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Abstract

The Parallel C++ Statistical Library for the Quantification of Uncertainty for
Estimation, Simulation, and Optimization (QUESO) is a collection of statistical
algorithms and programming constructs supporting research into the quantifica-
tion of uncertainty of models and their predictions. QUESO is primarily focused
on solving statistical inverse problems using Bayes’ theorem, which expresses
a distribution of possible values for a set of uncertain parameters (the posterior
distribution) in terms of the existing knowledge of the system (the prior) and
noisy observations of a physical process, represented by a likelihood distribution.
The posterior distribution is not often known analytically and so requires
computational methods. It is typical to compute probabilities and moments
from the posterior distribution, but this is often a high-dimensional object, and
standard Riemann-type methods for quadrature become prohibitively expensive.
The approach QUESO takes in this regard is to rely on Markov chain Monte Carlo
(MCMC) methods which are well suited to evaluating quantities such as prob-
abilities and moments of high-dimensional probability distributions. QUESO’s
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intended use is as tool to assist and facilitate coupling uncertainty quantification
to a specific application called a forward problem. While many libraries presently
exist that solve Bayesian inference problems, QUESO is a specialized piece of
software primarily designed to solve such problems by utilizing parallel environ-
ments demanded by large-scale forward problems. QUESO is written in C++, uses
MPI, and utilizes libraries already available to the scientific community. Thus,
the target audience of this library are researchers who have solid background in
Bayesian methods, are comfortable with UNIX concepts and the command line,
and have knowledge of a programming language, preferably C/C++.

Keywords
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1 Introduction

The Parallel C++ Statistical Library for the Quantification of Uncertainty for
Estimation, Simulation, and Optimization (QUESO), is a collection of statistical
algorithms and programming constructs supporting research into the uncertainty
quantification (UQ) of models and their predictions. It has been designed with three
objectives: (a) to be sufficiently abstract in order to handle a large spectrum of large-
scale computationally intensive models; (b) to be extensible, allowing easy creation
of custom-defined objects; and (c) leverage parallel computing through use of high-
performance vector and matrix libraries. Such objectives demand a combination
of an object-oriented design with robust software engineering practices. QUESO is
written in C++, uses MPI, and utilizes libraries already available to the scientific
community.

The purpose of this book chapter is not to teach uncertainty quantification
methods, but rather to introduce the QUESO library so it can be used as a tool
to assist and facilitate coupling UQ to a specific application (forward problem).
Thus, the target audience of this chapter is researchers who have solid background
in Bayesian methods, are comfortable with UNIX concepts and the command line,
and have knowledge of a programming language, preferably C/C++.

The rest of the document is organized as follows. Section 2 has a brief discussion
of statistical inverse problems, and in doing so, provides the impetus behind the
QUESO library. Section 4 then discusses the types of problems the library is designed
to solve, as well as introducing the notation used for the rest of this document.
Several illustrative examples, including the new infinite-dimensional capability,
are provided in Sect. 5 along with code snippets demonstrating typical software
call-patterns. Section 6 discusses how the library design can easily be extended
for bespoke user-defined random variables, probability distribution functions, and
realizers. Section 7 discusses the design and internals of the library, as well as
providing a software snapshot of the current library status. Finally, we conclude
by discussing several areas in which to focus future QUESO development efforts.

All of the examples in this document are present in the QUESO source tree of the
latest release, 0.53.0. Users should consult the website, libqueso.com, for the latest
news and source code.

This chapter builds on the 2012 paper that introduced the QUESO library [1] and
the current QUESO user’s manual [2] by including a myriad of changes that have
since been incorporated into the library.

2 Motivation

Statistical inverse problems using a Bayesian formulation model all quantities
as random variables, where probability distributions of the quantities capture
the uncertainty in their values. The solution to the inverse problem is then the
probability distribution of the quantity of interest when all information available has

http://libqueso.com
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been incorporated in the model. This (posterior) distribution describes the degree of
confidence about the quantity after the measurement has been performed [3].

Thus, the solution to the statistical inverse problem is given by Bayes’ formula,
which expresses the posterior distribution in terms of the prior distribution and the
data represented through the likelihood function.

For all but toy problems, the likelihood function has an open form and its
evaluation is highly computationally intensive. Worse, simulation-based posterior
inference often requires a large number of these evaluations of the forward
model. Therefore, fast and efficient sampling techniques are desirable for posterior
inference.

It is often not straightforward to obtain explicit posterior point estimates of the
solution, since it usually involves the evaluation of a high-dimensional integral with
respect to a possibly non-smooth posterior distribution. In such cases, an alternative
integration technique is the Markov chain Monte Carlo method where posterior
moments may be estimated using the samples from a series of (correlated) random
draws from the posterior distribution.

QUESO is designed in an abstract way so that it can be used by any computational
model, as long as a likelihood function (in the case of statistical inverse problems)
and a quantity of interest (QoI) function (in the case of statistical forward problems)
are provided by the user application.

With this framework in mind, QUESO provides tools for both sampling algo-
rithms for statistical inverse problems, following Bayes’ formula, and statistical
forward problems. It provides Markov chain Monte Carlo algorithms using the
Metropolis-Hastings acceptance ratio [4, 5]: these are the multilevel Monte Carlo
[6] method and DRAM [7]. QUESO is also capable of handling several chains in
parallel computational environments.

3 Alternatives to QUESO

QUESO is certainly not the only quality statistical software library. There are many
different libraries that can be used to solve Bayesian inference problems. QUESO
is a specialized piece of software, primarily designed to solve such problems
utilizing the, often required, parallel environment demanded by large-scale forward
problems. This focus is simultaneously the QUESO’s greatest strength and weakness,
depending on user’s target problem. For instance, QUESO would be less effective
to use for serial problems than several alternative libraries, as there is significant
turnaround time from learning how to build QUESO and link a custom forward code
to it. In instances where parallelization is not necessary and the forward problem is
relatively cheap to execute, there are good alternatives to QUESO. We now provide
a simple survey of several other major libraries that we consider useful for problems
of Bayesian inference, along with a brief discussion some unique strengths and
weaknesses.
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As discussed above, for inference problems that do not require parallelization,
serial libraries can be leveraged with less development. An excellent example of
this is PyMC [8]. A modern software package, PyMC is a python-based software
library for Bayesian estimation and MCMC. Its strengths lie in its flexibility and
excellent post-processing, especially when coupled with matplotlib [9]. emcee [10]
is another python-based package, with a particular emphasis on Bayesian parameter
estimation. Both of these libraries are useful for rapid software prototyping using
serial inference problems.

On the other end of the spectrum, there are complete statistical software lan-
guages. These are often more mature software projects which are capable of much
more general statistical computations than QUESO. However, these languages are
often weaker for specialized problems, because they are not as well optimized for
solving Bayesian inference problems, particularly at scale. The ultimate example of
this is R [11]. R is a free software programming language and software environment
for statistical computing and graphics. R is arguably the most general and complete
source of open-source statistical packages in the world. It is not limited to Bayesian
techniques and has packages across a wide range of topics in statistics. However,
it is not easy to couple R with other codebases (for the forward problem, for
instance). Furthermore, while some packages supporting parallelism are now being
developed, the language is still primarily focused on serial computations. Another
alternative is Stan [12]. Stan is a probabilistic programming language written in
C++ implementing full Bayesian statistical inference.

Another major library is WinBUGS [13]. WinBUGS is statistical software for
Bayesian analysis using MCMC methods. WinBUGS is of particular historical
importance, as it was one of the earliest openly available MCMC libraries, with
development starting the late 1980s. It is also unique in that it is developed for the
Windows platform, instead of Linux. It is also primarily based on the Gibbs sampler
algorithm.

Finally, the DAKOTA [14] toolkit is a very general library developed at Sandia
National Laboratories, containing a vast array of algorithms with applications
to uncertainty quantification, optimization, emulation, experimental design, pre-
diction, and sensitivity analysis. DAKOTA is written in C++ and supported on
Linux, OS X, and Windows and represents 20 years of advanced algorithms
research. Furthermore, given DAKOTA’s advanced certainty propagation algorithms,
the QUESO and DAKOTA development teams are working together to establish a
seamless integration of QUESO’s algorithms into DAKOTA to give users a matured
and coupled forward and inverse UQ software solution.

4 Formulation

Here we give a rigorous description of the types of problems that QUESO solves.
This will crystallize both the terminology and notation in an attempt to make
everything in this chapter self-contained.
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4.1 The Forward Problem

Here we set out the auspices under which we will operate. We make two high-
level assumptions: (1) we have access to a set of observations of some physical
phenomenon; and (2) we have a mathematical model that attempts to model
the observed physical phenomenon. Ensuring that the mathematical model is
valid is an exercise left to the reader. We will denote the observed data by y

and the mathematical model by G. The model will certainly depend on various
parameters, and we call the process of mapping these parameters to model output the
forward problem. In many physical engineering applications, the forward problem
is expensive and may involve the solution of a set of partial differential equations.

