
Dancing with the Adversary:
A Tale of Wimps and Giants

Virgil Gligor(B)

Carnegie Mellon University, Pittsburgh, PA 15213, USA
gligor@cmu.edu

Abstract. The long-standing requirement that system and network
designs must include accurate and complete adversary definitions from
inception remains unmet on commodity platforms; e.g., on commodity
operating systems, network protocols, and applications. A way to pro-
vide such definitions is to (1) partition commodity software into “wimps”
(i.e., small software components with rather limited function and
high-assurance security properties) and “giants” (i.e., large commodity
software systems, with low/no assurance of security); and (2) limit the
obligation of definining the adversary to wimps while realistically assum-
ing that the giants are adversary controlled. We provide a structure for
accurate and complete adversary definitions that yields basic security
properties and metrics for wimps. Then we argue that wimps must col-
laborate (“dance”) with giants, namely compose with adversary code
across protection interfaces, and illustrate some of the salient features
of the wimp-giant composition. We extend the wimp-giant metaphor
to security protocols in networks of humans and computers where com-
pelling services, possibly under the control of an adversary, are offered to
unsuspecting users. Although these protocols have safe states whereby
a participant can establish temporary beliefs in the adversary’s trust-
worthiness, reasoning about such states requires techniques from other
fields, such as behavioral economics, rather than traditional security and
cryptography.

1 Introduction

A system without accurate and complete adversary definition cannot possibly be
insecure. Without such definitions, (in)security cannot be measured, risks of use
cannot be accurately quantified, and recovery from penetration events cannot
have lasting value. Conversely, accurate and complete definitions can help deny
any attack advantage of an adversary over a system defender. At least in prin-
ciple, the seemingly inevitable adversary-defender asymmetry can be reduced
and secure system operation achieved. Hence, it seems important to design sys-
tems and networks that include such definitions from inception. However, this
is unlikely to happen for commodity systems: although security has been recog-
nized to be a fundamental problem, it has always been of secondary importance
in the design of commodity systems, and it is very likely to remain that way;
c© Springer International Publishing Switzerland 2014
B. Christianson et al. (Eds.): Security Protocols 2014, LNCS 8809, pp. 100–115, 2014.
DOI: 10.1007/978-3-319-12400-1 11

Dancing with the Adversary: A Tale of Wimps and Giants 101

viz., the “axioms” of insecurity [6]. Nevertheless, this fact does not remove the
obligation to provide accurate and complete adversary definitions. Adding secure
components to insecure commodity systems or networks will continue to man-
date it.

Although an adversary’s attack advantage cannot be eliminated in large,
low-assurance commodity software (i.e., for “giants” [6,12]), it can be rendered
ineffective for small software components with rather limited function and high-
assurance security properties, which are isolated from giants; i.e., for “wimps.”
However, isolation cannot guarantee wimps’ survival in competitive markets,
since wimps trade basic system services to achieve small attack surfaces, diminish
adversary capabilities, and weaken attack strategies. To survive, secure wimps
must use services of, or compose with, adversary-controlled giants.

In this paper, we propose a structure for adversary definitions that is consis-
tent with those found in other areas of security (i.e., cryptographic schemes, or
modes). The proposed structure is desirable. It can yield accurate and complete
adversary definitions – just as it does in cryptography – and it is easily adapted
for different wimp interfaces, ranging from cryptographic schemes, operating sys-
tems, application modules, and human protocols. We argue that accurate and
complete definitions yield security properties and metrics, which are useful for
the design of wimps. Then we explain why wimps must compose (i.e., “dance”)
with giants thereby illustrating the paradoxical theme of this workshop, namely
the collaboration with the adversary. Finally, we extend the wimp-giant composi-
tion metaphor to security protocols in networks of humans and computers where
compelling services, possibly under the control of an adversary, are offered to
unsuspecting users. These protocols produce value for participants who collabo-
rate. However, they allow malicious participants to harm honest ones and corrupt
their systems by employing deception and scams. Yet these protocols have safe
states whereby a participant can establish beliefs in the adversary’s (perhaps
temporary) honesty. However, reasoning about such states requires basic results
from other fields, such as behavioral economics, rather than traditional security
and cryptography.

