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Abstract

Effectively managing uncertain health, safety, and environmental risks requires
quantitative methods for quantifying uncertain risks, answering the following
questions about them, and characterizing uncertainties about the answers:

• Event detection: What has changed recently in disease patterns or other
adverse outcomes, by how much, when?

• Consequence prediction: What are the implications for what will probably
happen next if different actions (or no new actions) are taken?

• Risk attribution: What is causing current undesirable outcomes? Does a
specific exposure harm human health, and, if so, who is at greatest risk and
under what conditions?

• Response modeling: What combinations of factors affect health outcomes,
and how strongly? How would risks change if one or more of these factors
were changed?

• Decision making: What actions or interventions will most effectively reduce
uncertain health risks?

• Retrospective evaluation and accountability: How much difference have
exposure reductions actually made in reducing adverse health outcomes?

These are all causal questions. They are about the uncertain causal relations
between causes, such as exposures, and consequences, such as adverse health
outcomes. This chapter reviews advances in quantitative methods for answering
them. It recommends integrated application of these advances, which might
collectively be called causal analytics, to better assess and manage uncertain
risks. It discusses uncertainty quantification and reduction techniques for causal
modeling that can help to predict the probable consequences of different policy
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choices and how to optimize decisions. Methods of causal analytics, includ-
ing change-point analysis, quasi-experimental studies, causal graph modeling,
Bayesian Networks and influence diagrams, Granger causality and transfer
entropy methods for time series, and adaptive learning algorithms provide a rich
toolkit for using data to assess and improve the performance of risk management
efforts by actively discovering what works well and what does not.
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1 Introduction

Politically contentious issues often turn on what appear to be technical and scientific
questions about cause and effect. Once a perceived undesired state of affairs
reaches a regulatory or policy agenda, the question arises of what to do about it
to change things for the better. Useful answers require understanding the probable
consequences caused by alternative policy actions. For example,

• A century ago, policy makers might have asked whether a prohibition amendment
would decrease or increase alcohol abuse.

• A decade ago, policy makers might have wondered whether an invigorated war
on drugs would increase or decrease drug abuse.

• Do seatbelts reduce deaths from car accidents, even after accounting for “risk
homeostasis” changes in driving behaviors?

• Does gun control reduce deaths due to shootings?
• Does the death penalty reduce violent crime?
• Has banning smoking in bars reduced mortality rates due to heart attacks?
• Do sex education and birth control programs in schools decrease teen pregnancy

rates and prevalence of sexually transmitted diseases?
• Has the Clean Air Act reduced mortality rates, e.g., due to lung cancer or

coronary heart disease (CHD) or to all causes?
• Will reformulations of childhood vaccines reduce autism?
• Would banning routine antibiotic use in farm animals reduce antibiotic-resistant

infections in people?

Policy makers look to epidemiologists, scientists, and risk analysts to answer
such questions. They want to know how policy actions will change (or already have
changed) outcomes and by how much – how much improvement is caused how
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quickly and how long does it last? They want to know what will work best and what
has (and has not) worked well in reducing risks and undesirable outcomes without
causing unintended adverse consequences. And they want to know how certain or
uncertain the answers to these questions are.

Developing trustworthy answers to these questions and characterizing uncer-
tainty about them requires special methods. It is notoriously difficult to quickly and
accurately identify events or exposures that cause adverse human health outcomes,
quantify uncertainties about causal relations and impacts, accurately predict the
probable consequences of a proposed action such as a change in exposure or
introduction of a regulation or intervention program, and quantify in retrospect
what effects an action actually did cause, especially if other changing factors
affected the observed outcomes. The following section explains some limitations
of association-based epidemiological and regulatory risk assessment methods that
are often used to try to answer these questions. These limitations suggest that
association-based methods are not adequate for the task [21], contributing to an
unnecessarily widespread prevalence of false positives in current epidemiology that
undermines the credibility and value of scientific studies that should be providing
trustworthy, crucial information to policy makers [22, 56, 70, 102]. New and better
ideas and methods are needed, and are available, to provide better answers. The
remaining sections review the current state of the art of methods for answering the
following causal questions and quantifying uncertainties about their answers:

1. Event detection: What has changed recently in disease patterns or other adverse
outcomes, by how much, when, and why? For example, have hospital or
emergency room admissions or age-specific mortalities with similar symptoms
recently jumped significantly, perhaps suggesting a disease outbreak (or a
terrorist bio-attack)?

2. Consequence prediction: What are the implications for what will probably
happen next if different actions (or no new actions) are taken? For example, how
many new illnesses are likely to occur and when? How quickly can a confident
answer be developed and how certain and accurate can answers be based on
limited surveillance data?

3. Risk attribution: What is causing current undesirable outcomes? Does a specific
exposure harm human health? If so, who is at greatest risk (e.g., children, elderly,
other vulnerable subpopulations) and under what conditions (e.g., for what
exposure concentrations and durations or for what co-exposures)? Answering
this question is the subject of hazard identification in health risk assessment. For
example, do ambient concentrations of fine particulate matter or ozone in air
(possibly in combination with other pollutants) cause increased incidence rates
of heart disease or lung cancer in one or more vulnerable populations? Here,
“cause” is meant in the specific sense that reducing exposures would reduce the
risks per person per year of the adverse health effects. (The following section
contrasts this with other interpretations of “exposure causes disease Y;” such as
“exposure X is strongly, consistently, specifically, temporally, and statistically
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significantly associated with Y; and the association is biologically plausible and
is stronger for greater exposures” or “the fraction of cases of Y attributable to
X; based on relative risks or regression models, is significantly greater than
zero.” These interpretations do not imply that reducing X will reduce Y; as
positive associations and large attributable risks may reflect modeling choices
or p-hacking, biases, or confounding rather than genuine causation.)

4. Response modeling: What combinations of factors affect health outcomes and
how strongly? How would risks change if one or more of these factors were
changed? For example, what is the quantitative causal relationship between
exposure levels and probabilities or rates of adverse health outcomes for
individuals and identifiable subpopulations? How well can these relationships
be inferred from data, and how can uncertainties about the answers be character-
ized?

5. Decision making: What actions or interventions will most effectively reduce
uncertain health risks? How well can the effects of possible future actions be
predicted, such as reducing specific exposures, taking specific precautionary
measures (e.g., flu shots for the elderly), or other interventions? This is the key
information needed to inform risk management decisions before they are made.

6. Retrospective evaluation and accountability: How much difference have expo-
sure reductions actually made in reducing adverse health outcomes? For exam-
ple, has reducing particulate matter air pollution reduced cardiovascular mortality
rates over the past decade, or would these reductions have occurred just as
quickly without reductions in air pollution (i.e., are these coincident historical
trends, or did one cause the other?)

These questions are fundamental in epidemiology and health and safety risk
assessment. They are mainly about how changes in exposures affect changes in
health outcomes and about how certain the answers are. They can be answered
using current methods of causal analysis and uncertainty quantification (UQ) for
causal models if sufficient data are available.

The following sections discuss methods for drawing valid causal inferences
from epidemiological data and for quantifying uncertainties about causal impacts,
taking into account model uncertainty as well as sampling errors and measurement,
classification, or estimation errors in predictors. UQ methods based on model
ensemble methods, such as Bayesian model averaging (BMA) and various forms of
resampling, boosting, model cross validation, and simulation, can help to overcome
over-fitting and other modeling biases, leading to wider confidence intervals for
the estimated impacts of actions and reducing false-positive rates [50]. UQ has the
potential to restore greater integrity and credibility to model-based risk estimates
and causal predictions, to reveal the quantitative impacts of model and other
uncertainties on risk estimates and recommended risk management actions, and to
guide more productive-applied research to decrease key remaining uncertainties and
to improve risk management decision-making via active exploration and discovery
of valid causal conclusions and uncertainty characterizations.
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2 Some Limitations of Traditional Epidemiological Measures
for Causal Inference: Uncertainty About Whether
Associations Are Causal

Epidemiology has a set of well-developed traditional methods and measures for
quantifying associations between observed quantities. These include regression
model coefficients and relative risk (RR) ratios (e.g., the ratio of disease rates
for exposed and unexposed populations) as well as various quantities derived
from them by algebraic rearrangements. Derived quantities include population
attributable risks (PARs) and population attributable fractions (PAFs) for the
fraction of disease or mortality cases attributable to a specific cause, global burden
of disease estimates, etiologic fractions and probability-of-causation calculations,
and estimated concentration-response slope factors for exposure-response relations
[27, 98]. Although the details of calculations for these measures vary, the key
idea for all of them is to observe whether more-exposed people suffer adverse
consequences at a higher rate than less-exposed people and, if so, to attribute the
excess risks in the more-exposed group to a causal impact of exposure. Conventional
statistical methods for quantifying uncertainty about measures of association, such
as confidence intervals and p-values for RR, PAF, and regression coefficients
in logistic regression, Cox proportional hazards, or other parametric or semi-
parametric regression models, are typically used to show how firmly the data,
together with the assumptions embedded in these statistical models, can be used
to reject the null hypothesis of independence (no association) between exposures
and adverse health responses. In addition, model diagnostics (such as plots of
residuals and formal tests of model assumptions) can reveal whether modeling
assumptions appear to be satisfied; more commonly, less informative goodness-of-
fit measures are reported to show that the models used do not give conspicuously
poor descriptions of the data, at least as far as the goodness-of-fit test can determine.
However, goodness-of-fit tests are typically very weak in detecting conspicuously
poor fits to data. This is often illustrated by the notorious “Anscombe’s quartet”
of qualitatively very different scatter plots giving identical least-squares regression
lines and goodness-of-fit test values.

The main limitation of these techniques is that they only address associations,
rather than causation. Hence, they typically do not actually quantify the fraction or
number of illnesses or mortalities per year that would be prevented by reducing
or eliminating specific exposures. Unfortunately, as many methodologists have
warned, PAF and probability of causation, as well as regression coefficients, are
widely misinterpreted as doing precisely this (e.g., [98]). Large epidemiological
initiatives, such as the World Health Organization’s Global Burden of Disease stud-
ies, make heavy use of association-based methods that are mistakenly interpreted
as if they indicated causal relations. This has become a very common mistake in
contemporary epidemiological practice. It undermines the validity, credibility, and
practical value of many (some have argued most) causal claims now being published
using traditional epidemiological methods [70,88,102]. To what extent associations
correspond to stable causal laws that can reliably predict future consequences of
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policy actions is beyond the power of these traditional epidemiological measures to
say [98] doing so requires different techniques.

2.1 Example: Exposure-Response Relations Depend on
Modeling Choices

A 2014 article in Science [21] noted that “There is a growing consensus in
economics, political science, statistics, and other fields that the associational or
regression approach to inferring causal relations – on the basis of adjustment with
observable confounders – is unreliable in many settings.” To illustrate this point,
the authors cite estimates of the effects of total suspended particulates (TSPs)
on mortality rates of adults over 50 years old, in which significantly positive
associations (regression coefficients) are reported in some regression models that
did not adjust for confounders such as age and sex, but significantly negative
associations are reported in other regression models that did adjust for confounders
by including them as explanatory variables. The authors note that the sign, as
well as the magnitude, of reported exposure concentration-response (C-R) relations
depends on details of modeling choices about which variables to include as
explanatory variables in the regression models. Thus, the quantitative results of
risk assessments presented to policy makers as showing the expected reductions in
mortality risk per unit decrease in pollution concentrations actually reflect specific
modeling choices, rather than reliable causal relations that accurately predict how
(or whether) reductions in exposure concentrations would reduce risks.

A distinction from econometrics between structural equations and reduced-
form equations [65] is helpful in understanding why different epidemiologists
can estimate exposure concentration-response regression coefficients with opposite
signs from the same data. The following highly simplified hypothetical example
illustrates the key idea. Suppose that cumulative exposure to a chemical increases
in direct proportion to age and that the risk of disease (e.g., the average number of
illness episodes of a certain type per person per decade) also increases with age.
Finally, suppose that the effect of exposure at any age is to decrease risk. These
hypothesized causal relations are shown via the following two structural equations:

EXPOSURE = AGE SEM equations

RISK = 2*AGE – EXPOSURE.

These are equations with the explicit causal interpretation that a change in the
variable on the right side causes a corresponding change in the variable on the
left side to restore equality between the two sides (e.g., increasing age increases
cumulative exposure and disease risk, but increasing exposure decreases risk at any
age). These two structural equations together constitute a structural equation model
(SEM) that can be diagrammed as in Fig. 43.1:
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Fig. 43.1 SEM causal graph
model

2

AGE → RISK

1↓ ↑-1

EXPOSURE

In this diagram, each variable depends causally only on the variables that point
into it, as revealed by the SEM equations. The weights on the arrows (the coefficients
in the SEM equations) show how the average value of the variable at the arrow’s
head will change if the variable at its tail is increased by one unit, for example,
increasing AGE by 1 decade (if that is the relevant unit) increases RISK directly by
2 units (e.g., 2 expected illnesses per decade, if that is the relevant unit), increases
EXPOSURE by one unit, and thereby decreases RISK indirectly by 1 unit, via the
path through EXPOSURE, for a net effect of a 1 unit increase in RISK per unit
increase in AGE.

By contrast to such causal SEM models, what is called a reduced-form model is
obtained by regressing RISK against EXPOSURE. Using the first SEM equation,
EXPOSURE D 1*AGE, to substitute EXPOSURE for AGE in the second SEM
equation, RISK D 2*AGE – EXPOSURE, yields the following reduced-form
equation:

RISK = EXPOSURE Reduced-form equation

This reduced-form model is a valid descriptive statistical model: it reveals that in
communities with higher exposure levels, risk should be expected to be greater. But
it is not a valid causal model: a prediction that reducing exposure would cause a
reduction in risk would be mistaken, as the SEM equations make clear. The reduced-
form equation is not a structural equation, so it cannot be used to predict correctly
how changing the right side would cause the left side to change. The coefficient
of EXPOSURE in the linear regression model relating exposure to risk is C1 in
the reduced-form model, but is �1 in the SEM model, showing how different
investigators might reach opposite conclusions about the sign of “the” exposure-
response coefficient based on whether or not they condition on age (or, equivalently,
on whether they use structural or reduced-form regression equations).

In current epidemiological practice, the distinction between structural and
reduced-form equations is often not clearly drawn. Regression coefficients of
various signs and magnitudes, as well as various measures of association based on
relative risk ratios, are all presented to policy makers as if they had valid causal
interpretations and therefore important implications for risk management policy-
making. In air pollution health effects epidemiology, for example, it is standard
practice to present regression coefficients as expected reductions in elderly mortality
rates (or as expected increases in life span) per unit reduction in air pollution
concentrations [24, 28], thereby conflating associations between historical levels
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(e.g., pollutant levels and mortality rates both tend to be higher on cold winter days
than during the rest of the year, and both have declined in recent decades) with
a causal, predictive relation that implies that future reductions in pollution would
cause further future reductions in elderly mortality rates. Since such association-
based studies are often unreliable indicators of causality [21] or simply irrelevant
for determining causality, as in the examples for Fig. 43.1, policy makers who wish
to use reliable causal relations to inform policy decisions must seek elsewhere.

These limitations of association-based methods have been well discussed among
methodological specialists for decades [98]. Key lessons, such as that the same data
set can yield either a statistically significant positive exposure-response regression
coefficient or a statistically significant negative exposure-response regression coef-
ficient, depending on the modeling choices made by the investigators, are becoming
increasingly appreciated by practitioners [21]. They illustrate an important type of
uncertainty that arises in epidemiology, but that is less familiar in many other applied
statistical settings: uncertainty about the interpretation of regression coefficients
(or other association-based measures such as RR, PAF, etc.) as indicating causal
relations vs. confounded associations or modeling biases vs. some of each. This type
of uncertainty cannot be addressed by presenting conventional statistical uncertainty
measures such as confidence intervals, p-values, regression diagnostics, sensitivity
analyses, or goodness-of-fit statistics, since the uncertainty is not about how well a
model fits data or about the estimated parameters of the model. Rather, it is about the
extent to which the model is only descriptive of the past vs. predictive of different
futures caused by different choices. Although this is not an uncertainty to which
conventional statistical tests apply, it is crucial for the practical purpose of making
model-informed risk management decisions. Policy interventions will successfully
increase the probabilities of desired outcomes and decrease the frequencies of
undesired ones only to the extent that they act causally on drivers of the outcomes
and not necessarily to the extent that the models used describe past associations.