4.2 The Inverse Problem

In the subsection above, we described the forward problem. It may be the case that
the mathematical model in the forward problem may depend on some parameters
that are unknown and that we wish to estimate. We will refer to these unknown
parameters as � . The process of estimating � given observations goes by many
names, but is generally referred to as the inverse problem. There are several
frameworks for solving inverse problems. We will focus only on the Bayesian
framework, which we rigorously describe now.

As noted above, we are given a set of observations y. This dataset is corrupted by
errors made during the experiment. These errors could be human errors, equipment
errors, or errors in the setup of the experimental scenario. In complete generality,
it is difficult to say with certainty what statistical distribution these errors follow.
In a lot of experimental cases, however, a Gaussian distribution with some, perhaps
unknown, variance is quite a reasonable characterization.

The unknown parameters themselves might have some inherent constraining
property. For example, if the unknown parameter were a concentration of a
contaminant underground then it is not possible for this unknown parameter to be
negative. The constraint varies depending on the physical domain, but it is rarely
the case one knows nothing about the unknown parameters. This information can be
translated to constraints on a prior distribution.

To regroup, we have a statistical distribution governing the behavior of the
experimental errors given the unknown parameters, P.yj�/. We also have some
prior distribution on the unknown parameters P.�/. The Bayesian solution to the
inverse problem of finding � is the distribution of � given y, P.� jy/. By Bayes’
rule, this can be written as follows:

P.� jy/ / P.yj�/P.�/:

The left-hand side is referred to as the posterior distribution. The right-hand side is
the product of the likelihood distribution and the prior distribution. QUESO solves
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the Bayesian inverse problem by providing samples that are distributed according
to the posterior distribution using Markov chain Monte Carlo. This chapter does
not provide the details of how MCMC works. The authors refer the reader to the
expansive body of available literature on the topic cited throughout this work.

4.3 Prediction

The prediction step in the Bayesian framework is that of estimating some quantity
Q.�/ dependent on the unknown parameters. This is usually referred to as a
statistical forward problem. QUESO is equipped to solve statistical forward prob-
lems, but throughout this chapter we will focus mainly on the statistical inverse
problem.

5 Examples

5.1 A Template Example

Here we walk through a template example. This template should be general enough
to serve as a good starting point for most Bayesian inverse problems. Before we step
through the example, here it is in its entirety:

#include <queso/GslVector.h>
#include <queso/GslMatrix.h>
#include <queso/UniformVectorRV.h>
#include <queso/StatisticalInverseProblem.h>
#include <queso/ScalarFunction.h>
#include <queso/VectorSet.h>

template<class V = QUESO::GslVector, class M = QUESO::GslMatrix>
class Likelihood : public QUESO::BaseScalarFunction<V, M>
{
public:

Likelihood(const char * prefix, const QUESO::VectorSet<V, M> & domain)
: QUESO::BaseScalarFunction<V, M>(prefix, domain)

{
// Setup here

}

virtual ~Likelihood()
{

// Deconstruct here
}

virtual double lnValue(const V & domainVector, const V * domainDirection,
V * gradVector, M * hessianMatrix, V * hessianEffect) const

{
// 1) Run the forward code at the point domainVector
// domainVector[0] is the first element of the parameter vector
// damainVector[1] is the second element of the parameter vector
// and so on
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//
// 2) Compare to data, y
// Usually we compute something like
// || MyModel(domainVector) - y ||^2 / (sigma * sigma)
//
// 3) Return below

double misfit = 0.0;

return -0.5 * misfit;
}

virtual double actualValue(const V & domainVector, const V * domainDirection,
V * gradVector, M * hessianMatrix, V * hessianEffect) const

{
return std::exp(this->lnValue(domainVector, domainDirection, gradVector,

hessianMatrix, hessianEffect));
}

private:
// Maybe store the observed data, y, here.

};

int main(int argc, char ** argv) {
MPI_Init(&argc, &argv);

// Step 0 of 5: Set up environment
QUESO::FullEnvironment env(MPI_COMM_WORLD, argv[1], "", NULL);

// Step 1 of 5: Instantiate the parameter space
QUESO::VectorSpace<> paramSpace(env,

"param_", 1, NULL);

double min_val = 0.0;
double max_val = 1.0;

// Step 2 of 5: Set up the prior
QUESO::GslVector paramMins(paramSpace.zeroVector());
paramMins.cwSet(min_val);
QUESO::GslVector paramMaxs(paramSpace.zeroVector());
paramMaxs.cwSet(max_val);

QUESO::BoxSubset<> paramDomain("param_", paramSpace, paramMins, paramMaxs);

// Uniform prior here. Could be a different prior.
QUESO::UniformVectorRV<> priorRv("prior_", paramDomain);

// Step 3 of 5: Set up the likelihood using the class above
Likelihood<> lhood("llhd_", paramDomain);

// Step 4 of 5: Instantiate the inverse problem
QUESO::GenericVectorRV<> postRv("post_", paramSpace);

QUESO::StatisticalInverseProblem<> ip("", NULL, priorRv, lhood, postRv);

// Step 5 of 5: Solve the inverse problem
QUESO::GslVector paramInitials(paramSpace.zeroVector());

// Initial condition of the chain
paramInitials[0] = 0.0;
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paramInitials[1] = 0.0;

QUESO::GslMatrix proposalCovMatrix(paramSpace.zeroVector());

for (unsigned int i = 0; i < 2; i++) {
// Might need to tweak this
proposalCovMatrix(i, i) = 0.1;

}

ip.solveWithBayesMetropolisHastings(NULL, paramInitials, &proposalCovMatrix);

MPI_Finalize();

return 0;
}

Notice that this template example is fairly short, weighing in at roughly 100 lines
of boilerplate C++ code. Incorporating a specific physical model into the likelihood
will certainly increase the size of the statistical application. In the meantime, we
will walk through the boilerplate setup that will be common to many use cases.

We will start with the main function. This is where most of the setup takes place.
Firstly, since QUESO uses MPI, we must call the MPI_Init function before using
any of the classes in QUESO. The next line,

QUESO::FullEnvironment env(MPI_COMM_WORLD, argv[1], "",
NULL);

sets up the QUESO environment. The constructor parameters are, in order, an MPI
communicator and could be a custom sub-communicator; the filename of a QUESO
input file; a prefix, if a different from the default is desired, for input file options
specific to the QUESO environment; and an optional EnvOptionsValues object
so that the user can set environment options programmatically. The next thing we do
is define the dimension of the state space by created a object representing a vector
space:

QUESO::VectorSpace<> paramSpace(env, "param_", 1, NULL);

In this particular example, the dimension of the state space is 1. The constructor
parameters here are the QUESO environment; a prefix, if a different from the default
is desired, for input file options specific to this parameter space object; and a vector
of strings to name components of the vectors belonging to this vector space. Now
we are in a position to set up the domain of the statistical inverse problem. QUESO
only supports box domains, but the bounds for the box may be arbitrary. We store
the bounds for the domain in GslVector objects like so:

QUESO::GslVector paramMins(paramSpace.zeroVector());
paramMins.cwSet(min_val);
QUESO::GslVector paramMaxs(paramSpace.zeroVector());
paramMaxs.cwSet(max_val);

Here min_val and max_val will be specific to the user’s problem. The box
domain uses these bounds and is constructed as follows:
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QUESO::BoxSubset<> paramDomain("param_", paramSpace,
paramMins,
paramMaxs);

We have finished setting up the domain of the statistical inverse problem. Recall the
ingredients we need for a well-posed statistical inverse problem; a prior distribution
and a likelihood distribution. QUESO supports many statistical distributions that
can all be used as a prior, and the user may choose to implement their own prior
distribution if (see Sect. 6) such customization is needed. The following line creates
an object representing a uniform random variable:

QUESO::UniformVectorRV<> priorRv("prior_",
paramDomain);

This object contains all the necessary information to fully define a uniformly dis-
tributed random variable, namely, its probability density function and mechanisms
by which one can make draws with this density. The second ingredient needed for
a statistical inverse problem is the definition of a likelihood distribution, and this is
done now:

Likelihood<> lhood("llhd_", paramDomain);

This line may look different to the one for your specific application, as it is intended
to interact with a specific physical model. The Likelihood class is a custom-
defined class. We will come back to the full Likelihood class in Sects. 5.3
and 5.2 explain how it is implemented. For now, we will continue with the setup
of the inverse problem and all the necessary code needed to initialize the sampling.
We construct a placeholder object that represents a posterior random variable:

QUESO::GenericVectorRV<> postRv("post_", paramSpace);

QUESO will operate on this object during the sampling. After QUESO has finished
its sampling, this object is then available to you for post-processing. Next, we pass
the prior, likelihood, and posterior over to the StatisticalInverseProblem
class like so:

QUESO::StatisticalInverseProblem<> ip("", NULL,
priorRv, lhood, postRv);

We are now ready to finalize the setup of the inverse problem. We do this by giving
QUESO an initial condition for the sampler:

QUESO::GslVector paramInitials(
paramSpace.zeroVector());

paramInitials[0] = 0.0;
paramInitials[1] = 0.0;

We also give QUESO an initial covariance matrix:

QUESO::GslMatrix proposalCovMatrix(
paramSpace.zeroVector());
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for (unsigned int i = 0; i < 1; i++) {
proposalCovMatrix(i, i) = 0.1;

}

The closer this matrix is to the covariance between parameters under the poste-
rior measure, the better the Markov chain will perform. Providing a bad initial
covariance does not change the posterior distribution in the limit of infinite samples.
Finally, we begin sampling with the following call:

ip.solveWithBayesMetropolisHastings(NULL,
paramInitials, &proposalCovMatrix);

5.2 Defining the Likelihood Distribution

As can be observed in the example illustrated above, the user must pass a
likelihood to QUESO. QUESO expects, as a likelihood, anything that subclasses
the BaseScalarFunction abstract base class. This base class has two pure
virtual functions that must be implemented in any subclass. These functions are
lnValue() and actualValue(). The function lnValue takes a number of
parameters, the most important of which is const V & domainVector. When
the user implements this function, it should return the natural logarithm of the
likelihood distribution evaluated at the point domainVector. A concrete example
of this can be seen in the next subsection. The function actualValue should
return exactly the likelihood distribution evaluated at the point domainVector.
For most practical applications, this function will usually just return std::exp
of lnValue, but the user has the freedom to implement a more optimized
computation if one is needed.

