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Preface

This volume contains papers selected for presentation at the 9th Brazilian Sym-
posium on Bioinformatics (BSB 2014), held in October, 2014, in Belo Horizonte,
Minas Gerais, Brazil. BSB is an international conference that covers all aspects
of bioinformatics and computational biology. This year the event was jointly
organized by the special interest group in Computational Biology of the Brazil-
ian Computer Society (Sociedade Brasileira de Computação — SBC), which has
been the organizer of BSB for the past several years, and by the Brazilian Asso-
ciation for Bioinformatics and Computational Biology (AB3C), which has been
the organizer of the X-Meeting, another bioinformatics and computational biol-
ogy event, also for several years. This year, the two events were jointly organized
and were co-located, with the objective to promote the integration of both re-
search communities. This was the second year that the events were co-located,
the first being in 2013.

As in previous editions, BSB 2014 had an international Program Committee
with 28 members. After a rigorous review process by the Program Committee,
18 papers were accepted to be presented at the event, and are printed in this
volume.

BSB 2014 was made possible by the dedication and work of many people
and organizations. We would like to express our sincere thanks to all Program
Committee members as well as additional reviewers. Their names are listed in
the pages that follow. We are also grateful to local organizers and volunteers for
their valuable help and to the sponsors for making the event possible. Finally,
we would like to thank all authors for their time and effort in submitting their
work. It is for them and all other researchers that the event is organized, and
without them it would not have a purpose.

This year, selected BSB papers were invited for a submission in an expanded
format to a special issue of the BMC Bioinformatics journal. We thank BMC for
this opportunity.

November 2014 Sérgio Campos
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An Extensible Framework

for Genomic and Metagenomic Analysis

Luciano A. Digiampietri, Vivian M.Y. Pereira, Camila I. Costa,
Geraldo J. dos Santos Júnior, Fernando M. Stefanini, and Caio R.N. Santiago

School of Arts, Sciences and Humanities, University of So Paulo (USP)
Av. Arlindo Bttio, Ermelino Matarazzo, 03828-000, So Paulo, SP, Brazil

digiampietri@usp.br

Abstract. Computational tools for supporting the management of sci-
entific experiments are fundamental for the modern science. These tools
must be easy to use, extensible and robust. This paper presents a frame-
work for managing bioinformatics’ experiments, focusing on analysis of
genomic and metagenomic data. The developed system is based on an
extension of a scientific workflows management system combined with
the development of specific tools related to genomic and metagenomic
data analysis.

Keywords: ScientificWorkflow, Framework, Genomic andMetagenomic
Analysis.

1 Introduction

The evolution of data acquisition equipment has revolutionized modern sci-
ence [10]. It makes the use of computers increasingly imperative for the different
areas of knowledge and demands the creation or expansion of systems to manage
scientific experiments. These systems must be easy to use (because they will be
used by scientists from different domains), extensible (to allow the addition of
new features which is quite necessary due to the current dynamism of science),
and robust (to enable data management and execution of experiments involving
large volumes of data, and executions that can take days).

One area very tied to this evolution is bioinformatics - an essentially in-
terdisciplinary field involving Biology, Computer Science, Statistics, Chemistry,
Pharmacy, Mathematics, among others, for the development of methods for the
storage and retrieval of biological data, and the construction of models and al-
gorithms for the solution of biological problems.

In the early 90s it was very costly (in terms of time and money) sequencing
a single bacterium genome, which typically has a few million base pairs [18];
but, nowadays, sequencers with high performance made possible to obtain large
amounts of DNA (tens of millions of bases) in a single sequencing. This volume
of data brought new challenges, one of the main concerns the fact that it is
common in a single sequencing to obtain genetic material from individuals of
thousands of different species. The purpose of such studies is to analyze the

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 1–8, 2014.
c© Springer International Publishing Switzerland 2014



2 L.A. Digiampietri et al.

diversity of microbial life given a particular ecological niche (e.g. the stomach of
an animal, or soil or water from specific locations). These projects are typically
called environmental genomics or metagenomics projects.

Some of the main challenges related to metagenomics studies are: (i) the iden-
tification of sequences (reads) belonging to each species; (ii) genomes assembly,
as there will likely be missing pieces (not allowing a complete assembly), and
have repeated regions in each genome and along the different genomes; (iii) the
analysis of the amount and diversity of organisms found; (iv) the verification if
any of the sequenced species probably represents a new species (never previously
sequenced); (v) the identification of active metabolic pathways; among others.

In order to help addressing some of these challenges, this paper presents the
extension of a general purpose scientific workflow management system (SWMS)
[20,8,15] adding new features to help the management of bioinformatics experi-
ments. Moreover, we present some tools (workflows’ activities) that were devel-
oped specifically for the management and analysis of genomic and metagenomic
data. The system and the tools presented in this paper are contextualized in the
“metagenomics of ecological niches of the Sao Paulo Zoo” project1 [14] at the
Genome Sciences Research Center at the University of Sao Paulo2 .

The remainder of this paper is organized as follows. Section 2 summarizes
the related work. Section 3 presents the developed system. Finally, Section 4
contains the conclusions and future work.

2 Related Work

Several scientific experiments and business processes involve the execution of
a set of activities in a given order. It is increasingly common to find tools for
performing each of these activities available as Web services, local applications,
or libraries functions.

In the last years, several approaches have been proposed for storing, sharing,
composing and executing scientific experiments as workflows. Some works con-
cern about the automatic composition of activities, such as the ones based on
the marriage of the services’ interfaces, the use of semantics for the validation
of data integration, and the use of Artificial Intelligence planning [11,17]. The
majority of them are focused on the fully automatic composition of services,
without providing specific tools for improving existing workflows or suggesting
new activities to a user who is building her/his workflow [16].

Currently, there are some Scientific Workflows Management Systems (SWMS)
available, such as: Kepler [2], Triana [19], VisTrails [5], and Galaxy [9]. All of
them share some basic functionalities such as the composition of workflows using
graphical interface. Moreover, in Kepler and Triana systems you can create com-
ponents and workflow models (templates) that can be reused in other workflows.
Detailed reviews on SWMSs can be found in [6,7,12].

1 http://www.iq.usp.br/setubal/metazoo.html
2 http://www.iq.usp.br/napcg/

http://www.iq.usp.br/setubal/metazoo.html
http://www.iq.usp.br/napcg/
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Other works relevant to this paper are the ones that provide sets of tools
for the analysis of genomic and metagenomic data. There are hundreds of tools
available in different formats (Web services, local applications, scripts, classes,
etc.) to support specific bioinformatics’ tasks. Indeed, this wide availability was
one of the motivations for the extension of the framework made in this paper,
since the framework allows the use of classes in the Java programming language,
local application (which may or may not be scripts), and Web services as basic
workflows’ activities (in an easy to use and transparent way). Thus, any of the
tools available can be easily used in the framework. We highlight two initiatives
for the provision of bioinformatics tools. The first is known as bio* : BioPerl,
BioJava, BioPython, among others [13] and corresponds to the availability of a
set of open source bioinformatics tools in different programming languages. The
second is a more recent initiative which is focused on metagenomes: Community
Bio-Perl toolkit [4].

In terms of SWMS, the extensions made on this paper stand out by the
easy incorporation of existing activities and the recommendation of activities to
help the user during the workflows’ construction (as will be detailed in the next
section). In terms of specific bioinformatics’ tools, this work aims to complement
existing tools and to create interfaces between existing tools in order to simplify
the end user’s work.

3 Developed Framework

This section presents the developed system that aims to support the manage-
ment and execution of bioinformatics experiments. This section is organized in
two subsections: Workflows’ Activities, which describes some of the tools im-
plemented to serve as workflow activities, helping in genomic and metagenomic
data analysis; and subsection Workflow Management System that summarizes
the extensions that have been developed to enhance the framework used as a
basis for scientific experiments management.

3.1 Workflows’ Activities

In this project, several tools were developed to support the analysis of genomic
and metagenomic related data, which are used as basic activities in the SWMS
that will be presented in Subsection 3.2. Following, some of the main tools are
briefly described, divided into two groups: general purpose and bioinformatics
specific tools.

General Purpose Tools: Much of the data analyzed in bioinformatics are in text
files, whose fields are delimited by a specific character (such as commas or tabs).
Thus, general text manipulation tools were developed to support the operations
on these files. These tools are quite simple, but its repeated use in different
projects justified the creation of workflows of activities for them. They include
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activities for selecting and filtering information from semi-structured file, oper-
ations on sets/lists (intersection, union and difference) and mathematics basic
activities (for addition, subtraction, multiplication, division and exponentiation
of numbers)3.

Bioinformatics Tools: Three types of existing tools can be used as workflows’
activities by the SWMS: methods written in the Java programming language, lo-
cal applications (including scripts and executable programs), and Web services.
In order to do this, it is only necessary the creation of an activity that encap-
sulates the call to these tools (details of the creation of these activities can be
found in [8]). Thus, activities for the most common bioinformatics’ tools (such
as tools for local alignments, multiple alignments, generating phylogenetic trees,
etc.) have already been created. In this subsection, we present only some of the
tools that have been developed within this project4.

Taxonomic Classification of Reads: This activity uses the results of reads
alignments with NR5 and the taxonomy provided by the NCBI for taxonomic
classification. The differential of this tool when compared with similar tools for
metagenomic reads’ classification is the use of the full NR database for the clas-
sification (and not just some reference sequences); the user can parameterize
the similarity required considering different parameters (coverage, score, evalue,
alignment size, etc.), and there is the possibility of classifying a read using taxo-
nomical higher levels whenever there is different classifications for the same read:
for example, if a read meets the criteria of similarity with two or more sequences
from different species then it will not be classified as belonging to any of these
species, but to the taxonomical level shared by these species (genus, family, etc.).

Download of Set of Sequences Based on Their GI Identification: This
activity performs the download of the nucleotide or aminoacid sequences based
on its identifier. This tool is typically executed using as input a blast output file
in order to obtain all the sequences related with one or more query sequences.
These sequences can be used, for example, for performing multiple alignments,
for creating phylogenetic trees or for creating graphs of relationships.

Web View of Multiple Alignments: This activity creates an HTML file with
the result of a multiple sequence alignment. The results are similar to the ones
produced by tools such as seaview, but they are in HTML format making easy
the sharing and the selection of regions of interest.

Creation of Sequences’ Relationship Graph: This activity is based on
the results of local alignments or multiple alignments and creates a graph of
relationships between sequences considering the similarity of sequences using

3 A short description of these activities can be found in:
www.each.usp.br/digiampietri/BioWorkflows/index.html#basic

4 Screenshots and resulting images from the execution of some of these tools can be
found in: www.each.usp.br/digiampietri/BioWorkflows

5 Data set with non-redundant nucleotide sequences from NCBI:
http://www.ncbi.nlm.nih.gov/refseq/

www.each.usp.br/digiampietri/BioWorkflows/index.html#basic
www.each.usp.br/digiampietri/BioWorkflows
http://www.ncbi.nlm.nih.gov/refseq/
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the parameters provided by the user. The connected components or the cliques
from the resulting graph can be used to obtain a reference sequence in order to
simplify phylogenetic analysis involving a large number of sequences.

Partial Order of Assemblies: This activity uses a genetic algorithm to pair
the contigs from two different (partial) assemblies of the same species. This
pairing is used to assist in the refinement of the assembly and production of
scaffolds.;

IdentificationofConflicts inAssemblies:This activity receives the reads from
a sequencing and a region of the (partial) assembled genome and verify the amount
of reads confirming the assembly of that region and/or conflicting with it.

Genome Assembly Excluding Conflicting Reads: Activity that receives a
reads conflicting list (which can be generated by the previous activity), and the
list of input fastq files and produces a new assembly excluding conflicting reads.
This tool is typically used to exclude a small amount of reads that avoid the
merge of two contigs by the assembler (in the current version, this activity uses
Newbler6 as assembler).

3.2 Workflow Management System

In this paper we extend a SWMS originally designed in 1999 [15] and whose
details about the last version of the system (before the extension made in this
paper) can be found in [8]7. There is a workflows editor where each activity can
be a Web service, a method in Java programming language, or a local application.
The graphical interface allows the creation, edition and execution of workflows
(scientific experiments), as well as the conversion of a workflow into an executable
code, which can then be executed outside the developed environment. By being
a general purpose SWMS, the framework is used by different areas of knowledge
(such as in the processing of biological images [3]).

Figure 1 presents the framework’s architecture. The modules that were added
or extended in this paper are highlighted.

A workflow is composed of activities (rectangles in the graphical represen-
tation), each activity can have a set of inputs and outputs; data flows (black
arrows) that connect an output from one activity to the input of another; and
control flow (gray arrows) indicating that an activity can only be started after
the execution of another.

Figure 2 contains the screenshot of a workflow that is responsible for running
the blast program, aligning the sequences from the input file with a database of
sequences (in the example, we used the NR database from NCBI); the sequences
that align with the input sequence are then downloaded from NCBI, a multiple
alignment is produced, and, based on this multiple alignment, a similarity graph
is built8; and a phylogenetic tree.

6 http://en.wikipedia.org/wiki/Newbler
7 All functionalities from the previous version of the system were kept in the expansion
and some new ones were added as will be presented.

8 This graph can be found in: www.each.usp.br/digiampietri/BioWorkflows

http://en.wikipedia.org/wiki/Newbler
www.each.usp.br/digiampietri/BioWorkflows
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Fig. 1. SWMS Architecture

Due to space limitations, only the two main new features of the SWMS will
be presented. They aim to improve the previous version of the SWMS in order to
address some bioinformatics experiments’ needs: improvement of the workflows
execution model and development of an activity recommender system.

The workflow execution model was modified to allow a choreographed
execution of workflows. In the previous version, the framework allowed only
an orchestrated execution, restricting the creation of loops and conditionals,
and did not allow the execution of workflows in a distributed way using, for
example, volunteer computing. Thus, this modification was developed to enhance
the performance of the distributed execution of bioinformatics experiments.

As stated in Section 2, there are several approaches to assist the end user in
the construction of workflows. The activity recommender system was de-
veloped to provide a semi-automatic composition approach, since the automatic
composition system already exists in the current system, which best fits users
with no knowledge of the application domain; while semi-automatic approaches
aim to help in the construction of workflows without imposing an outcome, en-
suring the autonomy of the user. Such systems suggest activities for the user
which can be used in the workflow to complete its construction. For this, two
approaches were used: the use of the Apriori algorithm [1] to generate associ-
ation rules, i.e., rules that say if the workflow has the activities x and y then
it probably will have the activity z (in this case the system will recommends to
the user the inclusion of activity z ). This approach has been used in workflow
systems [16], but it has one limitation: the calculation of the rules is quite slow
due to the large amount of activities available. To deal with this limitation a
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Fig. 2. Screenshot of the SWMS

second recommendation approach was developed: for each activity a descending
ordered list of the most frequent activities that usually occur after this activity
is created and whenever a user inserts a new activity in the workflow, the system
suggests what are the next most potentially useful activities based on this list.
In order to create the rules and the lists of activities, as well as to validate the
approaches we used the workflows available in MyExperiment9.

4 Conclusion

The development of systems to support the management and execution of sci-
entific experiments has become increasingly important. This paper presented a
bioinformatics SWMS, focusing on genomic and metagenomic data analysis. The
developed system is based on an extension of a SWMS combined with the devel-
opment of specific activities related to genomic and metagenomic data analysis.

As future work we intend to develop new tools for the analysis of metage-
nomic data, and evaluate the performance improvement of using the distributed
execution of workflows with volunteer computing.

Acknowledgments. This work was partially funded by FAPESP, CNPq, Tu-
torial Education Program of Brazilian Ministry Education (PET/MEC), and
University of Sao Paulo.
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Abstract. The number of cycles of a breakpoint graph is one of the
notable parameters to solve distance problems in comparative genomics.
For a fixed c, the number of linear unichromosomal genomes with n
genes such that the breakpoint graph has c disjoint cycles, the Hultman
number, is already determined. In this work we extend this result to
multichromosomal genomes, providing formulas to compute the number
of multichromosal genomes having a fixed number of cycles and/or paths.

1 Introduction

In molecular biology, several measures have been proposed to compute the
(dis)similarity between genomes. In genome rearrangements, one is concerned
with measures of dissimilarity involving large-scale mutations, where a funda-
mental problem is to determine the smallest sequence of such operations that
transforms one given genome into another. This minimum number of operations
is called the rearrangement distance between the two given genomes (see [5]).

A remarkable characteristic of methods to compute distances is the systematic
use of a graph, first introduced by Bafna and Pevzner [2], known as the breakpoint
graph. It has proven, by its decomposition into disjoint cycles, a useful tool to
efficiently compute rearrangement distances such as transposition or reversal,
directly related to the number of cycles in this decomposition [5].

Since cycle decomposition of breakpoint graphs plays a central role in comput-
ing distances, it is useful to investigate the distribution of such cycles. Particu-
larly, the distribution of genomes with a number of cycles c allows us to evaluate
the probability to have a scenario of a distance d depending of c. Doignon and
Labarre [4] enumerated the unsigned permutations of a given size such that the
corresponding graph has a given number of cycles, and called it the Hultman
number. Subsequently, Grusea and Labarre [7] extended this result for signed
permutations, which properly represent unichromosomal genomes. In this work
we extend previous results providing formulas to compute the number of multi-
chromosomal genomes with a given number of cycles and/or paths. We obtain
an explicit formula for circular genomes and recurrences for more general cases.

In Section 2 of this work we introduce definitions, notations, and details of
previous results. Results for circular and general multichromosomal genomes are
presented in Section 3, and Section 4 presents conclusions and perspectives.

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 9–16, 2014.
c© Springer International Publishing Switzerland 2014
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2 Preliminaries

We represent multichromosomal genomes using a similar notation as in [3]. A
gene is a fragment of DNA on one of the two DNA strands in a chromosome,
showing its orientation. A gene is represented by an integer and its orientation by
a sign. The orientation of a gene g allows us to distinguish its two extremities, the
tail (gt) and the head (gh). A chromosome is represented by a sequence of genes,
flanked in the extremities by telomeres (◦) if the chromosome is linear; otherwise,
it is circular. Genomes are represented as sets of chromosomes. An adjacency in
a genome is either a pair of consecutive gene extremities in a chromosome, or
a gene extremity adjacent to a telomere (a telomeric adjacency). For instance,
A = {(◦ 1 2 3 4 ◦)} is a genome with one linear chromosome and four genes, and
has the adjacencies ◦1t, 1h2t, 2h3t, 3h4t and 4h◦, where the first and the last are
telomeric adjacencies.

There is a one-to-one correspondence between genomes and matchings in
the set of extremities. Adjacencies correspond to two matched (saturated) ver-
tices, and telomeric adjacencies correspond to unmatched (unsaturated) vertices.
Therefore, a perfect matching (i.e., matching which saturates all vertices of the
graph) corresponds to a genome with only circular chromosomes. The match-
ing corresponding to a genome A is denoted by MA. Because of this one-to-one
relationship, in this text we use the terms genome andmatching interchangeably.

Given two genomes A and B with the same set of genes, the multichromo-
somal breakpoint graph of A and B, denoted by BG(A,B), is built by join-
ing the matchings MA and MB in the same set of vertices, using different
colors for the edges of each matching. Figure 1 shows an example of a mul-
tichromosomal breakpoint graph for genomes A = {(1 2 3 4 5 6 7 8 9)} and
B = {(6 −1 4 5 −2), (◦ −9 3 8 7 ◦)}. From this point on we will use the term
breakpoint graph to refer to the multichromosomal breakpoint graph. Since all its
vertices have degree 0, 1 or 2, the breakpoint graph is uniquely decomposed in
cycles and paths. For instance, the breakpoint graph in Figure 1 is decomposed
in two cycles and one path.

1t 1h

+1

2t 2h

+2

3t 3h

+3

4t 4h

+4

5t 5h

+5

6t 6h

+6

7t 7h

+7

8t 8h

+8

9t9h

Fig. 1. Multichromosomal breakpoint graph for genomes A = {(1 2 3 4 5 6 7 8 9)}
(black edges) and B = {(6 −1 4 5 −2), (◦ −9 3 8 7 ◦)} (dotted edges)

3 The Multichromosomal Hultman Number

In this section, we extend the results of [4,7] for multichromosomal genomes.
There are two new aspects that must be considered. First, since the breakpoint
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graph can be decomposed in cycles and paths, we may have to count not only
cycles, but also paths. The other question is about the identity genome. In the
unichromosomal case, the identity genome is easily defined. In the multichromo-
somal case, it is not obvious which given genome is the identity. When working
on multichromosomal circular genomes (Section 3.1), the identity is defined as
in the unichromosomal case. In the general case, working on genomes with linear
and circular chromosomes (Section 3.2), we analyse two types of identities for
genomes: one with only one set of circular chromosomes and another with a set
of circular chromosomes and a set of linear chromosomes.

In the next subsections, we propose extensions of the Hultman number for
multichromosomal genomes, first considering only circular genomes, and then
extending the results to general genomes, with linear and circular chromosomes.
The same strategy is used in all cases: first, start with a matching representing
the identity, and then superimpose all other possible matchings, while count-
ing recursively cycles and paths. To do that, we need to consider all possible
operations to build such matchings. In Figure 2, all such operations are shown.

3.1 Circular Genomes

A circular genome is a genome where all chromosomes are circular. Since there
are no telomeric adjacencies, the matching MA of a circular genome A is a perfect
matching on the extremities of A. The breakpoint graph of two circular genomes
is decomposed in disjoint alternating cycles, since each vertex has degree two.

We compute the number of circular genomes with n genes that have c disjoint
alternating cycles over a given identity genome I, and call it the multichro-
mosomal circular Hultman number, denoted by HC(n, c). In this case, since the
matching of any circular genome is a perfect matching, we claim that HC(n, c) is
the same, independently of the genome I chosen as an identity, and simply define
I◦ = {(1, 2, . . . , n)}. Hence, we define HC(n, c) = |{A ∈ Cn : cyc(BG(A, I◦)) =
c}|, where Cn is the set of all circular multichromosomal genomes with n genes
and cyc(·) denotes the number of cycles in a graph.

Starting with a perfect matching MI◦ of the 2n vertices, we build all break-
point graphs BG(A, I◦), for circular genomes A, which correspond to perfect
matchings, adding one edge at a time, while counting the number of cycles, re-
cursively. The matching MI◦ is composed by n (connected) components, and
all are paths. Considering an arbitrary vertex u in the matching MI◦ , there are
2n − 1 possible edges uv that can be created. Figure 2(a,b) shows how these
different edges can be chosen. There are two possible cases:

(a) Create Cycle: If u and v belong to the same component, uv will create a
cycle. There is only one possibility for this type of edge.

(b) Merge Paths: If u and v belong to different components, uv will merge
both paths. There are 2n− 2 possibilities of adding such an edge.

We establish a recurrence for HC(n, c), where 0 ≤ c ≤ n, as follows:

HC(n, c) =

⎧
⎨

⎩

0 , if n < c or c = 0 ,
1 , if n = c ,
HC(n− 1, c− 1) + (2n− 2) ·HC(n− 1, c) , if n > c .
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Since 1 ≤ c = cyc(BG(A, I◦)) ≤ n for every pair of genomes A, I◦ with n
genes, then the first base case holds. There exists only one configuration where
c = cyc(BG(A, I◦)) = n, when A = I◦, and thus the second base case holds.

Theorem 1. There exists an explicit formula to HC(n, c):

HC(n, c) =
2n−c

(c− 1)!

∑

0≤q1,...,qn−c :∑n−c
2 mqm=n−c

(n+Q− 1)!

q2! · · · qn−c! 1!q12!q2 · · · k!qn−c
,

where Q = q2 + . . .+ qk and
∑n−c

2 mqm = n− c is a sum over all partitions of
n− c.

Proof. We know from [6] that unsigned Stirling numbers of first kind satisfy the
following recurrence equation:

[
n
c

]
=

[
n−1
c−1

]
+(n−1)

[
n−1
c

]
. Multiplying both sides

by 2n−c and usingHC(n, c) recurrence equation we arrive atHC(n, c) = 2n−c
[
n
c

]
.

Then, using the explicit formula for
[
n
c

]
given in [9], we arrive at our result. ��

Furthermore, the sequence of integers generated by HC(n, c) is the unsigned
entry A039683 in the OEIS (On-Line Encyclopedia of Integer Sequences) [10].

3.2 General Genomes

We will generalize our previous formula for general multichromosomal genomes,
with both linear and circular genomes. Now, we have not only cycles but also
paths in the breakpoint graph. Thus, it is not clear which genome should be con-
sidered the identity genome. As a starting point, let us consider again the identity
as I◦ = {(1, 2, . . . , n)}, and find the general Hultman number HG(n, c, p), defined
as HG(n, c, p) = |{A ∈ Gn : cyc(BG(A, I◦)) = c and path(BG(A, I◦)) = p}|,
where Gn is the set of all multichromosomal genomes with n genes, and path(·)
denotes the number of paths in a graph. In this set, each genome corresponds
to a matching, not necessarily perfect, since only circular genomes correspond
to perfect matchings. Similarly as the previous case, we start with the matching
MI◦ on 2n vertices, and recursively build all possible matchings, while counting
cycles and paths. Since a matching induced by an arbitrary genome A in Gn is
not necessarily perfect, together with the create cycle and merge paths opera-
tions on a vertex u (Section 3.1), we can also choose not to saturate a vertex
u in the matching, creating a telomeric adjacency, which we call a vertex skip
operation.

Moreover, since we now have an operation that is applied on just one ver-
tex, and not two at a time such as the operations presented in Section 3.1,
we need to define a different recurrence, where n correspond to vertices in
the breakpoint graph, and not to genes in the genomes. In a genome I◦
with n genes, there are 2n vertices (extremities) in MI◦ and consequently in
BG(A, I◦). So, we need an auxiliary number H ′

G(n
′, c, p), such that HG(n, c, p) =

H ′
G(n

′, c, p), with n′ = 2n, and H ′
G(n

′, c, p) = |{M ∈ Mn′ : cyc(BG(M,MI◦)) =
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c and path(BG(M,MI◦)) = p}|, where Mn′ is the set of all possible matchings
on n′ vertices, and MI◦ is a perfect matching with n′/2 edges induced by I◦.

Starting with the matching MI◦ , another matching is built recursively by
adding edges or skipping vertices until all vertices have been visited. Visited
vertices are shown in figures as black vertices, and unvisited as white. If n′ is
even, we pick any unvisited vertex u and we have tree possibilities (Fig. 2 a,b,c):

(a) Create Cycle: There is one edge uv such that v(�= u) is the unvisited
vertex in the same component as u, and this edge (shown as a grey edge uv)
will create a cycle. Vertices u and v are marked as visited.

(b) Merge Paths: There are n′− 2 edges uv such that v is an unvisited vertex
in a different component as u, and this edge will merge these components,
that are paths. Vertices u and v are marked as visited.

(c) Skip Vertex: no edge is created and u is marked as visited.

If n′ is odd, there is a vertex u that is connected to a visited vertex. From this
vertex there is no way to create a cycle, but two operations are possible (Fig.
2e, f):

(e) Merge Paths: There are n′ − 1 edges uv such that v is in a different
component as u, merging these components. Vertices u and v are marked as
visited.

(f) Skip Vertex: no edge is created, u is marked as visited. A path where all
vertices are visited is created.

For the base cases, we notice that there is no possible matching if n′ ≤ 0.
Also, since each cycle has at least two vertices and a path has at least one,
no matching has 2c + p > n′. For n′ = 1, only one matching is possible, with
one path and no cycle, therefore H ′

G(1, 0, 1) = 1. For n′ = 2, there is only one
matching, with one cycle and no path, therefore H ′

G(2, 1, 0) = 1. With that, we
arrive at the following recurrence:

H ′
G(n

′, c, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, (1)

1, (2)

H ′
G(n

′ − 2, c− 1, p) + (n− 2) ·H ′
G(n

′ − 2, c, p) +H ′
G(n

′ − 1, c, p), (3)

(n− 1) ·H ′
G(n

′ − 2, c, p) +H ′
G(n

′ − 1, c, p− 1), (4)

with (1) if n′ ≤ 0 or 2c+p > n′, (2) if n′ = 1, c = 0, p = 1 or n′ = 2, c = 1, p = 0,
(3) if n′ is even, and (4) if n′ is odd.

3.3 General Genomes with a Fixed Number of Linear Chromosomes

In this section we generalize the previous approach for different identity genomes.
Instead of fixing the identity as a circular genome, the identity I� is a genome
with a fixed number of � linear chromosomes. We define the Hultman number
HL(n, c, p, �) = |{A ∈ Gn : cyc(BG(A, I�)) = c and path(BG(A, I�)) = p}|, where
Gn is the set of all multichromosomal genomes with n genes, and I� is a genome
with exactly � linear chromosomes. This is a generalization of the previous case,
since HG(n, c, p) = HL(n, c, p, 0).
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We propose again an auxiliary series, defined as H ′
L(n

′, c, p, �′) = |{M ∈
Mn : cyc(BG(M,MI�′ )) = c and path(BG(M,MI�′ )) = p}|, where Mn is the
set of all possible matchings on n′ vertices, and MI�′ is a matching on these
vertices such that exactly �′ vertices are unsaturated (isolated), with n′ = 2n
and �′ = 2�. Then, given a matching MI�′ with �′ unsaturated vertices, we will
build a matching recursively adding edges or skipping vertices until all vertices
have been visited. In this case, the parity of n′+�′ determines which possibilities
we have (Figure 2). When n′ + �′ is even, we will call the current state balanced,
otherwise it is unbalanced. In the balanced case, focusing on an unvisited vertex
u that is saturated by MI�′ there are four possible cases (Fig. 2a–d):

(a) Create Cycle: There is one edge uv such that v(�= u) is an unvisited vertex
in the same component as u, and this edge will create a cycle. Vertices u and
v are marked as visited.

(b) Merge Paths: There are n′−2− �′ edges uv such that v is saturated in I�′

and is in a different component as u, and uv will merge these components,
that are paths. Vertices u and v are marked as visited.

(c) Skip Vertex: No edge is created and u is marked as visited.
(d) Connect with Unsaturated: There are �′ possible edges from u to an

unsaturated vertex v in I�′ . Vertices u and v are marked as visited.

Cases (a) and (b) visit two vertices that are saturated in I�′ , which means
that the state remains balanced. Case (c) changes the state to unbalanced, since
only one vertex is visited. Case (d) visits two vertices, but one is a unsaturated
vertex in I�′ , which means that the parity of n′+�′ changes and the state becomes
unbalanced.

In the unbalanced state, focusing on a vertex u belonging to a component
with all other vertices visited, there are three possibilities (Fig. 2e–g):

(e) Merge Paths: There are n′ − 1 − �′ edges uv such that v is saturated
in I�′ and is in a different component as u, and this edge will merge these
components, that are paths. Vertices u and v are marked as visited.

(f) Skip Vertex: Vertex u is not saturated in M ; no edge is created and only
u is marked as visited, and a path with all vertices visited is created.

(g) Connect with Unsaturated: There are �′ possible edges from u to an
unsaturated vertex v in I�′ . Vertices u and v are marked as visited, and a
path with all vertices visited is created.

Cases (e), (f) and (g) are similar to cases (b), (c) and (d), respectively, which
means that (e) keeps the state unbalanced, but (f) and (g) change it to balanced
again. There are still two cases to consider, when n′ = �′ (Fig. 2h, i).

(h) Connect Two Unsaturated: There are �′ − 1 possible edges from an
unsaturated vertex u to an unsaturated vertex v in I�′ . Vertices u and v are
marked as visited, and a path with all vertices visited is created.

(i) Skip Vertex: No edge is created and u is marked as visited. A path with
all vertices visited is created.
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(a)
u v u v

(b)
u v u v

(c)
u u

(d)
u v u v

(e)
u v u v

(f)
u u

(g)
u v u v

(h)
u v u v

(i)
u u

Fig. 2. Operations for recursively building a matching (new genome) on top of an ex-
isting matching (identity genome), resulting in a breakpoint graph. Unvisited vertices
are white, visited are black. From vertex u we have the following operations: Balanced
configurations: (a) Create cycle, (b) Merge paths, (c) Skip vertex, (d) Connect un-
saturated; Unbalanced configurations: (e) Merge paths, (f) Skip vertex, (g) Connect
unsaturated, (h) Connect two unsaturated, (i) Skip unsaturated.

For the base cases, as before there is no possible matching when n′ ≤ 0 or
2c+ p > n′. For n′ = 1, only one matching is possible with one path. For n′ = 2,
there is only one matching with one path and no cycle or with one cycle and no
path. With all these cases described, we arrive at the recurrence:

H ′
L(n

′, c, p, �′)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (1)

1, (2)

(�′ − 1) ·H ′
L(n

′ − 2, c, p− 1, �′ − 2) +H ′
L(n

′ − 1, c, p− 1, �′ − 1), (3)

H ′
L(n

′ − 2, c− 1, p, �′) + (n′ − 2− �′) ·H ′
L(n

′ − 2, c, p, �′) +
i ·H ′

L(n
′ − 2, c, p, �′ − 1) +H ′

L(n
′ − 1, c, p, �′), (4)

(n′ − 1− �′) ·H ′
L(n

′ − 2, c, p, �′) +
i ·H ′

L(n
′ − 2, c, p− 1, �′ − 1) +H ′

L(n
′ − 1, c, p− 1, �′), (5)

with (1) if n′ ≤ 0 or 2c+ p > n′, (2) if n′ = p = 1, c = 0 or n′ = 2, c = 0, p = 1
or n′ = 2, c = 1, p = �′ = 0, (3) if n′ = �′, (4) if n′ + �′ is even, n′ > �′, (5) if
n′ + �′ is odd, n′ > �′.
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4 Conclusion

In this paper, we introduced different recurrence equations for the Hultman num-
ber and its variations, that are relevant in the context of comparative genomics.
We have extended previous results that treated the unichromosomal cases [4,7],
focusing on multichromosomal genomes. Table 1 shows a summary of the results.

Table 1. Summary of the results in this paper. The first two lines show previous
results, and the last three the Hultman numbers proposed in this paper.

Hultman Number Identity Universe

H(n, k) [4] π = 〈1 · · · n〉 Sn (unsigned permutations)
H±(n, k) [7] π = 〈1 · · · n〉 S±

n (signed permutations)
HC(n, c) Circular Genome Circular genomes
HG(n, c, p) Circular Genome General genomes
HL(n, c, p, �) Genome with � linear chr. General genomes

For the circular Hultman number HC(n, c) we also provided an explicit for-
mula, using the relationship between this series and the unsigned Stirling num-
bers of first kind. Future directions include finding explicit equations for the
introduced recursive equations and finding new Hultman numbers for other rele-
vant biological comparisons, such as restricting genomes to have the same num-
ber of linear and/or circular chromosomes.
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Abstract. Metagenomics is an emerging field in which the power of
genome analysis is applied to entire communities of microbes. A large
variety of classifiers has been developed for gene prediction though there
is lack of an empirical evaluation regarding the core machine learning
techniques implemented in these tools. In this work we present an empir-
ical performance evaluation of classification strategies for metagenomic
gene prediction. This comparison takes into account distinct supervised
learning strategies: one lazy learner, two eager-learners and one ensemble
learner. Though the performance of the four base classifiers was good,
the ensemble-based strategy with Random Forest has achieved the over-
all best result.

Keywords: Machine learning, classification methods, gene prediction,
metagenomics.