2 Accurate and Complete Adversary Definitions
for Wimps

Adversary-Controlled Giants. An adversary can be thought of as a program that
launches a set of attacks at a system interface under the control of various input
commands issued by humans. This implies that, to define an adversary accurately
and completely, one must find all adversary-accessible interfaces of all system
components, ranging from operating systems and network protocols to all sys-
tem applications. Then, for each component, one must find all vulnerabilities
that could be exploited by an adversary, and all attack strategies to exploit each
vulnerability. Furthermore, an adversary could exploit different types of attacks
against multiple components of a giant, and thus one must be able to account

102 V. Gligor

for all possible attack combinations to obtain an accurate and complete defini-
tion; e.g., compose all attack capabilities and strategies. Since giants comprise
hundreds of thousands of component interfaces of different sizes and complexity,
and tens of million lines of source code, it is highly unlikely that an accurate and
complete definition of an adversary will ever be possible. To make things worse,
some giant code and interfaces may change faster than the time necessary to
complete an accurate adversary definition for it. In short, one can safely assume
that a giant is always part of the adversary definition. Hence, the only system
components that could possibly be defended from adversaries are wimps. Thus,
the obligation to provide accurate and complete adversary definitions can be
limited to wimps. However, since wimps can be part of different system com-
ponents, they can have vastly different semantics and thus one needs a fairly
general and uniform structure for adversary definitions, since these definitions
must compose.
Adversaries in Cryptographic Schemes. A security sub-field that has produced
accurate and complete adversary definitions successfully for relatively small
modules with precisely specified functions (i.e., wimps) has been cryptography.
Although fairly coarse, this analogy is intended to make two points: (1) the
structure of the adversary definition in cryptographic schemes serves as a good
starting point, given that these definitions have been successfully used in proving
properties of encryption/authentication schemes [19]; (2) just as in cryptography,
where the adversary definition is part of a cryptographic scheme’s specification,
the adversary definition can be part of any wimp specification; i.e., for software
modules of similar size and complexity.

Security of cryptographic schemes is defined in terms of an attack game, and
a model of adversary power and privilege. An adversary can be viewed as the
set of possible attacks that can be launched against the scheme. Informally, each
attack consists of a triple: an adversary’s goal, set of capabilities, and strategies
that exploit capabilities to reach the goal. In encryption schemes, the scheme’s
interface comprises an encryption, and possibly a decryption oracle, and the goal
may be distinguishability of ciphertexts leading to leakage of plaintext informa-
tion. In authentication schemes, the interface is to an authentication-tag gener-
ation and a verification oracle, and the adversary’s goal is to forge a plaintext
or an authentication tag that passes the verification-oracle’s check. Capabilities
represent the adversary’s ability to obtain verifiable, predictable, known, or cho-
sen plaintext from the system or network – as needed – and invoke an oracle.
Attack strategies include launching adaptive, interactive, or concurrent attacks;
e.g., exercising both choices of plaintext and ciphertext to break plaintext secrecy
or create ciphertext forgeries.

The adversary power (e.g., polynomially bounded/unbounded, deterministic/
randomized program, types of operations and their speed and storage require-
ments) and privileges (e.g., access to an oracle’s entry points, ability to selectively
specify input data, and invoke a single oracle or more) specify how an adversary
plays the attack game; e.g., whether the adversary can exercise a particular game
strategy. Capturing all attack strategies is important because otherwise one can-

Dancing with the Adversary: A Tale of Wimps and Giants 103

Fig. 1. Simple attack-definition template

not produce encryption or authentication schemes that demonstrably counter all
attacks; e.g., provably support indistinguishability properties in encryption
or unforgeability properties in authentication for different types of attack
capabilities.
Structure of Wimp Adversaries. A similar adversary structure as that used for
cryptography schemes can be applied to other types of wimps. As in cryptogra-
phy, the adversary can be defined as the set of all possible attacks that can be
launched at a wimp interface. In addition to the typical call interface, a wimp’s
interface must account for all sources of input; e.g., memory state, I/O devices,
initial system state. As in cryptography, the adversary is a program, or a set of
programs, that executes instructions based on inputs it receives from its users
and/or other attack programs. However, the goals and capabilities of an attack
game will be different, and so will the strategies. Nevertheless, just like in cryp-
tography, we can define the attack game via <goals, capabilities, strategies>
triples at different wimp interfaces. We also define the adversary’s computation-
ally bounded power and privileges in an analogous manner. For example, the
adversary power includes a specification of how many end-hosts and processes
operate the attack, how fast processors need to be, how much and what type
of storage areas are needed, and what types of communication media and how
much bandwidth are required. The adversary’s power would have to be poly-
nomially bounded – just as is done in complexity-based cryptography – since
these wimps may use cryptographic schemes whose adversary is assumed to be
bounded.