A typical Gaussian likelihood distribution will look something like this:

template<class V, class M>
double
Likelihood<V = QUESO::GslVector,

M = QUESO::GslMatrix>::lnValue(
const V & domainVector,
const V * domainDirection, V * gradVector,
M * hessianMatrix, V * hessianEffect) const

{
double misfit = 0.0;
unsigned int vec_len = domainVector.sizeLocal()

for (unsigned int i = 0; i < vec_len; i++) {
misfit += domainVector[i] - observation[i];

}

return -0.5 * misfit;
}
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To avoid numerical problems computing the acceptance probability in an MCMC
algorithm, QUESO will call lnValue instead of actualValue to do the accept-
reject step in log space.

5.3 Ball Drop Example

This section presents an example of how to use QUESO as an application that solves
a statistical inverse problem (SIP) and a statistical forward problem (SFP), where
the solution of the former serves as input to the later. This example will use the
canonical “ball drop” problem, a standard problem in uncertainty quantification.
The objective of the SIP is to infer the acceleration due to gravity on an object in
free fall near the surface of the Earth. During the SFP, the distance traveled by a
projectile launched at a given angle and altitude is calculated using the calibrated
magnitude of the acceleration of gravity gathered during the SIP. As expressed in
Sect. 4, both the inference and forward problem will be performed using a Bayesian
methodology, and so, the resulting quantities of interest (QoIs) will be expressed as
probability distributions.

5.4 Statistical Inverse Problem

A deterministic mathematical model for the vertical motion of an object in free fall
near the surface of the Earth is given by

h.t/ D �
1

2
gt2 C v0t C h0: (54.1)

where, v0 [m=s] is the initial velocity, h0 [m] is the initial altitude, h.t/ [m] is the
altitude with respect to time, t [s] is the elapsed time, and g [m=s2] is the magnitude
of the acceleration due to gravity (the parameter which cannot be directly measured
and will be statistically inferred).

This model is an expression of a high-fidelity model, Newton’s second law of
motion. However, the model is imperfect, as it does not account resistive force of
air resistance, for example.

5.4.1 Experimental Data
The experimental data will be generated from an identical object falling from
several different heights, each with zero initial velocity (see Fig. 54.1). We collect
data, y, of the time taken for the ball to impact the ground starting from various
different initial heights. Each experimental observation error is treated as Gaussian
with some known mean and variance standard deviation, � . The error is a result
of measurement uncertainties, such as estimates of the actual height the object
was dropped from, the human error introduced by operating a stopwatch for time
measurement, and any other possible sources of error. The actual observation values
can be found in the accompanying source code that will follow shortly.
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Fig. 54.1 An object falls
from altitude h0 with zero
initial velocity (v0 D 0)

�

�

�

h0

v0 = 0

h(t) = −1
2g t

2 + h0

5.4.2 The Prior, Likelihood, and Posterior
In Bayesian inference, the prior probability signifies the modeler’s expectation of
the result of an experiment before any data is provided. In this problem, a prior
must be provided for the parameter g. Near the surface of the Earth, an object in
free fall in a vacuum will accelerate at approximately 9:8 m=s2, independent of its
mass. For this gravitational inference problem, we will place a uniform prior on our
unknown variable � , over the interval [8,11]:

P.�/ D U.8; 11/: (54.2)

We select a Gaussian likelihood function that assigns greater probabilities to
parameter values that result in model predictions close to the data:

P.yj�/ _ exp

�
�

1

2
.G.�/ � y/T C�1 .G.�/ � y/

�
; (54.3)

where C is a given covariance matrix, y is the experimental data, and G.�/ is the
model output.

Using the deterministic model for the acceleration of gravity (Eq. 54.1) with no
initial velocity, the observations y, and equation (54.3), we have

�
def.
D g; G.�/ D

2
6666666666664

s
2h1

gs
2h2

g

:::s
2hnd

g

3
7777777777775

; y D

2
666664

t1

t2

:::

tnd

3
777775

; C D

2
666664

�2
1 0 � � � 0

0 �2
2 � � � 0

:::
:::

: : : 0

0 0 � � � �2
nd

3
777775

;

(54.4)

where nd D 14 is the number of observations. We now invoke Bayes’ formula in
order to obtain the posterior PDF P.� jy/:

P.� jy/ _ P.yj�/P.�/: (54.5)
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Fig. 54.2 Object traveling with projectile motion

5.5 Statistical Forward Problem

Projectile motion refers to the motion of an object projected into the air at an angle,
e.g., a soccer ball being kicked, a baseball being thrown, or an athlete long jumping.
In the absence of a propulsion system and neglecting air resistance, the only force
acting on the object is proportional to a constant gravitational acceleration g.
A deterministic two-dimensional mathematical model for the vertical motion of an
object projected from near the surface of the Earth is given by

vx D v0x; (54.6)

vy D v0y � gt; (54.7)

x D v0xt; (54.8)

h D h0 C v0yt �
1

2
gt2; (54.9)

where h0 is the initial height, x D x.t/ is the distance traveled by the object,
v0 D .v0x; v0y/ is the initial velocity, v0x D v0 cos.˛/, v0y D v0 sin.˛/, and
v0 D kv0k2. Figure 54.2 displays the projectile motion of an object in these
conditions.

In this example, we assume that h0; ˛, and v0 are all known, with h0 D 0,
˛ D �=4, v0 D 5, and g is the result of the SIP described in Sect. 5.4.

Since the result of the SIP is a PDF on g, the output of the mathematical model
(54.6) will be a random variable, and our forward problem result will also be
statistical in nature.

5.5.1 The Input Random Variable, QoI, and Output Random Variable
The input for the statistical forward problem is the random variable g, the
acceleration of gravity. This is the solution (posterior PDF) of the inverse problem
described in Sect. 5.4. The QoI for this example is the distance x traveled by an
object in projectile motion.
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Combining the expressions in Eq. (54.6) and rearranging them, the QoI function
for x is

x D
v0 cos ˛

g

�
v0 sin ˛ C

p
.v0 sin ˛/2 C 2g y0

�
: (54.10)

Here x is the distance traveled and our quantity of interest (QoI).

5.6 Example Code

The source code for the SIP and the SFP is composed of several files. Three of them
are common for both problems, gravity_main.C, gravity_compute.h,
and gravity_compute.C; they combine both problems and use the solution
of the SIP (the posterior PDF for the gravity) as an input for the SFP. We
present only the statistical inverse problem here. The forward problem is very
similar to the inverse problem, and the user is encouraged to visit the source tree
(https://libqueso.com) for the full treatment.

The files common to the inverse (and forward) problem are in Listings 1
and 2. Two files specifically handle the SIP: gravity_likelihood.h and
gravity_likelihood.C. These are displayed in Listings 3 and 4.

Listing 1 File gravity_main.C.
# i n c l u d e < g r a v i t y _ c o m p u t e . h>

i n t main ( i n t a rgc , c h a r * a rgv [ ] )
{

/ / I n i t i a l i z e QUESO e n v i r o n m e n t
M P I _ I n i t (& argc ,& a r g v ) ;
QUESO : : F u l l E n v i r o n m e n t * env =

new QUESO : : F u l l E n v i r o n m e n t (MPI_COMM_WORLD, a r gv [ 1 ] , " " ,NULL ) ;

/ / C a l l a p p l i c a t i o n
c o m p u t e G r a v i t y A n d T r a v e l e d D i s t a n c e (* env ) ;

/ / F i n a l i z e QUESO e n v i r o n m e n t
d e l e t e env ;
M P I _ F i n a l i z e ( ) ;

r e t u r n 0 ;
}

Listing 2 File gravity_compute.C. The first part of the code (lines 4–44) handles the
statistical forward problem, whereas the second part of the code (lines 53–76) handles the
statistical forward problem.