One way to try to bridge the gap between association and causation is to ask
selected experts what they think about whether or to what extent associations might
be causal. However, research on the performance of expert judgments has called into
question the reliability of expert judgments, specifically including judgments about
causation [61]. Such judgments typically reflect qualitative “weight of evidence”
(WoE) considerations about the strength, consistency (e.g., do multiple independent
researchers find the claimed associations?), specificity, coherence (e.g., are asso-
ciations of exposure with multiple health endpoints mutually consistent with each
other and with the hypothesis of causality?) temporality (do hypothesized causes
precede their hypothesized effects?), gradient (are larger exposures associated with
larger risks?), and biological plausibility of statistical associations and the quality
of the data sources and studies supporting them. One difficulty is that a strong
confounder (such as age in Fig. 43.1) with delayed effects can create strong,
consistent, specific, coherent, temporal associations between exposure and risk
of an adverse response, with a clear gradient associating larger risks with larger
exposures, without providing any evidence that exposure actually causes increased
risk.
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Showing that an association is strong, for example, does not address whether
it is causal, although many WoE systems simply assume that the former supports
the latter without explicitly addressing whether the strong associations are instead
explained by strong confounding, strong biases, or strong modeling assumptions.
Similarly, showing that different investigators find the same or similar association
does not necessarily show whether this consistency results from shared modeling
assumptions, biases, or confounders. Conflating causal and associational concepts,
such as evidence for the strength of an association and evidence for causality of
the association, too often makes assessments of causality in epidemiology untrust-
worthy compared to methods used in other fields, discussed subsequently [51, 83].
Most epidemiologists are trained to treat various aspects of association as evidence
for causation, even though they are not, and this undermines the trustworthiness of
expert judgments about causation based on WOE considerations [83].

In addition, experts are sometimes asked to judge the probability that an
association is causal (e.g., [25]). This makes little sense. It neglects the fact that
an association may be partly causal and partly due to confounding or modeling
biases or coincident historical trends. For example, if exposure does increase risk,
but is also confounded by age, then asking for the probability that the regression
coefficient relating exposure to risk is causal overlooks the realistic possibility
that it reflects both a causal component and a confounding component, so that the
probability that it is partly causal might be 1 and the probability that it is completely
causal might be 0. A more useful question to pose to experts might be what fraction
of the association is causal, but this is seldom asked. Common noncausal sources
of statistical associations include model selection and multiple testing biases,
model specification errors, unmodeled errors in explanatory variables in multivariate
models, biases due to data selection and coding (e.g., dichotomizing or categorizing
continuous variables such as age, which can lead to residual confounding), and
coincident historical trends, which can induce statistically significant-appearing
associations between statistically independent random walks – a phenomenon
sometimes dubbed as spurious regression [17, 98].

Finally, qualitative subjective judgments and ratings used in many WoE systems
are subject to well-documented psychological biases. These include confirmation
bias (seeing what one expects to see and discounting or ignoring evidence that
might challenge one’s preconceptions), motivated reasoning (finding what it benefits
one to find and believing what it pays one to believe), and overconfidence (not
sufficiently doubting, questioning, or testing one’s own beliefs and hence not
seeking potentially disconfirming information that might require those beliefs to
be revised) [61, 102].

That statistical associations do not in general convey information sufficient for
making valid causal predictions has been well understood for decades by statis-
ticians and epidemiologists specializing in technical methods for causal analysis
(e.g., [31, 36]). This understanding is gradually percolating through the larger
epidemiological and risk analysis communities. Peer-reviewed published papers and
reports, including those relied on in many regulatory risk assessments, still too often
make the fundamental mistake of reinterpreting empirical exposure-response (ER)
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relations between historical levels of exposure and response as if they were causal
relations useful for predicting how future changes in exposures would change future
responses. Fortunately, this confusion is unnecessary today: appropriate technical
methods for causal analysis and modeling are now well developed, widely available
in free software such as R or Python, and readily applicable to the same kinds
of cross-sectional and longitudinal data collected for association-based studies.
Table 43.1 summarizes some of the most useful study designs and methods for valid
causal analysis and modeling of causal exposure-response relations.

Despite the foregoing limitations, there is much of potential value in several WoE
considerations, especially consistency, specificity, and temporality of associations,
especially if they are used as part of a relatively objective, quantitative, data-

Table 43.1 Some formal methods for modeling and testing causal hypotheses

Method and
References Basic Idea

Appropriate study
design

Conditional
independence tests
[31, 32]

Is hypothesized effect (e.g., lung cancer) sta-
tistically independent of hypothesized cause
(e.g., exposure to chemical), given val-
ues of other variables (e.g., education and
income)? If so, this undermines causal inter-
pretation.

Cross-sectional data
Can also be applied
to multi-period data
(e.g., in dynamic
Bayesian networks)

Panel data analysis
[2, 109]

Are changes in exposures followed by
changes in the effects that they are hypothe-
sized to help cause? If not, this undermines
causal interpretation; if so, this strengthens
causal interpretation.

Panel data study:
Collect a sequence
of observations on
same subjects or
units over time

Example: Are changes in exposure levels
followed (but not preceded) by correspond-
ing changes in mortality rates?

Granger causality
test [23], transfer
entropy
[81, 91, 99, 118]

Does the history of the hypothesized cause
improve ability to predict the future of the
hypothesized effect? If so, this strengthens
causal interpretation; otherwise, it under-
mines causal interpretation.

Time series data on
hypothesized causes
and effects

Example: Can lung cancer mortality rates in
different occupational groups be predicted
better from time series histories of exposure
levels and mortality rates than from the time
series history of mortality rates alone?

Quasi-experimental
design and analysis
[12, 40, 41]

Can control groups and other comparisons
refute alternative (noncausal) explanations
for observed associations between hypothe-
sized causes and effects? For example, can
coincident trends and regression to the mean
be refuted as possible explanations? If so,
this strengthens causal interpretation.

Longitudinal
observational data
on subjects exposed
and not exposed to
interventions that
change the
hypothesized
cause(s) of effects.

(continued)
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Table 43.1 (continued)

Method and
References Basic Idea

Appropriate study
design

Intervention
analysis,
change-point
analysis [45],
Gilmour et al. 2006

Does the best-fitting model of the observed
data change significantly at or following the
time of an intervention? If so, this strength-
ens causal interpretation.

Time series
observations on
hypothesized effects
and knowledge of
timing of
intervention(s)

Do the quantitative changes in hypothesized
causes predict and explain the subsequently
observed quantitative changes in hypothe-
sized effects? If so, this strengthens causal
interpretation.

Example: Did lung disease mortality rates
fall significantly faster or sooner in work-
places that reduced exposures more or ear-
lier than in workplaces that did not?

Quantitative time
series data for
hypothesized causes
and effects

Counterfactual and
potential outcome
models, including
propensity scores
and marginal
structural models
(MSMs) [82, 96]

Do exposed individuals have significantly
different response probabilities than they
would have had if they had not been
exposed? Example: Do workers have lower
mortality risk after historical exposure
reductions than they would have had other-
wise?

Cross-sectional
and/or longitudinal
data, with selection
biases and feedback
among variables
allowed

Causal network
models of change
propagation [19, 39]

Do changes in exposures (or other causes)
create a cascade of changes through a net-
work of causal mechanisms (represented by
equations), resulting in changes in the effect
variables?

Observations of
variables in a
dynamic system out
of equilibrium

Negative controls
(for exposures or for
effects) [73]

Do exposures predict health effects better
than they predict effects that cannot be
caused by exposures more (e.g., reductions
in traumatic injuries)?

Observational
studies

driven approach to inferring probable causation. The following sections discuss this
possibility and show how such traditional qualitative WoE considerations can be fit
into more formal quantitative causal analyses.

3 Event Detection and Consequence Prediction: What’s New,
and So What?

In public health and epidemiology, surveillance data showing changes in hospital or
emergency department admission rates for a specific disease or symptom category
may provide the first indication that an event has occurred that has caused changes in
health outcomes. Initially, the causes of the changes may be uncertain, but if the date
of a change can be estimated fairly precisely and matches the date of an event that
might have caused the observed effects, then the event might have caused the change
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in admissions rates. This causal hypothesis is strengthened if occurrences of the
same or similar event in multiple times and places are followed by similar changes
in admission rates (consistency and temporality of association) and if these changes
in admissions rates do not occur except when the event occurs first (specificity
of association). To make this inference sound, the event occurrences must not be
triggered by high levels of admissions rates, since otherwise interventions that
respond to these high rates might be followed by significant reductions in admission
rates due solely to regression to the mean, i.e., the fact that exceptionally high
levels are likely to be followed by lower levels, even if the interventions have no
impact [12].

The technical methods used to estimate when admission rates or other effect have
changed significantly, such as counts of accidents or injuries or fatalities per person
per week in a population, include several different statistical anomaly-detection
and change-point analysis (CPA) algorithms (e.g., [108]). The key idea of these
algorithms is to determine whether, for each point in time (e.g., for each week in a
surveillance time series), the series is significantly different (e.g., in distribution or
trend) before that time point than after it. If so – if a time series jumps at a certain
time – that time is called a change point.

3.1 Example: Finding Change Points in Surveillance Data

As an example of change-point detection in surveillance data, consider the following
example. Since 2001, when a letter containing anthrax led to 5 deaths and 17
infections from which the victims recovered, the US Environmental Protection
Agency (EPA), the Centers for Disease Control and Prevention (CDC), and the
Department of Health Services have invested over a billion dollars to develop
surveillance methods and prevention and preparedness measures to help reduce or
mitigate the consequences of bioterrorism attacks should they occur again [38].
Detecting a significant upsurge in hospital admissions with similar symptoms
may indicate that a bioterrorism attack is in progress. The statistical challenge of
detecting such changes against the background of normal variability in hospital
admissions has motivated the development of computational intelligence methods
that seek to reduce the time to detect attacks when they occur, while keeping the
rates of false positives acceptably small [11, 106].

Well-developed, sophisticated techniques of statistical uncertainty quantification
are currently available for settings in which the patterns for which one is searching
are well understood (e.g., a jump in hospitalization rates for patients with similar
symptoms that could be caused by a biological agent) and in which enough
surveillance data are available to quantify background rates and to monitor changes
over time. Figure 43.2 presents a hypothetical example showing weekly counts
of hospital admissions with specified symptoms in a certain city. Given such
surveillance data, the risk assessment inference task is to determine whether the
hospitalization rate increased at some point on time (suggestive of an attack) and,
if so, when and by how much. Intuitively, it appears that counts are greater on the
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Fig. 43.2 Surveillance time series showing a possible increase in hospitalization rates
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Fig. 43.3 Bayesian posterior distribution for the timing of the increase in Fig. 43.3 if one has
occurred

right side of Fig. 43.2 than the left, but might this plausibly just be due to chance, or
is it evidence for a real increase in hospitalization rates?

Figure 43.3 illustrates a typical result of current statistical technology (also
used in computational intelligence, computational Bayesian, machine learning,
pattern recognition, and data mining technologies) for solving such problems by
using statistical evidence, together with risk models, to draw inferences about
what is probably happening in the real world. The main idea is simple: the
highest points indicate the times that are computed to be most likely for when a
change in hospitalization rate occurred, based on the data in Fig. 43.2. (Technically,
Fig. 43.3 plots the likelihood function of the data, assuming that at most one jump
from one level to a different level has occurred for the hospitalization rate. The
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Fig. 43.4 Proportion of emergency department visits for influenza-like illness by age group for
October 4, 2008–October 9, 2010, in a US Department of Health and Human Services region
(Source: [62], http://jamia.oxfordjournals.org/content/19/6/1075.long)

likelihoods are rescaled so that their sum for all 60 weeks is 1, so that they can
be interpreted as posterior probabilities if the prior is assumed to be uniform.
More sophisticated algorithms are discussed next.) The maximum likelihood-based
algorithm accurately identifies both the time of the change (week 25) and the
magnitude of its effect to one significant decimal place (not shown in Fig. 43.3).
The spread of the likelihood function (or posterior probability distribution) around
the most likely value in Fig. 43.3 also shows how precise is the estimation of the
change-point time.

Figure 43.4 shows a real-world example of a change point and its consequences
for emergency department visits over time. Admissions for flu-like symptoms,
especially among infants and children (0–4 and 5–17 year olds), increased sharply
in August and declined gradually in each age group thereafter. Being able to
identify the jump quickly and then applying a predictive model – such as a
stochastic compartmental transition model with susceptible, infected, and recovered
subpopulations (SIR model) for each age group – to predict the time course of the
disease in the population can help forecast the care resources that will be needed
over time for each age group.

More generally, detecting change points can be accomplished by testing the null
hypothesis of no change for each time step and correcting for multiple testing bias
(which would otherwise inflate false-positive rates, since testing the null hypothesis
for each of the many different possible times at which a change might have
occurred multiplies the occasions on which an apparently significant change occurs

http://jamia.oxfordjournals.org/content/19/6/1075.long
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by chance). Many CPA algorithms use likelihood-based Bayesian methods, as in
Fig. 43.3, to identify when a change is most likely to have occurred and whether the
hypothesis that it did provides a significantly better explanation (higher likelihood)
for the observed data than the null hypothesis of no change. Likelihood-based
techniques are fundamental for a wide variety of statistical detection and estimation
algorithms. Practitioners can use free, high-quality algorithms available in the
R statistical computing environment (e.g., http://surveillance.r-forge.r-project.org/;
[57]), Python, and other statistics programs and packages to perform CPA analyses.

Algorithms for change-point detection have recently been extended to allow
detection of multiple change points within multivariate time series, i.e., in time
series containing observations of multiple variables instead of only one [57].
These new algorithms use nonparametric tests (e.g., permutation tests) to determine
whether the distributions of the observations before and after the change point
differ significantly, even if neither distribution is known, and hence no parametric
statistical model can be specified [57]. The development of powerful nonparamet-
ric (“model-free”) methods for testing the null hypothesis of no change in the
(unknown) distribution enables CPA that is much more robust to uncertainties in
modeling assumptions than was possible previously. Assumptions that remain, such
as that observations following a change point are drawn from a new distribution,
independently of the observations preceding the change point, are statistically
testable and weaker than the assumptions (such as approximately normally dis-
tributed observations) made in older CPA work.

The use of CPA to search for significant changes in surveillance time series,
showing that the number of undesirable events per person per week in a population
underwent significant changes at certain times, has allowed the probable causes
of observed changes in health and safety to be identified in many applications,
providing evidence for or against important causal relations between public policy
measures and resulting health and safety effects. For example,

• Nakahara et al. [85] used CPA to assess the impact on vehicle crash fatalities
of a program initiated in Japan in 2002 that severely penalized drunk driving.
Fatality rates between 2002 and 2006 (the end of the available data series) were
significantly lower than between 1995 and 2002. However, the CPA revealed
that the change point occurred around the end of 1999, right after a high-profile
vehicle fatality that was much discussed in the news. The authors concluded that
changes in drunk-driving behavior occurred well before the new penalties were
instituted.