1 Introduction

Metagenomics is an emerging field in which the power of genome analysis is
applied to entire communities of microbes, bypassing the need to isolate and
culture individual microbial species [1]. It is focused on the understanding of
the mixture of genes (genomes) in a community as a whole. The gene predic-
tion task is a well-known problem in genomics, and it remains an interesting
computational challenge in metagenomics as well. Depending on the applicabil-
ity and success of the assembly, gene prediction can be done on post assembly
contigs1, on reads from unassembled metagenomes or on a mixture of contigs
and individual unassembled reads. There are two main strategies for gene pre-
diction [2]: i) evidence-based gene-calling methods use homology searches to
1 A contig is a continuous sequence resulting from the assembly of overlapping small

DNA fragments (sequence reads).
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find genes similar to those observed previously (reference microbial genomes);
and ii) ab initio gene-calling relies on the intrinsic features of the DNA sequence
to discriminate between coding and noncoding regions, allowing for the identi-
fication of homologs in the available databases. The former approach has two
major drawbacks. Low values of similarity to known sequences either due to evo-
lutionary distance or due to the short length of metagenomic coding sequences
and the presence of sequence errors restrict the identification of homologs. In
addition, novel genes without similarities are completely ignored. The latter ap-
proach usually employs Machine Learning (ML) algorithms which can smooth
the previous gene prediction drawbacks. Still this requires a proper use of sophis-
ticated classification methods and careful selection of potential DNA sequence
features that could best discriminate between coding and noncoding sequences.

2 Materials and Methods

In Figure 1 we depict the overall architecture devised for the comparison of the
classifiers. It follows the classical steps of data prepreocessing, learning and test.
First, coding and non-coding sequences are extracted for the identification of
potential sequence features, and next classification models are built for further
prediction analysis (Figure 1-A). Once new sequences are retrieved it is possible
to classify them in accordance with the classification models, and thus, an appre-
ciation regarding whether it is a coding sequence or not can be done(Figure 1-B).

Fig. 1. The overall architecture devised for the comparison of the classification methods
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2.1 Classification Methods

We have selected four classification strategies for the comparison study. These
methods employ distinct learning strategies, and ideally, each one has a particu-
lar manner to generalize the search space. The gene prediction problem is simply
a binary classification or concept learning (positive class: coding sequence and
negative class: no coding sequence). This comparison takes into account distinct
supervised learning strategies: one lazy learner (KNN: K-Nearest Neighbors),
two eager-learner (SVM: Support Vector Machines and ANN: Artificial Neu-
ral Networks) and one ensemble learner (RF: Random Forest). Next, we briefly
describes each one of these strategies.

Random forest is a well-known ensemble approach for classification tasks
proposed by Breiman [3]. Its basis comes from the combination of tree-structured
classifiers with the randomness and robustness provided by bagging and random
feature selection.

Nearest-neighbor classifiers are based on learning by analogy, by comparing
a given test instance with training instances that are similar to it [4].

A neural network is a set of connected input/output units in which each
connection has a weight associated with it. During the learning stage, the net-
work learns by adjusting the weights with aims to predict the correct class label
of the input instances. Backpropagation is the most popular ANN algorithm
and it performs learning on a multilayer feed-forward neural network [4].

Support Vector Machines uses a linear model to implement nonlinear class
boundaries. SVM transform the input using a nonlinear mapping, thus, turning
the instance space into a new space [5].

2.2 Feature Engineering

Feature engineering is at the core of classification strategies and it is a crucial
step on prediction modeling. Essentially, two different types of information are
currently used to try to find genes in a genomic sequence: i) content sensors are
the characteristic patterns of protein coding sequences; and ii) signals sensors
are the features of protein coding sequences based on functional characteristics
of the gene structures. In this work we use only content sensors.

Table 1. Content sensors features used [x] by gene prediction tools in metagenomics

GC
Content Length Codon

usage
Dicodon

usage
Translation

initiation site
Amino acid

usage

Orphelia x x x x x
MetaGUN x x x
MGC x x x x x x
MetaGene x x x
FragGeneScan x
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GC-Content. It is the percentage of guanine and cytosine bases in all bases of a
sequence. It has been used extensively by several gene prediction tools. This uti-
lization is mainly due to the fact that coding regions present, on average, a higher
GC content than on non coding sequences [6]. Differently from previous studies (see
Table 1), we calculated the total level of GC content, and the content at the first,
second and third monocodon positions with the aim to evaluate their impact in the
gene prediction task. In this way, four features are derived from the GC content.

Length. Another feature for discrimination between coding and non-coding
sequence is its length. The intergenic regions are usually smaller than coding
regions[7].

Codon Usage. Perhaps the most important features for the discrimination be-
tween coding and non-coding sequences can be calculated from codon usage [8],
in particular the frequencies of 43 monocodons. These frequencies represent the
occurrences of successive trinucleotides (non-overlapping). For the characteriza-
tion of monocodon usage, we compute the variance among the 61 monocodons,
since gene sequences do not contain stop codons.

2.3 Training Data

The training data is basically DNA sequences having both coding sequences
(positive) and intergenic regions (negative) instances. Our approach to compare
the four classification methods is based on a learning scheme over eight prokary-
otic genomes, namely two Archaeas and six Bacterias, available in GenBank2

(Table 2). The choice of these organisms has to do with the experimental genomic
data evaluated while testing the predictive models. Thus, either these organisms
belong to the same branch of the evolutionary tree or they are associated to
Acid Mine Drainage biofilms (Section 2.4).

We have developed an algorithm to properly extract the coding and non-
coding regions, on both forward and reverse strands, from these eight “complete”
genomes. This algorithm was applied to regions with sequence lengths higher
than 59 bp. Sequences less than 60 bp are ignored since they are too short to
provide useful information [9]. Those originating from the annotated genes are
used as positive instances of coding sequences, whereas others are treated as
items of the non-coding class.

2.4 Test Data

The metagenomic data selected for the comparison study is the Acid Mine
Drainage (AMD) biofilm [10], freely available at the site of NCBI 3. This biofilm
sequencing project was designed to explore the distribution and diversity of
metabolic pathways in acidophilic biofilms. More information regarding the AMD
study as well as environmental sequences, metadata and analysis can be obtained
at [10].
2 http://www.ncbi.nlm.nih.gov/news/10-22-2013-genbank-release198
3 http://www.ncbi.nlm.nih.gov/books/NBK6860/

http://www.ncbi.nlm.nih.gov/news/10-22-2013-genbank-release198
http://www.ncbi.nlm.nih.gov/books/NBK6860/
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Table 2. The prokaryotic genomes used as reference for the training data. The “*”
symbol highlights the two Archaeas.

Species GenBank Acc.

Thermoplasma acidophilum * NC_002578
Thermoplasma volcanium * NC_002689
Acidimicrobium ferrooxidans NC_013124

Acidithiobacillus caldus NC_015850
Acidithiobacillus ferrooxidans NC_011206
Acidithiobacillus ferrivorans NC_015942

Candidatus Nitrospira defluvii NC_014355
Thermodesulfovibrio orangestonii NC_011296

We have selected prokaryotic genomes associated to the same species found
in Tyson[10]. Thus, five genomes (2 Archaeas and 3 Bacterias) were extracted
from GenBank to create the test data (Table 3).

Table 3. The prokaryotic genomes used as reference for the test data. The “*” symbol
highlight the two Archaeas.

Species GenBank Acc.

FA: Ferroplasma acidarmanus * NC_021592
TA: Thermoplasmatales archaeon BRNA * NC_020892

LFI: Leptospirillum ferriphilum NC_018649
LFO: Leptospirillum ferrooxidans NC_017094

SA: Sulfobacillus acidophilus NC_015757

2.5 Measures of Prediction Performance
The classifiers will be evaluated through the evaluation of classical prediction
performance measures, namely, accuracy (ACC) and Kappa. Kappa measures
how closely the instances labeled by the classifiers matched the data labeled as
ground truth, controling for the ACC of a random classifier as measured by the
expected accuracy. Thus, the kappa for one classifier is properly comparable to
others kappa’s classifiers for the same classification task.

3 Results and Discussion

3.1 Performance of the Classifiers
The prediction modeling and evaluation was carried out with the caret R pack-
age [11]. We use the built-in tune() function for resampling and tuning to opti-
mize all classifiers parameters. The best values were as follows: i) RF (mtry 4),
KNN (k=5), ANN (size=5 and decay=0.1), SVML (C=0.5). The performance
measures were calculated from the average performance of three resampling rep-
etition within a 10-fold cross validation scheme (Table 4).
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Table 4. The average performance of the classifiers. The gray cells highlight the best
performance achieved by the RF classifier.

ACC KAPPA

RF model 0.94 0.87
KNN model 0.87 0.70
ANN model 0.91 0.80

SVML model 0.88 0.74

3.2 Comparison of Classifiers Using Independent Test Data

As we expected the ensemble learning classifier employed by RF has achieved
the best performance among all classifiers (see Table 5). Ensemble learning al-
gorithms are less likely to overfitting when dealing with imbalanced data. The
SVM has an overall performance similar to KNN (base classifier), and this is
partially due to the generalization carried by a linear SVM. Probably a radial
SVM model would be able to generalize better the search space. On the other
hand, the other eager learner, ANN, presents competitive results. As an example,
ANN outperforms RF for the LFI specie (Kappa=0.9097).

Table 5. The comparison performance of classifiers in accordance to the ACC and
Kappa measures. The highlighted cells show the best results.

ACC Kappa
Species RF ANN KNN SVML RF ANN KNN SVML
FA 0.9173 0.8702 0.8302 0.785 0.8275 0.7298 0.6182 0.5317
LFI 0.9156 0.9097 0.8854 0.8835 0.8256 0.9097 0.7599 0.7565
LFO 0.9263 0.9143 0.8888 0.8767 0.8472 0.8213 0.7666 0.741
SA 0.9383 0.9235 0.8913 0.8947 0.8741 0.8434 0.7746 0.7834
TA 0.957 0.9175 0.8875 0.9175 0.9089 0.8243 0.7577 0.737

3.3 Random Forest Classifier Evaluation

In Figure 2 we show the importance of each of the 6 variables used by RF. The
size of the sequence was selected as the most important attribute, maybe due to
the fact that the coding regions are in most cases higher than non-coding. Among
the GC content measures applied, the concentration of GC in second position of
codons showed a very significant importance as compared to the others. Finally, the
variance of the codon usage did not show a higher degree of relevance as expected.

Based on the rank of the most important features illustrated in Figure 2, we
have built three other RF models as follows: RF5) does not take into account
the GC content feature; RF4) does not use features related to the GC content
and the GC content in the third position; and RF3) does not take into account
the features GC content and GC content in first and third position. Finally,
RFComp uses the complete set of features. From Figure 3 we may observe that
the features derived from the GC content plays an interesting role the in models’
generalization.
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Fig. 2. Variable importance plot of the RF model

Fig. 3. The ROC curve for distinct RFn models. RFcomp uses the complete set of
six features, the other ones uses (n) features on each model. Thus, RF3 uses only the
Top-3 features from the Figure 2.
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4 Conclusions

Gene prediction is a well-known computational challenge in both genome and
metagenome analysis. In this work we presented an empirical comparison of sev-
eral well-known classification methods applied to gene discovery in experimental
metagenomic data. Though the performance of the four base classifiers was good,
the ensemble-based strategy Random Forest has achieved the overall best result.
We plan to develop a new gene prediction pipeline having its basis on Random
Forest. To the extent of our knowledge there is no reference of a metagenome
gene prediction strategy based on a RF classifier.
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Abstract. Microorganisms abound everywhere. Though we know they
play key roles in several ecosystems, too little is known about how these
complex communities work. To act as a community they must interact
with each other in order to achieve such community stability in which
proper functions allows the microbial community to adapt in complex
environment conditions. Thus, to effectively understand microbial ge-
netic networks one needs to explore them by means of a systems biology
approach. The proposed approach extends the metagenomic gene-centric
view by taking into account the set of genes present in a metagenome and
also the complex links of interactions among these genes and by treating
the microbiome as a single biological system. In this paper, we present
the FUNN-MG computational framework to explore functional modules
in microbial genetic networks.

Keywords: systems biology, gene and pathway enrichment analysis,
graph representation, graph visualization, metagenomics.

1 Introduction

Microorganisms abound in every part of the biosphere including soil, hot springs,
on the ocean floor, high in the atmosphere, deep inside rocks within the Earth’s
crust and in human tissues. They are extremely adaptable to conditions where
no one else could be able to survive.

Their adaptability is mainly due to the fact that they live in complex commu-
nities. Interactions inside the microbial networks plays essential functions for the
maintenance and survival of the community. Unfortunately, too little is known
about microbial interactions.

In this sense, the metagenomic analysis conducts studies from of material ex-
tracted directly from the environment has been developed in order to extract

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 25–32, 2014.
c© Springer International Publishing Switzerland 2014
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knowledge from this interaction. The metagenomic sequence process poses chal-
lenges that could be handled by the utilization of Machine Learning (ML) tech-
niques. In fact, ML has been applied succesfully in several genomics problems.
In the context of functional analysis it can provide new ways to explore graphs
by using robust statistics, dealing with uncertainty in the data and boosting the
search for "hot spots" in large microbial genetic networks.

In this work we propose a computational framework to evaluate functional mod-
ules in microbial genetic networks. A weighted graph is built with its basis on the
genes and pathways properly induced from the relative abundance of the metabolic
pathways enriched by the associated metagenomic data. Aditionaly, non-
supervised ML is applied to enumerate network modules (clusters) of microbial
genes presenting strong evidence of both interaction and functional enrichment.

The main contribution of the proposed strategy are:

– A systems biology approach for functional enrichment analysis of
metagenomes;

– A visual analytics system to explore interactively the enriched metabolic
pathways in microbial genetic networks;

– the FUNN-MG computational framework for the identification of network
modules having strong functional enrichment in experimental metagenomic
data.

2 Metagenomic Pathway-Centric Network Analysis

Metagenomic data analysis is a complex analytical tasks in both biological and
computational senses. To help visualize the processes involved between species
found in metagenomic samples and decrease the complexity of the analyzes,
in this work we propose the FUNN-MG computational framework (Figure 1)
which provides a functional and visual analytic system for the identification and
exploration of the key functions of a microbial community. The FUNN-MG is
acronym for FunctioNal Network Analysis of Metagenomics Data.

The proposed strategy has four main tasks (the rounded rectangles in Fig-
ure 1) that must be executed sequentially: i) identification of the metabolic
pathways, ii) statistical evaluation of the enriched pathways, iii) detection of
strong modules (clusters) and iv) visualization of the microbial gene-pathway
network. The first three steps are related to the ML part of the strategy while
the remaining step deals with the visual analytics of the graph patterns extracted
in the previous steps. Next section we discuss each one of these steps, leaving
one particular section to the visualization strategy.

3 Materials and Methods
3.1 The Metagenomic Experimental Data

The metagenomic data selected for our experimental study is the Acid Mine
Drainage (AMD) biofilm [1], freely available at the site of NCBI1. This biofilm
1 http://www.ncbi.nlm.nih.gov/books/NBK6860/

http://www.ncbi.nlm.nih.gov/books/NBK6860/
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Fig. 1. Metagenomic pathway-centric network approach for functional and visual an-
alytics of microbial communities

sequencing project was designed to explore the distribution and diversity of
metabolic pathways in acidophilic biofilms. Acidophilic biofilms are self-sustaining
communities that grow in the deep subsurface and receive no significant inputs
of fixed carbon or nitrogen from external sources. More information regarding
the AMD study as well as environmental sequences, metadata and analysis can
be obtained at [2].

3.2 Preprocessing of the Metagenomic Sequences

We have used the KAAS tool [3] for the identification of 477 microbial genes
divided into six different species (Figure 2). This identification was based on
the nucleotide similarity of the groups of orthologous genes found in the KEGG
database [4].

The search for microbial genes was carried out in several steps. First, iden-
tify the species corresponding in the KEGG database [2] (dendogram Figure 2).
Thereafter, KAAS tool was employed and some analysis were performed se-
quentially in four steps: i) finding groups of orthologous genes, ii) identification
of associated species in KEGG, iii) obtaining functional annotation in KEGG
database, iv) Eliminating duplicated genes. All the steps above were executed
for all reference species in the AMD sample, taking into account its associated
target species in the KEGG database.

3.3 Identifying Metabolic Pathways

The “KEGGREST ” R package [5] was applied using as reference the list of 477
genes identified, highlighting 95 pathways for the AMD metagenome. Though
at this step we cannot assume any strong evidence of functional enrichment
regarding to the genes identified.
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Fig. 2. The dendrogram on the top highlights the association between species in the
AMD metagenome and its target species in the KEGG database. In the bottom, a pie
chart of the distribution of the 477 genes identified.

3.4 Functional Enrichment Analysis

To calculate the functional enrichment of metabolic pathways we apply Fisher’s
exact test2. The main challenge in evaluating the enrichment of a metabolic
pathways is the calculation of the probability of finding species covered on each
pathway across samples, given that, eventually, only a selected group of species
will have an associated pathway. This is also due to the fact that species play
distinct roles in the microbial community.

Table 1. The contigency table of the Glutathione metabolism pathway which is required
for the calculation of the enrichment score

Gene associated
with a pathway

Gene not associated
with a pathway

Total
gene

Sample a
(6)

b
(364)

a+b
(370)

Population c
(15)

d
(2768)

c+d
(2783)

Total in KEGG a+c
(21)

b+d
(3132)

n
(3153)

As an example, the metabolic pathway Glutathione metabolism is anno-
tated for five out of six species identified in the samples: Ferroplasma acidar-
manus, Leptospirillum ferrooxidans, Leptospirillum ferriphilum, Thermoplasma
acidophilum e Thermoplasma volcanium. So, KEGGREST will only take into
account these five species for the enrichment score (Fisher’s exact test).
2 http://en.wikipedia.org/wiki/Fishers_exact_test

http://en.wikipedia.org/wiki/Fishers_exact_test


FUNN-MG: A Metagenomic Systems Biology Computational Framework 29

In Table 1 we present the contigency table required to calculate the enrichment
of the Glutathione metabolism pathway with respect to the microbial genes found
in the samples and its corresponding annotations in KEGG. Having this table,
we use the phyper function in the “stats” R package for the enrichment score,
followed by a test of significance using the “Firsher’s exact test for count data” R
package. Finally, we obtained an enrichment score of 0.0077 (p-value = 0.0292)
for the the Glutathionemetabolism pathway.

After completing the functional analysis for the 95 metabolic pathways, we
obtained a list with only 11 enriched pathways (p-value ≤ 0.05) corresponding
to 329 genes.

3.5 Finding Gene Clusters

Once identified the set of significant pathways in the sample, we explore func-
tional modules presenting strong gene interactions by the utilization of a bipar-
tite graph structure MGP = (G,P,E). We called this bipartite graph Microbial
Gene Pathway (Figure 3. a). MGP vertices are divided into two disjoint sets
(G)enes and (P )athways, such that every edge (E) connects a vertex in (G) to
one in (P ). The enrichment score is annotated in each vertice (P ).

Fig. 3. a) The MGP bipartite graph with (G)enes and (P )athways . b) the associated
community matrix with the gene-to-gene interaction augmented with the enrichment
score.

The structural graph clustering uses a community matrix (Figure 3.b) based
on the genes and its enriched pathways represented in MGP . The community
matrix observes three main aspects regarding gene-to-gene interactions: the ex-
istence of one or more metabolic pathways shared by the genes, the amount of
metabolic pathways in which genes play, and the enrichment score associated to
each metabolic pathway.

The MGP bi-partite graph is an interesting computational structure for both
the application of ML techniques and interactive visualization of the microbial
genetic network [6]. The community patterns are obtained directly through the
utilization of a hierarchical clustering (hclust() R function) technique over the
community matrix.
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Hierarchical complete clustering solution requires an euclidean distance ma-
trix that can be built directly through the community matrix. Given that we
were looking for compact clusters we decided to use the cutting result obtained
with the Dynamic hybrid approach through the Dynamic Tree Cut library for
R3. Thus, 9 clusters and 10 nested subclusters were enumerated. All clusters
have the prefix “NT" followed by a sequential number.

Fig. 4. The representation of the community patterns as clusters (NT1, NT3) and sub-
clusters (NT2, NT4). At the right the expanded subnetwork corresponding to elements
clustered in NT4.

In summary, 308 genes were clustered, corresponding to 96.61% of the en-
riched pathways related to AMD biofilm. These clusters enclose on average 30
genes, having 6 genes in the most compact cluster and 128 in the largest one.
The Figure 4 shows the interaction between two clusters (NT1 and NT3) and
subgroups (NT2 and NT4) identified.

4 Results and Discussion

4.1 Visual Analytics System

The MGP bipartite graph fits properly the graph structure required for visual-
ization through the RedeR R package. This network visualization system allows
several interactive and graph functions such as: zoom, pan, neighborhood high-
lighting, search, flows, etc. An example of the structural visualization of the
enriched Microbial Gene Pathway is presented in Figure 5. The visualization
model allows the identification of genes across species and pathways, depicted
in distinct colors. It is also possible to explore the degree of connectivity by
inspecting the size of the vertices; key players are identified by neighborhood
highlighting while clicking on a particular node in the graph network.

3 http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/BranchCutting/

http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/BranchCutting/
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Fig. 5. The enriched Microbial Gene Pathway Network. At the bottom left the legend
of the species and associated pathways are represented. Nodes (circles) are related to
either species genes or pathways. At the upper left the degree connectivity scale of
all nodes. The nodes in highlighting (yellow) are all genes associated to the Carbon
metabolism pathway (direct orange arrow).

5 Conclusions

The enrichment analysis of microbial genetic networks is an open computational
challenge. The enumeration of all gene-to-gene interaction of a microbial com-
munity is not practical, therefore pathway-centric analysis sound a promising
strategy to smooth this combinatorial aspect of this problem.

We have presented the FUNN-MG computational framework for functional
and visual analytics of metagenomes by focusing the enrichment analysis on
the identification of community patterns. This strategy has it basis on non-
supervised machine learning over a bipartite graph properly built to evaluate
the enriched microbial gene pathways. Community patterns are carefully ex-
tracted by evaluating strong interactions among gene species sharing the most
significant enriched pathways. Once all the topological network aspects are un-
derstood for a particular metagenome, we envisage the possibility of using such
community profiles for metagenome comparison as well as classification of un-
known microbial genetic network.



32 L. Corrêa et al.

Author’s Contributions

LC and RA performed the analysis and developped the pipeline. RA and CC
supervised the study. LC, RA, CC and LT wrote the manuscript.

Acknowledgements. This work is partially supported by the Brazilian Na-
tional Research Council (CNPq – Universal calls) under the BIOFLOWS project
[475620/2012-7].

References

1. NCBI: Metagenomics: Sequences from the environment [internet]. Sequences from
the Environment, Tyson (2013)

2. Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson,
P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S., Banfield, J.F.: Community struc-
ture and metabolism through reconstruction of microbial genomes from the envi-
ronment. Nature 428(6978), 37–43 (2004)

3. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M.: KAAS: an auto-
matic genome annotation and pathway reconstruction server. Nucleic acids research
35(Web Server issue), W182–W185 (2007)

4. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integra-
tion and interpretation of large-scale molecular data sets. Nucleic Acids Research
40(Database issue), D109–D114 (2012)

5. Tenenbaum, D.: KEGGREST: Client-side REST access to KEGG. R package ver-
sion 1.0.1

6. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human
disease network. Proceedings of the National Academy of Sciences 104(21), 8685–8690
(2007)



FluxMED: An Adaptable and Extensible
Electronic Health Record System

Alessandra C. Faria-Campos1,2, Lucas Hanke1, Paulo Henrique Batista1,
Vinícius Garcia1, and Sérgio Campos1

1 Universalization Access Laboratory, LUAR, Department of Computer Science,
Universidade Federal de Minas Gerais

Av. Antônio Carlos, 6627, Pampulha, 30123-970, Belo Horizonte, MG, Brazil
2 INMETRO, Instituto Nacional de Metrologia, Qualidade e Tecnologia

Av. Nossa Sra. das Graças, 50, Xerém, 25250-020, Duque de Caxias, RJ, Brasil
{alessa,scampos}@dcc.ufmg.br,

{hankelucas,batista.phs,vingarcia00}@gmail.com

Abstract. The amount of data generated by medical and laboratory
services grows each day. The number of patients is increasing, modern
examination methods generate large amounts of data and the growing
specialization of the medical profession makes the problem of storing and
managing this data very complex. Computer applications known as Lab-
oratory Information Management Systems (LIMS) have been proposed
as tools to address this issue. In this work we propose the FluxMED
system, a fully customizable EHR system with an easy to adapt inter-
face for data collection and retrieval. FluxMED can easily be customized
to manage different types of medical data. The customization for a new
disease can be done in a few hours with the help of a specialist. We have
used FluxMED to manage data from patients of three complex diseases,
neuromyelitis óptica, paracoccidioidomycosis and adreno-leukodistrofy.
These diseases have very different symptoms, different exams are per-
formed to come to a diagnostic and have different treatments. However,
FluxMED is able to manage these data in a highly specialized manner
without any modifications to its code.

Keywords: Electronic Health Record, Laboratory Information Man-
agement Systems, Workflow.

1 Introduction

The storage and management of large amounts of laboratory and medical data
has been frequently discussed as the need for software tools that support the
entire life cycle of data (collection, storage, analysis, reporting and archiving) is
increasing on a daily basis. One of the solutions proposed to address this issue
is the use of Laboratory Information Management Systems (LIMS). LIMS are
computational tools developed to integrate and manage laboratory data that give
emphasis to quality assurance and aim to generate results in a consistent and
reliable way [6]. Several LIMS are available nowadays as academic, proprietary
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and open source applications. Some examples include SQL LIMS [1], LabSoft
LIMS [3], LabWare LIMS [14] (proprietary applications), FreeLIMS [4] an open
source application developed by Labmatica and the academic systems developed
by Hendrick [5], Quo [10], Tharayil [15] and Sanchez [12]. Melo [9] has proposed
a new system — SIGLa — a workflow based LIMS designed to allow it to adapt
its activities and processes to various types of laboratories. A workflow can be
defined as a sequence of steps and tasks executed according to a set of rules and
procedures in order to complete a process.

The need for specific LIMS is particularly important for medical laboratories
and facilities since for medical applications, existing systems are frequently fo-
cused on maintaining the doctors schedule and keeping general annotations on
the patients conditions. As a consequence, the data stored cannot be used for a
detailed analysis and cannot be easily integrated with other systems.

Existing systems tend to fall in one of two categories: They can be too rigid
in the types of data that can be stored, limiting severely the symptoms, exams,
diagnostics that can be recorded. As a way of compensating for this problem,
the other type of system is too generic, allowing the doctor to enter free text
describing the patients consultation. Data entered in this way is very difficult to
analyze since data from different consultations often cannot be compared [2],[13].

FluxMED takes a different approach, defining the types of data entered in
the workflow. These can be changed easily, incorporating new knowledge with-
out changes to the system. It can be used in very flexible ways, for example, if
different doctors follow different diagnostic strategies, that is, ask different ques-
tions, and request different exams, the workflow can incorporate both methods,
and let the doctor choose which one to use.

Data entered in this way is structured to make it easy to analyze it later.
Data is not entered in free text format, but in formats that have fixed types and
requirements, which simplifies posterior analysis.

We have used FluxMED to develop EHR systems for three different diseases
that are complex, difficult to diagnose and to treat. But because they are not
common diseases, EHR systems aimed at them are non existent or very difficult
to access. FluxMED has been able to model data from patients of neuromyelitis
óptica, paracoccidioidomycosis and adrenoleukodistrofy and enable doctors to
use the system to treat their patients. Data from these datasets will later be
used on data analysis systems to identify patterns and conditions that can help
treating the patients and improving their life.

An important aspect of the FluxMED system is that creating a workflow for a
new disease takes only a few hours with the help of a specialist. There is no need
to change the system in any way. With some training the doctors can themselves
specify the workflow and create the EHR system. Moreover, new systems can be
integrated with existing ones, so one EHR system can serve several specialities,
making it simpler to maintain the data, train users and extend the system.
FluxMED allows users to compare data between different but related diseases
in search of common aspects that can be considered for a treatment, but which
would have been very difficult to identify if no integrated system is available.
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FluxMED is based on the SIGLa system [9]. It has an easy to use Web inter-
face. It has several security features that prevent unauthorized access, including
different permission sets for users to access different types of data depending on
their authorization. The system can be accessed at the address below with lo-
gin/password: guest/gu3st. All data in the web site and in this paper is fictitious
and do not represent real patients. http://syrah.luar.dcc.ufmg.br/FluxMED

2 FluxMed Development

The FluxMED system has been constructed using Java and uses MySQL as
database server and Apache Tomcat as Web server. Workflow files are uploaded
in the system through the interface and the activities created in the workflow
construction are interpreted as links by the system. The workflows are con-
structed in the XPDL format using the application Together Workflow Editor
(TWE) [16]. In FluxMED the EHR systems are defined as sequences of activities.
An activity represents events such as a consultation, an exam or test performed,
or a diagnostic determined. Specific information, such as names, dates, values for
specific exams or doctor analysis are represented as attributes in the workflow
definition. Therefore, the user can define the characteristics of the attributes of
each activity, such as its types, their range of values, its formats or even define
auto-calculated attributes generated from other attributes.

Several types of attributes contribute to the generality of the FluxMED imple-
mented EHRs. Traditional types of attributes are supported, such as integer or
real numbers, which can have specified ranges, or strings containing text. Other
types include the register attribute, which ensures that the values entered are
already present in a separate table. For example, the name of the doctor may
be specified to contain only values that have been already registered in the sys-
tem, avoiding problems with misspelling names. All of these types of attributes
and their functionalities can be specified in the workflow, and can be added or
modified by the user without changing system code.

The FluxMED System has an easy to use interface where activities that have
already been executed are represented by icons in a different color from those
for activities available to be executed (Figure 1 shows part of the screen). The
system guides the user through the entire process, informing which activities are
available for execution. Adittionally, this execution can also be done automati-
cally through the upload of a file containing the attributes values. The workflow
is entirely modeled and built on TWE in the XPDL file format and contains all
the information regarding the entire process. As a consequence, to change the
type of data being stored, only the workflow needs to be modified.

3 EHR Systems Developed

To illustrate the usefulness of FluxMED, we have modelled and implemented
EHR systems for three diseases, neuromyelitis óptica (NMO), paracoccidioidomy-
cosis and adrenoleukodistrofy. We will detail the NMO system, and briefly men-
tion the others, but the details of the modeling process are similar. All systems
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Fig. 1. NMO Interface where the already executed and available activities are shown
in different colors

have been specified by a specialist in the disease, and the workflow development
has been done by a informatics student working with the specialist. Tipically
development takes a few hours spread over a number of sessions which inter-
actively refine the workflow until the system is considered finished. All systems
have been tested by doctors which verified that the system can be used for real
patient consultation. Two systems, NMO and ALD have not yet been deployed
in actual consultations. The PCM system has been used already to store data
from several patients, and doctors are now completing the database with previ-
ous consultation data to allow the continuation of the treatment in the system
and a complete analysis of existing patient data.

3.1 Neuromyelitis Optica—NMO

Neuromyelitis optica is an important central nervous system disease. NMO is
an idiopathic inflammatory demyelinating disease of the central nervous system
(CNS) most frequently characterized by recurring attacks of optic neuritis and
myelitis. It can be distinguished from conventional multiple sclerosis on demo-
graphic, clinical, neuroimaging, cerebrospinal fluid and serological grounds [17].
NMO spectrum disorders are highly prevalent among the demyelinating diseases
of the CNS in Southeastern Brazil and a significant amount of data from NMO
patients is generated from medical care. The collection and analysis of these
data will result in a better characterization of the disease and therefore, there
is a strong need for computational tools and databases to collect, store, manage
and retrieve NMO data in order to help improve research and medical care. This
work has been done in cooperation with Dr. Marco Lana, from the Center for
Investigation of Multiple Sclerosis at UFMG (CIEM).

A complete workflow for storage and management of data from NMO patients
has been created to be used in the FluxMED System, along with a database for
data storage [8]. The workflow consists of 16 activities (Figure 2) and each of
those has an individual screen in the system. The first activity is the Identifi-
cation which requires general information from the patient, such as name, age
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Fig. 2. NMO workflow definition with the 16 steps of the process

and level of education. Once the patient’s identification is completed, several
activities are available for execution (Figure 1). Each activity has its own set of
attributes and the formats for the data are defined during the workflow defini-
tion. These activities represent all the steps used in medical evaluation of NMO
patients.

3.2 Paracoccidioidomycosis—PCM

Paracoccidioidomicosis (PCM) is a typical Brazilian disease, caused by the yeast
Paracoccidioides brasiliensis. The most common form of infection is through in-
halation of spores. The spores cause infection of the lung epithelium and can
spread to other organs. The disease mainly affects farm workers who are ex-
posed to contaminated soil during labor [11]. This disease represents an im-
portant Public Health issue, due to its high incapacitating potential and the
amount of premature deaths it causes if untreated. The analysis and manage-
ment of PCM related data presents several challenges. One of the challenges is
related to data acquisition during patient evaluation and diagnosis. The Center
of Training and Reference on Infeccious-Parasitary Diseases from the Federal
University of Minas Gerais (CTR-DIP-UFMG), coordinated by Dr. Enio Pietra,
has developed a protocol for clinical analysis of PCM patients. This protocol
includes a large number of clinical variables that are assessed in each medical
examination, including x-ray and serology tests, which are also used in track-
ing the disease progression. We have modelled this protocol in a workflow and
used it to create an EHR system in FluxMED. This system is currently in use
at UFMG, where it is helping manage patient’s data and assisting in defining
treatment duration and other conditions (Figure 3).
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Fig. 3. FluxMed Interface showing the electronic forms for the PCM EHR system

3.3 Adrenoleukodistrofy—ALD

The Inborn Errors of Metabolism Laboratory at UFMG, coordinated by Dr. Eu-
genia Valadares, works with patients from the public health system in Brasil, iden-
tifying and treating rare genetic diseases that are difficult to diagnose but often
have treatments available if diagnosed early. These diseases can seriously affect the
people afflicted, and can manifest at any age. Each disease is in isolation rare, but
are expressive when different diseases are accounted for. With an early diagnosis,
frequently treatments are effective, not only helping patients to have a better life,
but also lowering treatment costs of these patients throughout their lives.

In our work with the UFMG laboratory we plan to model several of these
diseases. Currently we have modelled adrenoleukodistrofy, or ALD [7]. ALD is a
disorder of peroxisomal fatty acid beta oxidation which results in the accumu-
lation of very-long chain fatty acids in tissues throughout the body. The most
severely affected tissues are the myelin in the central nervous system, the adrenal
cortex and the Leydig cells in the tests. Early diagnosis and treatment can re-
duce or eliminate symptoms during the lifetime of patients, and is essential, but
also difficult, due to the fact that the disease is rare and complex to diagnose.
We have modelled the ALD protocol and created an EHR system to manage
this data. We are currently registering in the system data from patients from
the laboratory, which number to about 400 per year.

4 Discussion

The use of workflows to develop an adaptable LIMS such as the FluxMED has
resulted in the construction of a very flexible tool. All changes on the activities
flow affect only the workflow, since it belongs to an independent layer on the
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Fig. 4. FluxMed Interface showing the electronic forms for the ALD EHR system

system. Therefore changes to adapt the system to the needs of a new laboratory
or facility are easy to implement and do not require any programming skills
from the user. In this work, workflows have been developed by computer science
students working with medical specialists. Medical staff, however, can easily
be trained to create new workflows or adapt existing ones, creating a dynamic
environment where management of new diseases and conditions can be added to
the system by its users.

