (6)

3 Modified Non-negative Matrix Factorization

Analysis on separate matrices or slices extracted from a data block often faces
the risk of losing the covariance information among various modes. The H/A/α
and SPAN above are stationary matrix decomposition approach, which could
not adjust adaptively according to each special PolSAR data. Thus, in order
to discover hidden components within the data, the analysis tools is adopted
to explore the multidimensional structure of image data. Non-negative matrix
factorization (NMF) algorithm is first proposed by Lee and Seung [9]. NMF
is distinguished from the other methods, such as principal component analysis
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(PCA), by its use of non-negativity constraints, which has more realistic appli-
cation characteristics with real physical significance. Furthermore, more newly
constructive images are localized features that correspond to better intuitive
notions in PolSAR images.

Let Vn×m denote each single polarimetric SAR image data Shh, Shv, Svh and
Svv, where n is the number of pixels, m is the number of basic feature in the
original image. The matrix factorization is expressed as follows,

V ≈ WH (7)

where Wn×r is the basis matrix, Hr×m is the corresponding coefficient matrix, r
is the feature dimension after factorization. Each column vector of V is approx-
imately equals to the linear combination of the matrix W , and H is the combi-
nation coefficient.

In order to perform non-negative matrix factorization, Eqn. (7) can be defined
as a constrained optimization problem as follows:

min f(W,H)
s.t. W ≥ 0,H ≥ 0 (8)

where f(W,H) is an objective function, which characterizes the degree after
decomposition similar to the original remote sensing data matrix. The con-
straints ensure the nonnegativity. Considering the noises of PolSAR remote sens-
ing images, an alternative objective function is built as,

f(W,H) =
n∑

i=1

m∑

j=1

(Vij − (WH)ij)2 . (9)

Considering (9) objective function optimization problems with bound con-
straints, these could all change to the general form

min f(x)
subject to x ∈ Ω

(10)

where x = (x1, x2, · · · , x(n+m)∗r) ∈ 	(n+m)∗r is the independent variable, f is an
objective function, Ω is a nonempty and closed convex set in 	(n+m)∗r. A one-
layer projection neural network is presented for this problem. It has the lowest
model complexity among neurodynamic optimization models. On the basis of
that, the recurrent neural network model for solving (10) optimization problem
is presented by the following dynamical equation:

ẋ(t) = −x(t) + PΩ(x(t) − ∇f(x(t))) (11)

where x is the state of recurrent neural network, which are corresponding to the
independent variable of NMF algorithm, ∇f denotes the gradient of f , and PΩ

is a projection operator. Each feature extraction method for matrix factorization
factor W and H imposes different constraints limiting conditions. In the PCA
algorithm, the matrix W is imposed column vectors on the orthogonal constraint.
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Although the direction of the extracted characteristic has a large variance of sta-
tistical significance, that wherein the linear combination of positive and negative
is not visually apparent on the understanding. MNMF algorithm matrix decom-
position process, due to the non-negative constraints, there is no redundancy
negative generated features .

4 The PolSAR Classification Algorithm Based on
Support Vector Machine

After the feature extraction process, a Support Vector Machine (SVM) is
employed to classify the PolSAR images. SVM is a typical representative of
kernel methods. In the regression prediction and pattern classification fields, it
has a wide range of applications. Because SVM is built on the basis of statistical
learning theory, it has good generalization ability under limited training sam-
ples [10]. First, from two-class problem, analysis the SVM classification model.
Adopt the form of a linear model:

y(x) = wTφ(x) + b (12)

where φ(x) denotes the feature spatial transformation, b is the bias. The dataset
of training include the Pauli decomposition and MNMF features, which are
x1,x2, · · · ,xN , the objective value is t1, t2, · · · , tN , here tn ∈ {−1, 1}. , solve
(13),

arg max
w,b

{
1

‖w‖ min[tn(wTφ(xn) + b)]
}

(13)

Under the constraint, the best {w, b} point can be obtained,

tn(wTφ(xn) + b) ≥ 1, n = 1, · · · , N (14)

SVM is basically two-class classifiers. However, in PolSAR segmentation
problems, the majority have K > 2. Therefore, multi-class classification SVMs
are employed to build different multi-class classifiers. Then, sample xi is grouped
into a class according to the largest number of votes. In remote sensing image
classification process, there usually exist too few training samples. Thus, SVM
algorithm has a unique advantage in the small sample study and have a better
applicability.

5 Simulation Results

In order to substantiate the effectiveness and efficiency of the proposed MNMF+
SVM model, the following simulation of PolSAR image classification was per-
formed. A quad polarimetric Radarsat-2 SAR image in Quebec City, CA, was
adopted in this experiment. The satellite carries a C-band active phased array
SAR. This PolSAR image has 2055 rows × 1720 columns with HH, HV, VH
and VV polarimetric types. The false color composite image is produced using
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Pauli matrix factorization, as shown in Fig. 1. There are four land covers, which
are river, green land, wetland, and urban land. For this geographic area, 37322
pixels are carefully recorded and registered ground cover information as learn-
ing samples by human observers based on ground reference and land-use map,
shown in Fig. 1. 80% samples are used as the training data, the others are the
test data. The segmentation results based on MNMF+SVM are shown in Fig. 2.
It is seen that the proposed approach can obtain the good segmentation results.

Fig. 1. The false color composite image with learning samples based on Pauli matrix
factorization

In order to compared with other algorithms, introduce the index of overall
accuracy and Kappa coefficient to evaluate. The overall accuracy is defined as
follows:

O =
the number of correctly segmentation samples

the total number of samples
(15)

In addition, a discrete multivariate analysis technique is used to test whether
the overall agreement in the different separate error matrices is significantly
different. The measure of agreement called Kappa coefficient [11] is adopted to
assess the significant difference, which is defined as follows:

κ =
N

∑C
k=1 Nkk − ∑C

k=1 Nk+N+k

N2 − ∑C
k=1 Nk+N+k

(16)

where N is the number of samples, C is the number of clusters, Nkk denotes the
number of correctly classified. Nk+ and N+k indicate, respectively, the number
for class i and the number of clustering to class i.
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Fig. 2. The PolSAR image segmentation of MNMF+SVM

The specifical overall accuracy and Kappa coefficient are tabulated in Table 1.
Classic PCA with SVM model and H/A/α[3] are added in the simulation.
According to the results, MNMF+SVM algorithm outperforms other ones. The
MNMF method is superior to the basic PCA and H/A/α method, which obtains
the best image features.

Table 1. Clustering Performance of Three Algorithms for PolSAR image segmentation

Quebec City

Overall Accuracy κ coefficient

PCA+SVM 80.24% 0.7392

H/A/α[3] 85.24% 0.8192

MNMF+SVM 89.23% 0.8424

6 Conclusions

A method of modified non-negative matrix factorization and support vector
machine is developed for PolSAR image segmentation, which can effectively
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extract target feature information. Through the neurodynamic optimization app-
roach, the nonconvex constraint optimization of NMF is solved. Based on these
extracted features, the use of support vector machine image classification model
can obtain the better classification results. Compared with other methods, the
simulation results demonstrates the validity of MNMF+SVM for PolSAR image
segmentation.
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Abstract. In this paper we solve the path planning of Unmanned Aerial
Vehicle (UAV) using differential evolution algorithm (DE). Based on tra-
ditional DE, we proposed a modified multi-population differential evolu-
tion algorithm (MMPDE) which adopts the multi-population framework
and two new operators: chemical adsorption mutation operator and selec-
tion mutation operator. The simulation experiments show that the new
algorithm has good performance.
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1 Introduction

Unmanned Aerial Vehicle (UAV) has been widely used. In the military, it can
be used on battlefield detection and monitoring, location emendation, damage
assessment, electronic warfare, and so on. In the civil field, it can be used on
aerial photography, disaster condition monitoring, traffic patrolling, public secu-
rity control, and so on. Comparing with the general airplanes, the UAV has
the advantage of low-cost, high security, strong survival ability, good maneu-
vering performance. Furthermore, there is no need to worry about the casualty
problems. Therefore, the UAV can be convenient to use widely.

The aim of path planning of UAV is to find an optimal route subject to
some certain performance indexes based on the task objective. One must con-
sider topography, data, threat information, fuel oil, constrained time in path
planning and build mathematical model based on these constraints. Now there
are some algorithms in path planning such as genetic algorithm, particle swarm
optimization algorithm, neural network, simulated annealing algorithm, and so
on [1-3]. In this paper we solve the path planning of UAV based on the MMPDE
and compare the results of the new and old algorithms.

This work was supported by the National Natural Science Foundation of China (No.
11171367, 91230103), the Fundamental Research Funds for the Central Universities
(DUT13LK04).
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2 Path Planning of UAV and its Mathematical Model

2.1 Description of Problem

In this section we first translate the path planning into an optimization problem
with dimension n (see figure 1) [4].

( x , y )
( x', y' )

Starting point  A (x1, y1 )

Aim point B (x2, y2 )

X'

Y '

X

Y

O

Fig. 1. Graph of Coordinate Transformation

Build a new coordinate system, where the new X ′ axis is from the starting
point A(x1, y1) to the aim point B(x2, y2), and the coordinate transformation
formula is as follows:

θ = arcsin
y2 − y1

|−−→AB|
, (1)

(
x
y

)
=

(
cos θ sin θ

− sin θ cos θ

) (
x′

y′

)
+

(
x1

y1

)
. (2)

Next we equally divide AB into n line segments whose partition points are
ai (i = 1, 2, · · · , n), then we can get the corresponding bi (i = 1, 2, · · · , n)
via optimization, and so form the vector (b1, b2, · · · , bn)T . Link these points in
turn, we will get a polyline path connected the starting point and the aim point,
hence we transform path planning of UAV into an optimization problem with
dimension n.

