
8Random Matrix Models and Nonparametric
Method for Uncertainty Quantification

Christian Soize

Abstract

This chapter deals with the fundamental mathematical tools and the associated
computational aspects for constructing the stochastic models of random matrices
that appear in the nonparametric method of uncertainties and in the random con-
stitutive equations for multiscale stochastic modeling of heterogeneous materials.
The explicit construction of ensembles of random matrices but also the presen-
tation of numerical tools for constructing general ensembles of random matrices
are presented and can be used for high stochastic dimension. The developments
presented are illustrated for the nonparametric method for multiscale stochastic
modeling of heterogeneous linear elastic materials and for the nonparametric
stochastic models of uncertainties in computational structural dynamics.
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1 Introduction

It is well known that the parametric method for uncertainty quantification consists
in constructing stochastic models of the uncertain physical parameters of a compu-
tational model that results from the discretization of a boundary value problem. The
parametric method is efficient for taking into account the variabilities of physical
parameters, but has not the capability to take into account the model uncertainties
induced by modeling errors that are introduced during the construction of the
computational model. The nonparametric method for the uncertainty quantification
is a way for constructing a stochastic model of the model uncertainties induced by
the modeling errors. It is also an approach for constructing stochastic models of con-
stitutive equations of materials involving some non-Gaussian tensor-valued random
fields, such as in the framework of elasticity, thermoelasticity, electromagnetism,
etc. The random matrix theory is a fundamental tool that is really efficient for
performing stochastic modeling of matrices that appear in the nonparametric method
of uncertainties and in the random constitutive equations for multiscale stochastic
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modeling of heterogeneous materials. The applications of the nonparametric
stochastic modeling of uncertainties and of the random matrix theory presented
in this chapter have been developed and validated for many fields of computational
sciences and engineering, in particular for dynamical systems encountered in
aeronautics and aerospace engineering [7, 20, 78, 88, 91, 94], in biomechanics
[30, 31], in environment [32], in nuclear engineering [9, 12, 13, 29], in soil-structure
interaction and for the wave propagations in soils [4, 5, 26, 27], in rotor dynamics
[79, 80, 82] and vibration of turbomachines [18, 19, 22, 70], in vibroacoustics of
automotive vehicles [3, 38–40, 61], but also, in continuum mechanics for multiscale
stochastic modeling of heterogeneous materials [48,49,51–53], for the heat transfer
in complex composites and for their nonlinear thermomechanic analyses [97, 98].

The chapter is organized as follows:

• Notions on random matrices and on the nonparametric method for uncertainty
quantification: What is a random matrix and what is the nonparametric method
for uncertainty quantification?

• Brief history concerning the random matrix theory and the nonparametric method
for UQ and its connection with the random matrix theory.

• Overview and mathematical notations used in the chapter.
• Maximum entropy principle (MaxEnt) for constructing random matrices.
• Fundamental ensemble for the symmetric real random matrices with a unit mean

value.
• Fundamental ensembles for positive-definite symmetric real random matrices.
• Ensembles of random matrices for the nonparametric method in uncertainty

quantification.
• The MaxEnt as a numerical tool for constructing ensembles of random matrices.
• The MaxEnt for constructing the pdf of a random vector.
• Nonparametric stochastic model for constitutive equation in linear elasticity.
• Nonparametric stochastic model of uncertainties in computational linear struc-

tural dynamics.
• Parametric-nonparametric uncertainties in computational nonlinear structural

dynamics.
• Some key research findings and applications.

2 Notions on Random Matrices and on the Nonparametric
Method for Uncertainty Quantification

2.1 What Is a Random Matrix?

A real (or complex) matrix is a rectangular or a square array of real (or complex)
numbers, arranged in rows and columns. The individual items in a matrix are called
its elements or its entries.

A real (or complex) random matrix is a matrix-valued random variable, which
means that its entries are real (or complex) random variables. The random matrix
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theory is related to the fundamental mathematical methods required for constructing
the probability distribution of such a random matrix, for constructing a generator of
independent realizations, for analyzing some algebraic properties and some spectral
properties, etc.

Let us give an example for illustrating the types of problems related to the random
matrix theory. Let us consider a random matrix ŒA�, defined on a probability space
.�; T ;P/, with values in a set Sn of matrices, which is a subset of the set MS

n .R/

of all the symmetric .n � n/ real matrices. Thus, for � in �, the realization ŒA.�/�

is a deterministic matrix in Sn � M
S
n .R/. Fundamental questions are related to

the definition and to the construction of the probability distribution PŒA� of such a
random matrix ŒA�. If this probability distribution is defined by a probability density
function (pdf) with respect a volume element d SA, which is a mapping ŒA� 7!

pŒA�.ŒA�/ from M
S
n .R/ into R

C D Œ0; C1Œ, for which its support is Sn (which
implies that pŒA�.ŒA�/ D 0 if ŒA� … Sn), then how must the volume element d SA

be defined, how is the integration over MS
n .R/ defined, and what are the methods

and tools for constructing pdf pŒA� and its generator of independent realizations? For
instance, such a pdf cannot simply be defined in giving the pdf of every entry ŒA�jk

for many reasons among the following ones. As random matrix ŒA� is symmetric,
all the entries are not algebraically independent, and therefore, only the n.n C 1/=2

random variables fŒA�1�j �k�ng must be considered. In addition, if Sn is the subset
M

C
n .R/ of all the positive-definite symmetric .n � n/ real matrices, then there is

an algebraic constraint that relates the random variables fŒA�1�j �k�ng in order that
ŒA� be with values in M

C
n .R/, and such an algebraic constraint implies that all the

random variables fŒA�1�j �k�ng are statistically dependent.

2.2 What Is the Nonparametric Method for Uncertainty
Quantification?

The parametric method for uncertainty quantification consists in constructing
stochastic models of the uncertain physical parameters (geometry, boundary con-
ditions, material properties, etc) of a computational model that results from the
discretization of a boundary value problem. The parametric method, which intro-
duces prior and posterior stochastic models of the uncertain physical parameters
of the computational model, has not the capability to take into account model
uncertainties induced by modeling errors that are introduced during the construction
of the computational model.

The nonparametric method for uncertainty quantification consists in constructing
a stochastic model of both the uncertain physical parameters and the model
uncertainties induced by the modeling errors, without separating the effects of
the two types of uncertainties. Such an approach consists in directly constructing
stochastic models of matrices representing operators of the problem considered and
not in using the parametric method for the uncertain physical parameters whose
matrices depend. Initially developed for uncertainty quantification in computational
structural dynamics, the use of the nonparametric method has been extended for
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constructing stochastic models of matrices of computational models, such as the
nonparametric stochastic model for constitutive equation in linear elasticity.

The parametric-nonparametric method for uncertainty quantification consists
in using simultaneously in a computational model, the parametric method for
constructing stochastic models of certain of its uncertain physical parameters, and
the nonparametric method for constructing a stochastic model of both, the other
uncertain physical parameters and the model uncertainties induced by the modeling
errors, in separating the effects of the two types of uncertainties.

Consequently, the nonparametric method for uncertainty quantification uses the
random matrix theory.

3 A Brief History

3.1 Random Matrix Theory (RMT)

The random matrix theory (RMT) were introduced and developed in mathematical
statistics by Wishart and others in the 1930s and was intensively studied by
physicists and mathematicians in the context of nuclear physics. These works began
with Wigner [125] in the 1950s and received an important effort in the 1960s by
Dyson, Mehta, Wigner [36, 37, 126], and others. In 1965, Poter [92] published a
volume of important papers in this field, followed, in 1967, by the first edition of
the Mehta book [72] whose second edition [73] published in 1991 gives a synthesis
of the random matrix theory. For applications in physics, an important ensemble of
the random matrix theory is the Gaussian orthogonal ensemble (GOE) for which
the elements are constituted of real symmetric random matrices with statistically
independent entries and which are invariant under orthogonal linear transformations
(this ensemble can be viewed as a generalization of a Gaussian real-valued random
variable to a symmetric real square random matrix).

For an introduction to multivariate statistical analysis, we refer the reader to
[2], for an overview on explicit probability distributions of ensembles of random
matrices and their properties, to [55] and, for analytical mathematical methods
devoted to the random matrix theory, to [74].

RMT has been used in other domains than nuclear physics. In 1984 and 1986,
Bohigas et al. [14,15] found that the level fluctuations of the quantum Sinai’s billard
were able to predict with the GOE of random matrices. In 1989, Weaver [124]
showed that the higher frequencies of an elastodynamic structure constituted of a
small aluminum block had the behavior of the eigenvalues of a matrix belonging to
the GOE. Then, Bohigas, Legrand, Schmidt, and Sornette [16,65,66,99] studied the
high-frequency spectral statistics with the GOE for elastodynamics and vibration
problems in the high-frequency range. Langley [64] showed that, in the high-
frequency range, the system of natural frequencies of linear uncertain dynamic
systems is a non-Poisson point process. These results have been validated for the
high-frequency range in elastodynamics. A synthesis of theses aspects related to
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quantum chaos and random matrix theory, devoted to linear acoustics and vibration,
can be found in the book edited by Wright and Weaver [127].

3.2 Nonparametric Method for UQ and Its Connection
with the RMT

The nonparametric method was initially be introduced by Soize [106,107] in 1999–
2000 for uncertainty quantification in computational linear structural dynamics
in order to take into account the model uncertainties induced by the modeling
errors that could not be addressed by the parametric method. The concept of
the nonparametric method then consisted in modeling the generalized matrices
of the reduced-order model of the computational model by random matrices. It
should be noted that the terminology “nonparametric” is not at all connected to
the “nonparametric statistics” but was introduced to show the differences between
the well-known parametric method consisting in constructing a stochastic model of
uncertain physical parameters of the computational model, and the new proposed
nonparametric method that consisted in modeling the generalized matrices of the
reduced-order model by random matrices, related to the operators of the problem.
Later, the parametric-nonparametric method has been introduced [113].

Early in the development of the concept of the nonparametric method, a problem
has occurred in the choice of ensembles of random matrices. Indeed the ensembles
of random matrices coming from the RMT were not adapted to stochastic modeling
required by the nonparametric method. For instance, the GOE of random matrices
could not be used for the generalized mass matrix, which must be positive definite,
what is not the case for a random matrix belonging to GOE. Consequently, new
ensembles of random matrices have had to be developed [76, 107, 108, 110, 115],
using the maximum entropy (MaxEnt) principle, for implementing the concept
of the nonparametric method for various computational models in mechanics,
for which the matrices must verify various algebraic properties. In addition,
parameterizations of the new ensembles of random matrices have been introduced
in the different constructions in order to be in capability to quantify simply the
level of uncertainties. These ensembles of random matrices have been constructed
with a parameterization exhibiting a small number of hyperparameters, what allows
for identifying the hyperparameters in using experimental data, solving a statistical
inverse problems for random matrices that are, in general, in very high dimension. In
these constructions, for certain types of available information, an explicit solution
of the MaxEnt principle has been obtained, giving an explicit description of the
ensembles of random matrices and of the corresponding generators of realizations.
Nevertheless, for other cases of available information coming from computational
models, there is no explicit solution of the MaxEnt, and therefore, a numerical tool
adapted to the high dimension has had to be developed [112].

Finally, during these last 15 years the nonparametric method has extensively been
used and extended, with experimental validations, to many problems in linear and
nonlinear structural dynamics, in fluid-structure interaction and in vibroacoustics,
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in unsteady aeroelasticity, in soil-structure interaction, in continuum mechanics
of solids for the nonparametric stochastic modeling of the constitutive equations
in linear and nonlinear elasticity, in thermoelasticity, etc. A brief overview on all
the experimental validations and applications in different fields is given in the last
Sect. 15.

4 Overview

This chapter is constituted of two main parts:

• The first one is devoted to the presentation of ensembles of random matrices
that are explicitly described and also deals with an efficient numerical tool
for constructing ensembles of random matrices when an explicit construction
cannot be obtained. The presentation is focused to the fundamental results and
to the fundamental tools related to ensembles of random matrices that are useful
for constructing nonparametric stochastic models for uncertainty quantification
in computational mechanics and in computational science and engineering, in
such a framework, for the construction of nonparametric stochastic models of
the random tensors or the tensor-valued random fields and also for the non-
parametric stochastic models of uncertainties in linear and nonlinear structural
dynamics.

All the ensembles of random matrices, which have been developed for the
nonparametric method of uncertainties in computational sciences and engineer-
ing, are given hereinafter using a unified presentation based on the use of the
MaxEnt principle, what allow us, not only to learn about the useful ensembles
of random matrices for which the probability distributions and the associated
generators of independent realizations are explicitly known but also to present a
general tool for constructing any ensemble of random matrices, possibly using
computation in high dimension.

• The second part deals with the nonparametric method for uncertainty quan-
tification, which uses the new ensembles of random matrices that have been
constructed in the context of the development of the nonparametric method
and that are detailed in the first part. The presentation is limited to the non-
parametric stochastic model for constitutive equation in linear elasticity, to
the nonparametric stochastic model of uncertainties in computational linear
structural dynamics for damped elastic structures but also for viscoelastic
structures, and to the parametric-nonparametric uncertainties in computational
nonlinear structural dynamics. In the last Sect. 15 brief bibliographical analysis
is given concerning the propagation of uncertainties using nonparametric or
parametric-nonparametric stochastic models of uncertainties, some additional
ingredients useful for the nonparametric stochastic modeling of uncertainties,
some experimental validations of the nonparametric method of uncertainties,
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and finally some applications of the nonparametric stochastic modeling of
uncertainties in different fields of computational sciences and engineering.

5 Notations

The following algebraic notations are used through all the developments devoted to
this chapter.

5.1 Euclidean and Hermitian Spaces

Let x D .x1; : : : ; xn/ be a vector in K
n with K D R (the set of all the real

numbers) or K D C (the set of all the complex numbers). The Euclidean space
R

n (or the Hermitian space C
n) is equipped with the usual inner product <x; y>DPn

j D1 xj yj and the associated norm kxk D< x; x >1=2 in which yj is the complex
conjugate of the complex number yj and where yj D yj when yj is a real number.

5.2 Sets of Matrices

Mn;m.R/ be the set of all the .n � m/ real matrices.
Mn.R/ D Mn;n.R/ the square matrices.
Mn.C/ be the set of all the .n � m/ complex matrices.
M

S
n .R/ be the set of all the symmetric .n � n/ real matrices.