One of the key advantages of the FluxMED system is that it integrates all
EHR systems. Each new workflow representing a new disease or specialty is
added to the same EHR system and integrates all data in one database. This
makes it easier to deploy the EHR system, since all systems will use the same
interface, and new ones are added with minimal changes from existing ones.

In addition to this, having all data in one database makes it possible to re-
late symptoms, treatments and other conditions from different diseases, and to
identify common characteristics and key differences between them. Analyzing
this data will make it possible not only to generate new scientific knowledge
comparing different diseases, but will also enable the system to guide the user
depending on the data entered, suggesting diagnostics that can assist the doctors
using the system. Notice that this is not possible if data from different diseases
are not stored in an integrated database.

The construction of the NMO, PCM and ALD data management systems rep-
resent an important contribution to help improve data collection from patients
and can assist significantly in their treatments. All of these workflows are highly
complex and specialized, building an EHR system for each would not have been
practical and would not have been done without the FluxMED system.

5 Conclusions

The advances on medical research and procedures resulted in the generation of a
large amount of medical data. The storage and management of this information
has become incompatible with the use of paper medical charts and computer
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flat files, requiring an automated system. The adoption of more powerful tools
to address this issue is an immediate need in many clinics and medical offices,
particularly for those working on complex diseases that are difficult to diagnose.
In this work, we have developed FluxMED, a workflow based system for that
purpose with a modern and user friendly interface designed to assist medical doc-
tors on the diagnosis and monitoring of their patients. The system is flexible and
can be modified by the user to model different types of diseases, contributing to
make diagnosis faster and more reliable, helping to distinguish complex diseases
from other related ilnesses, shortening treatment times and improving patients
quality of life. FluxMED is currently being used in three different laboratories
or clinics at UFMG, assisting doctors and patients.
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Abstract. The advent of rapid evolution on sequencing capacity of new
genomes has evidenced the need for data analysis automation aiming
at speeding up the genomic annotation process and reducing its cost.
Given that one important step for functional genomic annotation is the
promoter identification, several studies have been taken in order to pro-
pose computational approaches to predict promoters. Different classi-
fiers and characteristics of the promoter sequences have been used to
deal with this prediction problem. However, several works in literature
have addressed the promoter prediction problem using datasets contain-
ing sequences of 250 nucleotides or more. As the sequence length defines
the amount of dataset attributes, even considering a limited number of
properties to characterize the sequences, datasets with a high number of
attributes are generated for training classifiers. Once high-dimensional
datasets can degrade the classifiers predictive performance or even re-
quire an infesible processing time, predicting promoters by training clas-
sifiers from datasets with a reduced number of attributes, it is essential
to obtain good predictive performance with low computational cost. To
the best of our knowledge, there is no work in literature that verified
in a sistematic way the relation between the sequences length and the
predictive performance of classifiers. Thus, in this work, sixteen datasets
composed of different sized sequences are built and evaluated using the
SVM and k-NN classifiers. The experimental results show that several
datasets composed of shorter sequences acheived better predictive per-
formance when compared with datasets composed of longer sequences
and consumed a significantly shorter processing time.

1 Introduction

Over recent years, advances in technology have allowed an acceleration of new
genomes sequencing [9], evidencing the increasing demand for data analysis au-
tomation and for improving procedures previously used [2]. This has encouraged
studying and implementing several computational techniques and creating new
tools to enable processing of large amounts of genomic data.

One of the first steps for functional genomic annotation is promoter identifi-
cation. Promoters are regions responsible for signaling and controlling the exact

� This research was partially supported by CNPq, FAPEMIG and UFOP.

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 41–48, 2014.
c© Springer International Publishing Switzerland 2014



42 S.G. Carvalho, R. Guerra-Sá, and L.H. de C. Merschmann

position where the transcription mechanism initiates, called TSS (Transcription
Start Site). The capability for detecting them in their different forms will make
it possible to understand how, where and when transcription occurs, in addi-
tion to providing clarification on the interaction network and regulation of the
transcription mechanism [8,9].

The identification of promoter sequences in genomes can be seen as a clas-
sification problem, where, given the features of a genomic sequence, it would
be classified as promoter or non-promoter. Therefore, several computational ap-
proaches to predict promoters have been proposed using different classification
techniques and different types of information extracted from sequences. Never-
theless, further progress is needed to improve them [14,1,6,9].

Much of the complexity of promoter prediction problem is due to their diverse
nature, which makes it difficult to identify them [12,8,10]. Therefore, a crucial
step for prediction success is to discover features of promoter sequences that are
relevant to differentiate them from non-promoter sequences.

In the search for relevant features to distinguish between promoter and non-
promoter sequences, several properties of sequences have been tested for their
predictive capability. According to [14], a prediction strategy can use three types
of features: structural, based on signs and based on context. Several studies have
shown that in order to build accurate models to predict or describe genomic pro-
cesses, the structural properties of the DNA molecules must be considered [11].
Thus, the structural properties have been widely used in recent years [14] and
have also been adopted for this work.

Despite the large amount of work involving promoter prediction [12,8,1,2,6,7,9],
to the best of our knowledge, none of them verified in a systematic way the
relation between the length of sequences used for training classification models
and their predictive performance. Thus, the aim of this work is to evaluate,
through the application of classification techniques, the effect of the sequence
length in discrimination between promoters and non-promoters.

The importance of this evaluation is due to the fact that, considering the
structural properties, the longer the sequences used to compose datasets used
for training classifiers, the greater the amount of attributes. The problem is
that high-dimensional datasets, that is, with great number of attributes, make
the classification a more complex process, and the result may be an increase in
classifiers training time and a reduction of their predictive perfomance.

Due to the amount of data available and the attention it has received from
the scientific community in recent decades [14], the genome chosen to be studied
in this work was Homo sapiens. The experiments were conducted using a well
known and reliable promoter database which is publicly available on the web.

2 Our Approach

For the studies conducted in this work, promoter and non-promoter sequences
derived from human genome were used for datasets construction.
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Promoters were obtained from a set of sequences available in the DBTSS
database [13], version 8.0. DBTSS, which has already been used in several other
works [6,8,9,2], is a set of approximately 98,000 experimentally validated pro-
moter sequences with active TSS, where each sequence has 1201 bp (base pairs).

Non-promoters correspond to several genomic sequences that were extracted
randomly from intergenic regions and from introns and exons [6]. The criteria
for obtaining these sequences require that the region is at a minimum distance of
1000 nucleotides from the positions demarcated on CAGE database, indicating
transcription regions, and at a minimum distance of 1000 nucleotides from the
positions demarcated on RefSeq that has information denoting the beginning
of genes. Thus, the selection of false non-promoter sequences is avoided. CAGE
and RefSeq databases were obtained from pppBenchmark tool [16] website1.

Due to computational cost to process a sequence dataset, only part of the
sequences available at DBTSS database was used in the composition of the
datasets of this study. Thus, a total of 7000 different promoter sequences were
chosen randomly, avoiding the inclusion of noisy sequences. In addition, other
7000 non-promoter sequences complete the datasets.

Therefore, all datasets used in this work are composed of the same 14000 se-
quences. However, the length of sequences varies from one dataset to another.
For example, the dataset called 250-50 consists of sequences represented by 301
nucleotides. For promoter sequences, this size is the sum of the number of nu-
cleotides positioned upstream and downstream of TSS (in addition to TSS itself),
that is, in the example there are 250 nucleotides upstream and 50 nucleotides
downstream of TSS. Therefore, for the same dataset, TSS is always located at
the same position in all promoter sequences. Since non-promoter sequences do
not have TSS, their length is simply given by their number of nucleotides. Thus,
in 250-50 dataset, non-promoter sequences are also composed of 301 nucleotides.

Each dataset sequence is characterized by a set consisting of 13 structural
properties [11], named: A-philicity, base stack energy, B-DNA, bendability, DNA-
bending stiffness, disrupt energy, DNA denaturation, free energy, nucleosome po-
sitioning, propeller twist, protein deformation, protein-DNA twist and Z-DNA.
These properties, which have already been subject of other studies in literature
[7,1,9], are physico-chemical and conformational properties.

Since the structural properties may be determined by local interactions among
neighboring nucleotides in a sequence [11], they are represented by tables where
each possible nucleotide combination is associated with a value that represents its
contribution to a particular structural property. As an example, Table 1 presents
the mapped values of oligonucleotides for the stacking energy structural property.

Using these 13 structural properties, each nucleotide sequence (promoters and
non-promoters) is converted into a numerical vector that characterizes it. Fig-
ure 1 illustrates the conversion of a sequence to two structural properties (protein
deformation and nucleosome positioning). As it can be observed, the numerical
vector of each property (structural profile) is obtained from scanning the se-
quence of nucleotides where, depending on the structural property, each vector

1 Available at http://bioinformatics.psb.ugent.be/webtools/pppbenchmark/

http://bioinformatics.psb.ugent.be/webtools/pppbenchmark/
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Table 1. Mapped values of oligonucleotides for base stack energy property [3]

Oligonucleotides Value (kcal/mole)

AA -5.37
AC -10.51
AG -6.78
AT -6.57
CA -6.57
CC -8.26
CG -9.69
CT -6.78

Oligonucleotides Value (kcal/mole)

GA -9.81
GC -14.59
GG -8.26
GT -10.51
TA -3.82
TC -9.81
TG -6.57
TT -5.37

value is obtained considering sequences of dinucleotides (protein deformability)
or trinucleotides (nucleosome positioning).

Fig. 1. Conversion of a sequence to two structural properties

Considering the conversion schema previously mentioned, in order to show
the capability of the structural properties to discriminate promoter from non-
promoter sequences, Figure 2 illustrates, for two structural properties, the av-
erage structural profile of promoter and non-promoter sequences of the 250-50
dataset. In this figure, TSS is located at the 0 position.
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Fig. 2. Structural profiles for the 250-50 dataset

The complete characterization of a sequence is given by a single numerical
vector resulting from the junction of the vectors representing each of the 13
structural properties considered in this work. The size of the resultant vector of
these junctions corresponds to the number of predictor attributes of the datasets
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used for classifiers training. In addition to these predictor attributes, each se-
quence has a value for the class attribute, which indicates whether that sequence
is promoter or non-promoter. As an example, the largest dataset used in our ex-
periments, the 250-50 one, results in a set of 3898 predictor attributes. Table 2
shows the number of predictor attributes for each dataset used in this work.

Table 2. Predictor attributes for each dataset

Dataset Number of atributes

10-1 141
10-3 167
10-5 193
10-10 258
10-20 388
10-30 518
10-40 648
10-50 778

Dataset Number of atributes

20-50 908
30-50 1038
40-50 1168
50-50 1298
100-50 1948
150-50 2598
200-50 3248
250-50 3898

As it can be observed in Table 2, the length of sequences used to compose
the dataset defines the amount of their attributes. Several studies in literature
have addressed the problem of promoter prediction using datasets containing
sequences of 250 nucleotides or more [12,2,8,9]. Although a limited amount of
features is being used in characterization of sequences, high-dimensional datasets
are generated for classifiers training.

The problem with high-dimensional datasets, that is, with high number of
attributes, is that they make classification a more complex process, often con-
suming an infeasible time for training classifiers and degrading their predictive
performance.

Therefore, to predict promoters by training classifiers from datasets with a
reduced number of attributes, it is essential to obtain good predictive perfor-
mance with low computational cost. This way, the objective of the experiments
conducted in this work is to evaluate the impact of the sequence length variation
on the classifiers performance.

3 Computational Experiments

3.1 Classifiers and Experimental Setup

SVM (Support Vector Machine) and k-NN (k-Nearest Neighbours) classifiers,
usually adopted in data mining works, were chosen to evaluate the impact of the
sequence length variation on the performance of predictive models. Experiments
were conducted using the caret package (short for classification and regression
training) in R [15], which is a programming language and an environment widely
used in statistical and graphics computation for data analysis.

k-NN classifier’s idea is very simple. Each dataset instance is described by an
n-dimensional vector, where k corresponds to the number of predictor attributes.
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To classify a new instance (an instance whose class is unknown), the classifier
uses distance metrics to determine the k training instances that are more similar
to the instance to be classified. Then, the most frequent class among the similar
k instances is attributed to the new instance. In k-NN, the k value is an input
parameter.

Considering each dataset instance as a point in n-dimensional space, the basic
idea of SVM is to find a hyperplane with maximum margin of separation, ie, one
that provides the separation of training instances, with maximum margin, in
two portions in n-dimensional space. Once the optimal hyperplane is found, the
classification of a new instance is made by determining its position in relation to
the separation hyperplane. Although this method was originally proposed for bi-
nary classification problems, several extensions have been proposed in literature
to make it suitable for multi-class classification problems.

In order to set the algorithms parameters for the dataset used in this study,
experiments were conducted by varying the parameters values C (0.25, 0.5, 1,
2, 4), gamma([0.1, 0.0001]), for SVM (using RBF kernel) and k (1, 3, 5, 7, 9)
for k-NN. Table 3 presents the best parameter values obtained for each dataset
and therefore used in our experiments to obtain the results presented here. All
experiments were carried out on a Core i7-2600 @ 3.40GHz PC with 12 GBytes
of RAM.

Table 3. k-NN e SVM parameters

k-NN SVM

Dataset k C gamma

10-1 9 1 3.64e-03
10-3 9 0.5 3.05e-03
10-5 9 0.5 1e-02
10-10 9 2 1e-03
10-20 9 1 1e-03
10-30 9 1 1e-03
10-40 9 1 7.84e-04
10-50 9 1 1e-03

k-NN SVM

Dataset k C gamma

20-50 9 1 1e-03
30-50 9 0.5 1e-03
40-50 9 0.5 1e-03
50-50 7 0.5 1e-03
100-50 9 1 1e-03
150-50 9 0.5 1.96e-04
200-50 9 1 1.56e-04
250-50 9 1 1e-04

3.2 Experimental Results

The classifiers predictive performance was measured using k-cross-validation
(k =10) and F-measure metric. For each dataset, the same test partitions were
used in the evaluation of classifiers.

The results of the experiments are presented in Figure 3 graphs. Figure 3(a)
graph shows the predictive performance of SVM and k-NN classifiers for each of
the 16 datasets evaluated. Figure 3(b) graph shows the processing time spent in
the classification process for these datasets.

As it can be seen in Figure 3(a) graph, the SVM classifier obtained better
predictive performance than the k-NN one for all datasets evaluated.
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Fig. 3. (a) Average F-measure and (b) processing time

Yet, the most important thing to observe in Figure 3(a) graphs is that for both
classifiers, the decrease in the length of sequences used in the datasets did not
necessarily imply a reduction in their predictive performance. SVM performance
remained relatively stable for datasets composed of sequences ranging in size
from 301 (250-50) to 41 (10-30) nucleotides, presenting a marked degradation
in performance only for sequences containing less than 41 nucleotides. k-NN
achieved its best performance with the 50-50 dataset and, even for the dataset
composed of shorter sequences (10-1), presented superior predictive performance
compared with larger datasets (250-50).

Figure 3(b) graph shows that, for both classifiers, time spent for processing
datasets grows exponentially with the increase of the length of sequences that
compose them. It is worth noting that in many cases, a dataset composed of
shorter sequences achieves superior predictive performance compared with longer
sequence datasets and time spent in processing is significantly shorter than that
consumed by longer sequence datasets. For example, for SVM, the 10-30 dataset
presents predictive performance slightly higher than that achieved by the 250-50
dataset and time spent in processing is more than 8 times shorter than that
spent by the 250-50 dataset.

4 Conclusion

Promoter prediction is a fundamental step for genome functional annotation
and, therefore, several computational approaches have been proposed using dif-
ferent classification techniques. However, to best of our knowledge, none of them
verified in a systematic way the relation between the length of sequences used for
training classification models and their predictive performance. This way, exper-
iments were conducted to analyze the impact of the sequence length variation
on the classifiers performance.

In order to perform the analysis previously mentioned, 16 datasets composed
of different sized sequences were generated and evaluated using the SVM and
k-NN classifiers. The experimental results show that the decrease in the length



48 S.G. Carvalho, R. Guerra-Sá, and L.H. de C. Merschmann

of sequences used in the composition of the datasets did not necessarily result in
a reduction of the classifiers predictive performance. In addition, several bases
composed of shorter sequences achieved superior predictive performance com-
pared with datasets composed of longer sequences and consumed a significantly
shorter processing time.

As future work, we plan to apply techniques for selecting attributes in datasets
generated in this study aiming at reducing the datasets number of attributes and
improving classifiers predictive performance.
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Abstract. We consider a recently introduced dynamic programming
scheme to compute parsimonious evolutionary scenarios for gene adjacen-
cies. We extend this scheme to sample evolutionary scenarios from the
whole solution space under the Boltzmann distribution. We apply our
algorithms to a dataset of mammalian gene trees and adjacencies, and
observe a significant reduction of the number of syntenic inconsistencies
observed in the resulting ancestral gene adjacencies.

1 Introduction

The reconstruction of the evolutionary history of genomic characters along a
given species tree is a long-standing problem in computational biology. This
problem has been well studied for several types of genomic characters, for which
efficient algorithms exist to compute parsimonious evolutionary scenarios; clas-
sical examples include the case of genes and genomes sequences [9], gene con-
tent [5], and gene family evolution [1,8]. Recently, Bérard et al. [3] extended
the corpus of such results to syntenic characters, as they introduced the notion
of adjacency tree, that models the evolution of gene adjacencies within a phy-
logeny, motivated by the reconstruction of the architecture of ancestral genomes
and described an efficient dynamic programming (DP) algorithm, called DeCo,
to compute parsimonious adjacency evolutionary histories.

From a methodological point of view, most existing algorithms to reconstruct
evolutionary scenarios along a species tree in a parsimony framework rely on
some dynamic-programming along this tree, whose introduction can be traced
back to Sankoff in the 1970s for parsimony-based models (see [6] for a recent
retrospective on this topic). Recently, several works have explored more general
approaches for such parsimony problems that either explore a wider range of
values for combinatorial parameters of parsimonious models [11,10] or consider
several alternate histories for a given instance, chosen for example from the set
of all possible co-optimal scenarios (see [2,14] for examples of this approach for
the gene tree/species tree reconciliation problem), or from the whole solution
space, thus including suboptimal solutions [7].
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The present work follows the later approach and extends the DeCo DP scheme
toward an exploration of the whole solution space of adjacency histories, under
the Boltzmann probability distribution, that assigns a probability to each so-
lution defined in terms of its parsimony score. This principle of exploring the
solution space of a combinatorial optimization problem under the Boltzmann
probability distribution, has been applied in several contexts and is sometimes
known as the “Boltzmann ensemble approach” (see [13] for an illustration on
RNA secondary structure prediction). While this Boltzmann ensemble approach
has been used for a long time in RNA structure analysis, to the best of our
knowledge it is not the case in comparative genomics, where exact probabilistic
models have been favored as increasing computational capacities allow them to
handle realistic datasets. However, such a probabilistic model does not exist so
far for gene adjacencies, which motivates our work.

In the present paper, we modify the DP scheme of DeCo in order to sample gene
adjacencies histories under the Boltzmann distribution. We apply our sampling
algorithm to the dataset of over 6, 000 pairs of mammalian gene trees considered
in the original DeCo paper [3]. This dataset was characterized by a significant
number of ancestral genes involved in more than 2 adjacencies, which correspond
to syntenic inconsistencies. We show that by sampling adjacencies histories under
a Boltzmann distribution that favors co-optimal histories and conserving only
frequent ancestral adjacencies, we can reduce significantly the number of syntenic
inconsistencies.

2 Models

A phylogeny is a rooted tree which represents the evolutionary relationships of
a set of elements represented by its nodes: internal nodes are ancestors, leaves
are extant elements, and edges represent direct descents between parents and
children. We consider here three kinds of phylogenies (illustrated in Figure 1):
species trees, reconciled gene trees and adjacencies trees/forests. Trees we con-
sider are always rooted. For a tree T and a node x of T , we denote by T (x) the
subtree rooted at x. If x is an internal node, we assume it has either one child,
denoted by a(x), or two children, denoted by a(x) and b(x). A tree where all
internal nodes have two children is called a binary tree.

Species Trees. A species tree S is a binary tree that describes the evolution of a
set of related species, from a common ancestor (the root of the tree), through the
mechanism of speciation. For our purpose, species are identified with genomes,
and genes are arranged linearly or circularly along chromosomes.

Reconciled Gene Trees. A reconciled gene tree is also a binary tree that describes
the evolution of a set of genes, called a gene family, through the evolutionary
mechanisms of speciation, gene duplication and gene loss, within the given species
tree S. Therefore, each node of a gene tree G represents a gene loss, an extant
gene or an ancestral gene. Ancestral genes are represented by the internal nodes
of G, while gene losses and extant genes are represented by the leaves of G.
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We denote by s(g) ∈ S the species of a gene g ∈ G, and by e(g) the evolution-
ary event that leads to the creation of the two children a(g) and b(g). If g is an
internal node of G, then e(g) is a speciation (denoted by Spec) if the species pair
{s(a(g)), s(b(g))} equals the species pair {a(s(g)), b(s(g))}, or a gene duplication
(GDup) if s(a(g)) = s(b(g)) = s(g). Finally, if g is a leaf, then e(g) indicates ei-
ther a gene loss (GLoss) or an extant gene (Extant), in which case e(g) is not an
evolutionary event.

Adjacency Trees and Forests. A gene adjacency is a pair of genes that appears
consecutively along a chromosome. An adjacency tree represents the evolution
of an ancestral adjacency through the evolutionary events of speciation, gene
duplication, gene loss (these events, as described above, occur at the gene level
and are modeled in the gene trees), and adjacency duplication (ADup), adjacency
loss (ALoss) and adjacency break (ABreak), that are adjacency-specific events.

– The duplication of an adjacency {g1, g2} follows from the simultaneous du-
plication of both its genes g1 and g2 (with s(g1) = s(g2) and e(g1) = e(g2) =
GDup), resulting in the creation of two distinct adjacencies each belonging
to {a(g1), b(g1)} × {a(g2), b(g2)}.

– An adjacency may disappear due to several events, such as the loss of exactly
one (gene loss) or both (adjacency loss) of its genes, or a genome rearrange-
ment that breaks the contiguity between the two genes (adjacency break).

Finally, to model the complement of an adjacency break, i.e. the creation of
adjacencies through a genome rearrangement, adjacency gain (AGain) events are
also considered, and result in the creation of a new adjacency tree. It follows that
the evolution of the adjacency between two genes can be described by a forest
of adjacency trees, called an adjacency forest. In this forest, each node v belongs
to a species denoted by s(v), and is associated an evolutionary event e(v) ∈
{Spec,GDup,ADup} if g is an internal node, or {Extant,GLoss,ALoss,ABreak} if
v is a leaf. Finally, adjacency gain events are associated to the roots of the trees
of the adjacency forest.

Parsimony Scores and the Boltzmann Distribution. When considered in a par-
simonious framework, the score of a reconciled gene tree G can be either its
duplication cost (number of gene duplications) or its mutation cost (number of
gene duplications and losses). The score of an adjacency forest F is the num-
ber of adjacency gains and breaks; other events are not considered as they are
the by-products of evolutionary events already accounted for in the score of the
reconciled gene trees G1 and G2. We denote by sa(F ) the parsimony score of
an adjacency forest F . Let F(G1, G2) be the set of all adjacency forests for G1

and G2, including both optimal and sub-optimal ones, where we assume that at
least one extant adjacency is composed of extant genes from G1 and G2. The
partition function associated to G1 and G2 is defined by

Z(G1, G2) =
∑

F∈F(G1,G2)

e−
sa(F )
kT
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Fig. 1. (Left) Species tree S, with two extant species A and B and an ancestral species
C. (Middle) Two reconciled gene trees G1 and G2, with four extant genes in genome
A, four extant genes in genome B and three ancestral genes in genome C. The set of
extant adjacencies is (A1A3, B1B3, A2A4, B2B4) (Right) Parsimonious adjacency forest
F composed of two adjacency trees. Blue dots are speciation nodes. Leaves are extant
(species, genes, adjacencies), except when labeled with a red cross (gene loss). Green
squares are (gene or adjacency) duplication nodes. Gene labels refer to the species of
nodes. Every node of the adjacency tree is labeled by a couple of nodes from gene trees.
Figure adapted from [3].

where kT is an arbitrary constant. The partition function implicitly defines a
Boltzmann probability distribution over F(G1, G2), where the probability of an
adjacency forest F is defined by:

P (F ) =
e

−sa(F )
kT

Z(G1, G2)
.

By exponentially favoring adjacency forests with lower parsimony scores, the
Boltzmann distribution provides an alternative way to probe the search space,
which is heavily influenced by the choice of kT . Indeed, decreasing kT values will
skew the Boltzmann distribution towards more parsimonious adjacency forests.
Its limiting distributions are uniform over the whole search space (kT → +∞)
or over the set of co-optimal forests (kT → 0).

3 Algorithms

DeCo, the algorithm described in [3] to compute a parsimonious adjacency forest,
is a DP scheme constrained by S, G1 and G2. We first present this algorithm,
then describe how to turn it into a sampling algorithm.

The DeCo DP Scheme. Let G1 and G2 be two reconciled gene trees and g1
and g2 be two nodes, respectively of G1 and G2, such that s(g1) = s(g2). The
DeCo algorithm computes, for every such pair of nodes g1 and g2, two quan-
tities denoted by c1(g1, g2) and c0(g1, g2), that correspond respectively to the
most parsimonious score of a parsimonious adjacency forest for the pairs of sub-
trees G(g1) and G(g2), under the hypothesis of a presence (c1) or absence (c0)
of an ancestral adjacency between g1 and g2. As usual in DP along a species
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tree, the score of a parsimonious adjacency forest for G1 and G2 is given by
min(c1(r1, r2), c0(r1, r2)) where r1 is the root of G1 and r2 the root of G2.

So, c1(g1, g2) and c0(g1, g2) can be computed as the minimum of a sum of the
scores of adjacency gains or breaks and, more importantly, of terms of the form
c1(x, y) and c0(x, y) with (x, y) ∈ {g1, a(g1), b(g1)}× {g2, a(g2), b(g2)}− (g1, g2),
using the two combinatorial operator min and +.

(Un)-ambiguity of the DeCo DP Scheme. As defined in [13], the ambiguity of a
DP algorithm can be defined as follows: a DP explores a combinatorial solution
space (here for DeCo, the space of all possible adjacency forests, including pos-
sible suboptimal solutions), that can be explicitly generated by replacing in the
equations min by � (the set-theoretic union operator) and + by the Cartesian
product × between combinatorial sets. A DP algorithm is then unambiguous if
the unions are disjoint, i.e. the sets provided as its arguments do not overlap.

Claim. The DeCo dynamic programming scheme is unambiguous.

Proof (Sketch). Computing c1(g1, g2) and c0(g1, g2) branches on disjoint sub-
cases that each involve a different set of terms c1(x, y) and c0(x, y). The only
case that deserves a closer attention is the case where e(g1) = e(g2) = GDup, as
a simultaneous duplication can be obtained by two successive duplications. But
in this case, the number of AGain events is different (we refer the reader to the
original DeCo equations [3]), which ensures the obtained solutions are different.

Stochastic Backtrack Algorithm through Algebraic Substitutions. As mentioned
in [13], any unambiguous dynamic programming scheme, and in particular that
of DeCo, can be modified to not only exhaustively generate the set of all adjacency
forests, but also to compute the corresponding partition function by replacing
the arithmetic operators (min,+) → (

∑
,×), and exponentiating atomic costs

C → e−C/kT .
Also, and more importantly for our purpose, it allows to sample adjacency

forests under the Boltzmann distribution, by changing the deterministic back-
track used for maximum parsimony into a stochastic operation. Indeed, assume
that the partition function version of the DeCo equation computes c1(g1, g2)
(resp. c0(g1, g2)) as

∑
i∈[1,k1]

ti, where the ti denote the contribution to the
partition function of one of the local alternatives within the DP scheme. The
latter are typically computed recursively as combinations of atomic adjacency
gain/break costs, and recursive terms of the form c1(x, y) and c0(x, y) with
(x, y) ∈ {g1, a(g1), b(g1)} × {g2, a(g2), b(g2)} − {(g1, g2)}.

Then a (possibly non-parsimonious) solution can be built recursively for
c1(g1, g2) (resp. c0(g1, g2)), by branching on some ti with probability ti/c1(g1, g2)
(resp. ti/c0(g1, g2)), and proceed recursively on each occurrence of a recursive
term within the alternative ti. The correctness of the algorithm, i.e. the fact that
the random processes induces a Boltzmann distribution on adjacency forests, fol-
lows readily from general considerations on unambiguous DP schemes [13].

The stochastic nature of the backtrack does not affect its worst-case complex-
ity. Thus our Boltzmann sampling algorithm, for an instance composed of two
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gene trees G1 and G2 of respective sizes (number of leaves) n1 and n2, has time
complexity of O(n1 × n2) for each backtrack.

4 Experiments

Data. We re-analyzed a dataset described in [3] composed of 5, 039 reconciled
gene trees and 50, 389 extant gene adjacencies, forming 6, 074 DeCo instances,
with genes taken from 36 mammalian genomes from the Ensembl database in
2012. In [3], these data were analyzed using the DeCo algorithm that computed
a single parsimonious adjacency forest per instance. All together, these adja-
cency forests defined 112, 188 (resp. 96, 482) ancestral and extant genes (reps.
adjacencies) and, more important, lead to 5, 817 ancestral genes participating to
three or more ancestral adjacencies, which represent a significant level of syn-
tenic inconsistency (close to 5%), as a gene can only be adjacent to at most two
neighboring genes along a chromosome.

Boltzmann Sampling. For each instance, we sampled 1, 000 adjacency forests
under the Boltzmann distribution, for three values of kT , 0.001, 0.1, 0.5. The
results were very similar for values 0.1 and 0.001, so we will not discuss the later.
The main difference between the results obtained with kT = 0.1 and kT = 0.5
is that in the later case, non-optimal adjacency forests have a higher probability
in the Boltzmann distribution, and thus are more likely to be sampled, while
kT = 0.1 skews the distribution toward optimal adjacency forests.

In order to assess the impact of considering alternate, possibly non-optimal,
adjacency forests, we computed, for each ancestral adjacency observed in the
sampled adjacency forests, its frequency, defined as the number of adjacency
forests it is observed in divided by 1, 000, that is the number of sampled adjacency
forests. Then, we considered 10 frequency thresholds, from 0.1 to 1 by steps of
0.1, and looked at the numbers of ancestral adjacencies, genes and syntenic
inconsistencies from ancestral adjacencies whose frequency is at least the chosen
threshold. Table 1 below summarizes our main observations.

Discussion. We can deduce two main points from the results summarized in
Table 1. First, the difference observed between the results obtained in the two
experiments clearly suggest that parsimony is an appropriate criterion for look-
ing at gene adjacency evolution. Indeed, in the results obtained with kT = 0.5,
that gives a higher probability to non-optimal adjacency forests, it appears that
the number of conserved ancestral adjacencies drops sharply after frequency 0.6,
showing that very few ancestral adjacencies appear with high frequency. Next,
with kT = 0.1, we can observe that by taking a high frequency (starting at a
frequency threshold of 0.6), we reduce significantly the number of syntenic incon-
sistency while maintaining a relatively similar number of ancestral genes than
the experiments described in [3]; this observation is our main finding, and illus-
trates the interest of the ensemble approach compared to the classical dynamic
approach that relies on a single arbitrary optimal solution.
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Table 1. Characteristics of ancestral genes and adjacencies from observed ancestral
adjacencies filtered by frequency of observation (leftmost column), with values kT =
0.1, 0.5 (left / right)

Adjacency freq. Ancestral genes Ancestral adjacencies Syntenic inconsistencies

≥ 0.1 120,269 / 122,367 116,204 / 136,480 14,851 / 31,221

≥ 0.2 119,540 / 121,657 113,265 / 130,316 12,479 / 26,230

≥ 0.3 118,687 / 120,631 110,180 / 121,307 10,351 / 19,369

≥ 0.4 117,639 / 118,074 106,973 / 110,649 8,330 / 11,336

≥ 0.5 116,231 / 112,812 103,479 / 99,672 6,677 / 5,522

≥ 0.6 114,538 / 104,703 99,720 / 88,270 5,113 / 2,868

≥ 0.7 112,564 / 92,449 96,039 / 74,482 4,092 / 1,256

≥ 0.8 110,086 / 75,206 91,821 / 58,214 3,276 / 424

≥ 0.9 107,564 / 45,702 87,790 / 33,648 2,710 / 33

= 1 100,443 / 16 79,078 / 8 1,348 / 0

5 Conclusion and Perspectives

The main contribution of our work is an extension of the DeCo dynamic program-
ming scheme to sample adjacency forests under the Boltzmann distribution. The
application of our sampling algorithm on a mammalian genes dataset, together
with a simple, threshold-based, approach to filter ancestral adjacencies, proved
to be effective to reduce significantly the number of syntenic inconsistencies when
sampling co-optimal adjacency forests, illustrating the interest of the ensemble
approach. This preliminary work raises several questions and can be extended
along several lines.

Sampling is obviously a non-exact way to estimate ancestral adjacency fre-
quencies. Ideally, for each pair (g1, g2) of ancestral genes from the same species
in an instance, we would like to compute its exact frequency as an ancestral
adjacency under the Boltzmann distribution, which corresponds to the Boltz-
mann probability of this feature. These probabilities can be computed exactly
using a modification of the DP scheme, at no extra computational cost using
the technique known as “inside/outside” algorithm. Similarly, the Boltzmann
probabilities of the adjacency gains and breaks associated to ancestral adjacen-
cies can be computed and then used to compute a Maximum Expected Accuracy
adjacency forest, which is a parsimonious adjacency forest in a scoring model
where each event is weighted by Boltzmann probability (see [4] for an example
of this approach for RNA secondary structures).

Finally, we considered here an evolutionary model based on speciation, dupli-
cation and loss. A natural extension would be to include the event of lateral gene
transfer in the model. Efficient reconciliation algorithms exist for several vari-
ants of this model [1,8], together with an extension of DeCo, called DeCoLT [12].
DeCoLT is also based on dynamic programming, and it is likely that the tech-
niques we developed in the present work also apply to this algorithm, and that
the open question discussed above are of interest for this model.
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Abstract. We present an efficient generalization of algebraic dynamic
programming (ADP) to unordered data types and a formalism for the
automated derivation of outside grammars from their inside progenitors.
These theoretical contributions are illustrated by ADP-style algorithms
for shortest Hamiltonian path problems. These arise naturally when ask-
ing whether the evolutionary history of an ancient gene cluster can be
explained by a series of local tandem duplications. Our framework makes
it easy to compute Maximum accuracy solutions, which in turn require
the computation of the probabilities of individual edges in the ensemble
of Hamiltonian paths. The expansion of the Hox gene clusters is investi-
gated as a show-case application. For implementation details see
http://www.bioinf.uni-leipzig.de/Software/setgram/

Keywords: formal grammar, outside grammar, dynamic programming,
Haskell, Hamiltonian path problems, tandem duplications, Hox clusters.

1 Introduction

Dynamic Programming (DP) over rich index sets provides solutions of a surpris-
ing number of problems in discrete mathematics. Even for NP-hard problems
such as the Travelling Salesman Problem (TSP) exact solutions can be obtained
for moderate size problems of practical interest. The corresponding algorithms,
however, are usually specialized and use specific properties of the problem in an
ad hoc manner that does not generalize particularly well.

