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Abstract. The advent of rapid evolution on sequencing capacity of new
genomes has evidenced the need for data analysis automation aiming
at speeding up the genomic annotation process and reducing its cost.
Given that one important step for functional genomic annotation is the
promoter identification, several studies have been taken in order to pro-
pose computational approaches to predict promoters. Different classi-
fiers and characteristics of the promoter sequences have been used to
deal with this prediction problem. However, several works in literature
have addressed the promoter prediction problem using datasets contain-
ing sequences of 250 nucleotides or more. As the sequence length defines
the amount of dataset attributes, even considering a limited number of
properties to characterize the sequences, datasets with a high number of
attributes are generated for training classifiers. Once high-dimensional
datasets can degrade the classifiers predictive performance or even re-
quire an infesible processing time, predicting promoters by training clas-
sifiers from datasets with a reduced number of attributes, it is essential
to obtain good predictive performance with low computational cost. To
the best of our knowledge, there is no work in literature that verified
in a sistematic way the relation between the sequences length and the
predictive performance of classifiers. Thus, in this work, sixteen datasets
composed of different sized sequences are built and evaluated using the
SVM and k-NN classifiers. The experimental results show that several
datasets composed of shorter sequences acheived better predictive per-
formance when compared with datasets composed of longer sequences
and consumed a significantly shorter processing time.

1 Introduction

Over recent years, advances in technology have allowed an acceleration of new
genomes sequencing [9], evidencing the increasing demand for data analysis au-
tomation and for improving procedures previously used [2]. This has encouraged
studying and implementing several computational techniques and creating new
tools to enable processing of large amounts of genomic data.

One of the first steps for functional genomic annotation is promoter identifi-
cation. Promoters are regions responsible for signaling and controlling the exact

� This research was partially supported by CNPq, FAPEMIG and UFOP.

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 41–48, 2014.
c© Springer International Publishing Switzerland 2014



42 S.G. Carvalho, R. Guerra-Sá, and L.H. de C. Merschmann

position where the transcription mechanism initiates, called TSS (Transcription
Start Site). The capability for detecting them in their different forms will make
it possible to understand how, where and when transcription occurs, in addi-
tion to providing clarification on the interaction network and regulation of the
transcription mechanism [8,9].

The identification of promoter sequences in genomes can be seen as a clas-
sification problem, where, given the features of a genomic sequence, it would
be classified as promoter or non-promoter. Therefore, several computational ap-
proaches to predict promoters have been proposed using different classification
techniques and different types of information extracted from sequences. Never-
theless, further progress is needed to improve them [14,1,6,9].

Much of the complexity of promoter prediction problem is due to their diverse
nature, which makes it difficult to identify them [12,8,10]. Therefore, a crucial
step for prediction success is to discover features of promoter sequences that are
relevant to differentiate them from non-promoter sequences.

In the search for relevant features to distinguish between promoter and non-
promoter sequences, several properties of sequences have been tested for their
predictive capability. According to [14], a prediction strategy can use three types
of features: structural, based on signs and based on context. Several studies have
shown that in order to build accurate models to predict or describe genomic pro-
cesses, the structural properties of the DNA molecules must be considered [11].
Thus, the structural properties have been widely used in recent years [14] and
have also been adopted for this work.

Despite the large amount of work involving promoter prediction [12,8,1,2,6,7,9],
to the best of our knowledge, none of them verified in a systematic way the
relation between the length of sequences used for training classification models
and their predictive performance. Thus, the aim of this work is to evaluate,
through the application of classification techniques, the effect of the sequence
length in discrimination between promoters and non-promoters.

The importance of this evaluation is due to the fact that, considering the
structural properties, the longer the sequences used to compose datasets used
for training classifiers, the greater the amount of attributes. The problem is
that high-dimensional datasets, that is, with great number of attributes, make
the classification a more complex process, and the result may be an increase in
classifiers training time and a reduction of their predictive perfomance.

Due to the amount of data available and the attention it has received from
the scientific community in recent decades [14], the genome chosen to be studied
in this work was Homo sapiens. The experiments were conducted using a well
known and reliable promoter database which is publicly available on the web.

2 Our Approach

For the studies conducted in this work, promoter and non-promoter sequences
derived from human genome were used for datasets construction.
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Promoters were obtained from a set of sequences available in the DBTSS
database [13], version 8.0. DBTSS, which has already been used in several other
works [6,8,9,2], is a set of approximately 98,000 experimentally validated pro-
moter sequences with active TSS, where each sequence has 1201 bp (base pairs).

Non-promoters correspond to several genomic sequences that were extracted
randomly from intergenic regions and from introns and exons [6]. The criteria
for obtaining these sequences require that the region is at a minimum distance of
1000 nucleotides from the positions demarcated on CAGE database, indicating
transcription regions, and at a minimum distance of 1000 nucleotides from the
positions demarcated on RefSeq that has information denoting the beginning
of genes. Thus, the selection of false non-promoter sequences is avoided. CAGE
and RefSeq databases were obtained from pppBenchmark tool [16] website1.

