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Abstract. Security protocols are often found to be flawed after their
deployment. We present an approach that aims at the neutralization or
mitigation of the attacks to flawed protocols: it avoids the complete dis-
missal of the interested protocol and allows honest agents to continue
to use it until a corrected version is released. Our approach is based on
the knowledge of the network topology, which we model as a graph, and
on the consequent possibility of creating an interference to an ongoing
attack of a Dolev-Yao attacker, by means of non-collaboration actuated
by ad-hoc benign attackers that play the role of network guardians. Such
guardians, positioned in strategical points of the network, have the task
of monitoring the messages in transit and discovering at runtime, through
particular types of inference, whether an attack is ongoing, interrupting
the run of the protocol in the positive case. We study not only how but
also where we can attempt to defend flawed security protocols: we investi-
gate the different network topologies that make security protocol defense
feasible and illustrate our approach by means of concrete examples.
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1 Introduction

1.1 Context and Motivation

Security protocols are often found to be flawed after their deployment, which
typically requires “dismissing” the protocol and hurrying up with the deploy-
ment of a new version hoping to be faster than those attempting to exploit the
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discovered flaw. We present an approach that aims at the neutralization or mit-
igation of the attacks to flawed protocols: it avoids the complete dismissal of the
interested protocol and gives honest agents the chance to continue to use it until
a corrected version is released.

The standard attacker model adopted in security protocol analysis is the one
of [12]: the Dolev-Yao (DY) attacker can compose, send and intercept messages
at will, but, following the perfect cryptography assumption, he cannot break
cryptography. The DY attacker is thus in complete control of the network—in
fact, he is often formalized as being the network itself—and, with respect to net-
work abilities, he is actually stronger than any attacker that can be implemented
in real-life situations. Hence, if a protocol is proved to be secure under the DY
attacker, it will also withstand attacks carried out by less powerful attackers;
aside from deviations from the specification (and the consequent possible novel
flaws) introduced in the implementation phase, the protocol can thus be safely
employed in real-life networks, at least in principle.

A number of tools have been proposed for automated security protocol analy-
sis (e.g., [1,5,11,13,19,20] to name just a few), all of which follow the classical
approach for security protocol analysis in which there is a finite number of hon-
est agents and only one DY dishonest agent, given the implicit assumption that
in order to find attacks we can reduce n collaborative DY attackers to 1 (for a
proof of this assumption see, e.g., [2]).

In this paper, we take a quite different approach: we exploit the fact that if in
the network there are multiple non-collaborative attackers, then the interactions
between them make it impossible to reduce their attack “power” to that of a
single attacker. This paper is based on the network suitable for the study of
non-collaborative scenarios defined in our previous works [14,15], in which we
introduced a protocol-independent model for non-collaboration for the analysis
of security protocols (inspired by the exploratory works [3,4] for “protocol life
after attacks” and attack retaliation). In this model: (i) a protocol is run in
the presence of multiple attackers, and (ii) attackers potentially have different
capabilities, different knowledge and do not collaborate but rather may interfere
with each other.

Interference between attackers has spawned the definition of an ad hoc
attacker, called guardian, as a defense mechanism for flawed protocols: if two
non-collaborative attackers can interfere with each other, then we can exploit
this interference to neutralize or at least mitigate an ongoing attack (a detailed
cost-effective analysis of this approach is left for future work).*

There is one fundamental catch, though. We know that a DY attacker actu-
ally cannot exist (e.g., how could he control the whole network?) but postulating

LIt is interesting to note how this idea of “living with flaws” is becoming more and
more widespread; see, e.g., [9] where runtime monitors are employed to warn users of
android applications about “man in the middle” attacks on flawed implementations
of SSL. Our approach is also related to signature-based intrusion detection systems,
but we leave the detailed study of the relations of our approach with runtime mon-
itors and signature-based intrusion detection systems for future work.
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his existence allows us to consider the worst case analysis so that if we can prove a
protocol secure under such an attacker, then we are guaranteed that the protocol
will be secure also in the presence of weaker, more realistic attackers. A guardian,
however, only makes sense if it really exists, i.e., if it is implemented to defend
flawed protocols for real, but the attackers and the guardian presented in [14,15]
are modeled in order to discover interactions between agents in non-collaborative
scenarios rather than pushing for an implementation in the real-world.

1.2 Contributions

Since implementing a guardian with the full power of a DY attacker is impossible,
we must investigate ways to make the guardian more feasible. In order to reduce
the complexity of the possible implementation of such a defense mechanism, in
this paper we relax the notion of guardian and ask him to defend only a subset
of the communication channels of the network, which we put under his control.

Furthermore, not being obviously able to know where the competitor is, we
investigate where we have to introduce this defense mechanism in the network
from a topological perspective, i.e., how the guardian can dominate his competi-
tor(s).?2 Modeling the network as a graph, we study how the topological position
of an attacker E' and a guardian G, with respect to each other and to honest
agents of the protocol, can influence a protocol attack and, thus, the possible
defense against it. We define six basic topological configurations and study the
outcome of the introduction of a guardian in each specific position. We also intro-
duce the concept of topological advantage, which guarantees that the guardian
has an advantage with respect to his competitors, and can thus carry out infer-
ence on messages in transit in order to detect an ongoing attack and eventually
mitigate or neutralize it.

The contributions of this paper thus extend, and in a sense are complemen-
tary to, the ones in our previous works [14,15]. In a nutshell: there we discussed
the how we can defend flawed security protocols and here we discuss the where.
More specifically, as we will describe in the following sections, in [14,15], we put
the basis for the study of the interaction of two attackers in non-collaborative
scenarios with the goal of understanding and finding the types of interference
the guardian can use, and, in this paper, we give the means to understand how
to exploit the interference from a topological point of view, thus bringing the
guardian close to real implementation.