M
C0
n .R/ be the set of all the semipositive-definite symmetric .n � n/ real

matrices.
M

C
n .R/ be the set of all the positive-definite symmetric .n � n/ real matrices.

The ensembles of real matrices are such that

M
C
n .R/ � M

C0
n .R/ � M

S
n .R/ � Mn.R/:

5.3 Kronecker Symbol, Unit Matrix, and Indicator Function

The Kronecker symbol is denoted as ıjk and is such that ıjk D 0 if j 6D k and
ıjj D 1. The unit (or identity) matrix in Mn.R/ is denoted as ŒIn� and is such that
ŒIn�jk D ıjk . Let S be any subset of any set M, possibly with S D M. The indicator
function M 7! 1S.M/ defined on set M is such that 1S.M/ D 1 if M 2 S � M

and 1S.M/ D 0 if M 62 S.

5.4 Norms and Usual Operators

(i) The determinant of a matrix ŒG� in Mn.R/ is denoted as detŒG�, and its trace is
denoted as trŒG� D

Pn
j D1 Gjj .
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(ii) The transpose of a matrix ŒG� in Mn;m.R/ is denoted as ŒG�T , which is in
Mm;n.R/.

(iii) The operator norm of a matrix ŒG� in Mn;m.R/ is denoted as kGk D

supkxk�1 k ŒG� x k for all x in R
m, which is such that k ŒG� x k � kGk kxk for

all x in R
m.

(iv) For ŒG� and ŒH � in Mn;m.R/, we denote � ŒG�; ŒH � �D trfŒG�T ŒH�g and
the Frobenius norm (or Hilbert-Schmidt norm) kGkF of ŒG� is such that
kGk2

F D�ŒG�; ŒG��D trfŒG�T ŒG�g D
Pn

j D1

Pm
kD1 G2

jk , which is such that

kGk � kGkF �
p

n kGk.

5.5 Order Relation in the Set of All the Positive-Definite Real
Matrices

Let ŒG� and ŒH � be two matrices in M
C
n .R/. The notation ŒG� > ŒH� means that the

matrix ŒG� � ŒH � belongs to M
C
n .R/.

5.6 Probability Space, Mathematical Expectation, and Space of
Second-Order Random Vectors

The mathematical expectation relative to a probability space .�; T ; P / is denoted
as E. The space of all the second-order random variables, defined on .�; T ; P /,
with values in R

n, equipped with the inner product ..X; Y// D Ef< X; Y >g and
with the associated norm jjjXjjj D ..X; X//1=2, is a Hilbert space denoted as L2

n.

6 The MaxEnt for Constructing Random Matrices

The measure of uncertainties using the entropy of information has been introduced
by Shannon [103] in the framework of the development of information theory.
The maximum entropy (MaxEnt) principle (that is to say, the maximization of
the level of uncertainties) has been introduced by Jaynes [58] and allows a prior
probability model of any random variables to be constructed, under the constraints
defined by the available information. This principle appears as a major tool to
construct the prior probability models. All the ensembles of random matrices
presented hereinafter (including the well-known Gaussian Orthogonal Ensemble)
are constructed in the framework of a unified presentation using the MaxEnt. This
means that the probability distributions of the random matrices belonging to these
ensembles are constructed using the MaxEnt.

6.1 Volume Element and Probability Density Function (PDF)

This section deals with the definition of a probability density function (pdf) of
a random matrix ŒG� with values in the Euclidean space M

S
n .R/ (set of all the
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symmetric .n � n/ real matrices, equipped with the inner product �ŒG�; ŒH ��D

trfŒG�T ŒH�g). In order to correctly defined the integration on Euclidean space
M

S
n .R/, it is necessary to define the volume element on this space.

6.1.1 Volume Element on the Euclidean Space of Symmetric Real
Matrices

In order to well understand the principle of the construction of the volume element
on Euclidean space M

S
n .R/, the construction of the volume element on Euclidean

spaces Rn and Mn.R/ is first introduced.

(i) Volume element on Euclidean space R
n. Let fe1; : : : ; eng be the orthonormal

basis of Rn such that ej D .0; : : : ; 1; : : : ; 0/ is the null vector with 1 in position
j . Consequently, <ej ; ek >D ıjk . Any vector x D .x1; : : : ; xn/ in R

n can then
be written as x D

Pn
j D1 xj ej . This Euclidean structure on R

n defines the
volume element dx on R

n such that dx D
Qn

j D1 dxj .
(ii) Volume element on Euclidean space Mn.R/. Similarly, let fŒbjk�gjk be the

orthonormal basis of Mn.R/ such that Œbjk� D ej eT
k . Consequently, we have

� Œbjk�; Œbj 0k0 � � D ıjj 0ıkk0 . Any matrix ŒG� in Mn.R/ can be written as
ŒG� D

Pn
j;kD1 Gjk Œbjk� in which Gjk D ŒG�jk . This Euclidean structure

on Mn.R/ defines the volume element dG on Mn.R/ such that dG DQn
j;kD1 dGjk .

(iii) Volume element on Euclidean space M
S
n .R/. Let fŒbS

jk�; 1 � j � k � ng

be the orthonormal basis of M
S
n .R/ such that ŒbS

jj � D ej eT
j and ŒbS

jk� D

.ej eT
k C ek eT

j /=
p

2 if j < k. We have � ŒbS
jk�; ŒbS

j 0k0 � �D ıjj 0ıkk0 for

j � k and j 0 � k0. Any symmetric matrix ŒG� in M
S
n .R/ can be written

as ŒG� D
P

1�j �k�n GS
jk ŒbS

jk� in which GS
jj D Gjj and GS

jk D
p

2 Gjk if

j < k. This Euclidean structure on M
S
n .R/ defines the volume element d S G

on M
S
n .R/ such that d S G D

Q
1�j �k�n dGS

jk . The volume element is then
defined by

d S G D 2n.n�1/=4
Y

1�j �k�n

dGjk : (8.1)

6.1.2 Probability Density Function of a Symmetric Real Random
Matrix

Let ŒG� be a random matrix, defined on a probability space .�; T ;P/, with values
in M

S
n .R/ whose probability distribution PŒG� D pŒG�.ŒG�/ d S G is defined by a

pdf ŒG� 7! pŒG�.ŒG�/ from M
S
n .R/ into R

C D Œ0; C1Œ with respect to the volume
element d S G on M

S
n .R/. This pdf verifies the normalization condition,

Z

MS
n .R/

pŒG�.ŒG�/ d S G D 1; (8.2)

in which the volume element d S G is defined by Eq. (8.1).
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6.1.3 Support of the Probability Density Function
The support of pdf pŒG�, denoted as supp pŒG�, is any subset Sn of MS

n .R/, possibly
with Sn D M

S
n .R/. For instance, we can have Sn D M

C
n .R/ � M

S
n .R/, which

means that ŒG� is a random matrix with values in the positive-definite symmetric
.n � n/ real matrices. Thus, pŒG�.ŒG�/ D 0 for ŒG� not in Sn, and Eq. (8.2) can be
rewritten as

Z

Sn

pŒG�.ŒG�/ d S G D 1 : (8.3)

It should be noted that, in the context of the construction of the unknown pdf pŒG�,
it is assumed that support Sn is a given (known) set.

6.2 The Shannon Entropy as a Measure of Uncertainties

The Shannon measure [103] of uncertainties of random matrix ŒG� is defined by the
entropy of information (Shannon’s entropy), E.pŒG�/, of pdf pŒG� whose support is
Sn � M

S
n .R/, such that

E.pŒG�/ D �

Z

Sn

pŒG�.ŒG�/ log
�
pŒG�.ŒG�/

�
d S G; (8.4)

which can be rewritten as E.pŒG�/ D �Eflog
�
pŒG�.ŒG�/

�
. For any pdf pŒG� defined

on M
S
n .R/ and with support Sn, entropy E.pŒG�/ is a real number. The uncertainty

increases when the Shannon entropy increases. More the Shannon entropy is small
and more the level of uncertainties is small. If E.pŒG�/ goes to �1, then the level of
uncertainties goes to zero, and random matrix ŒG� goes to a deterministic matrix for
the convergence in probability distribution (in probability law).

6.3 The MaxEnt Principle

As explained before, the use of the MaxEnt principle requires to correctly defined
the available information related to random matrix ŒG� for which pdf pŒG� (that is
unknown with a given support Sn) has to be constructed.

6.3.1 Available Information
It is assumed that the available information related to random matrix ŒG� is
represented by the following equation on R

�, where � is a finite positive integer,

h.pŒG�/ D 0; (8.5)

in which pŒG� 7! h.pŒG�/ D .h1.pŒG�/; : : : ; h�.pŒG�// is a given functional of pŒG�,
with values in R

�. For instance, if the mean value EfŒG�g D Œ G � of ŒG� is a



8 Random Matrix Models and Nonparametric Method for Uncertainty: : : 231

given matrix in Sn, and if this mean value Œ G � corresponds to the only available
information, then h˛.pŒG�/ D

R
Sn

Gjk pŒG�.ŒG�/ d S G�Gjk , in which ˛ D 1; : : : ; �

is associated with the couple of indices .j; k/ such as 1 � j � k � n and where
� D n.n C 1/=2.

6.3.2 The Admissible Sets for the pdf
The following admissible sets Cfree and Cad are introduced for defining the optimiza-
tion problem resulting from the use of the MaxEnt principle in order to construct the
pdf of random matrix ŒG�. The set Cfree is made up of all the pdf p W ŒG� 7! p.ŒG�/,
defined on M

S
n .R/, with support Sn � M

S
n .R/,

Cfree D fŒG� 7! p.ŒG�/ W MS
n .R/ ! R

C; supp p D Sn;

Z

Sn

p.ŒG�/ d S G D 1g :

(8.6)

The set Cad is the subset of Cfree for which all the pdf p in Cfree satisfy the constraint
defined by

Cad D fp 2 Cfree; h.p/ D 0g : (8.7)

6.3.3 Optimization Problem for Constructing the pdf
The use of the MaxEnt principle for constructing the pdf pŒG� of random matrix ŒG�

yields the following optimization problem:

pŒG� D arg max
p2Cad

E.p/ : (8.8)

The optimization problem defined by Eq. (8.8) on set Cad is transformed in an
optimization problem on Cfree in introducing the Lagrange multipliers associated
with the constraints defined by Eqs. (8.5) [58, 60, 107]. This type of construction
and the analysis of the existence and the uniqueness of a solution of the optimization
problem defined by Eq. (8.8) are detailed in Sect. 10.

7 A Fundamental Ensemble for the Symmetric Real Random
Matrices with a Unit Mean Value

A fundamental ensemble for the symmetric real random matrices is the Gaussian
orthogonal ensemble (GOE) that is an ensemble of random matrices ŒG�, defined
on a probability space .�; T ;P/, with values in M

S
n .R/, defined by a pdf pŒG� on

M
S
n .R/ with respect to the volume element d S G, for which the support Sn of pG is

M
S
n .R/, and satisfying the additional properties defined hereinafter.

7.1 Classical Definition [74]

The additional properties of a random matrix ŒG� belonging to GOE are (i) invari-
ance under any real orthogonal transformation, that is to say, for any orthogonal
.n � n/ real matrix ŒR� such that ŒR�T ŒR� D ŒR� ŒR�T D ŒIn�, the pdf (with respect
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to d S G) of the random matrix ŒR�T ŒG� ŒR� is equal to pdf pG of random matrix ŒG�,
and (ii) statistical independence of all the real random variables fGjk; 1�j �k�ng.

7.2 Definition by the MaxEnt and Calculation of the pdf

Alternatively to the properties introduced in the classical definition, the additional
properties of a random matrix ŒG� belonging to GOE are the following. For all 1 �

j � k � n,

EfGjkg D 0; EfGjkGj 0k0g D ıjj 0ıkk0 .1 C ıjk/
ı2

n C 1
: (8.9)

in which ı > 0 is a given positive-valued hyperparameter whose interpretation is
given after. The GOE is then defined using the MaxEnt principle for the available
information given by Eq. (8.9), which defines mapping h (see Eq. (8.5)). The
corresponding ensemble is written as GOEı . In Eq. (8.9), the first equation means
that the symmetric random matrix ŒG� is centered, and the second one means that its
fourth-order covariance tensor is diagonal. Using the MaxEnt principle for random
matrix ŒG� yields the following unique explicit expression for the pdf pG with
respect to the volume element d S G:

pŒG�.ŒG�/ D cG exp.�
nC1

4ı2
trfŒG�2g/; Gkj D Gjk; 1 � j � k � n; (8.10)

in which cG is the constant of normalization such that Eq. (8.2) is verified. It can
then be deduced that fGjk; 1 � j � k � ng are Gaussian independent real random
variables such that Eq. (8.9) is verified. Consequently, for all 1 � j � k � n,
the pdf (with respect to dg on R) of the Gaussian real random variable Gjk

is pGjk
.g/ D .

p
2��jk/�1 expf�g2=.2�2

jk/g in which the variance of random

variable Gjk is �2
jk D .1 C ıjk/ ı2=.n C 1/.

7.3 Decentering and Interpretation of Hyperparameter ı

Let ŒGGOE� be the random matrix with values in M
S
n .R/ such that ŒGGOE� D

ŒIn� C ŒG� in which ŒG� is a random matrix belonging to the GOEı defined before.
Therefore ŒGGOE� is not centered and its mean value is EfŒGGOE�g D ŒIn�. The
coefficient of variation of the random matrix ŒGGOE� is defined [109] by

ıGOE D

(
Efk GGOE � EfGGOEg k2

F g

k EfGGOEg k2
F

) 1=2

D

�
1

n
Efk GGOE � In k2

F g

� 1=2

;

(8.11)

and ıGOE D ı. The parameter 2ı=
p

n C 1 can be used to specify a scale.
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7.4 Generator of Realizations

For � 2 �, any realization ŒGGOE.�/� is given by ŒGGOE.�/� D ŒIn� C ŒG.�/�

with, for 1 � j � k � n, Gkj .�/ D Gjk.�/ and Gjk.�/ D �jkUjk.�/, in
which fUjk.�/g1�j �k�n is the realization of n.n C 1/=2 independent copies of a
normalized (centered and unit variance) Gaussian real random variable.

