
Why Bother Securing DNS?

Dieter Gollmann(B)

Security in Distributed Applications,
Hamburg University of Technology, Hamburg, Germany

diego@tuhh.de

Abstract. The current state of DNS security is characterized by two
opposing developments. DNSSEC introduces a PKI to support message
authentication in the DNS protocol; DANE proposes to use this PKI also
for provisioning TLS certificates. At the same time, PKIs are perceived as
a major point of weakness; mechanisms like certificate pinning attempt
to reduce the trust one needs to place in a PKI. We note that DNS
provides rendezvous, identification, and introduction services and argue
that this differentiation can reduce the impact of compromised trusted
third parties.

Keywords: Domain Name System · TLS · DANE · Identification ·
Rendezvous services · Critical infrastructures

If it is trusted it can hurt you. [Robert Morris Sr.]

1 Introduction

It has become commonplace to note that critical infrastructures are increasingly
relying on the internet, and that the internet has become a critical infrastructure
itself. Complaints about the insecurity of the internet and demands for secur-
ing this critical infrastructure then quickly follow from such observations. With
apparent inevitability, endeavours for securing the internet – a communications
infrastructure after all – are drawn towards cryptography. We will follow this
path in the case of the Domain Name System (DNS), a critical component within
the internet. We will briefly reflect on current DNS security incidents, argue why
reliance on “security solutions” that involve trusted third parties is bad for secu-
rity, and put forward the case that security is not improved by deploying stronger
security mechanisms but by reducing reliance on the infrastructure. Specifically,
we observe that DNS serves more than one purpose. It provides a rendezvous
service and an introduction service. Identification services are in the process of
being added. Addressing these three aspects separately may be a way towards
improving the security of applications using the internet. Separation of concerns
is, of course, a well established security strategy.

c© Springer International Publishing Switzerland 2014
B. Christianson et al. (Eds.): Security Protocols 2014, LNCS 8809, pp. 1–8, 2014.
DOI: 10.1007/978-3-319-12400-1 1

2 D. Gollmann

2 Domain Name System

The Domain Name System plays a crucial rôle in the internet, mapping host names
to IP addresses. Authoritative name servers manage zones and make statements
about the bindings between host names and IP addresses for hosts in their zone.
All other participants trust their statements. Resolvers use a hierarchy of root
servers and global top level domain servers to find authoritative name servers.
This is the rendezvous service service provided: given a host name, name resolution
returns its current IP address. Security is based on trust in the name servers and
in a simple authentication of server responses.

The authentication mechanism originally specified for DNS uses a challenge-
response pattern (return routability): queries for a host name contain a 16-bit
query id; a resolver accepts the first response that contains this host name and
the query id sent (and arriving at the expected port) as authoritative. This
message authentication mechanism does not rely on any trusted third parties or
shared secrets.

2.1 DNS Cache Poisoning Attacks

This authentication mechanism is relatively weak, leaving recursive name servers
open to cache poisoning attacks [6]. Recursive name servers keep a cache of the
bindings they have received. Queries for host names with cached bindings are
served directly, without involving the authoritative name server. Cache entries
expire based on a time-to-live set by the authoritative name server.

A cache poisoning attack triggers name resolution for a target host at the
resolver and then floods the resolver with spoofed answers with guessed query
ids and an IP address of the attacker’s choice. The attack succeeds if a spoofed
answer with correctly guessed query id arrives before the genuine answer.

The attacker’s chances improve considerably if a resolver will run several
name resolutions for a given host name in parallel. The attacker triggers several
name resolutions and floods the resolver with spoofed answers. Now, one of the
attacker’s guesses has to match one of the resolver’s query ids; the probability
for the attack to succeed is related to the birthday paradox. Such a vulnerability
had been reported for BIND 4 and BIND 8 in a security advisory1 in 2002.

A DNS cache poisoning attack launched against the DNS server operated
by the Chaos Computer Club (CCC), dnscache.berlin.ccc.de (213.73.91.35), fol-
lowed the same pattern2. The CCC had been running djbdns, highly praised for
its randomization algorithms, as its name resolution software. A birthday para-
dox vulnerability in djbdns had been known since 2009 [2], a patch for djbdns
had been provided, but the CCC was still running an unpatched version. We are
faced with a known instance of a known problem with a known remedy. In this
respect, securing the infrastructure is a practical software security issue.
1 http://www.rnp.br/cais/alertas/2002/cais-ALR-19112002a.html
2 https://www.fehcom.net/diary/2014/20140212.html,

http://www.heise.de/newsticker/meldung/DNS-Server-des-CCC-Anfaellig-wegen-
veralteter-Software-2112171.html

https://dnscache.berlin.ccc.de
http://www.rnp.br/cais/alertas/2002/cais-ALR-19112002a.html
https://www.fehcom.net/diary/2014/20140212.html
http://www.heise.de/newsticker/meldung/DNS-Server-des-CCC-Anfaellig-wegen-veralteter-Software-2112171.html
http://www.heise.de/newsticker/meldung/DNS-Server-des-CCC-Anfaellig-wegen-veralteter-Software-2112171.html