2.2 Threat Cost

On the path Li,j , the total threat cost originated from Nt threat source is

wt,Lij
=

∫ Lij

0

Nt∑

k=1

tk
[(x − xk)2 + (y − yk)2]2

dl. (3)
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For simplicity (see figure 2), every edge is divided into 5 segments. We calculate
the threat cost of this edge only taking 5 threat points. If the distance between
the threat point and the edge is less than the threat radius, then calculate the
threat cost according to the following equation:

1/10

3/10

5/10

7/10

9/10

i

j

T hreat point k+ 1

T hreat point k -1

T hreat point k

Fig. 2. Calculation of Threat Cost

wt,Lij
=

L 5
ij

5

Nt∑

k=1

tk(
1

d 4
0.1,k

+
1

d 4
0.3,k

+
1

d 4
0.5,k

+
1

d 4
0.7,k

+
1

d 4
0.9,k

), (4)

where Lij denotes the edge length connected the nodes i and j, d0.1, k denotes
the distance between the 1/10 partition point on edge Li,j and the kth threat
center, and tk denotes the threat level of the threat source.

Besides, since the fuel cost is related to the length, we denote wf = L for
simplicity and the fuel cost for every edge is wf,Lij

= Lij .

2.3 Performance Indexes

The performance indexes of path planning of UAV mainly include safe perfor-
mance index and fuel performance index completing the given task, that is, the
minimum performance indexes of threat cost and fuel cost.

Denote L the length of path, then the minimum performance index of threat
cost is

minJt =
∫ L

0

wtdl, (5)

and the minimum performance index of fuel cost

minJf =
∫ L

0

wfdl, (6)
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then the total performance index of path of UAV is

minJ = kJt + (1 − k)Jf . (7)

In the above equations, wt denotes the threat cost of every point, wf is the
fuel cost of every point which is a function of length (wf is a constant 1 in
simulation), k ∈ [0, 1], denotes the weight coefficient between the safe and fuel
performance indexes which can be determined by the task of UAV.

3 Differential Evolution Algorithm

3.1 Basic Differential Evolution

In 1995, R. Storn and K. V. Price broke the shackles of traditional algorithm
frameworks, put forward a simple and effective method (called differential evolu-
tion, DE) to solve global optimization problems with continuous variables. From
then on, DE has been attracting the attention of the researchers from diverse
domains of knowledge [5-8].

Based on real-coding and multi-parent crossover, DE replaces a current indi-
vidual by a new one only if the new generation individual is excellent. Next we
introduce the basic operation via solving the minimum problem [9, 10].

(1) Mutation Operator
For the individual Xi(t) in the population, choose randomly three integers

r1, r2, r3 ∈ {1, 2, · · · , N}, r1 �= r2 �= r3 �= i, and create the mutation individual:

Vi(t) = Xr1(t) + F · [Xr2(t) − Xr3(t)] � (vi1(t), vi2(t), · · ·, vin(t))T , (8)

where F is the magnification factor of finite difference vector, usually F ∈ (0, 1).
(2) Crossover Operator
Crossover the mutation individual Vi(t) and the current one Xi(t) to get the

competitive individual:

Ui(t) � (ui1(t), ui2(t), · · · , uin(t))T .

Precisely, generate randomly integers randj ∈ {1, 2, · · · , n} for j = 1, 2, · · · , n,
and we have

uij(t) =

{
vij(t), if rand [0, 1) ≤ CR or j = randj ,

xij(t), otherwise,
(9)

where CR is the crossover control parameter, usually CR ∈ [0, 1].
(3) Selection Operator

Xi(t + 1) =

{
Ui(t), if f(Ui(t)) < f(Xi(t)),
Xi(t), otherwise.

(10)
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3.2 Modification of Evolution Operators

3.2.1 Chemical Adsorption Mutation Operator

Adsorption is an phenomenon or a process of a particle adhesion to some
body because of the object’s attraction, such as chemical adsorption and phys-
ical one. If the property doesn’t changed during the process, it can be called a
physical adsorption. On the other hand, it can be called a chemical adsorption,
if chemical bond(s) is(are) changed during the process besides gravitation. In
mathematical words, if the physical adsorption is equivalent to linear operator,
then nonlinear operator is the chemical adsorption.

Notice that in the generation process of mutation (see (8)), each individual
can be regarded as a physical adsorption merely with position shifting, that is,
the individual Xr1(t) is perturbed by the gravitation of Xr2(t) and Xr3(t). It
is easy to know that the operator (8) is a linear operator. Since the mutation
individual Vi(t) is restricted on the hyperplane defined by the parent individuals
Xr1(t), Xr2(t) and Xr3(t), the algorithm may fall into local optimization. Hence,
we can regard the components of the individual Xr1(t) as chemical bonds, and
make some components adhere to a certain individual firmly under these chem-
ical bonds. This is a chemical adsorption corresponding to a nonlinear operator
in mathematics. If we take the geometric center of the parent individuals Xr1(t),
Xr2(t) and Xr3(t) as the certain adsorbed substance, the chemical adsorption
mutation operator is as follows:

vij(t) =

{
(xr1j(t) + xr2j(t) + xr3j(t))/3, if rand [0, 1) < Pα,

xr1j(t) + F · (xr2j(t) − xr3j(t)), otherwise,
(11)

where Pα ∈ [0, 1) is the adsorption strength, we can choose Pα = 1 − 1
n .

3.2.2 Selection Mutation Operator

In DE, the current individual Xi(t) is replaced by the competitive individual
Ui(t) if and only if Ui(t) is better than Xi(t), and this is a determined sub-
stitution rule. Though this selection is beneficial to the rapid convergence for
the population, usually it goes against the diversification of the population. In
view of this, we give the weak individual a more mutation chance when select-
ing the competitive individual. That is, if the competitive individual doesn’t
replace the current one and it is a weak individual, then mutate the current
individual directly according to a certain probability. This operation attends the
weak group and may increase the diversification of the population. In this paper,
the weak individual is defined as the one who doesn’t reach average level. For
example, in the minimum problem, if Xi(t) satisfies

f(Xi(t)) ≥
N∑

l=1

f(Xl(t))/N, (12)
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then Xi(t) is called a weak individual. The mutation operator can be chosen as the
Cauchy-Lorentz mutation for the optimal individual center of the current popu-
lation:

Xi(t + 1) = Xbest(t) + Cauchy(0, γ), (13)

where γ ∈ (0, 1).

3.3 Multi-Population Evolutionary

The so-called multi-population evolutionary means partitioning all the individ-
uals in the group into some small subgroups. Under this significance, every
subgroup denotes a subspace or sub-domain in the solution space, and every
individual denotes a solution. All the subgroups run parallel local searching and
interconnect each other via emigration operator. Emigration operator termly
(for some certain generations) emigrates the optimal individual in the subgroup
into other subgroup during the evolution process, in order to exchange infor-
mation between the subgroups. That is, the weakest individual in the objective
subgroup is replaced by the optimal individual in the source subgroup. It is
very important for the evolution. Without emigration operator, all subgroups
would not contact each other, and the multi-population differential evolution
would be only a repeated DE with different parameters, which would lose its
characteristics [11].

3.4 Modified Multi-Population Differential Evolution Algorithm
(MMPDE)

In order to increase the diversity of the population, and improve its ability of
jumping out of local minimum, next we propose MMPDE which, uses the multi-
population framework in the DE algorithm, replaces the traditional mutation
operator (8) by the chemical adsorption mutation one (11), and introduces (12)
and (13) into the selection operator (10). The steps are as follows for the mini-
mum optimal problem:

Step 1 (Initialize): Input the evolution parameters, the number of subgroups
MP , the size of subgroup N , the magnification factor F of difference vector,
the crossover control parameter CR ∈ [0, 1], the adsorption strength Pα ∈ [0, 1)
and the maximal iteration number Ncmax

. Randomly initialize each subgroup
Xk(0) = (Xk

1 (0),Xk
2 (0), · · · ,Xk

N (0)), where Xk
i (0) ∈ R

n, k = 1, 2, · · · ,MP .
Note that the vector Xk

best(0) is the optimal individual in Xk(0), and E0 =
{X1

best(0),X2
best(0), · · · ,XMP

best (0)} be the set of elite individuals. Let t = 0.

Step 2 (Population Evolution): For k = 1, 2, · · · ,MP , for each individual Xk
i (t)

in subgroup Xk(t), do the following operations:
(1) mutation

vij(t) =

{
(xr1j(t) + xr2j(t) + xr3j(t))/3, if rand [0, 1) < Pα,

xr1j(t) + F · (xr2j(t) − xr3j(t)), otherwise.
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(2) crossover

uij(t) =

{
vij(t), if rand [0, 1) ≤ CR or j = randj ,

xij(t), otherwise.

(3) selection

Xk
i (t + 1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Uk
i (t), if f(Uk

i (t)) < f(Xk
i (t)),

Xk
best(t) + Cauchy(0, γ), else if f(Xi(t)) ≥

N∑

l=1

f(Xl(t))/N,

Xk
i (t), otherwise.

(14)
Step 3 (Select Elite Individuals): Select the optimal MP individuals from the
set

{X1
best(t),X

2
best(t), · · · ,XMP

best (t),X1
best(t + 1),X2

best(t + 2), · · · ,XMP
best (t + 1)}

to get the set of elite individuals E(t + 1).
Step 4 (Emigration): Replace the weakest individual in subgroup i + 1 by the
optimal individual in subgroup i, and replace the weakest individual in the first
subgroup by the optimal individual in the last subgroup.
Step 5 (Replacement): Replace the weakest MP individuals in the first sub-
group by the individuals in the elite population E(t + 1).
Step 6 (Criteria): If the optimal individual Ebest(t + 1) in the elite population
E(t + 1) satisfies the requirement or it is the evolution deadline, then stop and
output Ebest(t + 1) as the approximate solution; else let t = t + 1, goto step 2.

4 Roughly Steps of MMPDE for Path Planning of UAV

Step 1: Build a new coordinate system, and transform the threat information
into the new coordinate system. Divide the segment AB into n segments, then
every feasible solution is a real vector of dimension n.
Step 2: Randomly generate MP × N initial paths within permissible range on
the battle field, and calculate the cost of every feasible path based on every
threat source information.
Step 3: Evolution computation.
Step 4: For every subgroup formed by the MP feasible solutions, execute muta-
tion, crossover and selection in turn.
Step 5: Emigrate and update the set of elite individuals.
Step 6: If iteration number is greater than the permissive maximal number,
then break the circulation; else goto step 3.
Step 7: Transform the final optimal path inversely and output.
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5 Simulation Experiments

The battlefield environment of UAV task is as shown in Table 1.