7.5 Use of the GOE Ensemble in Uncertainty Quantification

The GOE can then be viewed as a generalization of the Gaussian real random
variables to the Gaussian symmetric real random matrices. It can be seen that ŒGGOE�

is with values in M
S
n .R/ but is not positive. In addition, for all fixed n,

EfkŒGGOE��1k2g D C1 : (8.12)

(i) It has been proved by Weaver [124] and others (see [127] and included refer-
ences) that the GOE is well adapted for describing universal fluctuations of the
eigenfrequencies for generic elastodynamical, acoustical, and elastoacoustical
systems, in the high-frequency range corresponding to the asymptotic behavior
of the largest eigenfrequencies.

(ii) On the other hand, random matrix ŒGGOE� cannot be used for stochastic
modeling of a symmetric real matrix for which a positiveness property and
an integrability of its inverse are required. Such a situation is similar to the
following one that is well known for the scalar case. Let us consider the scalar
equation in u: . G C G/ u D v in which v is a given real number, G is
a given positive number, and G is a positive parameter. This equation has a
unique solution u D . G C G/�1v. Let us assume that G is uncertain and is
modeled by a centered random variable G. We then obtain the random equation
in U : . G C G/U D v. If the random solution U must have finite statistical
fluctuations, that is to say, U must be a second-order random variable (this is
generally required due to physical considerations), then G cannot be chosen as
a Gaussian second-order centered real random variable, because with such a
Gaussian stochastic modeling, the solution U D .G C G/�1v is not a second-
order random variable, because EfU 2g D C1 due to the non integrability of
the function G 7! .G C G/�2 at point G D �G.

8 Fundamental Ensembles for Positive-Definite Symmetric
Real Random Matrices

In this section, we present fundamental ensembles of positive-definite symmetric
real random matrices, SGC

0 , SGC
" , SGC

b , and SGC
� , which have been developed and
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analyzed for constructing other ensembles of random matrices used for the nonpara-
metric stochastic modeling of matrices encountered in uncertainty quantification.

• The ensemble SGC
0 is a subset of all the positive-definite symmetric real .n � n/

random matrices for which the mean value is the unit matrix and for which the
lower bound is the zero matrix. This ensemble has been introduced and analyzed
in [107, 108] in the context of the development of the nonparametric method
of model uncertainties induced my modeling errors in computational dynamics.
This ensemble has later been used for constructing other ensembles of random
matrices encountered in the nonparametric stochastic modeling of uncertainties
[110].

• The ensemble SGC
" is a subset of all the positive-definite symmetric real .n � n/

random matrices for which the mean value is the unit matrix and for which
there is an arbitrary lower bound that is a positive-definite matrix controlled by
an arbitrary positive number " that can be chosen as small as is desired [114].
In such an ensemble, the lower bound does not correspond to a given matrix
that results from a physical model, but allows for assuring a uniform ellipticity
for the stochastic modeling of elliptic operators encountered in uncertainty
quantification of boundary value problems. The construction of this ensemble
is directly derived from ensemble SGC

0 ,
• The ensemble SGC

b is a subset of all the positive-definite random matrices for
which the mean value is either not given or is equal to the unit matrix [28,50] and
for which a lower bound and an upper bound are given positive-definite matrices.
In this ensemble, the lower bound and the upper bound are not arbitrary positive-
definite matrices, but are given matrices that result from a physical model. The
ensemble is interesting for the nonparametric stochastic modeling of tensors
and tensor-valued random fields for describing uncertain physical properties in
elasticity, poroelasticity, thermics, etc.

• The ensemble SGC
� , introduced in [76], is a subset of all the positive-

definite random matrices for which the mean value is the unit matrix,
for which the lower bound is the zero matrix, and for which the second-
order moments of diagonal entries are imposed. In the context of the
nonparametric stochastic modeling of uncertainties, this ensemble allows for
imposing the variances of certain random eigenvalues of stochastic generalized
eigenvalue problems, such as the eigenfrequency problem in structural
dynamics.

8.1 Ensemble SGC
0 of Positive-Definite Random Matrices With a

Unit Mean Value

8.1.1 Definition of SGC
0 Using the MaxEnt and Expression of the pdf

The ensemble SGC
0 of random matrices ŒG0�, defined on the probability space

.�; T ;P/, with values in the set M
C
n .R/ � M

S
n .R/, is constructed using the
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MaxEnt with the following available information, which defines mapping h (see
Eq. (8.5)):

EfŒG0�g D ŒIn�; Eflog.detŒG0�/g D 	G0; j	G0 j < C1 : (8.13)

The support of the pdf is the subset Sn D M
C
n .R/ of MS

n .R/. This pdf pŒG0� (with
respect to the volume element d S G on the set MS

n .R/) verifies the normalization
condition and is written as

pŒG0�.ŒG�/ D 1Sn.ŒG�/ cG0

�
det ŒG�

�.nC1/
.1�ı2/

2ı2 exp.�
n C 1

2ı2
trŒG�/ : (8.14)

The positive parameter ı is a such that 0 < ı < .nC1/1=2.nC5/�1=2, which allows
the level of statistical fluctuations of random matrix ŒG0� to be controlled and which
is defined by

ı D

�
Efk G0 � EfG0g k2

F g

k EfG0g k2
F

� 1=2

D

�
1

n
Efk ŒG0� � ŒIn� k2

F g

� 1=2

: (8.15)

The normalization positive constant cG0 is such that

cG0 D.2�/�n.n�1/=4

�
n C 1

2ı2

�n.nC1/.2ı2/�1
8
<

:

nY

j D1



�nC1

2ı2
C

1�j

2

�
9
=

;

�1

; (8.16)

where, for all z > 0, 
 .z/ D
R C1

0
t z�1 e�t dt . Note that fŒG0�jk; 1 � j � k � ng

are dependent random variables. If .n C 1/=ı2 is an integer, then this pdf coincides
with the Wishart probability distribution [2,107]. If .nC1/=ı2 is not an integer, then
this probability density function can be viewed as a particular case of the Wishart
distribution, in infinite dimension, for stochastic processes [104].

8.1.2 Second-Order Moments
Random matrix ŒG0� is such that EfkG0k2g � EfkG0k2

F g < C1, which proves
that ŒG0� is a second-order random variable. The mean value of random matrix
ŒG0� is unit matrix ŒIn�. The covariance Cjk;j 0k0 D EfŒG0�jk � ŒIn�jk/ .ŒG0�j 0k0 �

ŒIn�j 0k0/g of the real-valued random variables ŒG0�jk and ŒG0�j 0k0 is Cjk;j 0k0 D

ı2.nC1/�1
˚
ıj 0k ıjk0 C ıjj 0 ıkk0

�
. The variance of real-valued random variable

ŒG0�jk is �2
jk D Cjk;jk D ı2.nC1/�1.1 C ıjk/.

8.1.3 Invariance of Ensemble SGC
0 Under Real Orthogonal

Transformations
Ensemble SGC

0 is invariant under real orthogonal transformations. This means that
the pdf (with respect to d S G) of the random matrix ŒR�T ŒG0� ŒR� is equal to the pdf
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(with respect to d S G) of random matrix ŒG0� for any real orthogonal matrix ŒR�

belonging to Mn.R/.

8.1.4 Invertibility and Convergence Property When Dimension Goes
to Infinity

Since ŒG0� is a positive-definite random matrix, ŒG0� is invertible almost surely,
which means that for P-almost � in �, the inverse ŒG0.�/��1 of the matrix ŒG0.�/�

exists. This last property does not guarantee that ŒG0��1 is a second-order random
variable, that is to say, that EfkŒG0��1k2

F g D
R

�
kŒG0.�/��1k2

F dP.�/ is finite.
However, it is proved [108] that

EfkŒG0��1k2g � EfkŒG0��1k2
F g < C1; (8.17)

and that the following fundamental property holds:

8n � 2; EfkŒG0��1k2g � Cı < C1; (8.18)

in which Cı is a positive finite constant that is independent of n but that depends on
ı. This means that n 7! EfkŒG0��1k2g is a bounded function from fn � 2g into R

C.
It should be noted that the invertibility property defined by Eqs. (8.17) and (8.18)

is due to the constraint Eflog.detŒG0�/g D 	G0 with j	G0 j < C1. This is the
reason why the truncated Gaussian distribution restricted to M

C
n .R/ does not satisfy

this invertibility condition that is required for stochastic modeling in many cases.

8.1.5 Probability Density Function of the Random Eigenvalues
Let ƒ D .�1; : : : ; �n/ be the positive-valued random eigenvalues of the random
matrix ŒG0� belonging to ensemble SGC

0 , such that ŒG0� ˆj D �j ˆj in which
ˆj is the random eigenvector associated with the random eigenvalue �j . The joint
probability density function pƒ.�/ D p�1;:::;�n.�1; : : : ; �n/ with respect to d� D

d�1 : : : d�n of ƒ D .�1; : : : ; �n/ is written [107] as

pƒ.�/ D 1Œ0;C1Œn .�/ c�

8
<

:

nY

j D1

�
.nC1/

.1�ı2/

2ı2

j

9
=

;

8
<

:

Y

˛<ˇ

j�ˇ � �˛j

9
=

;
exp

(

�
.n C 1/

2ı2

nX

kD1

�k

)

;

(8.19)

in which c� is a constant of normalization defined by the equation
R C1

0
: : :

R C1

0

pƒ.�/ d� D 1. All the random eigenvalues �j of random matrix ŒG0� in SGC
0 are

positive almost surely, while this assertion is not true for the random eigenvalues
�GOE

j of the random matrix ŒGGOE� D ŒIn� C ŒG� in which ŒG� is a random matrix
belonging to the GOEı ensemble.
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8.1.6 Algebraic Representation and Generator of Realizations
The generator of realizations of random matrix ŒG0� whose pdf is defined by
Eq. (8.14) is directly deduced from the following algebraic representation of ŒG0�

in SGC
0 . Random matrix ŒG0� is written as ŒG0� D ŒL�T ŒL� in which ŒL� is an upper

triangular real .n � n/ random matrix such that:

(i) The random variables fŒL�jk; j � kg are independent;
(ii) For j < k, the real-valued random variable ŒL�jk is written as ŒL�jk D �nUjk

in which �n D ı.n C 1/�1=2 and where Ujk is a real-valued Gaussian random
variable with zero mean and variance equal to 1;

(iii) For j D k, the positive-valued random variable ŒL�jj is written as ŒL�jj D

�n

p
2Vj in which �n is defined before and where Vj is a positive-valued

gamma random variable whose pdf is pVj .v/ D 1RC.v/ 1

 .aj /

vaj �1 e�v , in

which aj D nC1
2ı2 C 1�j

2
.

It should be noted that the set f fUjkg1�j <k�n; fVj g1�j �n g of random variables
are statistically independent, and the pdf of each diagonal element ŒL�jj of random
matrix ŒL� depends on the rank j of the entry.

For � 2 �, any realization ŒG0.�/� is then deduced from the algebraic
representation given before, using the realization fUjk.�/g1�j <k�n of n.n � 1/=2

independent copies of a normalized (zero mean and unit variance) Gaussian real
random variable and using the realization fVj .�/g1�j �n of the n independent
positive-valued gamma random variable Vj with parameter aj .

8.2 Ensemble SGC
" of Positive-Definite Random Matrices with a

Unit Mean Value and an Arbitrary Positive-Definite Lower
Bound

The ensemble SGC
" is a subset of all the positive-definite random matrices for which

the mean value is the unit matrix and for which there is an arbitrary lower bound
that is a positive-definite matrix controlled by an arbitrary positive number " that
can be chosen as small as is desired. In this ensemble, the lower bound does not
correspond to a given matrix that results from a physical model.

Ensemble SGC
" is the set of the random matrices ŒG� with values in M

C
n .R/,

which are written as

ŒG� D
1

1 C "
fŒG0� C " ŒIn�g; (8.20)

in which ŒG0� is a random matrix in SGC
0 , with mean value EfŒG0�g D ŒIn�, and

for which the level of statistical fluctuations is controlled by the hyperparameter
ı defined by Eq. (8.15) and where " is any positive number (note that for " D 0,
SGC

" D SGC
0 and then ŒG� D ŒG0�). This definition shows that, almost surely,

ŒG� � ŒG`� D
1

1 C "
ŒG0� > 0; (8.21)
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in which the lower bound is the positive-definite matrix ŒG`� D c"ŒIn� with
c" D "=.1 C "/. For all " > 0, we have

EfŒG�g D ŒIn�; Eflog.det.ŒG� � ŒG`�//g D 	G" ; j	G" j < C1; (8.22)

with 	G" D 	G0 � n log.1 C "/. The coefficient of variation ıG of random matrix
ŒG�, defined by

ıG D

�
Efk G � EfGg k2

F g

k EfGg k2
F

� 1=2

D

�
1

n
Efk ŒG� � ŒIn� k2

F g

� 1=2

; (8.23)

is such that

ıG D
ı

1 C "
; (8.24)

where ı is the hyperparameter defined by Eq. (8.15).

8.2.1 Generator of Realizations
For � 2 �, any realization ŒG.�/� of ŒG� is given by ŒG.�/� D 1

1C"
fŒG0.�/�C" ŒIn�g

in which ŒG0.�/� is a realization of random matrix ŒG0� constructed as explained
before.

8.2.2 Lower Bound and Invertibility
For all " > 0, the bilinear form b.X; Y/ D ..ŒG� X; Y// on L2

n � L2
n is such that

b.X; X/ � c"jjjXjjj2 : (8.25)

Random matrix ŒG� is invertible almost surely and its inverse ŒG��1 is a second-order
random variable, EfkŒG��1k2

F g < C1.

8.3 Ensemble SGC
b of Positive-Definite Random Matrices with

Given Lower and Upper Bounds and with or without Given
Mean Value

The ensemble SGC
b is a subset of all the positive-definite random matrices for which

the mean value is either the unit matrix or is not given and for which a lower bound
and an upper bound are given positive-definite matrices. In this ensemble, the lower
bound and the upper bound are not arbitrary positive-definite matrices, but are given
matrices that result from a physical model.