Why Bother Securing DNS? 3

However, powerful attacks are possible even when query ids are chosen at
random and when the search space is enlarged with further randomizations, e.g.
the choice of port number and mixing upper and lower case characters in the
spelling of the host name. Dan Kaminsky had shown an attack that exploits
additional resource records, another performance optimization. A DNS response
may contain an additional section where the authoritative name server includes
bindings for hosts that resolver had not asked for but might want to resolve in
the near future. For example, the response for a query for www.example.com
might also include a record for mail.example.com. Resolvers do not blindly trust
authoritative name servers on additional resource records but perform bailiwick
checking. Only records for hosts in the same domain (“in the bailiwick”) of the
host the query has been issued for are cached.

The attack asks to resolve a random host name in the bailiwick of the tar-
get. This random host name has most likely no entry in the resolver cache, so
name resolution is triggered, and most likely the host does not exist, so the
authoritative name server would send a NXDOMAIN response. The attacker’s
spoofed responses contain a binding for the target in their additional section. If
the attacker’s response wins the race the cache entry for the target entry gets
poisoned; if the attacker loses the race a new race for another random host name
is started immediately. This attack convinced the DNS community that it was
high time to move to cryptographic message authentication in the DNS protocol.

2.2 DNS Rebinding Attacks

Cryptographic message authentication strengthens defences against “outsiders”
impersonating authoritative name servers. It does not stop authoritative name
servers from exploiting the trust placed in them. In DNS rebinding attacks [3–5],
an unsporting authoritative name server maps a host in the attacker’s zone to an
IP address of a host that is not. In this way, the attacker may, e.g., circumvent
the same origin policy enforced by browsers and use a client as a proxy to access
hosts outside the attacker’s zone (but believed by the client to be in the zone).

Same origin policies regulate, e.g., where a script executed in the browser
may connect to. To enforce this policy, the browser has to know the origin of
the script (authentication of origin is not our concern here) and the IP addresses
corresponding to that origin. The bindings issued by authoritative name servers
can thus be viewed as policy rules in an access control system, which are evalu-
ated in the browser. In the language of access control, authoritative name servers
act as Policy Information Points.

Authoritative name servers are, by design, authoritative for binding hosts in
their own zone to IP addresses. They thereby become authoritative for binding IP
addresses to hosts in their zone, but without any restrictions on the IP addresses
they may issue bindings for. They can thus hijack arbitrary IP addresses for their
zone. This is a serious construction flaw in an access control system. The defence
suggests itself: send a query to the IP address to check whether it “speaks for”
the given host name. There are strong parallels to the defences against bombing
attacks in networks with node mobility as discussed in [1].

www.example.com
http://mail.example.com

4 D. Gollmann

3 DNS and Public Key Cryptography

Deploying cryptographic authentication in the internet is at its heart a key
management challenge. Parties need to be provided with correctly attributed
public verification keys. Certificates create cryptographically protected bindings
between hosts and their public keys. The issuers of those certificates (a.k.a.
certification authorities) become trusted third parties. We will look at the way
this key management challenge has been addressed and, in particular, at the
trust placed into certificate issuers.

3.1 DNSSEC

The attacks on DNS had re-ignited interest in cryptographic authentication
based on digital signatures (DNSSEC, RFC 4033) as a replacement for the weak
authentication mechanism mentioned above. This kind of authentication relies
on a Public Key Infrastructure. The PKI for DNSSEC, by and large, mirrors
the hierarchical structure of the DNS and is gradually becoming operational.
The signed root zone, implemented by ICANN and Verisign with input from the
U.S. Department of Commerce, exists since July 20103. At the time of writing
(2014-05-29), 403 of the 589 top level domains are signed, 395 have trust anchors
published in the root zone4. Top level domains and the root zone are “roots of
trust” in this PKI, but they are roots of trust in DNS anyway as far as name
resolution is concerned.

A PKI needs a secure way of distributing public verification keys to the rele-
vant parties. Accepted methods for public key delivery are listed in the DNSSEC
Practice Statement for the Root Zone KSK Operator5. The internet draft on
DNSSEC Trust Anchor Publication for the Root Zone6 covers the same topic.

3.2 TLS

There exists a second – already widely used – PKI for the internet, created
for facilitating access to secure web sites via https. This PKI puts certification
authorities (CAs) in a very powerful position. They can issue certificates for any
host in the web. Once a CA is included in the list of trusted roots on a client it
becomes authoritative for the entire web (for that client).