• In Finland in 1981–1986, a nationwide oral poliovirus vaccine campaign was
closely followed by, and partly overlapped with, a significant increase in the
incidence of Guillain-Barré syndrome (GBS). This temporal association raised
the important question of whether something about the vaccine might have
caused some or all of the increase in GBS. Kinnunen et al. [63] applied CPA to
medical records from a nationwide Hospital Discharge Register database. They
found that a change point in the occurrence of GBS had probably already taken
place before the oral poliovirus vaccine campaign started. They concluded that

http://surveillance.r-forge.r-project.org/


43 Quantifying and Reducing Uncertainty About Causality in: : : 1453

there was a temporal association between poliovirus infection and increased
occurrence of GBS, but no proof of the suspected causal relation between
oral poliovirus vaccines and risk of GBS. This example shows how a precise
investigation of the details of temporal associations can both refute some
causal hypotheses and suggest others – in this case, that an increase in polio
in the population was a common cause of both increased GBS risk and the
provision of the vaccine. It also illustrates why a temporal association between
an adverse effect and a suspected cause, such as the fact that administration of
vaccines preceded increases in GBS risk, should not necessarily be interpreted
as providing evidence to support the hypothesis of a causal relation between
them.

4 Causal Analytics: Determining Whether a Specific
Exposure Harms Human Health

Table 43.2 lists seven principles that have proved useful in various fields for
determining whether available data provide valid evidence that some events or
conditions cause others. They can be applied to epidemiological data to help
determine whether and how much exposures to a hazard contribute causally to
subsequent risks of adverse health outcomes in a population, in the sense that
reducing exposure would reduce risk – for example, whether and by how much
a given reduction in air pollution would reduce cardiovascular mortality rates
among the elderly, whether and by how much reducing exposure to television
violence in childhood would reduce propensity for violent behavior years later,
or whether decreasing high-fat or high-sugar diets in youth would reduce risks

Table 43.2 Principles of causal analytics

1. Conditional independence principle: Causes and effects are informative about each other.
Technically, there should be positive mutual information (measured in bits and quantified by
statistical methods of information theory) between the random variables representing a cause
and its effect. This positive mutual information cannot be removed by conditioning on the
levels of other variables.

2. Granger principle: Changes in causes should precede, and help to predict and explain,
changes in the effects that they cause.

3. Transfer entropy principle: Information flows from causes to their effects over time.
4. Counterfactual principle: Changes in causes make future effects different from what they

otherwise would have been.
5. Causal graph principle: Changes in causes produce changes in effects by propagation via

one or more paths (sequences of causal mechanisms) connecting them.
6. Mechanism principle: Valid causal mechanisms are lawlike, yielding identically distributed

outputs when the inputs are the same.
7. Quasi-experiment principle: Valid causal relations produce differences (e.g., compared to

relevant comparison groups) that cannot be explained away by noncausal explanations.
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of heart attacks in old age. The following sections explain and illustrate these
principles and introduce technical methods for applying them to data. They also
address the fundamental questions of how to model causal responses to exposure
and other factors, how to decide what to do to reduce risk, how to determine
how well interventions have succeeded in reducing risks, and how to characterize
uncertainties about the answers to these questions.

5 Causes and Effects Are Informative About Each Other:
DAG Models, Conditional Independence Tests, and
Classification and Regression Tree Algorithms

A key principle for causal analytics is that causes and their effects provide
information about each other. If exposure is a cause of increased disease risk,
then measures of exposure and of response (i.e., disease risk) should provide
mutual information about each other, in the sense that the conditional probability
distribution for each varies with the value of the other. Software for determining
whether this is the case for two variables in a data set is discussed at the end of
this section. In addition, if exposures are direct causes of responses, then the mutual
information between them cannot be eliminated by conditioning on the values of
other variables, such as confounders: a cause provides unique information about its
effects. This provides the basis for using statistical conditional independence tests
to test the observable statistical implications of causal hypotheses: An effect should
never be conditionally independent of its direct causes, given (i.e., conditioned on)
the values of other variables.

As a simple example, if both air pollution and elderly mortality rates are elevated
on cold winter days, then if air pollution is a cause of increased elderly mortality
rate, the mutual information between air pollution and elderly mortality rates should
not be eliminated (“explained away”) by temperature, even though temperature may
be associated with each of them. If both temperature and air pollution contribute
to increased mortality rates (indicated in causal graph notation as temperature !
mortality_rate  pollution), then conditioning on the level of temperature will
not eliminate the mutual information between pollution and mortality rate. On
the other hand, if the correct causal model were that temperature is a confounder
that explains both mortality rate and pollution (e.g., because coal-fired power
plants produce more pollution during days with extremely hot and cold weather,
and, independently, these temperature extremes lead to greater elderly mortality),
diagrammed as mortality_rate  temperature ! pollution, then conditioning
on the level of temperature would eliminate the mutual information between
pollution and mortality rate. Thus, tests that reveal conditional independence
relations among variables can also help to discriminate among alternative causal
hypotheses.

The notation in these graphs is as follows. Each node in the graph (such as
temperature, pollution, or mortality_rate in the preceding example) represents
a random variable. Arrows between nodes reveal statistical dependencies (and,
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implicitly, conditional independence relations) among the variables. The arrows are
usually constrained to for a directed acyclic graph (DAG), meaning that no node can
be its own predecessor in the partial ordering of nodes determined by the arrows.
The probability distribution of each variable with inward-pointing arrows depends
on the values of the variables that point into it, i.e., the conditional probability
distribution for the variable at the head of an arrow is affected by the values of
its direct “parents” (the variables that point into it) in the causal graph. Conversely,
a random variable represented by a node is conditionally independent of all other
variables, given the values of the variables that point into it (its parents in the DAG),
the values of the variables into which it points (its children), and the values of any
other parents of its children (its spouses) – a set of nodes collectively called its
Markov blanket in the DAG model.

To illustrate these ideas, suppose that X causes Y and Y causes Z, as indicated
by the DAG and X ! Y ! Z, where X is an exposure-related variable (e.g.,
job category for an occupational risk or location of a residence for a public health
risk), Y is a measure of individual exposure, and Z is an indicator of adverse health
response. Then even though each variable is statistically associated with the other
two, Z is conditionally independent of X given the value of Y . But Z cannot be
made conditionally independent of Y by conditioning on X . One way to test for
such conditional independence relations in data is with classification and regression
tree algorithms (see, e.g., https://cran.r-project.org/web/packages/rpart/rpart.pdf for
a free R package and documentation). In this example, a tree for Z would not
contain X after splitting on values of Y , reflecting the fact that Z is conditionally
independent of X given Y . However, a tree for Z would always contain Y , provided
that the data set is large and diverse enough so that the tree-growing algorithm can
detect the mutual information between them.

For practitioners, algorithms are now freely available in R, Python, and Google
software packages to estimate mutual information, the conditional entropy reduction
in one variable when another is observed, and related measures for quantifying
how many bits of information observations of one variable provide about another
and whether one variable is conditionally independent of another gives the values
of other variables ([74]; Ince et al. 2009). For example, free R software and
documentation for performing these calculations can be found at the following sites:

https://cran.r-project.org/web/packages/entropy/entropy.pdf
https://cran.r-project.org/web/packages/partykit/vignettes/partykit.pdf.

6 Changes in Causes Should Precede, and Help to Predict
and Explain, Changes in the Effects that They Cause

If changes in exposures always precede and help to predict and explain subsequent
corresponding changes in health effects, this is consistent with the hypothesis that
exposures cause health effects. The following methods and algorithms support
formal testing of this hypothesis.

https://cran.r-project.org/web/packages/rpart/rpart.pdf
https://cran.r-project.org/web/packages/entropy/entropy.pdf
https://cran.r-project.org/web/packages/partykit/vignettes/partykit.pdf
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6.1 Change-Point Analysis Can Be Used to Determine
Temporal Order

The change-point analysis (CPA) algorithms already discussed can be used to
estimate when changes in effects time series occurred. These times can then
be compared to the times at which exposures changed (e.g., due to passage of
a regulation or to introduction or removal of a pollution source) to determine
whether changes in exposures are followed by changes in effects. For example,
many papers have noted that bans on public smoking have been followed by
significant reductions in risks of heart attacks (acute myocardial infarctions).
However, Christensen et al. [14], in a study of the effects of a Danish smoking
ban on hospital admissions for acute myocardial infarctions, found that a sig-
nificant reduction in admissions was already occurring a year before the bans
started. Thus, the conclusion that bans caused the admissions reductions may be
oversimplified. The authors suggest that perhaps some of the decline in heart
attack risk could have been caused by earlier improvements in diets or by gradual
enactment of smoking bans. Whatever the explanation, checking when reductions
began, rather than only whether post-intervention risks are smaller than pre-
intervention risks, adds valuable insight to inform potential causal interpretations
of the data.

6.2 Intervention Analysis Estimates Effects of Changes Occurring
at Known Times, Enabling Retrospective Evaluation of the
Effectiveness of Interventions

How much difference exposure reductions or other actions have made in reducing
adverse health outcomes or producing other desired outcomes is often addressed
using intervention analysis, also called interrupted time series analysis. The basic
idea is to test whether the best description of an effects time series changes
significantly when a risk factor or exposure changes, e.g., due an intervention
that increases or reduces it [47, 48, 68]. If the answer is yes, then the size
of the changeover time provides quantitative estimates of the sizes and timing of
changes in effects following an intervention. For example, an intervention analysis
might test whether weekly counts of hospital admissions with a certain set of
diagnostic codes or cardiovascular mortalities per person per year among people
over 70 fell significantly when exposures fell due to closure of a plant that generated
high levels of air pollution. If so, then comparing the best-fitting time series models
(e.g., the maximum-likelihood models within a broad class of models, such as the
autoregressive integrated moving average (ARIMA) models widely used in time
series analysis) describing the data before and after the date of the intervention may
help to quantify the size of the effect associated with the intervention. If not, then
the interrupted time series does not provide evidence of a detectable effect of the
intervention. Free software for intervention analysis is available in R (e.g., [80];
CausalImpact algorithm from Google 2015).
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Two main methods of intervention analysis are segmented regression, which fits
regression lines or curves to the effects time series before and after the intervention
and then compares them to detect significant changes in slope or level, and Box-Tiao
analysis, often called simply intervention analysis, which fits time series models
(ARIMA or Box-Jenkins models with models of intervention effects, e.g., jumps in
the level, changes in the slope, or ramp-ups or declines in the effects over time) to
the effects data before and after the intervention and tests whether proposed effects
of interventions are significantly different from zero. If so, the parameters of the
intervention effect are estimated from the combined pre- and post-intervention data
(e.g., [47, 48]). For effects time series that are stationary (meaning that the same
statistical description of the time series holds over time) both before and after an
intervention that changes exposure, but that have a jump in mean level due to the
intervention, quantifying the difference in effects that the intervention has made
can be as simple as estimating the difference in means for the effects time series
before and after the intervention, similar to the CPA in Fig. 43.2, but for a known
change point. The top panel of Fig. 43.5 shows a similar comparison for heart attack
rates before and after a smoking ban. Based only on the lines shown, it appears that

Fig. 43.5 Straight-line extrapolation of the historical trend for heart attack (AMI) rates over-
predicts future AMI rates (upper panel) and creates the illusion that smoking bans were followed
by reduced AMI rates, compared to more realistic nonlinear extrapolation (lower panel), which
shows no detectable benefit from a smoking ban (Source: [33])
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heart attack rates dropped following the ban. (If the effects of a change in exposure
occur gradually, then distributed-lag models of the intervention’s effects can be used
to describe the post-intervention observations [47].) In nonstationary time series,
however, the effect of the intervention may be obscured by other changes in the
time series. Thus, the bottom panel of Fig. 43.5 considers nonlinear trends over time
and shows that, in this analysis, any effect of the ban now appears to be negative
(i.e., heart attack rates are increased after the ban compared to what is expected
based on the nonlinear trend extrapolated from pre-ban data).

Intervention analyses, together with comparisons to time series for comparison
populations not affected by the interventions, have been widely applied, with
varying degrees of justification and success, to evaluate the impacts caused by
changes in programs and policies in healthcare, social statistics, economics, and
epidemiology. For example, Lu et al. [75] found that prior authorization policies
introduced in Maine to help control the costs of antipsychotic drug treatments for
Medicaid and Medicare Part D patients with bipolar disorder were associated with
an unintended but dramatic (nearly one third) reduction in initiation of medication
regimens among new bipolar patients, but produced no detectable switching of
currently medicated patients toward less expensive treatments. Morriss et al. [84]
found that the time series of suicides in a district population did not change
significantly following a district-wide training program that measurably improved
the skills, attitudes, and confidence of primary care, accident and emergency,
and mental health workers who received the training. They concluded that “Brief
educational interventions to improve the assessment and management of suicide
for front-line health professionals in contact with suicidal patients may not be
sufficient to reduce the population suicide rate.” [55] used intervention analysis
to estimate that the introduction of pedestrian countdown timers in Detroit cut
pedestrian crashes by about two thirds. Jiang et al. [59] applied intervention analysis
to conclude that, in four Australian states, the introduction of randomized breath
testing led to a substantial reduction in car accident fatalities. Callaghan et al. [10]
used a variant of intervention analysis, regression-discontinuity analysis, to test
whether the best-fitting regression model describing mortality rates among young
people changed significantly at the minimum legal drinking age, which was 18
in some provinces and 19 in others. They found that mortality rates for young
men jumped upward significantly precisely at the minimum legal drinking, which
enabled them to quantify the impact of drinking-age laws on mortality rates. In
these and many other applications, intervention analysis and comparison groups
have been used to produce empirical evidence for what has worked and what has
not and to quantify the sizes over time of effects attributed to interventions when
these effects are significantly different from zero.

Intervention analysis has important limitations, however. Even if an intervention
analysis shows that an effects time series changed when an intervention occurred,
this does not show whether the intervention caused the change. Thus, in applications
from air pollution bans to gun control, initial reports that policy interventions had
significant beneficial effects were later refuted by findings that equal or greater
beneficial changes occurred at the same time in comparison populations not affected
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by the interventions [44, 64]. Also, more sophisticated methods such as transfer
entropy, discussed later, must be used to test and estimate effects in nonstationary
time series, since both segmented regression models and intervention analyses that
assume stationarity typically produce spurious results for nonstationary time series.
For example, as illustrated in Fig. 43.5, Gasparrini et al. [33] in Europe and Barr
et al. [8] in the United States found that straight-line projections of what future heart
attack (acute myocardial infarction, AMI) rates would have been in the absence of an
intervention that banned smoking in public places led to a conclusion that smoking
bans were associated with a significant reduction in AMI hospital admission rates
following the bans. However, allowing for nonlinearity in the trend, which was
significantly more consistent with the data, led to the reverse conclusion that the
bans had no detectable impact on reducing AMI admission rates. As illustrated in
Fig. 43.5, the reason is that fitting a straight line to historical data and using it to
project future AMI rates in the absence of intervention tend to overestimate what
those future AMI rates would have been, because the real time series is downward-
curving, not straight. Thus, estimates of the effect of an intervention based on
comparing observed to model-predicted AMI admission rates will falsely attribute a
positive effect even to an intervention that had no effect if straight-line extrapolation
is used to project what would have happened in the absence of an intervention,
ignoring the downward curvature in the time series. This example illustrates how
model specification errors can lead to false inferences about effects of interventions.
The transfer entropy techniques discussed later avoid the need for curve-fitting and
thereby the risks of such model specification errors.