Table 1. Settings of task

starting point [10,10] aim point [55,100] cost weight 0.5

threat center [45,50] [12,40] [32,68] [36,26] [55,80]

threat radius 10 10 8 12 9

threat level 2 10 1 2 3

The number of subgroups MP = 5, the size of every subgroup N = 30,
the dimension of the solution space n = 20, the maximal iteration number
Ncmax

= 400, the mutation factor F = 0.5, the crossover factor CR = 0.9. Take
four experiments randomly and the results are shown in the following figures.
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Fig. 3. Graph of the Results After 4 Times DE Algorighm
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Fig. 4. Graph of the Results After 4 Times MMPDE Algorighm

From the experiments we can see that all the UAV paths generated by DE
and MMPDE successfully bypass every threat within the battlefield and reach
the target. However, from figure 3 we can see that two of the four paths generated
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by DE goes peripherally from the threat center, so the paths are longer and the
effect is worse, hence the DE algorithm isn’t stable. Figure 4 show that the four
results generated by MMPDE differ little, and all the four paths safely goes
through the intermediate threat, so the paths are short and the effect is better.
These show that the new algorithm MMPDE has faster convergence rate, more
stable effect, and better universality.

6 Conclusion

Based on the differential evolution, we introduce two new operators: chemi-
cal adsorption mutation operator and selection mutation operator, in order to
strength local searching ability and global optimizing ability of the DE. Mean-
while, based on the emigration and sharing of information, a multi-population
differential evolution algorithm is proposed which improves the global conver-
gence effect. The path planning of UAV is solved by MMPDE which shows that
the new algorithm has faster convergence property and good performance, so it
can solve sophisticated optimization problems.
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Abstract. In this paper, a class of consensus protocol for detail-
balanced networks of agents with higher-order Lipschitz-type nonlin-
ear dynamics and external disturbances is investigated. To guarantee
asymptotic consensus in such a multi-agent system, several distributed
controllers are constructed based only on the relative state information
of neighboring agents. By appropriately constructing Lyapunov func-
tion and using tools from M-matrix theory, some sufficient conditions
for achieving distributed consensus are provided. Finally, a example and
simulation result is given to illustrate the effectiveness of the obtained
theoretical result.

Keywords: Higher-order multi-agent · Consensus · Lipschitz nonlin-
ear · External disturbances

1 Introduction

In recent years, there has been increasing interest in the collective behavior
of multi-agent networks. Multi-agent networks, which consist of lots of inter-
acting autonomous agents, have broad applications in various fields, such as
cooperative control of unmanned air vehicles or unmanned underwater vehicles
[1], distributed sensor networks [2–4], formation control for multi-robot systems
[5–7], attitude alignment of clusters of satellites , synchronization of complex
networks [8,9].

In this paper, we shall study a class of multi-agent systems with higher-
order Lipschitz-type nonlinear dynamics with external disturbance. The main
contribution of this paper will be presented in the following aspects. Firstly,
the protocol to solve the consensus problems is designed. Secondly, some useful
criteria have been derived analytically which can guarantee multi-agent systems
with external disturbance to achieve consensus. To our knowledge there are few
research papers dealing with this issue. Thirdly, by appropriately constructing
Lyapunov function and using tools from M-matrix theory, we prove that the
consensus can be reached.

The rest of this paper is organized as follows. Some concepts and consensus of
multi-agent systems are briefly reviewed in Section 2. The dynamic gains based
c© Springer International Publishing Switzerland 2014
Z. Zeng et al. (Eds.): ISNN 2014, LNCS 8866, pp. 611–620, 2014.
DOI: 10.1007/978-3-319-12436-0 68
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disturbance inputs for consensus of leader-following multi-agent systems with
external disturbances are presented in Section 3. A numerical example is given
in Section 4 to show the effectiveness of the proposed protocol. Finally, some
useful conclusions are drawn in Section 5.

Notion. Let R and N be the set of real and natural numbers, respectively, and
RN×N be the set of N × N real matrices. Let IN (0N ) be the N -dimensional
identity (zero) matrix, and 1N ∈ RN (0N ∈ RN ) be the N -dimensional column
vector with all entries equal to one (zero). diag{d1, · · · , dN} indicates the diag-
onal matrix with diagonal entries d1 to dN and AT represent the transpose of
A. Let ||A||1, ||A|| and ||A||∞ denote 1-norm, 2-norm and ∞ -norm of a matrix
A, respectively. Let λmin(A) and λmax(A) denote respectively the smallest and
largest eigenvalues of matrix A. The matrix inequality A > 0 means that A is
positive definite. Let ⊗ denote the Kronecker product.

2 Preliminaries

2.1 Graph Theory

Let G = {V, E , A} be a weighted directed graph with the vertex set v = {v1, v2, · · ·
, vN}, where node vi, i ∈ IN , represents the ith agent, and the finite index set
IN = {1, 2, · · · , N} is the node indexes of G. E ⊆ V × V is the set of edges, whose
elements denote the communication links between the agents. A = [aij ]N×N is
the weighted adjacency matrix of the weighted directed graph G with nonnega-
tive adjacency elements aij > 0, ∀i, j ∈ IN . An edge eij in G is denoted by the
ordered pair of nodes (vj , vi), where vj and vi are called the parent and child
nodes, respectively, and eij ∈ E if and only if aij > 0, otherwise aij = 0. Fur-
thermore, self-loops are not allowed, i.e., aii = 0, ∀i ∈ IN . The Laplacian matrix
L = [lij ]N×N is defined as lii =

∑N
j=1,j �=i aij and lij = −aij , i �= j, for all i, j ∈ IN .

For undirected graphs, both A and L are symmetric. A directed path form node vi

to node vj is a finite ordered sequence of edges, (vi, vk1), (vk1 , vk2), · · · , (vkl
, vj),

with distinct nodes vkm
, m = 1, 2, · · · , l. A directed graph is called strongly con-

nected if and only if there is a directed path between any pair of distinct nodes.
Moreover, a directed tree is a directed graph where every vertex v, except one
special vertex r without any parent, which is called the root vertex, has exactly
one parent, and there exists a unique directed path from r to v. A directed span-
ning tree of a network G is a directed tree, which contains all the vertices and
some edges of G. The graph is said to contain a directed-balanced if there exist
some scalars wi > 0, i ∈ IN , such that wiaij = wjaji for all i, j ∈ IN . Moreover,
the interaction topology may be dynamically changing. For a fixed directed graph
G, its Laplacian matrix L has the following property.

Lemmas 1. ([8]) The Laplacian matrix L of G has a simple zero eigenvalue
and all the other eigenvalues have positive real parts if and only if G contains a
directed spanning tree.

Before moving on, the following notion and lemmas are introduced.
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Definition 1. ([10]) A nonsingular matrix A is called an M-matrix if A ∈ ZN

and all the eigenvalues of A have positive real parts.

Lemmas 2. ([10]) If A ∈ ZN , the following statements are equivalent.
1) A is an M-matrix.
2) Matrix A can be expressed by A = γIN − B, where B ≥ 0 and γ > ρ(B).
3) A−1 exists, and A−1 ≥ 0.
4) There exists a positive definite diagonal matrix Ξ = diag(ξ1, · · · , ξN ) such

that ΞA + AT Ξ > 0.
5) There is a positive vector x ∈ RN such that Ax > 0.

Lemmas 3. ([9]) Let Q ∈ RN×N be any symmetric matrix and W ∈ Rn×n

be any symmetric positive-semidefinite matrix. Then, for any column vector
x ∈ RnN , there holds

λmin(Q)xT (IN ⊗ W )x ≤ xT (Q ⊗ W )x ≤ λmax(Q)xT (IN ⊗ W )x.

2.2 Problem Formulation

Consider a group of N agents, where an agent indexed by 1 is assigned as the
leader and the agents indexed by 2, 3, · · · , N , are referred to as followers. In
multi-agent networks, the agent i is with the following dynamics

ẋi(t) = Axi(t) + Cf(xi(t), t) + Bui(t) + Bdi(t), i = 2, 3, · · · , N, (1)

where xi(t) ∈ Rn is the state of the ith follower, f : Rn × [0,+∞) → Rm is a
continuously differentiable vector-valued function representing the intrinsic non-
linear dynamics of the ith follower, and ui(t) ∈ Rp is the control input to be
designed, and di(t) ∈ Rp is the external disturbance of the ith follower, and A, B,
and C are constant real matrices. It is assumed that matrix pair (A,B) is stabiliz-
able. For notational convenience, let f(xi(t), t) = (f1(xi(t), t), f2(xi(t), t), · · · , fm

(xi(t), t))T , i = 2, 3, · · · , N .

Assumption 1. There exists a nonnegative constant γ, such that

||f(y, t) − f(z, t)|| ≤ γ||y − z||, ∀ y, z ∈ Rn, t ≥ 0. (2)

Assumption 2. There exists a constant l > 0, such that ||di(t)||∞ ≤ l, i =
2, 3, · · · , N .

In many practical cases, the leader plays the role of a command generator
providing a reference state and the followers are close to the leader. Therefore, it
is sensible to assume that the state of the leader evolves without being affected
by those of the followers. The dynamics of the leader is described by

ẋ1(t) = Ax1(t) + Cf(x1(t), t), (3)
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where x1(t) ∈ Rn is the state of the leader and f : Rn×[0,+∞) → Rm is a contin-
uously differentiable vector-valued function representing the intrinsic nonlinear
dynamics of the leader, and A and C are constant real matrices. For notational
convenience, let f(x1(t), t) = (f1(x1(t), t), f2(x1(t), t), · · · , fm(x1(t), t))T .

Definition 2. Consensus of the leader-following multi-agent systems (1) and
(3) can be achieved, if for any initial states

lim
t→∞ ||xi(t) − x1(t)|| = 0, ∀ i = 2, 3, · · · , N.