An attacker who has compromised a certification authority can thus issue
bogus but nevertheless valid certificates for arbitrary hosts. A well reported case
is that of the Dutch CA DigiNotar. Google had noted in 2011 a DigiNotar issued
certificate for google.com not contained in Google’s own list of certificates for
3 http://www.root-dnssec.org/
4 http://stats.research.icann.org/dns/tld report/
5 https://www.iana.org/dnssec/icann-dps.txt
6 http://tools.ietf.org/html/draft-jabley-dnssec-trust-anchor-07

http://google.com
http://www.root-dnssec.org/
http://stats.research.icann.org/dns/tld_report/
https://www.iana.org/dnssec/icann-dps.txt
http://tools.ietf.org/html/draft-jabley-dnssec-trust-anchor-07

Why Bother Securing DNS? 5

google.com. The incident had serious impacts on IT services offered by the Dutch
government7 and on DigiNotar, which filed for bankruptcy.

Is the list of trusted certificates (public keys) at the client a solution to
this problem? Clients could for important hosts define a set of authorized CAs
(introduced as certificate pinning in Chrome, although CA pinning would be
more accurate), thus moving those hosts out of the reach of all other CAs.
Certificate pinning is also used to describe solutions where the certificate is hard
coded in a client application and the certificate received in a TLS handshake is
compared against this “pinned” certificate. In this case, the CA authorized for
the application is fixed.

Is the list of trusted certificates (public keys) at the client a part of the
problem? Consider Mikko Hyppönen’s post8 from April 2013 on finding that the
US DoD certification authority is pre-installed on various Apple devices:

– My phone carries a root certificate for a military.
– From one country.
– And it’s not my country.
– And I can’t remove it.
– Issuer: C=US, O=U.S. Government, OU=DoD, OU=PKI, CN=DoD CLASS

3 Root CA

The average user is hardly in a position to judge the trustworthiness of a trusted
CA, e.g., its proximity to the government of the country it is operating in.

3.3 DANE

The wish to restrict the impact of corrupted CAs in TLS takes us back to DNS.
The idea of certificate (CA) pinning could be extended. CAs could be authorized
to issue certificates only for a limited scope of hosts. We would then have to define
a policy that states which CA is authoritative for which set of hosts.

In DNS, authoritative name servers are already trusted on mapping host
names to IP addresses. With the introduction of DNSSEC, they are also trusted
to sign resource records, to confirm the public keys of sub-authorities, and to
protect their own private keys. It is then a plausible next step to build a PKI
for https on the basis of DNS and let authoritative name servers (or registrars)
issue certificates for hosts in their domain, but only for hosts in their domain.
Such a PKI has been specified as DNS-Based Authentication of Named Entities
(DANE, RFC 6698). Corrupted CAs can only affect their own zone.

On the other hand, compromise of an authoritative name server now lets the
attacker not only provide a wrong IP address for a host (attack at the network
layer) but also a wrong public encryption key (attack at the application layer).
Have we improved security or made matters worse? This brings us to the main
question of this discussion paper:
7 http://www.onderzoeksraad.nl/uploads/items-docs/1833/Rapport Diginotar EN

summary.pdf
8 https://twitter.com/mikko/status/327170802673917952

http://google.com
http://www.onderzoeksraad.nl/uploads/items-docs/1833/Rapport_Diginotar_EN_summary.pdf
http://www.onderzoeksraad.nl/uploads/items-docs/1833/Rapport_Diginotar_EN_summary.pdf
https://twitter.com/mikko/status/327170802673917952

6 D. Gollmann

Have we been walking in the wrong direction by putting too many require-
ments on the Domain Name System, which made us rely more heavily
on DNS, forcing us in turn to look for stronger security mechanisms?

4 Splitting Services

Alternatively, we might treat DNS just as a rendezvous service providing the
current IP address of a host without any pretence of delivering authentication.

– Addresses can change in space and time.
– It matters when no rendezvous service is available.
– It does not matter when wrong information is provided as long as alternative

services can be consulted.

Cryptographic protection may have a rôle at the network layer but not in the
rendezvous service itself. We do not want to trust rendezvous services in the
first place. DNS would just make a best effort to provide an IP address for a
host. Failure to provide a correct IP address is then an availability issue, not an
authentication issue, to be addressed with methods for improving availability.

A further service needs to confirm that the host a client is looking for is resid-
ing at the address obtained. We need such a service anyway because authoritative
name serves may lie. The fact that, with DNSSEC, their answers are signed does
not imply that they are true. The service used in the case where a host is already
known to the client can be different from the service used when there has been
no previous interaction.