6.3 Granger Causality Tests Show Whether Changes in
Hypothesized Causes Help to Predict Subsequent Changes in
Hypothesized Effects

Often, the hypothesized cause (e.g., exposure) and effect (e.g., disease rate) time
series both undergo continual changes over time, instead of changing only once
or occasionally. For example, pollution levels and hospital admission rates for
respiratory or cardiovascular ailments change daily. In such settings of ongoing
changes in both hypothesized cause and effect time series, Granger causality tests
(and the closely related Granger-Sims tests for pairs of time series) address the
question of whether the former helps to predict the latter. If not, then the exposure-
response histories provide no evidence that exposure is a (Granger) cause of the
effects time series, no matter how strong, consistent, etc., the association between
their levels over time may be. More generally, a time series variable X is not
a Granger cause of a time series variable Y if the future of Y is conditionally
independent of the history of X (its past and present values), given the history of
Y itself, so that future Y values can be predicted as well from the history of Y values
as from the histories of both X and Y . If exposure is a Granger cause of health
effects but health effects are not Granger causes of exposures, then this provides
evidence that the exposure time series might indeed be a cause of the effects time
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series. If exposure and effects are Granger causes of each other, then a confounder
that causes both of them is likely to be present. The key idea of Granger causality
testing is to provide formal quantitative statistical tests of whether the available data
suffice to reject (at a stated level of significance) the null hypothesis that the future
of the hypothesized effect time series can be predicted no better from the history
of the hypothesized cause time series together with the history of the effect time
series than it can be predicted from the history of the effect time series alone. Data
that do not enable this null hypothesis to be rejected do not support the alternative
hypothesis that the hypothesized cause helps to predict (i.e., is a Granger cause of)
the hypothesized effect.

Granger causality tests can be applied to time series on different time scales to
study effects of time-varying risk factors. For example, [76] identified a Granger-
causal association between fatty diet and risk of heart disease decades later in
aggregate (national level) data. Cox and Popken [16] found a statistically signifi-
cant historical association, but no evidence of Granger causation, between ozone
exposures and elderly mortality rates on a time scale of years. Granger causality
testing software is freely available in R (e.g., http://cran.r-project.org/web/packages/
MSBVAR/MSBVAR.pdf).

Originally Granger causality tests were restricted to stationary linear (autore-
gressive) time series models and to only two time series, a hypothesized cause
and a hypothesized effect. However, recent advances have generalized them to
multiple time series (e.g., using vector autoregressive (VAR) time series models)
and to nonlinear time series models (e.g., using nonparametric versions of the test
or parametric models that allow for multiplicative as well as additive interactions
among the different time series variables) ([6, 7, 111, 122]; Diks and Wolski
2014). These advances are now being made available in statistical toolboxes for
practitioners ([7]). For nonstationary time series, special techniques have been
developed, such as vector error-correction (VECM) models fit to first differences
of nonstationary variables or algorithms that search for co-integrated series (i.e.,
series whose weighted averages show zero mean drift). However, these techniques
are typically quite sensitive to model specification errors [91]. Transfer entropy (TE)
and its generalizations, discussed next, provides a more robust analytic framework
for identifying causality from multiple nonstationary time series based on the flow
of information among them.

7 Information Flows From Causes to Their Effects over Time:
Transfer Entropy

Both Granger causality tests and conditional independence tests apply the principle
that causes should be informative about their effects; more specifically, changes in
direct causes provide information that helps to predict subsequent changes in effects.
This information is not redundant with the information from other variables and
cannot be explained away by knowledge of (i.e., by conditioning on the values of)
other variables. A substantial generalization and improvement of this information-

http://cran.r-project.org/web/packages/MSBVAR/MSBVAR.pdf
http://cran.r-project.org/web/packages/MSBVAR/MSBVAR.pdf
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based insight is that information flows over time from causes to their effects, but
not in the reverse direction. Thus, instead of just testing whether past and present
exposures provide information about (and hence help to predict) future health
effects, it is possible to quantify the rate at which information, measured in bits,
flows from the past and present values of the exposure time series to the future
values of the effects time series. This is the key concept of transfer entropy (TE)
[81, 91, 99, 118]). It provides a nonparametric, or model-free, way to detect and
quantify rates of information flow among multiple variables and hence to infer
causal relations among them based on the flow of information from changes in
causal variables (“drivers”) to subsequent changes in the effect variables that they
cause (“responses”). If there is no such information flow, then there is no evidence
of causality.

Transfer entropy (TE) is model-free in that it examines the empirically estimated
conditional probabilities of values for one time series, given previous values of
others, without requiring any parametric models describing the various time series.
Like Granger causality, TE was originally developed for only two time series,
a possible cause and a possible effect, but has subsequently been generalized
to multiple time series with information flowing among them over time (e.g.,
[81, 91, 99]. In the special case where the exposure and response time series can
be described by linear autoregressive (AR) processes with multivariate normal error
terms, tests for TE flowing from exposure to response are equivalent to Granger
causality tests (Barnett et al. 2009), and Granger tests, in turn, are equivalent to
conditional independence tests for whether the future of the response series is
conditionally independent of the history of the exposure series, given the history
of the response series. Free software packages for computing the TE between or
among multiple time series variables are now available for MATLAB [81] and
other software (http://code.google.com/p/transfer-entropy-toolbox/downloads/list).
Although transfer entropy and closely related information-theoretic quantities been
developed and applied primarily within physics and neuroscience to quantify flows
of information and appropriately defined causal influences [58] among time series
variables, they are likely to become more widely applied in epidemiology as their
many advantages become more widely recognized.

8 Changes in Causes Make Future Effects Different From
What They Otherwise Would Have Been:
Potential-Outcome and Counterfactual Analyses

The insight that changes in causes produce changes their effects, making the
probability distributions for effect variables different from what they otherwise
would have been, has contributed to a well-developed field of counterfactual
(potential-outcome) causal modeling [51]. A common analytic technique in this
field is to treat the unobserved outcomes that would have occurred had causes
(e.g., exposures or treatments) been different as missing data and then to apply
missing-data methods for regression models to estimate the average difference

http://code.google.com/p/transfer-entropy-toolbox/downloads/list


1462 L.A. Cox, Jr.,

in outcomes for individuals receiving different treatments or other causes. The
estimated difference in responses for treated compared to untreated individuals, for
example, can be defined as a measure of the impact caused by treatment at the
population level.

To accomplish such counterfactual estimation in situations where randomized
assignments of treatments or exposures to individuals is not possible, counterfactual
models and methods such as propensity score matching (PSM) and marginal
structural models (MSMs) [96] construct weighted samples that attempt to make the
estimated distribution of measured confounders the same as it would have been in a
randomized control trial. If this attempt is successful, and if the individuals receiving
different treatments or exposures are otherwise statistically identical (more pre-
cisely, exchangeable), then any significant differences between the responses of
subpopulations receiving different treatments or exposures (or other combinations
of causes) might be attributed to the differences in these causes, rather than to
differences in the distributions of measured confounders [18, 96]. However, this
attribution is valid only if the individuals receiving different treatments or exposures
are exchangeable – a crucial assumption that is typically neither tested nor easily
testable. If treated and untreated individuals differ on unmeasured confounders, for
example, then counterfactual methods such as PSM or MSM may produce mistaken
estimates of causal impacts of treatment or exposure. Differing propensities to seek
or avoid treatment or exposure based in part on unmeasured differences in individual
health status could create biased estimates of the impacts of treatment or exposure
on subsequent health risks. In general, counterfactual methods for estimating causal
impacts of exposures or treatments on health risks make assumptions that imply
that estimated differences in health risks between different exposure or treatment
groups are caused by differences in the exposures or treatments. The validity of these
assumptions is usually unproved. In effect, counterfactual methods assume (rather
than establishing) the key conclusion that differences in health risks are caused by
differences in treatments or exposures, rather than by differences in unmeasured
confounders or by other violations of the counterfactual modeling assumptions.

In marginal structural models (MSMs), the most commonly used sample-
weighting techniques (called inverse probability weighting (IPW), as well as refined
versions that seek to stabilize the variance of the weights) can be applied at multiple
time points to populations for which exposures or treatments, confounders, and
individuals entering or leaving the populations are all time-varying. This flexibility,
together with emphasis on counterfactuals and missing observations, make MSMs
particularly well suited to the analysis of time-varying confounders and effects of
treatments or interventions that involve feedback loops, such as when the treatment
that a patient receives depends on his or her responses so far and also to analysis
of data in which imperfect compliance, attrition from the sample, or other practical
difficulties drive a wedge between what was intended and what actually occurred in
the treatment and follow-up of patients [96]. For example, MSMs are often applied
to intent-to-treat data, in which the intent or plan to treat patients in a certain way
is taken as the controllable causal driver of outcomes, and what happens next may
depend in part on real-world uncertainties.



43 Quantifying and Reducing Uncertainty About Causality in: : : 1463

Despite their advantages in being able in principle to quantify causal impacts in
complex time-varying data sets, MSMs have some strong practical limitations. Their
results are typically very sensitive to errors in the specification of the regression
models used to estimate unobserved counterfactual values, and the correct model
specification is usually unknown. Therefore, MSMs are increasingly being used in
conjunction with model ensemble techniques to address model uncertainty. Model
ensemble methods (including Bayesian model averaging, various forms of statistical
boosting, k-fold cross-validation techniques, and super-learning, as described next)
calculate results using many different models and then combine the results. The use
of diverse plausible models avoids the false certainty and potential biases created
by selecting a single model. For example, in super-learning algorithms, no single
regression model is selected. Instead multiple different standard machine-learning
algorithms (e.g., logistic regression, random forest, support vector machine, naïve
Bayesian classifier, artificial neural network, etc.) are used to predict unobserved
values [86] and to estimate IPW weights [37]. These diverse predictions are
then combined via weighted averaging, where the weights reflect how well each
algorithm predicts known values that have been deliberately excluded (held out
for test purposes) from the data supplied to the algorithms – the computational
statistical technique known as model cross validation. Applied to the practical
problem of estimating the mortality hazard ratio for initiation versus no initiation
of combined antiretroviral therapy among HIV-positive subjects, such ensemble
learning algorithms produced clearer effects estimates (hazard ratios further below
1, indicating a beneficial effect of the therapy) and narrower confidence intervals
than traditional single-model (logistic regression modeling) analysis (ibid).

Yet even these advances do not overcome the fact that MSMs requires strong, and
often unverifiable, assumptions to yield valid estimates of causal impacts. Typical
examples of such assumptions are that there are no unmeasured confounders, that
the observed response of each individual (e.g., of each patient to treatment or
nontreatment) is in fact caused by the observed risk factors, and that every value
for the causal variables occurs for every combination of levels of the confounding
variables (e.g., there is no time period before exposures began but confounders were
present) [18]. Assuming that these conditions hold may lead to an unwarranted
inference that a certain exposure causes an adverse health effect, e.g., that ozone air
pollution causes increased asthma-related hospitalizations, even if analyses based
only on realistic, empirically verifiable assumptions would reveal no such causal
relation [82].

Counterfactual models are often used to assess the effects on health outcomes
of medical treatments, environmental exposures, or preventable risk factors by
comparing what happened to people who receive the treatments to what models
predict would have happened without the treatments. However, a limitation of such
counterfactual comparisons is that they are seldom explicit about why treatments
would not have occurred in the counterfactual world envisioned. Yet, the answer
can crucially affect the comparison being drawn [35, 46]. For example, if it is
assumed that a patient would not have received a treatment because the physician
is confident that it would not have worked and the patient would have died anyway,
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then the estimated effect of the treatment on mortality rates might be very different
from what it would be if it is assumed that the patient would not have received the
treatment because the physician is confident that there is no need for it and that the
patient would recover anyway. In practice, counterfactual comparisons usually do
not specify in detail the causal mechanisms behind the counterfactual assumptions
about treatments or exposures, and this can obscure the precise interpretation of any
comparison between what did happen and what is supposed, counterfactually, would
have happened had treatments (or exposure) been different. Standard approaches
estimate effects under the assumption that those who are treated or exposed are
exchangeable with those who are not within strata of adjustment factors that may
affect (but are not affected by) the treatment or the outcome, but the validity of this
assumption is usually difficult or impossible to prove.

An alternative, increasingly popular, approach to using untested assumptions
to justify causal conclusions is the instrumental variable (IV) method, originally
developed in econometrics [112]. In this approach, an instrument is defined as a
variable that is associated with the treatment or exposure of interest – a condition
that is usually easily verifiable – and that also affects outcomes (e.g., adverse health
effects) only through the treatment or exposure variable, without sharing any causes
with the outcome. (In DAG notation, such an instrument would be a variable with
arrows directed only into Y and Z in the DAG model X ! Y ! Z, where Z is
the outcome variable, Y the treatment or exposure variable, and X a variable that
affects exposure, such as job category, residential location, or intent-to-treat.) These
latter conditions are typically assumed in IV analyses, but not tested or verified. If
they hold, then the effects of unmeasured confounders on the estimated association
between Y and Z can be eliminated using observed values of the instrument,
and this is the potential great advantage of IV analysis. However, in practice,
IV methods applied in epidemiology are usually dangerously misleading, as even
minor violations of their untested assumptions can lead to substantial errors and
biases in estimates of the effects of different exposures or treatments on outcomes;
thus, many methodologists consider it inadvisable to use IV methods to support
causal conclusions in epidemiology, despite their wide and increasing popularity
for this purpose [112]. Unfortunately, within important application domains in
epidemiology, including air pollution health effects research, leading investigators
sometimes draw strong but unwarranted causal conclusions using IV or counter-
factual (PSM or MSM) methods and then present these dubious causal conclusions
and effects estimates to policy-makers and the public as if they were known to be
almost certainly correct, rather than depending crucially on untested assumptions
of unknown validity (e.g., [104]). Such practices lead to important-seeming journal
articles and policy recommendations that are untrustworthy, potentially reflecting
the ideological biases or personal convictions of the investigator rather than true
discoveries about real-world causal impacts of exposures [103]. Other scientists
and policy makers are well advised to remain on guard against such enthusiastic
claims about causal impacts and effects estimates promoted by practitioners of IV
and counterfactual methods who do not appropriately caveat their conclusions by
emphasizing their dependence on untested modeling assumptions.
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When the required assumptions for counterfactual modeling cannot be confi-
dently determined to hold, other options are needed for counterfactual analyses to
proceed. The simplest and most compelling approach is to use genuine randomized
control trials (RCTs), if circumstances permit it. They rarely do, but the exceptions
can be very valuable. For example, the state of Oregon in 2008 used a lottery system
to expand limited Medicaid coverage for the uninsured by randomly selecting names
from a waiting list. Comparing subsequent emergency department use among the
randomly selected new Medicaid recipients to subsequent use by those still on
the waiting list who had not yet received Medicaid revealed a 40% increase in
emergency department usage over the next 18 months among the new Medicaid
recipients, including visits for conditions that might better have been treated in
primary care physician settings. Because the selection of recipients was random, this
increase in usage could be confidently attributed to a causal effect of the Medicaid
coverage on increasing emergency department use [114]. The main limitation of
such RCTs is not in establishing the existence and magnitude of genuine causal
impacts of an intervention in the studied population but rather in determining to
what extent the result can be generalized to other populations. While conclusions
based on valid causal laws and mechanisms can be transported across contexts,
as discussed later, this is not necessarily true of aggregate population-level causal
impacts, which may depend on specific circumstances of the studied population.