Let us consider the following example for integrator agents.

1

2 3

4 5

Fig. 1. Network topology with four followers and one leader

Example 1. Fig. 1 provides a topology for group of 5 single-integrator with
V = {1, 2, 3, 4, 5}, where a is the strength of the coupling for agents. In [13], some
sufficient for achieving distributed consensus are provided which are shown in
fig. 2. However, consensus of agents within the same interaction topology cannot
be achieved when one of agents occurs external disturbance which are shown in
fig. 2.

Example 1 implies that there are some interaction topologies which cannot
guarantee the hold of such distributed protocol. In this paper, we will be focusing
on further explore under what kind of interaction topologies with distributed
protocol can the consensus be achieved while regardless how weak or strong
the coupling among the agents are. In order to achieve consensus tracking, a
distributed protocol based on relative information between neighbouring agents
for (1) is proposed as

ui(t) = αF (
N∑

j=1,j �=i

aij(xj − xi))

+βsgn(F
N∑

j=1,j �=i

aij(xj − xi)), ∀ i = 2, 3, · · · , N,

(4)
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Fig. 2. Trajectories of xi

where α > 0 represents the coupling strength, β > 0 represents the gain constant,
F ∈ Rp×n is the feedback gain matrix to be designed, and sgn(·) is the signum
function.

3 Main Results

In this section, the main theoretical results of this paper are presented and
proved. For further analysis, the following assumptions and lemmas are need.

Assumption 3. The graph G contains a directed spanning tree with the leader
being the root. So there exists a directed path from the leader to each follower.

Since the leader has no neighbors, the laplacian matrix L in connection with
the communication topology G can be divided into

L =
(

0 0T
N−1

q L̂

)
, (5)

where q ∈ RN−1, and L̂ ∈ R(N−1)×(N−1). Under Assumption 3, it follows from
Lemma 1 that the Laplacian matrix L of G has a simple zero eigenvalue and all
the other eigenvalues has positive real parts. Obviously, all the eigenvalues of L̂
defined in (5) have positive real parts.

Define W = diag{ω1, ω2, · · · , ωN−1} where wiaij = wjaji for all i, j ∈ IN .
Let ωmax and ωmin be the largest and smallest one of ωi, i = 1, 2, · · · , N ,
respectively. Then one has the following result.

Lemma 4. ([11]) The matrix L̂W is positive definite.
Let ei(t) = xi+1−x1(t), i = 1, 2, · · · , N−1, and e(t) = (eT

1 (t), eT
2 (t), · · · , eT

N−1

(t))T . Obviously, e(t) = 0(N−1)n if and only if x1(t) = x2(t) = · · · = xN (t), for
all t > 0. Using (4) for (1), we obtain a compact form, one has

ė(t) = (IN−1 ⊗ A)e(t) + (IN−1 ⊗ C)(F (x) − F (x1)) − α(L̂ ⊗ BF )e(t)
−β(IN−1 ⊗ B)sgn((L̂ ⊗ F )e(t)) + (IN−1 ⊗ B)d(t)

(6)
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where d(t) = (dT
2 (t), dT

3 (t), · · · , dT
N (t))T , F (x) = (fT (x2(t), t), · · · , fT (xN (t),

t))T and F (x1) = (fT (x1(t), t), · · · , fT (x1(t), t))T .
Before moving on, a multi-step design procedure is given for selecting the

control parameters of protocol (4) under a fixed topology G.

Algorithm 1. Suppose that the matrix pair (A,B) is stabilizable. Under
Assumptions 1, 2 and 3 the consensus protocol (4) can be designed as follows:

Solve the following linear matrix inequality (LMI):
(

AP + PAT − 2αω−1
maxλminBBT + σCCT + βP P

P − σ
γ2 I

)
< 0 (7)

to get a matrix P > 0, and scalars σ > 0 and β > 0. Where λmin = min{λi, i =
1, 2, · · · , N −1} and λi is the eigenvalue of matrix L̂W . Then, take F = BT P−1.

Then, one can establish the following theorem.

Theorem 1. Suppose the LMI (7) has a feasible solution. Under Assumptions
1, 2, and 3, the distributed control protocol (4) solves the consensus tracking
problem for the leader-follower networks (1) and (3), if choose βωmin ≥ lωmax,
and F = BT P−1.

proof. Consider the following Lyapunov function candidate for the error dynam-
ical system (6):

V (t) = eT (t)(L̂W ⊗ P−1)e(t), (8)

where L̂ is defined in Assumption 4, W = diag{ω1, ω2, · · · , ωN−1} and the posi-
tive definite matrix P is a solution of (7). The time derivative of V (t) along the
trajectory of (6) gives

V̇ (t) = eT (t)[L̂W ⊗ (AT P−1 + P−1A) − α(L̂T L̂W ⊗ FT BT P−1)
−α(L̂WL̂ ⊗ P−1BF )]e(t) + 2eT (t)(L̂W ⊗ P−1C)(F (x) − F (x1))
−2βeT (t)(L̂W ⊗ P−1B)sgn((L̂ ⊗ F )e(t))
+2eT (t)(L̂W ⊗ P−1B)d(t).

(9)

By substituting F = BT P−1 into (9), one gets

V̇ (t) ≤ eT (t)[L̂W ⊗ (AT P−1 + P−1A)
−α((L̂T L̂W + L̂WL̂) ⊗ P−1BBT P−1)]e(t)
+2eT (t)(L̂W ⊗ P−1C)(F (x) − F (x1))
−2βωmin||(L̂ ⊗ BT P−1)e(t)||1
+2ωmax||d(t)||∞||(L̂ ⊗ BT P−1)e(t)||1

≤ eT (t)[L̂W ⊗ (AT P−1 + P−1A)
−α((L̂T L̂W + L̂WL̂) ⊗ P−1BBT P−1)]e(t)
+2eT (t)(L̂W ⊗ P−1C)(F (x) − F (x1))
−2(βωmin − lωmax)||(L̂ ⊗ BT P−1)e(t)||1.

(10)
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Since βωmin ≥ lωmax, one has

V̇ (t) ≤ eT (t)[L̂W ⊗ (AT P−1 + P−1A)
−α((L̂T L̂W + L̂WL̂) ⊗ P−1BBT P−1)]e(t)
+2eT (t)(L̂W ⊗ P−1C)(F (x) − F (x1))

≤ eT (t)[L̂W ⊗ (AT P−1 + P−1A)
−αω−1

max(((L̂W )2 + (WL̂)2) ⊗ P−1BBT P−1)]e(t)
+2eT (t)(L̂W ⊗ P−1C)(F (x) − F (x1)).

(11)

By choosing a orthogonal matrix Q ∈ R(N−1)×(N−1), such that QT (L̂W )Q =
Λ, where Λ = diag(λ1, λ2, · · · , λN−1) and by letting e(t) = (Q ⊗ I)ẽ(t), one has

V̇ (t) ≤ ẽT (t)[Λ ⊗ (AT P−1 + P−1A)
−2αω−1

max(Λ2 ⊗ P−1BBT P−1)]ẽ(t)
+2ẽT (t)(Λ ⊗ P−1C)(QT ⊗ I)(F (x) − F (x1)).

(12)

Using the Lipschitz condition (2) gives

2ẽT (t)(Λ ⊗ P−1C)(QT ⊗ I)(F (x) − F (x1))

≤ σẽ(t)(ΛΘΛ ⊗ P−1CCT P−1)ẽ(t)+
γ2

σ
ẽT (t)(Θ−1 ⊗ I)ẽ(t),

(13)

where diagonal matrix Θ > 0 and scalar σ > 0. By choosing Θ = Λ−1, it followers
from (12) and (13) that

V̇ (t) ≤ ẽT (t)[Λ ⊗ (AT P−1 + P−1A) − 2αω−1
max(Λ2 ⊗ P−1BBT P−1)

+σ(Λ ⊗ P−1CCT P−1) +
γ2

σ
(Λ ⊗ I)]ẽ(t).

(14)

Let ε(t) = (εT
1 (t), εT

2 (t), · · · , εT
N−1(t))

T , where εi(t) = P−1ẽi(t), i = 1, 2, · · · ,
N − 1. Obviously, ẽ(t) = (IN−1 ⊗ P )ε(t). It thus follows from (14) that

V̇ (t) ≤ εT (t)[Λ ⊗ (AP + PAT ) − 2αω−1
max(Λ2 ⊗ BBT )

+σ(Λ ⊗ CCT ) +
γ2

σ
(Λ ⊗ PT P )]ε(t)

≤ εT (t)[Λ ⊗ (AP + PAT − 2αω−1
maxλminBBT

+σCCT +
γ2

σ
PT P ]ε(t),

(15)

where λmin = mini λi, i ∈ {1, 2, · · · , N − 1}. Using (7), it follows from (15) that

V̇ (t) ≤ −βεT (t)(Λ ⊗ P )ε(t)
= −βeT (t)(L̂W ⊗ P−1)e(t).

Thus, one gets
V (t) ≤ e−βtV (0)

for all t > 0. Then, one concludes that e(t) → 0 as t → ∞. Thus, the consensus
tracking problem in multi-agent system (1) is solved by the distributed consensus
tracking protocol (4), constructed in Algorithm 1. This completes the proof.
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Remark 1. Theorem 1 shows that the interaction topologies with external dis-
turbances can the consensus be achieved while regardless how weak or strong
the coupling among the agents are.

Corollary 1. Suppose the LMI (7) has a feasible solution. Under Assumptions 1
and 3, the distributed control protocol (4) solves the consensus tracking problem
for the leader-follower networks (1) and (3) without external disturbances, if
choose β ≥ 0, and F = BT P−1.

4 Numerical Simulations

In this section, a numerical example is provided to verify the theoretical analysis.

Example 2. Consider a multi-agent system with topology G visualised by
Figure 3, where the weights are indicated on the edges. Agents 2-5 are followers
and agent 1 is the single leader.