The ensemble SGC
b is constituted of random matrices ŒGb�, defined on the

probability space .�; T ;P/, with values in the set MC
n .R/ � M

S
n .R/, such that

Œ0� < ŒG`� < ŒGb� < ŒGu�; (8.26)
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in which the lower bound ŒG`� and the upper bound ŒGu� are given matrices in
M

C
n .R/ such that ŒG`� < ŒGu�. The support of the pdf pŒGb � (with respect to

the volume element d S G on M
S
n .R/) of random matrix ŒGb� is the subset Sn of

M
C
n .R/ � M

S
n .R/ such that

Sn D f ŒG� 2 M
C
n .R/ j ŒG`� < ŒG� < ŒGu� g : (8.27)

The available information associated with the presence of the lower and upper
bounds is defined by

Eflog.det.ŒGb� � ŒG`�//g D 	`; Eflog.det.ŒGu� � ŒGb�//g D 	`; (8.28)

in which 	` and 	u are two constants such that j	`j < C1 and j	uj < C1. The
mean value Œ G b� D EfŒGb�g is given by

Œ G b� D

Z

Sn

ŒG� pŒGb �.ŒG�/ d S G : (8.29)

The positive parameter ıb , which allows the level of statistical fluctuations of
random matrix ŒGb� to be controlled, is defined by

ıb D

�
Efk Gb � G b k2

F g

k G b k2
F

� 1=2

: (8.30)

8.3.1 Definition of SGC
b for a Non-given Mean Value Using the MaxEnt

The mean value Œ G b� of random matrix ŒGb� is not given and therefore does not
constitute an available information. In this case, the ensemble SGC

b is constructed
using the MaxEnt with the available information given by Eq. (8.28) (that defines
mapping h introduced in Eq. (8.5) and rewritten for pŒGb �). The pdf pŒGb � is the
generalized matrix-variate beta-type I pdf [55]:

pŒGb �.ŒG�/ D 1Sn.ŒG�/ cGb

�
det ŒG � G`�

�˛�.nC1/=2 �
det ŒGu � G�

�ˇ�.nC1/=2
;

(8.31)

in which cGb
is the normalization constant and where ˛ > .n � 1/=2 and ˇ > .n �

1/=2 are two real parameters that are unknown and that depend on the two unknown
constants 	` and 	u. The mean value Œ G b� must be calculated using Eqs. (8.29)
and (8.31), and the hyperparameter ıb , which characterizes the level of statistical
fluctuations, must be calculated using Eqs. (8.30) and (8.31). Consequently, Œ G b�

and ıb depend on ˛ and ˇ. It can be seen that, for n � 2, the two scalar parameters
˛ and ˇ are not sufficient for identifying the mean value Œ G b� that is in Sn and the
hyperparameter ıb . An efficient algorithm for generating realizations of ŒGb� can be
found in [28].
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8.3.2 Definition of SGC
b for a Given Mean Value Using the MaxEnt

The mean value Œ G b� of random matrix ŒGb� is given such that ŒG`� < Œ G b� < ŒGu�.
In this case, the ensemble SGC

b is constructed using the MaxEnt with the available
information given by Eqs. (8.28) and (8.29) that defines mapping h introduced in
Eq. (8.5). Following the construction proposed in [50], the following change of
variable is introduced:

ŒA0� D .ŒGb� � ŒG`�/
�1 � ŒG`u��1; ŒG`u� D ŒGu� � ŒG`� 2 M

C
n .R/ : (8.32)

This equation shows that the random matrix ŒA0� is with values in M
C
n .R/.

Introducing the mean value Œ A 0� D EfŒA0�g that belongs to M
C
n .R/ and is

Cholesky factorization Œ A 0� D Œ L 0�T Œ L 0� in which Œ L 0� is an upper triangular
real .n � n/ matrix, random matrix ŒA0� can be written as ŒA0� D Œ L 0�T ŒG0� Œ L 0�

with ŒG0� that belongs to ensemble SGC
0 depending on the hyperparameter ı defined

by Eq. (8.15). The inversion of Eq. (8.32) yields

ŒGb� D ŒG`� C
�
Œ L 0�T ŒG0� Œ L 0� C ŒG`u��1

��1
: (8.33)

It can then be seen that for any arbitrary small "0 > 0 (for instance, "0 D 10�6), we
have

k Ef.ŒA0� C ŒG`u��1/�1g C ŒG`� � Œ G b� kF � "0 k G bkF : (8.34)

For ı and Œ L 0� fixed, for � in �, the realization ŒG0.�/� of random matrix
ŒG0� in SGC

0 is constructed using the generator of ŒG0�, which has been
detailed before. The mean value EfŒGb�g and the hyperparameter ıb defined
by Eq. (8.30) are estimated with the corresponding realization ŒGb.�/� D

ŒG`� C
�
Œ L 0�T ŒG0.�/� Œ L 0� C ŒG`u��1

��1
of random matrix ŒGb�. Let UL be the set

of all the upper triangular real .n � n/ matrices Œ L 0� with positive diagonal entries.
For a fixed value of ı, and for a given target value of Œ G b�, the value Œ L

opt
0 � of Œ L 0�

is calculated in solving the optimization problem

Œ L
opt
0 � D arg min

Œ L 0�2UL

F.Œ L 0�/; (8.35)

in which the cost function F is deduced from Eq. (8.34) and is written as

F.Œ L 0�/ D k Ef.Œ L 0�T ŒG0� Œ L 0� C ŒG`u��1/�1g C ŒG`� � Œ G b� kF =k G bkF :

(8.36)
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8.4 Ensemble SGC
�

of Positive-Definite Random Matrices with a
Unit Mean Value and Imposed Second-Order Moments

The ensemble SGC
� is a subset of all the positive-definite random matrices for which

the mean value is the unit matrix, for which the lower bound is the zero matrix,
and for which the second-order moments of diagonal entries are imposed. In the
context of nonparametric stochastic modeling of uncertainties, this ensemble allows
for imposing the variances of certain random eigenvalues of stochastic generalized
eigenvalue problems.

8.4.1 Definition of SGC
�

Using the MaxEnt and Expression of the pdf
The ensemble SGC

� of random matrices ŒG��, defined on the probability space
.�; T ;P/, with values in the set M

C
n .R/ � M

S
n .R/, is constructed using the

MaxEnt with the following available information, which defines mapping h (see
Eq. (8.5)):

EfŒG��g D ŒIn�; Eflog.detŒG��/g D 	G�
; EfŒG��2jj g D s2

j ; j D 1; : : : m;

(8.37)

in which j	G�
j < C1, with m < n, and where s2

1 ; : : : ; s2
m are m given positive

constants. The pdf pŒG�� (with respect to the volume element d S G on the set MS
n .R/

has a support that is Sn D M
C
n .R/ � M

S
n .R/ of M

S
n .R/. The pdf verifies the

normalization condition and is written [76] as

pŒG��.ŒG�/ D 1Sn.ŒG�/ � CG�
�

�
det ŒG�

�˛�1
� expf�trfŒ��T ŒG�g �

mX

j D1

�j G2
jj g;

(8.38)

in which CG�
is the normalization constant and ˛ is a parameter such that n C 2˛ �

1 > 0, where Œ�� is a diagonal real .n�n/ matrix such that �jj D .nC2˛�1/=2 for
j > m and where �11; : : : ; �mm and �1; : : : ; �m are 2m positive parameters, which
are expressed as a function of ˛ and s2

1; : : : ; s2
m. The level of statistical fluctuations of

random matrix ŒG�� is controlled by the positive hyperparameter ı that is defined by

ı D

�
Efk G� � EfG�g k2

F g

k EfG�g k2
F

� 1=2

D

�
1

n
Efk ŒG�� � ŒIn� k2

F g

� 1=2

; (8.39)

and where ı is such that

ı2 D
1

n

mX

j D1

s2
j C

n C 1 � .m=n/.n C 2˛ � 1/

n C 2˛ � 1
: (8.40)
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8.4.2 Generator of Realizations
For given m < n, ı, and s2

1 ; : : : ; s2
m, the explicit generator of realizations of random

matrix ŒG�� whose pdf is defined by Eq. (8.38) is detailed in [76].

9 Ensembles of Random Matrices for the Nonparametric
Method in Uncertainty Quantification

In this section, we present the ensembles SEC
0 , SEC

" , SEC0, SE rect, and SE HT

of random matrices which result from some transformations of the fundamental
ensembles introduced before. These ensembles of random matrices are useful
for performing the nonparametric stochastic modeling of matrices encountered
in uncertainty quantification of computational models in structural dynamics,
acoustics, vibroacoustics, fluid-structure interaction, unsteady aeroelasticity, soil-
structure interaction, etc., but also in solid mechanics (elasticity tensors of ran-
dom elastic continuous media, matrix-valued random fields for heterogeneous
microstructures of materials), thermic (thermal conductivity tensor), electromag-
netism (dielectric tensor), etc.

The ensembles of random matrices, devoted to the construction of nonparametric
stochastic models of matrices encountered in uncertainty quantification, are briefly
summarized below and then are mathematically detailed:

• The ensemble SEC
0 is a subset of all the positive-definite random matrices

for which the mean values are given and differ from the unit matrix (unlike
to ensemble SGC

0 ) and for which the lower bound is the zero matrix. This
ensemble is constructed as a transformation of ensemble SGC

0 in keeping all the
mathematical properties of ensemble SGC

0 such as the positiveness.
• The ensemble SEC

" is a subset of all the positive-definite random matrices for
which the mean value is a given positive-definite matrix and for which there
is an arbitrary lower bound that is a positive-definite matrix controlled by an
arbitrary positive number " that can be chosen as small as is desired. In this
ensemble, the lower bound does not correspond to a given matrix that results
from a physical model. This ensemble is constructed as a transformation of
ensemble SGC

" and has the same area of use than ensemble SEC
0 for stochastic

modeling in uncertainty quantification but for which a lower bound is required in
the stochastic modeling for mathematical reasons.

• The ensemble SEC0 is similar to ensemble SGC
0 but is constituted of

semipositive-definite .m � m/ real random matrices for which the mean value
is a given semipositive-definite matrix. This ensemble is constructed as a
transformation of positive-definite .n � n/ real random matrices belonging
to ensemble SGC

0 , with n < m, in which the dimension of the null space is
m � n. Such an ensemble is useful for the nonparametric stochastic modeling
of uncertainties such as those encountered in structural dynamics in presence of
rigid body displacements.
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• The ensemble SE rect is an ensemble of rectangular random matrices for which
the mean value is a given rectangular matrix and which is constructed using
ensemble SEC

" . This ensemble is useful for the nonparametric stochastic mod-
eling of some uncertain coupling operators encountered, for instance, in fluid-
structure interaction and in vibroacoustics.

• The ensemble SE HT is a set of random functions with values in the set of the
complex matrices such that the real part and the imaginary part are positive-
definite random matrices that are constrained by an underlying Hilbert transform
induced by a causality property. This ensemble allows for a nonparametric
stochastic modeling in uncertainty quantification encountered, for instance, in
linear viscoelasticity.

9.1 Ensemble SEC
0 of Positive-Definite Random Matrices with a

Given Mean Value

The ensemble SEC
0 is a subset of all the positive-definite random matrices for which

the mean values are given and differ from the unit matrix (unlike to ensemble SGC
0 ).

This ensemble is constructed as a transformation of ensemble SGC
0 in keeping all

the mathematical properties of ensemble SGC
0 such as the positiveness [107].

9.1.1 Definition of Ensemble SEC
0

Any random matrix ŒA0� in ensemble SEC
0 is defined on the probability space

.�; T ;P/, is with values in M
C
n .R/ � M

S
n .R/, and is such that

EfŒA0�g D ŒA�; Eflog.detŒA0�/g D 	A0; j	A0 j < C1; (8.41)

in which the mean value ŒA� is a given matrix in M
C
n .R/.

9.1.2 Expression of ŒA0� as a Transformation of ŒG0� and Generator of
Realizations

Positive-definite mean matrix ŒA� is factorized (Cholesky) as

ŒA� D ŒLA�T ŒLA�; (8.42)

in which ŒLA� is an upper triangular matrix in Mn.R/. Taking into account Eq. (8.41)
and the definition of ensemble SGC

0 , any random matrix ŒA0� in ensemble SEC
0 is

written as

ŒA0� D ŒLA�T ŒG0� ŒLA�; (8.43)

in which the random matrix ŒG0� belongs to ensemble SGC
0 , with mean value

EfŒG0�g D ŒIn�, and for which the level of statistical fluctuations is controlled by
the hyperparameter ı defined by Eq. (8.15).
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Generator of realizations. For all � in �, the realization ŒG0.�/� of ŒG0� is
constructed as explained before. The realization ŒA0.�/� of random matrix ŒA0� is
calculated by ŒA0.�/� D ŒLA�T ŒG0.�/� ŒLA�.

Remark 1. It should be noted that the mean matrix ŒA� could also been written as
ŒA� D ŒA�1=2 ŒA�1=2 in which ŒA�1=2 is the square root of ŒA� in M

C
n .R/ and the

random matrix ŒA0� could then be written as ŒA0� D ŒA�1=2 ŒG0� ŒA�1=2.

9.1.3 Properties of Random Matrix ŒA0�

Any random matrix ŒA0� in ensemble SEC
0 is a second-order random variable,

EfkA0k2g � EfkA0k2
F g < C1; (8.44)

and its inverse ŒA0��1 exists almost surely and is a second-order random variable,

EfkŒA0��1k2g � EfkŒA0��1k2
F g < C1 : (8.45)

9.1.4 Covariance Tensor and Coefficient of Variation of Random
Matrix ŒA0�

The covariance Cjk;j 0k0 D Ef.ŒA0�jk �Ajk/.ŒA0�j 0k0 �Aj 0k0/g of random variables
ŒA0�jk and ŒA0�j 0k0 is written as

Cjk;j 0k0 D
ı2

n C 1

˚
Aj 0kAjk0 C Ajj 0Akk0

�
; (8.46)

and the variance �2
jk D Cjk;jk of random variable ŒA0�jk is

�2
jk D

ı2

n C 1

˚
A2

jk C Ajj Akk

�
: (8.47)

The coefficient of variation ıA0 of random matrix ŒA0� is defined by

ıA0 D

�
Efk A0 � A k2

F g

k A k2
F

� 1=2

: (8.48)

Since Efk A0 � A k2
F g D

Pn
j D1

Pn
kD1 �2

jk , we have

ıA0 D
ı

p
n C 1

�

1 C
.tr ŒA�/2

kAk2
F

� 1=2

: (8.49)

9.2 Ensemble SEC
" of Positive-Definite Random Matrices with a

Given Mean Value and an Arbitrary Positive-Definite Lower
Bound

The ensemble SEC
" is a set of positive-definite random matrices for which the mean

value is a given positive-definite matrix and for which there is an arbitrary lower
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bound that is a positive-definite matrix controlled by an arbitrary positive number
" that can be chosen as small as is desired. In this ensemble, the lower bound does
not correspond to a given matrix that results from a physical model. This ensemble
is then constructed as a transformation of ensemble SGC

" and has the same area of
use than ensemble SEC

0 for stochastic modeling in uncertainty quantification, but
for which a lower bound is required in the stochastic modeling for mathematical
reasons.