Figure 1 illustrates the template for an attack definition whereas Fig. 2 sum-
marizes the use of the template with two attack examples. The size and com-
plexity of the Xenix Kernel are not intended to approximate those of a wimp and
are used only for illustrative purposes. In the attack of Fig. 2(a), the attack goal
is to invoke the internal function panic of the Xenix operating system kernel [8]
via unprivileged system calls and crash the system repeatedly, thereby causing
persistent denial of service for system users. The attack capabilities comprise

104 V. Gligor

Fig. 2. Attack examples

access to 38 of 110 system calls and the attack strategies are all call-parameter
combinations that trigger a crash. In a practical sense, the adversary’s capabili-
ties and strategies represent a measure of an attack’s surface [9,15].

The power and privileges of the adversary are fairly common; i.e., the adver-
sary is an unprivileged user-level program that invokes unprivileged kernel calls.
In this example, there is no call ordering, timing or dependency constraint on
call capabilities that are left unknown after source-code analysis of the kernel.
This requires both control-flow analysis to identify all the 15 independent flow
paths that lead to the panic function, and information-flow analysis to identify
all call-parameter values and combinations thereof that activate these flow paths.
In this example, the integrated (control and information) flow analysis reveals
all strategies (i.e., kernel calls and call-parameter combinations) the adversary
can employ to crash the system repeatedly. At the time of this analysis, the
security properties of the Xenix kernel did not counter the activation of any of
the 15 independent code paths that led to the panic function invocation.

Dancing with the Adversary: A Tale of Wimps and Giants 105

In contrast with Fig. 2(a), which illustrates a large-surface attack, Fig. 2(b)
illustrates an attack that has a small surface, which can be easily countered
in practice, once discovered. The attack goal is to invoke the internal function
copyseg of the Xenix kernel via an unprivileged system call with a parameter
combination that enables overwriting adversary-selected values in kernel space,
thereby corrupting kernel operation. The attack capabilities comprise access to
a single system call and the attack strategies all call-parameter combinations
that cause a kernel overwrite. The adversary is an unprivileged user-level pro-
gram that invokes unprivileged kernel calls. Integrated flow analysis on source
code indicates that there are two independent flow paths to copyseg, and thus
the strategy space (i.e., kernel calls and call-parameter combinations) is lim-
ited, although additional flow-path activations are possible using privileged calls
(which Fig. 2 omits). At the time of this analysis, the security properties of the
Xenix kernel did not counter the activation of any of the two independent code
paths.

Examples of small attack surfaces whose exploitation is via probabilistic
strategies also exist. Typical examples are the so-called time-of-check-to-time-
of-use attacks, which attempt to exploit specific vulnerable time windows in
system implementation; e.g., the binmail attack [2] where the goal of the adver-
sary is to get root privilege using a strategy that exploits a small time window
in file (un)linking. This attack uses conventional capabilities and unprivileged
system call invocation.

Attack Composition. To obtain a desired capability, an attack A may require
a capability provided by meeting the goal of attack B, and this leads to the
notion of attack composition. Attack composition requires that (1) the adversary
capabilities, power, and permissions necessary for attack B do not conflict with
(e.g., exclude) the other capabilities needed by A, and (2) the strategies used by
B do not conflict with those of A. For example, in many business applications,
if the success of attack B requires a capability to access an accounts payable
application, then adversary launching attack A cannot obtain a capability for
issuing purchase orders. Or, if launching attack B requires root permissions,
then launching a successful attack A from the unprivileged mode is ruled out.
Also, if the strategy employed by attack A’s requires timely program execution,
executing attack B’s strategy must exclude crashing the system.

In attack composition, the goal ofB may represent a capability needed by mul-
tiple attacks – not only by A – and this leads to (directed) attack graphs. That is,
a node of an attack graph comprises the triple <goals, capabilities, strategies>,
adversary power and privileges, and an edge connects the goals of descendant
nodes to the capabilities needed by their ancestors.

We note that, even when instances of attack graphs are (directed) trees, these
trees are different from those often illustrated for the past two decades [1,16,24,
25], in at least three ways. First, each node defines the attack game, adversary
power, and privileges, and hence it captures all attack execution strategies and
capabilities needed, including their ordering, dependencies, and timing. Second,
adversary privileges include a security boundary, or attack surface specification,

106 V. Gligor

whose size and complexity is minimized by wimp definitions; e.g., all entry points
required and input parameter combinations to exploit capabilities. Third, attack
nodes offer a direct way to measure security strength, as explained below.