Algebraic dynamic programming (ADP) [1] defines a high-level descriptive
domain-specific language for dynamic programs over sequence data. The ADP
framework allows extremely fast development even of quite complex algorithms
by rigorously separating the traversal of the state space (by means of context
free grammars), scoring (in terms of suitable algebras), and selection of desired
solutions. The use of CFGs to specify the state space is a particular strength of
ADP since it allows the user to avoid indices and control structures altogether,
thereby bypassing many of the pitfalls (and bugs) of usual implementations.
Newer dialects of ADP [2,3] provide implementations with a running time per-
formance close to what can be achieved by extensively hand-optimized versions,
while still preserving most of the succinctness and high-level benefits of the orig-
inal ADP language. The key goal is to develop a framework that makes it easy to
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implement complex dynamic programs by combining small, simple components.
A first step in this direction was the introduction of grammar products [4], which
greatly simplifies the specification of algorithms for sequence alignments and re-
lated dynamic programming tasks that take multiple strings as input. The second
and third steps are introduced in this work: a formal system for dynamic pro-
gramming over unordered data types, together with the mechanistic derivation
of Outside algorithms; both implemented in ADPfusion [2].

Sequence data is not the only type of data for which grammar-like dynamic
programs are of interest. Inverse coupled rewrite systems (ICOREs) [5] allow
the user to develop algorithms over both, sequence and tree-like data. While no
implementation for these rewrite systems is available yet, they already simplify
the initial development of algorithms. This is important in particular for tree-
like data. Their non-sequential nature considerably complicates these algorithms.
The grammar underlying the alignment of ncRNA family models with CMCompare

[6], which simultaneously recurses over two trees, may serve as an example for the
practical complications. There are compelling reasons to use DP approaches in
particular when more information than just a single optimal solution is of inter-
est. DP over sequences and trees readily allows the enumeration of all optimal
solutions, and it offers generic ways to systematically investigate suboptimal
solutions and to compute the probabilities of certain sub-solutions. Classified
dynamic programming [7], furthermore, enables the simultaneous calculation of
solutions with different class features via the evaluation algebra instead of con-
structing different grammars for each class. Two well-known examples for DP
over sequences in computational biology for which these features are extensively
used in practise are pairwise sequence alignment and RNA folding. Due to the
tight space limits we relegate them to the Electronic Supplement.

A quite different classical example of DP is the Travelling Salesman Problem
(TSP). It is easily stated as follows: given a set X of cities and a matrix d :
X ×X → R+ of (not necessarily symmetric) distances between them, one looks
for the tour (permutation) π on X that minimizes the tour length f(π) :=

dπ(n),π(1) +
∑n−1

i=1 dπ(i),π(i+1). W.l.o.g., we may set X = {1, . . . , n} and anchor
the starting point of a tour at π(1) = 1. The well-known (exponential-time) DP
solution for the TSP [8,9] operates on “sets with an interface” [A, i] representing
the set of all tours starting in 1 ∈ A, then visiting all other cities in A exactly
once and ending in i ∈ A. The length of the shortest path of this type is denoted
by f([A, i]). For an optimal tour we have f([X \ {i}, i])+ f(〈i, 1〉) → min, where
f(〈i, 1〉) = d1,i is the length of the edge from i to 1. The f([A, i]) satisfy the
recursions

f([A, i]) = min
j∈A

f([A \ {i}, j]) + f(〈j, i〉) (1)

since the shortest path through A to i must consist of a shortest path through
A ending in some j ∈ A and a final step from j to i. The fundamental question
that we will address in this contribution is whether we can rephrase this and
similar DP algorithms also in an ADP like manner. In other words: how can
we separate state space traversal and evaluation, even though we do not have a
grammar at hand (because we do not even operate on strings or ordered trees)?
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2 ADP over Set-Like Data Types

Generalized Decompositions. The key observation is that we have to gen-
eralize the notion of parsing a string to much more general ways of traversing
the state space. This interpretation of “productions” makes perfect sense for the
paths in the TSP solution. The operator ++ provides the decomposition of the
set A into A′ as well as a terminal e denoting the newest edge added to A′ to
construct A.

“A → A′ ++ e” := {[A, i] �→ [A \ {i}, j]++〈j, i〉|A ⊆ X, j ∈ A} (2)

The path variables [A, i] highlight a second important ingredient of the formal-
ism. Each object [A, i] consists of an interior part int([A, i]) = A \ {i, 1} and the
interface ∂A = {1, i}. The latter consists of the vertices that need to be known
explicitly for the evaluation: they will appear explicitly in the evaluation algebra.
For fixed A in the production (2), e.g., we have to consider all j ∈ A \ {1} as
possible endpoints of the paths.

The distinction between interior and interface of each object A := [int(A), ∂A]
allows a more principled way to constructing concrete decompositions:

[int(A), ∂A] �→ ++
i
[int(Ai), ∂Ai] (3)

with the following properties:

(C1)
⋃

i Ai = A, i.e., the parts of A form a covering of A.
(C2) int(Ai) ∩ int(Aj) 	= ∅ implies i = j, i.e., the interiors of the parts are

disjoint.
(C3) int(Ai) ⊆ int(A), i.e., the interiors behave like isotonic functions.

The intuition behind axiom (C1) is that any decomposition of an object must
eventually evaluate all parts. Condition (C2) and (C3) implies that the interiors
of the parts can be evaluated independently. To allow meaningful evaluation
algebras in the ADP sense we require that concatenation is associative. It may
be tempting to think of ∂ and int in terms of generalized topological functions,
i.e., as boundary and interior operators. This may not need to be the case in full
generality, since we may have situations where A is not just a set.

A terminal is an object for which there is no further concrete decomposition.
In the TSP examples, the terminals are on the one hand the edges 〈j, i〉 that
appear explicitly in the decompositions as well as the path 〈1〉 := [{1}, 1] of
length 0 that appears implicitly as the base case of the concrete decompositions.
The boundary ∂A is not necessarily just an unstructured set. For the asymmetric
TSP, e.g., start and end point of a path [A, j] are distinguished.

So far our discussion has been focussed on the decomposition of inputs in
the terms of a grammar. The goal to optimize with an objective function in DP
has only entered in passing, as in the TSP example in equ. (1). For DP to work,
however, more is required. The grammar performs the decomposition of each sub-
input into its constituent elements, or terminal and non-terminal symbols. Each
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of the different decompositions is then evaluated using an evaluation algebra that
defines how f(A) depends on the evaluation f(Ai) of the fragments. In general
there are multiple alternative decompositions of A. For the TSP for instance,
we have to consider A → A \ {i} for all i ∈ A. It also is the job of the score
algebra to combine the scores over these alternatives. To minimize f , scores are
added over constituents and minimized over alternatives. To compute partition
functions they are multiplied over constituents and added up over alternatives.
Finally Bellman’s principle [8] stipulates that decomposition and scoring play
together in such a way that optimal solutions are always obtained by composing
optimal solutions of smaller problems. We can implement algorithms specified
in this formal system very efficiently (both in terms of programming effort and
actual running times) using an extension to ADPfusion. Details are given in the
Electronic Supplement.

Deriving Outside Algorithms. A key advantage of DP algorithms is the
generic possibility to compute solutions with constraints, such as alignments
that contain a given alignment edge. The basic idea behind this possibility is the
combination of an “inside” with an “outside” solution, i.e., a pair of complemen-
tary partial solutions. Well known examples are pairwise sequence alignments
or RNA folding. In the first example, pairwise alignments of prefixes are the ob-
jects of the forward (or “inside”) recursion, while suffix-alignments are required
as “outside” objects. In the RNA case, this is even more transparent, since “in-
side” runs over secondary structures on intervals, while the outside algorithm
recurses over the complements of the intervals, again proceeding from smaller to
larger outside objects. A good example is McCaskill’s algorithm for computing
the base pairing probabilities in the ensemble of all secondary structures formed
by an input RNA molecule [10]. The construction of the outside traversal is a
difficulty in ADP that has not been fully solved. For CFGs, thesis [11] shows that
a grammar for the outside objects can be derived by doubling the input string
and re-interpreting the region outside of interval [i, j] as the interval [j+1, i′−1]
where i′ is the equivalent position i in the 2nd copy of the input.

To make use of the full potential of dynamic programming it would be highly
desirable to construct suitable outside traversals automatically from a given
inside traversal. In the remainder of this section we discuss some of the general
principles underlying the relationship of inside and outside recursion on a general
level. The key observation is that the distinction of inside and outside comes from
a generic way of splitting solutions so that

[int(X), ∂A] → [int(A), ∂A]++[int(A∗), ∂∗A∗] (4)

corresponds to the set of all solutions that are constrained to ∂A = ∂∗A∗,
i.e., that contain the particular feature specified by ∂A. Set-like objects have
a straightforward explicit definition of their outside objects: int(A∗) := X \
(int(A) ∪ ∂A). The notation ∂∗A∗ emphasizes that in the case of structured
interfaces corresponding inside and outside objects must consist of the same
terminals, but possibly in different orderings. In the Electronic Supplement we
illustrate this construction for RNA folding and pairwise alignments.
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The straightforward definition of outside objects suggests that it should also
be possible to construct inside-style productions for these outside objects in a
generic, rule-based manner. It turns out that the solution to this long-standing
problem in DP becomes surprisingly simple as soon as we allow ourselves to
“parse” also data structures that are not strings or trees. With each concrete
inside decomposition A �→ (++iAi)++ (++j〈tj〉), where the Ai are non-terminals
and the 〈tj〉 are terminals, we associate

A∗
k �→ A∗ ++

(

++
i�=k

Ai

)

++

(

++
j
〈tj〉

)

(5)

For examples and a discussion of start non-terminals and empty terminals we
refer to the Electronic Supplement. The situation is even simpler for the TSP:
we have [A, (1, i)]∗ = [(X \A)\ {1, i}, (i, 1)]. In particular, [A, (1, i)]++[A, (1, i)]∗

corresponds to the set of all Hamiltonian paths that run from 1 to i through
A and then from i back to 1 through X \ A. The same idea applies to other
Hamiltonian path problems.

3 Application to Gene Cluster Histories

Local duplication of DNA segments via unequal crossover is the most plausible
mechanism for the emergence and expansions of local clusters of evolutionary
related genes. It remains hard and often impossible to disentangle the history of
ancient gene clusters in detail even though polynomial-time algorithms exist to
reconstruct duplication trees from pairwise evolutionary distance data [12]. The
reason is the limited amount of phylogenetic information in a single gene. The
situation is often aggravated by the extreme time scales leading to a decay of
the phylogenetic signal so that only a few, very well-conserved sequence domains
can be compared. A large number of trees then fits the data almost equally well.
A meaningful analysis thus must resort to some form of summary that is less
detailed than a duplication tree. In the absence of genome rearrangements, and
if duplication events are restricted to copying single genes to adjacent positions,
we expect phylogenetic distance to vary monotonically with genomic distance.
A shortest Hamiltonian path through the phylogenetic distance matrix therefore
should conform to the linear arrangement of the genes on the genome. The same
high noise level that suggests to avoid duplication trees makes us distrust a single
shortest path. Rather, we would like to obtain information on the ensemble of
all Hamiltonian paths.

The shortest Hamiltonian path problem, well known to be NP-complete, is
closely related to the TSP, and admits a similar dynamic programming solution
[8,9]. We provide here an efficient implementation in our ADP-style framework.
Denote by [i, A, j] with i, j ∈ A the set of all paths starting in i, ending in j, and
passing through all other vertices of A in between. It will be convenient to fix the
start and end points p and q of the paths, i.e., the search space is Xpq := [p,X, q].
With fixed p and q we need not treat the ends p and q as interface points, i.e., we
can write [A, j] for the path sets, where p ∈ A and q /∈ A for all A. As for the TSP
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Latimeria menadoensis Strongylocentrotus purpuratus

Fig. 1. Posterior probabilities of adjacencies of Hox genes along shortest Hamiltonian
paths w.r.t. to phylogenetic distance. Top: effect of the temperature parameter T for
distances between Latimeria menadoensis homeobox sequences. Below: Comparison
of adjacencies for two different metrics (Hamming distance, and BLOSSUM-45 derived
dissimilarities) in L. menadoensis (left) and S. purpuratus. T = 0.1 to emphasize
the structure of the ambiguities. Note the adjacencies between the block of anterior
Hox genes (1,2,3) and the middle group genes (5,6,7,8), reflecting the break-up and
translocation of anterior genes to a genomic location before the posterior genes.

we have [A, j] �→ [A \ {j}, k]++〈k, j〉 and [A, j]++[A, j]∗ = Xpq from which we
obtain the outside objects as the path sets [A, j]∗ = [j,X \A] with endpoint q ∈
X \ A. The corresponding concrete decompositions are [j, B] �→ 〈j, k〉++[k,B \
{j}] for k ∈ B \{j}. Partition functions Z over Hamiltonian paths are computed
using Z(A++B) = Z(A)Z(B), Z([{p}, p]) = Z([q, {q}) = 1, and Z(〈i, j〉) =
exp(−dij/kT ) is the Boltzmann factor of the distance between two vertices, i.e.,
of the terminals. Our generalized ADP framework takes care of computing all
Z([p,A, i]) = Z([A, i]) and Z([k,B, q]) = Z([k,B]). The a posteriori probability
of observing an adjacency i ∼ j in path with fixed endpoints p and q is
P (i ∼ j|p, q) = Z([p,A, i])Z(〈i, j〉)Z([j,X \ (A ∪ {i}), q])/Z(Xpq).

As usual, this is simply the ratio of restricted and unrestricted partiton func-
tions. Summing over the possible end points of the paths yields

P (i ∼ j) =
1

Z

∑

p,q

Z([p,A, i])Z(〈i, j〉)Z([j,X \ (A ∪ {i}), q]) , (6)
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where Z =
∑

p,q Z(Xpq) is the partition function over all Hamiltonian paths.
Z(Xp,q)/Z is the probability that the path has p and q as its endpoints.

Hox genes are ancient regulators originating from a single Hox gene in the
metazoan ancestor. Over the course of animal evolution the Hox cluster gradually
expanded to 14 genes in the vertebrate ancestor. Timing and positioning of
Hox gene expression along the body axis of an embryo is co-linear with the
genomic arrangement in most species. Only the 60 amino acids of the so-called
homeodomain can be reliably compared at the extreme evolutionary distances
involved in the evolution of the Hox system.We use either the Hamming distance,
measuring the number of different amino-acids, or the transformation dab =
s(a, a) + s(b, b)− 2s(a, b) of the BLOSSUM45 similarity matrix to quantify the
evolutionary distances of the homeodomain sequences. Setting k to the average
pairwise genetic distance ensures that T quantifies the expected noise level as a
fraction of the phylogenetic signal. For T → 0 we focus on the (co)optimal paths
only, while T → ∞ leads to a uniform distribution of adjacencies.

We analyzed here the Hox A cluster of Latimeria menadoensis (famous as a
particularly slowly evolving “living fossil”), which has sufferered the fewest gene
losses among vertebrates. The Hox cluster of the sea urchin Strongylocentrus
purpuratus, in contrast, has undergone fairly recent rearrangements of its gene
order [13]. Fig. 1 shows the posterior probabilities of adjacencies. Both exam-
ples reflect the well-known clustering into anterior (Hox1-4), middle group genes
(Hox4-8), and posterior ones (Hox9-13). The shortest Hamiltonian paths in L.
menadoensis connect the Hox genes in their genomic order. In the sea urchin,
however, we see adjacencies connecting the anterior subcluster (Hox1-3) with
the genomic end of the cluster, i.e., the middle group genes (Hox8-Hox5).

4 Discussion

We have taken here the first step towards extending algebraic dynamic pro-
gramming (ADP) beyond the realm of string-like data structures. Our focus is
an efficient, yet notationally friendly way to treat DP on unordered sets. Our
extension of ADP builds on the same foundation (namely ADPfusion [2]) as our
grammar product formalism [14,4]. Our formalism explicitly redefines the rules
of parsing to match the natural subdivisions of the data type in question. In
the case of sets, these are bipartitions and the splitting of individual elements,
rather than the subdivision of an interval or the removal of a boundary element
that are at the heart of string grammars. As a showcase example we considered
in detail the shortest Hamiltonian path problem, which arises e.g. in the context
of the evolution of ancient gene clusters. In this context we are interested in par-
ticular in probabilities and hence in restricted partition functions. An ADP-style
implementation and a principled approach to constructing outside algorithms is
of particular practical relevance here.

Our current framework still lacks generality and completeness in several re-
spects. The theoretical foundations for the automated calculation of outside
grammars for, basically, traversals of arbitrary data types is our most immedi-
ate concern. In this context McBride’s notion of a derivative operator acting on
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data types [15] is highly relevant, even though it does not seem to be directly
applicable. Even more generally, it might be possible to generate decomposition
schemes, i.e. “grammar rules”, from an analysis of the data structure itself.
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14. Höner zu Siederdissen, C., Hofacker, I.L., Stadler, P.F.: How to multiply dynamic
programming algorithms. In: Setubal, J.C., Almeida, N.F. (eds.) BSB 2013. LNCS,
vol. 8213, pp. 82–93. Springer, Heidelberg (2013)

15. McBride, C.: Clowns to the left of me, jokers to the right (pearl): dissecting data
structures. In: ACM SIGPLAN Notices, vol. 43, pp. 287–295. ACM (2008)



Using Binary Decision Diagrams (BDDs)
for Memory Optimization in Basic Local

Alignment Search Tool (BLAST)

Demian Oliveira, Fernando Braz, Bruno Ferreira,
Alessandra Faria-Campos, and Sérgio Campos

Department of Computer Science
Universidade Federal de Minas Gerais

Av. Antônio Carlos, 6627, Pampulha, 30123-970, Belo Horizonte, Brazil
demianbueno@yahoo.com.br,

{fbraz,bruno.ferreira,alessa,scampos}@dcc.ufmg.br

Abstract. Sequence alignment is the procedure of comparing two or
more DNA or protein sequences in order to find similarities between
them. One of the tools used for this purpose is the Basic Local Align-
ment Search Tool (BLAST). BLAST however, presents limits on the size
of sequences that can be analyzed requiring the use of a lot of mem-
ory and time for long sequences. Therefore, improvements can be made
to overcome these limitations. In this work we propose the use of the
data structure Binary Decision Diagram (BDD) to represent alignments
obtained through BLAST, which offers a compressed and efficient rep-
resentation of the aligned sequences. We have developed a BDD-based
version of BLAST, which omits any redundant information shared by
the aligned sequences. We have observed a considerable improvement on
memory usage, saving up to 63,95% memory, with a negligible perfor-
mance degradation of only 3,10%. This approach could improve align-
ment methods, obtaining compact and efficient representations, which
could allow the alignment of longer sequences, such as genome-wide hu-
man sequences, to be used in population and migration studies.

Keywords: Binary Decision Diagrams (BDD), Basic Local Alignment
Search Tool (BLAST), Multiple Sequence Alignment.

1 Introduction

One of the fundamental problems in Bioinformatics is the alignment of sequences,
which is used to compare and find similarities between primary biological se-
quences, such as DNA or proteins. Several algorithms have been proposed to
address this issue. One of the most used is the Basic Local Alignment Search
Tool (BLAST) [1]. However, it presents some limitations regarding the size of
the sequences that can be analyzed. Therefore, improvements can be made to
overcome these limitations.
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In this paper, we present a different and novel approach to solve this problem,
using the data structure Binary Decision Diagram (BDD), a special type of
Binary Decision Tree (BDT), which allows a compressed, concise and efficient
data representation. During the execution of BLAST, we represent the aligned
sequences as a BDD, which discards redundant data shared by the sequences,
which saves memory used by the program.

We have also performed a comparative study, measuring the execution time
and memory usage of BLAST, available at the National Center for Bioinfor-
matics Information (NCBI)1, and our BDD-based version. We have observed a
considerable improvement in memory usage, saving up to 63,95% memory, with
a small trade-off of negligible performance degradation of only 3,10%.

This approach could improve alignment methods, obtaining compact and ef-
ficient representations, which could allow the alignment of longer sequences,
such as genome-wide human sequences, to be used for population and migration
studies.

2 Background

2.1 Basic Local Alignment Search Tool (BLAST)

Sequence alignment is the procedure of comparing two or more DNA or protein
sequences by searching for series of individual characters that are in the same
order in the sequence for the purpose of identifying similar regions, which may
share characteristics, such as structure and function. Several algorithms exist
to accomplish this, being prominent among them the Basic Local Alignment
Search Tool (BLAST). BLAST is used for the analysis, study and comparison
of primary biological sequences, such as nucleotides in DNA and RNA sequences
and amino acids in proteins [1,7]. A BLAST search enables a researcher to com-
pare a query sequence with a library or database of sequences, and identify
sequences that resemble it above a certain threshold. Different types of BLAST
are available according to the sequences to be compared. A BLAST search allows
the user to find alignments of a source biological sequence, called query, with
another sequence, called subject, aiming to infer biological homology.

Since its creation, BLAST has been extended in different ways. Parallel im-
plementations have been created, such as PLAST [8]. Specific optimizations of
its algorithms, such as improving the order of its index seed, have also been per-
formed [6]. BLAST+ , a complete reimplementation in C++ of BLAST (origi-
nally implemented in C), has also been created [3]. There are also non-equivalent
alternatives for database search, such as BLAT [5], which uses the index of all
nonoverlapping K-mers in the genome.

Finally, there are some works exploring the use of GPU and CUDA cores, for
intensive parallel computations, such as GPU-BLAST [9] and G-BLASTN [10].
However, the use of a data structure known as Binary Decision Diagram (BDD)
to improve the algorithm efficiency has yet not been pursued.
1 NCBI website, http://www.ncbi.nlm.nih.gov/
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2.2 Binary Decision Diagram (BDD)

The data structure Binary Decision Diagram (BDD) is derived from a Bi-
nary Decision Tree (BDT) – both are structures with two types of nodes, each
node has two descendants. However, BDDs can be much more compact than
BDTs because they discard redundant information, allow rapid graph traversal
and check if two boolean functions are equivalent, as first described in [2]. BDDs
are often used in symbolic model checking to represent finite states systems.

Although BDDs have several advantages, it has some drawbacks. The main
one is the order of the variables (true or false) which appear in the boolean
function being represented. Depending on it, the BDD can be heavily compressed
or completely redundant. However, the problem of choosing the variable ordering
which minimizes the BDD size is NP-complete [2].

Another issue with BDDs is the space complexity. Since BDDs are essentially
an exhaustive representation of its boolean function, in the worst case it is ex-
ponential to the number of variables of the boolean function [2]. In practice,
however, the worst case is uncommon, therefore this limitation often does not
impact in the resulting BDD. Finally, there are several BDD extensions, such as
Multi-terminal BDD (MTBDD), which can represent integer numbers as termi-
nal nodes [4].

Given the main aspects of BDD and its ability to remove redundant informa-
tion in a way that can change the algorithm behavior it may be used to improve
BLAST implementation as proposed in this work.

3 Methods

3.1 BLAST

This work used BLAST, available at the National Center for Bioinformatics
Information (NCBI), under the public domain license, as a source to perform
the construction and representation of a BDD.

The work has focused on the program Nucleotide Blast (blastn), responsi-
ble for the alignment of DNA nucleotide sequences. This is considered the most
simple application to search for similarities between two biological sequences
(query and subject), since a protein sequence represents the translation of a
nucleotide sequence.

Some of the blastn functions have been modified to allow the construction of
a BDD and its representation. We also added a method which allows measuring
the performance of the system (in milliseconds) in order to find the impact of
this approach on the algorithm.

For blastn the algorithm starts by dividing the data sequence to be searched
(query) into words or K-mers. For a DNA sequence (nucleotides), the program
has the default configuration of 11 nucleotides for the size of the word2. This
value can be changed by the user, which can adjust how rigorous is the search.
2 BLAST Help, http://www.ncbi.nlm.nih.gov/books/NBK1763/

http://www.ncbi.nlm.nih.gov/books/NBK1763/
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After defining the words and creating the score matrix, which is used to rank
similarities, the program has to search for a sequence in the subject which is
equals to a word of the query. After obtaining a compatibility or match in
the combination between the searched sequence (query) and the target database
(subject), the algorithm shifts the word to a position with the objective of ex-
panding the similarity and thus finding new matches. The algorithm also creates
gaps between nucleotides in order to force similarities, which are represented by
hyphens (-) in the output of results of a search.

3.2 BDD Construction

After the analysis of the blastn algorithm3 for the alignemnts’ representation, we
have changed it to perform a pre-processing of the alignments with the creation
of a BDD map, which has been used to visually represent the result of the
alignment between a query and all subjects found by the initial processing of
the algorithm. This BDD map was important to understand the result because
it will probably add gaps in the sequences after finding a mismatch in their
alignment, shifting the sequences to match their differences.

Algorithm 1. BDD-BLAST’s algorithm. Clarification on the terms used: query
is the sequence being aligned with several other sequences named subjects; the
tree is the BDD being constructed; the direction is whether
1: for Each character of the query do
2: if (Direction == Right) then
3: for Each Comparison between query and subject do
4: if (Comparison == true) then
5: Create a node to the right of the tree with the value of the query
6: else
7: Create a node to the left of the tree with the value of the subject
8: end if
9: end for

10: else
11: for Each Comparison between query and subject do
12: if (Comparison == true) then
13: Create a node to the left of the tree with the value of the query
14: else
15: Create a node to the right of the tree with the value of the subject
16: end if
17: end for
18: end if
19: end for

The second step was to create a model of the algorithm developed in this work.
With the objective of building a balanced binary tree, our algorithm receives a
3 ncbi-blast-2.2.29+-src\c++\src\objtools\align_format\showalign.cpp
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Fig. 1. BDD representation of a BLAST alignment. The central part of query (red)
shows the tree root, where the BDD construction begins. The two indicated parts of the
subject (blue) have not aligned with the query, therefore, both are added as innermost
nodes.

representation of the alignments performed by BLAST (query versus subject)
and, for each alignment found, executes the Algorithm 1.

The Algorithm 1 creates the BDD from its interior as mismatches of the
alignment obtained in BLAST are found. The input are standard ACGT/U
sequencesFigure 1 demonstrates a BDD produced by our algorithm for a word
of size three (the pieces that the algorithm tries to match) and a root of size
ten (the start of the alignment), where only last part of the alignment shows a
discrepancy between query and subject.

Thus we can consider that the best case scenario for the construction of the
BDD is the perfect alignment between query and subject, which will generate a
binary tree that grows uniformly to both sides of its root. This means that the
tree shows only matching nodes (left nodes on the left side and right nodes on
right side). Mismatches makes the tree grow to its innermost nodes.

4 Results and Discussion

This Section presents our results and discussion: Section 4.1 describes the datasets
and parameters used in our tests, Section 4.2 shows how we obtained our BDD
representation and Section 4.3 presents memory usage results.

4.1 Parameters and Sequences

In order to demonstrate a real result in the execution of blastn through the site
of the NCBI, a sequence registered by the code NR_002605, which represents
the gene “Homo sapiens deleted in lymphocytic leukemia 1 (non-protein coding)
(DLEU1), transcript variant 2, long non- coding RNA” will be used as reference.

The tests have been performed in an Intel Core i5 vPro 2.6 GHz with 4 GiB
of RAM. The biological sequences used in the tests are NR_026084 versus 16S
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Microbial Sequences database and NM_000249, NM_00026, NM_15262
versus NCBI Transcript Reference Sequences. The searches have been ex-
ecuted using six different sample sizes: Tiny (79 nucleotides); Small (160 nu-
cleotides); Medium (240 nucleotides); Large (560 nucleotides); Full, real size
(1331 nucleotides); and RNA human (2662 nucleotides).

4.2 BDD Representation

The BDD-based algorithm proposed successfully represents the alignments ob-
tained by BLAST as a BDD (Figure 1). Aligned sequences are represented as
direct paths from the tree root, always to its right or left. On the other hand,
parts of the sequence that have not aligned are shown in the tree in the inner-
most nodes. All the sequences can be recovered from the tree by traversing it,
therefore no information is lost in this representation.

Outputting a binary tree in an organized way demands the insertion of sev-
eral whitespaces between the nodes, which creates an exponential growth pro-
portional to the size of the height of the tree. This has a direct impact on the
size of the output file of the algorithm, which demands many hard disk writes,
compromising the overall time taken by the algorithm execution.

We have compared the execution time of BLAST and the proposed BDD-
based version. Results are shown in Table 1. The results are for the sizes of
queries previously described. For this there are two configurations: BLAST (the
original algorithm) and BDD (the proposed BDD-based version). The obtained
execution time is the average of ten executions for each scenario, in order to
avoid any transient fluctuations.

If the BDD was constructed without showing the BDD map (used for debug-
ging purposes)and the resulting tree file output, a similar performance of the
BDD-based version with the original algorithm is observed, as shown in Table 1.
There is a small overhead between 0,75% and 3,10%, however, this is a small
price paid for the huge benefit of memory optimization shown in the next section.
Therefore, the construction of the BDD does not interfere significantly with the
total execution time of BLAST.

Table 1. Comparison of the execution time of BLAST with the BDD-based version
for different sizes of queries. The units are milliseconds (ms). The values are nearly
identical, with a small overhead between 0,75% and 3,10%.

Query Size

Configurations Tiny Small Medium Large Full RNA Human

BLAST 29.63 60.10 124.21 398.02 902.09 1804.01

BDD 30.12 61.57 127.54 401.89 930.62 1860.76
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4.3 Efficient Memory Usage

The memory usage of BLAST and the proposed BDD-based version has also
been compared in this work (Table 2). The results are for the same query sizes
and configurations. It has been observed a considerable improvement in memory
usage, saving on average from 60,66% up to 63,95% memory. This result is a huge
benefit with a small trade-off between performance and memory, since there is
a negligible performance degradation (between only 0,75% and 3,10%).

These results have shown a scalability trend, since in all datasets the proposed
BDD-based version saved 62,33% memory on average. Further studies using
larger datasets are necessary to better corroborate the results and are in progress.

Table 2. Comparison of the memory usage of BLAST and the proposed BDD-based
version for different sizes of queries. The average and median metrics are shown, and
the units are bytes. The percent column (%) in each column group represents how
much memory the BDD saved.

Tiny Small Medium

BLAST BDD % BLAST BDD % BLAST BDD %

Average 206.59 74.72 63.95 462.60 176.47 61.94 389.53 145.34 62.79

Median 228.00 83.00 64.00 480.00 185.50 61.18 300.00 112.00 62.77

Large Full RNA Human

BLAST BDD % BLAST BDD % BLAST BDD %

Average 1248.91 488.63 60.79 3633.01 1427.58 60.66 4434.55 1605.19 63.87

Median 1233.00 485.00 60.50 3549.00 1409.50 60.21 5772.00 2118.00 63.31

5 Conclusions and Future Work

This work has shown a novel approach to the representation of sequence align-
ments, which are used to compare and find similarities between biological se-
quences, such as DNA and protein. Our approach uses the data structure Binary
Decision Diagram (BDD) to represent the results obtained by Basic Local Align-
ment Search Tool (BLAST). A BDD is an efficient and compact type of binary
decision tree, removing any redundant information shared by the aligned se-
quences, which is often found in biological sequences. The proposed BDD-based
version has shown a considerable improvement in memory usage, saving up to
63,95% memory, with a small trade-off of a negligible performance degradation
of only 3,10%.

This approach can be used to improve current alignment methods, obtain-
ing compact and efficient representations, which could allow the alignment of
longer sequences, such as genome-wide sequences, to be used in population and
migration studies.
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Future work includes studying other scenarios and applications, using other
BLAST types besides blastn for tests, comparing this approach with other se-
quence alignment methods besides BLAST, and modifying the algorithm to re-
place some of the BLAST functions.
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Abstract. Multiple Sequence Alignments are essential tools for many
tasks performed in molecular biology. This paper proposes an efficient,
scalable and effective multi-objective evolutionary algorithm to optimize
pre-aligned sequences. This algorithm benefits from the great diversity of
state-of-the-art algorithms and produces alignments that do not depend
on specific sequence features. The proposed method is validated with a
database of refined multiple sequence alignments and uses four standard
metrics to compare the quality of the results.

1 Introduction

Multiple Sequence Alignment (MSA) refers to the computationally hard problem
of aligning more than two sequences to identify evolutionary and/or structurally
related positions. Over the past 20 years, novel computational methods that
improve the accuracy of MSA tools have been proposed [1]. Currently, MSA tools
are fairly reliable and are sufficiently fast to perform tasks of next generation
sequencing [2], genome-annotation [3], structural and functional prediction [4],
phylogenetic studies [5] and sequence data base searching [6].

State-of-the-art MSA algorithms cannot always guarantee consistent solu-
tions, however, and there is no consensus on a strategy that produces optimal
results [7]. Each algorithm has its own advantages and drawbacks when it faces
particular sets of sequences, which can make it difficult for a given alignment
problem to make a rational selection of an appropriate alignment tool. Some
methodologies have been recently designed to combine distinct MSA algorithms
to obtain extra consistency with a final alignment [8]. Furthermore, some op-
timization and computationally intelligent techniques have been applied to as-
semble sequences aligned by state-of-the-art algorithms predicting the expected
accuracy of each alignment [9–11]. Finally, crowdsourcing platforms have also
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been used recently to improve the accuracy of pre-computed MSAs and to solve
problems with local inaccuracies [12, 13].

Despite this relatively long history and a number of recent improvements,
there is still a need for novel methodologies involving sequence alignments. In
particular, there is an increasing need for faster MSA tools to deal with big data
and for a way to overcome the limited performance of MSA tools on remote ho-
mologs and low similarity sequences. The dependency of MSA algorithms on par-
ticular sequence features are important bottlenecks in this area. Multi-objective
optimization (MOOP) approaches are a methodology with several characteris-
tics that are desirable for MSA optimization. Specifically, MOOPs can operate
on a set of MSA candidate solutions, they are able to approximate solutions for
optimization problems, and they can work on multiple conflicting objectives.

This paper proposes a fast, scalable and effective algorithm to optimize pre-
viously aligned sequences through a multi-objective approach. The algorithm is
validated using a database of refined multiple sequence alignments (BAliBase)
and uses four standard metrics to evaluate the quality of the predicted align-
ments.

2 Materials and Methods

2.1 MSA Algorithms

The proposed experimental framework has selected six state-of-the-art algo-
rithms to provide seed alignments for optimization, namely: Clustal W [14],
Clustal Omega [15], Muscle [16], MAFFT [17], ProbCons [18] and TCoffee [19].
It is important to stress that the proposed algorithm can be scaled with the
insertion or deletion of any other MSA approach.

2.2 BAliBase

BAliBase [20] is a database of refined multiple sequence alignments commonly
used to compare the performance of MSA programs. BAliBase performs valida-
tions on a wide spectrum of test cases in order to prevent the over-training of
methods in a specific dataset. Each test case belongs to one of five possible refer-
ence sets [20]. (RV11 and RV12) is a set of equidistant PDB sequences in which
any two sequences share < 20% identity. (RV20) are orphan sequences that all
share > 40% identity. (RV30) are subfamilies where the sequences within a given
subfamily share < 40% identity, but also where any two sequences from differ-
ent subfamilies share > 20% identity. (RV40 and RV50) are sequences that share
> 20% identity with at least one other sequence, but that include sequences that
contain large N/C-terminal extensions or internal insertions respectively BAl-
iBASE maintains the high quality of alignments through the use of 3D structural
superpositions combined with a final manual validation and refinement step. The
number of sequences in version 3.0 was increased from 1444 to 6255, composed
of 218 alignments.
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2.3 Multi-Objective Evolutionary Algorithm (MOEA)

MOEAs belong to the class of stochastic optimization algorithms that mimic
natural evolution to solve a multi-objective optimization problem (MOOP).
A MOOP problem can be defined as the problem of finding a vector x =
[x1, x2, . . . , xn]

T such that:

i) satisfies the r equality constraints hi(x) = 0, 1 ≤ i ≤ r,
ii) is subject to the s inequality constraints gi(x) ≥ 0, 1 ≤ i ≤ s
iii) optimizes the vector function f(x) = [f1(x), . . . , fm(x)]T .