1 vo id c o m p u t e G r a v i t y A n d T r a v e l e d D i s t a n c e ( c o n s t QUESO : : F u l l E n v i r o n m e n t& env ) {
2 / / S t a t i s t i c a l i n v e r s e problem ( SIP ) : f i n d p o s t e r i o r PDF f o r ‘g ’
3
4 / / SIP S tep 1 of 6 : I n s t a n t i a t e t h e p a r a m e t e r s p a c e
5 QUESO : : Vec torSpace <QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix > paramSpace ( env ,
6 " param_ " , 1 , NULL ) ;
7

https://libqueso.com
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8 / / SIP S tep 2 of 6 : I n s t a n t i a t e t h e p a r a m e t e r domain
9 QUESO : : G s l V e c t o r paramMinValues ( paramSpace . z e r o V e c t o r ( ) ) ;

10 QUESO : : G s l V e c t o r paramMaxValues ( paramSpace . z e r o V e c t o r ( ) ) ;
11 paramMinValues [ 0 ] = 8 . ;
12 paramMaxValues [ 0 ] = 1 1 . ;
13
14 QUESO : : BoxSubset <QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix > paramDomain ( " param_ " ,
15 paramSpace , paramMinValues , paramMaxValues ) ;
16
17 / / SIP S tep 3 of 6 : I n s t a n t i a t e t h e l i k e l i h o o d o b j e c t t o be used by QUESO.
18 L i k e l i h o o d <QUESO : : Gs lVec to r , QUESO : : Gs lMat r ix > lhood ( " l i k e _ " , paramDomain ) ;
19
20 / / SIP S tep 4 o f 6 : Def ine t h e p r i o r RV
21 QUESO : : UniformVectorRV <QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix > p r i o r R v
22 ( " p r i o r _ " , paramDomain ) ;
23
24 / / SIP S tep 5 of 6 : I n s t a n t i a t e t h e i n v e r s e problem
25 QUESO : : GenericVectorRV <QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix >
26 pos tRv ( " p o s t _ " , / / E x t r a p r e f i x b e f o r e t h e d e f a u l t " rv_ " p r e f i x
27 paramSpace ) ;
28
29 QUESO : : S t a t i s t i c a l I n v e r s e P r o b l e m <QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix >
30 i p ( " " , / / No e x t r a p r e f i x b e f o r e t h e d e f a u l t " i p _ " p r e f i x
31 NULL,
32 pr io rRv ,
33 lhood ,
34 pos tRv ) ;
35
36 / / SIP S tep 6 of 6 : So lve t h e i n v e r s e problem , t h a t i s ,
37 / / s e t t h e ‘ pdf ’ and t h e ‘ r e a l i z e r ’ o f t h e p o s t e r i o r RV
38 QUESO : : G s l V e c t o r p a r a m I n i t i a l s ( paramSpace . z e r o V e c t o r ( ) ) ;
39 p r i o r R v . r e a l i z e r ( ) . r e a l i z a t i o n ( p a r a m I n i t i a l s ) ;
40
41 QUESO : : G s l M a t r i x p r o p o s a l C o v M a t r i x ( paramSpace . z e r o V e c t o r ( ) ) ;
42 p r o p o s a l C o v M a t r i x ( 0 , 0 ) = s t d : : pow ( s t d : : abs ( p a r a m I n i t i a l s [ 0 ] ) / 2 0 . 0 , 2 . 0 ) ;
43
44 i p . s o l v e W i t h B a y e s M e t r o p o l i s H a s t i n g s (NULL, p a r a m I n i t i a l s ,
45 &p r o p o s a l C o v M a t r i x ) ;
46
47 / / S t a t i s t i c a l f o r w a r d problem ( SFP ) : f i n d t h e max d i s t a n c e
48 / / t r a v e l e d by an o b j e c t i n p r o j e c t i l e mot ion ; i n p u t pdf f o r ‘g ’
49 / / i s t h e s o l u t i o n o f t h e SIP above .
50
51 / / SFP S tep 1 of 6 : I n s t a n t i a t e t h e p a r a m e t e r * and * q o i s p a c e s .
52 / / SFP i n p u t RV = FIP p o s t e r i o r RV, so SFP p a r a m e t e r s p a c e
53 / / has been a l r e a d y d e f i n e d .
54 QUESO : : Vec torSpace <QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix > qo iS pace ( env ,
55 " qo i_ " , 1 , NULL ) ;
56
57 / / SFP S tep 2 of 6 : I n s t a n t i a t e t h e p a r a m e t e r domain
58 / / NOTE: Not n e c e s s a r y b e c a u s e i n p u t RV of t h e SFP = o u t p u t RV of SIP .
59 / / Thus , t h e p a r a m e t e r domain has been a l r e a d y d e f i n e d .
60
61 / / SFP S tep 3 of 6 : I n s t a n t i a t e t h e q o i o b j e c t t o be used by QUESO.
62 Qoi <QUESO : : Gs lVec to r , QUESO : : Gs lMat r ix , QUESO : : Gs lVec to r ,QUESO : : Gs lMat r ix >
63 q o i ( " qo i_ " , paramDomain , q o i S p a c e ) ;
64
65 / / SFP S tep 4 of 6 : De f ine t h e i n p u t RV
66 / / NOTE: Not n e c e s s a r y b e c a u s e i n p u t RV of SFP= o u t p u t RV of SIP ( pos tRv ) .
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67 / / SFP S tep 5 of 6 : I n s t a n t i a t e t h e f o r w a r d problem
68 QUESO : : GenericVectorRV <QUESO : : Gs lVec to r , QUESO : : Gs lMat r ix > qoiRv ( " qo i_ " ,
69 q o i S p a c e ) ;
70
71 QUESO : : S t a t i s t i c a l F o r w a r d P r o b l e m <QUESO : : Gs lVec to r , QUESO : : Gs lMat r ix ,
72 QUESO : : Gs lVec to r , QUESO : : Gs lMat r ix > fp ( " " , NULL, postRv , qoi , qoiRv ) ;
73
74 / / SFP Step 6 of 6 : So lve t h e f o r w a r d problem
75 fp . so lveWi thMonteCar lo (NULL ) ;
76 }

Listing 3 File gravity_likelihood.h.
t e m p l a t e < c l a s s V, c l a s s M>
c l a s s L i k e l i h o o d : p u b l i c QUESO : : B a s e S c a l a r F u n c t i o n <V, M>
{
p u b l i c :

L i k e l i h o o d ( c o n s t c h a r * p r e f i x , c o n s t QUESO : : V e c t o r S e t <V, M> & domain ) ;
v i r t u a l ~ L i k e l i h o o d ( ) ;
v i r t u a l d o u b l e l n V a l u e ( c o n s t V & domainVector , c o n s t V * d o m a i n D i r e c t i o n ,

V * gradVec to r , M * h e s s i a n M a t r i x , V * h e s s i a n E f f e c t ) c o n s t ;
v i r t u a l doub l e a c t u a l V a l u e ( c o n s t V & domainVector , c o n s t V * d o m a i n D i r e c t i o n ,

V * gradVec to r , M * h e s s i a n M a t r i x , V * h e s s i a n E f f e c t ) c o n s t ;

p r i v a t e :
s t d : : v e c t o r < double > m_he igh t s ; / / h e i g h t s
s t d : : v e c t o r < double > m_times ; / / t i m e s
s t d : : v e c t o r < double > m_stdDevs ; / / u n c e r t a i n t i e s i n t ime measurements

} ;

Listing 4 File gravity_likelihood.C.
# i n c l u d e < g r a v i t y _ l i k e l i h o o d . h>

t e m p l a t e < c l a s s V, c l a s s M>
L i k e l i h o o d <V, M> : : L i k e l i h o o d ( c o n s t c h a r * p r e f i x ,

c o n s t QUESO : : V e c t o r S e t <V, M> & domain )
: QUESO : : B a s e S c a l a r F u n c t i o n <V, M>( p r e f i x , domain ) ,

m_he igh t s ( 0 ) ,
m_times ( 0 ) ,
m_stdDevs ( 0 )

{
/ / O b s e r v a t i o n a l d a t a
doub l e c o n s t h e i g h t s [ ] = {10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100 , 110 ,

120 , 130 , 140} ;

doub l e c o n s t t i m e s [ ] = { 1 . 4 1 , 2 . 1 4 , 2 . 4 9 , 2 . 8 7 , 3 . 2 2 , 3 . 4 9 , 3 . 8 1 , 4 . 0 7 ,
4 . 3 2 , 4 . 4 7 , 4 . 7 5 , 4 . 9 9 , 5 . 1 6 , 5 . 2 6 } ;

doub l e c o n s t s tdDevs [ ] = { 0 . 0 2 0 , 0 . 1 2 0 , 0 . 0 2 0 , 0 . 0 1 0 , 0 . 0 3 0 , 0 . 0 1 0 , 0 . 0 3 0 ,
0 . 0 3 0 , 0 . 0 3 0 , 0 . 0 5 0 , 0 . 0 1 0 , 0 . 0 4 0 , 0 . 0 1 0 , 0 . 0 9 } ;

s t d : : s i z e _ t c o n s t n = s i z e o f ( h e i g h t s ) / s i z e o f (* h e i g h t s ) ;
m_he igh t s . a s s i g n ( h e i g h t s , h e i g h t s + n ) ;
m_times . a s s i g n ( t imes , t i m e s + n ) ;
m_stdDevs . a s s i g n ( s tdDevs , s tdDevs + n ) ;