Our notion of the attack graph also differs from that of the more recently
defined but more limited notion of the “kill chain” [10]. While the reconnaissance,
weaponization, and delivery steps of a kill chain correspond to the notion of a
set of capabilities to an attack surface discovery (i.e., entry-point, malicious data
input, and delivery channel), the exploitation, installation and execution steps
capture only a single attack strategy, instead of all strategies as required by our
attack node.

We stress again that our attack structure is intended for the accurate and
complete definition of wimp adversaries. Even if this structure may be applicable
to giants in principle, it is unlikely that such definitions can be used in practice
due to giants’ inherent size and complexity.

3 Wimp Security Properties and Metrics

Accurate and complete attack definitions imply that a defender can design secu-
rity properties to counter those attacks, and implicitly deny the adversary’s
(asymmetric) advantage. Some properties may deny certain attack strategies
and/or capabilities and hence the adversary cannot reach his/her goal. Other
properties may deter the adversary from using specific strategies or capabilities;
e.g., by audit, by increased workload. Yet others may limit the attack’s success;
e.g., the defender may recover secure system states thereby forcing the adver-
sary to retry the attack (and eventually get discovered); or undo the effects of
an attack that corrupts system memory states.

Since an adversary attack comprises a program executing in response to
user input commands, an adversary’s attack behavior can be viewed as sets
of instruction-execution traces. Attack behaviors can be countered by defin-
ing wimp interfaces, which restrict or block some execution traces whenever the
adversary attack invokes a wimp. Hence, just as in cryptography, the adversaries’
attack behavior becomes part of a wimp’s definition, and a wimp’s security prop-
erties become negations of adversary attacks. For notational simplicity, we denote
the set of properties that counter an attack A by A.

In turn, security properties can yield basic metrics of security. For example,
we say that attack A =⇒ attack B if all security properties that counter attack
B also counter attack A. For example, this relation is required when attacks A
and B compose, and is strictly weaker than composition. Like composition, it is
reflexive, anti-symmetric, and transitive. Attack A �=⇒ attack B if not all security
properties that counter attack B counter attack A. This relation captures cases
when attack B can be used by, but is not necessary for, attack A or when the
two attacks do not compose. Using these relations we can then define the notions
of attack “dominance (>),” “equivalence” (⇐⇒), and “incomparability”(�⇐⇒)
as follows. Attack A > attack B, if attack A =⇒ attack B, and attack B �=⇒
attack A. Attack A ⇐⇒ attack B if attack A =⇒ attack B and attack B =⇒

Dancing with the Adversary: A Tale of Wimps and Giants 107

attack A. Equivalence captures, for instance, cases when the same (“copycat”)
attack is launched against different instances of the same wimp in different sys-
tems. Attack equivalance differs from attack “isomorphism”(∼) where we say
that attack A ∼ attack B if they have the same goals, capabilities and strate-
gies, except that they refer to different types of wimps. Attack A �⇐⇒ attack B
if attack A �=⇒ attack B and attack B �=⇒ attack A. Incomparability captures
many attack differences including attacks whose goals differ, others whose capa-
bility sets differ, and finally those whose strategies differ.

The dominance and incomparability relations naturally lead to partial orders
on adversary attacks and hence to basic security metrics. It follows that with-
out accurate and complete adversary definitions one cannot define accurate and
complete security properties, and without such properties one cannot obtain
basic security metrics. Incomplete adversary definitions (e.g., traditional “attack
trees” and “kill chains”) would not do. It also follows that precise security met-
rics require wimp definitions and separation from giants, since giants are part of
the adversary. Of course, other relations among attacks exist and can be used
to define a much richer set of metrics. An orthogonal set of basic metrics arises
from (partial) orders among the different types of security-property assurance
and assurance evidence.

Using accurate and complete definitions, one can then use traditional proof
techniques to perform different types of attack reductions and compositions for
different types of wimps. For example, one can formally verify that a wimp has
security property A in the presence of adversary attack A launched by a giant,
as follows. First one verifies A assuming that the wimp is isolated from the
giant. Then one verifies that the micro-hypervisor (i.e., a basic wimp) supports
application wimp isolation [17] and cannot be bypassed by an attack B launched
by the giant; i.e., the micro-hypervisor has security property B. Finally, one
proves that if the micro-hypervisor has property B, then the wimp has property
A when compiled and registered with the micro-hypervisor and invoked using
it. In short, one is able to provide compositional, composability, and additivity
proofs, in Rushby’s verification terminology for separation kernels [20].