1.3 Organization

We proceed as follows. In Sect. 2, we summarize the main notions of attack inter-
ference in non-collaborative scenarios. In Sect. 3, we formalize the models of the
network and of the guardian, with particular emphasis on the topological advan-
tage that a guardian must have in order to defend against attacks. In Sect. 4,

2 In the following, we focus on one competitor (i.e., one attacker), but it is quite
straightforwardly possible to extend our work to multiple competitors.
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we discuss, as a detailed proof-of-concept, how we can defend the ISO-SC 27 pro-
tocol and summarize the results we obtained for other case studies. In Sect. 5,
we briefly summarize our results and discuss future work.

2 Attack Interference in Non-collaborative Networks

2.1 Network Agents

Let Agents be the set of all the network agents, which comprises of two disjoint
subsets:

— the subset Honest of honest agents who always follow the steps of the security
protocol they are executing in the hope of achieving the properties for which
the protocol has been designed (such as authentication and secrecy), and

— the subset Dishonest of dishonest agents (a.k.a. attackers) who may eventually
not follow the protocol to attack some (or all) security properties. In addition
to being able to act as legitimate agents of the network, dishonest agents
typically have far more capabilities than honest agents and follow the model
of Dolev-Yao [12] that we summarized in the introduction.

The knowledge of an honest agent X is characterized by a proprietary dataset
Dx, which contains all the information that X acquired during the protocol
execution, and is closed under all cryptographic operations on message terms
(e.g., an agent can decrypt an encrypted message that he knows provided that
he knows also the corresponding decryption key). Dx is monotonic since an
agent does not forget.

2.2 DY Attackers and the Network in a Non-collaborative Scenario

In this paper, we take the non-classical approach that leverages on the fact
that the interactions between multiple non-collaborative attackers may lead to
interference. We base our work on the network suitable for the study of non-
collaborative scenarios defined in [14,15], which we now summarize quickly point-
ing to these two papers for more details.

Table1 shows the model that we adopt to formalize a DY attacker E in
a non-collaborative scenario in which different attacks may interfere with each
other (we restrict the study of this type of interaction to two active attack-
ers but it can be generalized to multiple ones). The knowledge base of E is
encoded in the set Dg, whereas D, is the proprietary dataset for the network
(we will return to the network model below). The rules in the table describe
the operations that an attacker can perform internally, how he can interact
with the network and how the system (i.e., the network environment) is config-
ured. It is important to note that the rules in Table 1 are transition rules rather
than deduction rules, i.e., they describe knowledge acquisition from a given
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Table 1. Dolev-Yao attacker model for non-collaborative scenarios: internal operations
(synthesis and analysis of messages), network operations (spy, inject, erase) and system
configuration ( True-Sender-ID, DecisionalProcess, NetHandler). NetHandler describes
the set of attackers who are allowed to spy by applying one of the spy rules. We omit
the usual rules for conjunction.

Composition: Encryption: Projection: Decryption:
mi € Dy ma € D&, m € Dy k€ Dy (m1,m2) € Dig {m}, € Dy k'€ D
(m1,m2) € Di {m}r € Di m; € Dy for j € {1,2} m € D
Inflow-Spy: Outflow-Spy:
€ Dhy  ofInterestp(X) Y € Dy € DL, sender(p) € Dy ofInterests(Y)
m € D A sender(< X,m,Y >) € D! m e DEPAY € DY

where p =< X,m,Y > and ¢ =F € canSee(<X,m,Y >,1))

Injection: Erase:
meDy XeDy Y €Dy < X,m,Y >€ Dl sender(< X,m,Y >) € D
< B(X),m,Y > Dt} <X,m,Y >¢ Dt}

True-sender-1D:

E if there exists Z such that X = E(Z)

sender(< X,m,Y >) = .
X  otherwise

DecisionalProcess:

fnterests(X) true  if E decides to pay attention to X
ofInteres =
” false  otherwise

NetHandler:

canSee(< X, m,Y >,i)) = {Z € Dishonest | Z can spy < X,m,Y > on Di.}

operation and a particular configuration rather than the reasoning about “only”
the knowledge of the attacker.

As in the classic DY case, an attacker in this model can send and receive
messages, derive new messages by composing, decomposing, modifying, encrypt-
ing/decrypting known messages (iff he has the right keys), and intercept or
remove messages from the network. An attacker F may also masquerade as
(i.e., impersonate) another agent X, which we denote by writing E(X).
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The most significant features of the attacker abilities are the two spy rules,
which formalize the fact that attackers only pay attention to a selection of the
traffic on the network (considering only selected target agents):**

— Inflow-Spy: the attacker pays attention to the incoming network traffic of a
target agent and saves the identifiers of the sender agents,

— Outflow-Spy: the attacker pays attention to the traffic generated by a target
agent.

The target agent X of the two spy-rules is defined through a decisional process
(the function ofInterestz(X) in Tablel) in which each attacker decides if the
traffic to/from the agent X is worth to be followed. This decision is made at
run-time when a new agent identifier is discovered over the network (i.e., when
a new agent starts sending messages on the channel monitored by the attacker).
In this paper, we do not go into the details of how his decision is actually taken,
but different strategies might be devised and we will investigate them in future
work.

The network net is also formalized through a dataset, D,,¢¢, which is changed
by the actions send, receive, inject and erase a message. We write D¢, to denote
the state of D, after the i-th action. Messages transit on the network in the
form of triplets of the type

(sender-1D,message, receiver-1D),

where, as in the classical approaches, both the attackers and the agents acquire
knowledge only from the body of messages, i.e., sender-ID and receiver-ID are
actually hidden to them and only used by the network system. As a consequence
of message delivery or deletion, D,.; is non-monotonic by construction.