}

t e m p l a t e < c l a s s V, c l a s s M>
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L i k e l i h o o d <V, M> : : ~ L i k e l i h o o d ( )
{

/ / D e c o n s t r u c t h e r e
}

t e m p l a t e < c l a s s V, c l a s s M>
doub le
L i k e l i h o o d <V, M> : : l n V a l u e ( c o n s t V & domainVector , c o n s t V * d o m a i n D i r e c t i o n ,

V * gradVec to r , M * h e s s i a n M a t r i x , V * h e s s i a n E f f e c t ) c o n s t
{

doub l e g = domainVector [ 0 ] ;

doub l e m i s f i t V a l u e = 0 . 0 ;
f o r ( u n s i g n e d i n t i = 0 ; i < m_he igh t s . s i z e ( ) ; ++ i ) {

doub l e modelTime = s t d : : s q r t ( 2 . 0 * m_he igh t s [ i ] / g ) ;
doub l e r a t i o = ( modelTime � m_times [ i ] ) / m_stdDevs [ i ] ;
m i s f i t V a l u e += r a t i o * r a t i o ;

}

r e t u r n �0.5 * m i s f i t V a l u e ;
}

t e m p l a t e < c l a s s V, c l a s s M>
doub le
L i k e l i h o o d <V, M> : : a c t u a l V a l u e ( c o n s t V & domainVector ,

c o n s t V * d o m a i n D i r e c t i o n , V * gradVec to r , M * h e s s i a n M a t r i x ,
V * h e s s i a n E f f e c t ) c o n s t

{
r e t u r n s t d : : exp ( t h i s �>l n V a l u e ( domainVector , d o m a i n D i r e c t i o n , g r a dVe c to r ,

h e s s i a n M a t r i x , h e s s i a n E f f e c t ) ) ;
}

t e m p l a t e c l a s s L i k e l i h o o d <QUESO : : Gs lVec to r , QUESO : : Gs lMat r ix > ;

5.7 Running the Gravity Example with Several Processors

QUESO requires MPI, so any compilation of the user’s statistical application will
look like this:

mpicxx -I/path/to/boost/include -I/path/to/gsl/include \
-I/path/to/queso/include -L/path/to/queso/lib \
YOURAPP.C -o YOURAPP -lqueso

This will produce a file in the current directory called YOURAPP. To run this
application with QUESO in parallel, you can use the standard mpirun command:

mpirun -np N ./YOURAPP

Here N is the number of processes you would like to give to QUESO.
They will be divided equally among the number of chains requested (see
env_numSubEnvironments below). If the number of requested chains does
not divide the number of processes, an error is thrown.

Even though the application described in Sect. 5.6 is a serial code, it is possible
to run it using more than one processor, i.e., produce multiple chains. Supposing
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the user’s workstation has Np D 8 processors, then, the user my choose to have
Ns D 1; : : : ; 8 subenvironments. This complies with the requirement that the total
number of processors in the environment (eight) must be a multiple of the specified
number of subenvironments (one). Each subenvironment has only one processor
because the forward code is serial.

Thus, to build and run the application code with Np D 8, and Ns D 8

subenvironments, the must set the variable env_numSubEnvironments = 8
in the input file and enter the following command lines:

mpirun -np 8 ./gravity_gsl gravity_inv_fwd.inp

The steps above will create a total number of eight raw chains, of size defined by
the variable ip_mh_rawChain_size. QUESO internally combines these eight
chains into a single chain of size 8 �ip_mh_rawChain_size and saves it in a
file named according to the variable ip_mh_rawChain_dataOutputFile-
Name. QUESO also provides the user with the option of writing each chain—
handled by its corresponding processor—in a separate file, which is accomplished
by setting the variable ip_mh_rawChain_dataOutputAllowedSet = 0
1 ...Ns-1.

Note: Although the discussion in the previous paragraph refers to the raw chain
of a SIP, the analogous is true for the filtered chains (SIP), and for the samples
employed in the SFP (ip_mh_filteredChain_size, fp_mc_qseq_size
and fp_mc_qseq_size, respectively). See the QUESO user’s manual for further
details.

5.8 Data Post-processing and Visualization

5.8.1 Statistical Inverse Problem
QUESO supports both python and Matlab for post-processing. This section
illustrates several forms of visualizing QUESO output and discusses the results
computed by QUESO with the code of Sect. 5.6. For Matlab-ready commands
for post-processing the data generated by QUESO, refer to the QUESO user’s
manual.

It is quite simple to plot, using Matlab, the chain of positions used in the DRAM
algorithm implemented within QUESO. Figure 54.3a, b show what raw and filtered
chain output look like, respectively.

Predefined Matlab and numpy/matplotlib functions exist for converting the raw
or filtered chains into histograms. The resulting output can be seen in Fig. 54.4a, b,
respectively.

There are also standard built-in functions in Matlab and SciPy to compute kernel
density estimates. Resulting output for the raw and filtered chains can be seen in
Fig. 54.5a, b, respectively.
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Fig. 54.3 MCMC raw chain
with 20,000 positions and a
filtered chain with lag of 20
positions (a) Raw chain.
(b) Filtered chain

5.9 Infinite-Dimensional Inverse Problems

QUESO has functional but limited support for solving infinite-dimensional inverse
problems. Infinite-dimensional inverse problems are problems for which the poste-
rior distribution is formally defined on a function space. After implementation, this
distribution will lie on a discrete space, but the MCMC algorithm used is robust to
mesh refinement of the underlying function space.

There is still substantial work to be done to bring the formulation of these class
of inverse problems in QUESO in line with that of the finite-dimensional counterpart
described above, but what currently exists in QUESO is usable. The reason for
the departure in design pattern to that of the finite-dimensional code is that for
infinite-dimensional problems, QUESO must be agnostic to any underlying vector
type representing the random functions that are sampled. To achieve this, a finite
element back end is needed to represent functions. There are many choices of finite
element libraries that are freely available to download and use, and the design of the
infinite-dimensional part of QUESO is such that addition of new back ends should
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Fig. 54.4 Histograms of
parameter � D g. (a) Raw
chain. (b) Filtered chain

be attainable without too much effort. libMesh is the default and only choice
currently available in QUESO. libMesh is open source and freely available to
download and use. Visit the libMesh website for further details: http://libmesh.
github.io

We proceed with showing a concrete example of how to formulate an infinite-
dimensional inverse problem in QUESO.

First, we assume the user has access to a libMesh::Mesh object on which
their forward problem is defined. In what follows, we shall call this object
mesh.

5.9.1 Defining the Prior
Currently, the only measure you can define is a Gaussian measure. This is because
Gaussian measures are well-defined objects on function space and their properties
are well understood.

To define a Gaussian measure on function space, one needs a mean function and
a covariance operator. QUESO has a helper object to help the user build functions

http://libmesh.github.io
http://libmesh.github.io
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Fig. 54.5 Kernel density
estimation (a) Raw chain.
(b) Filtered chain

and operators called FunctionOperatorBuilder. This object has properties
that are set by the user that define the type and order of the finite elements used by
libMesh to represent functions:

// Use a helper object to define some of the properties
of our samples
QUESO::FunctionOperatorBuilder fobuilder;
fobuilder.order = "FIRST";
fobuilder.family = "LAGRANGE";
fobuilder.num_req_eigenpairs = num_pairs;

This object will be passed to the constructors of functions and operators and will
instruct libMesh, in this case, to use first-order Lagrange finite elements. The
num_req_eigenpairs variable dictates how many eigenpairs to solve for in
an eigenvalue problem needed for the construction of random functions. The more
eigenpairs used in the construction of Gaussian random functions, the more high-
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frequency information is present in the function. The downside to asking for a
large number of eigenpairs is that the solution of the eigenvalue problem will take
longer. Solving the eigenvalue problem, however, is a one-time cost. The details of
the construction of Gaussian random fields can be found in [15–17]. To define a
function, one can do the following:

QUESO::LibMeshFunction mean(fobuilder, mesh);

This function is initialized to be exactly zero everywhere. For more fine-grained con-
trol over point values, one can access the internal libMesh EquationSystems
object using the get_equation_systems() method.

Specifying a Gaussian measure on a function space is often more convenient to
do in terms of the precision operator rather than the covariance operator. Currently,
the only precision operators available in QUESO are powers of the Laplacian
operator. However, the design of the class hierarchy for precision operators in
QUESO should be such that implementation of other operators is easily achievable.
To create a Laplacian operator in QUESO one can do the following:

QUESO::LibMeshNegativeLaplacianOperator
precision(fobuilder, mesh);

The Gaussian measure can then be defined by the mean and precision above (where
the precision can be taken to a power) as such:

QUESO::InfiniteDimensionalGaussian
mu(env, mean, precision, alpha, beta);

Here beta is the coefficient of the precision operator, and alpha is the power to
raise the precision operator to.