1

2

3 4

5

1 2

0.4 0.2

1

0.4

0.51

Fig. 3. Network topology with four followers and one leader

Define W = diag{ 1, 2, 0.8, 0.4 }. Obviously, L̂W is positive definite. The
external disturbances are given as: d2(t) = 1.5sin(t), d3(t) = −sin(t), d4(t) =
0.5sin(t2), d5(t) = −0.8cos(t2), which implies that l can be selected as l = 1.5.
The control parameters in (4) are chosen as α = 17 and β = 8. Clearly, f(xi(t), t)
is Lipschitz nonlinear function with a Lipschitz constant γ = 0.8. According to
Algorithm 1, solving LMI (7) gives

F = ( 7.9210 , − 19.3687 , − 0.9659 , 0.0512 ). (16)

Therefore, The protocol (4) with feedback matrix F solves the distributed
consensus tracking problem of given nonlinear network. The simulation results
are depicted in Figures 4.
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Fig. 4. Consensus of trajectories of xi,i = 1, 2, 3, 4, 5

5 Conclusion

By using tools from Lyapunov stability analysis and M-matrix theory, the dis-
tributed consensus problem has been studied for a class of multi-agent systems
with higher-order Lipschitz-type nonlinear dynamics and external disturbances
in this paper. To achieve consensus, a new class of distributed controllers has
been constructed. Some sufficient conditions have been further provided for guid-
ing the states of the followers to asymptotically track those of the leader. Future
works will focus on the distributed consensus tracking problems under finite
time.
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Abstract. Nowadays, document clustering technology has been extensively 
used in text mining, information retrieval systems and etc. The input of network 
is the key problem for topical concept utilizing the Neural Network. This paper 
presents an input model of Neural Network that calculates the Mutual Infor-
mation between contextual words and ambiguous word by using statistical 
method and taking the contextual words to certain number beside the topical 
concept according to (-M, +N). In this paper, we introduce a novel topical doc-
ument clustering method called Document Characters Indexing Clustering 
(DCIC), which can identify topics accurately and cluster documents according 
to these topics. In DCIC, “topic elements” are defined and extracted for index-
ing base clusters. Additionally, document characters are investigated and ex-
ploited. Experimental results show that DCIC based on BP Neural Networks 
models can gain a higher precision (92.76%) than some widely used traditional 
clustering methods. 

Keywords: Document clustering · Clusters indexing · Topical concept 

1 Introduction* 

With the abundance of text documents available through the Web or corporate docu-
ment management systems, the dynamic partitioning of document sets into previously 
unseen categories ranks high on the priority list for many applications like business 
intelligence systems. However, current text clustering approaches tend to neglect 
several major aspects that greatly limit their practical applicability. In this paper, a 
new clustering method is presented, which is named Document Characters Indexing 
Clustering (DCIC) method [1].  

All clustering approaches based on frequencies of terms/concepts and similarities 
of data points suffer from the same mathematical properties of the underlying spaces. 
These properties imply that even when "good" clusters with relatively small mean 
squared errors can be built, these clusters do not exhibit significant structural infor-
mation as their data points are not really more similar to each other than to many  
other data points. Therefore, we derive the high level requirement for text clustering 
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The joint weights should be revised many times during the progress of the error 
propagating back in BP networks. The variation of joint weights every time is solved 
by the method of gradient descent. Because there is no objective output in hidden 
layer, the variation of joint weight in hidden layer is solved under the help of error 
back propagation in output layer. If there are many hidden layers, this method can 
reason out the rest to the first layer by analogy. 

The variation of joint weights in output layer is as following: 

                  ∆ ·                     (1) 

                    ∆ ·                    (2) 

The variation of joint weights in hidden layer is as following: 

  ∆ ∑ ∑ · ·   (3) 

Where   ∆ γ   ,  , ∑ . 

2.2 Clusters Indexing 

As introduced before, STC method has some obvious advantages. Actually, these 
good qualities should all be ascribed to the smart way of forming base clusters by 
creating an inverted index of phrases for the documents. For the sake of convenience, 
we call this kind of way indexing base clusters hereafter. The precise meaning of 
indexing base clusters can be formulated as below: Let F , , … ,  be a doc-
ument collection and I , , … ,  be a set of chosen indexes. Document Fi will 
be placed in the cluster indexed by  if and only if the number of times that  occurs 
in  exceeds a predetermined threshold T.  

We take advantage of document characters in forming indexes. In natural language 
processing, a document is generally represented as a vector of words [4]. The weights 
of words are usually calculated using statistical techniques (such as “tf.idf”). Never-
theless, the document characters of words themselves should also be given enough 
attention. Take POS (Part-of-Speech) for example, intuitively, words with different 
POSes should have different contributions to characterizing a document [5]. Usually, 
nouns and verbs are the most indicative. Adjectives and adverbs are less valuable. 
Function words have little or no influence and should be excluded as stop words. In 
addition, NEs are more discriminative than normal words and should be assigned 
higher weight. In DCIC, we form the indexes by utilizing NEs coupled with important 
nouns and verbs. 

2.3 The Pretreatment of BP Network Model 

In the event of training BP model, the input vector P and objective vector O of topi-
cal concept should be determined firstly. And then we should choose the construction 
of neural network that needs to be designed, say, how many layers is network, how 
many neural nodes are in every layer, and the inspired function of hidden layer and 
output layer. 
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The training of model still needs the vector added weight, output, and error vector. 
The training is over when the sum of square errors is less than the objection of error. 
Or the errors of output very to adjust the joint weight back and repeat the training. 

Topical concept depends on the context to judge the meaning of topical concept. 
So the input of model should be the topical concept and the contextual words round 
them. In order to vector the words in the context, the Mutual Information (MI) of 
topical concept and context should be calculated. So MI can show the opposite dis-
tance of topical concept and contextual words. MI can replace every contextual word. 
That is suitable to as the input model. The function of MI is as follow:  

 MI , log ,·  (4) 

 and  are the probability of word  and  to appear in the cor-
pus separately. While ,  is the probability of word  and  to appear 
together. 

It should be based on context to determine the sense of topical concept. The mod-
el’s input should be the vector of the topical concept and context words. It is well-
known that the number of context words showing on the both sides of topical concept 
is not fixed in different sentences. But the number of vectors needed by BP network is 
fixed. In other words, the number of neural nodes of input model is fixed in the train-
ing. If the extracting method of feature vector is (-M, +N) in context, in other words 
there are M vectors on the left of topical concept and N vectors on the right, the ex-
traction of feature vectors must span the limit of sentences. If the number of feature 
vectors is not enough, the topical concept on the left and right boundaries of whole 
corpus do not participate in the training. 

According to the extracting method of feature vector (-M, +N), the vector of model 
input is as following: 

                        (5) 

Where,  ,  are the MI of context and the first meaning of topical con-
cept  ,  are the MI of context and the second meaning of topical concept 

  are the MI of context and the third meaning of topical concept. MI1i, MI2i 
and MI3i are the feature words of topical concept on the left and MI of topical con-
cept. ,  and  are the feature words of topical concept on the right 
and MI of topical concept.  

Every ambiguous word has three meanings, totally eighteen meanings for six am-
biguous words. Every ambiguous word trains a model and every model has three 
outputs showed by three-bit integer of binary system, such as the three meanings of 
ambiguous wordW are showed as followed:   100      010       001. 

According to statistics, when M, N  are 8, 9  using the method of  
feature extraction, the cover percentage of effective information is more than 87%. 
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However, if the sentence is very short, collecting the contextual feature words on the 
basis of 8, 9  can include much useless information to the input model. Un-
doubtedly, that will increase more noisy effect and deduce the meaning-distinguish 
ability of verve network. 

This article makes an on-the-spot investigation of experimental corpus, a fairly in-
tegrated meaning unit, which average length is between 9~10 words. So this article 
collects the contextual feature words on the basis of 5, 5  in the experiments, 10 
feature words available that calculate MI with each meaning of ambiguous word sepa-
rately to get 30 vectors. All punctuation marks should be filtered while the feature 
words are collected. The input layer of neural network model is regarded as 30 neural 
nodes. The triple-layer neural network adopts the inspired S function. From that, the 
number of neural nodes in hidden layer is defined as 12 on the basis of experimental 
contrast, and 3 neural nodes in output layer. Hence, the structure of model is3012 3, and the precision of differential training is defined as 0.3 based on the ex-
perimental contrast. 

2.4 DCIC Algorithm 

Step 1: Document is submitted to sequential preprocessing modules including word 
segmentation, POS tagging, and NE recognition. In this step, stop words are removed. 
Here, a stop list containing punctuations, common used words and some news specif-
ic words is maintained.  

Step 2: In the stage of document representation, Vector Space Model (VSM) is 
employed. The vector terms here contain only NEs, nouns, and verbs. The tf.idf is 
used for weighing the vector terms.  

Step 3: Forming indexes and creating base clusters: An index used in DCIC con-
sists of two parts: an NE-part and a keyword-part:  

Definition 1: Let F be a document, A , , …  be a set of NEs occurring at 
least twice in F, B , , …  be a set of keywords (nouns and verbs) in F whose tf.idf weights exceed a preset threshold T. a A and b B, the two-
tuple of x, y  is defined as one of D’s indexes.  

If the size of A and B are x and y, then document F has x y chances to be in-
dexed by any of its indexes. This makes it possible that a single document can be 
indexed on different topics and put into several base clusters. With the well-designed 
indexes combining NEs and keywords, DCIC constructs base clusters by merging 
documents that share common indexes.  

Step 4: Combining base clusters into clusters: The base clusters formed in the last 
section overlap a lot. Hence we combine base clusters to reduce duplication and form 
more complete clusters. Let c ,  be two base clusters. If their distance is less than a 
preset threshold , then they will be combined. In order to measure the distance be-
tween two base clusters, the centroids of them have to be calculated. The distance 
measure used in the combination algorithm is the cosine measure:  

 cos , ··             (6) 
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3 Experiments 

3.1 Data and Metrics 

The method is evaluated using a collection of 2271 computer sciences documents 
collected from the web. From these documents, we have manually identified 300 
topics, whose maximum size is 28 documents and minimum is 4. In this paper, the 
precision and recall are computed respectively in evaluation.  