In order to regulate the concurrent actions over the network, the model com-
prises a NetHandler whose task is to handle the network by selecting the next
action and implementing the dependencies between selected actions and knowl-
edge available to each attacker. That is, NetHandler: (i) notifies agents that the
state of the network has changed with newly-inserted messages, (ii) polls agents
for their next intended action, (iii) selects from the set of candidate actions the
one that will be actually carried out, and (iv) informs agents of whether the
computation they performed to propose an action is a consequence of a message
that they did not have access to (i.e., for these agents a rollback might occur in

3 If an attacker were omniscient and omnipotent (i.e., if he were to control the whole
network) then there’d actually be no “space” for another attacker, and thus there’d
be no interference. The more “adventurous” reader may want to compare this with
the proof of the uniqueness of God by Leibniz, which was based on the arguments
started by Anselm of Canterbury and was later further refined by Gdodel.

In this paper we only use the inflow-spy and the outflow-spy filters and not the
restricted-spy filter used in the previous exploratory works. This is due to the fact
that we can certainly know who we want to defend, but we cannot know who
the attackers are and we want to have the possibility of intercepting all outgo-
ing/incoming messages which leave/come from/to an agent X.

'
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Table 2. The ISO-SC 27 protocol and a parallel session attack against it.

Attack

ISO-SC 27 protocol

(1.1) A — E(B) : Na
‘ (2.1) E(B) = A : Na
D R I
5 AB . — : 5 ,/4 Kap
(3) A= B:Np (1.3)A—>E(B):NAA
(2.3) E(B) » A: N

which all knowledge gained since the last confirmed action is deleted from the
dataset, and internal operations that have occurred are cancelled).

The outcome of the process governed by the network handler is described
through the function canSee, which returns a subset of dishonest agents, high-
lighting the identifier of attackers who can spy “before” the message is erased
from D,et. In other words, when a message is deleted from the network, the net-
work handler, through the function canSee, can decide if an attacker has spied
(and saved in his dataset) the message or not. In our previous work we had the
possibility of spying a message before its deletion (in this case, the attacker has
to decide if the message has been received by the honest agent or deleted by
another attacker) but in this paper we relax this assumption and decide that
when a message is spied it remains in the dataset of the attacker. The function
canSee is a configurable parameter of our network and it corresponds to con-
figuring a particular network environment in which the agents are immersed:
canSee is instantiated by the security analyst at the beginning of the analysis
in order to model time-dependent accessibility, strategic decision-making and
information-sharing, or to capture a particular network topology (in our frame-
work the function canSee is necessary in order to model the topologies that we
will introduce in Sect. 3.1).

2.3 Attack Interference (In the Case of the ISO-SC 27 Protocol)

As a concrete, albeit simple, example of security protocol, Table2 shows the
ISO-SC 27 protocol [16], which aims to achieve entity authentication (aliveness)
between two honest agents A and B, by exchanging nonces, under the assumption
that they already share a symmetric key K 45. Since in the second message there
is nothing that assures that the message actually comes from B, the protocol
is subject to a parallel sessions attack (also shown in the table) in which the
attacker E, who does not know K 4p, uses A as oracle against herself in order
to provide to her a response that he cannot generate by himself: E masquerades
as B intercepting A’s first message and sending it back to her in a parallel
session (messages (1.1) and (2.1)). When A receives the first message of the
protocol from FE, she thinks someone wants to talk with her in another instance
of the protocol (she does not control the nonce), thus she replies to E generating
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another nonce N, and encrypting it together with N4 (message (2.2)). Now
E has got everything he needs in order to complete the attack to the protocol
(messages (1.2)). The last message is not mandatory as the session has already
been attacked, thus E can omit it (message (2.3)). At the end of the protocol
runs, A is fooled into believing that E(B) is B.

If a protocol is flawed, a single DY attacker will succeed with certainty. How-
ever, if attacks to the same protocol are carried out in a more complex network
environment, then success is not guaranteed since multiple non-collaborative
attackers may interact, and actually interfere, with each other. The results
of [14,15] show that it is possible, at least theoretically, to exploit interference
between two non-collaborative attackers to mitigate protocol flaws, thus provid-
ing a form of defense to flawed protocols.

In the case of ISO-SC 27 protocol, which was not studied in [14,15]°, we
can identify six cases for the possible interaction between two non-collaborative
attackers £y and Es:

F; and E5 know each other as honest.

F; and E5 know each other as attackers.

F; and FE5 are unaware of each other.

FEs knows E; as honest.

FE5 knows E; as dishonest.

FE5 knows F4, but he is unsure of F4’s honesty.

A e

The traces corresponding to the interactions of E7 and E5 attacking the protocol
are shown in Table 3. Attack traces of this type lead to three possible (mutually
exclusive) situations: (i) F; dominates Fs (i.e., E;’s attack succeeds while Es’s
fails), or (ii) none of their attacks has success, or (iii) both achieve a situation of
uncertainty, i.e., they do not know if their attacks have been successful or not.

In order to exploit the interference generated by multiple dishonest agents
attacking the same protocol, we can construct an additional, but this time non-
malicious, attacker: the guardian G.