In the more usual case where random assignment is not an option, use of non-
randomized control groups can still be very informative for testing, and potentially
refuting, assumptions about causation. Indeed, analyses that estimate the impacts
of changes in exposures by comparing population responses before and after an
intervention that changes exposure levels can easily be misled unless appropriate
comparison groups are used. For example, a study that found a significant drop in
mortality rates from the six years prior to a coal burning ban in Dublin county,
Ireland, to the six years following the ban concluded that the ban had caused a
prompt, significant fall in all-cause and cardiovascular mortality rates [42]. This
finding eventually led officials to extend the bans to protect human health. However,
such a pre-post comparison study design cannot support a logically valid inference
of causality, since it pays no attention to what would have happened to mortality
rates in the absence of an intervention, i.e., the coal-burning ban. When changes
in all-cause and cardiovascular mortality rates outside the ban area were later
compared to those in areas affected by the ban, it turned out that there was no
detectable difference between them: contrary to the initial causal inference, the bans
appeared to have had no detectable impact on reducing these rates [44]. Instead,
the bans took place during a decades-long period over which mortality rates were
decreasing, with or without bans, throughout much of Europe and other parts of the
developed world, largely due to improvements in early detection, prevention, and
treatment of cardiovascular risks. In short, what would have happened in the absence
of an intervention can sometimes be revealed by studying what actually did happen
in appropriate comparison or control groups – a key idea developed and applied in
the field of quasi-experimental (QE) studies, discussed next. Counterfactual causal
inferences drawn without such comparisons can easily be misled.
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9 Valid Causal Relations Cannot Be Explained Away by
Noncausal Explanations

An older, but still useful, approach to causal inference from observational data,
developed largely in the 1960s and 1970s, consists of showing that there is an
association between exposure and response that cannot plausibly be explained by
confounding, biases (including model and data selection biases and specification
errors), or coincidence (e.g., from historical trends in exposure and response that
move together but that do not reflect causation). Quasi-experiment (QE) design and
analysis approaches originally developed in social statistics [12] systematically enu-
merate potential alternative explanations for observed associations (e.g., coincident
historical trends, regression to the mean, population selection, and response biases)
and provide statistical tests for refuting them with data, if they can be refuted. The
interrupted time series analysis studies discussed earlier are examples of quasi-
experiments: they do not allow random assignment of individuals to exposed and
unexposed populations but do allow comparisons of what happened in different
populations before and after an intervention that affects some of the populations
but not others (the comparison groups).

A substantial tradition of refutationist approaches in epidemiology follows the
same general idea of providing evidence for causation by using data to explicitly
test, and if possible refute, other explanations for exposure-response associations
[77]. As stated by Samet and Bodurow [100], “Because a statistical association
between exposure and disease does not prove causation, plausible alternative
hypotheses must be eliminated by careful statistical adjustment and/or consideration
of all relevant scientific knowledge. Epidemiologic studies that show an association
after such adjustment, for example through multiple regression or instrumental
variable estimation, and that are reasonably free of bias and further confounding,
provide evidence but not proof of causation.” This is overly optimistic, insofar as
associations that are reasonably free of bias and confounding do not necessarily
provide evidence of causation. For example, strong, statistically significant associ-
ations (according to usual tests, e.g., t-tests) typically occur in regression models
in which the explanatory and dependent variables undergo statistically independent
random walks. The resulting associations do not arise from confounding or bias
but from spurious regression, i.e., coincident historical trends created by random
processes that are not well described by the assumptions of the regression models.
Nonetheless, the recommendation that “plausible alternative hypotheses must be
eliminated by careful statistical adjustment and/or consideration of all relevant
scientific knowledge” well expresses the refutationist point of view.

10 Changes in Causes Produce Changes in Effects via
Networks of Causal Mechanisms

Perhaps the most useful and compelling valid evidence of causation, with the
possible exception of differences in effects between treatment and control groups
in well-conducted randomized control trials, consists of showing that changes in
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exposures propagate through a network of validated lawlike structural equations or
mechanisms to produce predictable changes in responses. For example, showing that
measured changes in occupational exposures to a workplace chemical consistently
produce a sequence of corresponding changes in lung inflammation markers,
recruitment rates of activated alveolar macrophages and activated neutrophils to
the chronically inflamed lung, levels of tissue-degrading enzymes released by
these cell populations, and resulting rates of lung tissue destruction and scarring,
leading to onset of lung pathologies and clinically detectable lung diseases (such
as emphysema, silicosis, fibrosis, or inflammation-mediated lung cancer), would
provide compelling evidence of a causal relation between changes in exposures
and changes in those disease rates. Observing the network of mechanisms by
which changes in exposures are transduced to changes in disease risks provides
knowledge-based evidence of causation that cannot be obtained from any purely
statistical analysis of observational data on exposures and responses alone.

Several causal modeling techniques are available to describe the propagation
of changes through networks of causal mechanisms. Structural equation models
(SEMs), in which changes in right-hand side variables cause adjustments of left-
hand side variables to restore all equalities in a system of structural equations, as
in Fig. 43.1, provide one way to describe causal mechanisms for situations where
the precise time course of the adjustment process is not of interest. Differential
equation models, in which flows among compartments change the values of
variables representing compartment contents over time (which in turn may affect
the rates of flows), eventually leading to new equilibrium levels following an
exogenous intervention that changes the compartment content or flow rates, provide
a complementary way to describe mechanisms when the time course of adjustment
is of interest. Simulation models provide still another way to describe and model the
propagation of changes through causal networks. Figure 43.6 illustrates the structure
of a simulation model for cardiovascular disease (CVD) outcomes. At each time
step, the value of each variable is updated based on the values of the variables that
point into it. The time courses of all variables in the model can be simulated for
any history of initial conditions and exogenous changes in the input variables (those
with only outward-pointing arrows), given the computational models that determine
the change in the value of each variable at each time step from the values of its
parents in the DAG.

10.1 Structural Equation and Path Analysis Models Model Linear
Effects Among Variables

For most of the past century, DAG models such as those in Figs. 43.1 and 43.6,
in which arrows point from some variables into others and there are no directed
cycles, have been used to explicate causal networks of mechanisms and to provide
formal tests for their hypothesized causal structures. For example, path analysis
methods showing the dependency relations among variables in SEMs have been
used for many decades to show how some variables influence others when all
relations are assumed to be linear. Figure 43.7 presents an example involving several
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Fig. 43.6 Simulation model for major health conditions related to cardiovascular disease (CVD)
and their causes. Boxes represent risk factor prevalence rates modeled as dynamic stocks.
Population flows among these stocks – including people entering the adult population, entering
the next age category, immigration, risk factor incidence, recovery, cardiovascular event survival,
and death – are not shown (Source: [52])
Key: Blue solid arrows: causal linkages affecting risk factors and cardiovascular events and deaths.
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Fig. 43.7 A path diagram with standardized coefficients showing linear effects of some variables
on others (Source: [120])

variables that are estimated to significantly predict lung cancer risk: the presence of
a particular single nucleotide polymorphism (SNP) (the CHRNA5-A3 gene cluster,
a genetic variant which is associated with increased risk of lung cancer), smoking,
and presence of chronic obstructive pulmonary disease (COPD) [120].
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The path coefficient on an arrow indicates by how much (specifically, by how
many standard deviations) the expected value of the variable into which it points
would change if the variable at the arrow’s tail were increased by one standard
deviation, holding all other variables fixed and assuming that all relations are well
approximated by linear structural equation regression models, i.e., that changing the
variable at the arrow’s tail will cause a proportional change in the variable at its head.
In this example, the path coefficients are denoted by a1, a2, b1, b2, c’, and d. These
numbers must be estimated from data to complete the quantification of the path
diagram model. Although such path analysis models are derived from correlations,
the causal interpretation (i.e., that changing a variable at the tail of an arrow will
change the variable at its head in proportion to the coefficient on the arrow between
them) is an assumption. It is justified only if the regression equations used are indeed
structural (causal) equations and if the assumptions required for multiple linear
regression (e.g., additive effects, constant variance, normally distributed errors)
hold. For the path diagram in Fig. 43.7, the authors found that the gene variant,
X , affected lung cancer risk, Y , by increasing smoking behavior and, separately,
by increasing COPD risk, as well as by increasing smoking-associated COPD risk:
“The results showed that the genetic variant influences lung cancer risk indirectly
through all three different pathways. The percent of genetic association mediated
was 18.3% through smoking alone, 30.2% through COPD alone, and 20.6% through
the path including both smoking and COPD, and the total genetic variant-lung
cancer association explained by the two mediators was 69.1%.”

Path diagrams reflect the fact that, if all effects of variables on each other are
well approximated by linear regression SEMs, then correlations between variables
should be stronger between variables that are closer to each other along a causal
chain than between variables that are more remote, i.e., that have more intervening
variables. Specifically, the effect of a change in the variable at the start of a path
on a variable at the end of it that is transmitted along that path is given by the
product of the path coefficients along the path. Thus, in Fig. 43.7, the presence of
the SNP should be more strongly correlated with COPD than with COPD-associated
lung cancer. Moreover, the effect of a change in an ancestor variable on the value
of a remote descendent (several nodes away along one or more causal paths) can
be decomposed into the effects of the change in the ancestor variable on any
intermediate variables and the effects of those changes in intermediate variables, in
turn, on the remote descendent variable. If one variable does not point into another,
then the SEM/path analysis model implies that the first is not a direct cause of the
second. For example, the DAG model X ! Y ! Z implies that X is an ancestor
(indirect cause) but not a parent (direct cause) of Z. An implication of the causal
ordering in this simple DAG model can be tested, as previously noted, by checking
whether Z is conditionally independent of X given Y .

In linear SEM/path analysis models, conditional independence tests specialize
to testing whether partial correlation coefficients between two variables become
zero after conditioning on the values of one or more other variables (e.g., the
partial correlation between X and Z, holding Y fixed, would be zero for the path
X ! Y ! Z). This makes information-theoretic methods unnecessary when the
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assumptions of linear SEMs and jointly normally distributed error terms relating
the value of each variable to the values of its parents hold; analyses based on
correlations can then be used instead. Such consistency and coherence constraints
can be expressed as systems of equations that can be solved, when identifiability
conditions hold, to estimate the path coefficients (including confidence intervals)
relating changes in parent variables to changes in their children. Summing these
changes over all paths leading from exposure to response variables allows the total
effect (via all paths) of a change in exposure on changes in expected responses to be
estimated or predicted.

Path analysis and other SEM models are particularly valuable for detecting
and quantifying the effects of unmeasured (“latent”) confounders based on the
patterns of correlations that they induce among observed variables. SEM modeling
methods have also been extended to include quadratic terms, categorical variables,
and interaction terms [66]. Standard statistics packages and procedures, such as
PROC CALIS in SAS, have made this technology available to modelers for the
past four decades, and free modern implementations are readily available (e.g., in
the R packages SEM or RAMpath).

10.2 Bayesian Networks Show How Multiple Interacting Factors
Affect Outcome Probabilities

Path analysis, which is now nearly a century old, provided the main technology
for causal modeling for much of the twentieth century. More recently, DAG
models have been generalized so that causal mechanisms need not be described
by linear equations for expected values, but may instead be described by arbitrary
conditional probability relations. The nodes in such a graph typically represent
random variables, stochastic processes, or time series variables in which a decision-
maker may intervene from time to time by taking actions that cause changes in some
of the time series [4, 23]).

Bayesian networks (BNs) are a prominent type of DAG model in which nodes
represent constants, random variables, or deterministic functions [3]. Figure 43.8
shows an example of a BN for cardiovascular disease (CVD). As usual, the absence
of an arrow between two nodes, such as between ethnic group and CVD in Fig. 43.8,
implies that neither has a probability distribution that depends directly on the
value of the other. Thus, ethnic group is associated with CVD, but the association
is explained by smoking as a mediating variable, and the structure of the DAG
shows no further dependence of CVD on ethnic group. Statistically, the random
variable indicating cardiovascular disease, CVD, is conditionally independent of
ethnic group, given the value of smoking.

Some useful causal implications may be revealed by the structure of a DAG,
even before the model is quantified to create a fully specified BN (or other DAG)
model. For example, if the DAG structure in Fig. 43.8 correctly describes an
individual or population, then elevated systolic BP (blood pressure) is associated
with CVD risk, since both have age and ethnicity as ancestors in the DAG. However,
changes in statin use, which could affect systolic BP via the intermediate variable
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Fig. 43.8 Directed acyclic graph (DAG) structure of a Bayesian network (BN) model for
cardiovascular disease (CVD) risk (Source: [115])

antihypertensive, would not be expected to have any effect on CVD risk. Learning
the correct DAG structure of causal relations among variables from data – a key
part of the difficult task of causal discovery, discussed later – can reveal important
and unexpected findings about what works and what does not for changing the
probabilities of different outcomes, such as CVD in Fig. 43.8. However, uncertainty
about the correct causal structure can make sound inference about causal impacts
(and hence recommendations about the best choice of actions to produce desired
changes) difficult to determine. Such model uncertainty motivates the use of
ensemble modeling methods, discussed later.

10.3 Quantifying Probabilistic Dependencies Among BN Variables

For quantitative modeling of probabilistic relations among variables, input nodes in
a BN (i.e., nodes with only outward-pointing arrows, such as sex, age, and ethnic
group in Fig. 43.8) are assigned marginal (unconditional) probability distributions
for the values of the variables they represent. These marginal distributions can be
thought of as being stored at the input nodes, e.g., in tables that list the probability or
relative frequency of each possible input value (such as male or female for sex, age
in years, etc.). They represent the prior probabilities that each input node will have
each of its possible values for a randomly selected case or individual described by
the BN model, before getting more information about a specific case or individual.
For any specific individual to whom the BN model is applied, if the values of inputs
such as sex, age, and ethnicity are known, then their values would be specified
as inputs and conditioned on at subsequent nodes in applying the model to that
individual. Figure 43.9 illustrates this concept.
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Fig. 43.9 BN model of risk of infectious diarrhea among children under 5 in Cameroon. The left
panel shows the unconditional risk for a random child from the population (14.97%); the right panel
shows the conditional risk for a malnourished child from a home in the lowest income quintile and
with poor sanitation (20.00%) (Source: [87]

The left panel shows a BN model for risk of infectious diarrhea among young
children in Cameroon. Each of three risk factors – income quintile, availability of
toilets (“sanitation”), and stunted growth (“malnutrition”) – affects the probability
that a child will ever have had diarrhea for at least two weeks (“diarrhea”). In
addition, these risk factors affect each other, with an observation of low income
making observations of poor sanitation and malnutrition more likely and observed
poor sanitation also making observed malnutrition more likely at each level of
income. The right panel shows an instance of the model for a particular case of
a malnourished child from the poorest income quintile living with poor sanitation;
these three risk factor values all have probabilities set to 100%, since their values
are known. The result is that the risk of diarrhea, conditioned on this information,
is increased from an average value of 14.97% in this population of children to
20%when all three risk factors are set to these values.

A BN model stores conditional probability tables (CPTs) at nodes with inward-
pointing arrow. A CPT simply tabulates the conditional probabilities for the values
of the node variable for each combination of values of the variables that point into
it (its “parents” in the DAG). For example, the malnutrition node in Fig. 43.9 has
a CPT with 10 rows, since its two parents, Income and Sanitation, have 5 and 2
possible levels, respectively, implying ten possible pairs of input values. For each of
these ten combinations of input values, the CPT shows the conditional probability
for each possible value of Malnutrition (here, just Yes and No, so that the CPT
for Malnutrition has 2 columns); these conditional probabilities must sum to 1 for
each row of the CPT. BN nodes can also represent deterministic functions by CPTs
that assign 100% probability to a specific output value for each combination of
input values. The conditional probability distribution for the value of a node (i.e.,
variable) thus depends on the values of the variables that point into it; it can be freely
specified (or estimated from data, if adequate data are available) without making any
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restrictive assumptions about linearity or normal errors. Such BN models greatly
extend the flexibility of practical causal hypothesis testing and causal predictive
modeling beyond traditional linear SEM and path analysis models.

In practice, CPTs can usually be condensed into relatively small tables by using
classification trees or other algorithms (e.g., rough sets) to bin the potentially large
number of combinations of values for a node’s parents into just those that predict
significantly different conditional probability distributions for the node’s value.
Instead of enumerating all the combinations of values for the parents, “don’t care”
conditions (represented by blanks in the CPT entries or by missing splits in a
classification tree) can reduce the number of combinations that must be explicitly
stored in the CPT. Alternatively, a logistic regression model or other statistical
model can be used in place of a CPT at each node. For example, although the
Diarrhea node in Fig. 43.9 could logically have a CPT with 5 � 2 � 2 D 20

rows, it may be that a simple regression model with only three coefficients for the
main effects of the parents, and few or no additional terms for interactions, would
adequately approximate the full CPT.