Given a particular topic  of size  and a particular cluster  of size , sup-
pose  documents in the cluster    belong to , then the precision of this topic 
and cluster is defined to be: 

 precision ,              (7) 

The precision of  is the maximum precision value attained at any cluster in the 
cluster set C:  

 precision max precision ,             (8) 

The overall precision is computed by taking the weighted average of the individual 
precision:  

 precision ∑ precision                    (9) 

Where N is the total number of documents and  is the number of topics. Simi-
larly, the recall of the entire clustering results can be defined as  

 recall ∑                    (10) 

Where recall T T , C  and recall T , C . 

3.2 Comparisons with Other Methods 

We conduct two sets of experiments. In the first set, the DCIC is compared with K-
means Clustering (KMC), STC and Agglomerative Hierarchical Clustering (AHC).  
 

 

Fig. 2. Precision and Recall of four clustering methods 
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The stopping criterion for AHC and KMC is set to 300, which is the factual num-
ber of topics. First of all, the precision and recall of the above four methods are com-
puted and compared in Figure 2. As expected, the DCIC method scores highest. We 
believe that this positive result is mainly due to DCIC’s well-designed indexes which 
can identify topics more accurately. 

3.3 Comparisons of Different Parts 

In the second set of experiments, we evaluate the contributions of DCIC’s different 
parts. Firstly, we try to find out whether the indexes involving both NEs and key-
words work better than using only NEs or keywords.  

 

Fig. 3. Comparison of DCICs using different kinds of indexes for creating base clusters 

 

Fig. 4. Comparison of DCICs having base clusters combined or not 

Figure 3-4 compares three runs of DCICs which use different kinds of indexes. It is 
obvious that the DCIC indexed by keywords plus NEs performs much better than that 
indexed by keywords in both precision and recall. This indicates that it is not enough 
to describe topics using keywords alone. We can also see that the run using NEs alone 
achieves the highest recall but the lowest precision. This is because, in the experi-
mental data, more than one topic may be related to the same NE entity. Thus a single 
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be responsible for the high recall and low precision. We can conclude that combining 
base clusters can improve recall significantly. 

4 Conclusions 

In this paper, we propose a novel clustering method DCIC. This paper presents an 
input model of Neural Network that calculates the Mutual Information between con-
textual words and ambiguous word by using statistical method and taking the contex-
tual words to certain number beside the topical concept according to (-M, +N).We 
conduct a number of evaluations that compare DCIC with some traditional clustering 
methods, including AHC, KMC and STC. Results show that the DCIC method can 
achieve a higher precision while maintaining an acceptable level of recall. Consider-
ing the “information overload” on the web, precision is more important than recall. 
Thus we can conclude that DCIC is effective. 
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Abstract. Image mosaicing has been collecting widespread attention because it 
has become as an important tool for several different areas. Among other me-
thods, homograph-based methods are the most accurate in the geometric sense. 
This is because these methods use planar projective transformation, which con-
siders perspective effects as a geometric transformation model between images. 
We propose an automatic image mosaicing method which can construct a pano-
ramic image from a collection of digital still images. These methods, however, 
have a problem of misregistration in the case of general scenes with arbitrary 
camera motion. Our method has been tested with several image sequences and 
comparative results are presented to illustrate its performance. 

Keywords: Image mosaicing · Overlap extraction · Feature correspondence 

1 Introduction* 

Image mosaicing has become an active area of research in the fields of photogramme-
try, computer vision, image processing, and computer graphics. Application includes 
the construction of aerial and satellite photographs, photo editing and the creation of 
virtual environments. One conventional method is a cylindrical panorama that covers 
a horizontal view for creating virtual environments. However, this method limits the 
camera motion to horizontal rotation around the optical center, forcing the user to 
employ a tripod. Several other methods try to avoid this limitation, by using a planar 
projective transformation (homograph). These methods, however, fail in the case of 
general scene structures and general camera motions. Therefore, they have to restrict 
the geometric property of the scene to planar or the camera motion to rotation alone. 
We would like to allow users to shoot any scene with any camera motion, using only 
an ordinary hand-held still camera. To achieve this goal, we propose a feature-based 
method that can reduce misregistration. The method applies the trilinear constraint 
among a triplet of images to reduce the misregistration of mosaics. Our method con-
sists of the following three steps. First, it makes feature correspondences between 
consecutive images by using optical flow estimation. Second, it computes a geometric 
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transformation when the shooting scene can be regarded as planar. Third, when we 
cannot regard the scene as a planar surface, it divides the scene into several triangles, 
by using the popular constraints between images to obtain each transformation for 
each triangle. Then we transform images with the transformations. 

2 Related Work 

Given two images taken from the same viewpoint, or images of a planar scene taken 
from different viewpoints, the relationship between the images can be described by a 
linear projective transformation called a homograph. Once we obtain a homograph 
between two images, we can construct a panoramic image by transferring one image 
to the other with the homograph matrix.  

Conventional techniques for obtaining lens distortion parameters can be catego-
rized into two types. The first type uses special calibration patterns. Several tech-
niques require patterns for providing 3D coordinates [4]. A recent, technique pro-
posed in [6] is more flexible. However, it still requires a planar calibration pattern. 
The second type does not require any calibration pattern. Stein has proposed a method 
which uses only images of the scene [2]. This method, however, requires a computer 
driven rotating table to give a rotation angle. Stein has also proposed a method which 
does not need calibration patterns nor rotation tables [3]. This method, however, can-
not be applied directly to image mosaicing because its purpose is for 3D reconstruc-
tion. Another problem of this method is that the computational cost is high because it 
is based on a non-linear minimization framework. Sawhney et al. have proposed a 
method for image mosaicing [5]. This method incorporates the lens distortion parame-
ter into the homograph computation between images. We propose a feature-based 
method for image mosaicing that does not require any calibration pattern and is faster 
than previous methods. 

3 Feature-Based Image Registration 

We use small rectangular regions such as corners, which we call point features,  
to obtain  a homography  or a trifocal tensor.  Here we show how to make corres-
pondences by using the Lucas-Kanade gradient-based optical flow estimation. 

The Lucas.Kanade method is one of the best regarding optical flow estimation,  
because it is fast to compute, easy to implement, and controllable because of the 
availability of tracking confidence [1]. The major drawback of the gradient methods, 
including the Lucas. Kanade method is that they cannot deal with large motion. 
Coarse-to-fine multi-resolution strategy has been applied to overcome this problem. A 
major problem, however, still remains. Low-textured regions have unreliable results. 
We solved this problem in [3], with a dilation-based filling technique after threshold 
unreliable estimates, at each pyramid level.  
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correspondence provides two equations for eight unknown parameters. If we have 
more than four pairs of feature correspondences, we can use a least-squares method 
for obtaining a homograph. 

 

Fig. 4. Planar projective transformation 

3.3 Homograph-Based Image Mosaicing 

By using planar projective transformation, we can extend the image plane virtually. 
The dotted line in Fig.4 shows an extended region where it is invisible from viewpoint 

, but visible from viewpoint . Pixels in this area at viewpoint  can be obtained 
by transferring pixels from  with the homograph between the two images. Extend-
ing image plane corresponds to placing a wide-view lens whose focal length is short. 
We blend pixel intensities in the overlapping region. Averaging the intensities in that 
region causes a seam due to the brightness difference between the two images. There-
fore, we blend intensities with the weights depending on the distance to each image. 
When we have three or more images, we cascade transformation iteratively. We select 
the middle image as a reference image by judging from the rough alignment by using 
normalized correlation described in the paper. We obtain the transformation for each 
image to the reference image, after obtaining those between consecutive images. We 
can obtain a transformation to the reference image with the following equation, even 
though the image does not have any overlapping portion with the reference image: 

 …  (4) 

4 Nonplanar Scene 

We propose a method that can construct a panorama from nonplanar, arbitrary depth 
scenes with unrestricted camera motion. If the assumption for homographs is not sa-
tisfied, that is, taking images of a nonplanar, arbitrary scene from different view-
points, there will be misregistration caused by motion parallax. We use the Delaunay  
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triangulation method. This is a well-known triangulation method which is based on 
Voronoi diagrams [5]. 

4.1 Piecewise Homograph Computation 

We need at least four points to obtain a homograph since it has eight independent 
parameters. (It is a 3  3 matrix and is invariant to scaling.) We describe a novel 
technique to compute a homograph from three points using the epipolar constraint. 
The epipolar constraint between two images is described by the fundamental matrixF, 
with a point m on an image I  and the corresponding point m’  on the other image I’ as follows: 

 m Fm 0 (5) 

Recently a good method has been developed to obtain a fundamental matrix be-
tween uncelebrated cameras [10]. Using it, we first obtain the fundamental matrix 
between images from their corresponding points. By substituting Eq(2) into Eq(5), we 
have 

 0 (6) 

Since  means the outer product of vector m, it should be skew symmetric: 

  (7) 

We obtain 6 equations from Eq(7), because diagonal elements and the additions of 
skew symmetric elements should be 0. We already have 6 equations from three sets of 
corresponding points with Eq(2). We can compute a homograph by least squares with 
three points and the fundamental matrix, because a total of 12 equations are available 
for eight unknown parameters. 