To define the guardian as a network agent, we refine the previous definition of
Agents to consider the subset of benign dishonest agents, i.e., BenignDishonest C
Dishonest C Agents, where X € BenignDishonest means that X has attacker
capabilities and may not follow the protocol but he “attacks” with the goal of
“defending” the security properties not of attacking them. In other words:

Definition 1 (Guardian). A guardian is a benign dishonest agent of the net-
work, transparent to the other agents, whose main task is to establish a partial
(or total) defense mechanism in order to mitigate (or neutralize) protocol attacks

51In [14,15], we analyzed two protocols: (i) a key transport protocol described as an
example in [6], which we thus called the Boyd-Mathuria Example (BME), and (ii) the
Shamir-Rivest-Adleman Three-Pass protocol(SRA3P [8]), which has been proposed
to transmit data securely on insecure channels, bypassing the difficulties connected
to the absence of prior agreements between the agents A and B to establish a shared
key.
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Table 3. Traces for non-collaborative attacks against the ISO-SC 27. Traces are
exhaustive: E1 and F2 have priority over honest agents. Arrows: relative order between
(2.1") and (2.1”) is irrelevant in determining the outcome.

T1: cases 1, 3, 4 T2: case 5
. (1.1 ) A—)ELQ(B) :NA
E;B g:(gﬁﬂ | ?32 L(2.1') Ey(B) = Ea(4) s Na
(2.2) A— E12(B) : {Na, Ni kA5 T g; ; §2£>B)E—(>Bf; {{YK, N4
(1.2) Er2(B) = A {Na, Nab i 19 VBB S A N, NIRRT
(13) A_> EJ172 B) ]\]"/4 (1 )AQ( )E‘_>B :jl[/A: A‘}KAB
(2.3) E1a(B) > A: Ny (1.3 ) A= Ex(B) i Na
(2.3 ) E2(B) — A Ny
T3: case 2 T4: case 6
( )A—>E1,2(B) :Nay (1 1)A—)E12(B):NA
1(2.1") E1(B) = Ex(A) : Na (2.1) E1(B) > A :Nga
1 (2.1") E2(B) — E1(A) : Na + steps of case 5

at execution time by means of attack-interference in non-collaborative scenarios.
G is transparent to honest agents during their execution and becomes “visible”
only in the case he has to report an ongoing attack.

3 Modeling the Network and the Guardian

In the previous section, we have seen how the interaction between multiple non-
collaborative dishonest agents attacking the same protocol can interfere with
both attacks, thus providing a form of defense. As we remarked in the introduc-
tion, even if the idea of having a guardian defending honest agents from attacks
seems thrilling, the existence of a guardian agent makes sense only with his
implementation in the real world. In order to reduce the complexity of such an
implementation, we will now investigate where we have to introduce this defense
mechanism in the network from a topological perspective (i.e., how the guardian
can dominate his competitor(s)). Modeling the network as a graph, we study
how the topological position of an attacker E and a guardian G, with respect to
each other and to honest agents of the protocol, can influence a protocol attack
and, thus, the possible defense against it.

We say that the outcome of the introduction of the guardian on the network
for a particular protocol yields a:

— false positive if, for some reason, a normal run of the protocol is considered
as an attack,

— false negative if, for some reason, an attack is considered as a normal run of
the protocol,
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(a) An example of network as a (b) Two possible allocations, on a chan-
graph; vertices represent agents, nel between A and B that is controlled
edges represent communication by an attacker F, for the guardian G
channels and the bullets e represent when he defends an honest agent A. For
the presence of a DY-attacker F. both cases (the above one is implicit),

we assume the presence of an authentic
and resilient communication channel be-
tween G and A (dashed line).

Fig. 1. Model of the network and possible allocations of the guardian on a channel.

— partial defense iff it admits false negatives,
— total defense iff it does not admit false negatives.

Our objective is to realize a defense mechanism that admits as few false nega-
tives as possible, while limiting also the number of false positives, by investigating
the position that gives the guardian a topological advantage (see Definition 4 of
defense mechanism and the ensuing Theorem 1).

3.1 A Network for Topological Advantage

We model the network as a graph (an example is depicted in Fig. la), where
vertices represent the agents of the network and edges represent communication
channels (we assume no properties of these channels, which are standard insecure
channels over which messages are sent as specified by the security protocols).
Since, as we remarked above, it would be unfeasible for the guardian to defend
the traffic on all network channels, we investigate which of these channels the
guardian should be best positioned on.

Security protocols typically involve two honest agents A and B, who some-
times enroll also a honest and trusted third party S (we could, of course, con-
sider protocols with more agents). As depicted in Fig. la, the DY-attacker F is
in control of all the communication channels of the network, thus, in the case
of a ping-pong protocol between A and B, E controls also the communication
channel between A and B. If we were to allocate a guardian G on such a channel
in order to defend the honest agent A, it could only be in one of two locations:
as shown in Fig. 1b, either the guardian G is between the initiator A and the
attacker E, or G is between the attacker F and the responder B. In the follow-
ing, these two cases will be used as a base of network topologies to be considered
during the analysis. We will see in the next section that the guardian should
have the possibility of alerting A of the ongoing attack without being detected
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by the attacker; in such a case (especially as highlighted in the lower topology in
Fig. 1b), we thus assume the presence of an authentic and resilient communica-
tion channel (confidentiality can be enforced but it is not mandatory) between
G and A.% In the following, this channel will be omitted from the notation and
the figures for the sake of readability.

If the network topologies for two-agent protocols are simple (Fig.2a andb),
for the case where a trusted third party S (or another agent) is present on the
network, we have to make some assumptions about the position of the attacker F
(the attack power of the attacker is never questioned). In this paper, we consider
four main base cases of network topologies for three-agent protocols, where, for
every case, we consider which channel(s) the guardian is defending:

— Fig. 2c: the channel between A and S (we assume that the attacker is not
present over these channels” and the guardian acts like a proxy),

— Fig.2d: the channel between B and S (this is the specular scenario with
respect to the previous case),

— Fig. 2e: A’s communication channel (the guardian acts as a proxy for A), and

— Fig. 2f: B’s communication channel (the guardian acts as a proxy for B).