9.2.1 Definition of Ensemble SEC
"

For a fixed positive value of parameter " (generally chosen very small, as 10�6), any
random matrix ŒA� in ensemble SEC

" is defined on probability space .�; T ;P/, is
with values in M

C
n .R/ � M

S
n .R/, and is such that

ŒA� D ŒLA�T ŒG� ŒLA�; (8.50)

in which ŒLA� is the upper triangular matrix in Mn.R/ corresponding by the
Cholesky factorization ŒLA�T ŒLA� D ŒA� of the positive-definite mean matrix
ŒA� D EfŒA�g of random matrix ŒA�, and where the random matrix ŒG� belongs
to ensemble SGC

" , with mean value EfŒG�g D ŒIn� and for which the coefficient of
variation ıG is defined by Eq. (8.24) as a function of the hyperparameter ı defined by
Eq. (8.15), which allows the level of statistical fluctuations to be controlled. It should
be noted that for " D 0, ŒG� D ŒG0� that yields ŒA� D ŒA0�, and consequently, the
ensemble SEC

" coincides with SEC
0 (if " D 0).

Generator of realizations. For all � in �, the realization ŒG.�/� of ŒG� is
constructed as explained before. The realization ŒA.�/� of random matrix ŒA� is
calculated by ŒA.�/� D ŒLA�T ŒG.�/� ŒLA�.

9.2.2 Properties of Random Matrix ŒA�

Almost surely, we have

ŒA� � ŒA`� D
1

1 C "
ŒA0� > 0; (8.51)

in which ŒA0� is defined by Eq. (8.43) and where the lower bound is the positive-
definite matrix ŒA`� D c"ŒA� with c" D "=.1 C "/, and we have the following
properties:

EfŒA�g D ŒA�; Eflog.det.ŒA� � ŒA`�//g D 	A; j	Aj < C1; (8.52)

with 	A D 	A0 � n log.1 C "/. For all " > 0, random matrix ŒA� in ensemble SEC
" is

a second-order random variable,

EfkAk2g � EfkAk2
F g < C1; (8.53)

and the bilinear form bA.X; Y/ D ..ŒA� X; Y// on L2
n � L2

n is such that

bA.X; X/ � c" ..ŒA� X; X// D c"jjjŒLA� Xjjj2 : (8.54)
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Random matrix ŒA� is invertible almost surely and its inverse ŒA��1 is a second-order
random variable,

EfkŒA��1k2g � EfkŒA��1k2
F g < C1 : (8.55)

The coefficient of variation ıA of random matrix ŒA�, defined by

ıA D

�
Efk A � A k2

F g

k A k2
F

� 1=2

: (8.56)

is such that

ıA D
1

1 C "
ıA0 ; (8.57)

in which ıA0 is defined by Eq. (8.49).

9.3 Ensemble SEC0 of Semipositive-Definite Random Matrices
with a Given Semipositive-Definite Mean Value

The ensemble SEC0 is similar to ensemble SGC
0 but is constituted of semipositive-

definite .m � m/ real random matrices ŒA� for which the mean value is a given
semipositive-definite matrix. This ensemble is constructed [110] as a transformation
of positive-definite .n � n/ real random matrices ŒG0� belonging to ensemble SGC

0 ,
with n < m.

9.3.1 Algebraic Structure of the Random Matrices in SEC0

The ensemble SEC0 is constituted of random matrix ŒA� with values in the set
M

C0
m .R/ such that the null space of ŒA�, denoted as null.ŒA�/, is deterministic and is

a subspace of Rm with a fixed dimension �null < m. This deterministic null space is
defined as the null space of the mean value ŒA� D EfŒA�g that is given in M

C0
m .R/.

We then have

ŒA� 2 M
C0
m .R/; dim null.ŒA�/ D �null < m; null.ŒA�/ D null.ŒA�/ :

(8.58)

There is a rectangular matrix ŒRA� in Mn;m.R/, with n D m � �null, such that

ŒA� D ŒRA�T ŒRA� : (8.59)

Such a factorization is performed using classical algorithms [47].

9.3.2 Definition and Construction of Ensemble SEC0

The ensemble SEC0 is then defined as the subset of all the second-order random
matrices ŒA�, defined on probability space .�; T ;P/, with values in the set MC0

m .R/,
which are written as
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ŒA� D ŒRA�T ŒG� ŒRA�; (8.60)

in which ŒG� is a positive-definite symmetric .n � n/ real random matrix belonging
to ensemble SEC

" , with mean value EfŒG�g D ŒIn� and for which the coefficient of
variation ıG is defined by Eq. (8.24) as a function of the hyperparameter ı defined
by Eq. (8.15), which allows the level of statistical fluctuations to be controlled.

Generator of realizations. For all � in �, the realization ŒG.�/� of ŒG� is
constructed as explained before. The realization ŒA.�/� of random matrix ŒA� is
calculated by ŒA.�/� D ŒRA�T ŒG.�/� ŒRA�.

9.4 Ensemble SE rect of Rectangular Random Matrices with a
Given Mean Value

The ensemble SE rect is an ensemble of rectangular random matrices for which the
mean value is a given rectangular matrix and which is constructed with the MaxEnt.
Such an ensemble depends on the available information and consequently, is not
unique. We present hereinafter the construction proposed in [110], which is based
on the use of a fundamental algebraic property for rectangular real matrices, which
allows ensemble SEC

" to be used.

9.4.1 Decomposition of a Rectangular Matrix
Let ŒA� be a rectangular real matrix in Mm;n.R/ for which its null space is reduced
to f0g (ŒA� x D 0 yields x D 0). Such a rectangular matrix ŒA� can be written as

ŒA� D ŒU � ŒT �; (8.61)

in which the square matrix ŒT � and the rectangular matrix ŒU � are such that

ŒT � 2 M
C
n .R/ and ŒU � 2 Mm;n.R/ such that ŒU �T ŒU � D ŒIn� : (8.62)

The construction of the decomposition defined by Eq. (8.61) can be performed, for
instance, by using the singular value decomposition of ŒA�.

9.4.2 Definition of Ensemble SE rect

Let ŒA� be a given rectangular real matrix in Mm;n.R/ with a null space reduced to
f0g and whose decomposition is given by Eqs. (8.61) and (8.62). Since symmetric
real matrix ŒT � is positive definite, there is an upper triangular matrix ŒLT � in
Mn.R/ such that ŒT � D ŒLT �T ŒLT � that corresponds to the Cholesky factorization
of matrix ŒT �.

A random rectangular matrix ŒA� belonging to ensemble SE rect is a second-order
random matrix defined on probability space .�; T ;P/, with values in Mm;n.R/,
whose mean value is the rectangular matrix ŒA� D EfŒA�g, and which is written as

ŒA� D ŒU � ŒT�; (8.63)
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in which the random .n � n/ matrix ŒT� belongs to ensemble SEC
" and is then

written as

ŒT� D ŒLT �T ŒG� ŒLT � : (8.64)

The random matrix ŒG� belongs to ensemble SGC
" in which ŒG� is a positive-definite

symmetric .n�n/ real random matrix belonging to ensemble SEC
" , with mean value

EfŒG�g D ŒIn� and for which the coefficient of variation ıG is defined by Eq. (8.24)
as a function of hyperparameter ı defined by Eq. (8.15), which allows the level of
statistical fluctuations to be controlled.

Generator of realizations. For all � in �, the realization ŒG.�/� of ŒG� is
constructed as explained before. The realization ŒA.�/� of random matrix ŒA� is
calculated by ŒA.�/� D ŒU �ŒLT �T ŒG.�/� ŒLT �.

9.5 Ensemble SE HT of a Pair of Positive-Definite Matrix-Valued
Random Functions Related by a Hilbert Transform

The ensemble SE HT is a set of random functions ! 7! ŒZ.!/� D ŒK.!/� C

i! ŒD.!/� indexed by R with values in a subset of all the .n � n/ complex
matrices such that ŒK.!/� and ŒD.!/� are positive-definite random matrices that
are constrained by an underlying Hilbert transform induced by a causality property
[115].

9.5.1 Defining the Deterministic Matrix Problem
We consider a family of complex .n�n/ matrices ŒZ.!/� depending on a parameter
! in R, such that ŒZ.!/� D i! ŒD.!/� C ŒK.!/� where i is the pure imaginary
complex number (i D

p
�1) and where, for all ! in R,

(i) ŒD.!/� and ŒK.!/� belong to M
C
n .R/.

(ii) ŒD.�!/� D ŒD.!/� and ŒK.�!/� D ŒK.!/�.
(iii) Matrices ŒD.!/� and ŒK.!/� are such that

! ŒD.!/� D ŒbN I .!/�; ŒK.!/� D ŒK0� C ŒbN R.!/� : (8.65)

The real matrices ŒbN R.!/� and ŒbN I .!/� are the real part and the imaginary part
of the .n � n/ complex matrix ŒbN .!/� D

R
R

e�i!t ŒN .t/� dt that is the Fourier
transform of an integrable function t 7! ŒN .t/� from R into Mn.R/ such that
ŒN .t/� D Œ0� for t < 0 (causal function). Consequently, ! 7! ŒbN R.!/� and
! 7! ŒbN I .!/� are continuous functions on R, which goes to Œ0� as j!j ! C1

and which are related by the Hilbert transform [90],

ŒbN R.!/� D
1

�
p.v

Z C1

�1

1

! � !0
ŒbN I .!0/� d!0; (8.66)
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in which p.v. denotes the Cauchy principal value. The real matrix ŒK0� belongs
to M

C
n .R/ and can be written as

ŒK0� D ŒK.0/� C
2

�

Z C1

0

ŒD.!/� d! D lim
j!j!C1

ŒK.!/�; (8.67)

and consequently, we have the following equation:

ŒK.!/� D ŒK.0/� C
!

�
p.v

Z C1

�1

1

! � !0
ŒD.!0/� d!0 : (8.68)

9.5.2 Construction of a Nonparametric Stochastic Model
The construction of a nonparametric stochastic model then consists in modeling, for
all real !, the positive-definite symmetric .n � n/ real matrices ŒD.!/� and ŒK.!/�

by random matrices ŒD.!/� and ŒK.!/� such that

EfŒD.!/�g D ŒD.!/�; EfŒK.!/�g D ŒK.!/�; (8.69)

ŒD.�!/� D ŒD.!/�; ŒK.�!/� D ŒK.!/� : (8.70)

For ! � 0, the construction of the stochastic model of the family of random matrices
ŒD.!/� and ŒK.!/� is carried out as follows:

(i) Constructing the family ŒD.!/� of random matrices such that, for fixed !,
ŒD.!/� D ŒLD.!/�T ŒGD� ŒLD.!/�, where ŒLD.!/� is the upper triangular
real .n � n/ matrix resulting from the Cholesky decomposition of the positive-
definite symmetric real matrix ŒD.!/� D ŒLD.!/�T ŒLD.!/� and where ŒGD�

is a .n � n/ random matrix that belongs to ensemble SGC
" , for which the

hyperparameter ı is rewritten as ıD . Hyperparameter ıD allows the level of
uncertainties to be controlled for random matrix ŒD.!/�.

(ii) Constructing the random matrix ŒK.0/� D ŒLK.0/�
T ŒGK.0/� ŒLK.0/� in

which ŒLK.0/� is the upper triangular real .n � n/ matrix resulting from
the Cholesky decomposition of the positive-definite symmetric real matrix
ŒK.0/� D ŒLK.0/�

T ŒLK.0/� and where ŒGK.0/� is a .n � n/ random matrix that
belongs to ensemble SGC

" , for which the hyperparameter ı is rewritten as
ıK . Hyperparameter ıK allows the level of uncertainties to be controlled for
random matrix ŒK.0/�.

(iii) For fixed ! � 0, constructing the random matrix ŒK.!/� using the
equation,

ŒK.!/� D ŒK.0/� C
!

�
p.v

Z C1

�1

1

! � !0
ŒD.!0/� d!0; (8.71)
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or equivalently,

ŒK.!/� D ŒK.0/� C
2 !2

�
p.v

Z C1

0

1

!2 � !02
ŒD.!0/� d!0 : (8.72)

The last equation can also be rewritten as the following equation recommended
for computation (because the singularity in u D 1 is independent of !):

ŒK.!/� D ŒK.0/� C
2 !

�
p.v

Z C1

0

1

1 � u2
ŒD.!u/� du;

D ŒK.0/� C
2 !

�
lim

!0

�Z 1�


0

C

Z C1

1C


�

: (8.73)

(iv) For fixed ! < 0, ŒK.!/� is calculated using the even property, ŒK.!/� D

ŒK.�!/�. With such a construction, it can be verified that, for all ! � 0,
ŒK.!/� is a positive-definite random matrix. The following sufficient condition
is proved in [115]. If for all real vector y D .y1; : : : ; yn/, and if almost surely
the random function ! 7!< ŒD.!/� y; y > is decreasing in ! for ! � 0, then,
for all ! � 0, ŒK.!/� is a positive-definite random matrix.

10 MaxEnt as a Numerical Tool for Constructing Ensembles of
Random Matrices

In the previous sections, we have presented fundamental ensembles of random
matrices constructed with the MaxEnt principle. For these fundamental ensembles
the optimization problem defined by Eq. (8.8) has been solved exactly, what has
allowed us to explicitly construct the fundamental ensembles of random matrices
and also to explicitly describe the generators of realizations. This was possible
thanks to the type of the available information that was used to define the admissible
set (see Eq. (8.7)). In many cases, the available information does not allow the
Lagrange multipliers to be explicitly calculated and, thus, does not allow for solving
explicitly the optimization problem defined by Eq. (8.8).