4 Wimps’ Dance with Giants

There are many examples of wimp interfaces where it is possible to define all
attack strategies for simple goals and small sets of capabilities. Such adversary
definitions are not intended scale to the size of commodity systems, compose
across networks of services, nor retain their usefulness when new applications are
installed. For commodity systems, only incomplete definitions (e.g., traditional
attack trees and kill chains) derived from hacking exercises (e.g., red teaming,
penetration testing) have been practical to date. Reactive countermeasures to
individual attacks, or piecemeal security, is all we could deliver for commodity
systems and networks in the past.

108 V. Gligor

Fig. 3. A wimp-giant isolation architecture based on a micro-hypervisor

How can we do better in the future? A wimp-giant isolation architecture pro-
vided by a micro-hypervisor, which operates at a higher privilege level than the
giant and hence is isolated from it, is illustrated in Fig. 3. Will wimp-giant iso-
lation be sufficient for accurate and correct adversary definitions, demonstrable
security properties, and sound security metrics in practice?

The answer to this questions is decidedly negative. Wimps must compose
(i.e. “dance”) securely with giants for at least two reasons. First, secure wimps
must use services provided by adversary-controlled giants and share platform
resources (e.g., I/O, physical memory) with them. This can happen only after
wimps efficiently verify the results of those services [29], and the initialization
of platform resources in a secure (e.g., malware-free) state [26]. Second, secure
wimps could help insecure giants restrict their own (adversary) behavior in spe-
cific ways; e.g., prove that certain malicious behaviors are not perpetrated by
a giant. For example, wimps have been used to protect cryptographic libraries
and key management subsystems against giant misbehavior [17,28], and can
also be used to protect application-level reference monitors and cryptographic
protocols [6].

The fact that wimp survival depends on collaborating with adversary-
controlled giants appears to be paradoxical: wimps can counter all adversary
attacks, but only if they use adversary-controlled services from which they have
to defend themselves; and to prove that they have not behaved maliciously in
certain applications, giants must rely on secure wimps whose operation they
attack.

Using Giant Services. To retain all their security properties with reasonable
assurance and not become insecure giants, wimps will have to trade very basic
system services for small attack surfaces, diminished adversary capabilities, and
weak attack strategies. For example, wimps typically lack persistent memory,
file system and directory services, network protocols, trusted paths to humans,
and isolated I/O services needed to protect applications; see Fig. 4. Placing such

Dancing with the Adversary: A Tale of Wimps and Giants 109

Fig. 4. Examples of missing services from both wimps and micro-hypervisor

services in a trustworthy computing base (e.g., in the micro-hypervisor) to serve
wimps would be inadvisable. Trusted computing bases would become bloated,
unstable, and devoid of security assurance; e.g., they would often include code
of diverse and sometime uncertain origin, such as device drivers.

Note that a different choice of service placement was made in Lampson’s
red-green machine [13]. The red-green machine actually separates two giants: an
untrustworthy (red) one from a less untrustworthy (green) one. The green giant is
a carefully configured, maintained, and connected full-service machine. Although
this type of separation can certainly be attained in practice, it does require
a trusted-path mechanism to enable careful users to determine the machine
they talk to; viz., CMU’s Lockdown system [23]. Since the green giants are self-
contained, trustworthy red-green communication, and use of the red machine’s
(efficiently verifiable) services by the green one, is rare. In contrast with wimps,
defining and countering all attacks against the green machine remains a daunting
and likely unattainable goal.

In principle, one does not need to lump services needed by wimps in a green
machine. Efficient verification of some system-service results, which enables ser-
vice implementation in red giants, has been known for over three decades; e.g.,
cryptographic verification of page integrity [4] and implementation of virtual
memory services outside a security kernel in an untrusted operating system.
Other efficiently verifiable services, which require only minimal trusted base
support, have been proposed more recently; e.g., persistent wimp memory [21],
and selected kernel functions for on-demand isolated I/O channels [29]. A wimpy
I/O-kernel is illustrated in Fig. 5.

Sharing Platform Resources with Giants. Wimp sharing of commodity platform
resources with giants is both useful in practice and fundamentally necessary. It
is useful for resources that can be isolated from giants, such as I/O channels
and devices, and made available to wimps on-demand. This enables wimps to
use only the devices they need and when they need them. Thus, wimps need not

110 V. Gligor

Fig. 5. Wimpy-kernel architecture for on-demand isolated I/O services

include nor rely on unnecessary I/O services, which would dramatically increase
their exposure to attacks from giants. However, sharing I/O devices with giants
requires wimps to verify the integrity of device firmware and initialize devices to
known secure (e.g., malware-free) states after giant use [14,27].