4.2 Homograph Test 

We can determine whether we should use a single homograph or divide the scene into 
several triangles by the following test. We measure the re-projection error D  by us-
ing a homograph with the following equation: 

 D ∑  (8) 

where  is a coordinate of a feature point,   is a coordinate of the rejected feature 
point by the homograph, and N  is the number of feature points. If D  is larger than a 
predefined threshold, we divide the scene into triangles. Here we show how to make 
image mosaics with triangular patches. First, we obtain an average homograph H 
computed from all of the feature correspondences. Then we obtain each homograph  for each patch after triangulation. In the overlapping region, we use homographs 

 for triangles. Outside the overlapping region, we use the generic homograph H. 
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6 Conclusions 

In this paper, we have illustrated a feature-based image mosaicing method. The great-
est advantage of our method is that we can make a panoramic image of a nonplanar 
scene with unrestricted camera motion. First, we showed that our feature-based me-
thod is faster and more robust than previous featureless methods, because it is based 
on linear techniques. Second, for a scene that we cannot assume to be a single plane.   
Taken from different viewpoints, we described a method of dividing images into tri-
angles with corresponding features. Our method provides the homograph for each 
triangle from three points using the epipolar constraint, although existing methods 
require four points to compute. The technique is fast and robust, because it is linear. 
In future work, we plan to develop a technique using line features which we can ex-
pect to have more accuracy. We are also interested in creating a virtual environment 
that can provide a novel view from any viewpoints in 3D space. 
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Abstract. This paper presents a parallel image segmentation method based on 
self-organizing map (SOM) neural network by extending the authors’ former 
work from serial computation to parallel processing in order to accelerate the 
computation process. The parallel algorithm is composed of a group of parallel 
sub-algorithms for implementing the entire segmentation process, including 
parallel classification of the image into edge/non-edge pattern vectors, parallel 
training of an SOM network, and parallelly segmenting the image by using the 
trained SOM model with vector quantization approach. In the paper, the parallel 
algorithm is implemented on GPU with OpenCL program language and applied 
to segmenting the human brain MRI images. The experimental results obtained 
in the work showed that, compared with the original serial algorithm, the paral-
lel algorithm can achieve a significant improvement on the computation effi-
ciency with a speedup ratio of 64.72. 

Keywords: Image segmentation · Parallel algorithm · SOM neural network ·   
Vector quantization · Graphical processing unit (GPU) 

1 Introduction 

Image segmentation has been a very active research topic over several decades due to 
its essential role played in image analysis and computer vision. Many segmentation 
methods have been proposed in the existing literature (e.g., see [1]-[6]). The aim of 
image segmentation is to divide an image into some meaningful parts for further uses. 
There are two basic requirements for an image segmentation method: one is the seg-
mentation accuracy that is desired to be as accurate as possible, and the other is the 
processing speed that is to be as fast as in need for applications. Usually the two re-
quirements are contradictory each other. In order to meet the first requirement, both 
the gray value information and the spatial/structural information of the image must be 
effectively exploited by the segmentation algorithm that will result in heavy computa-
tional load. In addition, since in usual the data amount of an image is quite big, it is a 
challenging problem to process the data in real time with a complex algorithm. Re-
cently, progresses have been made in developing parallel segmentation algorithms 
based on multi-core processors or graphic processing units (GPU), which can speed 
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up the segmentation process significantly (e.g., see [7]-[9]). With the rapid developing 
of multi-core and GPU technologies, this is a very promising direction for solving the 
bottleneck problem. However, there are still a lot of difficulties to be overcome in this 
field since different segmentation problems usually need different parallel schemes.  
A segmentation problem is always related to the images to be processed in an applica-
tion while the images vary diversely in modality, shape, structure, etc. in different 
applications. In fact, there is no universal parallel scheme suitable for all the segmen-
tation problems, which perhaps is the reason why so many segmentation algorithms 
have been proposed so far. Therefore, it still remains challenging and will have a long 
way to go in the field. 

In [6], we proposed an SOM-based segmentation method in which the SOM  
network and vector quantization method are integrated together and applied to seg-
menting the human brain MRI images with excellent performance. As pointed in [6], 
however, the computational complexity of the method is very high and it is in need to 
speedup the computation procedure. In this paper we design parallel algorithms for 
the SOM-based segmentation approach in order to improve its computation efficiency 
significantly.   

The sequel of the paper is organized as follows: Section 2 describes the proposed 
parallel algorithms, including the overall parallel scheme, the parallel algorithm for 
vector representation of images, the parallel classification of edge/non-edge pattern 
vectors, the parallel training of SOM network, the parallel quantization of the non-
edge pattern vectors, and the parallel classification of the edge pattern pixels. Experi-
mental results with applications to MRI image segmentation are given in Section 3. 
Section 4 draws conclusions and points out the possible direction of the paper. 

2 Parallel Algorithms of SOM-Based Segmentation Method 

In this section, after a brief summary on the original SOM-based segmentation  
approach proposed in [6], we give an overall parallel scheme for the approach at first, 
then present the corresponding parallel algorithms and concrete implementation steps 
of the scheme.  

2.1 The Overall Parallel Scheme of the SOM-Based Segmentation Approach 

The original SOM-based segmentation method proposed in [6] includes the following 
computational processes: 

(1) Divide the image to be segmented into small sub-blocks of n×n pixels and repre-
sent each sub-block with a vector of n×n elements. 

(2) Classify the sub-block vectors into two patterns, known as the edge pattern and 
non-edge pattern, by using the edge detection algorithm based on the wavelet 
modulus maximum edge detection [10,11].  

(3) Train an SOM neural network by using the non-edge pattern vectors as inputs. 
(4) Cluster (quantize) the non-edge pattern vectors into KC classes by using the 

trained SOM network with vector quantization (VQ) method. 
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(5) Classify the pixels of the edge pattern sub-blocks into the clusters obtained in the 
VQ procedure.  

In this paper, we design parallel algorithms to implement the above computation 
processes. The overall parallel scheme is illustrated in Fig. 1 that includes 5 parallel 
computation modules corresponding to the above 5 processes. 

 

 

Fig. 1. Block diagram of the parallel scheme for the SOM-based segmentation method 

2.2 Parallel Algorithm for Vector Representation of Images 

In the SOM-based segmentation method [6], the first step is to divide the image to be 
segmented into small sub-blocks and represent them with vectors. In this section, we 
design a simple parallel algorithm to implement this operation.  

Suppose that the image to be segmented is denoted by  and we want 

to represent the image with NV vectors, , in which each vector is 

constructed with the pixels of a sub-block  of the image, where M and 

N are the height and width of the image respectively, n is the height or width of the 
sub-block with n<< min(M, N), and the number of the vectors NV = .  

The parallel algorithm for realizing the sub-block dividing and vector representa-
tion of the image  is given as follows: 

begin 
for k = 1 to NV  in parallel do  
1) find the location of the k-th sub-block in ; 

2) construct vector X(k) with pixels of the sub-block by  

; 

end for 
end 

Obviously, for the above parallel algorithm, the parallel degree is NV and the theo-
retical speedup ratio is also NV, compared with the original serial algorithm.  

2.3 Parallel Classification of the Vectors into Edge or Non-edge Patterns  

The second processing module of the SOM-based segmentation method is to classify 
the vectors (sub-blocks) into two patterns, the edge pattern and non-edge pattern, by 
using the wavelet modulus maximum edge detection method [10,11]. In [6], we pre-
sented a realization algorithm for the method using the partial derivatives of the two-
dimensional Gaussian function as wavelet functions that involves the following 6 
computation steps: 

[ ( , )]M Nf i j ×

{ ( ); 1,..., }VX X k k N= =

[ ( , )]k k n nf i j ×

/MN n n  

[ ( , )]M Nf i j ×

[ ( , )]k k n nf i j × [ ( , )]M Nf i j ×

1 1 1 1( ) [ ( , ),..., ( , ),...., ( , ),..., ( , )]T
k k k k n k n k k n k nX k f i j f i j f i j f i j+ − + − + − + −=
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• Step (1): use the two wavelet functions as filters to filter the image by the follow-
ing convolutions:  

，           (1) 

where  denotes the image function,  and  are the wavelet ker-

nel functions,  and .   

• Step (2): compute the modulus and angle parameters,  and , 

based on the above convolution results: 

, .          (2) 

• Step (3): compute the threshold parameter  through calculating the mean  

and variance  of  by: 

                          (3) 

where  ( ) is an adjustment parameter to be determined in experiments.  
• Step (4): find the maximum wavelet modulus value, denoted by , for 

each sub-block among its pixels and take the corresponding wavelet angle as the max-
imum angle, denoted by . 

• Step (5): for each sub-block, compute the mean value of the 3 wavelet 

moduli of the sub-block along the vertical direction of . 

• Step (6): for each sub-block, classify it to the edge pattern if > , and to 

the non-edge pattern otherwise.  

In order to effectively conduct the above computations, we design three parallel  
algorithms given in the sequel subsections for accomplishing the following 3 tasks: 

1) Task 1: parallel implementation of the filtering (convolution) defined by equ.(1) 
and the computation of  and  defined by equ. (2); 

2) Task 2: parallel computation of , , and  defined by equ. (3); 

3) Task 3: parallel implementation of steps (4)−(6) for the edge/non-edge pattern 
classification of the sub-blocks. 

 

Parallel Algorithm for Implementing Task 1. The task of this parallel algorithm is 
to perform the convolution operations between image and the two 

wavelet functions,  and . Note that the convolution operations can also 
be conducted in frequency domain by using FFT. However, since the size of the 
wavelet kernel functions is usually much smaller than the image size, the computa-
tional complexity of the convolutions is less than that of FFT. Therefore, we perform 
the convolution operations directly instead of using FFT. 

1 1
2 2( , ) ( , ) ( , )W f x y f x y x yφ= ⊗ 2 2

2 2( , ) ( , ) ( , )W f x y f x y x yφ= ⊗

( , )f x y 1
2( , )x yφ 2

2 ( , )x yφ
2 2 21 ( )/(8 )

2 4
16

( , ) x yx
x y e σφ

πσ
− +−=

2 2 22 ( ) /(8 )
2 4

16
( , ) x yy
x y e σφ

πσ
− +−=

2 ( , )M f x y 2 ( , )A f x y

2 21 2
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2
2
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[ ( , )]M Nf x y ×
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   Let NP be the number of the pixels of image (NP = M⋅N). The paral-

lel algorithm is given below for computing the convolutions, the wavelet modulus 
, and the angle :  

begin  
for k = 1 to NP  in parallel do  

1) for the k-th pixel of the image , conduct the two 

convolution operations defined by equ.(1); 
2) calculate the wavelet modulus and angle by using 

equ.(2) for ; 

end for 
end 

For the above parallel algorithm, both the parallel degree and the theoretical 
speedup ratio are NP .  