In this framework of the nonexistence of an explicit solution for constructing the
pdf of random matrices using the MaxEnt principle under the constraints defined
by the available information, the first difficulty consists of the computation of
the Lagrange multipliers with an adapted algorithm that must be robust for the
high dimension. In addition, the computation of the Lagrange multipliers requires
the calculation of integrals in high dimension, which can be estimated only by
the Monte Carlo method. Therefore a generator of realizations of the pdf, which
is parameterized by the unknown Lagrange multipliers that are currently being
calculated, must be constructed. This problem is particularly difficult for the high
dimension. An advanced and efficient methodology is presented hereinafter for the
case of the high dimension [112] (thus allows also for treating the cases of the small
dimension and then for any dimension).
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10.1 Available Information and Parameterization

Let ŒA� be a random matrix defined on the probability space .�; T ;P/, with values
in any subset Sn of MS

n .R/, possibly with Sn D M
S
n .R/. For instance, Sn can be

M
C
n .R/. Let pŒA� be the pdf of ŒA� with respect to the volume element d SA on

M
S
n .R/ (see Eq. (8.1). The support, denoted as supp pŒA� of pdf ŒA�, is Sn. Thus,

pŒA�.ŒA�/ D 0 for ŒA� not in Sn, and the normalization condition is written as
Z

Sn

pŒA�.ŒA�/ d SA D 1 : (8.74)

The available information is defined by the following equation on R
�:

EfG.ŒA�/g D f; (8.75)

in which f D .f1; : : : ; f�/ is a given vector in R
� with � � 1, where ŒA� 7!

G.ŒA�/ D .G1.ŒA�/; : : : ;G�.ŒA�// is a given mapping from Sn into R
�, and where

E is the mathematical expectation. For instance, mapping G can be defined by the
mean value EŒA� D Œ A � in which Œ A � is a given matrix in Sn and by the condition
Eflog.detŒA�/g D cA in which jcAj < C1. A parameterization of ensemble Sn is
introduced such that any matrix ŒA� in Sn is written as

ŒA� D ŒA.y/�; (8.76)

in which y D .y1; : : : ; yN / is a vector in R
N and where y 7! ŒA.y/� is a given

mapping from R
N into Sn. Let y 7! g.y/ D .g1.y/; : : : ; g�.y// be the mapping

from R
N into R

� such that

g.y/ D G.ŒA.y/�/; (8.77)

Let Y D .Y1; : : : ; YN / be a R
N -valued second-order random variable for which the

probability distribution on R
N is represented by the pdf y 7! pY.y/ from R

N into
R

C D Œ0; C1Œ with respect to dy D dy1 : : : dyN . The support of function pY is
R

N . Function pY satisfies the normalization condition:
Z

RN

pY.y/ dy D 1 : (8.78)

For random vector Y, the available information is deduced from Eqs. (8.75) to (8.77)
and is written as

Efg.Y/g D f : (8.79)

10.1.1 Example of Parameterization
If Sn D M

C
n .R/, then the parameterization, ŒA� D ŒA.y/�, of ŒA� can be constructed

in several ways. In order to obtain good properties for the random matrix ŒA� D

ŒA.Y/� in which Y is a R
N -valued second-order random variable, deterministic

matrix ŒA� is written as
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ŒA� D ŒLA�T ."ŒIn� C ŒA0�/ ŒLA�;

with " > 0, where ŒA0� belongs to M
C
n .R/ and where ŒLA� is the upper triangular

.n � n/ real matrix corresponding to the Cholesky factorization ŒLA�T ŒLA� D ŒA�

of the mean matrix ŒA� D EfŒA�g that is given in M
C
n .R/. Positive-definite matrix

ŒA0� can be written in two different forms (inducing different properties for random
matrix ŒA�):

(i) Exponential-type representation [54, 86]. Matrix ŒA0� is written as ŒA0� D

exp
M

.ŒG�/ in which the matrix ŒG� belongs to M
S
n .R/ and where exp

M
denotes

the exponential of the symmetric real matrices.
(ii) Square-type representation [86, 111]. Matrix ŒA0� is written as ŒA0� D ŒL�T ŒL�

in which ŒL� belongs to the set UL of all the upper triangular .n�n/ real matrices
with positive diagonal entries and where ŒL� D L.ŒG�/ in which L is a given
mapping from M

S
n .R/ into UL.

For this two representations, the parameterization is constructed in taking for y, the
N D n.n C 1/=2 independent entries fŒG�jk; 1 � j � k � ng of symmetric
real matrix ŒG�. Then for all y in R

N , ŒA� D ŒA.y/� is in Sn, that is to say, is a
positive-definite matrix.

10.2 Construction of the pdf of Random Vector Y Using the
MaxEnt

The unknown pdf pY with support RN , whose normalization condition is given
by Eq. (8.78), is constructed using the MaxEnt principle for which the available
information is defined by Eq. (8.79). This construction is detailed in the next
Sect. 11.

11 MaxEnt for Constructing the pdf of a Random Vector

Let Y D .Y1; : : : ; YN / be a R
N -valued second-order random variable for which the

probability distribution PY.dy/ on R
N is represented by the pdf y 7! pY.y/ from

R
N into R

C D Œ0; C1Œ with respect to dy D dy1 : : : dyN . The support of function
pY is RN . Function pY satisfies the normalization condition

Z

RN

pY.y/ dy D 1 : (8.80)

The unknown pdf pY is constructed using the MaxEnt principle for which the
available information is

Efg.Y/g D f; (8.81)
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in which y 7! g.y/ D .g1.y/; : : : ; g�.y// is a given mapping from R
N into R

�.
Equation (8.81) is rewritten as

Z

RN

g.y/ pY.y/ dy D f : (8.82)

Let Cp be the set of all the integrable positive-valued functions y 7! p.y/ on R
N ,

whose support is R
N . Let C be the set of all the functions p belonging to Cp and

satisfying the constraints defined by Eqs. (8.80) and (8.82),

C D

�

p 2 Cp;

Z

RN

p.y/ dy D 1;

Z

RN

g.y/ p.y/ dy D f
�

: (8.83)

The maximum entropy principle [58] consists in constructing pY in C such that

pY D arg max
p2C

E.p/; (8.84)

in which the Shannon entropy E.p/ of p is defined [103] by

E.p/ D �

Z

RN

p.y/ log.p.y// dy; (8.85)

where log is the Neperian logarithm. In order to solve the optimization problem
defined by Eq. (8.84), a Lagrange multiplier �0 2 R

C (associated with the constraint
defined by Eq. (8.80)) and a Lagrange multiplier � 2 C� � R

� (associated with the
constraint defined by Eq. (8.82)) are introduced, in which the admissible set C� is
defined by

C� D f� 2 R
�;

Z

RN

exp.� < �; g.y/ >/ dy < C1g : (8.86)

The solution of Eq. (8.84) can be written (see the proof in the next section) as

pY.y/ D csol
0 exp.� < �sol; g.y/ >/; 8y 2 R

N ; (8.87)

in which the normalization constant csol
0 is written as csol

0 D exp.��sol
0 / and where

the method for calculating .�sol
0 ; �sol/ 2 R

C� C� is presented in the next two
sections.

11.1 Existence and Uniqueness of a Solution to the MaxEnt

The introduction of the Lagrange multipliers �0 and � and the analysis of existence
and uniqueness of the solution of the MaxEnt corresponding to the solution of the
optimization problem defined by Eq. (8.84) are presented hereafter [53].
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• The first step of the proof consists in assuming that there exists a unique
solution (denoted as pY) to the optimization problem defined by Eq. (8.84). The
functionals

p 7!

Z

RN

p.y/ dy � 1 and p 7!

Z

RN

g.y/ p.y/ dy � f; (8.88)

are continuously differentiable on Cp and are assumed to be such that pY is a
regular point (see p. 187 of [68]). The constraints appearing in set C are taken into
account by using the Lagrange multiplier method. Using the Lagrange multipliers
�0 2 R

C and � 2 C� defined by Eq. (8.86), the Lagrangian L can be written, for
all p in Cp , as

L.pI �0; �/ D E.p/ � .�0 � 1/

�Z

RN

p.y/ dy � 1

�

� <�;

Z

RN

g.y/p.y/ dy � f >:

(8.89)

From Theorem 2, p. 188, of [68], it can be deduced that there exists .�sol
0 ; �sol/

such that the functional .p; �0; �/ 7! L.pI �0; �/ is stationary at pY (given by
Eq. (8.87)) for �0 D �sol

0 and � D �sol.
• The second step deals with the explicit construction of a family Fp of pdf indexed

by .�0; �/, which renders p 7! L.pI �0; �/ extremum. It is further proved that
this extremum is unique and turns out to be a maximum. For any .�0; �/ fixed
in R

C � C�, it can first be deduced from the calculus of variations (Theorem
3.11.16, p. 341, in [101]) that the aforementioned extremum, denoted by p�0;�,
is written as

p�0;�.y/ D exp.��0� < �; g.y/ >/; 8y 2 R
N : (8.90)

For any fixed value of �0 in R
C and � in C�, the uniqueness of this extremum

directly follows from the uniqueness of the solution for the Euler equation that
is derived from the calculus of variations. Upon calculating the second-order
derivative with respect to p, at point p�0;�, of the Lagrangian, it can be shown
that this extremum is, indeed, a maximum.

• In a third step, using Eq. (8.90), it is proved that if there exists .�sol
0 ; �sol/ in

R
C � C� such that the solution of the constraint equations

R
RN p�0;�.y/ dy D 1

and
R
RN g.y/ p�0;�.y/ dy D f, in .�0; �/ and then .�sol

0 ; �sol/ is unique. These
constraints are rewritten as

Z

RN

exp.��0� < �; g.y/ >/ dy D 1 : (8.91)
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Z

RN

g.y/ exp.��0� < �; g.y/ >/ dy D f : (8.92)

Introducing the notations,

ƒ D .�0; �/ and ƒsol D .�sol
0 ; �sol/ that belong to Cƒ D R

C � C� � R
1C�;

F D .1; f/ and G.y/ D .1; g.y// that belong to R
1C�;

these constraint equations are written as

Z

RN

G.y/ exp.� < ƒ; G.y/ >/ dy D F : (8.93)

It is assumed that the optimization problem stated by Eq. (8.84) is well posed in
the sense that the constraints are algebraically independent, that is to say, that there
exists a bounded subset S of RN , with

R
S dy > 0, such that for any nonzero vector

v in R
1C�,

Z

S
<v; G.y/>2 dy > 0 : (8.94)

Let ƒ 7! H.ƒ/ be the function defined by

H.ƒ/ D<ƒ; F > C

Z

RN

exp.� <ƒ; G.y/>/ dy : (8.95)

The gradient rH.ƒ/ of H.ƒ/ with respect to ƒ is written as

rH.ƒ/ D F �

Z

RN

G.y/ exp.� < ƒ; G.y/ >/ dy; (8.96)

so that any solution of rH.ƒ/ D 0 satisfies Eq. (8.93) (and conversely). It is
assumed that H admits at least one critical point. The Hessian matrix ŒH 00.ƒ/�

is written as

ŒH 00.ƒ/� D

Z

RN

G.y/ ˝ G.y/ exp.� < ƒ; G.y/ >/ dy: (8.97)

Since S � R
N , it turns out that, for any nonzero vector v in R

1C�,

< ŒH 00.ƒ/�v; v > �

Z

S
<v; G.y/>2 exp.� <ƒ; G.y/>/ dy > 0; (8.98)

Therefore, function ƒ 7! H.ƒ/ is strictly convex that ensures the uniqueness
of the critical point of H (should it exist). Under the aforementioned assumption
of algebraic independence for the constraints, it follows that if ƒsol (such that
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the constraint defined by Eq. (8.93) is fulfilled) exists, then ƒsol is unique and
corresponds to the solution of the following optimization problem:

ƒsol D arg min
ƒ 2Cƒ

H.ƒ/; (8.99)

where H is the strictly convex function defined by Eq. (8.95). The unique solution
pY of the optimization problem defined by Eq. (8.84) is the given by Eq. (8.87) with
.�sol

0 ; �sol/ D ƒsol.

11.2 Numerical Calculation of the Lagrange Multipliers

When there is no explicit solution .�sol
0 ; �sol/ D ƒsol of Eq. (8.93) in ƒ, ƒsol

must be numerically calculated and the numerical method used must be robust
for the high dimension. The numerical method could be based on the optimization
problem defined by Eq. (8.99). Unfortunately, with such a formulation, the constant
of normalization, c0 D exp.��0/, is directly involved in the numerical calculations,
what is not robust in high dimension. The numerical method proposed hereinafter
[11] is based on the minimization of the convex objective function introduced in [1].
Using Eqs. (8.80) and (8.87), pdf pY can be rewritten as

pY.y/ D c0.�sol/ exp.� < �sol; g.y/ >/; 8y 2 R
N ; (8.100)

in which c0.�/ is defined by

c0.�/ D

�Z

RN

exp.� < �; g.y/ >/ dy
� �1

: (8.101)

Since exp.��0/ D c0.�0/, and taking into account Eq. (8.101), the constraint
equation defined by Eq. (8.92) can be rewritten as

Z

RN

g.y/ c0.�/ exp.� < �; g.y/ >/ dy D f : (8.102)

The optimization problem defined by Eq. (8.99), which allows for calculating
.�sol

0 ; �sol/ D ƒsol, is replaced by the more convenient optimization problem that
allows �sol to be computed,

�sol D arg min
� 2C��R�


 .�/; (8.103)

in which the objective function 
 is defined by


 .�/ D< �; f > � log.c0.�// : (8.104)
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Once �sol is calculated, csol
0 is given by csol

0 D c0.�sol/. Let fY�; � 2 C�g be the
family of random variables with values in R

N , for which pdf pY�
is defined, for all

� in C�, by

pY�
.y/ D c0.�/ exp.� < �; g.y/ >/; 8y 2 R

N : (8.105)

The gradient vector r
 .�/ and the Hessian matrix Œ
 00.�/� of function � 7! 
 .�/

can be written as

r
 .�/ D f � Efg.Y�/g; (8.106)

Œ
 00.�/� D Efg.Y�/ g.Y�/T g � Efg.Y�/g Efg.Y�/gT : (8.107)

Matrix Œ
 00.�/� is thus the covariance matrix of the random vector g.Y�/ and is pos-
itive definite (the constraints have been assumed to be algebraically independent).
Consequently, function � 7! 
 .�/ is strictly convex and reaches its minimum
for �sol which is such that r
 .�sol/ D 0. The optimization problem defined by
Eq. (8.103) can be solved using any minimization algorithm. Since function 


is strictly convex, the Newton iterative method can be applied to the increasing
function � 7! r
 .�/ for searching �sol such that r
 .�sol/ D 0. This iterative
method is not unconditionally convergent. Consequently, an under-relaxation is
introduced and the iterative algorithm is written as

�`C1 D �` � ˛ Œ
 00.�`/��1 r
 .�`/; (8.108)

in which ˛ belongs to Œ0; 1� in order to ensure the convergence. At each iteration `,
the error is calculated by

err.`/ D
kf � Efg.Y�` /gk

kfk
D

kr
 .�`/k

kfk
; (8.109)

in order to control the convergence. The performance of the algorithm depends on
the choice of the initial condition that can be found in [11]. For high dimension
problem, the mathematical expectations appearing in Eqs. (8.106), (8.107), and
(8.109) are calculated using a Markov chain Monte Carlo (MCMC) method that
does not require the calculation of the normalization constant c0.�/ in the pdf
defined by Eq. (8.105).