10.4 Causal vs. Noncausal BNs

Any joint probability distribution of multiple random variables can be factored into
a product of marginal and conditional probability distributions and displayed in
DAG form, usually in several different ways. For example, the joint probability
mass function P .x, y/ of two discrete random variables X and Y , specifying the
probability of each pair of specific values (x, y/ for random variables X and Y ,
can be factored as P .x/P .yjx/ or as P .y/P (x jy/ and can be displayed in a BN
as X ! Y or as Y ! X , respectively. Here, x and y denote possible values
of random variables X and Y , respectively; P .x, y/ denotes the joint probability
that X D x and Y D y; P .x/ denotes the marginal probability that X D x;
P .y/ denotes the marginal probability that Y D y, and P .yjx/ and P .xjy/ denote
conditional probabilities that Y D y given that X D x and that X D x given that
Y D y, respectively. Thus, there is nothing inherently causal about a BN. Its nodes
need not represent causal mechanisms that map values of inputs to probabilities
for the values of outputs caused by those inputs. Even if they do represent such
causal mechanisms, they may not explicate how or why the mechanisms work. For
example, the direct link from Income to Malnutrition in Fig. 43.9 gives no insight
into how or why changes in income affect changes in malnutrition – e.g., what
specific decisions or behaviors are influenced by income that, in turn, results in
better or worse nutrition. Thus, it is possible to build and use BNs for probabilistic
inference without seeking any causal interpretation of the statistical dependencies
among its variables.

However, BNs are often deliberately constructed and interpreted to mean that
changes in the value of a variable at the tail of an arrow will cause a change in
the probability distribution of the variable into which it points, as described by the
CPT at that node. The effect of a change in a parent variable on the probability
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distribution of a child variable into which it points may depend on the values of
other parents of that node, thus allowing interactions among direct causes at that
node to be modeled. For example, in Fig. 43.8, the effects of smoking on CVD risk
may be different at different ages, and this would be indicated in the CPT for the
CVD node by having different probabilities for the values of the CVD variable at
different ages for the same value of the smoking variable. A causal BN is a BN
in which the nodes represent stable causal mechanisms or laws that predict how
changes in input values change the probability distribution of output values. The
CPT at a node of a causal BN describes the conditional probability distribution for
its value caused by each combination of values of its inputs, meaning that changes
in one or more of its input values will be followed by corresponding changes in the
probability distribution for the node’s value, as specified by the CPT. This is similar
to the concept of a causal mechanism in structural equation models, where a change
in a right-hand side (explanatory or independent) variable in a structural equation
is followed by a change in the left-hand side (dependent or response variable) to
restore equality [119].

A causal BN allows changes at input nodes to be propagated throughout the rest
of the network, yielding a posterior joint probability distribution for the values of
all variables. (If the detailed time course of changes in probabilities is of interest,
then differential equations or dynamic Bayesian networks (DBNs), discussed later,
may be used to model how the node’s probability distribution of values changes
from period to period.) The order in which changes propagate through a network
provides insight into the (total or partial) causal ordering of variables and can be
used to help deduce network structures from time series data [119]. Similarly, in a
set of simultaneous linear structural equations describing how equilibrium levels
of variables in a system are related, the causal ordering of variables (called the
Simon causal ordering in econometrics) is revealed by the order in which the
equations must be solved to determine the values of all the variables, beginning
with exogenous inputs (and assuming that the system of equations can be solved
uniquely, i.e., that the values of all variables are uniquely identifiable from the data).
Causality flows from exogenous to endogenous variables and among endogenous
variables in such SEMs (ibid). Exactly how the changes in output probabilities
(or in the expected values of left-side variables in an SEM) caused by changes in
inputs are to be interpreted (e.g., as changes in the probability distribution of future
observed values for a single individual or as changes in the frequency distribution
of the variable values in a population of individuals described by the BN) depends
on the situation being modeled.

10.5 Causal Mechanisms Are Lawlike, Yielding the Same Output
Probabilities for the Same Inputs

A true causal mechanism that has been explicated in enough detail to make reliable
predictions can be modeled as a conditional probability table (CPT) that gives the
same conditional probabilities of output values whenever the input values are the
same. Such a stable, repeatable relation, which might be described as lawlike,
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can be applied across multiple contexts as long as the inputs to the node are
sufficient to determine (approximately) unique probabilities for its output values.
For example, a dose-response relation between radiation exposure and excess age-
specific probability (or, more accurately, hazard rate) for first diagnosis with a
specific type of leukemia might be estimated from data for one population and then
applied to another with similar exposures, provided that the change in risk caused by
exposure does not depend on omitted factors. If it depends on age and ethnic group,
for example, then these would have to be included, along with exposure, as inputs
to the node representing leukemia status. By contrast, unexplained heterogeneity,
in which the estimated CPT differs significantly when study designs are repeated
by different investigators, signals that a lawlike causal mechanism has not yet been
discovered. In that case, the models and the knowledge that the BN represents need
to be further refined to discover and express predictively useful causal relations
that can be applied to new conditions. The key idea is that, to be transferable
across contexts (e.g., populations), the probabilistic relations encoded in CPTs must
include all of the input conditions that suffice to make their conditional probabilities
accurate, given accurately measured or estimated input values.

A proposed causal relation that turns out to be very heterogeneous, sometimes
showing significant positive effects and other times no effects or significant negative
effects under the same conditions, does not correspond to a lawlike causal relation
and cannot be relied on to make valid causal predictions (e.g., by using mean values
averaged over many heterogeneous studies). Thus, the estimated CPTs at nodes in
Fig. 43.9 may be viewed as averages of many individual-specific CPTs, and the
predictions that they make for any individual case may not be accurate. CPTs that
simply summarize historical data on conditional frequency distributions, but that
do not represent causal mechanisms, may be no more than mixtures of multiple
CPTs for the (perhaps unknown) populations and conditions that contributed to
the historical data. They cannot necessarily be generalized to new populations or
conditions (sometimes described as being transported to new contexts) or used to
predict how outputs will change in response to changes in inputs, unless the relevant
mixtures are known. For example, suppose that the Sanitation node has a value of 1
for children from homes with toilets and a value of 0 otherwise. If homes may have
toilets either because the owners bought them or because a government program
supplied them as part of a program along with a child food and medicine program,
then the effect of a finding that Sanitation D 1 on the conditional probability dis-
tribution of Malnutrition may depend very much on which of these reasons resulted
in Sanitation D 1. But this is not revealed by the model in Fig. 43.9. In such a case,
the estimated CPTs for the nodes in Fig. 43.9 should not be interpreted as describing
causal mechanisms, and the effects on other variables of setting Sanitation D 1 by
alternative methods cannot be predicted from the model in Fig. 43.9.

10.6 Posterior Inference in BN Models

Once a BN has been quantified by specifying its DAG structure and the probability
tables at its nodes, it can be used to draw a variety of useful inferences by applying
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any of several well-developed algorithms created and refined over the past three
decades [3]. The most essential inference capability of a BN model is that if
observations (or “findings”) about the values at some nodes are entered, then the
conditional probability distributions of all other nodes can be computed, conditioned
on the evidence provided by these observed values. This is called “posterior
inference.” In other words, the BN provides computationally practicable algorithms
for accomplishing the Bayesian operation of updating prior knowledge or beliefs,
represented in the node probability tables, with observations to obtain posterior
probabilities. For example, if known values of a patient’s age, sex, and systolic blood
pressure were to be entered for the BN in Fig. 43.8, then the conditional probability
distributions based on that information could be computed for all other variables,
including diabetes status and CVD risk, by BN posterior inference algorithms. In
Fig. 43.9, learning that a child is from a home with inadequate sanitation would
allow updated (posterior) probabilities for the possible income and nutrition levels,
as well as the probability of diarrhea, to be computed using exact probabilistic
inference algorithms. The best-known exact algorithm (the junction tree algorithm)
is summarized succinctly by [3]. For large BNs, approximate posterior probabilities
can be computed efficiently using Monte Carlo sampling methods, such as Gibbs
sampling, in which input values drawn from the marginal distributions at input nodes
are propagated through the network by sampling from the conditional distributions
given by the CPTs, thus building up a sample distribution for any output variable(s)
of interest.

The BN in Fig. 43.10 illustrates that different types of data, from demographics
(age and sex) to choices and behaviors (smoking) to comorbidities (diabetes) to
clinical measurements (such as systolic and diastolic blood pressures (SP and DBP))
and biomarkers (cholesterol levels) can be integrated in a BN model, here built using

Fig. 43.10 BN model for predicting CHD risk from multiple types of data [117]
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the popular Netica BN software product, to inform risk estimates for coronary heart
disease (CHD) occurring in the next ten years. In addition to posterior inference of
entire probability distributions for its variables, BNs can be used to compute the
most likely explanations for observed or postulated outcomes (e.g., what are the
most likely input values that lead to a specified set of output values) and to study
the sensitivity of the probability of achieving (or avoiding) specified target sets of
output values to changes in the probabilities of input values.

BN software products such as Netica, Hugin, or BayesiaLab not only provide
algorithms to carry out these computations but also integrate them with graphic
user interfaces for drawing BNs, populating their probability tables, and reporting
results. For example, the DAG in Fig. 43.10, drawn in Netica, displays probability
distributions for the values of each node. The probabilities are for a man, since the
Sex node at the top of the diagram has its probability for the value “male” set to
100%. This node is shaded to show that observed or assumed values have been
specified by the user, rather than being inferred by the BN model. If additional facts
(“findings”) are entered, such as that the patient is a diabetic never-smoker, then the
probability distributions at the 10-yr Risk of Event node and the other nodes would
all be automatically updated to reflect (condition upon) this information.

Free BN software packages for creating BNs and performing posterior inference
are also available in both R and Python. In R, the gRain package allows BNs to be
specified by entering the probability tables for their nodes. The resulting BN model
can then be queried by entering the variables for which the posterior probability is
desired, along with observed or assumed values for other variables. The package will
return the posterior probabilities of the query variables, conditioned on the specified
observations or assumptions. Both exact and approximate algorithms (such as the
junction tree algorithm and Monte Carlo simulation-based algorithms, respectively)
for such posterior inference in Bayesian networks are readily available if all
variables are modeled as discrete with only a few possible values. For continuous
variables, algorithms are available if each node can be modeled as having a normal
distribution with a mean that is a weighted sum of the values of its parents, so that
each node value depends on its parents’ values through a linear regression equation.
Various algorithms based on Monte Carlo simulation are available for the case of
mixed discrete and continuous BNs [13].

10.7 Causal Discovery of BNs from Data

A far more difficult problem than posterior inference is to infer or “learn” BNs
or other causal graph models directly from data. This is often referred to as the
problem of causal discovery (e.g., [54]). It includes the structure discovery problem
of inferring the DAG graph of a BN from data, e.g., by making sure that it shows the
conditional independence relations (treated as constraints), statistical dependencies,
and order of propagation of changes [119] inferred from data. Structure learning
algorithms are typically either constraint-based, seeking to find DAG structures
that satisfy the conditional independence relations and other constraints inferred
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from data or score-based, seeking to find the DAG structure that maximizes a
criterion (e.g., likelihood or posterior probability penalized for complexity) [3,9,20],
although hybrid algorithms have also been developed. Learning a BN from data
also requires quantifying the probability tables (or other representations of the
probabilistic input-output relation) at each node, but this is usually much easier
than structure learning. Simply tabulating the frequencies of each output value
for each combination of input values may suffice for large data sets if the nodes
have been constructed to represent causal mechanisms. For smaller data sets, fitting
classification trees or regression models to available data can generate an estimated
CPT, giving the conditional probability of each output value for each set of values
of the inputs. Alternatively, Bayesian methods can be used to condition priors
(typically, Dirichlet priors for multinomial random variables) on available data to
obtain posterior distributions for the CPTs [110].

Although many BN algorithms are now available to support learning BNs from
data [105], a fundamental limitation and challenge remains that multiple different
models often provide approximately equally good explanations of available data,
as measured by any of the many scoring rules, information-theoretic measures, and
other criteria that have been proposed, and yet they make different predictions for
new cases or situations. In such cases, it is better to use an ensemble of BN models
instead of any single one to make predictions and support decisions [3]. How best
to use common-sense knowledge-based constraints (e.g., that death can be an effect
but not a cause of exposure or that age can be a cause but not an effect of health
effects) to extract unique causal models, or small sets of candidate models, from
data is still an active area of research, but most BN packages allow users to specify
both required and forbidden arrows between nodes when these knowledge-based
constraints are available. Since it may be impossible to identify a unique BN model
from available data, the BN-learning and causal discovery algorithms included in
many BN software packages should be regarded as useful heuristics for suggesting
possible causal models, rather than as necessarily reliable guides to the truth.

For practical applications, the bnlearn package in R [105] provides an assortment
of algorithms for causal discovery, with the option of including knowledge-based
constraints by specifying directed or undirected arcs that must always be included
or that must never be included. For example, in Fig. 43.8, sex, age, and ethnic group
cannot have arrows directed into them (they are not caused by other variables), and
CVD deaths cannot be a cause of any other variable [115]. The DAG model for
cardiovascular disease risk prediction in Fig. 43.8 was discovered using one of the
bnlearn algorithms (the grow-shrink algorithm for structure learning), together with
these knowledge-based constraints. On the other hand, the BN model in Fig. 43.10,
which was developed manually based on an existing regression model, has a DAG
structure that is highly questionable. Its logical structure is that of a regression
model: for men, all other explanatory or independent variables point into the
dependent variable 10-year Risk of Event, and there are no arrows directed between
explanatory variables, e.g., from smoking to risk of diabetes. Such additional
structure would probably have been discovered had machine learning algorithms
for causal discovery such as those in bnlearn been applied to the original data. If the
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DAG structure of a BN model is incorrect, then the posterior inferences performed
using it – e.g., inferences about risks (posterior probabilities) of disease outcomes,
and how they would change if inputs such as smoking status were altered – will not
be trustworthy. This raises a substantial practical challenge when the correct DAG
structure of a BN is uncertain.

10.8 Handling Uncertainty in Bayesian Network Models

BNs and other causal graph model are increasingly used in epidemiology to
model uncertain and multivariate exposure-response relations. They are particularly
useful for characterizing uncertain causal relations, since they can represent both
uncertainty about the appropriate causal structure (DAG model), via the use of
multiple DAGs (“ensembles” of DAG models), and uncertainties about the marginal
and conditional probabilities at the input and other nodes. As noted by Samet
and Bodurow [100], “The uncertainty about the correct causal model involves
uncertainty about whether exposure in fact causes disease at all, about the set of
confounders that are associated with exposure and cause disease, about whether
there is reverse causation, about what are the correct parametric forms of the
relations of the exposure and confounders with outcome, and about whether there
are other forms of bias affecting the evidence. One currently used method for
making this uncertainty clear is to draw a set of causal graphs, each of which
represents a particular causal hypothesis, and then consider evidence insofar as it
favors one or more of these hypotheses and related graphs over the others.”

An important principle for characterizing and coping with uncertainty about
causal models is not to select and use any single model when there is substantial
uncertainty about which one is correct [3]. It is more effective, as measured by
many performance criteria for evaluating predictive models, such as mean squared
prediction error, to combine the predictions from multiple models that all fit the
data adequately (e.g., that all have likelihoods at least 10% as large as that of
the most likely model). Indeed, the use of multiple models is often essential for
accurately depicting model uncertainty when quantifying uncertainty intervals or
uncertainty sets for model-based predictions. For example, Table 43.3 presents a

Table 43.3 A machine learning challenge: What outcome should be predicted for case 7 based
on the data in cases 1–6?