These basic topologies abstract the communication channels of a complex
network (e.g., a LAN) in a way that permits one to reason about the position of
agents without introducing additional parameters in the process (e.g., additional
agents that start the protocol at the same time, or multiple network paths relaxed
in one link).

In general, we cannot state that a base case is the right one or the wrong
one as this actually depends on both the analyzed protocol and the agent we
want to defend. In order to implement the right guardian, we should consider
the protocol defense possible in each of these cases. We conjecture that all other
network topologies with two or three agents can be reduced to the base cases
introduced above, but leave a formal proof for future work.

3.2 Network Guardian in Practice

Attacks leverage protocol-dependent features, and thus attack traces always con-
tain particular messages that we can use as signals for ongoing attacks. As mes-
sages transit continuously through the network, we assume that the guardian has
a way to distinguish them (otherwise, we cannot guarantee any type of defense).

6 This channel could be a digital or a physical channel, say a text message sent to a
mobile (as in some two-factor authentication or e-banking systems), a phone call (as
in burglar alarm systems), or even a flag raised (as is done on some beaches to signal
the presence of sharks). We do not investigate the features of this channel further
but simply assume, as done in all the above three examples of runtime guarding
(monitoring) systems, that such a channel actually exists.

" We do not make assumptions on the real topology of the network between A and
S (i.e., there could be more than one channel) but only consider the fact that the
communications from E are received by G.
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Fig. 2. Base cases of network topologies for protocols between two agents (a, b) and
three agents (c, d, e, f). We denote with double stretched lines (in boldface) the channels
for which we assume that the attacker is not present.

In order to operate, the network guardian needs to interact with the messages
transiting over the network. The two modules that we define in the architecture
of the guardian are: (i) the Identification Module, and (ii) the Control Module.
Both modules operate separately, do not interact with each other (even though
they share the guardian’s dataset D¢ ), and are meant to (i) distinguish the
messages that belong to the protocol® that they are defending and (ii) detect
ongoing attacks.

These features are achieved by means of two distinguishers Ajg and Ag,
two probabilistic polynomial time algorithms. Aj; returns 1 if it believes that
a message m belongs to the protocol and 0 otherwise. We use the distinguisher
A¢ in order to detect, from the run of a security protocol P (identified by the
other module), those messages m that are considered critical, i.e., that can be
used to attack P.

For a concrete example of critical message, we can refer to Table 2. The nonce
N4 exchanged in message (1.1) is the first information that the attacker uses in
order to perform the reply attack against the ISO-SC 27 protocol, so this message
must be considered critical. Even though the nonce is sent as a plaintext, the
use of the distinguisher A overcomes the problem with encrypted messages.

Identification Module. Figure3a shows the graphical representation of the
Identification Module. The guardian uses this module, together with the distin-
guisher Ajy, to detect those messages m that belong to the protocol and label
them as part of P in the dataset D¢ in order to do inference subsequently.

We can see the Identification Module as a finite state machine where the
transition from state to state depends on the spied messages. When a message

8 We deliberately wrote “protocol” instead of “protocols” since, for now, we are not
going to consider multi-protocol attacks or protocol composition, e.g., [7,10,17].
As future work, we envision a distinguisher able to distinguish between messages
belonging to different protocols and thus consider also the attacks that occur when
messages from one protocol may be confused with messages from another protocol.
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ing that m is the message spied from
the spy filter, ¢ is the state where
the distinguisher is invoked on in-
put m, ¢ the “forward state”, A the
“label state” in which the message m
is labeled in the dataset D¢ as part
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(b) Control Module: Assuming that
m is the message spied from the spy
filter, 6 is the state where the dis-
tinguisher is invoked on input m, ¢
the state where the attack invariant
is invoked on m, ¢ represents the
“forward state”, p the “interference
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of the protocol P. state”.

Fig. 3. Identification and Control Modules implemented in the guardian.

m is spied by the spy filter (see Table 1 for the two available spy filters), the Iden-
tification Module of the guardian invokes the distinguisher A;;(m) to establish
whether the message belongs to the protocol or not.

If Ary(m) =0, the message is not considered useful and the guardian moves
to the forward state ¢, which will let the message go, and subsequently goes back,
without checking any condition, to the initial state d in order to wait for the next
message. If Arg(m) = 1, then m belongs to the protocol and the guardian moves
to the “identification state” A, where the message is labeled in the dataset Dg¢.
After the message has been labeled, the Identification Module goes back to the
initial state d in order to wait for the next message.

From now on, when we do an operation (spy-filters excluded) on the dataset,
we mean (slightly abusing notation) the subset of the labeled messages.

Control Module. Figure 3b shows the graphical representation of the Control
Module. The guardian uses this module, together with the distinguisher Ag, in
order to deal with those messages m that he must control in order to be able
to do inference (i.e., check if an attack is ongoing) and eventually interfere with
the attacker; we call these messages critical.

Once the distinguisher, implemented in the Control Module, believes that
m is critical (at time ), the attack invariant Inv(m,1i) is tested to discover (or
exclude) an ongoing attack. Inv(m, 1) is a protocol-dependent Boolean condition;
formally, it is a first-order logic formula on a critical message of the protocol
(which can be straightforwardly extended to a set of messages) tested at time
i (i.e., after ¢ actions on the dataset Dy; in order to define more complex
functions, more than two parameters can be used):
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1 if m, at time 7, characterizes an ongoing attack or a false
Inv(m,i) = positive
0 if m, at time 4, characterizes a normal run or a false negative

If the computation of the invariant returns 1, then the guardian G carries out
the appropriate defense for the attack making the victim abort the current run
of the protocol and, eventually, mislead the attacker and/or induce him to abort
the attack. We give an example of invariant in Sect. 4.1 when we return to our
case study.