5.9.2 Defining the Likelihood
Defining the likelihood is very similar to the ball drop example. We have to
subclass InfiniteDimensional LikelihoodBase and implement the
evaluate(FunctionBase & flow) method. This method should return the
logarithm of the likelihood distribution evaluated at the point flow.

One’s specific likelihood implementation will vary from problem to problem,
but an example, which is actually independent of flow, is shown here for
completeness:

double
Likelihood::evaluate(QUESO::FunctionBase & flow)
{
const double obs_stddev = this->obs_stddev();
const double obs = gsl_ran_gaussian(this->r, obs_stddev);
return obs * obs / (2.0 * obs_stddev * obs_stddev);

}

The reader is reminded that a full working implementation of this example is
available in the source tree. See http://libqueso.com.

http://libqueso.com
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5.9.3 Sampling the Posterior
The following code will use the prior and the likelihood defined above to set up the
inverse problem and start sampling:

QUESO::InfiniteDimensionalMCMCSamplerOptions opts(env, "");

// Set the number of iterations to do
opts.m_num_iters = 1000;

// Set the frequency with which we save samples
opts.m_save_freq = 10;

// Set the RWMH step size
opts.m_rwmh_step = 0.1;

// Construct the sampler, and set the name of the output file (will only
// write HDF5 files)
QUESO::InfiniteDimensionalMCMCSampler s(env, mu, llhd, &opts);

for (unsigned int i = 0; i < opts.m_num_iters; i++) {
s.step();
if (i % 100 == 0) {

std::cout << "sampler iteration: " << i << std::endl;
std::cout << "avg acc prob is: " << s.avg_acc_prob() << std::endl;
std::cout << "l2 norm is: " << s.llhd_val() << std::endl;

}
}

The infinite-dimensional inverse problem work is still considered experimental
but should produce meaningful results for a large class of simple problems. Work is
ongoing to bring the user interface in line with that of the finite-dimensional inverse
problem API.

6 Extensibility

QUESO is written in C++. The choice of the language inspired design decisions
that the user can take advantage of. One such benefit of having a well-defined
inverse problem setup and workflow is that the user is offered the freedom to
extend many of the abstract base classes in QUESO. A good example of this we
have seen already is the specification of the likelihood distribution by subclassing
BaseScalarFunction.

In this section we will take this a step further and show how to extend some of
the other classes in QUESO to define a custom prior measure. All of the classes we
deal with here have their relationships with other objects discussed in Sect. 7.2.

6.1 Custom Priors

We will look at one of the existing measures in QUESO to get a feel for a how a
measure QUESO is built. Take, for example, the Gamma distribution.

In QUESO, the user will interact with a Gamma measure by instantiating
a GammaVectorRV class. This object has two main members that QUESO is



54 The Parallel C++ Statistical Library for Bayesian Inference: QUESO 1853

interested in, an object representing a probability distribution function and an object
called a “realizer” through which random variates are drawn. These classes are
called GammaJointPdf and GammaVectorRealizer, respectively.

The user does not, usually, need to interact with the probability distribution
function or the realizer; these are objects that QUESO will utilize during the
execution of the Markov chain Monte Carlo procedure.

6.1.1 PDF Objects
Probability distribution functions are represented by C++ objects. If the user
wishes to create a custom prior measure, for example, then they will also have
to implement a probability distribution class. The probability distribution class
must derive from the BaseJointPdf. The BaseJoinPdf class subclasses from
BaseScalarFunction, as we have seen before, and therefore any probability
distribution class must implement the lnValue and actualValue methods.
These methods have exactly the same purpose as when the user defines their
likelihood. That is, lnValue returns the log of the probability distribution function
evaluated at domainVector, and actualValue returns the actual value of the
distribution evaluated at domainVector.

BaseJointPdf has an extra method called computeLogOfNomalization
Factor and so this must also be implemented. This method computes the
logarithm of the normalizing constant of the probability distribution. If it is
known analytically, the user can implement it here. For many distributions, this
is not known analytically. In these circumstances one can use the numSamples
argument to approximate this quantity using samples from the distribution instead.
A basic algorithm for computing the log of the normalizing constant from samples is
implemented in the commonComputeLogOfNormalizationFactor method
of BaseJointPdf. Indeed the computation of the log of the normalization
constant for the Gamma distribution is handed off to this method:

template<class V, class M>
double
GammaJointPdf<V, M>::computeLogOfNormalizationFactor(

unsigned int numSamples,
bool updateFactorInternally) const

{
value =
BaseJointPdf<V,M>::commonComputeLogOfNormalizationFactor(

numSamples, updateFactorInternally);
return value;

}

Notice that when we defined a custom likelihood object, we only subclassed
BaseScalarFunction and not BaseJointPdf. This is because for
most applications, the likelihood is not a probability distribution since it
does not integrate to 1. Furthermore, it avoids needing to implement the
computeLogOfNormalizationFactor method. This is because the
normalizing constant is usually not known analytically, and computing it by
samples is often intractable for large engineering problems. Note, however, that
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the normalizing constant for the likelihood is not needed since MCMC methods
do not require knowledge of any normalizing constant in order to draw random
samples. This is crystallized in the following section.

6.1.2 Realizer Objects
Realizer objects are objects that QUESO interacts with to draw random
samples from the appropriate distribution. A realizer object must subclass
BaseVectorRealizer and must therefore implement the realization(V
& nextValues) const method. This method fills the nextValues vector
with a random draw from the associated distribution. The size of the vector
nextValues is equal to the dimension of the state space on which the measure is
defined.

In the case of the Gamma distribution, QUESO falls back to GSL to draw samples
that are Gamma distributed.

A warning to the user: it is possible to define a measure on a space that is
improper. In this case drawing realizations from the associated realizer object
produces meaningless results.

6.1.3 Random Variable Objects
Random variable objects, named *VectorRV in QUESO, are encapsulating
objects that hold references to the associated probability distribution function
object and the associated realizer object. A random variable object must subclass
BaseVectorRVwhich implements the getter methods realizer() and pdf()
that return references to the realizer object and PDF object, respectively.

The user never has to deal with constructing the PDF object or the realizer object
explicitly. Construction of these objects is handled by the random variable object’s
constructor.

7 The QUESO Design and Implementation

7.1 Software Engineering

High-quality software is essential for developing, analyzing, and scaling up new UQ
algorithmic ideas involving complex simulation codes running on HPC platforms.
QUESO helps researchers to bootstrap statistical inverse problems for large-scale
models widely seen in the physics and engineering domains in parallel compute
environments. With ongoing effort to enhance the API in terms of extensibility (see
Sect. 10.3), in the future it will be possible to quickly prototype new algorithms
in a sophisticated computation environment, rather than first coding and testing
them with a scripting language and only then recoding in a C++/MPI environment.
QUESO also allows researchers to more naturally translate the mathematical lan-
guage present in algorithms to a concrete program in the library and to concentrate
their efforts on algorithmic, load balancing, and parallel scalability issues.

We utilize various community tools to manage the QUESO development cycle.
Source code traceability is provided via Git, and the GNU Autotools suite is used to
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provide a portable, flexible build system, with the standard GNU package pattern:
configure; make; make check; make install steps. We also utilize
GitHub for project management, which provides a web-based mechanism to manage
releases, milestone developments, issues, bugs, and source code changes. In case
the build system or application development processes change, please consult the
website (http://libqueso.com) for a detailed and up-to-date guide on how to build
and install QUESO.

As of the latest QUESO release, 0.53.0, the library is comprised of approximately
73,000 source lines of code, with the vast majority of this instantiated across
approximately 200 C/C++ source files and headers. At a minimum, QUESO com-
pilation requires MPI and linkage against two external libraries: boost and GSL.
QUESO also has several optional dependencies that enable additional functionality:
Teuchos, GRVY, HDF5. The optional infinite-dimensional capabilities of QUESO
in particular require libMesh and HDF5.

We employ an active regression testing, with approximately thirty regression
tests, and can test latest GitHub builds using Travis-CI in order to have a continuous
integration analysis of source code commits.

Contributing QUESO has been made easy with the recent explosion in popularity
of GitHub. We employ the feature branch model by Driessen (http://nvie.com/
posts/a-successful-git-branching-model), and further instructions for contribution
to QUESO can be found by mirroring some of the other contributions we have
merged (https://github.com/libqueso/queso/issues).

7.2 QUESO Internals

In this subsection, we show and discuss several of the inheritance diagrams behind
the principle objects in the QUESO library. This is in order to:

• Document the QUESO internal structure
• Provide context for leveraging the existing QUESO objects in extending the

library (as in Sect. 6).

This subsection addresses some of the C++ objects for the finite-dimensional
Bayesian inverse problem. Objects associated with the infinite-dimensional problem
exist and are available on the online documentation, but are not discussed here since
development work to get the finite- and infinite-dimensinoal APIs consistent with
each other is ongoing.

BaseScalarFunction is a templated base class for handling generic scalar
functions. This provides a high-level interface and member functions for the QUESO
generic class, BaseJointPDF, which is discussed below.