The vector x is an n-dimensional decision vector and X is the decision space,
i.e., the set of all expressible solutions. The objective vector f(x) maps X into
�m, where m ≥ 2 is the number of objectives. The image of X in the objective
space, is the set of all attainable points.

The concept of optimality is introduced through the notion of Pareto optimal-
ity. A vector x ∈ S is said to be Pareto optimal if all other vectors x∗ ∈ S have
a higher value for at least one of the objective functions in f(x). A Pareto front
is the image of all solutions. The points that form the shape of the Pareto front
are called non-dominated points. The solutions in the final set are expected to
be close to optimal and non-dominated with respect to one another.

MOEAs are algorithms that simulate natural evolution by an iterative com-
putation process in which a set of candidate solutions are subsequently modified
and improved through selection and variation procedures until some level of
acceptable quality is met. The algorithm takes a given MSA (i.e., original popu-
lation) and returns an improved one after performing a series of mutations and
crossover operations. In other words, the procedure “evolves” the original MSAs
to produce a better one. Generally, a MOEA schema can be divided into the
following phases: generation, evaluation, and selection of individual (See fig 1).

In a MOEA, individuals contain the information of solutions (i.e., alignments).
Alignments are represented as a n × m multi-array of integers, where n is the
number of sequences and m is the length of the alignment. If a cell in the multi-
array corresponds to a match, then it contains the position of the amino-acid
in the protein sequence. On the other hand, if a cell corresponds to a gap,
then it contains the position in the protein sequence of the previous match (See
the multi-array depicted in the boxes Crossover or Mutation in figure 1). This
representation was chosen given its suitability in the implementation of genetic
operators [9].

This paper constructs the initial population (i.e. set of individuals) using the
alignments produced by state-of-the-art MSA algorithms. This population is
composed of the alignments reported for each algorithm plus some genetically
modified versions (i.e. versions that apply genetic operators) of those alignments.
Subsequent populations are then improved using a genetic algorithm. Genetic
operators (crossover and mutation) then produce new generations through the
selection of new individuals based on a fitness function. Finally, a stopping cri-
terion is achieved when for a fixed number of iterations no improvements have
been made.
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The mutation and crossover operators represent mechanisms to perform ex-
ploration (increasing the diversity of a population) and exploitation (increasing
the depth of the search) procedures within the search space, respectively.

An implemented mutation randomly selects the positions of one gap and one
amino-acid in an individual. It then introduces the gap after the amino-acid
position and performs a shift of one position for all the positions between the
selected amino-acid and the end of the sequence or the position of the selected
gap, whichever occurs first (See figure 1).

A two-point crossover, where each point represents a column in the alignment,
is then implemented. Once two points have been randomly selected in one in-
dividual (parent one), the positions between the two points, which correspond
to the same string of position indexes, are then sought in another random indi-
vidual (parent two). Finally, the strings of positions are exchanged between the
two parents (See figure 1).

Fig. 1. The proposed algorithm

Evaluating Individuals
In this proposed algorithm, the evaluation of individuals is achieved through a
fitness function that considers two objective functions, entropy and the metric
MetAl [21]. Entropy measures the variability of an MSA by defining the frequen-
cies of the occurrence of each letter in each column. Entropy is minimal when
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the same symbol is always present in one position, while it is maximal when all
symbols are present with the same frequency. The total entropy for an MSA is
the sum of the entropies of its columns (see equation 1), where Pi is the fraction
of residual amino acid type i, M is the number of amino acid types plus the gap
character, and N is the number of columns in the MSA. For the purposes of this
algorithm, good alignments are considered to be those that minimize their total
entropy.

H =

N∑

j=1

−
M∑

i=1

Pi log2 Pi (1)

Frequency-based approaches, as a measure of entropy, do not consider the po-
sitional and evolutionary characteristics of residue presented in an MSA. The
approach proposed here uses a combination of four metrics that incorporate po-
sitional and evolutionary information, which are processed by MetAl software to
compute a single score between a target (the offspring) and a set of sequences
(the parents). This score is based on: (i) a simple correction to the SP score;
(ii) raw gap information; (iii) positions of gaps occurring in a sequence; and (iv)
positions of indel events occurring in a sequence and on its phylogenetic tree
This single score is then used as a second objective, one that is to be minimized.

Selecting Individuals
The selection process drives searches towards regions containing the best in-
dividuals to compute the Pareto front. In order to generate the Pareto front
for each generation, each population of a generation is sorted according to
a non-dominated sorting approach. A population is sorted into different non-
domination levels, and the Pareto front is filled with individuals belonging to
the best ranked levels until the desired number of individuals for a population is
reached. Since MOEAs require a phase of high level of information to report one
solution from the Pareto front, an algorithm was used based on the identification
of the knees [22], i.e. the regions in the Pareto front where small displacements
produce a big detriment to at least one of the objectives.

Validation
We validate our predictions using the Sum of Pairs (SP), Total Column (TC),
MetAl and hypervolumen metrics based on the BAliBase benchmark.

The SP and TC metrics were computed by the BaliScore script. Equations 2
and 3 define these metrics, where Mr is the number of columns in the reference
alignment and Sri is the score Si for the i-th column in the reference alignment,
pi,j,k = 1 if the pair of residues Ai,j and Ai,k are aligned with each other in the
reference alignment, and pi,j,k = 0 otherwise. On the other hand, Ci = 1 if all
the residues in the i-th column are aligned in the reference alignment. Otherwise,
Ci = 0. The possible values for SP and TC range from [0,1], and a score equal
to one represents an exact agreement between the alignments.
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SP =

∑M
i=1 Si

∑Mr

i=1 Sri

, where Si =

N∑

j=1

N∑

k=1,k �=j

pi,j,k (2)

TC =

M∑

i=1

Ci

M
(3)

SP and TC are standard scores for comparing the performance of MSAs. How-
ever, many concerns have been raised about their use. The MetAl score [21] can
be used as a metric to fix inaccuracies and to incorporate additional information
in the evaluation process. The MetAl metric incorporates a correction to the SP
score as well as gap and indel information when computing the score between
a target and a set of sequences. The range for the MetAl score is [0,1], where
a perfect match is found when the score is equal to 0 (plotted as 1 − MetAl
in figure 2). It is important to stress that the MetAl score uses the BAliBase
reference alignments as its target in the validation process, in contrast to the
evaluation process, where the parents are used as targets. As such, the BAliBase
alignments are strictly used only during the validation process to guarantee a
blind and fair comparison between the MSA tools.

The hypervolume is a metric used by researches to measure the quality of a
Pareto front. The hypervolume indicator measures the volume of the dominated
portion of the objective space. The hypervolume represents in a unary value the
spread of solutions along the Pareto front, as well as the distance of a set of solu-
tions from the Pareto-optimal front. The hypervolume has two highly desirable
features: it is sensitive to any improvements, and it guarantees that any approx-
imation set that achieves the maximally possible quality value for a particular
problem contains all Pareto-optimal objective vectors [23]. The hypervolume in-
dicator IH for a solution set A ⊂ �d can be defined on the basis of a reference
set R ⊂ �2, as shown in Equation 4. In that equation, the symbol λ stands for
the Lebesgue measure and the set H(A,R) denotes the set of objective vectors
that are enclosed by the front F (A) given by A and the reference point R.

IH(A) := λ(H(A,R)) (4)

3 Results

The MOEA algorithm was executed based on the following parameters: 7 inde-
pendent runs over 218 alignments, with each population containing 56 individu-
als. The crossover and mutation probabilities were set to 0.3 and 0.1, respectively,
and a stopping criterion was deemed to be achieved at 5 consecutive generations
with no improvements in the hypervolume.

The input of our algorithm is a set of pre-aligned sequences and the output
is the prediction of a single alignment belonging to the non-dominated set. This
output is compared with the results given by the six state-of-the-art algorithms,
taking as target the BAliBase benchmark and four validation scores. For the
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TC score, our approach achieved optimum results in 5 out of the 6 groups,
and second best results in the remaining group (RV50). For the MeTal score,
it achieved optimum results in 3 out of the 6 groups (RV11, RV12, RV30), and
second best results in the three remaining groups (RV20, RV40, RV50). With
respect to the SP score, the proposed approach is in the top 2 for 4 out of 6
groups.

Figure 2 shows the proportion of alignments with the best scores reported for
each MSA tool. The proposed algorithm demonstrates excellent performance for
all six groups. It performed outstandingly for groups RV11 and RV12, where the
proposed algorithm outperformed the other MSA tools for all three scores. The
excellent performance of the proposed algorithm is more easily observed in the
MetAl and TC scores than in the SP score. For example, it found 60% and 48%
of the best MeTal and TC scores in the RV12 and RV11 sets, respectively. It is
important to note that the proposed approach ranked in the top 2 for all groups
based on the MeTal and TC scores. The proposed approach predicted the best
alignments for two groups (RV11, RV12), the second best in two groups (RV30,
RV50) and the third best in the remaining groups (RV20, RV40).

Fig. 2. Proportion of alignments with the best scores reported for each MSA
tool. The results are clustered in 6 different hierarchical groups as defined by BAliBase;
each vertex in the polygon represents an MSA tool and an area is plotted with regards
the proportion of best alignments reported for the SP, TC and (1-MetAl) scores.

Figure 3 reports the average error obtained for each MSA tool. This error
is defined by equation 5, where S ∈ {MetAl, SP, TC}. The function score(i)
returns the score of the alignment i generated by the metric S, and the function
best(i) returns the best score for the alignment i using the metric S on all the
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Fig. 3. Average error obtained for each MSA tool. The results are clustered
in 6 different hierarchical groups as defined by BAliBase; each vertex in the polygon
represents a MSA tool and an area is plotted with regards the average error (See
equation 5) of the scores obtained by the MSA tools.

MSA tools. From the figure, one can observe that the proposed approach works
very consistently with all groups for each of the three score schemas in the six
different groups. Its degree of error is especially low in the RV11, and RV12
groups, where for each of the three score schemes it obtained the best error
compared to the other MSA tools. This conclusion concurs with that reached
by an analysis of the same sets in figure 2. The ClustalOW algorithm behaved
similarly in the groups RV30 and RV40, however it had a higher number of errors
for the RV11 and RV12 sets.

errorS =

M∑

i=1

|bestS(i)− score(i)| (5)

Figure 4 reports the quartiles of the gained hypervolume through the com-
putation of the generations in the MOEA. The gain of a specific alignment is
computed as the difference between the hypervolume of the last and first Pareto
fronts. In figure 4, it is clear that the volume of the dominated portion of the
objective space increased through the generations (i.e, values greater than zero).
The proposed algorithm was able to then push a set of already aligned sequences
(the initial population) towards the Pareto optimal solutions (increasing the hy-
pervolume in 204 (94%) alignments). The worst performance is found in the
RV11set, where seven alignments did not improve their hypervolumes. On the
other hand, the RV50 set improved the hypervolume of all its alignments.
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Fig. 4. Boxplots of the hypervolume gained on progression of the MOEA algorithm

4 Conclusions

This work contributes to the solution of the MSA problem by proposing a novel
algorithm to optimize previously aligned sequences. The proposed model is based
on a MOEA, which, as this paper demonstrated, provides an adequate explo-
ration of the search space. Moreover, the proposed strategy improves the accu-
racy of the MSAs used as inputs for the model. The proposed algorithm is not
the holy grail of MSA tools, and does not propose to be a method that will
outperform all the other MSA tools on any possible sequence. However, it is a
method that, with a very reasonable cost in CPU time, produces more accurate
alignments than the alignments obtained from other methodologies. Further-
more, it proved to be less dependent on specific features of sequences and very
stable and robust when used on diverse biologically targeted sequences.

The proposed approach is more than just a static algorithm. It is also a
pipeline that allows for the optimization of different MSA tools. In this paper,
six different MSA tools were chosen to develop a study case, however, these
can be replaced with others. This feature is important because it will allow our
algorithm to be tested and used over a diverse range of representative situations,
and it will be able to accommodate new MSA tools to its pipeline as they become
available.
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Abstract. The catalogs of molecular biology databases does not pro-
vide a full description of databases, so the user should select databases
using limited information available. Taking into account this fact, in the
context of an initiative called BioDBCore, a group of experts proposes
core metadata definitions to describe the molecular biology databases.
However, how to use these metadata to infer the quality of a database
is a clear open issue. In the present work, we propose an ontology-based
approach aiming to guide the database selection process from molecular
biology database catalogs using these metadata.

Keywords: molecular biology databases, database catalog, data qual-
ity, ontology, database selection.

1 Introduction

There have been some initiatives to create online molecular biology database
collections. Currently the database selection processes from these catalogs is an
iterative process, where the users must evaluate manually a set of candidate
databases using limited query mechanisms and incomplete information about
databases. In the present work, we propose an ontology-based approach to the
selection of database catalogs. We start showing examples of molecular biology
database catalogs (Section 2). After, an overall perspective of an approach that
can help a user in the selection process is presented (Section 3). A preliminary
version of the proposed ontology and its data quality rules are presented (Section
4) and an application scenario illustrating the use of the ontology is discussed
(Section 5). Final remarks and future works conclude this paper (Section 6).
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2 Related Work

The Nucleic Acids Research Database Collection is one of the most well-known
molecular biology database catalog. This catalog is published since 1996 and
its size has been increasing constantly (in 2001, this catalog included only 96
databases and in 2014 it includes 1,552 databases [1]). In general, the molecular
biology database catalogs offer limited information regarding the databases and
the querying capabilities. It is not possible for a user to indicate any additional
requirement and there is not any information about the quality of the databases
(e.g. reputation, accuracy, etc.). Thus, the database selection processes from
these database catalogs use to be an iterative process where, generally, users
must carefully evaluate the set of candidate databases using only categories
which have been already provided by these catalogs. For these reasons, there
are several initiatives to create richer database catalogs and the BioDBCore
consortium proposed a set of metadata elements for the better description of
molecular biology databases [2]. Despite these initiatives, to the best of our
knowledge, a little investigation has addressed the use of the database metadata
(specially BioDBCore attributes) on the identification of the best databases.

3 The Proposed Approach

The background of our approach is an ontology for the evaluation of the overall
quality of a molecular biology database. In the approach, a user indicates some
quality requirements and databases of a catalog are evaluated using a set of rules
defined in the ontology. The result of the evaluation consists of a set of databases
classified according to distinct quality levels (High, Medium, Low) of each data
quality dimension (e.g. accuracy, believability, etc.) considered into the evalua-
tion. These three levels are similar to those used in CASIMIR Database Descrip-
tion Framework [3]. In [3] users must manually assign each database to a quality
level, our proposal is to assign each database to a quality level using database
metadata and ontology rules.

Thus, the overall evaluation of a database is carried out using metadata de-
fined in the BioDBCore initiative that is represented in the proposed ontology.
The utilization of the metadata in the data quality evaluation process has been
considered in some works where metadata models are matched to data qual-
ity model requirements [4]. In order to identify potential quality dimensions to
the proposed approach, we started by exploring quality dimensions defined by
Wang and Strong, due to the relevance of this work [5] in the data quality com-
munity. Next, we adapted these quality dimensions following a process similar
to Naumann et al. [6] who selected the quality dimensions taking into account
the data integration process of molecular biology information systems. In the
quality dimensions selection process the metadata defined in BioDBCore, qual-
ity dimensions, and quality indicators evaluated on previous works [7,8] are also
considered.
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Table 1. BioDBCore metadata elements and quality dimensions

Element Quality Dimension

Database name None

Main resource URL Believability

Contact information (e-mail; postal mail) Ease of understanding

Date resource established (year) Timeliness

Conditions of use (free, or type of license) License

Scope: Data types Relevancy

Scope: Curation policy Accuracy

Scope: Standards Used Verifiability
Completeness

Standards: MIs Verifiability
Completeness

Standards: Data formats Interpretability

Standards: Terminologies Representational Consistency

Taxonomic coverage Relevancy

Data accessibility/output options Accessibility

Data release frequency Timeliness

Versioning period and access to historical files Timeliness

Documentation available Ease of understanding

User support options Ease of understanding

Data submission policy Accuracy

Relevant publications Believability

Resource’s Wikipedia URL Ease of understanding

Tools available Accessibility

The Table 1 shows the quality dimensions defined and the metadata element
proposed by BioDBCore. Because of the lack of space, we do not present, qual-
ity dimension definitions (see [5]). In Table 1, the metadata element Scope: Data
type refers to the content of a database (e.g. a database can store microar-
ray experiments, sequence references, protein structure, etc). The metadata el-
ements Standards: MIs (Minimum Information), Standards: Data formats and
Standards: Terminologies refer to standards present in a catalog of standards
- BioSharing. One example of a standard is MIAME - Minimum Information
About a Microarray Experiment - whose main goal is to specify all the data
necessary to interpret a microarray experiment. Some quality indicators can be
derived from some metadata elements in Table 1 (e.g. the element Main resource
URL can be used to obtain the PageRank of the databases homepage and the
number of web links pointing to the database’s homepage).

Some of these metadata elements were tested in the evaluation process of
molecular biology databases in a previous work [7]. In this previous work, a
comparison was done between the rankings generated using these indicators and
rankings which had been manually generated by three experts using Spearman
correlation (all correlations are significant for p <0.05 ). However, the results also
indicate that it is important to take into account aspects related to more specific
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users’ needs. In this sense, the database categories present in the Nucleic Acid
Research catalog are not enough for guiding the selection process of databases.
This particular observation points out an interesting opportunity for developing
an ontology-based approach for the selection problem.

4 An Ontology-Based Approach to Guide the Selection
of the Best Molecular Biology Databases

Taking into account the quality dimensions, the metadata elements proposed
in BioDBCore and our previous works, a prototype of an ontology-based ap-
proach to guide the selection of the best molecular biology databases, called in
short BION2SEL, has been defined. The BION2SEL is logically separated into
a set of distinct components (ontologies). The two main components are (1)
The Molecular Biology Database ontology where database features are described
using the metadata elements proposed in BioDBCore and (2) The Molecular
Biology Database Quality ontology where the quality dimensions are defined.

The Molecular Biology Database ontology describes the properties of molec-
ular biology databases. Each instance of this ontology is a molecular biology
database. The properties are basically derived from the metadata elements
present in BioDBCore (see Table 1). Some values assigned to the properties of
this ontology are vocabularies defined in other ontologies. Thus, there are ontolo-
gies that provide vocabularies (e.g. population class, data format). For example,
the range of Molecular Biology Database ontology property data types refers to
classes of Molecular Biology Summary Data. The Molecular Biology Summary
Data ontology was created by us and can be considered as a summarized global
schema of all databases present in a database catalog. In the Molecular Biology
Summary Data ontology, the relationships between classes are also defined (e.g.
Protein hasStructure ProteinConformation). Using the Molecular Biology Sum-
mary Data ontology classes, the OMIM database is assigned to classes Gene,
Allele, Allele Variant and Disease classes and the ALFRED database is assigned
to classes Gene, Allele, Allele Variant and Population. Thus, the user should in-
dicate the biological entities (e.g. gene, pathways, etc.) defined in the ontology
(this process is similar to adopted in [9]).

The Molecular Biology Database Quality ontology defines the quality criteria
to evaluate a molecular biology database according to distinct quality dimen-
sions. For each quality dimension, three quality levels are defined in the on-
tology: High, Medium and Low. A database, an instance of Molecular Biology
Database, is classified into a quality level in accordance to the quality indicators
corresponding to metadata elements (properties). The conditions to classify a
database into a specific quality level are defined through SWRL - Semantic Web
Rule Language (SWRL), a rule language based on OWL and SQWRL - Semantic
Query-Enhanced Web Rule Language [10]. Next, examples of rules defined for
some quality dimensions (relevancy, believability and accessibility) are shown.

The relevancy is the quality dimension which has been initially considered in
the database selection process. As the goal is to select databases from a catalog
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without access its content, we define relevancy as the percentage of classes of
objects (e.g. gene, protein, etc.) required by the user rather than the information
stored on a database. Thus, in the proposed ontology, the databases with all
required data are classified as having a High Relevancy, databases with 50% or
more of required data are classified as a Medium Relevancy, and databases with
less than 50% of required data are considered having Low Relevancy. In (1) a
rule defined with SWRL and SQWRL to classify a database as a High Relevancy
database is shown.

Basically, the rule defines that a database - Molecular Biology Database(?x) -
must have required data. The metadata element data types contains the names of
the classes of Molecular Biology Summary Data ontology present in a database.
Thus using SQWRL two sets are compared: one set contains the classes ofMolec-
ular Biology Summary Data required by a user (?ds) and another set contains
the classes of Molecular Biology Summary Data that a database has (?s).

Molecular Biology Database(?x)∧
data types(?x, ?dt)∧
sqwrl : makeSet(?s, ?dt)∧
sqwrl : groupBy(?s, ?x)∧
sqwrl : makeSet(?ds,Gene)∧
sqwrl : makeSet(?ds,Disease)∧
sqwrl : difference(?dif, ?ds, ?s)∧
sqwrl : size(?sdif, ?dif)∧
swrlb : equal(?sdif, 0) → sqwrl : select(?x)

(1)

Believability is related to the content creator and the explicit or implicit users’
ratings [4]. Implicit users’ ratings can be the number of references in the web
to a particular database. Some previous experiments have demonstrated that
the number of paper citations related to databases is an interesting quality in-
dicator [8]. Thus, rules based on the number of citations of these papers to
classify a database as a database with high, medium, and low believability are
defined. At the present moment, the defined rules take into account the median
of the number of citations. Thus, databases where papers are cited higher than
the median are considered databases with High Believability, databases where
the number of citations is equal to the median are considered databases with
Medium Believability, and databases where the number of citations is lower than
the median are considered databases with Low Believability.

Regarding to accessibility, one possibility is to measure the accessibility degree
of a database considering all access mechanisms available. Thus, we defined that
databases are considered to have High Accessibility, if they allow to inform an
specific argument for a query and returns an specific data.

5 Ranking Candidate Gene Markers in Alzheimer: An
Ontology-Based Quality Model Experience

In this section, some aspects of the utilization of the BION2SEL to guide re-
searchers who need to retrieve data from a set of molecular biology databases
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are illustrated. The quality dimensions considered here are accessibility and rele-
vancy. Believability is not considered because, in the example, we are considering
a small number of databases (if two or more databases have the same relevancy
degree, databases with higher believability must be selected first). The case of use
consists of identifying the most differentially expressed genes (DEG) in brains
affected by Alzheimer’s disease (documented in [11]). In the present case of use,
the DEG task in brains affected by Alzheimer’s disease can be subdivided in a
set of subtasks:

1. Obtaining transcriptomic (Microarrays) data related to Alzheimer;
(a) Selecting a set of transcriptomic studies;
(b) Selecting the microarrays experiments related to hippocampus;

2. Conducting the differential expression analysis i.e. identifying DEG;
(a) Ranking probes according to a two-group (normal vs. affected tissue)
(b) Mapping probes to genes. This is an annotation process (genes names

are assigned to probes);
3. Exploring functional enrichment analysis using the DEG set;
4. Identifying and discarding genes whose codified proteins are not known;
5. Verifying whether the selected candidate gene set is related to the Alzheimer.

The database selection process starts by exploring aspects related to relevancy.
After other quality dimensions can be evaluated (e.g. believability). Thus, for
each task, when it is necessary, the user indicates the required data, i.e. the
biological entities of Molecular Biology Summary Data. Table 2 presents a set of
databases with a list of biological entities of Molecular Biology Summary Data
present in each database (this list is not exhaustive).

The requirement related to task 1 can be expressed by a query like “retrieve all
gene expression studies related to Alzheimer”. Thus, this query must be executed
in a database which contains data about gene expression studies and diseases.
In this sense, the relevant classes in the Molecular Biology Summary Data are
Assay and Disease. Thus, the most relevant database is ArrayExpress Archive.
The ArrayExpress Archive has an access mechanism (an HTML form) which
allows to retrieve gene expression experiments using as argument the name of a
disease.

The requirement related to task 3 can be expressed by a query like “returns
the function of a set of genes”. Thus, the query must be executed in a database
that contains data about gene function. The most appropriate database is Gene
Ontology. The next step verifies which identified genes code to known proteins
(task 4). In this case, the user need can be expressed by “identifying which genes
are assigned to known proteins”. This query must be executed in a database con-
taining data about genes and proteins. The Pfam (see Table 2) is the database
that provides the support for this query. Thus, by R programming, 45 genes
are selected. Finally, each one of these 45 genes is verified with respect to its
association to the Alzheimers disease. The biological entities which are relevant
to this query are Gene and Disease (Task 5). Take into account only relevancy
quality dimension, four databases provides proper support: OMIM, Phenope-
dia, BioMart and ArrayExpress Archive. The OMIM does not have an access
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Table 2. Examples of molecular biology databases

Database URL Content

Array Express
Archive

http://www.ebi.ac.uk/arrayexpress Gene
Disease
Assay
Microarray

Pfam database http://pfam.sanger.ac.uk Gene
Protein
Protein Function
Protein Conformation

Gene Ontology http://www.geneontology.org/ Gene
Gene Function

BioMart http://www.biomart.org Gene
Gene Function
Protein
Protein Function
Disease

Phenopedia http://www.hugenavigator.net Gene
Disease

OMIM http://www.ncbi.nlm.nih.gov/omim Gene
Disease

mechanism, where the user informs the name of a disease and receives genes
related to it. The same situation is observed for the BioMart. The ArrayExpress
database returns raw Assays. The Phenopedia provides several meta-analysis
studies in which genes are ranked properly according to a disease phenotype,
i.e. Alzheimers disease. Therefore, the Phenopedia is the best database for this
particular task. This last task demonstrates that a richer description of access
mechanism of databases can help users in the database selection process.

6 Final Remarks

In the present work, the BioDBCore metadata has been analyzed and a proto-
type of an ontology has been defined, where some quality rules are defined for
different quality dimensions using database metadata. The aim is to facilitate
the searching process in a database catalog. In the future, we intent to improve
this initial ontology. In this sense, the Molecular Biology Summary Data ontol-
ogy, for example, has been defined to illustrate the approach, but it is necessary
to improve this ontology and to verify, by experiments, the usefulness of it.
Thinking in a scenario where BioDBCore data will be available in a near future
(nowadays some of these data are available1), it will be possible to implement a
real application using the proposed ontology.

1 http://www.biosharing.org/biodbcore

http://www.biosharing.org/biodbcore
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Abstract. The control of extracellular nucleoside concentrations by Nu-
cleoside Triphosphate Diphosphohydrolase (NTPDase) is essential in the
regulation of the purinergic signalling and also in immune response. In
humans, eight members (HsNTPDase) were identified as transmembrane
and secreted proteins. In Schistosoma mansoni, the causative agent of
schistosomiasis, NTPDases similar to the humans enzymes have also been
identified. The expression of these enzymes in S. mansoni (SmATPDases)
is related to the weakening of the immune and inflammatory responses
of the host against infections. Despite of the high phylogenetic conserva-
tion between these proteins, SmATPDases have been reported as molec-
ular target candidates for antischistosomal treatment. In this work, we
constructed three-dimensional models for secreted SmATPDase and
HsNTPDase6, using comparative modeling technique. The comparative
structural analysis aim the investigation of possible differences that could
help future works in the development of new therapies that minimize the
risk of cross inhibition.

Keywords: Nucleoside Triphosphate Diphosphohydrolases (NTPDase),
Schistosoma mansoni, Three-dimensional models, Structural compari-
son.

1 Introduction

Nucleoside Triphosphate Diphosphohydrolases (NTPDases) are a family of en-
zymes that hydrolyze nucleoside di- and triphosphates to their correspond-
ing mononucleotides, having divalent cations as cofactors, especially Ca2+ and
Mg2+. Structurally, these proteins have five (in some subgroups six) highly con-
served regions named ACR (Apyrase Conserved Regions), which contribute to
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substrate binding and thus promote the hydrolysis of nucleotides[5]. The hy-
drolytic activity of NTPDase participates in the control of the nucleotides and
nucleosides concentrations present in the extracellular environment, acting di-
rectly in the regulation of purinergic P2X and P2Y receptors, which are re-
lated to the dynamic of ion channels (Ligand-gated ion channel) and G-protein
signaling[10], among other functions.

In humans and other mammals, eight members of NTPDases family have
been identified: (i) six membrane proteins (NTPDases 1-4, 7 and 8) connected
by two transmembrane helices (TM) and (ii) two secreted proteins (NTPDases 5
and 6) presenting a single TM domain that is cleaved. NTPDases 1-3 and 8 are
present on the cell surface with size of approximately 500 amino acid residues.
The extracellular domain (ECD) has ten conserved cysteines and, in addition to
the five ACR present in NTPDases, has four more conserved regions. NTPDases
4 and 7, unlike the previous ones, are intracellular proteins presenting only four
conserved cysteine in the ECD. NTPDases 5 and 6 are presented in soluble and
membrane-bound forms (in endoplasmic reticulum and Golgi, respectively)[5].
NTPDase5 is expressed in macrophages, liver, kidney, prostate, colon and testis
and NTPDase6 is highly expressed in heart[16].

The NTPDases have been identified of human parasites, such as Toxoplasma
gondii, Trypanosoma spp., Leishmania sp., and Schistosoma mansoni. The ex-
pression of these enzymes in parasites is related to the weakening of the immune
and inflammatory responses of the host against infections, and thus being a
potential therapeutic target[11,12].

In Schistosoma mansoni, the main causative agent of Schistosomiasis in South
America, two isoforms of NTPDases were identified: (i) NTPDase type 1 (SmAT-
PDase1) which is expressed in the adult worm tegument and has two TM, and
(ii) NTPDase type 2 (SmATPDase2) that is expressed and secreted in both
adults and eggs. The presence of these enzymes seems to be related with the
control of the concentration of purine molecules responsible for signaling the
clotting around the parasite, since he lives within blood vessels[1,7].

Studies have shown a phylogenetic relationship between SmATPDases and
mammalian NTPDases. More precisely, the SmATPDase1 is related to NTP-
Dases 1-3 and 8 of mammals, while the SmATPDase2 is more related to NT-
PDases 5 and 6[2,10]. The literature suggests that SmATPDases were involved
in the evasion of the host defence, due to the location of these isoforms in the
parasite and the importance of nucleoside di- and triphosphates in activating
cells of the host immune system[1,7,12]. It is important to note that some exper-
iments already demonstrated the inhibition of the enzymatic activity of SmAT-
PDases by alkylaminoalkanethiosulfuric acids[9]. Such assumptions reinforce the
importance of SmATPDases as molecular target candidates for antischistosomal
treatment[3].

The objective of this work is to build the three-dimensional (3D) models of the
secreted NTPDase of S. mansoni (SmATPDase2) and human (HsNTPDase6).
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The comparative analysis between these isoforms is critical to understand their
differences aiming to the development of new therapies that minimize the risks
of cross inhibition.

2 Methodology

2.1 Detection of Transmembrane Domain and Signal Peptide

The prediction of TM domains was performed using the programs Phobius,
TMHMM, HMMTOP and TMpred. The investigation of putative regions of
signal peptide and cleavage sites was performed using the predictor SignalPv4.0.
The molecular weight of the predicted secretable domain (ECD) of both proteins
was calculated using the program ProtParam, in order to corroborate our results
with those previously described in the literature[4,8].

2.2 Three-Dimensional Protein Model Construction

Templates for 3D model construction were selected from Protein Data Bank
(PDB) based on local alignment (via BlastP) between deposited proteins and
target sequences, 3D structures were selected based on amino acid sequence
identity, similarity, coverage, enzymatic activity and on the presence of ligands.

Multiple sequence alignment between SmATPDase2 and HsNTPDase6 with
templates was generated using the program ClustalΩ. To verify the consensus
areas between target sequences and the secondary structure of templates, the fol-
lowing predictors of secondary structure were used: PSIPRED, APSSP2, Jpred3,
PSSPRED, Sable and Jufo9D. Due to absence of template in certain regions of
both target proteins, secondary structure restraints (according to the results
of the predictors) were used during the 3D comparative modeling construction
using the program Modeller9v13.

All constructed models were assessed using the programs Procheck and Mol-
probity for the analysis of stereochemical quality. The energy values were ana-
lyzed using the nDOPE and Molpdf methods calculated by Modeller9v13.

2.3 SAS, Volume and Electrostatic Profile

Additionally to the comparative structural analyses, overall and catalytic site
differences between the electrostatic profile, volume and solvent accessible surface
area (SASA) of SmATPDase2 and HsNTPDase6 were evaluated. The analyses
of the overall volume and SASA were performed using the plugin VolArea in
the VMD program and for the active sites was used the program CASTp. The
calculation and analyses of the electrostatic potentials were performed using the
programs PDB2PQR v1.9 and APBS v1.4.1.



94 V.C. de Souza et al.

3 Results and Discussion

3D structures of both SmATPDase2 and HsNTPDase6 were constructed by com-
parative modeling using as templates the crystal structures of Rattus norvegicus:
RnNTPDase1 (PDB 3ZX3 - chain A)[14] and RnNTPDase2 (PDB 4BR0)[13]. Se-
quence identity (and similarity) between SmATPDase2 (UniProt A1BXT9) and
3ZX3 and 4BR0 were 33%(47%) and 26%(41%), respectively. Whereas for the
HsNTPDase6 (UniProt ID: O75354) these values were 36%(51%) and 32%(47%).
Primary and secondary structural alignments are presented in Figure 1.

The characterization of RnNTPDases 1 and 2 shows that, although only the
ECD domains have been crystallized, both are transmembrane enzymes[13,15]
with only one TM. The results of TM predictors have also confirmed the presence
of a single TM in the SmATPDase2 and HsNTPDase6 (Table 1).

Table 1. Prediction of transmembrane regions in SmATPDase2 and HsNTPDase6

Enzyme
Transmembrane Prediction

Phobius TMHMM TMpred HMMTOP

SmATPDase2 63–81 63–80 61–82 63–80
HsNTPDase6 38–59 38–60 40–60 43–60

The prediction of cleavage sites using SignalP v4.0 presented the segment M1–
N83 as a probable cleavage region in SmATPDase2. In HsNTPDase6 we define
as the cleavage region the segment M1–R76, according to the literature data[4].
The analysis with the program ProtParam resulted in the following molecular
weights after cleavage:∼55kDa for SmATPDase2 and ∼45kDa for HsNTPDase6.
These results are consistent with previous studies[4,8].

The SmATPDase2 and HsNTPDase6 models were generated considering the
presence of ligands in the active site of 4BR0 structure: AMPNP (Adenosine 5-
(alpha, beta-imido) diphosphate), analogous to ADP, and calcium ion. According
to the literature and the analysis of the structural alignment of the templates,
we considered the presence of six conserved water molecules: (i) four responsible
for stabilizing the metal ion, (ii) one responsible for nucleophilic attack, and
(iii) one positioned next to the last phosphate[15]. Water molecules (O2003,
O2005, O2046, O2069, O2070 and O2101) were added from 4BR0 structure.
Literature has shown that such waters and divalent ions are required for the
process of hydrolysis of nucleotide[13,15]. Structural alignment between targets
and templates is presented in the Figure 2.