When a message m is spied by the spy filter, the Control Module is in the
initial state d, and then the message is passed as input to the distinguisher Ag,
whose task is to establish whether the message is critical or not. If the result
of the distinguisher is Ag(m) = 0, the message is not considered critical and
the guardian moves to the forward state ¢, which will let the message go, and
subsequently goes back, without checking any condition, to the initial state §
in order to wait for the next message. Instead, if Ac(m) = 1, then a critical
message has just been distinguished from the others; the guardian moves to the
invariant state ¢ passing the message as input to the attack invariant formula
Inv(m, i), whose task is to establish whether an attack is actually ongoing or
not (the invariant is computed using the labeled messages in D¢ respecting the
temporal constraints). If Inv(m,i) = 0, then either an attack is not ongoing
or a false negative has just happened (i.e., the defense mechanism is partial);
thus, the guardian goes to the forward state ¢, which will let the message go,
and subsequently goes back without checking any condition to the initial state
0. Instead, if Inv(m,i) = 1 either an attack is ongoing or a false positive has
just happened, independently of the used defense mechanism; thus, the guardian
moves to interference state p to carry out the appropriate countermeasures and
subsequently goes back, without checking any condition, to the initial state.

As the Ay, is needed in order to detect the messages that belong to the
protocol P, we envision A¢ to be useful in the case of protocols with a large
number of messages in order to lighten the computation load of Inv(m,1), i.e.,
we compute Inv(m, i) on a subset of the protocol messages:

Critical € Prapeteda <  Messages

where Messages are all the messages saved in the dataset by a spy-filter, Piapeied
are the messages that Ay, labeled as part of the protocol P and Critical are the
messages that Ao believes may be used to attack P.

3.3 Topological Advantage

To defend protocols against attacks, a guardian should be “near” one of the
agents involved in the protocol executions; otherwise the guardian could be use-
less: if he does not see (and thus cannot control) messages belonging to the
protocol in transit from these agents, then he cannot carry out the interfer-
ence/defense.
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Definition 2 (Topological Advantage). Let X € Agents be the agent that
the guardian G € BenignDishonest is defending in a particular protocol (with
set Messages of messages), and Y € Agents the other agent. We say that G is
in topological advantage with respect to the attacker E if

Vm € Messages. 3i € N.
G € canSee(<X,m,Y >,i)) V G € canSee(<Y,m, X >,i)) V
G € canSee(< E(X),m,Y >,1)) V G € canSee(<Y,m,E(X)>,1))

Definition 2 states that for a guardian to be in topological advantage, he must
be collocated over the network in one of the configurations of Fig.2 so that he
can spy (and eventually modify) all the transiting messages to and/or from the
agent that he is defending, even in the case that they are forged.

In order to define what a defense mechanism is, we have to formalize how
an attack can be formalized based on a parametric function that the attacker
computes during his execution.

Let E € Dishonest, X € Honest, s be the number of steps composing the
attack trace, mg the message spied over the network or present in the attacker
dataset D at step s, Func = {Erase, Injection, Duplicate, ...} a set of function-
alities that F can use on the messages. Note that the names of the functionalities
quite intuitively denote their meaning; not all of the functionalities are used in
this paper and many more could be defined. The functionalities in Func have
domain in the messages belonging to a given protocol, whereas the codomain is
defined as the union of all the possible transformations of the messages in the
domain that give (i) messages “acceptable” by the protocol (i.e., that can be
sent /received by the protocol’s agents) or (ii) an empty message. The codomain
is thus a set of messages. We use func, to denote a functionality in Func used
at step s.

Definition 3 (Attack Function). The attack function f(m,s) selects a func-
tionality func, to be used on the message m at step s and returns the result of
the func, with argument m (func,(m)).

As a concrete example, the attack function of the attack in Table 2 is reported
in Table 4.

Of course, more complex attack functions could (and sometimes even should)
be defined, especially for more complex protocols. Since the attack function is
but one parameter, we believe that our definitions and results are general enough
and can be quite easily adapted to such more complex functions.

Having formalized how an attack can be seen as a parametric function, we
can also assume the existence of an inverse function f~!(m,s) of the attack
function (i.e., the function that from a message m such that m = f(m’,s), and
a step s, computes m’). In this paper, we will not discuss how to formalize the
inverse attack function; we leave a definition for future work and for now assume
that, during the implementation of the framework, a security analyst can take
care of this matter.
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Table 4. Example of attack function for a parallel session attack against the ISO-SC
27 protocol.

s|m func, f(s,m)

1| Na Erase 0

2/ Na Ingection | Na

3 {Na, Nil g, | Erase 0

4 {INa, N}, , | Ingection | {{Na, Nil,
5 N4 Erase 0

6| N4 Injection | Ny

Definition 4 (Defense Mechanism). Let X € Agents be the agent that the
guardian G € BenignDishonest is defending in a particular protocol (with set
Crritical of critical messages), let E € Dishonest be the attacker, and s be the
number of steps composing E’s attack trace. We say that G is a defense mech-
anism if he knows E’s attack function f(m,s) and can compute the inverse
function f=1(m,s) in order to enforce the following:

#m € Critical. Vi e N. Ip,j eN. j>i A 1<p<s A
m € Dy, A f7H(f(m,p),p) =m A
(G ¢ canSee(<E, f(m,s),X>,j))V G ¢ canSee(<E(Y), f(m,s), X >, j)))

If G can compute the inverse attack function, then G has knowledge of the
possible attacks against the protocol carried out through the attack function and
can detect the critical messages even if the attacker modifies/deletes them.