BaseJointPdf is a templated (base) class for handling joint PDFs. For
example, Fig. 54.6 shows the inheritance of the Gamma joint PDF class, which
is a derived class from the BaseScalarFunction class. QUESO presently
has several provided joint PDFs for a wide variety of statistical distributions,
including: InvLogitGaussianJointPdf, ConcatenatedJointPdf,

http://libqueso.com
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
https://github.com/libqueso/queso/issues
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Fig. 54.6 Class Reference
for the Gamma Joint PDF

Fig. 54.7 Class reference for
the LogNormalVectorRV

GaussianJointPdf, BaseJointPdf, BayesianJointPdf, LogNormal
JointPdf, PoweredJointPdf, BetaJointPdf, GammaJointPdf,
InverseGammaJointPdf, WignerJointPdf, GenericJointPdf,
UniformJointPdf, JeffreysJointPdf, GenericScalarFunction,
and ConstantScalarFunction. However, implementing a new distribution is
intended to be straightforward and is detailed in Sect. 6.

Another useful internal QUESO object, BaseVectorRV, is a templated base
class for handling vector random variables. For example, Fig. 54.7 shows the
inheritance diagram of the LogNormalRV class, which is a class that contains
member functions and associated utilities to provide a random vector of draws from
a LogNormal distribution.

Presently included in QUESO are the following: GaussianVectorRV,
GenericVectorRV, BetaVectorRV, GammaVectorRV, InverseGamma-
VectorRV, InvLogitGaussianVectorRV, JeffreysVectorRV, LogNo
rmalVectorRV, UniformVectorRV, and WignerVectorRV. In other
words, nearly all canonical distributions from classical statistics are already
available in the library. However, as stated above, QUESO is designed with
extensibility in mind, and the user can implement any *VectorRV by deriving
from the BaseVectorRV class. In principle, this permits a series of draws from
any distribution.

Another important base class contained within QUESO is the realizer object,
BaseVectorRealizer. A realizer is an object that, simply put, contains
a realization() operation that returns a sample of a random variable.
BaseVectorRealizer is therefore an abstract base class that provides the
necessary interface for sampling from random variables. As before, the realizer
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object contains most of the common statistical distributions. It also contains a
sequence realizer class for storing samples of a MH algorithm.

8 Algorithms

8.1 DRAM

A simple Metropolis-Hastings sampling algorithm [4] can be improved by adding
both “Delayed Rejection” [18–21] and “Adaptive Metropolis”. Taken together, these
form the “DRAM” algorithm, which is available in QUESO. In particular, the QUESO
implements the DRAM algorithm of Haario, Laine, Mira, and Saksman [7].

A “vanilla” Metropolis-Hastings sampler involves a proposal at each step, and
accepts or rejects this proposal based on the ratio between proposal and prior
likelihoods. Typically, the proposal is drawn from some fixed distribution, such as
a Gaussian distribution, with fixed covariance and a mean centered at the value
of the current state of the chain. However, this has several deficiencies. Should
the proposal variance be set too high, many proposals will be rejected. This is
undesirable, as it increases the auto-correlation of the chain. Furthermore, should
the target distribution deviate greatly from the proposal distribution, the proposal
will not match the local shape of the distribution, resulting in poor sampling.

Delayed rejection attempts to circumvents these issues. Before rejecting a
sample, a series of back-up proposals each with successively smaller jumps in
state space are pushed through the Metropolis-Hastings acceptance probability
rejection. They are tested in order of decreasing jump size, and if one of them is
accepted, the sampler continues. If they are all rejected, the sampler rejects the
sample and starts again.

Conversely, when the proposal variance is too small to efficiently sample the
target distribution, the sampler will randomly walk through regions of higher
likelihood in the posterior distribution, without efficiently sampling the tails. This
results in too high an acceptance rate.

In order to mitigate this, Adaptive Metropolis sampling continuously adapts
the proposal covariance. This is accomplished by using the covariance of the
history of the Markov chain as the proposal covariance matrix of the Gaussian
proposal distribution instead of the arbitrary proposal covariance imposed at the
start. Adapting the proposal to match the posterior covariance structure results in a
better chain performance than a static proposal covariance.

8.2 Multilevel

Multilevel Monte Carlo [6] is an algorithm available in QUESO that attempts
to sample probability distributions with multiple modes. Sampling multi-modal
distributions is a heavily researched topic. The way multilevel Monte Carlo attempts
to solve the problem of metastability in Markov chains is by “heating up” the
posterior distribution to flatten out some of the modes, allowing a Markov chain to
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sample the flattened distribution and then “cooling down” the posterior distribution
before doing a final sampling run. The idea is identical to that of simulated
tempering or simulated annealing, except that the multilevel algorithm allows for
convenient and efficient computation of the posterior normalizing constant. This
constant is usually intractable to compute but is essential for Bayesian model
selection purposes.

8.3 Preconditioned Crank-Nicolson

The preconditioned Crank-Nicolson proposal [15] is used by QUESO for solving
infinite-dimensional Bayesian inverse problems (Sect. 5.9). This particular form
of proposal is typical for sampling on formally infinite-dimensional spaces since
the Metropolis-Hastings acceptance probability remains unchanged when the state
undergoes mesh refinement, a popular technique in large-scale engineering models
involving the solution of partial different equations by finite element methods.

9 Input File

Here we provide some of the default input file options QUESO recognizes. For
detailed descriptions of the behavior of each option and how they interact with other
options, consult the online QUESO documentation. For example, for the description
of each DRAM option, consult the documentation for the MhOptionsValues
object. For the description of each FullEnvironment option, see the docu-
mentation for the EnvOptionsValues object. The documentation for these is
available at http://libqueso.com (Tables 54.1, 54.2, 54.3, 54.4, and 54.5).

Table 54.1 Input file options for a QUESO environment

Option name Default Description

env_help Produces help message for environment class

env_numSubEnvironments 1 Number of subenvironments

env_subDisplayFileName "." Output filename for sub-screen writing

env_subDisplayAllowAll 0 Allows all subenvironments to write to output file

env_subDisplayAllowedSet "" Subenvironments that will write to output file

env_displayVerbosity 0 Sets verbosity

env_syncVerbosity 0 Sets synchronized verbosity

env_seed 0 Set seed

Table 54.2 Input file options for a QUESO statistical inverse problem

Option name Default Description

ip_help Produces help message for statistical inverse problem

ip_computeSolution 1 Computes solution process

ip_dataOutputFileName “.” Name of data output file

ip_dataOutputAllowedSet “” Subenvironments that will write to data output file

http://libqueso.com
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Table 54.3 Input file options for a QUESO DRAM solver

Option name Default value

mh_dataOutputFileName “.”

mh_dataOutputAllowAll 0

mh_initialPositionDataInputFileName “.”

mh_initialPositionDataInputFileType “m”

mh_initialProposalCovMatrixDataInputFileName “.”

mh_initialProposalCovMatrixDataInputFileType “m”

mh_rawChainDataInputFileName “.”

mh_rawChainDataInputFileType “m”

mh_rawChainSize 100

mh_rawChainGenerateExtra 0

mh_rawChainDisplayPeriod 500

mh_rawChainMeasureRunTimes 1

mh_rawChainDataOutputPeriod 0

mh_rawChainDataOutputFileName “.”

mh_rawChainDataOutputFileType “m”

mh_rawChainDataOutputAllowAll 0

mh_filteredChainGenerate 0

mh_filteredChainDiscardedPortion 0.

mh_filteredChainLag 1

mh_filteredChainDataOutputFileName “.”

mh_filteredChainDataOutputFileType “m”

mh_filteredChainDataOutputAllowAll 0

mh_displayCandidates 0

mh_putOutOfBoundsInChain 1

mh_tkUseLocalHessian 0

mh_tkUseNewtonComponent 1

mh_drMaxNumExtraStages 0

mh_drDuringAmNonAdaptiveInt 1

mh_amKeepInitialMatrix 0

mh_amInitialNonAdaptInterval 0

mh_amAdaptInterval 0

mh_amAdaptedMatricesDataOutputPeriod 0

mh_amAdaptedMatricesDataOutputFileName “.”

mh_amAdaptedMatricesDataOutputFileType “m”

mh_amAdaptedMatricesDataOutputAllowAll 0

mh_amEta 1.

mh_amEpsilon 1 � 10�5

mh_enableBrooksGelmanConvMonitor 0

mh_BrooksGelmanLag 100
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Table 54.4 Input file options for a QUESO multilevel solver

Option name Default value

ml_restartOutput_levelPeriod 0

ml_restartOutput_baseNameForFiles “.”

ml_restartOutput_fileType “m”

ml_restartInput_baseNameForFiles “.”

ml_restartInput_fileType “m”

ml_stopAtEnd 0

ml_dataOutputFileName “.”

ml_dataOutputAllowAll 0

ml_loadBalanceAlgorithmId 2

ml_loadBalanceTreshold 1.0

ml_minEffectiveSizeRatio 0.85

ml_maxEffectiveSizeRatio 0.91

ml_scaleCovMatrix 1

ml_minRejectionRate 0.50

ml_maxRejectionRate 0.75

ml_covRejectionRate 0.25

ml_minAcceptableEta 0.