Catalytic residues present in ACR are well conserved between SmATPDase2
and HsNTPDase6 models and their templates. According to Zebisch & Sträter
(2008), there are twenty main interacting residues in the catalytic site of RnNT-
PDases2, of which eight residues (D45, A123, E165, T122, D201, S206, Q208 and
W436) interact with six conserved waters described, and four residues (R245,
A347, Y350 and R394) forming hydrogen bonds with the ligand enabling its
docking to the catalytic site. The mapping of these residues in both models,
from the structural superposition with 4BR0, is listed in Table 2. Residues that
form hydrogen bonds with ligand were also mapped (Table 2).
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Fig. 2. 3D structural comparison between SmATPDase2 and HsNTPDase6 models
and selected templates. (A) Structural superposition between SmATPDase2 (red) and
HsNTPDase6 (blue) models and the templates RnNTPDase1 (3ZX3 chain A - green)
and RnNTPDase2 (4BR0 - yellow). 3D structures are presented in Cartoon, ligand
(AMPNP), Ca2+ and water molecules are presented in Licorice, and the active site are
marked with a black circle. In detail are presented the active site comparison between
RnNTPDase2 and (B) SmATPDase2 and (C) HsNTPDase6. Residue numbering ac-
cording to RnNTPDase2 (black), SmATPDase2 (red) and HsNTPDase6 (blue). Ca2+

from SmATPDase2 is presented in dark blue, from HsNTPDase6 in pink and from
RnNTPDase2 in orange.

Table 2. Active site comparison of SmATPDase2 and HsNTPDase6 models

Interations with SmATPDase2 HsNTPDase6

Waters D44(ACR1), A123(ACR2),
E164(ACR3), D203(ACR4),
S208(ACR4), Q210(ACR4),
W469(ACR5).

D31(ACR1), A107(ACR2),
E148(ACR3), D175(ACR4),
S180(ACR4), Q182(ACR4),
W388(ACR5).

AMPNP L255, A388, Y391, Q429 L233, Y308, D311, Q348

Analysis of the overall structures and active sites of the SmATPDase2 and
HsNTPDase6 models showed that, despite having similar values of the electro-
static potential, the SmATPDase2 is significantly higher than HsNTPDase6 (in
relation to the volume and SASA). The results are shown in Table 3.
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Table 3. Structural comparison of SmATPDase2 and HsNTPDase6 models

Enzyme
Total Active Site

Volumea SASAb Electrostaticc Volumea SASAb Electrostaticc

SmATPDase2 83,569 25,149.36 3.78E+05 889 581.34 2.27E+04
HsNTPDase6 69,163 21,617.55 3.08E+05 1,137 610.43 2.88E+04

aVolume in Å3. bSASA in Å2. cElectrostatic in kJ/mol.

Fig. 3. Comparative analysis between electrostatic profile of SmATPDase2 and HsNT-
PDase6 active sites. (A) SmATPDase2 (red). (B) HsNTPDase6 (blue). 3D structures
are presented in Cartoon, ligand (AMPNP), Ca2+ and water molecules are presented
in Licorice. The electrostatic potential vary from -1 (red) to 1 (blue) kT/e.

4 Conclusions

In this paper, we presented the secreted NTPDase 3D models of Schistosoma
mansoni (SmATPDase2) and human (HsNTPDase6), constructed by compara-
tive modeling. Since they do not have structural characterization and, despite be-
ing phylogenetically related, have selective inhibition for certain compounds[9],
the generation of these 3D models becomes very important once it may help
future works of structure-based drug design.

We observed that the two generated models have high structural similarity,
mainly in regions considered important for the hydrolysis of the ligand. However,
the active site of SmATPDase2 has larger volume and SASA than the HsNTP-
Dase6 and, despite they present similar electrostatic potencial, the electrostatic
profile of SmATPDase2 is more negatively charged in the region of nucleoside
stabilization. Unlike the RnNTPDases, both SmATPDase2 and HsNTPDase6 do
not present in this region an important disulfide bond (C242-C284 from 4BR0)
involved in the enzyme stabilization.

Considering structural similarities, in future works we intend to investigate
other cavities of these proteins that could indicate alternative sites for the inhibi-
tion of SmATPDase2. These regions will be analyzed using molecular dynamics,
normal modes and protein-ligand docking.

Acknowledgments. This work was supported by CAPES.
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Abstract. Large-scale mutational events that occur when stretches of
DNA sequence move throughout genomes are called genome rearrange-
ment events. In bacteria, inversions are one of the most frequently ob-
served rearrangements. In some bacterial families, inversions are biased
in favor of symmetry as shown by recent research [6, 8, 10]. In addition,
several results suggest that short segment inversions are more frequent in
the evolution of microbial genomes [4,6,15]. Despite the fact that symme-
try and length of the reversed segments seem very important, they have
not been considered together in any problem in the genome rearrange-
ment field. Here, we define the problem of sorting genomes (or permu-
tations) using inversions whose costs are assigned based on their lengths
and asymmetries. We present five procedures and we assess these proce-
dure performances on small sized permutations. The ideas presented in
this paper provide insights to solve the problem and set the stage for a
proper theoretical analysis.

1 Introduction

Among various large-scale rearrangement events that have been proposed to
date, inversions were established as the main explanation for the genomic di-
vergence in many organisms [6, 8, 11]. An inversion occurs when a chromosome
breaks at two locations, and the DNA between those locations is reversed.

In some families of bacteria, an ‘X’-pattern is observed when two circular
chromosomes are aligned [8,10]. Inversions symmetric to the origin of replication
(meaning that the breakpoints are equally distant from the origin of replication)
have been proposed as the primary mechanism that explains the pattern [10].
The justification relies on the fact that one single highly asymmetric inversion
affecting a large area of the genome could destroy the ‘X’-pattern, although short
inversions may still preserve it.

Darlink, Miklós and Ragan [6] studied eight Yersinia genomes and added
evidence that symmetric inversions are “over-represented” with respect to other
types of inversions. They also found that inversions are shorter than expected
under a neutral model. In many cases, short inversions affect only a single gene,
as observed by Lefebvre et al. [12] and Sankoff et al. [16], which contrasts with
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the null hypothesis that the two endpoints of an inversion occur by random and
independently.

Despite the importance of symmetry and length of the reversed segment,
both have been somewhat overlooked in the genome rearrangement field. Indeed,
the most important result regarding inversions is a polynomial time algoritm
presented by Hannenhalli and Pevzner [11] that considers an unit cost for each
inversion no matter its length or symmetry. When gene orientation is not taken
into account, finding the minimum number of inversions that transform one
genome into the other is a NP-Hard problem [5].

Some results have considered at least one of the concepts. There is a research
line that considers the total sum of the inversion lengths as the objective function
of a minimization problem. Several results have been presented both when gene
orientation is considered [2, 17] and when it is not [1, 3, 14]. Recently, Arruda
et al. [2] developed a randomized approach that starts with a scenario with the
minimum number of inversions, but allows the number of inversions to increase
if the outcome is a reduction in the total sum of the inversion lengths.

Regarding symmetry, the first results were presented by Ohlebusch et al [13].
Their algorithm uses symmetric inversions in a restricted setting to compute
an ancestral genome and, therefore, is not a generic algorithm to compute the
rearrangement distance using only symmetric inversions. In 2012, Dias et al.
presented an algorithm that considers only symmetric and almost-simmetric
inversions [9]. They later included unitary inversions to the problem and provided
a randomized heuristic to compute scenarios between two genomes that uses
solely these operations [7].

Here we propose a new genome rearrangement problem that combines the
concepts of symmetry and length of the reversed segments. Whereas previous
works restricted the set of allowed operations by considering only inversions
that satisfy constrains like symmetry or almost-symmetry [7, 9], here we allow
all possible inversions. The problem we are proposing aims at finding low-cost
scenarios between genomes when gene orientation is not taken into account. The
results obtained are the first steps in exploring this interesting new problem.

2 Definitions

Formally, a chromosome is represented as a n-tuple whose elements represent
genes. If we assume no gene duplication, then this n-tuple is a permutation π =
(π1 π2 . . . πn), 1 ≤ πi ≤ n and πi �= πj ↔ i �= j. Because we focus on bacterial
chromosomes, we assume permutations to be circular, and π1 is the first gene
after the origin of replication.

The inverse of a permutation π is denoted by π−1, for which π−1
πi

= i for all
1 ≤ i ≤ n. The composition between two permutations π and σ is similar to
function composition in such way that π · σ = (πσ1 πσ2 . . . πσn).

An inversion ρ(i, j), 1 ≤ i ≤ j ≤ n, is a rearrangement that transforms π into
π · ρ(i, j) = (π1 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn).
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Given two permutations α and σ, the inversion distance d(α, σ) is the size t of
the minimum sequence of operations ρ1, ρ2, . . . , ρt such that α·ρ1 ·ρ2 ·. . .·ρt = σ.

Let ι = (1 2 . . . n) be the identity permutation, sorting a permutation π = (π1

π2 . . . πn) is the process of transforming π into ι and the inversion distance
between them is denoted as d(π, ι) = d(π). Note that σ · σ−1 = σ−1 · σ = ιn.
Therefore, the inversion distance d(α, σ) is equivalent to transform a permutation
π into a permutation ι if we take π = σ−1·α, because d(α, σ) = d(σ−1·α, σ−1·σ) =
d(π, ι) = d(π). Therefore, we hereafter consider the sorting by inversions problem
which aims at finding the sorting distance d(π) for an arbitrary permutation π.

The following functions can be applied to identify any element i in the per-
mutation π. Position: p(π, i) = k ⇔ |π[k]| = i, p(π, i) ∈ {1, 2, . . . , n}. Slice:
slice(π, i) = min{p(π, i), n− p(π, i) + 1}, slice(π, i) ∈ {1, 2, . . . , �n

2 �}.
We will now define the cost function for each inversion ρ(i, j) and then we ex-

plain two cases that arise. Our cost function is given by cost(ρ(i, j)) = |slice(ι, i)−
slice(ι, j)|+ 1. Figure 1 illustrates both cases.

Case 1: i, j ≤ �n
2 � or i, j ≥ �n

2 �.
In this case, the cost function can be simplified to cost(ρ(i, j)) = abs(i−j)+1,
which means that it is proportional to the number of elements in the reversed
segment. This cost is what one would expect from a length-weighted inversion
distance in such a way that larger inversions cost more than short inversions.

Case 2: i > �n
2 � and j < �n

2 �, or j > �n
2 � and i < �n

2 �.
In this case, the cost function is penalizing the asymmetry instead of the
number of elements in the reversed segment. In effect, if the inversion ρ(i, j)
is perfectly symmetric (meaning that i and j are equally distant from the
origin of replication), then the cost is given by cost(ρ(i, j)) = 1.

a) Case 1

i

j

.

.

.

     The cost is propor-

tional to  the number 

of elements in the re-

versed segment  

b) Case 2

i

j

.

.

.

     The cost penalizes

asymmetry between 

i  and j.  A symmetric 

inversion costs 1 unit

Fig. 1. Effect of the cost function when (a) i, j ≤ �n
2
� or i, j ≥ �n

2
� and (b) i > �n

2
�

and j < �n
2
�, or j > �n

2
� and i < �n

2
�

3 Algorithms

This section presents several algorithms that take advantage from the charac-
teristics of the cost functions.
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3.1 Greedy Function

This algorithm uses a greedy function in order to estimate how good an inver-
sion might be. The greedy function uses two concepts: breakpoints and slice-
misplaced pairs.

Definition 1. Breakpoints: let us extend the permutation π to include the ele-
ments π0 = 0 and πn+1 = n + 1. The pair πi and πi+1, for 0 ≤ i ≤ n, is a
breakpoint if |πi+1 −πi| �= 1. We use b(π) to represent the number of breakpoints
in a permutation and Δb(π, ρ) = b(π · ρ)− b(π) to represent the variation in the
number of breakpoints caused by an inversion ρ.

Definition 2. Slice-Misplaced pairs: let πi, πj be two elements in π such that
slice(π, πi) > slice(π, πj). We say that πi, πj corresponds to a slice-misplaced
pair if slice(ι, πi) < slice(ι, πj). We use m(π) to represent the number of slice-
misplaced pairs in π and Δm(π, ρ) = m(π · ρ)−m(π) to represent the variation
in the number of misplaced-pairs caused by an inversion ρ.

The identity permutation ι is the only permutation with no breakpoints.
Therefore, an inversion that decreases the number of breakpoints indirectly leads
up to the identity permutation. The identity permutation also has no misplaced
pairs, so we will create a function that combines both concepts in order to esti-
mate how good an inversion is.

Since an inversion can affect only two breakpoints, we know that Δb(π, ρ) ∈
{−2,−1, 0, 1, 2}. The variation in the number of slice-misplaced pairs Δm is
not well-behaved like Δb. Thus, we decided to favour breakpoints reduction in

our greedy function: h(π, ρ) = Δb(π, ρ) +
Δm(π,ρ)

n2 . Therefore, the benefit of an

inversion is given by δ(π, ρ) = h(π,ρ)
cost(ρ) . We construct a sequence of inversions

that sorts π by iteratively adding an inversion with the best benefit among all
possible inversions.

3.2 Left or Right Heuristic

We first divide the elements in π in two groups. The first group refers to the
elements that are in slices classified as sorted and the second group comprises
those elements that are in unsorted slices. A slice s is in the sorted group if
p(π, s) = s, p(π, n − s + 1) = n − s+ 1, and the slices {1, 2, . . . , s − 1} are also
in the sorted group. Otherwise, s is in the unsorted group.

First, the Left or Right heuristic selects the least slice in the unsorted group.
Then, we determine the element that should be moved first to that slice: the
left or the right. The left (right) side is composed of the elements which are in
positions that have indices bigger (lower) than the middle position.

To make this choice, we use an auxiliary function f1 which determines the
total weight to put a given element in its right place. The function considers
only inversions ρ such that cost(ρ) ≤ 2. The minimum number of such inversions
that is necessary to move the element onto its right position is counted and the
weight is computed.
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If the slice has only one element that does not belong to it, we just find the
element that should be in that slice and perform an inversion to place it closer to
its right position. We use inversions ρ whose cost(ρ) ≤ 2 following the principle
of always applying non-expensive movement.

If the slice has two elements that are misplaced, we compute the total weight
to place the left element and the total weight to place the right element. Then,
we choose the element that has the smallest total weight. In case of tie, we move
the right element.

3.3 Lock Heuristic

This heuristic adds a new step that will be called before using the Left or Right
heuristic. We first search for a lock inversion, which puts an element directly
into its final position in the unsorted slice with the least value.

We also consider the possibility of indirect lock inversions that put the
element in its final position in two steps: first, it moves the element to its final
slice, but in the opposite side. Then, it moves the element to its right place with
a perfectly symmetric inversion. In the case where the opposite side is already
locked (opposite side has already the right element), we consider moving the
element one slice above and then applying an almost-symmetric inversion.

An auxiliary function f2 is used to evaluate the inversions. This function
takes the elements πi and πj that are in the endpoints of the inversion ρ(i, j)
and uses the function f1 to compute the total weight to put them in their final
positions. We compute the total weight before and after applying the inversions
and compute the gain. If the gain is positive (i.e., the total weight decreased)
and this gain is equal to or bigger than the inversion weight, ρ(i, j) is considered
a valid inversion.

The heuristic evaluates the inversions for placing the right and left elements,
and then applies the inversion with least cost. If a lock inversion does not exist,
then the Left or Right heuristic is used.

3.4 Reduce Heuristic

This heuristic computes all possible inversions that remove at least one break-
point and is considered valid by the function f2 as described in Section 3.3. We
filter the inversions having minimum weight according to f2, and if more than
one inversion remains, we select one that removes two breakpoints. If no inver-
sion reduces the number of breakpoints, we apply the Left or Right heuristic
(Section 3.2). This new heuristic is called Reduce heuristic.

It is also possible to combine the Reduce heuristic with the Lock heuristic to
generate other approach called Lock or Reduce. This new approach searches for
a valid lock inversion ρ1 and for a valid inversion ρ2 which reduces the number
of breakpoints. If just one of ρ1 or ρ2 exists, the heuristic simply applies it. If
both exist, the heuristic selects the one that has the smallest weight (in case of
tie, apply ρ1). Finally, if none exists, the Left or Right heuristic is used.
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4 Experimental Results

We generated a dataset with all possible instance π, such that |π| ≤ 12. Since the
permutations in the dataset are small, we were able to compute a minimum cost
solution for comparison purposes. The minimum cost solution was calculated
using a graph structure Gn, for n ∈ {1, 2, . . . , 12}. We define Gn as follows. A
permutation π is a vertex in Gn iff π has n elements. Let π and σ be two vertices
in Gn, we build an edge from (π, σ) iff there is an inversion ρ that transforms
π into σ. The weight assigned to this edge is cost(ρ). Finally, we calculate the
shortest path from ι to each vertex in Gn using a variant of Dijkstra’s algorithm
for the single-source shortest-paths problem. This variant gives us the minimum
cost to sort permutations in Gn, as well as an optimum scenario of inversions.

Let heuristic cost(π) be the cost for a sorting sequence of π and cost(π) be the

optimum cost, we can compute the approximation ratio as heuristic cost(π)
cost(π) . The

first graph in Figure 2 shows how often each heuristic returns the optimum cost.
The second and third graphs exhibit, respectively, the average and maximum
ratios observed among permutations of same size.
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Fig. 2. In (a) we show how often each heuristic returns a minimum cost solution. In (b)
and (c) we show the average and the maximum ratio, respectively. In (d) we show how
often each heuristic succeeds in providing the best answer among all the heuristics.
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The graphs in figures 2(a), 2(b) and 2(c) are maximum or average values.
Thus, they may not answer the question: for a single instance π, is there any
algorithm that is likely to provide the best answer? The fourth graph discuss
this question by assessing the number of times each algorithm provides the least
costly sequence. We observe that Greedy leads to the best results. In fact, this
heuristic is consistently better than the other heuristics in every aspects we
plot in Figure 2. The heuristics Reduce and Lock or Reduce are very similar
when we consider how often each one returns the optimum cost and the average
ratio. However, the Lock or Reduce heuristic seems more appropriate for those
permutations that are hard to optimize, since the maximum ratio curve for Lock
or Reduce (shown in the third graph) is significantly better than that for Reduce.

We added new curves to see if one could take advantage of using more than one
heuristic other than Greedy. The curve labeled as A+E selects for each instance
the less costly result between those produced by the Greedy heuristic and the
Lock or Reduce heuristic. As we can see, using both heuristics is consistently
better than using solely the Greedy heuristic in every aspect we are studying.

A final test checks if any profit is gained from running all possible heuristic,
which is what we consider in the curve All. The increase in performance pro-
duced by All is consistent when compared to A+E. In every graph, the All curves
are far from the others, which leads to the conclusion that using a combination
of more than one heuristic accomplishes satisfactory results.

5 Conclusions

In this work, we have defined a new genome rearrangement problem based on the
concepts of symmetry and length of the reversed segments in order to assign a
non-unit cost for each inversion. The problem we are proposing aims at finding
low-cost scenarios between genomes when gene orientation is not taken into
account. We have provided the first steps in exploring this problem.

We presented five heuristics and we assessed their performances on small sized
permutations. The ideas used in order to develop these heuristics together with
the experimental results set the stage for a proper theoretical analysis.

As in other inversion sorting problems, we would like to know the complexity
of determining the distance between any two genomes using only the operations
we defined. That seems to be a difficult problem that we intend to keep studying.
We plan to design approximation algorithms and more effective heuristics.
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Abstract. Execution performance of bioinformatics workflows in cloud
federated environments is strongly affected by data storage and retrieval,
due to the large volumes of information in genomic sequences. This paper
presents a storage policy for files used in a typical bioinformatics appli-
cation with genomic data that aims to reduce their transfer time and
then contribute to a faster execution of the workflow. We discuss a case
study using the BioNimbuZ federated cloud platform. Our results show
that this storage policy significantly improved times for transferring files,
and thus lowered the total time to execute the workflow.

1 Introduction

Hundreds of genome projects around the world have to treat large amounts of ge-
nomic data produced by high-throughput sequencing machines. A single genome
project generates gigabytes of data, which are analyzed by computational tools
and may generate terabytes of storage. Genome projects, and bioinformatics
analysis as a whole, are usually supported by workflows composed of tools and
databases managed in physically separate institutions.

In recent years, the paradigm of cloud computing has been developed [1,2,4,3],
so that users may transparently access a wide variety of distributed infrastruc-
tures and systems. In these clouds, both computing and storing data are treated
so that it gives to the user the illusion that the amount of resources is unlimited.
However, considering the continuous increasing of computational and storage
power needed by different bioinformatics applications, developed in different en-
vironments, working with only one cloud may be restrictive for bioinformatics
applications. Thus, federated cloud [5,6] is an interesting alternative to execute
bioinformatics applications.

In this paper, we propose a storage policy for hybrid federated clouds that
aims to choose the best resource to store or retrieve files used in bioinformatics
workflows. We developed a case study in the BioNimbuZ [7,8] platform, a hybrid
federated cloud computing platform that joins physically separated platforms,
each modeled as a cloud, providing bioinformatics applications that can be used
as if they were one single system. The results showed that the storage policy,
lowering the time to transfer files used in bioinformatics workflows, really lowered
the total time to execute these workflows.

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 107–114, 2014.
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This paper is organized as follows. Section 2 discusses related work. Section
3 presents the storage policy proposal. Section 4 first presents the BioNimbuZ
platform and its services, and after the case study. Finally, our conclusions are
presented in Section 5.

2 Related Work

The storage and transfer of files between cloud members of the federation should
consider several characteristics in order to perform the operation efficiently.
Thus, to increase efficiency, it is essential to analyze the elements that influ-
ence the systems response time.

Stockinger and Stockinger [9], in their cost model for data distribution and
replication, presented some aspects, among which the following stand out: phys-
ical location, bandwidth, size of the file being downloaded and transmission
protocol. Although, this work is related to the cost aspects as it has aimed to
carry out the operation in the minimum time, which, consequently, would lower
the cost.

Another important aspect, which Bermbach et al. [10] highlight, is that de-
pendence on a single-service storage imposes limitations on availability and scal-
ability related to the selection provided, aside from possibly causing delays in
executions carried out by the providers of service. To minimize this problem,
the authors propose the MetaStorage, a federated storage system using hash
tables that can integrate different suppliers through data replication. In this ar-
chitecture, the agents, who act on the storage providers, perform the storage and
retrieve data that are located at the lowest level and provide a generic interface
to abstract the technical details of the underlying infrastructure.

Due to the large amount of data, one of the recurring concerns in research
involving cloud storage and data compression, Bogdan presents BlobSeer [11],
a model for distributed data management, specially implemented to read, write
and collate large amounts of information on a large scale, working seamlessly
to perform data compression. This approach reduces the disk space needed for
storage, and relies on the use of bandwidth to transfer data, however, one should
consider the feasibility of this approach due to time and cost required to perform
such operations.

3 Storage Policy

The storage policy is a fundamental part of a storage service in federated clouds.
Through this service, it is possible to store the files so that they are available
when needed.

The storage policy aims to choose the best clouds for storing the files, with
the goal of completing the execution of the task in order to lower time. For
the proposed policy, some criteria were considered. The weight of each criterion
determined according to its importance and impact, based on tests performed
in [7], using a simple storage policy. The storage policy provides two functions:
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storage output files (upload), containing the result of bioinformatics analysis,
and retrieval of input files (download), required to execute the tool to generate
the output files.

In the download process (Fig. 1) there are four steps: index calculation and
cloud selection, system download, file compression and file transfer. This general
overview is detailed in the following subsections.

Fig. 1. Download process for storage policy, used when a job request a file and, upload
process for storage policy, used to store a file in the federation

The upload Process has the same steps of the download process, with a pre-
vious step of filtering eligible clouds. To increase the performance of the storage
policy, we propose to replicate files, done with the upload process for copying
files to other clouds. This provides availability for the files used in the federated
cloud.

Both processes have similar steps, but differ in the implementation phase,
filtering the eligibility for receiving the files before selecting one cloud for storing
or retrieving a file.

3.1 Filtering Eligible Clouds

This phase is used only in the upload process, since clouds that are candidates
to receive one file should have sufficient storage space. The process of filtering
eligible clouds aims to select only the ones to be considered for transferring,
thus ensuring that one file is not sent to a cloud not able to receive it (due to
insufficient space).

3.2 Index Calculation and Cloud Selection

It is necessary to choose the best cloud integrating the federation for one of the
operations, download or upload. For this, the clouds are classified according to
the following aspects:

– Latency: a measure of the delay of a network, a link or a device to another.
Higher latency indicates long delays. Latency can never be entirely elimi-
nated, and it is used as a measure of network performance. Latency varies
depending on the load imposed on the network;
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– Storage cost: as hybrid architectures enable the existence of various types of
clouds, cost of storage is considered for choosing a cloud, thus prioritizing
the ones not charging for transferring and data storage;

– Processor cores: a larger number of processor cores in the candidate cloud
enables faster execution of the workflow. This is considered by the storage
policy, in order to decrease the transfer of files between clouds. It has to be
noted that the jobs are executed on machines having the file;

– Workload: if one cloud is overloaded, the ability to perform a certain task as
soon as the data are available is low, and may influence the execution time
of the entire workflow.

Each aspect is normalized and ranges from 0 to 1. After this, every aspect
will be multiplied by its corresponding weight, and sorted in decreasing order
by the resulting index. This way, the cloud with the higher index will be chosen
for file storage or download, as showed in Equation 1.

I = (
l

max(l)
∗ wl) + (

sc

max(sc)
∗ wsc) + (

wk

100
∗ wwk)− (

np

max(np)
∗wnp) (1)

In Equation 1: l - latency, sc - storage cost, wk - workload, np number of
processors. The weights are: wl - latency, wsc - storage cost, wwk - workload,
wnp - number of processors. Each criterion received a weight, according to its
impact on transfer time and based on tests detailed on next section. This way,
we found: latency 50%, processors 30%, work load 15% and storage cost 5%. The
first two criteria were associated the large weights because they are the ones that
allow rapid transfer and execution of the work, the focus of this work.

3.3 File Compression

After choosing the cloud, the compression process is performed. This process
provides size reduction, and lower file transfer time. Regarding compression, ge-
nomic data files, used in our case study in the BioNimbuZ platform, have specific
characteristics that allow a high compression ratio. This is due to the fact that
files are composed of only four distinct characters (A, C, G, T/U) represent-
ing the nucleotides of DNA/RNA, respectively, Adenine, Cytosine, Guanine and
Thymine/Uracil, besides spaces. As shown by Rubin [12], the basic approach
to text compression is to divide the original text and replace each of these sub-
strings by a code. This is very successfully applied to files with the characteristics
mentioned before, where the number of characters is very short and there are
many spaces. Thus, the compression of the files strongly reduces its size. The
implementation used in this policy is Snappy [13], which prioritizes the speed of
a moderate compression.

4 Case Study

Here, we show the results obtained when executing our storage policy in the
BioNimbuZ plataform.
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4.1 BioNimbuZ Platform

BioNimbuZ platform enables the integration of different cloud computing plat-
forms, meaning that independent, heterogeneous, private or public providers
may offer their bioinformatics services in an integrated manner, while maintain-
ing their particular characteristics and internal policies.

BioNimbuZ architecture is composed of services (Monitoring, Security, Dis-
covery, Scheduling, Storage, Fault Tolerance, Job Controller and Service Level-
Agreements - SLA). In this paper, we focus on the Storage Service, which decides
how to distribute and replicate data among the cloud integrating the federation.
For more details about the other services see [14].

In the previous version of BioNimbuZ, the storage policy was implemented in
a simple way, selecting the first cloud found. When a job needs a file, it makes
a request to the Storage Service, which selects one among the clouds having the
file. However, the selected cloud might not be the best. In [7], it was possible to
note that at least 19% of the jobs (18 of 96 jobs) spent more than 50% of the
time transferring files, while some jobs reached even 79% of the time.

4.2 A Bioinformatics Workflow

The bioinformatics workflow chosen for the case study aims to identify differ-
entially expressed genes in human kidney and liver cancer cells, with fragments
sequenced by Illumina sequencers and consists of four phases.

In the first phase (mapping), fragments are mapped to the 24 human chromo-
somes (1 to 22, X and Y). The goal is to identify the region of the chromosomes
where each fragment is located. A set of fragments mapped to the same region
allows us to infer that they have the same structural organization of the reference
genome. Bowtie [18] was used to do this mapping.

In the second phase, the SAM format output mapping is converted to the BED
format with a script for conversion called sam2bed, implemented exclusively for
this workflow.

In the third phase, with a script called genome2interval, intervals are gen-
erated based on the size of each chromosome. In this phase, from outputs of
second and third phases, histograms are generated, which indicate the number
of fragments mapped for the range of chromosomes with the suite tool BEDtools
[16].

This pipeline has 96 jobs. The files of the 24 chromosomes totalized 2.9GB, the
largest, 248MB, and the smallest 51MB. Compressed, the files totalized 893MB,
a reduction of 70%.

4.3 Environment and Implementation Details

Each federation used in the tests was composed of three clouds. Each cloud had
three nodes, each with Linux Ubuntu 12.04, Apache Hadoop framework [15] and
all the tools used in the workflow. The federated cloud was composed of three
clouds located at University of Brasilia, Amazon West Coast and Amazon East
Coast.



112 R. Gallon et al.

We note that, in clouds, one of the key technologies adopted to execute bioin-
formatics tools is the Apache Hadoop framework [15], in which the MapReduce
model and its distributed file system (HDFS) are used as infrastructure to dis-
tribute large scale processing and data storage. This is due to the fact that the
parallelization does not require communication among simultaneously processed
tasks, since they are independent from each other.

In BioNimbuZ, the index calculation is performed by the Storage Service,
which will provide the required information. The workload and processor cores
were used to complete operations in the cloud, download the file from Hadoop
and compress data, both being affected by the characteristics of cloud computing.
The test data, presented in next section, will show the impact of these aspects.

To test the storage policy, two schedulers were used in BioNimbuZ:

– Round Robin (RR), one of the simplest scheduling algorithms for processes
in an operating system, assigning time slices to each process in equal portions
and in circular order, and handling all processes without priority; and

– Ant Colony Optimization (ACO) [17], a random search algorithm that mim-
ics the behavior of a colony of real ants in search of food, using pheromones
to trace the paths, adapting as the executions are carried out.

4.4 Results

We set up four scenarios, joining configuration and scheduler. For each scenario
five tests were conducted, totalizing 20 executions, each with 96 jobs. The hard-
ware configuration of cloud nodes in tests were: Type 1, Core(TM)2 Duo CPU
E7300, 2GB RAM, 160 GB HD; Type 2 (small), variable processor, 1 core, 650
MB RAM, 20 Gb (HD); and Type 3 (large), Intel Xeon E5-2670, 4 cores, 7,5
GB RAM, 500 GB HD.

– Scenario 1: 1 cloud type 1 and 2 clouds type 2, all running RR Scheduler;
– Scenario 2: 1 cloud type 1 and 2 clouds type 3, all running RR Scheduler;
– Scenario 3: 1 cloud type 1 and 2 clouds type 2, all running ACO Scheduler;
– Scenario 4: 1 cloud type 1 and 2 clouds type 3, all running ACO Scheduler.

Figure 2 shows the execution times in the four scenarios. Our storage policy
has shown an average gain of 40%, when compared to the execution time of the
original storage policy.

Among the files to be transferred, 50 jobs spent more than 30% of the total
time to transfer files, from these, 47 (94%) large files used in the first phase
(mapping) had to be transferred. Besides, the transfer time also strongly af-
fected executions in larger machines, 30 files in scenarios using hardware Type
3, compared to the 20 files using hardware Type 2.

Because executions are parallel, it is not possible to guarantee the order, as
well as the place of execution (University of Brasilia, Amazon West Coast or
Amazon East Coast). Analyzing the greatest transfer time in the log files, we
found that these jobs executed at the University of Brasilia, where all the exe-
cuted jobs showed the same characteristics, low transfer rate and fast execution.
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Fig. 2. Workflow runtimes, where the proposal policy has shown an average gain of 40%

5 Conclusion

The storage policy for federated clouds proposed in this paper aims to reduce file
transfer time when executing bioinformatics workflows, considering characteris-
tics of the files used in bioinformatics. We developed a case study of our storage
policy compared to the original one in BioNimbuZ, a federated cloud designed
to execute bioinformatics applications. Results showed that our storage policy
performed well when there are clouds with more robust features in the federa-
tion, which could be seen by the shorter total execution time. Furthermore, data
transfer strongly affected total run time. The file size (chromosome size) did
not affect the performance of the storage policy, although it impacts the total
execution time. Besides, the run time of jobs were reduced, which contributed
to a faster execution of workflow. Compared to other works in the literature,
our storage policy was focused on the characteristics of the genomic data files,
which were used for improving data transfer.

Despite of the good results obtained by our policy, it could be improved by
integrating the storage policy with the Scheduling Service, so that the jobs could
choose to send the jobs to the cloud having the files or to the best cloud, aside
of requesting the files, as is done now. In addition, integration with SLA allows
the user to select features that meet his needs, e.g., as lower costs of storage or
data transfer.
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Abstract. The methylotrophic yeast Komagatella pastoris is a relevant
bioengineering platform for protein synthesis. Even though non-coding
RNAs are well known to be key players in the control of gene expression
no comprehensive annotation of non-coding RNAs has been reported
for this species. We combine here published RNA-seq data with a wide
array of homology based annotation tools and de novo gene predictions
to compile the non-coding RNAs in K. pastoris.
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1 Introduction

Non-coding RNA (ncRNA) is a class of RNA molecules that does not harbor
a functional open reading frame (ORF), and thus does not code for protein.
Besides the well-known ribosomal RNA (rRNA) and transfer RNA (tRNA),
many different types of ncRNA have been recently described. These molecules
were found to be involved in many aspects of cell functioning, including in the
regulation of gene expression and differentiation. Small and long ncRNA were
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described in all domains of life, especially among eukarya, where the amount
of ncRNA has been correlated to organismal complexity [14]. Although among
metazoans ncRNAs seem to have a fundamental role in chromatin organization
and RNA metabolism, in the fungal kingdom there is only limited information
about their roles in the cell’s informational metabolism.

The fungal species that is most extensively studied also from the point of
view of ncRNAs is Saccharomyces cerevisiae. It harbors a wide variety of long
regulatory RNAs, reviewed in [23]. Bakers yeast is a quite atypical system,
however, in particular with regard to its ncRNAs. It has recently lost the RNA
interference (RNAi) pathway [8], and processes many of its Small Nucleolar RNA
(snoRNAs) in an atypical manner in conjunction with a dramatic, genome-wide
loss of introns [15]. MicroRNA-like RNAs (milRNAs) and Dicer-independent
siRNA-like RNAs were discovered by small RNA-seq in the Neurospora genus [11]
and in several other diverse fungal species including Metarhizium anisopliae [26]
and Sclerotinia sclerotiorum [25]. These ncRNAs are probably produced by
different biogenesis pathways, contrasting them with the microRNAs of plants
and animals.

The methylotrophic yeast Komagatella pastoris (formerly Pichia pastoris) is
widely used as a bioengineering platform for producing industrial and biopharma-
ceutical proteins and its genome and transcriptome starts to be studied [5,7] to
improve its annotation and thus its biotechnological skills. Here we report on an
in silico search for ncRNAs in the genome of K. pastoris GS115, based on the
analysis of its genome and its transcriptionally active regions.