11.3 Generator for Random Vector Y� and Estimation of the
Mathematical Expectations in High Dimension

For � fixed in C� � R
�, the pdf pY�

on R
N of the R

N -valued random variable
Y� is defined by Eq. (8.105). Let w be a given mapping from R

N into an Euclidean
space such that Efw.Y�/g D

R
RN w.y/ pY�

dy is finite. For instance, w can be
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such that w.Y�/ D g.Y�/ or w.Y�/ D g.Y�/ g.Y�/T . These two choices allow
for calculating the mathematical expectation in high dimension, Efg.Y�/g and
Efg.Y�/ g.Y�/T g, which are required for computing the gradient and the Hessian
defined by Eqs. (8.106) and (8.107).

The estimation of Efw.Y�/g requires a generator of realizations of random
vector Y�, which is constructed using the Markov chain Monte Carlo method
(MCMC) [59, 95, 117]. With the MCMC method, the transition kernel of the
homogeneous Markov chain can be constructed using the Metropolis-Hastings
algorithm [57, 75] (that requires the definition of a good proposal distribution), the
Gibbs sampling [42] (that requires the knowledge of the conditional distribution),
or the slice sampling [83] (that can exhibit difficulties related to the general shape of
the probability distribution, in particular for multimodal distributions). In general,
these algorithms are efficient, but can also be not efficient if there exist attraction
regions which do not correspond to the invariant measure under consideration and
tricky even in high dimension. These cases cannot easily be detected and are time
consuming.

We refer the reader to the references given hereinbefore for the usual MCMC
methods, and we present after a more advanced method that is very robust in
high dimension, which have been introduced in [112] and used, for instance, in
[11, 51]. The method presented looks like to the Gibbs approach but corresponds
to a more direct construction of a random generator of realizations for random
variable Y� whose probability distribution is pY�

dy. The difference between
the Gibbs algorithm and the proposed algorithm is that the convergence in the
proposed method can be studied with all the mathematical results concerning the
existence and uniqueness of Itô stochastic differential equation (ISDE). In addition,
a parameter is introduced which allows the transient part of the response to be killed
in order to get more rapidly the stationary solution corresponding to the invariant
measure. Thus, the construction of the transition kernel by using the detailed balance
equation is replaced by the construction of an ISDE, which admits pY�

dy (defined
by Eq. (8.105)) as a unique invariant measure. The ergodic method or the Monte
Carlo method is used for estimating Efw.Y�/g.

11.3.1 Random Generator and Estimation of Mathematical
Expectations

It is assumed that � is fixed in C� � R
�, and for simplifying the notation, � is

omitted. Let u 7! ˚.u/ be the function from R
N into R defined by

˚.u/ D<�; g.u/>; (8.110)

Let f.U.r/; V.r//; r 2 R
Cg be the Markov stochastic process defined on the

probability space .�; T ;P/, indexed by R
C D Œ0; C1Œ, with values in R

N � R
N ,

satisfying, for all r > 0, the following ISDE with initial conditions:
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dU.r/ D V.r/ dr; (8.111)

dV.r/ D �ru˚.U.r// dr �
1

2
f0V.r/ dr C

p
f0 dW.r/; (8.112)

U.0/ D u0; V.0/ D v0 a:s:; (8.113)

in which u0 and v0 are given vectors in R
N (that will be taken as zero in the

application presented later) and where W D .W1; : : : ; WN / is the normalized
Wiener process defined on .�; T ;P/ indexed by R

C with values in R
N . The matrix-

valued autocorrelation function ŒRW.r; r 0/� D EfW.r/ W.r 0/T g of W is then
written as ŒRW.r; r 0/� D min.r; r 0/ ŒIn�. In Eq. (8.112), the free parameter f0 > 0

allows a dissipation term to be introduced in the nonlinear second-order dynamical
system (formulated in the Hamiltonian form with an additional dissipative term) in
order to kill the transient part of the response and consequently to get more rapidly
the stationary solution corresponding to the invariant measure. It is assumed that
function g is such that function u 7! ˚.u/ (i) is continuous on R

N , (ii) is such
that u 7! kru˚.u/k is a locally bounded function on R

N (i.e., is bounded on all
compact set in R

N ), and (iii) is such that

inf
kuk>R

˚.u/ ! C1 if R ! C1; (8.114)

inf
u2Rn

˚.u/ D ˚min with ˚min 2 R; (8.115)

Z

Rn

kru˚.u/k e�˚.u/ du < C1 : (8.116)

Under hypotheses (i) to (iii), and using Theorems 4 to 7 in pages 211 to 216 of
Ref. [105], in which the Hamiltonian is taken as H.u; v/ D kvk2=2 C ˚.u/, and
using [33, 62] for the ergodic property, it can be deduced that the problem defined
by Eqs. (8.111), (8.112), and (8.113) admits a unique solution. This solution is a
second-order diffusion stochastic process f.U.r/; V.r//, r 2 R

Cg, which converges
to a stationary and ergodic diffusion stochastic process f.Ust.rst/, Vst.rst//; rst�0g,
when r goes to infinity, associated with the invariant probability measure
Pst.du; dv/ D �st.u; v/ du dv. The probability density function .u; v/ 7! �st.u; v/

on R
N � R

N is the unique solution of the steady-state Fokker-Planck equation
associated with Eqs. (8.111)–(8.112) and is written (see pp. 120 to 123 in [105]), as

�st.u; v/ D cN exp

�

�
1

2
kvk2 � ˚.u/

�

; (8.117)

in which cN is the constant of normalization. Equations (8.105), (8.110), and (8.117)
yield

pY�
.y/ D

Z

RN

�st.y; v/ dv; 8 y 2 R
N : (8.118)
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Random variable Y� (for which the pdf pY�
is defined by Eq. (8.105)) can then be

written, for all fixed positive value of rst, as

Y� D Ust.rst/ D lim
r!C1

U.r/ in probability distribution : (8.119)

The free parameter f0 > 0 introduced in Eq. (8.112) allows a dissipation term to
be introduced in the nonlinear dynamical system for obtaining more rapidly the
asymptotic behavior corresponding to the stationary and ergodic solution associated
with the invariant measure. Using Eq. (8.119) and the ergodic property of stationary
stochastic process Ust yield

Efw.Y�/g D lim
R!C1

1

R

Z R

0

w.U.r; �// dr; (8.120)

in which, for � 2 �, U.	; �/ is any realization of U.

11.3.2 Discretization Scheme and Estimating the Mathematical
Expectations

A discretization scheme must be used for numerically solving Eqs. (8.111), (8.112),
and (8.113). For general surveys on discretization schemes for ISDE, we refer the
reader to [63, 118, 119] (among others). The present case, related to a Hamiltonian
dynamical system, has also been analyzed using an implicit Euler scheme in [120].
Hereinafter, we present the Störmer-Verlet scheme, which is an efficient scheme that
preserves energy for nondissipative Hamiltonian dynamical systems (see [56] for
reviews about this scheme in the deterministic case, and see [17] and the references
therein for the stochastic case).

Let M � 1 be an integer. The ISDE defined by Eqs. (8.111), (8.112), and (8.113)
is solved on the finite interval R D Œ0; .M � 1/ �r�, in which �r is the sampling
step of the continuous index parameter r . The integration scheme is based on the
use of the M sampling points rk such that rk D .k � 1/ �r for k D 1; : : : ; M . The
following notations are introduced: Uk D U.rk/, Vk D V.rk/, and Wk D W.rk//,
for k D 1; : : : ; M , with U1Du0, V1Dv0, and W1D0. Let f�WkC1DWkC1�Wk;

k D 1; : : : ; M �1g be the family of the independent Gaussian second-order centered
R

N -valued random variables such that Ef�WkC1 .�WkC1/T g D �r ŒIn�. For
k D 1; : : : ; M � 1, the Störmer-Verlet scheme yields

UkC 1
2 D Uk C

�r

2
Vk; (8.121)

VkC1 D
1 � b

1 C b
Vk C

�r

1 C b
LkC 1

2 C

p
f0

1 C b
�WkC1; (8.122)

UkC1 D UkC 1
2 C

�r

2
VkC1; (8.123)
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with the initial condition defined by (8.113), where b D f0 �r =4 and where LkC 1
2

is the R
N -valued random variable such that LkC 1

2 D �fru˚.u/g
uDUkC 1

2
.

For a given realization � in �, the sequence fUk.�/; k D 1; : : : ; M g is con-
structed using Eqs. (8.121), (8.122), and (8.123). The discretization of Eq. (8.120)
yields the following estimation of the mathematical expectation:

Efw.Y�/g D lim
M!C1

OwM ; OwM D
1

M � M0 C 1

MX

kDM0

w.Uk.�//; (8.124)

in which, for f0 fixed, the integer M0 > 1 is chosen to remove the transient part of
the response induced by the initial condition.

For details concerning the optimal choice of the numerical parameters, such as
M0, M , f0, �r , u0, and v0, we refer the reader to [11, 51, 54, 112].

12 Nonparametric Stochastic Model For Constitutive
Equation in Linear Elasticity

This section deals with a nonparametric stochastic model for random elasticity
matrices in the framework of the three-dimensional linear elasticity in continuum
mechanics, using the methodologies and some of the results that have been given
in the two previous sections: “Fundamental Ensembles for Positive-Definite Sym-
metric Real Random Matrices” and “MaxEnt as a Numerical Tool for Constructing
Ensemble of Random Matrices.” The developments given hereinafter correspond to
a synthesis of works detailed in [51, 53, 54].

From a continuum mechanics point of view, the framework is the 3D linear
elasticity of a homogeneous random medium (material) at a given scale. Let ŒeC�

be the random elasticity matrix for which the nonparametric stochastic model has
to be derived. Random matrix ŒeC� is defined on the probability space .�; T ;P/ and
is with values in M

C
n .R/ with n D 6. This matrix corresponds to the so-called

Kelvin’s matrix representation of the fourth-order symmetric elasticity tensor in 3D
linear elasticity [71]. The symmetry classes for a linear elastic material, that is to
say, the linear elastic symmetries, are [23] isotropic, cubic, transversely isotropic,
trigonal, tetragonal, orthotropic, monoclinic, and anisotropic. From a stochastic
modeling point of view, the random elasticity matrix ŒeC� satisfies the following
properties:

(i) Random matrix ŒeC� is assumed to have a mean value that belongs to M
C
n .R/,

but is, in mean, close to a given symmetry class induced by a material
symmetry, denoted as M sym

n .R/ and which is a subset of MC
n .R/,

ŒeC � D EfŒeC�g 2 M
C
n .R/ : (8.125)
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(ii) Random matrix ŒeC� admits a positive-definite lower bound ŒC`� belonging to
M

C
n .R/

ŒeC� � ŒC`� > 0 a:s : (8.126)

(iii) The statistical fluctuations of random elasticity matrix ŒeC� belong mainly to the
symmetry class, but can be more or less anisotropic with respect to the above
symmetry. The level of statistical fluctuations in the symmetry class must be
controlled independently of the level of statistical anisotropic fluctuations.

12.1 Positive-Definite Matrices Having a Symmetry Class

For the positive-definite symmetric .n � n/ real matrices, a given symmetry class
is defined by a subset M sym

n .R/ � M
C
n .R/ such that any matrix ŒM � exhibiting the

above symmetry then belongs to M
sym
n .R/ and can be written as

ŒM � D

NX

j D1

mj ŒE
sym
j �; m D .m1; : : : ; mN / 2 Cm � R

N ; ŒE
sym
j � 2 M

S
n .R/;

(8.127)

in which fŒE
sym
j �; j D 1; : : : ; N g is the matrix algebraic basis of M

sym
n .R/

(Walpole’s tensor basis [122]) and where the admissible subset Cm of RN is such
that

Cm D fm 2 R
N j

NX

j D1

mj ŒE
sym
j � 2 M

C
n .R/g : (8.128)

It should be noted that the basis matrices ŒE
sym
j � are symmetric matrices belonging

to M
S
n .R/, but are not positive definite, that is to say, do not belong to M

C
n .R/. The

dimension N for all material symmetry classes is 2 for isotropic, 3 for cubic, 5 for
transversely isotropic, 6 or 7 for trigonal, 6 or 7 for tetragonal, 9 for orthotropic,
13 for monoclinic, and 21 for anisotropic. The following properties are proved (see
[54, 122]):

(i) If ŒM � and ŒM 0� belong to M
sym
n .R/, then

ŒM � ŒM 0� 2 M
sym
n .R/; ŒM ��1 2 M

sym
n .R/; ŒM �1=2 2 M

sym
n .R/ :

(8.129)

(ii) Any matrix ŒN � belonging to M
sym
n .R/ can be written as

ŒN � D exp
M

.ŒN �/; ŒN � D

NX

j D1

yj ŒE
sym
j �; y D .y1; : : : ; yN / 2 R

N ;

(8.130)
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in which exp
M

is the exponential of symmetric real matrices. It should be
noted that matrix ŒN � is a symmetric real matrix but does not belong to
M

sym
n .R/ (because y is in R

N and therefore ŒN � is not a positive-definite
matrix).

12.2 Representation Introducing a Positive-Definite Lower Bound

Using Eq. (8.126), the representation of random elasticity matrix ŒeC� is written as

ŒeC� D ŒC`� C ŒC�; (8.131)

in which the lower bound is the deterministic matrix ŒC`� belonging to M
C
n .R/ and

where ŒC� D ŒeC� � ŒC`� is a random matrix with values in M
C
n .R/. The mean value

ŒC � D EfŒC�g of ŒC� is written as

ŒC � D ŒeC � � ŒC`� 2 M
C
n .R/; (8.132)

in which ŒfC � is defined by Eq. (8.125). Such a lower bound can be defined in two
ways:

(1) If some microstructural information is available, ŒC`� may be computed, either
by using some well-known micromechanics-based bounds (such as the Reuss
bound, for heterogeneous materials made up with ordered phases with determin-
istic properties) or by using a numerical approximation based on the realizations
of the stochastic lower bound obtained from computational homogenization and
invoking the Huet partition theorem (see the discussion in [49]).