ml_totallyMute 1

ml_initialPositionDataInputFileName “.”

ml_initialPositionDataInputFileType “m”

ml_initialProposalCovMatrixDataInputFileName “.”

ml_initialProposalCovMatrixDataInputFileType “m”

ml_rawChainDataInputFileName “.”

ml_rawChainDataInputFileType “m”

ml_rawChainSize 100

ml_rawChainGenerateExtra 0

ml_rawChainDisplayPeriod 500

ml_rawChainMeasureRunTimes 1

ml_rawChainDataOutputPeriod 0

ml_rawChainDataOutputFileName “.”

ml_rawChainDataOutputFileType “m”

ml_rawChainDataOutputAllowAll 0

ml_filteredChainGenerate 0

ml_filteredChainDiscardedPortion 0.

ml_filteredChainLag 1

ml_filteredChainDataOutputFileName “.”

ml_filteredChainDataOutputFileType “m”

ml_filteredChainDataOutputAllowAll 0

ml_displayCandidates 0

ml_putOutOfBoundsInChain 1

ml_tkUseLocalHessian 0

ml_tkUseNewtonComponent 1

(continued)
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Table 54.4 (continued)

ml_drMaxNumExtraStages 0

ml_drScalesForExtraStages 0

ml_drDuringAmNonAdaptiveInt 1

ml_amKeepInitialMatrix 0

ml_amInitialNonAdaptInterval 0

ml_amAdaptInterval 0

ml_amAdaptedMatricesDataOutputPeriod 0

ml_amAdaptedMatricesDataOutputFileName “.”

ml_amAdaptedMatricesDataOutputFileType “m”

ml_amAdaptedMatricesDataOutputAllowAll 0

ml_amEta 1.

ml_amEpsilon 1.e-5

Table 54.5 Input file options for a QUESO pCN solver

Option name Default value

infmcmc_dataOutputDirName “chain”

infmcmc_dataOutpuFileName “out.h5”

infmcmc_num_iters 1000

infmcmc_save_freq 1

infmcmc_rwmh_step 1e-2

10 Conclusions

We conclude this chapter with a discussion of several of the areas the QUESO
development team is investing time into implementing, extending, and improving
along with some of the newest features recently made available in v0.53.0.
Previously, we have covered only the basics of how to interact with QUESO and
to provide a resource that is accessible and can be used to bootstrap a user’s
statistical inverse problem quickly and efficiently. With this in mind, there are still
many areas in which QUESO can improve to become more user friendly, consistent,
and extensible. In what follows, we discuss some major areas of development
that would likely encourage widespread adoption of QUESO in the computational
applied mathematics and engineering community.

10.1 QUESO-Provided Likelihoods

In many large-scale physics and engineering-based experimental settings, it is often
the case that observations of a physical quantity are performed several times. These
observations are then averaged to homogenize the effect of experimental observation
error. In the case of independent experimental errors, this average will be normally
distributed. Therefore, a reasonable choice for a likelihood in many applications
would be a Gaussian.
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At present, the user must derive from BaseScalarFunction and implement
lnValue explicitly. This is a tedious task if all that is needed is the standard
Gaussian error in the Euclidean 2-norm:

P.yj�/ D Z exp

�
1

2
.G.�/ � y/> ˙�1 .G.�/ � y/

�
; (54.11)

where Z is a normalizing constant.
A recently released and much leaner approach is to provide an abstract base

class of BaseScalarFunction called BaseGaussianLikelihood with a
pure virtual method called evaluateModel that asks for the output of the map G
at the point domainVector. Equipped with an implementation of lnValue that
computes the log of (54.11), the user would only need to provide ˙ and y, which
can be passed in from the constructor. An example follows:

template<class V, class M>
class Likelihood : public

QUESO::GaussianLikelihoodScalarCovariance<V, M>
{
public:

Likelihood(const char * prefix,
const QUESO::VectorSet<V, M> & domain,
const V & observations, double variance)

: QUESO::GaussianLikelihoodScalarCovariance<V, M>(
prefix, domain,
observations, variance)

{ }

virtual ~Likelihood() { }

virtual void evaluateModel(const V & domainVector,
const V * domainDirection,
V & modelOutput, V * gradVector,
M * hessianMatrix,
V * hessianEffect) const

{
// Evaluate model and fill up the modelOutput
// variable
int dim = modelOutput.sizeLocal();
for (unsigned int i = 0; i < dim; i++) {
modelOutput[i] = 1.0; // Replace this with

// the output from
// your model

}
}

};
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Here the user would pass an instance of Likelihood to StatisticalIn
verseProblem, as per usual.

Extensions of this idea are also available, where one wishes to treat ˙ as a hyper-
parameter to be sampled along with � in so-called “hierarchical Bayesian” methods.
The design described above is easily applied to this situation.

Ongoing work is being invested in developing other pre-made likelihood objects
representing other likelihood forms that are commonly used.

10.2 Emulators

The two main forms of emulation used in the statistical modeling community are
Gaussian processes and generalized polynomial chaos. These are both important
methods in statistical inference as they can considerably reduce the computational
cost of computing the posterior.

Gaussian process emulators, similar to the ready-made Gaussian likelihoods
discussed in the previous section, are also a form of baked likelihood, but where
the user is not required to implement a method returning the output of G. For
Gaussian process emulators, the user would only need to instantiate an emulator
with a specific dataset and observational error covariance matrix. The rest of the
statistical application the user writes is identical to any other statistical application
and the output (samples) is processed as per usual.

Generalized polynomial chaos methods require different algorithms for solution,
since no Markov chain Monte Carlo is done. This type of emulator is not currently
on the QUESO development road map for the near future, but contributions in the
area are more than welcome.

As of QUESO v0.53.0, the only supported emulator is a linear interpolation of
model output values. Interested users should consult the documentation and, in
particular, the example called 4d_interp.C.

10.3 API Considerations

As mentioned in the infinite-dimensional example, the infinite-dimensional and
finite-dimensional APIs are not aligned. Although the user interacts with only one of
these APIs at any given time, an aligned API structure exposes the opportunity for
algorithms designed on function space, which tend to be more robust algorithms,
to be used in the finite-dimensional setting. Moreover, an aligned API eases the
maintenance, documentation, and testing burden.

Currently, there are only two (finite-dimensional) algorithms the user can use,
DRAM and multilevel. At present, there is no organized structure that Markov
chains (MetropolisHastingsSG objects) inherit from, meaning that there is
a significant hurdle involved in bootstrapping one’s own MCMC algorithm for the
purposes of testing and research. Just as above, a consistent class hierarchy for
MCMC algorithms would ease the burden for software maintenance.
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A rather cumbersome design choice made early on in the development of QUESO
was the hot-swappability of vector and matrix implementations for all of QUESO’s
classes. The net result of this is that any QUESO class that involves an operation with
a vector or a matrix is templated around the type of that vector or matrix. This was
done to ensure that optimized code could be generated that dealt with the specifics
of each vector and matrix library. Assuming that, in high-performance uncertainty
quantification, likelihood evaluations are the dominating cost of Markov chain
Monte Carlo sampling, one need not encumber the QUESOAPI with such templates.
Furthermore, a hierarchical class structure for vector and matrix types exists in
QUESO and therefore necessitates the run-time overhead of virtual table lookups.
Efforts are currently ongoing to enrich the vector and matrix class hierarchy in
QUESO sufficiently such that the particulars of vector and matrix implementations
still remain opaque but significantly shorten unnecessarily long class names with
a negligibly small impact on run-time performance. This enrichment would also
allow QUESO to pick a high-tuned vector/matrix implementation at configure time
for high-performance problems in exascale compute environments. For example,
QUESO’s build system could default to using PETSc vectors optimized for multi-
core architectures, while the user need not deal explicitly with MPI calls. All parallel
logic would be handled under the hood. This offers a pleasing software experience
while maintaining performance.

Python has become a very popular environment to do post-processing and
visualization in multi-core HPC systems. A desirable feature to have in QUESO
would be the automatic generation of python bindings. This would offer the
possibility to do uncertainty quantification in statistical inverse problems as a
quick-turnaround experiment for cheap forward models in an interpreted language
environment. This implementation will likely leverage the Simplified Wrapper
and Interface Generator (SWIG) which is not limited to Python and can provide
interfaces to many modern programming languages, such as Perl, Python, Ruby,
and Tcl.

10.4 Exascale

Uncertainty quantification has pushed the limits of current computational power by
requiring many evaluations of large-scale engineering systems described by partial
differential equations. Utilizing more information about the system can significantly
increase the performance of MCMC algorithms [22–24]. In particular QUESO does
not currently implement MCMC algorithms that use gradient or Hessian information
to construct proposal distributions. However, the design of the API for the pure
virtual methods in BaseScalarFunction allows this information to be passed
to QUESO easily, in the form of a pointer V * gradVector. For more details on
the parameters passed to the lnValue function, the reader is directed to the QUESO
documentation which be found online here: http://libqueso.com.

http://libqueso.com
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