2 Materials and Methods

Homology-Based Annotation. The K. pastoris str. GS115 [6] genome
sequence, comprising four chromosomes and three additional contigs of unplaced
sequences, accessions FN392319-FN392325, were downloaded from the NCBI
Genome Data-base. An initial set of candidate RNAs was determined using
Infernal [16], a software for ncRNA detection based on the collection of
covariance models provided by the Rfam database 11.0 [4]. In addition, we
executed tRNAscan-SE to identify the complement of tRNAs.

Identification of Small Nucleolar RNAs. In addition to the Rfam-based
search we employed snoStrip [2] using known fungal snoRNAs as a starting data
set. Furthermore, we checked whether predicted snoRNAs were located within
a known transcript or transcribed regions according to gene models derived by
Cufflinks [20].

Identification of Long ncRNAs. We used the four non-strand-specific
Illumina RNA-seq data sets SRX109531 to SRX109534 comprising poly-A
selected RNA of K. pastoris grown in media containing either methanol or
glycerol [13]. The data were mapped twice to the K. pastoris genome using
Segemehl [10], once allowing unsplit reads only (used for differential expression
and ncRNA detection) and once enabling mapping with splits, including non-
colinear splits.
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The mapping results were input to Cufflinks [20] version 2.0.2 to detect
transcripts. In addition we determined “coverage loci”, defined as contiguous
regions with a minimum coverage of 8. “Coverage loci” separated by less than
50 nt were merged, loci with less than 50 nt of total length were removed.

Expression Levels and Differential Expression of lncRNAs. “Coverage
loci” regions were determined based on RPKM (Reads Per Kilobase of gene per
Million of reads) values computed as RPKM = 109C/(NL), where C is the
number of reads mapped onto the locus, N is the total number of mappable
reads in the experiment, and L is the total length of the locus in base pairs.
The coordinates of the “coverage loci” were compared to K. pastoris GS115
annotation to identify overlapping regions. All “coverage loci” overlapping with
annotated coding genes were removed. The remaining transcripts were further
filtered using Blastx against non redundant proteins of GenBank, with e-value
cutoff < 10−20 and a minimum coverage of 50%. Differential expression of long
ncRNAs between methanol and glycerol media was quantified with Cuffdiff [19].

Splice Junctions and Atypical Transcripts. Splice junctions were
determined by Haarz, a component of the Segemehl suite. In order to reduce
the chance of mapping artifacts splice junctions not matching certain mapping
criteria or not supported by at least three split reads were filtered out. Only reads
that entirely mapped to the four chromosomes were retained, i.e., trans-spliced
to the rRNA locus or one of two short contigs were ignored. Canonical (GT:AG)
splice junctions were used to determine the reading direction of the transcripts
containing them. These split-read mapping was used to identify non-standard
transcripts and to investigate snoRNA host genes.

Sequence Conservation. Multiple sequence alignments were computed with
the multiz/TBA pipeline [3] spanning the entire phylogenetic range of the hemi-
ascomycote, including Saccharomyces cerevisae and Yarrowia lipolytica. An RNAz

screen to identify putative conserved ncRNAs was performed as described in [9].

3 Results and Discussion

3.1 Small Structured ncRNAs

The initial Infernal-based search resulted in 376 ncRNA candidates, of which
most were tRNAs or snoRNAs. After resolving conflicting matches of multiple
covariance models to the same genomic location and removing obvious false
positives, we retained 186 ncRNA homologues of others known in Rfam 11.0
(in our annotation), confirmed with other information obtained from homology-
based annotation.

A tRNAscan-SE search resulted in 123 tRNAs, 29 contained an intron. These
tRNAs comprise 44 distinct anti-codons encoding all the 20 amino acids. As
expected, there is no trace of a minor spliceosome and no bona fide tRNASec,
since fungi, like higher plants, lack a selenocystein insertion system [24]. As
described in [6], the rRNA operon is contained in an extra contig (FN392325)
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Fig. 1. RNA-seq density and inferred transcript structures of two snoRNA clusters

in the genome assembly. We found 21 copies of 5S rRNA, distributed across all
the chromosomes. Apart from tRNAs and rRNAs, we detected 46 structured
ncRNAs.

As in other Saccharomycotina we obtained one copy for each of the five
snRNAs of the major spliceosome (U1, U2, U4, U5 and U6). As for other fungi
[18] there is no trace of minor spliceosomal snRNAs. We found one copy each of
the RNA components of the signal recognition particle, and of the RNAses P and
MRP. We were unable, however, to detect the RNA component of telomerase.
This is not unexpected, given the rapid evolution of this RNA family [17].

Riboswitches are widely found in bacteria, but are rare in animals and fungi.
A notable exception is the thiamine sensing TPP riboswitch, which we found
close to the 5’ end of the K. pastoris Thi4 homologue, the usual location where
these switches have been found in several ascomycetes [12].

Of the snoRNA candidates predicted by Infernal (39) and snoStrip (47),
30 were found by both methods. Using the split transcript model, we could
place 31 of the Infernal predicted hits on transcriptionally active loci, but two
box H/ACA and two box C/D were found in the wrong direction in relation
to transcript orientation. Since the orientation of Cufflinks produced models is
biased by the presence of donor and acceptor splicing sites, these four predict
boxes could still be functional snoRNAs. In total we had found five box H/ACA,
two intronic and three exonic, and 23 box C/D, nine in introns and two in exons.
Furthermore, we identified a single copy of the U3 snoRNA.

A peculiar feature of Hemiascomycetes is a dramatic loss of introns which is
accompanied by a change in the processing of snoRNAs [15]. While snoRNAs
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are ancestrally processed from introns, they are mostly found in exonic positions
in Kluyveromyces and Saccharomyces. In K. pastoris we found an intermediate
stage that is well illustrated by the two snoRNA clusters shown in Figure 1.
All the 31 snoRNAs are located within expressed loci according to the available
RNA-seq data. Only 13 are located in introns of the annotated protein-coding
genes, while ten are found in exonic positions of coding genes. The remaining
eight are placed in non-coding host genes. Four of them are intronic. Twelve
box C/D snoRNAs were found in three different box C/D clusters. The major
cluster co-localizes to a long ncRNA located in the chromosome 4 (discussed
below). This RNA harbors three introns, each one of them containing one box
C/D. Four additional box C/D snoRNAs were found in the last two exons of the
transcript (Figure 1).

3.2 Long Non-coding RNAs

The merged transcripts of both growing conditions cover roughly half of the
entire genome and define 3,542 “coverage loci”, of which 2,058 completely
overlap with protein coding or annotated ncRNA. Only 136 “coverage loci”
not overlapping at least partially were further filtered to remove potential ORF
coding transcript not annotated in the K. pastoris GS115 project. We discarded
86 “coverage loci” due to sequence similarity with coding sequences from other
fungi, 85 of them perfect hits to the CDS annotation of K. pastoris strain
CBS7435, highlighting the incompleteness of the K. pastoris GS115 annotation.
The remaining 50 loci were considered to be intergenic lncRNAs. Non coding
character of most of them (62%) was supported by an independent predictor [1].
Their length ranges from 122 to 1,912 bp, with an average size of 593 bp. We
found 94% longer then 200 nt, the minimum length of “lincRNAs”, according to
the literature.

In the yeast S. cerevisiae a large number of anti-sense RNAs (asRNAs) have
been reported to control gene expression, among a large class of so-called XUT
RNAs [22]. Although most of them are unstable and not likely to be included in
a poly-A selected library, we nevertheless investigated the available evidence
for asRNAs. The identification of asRNA is very difficult from non-strand-
specific sequencing data and is essentially restricted to spliced RNAs. Due to
the relatively low abundanced of spliced transcripts it is not surprising that only
six antisense transcripts could be unambiguously identified.

Only a tiny fraction (0.15%) of the mapped reads were mapped across splice
junctions, validatingmore than 550 splice junctions within the existing annotation
and identifying 118 novel ones. Together, these account for more then 70% of
the split reads. The remainder corresponds to candidates for circular RNAs, local
strand-switching transcripts, and long-range trans-splicing (Table 1).

3.3 Differentially Expressed lncRNA

In order to determine whether lncRNAs are involved in the medium-specific gene
expression patterns we investigated expression changes using the available
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Table 1. Relation between annotation and high confidence splice junctions in different
splicing types

Splicing type Splice junctions (read support)
all intergenic %

normal 586 (295,299) 150 (38,392) 25.6 (13.0)
circular 1,342 (8,139) 94 (753) 7.0 (9.3)
strand-switch 11,627 (60,753) 961 (5033) 8.3 (8.3)
trans 61 (415) 14 (36) 23.5 (8.7)

Table 2. Differentially expressed long ncRNAs

chr start fold change p-value precursor RNA mature RNA exons comment
lincRNA

chr1 1,852,350 3.38793 9.50E-04 190 190 1
chr1 1,852,845 2.50889 5.00E-05 153 153 1 Possible 5’UTR
chr1 2,797,859 5.91132 2.70E-03 632 591 3 telomeric
chr2 2,347,935 -2.12367 5.00E-05 678 663 2 3’ to Py carboxilase
chr2 2,355,594 2.41426 1.25E-03 1,649 1,649 1
chr3 384,136 >10 5.00E-05 212 212 1
chr4 109,379 1.4597 2.70E-03 1,829 1251 4 snoRNA cluster

antisense RNA
chr4 34,307 2.65094 7.00E-04 2,398 2219 3 Floc9-AS
chr4 186,332 2.24018 5.00E-05 3,750 3536 2 Sec16-AS
chr4 372,117 2.69379 2.00E-04 2,320 2219 2 Aim1-AS

RNA-seq data. To this end, we used the reads mapped in non-split mode overlap-
ping the annotated features. From the observed 3,542 “coverage loci”, most of
them overlap one or, in fewer cases, more than one protein coding genes, or
annotated ncRNAs. A total of 322 “coverage loci” showed significant differences
between the two growth conditions. Of these, 152 were upregulated and 170
downregulated in the presence of methanol. This set contained seven lincRNAs
and three asRNAs listed in Table 2. Most of them are repressed in the presence
of methanol while a single one was shown to increase expression in this situation.
Interestingly, this lincRNA is located nearby to a Pyruvate Carboxylase gene, that
is shown to be a key controler of energetic metabolism in K. pastoris [21].

One of the differentially expressed genes is a 1,829 nt primary transcript
carrying a cluster of snoRNA as discussed above. It is processed to a 1,251 nt
mature transcript. Its function beyond a template for snoRNA is not known, and
it may serve solely as host gene for the cluster of snoRNA. This transcript carries
the largest cluster of snoRNA and its induction in the yeast in the presence of
glycerol, but not methanol, suggest it may be of importance for maintaining a
specific physiological state.

4 Concluding Remarks

Non-coding RNAs have been identified as important players in the gene
expression control of virtually all organisms studied to-date at any detail. Never-
theless, a comprehensive annotation of non-coding RNAs is usually not part
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of initial genome annotation efforts in newly sequenced organisms. This fact
appears to be a consequence of the lack of a simple toolkit for this purpose. The
diversity of ncRNA classes in terms of their size, conservation, and patterns of
molecular evolution requires the combination of wide variety of computational
tools for homology-based search, de novo RNA gene finding, as well as the
integration of experimental RNA-seq data. Here, we have combined to available
evidence to annotate all major classes of small ncRNAs and at least the most
prevalently expressed long non-coding RNAs.

Despite the practical importance of K. pastoris the available information is far
from complete. As available RNA-seq data are not strand-specific, only a handful
of antisense RNAs could be identified. On the other hand, small structured RNAs
have not been annotated in a systematic manner in Ascomycota beyond the
Saccharomyces and Aspergillus clades. This contribution thus provides an
important corner stone for subsequent annotation efforts aiming at yeast ncRNAs.

The presence of ncRNAs that are differentially expressed in response to
changes in the main carbon source provided by the growth medium hints at the
importance of non-coding RNAs in the regulation of K. pastoris ’ fundamental
biochemical processes. As such these RNAs become interesting targets for
functional characterization and, eventually, for innovations in biopharmaceutical
production.
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Abstract. The complex differentiation process of the CD4+ T helper lympho-
cytes shapes the form and the range of the immune response to different anti-
genic challenges. Few mathematical and computational models have addressed 
this key phenomenon. We here present a multiscale approach in which two dif-
ferent levels of description, i.e. a gene regulatory network model and an agent-
based simulator for cell population dynamics, are integrated into a single  
immune system model. We illustrate how such model integration allows bridg-
ing a gap between gene level information and cell level population, and how the 
model is able to describe a coherent immunological behaviour when challenged 
with different stimuli. 

Keywords: Computational immunology, T helper lymphocyte, CD4+ T cell 
differentiation, gene regulatory networks, immunoinformatics, CD4+ T cell 
dogma. 

1 Introduction 

The immune system provides defence against environmental pathogens and foreign 
antigens to the host organism. To accomplish this mission, the mammalian immune 
system orchestrates a variety of highly specialized immune cell subpopulations, in-
cluding both pathogenic effector cells and protective regulatory cells. This complex 
ensemble of immune cells branches into two main divisions, the innate and adaptive 
immunity compartment [1]. Maintenance of proper balance of the different subpopu-
lations throughout homeostasis and immune responses relies on extensive communi-
cation among cellular actors, mediated by cytokines (a.k.a. interleukins), i.e., secreted 
small molecules that modulate abundance and function of the different immune cells. 
In this variegated landscape, the naïve and activated CD4+ “helper” T lymphocytes 
contribute as key subset in regulating and supporting immune responses. In response 
to specific cues from specialized antigen-presenting cells (APCs) and cytokines, naïve 
CD4+ T cells may be induced towards four best-characterized routes of differentiation 
in terms of patterns of cytokine production and immune function: effector T helper 
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type 1 (Th1), type 2 (Th2) and type 17 (Th17) cells, and regulatory T (Treg) cells [2]. 
Understanding the dynamics of the activation and differentiation of such lymphocytes 
plays a central role in providing potential therapeutic interventions for a number of 
immune-related dysfunctions and diseases. In this perspective, a number of modelling 
approaches to study CD4+ T cell differentiation have been proposed, attempting to 
explain, just to cite a few, Th1/2 lineage choice and maintenance [3]; complex influ-
ence of transcription factor dynamics [4]; the expression of, and interactions between 
the master regulators determining the reciprocal phenotypic polarization between 
Th17 and induced Treg repertoires [5]; the differentiation into Th1, Th2, Th17 and 
induced Treg using an integrated systemic approach [6] and Boolean network models 
[7], among others. Such approaches rely on different modelling strategies and tech-
niques, encompassing ordinary and partial differential equations (ODEs, PDEs), Boo-
lean networks, agent-based models (ABMs). A comprehensive review has been  
recently published by Carbo et al. [8]. Here we describe our own implementation of a 
multiscale computational model for CD4+ T helper cell differentiation, which com-
bines two levels of description -a genetic regulation dynamics and a cell-level popula-
tion dynamics- into a unified, comprehensive simulation system of the immune  
response. The aim of this integrative work is to construct a flexible and detailed 
model of the immune response, able to show differentiated responses to distinct ex-
ogenous stimuli and, at the same time, to construct a suitable computational environ-
ment in which network models of Th differentiation can be tested for consistency. 

Naïve CD4+ T cells can differentiate into both effector cells (such as Th1, Th2 and 
Th17) [9, 10] and protective regulatory cells (Treg) [11], according to the pathogenic 
stimulus encountered. In the acute phase response (i.e., the immune phase response char-
acterized by fever, changes in vascular permeability and in the biosynthetic, metabolic 
and catabolic profiles of many organs that initiates immediately after an infection or 
physical trauma has occurred), activated CD4+ T lymphocytes serve a key role of  
junction between innate and adaptive immune system by secreting specific arrays of 
cytokines and chemokines that, respectively, recruit and activate other leukocytes to 
attack and destroy the pathogens as well as to repair the tissue damage. At later stages, 
the suppressive intervention of regulatory T cells becomes crucial for recovery from the 
acute phase response [12, 13]. Broadly, each T helper cell fate is chiefly established by 
cytokine-mediated up-regulation of lineage-specific transcription factors and reinforced 
by positive feed-back loops as well as negative regulation of the expression or function of 
transcription factors of other lineages [2]. Upon the interaction of the invading pathogen 
with pattern recognition receptors (PPRs) at the surface of innate immune cells such as 
neutrophils, macrophages, natural killer cells, dendritic cells, the latter start to produce 
various inflammatory cytokines triggering the appropriate T helper cell response. Viruses 
and intracellular bacteria cause innate immune cells to produce interferons-alpha and -
beta (INF-α and -β) and the interleukin (IL)-12. These stimuli induce the expression of 
the Tbet transcription factor in naïve T cells, a master regulator of the Th1-polarizing 
paradigm, and result in the proliferation of IFN-γ -producing Th1 cells [14]. Helminth 
parasite infection promotes secretion of IL-4, IL-5 and IL-13 by innate cells, that skews 
undifferentiated Th0 cells to express the Th2-response master regulator GATA3 and to 
amplify secretion of these cardinal Th2 cytokines (i.e., IL-4, IL-5 and IL-13) [15]. Fungal 
and bacterial infections drive secretion of TGF-β and IL-6 by innate cells, that directs the 
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differentiation program of Th17 lineage by inducing its essential transcriptional regulator 
ROR-γt and thus production of its signature cytokine IL-17 [16]. Finally, Treg cells sub-
set develops from naïve Th0 cells in response to TGF-β in the absence of further pro-
inflammatory cues to avert the danger of exaggerated immune responses. Differentiation 
of such CD4+ T lineage critically depends on activation of the transcription factor Foxp3, 
and it is functionally characterized by the production of suppressive cytokines such as  
IL-10, TGF-β or IL-35 [12]. Taken together, these pictures provide a glimpse of the 
complications involved in the differentiation process but, at the same time, provide suit-
able information for the construction of a minimalistic model of Th differentiation and 
activation. In particular, with the present work we focus on the relationship among the 
intracellular gene activation level that drives the Th differentiation and the mesoscopic 
intercellular signalling scale that describes the cell population dynamics. We have inte-
grated two levels of description and related existing models: the gene activa-
tion/inhibition relationship level, identified in a Boolean gene-regulatory network [17], 
and the intercellular immune cell cooperation level, modelled following the agent-based 
paradigm [18], as described in the next section. 

2 Methods 

The computational model of the immune system that we employ [18] has been con-
ceived to allow the dynamic representation of immunological hypotheses and their 
preliminary testing. From the technical viewpoint, the model follows the agent-based 
paradigm in which all cellular entities are individually represented. This modelling 
paradigm has its strength in flexibility and relative easiness of implementation of 
various conjectures and ideas about how cell interact and cooperate to mount an effec-
tive immune response. Agent-based models are based on the paradigm for complex 
systems inspired by Von Neumann’s cellular automata (CAs) [19]. Likewise CAs, it 
consists of discrete time and space parameterization, and discrete entities, or agents, 
representing relevant cells and molecules equipped with specific receptors and func-
tional capabilities, which reflect experimental observations. The model incorporates 
several immunological working assumptions: i) the clonal selection theory of Burnet 
[20]; ii) the clonal deletion theory (i.e., thymus education of T lymphocytes) [21]; iii) 
the hypermutation of antibodies [22]; iv) the replicative senescence of T-cells, or the 
Hayflick limit (i.e., a limit in the number of cell divisions) [23]; v) T-cell anergy [24] 
and Ag-dose induced tolerance in B-cells [25]; vi) the danger theory [26, 27]; vii) the 
idiotypic network theory [28]; vii) the attrition conjecture [29, 30]. Variations of the 
core-basic model have been used to simulate different phenomena ranging from viral 
infection (e.g., Human Immunodeficiency Virus, Epstein-Barr Virus) [31, 32] to can-
cer immunoprevention and type I hypersensitivity [33, 34]. Most of these can be tog-
gled on and off. The immunological entities include the major classes of cells of the 
lymphoid lineage (T helper lymphocyte subsets, or Th, cytotoxic T lymphocytes or 
Tc, B lymphocytes, antibody-producer plasma cells, or PLB, and natural killer cells, 
NK) and some of the myeloid lineage, i.e., macrophages (MA, subdivided in MA1 
and MA2), and dendritic cells (DCs). Helper T cells are separated in Th0 (naïve), 
Th1, Th2, Th17 and Tregs. B and plasma cells are also divided into two phenotypes, 
B-1 and B-2 according to the antibody isotype IgM or IgG they respectively produce. 
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All these entities interact with each other following a set of rules describing the dif-
ferent phases of the recognition and response of the immune system against a patho-
gen. In particular, the model takes into account phagocytosis, antigen presentation, 
cytokine release, cell activation from inactive or anergic states to active states, cyto-
toxicity, and antibody secretion. Cells communicate through receptor binding and 
cytokines. Entities live and behave according to algorithmic rules coding for estab-
lished or conjectured immunological knowledge. A simplified rule for Th differentia-
tion would account for the dominance of key cytokine in the surrounding of a Th0 to 
determine its maturation fate. In the present work instead we pinpoint this specific 
rule and expanded its level of sophistication by substituting it with a simplified, yet 
well sorted, gene relationship network model taken from the work of Mendoza et al. 
[17]. The regulatory circuitry of Th-switch has been studied in several works aimed to 
investigate the mechanisms regulating the balance of different kinds of Th cells. In 
2006 Mendoza [35] proposed a network to model the switch of Th cells into Th1 and 
Th2 . In recent years new kinds of Th subtypes were discovered and new models were 
proposed [36, 37] in order to include Th17 and Treg fate. Several other genes/proteins 
were included in the network and a system modelled with differential equations was 
designed to find stable configurations characterizing the Th differentiation. Four sin-
gle attractors were identified (besides the trivial state where all nodes are inactivated, 
mapped to Th0) representing Th1, Th2 Th17 and Treg. 

There have been previous attempts to integrate in a multiscale approach a cellular 
agent-based model with its detailed intra-cellular dynamics of gene regulatory net-
work (GRN) of CD4+ T differentiation [38]. The present work expands above  
approach to include not only Th1 and Th2 but also Th17 and Treg fates in the differ-
entiation model as in [37]. 

Figure 1 schematizes the gene regulatory network from [37]. The network has been 
organised according to the different functional compartments of the cell. The differen-
tiation fate of a simulated CD4+ T cell depends on the input stimuli sensed by its 
membrane receptors, in particular, by the TCR (T-cell receptor, able to bind antigens 
presented by MHC-II complex on APCs) and by various cytokine receptors (i.e., re-
ceptors for IL-6, IL-23, IL-10, TGF-b, IL-2, IL-12, IL-18, IL-4, IFN-β and IFN-γ). 
Upon the activation of these network nodes, the activation level of key transcription 
factors and genes ultimately leading to the production of Th cell subset hallmark  
cytokines (i.e., IL-10, IL-17, IL-6, IFN-g and IL-4) is computed. Every node can as-
sume a binary deactivated (0) or activated (1) state, and is linked to a set of experi-
mentally associated nodes, which can contribute to activate (continuous black line) or 
to inhibit (dotted red line), as reported in fig. 1. The global network state is synchro-
nously updated according to a common rule used for updating single nodes. A node is 
activated (i.e., turning its state to 1 at time step t + 1) if and only if at time t there is at 
least one node in the set of its activators are turned on (state 1) and all nodes in its 
inhibitory set are turned off (state 0); otherwise, its state is set to 0 (deactivated). This 
is a typically used simplification of a more complex realistic situation but represent 
the only viable modelling choice in absence of knowledge about the activation of each 
single gene. The Boolean updating function is formally defined as follows: 

 xi,t+1 = ∨ j∈Ai
x j,t( )∧(¬∧ j∈Ii

x j,t )
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Fig. 1. Scheme of the gene regulatory network of Th differentiation adapted from [37]. Black 
lines: activation; red lines: repression/deactivation. Depending on the input stimuli that engage 
cell surface receptors (namely, antigen presenting MHC-peptide complex on TCR, IL-6, IL-23, 
IL-10, TGF-b, IL-2, IL-12, IL-18, IL-4, IFN-b and IFN-g), the network computes the activation 
level of key transcription factors for each cell fate (Th1, Th2, Th17 and Treg) and the expres-
sion level of genes resulting in the production of signature cytokines such as IL-10, IL-17, IL-6, 
IFN-g and IL-4. 

where we use the notation xi,t to define the state of node i at time t, Ai is the set of 
nodes activating node i, and Ii is the set of nodes inhibiting node i. For simplification, 
all cells release the same amount (indicated by ω) of cytokines. This implies that all 
cytokines have the same efficacy in exercising their action. At each macro time step 
every Th0 cell ‘senses’ the concentration of the input cytokines in the same lattice 
point and sets the activation level of the corresponding input nodes. The activation is 
modelled as a stochastic event with probability p given by a sigmoid function depend-
ing on the concentration c of the input cytokine: 
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p = c2/(ω2 + c2). 

As shown in the fig. 1 the network is made of 40 nodes and 67 edges. In order to distin-
guish the input nodes from the internal ones (that have a feedback effect) we have added 
four nodes from the original network, namely, ‘IFN-γ input’, ‘IL-4 input’, ‘IL-6 input’ 
and ‘IL-10 input’. We then performed the dynamical simulation according to the rule 
reported above, until a fixed point is reached (this requires not more that 20 iterations). 
Four different fixed points are reported in [37] identifying the four Th subtypes: Th1, 
Th2 Th17 and Treg (Th0 nodes remain Th0 if no input is activated). These are character-
ized by the activation of a set of signature genes as follows: 

• Th1: IFN-γ, IFN- γR, SOCS1, TBET 
• Th2: GATA3, IL-10, IL-10R, IL-4, IL-4R, STAT3, STAT6 
• Th17: IL-17, IL-6, IL-6R, JAK3, ROR−γt, STAT3 
• Treg: FOXP3 

According to the final network configuration, and after the discrete dynamics is ap-
plied, the transition to the new Th phenotype is operated. The phenotype differences 
are mirrored by a different pattern of secreted cytokines [39] which greatly influences 
the overall immune response dynamics. 

3 Results and Discussion 

When challenged with different stimuli, the above multiscale model provides a dy-
namical, time-dependent output depicting the character of the mounted adaptive im-
mune response in terms of relative predominance of one T helper phenotype over the 
others. While the behaviour of the gene-regulation networks alone can be determined 
by the Boolean dynamics [17], the overall outcome of the integrated multi-scale simu-
lator summarising the stochastic dynamics of thousands of cells, can not be known a 
priori. By simulating hundred thousands of stochastic encountering and stimulations, 
we were able to perform a statistical calculation of the effective correctness of the 
GRN and, at the same time, to evaluate the consistency of the mesoscopic cellular 
rules of the agent-based model. 

We executed specific simulations of the different Th differentiation routes, each 
with a different setup. A first in silico experiment was performed by stimulating the 
system with a generic immunogenic molecule (vaccination) at day 5 during the simu-
lation run in the presence of lipopolysaccharide (LPS) as vaccine adjuvant. 

In this system setting, the balance of Th cell sub-populations appears skewed to-
wards IFN-γ-producing Th1 lymphocytes (fig. 2, panel C). This Th cell polarization is 
in well agreement with the reported ability of LPS to promote a Th1 response inde-
pendently from release of inflammatory cytokines from DCs [40]. In line with the Th1 
response, a phenotypic switch of macrophages (MA) towards a pro-inflammatory 
(MA1) as opposed to anti-inflammatory (MA2) profile [41] is observed in the dynam-
ics of the MA population (fig. 2, panel D). Following phagocytising and presentation 
by specialized antigen presenting cells, the system responds by producing high-affinity 
immunoglobulins (fig. 2, panel A), which will mediate elimination of the antigen. 
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Fig. 2. Simulation of vaccination (i.e. injection of a generic immunogenic molecule) in the 
absence of cytokine injection. At the time of the vaccination (day 5), the steep rise in the anti-
gen quantity is observed, followed by expanded production of antibodies, mainly of IgG type 
(Panel A). Increased immunoglobulin concentration shortly precedes the rapid decrease of 
antigen concentration until its complete clearance (day 20) likely due to effectiveness of the 
mounted immune response (panel A). A boost of both pro- and anti-inflammatory cytokines is 
observed (panel A) following antigen injection (day 5; panel B). The use of LPS as vaccine 
adjuvant in the simulation induces the Th1 polarisation in the CD4+ T cell population, which 
peaks after day 20 (panel C, green line). Presentation of the antigen on MHC-II complexes by 
specialized antigen presenting cells constitutes an early event in the simulated immune response 
to vaccination (day 5) and parallel a boost in MA1 (pro-inflammatory) macrophages which is in 
line with the Th1 response observed in the T helper population (panel D). Starting from day 40, 
contraction of the immune response appears completed and the system is back to the initial 
state. Accordingly, resting antigen-presenting cells now prevail on activated ones (panel D, 
green line). 

 
Pathogens direct the induction of the different Th cell subtypes via distinct effects 

on innate immune cells. In order to test the suitability of our multiscale model we 
performed a series of numerical experiments aiming at inducing a different Th re-
sponse. Most of the stimuli have been directly modelled in the simulation (e.g., DCs 
secreting IL-12, NK cells secreting IFN-γ) whereas others are indirectly taken into 
account (e.g., basophil production of IL-4 rendered by “injecting” a coherent quantity 
of IL-4 in the system). The four types of stimuli drive the system towards four differ-
ent Th polarization states and transient Th subset dominance (fig. 3) [13], as follows: 
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Fig. 3. Outline of four different simulation experiments performed in silico to test the capabili-
ties of the multiscale model: response to viruses or intracellular bacteria eliciting Th1 polariza-
tion (panel 1), to helminth-derived products (towards Th2 phenotype, panel 2), to fungal  
species (towards Th17, panel 3), and to generic antigens in absence of co-stimulatory signals 
(towards Treg, panel 4). See main text for further details. The presence of infectious agents and 
associated tissue damage engage crucial pattern-recognition receptors (PRRs) at the surface of 
dendritic cells which recognise pathogen-associated molecular patterns (PAMPs) from the 
invaders, as well as danger-associated molecular patterns (DAMPs) released from damaged 
cells. Along with the antigen presentation by activated DCs, stimuli such as the local concentra-
tion of cytokines and DC-expressed co-stimulatory molecules will ultimately determine the 
development of a particular Th phenotype [13]. According such known events leading to Th 
differentiation [13], the different simulation experiments have been performed. 

(1) Viruses or intracellular bacteria infecting target cells (e.g., epithelial cells) trig-
ger secretion of danger signal when infected cells become necrotic. The sensing of a 
danger signal stimulates production of IFN-γ by NK cells. TLRs (implicitly repre-
sented in the model) expressed by dendritic cells recognise bacterial and viral PAMPs 
and drive IL-12 production. IFN-γ from innate immune cells such as NK cells aug-
ments the production of IL-12. IFN-γ and IL-12 cues drive the activated undifferenti-
ated Th0 to the Th1 phenotype. In order to simulate the wave of IFN-γ raised by an 
intracellular microbial infection, we stimulated TLRs at the DC outer membrane by 
injection of IFN-γ. As expected based on in vitro studies, IFN-γ stimulus resulted in 
the in a Th1-polarized response as testified by the predominance of Th1 cells over 
other Th subtypes in the simulation [42] (fig. 4 panel A). 

(2) To simulate helminth-derived products such as the SEA Omega-1 glycoprotein, 
which activates DCs to drive Th2 cell induction, we simulated CLRs engagement on 
DCs by injection of a binding antigen. Both IL-4-dependent and -independent induc-
tion of Th2 response have been reported, with basophils constituting the main produc-
ers of IL-4 in the former case [13]. To simulate IL-4-dependent induction of Th2 cells 
differentiation, injection of an amount of IL-4 which is a potent inducer of the Th2 
response [43]. Accordingly, the simulation showed a prevalent expansion of the Th2 
compartment following injection of IL-4 (fig. 4, panel B). 
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(3) Several fungal species initiate cytokine production by DCs that drive Th17 pro-
inflammatory phenotype. We indirectly simulated fungal infection by providing high 
concentrations of TGF-β in parallel with CLR stimulation by generic antigens to re-
produce a Th17 response. Signalling induced by engaging CLRs resulted in DCs se-
creting IL-6 and IL-23, two interleukins promoting differentiation and survival of the 
Th17 T cell subset, respectively [44]. Simulation of the presence of TGF-β and IL-6 
in the cytokine environment (fig. 4, panel C) correctly recapitulated the induction of a 
Th17 response. 

(4) As part of immune response dampening and homeostasis mechanisms, control 
processes to restrain this response from becoming detrimental are activated. Key ex-
ecutors of this immune suppressive function are Treg cells [12]. To obtain a protective 
Treg response we challenged the system with a generic antigen, which does not bear 
the CD80/86 ligand co-stimulatory signals for DCs, thus stimulating them to release 
IL-10 and TGF-β. Under these condition (i.e., the presence of TGF-β and the absence 
of anti-inflammatory cytokine IL-6), we observed a prevalent expansion of the Treg 
compartment (Figure 4, panel D) which is in agreement with experimental data [45]. 

 

Fig. 4. Difference in Th populations following different immunogenic stimuli. The box plots A 
to D show the percentage difference for Th cell count from the initial baseline value at day 120 
(on y-axis difference in percentage is shown: 100 * (T(t')-Th(t0)) / T(t0), where T stands for 
counts of Th1, Th2, Th17 and Treg, t_0 = 0 and T' is day 120 of the in silico experiment; statis-
tics are computed on 50 independent runs). Panels refer to the four different experiments as in 
fig. 2, i.e., stimuli from viruses and intracellular bacteria trigger Th1 polarization (panel A), 
helmints trigger a prevalent Th2 fate (panel B), fungi trigger Th17 (panel C) and finally im-
mune dampening by TGF-β results in Treg differentiation (panel D). 



132 P. Tieri et al. 

 

4 Conclusion 

CD4+ T lymphocyte populations play key functions in the immune response to 
pathogens and tissue damage including help to activate CD8+ effector T lymphocytes 
and macrophages, support to the production of antibodies by B cells and limitation of 
immune responses within non-detrimental boundaries. Accordingly, a number of dis-
orders in human and mice have been related to deregulated T helper differentiation 
process and cell function [2]. The founding Th1/Th2 paradigm of Th cell differentia-
tion has been long known [9] but it is only in recent years that new fundamental Th 
cell subtypes have been discovered [12] [44] and the complexity and plasticity of this 
key immunological process have gained much appreciation. 

We here implemented a multiscale computational approach to simulate T helper 
lymphocyte differentiation in which two different level of description, i.e., gene regu-
lation and cell population dynamics are combined into a complex immune system 
model. We showed how such model integration allows bridging a gap between gene 
level information and cell level population by testing the model to reproduce behav-
iour coherent with experimental data when challenged with different immunological 
challenges. Further steps toward the enhancement of the integrated model will con-
cern the removal of explicit cytokine stimulation (“cytokine injections”), mainly by 
implementing further cell types (e.g., basophils) in the agent-based simulator; another 
feature to be built in the ABM concerns the ability of recognizing specific PAMP 
stimuli, that will be implemented in the near future by adding PAMP receptors able to 
discriminate among helminths, fungi and parasites. The variety of the CD4+ T cell 
differentiation framework is a field of great interest and active investigation from both 
an immunological and a computational point of view, as testified by recent efforts and 
literature [8]. As new progresses in the comprehension of the complex interlink be-
tween innate and adaptive immune responses continue to be elucidated, mathematical 
and computational modeling approaches are likely to be prove indispensable tools to 
organize, and integrate different data types, spatiotemporal scales and theoretical 
frameworks, and to guide in vivo experimentation to accelerate the generation of new 
knowledge. 
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Abstract. Ancestral genome reconstruction is an important step in an-
alyzing the evolution of genomes. Recent progress in sequencing ancient
DNA led to the publication of so-called paleogenomes and allows the in-
tegration of this sequencing data in genome evolution analysis. However,
the assembly of ancient genomes is fragmented because of DNA degrada-
tion over time. Integrated phylogenetic assembly addresses the issue of
genome fragmentation in the ancient DNA assembly while improving the
reconstruction of all ancient genomes in the phylogeny. The fragmented
assembly of the ancient genome can be represented as an assembly graph,
indicating contradicting ordering information of contigs.