Thus, we can state the following theorem (which can be quite straightfor-
wardly generalized to multiple attackers):

Theorem 1. A guardian G € BenignDishonest is a defense mechanism for an
agent X € Agents in a protocol P, if he is in topological advantage with respect
to an attacker E € Dishonest who is attacking X in P.

As a proof sketch, let X € Agents be the agent that G is defending, ¥ €
Agents, E € Dishonest with attack function f(m,p), m € Critical, f~* known
to G, G in topological advantage with respect to the attacker E, s the num-
ber of steps composing E’s attack trace, and 1 < p < s. Then, since f(m,p)
€ Messages, we have that: 3i € N. G € canSee(< X, f(m,p),Y >,i)) V G €
canSee(<Y, f(m,p), X >,i)) V G € canSee(< E(X), f(m,p),Y >,i)) V G €
canSee(<Y, f(m,p), E(X)>,4)). In order to have a defense mechanism, we have
to enforce the following: #m € Critical. Vi € N. Ip,j e N. j >i A 1 <p <
s Ame D, NG¢canSee(<E, f(m,p), X >,j))Af~1(f(m,p),p) = m. Since
f(m,p) € Critical C Messages, only f~(f(m,p),p) = m must be enforced, but
it is known to G by assumption.
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Guardian
> out flow-spy F=—-—-————————————————— 5 > Identification Module ‘\
/ Ny
A //—‘\* Network B

— Control Module =-----+ Identification Module <~-----+ in flow-spy |«

Fig. 4. Guardian configuration for the ISO-SC 27 protocol. With a dashed arrow we
describe the fact that the execution flow (not the spied message) continues with the
next module.

4 Case Studies

4.1 The ISO-SC 27 Protocol

Even though the ISO-SC 27 protocol is subject to the parallel sessions attack
shown in Table 2, we can defend it by means of a guardian G. Since the victim
is A, for the defense to be possible, it is necessary that G is in the configura-
tion in Fig. 2a, i.e., between A and the rest of the network agents, so that he
can identify/control all of A’s incoming and outgoing messages (by Definition 2,
in this configuration the guardian is in topological advantage), whereas in the
configuration in Fig. 2b he can be completely excluded by an attacker E. In the
following, we give as an example the successful case and a brief explanation for
the unsuccessful one.

In order to defend the ISO-SC 27 protocol, we have set up the guardian G
with the two spy-filters shown in Fig. 4: an outflow-spy filter in order to record
in his dataset D¢ all of A’s outgoing messages, and an inflow-spy filter in order
to record and control A’s incoming messages.

Even if G does not know the symmetric key K 45, he can become aware that
the protocol has been attacked when he spies via the inflow-spy filter a message
of the same form of the message (1) in Table 2 (i.e., N4; the guardian knows that
the attacker will reply the first message because he knows the attack function
of Definition 3) between those that have previously been identified as such: if
an attack is ongoing, then the message that has been identified by the Control
Module as critical (i.e., is one of the first messages of the protocol) “has already
been seen” by G. We formalize this concept by means of the invariant Inv(m,i):

Im' € D5 Ac(m)=1 A Ac(m/)=1 A m=m'.

That is, if an attack is ongoing and m is the message spied by guardian’s inflow-
spy filter, labeled by the Identification Module, and in the Control Module the
distinguisher A¢ believes that it is critical, then the guardian’s dataset DY, must
contain another message m’ seen before such that m = m’ (the implementation
of Dg must be done with respect to the temporal constraints of the invariant
Inv, but in this paper we do not discuss the implementation details). Since the
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Table 5. Guardian’s interference for the ISO-SC 27 protocol.

Interference

(1.1) |A—E(B) : Na

(2.1) |E(B) — G(A) : Na

(2.1;) |G(B) — A : Nfake

(22) |A—EB) : {INfake, Naltkap
(12) EB)—A  {Nsake, Naltxar
(2.2) | G raises A’s flag for abort

guardian knows that the attacker can use a replay attack, by Definition 4, he has
to define the inverse of the attack function as the identity function (the use of
the identity function is also reflected in the definition of the invariant).”

Let us assume, following [14,15], that each honest agent defended by the
guardian G has a set of flags that G can modify in order to make the agent he is
defending abort the protocol. Once he has detected such an ongoing attack, G
can defend it carrying out the interference. He modifies the content (i.e., he alters
the nonce N4) of the first message in the parallel session (see Table5 for the
complete execution trace, and Table6 for the corresponding dataset evolution).
At this point, the guardian already knows that an attack is ongoing, but we
choose to finish the two sessions of the protocol (G changes A’s “abort flag”
only at the end) in order to show that we can also deliver false information to
the attacker and that the Control Module (shown in Table 6) checks the invariant
only once since the replayed message in (1.2) is not seen as critical (i.e., it has not
the form of the first message). More specifically, Table5 shows the interference
attack that G can use against the attacker E, and Table6 the evolution of the
dataset and the inference during the protocol execution.

To measure the defense mechanism implemented by the guardian for the par-
allel sessions attack against the ISO-SC 27 protocol, we consider false positives
and negatives.

False positives: False positives are possible if, after A completes a protocol run
as initiator, B restarts the protocol with A (i.e., they change roles) using (in
the first message) a nonce Np that is already contained in G’s dataset. If Np
is represented through a k-bit length string, then the probability of this event
is equal to the probability of guessing a nonce amongst those belonging to Dé;
(i.e., G’s dataset after i actions):

) Dt
Pr[Ng €r {0,1}* Np € D] = | 25‘

So, this probability is negligible if k is large enough (e.g., k = 1024).