Case Predictor 1 Predictor 2 Predictor 3 Predictor 4 Outcome

1 1 1 1 1 1

2 0 0 0 0 0

3 0 1 1 0 1

4 1 1 0 0 0

5 0 0 0 0 0

6 1 0 1 1 1

7 1 1 0 1 ?
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small hypothetical data set to illustrate that multiple models may provide equally
good (in this example, perfect) descriptions of all available data and yet make very
different predictions for new cases. For simplicity, all variables in this example are
binary (0–1) variables.

Suppose that cases 1–6 constitute a “training set,” with 4 predictors and one
outcome column (the right most) to be predicted from them. The challenge for
predictive analytics or modeling in this example is to predict the outcome for case
7 (the value, either 0 or 1, in the “?” cell in the lower right of the table). For
example, predictors 1–4 might represent various features (1 = present, 0 = absent)
of a chemical, or perhaps results of various quick and inexpensive assays for the
chemical (1 = positive, 0 = negative) and the outcome might indicate whether the
chemical would be classified as a rodent carcinogen in relatively expensive two-year
live-animal experiments. A variety of machine-learning algorithms are available for
inducing predictive rules or models from training data, from logistic regression
to classification trees (or random forest, an ensemble-modeling generalization of
classification trees) to BN learning algorithms. Yet, no algorithm can provide
trustworthy predictions for the outcome in case 7 based on the training data in
cases 1–6, since many different models fit the training data equally well and yet
make opposite predictions. For example, the following two models each describe
the training data in rows 1–6 perfectly, yet they make opposite prediction for case 7:

Model 1: Outcome = 1 if the sum of predictors 2, 3, and 4 exceeds 1, else 0

Model 2: Outcome = value of Predictor 3.

Likewise, these two models would make opposite predictions for a chemical with
predictor values of (0, 0, 1, 0). Model 1 can be represented by a BN DAG structure
in which predictors 2, 3, and 4 are the parents of the outcome node (and the CPT is
a deterministic function with probabilities of 1 or 0 that the outcome = 1, depending
on the values of these predictors). Model 2 would be represented by a BN in which
only node 3 is a parent of the outcome node. The following are additional models
or prediction rules, e.g.:

Model 3: Outcome is the greater of the values of predictors 1 and 2 except when
both equal 1, in which case the outcome is the greater of the values of predictors 3
and 4.

Model 4: Outcome is the greater of the values of predictors 1 and 2 except when
both equal 1, in which case the outcome is the lesser of the values of predictors 3
and 4.

These models also provide equally good fits to, or descriptions of, the training
data, but make opposite predictions for case 7 and imply yet another BN structure.
Thus, it is impossible to confidently identify a single correct model structure from
the training data (the data-generating process is non-identifiable from the training
data), and no predictive analytics or machine learning algorithm can determine from
these data a unique model (or set of prediction rules) for correctly predicting the
outcome for new cases or situations.
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This example illustrates that successful classification or description of reference
cases in a training set is a different task from successful prediction of outcomes for
new cases outside the training set. It is possible for a computational procedure to
have up to 100% accuracy on the former task, while making predictions with no
better than a random (50–50) probability of being correct for the latter task. Yet,
it is the latter that should be the goal of chief interest to practitioners who want to
make predictions or decisions for cases other than those used in building the model.
Using ensembles of models can help to characterize the range or set of predicted
outcomes for new cases that are consistent with the training data, in the sense of
being predicted by models that describe the training data well. They can also provide
a basis for procedures that adaptively improve predictions (or decisions) as new
cases are observed.

One way to implement this model ensemble approach is via weighted averaging
of model-specific predictions, with weights chosen to reflect each model’s perfor-
mance, e.g., how well it explains the data, as assessed by its relative likelihood
[3, 78, 79]. Such Bayesian model averaging (BMA) of multiple causal graphs
avoids the risk of betting predictions on a single model. It demonstrably leads to
superior predictions and to reduced model-selection and over-fitting biases in many
situations [79]. Similar ideas are included in super-learning algorithms, already
discussed, which assess model performance and weights via cross validation rather
than via likelihood and adaptive learning approaches that learn to optimize not just
predictions, but decision rules for making sequences of interventions as outcomes
are gradually observed over time (e.g., the iqLearn algorithm of Linn et al. [72]).
An important application of such decision rule learning algorithms is in sequential
multiple assignment randomized trial (SMART) designs for clinical trials. These
designs allow treatments or interventions for individual patients to be modified over
time as their individual response and covariate histories are observed, in order to
increase the probabilities of favorable outcomes for each patient while learning what
intervention sequences work best for each type of patient [71].

When the probabilities to be entered into BN node probability tables are
unknown, algorithms that propagate imprecise probabilities through BN models
can be used (e.g., [29, 30]. Both the marginal probabilities at input nodes and
the resulting probabilities of different outcomes (or the values at particular output
nodes) will then be intervals, representing imprecise probabilities. More generally,
instead of specifying marginal and conditional probability tables at the nodes of
a BN, uncertainty about the probabilities can be modeled by providing a (usually
convex) set of probability distributions at each node. BNs generalized in this way
are called credal networks. Algorithms for propagating sets of probabilities through
credal networks have been developed [15] and extended to support optimization of
risk management decisions [20].

Alternatively, second-order probability distributions (“probabilities of proba-
bilities”) for the uncertain probabilities at BN nodes can be specified. If these
uncertainties about probabilities are well approximated by Dirichlet or beta prob-
ability distributions (as happens naturally when probabilities or proportions are
estimated from small samples using Bayesian methods with uniform or Dirichlet
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priors), then Monte Carlo uncertainty analysis can be used to propagate the
uncertain probabilities efficiently through the BN model, leading to uncertainty
distributions for the posterior probabilities of the values of the variables in the BN
(Kleiter 1996). Imprecise Dirichlet models have also been used to learn credal sets
from data, resulting in upper and lower bounds for the probability that each variable
takes on a given value [15].

Rather than using sets or intervals for uncertain probabilities, it is sometimes
possible to simply use best guesses (point estimates) and yet to have confidence that
the results will be approximately correct. Henrion et al. (1996) note that, in many
situations, the key inferences and insights from BN models are quite insensitive (or
“robust”) to variations in the estimated values in the probability tables for the nodes.
When this is the case, best guesses (e.g., MLE point estimates) of probability values
may be adequate for inference and prediction, even if the data and expertise used to
form those estimates are scarce and the resulting point estimates are quite uncertain.

10.9 Influence Diagrams Extend BNs to Support Optimal Risk
Management Decision-Making

The BN techniques discussed so far are useful for predicting how output probabil-
ities will change if input values are varied, provided that the DAG structure can be
correctly interpreted as showing how changes in the inputs propagate through net-
works of causal mechanisms to cause changes in outputs. (As previously discussed,
this requires that the network is constructed so that the CPTs at nodes represent
not merely statistical descriptions of conditional probabilities in historical data but
causal relations determining probabilities of output values for each combination
of input values.) Once the probabilities of different outputs can be predicted for
different inputs, it is natural to ask how the controllable inputs should be set to make
the resulting probability distribution of outputs as desirable as possible. This is the
central question of decision analysis, and mainstream decision analysis provides a
standard answer: choose actions to maximize the expected utility of the resulting
probability distribution of consequences.

To modify BN models to support optimal (i.e., expected utility-maximizing)
risk management decision-making, the BNs must be augmented with two types
of nodes that do not represent random variables or deterministic functions. There
is a utility node, also sometimes called a value node, which is often depicted
in DAG diagrams as a hexagon and given a name such as “Decision-maker’s
utility.” There must also be one or more choice nodes, also called decision nodes,
commonly represented by rectangles. The risk management decision problem is to
make choices at the decision nodes to maximize the expected value of the utility
node, taking into account the uncertainties and conditional probabilities described
by the rest of the DAG model. Input decision nodes (i.e., decision nodes with
only outward-directed arrows) represent inputs whose values are controlled by the
decision-maker. Decision nodes with inputs represent decision rules, i.e., tables
or functions specifying how the decision node’s value is to be chosen, for each
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Fig. 43.11 An influence diagram (ID) model with two decision nodes (green rectangles) and with
Net health effect as the value node. (Questions and comments in trapezoids on the periphery are
not parts of the formal ID model, but help to interpret it for policy makers) (Source: www.lumina.
com/case-studies/farmed-salmon/)

combination of values of its inputs. BNs with choice and value nodes are called
influence diagram (ID) models. BN posterior inference algorithms can be adapted
to solve for the best decisions in an ID, i.e., the choices to make at the choice nodes
in order to maximize the expected value of the utility node [3, 123].

Figure 43.11 shows an example of an ID model developed and displayed using
the commercial ID software package Analytica. Its two decision nodes represent
choices about whether to lower the allowed limits for pollutants in fish feed and
whether to recommend to consumers that they restrict consumption of farmed
salmon, respectively [49]. The two decision nodes are shown as green rectangles,
located toward the top of the ID. The value or utility node in Fig. 43.11, shown
as a pink hexagon located toward the bottom of the diagram, is a measure of net
health effect in a population. It can be quantified in units such as change in life
expectancy (added person-year of life) or change in cancer mortality rates caused
by different decisions and by the other factors shown in the model. Many of these

www.lumina.com/case-studies/farmed-salmon/
www.lumina.com/case-studies/farmed-salmon/
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factors, such as (a) the estimated exposure-response relations for health harm caused
by consuming pollutants in fish and (b) the health benefits caused by consuming
omega three fatty acids in fish, are uncertain. The uncertainties are represented by
random variables (the dark blue oval-shaped nodes throughout the diagram) and by
modeling assumptions that allow other quantities (the light blue oval-shaped nodes)
to be calculated from them.

An example of a modeling assumption is that pollutants increase mortality
rates in proportion to exposure, with the size of this slope factor being uncertain.
Different models (or expert opinions) for relevant toxicology, dietary habits,
consumer responses to advisories and recommendations, nutritional benefits of fish
consumption, and so forth can contribute to developing the CPTs for different parts
of the ID model and characterizing uncertainties about them. IDs thus provide a
constructive framework for coordinating and integrating multiple submodels and
contributions from multiple domains of expertise and for applying them to help
answer practical questions such as how different policies, regulations, warnings, or
other actions will affect probable health effects, consumption patterns, and other
outcomes of interest.

If multiple decision makers with different jurisdictions or spans of control
attempt to control the same outcome, however, then coordinating their decisions
effectively may require resolving game-theoretic issues in which each decision
maker’s best decision depends on what the others do. For example, in Fig. 43.11,
if the regulators in charge of setting allowed limits for pollutant contamination
levels in fish feed are different from the regulators or public health agencies issuing
advisories about what to eat and what not to eat, then each might decide not to take
additional action to protect public health if it mistakenly assumes that the other will
do so. Problems of risk regulation or management with multiple decision-makers
can be solved by generalizing IDs to multi-agent influence diagrams (MAIDs)
[67, 89, 107]. MAID algorithms recommend what each decision-maker, each with
its own utility function and decision variables, should do, taking into account any
information it has about the actions of others, when their decisions propagate
through a DAG model to jointly determine probabilities of consequences.

Although the idea of extending BNs to include decision and value nodes seems
straightforward in principle, understanding which variables are controllable by
whom over what time interval may require careful thought in practice. For example,
consider a causal graph model (Fig. 43.12) showing factors affecting treatment of
tooth defects (central node), such as patient’s age, genetics, smoking status, diabetes,
use of antibacterials, pulpal status, available surgical devices, and operator skill [1].
These variables have not been pre-labeled as chance or choice nodes. Even without
expertise in dentistry, it is clear that some of the variables, such as genetics or
age, should not ordinarily be modeled as decision variables. Others, such as Use of
antibacterials and Pulpal status (reflecting oral hygiene) may result from a history
of previous decisions by patients and perhaps other physicians or periodontists.
Still others, such as available surgical devices and operator skill, are fixed in the
short run, but might be considered decision variables over intervals long enough to
include the operator’s education, training, and experience or if the decisions to be
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Fig. 43.12 Different variables can be treated as decision variables on different time scales
(Source: [1])

made include hiring practices and device acquisition decisions of the clinic where
the surgery is performed. Smoking and diabetes indicators might also be facts about
a patient that cannot be varied in the short run, but that might be considered as
at least in part determined by past health and lifestyle decisions. In short, even
if a perfectly accurate causal graph model were available, the question of who
acts upon the world how and over what time frame via the causal mechanisms
in the model must still be resolved in formulating an ID or MAID model from
a causal BN. In organizations or nations seeking to reduce various risks through
policies or regulations, who should manage what, which variables should be taken
as exogenously determined, and which should be subjected to control must likewise
be resolved before ID or MAID models can be formulated and solved to obtain
recommended risk management decisions.

10.10 Value of Information (VOI), Dynamic Bayesian Networks
(DBNs), and Sequential Experiments for Reducing
Uncertainties Over Time

Once a causal ID model has been fully quantified, it can be used to predict how
the probability distributions for different outcomes of interest (such as net health
effect in Fig. 43.11) and expected utility will change if different decisions are
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made. This what-if capability, in turn, allows decision optimization algorithms to
identify which specific decisions and decision rules maximize expected utility and
to calculate how sensitive the recommended decisions are to other uncertainties and
assumptions in the model. ID software products such as Analytic and Netica support
construction of IDs and automatically solve them for the optimal decisions. For the
example in Fig. 43.11, a robust optimal decision is to not recommend restrictions
in fish consumption to consumers, as the estimated health benefits of greater fish
consumption far outweigh the estimated health risks. This conclusion is unlikely
to be reversed by further reductions in uncertainty, i.e., there is little doubt that it
is true. By contrast, whether it is worth lowering allowed levels of pollutants in
fish feed is much less clear, with the answer depending on modeling assumptions
that are relatively uncertain. This implies a positive value of information (VOI) for
reducing these uncertainties, meaning that doing so might change the best decision
and increase expected utility. ID models can represent the option of collecting
additional information before making a final decision about what actions to take,
such as lowering or not lowering allowed pollutant levels, by including one or more
additional decision nodes to represent information acquisition, followed by chance
nodes showing what the additional information might reveal.

In an ID with options for collecting more information before taking a final action,
the optimal next step based on presently available information might turn out to be to
collect additional information before committing to final regulations or other costly
actions. This will be the case if and only if the costs of collecting further information
next, including any costs of delay that this entails, are less than the benefits from
better-informed subsequent decisions, in the sense that collecting more information
before acting (e.g., implementing a regulation or issuing a warning in Fig. 43.11)
has greater expected utility than taking the best action now with the information at
hand. Optimal delay and information acquisition strategies based on explicit VOI
calculations often conflict with more intuitive or political criteria. Both individuals
and groups are prone to conclude prematurely that there is already sufficient
information on which to act and that further delay and information collection
are therefore not warranted, due to narrow framing, overconfidence and confir-
mation biases, groupthink, and other psychological aspects of decision-making
[61]. Politicians and leaders may respond to pressure to exhibit the appearance
of strong leadership by taking prompt action without first learning enough about
their probable consequences. VOI calculations can help to overcome such well-
documented limitations of informal decision-making by putting appropriate weight
on the value of reducing uncertainty before acting.

To explicitly model the sequencing of information collection, action selection,
and resulting changes in outcomes over time, consecutive period-specific BNs or
IDs can be linked by information flows, meaning that the nodes in each period’s
network (or “slice” of the full multi-period model) are allowed to depend on
information received in previous periods. The resulting dynamic Bayesian networks
(DBNs) or dynamic IDs provide a very convenient framework for predicting
and optimizing decisions and consequences over time as initial uncertainties are
gradually reduced or resolved. They have proved valuable in medical decision-
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making for forecasting in detail the probabilities of different time courses of diseases
and related quantities, such as probability of first diagnosis with a disease or adverse
condition within a specified number of months or years [121], survival times and
probabilities for patients with different conditions and treatments, and remaining
days of hospitalization or remaining years of life for individual patients being
monitored and treated for complex diseases, from cancers to multiple surgeries to
sequential organ failures [5, 101].