In this setting, our approach is to compare the ancient data with
extant finished genomes. We generalize a reconstruction approach mini-
mizing the Single-Cut-or-Join rearrangement distance towards multifur-
cating trees and include edge lengths to avoid a sparse reconstruction
in practice. When also including the additional conflicting ancient DNA
data, we can still ensure consistent reconstructed genomes.

1 Introduction

In comparative genomics, one aim is to analyze the diversity of genomes from
present-day species to reconstruct the structure of ancient genomes and shed
light on the dynamics of evolutionary processes underlying the development
of extant genomes. The speciation history leading to the present-day genomes
can be represented as a phylogenetic tree. Genome reconstruction methods aim
to infer genomic features, such as gene order, at internal nodes of the tree by
comparing conserved features in the extant genomes at its leaves, e. g. under
parsimony assumptions. This problem has already been widely studied under
different models and distance formulations [1, 2, 4, 6, 9, 12, 13].

Besides the phylogeny and the genome sequences of extant species, a third
source of data for reconstruction became available recently. Due to the progress
in sequencing technologies, ancient DNA (aDNA) found in conserved remains
can be sequenced. One example is the genome of the ancestor of Yersinia pestis
strains that is understood to be the cause of the Black Death pandemic [3]. How-
ever, enviromental conditions influence sources for paleogenomes and result in
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degradation and fragmentation of DNA molecules over time, causing sequencing
to produce very short reads [5]. This entails the assembly of aDNA to be specif-
ically challenging and leads to a fragmented assembly with many short contigs
requiring additional scaffolding. The purpose of the present work is to present a
scaffolding method adapted to such datasets, within a phylogenetic framework.

So far, the only existing method specifically targeted at scaffolding aDNA
contigs is FPSAC [11]. It follows a local approach concentrating on one inter-
nal node representing the ancestor of interest and was able to obtain a single
scaffold from a fragmented assembly of the ancient Yersinia pestis strain. In this
paper, we present a global approach for reconstructing all ancient genomes along
a given phylogeny while also scaffolding the aDNA contigs obtained from a pre-
liminary assembly for one internal node of the phylogeny. Contrary to FPSAC,
our approach is global and can be described as an extension of the exact small
parsimony algorithm minimizing the Single-Cut-or-Join distance described in [6]
to the case of multifurcating phylogenetic trees with edge lengths. We show how
this allows to handle, still with an exact polynomial time algorithm, constraints
from the assembly graph of a sequenced ancestral genome.

2 Background

As a basis of this work, the data representation is described first, before the
small parsimony problem under rearrangement distances is introduced.

2.1 Genome Representation

Both extant and ancient genomes are sets of chromosomes, plasmids or contigs.
Each such component is represented by a sequence of oriented markers corre-
sponding to homologous sequences, while each marker is contained once. Markers
can be defined by alignment of assembled aDNA contigs onto the extant genomes
(see [11] for example). To represent the orientation, any marker a has two ex-
tremities, a head ah and a tail at. The order of markers in the genome can also
be represented by adjacencies, which are unordered pairs of two extremities from
neighboring markers, for example {ah, bt}. When one extremity is contained in
two different adjacencies, these are said to be conflicting. Otherwise the genome
can be written as a set of linear or circular sequences of markers and is consistent.

2.2 Augmented Phylogenetic Tree

The underlying general data structure for our studies, shown in Figure 1, is
a phylogenetic tree T = (VT , ET ) representing the relations between extant
species. Leaves annotated with assembled genome sequences correspond to ex-
tant species, internal nodes represent ancestral species. Edges are labeled with
lengths describing the evolutionary distances in the tree. Furthermore, we as-
sume that one internal node is augmented with an assembly graph A = (VA, EA).
We will refer to this augmented node as the assembly graph node and to the tree
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Fig. 1. Phylogenetic tree annotated with extant genomes at its leaves. One internal
node is augmented with an assembly graph illustrating the fragmented assembly. It
may contain conflicting adjacencies, e. g. (2h, 3h) and (2h, 4t).

together with the assembly graph as an augmented phylogenetic tree. An assem-
bly graph is usually a de Bruijn or string graph connecting contiguous regions in
the read data. Paths in the graph are then possible substrings, while branches
indicate uncertainty about the exact genome sequence. For our purpose it is im-
portant to notice that since branching nodes in the graph connect one extremity
with several others, they induce conflicting adjacencies.

2.3 Small Parsimony Problem under Rearrangement Distances

In order to reconstruct ancient genomes, we are starting from consistent genomes
at the leaves of the considered phylogeny, represented by sets of adjacencies, and
look for an optimal labeling, defined as a labeling minimizing a chosen genomic
distance over the tree. This problem is known as the small parsimony problem.

Definition 1 (Parsimonious labeling). Given a tree T = (VT , ET ) with each
leaf l labeled with a state bl ∈ {0, 1}, a labeling λ : V → {0, 1} with λ(l) = bl for
each leaf l is parsimonious if it minimizes the overall distance d in the tree:

W (λ, T ) =
∑

(u,v)∈E

d(λ(u), λ(v)).

In a simple setting, the distance is 0 if the label does not change along an
edge and it is 1 otherwise. While for most rearrangement distances, the parsi-
monious labeling problem is NP-hard, one exception is the Single-Cut-or-Join
(SCJ) distance introduced by Feijão and Meidanis [6], a set-theoretic rearrange-
ment distance modeling cuts and joins of adjacencies.

Definition 2 (SCJ distance [6]). Given two genomes defined by sets of adja-
cencies A and B, the SCJ distance between these genomes is

dSCJ(A,B) = |A−B|+ |B −A|.
An SCJ minimizing consistent labeling over a given phylogenetic tree can be
computed by the Fitch algorithm [7] in polynomial time using a binary encod-
ing, set to 1 if the adjacency is present in the genome and set to 0 otherwise.
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Reconstructed genomes then contain all adjacencies for which the internal node
is labeled 1. Although adjacencies are not independent characters, it has been
shown that the reconstruction of every adjacency separately assigns no conflict-
ing adjacencies, provided that labels at all leaves are consistent and 0 is chosen
in case of ambiguity at the root. The labeling for the rest of the tree is then
unambiguous and provides valid genomes at internal nodes in polynomial time,
minimizing the SCJ distance [6].

However, this reconstruction is sparse as it finds only the most fragmented
under all co-optimal solutions. Some adjacencies will be excluded from the re-
constructed genomes, although they could be included without causing conflicts.
Furthermore, the Fitch algorithm can only handle binary trees and so excludes
phylogenies that are not fully resolved. We will generalize the result of [6] to-
wards multifurcating trees and show how to avoid the sparse approach. Later,
in Section 4, we will show how to integrate the constraints of an assembly graph
at a single ancestral node of the tree.

3 Edge-Weighted Parsimony Problem Minimizing SCJ

Like the Fitch algorithm [7], the Hartigan algorithm [8] consists of a bottom-up
and a top-down traversal of the phylogenetic tree. It is a generalization towards
multifurcating trees and finds, in contrast to Fitch, all optimal parsimonious la-
belings. However, this more general algorithm induces ambiguity also at internal
nodes of the tree. For the small parsimony problem with the SCJ distance, it can
easily be shown that choosing 0 whenever possible, also at internal nodes of the
tree, results in a consistent labeling, but this could result in an even sparser so-
lution. Conversely, always including an adjacency in case of ambiguity can result
in complex conflicts and would therefore require a subsequent conflict resolving
step that is mindful of the tree structure. To avoid this, we propose to include
edge lengths in the reconstruction and minimize an edge-weighted SCJ distance.

Definition 3 (Edge-weighted SCJ distance labeling problem). Given a
tree T = (VT , ET ) with each leaf labeled with adjacencies and each edge e ∈ ET

labeled with an edge length �(e), a labeling γ of the internal nodes of T is an
edge-weighted SCJ minimizing consistent labeling if none of the internal nodes
contains a conflict and it minimizes the overall tree distance

D(γ, T ) =
∑

(u,v)∈E

dSCJ(γ(u), γ(v))

�((u, v))
.

3.1 Hartigan Algorithm with Edge Lengths

Consider the reconstruction for one adjacency α in a tree T . A leaf is labeled
according to the absence or presence of α in its extant genome. In the bottom-
up phase, every node x with children C(x) is annotated recursively with two
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candidate sets Bα
1 and Bα

2 . For both states b ∈ {0, 1}, consider all children y ∈
C(x) with b ∈ Bα

1 (y) and let kαx (b) =
∑

y∈C(x),
b∈B1(y)

1
�((x,y)) and K = maxb{kαx (b)}.

Then, if e is the edge connecting x to its parent, let

Bα
1 (x) = {b | kαx (b) = K}, Bα

2 (x) = {b | kαx (b) = K − 1

�(e)
}.

In the top-down phase, the root r is assigned with a state b ∈ Bα
1 (r). When

processing node x, let b be the state assigned to it in an optimal labeling. Then
a child y ∈ C(x) is labeled as follows:

Fα(y) =

⎧
⎪⎨

⎪⎩

{b} if b ∈ Bα
1 (y)

{b} ∪Bα
1 (y) if b ∈ Bα

2 (y)

Bα
1 (y) otherwise

We note that the set Bα
1 is likely to be of cardinality one and the set Bα

2 is likely
to be empty in real data sets, where edges are annotated with non-trivial edge
lengths such as rational numbers. Therefore the second case rarely occurs and
there is often no choice in the other cases. Hence in most real instances, there
will be a unique most parsimonious labeling for all adjacencies.

3.2 Reconstructing Consistent Genomes

Following the proof of Lemma 6.1 in [6], we can show that also the edge-weighted
Hartigan algorithm assigns consistent genomes. We still assume a sparse variant
of the algorithm where the label 0 is chosen during the top-down phase any time
there is an ambiguity and call it sparse edge-weighted Hartigan algorithm.

Lemma 1. Given two conflicting adjacencies α and β, for each node x of a tree T
labeled according to the sparse edge-weighted Hartigan algorithm, if Bα

1 (x) = {1},
then Bβ

1 (x) = {0} if � leaf l with both Bα
1 (l) = {1} and Bβ

1 (l) = {1}.
Proof. The proof is by induction on the height h of a node x in the tree, which
is the maximal length from x to any descendant leaf. For h = 0, the node is a
leaf annotated with a consistent genome, therefore the lemma holds.

When h ≥ 1, we assume that any node with height g < h and therefore
all children of x satisfy the lemma. We denote the sum of edge lengths from
x to all children y ∈ C(x) annotated with Bα

1 (y) = {0} with lα0 , to children
annotated with Bα

1 (y) = {1} with lα1 and edge lengths to children annotated
with Bα

1 (y) = {0, 1} with lα01. For the two states 0 and 1, we sum the weights to
the appropriate children and have kαx (0) = lα0 + lα01 and kαx (1) = lα1 + lα01. Now
we can make some observations about the relation of sets B1 in the children of
x according to the Hartigan algorithm. Bα

1 (x) = {1} only if kαx (1) > kαx (0) and
thus lα1 + lα01 > lα0 + lα01 ⇒ lα1 > lα0 .

Next we consider the second adjacency β that is in conflict with α. As by
induction hypothesis any child y satisfies the lemma, at least all children with
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Bα
1 (y) = {1} have to have Bβ

1 (y) = {0} and thus lβ0 ≥ lα1 . On the other hand,

only children with B1(α, y) = {0} can have B1(β, y) = {1}, so lβ1 ≤ lα0 .

Taking these three observations together, we can derive that lβ0 ≥ lα1 > lα0 ≥ lβ1 ,

therefore lβ0 + lβ01 > lβ1 + lβ01, which is the same as kβx (0) > kβx (1), implying

Bβ
1 (x) = {0}. Therefore when Bα

1 (x) = {1}, we have Bβ
1 (x) = {0}. �	

Lemma 2. Given two conflicting adjacencies α and β, for each node x of
a tree T labeled according to the sparse edge-weighted Hartigan algorithm, if
Fα(x) = {1}, then choosing F β(x) = {0} is always possible.

Proof. As the edge weights are only influencing the bottom-up phase, we do
not have to consider them in the top-down phase. Suppose there are internal
nodes with value 1 assigned to both α and β. Choose such a node with minimal
distance to the root and call it v. We have different possibilities for B1 and
B2 of v according to α and β, summarized in Table 1. Note that by Lemma 1,
Bα

1 (v) = Bβ
1 (v) = {1} cannot occur. In cases 1–4, choosing 0 for α or β is always

possible independent of the parent assignment. In case 5, the parent assignment
for both α and β has to be 1 in order to also assign 1 to v. This, however,
contradicts the minimality of the depth of v and therefore concludes the proof.

�	
Table 1. Case differentiation for bottom-up sets that fulfill Lemma 1 and could assign
label 1 for both adjacencies α and β

1 2 3 4 5

Bα
1 (v) = {1} Bα

1 (v) = {0} Bα
1 (v) = {0} Bα

1 (v) = {1, 0} Bα
1 (v) = {1, 0}

Bα
2 (v) = {0} ∨ ∅ Bα

2 (v) = {1} Bα
2 (v) = {1} Bα

2 (v) = ∅ Bα
2 (v) = ∅

Bβ
1 (v) = {0} Bβ

1 (v) = {1} Bβ
1 (v) = {0} Bβ

1 (v) = {0} Bβ
1 (v) = {1, 0}

Bβ
2 (v) = {1} Bβ

1 (v) = {0} ∨ ∅ Bβ
1 (v) = {1} Bβ

2 (v) = {1} Bβ
2 (v) = ∅

Theorem 1. For a rooted phylogenetic tree T with leaves annotated with consis-
tent genomes containing the same set of markers, the sets Gv = {α : Fα(v) = 1}
assigned to all internal nodes v with the sparse edge-weighted Hartigan algorithm
are consistent genomes and minimize the edge-weighted SCJ distance.

Proof. According to Theorem 6.3 in [6], including the adjacency α in every node
v, where Fα(v) = 1, builds genomes that minimize the SCJ distance over T.
Lemma 2 shows that also with the sparse edge-weighted Hartigan algorithm
no conflicting adjacencies will be assigned to a node v. Therefore the sets Gv

minimize the total sum of SCJ cost per edge length. �	

4 Integrating aDNA Sequencing Information

The assembly graph based on ancient sequencing reads (cf. Figure 1) defines pu-
tative adjacencies between markers on connected contigs. These adjacencies con-
strain the reconstruction by providing evidence of the genome structure directly
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seen at an internal point in the tree. We include these constraints by extending
the original tree with an additional leaf attached to the assembly graph node.
This leaf will be labeled with the presence or absence of an adjacency in the
assembly graph, just like the leaves representing extant genomes. The respective
edge length �(e) has to be chosen in regard to the other two connected edges a
and b of the assembly graph node such that the additional information is rele-
vant at all but not generally dominating. Hence it has to be chosen such that
1

�(e) is in the interval [( 1
�(a) − 1

�(b) ), (
1

�(a) +
1

�(b))] for �(a) < �(b), where a smaller

edge length gives the assembly graph more importance.
However the set of adjacencies present in the assembly graph is not necessar-

ily consistent and can cause conflicts. Instead of adding a postprocessing step
that resolves all the conflicts in the tree after the reconstruction, we propose
in Algorithm 1 an approach that integrates the conflicts resolving into the re-
construction process. To resolve conflicts, we rely on the exact polynomial time
MAX-ROW-component-mCi1P algorithm described in [10]. It selects a subset
of adjacencies that form a set of linear and/or circular chromosomes based on a
maximum-weight matching in a graph.

Algorithm 1. Consistent reconstruction integrating aDNA sequencing data

Input: A tree T with edge lengths, extant consistent genomes, aDNA assembly graph
Output: A consistent labeled tree minimizing the edge-weighted SCJ distance.
1: Attach an additional leaf to the assembly graph node v
2: Reroot the tree such that v becomes its root
3: for each adjacency α do
4: for each internal node x in T do
5: Compute Bα

1 (x) and Bα
2 (x) with the sparse edge-weighted Hartigan algorithm

6: A = {α|1 ∈ Bα
1 (v)}

7: Solve MAX-ROW-component-mCi1P for A
8: for each adjacency α do
9: for each internal node x in T do
10: Compute Fα(x) with the sparse edge-weighted Hartigan algorithm

Theorem 2. Given an augmented phylogenetic tree, Algorithm 1 computes a
consistent labeling integrating the assembly graph information and minimizing
the edge-weighted SCJ distance in polynomial time.

Proof. Acoording to Theorem 1, the sparse edge-weighted Hartigan algorithm
assigns consistent, SCJ minimizing genomes when the leaf labels are consistent.
Rerooting the tree will not affect the outcome of the reconstruction. In the
bottom-up phase, the conflicting leaf will only influence the assignment at the
root. All other internal nodes fulfill Lemma 1, as the original leaves are con-
sistently labeled. Therefore they cannot cause a conflicting assignment in the
top-down phase when the parent assignment is consistent. As conflicts can thus
only occur at the root node, they have to be resolved with a minimal increase in
parsimony costs before propagating the assignment down the tree during the top-
down phase. Selecting a maximum cardinality subset of all adjacencies assigned



142 N. Luhmann et al.

to the root can be done by solving the MAX-ROW-component-mCi1P [10]. With
a consistent root labeling, the top-down assignment will be consistent according
to Lemma 2.

The traversal of the tree with n leaves and a adjacencies takes O(an) time.
The MAX-ROW-component-mCi1P can be solved in O(a3/2) [10]. Therefore the
overall running time is in O(an+ a3/2). �	

5 Conclusion

We have described a generalization of the exact algorithm solving the small par-
simony problem under the SCJ rearrangement distance. Computing the labeling
of internal nodes with the Hartigan algorithm enables handling multifurcating
trees. Including edge lengths still ensures the reconstruction of valid genomes
and is also expected to provide a unique optimal solution under non-trivial edge
lengths in practice. Building upon this result, we presented an integrated phy-
logenetic assembly approach. It includes aDNA sequencing information in the
reconstruction of other ancient genomes in the phylogeny and also scaffolds the
fragmented assembly while minimizing the SCJ distance.

Among the questions our work raises, it would be interesting to study model
variants that allow to integrate copy numbers or unequal marker content. An-
other question of interest would be to design efficient heuristics or parameterized
algorithms to augment an initial parsimonious consistent labeling with extra ad-
jacencies that preserve both parsimony and consistency.
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Abstract. Comparing sequences is a daily task in bioinformatics and
many software try to fulfill this need by proposing fast execution times
and accurate results. Introducing a new software in this field requires to
compare it to recognized tools with the help of well defined metrics. A
set of quality metrics is proposed that enables a systematic approach for
comparing alignment tools. These metrics have been implemented in a
dedicated software, allowing to produce textual and graphical benchmark
artifacts.

Keywords: sequence, alignment, benchmark.

1 Introduction

In Bioinformatics, the task of comparing genomic sequences is ubiquitous, lead-
ing to various software proposals over the years. With the NGS revolution, this
task is becoming more and more time consuming as the size of NGS data truly
explodes.

Software have tried to cope with this situation in different ways. First, by using
known algorithms with optimized hardware usage. Second, by proposing new
heuristics to reduce the searching space. The historically sequence comparison
tools are:

– SSEARCH [1] that proposes an implementation of the Smith-Waterman al-
gorithm with an efficient usage of multicore / SSE architecture; it provides an
”exact” search alignment algorithm and is therefore slow, and consequently
inadapted for large requests.

– BLAST [2] and FASTA [1] that both propose a seed based heuristics to speed-
up the computation with a small loss of quality w.r.t. exact algorithms.

The trade-off between speed and quality is the key point. As a consequence,
to evaluate new Alignment Search Tools (AST for short), benchmarking has to
focus on time and quality metrics. Comparing execution times is straightforward.
On the other hand, comparing quality is more challenging since it requires to
define a precise quality metric.

S. Campos (Ed.): BSB 2014, LNBI 8826, pp. 144–153, 2014.
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The paper presents a methodology for comparing the results of AST. We
explicitly target intensive sequence comparison for which there is an increasing
demand due to high throughput sequencing opportunities. A quality metric is
defined and applied to a set of software and benchmarks.

2 Benchmarking AST

2.1 Configuration

To fairly benchmark AST, many configuration aspects must be taken into con-
sideration:

1. For a given request, AST have to be configured for providing similar results.
This is far from obvious since they generally propose a large set of parame-
ters. In some cases, they can have hidden configuration. For instance, some
AST may keep only the best N hits for a given query, some results being
thus filtered out; other AST that don’t use such filtering should find more
alignments, making AST comparison difficult.

2. Some AST implicitly modified the input banks. For instance, low complexity
region [3], [4] can be systematically masked. These transformations may have
significant influence on the results compared to other tools that are not
applying these kinds of pre-processing.

3. AST often provide a statistical model telling whether an alignment has to be
kept or not (for instance Karlin/Altschul model of Blast). Thus, AST with
different models are likely to produce different alignments.

These points have a strong impact on the alignment list generated by the
AST. Consequently, they need to be included in the quality metric itself. As a
side effect, the AST command lines have to be explicitly described as part of the
benchmark results.

In the following, we note T (0) (or T for short) an AST with its default con-
figuration. Specific configurations of T will be noted as T (i) for i ≥ 1.

2.2 Input Request

To compare AST, a minimal set of common parameters needs to be specified.
Table 1 lists the parameters we selected.

Parameters r1 to r9 have a direct impact on the output alignments. The r10
parameter has an impact on the execution time. The execution time can be used
to analyze the scalability of AST as a function of the number of cores.

A request R can now be defined by a set of ri. If not all ri are specified, it is
supposed that default values are used instead. A relation of equivalence can also
be defined between two requests Ra and Rb:

Ra ∼ Rb ⇐⇒ ∀i ∈ [1..10]; ri(Ra) = ri(Rb)
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Table 1. Request parameters

r1) query bank r6) reward cost

r2) subject bank r7) penalty cost

r3) e-value r8) substitution matrix

r4) open gap cost r9) low complexity filtering

r5) extend gap cost r10) number of cores

2.3 Output Data

Comparing AST qualities implies that AST generates the same nature of infor-
mation. We choose the information provided by the Blast tabular output format;
for each alignment, it provides 12 properties pi as shown in table 2. Table 3 is
an illustration of a Blast output.

Table 2. Alignment properties

p1) query sequence id p7) start offset in query

p2) subject sequence id p8) end offset in query

p3) percentage of identity p9) start offset in subject

p4) alignment length p10) end offset in subject

p5) number of mismatches p11) e-value

p6) number of gap openings p12) bitscore

Relying only on this set of properties means that only AST able to provide this
information would be candidate. Fortunately, many AST can be parameterized
to generate Blast-like tabular output format.

Table 3. Example of Blast tabular output

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
SPO13535 SPP02309 39.34 305 181 4 29 332 17 302 7.5e-62 231.6

SPO13535 SPQ91G55 34.93 209 134 2 42 250 46 252 1.5e-31 130.4

SPP02400 SPQ196T6 30.18 603 388 3 90 663 49 647 1.6e-76 282.4

3 Alignment Quality Metric

3.1 Definitions

Before specifying an alignment quality metric, we introduce the following defi-
nitions:

– I is a set of integers i ∈ [1..12]. I specifies a subset of properties pi defined
in table 2
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– For a given set I, an alignment a is an object having properties pi for i ∈ I
– Two alignments x and y are equivalent if their properties have the same

values:
x ∼ y ⇐⇒ ∀i ∈ I; pi(x) = pi(y)

– an alignment set A contains alignments defined for a specific set I

An alignment set may contain equivalent items. In such a case, items equiva-
lent to some alignment a are grouped into an equivalence class ã.

ã = {x ∈ A; a ∼ x}

We define Ã as the set built from A by keeping only one item of each equivalence
class ã.

Taking the example of table 3, for I = {1}, we have the alignment set A =
{a1, a2, a3} and the set of equivalent alignments Ã = {ã1, ã2} with:

⎧
⎨

⎩

p1(a1) = ”SPO13535”
p1(a2) = ”SPO13535”
p1(a3) = ”SPP02400”

{
p1(ã1) = ”SPO13535”
p1(ã2) = ”SPP02400”

3.2 From AST Output to Alignment Set

With these definitions, an AST output can be formally transformed into an
alignment set A where only some properties defined by the set I are kept. An
alignment set can thus be defined as A := ϕ(T,R, I) with T corresponding to
the AST, R the request and I the set of properties.

Figure 1 illustrates the transformation of a Blast output.

Fig. 1. Building an alignment set from an AST output
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Note also that the same output generated by a tool will be viewed differently
for two distinct sets I1 and I2. Therefore several quality metrics based on different
I sets can be defined to provide different benchmark points of view.

3.3 Comparing AST

For a request R (defined by a set of ri from table 1) and a given set I, we note:

A1 = ϕ(T1, R, I), alignment set found by AST T1 for request R

A2 = ϕ(T2, R, I), alignment set found by AST T2 for request R

Comparing T1 to T2 consists in finding a set M (I) such as:

M (I) =

⎧
⎨

⎩

(x, y) ∈ A1 ×A2; x ∼ y

∀(x′, y′) ∈ A1 ×A2;

{
x ∼ y′ ⇒ y′ = y
x′ ∼ y ⇒ x′ = x

The intuitive idea of this definition is to map an item from one set to at most
one item of the other set. Note that some alignments in one set may not be
connected to an alignment in the other set as shown figure 2.

The estimation of ”how close two sets A1 and A2 are” can be done by consid-
ering the cardinality |M (I)| which represents the number of common alignments

between A1 and A2. We define three numbers N
(I)
c , N

(I)
1 and N

(I)
2 :

– N
(I)
c := |M (I)|, number of common alignments between A1 and A2

– N
(I)
1 := |A1| − |M (I)|, number of alignments specific to A1

– N
(I)
2 := |A2| − |M (I)|, number of alignments specific to A2

Finally, the alignment quality metric for a given I under a Q(I) function is
defined as:

A1 ×A2
Q(I)

−−−→ (
N (I)

c , N
(I)
1 , N

(I)
2

)

Fig. 2. Example of equivalent alignments between two sets A1 and A2 for I = {1}
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With the following properties:

1. Q(I)(A,A) = (|A|, 0, 0)
2. Q(I)(A1, A2) = (x, y, z) =⇒ Q(I)(A2, A1) = (x, z, y)

Note that this definition of the alignment quality metric is relative: it only
gives information for a specific couple of alignment sets. It does not provide ab-
solute assessment for one AST. The consequence is that one of the AST (T1, T2)
needs to be chosen as a reference when comparing many AST together.

The percentage of alignments found by T2 in the alignments of T1 can also be
defined as:

α
(I)
2 =

N
(I)
c

N
(I)
c +N

(I)
1

Taking figure 2 as example, we have Q(I)(A1, A2) =
(
5, 11, 6

)
. T2 is able to

find α
(I)
2 = 5

5+11 = 31.25% of the alignments found by T1. Similarly, T1 finds

α
(I)
1 = 5

5+6 = 45.45% of the alignments found by T2.

Comparing N AST Ti is simply done by computing Q(I)(Ai, Aj) for all (i, j) ∈
[1..N ]2. Note that computation is only required for i >= j because of the second
property of the quality definition.

4 Results

4.1 List of Benchmarked Tools and Quality Metrics

The evaluation of our methodology has been done with the following tools :

T1:=SSEARCH T2:=BLAST T3:=PLAST T4:=UBLAST

In this set of AST, SSEARCH is the only exact tool, the other ones are based
on heuristics. Thus, SSEARCH is taken as the reference. In that way, it can be
seen how close heuristics based tools are from an exact reference. BLAST [2],
PLAST [5] and UBLAST [6] are heuristic based tools.

By default, heuristics based tools are configured to get the best trade-offs
between speed and quality. Of course, these tools can also be configured by
setting specific parameters in order to get a better quality or a better speed.
Table 4 gives several configurations used for the benchmark.

Three different quality metrics (defined by a specific set I) are considered :

– Iquery = {1} with Ã, the equivalent class alignment set; this metric compares
the number of matched queries between tools

– Ihit = {1, 2} with Ã, the equivalent class alignment set; this metric compares
the number of matched couples [subject,query] between tools

– Ialign = {1, 2, 7, 8, 9, 10} with A, the alignment set; this metric compares the
number of alignments sharing the same [subject,query] identifiers and the
same [subject,query] boundaries.
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Table 4. Tools specific configurations

Name Configuration Purpose

BLASTN blast -task blastn nucl/nucl requests

MEGABLAST blast -task megablast nucl/nucl requests

BLASTQ blast -max-target-seqs 25000 quality improvement

UBLASTQ ublast -accel 1 quality improvement

PLASTS plast -seeds-use-ratio 0.01 speed improvement

These 3 metrics go from the worst to the best precision. As a matter of fact,
the corresponding sets I provide more and more selective relations of equivalence
between alignments. As explained later, two AST may be close for Iquery and
even for Ihit but may have significant differences for Ialign; this is shown by small

value for N
(Ialign)
c and big values for N

(Ialign)
1 and N

(Ialign)
2 .

4.2 Results

In the following tables, we dump α
(I)
2 , the percentage of alignments found by T2

in the alignment set of T1.
Two ratios of execution time between T1 and T2 can be defined:

1. SUtotal : speedup for the total execution time of a request, including bank
preparation when needed (use of makeblastdb for instance)

2. SUAST : speedup for the execution time of the sequences comparison only
(exclude makeblastdb execution time for instance)

Table 5. [Escherichia Coli vs. uniprot sprot, evalue=1e-3, nbcores=16]

T1 T2 α2(Ialign) α2(Ihit) α2(Iquery) SUtotal SUAST

ssearch blast 55.5 58.1 99.8 5.48 5.80

ssearch plast 93.9 97.1 99.8 26.22 32.54

ssearch ublast 29.0 64.4 99.8 64.41 146.60

ssearch blastQ 94.2 97.4 99.8 4.90 5.08

ssearch plastS 73.2 77.1 99.4 52.07 84.43

ssearch ublastQ 30.4 69.1 99.8 40.61 62.63

Table 6. [Chitinophaga Pinensis vs. uniprot sprot, evalue=1e-3, nbcores=16]

T1 T2 α2(Ialign) α2(Ihit) α2(Iquery) SUtotal SUAST

ssearch blast 61.4 64.2 98.7 5.33 5.45

ssearch plast 92.0 95.9 97.9 29.23 33.26

ssearch ublast 19.9 52.4 78.9 89.48 157.96
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Tables 5 and 6 show a protein/protein comparison between swissprot [10] and
two bacterias [8],[9] from which several comments can be done:

– Heuristics based tools have good speedups, especially UBLAST
– AST quality are very close to SSEARCH for I(query) (except UBLAST,

Table 6)
– With default configuration, BLAST and UBLAST have poor results for I(hit)

and I(align); only PLAST manages to recover most of the SSEARCH results
– For two similar requests, PLAST has the smallest discrenpencies for the 3

metrics, followed by BLAST and then by UBLAST

Table 7. [uniprot sprot 40000b vs. uniprot sprot 40000, evalue=1e-30, nbcores=16]

T1 T2 α2(Ialign) α2(Ihit) α2(Iquery) SUtotal SUAST

ssearch blast 86.5 89.9 97.1 8.40 8.46

ssearch plast 88.9 92.4 96.3 44.62 46.48

ssearch ublast 6.4 19.9 22.8 375.46 591.03

Tables 7 compares a subset of 40000 sequences from swissprot to another
subset of 40000 sequences from swissprot. Here, BLAST and PLAST have similar
values for the 3 metrics and are close to the reference; speedups are interesting,
especially for PLAST. For this request, UBLAST is still very fast but has poor
values for the 3 metrics. Other tools configurations give similar quality results.

Table 8. [SRR142736 vs. uniprot sprot, evalue=1e-3, nbcores=16]

T1 T2 α2(Ialign) α2(Ihit) α2(Iquery) SUtotal SUAST

blastQ blast 73.8 72.3 100.0 1.00 1.00

blastQ plast 77.7 95.4 98.1 6.70 7.10

blastQ ublast 19.8 64.9 82.0 40.30 68.91

Table 9. [TARA sample vs. uniprot sprot, evalue=1e-3, nbcores=16]

T1 T2 α2(Ialign) α2(Ihit) α2(Iquery) SUtotal SUAST

blastQ blast 82.1 80.8 100.0 1.00 1.00

blastQ plast 80.8 94.7 83.1 6.50 6.68

blastQ ublast 17.2 59.2 29.9 71.10 105.50

Tables 8 shows a genomic query and table 9 a meta-genomic query [11], with
swissprot as subjet bank. SSEARCH can’t be used as reference here so BLASTQ
is used instead. BLAST and PLAST are similar for I(align), with better results
for PLAST on I(hit) and better results for BLAST on I(query). UBLAST is still
the fastest tool with poor quality, in particular in the meta-genomic case.
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Table 10. [SRR027344 vs. nt 2000000 seqs, evalue=1e-30, nbcores=16]

T1 T2 α2(Ialign) α2(Ihit) α2(Iquery) SUtotal SUAST

blastQ blast 64.8 64.6 100.0 1.03 1.03

blastQ megablast 61.1 61.0 96.6 5.17 12.48

blastQ plast 94.2 94.2 96.8 5.38 14.07

blastQ ublast 90.1 94.9 95.6 0.63 0.65

Tables 10 is a nucleotide/nucleotide request, comparing a set of reads to
2, 000, 000 sequences from the nt [12] database. Here, PLAST and UBLAST pro-
vide the best quality metrics w.r.t. BLASTQ, with good speedups for PLAST.

In brief, we summarize this benchmark with the following observations:

– As expected, heuristics based tools are fast at the expense of quality; for
instance, UBLAST is very fast but has often poor quality for the chosen
metrics

– Surprisingly, BLAST with default configuration has sometimes poor quality
for some metrics; a special configuration like BLASTQ is needed for recov-
ering full quality

– PLAST is a good trade-off between speed and quality; it is faster than
BLAST with similar quality values.

5 Conclusion

In this paper, we have defined a set of quality metrics for comparing alignment
search tools (AST). Comparing AST is important to understand how the AST
behave and what should be expected from the alignments they produce. In par-
ticular, these metrics allow the distance between exact and heuristics based tool
to be precisely evaluated.

These metrics have been tested on standard AST. The benchmark results
provides some interesting hints that can be used to match a specific tool with
user needs; for instance, PLAST is a good trade-off in terms of speed/quality,
and UBLAST is interesting if speed is crucial and if quality loss is acceptable
(particularly for alignment and hit metrics).

Other quality metrics are currently under investigation to better capture user
needs according to the application domains where AST are involved. A next
step is also to gather in a public database many experimentations and offer
to the scientific community a way to select the best AST according to their
needs. Other AST will also be added to extend the scope of this methodology.
Finally, a web interface [7] is under development and already provides a graphical
representation of the metrics.
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