In the first case, the client would not ask the host “who are you” but “are
you the one I want to connect to”. The client could remember from a previous
visit how to recognize this host, and the host could answer this question by
providing evidence that it is the same as at the client’s last visit. We call this
an identification service. Such a service confirms that a host is the same as
last time and not someone else pretending to be that host. This follows Pekka
Nikander’s argument9 that etymologically identity, stemming from Latin idem
et idem, means “the same as before”. We are well aware that identification has
also other meanings in the field of IT security.

For identification a pinned public key of the host or a shared secret would do.
Current developments towards certificate pinning have been noted in Sect. 3.2.
In (our usage of) identification the client needs a local name for the host to
connect to. Identification does not need trusted third parties.

For hosts not known to the client, a service is needed that equips the client
with the means to authenticate the host. We call this an introduction service. The
TLS PKI is such a service. Host names have to be globally unique. The introducer
acts as a trusted third party. Asking several independent parties reduces the
impact of a compromised introducer.
9 http://tools.ietf.org/html/draft-nikander-ram-ilse-00

http://tools.ietf.org/html/draft-nikander-ram-ilse-00

Why Bother Securing DNS? 7

rendezvous
(DNS)

1. where is www.foo.com?

IP address of www.foo.com
client

....................................
2a. credential for www.foo.com? introduction

(PKI)
public key for www.foo.com

............................

....................................
2b. is this www.foo.com? host

@ IP addressidentification response

............................

Fig. 1. Interplay of rendezvous, introduction, and identification services when connect-
ing to a host.

Figure 1 describes how a client connects to www.foo.com. Step 1 retrieves an
untrusted IP address for the host. An optional step 2a gets a credential from an
introductions service; in the case of a PKI the credential is a public key. Step 2b
is a run of an identification protocol run between the client and the host at the
IP address obtained in step 1. The response is verified using either the credential
from step 2 or a credential pre-installed at the client.

5 Conclusion

Infrastructures are critical because of critical applications using the infrastruc-
ture. In the first instance, it is not the critical infrastructure that needs to be
secured but the applications that had turned the infrastructure critical. This in
turn may point to security services the infrastructure should provide. The fewer
parties these services have to trust the better.

We may be taking a wrong turn when we ask DNS to provide additional
services and rely on cryptography for securing DNS. Authentication does not
protect against lying insiders, i.e., against the very entities providing these ser-
vices. Relying on DNS introduces an awful lot of trusted third parties, albeit
with certain limits to the damage they can cause. Arguably, this does not secure
the infrastructure but increases the attack surface.

DNS can be viewed as a rendezvous service returning the current IP address
of a host; it needs an infrastructure of name servers such as the one we have
got today, but it should not be necessary to trust this infrastructure. Certificate
pinning is adding an identification service to TLS. Identification needs no trusted
third party at all. Introduction services are, by definition, trusted third parties.
The principle of divide et impera suggests that there may be benefits in splitting
rendezvous from introduction services.

Acknowledgements. The author thanks Daniel Thomas for a constructive criticism
of this paper.

www.foo.com

8 D. Gollmann

References

1. Aura, T., Roe, M., Arkko, J.: Security of internet location management. In: Pro-
ceedings of the 18th Annual Computer Security Applications Conference, pp. 78–87,
December 2002

2. Day, K.: Rapid DNS poisoning in djbdns, February 2009. http://www.your.org/
dnscache/djbdns.pdf. Accessed 5 June 2014

3. Dean, D., Felten, E.W., Wallach, D.S.: Java security: from HotJava to Netscape and
beyond. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp.
190–200 (1996)

4. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers from
DNS rebinding attacks. In: Proceedings of the 14th ACM Conference on Computer
and Communications Security, pp. 421–431 (2007)

5. Johns, M.: (Somewhat) breaking the same-origin policy by undermining DNS pin-
ning. Posting to the Bug Traq mailing list, August 2006. http://www.securityfocus.
com/archive/107/443429/30/180/threaded. Accessed 5 June 2014

6. Schuba, C.: Addressing weaknesses in the domain name system protocol. Ph.D.
thesis, Purdue University (1993)

http://www.your.org/dnscache/djbdns.pdf
http://www.your.org/dnscache/djbdns.pdf
http://www.securityfocus.com/archive/107/443429/30/180/threaded
http://www.securityfocus.com/archive/107/443429/30/180/threaded

	Why Bother Securing DNS?
	1 Introduction
	2 Domain Name System
	2.1 DNS Cache Poisoning Attacks
	2.2 DNS Rebinding Attacks

	3 DNS and Public Key Cryptography
	3.1 DNSSEC
	3.2 TLS
	3.3 DANE

	4 Splitting Services
	5 Conclusion
	References