9 Formally, for the ISO-SC 27 we have: f~'(f(Na,2),2) = f~'(Na,2) = Na (where
s = 2 refers to message (2) in Table4 or, equivalently, message (1.2) in Table2).
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Table 6. Dataset evolution and inference for the ISO-SC 27 protocol. {(z.y)} refers to
the message sent in step (z.y) (we omit the repeated messages) and to the configuration
in Fig. 2a.

i | Protocol message D’é Identification | Control
module module
Apg(m) Ac(m) | Inv(m, i)

0| - {} - - -
1/(1.1) A— E(B): Na {(1.1)} 1 — —
2|(2.1) E(B) - G(A): Na {(1.1)} 1 1 1
3] (2.11) G(A) — A: Nygke {(1.1),(2.11)} - - -
4/(2.2) A— E(B) : {|Nsake, Nallx,p | {(1.1),(2.11),(2.2)} | 1 - -
5/(1.2) E(B) — A: {‘NfakevNAl}KAB {(1.1),(2.11),(2.2)} | 1 0 -
6| (2.2) G raises A’s flag for abort — - - -

False negatives: False negatives are not possible, since not knowing K 45 the only
way to attack the protocol with the classical attack (Table2) is to reflect A’s
messages in a parallel session; but if this situation happens, then the guardian has
already seen the message that is coming back to A, and thus he can detect (and
afterwards defeat) the ongoing attack. Since G does not admit false negatives
for this scenario, G is a total defense mechanism when he is in a topological
advantage with respect to his competitor(s), i.e., when he is defending A.

Now that we have seen the successful case, let us focus on the configuration
of Fig. 2b. In this configuration, a guardian would not work because B’s partic-
ipation is not mandatory to attack the protocol and thus F can easily exclude
G from the run of the protocol; thus there are no false positives and there are
only false negatives. In this case, the presence of the resilient channels does not
help because G is completely excluded from seeing the execution of the protocol
and the attack.

Summing up the analysis of the case study, we have seen how a flawed pro-
tocol as the ISO-SC 27 can be defended through the use of a guardian. The
first step of our analysis was the attack typically found via model checking and
the classical approach. We used the classical attack in order to select the critical
messages that the attacker exploits during the attacks. Knowing the critical mes-
sages allows us to formalize the invariant, which is also used in order to set up
filters and module configurations in the guardian architecture. Finally, we have
investigated the different outcomes with respect to the position of the guardian
in the network topology.

4.2 Other Protocols

We have applied our approach also to a number of other security protocols.
Table 7 summarizes our results, while a more detailed analysis can be found
in [18]. For each protocol, in the table we report if the defense is total or partial,
which agent is being defended, and the topologies that permit the defense.
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Table 7. Other case studies. See [6,8] for details on the protocols.

Protocol Defense | Agent defended | Topology
ISO-SC 27 Total A Fig. 2a
SRA3P Total |A Fig. 2a
Andrew Secure RPC Partial | A Fig. 2a
Otway-Rees Total A Fig. 2c, e
Encrypted Key Exchange | Total |A Fig. 2a
SPLICE/AS Total | A Fig. 2¢c
Modified BME Partial | B Fig. 2d

In Table 7, we show only the successful results for each protocol in the given
task (i.e., defending one of the agents for the corresponding protocol). The out-
come of the analysis of these 7 (4 two-agent and 3 three-agent) protocols is quite
promising since we have a total defense in 5 cases and a partial defense in the
remaining 2 cases.

5 Conclusions and Future Work

Discovering an attack to an already largely deployed security protocol remains
nowadays a difficult problem. Typically, the discovery of an attack forces us to
make a difficult decision: either we accept to use the protocol even when knowing
that every execution can potentially be attacked and thus the security properties
for which the protocol has been designed can be compromised at any time, or we
do not (generating consequently, kind of a self denial of service). Both choices
are extreme, and typically the classical (and conservative) mindset prefers to
“dismiss” the protocol and hurry up with the deployment of a new version hoping
to be faster than those who are attempting to exploit the discovered flaw.

The above results contribute to showing, we believe, that non-collaborative
attacker scenarios, through the introduction of a guardian, provide the basis
for the active defense of flawed security protocols rather than discarding them
when the attack is found. Regarding the concrete applicability of this approach
to security protocols, on one hand, we can use our previous work [14,15] as an
approach for discovering how two attackers interact in non-collaborative scenar-
ios and what type of interference the guardian can use, and, on the other hand,
in this paper we have given the means to understand how to exploit the inter-
ference from a topological point of view, thus bringing the guardian close to real
implementation, which is the main objective of our current work.

We are also working on a number of relevant issues, such as how the content
of, and the meaning that the honest agents assign to, critical messages may have
an influence on the defense mechanisms enforced by the guardian, or such as
how to define general attack functions and their inverses. We are also investi-
gating criteria that will allow us to reason about the minimal and/or optimal
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configurations for protocol defenses. For instance, to show that no further config-
urations are possible (by showing how m possible configurations can be reduced
to m < m base ones, such as the 6 we considered here) or that the considered
configuration is optimal for the desired defense (and thus for the implementation
of the guardian). It seems obvious, for example, that Fig. 2a is the optimal con-
figuration for defending the initiator A in the majority of two-agent protocols.
Similarly, our intuition is that a guardian (with an appropriate defense for a
particular protocol) put in configuration of Fig.2e is also valid for the con-
figuration of Fig.2c¢ (and similarly for configuration of Fig.2f with respect to
configuration of Fig. 2d).

We envision the some general, protocol-independent results might be possible
but that ultimately both the notion (and agents’ understanding) of critical mes-
sage and that of defense configuration will depend on the details of the protocol
under consideration and of the attack to be defended against. Our hope is thus
to obtain parametric results that can then be instantiated with the fine details
of each protocol and attack.
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