DBN estimation software is freely available in R packages [69, 94]. It has been
developed and used largely by the systems biology community for interpreting time
series of gene expressions in systems biology. Biological and medical researchers,
electrical engineers, computer scientists, artificial intelligence researchers, and
statisticians have recognized that DBNs generalize important earlier methods of
dynamic estimation and inference, such as Hidden Markov Models and Kalman
filtering for estimation and signal processing [34]. DBNs are also potentially
extremely valuable in a wide range of other engineering, regulatory, policy, and
decision analysis settings where decisions and their consequences are distributed
over time, where feedback loops or other cycles make any static BN inapplicable,
or where detailed monitoring of changing probabilities of events is desired
so that midcourse changes in actions can be made in order to improve final
outcomes.

Development and application of DBN algorithms and various generalizations are
fruitful areas of ongoing applied research. Key concepts of DBNs and multi-agent
IDs have been successfully combined to model multi-agent control of dynamic
random processes (modeled as multi-agent partially observable Markov decision
processes, POMDPs) [93]. More recently, DBN methods have been combined with
ideas from change-point analysis for situations where arcs in the DAG model are
gained or lost at certain times as new influences or mechanisms start to operate or
former ones cease [97]. These advances further extend the flexibility and realism of
DBN models (and dynamic IDs based on them) to apply to description and control
of nonstationary time series.

As already discussed, value of information (VOI) calculations, familiar from
decision analysis, can be carried out straightforwardly in ID models. Less familiar,
but still highly useful, are methods for optimizing the sequential collection of
information to better ascertain correct causal models. The best available methods
involve design of experiments [116] and of time series of observations [90]. When
the correct ID model describing the relation between decisions and consequence
probabilities is initially uncertain, then collecting additional information may have
value not only for improving specific decisions (i.e., changing decisions or decision
rules to increase expected utility) within the context of a specified ID model but also
for discriminating among alternative ID models to better ascertain which ones best
describe reality. New information can help in learning IDs from data by revealing
how the effects of manipulations develop in affected variables over time [119].
For example, Tong and Koller [116] present a Bayesian approach to sequential
experimentation in which a distribution of BN DAG structures and CPTs is updated
by experiments that set certain variables to new values and monitor the changes in
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values of other variables. At each step, the next experiment to perform is selected
to most reduce expected loss from incorrect inferences about the presence and
directions of arcs in the DAG model. Even in BNs without decision or utility nodes,
designing experiments and time series of observations to facilitate accurate learning
of BN descriptions can be very valuable in creating and validating models with high
predictive accuracy [90].

11 Causal Analytics

The preceding sections have discussed how causal Bayesian networks and other
DAG and time series algorithms provide constructive methods for carrying out many
risk assessment and risk management tasks, even when there is substantial initial
uncertainty about relevant cause-and-effect relations and about the best (expected
utility-maximizing) courses of action. Other graphical formalisms for risk analysis
and decision-making, such as decision trees, game trees, fault trees, and event
trees, which have long been used to model the propagation of probabilistic events
in complex systems, can all be converted to equivalent IDs or BNs, often with
substantial reductions in computational complexity and with savings in the number
of nodes and combinations of variable values that must be explicitly represented
[107]. Thus, BNs and IDs provide an attractive unifying framework for characteriz-
ing, quantifying, and reducing uncertainties and for deciding what to do under the
uncertainties that remain. They, together with time series techniques and machine
learning techniques, provide a toolkit for using data to inform inference, prediction,
and decision-making with realistic uncertainties. These methods empower the
following important and widely used types of analytics for using data to inform
decisions:

• Descriptive analytics: BNs and IDs describe how the part of the world being
modeled probably works, showing which factors influence or determine the prob-
ability distributions for which other variables and quantifying the probabilistic
relations among variables. If a BN or ID has CPTs that represent the operation of
lawlike causal mechanisms – i.e., if it is a causal BN or ID – then it can be used
to describe how changes in some variables affect the probability distributions
of others and hence how probabilistic causal influences propagate to change the
probabilities of outcomes.

• Predictive analytics: A BN can be used to predict how the probabilities of future
observations change when new evidence is acquired (or assumed). A causal
BN or ID predicts how changes made at input nodes will affect the future
probabilities of outputs. Dynamic Bayesian networks (DBNs) are used to forecast
the probable sequences of future changes that will occur after observed changes
in inputs, culminating in a new posterior joint probability distribution for all
other variables over time (calculated via posterior inference algorithms). BNs
and DBNs are also used to predict and compare the probable consequences
(changes in probability distributions of outputs and other variables) caused
by alternative hypothetical (counterfactual) scenarios for changes in inputs,
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including alternative decisions. Conversely, BNs can predict the most likely
explanation for observed data, such as the most likely diagnosis explaining
observed symptoms or the most likely sequence of component failures leading
to a real or hypothesized failure of a complex system. By predicting the probable
consequences of alternative policies or decisions and the most likely causes for
undesired outcomes, BNs can inform risk management decision-making and help
to identify where to allocate resources to repair or forestall likely failure paths.

• Uncertainty analytics. Both BNs and IDs are designed to quantify uncertain-
ties about their predictions by using probability distributions for all uncertain
quantities. When model uncertainty is important, model ensemble methods
allow the predictions or recommendations from multiple plausible models to
be combined to obtain more accurate forecasts and better-performing decision
recommendations [3]. DBNs provide the ability to track event probabilities
in detail as they change over time, and dynamic versions of MAIDs allow
uncertainties about the actions of other decision-makers to be modeled.

• Prescriptive analytics. If a net benefit, loss, or utility function for different
outcomes is defined, and if the causal DAG relating choices to probabilities
of consequences is known, then ID algorithms can be used to solve for the
best combination of decision variables to minimize expected loss or maximize
expected utility. If more than one decision-maker or policy maker makes choices
that affect the outcome, then MAIDS or dynamic versions of MAIDs can be used
to recommend what each should do.

• Evaluation and learning analytics. Ensembles of BNs, IDs, and dynamic ver-
sions and extensions of these can be learned from data and experimentation.
Value of information (VOI) calculations determine when a single decision-
maker in a situation modeled by a known ID should stop collecting information
and take action. Dynamic causal BNs and IDs can be learned from time
series data in many settings (including observed responses to manipulations or
designed experiments) and current decision rules or policies can be evaluated
and improved during the learning process, via methods such as low-regret
learning with model ensembles, until no further improvements can be found
[107]. Learning about causal mechanisms from the observed time series of
responses to past interventions, manipulations, decisions, or policies provides
a promising technical approach to using past experience to deliberately improve
future decisions and outcomes.

Table 43.4 shows how these various components, which might collectively be
called causal analytics, provide constructive methods for answering the funda-
mental questions raised in the introduction. For event detection and consequence
prediction, DBNs (especially, nonstationary DBNs) and change-point analysis
(CPA) algorithms are well suited for detecting changes in time series of observations
and occurrences of unobserved events based on their observable effects. DBNs and
causal simulation models, as well as time series models that accurately describe how
impacts of changes are distributed over time, are also useful for predicting the prob-
able future consequences of recent changes or “shocks” in the inputs to a system.



1490 L.A. Cox, Jr.,

Table 43.4 Causal analytics algorithms address fundamental risk management questions under
realistic uncertainties

Fundamental questions
Causal analytics algorithms and methods for
answering the questions

Event detection: What has changed recently
in disease patterns or other adverse out-
comes, by how much, when?

• Change-point analysis (CPA) algorithms
• Dynamic Bayesian networks (DBNs)

Consequence prediction: What are the impli-
cations for what will probably happen next
if different actions (or no new actions) are
taken?

• Dynamic Bayesian networks (DBNs)
• Simulation modeling
• Time series forecasting

Risk attribution: What is causing current
undesirable outcomes? Does a specific expo-
sure harm human health, and, if so, who is at
greatest risk and under what conditions?

• Causal DAG models (e.g., BNs, IDs)
• Ensembles of DAG models
• Granger causality and transfer entropy

(TE) for time series

Response modeling: What combinations of
factors affect health outcomes, and how
strongly? How would risks change if one or
more of these factors were changed?

• Causal DAG models, e.g., BN models

Decision making: What actions or interven-
tions will most effectively reduce uncertain
health risks?

• Influence diagram (ID) algorithms
• MAIDs for multiple decision makers
• Adaptive learning methods, e.g., iqLearn,

if the ID model is uncertain

Retrospective evaluation and accountability:
How much difference have exposure reduc-
tions or other policies actually made in
reducing adverse health outcomes?

• Quasi-experimental (QE) studies
• Intervention analysis for time series
• Ensemble learning algorithms such as

iqLearn for continuous improvement

For risk attribution, causal graph models (such as BNs, IDs, and dynamic
versions of these) or ensembles of such models can be learned from data and used
to quantify the evidence that suspected hazards indeed cause the adverse effects
attributed to them (i.e., that there is, with high confidence, a directed arc pointing
from a node representing exposure to a hazard into a node representing the effect). If
so, the CPT for the effect node quantifies how changes in the exposure node change
probabilities of effects, given the levels of other causes with which exposure may
interact. Multivariate response modeling, in which the joint distributions of one or
more responses vary with the levels of one or more factors that probabilistically
cause them, can readily be modeled by DAGs that include the different causal
factors and effects. For risk management or regulation under uncertainty, if utility
nodes and decision nodes are incorporated into the causal graph models to create
known causal ID or MAID models, then the best decisions for risk management (i.e.,
for inducing the greatest achievable expected utilities) can be identified by well-
developed ID solution algorithms, and VOI calculations can be used to optimize
costly information collection and the timing of final decisions.
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Finally, for retrospective evaluation and accountability, quasi-experiments and
intervention analysis of interrupted time series provide traditional methods of
analysis, although they require using data (or assumptions) to refute noncausal
explanations for changes in time series. More recently developed ensemble-learning
methods [3, 107] and adaptive learning algorithms (such as iqLearn for learning to
optimize treatment sequences) can be used to continually evaluate and improve the
success of current decision rules, policies, or regulations for managing uncertain
risks, based on their performance to date and on relative expected costs of
switching among them and of failing to do so. Such adaptive evaluation and
improvement is possible provided that the consequences of past actions (probably)
are monitored and the data are made available and used to update causal IDs,
MAIDs, or dynamic versions of such models to allow ongoing learning and
optimization. Thus, causal graph methods (including ensemble methods, when
appropriate models are uncertain, and time series methods that uncover DAG
structures relating time series variables) provide a rich set of tools for addressing
fundamental challenges of uncertainty quantification and decision-making under
uncertainty.

12 Summary and Conclusions: Applying Causal Graph
Models to Better Manage Risks and Uncertainties

The power and maturity of the technical methods in Table 43.4 have spurred their
rapid uptake and application in fields such as neurobiology, systems biology, econo-
metrics, artificial intelligence, control engineering, game theory, signal processing,
and physics. However, they have so far had relatively limited impact on the practice
of uncertainty quantification and risk management in epidemiology, public health,
and regulatory science, perhaps because these fields give great deference to the
use of subjective judgments informed by weight-of-evidence considerations – an
approach widely used and taught since the 1960s, but of unproved and doubtful
probative value [83]. Previous sections have illustrated some of the potential of
more modern methods of causal analytics, but the vast majority of applied work in
epidemiology, public health, and regulatory risk assessment unfortunately still uses
older association-based methods and subjective opinions about the extent to which
statistically significant differences between risk model coefficients for differently
exposed populations might have causal interpretations.

To help close the gap between these poor current practices and the potentially
much more objective, reliable, accurate, and sensitive methods of causal analytics
in Table 43.4, the following checklist may prove useful in judging the adequacy
of policy analyses or quantitative risk assessments (QRAs) that claims to have
identified useful predictive causal relations between exposures to risk factors or
hazards and resulting risks of adverse effects (responses), i.e., causal exposure-
response (E-R) relations.
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1. Does the QRA show that changes in exposures precede the changes in health
effects that they are said to cause? Are results of appropriate technical analyses
(e.g., change-point analyses, intervention analyses and other quasi-experimental
comparisons, and Granger causality tests or transfer entropy results) presented,
along with supporting data? If effects turn out to precede their presumed causes,
then unmeasured confounders or residual confounding by confounders that the
investigators claim were statistically “controlled for” may be at work.

2. Does the QRA demonstrate that health effects cannot be made conditionally
independent of exposure by conditioning on other variables, especially potential
confounders? Does it present the details, data, and results of appropriate statis-
tical tests (e.g., conditional independence tests and DAGs) showing that health
effects and exposures share mutual information that cannot be explained away
by any combination of confounders?

3. Does the QRA present and test explicit causal graph models, showing the results
of formal statistical tests of the causal hypotheses implied by the structure
of the model (i.e., which variables point into which others)? Does it identify
which alternative causal graph models are most consistent with available data
(e.g., using the Occam’s Window method of [78])? Most importantly, does it
present clear evidence that changes in exposure propagate through the causal
graph, causing successive measurable changes in the intermediate variables along
hypothesized causal paths? Such coherence, consistency, and biological plausi-
bility demonstrated in explicit causal graph models showing how hypothesized
causal mechanisms dovetail with each other to transduce changes in exposures
to changes in health risks can provide compelling objective evidence of a causal
relation between them, thus accomplishing what older and more problematic
WoE frameworks have long sought to provide [95].

4. Have noncausal explanations for statistical relations among observed variables
(including exposures, health effects, and any intermediate variables, modifying
factors, and confounders) been explicitly identified and convincingly refuted
using well-conducted and reported statistical tests? Especially, have model
diagnostics (e.g., plots of residuals and discussions of any patterns) and formal
tests of modeling assumptions been presented that show that the models used
appropriately describe the data to which the QRA applies them and that claimed
associations are not caused by model selection biases or specification errors,
failures to model errors in exposure estimates and other explanatory variables,
omitted confounders or other latent variables, uncorrected multiple testing bias,
or coincident historical trends (e.g., spurious regression, if the exposure and
health effects time series in longitudinal studies are not stationary)?

5. Have all causal mechanisms postulated in the QRA modeling been demonstrated
to exhibit stable, uniform, lawlike behavior, so that there is no substantial
unexplained heterogeneity in estimated input-output (e.g., E-R or C-R) relations?
If the answer is no, then missing factors may need to be identified and their effects
modeled before valid predictions can be made based on the assumption that
changes in causes will yield future changes in effects that can be well described
and predicted based on estimates of cause-effect relations from past data.
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If the answers to these five diagnostic questions are all yes, then the QRA has
met the burden of proof of showing that the available data are consistent with a
causal relation and that other (noncausal) explanations are not plausible. It can then
proceed to quantify the estimated changes in probability distributions of outputs,
such as future health effects, that would be caused by changes in controllable
inputs (e.g., future exposure levels) using the causal models developed to show
that exposure causes adverse effects. The effort needed to establish valid evidence
of a causal relation between historical levels of inputs and outputs by being able
to answer yes to questions 1–5 pays off at this stage. Causal graph models (e.g.,
Bayesian networks with validated causal interpretations for their CPTs), simulation
models based on composition of validated causal mechanisms, and valid path
diagrams and SEM causal models can all be used to predict quantitative changes
in outputs that would be caused by changes in inputs, e.g., changes in future health
risks caused by changes in future exposure levels, given any scenario for the future
values of other inputs.

Conversely, if the answer to any of the preceding five diagnostic questions is no,
then it is premature to make causal predictions based on the work done so far. Either
the additional work needed to make the answers yes should be done or results should
be stated as contingent on the as-yet unproved assumption that this can eventually
be done.
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