Sharing a hardware platform with the giant is unavoidable for most wimps
when dedicated hardware (e.g., co-processors) is unavailable – a common case
on commodity platforms. For example, the most basic system wimp, the micro-
hypervisor, shares the CPU, memory, and some basic (e.g., DMA) devices with
the giant. How can one be sure that giant-inserted malware in memory and device
controller firmware does not corrupt the micro-hypervisor before the micro-
hypervisor boots? To detect and/or prevent this from happening, one needs to
introduce the notion of the verifiable boot, whereby the micro-hypervisor boots
only in a malware-free device state. The notion of verifiable boot is stronger
than both trusted boot and secure boot [18]. Neither trusted nor secure boot
provides assurance of malware absence in the entire device – not just in directly-
addressable processor memory [26] – at boot time and immediately thereafter.
Whether the giant infects devices with malware later would become less relevant
for a wimp that is able to re-initialize devices that are shared with a giant to a
known secure (e.g., malware-free) state on-demand.

It is worth noting that implementing the notion of the verifiable boot on a
commodity platform would enable a user to reset a platform to a malware-free
state, and a micro-hypervisor and application wimps to execute in an untampered
execution environment. Furthermore, on-demand verifiable boot would enable a
user to ensure that application wimps can restart in a malware-free state in
the, hopefully unlikely, case of successful penetration by giants. In this case, the
giants would be forced to dance “FlipIt” [3] with wimps.

Dancing with the Adversary: A Tale of Wimps and Giants 111

Fig. 6. An interactive trust protocol: sending private data to a giant

5 Wimps and Giants in Networks of Humans and
Computers

There is an intriguing but limited similarity between wimp-giant collaboration
on commodity platforms and interactive trust protocols [7,11] between ordinary
users and web services. For example, interactive trust protocols (1) produce value
for participants who cooperate; (2) potentially allow malicious participants (i.e.,
giants) to harm honest participants (i.e., wimps) by employing deception and
scams; and yet (3) may have safe states whereby an honest participant can
establish beliefs in a malicious participant’s temporary trustwothiness, even if
traditional security and cryptography techniques cannot be employed. Like in
the typical wimp-giant collaboration, interactive trust protocols offer attractive
and compelling web services to users. However, dissimilarities are equally evi-
dent. Unlike the wimp-giant collaboration on commodity platforms, where a
wimp never engages services of giants unless it can verify the results of those
services, ordinary users can seldom verify the results produced by adversary-
controlled services and defend themselves against attacks. Nevertheless, interac-
tion between honest but unsuspecting users and adversaries is desirable, if safe.
Such interaction can lead to new trust relations to be formed and potentially can
create new value. Safe protocol states can, in principle, provide credible evidence
that the adversary-controlled service isn’t harming an unsuspecting user. Here,
again, the attack definition would benefit from specifying a wimp-giant security
game, including the <goals, capabilities, strategies> triple and a model of the
adversary’s power and privilege.

In the protocol illustrated in Fig. 6, a user delegates her rights to a client-
machine wimp, which executes the steps of a trust protocol with an adversary-
controlled service; i.e., a giant. The wimp agrees to provide the user’s private
data, for example personal indentification information, to the giant in exchange
for results the user deems to be valuable; e.g., personalized ads, live news,
weather and traffic reports. It cryptographically seals a personal privacy policy
(i.e., a “sticky”) notice onto the private data specifying that they must not be

112 V. Gligor

leaked to third-parties and “forgotten” as specified; i.e., erased from the giant’s
storage within a certain time/use limit or on-demand. The cryptographic seal
and much of the interaction with the web server is done via a wimp on user’s
machine. This a giant’s software would be unable to interfere with the user’s
actions.

The cryptographic seal has a dual role: first, it prevents the giant from access-
ing the user’s private data unless the giant consents to abide by the user’s policy;
second, it prevents the user from changing her mind, adding more policies after
the giant consents, and then complaining about policy violations. This phase
of the protocol represents an undeniable fair exchange, which secures a consent
(by the giant) and a policy commitment (by the wimp) thereby assuring mutual
accountability. However, mutual accountability does not guarantee giant compli-
ance with the user’s privacy policy. The wimp has no way to control the giant’s
operation and enforce non-leakage and timely data erasure. So why would a user
output her user’s private data to the giant? Clearly, the user must establish
“output trust” in the giant. How could that happen?