Due to computational cost to process a sequence dataset, only part of the
sequences available at DBTSS database was used in the composition of the
datasets of this study. Thus, a total of 7000 different promoter sequences were
chosen randomly, avoiding the inclusion of noisy sequences. In addition, other
7000 non-promoter sequences complete the datasets.

Therefore, all datasets used in this work are composed of the same 14000 se-
quences. However, the length of sequences varies from one dataset to another.
For example, the dataset called 250-50 consists of sequences represented by 301
nucleotides. For promoter sequences, this size is the sum of the number of nu-
cleotides positioned upstream and downstream of TSS (in addition to TSS itself),
that is, in the example there are 250 nucleotides upstream and 50 nucleotides
downstream of TSS. Therefore, for the same dataset, TSS is always located at
the same position in all promoter sequences. Since non-promoter sequences do
not have TSS, their length is simply given by their number of nucleotides. Thus,
in 250-50 dataset, non-promoter sequences are also composed of 301 nucleotides.

Each dataset sequence is characterized by a set consisting of 13 structural
properties [11], named: A-philicity, base stack energy, B-DNA, bendability, DNA-
bending stiffness, disrupt energy, DNA denaturation, free energy, nucleosome po-
sitioning, propeller twist, protein deformation, protein-DNA twist and Z-DNA.
These properties, which have already been subject of other studies in literature
[7,1,9], are physico-chemical and conformational properties.

Since the structural properties may be determined by local interactions among
neighboring nucleotides in a sequence [11], they are represented by tables where
each possible nucleotide combination is associated with a value that represents its
contribution to a particular structural property. As an example, Table 1 presents
the mapped values of oligonucleotides for the stacking energy structural property.

Using these 13 structural properties, each nucleotide sequence (promoters and
non-promoters) is converted into a numerical vector that characterizes it. Fig-
ure 1 illustrates the conversion of a sequence to two structural properties (protein
deformation and nucleosome positioning). As it can be observed, the numerical
vector of each property (structural profile) is obtained from scanning the se-
quence of nucleotides where, depending on the structural property, each vector

1 Available at http://bioinformatics.psb.ugent.be/webtools/pppbenchmark/

http://bioinformatics.psb.ugent.be/webtools/pppbenchmark/
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Table 1. Mapped values of oligonucleotides for base stack energy property [3]

Oligonucleotides Value (kcal/mole)

AA -5.37
AC -10.51
AG -6.78
AT -6.57
CA -6.57
CC -8.26
CG -9.69
CT -6.78

Oligonucleotides Value (kcal/mole)

GA -9.81
GC -14.59
GG -8.26
GT -10.51
TA -3.82
TC -9.81
TG -6.57
TT -5.37

value is obtained considering sequences of dinucleotides (protein deformability)
or trinucleotides (nucleosome positioning).

Fig. 1. Conversion of a sequence to two structural properties

Considering the conversion schema previously mentioned, in order to show
the capability of the structural properties to discriminate promoter from non-
promoter sequences, Figure 2 illustrates, for two structural properties, the av-
erage structural profile of promoter and non-promoter sequences of the 250-50
dataset. In this figure, TSS is located at the 0 position.
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Fig. 2. Structural profiles for the 250-50 dataset

The complete characterization of a sequence is given by a single numerical
vector resulting from the junction of the vectors representing each of the 13
structural properties considered in this work. The size of the resultant vector of
these junctions corresponds to the number of predictor attributes of the datasets
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used for classifiers training. In addition to these predictor attributes, each se-
quence has a value for the class attribute, which indicates whether that sequence
is promoter or non-promoter. As an example, the largest dataset used in our ex-
periments, the 250-50 one, results in a set of 3898 predictor attributes. Table 2
shows the number of predictor attributes for each dataset used in this work.

Table 2. Predictor attributes for each dataset

Dataset Number of atributes

10-1 141
10-3 167
10-5 193
10-10 258
10-20 388
10-30 518
10-40 648
10-50 778

Dataset Number of atributes

20-50 908
30-50 1038
40-50 1168
50-50 1298
100-50 1948
150-50 2598
200-50 3248
250-50 3898

As it can be observed in Table 2, the length of sequences used to compose
the dataset defines the amount of their attributes. Several studies in literature
have addressed the problem of promoter prediction using datasets containing
sequences of 250 nucleotides or more [12,2,8,9]. Although a limited amount of
features is being used in characterization of sequences, high-dimensional datasets
are generated for classifiers training.

The problem with high-dimensional datasets, that is, with high number of
attributes, is that they make classification a more complex process, often con-
suming an infeasible time for training classifiers and degrading their predictive
performance.

Therefore, to predict promoters by training classifiers from datasets with a
reduced number of attributes, it is essential to obtain good predictive perfor-
mance with low computational cost. This way, the objective of the experiments
conducted in this work is to evaluate the impact of the sequence length variation
on the classifiers performance.