Parallel Algorithm for Implementing Task 2. The main computation load of this 

task is the calculation of the mean and variance,  and , of the wavelet moduli 
of the image. 

Let  be the k-th wavelet modulus of the image. Then  and  can be  

expressed with the following formulas:  

      ,                                  (4) 

.                        (5) 

    Suppose that two arrays have been set with =  and = * , 

which can be easily implemented in parallel. Then the above two cumulative opera-
tions for calculating  and  can be realized by using the following parallel 

reduction algorithm and then the threshold TM can be directly obtained by equ.(3):   

begin 

NR ← ;  ← NP /2;               // initializing NR and Km;  

for m = 1 to NR do         // conducting NR reduction steps in total; 

for k = 1 to Km  in parallel do  
 ←  + ;   ←  + ; 

end for k 
  ← /2;                     // reduce Km to half in each step; 

end for m 
 ← /NP;  ← sqrt( /NP − * );      // got  and ; 

TM ← ;                              // got the threshold TM; 

end 

[ ( , )]M Nf x y ×

2 ( , )M f x y 2 ( , )A f x y

( , )k kf x y [ ( , )]M Nf x y ×
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The above parallel reduction algorithm includes  parallel reduction steps. 

One can see that the parallel degrees of different steps are from 1 to NP/2. The average 
parallel degree is (NP-1)/  ≅ NP/ . The theoretical speedup ratio of the 

parallel algorithm is also about NP/ . 

Parallel Algorithm for Implementing Task 3. The task of this algorithm is to con-
duct all the computations in the steps (4)−(6) described in the beginning of Section 
2.3 for classifying the vectors {X(k); k=1,…,NV}  into the edge/non-edge patterns. 
The parallel algorithm for fulfilling this task is given below. 

 

begin 
for k = 1 to NV  in parallel do  
1) for the k-th vector X(k), find the maximum modulus among the 

corresponding wavelet moduli of X(k) and take the wavelet angle corre-
sponding to  as the maximum angle  of X(k); 

2) compute the mean value, , by using 3 wavelet modulus values of 

X(k) along the vertical direction of ; 

3) classify X(k) into the edge pattern if > , and into the non-edge pat-

tern otherwise; 
end for 

end 

For the above parallel algorithm, it can be seen that both the parallel degree and the 
theoretical speedup ratio are NV, the number of the vectors or the sub-blocks of the 
image being processed.  

2.4 Parallel Training of SOM Network 

After the vectors (sub-blocks) of an image have been classified into edge pattern/non-
edge pattern, an SOM network will be trained for segmenting the non-edge pattern 
sub-blocks by using vector quantization (VQ) method. In this section, we design a 
parallel algorithm for training the SOM neural network.  

 

Fig. 2. Architecture of the SOM network being trained for VQ 
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Let { XNE(k); k=1,…, NNE } be the non-edge pattern vectors of the image being 
segmented, where NNE is the number of non-edge pattern vectors. The architecture of 
the SOM network going to be trained is shown in Fig.2. 

In Fig.2, the input vector [x1, x2,…, xm]T is the non-edge pattern vector XNE(k) of 
{ XNE(k); k=1,…, NNE }, the weight vector between input  [x1, x2,…, xm]T and output 
neuron yj is denoted by Wj=[wj1, wj2,…, wjm]T, and the number of the output nodes is 
NY that is also the segmentation number for the image. Basing on the training algo-
rithm described in [6], we design a parallel training algorithm for this SOM network 
and the overall parallel scheme is as follows: 

(1) Parallel initialization of weight vectors { Wj ; j=1,…,NY} using randomly selected 
vectors from training data { XNE(k); k=1,…, NNE }; 

(2) Parallel computation of the updating values for the weight vectors by using train-
ing data:   

,  q = 1, …, NY,  k = 1, …, NNE , 

     where Wq is the weight with minimum distance between XNE(k) and the weights 
in { Wj ; j=1,…,NY}, i.e., ; 

(3) Parallel computing the cumulative updating values: 

                        ,  q = 1, … , NY ; 

and parallel updating the weights:   
 ←  + α ,  q = 1, … , NY; 

(4) Repeat steps (2)-(3) until the weights converged. 

The detailed implementing operation algorithms for the above parallel computation 
modules are omitted here due to the limitation of the paper length, which are similar 
to those algorithms given in Section 2.2 and 2.3.  

2.5 Parallel Quantization of Non-edge Pattern Vectors 

Having the training process for the SOM network finished, the trained weight vectors 
Wj=[wj1, wj2,…, wjm]T ( ) are taken as the codebook of vector quantization and 

used for quantizing the non-edge pattern vectors of the image. We design the follow-
ing parallel algorithm to implement the quantization process for speeding up the pro-
cess. 

begin 
  for k = 1 to NNE  in parallel do 

    1) for the k-th vector XNE(k), compute the distances between XNE(k) and all the 
weights { Wj ; j=1,…, NY}:   j=1,…, NY ;      

     2) find the minimal distance of  and the index q by ; 

     3) quantize the vector XNE(k) with the weight Wq:  XNE(k) ← Wq; 
end for 

end 

( )qW kΔ ( )NE qX k W= −
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j

X k W X k W− = −

1

= ( )
NEN

q q
k

W W k
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One can see that the quantization processing for the non-edge pattern vectors is also 
the segmentation of the non-edge pattern sub-blocks of the image. Through this quan-
tization process, the non-edge pattern sub-blocks of the image can be clustered into NY 
clusters represented by the weights { Wq; q=1,…, NY}.  

2.6 Parallel Classification of the Pixels of Edge Pattern Sub-blocks 

After the non-edge pattern sub-blocks have been segmented by using the SOM-based 
VQ method given above, we process the pixels of the edge pattern vectors {XE(k); 
k=1,…, NE} based on the VQ results by using the following parallel algorithm:  

begin 
for k = 1 to NNE  in parallel do   

 • compute the mean value of non-edge pattern vector XNE(k);  
end for k 
for m = 1 to NE  in parallel do 

• for the edge pattern vector XE(m), compute the differences between its 
pixels and the mean values of its neighboring non-edge pattern vectors; 

• classify each pixel of XE(m) into the class with the minimum absolute dif-
ference and replace it with the closest mean value; 

     end for m 
end 

3 Applications to MRI Image Processing and Experimental 
Results 

To verify the effectiveness of the proposed parallel segmentation method, we conduct 
the same experiments as conducted in [6] with applications to segmentation of human 
brain MRI images, and make comparisons between the experimental results obtained 
by the parallel algorithm and the original serial algorithm both on the segmentation 
performance and on the computation efficiency in this section. The parallel algorithm 
is implemented on a GPU platform using the parallel programming language OpenCL 
[12,13]. The GPU used in the experiment is the AMD HD 7950 which is composed of 
28 computing units (CU) with 28×64 processing elements (PE) in total. The original 
serial algorithm is implemented on the PC of Intel E7500@2.93GHz and programmed 
with Visual Studio 2010. 

Fig.3 shows the segmentation results of the human brain MRI image by using the 
proposed parallel segmentation algorithm. The segmentation processing is also con-
ducted for the same MRI image by using the original serial algorithm given in [6] in 
the experiment. By comparing the segmentation results of the two algorithms, we 
have observed that they are giving almost the same segmentation performance except 
for a very few of negligible differences caused by different programming languages.  

More experiments have been made on testing the computational efficiency for the 
parallel algorithm in the work. Table 1 gives the computation times of processing a 
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256×256 MRI image by using different algorithms in different computation modules. 
The computation times shown in Table 1 are measured by taking average over 1000 
trials except for the training time of SOM network that is measured by taking average 
over 100 trials. From the experimental results given in Table 1, one can see that, for 
segmenting the image, the proposed parallel algorithm only takes 0.29686 seconds 
while the original serial algorithm takes 19.2133 seconds, in which the overall 
speedup ratio of the parallel algorithm is 64.72. This shows that the proposed parallel 
segmentation algorithm has achieved a significant improvement in computation effi-
ciency. It should be noted that the speedup ratios obtained in the experiment for the 
parallel algorithms are far smaller than that of the theoretical analysis results given in 
Section 2. The main reason is that the parallel algorithm is implemented on the GPU 
and, for a single processing element (PE) of the GPU, its computational capacity is 
much less than that of a CPU. In addition, for a GPU, the parallel degree in data ac-
cess is limited and only a few of PEs can read data from (or write data to) memories 
at the same time although all the PEs can do calculations parallelly.  

Many other experiments have been done and similar results have been obtained in 
the work, which are not shown here due to the limitation of the paper length. 

 

      

 (a)         (b)         (c)          (d)          (e)         (f) 

Fig. 3. Experiment result using the proposed method. (a) the original MRI human brain image 
with a brain tumor in the centre part; (b) the segmented tumor; (c) segmented white matter; (d) 
segmented gray matter; (e) segmented cerebrospinal fluid; (f) segmented skull. 

Table 1. Computation times of different algorithms for processing a 256×256 MRI image 

 
Classification of 
edge/non-edge 

vectors 

Training of 
SOM network 

VQ  
+ classification 
of edge pixels 

Total 
processing 

time 

Original serial 
algorithm 

65.81 (ms) 19.1159 (s) 31.58 (ms) 19.2133 (s) 

Proposed parallel 
algorithm 

0.577 (ms) 0.296 (s) 0.279 (ms) 0.29686 (s) 

Speedup ratio 114.06 64.58 113.19 64.72 

4 Summary and Further Direction 

In this paper, we develop a parallel segmentation algorithm for the SOM-based vector 
quantization method proposed in [6]. The parallel algorithm is implemented on GPU 
with OpenCL programming language and is successfully applied to segmenting the 
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human brain MRI images. The experimental results show that this parallel algorithm 
can provide a significant improvement on the computation efficiency with an overall 
speedup ratio of 64.72 while the segmentation performance is kept unchanged, com-
pared with the original serial algorithm. 

It is noticed that, since the parallel capacity of GPUs in data accessing has become 
a bottleneck for further accelerating the GPU computation speed, more effort needs to 
be made to increase the parallel data throughputs of the process. This is a further re-
search direction of the work. 
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