First, the user can decrease the risk of giant leakage by anonymizing her iden-
tity and network address, and ensure that her anonymous identity is unlinkable
to any other identity she may have used in the past. The user can always change
her anonymous and unlinkable identity to reduce the damage caused by giant-
saved and leaked private data. Second, the user must ensure that the giant’s
service is regulated by legal statutes, and thus a non-compliant but accountable
giant may be punished. Third, the user could obtain recommendations attesting
to the giant’s trustworthiness and reputation ratings, which may increase the
user’s beliefs in giant’s trusworthiness in abiding by the user’s privacy policy.

Individually, none of the three components of trust establishment between
the wimp and the giant offers absolute guarantees of policy compliance by the
giant. First, anonymous and unlinkable identities cannot prevent a powerful giant
from collecting large amounts of data regarding this user’s behavior and linking
her identities via behavioral correlations. Second, accountability may not neces-
sarily guarantee punishment under the legal statutes and punishment may not
necessarily deter a non-compliant giant. However, the user’s aversion to betrayal
by the giant may be reduced considerably. Third, recommendation systems and
reputation ratings can only capture past evidence of trustworthiness but do not
necessarily guarantee present or future honest behavior. Nevertheless, research
in behavioral economics and practice suggests that all three measures are often
sufficient for trust establishment. For this reason, the wimp-giant collaboration
suggested by this example may not be as dangerous as anticipated despite the
wimp’s inability to verify the giant’s future actions.

6 Summary

In this paper, we argue that accurate and complete adversary definitions are
necessary if the asymmetric advantage of an attacker over a defender is to be
eliminated. However, such definitions are likely to be possible only for “wimpy”

Dancing with the Adversary: A Tale of Wimps and Giants 113

software components. We provide a structure for accurate and complete adver-
sary definitions for wimps, which was inspired from similar definitions in cryp-
tography. These definitions yields basic security properties and metrics, and are
instrumental in providing security assurance for commodity systems. Although
the wimp isolation from giant software components becomes necessary for obtain-
ing such definitions in practice, it is insufficient for wimp survival. To survive in
commodity markets, secure wimps must compose with insecure giants. We illus-
trate a safe way to compose a wimpy I/O kernel with a commodity operating
system, and extend the wimp-giant composition metaphor to interactive trust
protocols in networks of humans and computers.

Acknowledgments. This paper benefitted from discussions and joint work with
Min Suk Kang, Miao Yu, Jun Zhao, and Zongwei Zhou. Their insights are gratefully
acknowledged. This work was supported in part by the National Science Foundation
(NSF) under grant CCF-0424422 and a gift from Intel Corporation at CyLab. The
views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

References

1. Amoroso, E.G.: Fundamentals of Computer Security Technology, pp, 15–29.
Prentice-Hall (1994) ISBN0131089293

2. Bishop, M., Dilger, M.: Checking for race conditions in file accesses. Comput. Syst.
9(2), 131–152 (1996)

3. van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FlipIt: the game of “Stealthy
Takeover.” J. Cryptology 26(4), 655–713 (2013). (also in IACR Cryptology ePrint
Archive, Report 2012/103, 2012)

4. Gligor, V.D., Lindsay, B.G.: Object migration and authentication. IEEE Trans.
Softw. Eng. SE–5(6), 607–611 (1979)

5. Gligor, V.D.: On the evolution of adversary models in security protocols (or Know
Your Friend and Foe Alike). In: Christianson, B., Crispo, B., Malcolm, J.A.,
Roe, M. (eds.) Security Protocols 2005. LNCS, vol. 4631, pp. 276–283. Springer,
Heidelberg (2007)

6. Gligor, V.D.: Security limitations of virtualization and how to overcome them. In:
Proceedings of the 18th International Workshop on Security Protocols (SPW-18).
LNCS, Cambridge University, UK, vol. 7061. Springer, March 2010

7. Gligor, V., Wing, J.M.: Towards a theory of trust in networks of humans and
computers (transcript of discussion). In: Christianson, B., Crispo, B., Malcolm, J.,
Stajano, F. (eds.) Security Protocols 2011. LNCS, vol. 7114, pp. 223–242. Springer,
Heidelberg (2011)

8. Gupta, S., Gligor, V.D.: Experience with a penetration analysis method and tool.
In: Proceedings of the 1992 National Computer Security Conference, Baltimore,
Maryland, pp. 165–183 (1992)