3 Computational Experiments

3.1 Classifiers and Experimental Setup

SVM (Support Vector Machine) and k-NN (k-Nearest Neighbours) classifiers,
usually adopted in data mining works, were chosen to evaluate the impact of the
sequence length variation on the performance of predictive models. Experiments
were conducted using the caret package (short for classification and regression
training) in R [15], which is a programming language and an environment widely
used in statistical and graphics computation for data analysis.

k-NN classifier’s idea is very simple. Each dataset instance is described by an
n-dimensional vector, where k corresponds to the number of predictor attributes.
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To classify a new instance (an instance whose class is unknown), the classifier
uses distance metrics to determine the k training instances that are more similar
to the instance to be classified. Then, the most frequent class among the similar
k instances is attributed to the new instance. In k-NN, the k value is an input
parameter.

Considering each dataset instance as a point in n-dimensional space, the basic
idea of SVM is to find a hyperplane with maximum margin of separation, ie, one
that provides the separation of training instances, with maximum margin, in
two portions in n-dimensional space. Once the optimal hyperplane is found, the
classification of a new instance is made by determining its position in relation to
the separation hyperplane. Although this method was originally proposed for bi-
nary classification problems, several extensions have been proposed in literature
to make it suitable for multi-class classification problems.

In order to set the algorithms parameters for the dataset used in this study,
experiments were conducted by varying the parameters values C (0.25, 0.5, 1,
2, 4), gamma([0.1, 0.0001]), for SVM (using RBF kernel) and k (1, 3, 5, 7, 9)
for k-NN. Table 3 presents the best parameter values obtained for each dataset
and therefore used in our experiments to obtain the results presented here. All
experiments were carried out on a Core i7-2600 @ 3.40GHz PC with 12 GBytes
of RAM.

Table 3. k-NN e SVM parameters

k-NN SVM

Dataset k C gamma

10-1 9 1 3.64e-03
10-3 9 0.5 3.05e-03
10-5 9 0.5 1e-02
10-10 9 2 1e-03
10-20 9 1 1e-03
10-30 9 1 1e-03
10-40 9 1 7.84e-04
10-50 9 1 1e-03

k-NN SVM

Dataset k C gamma

20-50 9 1 1e-03
30-50 9 0.5 1e-03
40-50 9 0.5 1e-03
50-50 7 0.5 1e-03
100-50 9 1 1e-03
150-50 9 0.5 1.96e-04
200-50 9 1 1.56e-04
250-50 9 1 1e-04

3.2 Experimental Results

The classifiers predictive performance was measured using k-cross-validation
(k =10) and F-measure metric. For each dataset, the same test partitions were
used in the evaluation of classifiers.

The results of the experiments are presented in Figure 3 graphs. Figure 3(a)
graph shows the predictive performance of SVM and k-NN classifiers for each of
the 16 datasets evaluated. Figure 3(b) graph shows the processing time spent in
the classification process for these datasets.

As it can be seen in Figure 3(a) graph, the SVM classifier obtained better
predictive performance than the k-NN one for all datasets evaluated.
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Fig. 3. (a) Average F-measure and (b) processing time

Yet, the most important thing to observe in Figure 3(a) graphs is that for both
classifiers, the decrease in the length of sequences used in the datasets did not
necessarily imply a reduction in their predictive performance. SVM performance
remained relatively stable for datasets composed of sequences ranging in size
from 301 (250-50) to 41 (10-30) nucleotides, presenting a marked degradation
in performance only for sequences containing less than 41 nucleotides. k-NN
achieved its best performance with the 50-50 dataset and, even for the dataset
composed of shorter sequences (10-1), presented superior predictive performance
compared with larger datasets (250-50).

Figure 3(b) graph shows that, for both classifiers, time spent for processing
datasets grows exponentially with the increase of the length of sequences that
compose them. It is worth noting that in many cases, a dataset composed of
shorter sequences achieves superior predictive performance compared with longer
sequence datasets and time spent in processing is significantly shorter than that
consumed by longer sequence datasets. For example, for SVM, the 10-30 dataset
presents predictive performance slightly higher than that achieved by the 250-50
dataset and time spent in processing is more than 8 times shorter than that
spent by the 250-50 dataset.

4 Conclusion

Promoter prediction is a fundamental step for genome functional annotation
and, therefore, several computational approaches have been proposed using dif-
ferent classification techniques. However, to best of our knowledge, none of them
verified in a systematic way the relation between the length of sequences used for
training classification models and their predictive performance. This way, exper-
iments were conducted to analyze the impact of the sequence length variation
on the classifiers performance.

In order to perform the analysis previously mentioned, 16 datasets composed
of different sized sequences were generated and evaluated using the SVM and
k-NN classifiers. The experimental results show that the decrease in the length
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of sequences used in the composition of the datasets did not necessarily result in
a reduction of the classifiers predictive performance. In addition, several bases
composed of shorter sequences achieved superior predictive performance com-
pared with datasets composed of longer sequences and consumed a significantly
shorter processing time.

As future work, we plan to apply techniques for selecting attributes in datasets
generated in this study aiming at reducing the datasets number of attributes and
improving classifiers predictive performance.
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1. Abeel, T., Saeys, Y., Bonnet, E., Rouzé, P., Van de Peer, Y.: Generic eukaryotic
core promoter prediction using structural features of dna. Genome Research 18(2),
310–323 (2008)
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