9. Howard, M., Pincus, J., Wing, J.M.: Measuring relative attack surfaces. In: Lee,
D.T., Shieh, S.P., Tygar, J.D. (eds.) Computer Security in the 21st Century, chap.
8, pp. 109–137. Springer, New York (2005)

114 V. Gligor

10. Hutchins, E.M., Clopper, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion Kill Chains. In:
Proceedings of the 6th Annual International Conference on Information Warfare
and Security, Washington, DC (2011)

11. Kim, T.H.-J., Gligor, V., Perrig, A.: Street-level trust semantics for attribute
authentication (transcript of discussion). In: Christianson, B., Malcolm, J.,
Stajano, F., Anderson, J. (eds.) Security Protocols 2012. LNCS, vol. 7622,
pp. 96–115. Springer, Heidelberg (2012)

12. Lampson, B.W.: Software components: Only the giants survive. In: Computer Sys-
tems: Theory, Technology, and Applications, pp. 137–145. Springer, New York
(2004)

13. Lampson, B.W.: Usable security: how to get it. Commun. ACM 52, 25–27 (2009)
14. Li, Y., McCune, J., Perrig, A.: VIPER: verifying the integrity of peripherals

firmware. In: Proceedings of the ACM Conference on Computer and Communi-
cations Security (2011)

15. Manadhata, P.K., Karabulut, Y., Wing, J.M.: Report: measuring the attack sur-
faces of enterprise software. In: Massacci, F., Redwine Jr., S.T., Zannone, N. (eds.)
ESSoS 2009. LNCS, vol. 5429, pp. 91–100. Springer, Heidelberg (2009)

16. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

17. McCune, J., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVisor:
efficient TCB reduction and attestation. In: CMU-CyLab-09-003, March, 2009.
(also in Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, May 2010)

18. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: Proceedings of the IEEE Symposium on Security and Privacy, May 2010

19. Rogaway, P.: On the role definitions in and beyond cryptography. In: Maher, M.J.
(ed.) ASIAN 2004. LNCS, vol. 3321, pp. 13–32. Springer, Heidelberg (2004)

20. Rushby, J.M.: Separation and Integration in MILS (The MILS Constitution). Tech-
nical report, SRI-CSL-TR-08-XX, Feb 2008

21. Parno, B., Lorch, J., Douceur, J., Mickens, J., McCune, J.: Memoir: practical
state continuity for protected modules. In: Proceedings of the IEEE Symposium
on Security and Privacy (2011)

22. Vasudevan, A., Chaki, S., Jia, L., McCune, L.J., Newsome, J., Datta, A.: Design,
Implementation and Verification of an eXtensible and Modular Hypervisor Frame-
work. In: Proceedings of the IEEE Symposium on Security and Privacy (2013)

23. Vasudevan, A., Parno, B., Qu, N., Gligor, V., Perrig, A.: Lockdown: a safe and
practical environment for security applications. In: CMU-CyLab-09-011, 14 July
2009. (Also in Proceedings of TRUST, Vienna, Austria, 2012)

24. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
25. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th

National Computer Security Conference, Baltimore, Maryland (1991)
26. Zhao, J., Gligor, V., Perrig, A., Newsome, J.: ReDABLS: revisiting device attesta-

tion with bounded leakage of secrets. In: Christianson, B., Malcolm, J., Stajano,
F., Anderson, J., Bonneau, J. (eds.) Security Protocols 2013. LNCS, vol. 8263,
pp. 94–114. Springer, Heidelberg (2013)

27. Zhou, Z., Gligor, V., Newsome, J., McCune, J.: Building verifiable trusted path on
commodity x86 computers. In: Proceedings of the IEEE Symposium on Security
and Privacy (2012)

Dancing with the Adversary: A Tale of Wimps and Giants 115

28. Zhou, Z., Han, J., Lin, Y.-H., Perrig, A., Gligor, V.: KISS: “key it simple and
secure” corporate key management. In: Huth, M., Asokan, N., Čapkun, S., Flechais,
I., Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 1–18. Springer,
Heidelberg (2013)

29. Zhou, Z., Miao, Y.: Dancing with giants: wimpy kernels for on-demand isolated
I/O on commodity platforms. In: Proceedings of IEEE Symposium on Security
and Privacy, Oakland, CA (2014)

	Dancing with the Adversary: A Tale of Wimps and Giants
	1 Introduction
	2 Accurate and Complete Adversary Definitions for Wimps
	3 Wimp Security Properties and Metrics
	4 Wimps' Dance with Giants
	5 Wimps and Giants in Networks of Humans and Computers
	6 Summary
	References