(2) In the absence of such information, a simple a priori expression for ŒC`� can be
obtained as ŒC`� D �ŒfC � with 0 � � < 1, from which it can be deduced that
Œ C � D .1 � �/ŒfC � > 0.

12.3 Introducing Deterministic Matrices Œ A � and Œ S �

Let Œ A � be the deterministic matrix in M
sym
n .R/ defined by

Œ A � D P sym.Œ C �/; (8.133)

in which Œ C � 2 M
C
n .R/ is defined by Eq. (8.132) and where P sym is the projection

operator from M
C
n .R/ on M

sym
n .R/.

(i) For a given symmetry class with N < 21, if there is no anisotropic statistical
fluctuations, then the mean matrix Œ C � belongs to M

sym
n .R/ and consequently

Œ A � is equal to Œ C �.



264 C. Soize

(ii) If the class of symmetry is anisotropic (thus N D 21), then M
sym
n .R/ coincides

with M
C
n .R/ and again Œ A � is equal to the mean matrix Œ C � that belongs to

M
C
n .R/.

(iii) In general, for a given symmetry class with N < 21, and due to the presence of
anisotropic statistical fluctuations, the mean matrix Œ C � of random matrix ŒC�

belongs to M
C
n .R/ but does not belong to M

sym
n .R/. For this case, an invertible

deterministic .n � n/ real matrix Œ S � is introduced such that

Œ C � D ŒS�T Œ A � Œ S � : (8.134)

The construction of Œ S � is performed as follows. Let ŒLC � and ŒLA � be the
upper triangular real matrices with positive diagonal entries resulting from the
Cholesky factorization of matrices Œ C � and Œ A �,

Œ C � D ŒLC �T ŒLC �; Œ A � D ŒLA �T ŒLA � : (8.135)

Therefore, the matrix Œ S � is written as

Œ S � D ŒLA ��1 ŒLC � : (8.136)

It should be noted that for cases (i) and (ii), Eq. (8.136) shows that Œ S � D ŒIn�.

12.4 Nonparametric Stochastic Model for ŒC�

In order that the statistical fluctuations of random matrix ŒC� belong mainly to the
symmetry class M

sym
n .R/ and exhibit more or less some anisotropic fluctuations

around this symmetry class, and in order that the level of statistical fluctuations in
the symmetry class is controlled independently of the level of statistical anisotropic
fluctuation, the use of the nonparametric method leads us to introduce the following
representation:

ŒC� D Œ S �T ŒA�1=2 ŒG0� ŒA�1=2 Œ S �; (8.137)

in which:

(1) The deterministic .n � n/ real matrix Œ S � is defined by Eq. (8.136).
(2) ŒG0� belongs to ensemble SGC

0 of random matrices and models the anisotropic
statistical fluctuations. The mean value of random matrix ŒG0� is matrix ŒIn� (see
Eq. (8.13)). The level of the statistical fluctuations of ŒG0� is controlled by the
hyperparameter ı defined by Eq. (8.15).

(3) The random matrix ŒA�1=2 is the square root of a random matrix ŒA� with values
in M

sym
n .R/ � M

C
n .R/, which models the statistical fluctuations in thegiven
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symmetry class and which is statistically independent of random matrix ŒG0�.
The mean value of random matrix ŒA� is the matrix Œ A � defined by Eq. (8.133),

EfŒA�g D Œ A � 2 M
sym
n .R/ � M

C
n .R/ : (8.138)

The level of the statistical fluctuations of ŒA� is controlled by the coefficient of
variation ıA defined by

ıA D

�
Efk A � A k2

F g

k A k2
F

� 1=2

: (8.139)

Taking into account the statistical independence of A and G0 and taking the
mathematical expectation of the two members of Eq. (8.137) yield Eq. (8.134).

12.4.1 Remarks Concerning the Control of the Statistical Fluctuations
and the Limit Cases

(1) For a given symmetry class with N < 21, if the level of anisotropic statistical
fluctuations goes to zero, that is to say, if ı ! 0 what implies that ŒG0� goes
to ŒIn� (in probability distribution) and implies that Œ A � goes to Œ C � and thus
Œ S � goes to ŒIn�, then Eq. (8.137) shows that ŒC� goes to ŒA� (in probability
distribution), which is a random matrix with values in M

sym
n .R/.

(2) If the given symmetry class is anisotropic (N D 21) and ıA ! 0, then Œ A � goes
to the mean matrix Œ C �, Œ S � goes to ŒIn�, and ŒA� goes to Œ A � that goes to Œ C �

(in probability distribution). Then ŒC� goes to Œ C �1=2 ŒG0� Œ C �1=2, which is the
full anisotropic nonparametric stochastic modeling of ŒC�.

12.5 Construction of ŒA� Using the MaxEnt Principle

In this section, random matrix ŒA� that allows for describing the statistical fluctu-
ations in the class of symmetry M

sym
n .R/ with N < 21 is constructed using the

MaxEnt principle and, in particular, using all the results and notations introduced in
Sect. 10.

12.5.1 Defining the Available Information
Let pŒA� be the unknown pdf of random matrix ŒA�, with respect to volume
element d SA on M

S
n .R/ (see Eq. (8.1)), with values in the given symmetry class

M
sym
n .R/ � M

C
n .R/ � M

S
n .R/ with N < 21. The support, supp pŒA�, is the

subset Sn D M
sym
n .R/, and the normalization condition is given by Eq. (8.74). The

available information is defined by

EŒA� D ŒA�; Eflog.detŒA�/g D cA; jcAj < C1; (8.140)
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in which ŒA� is the matrix in Sn, defined by Eq. (8.133), and where the second
available information is introduced in order that pdf ŒA� 7! pŒA�.ŒA�/ decreases
toward zero when kAkF goes to zero. The constant cA that has no physical meaning
is re-expressed as a function of the hyperparameter ıA defined by Eq. (8.139).
This available information defines the vector f D .f1; : : : ; f�/ in R

� with � D

n.n C 1/=2 C 1 and defines the mapping ŒA� 7! G.ŒA�/ D .G1.ŒA�/; : : : ;G�.ŒA�//

from Sn into R
�, such that (see Eq. (8.75))

EfG.ŒA�/g D f : (8.141)

12.5.2 Defining the Parameterization
The objective is to construct the parameterization of ensemble Sn D M

sym
n .R/, such

that any matrix ŒA� in M
sym
n .R/ is written (see Eq. (8.76)) as

ŒA� D ŒA.y/�; (8.142)

in which y D .y1; : : : ; yN / is a vector in R
N and where y 7! ŒA.y/� is a

given mapping from R
N into M

sym
n .R/. Let Œ A �1=2 be the square root of matrix

Œ A � 2 M
sym
n .R/ � M

C
n .R/ that is defined by Eq. (8.133). Due to Eq. (8.129),

Œ A �1=2 belongs to M
sym
n .R/. Any matrix ŒA� in M

sym
n .R/ can then be written as

ŒA� D Œ A �1=2 ŒN � Œ A �1=2; (8.143)

in which, due to Eq. (8.129) and due to the invertibility of Œ A �1=2, ŒN � is a unique
matrix belonging to M

sym
n .R/. Using Eq. (8.130), matrix ŒN � has the following

representation:

ŒN � D exp
M

.ŒN .y/�/; ŒN .y/� D

NX

j D1

yj ŒE
sym
j �; y D .y1; : : : ; yN / 2 R

N ;

(8.144)

Consequently, Eqs. (8.143) and (8.144) define the parameterization ŒA� D ŒA.y/�.

12.5.3 Construction of ŒA� Using the Parameterization and Generator
of Realizations

The random matrix ŒA� with values in M
sym
n .R/ is then written

ŒA� D Œ A �1=2 ŒN� Œ A �1=2; (8.145)

in which ŒN� is the random matrix with values in M
sym
n .R/, which is written as

ŒN� D exp
M

.ŒN .Y/�/; ŒN .Y/� D

NX

j D1

Yj ŒE
sym
j �; (8.146)
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in which Y D .Y1; : : : ; YN / is the random vector with values in R
N whose pdf pY

on R
N and the generator of realizations have been detailed in Sect. 10. Since ŒN� can

be written as ŒN� D Œ A ��1=2 ŒA� Œ A ��1=2, and since EŒA� D ŒA� (see Eq. (8.140)), it
can be deduced that

EfŒN�g D ŒIn� : (8.147)

13 Nonparametric Stochastic Model of Uncertainties in
Computational Linear Structural Dynamics

The nonparametric method for stochastic modeling of uncertainties has been
introduced in [106,107] to take into account both the model-parameter uncertainties
and the model uncertainties induced by modeling errors in computational linear
structural dynamics, without separating the contribution of each one of these two
types of uncertainties.

The nonparametric method is presented hereinafter for linear vibrations of fixed
linear structures (no rigid body displacement, but only deformation), formulated in
the frequency domain, and for which two cases are considered:

• The case of damped linear elastic structures for which the damping and the
stiffness matrices of the computational model are independent of the frequency.

• The case of linear viscoelastic structures for which the damping and the stiffness
matrices of the computational model depend on the frequency.

13.1 Methodology

The methodology of the nonparametric method consists in introducing:

(i) A mean computational model for the linear dynamics of the structure,
(ii) A reduced-order model (ROM) of the mean computational model,

(iii) The nonparametric stochastic modeling of both the model-parameter uncer-
tainties and the model uncertainties induced by modeling errors, consisting in
modeling the mass, damping, and stiffness matrices of the ROM by random
matrices,

(iv) A prior probability model of the random matrices based on the use of the
fundamental ensembles of random matrices introduced previously,

(v) An estimation of the hyperparameters of the prior probability model of
uncertainties if some experimental data are available.

The extension to the case of vibrations of free linear structures (presence of rigid
body displacements and of elastic deformations) is straightforward, because it is
sufficient to construct the ROM (which is then devoted only to the prediction of the
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structural deformations) in projecting the response on the elastic structural modes
(without including the rigid body modes) [89].

13.2 Mean Computational Model in Linear Structural Dynamics

The dynamical system is a damped fixed elastic structure for which the vibrations
are studied around a static equilibrium configuration considered as a natural state
without prestresses and which is subjected to an external load. For given nominal
values of the parameters of the dynamical system, the finite element model [128] is
called the mean computational model, which is written, in the time domain, as

ŒM� Rx.t/ C ŒD� Px.t/ C ŒK� x.t/ D f.t/; (8.148)

in which x.t/ is the vector of the m degrees of freedom (DOF) (displacements
and/or rotations); Px.t/ and Rx.t/ are the velocity and acceleration vectors; f.t/ is
the external load vector of the m inputs (forces and/or moments); and ŒM�, ŒD�, and
ŒK� are the mass, damping, and stiffness matrices of the mean computational model,
respectively, which belong to M

C
m .R/.

• The solution fx.t/; t > 0g of the time evolution problem is constructed in solving
Eq. (8.148) for t > 0 with the initial conditions x.0/ D x0 and Px.0/ D v0.

• The forced response fx.t/; t 2 Rg is such that, for all t fixed in R, x.t/ verifies
Eq. (8.148), and its Fourier transform Ox.!/ D

R
R

e�i!tx.t/ dt is such that, for all
! in R,

.�!2 ŒM� C i!ŒD� C ŒK�/ Ox.!/ D Of.!/; (8.149)

in which Of is the Fourier transform of f. As ŒM�, ŒD�, and ŒK� are positive-
definite matrices, the Mm.C/-valued frequency response function ! 7! Œ Oh.!/� D

.�!2 ŒM� C i!ŒD� C ŒK�/�1 is a bounded function on R. From a point of view
of the nonparametric stochastic modeling of uncertainties, it is equivalent of
presenting the time evolution problem or the forced response problem expressed
in the frequency domain. Nevertheless, for such a linear system, the analysis is
mainly carried out in the frequency domain. In order to limit the developments,
the forced response problem expressed in the frequency domain is presented.

13.3 Reduced-Order Model (ROM) of the Mean Computational
Model

The ROM of the mean computational model is constructed for analyzing the
response of the structure over a frequency band B (bounded symmetric interval of
pulsations in rad/s) such that
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B D Œ�!max; �!min� [ Œ!min; !max�; 0 � !min < !max < C1; (8.150)

and is obtained in using the method of modal superposition (or modal analysis)
[8, 87]. The generalized eigenvalue problem associated with the mass and stiffness
matrices of the mean computational model is written as

ŒK� � D � ŒM� �; (8.151)

for which the eigenvalues 0 < �1 � �2 � : : : � �m and the associated elastic
structural modes f�1; �2; : : : ; �mg are such that

<ŒM� �˛; �ˇ >D �˛ ı˛ˇ; (8.152)

<ŒK� �˛; �ˇ >D �˛ !2
˛ ı˛ˇ; (8.153)

in which !˛ D
p

�˛ is the eigenfrequency of elastic structural mode �˛ whose
normalization is defined by the generalized mass �˛ . Let Hn be the subspace
of R

m spanned by f�1; : : : ; �ng with n � m and let H
c
n be its complexified

(i.e., Hc
n D Hn C i Hn). Let Œ˚� be the .m � n/ real matrix whose columns are

vectors f�1; : : : ; �ng. The ROM of the mean computational model is obtained as
the projection xn.!/ of Ox.!/ on H

c
n, which is written as xn.!/ D Œ˚� q.!/ in which

q.!/ is the vector in C
n of the generalized coordinates and is written, for all ! in

B, as

xn.!/ D Œ˚� q.!/; (8.154)

.�!2ŒM� C i!ŒD� C ŒK�/ q.!/ D f.!/; (8.155)

in which ŒM �, ŒD�, and ŒK� (generalized mass, damping, and stiffness matrices)
belong to M

C
n .R/ and are such that

ŒM �˛ˇ D �˛ ı˛ˇ; ŒD�˛ˇ D<ŒD� �ˇ; �˛ >; ŒK�˛ˇ D �˛ !2
˛ ı˛ˇ : (8.156)

In general, ŒD� is a full matrix. The generalized force f.!/ is a C
n-vector such that

f.!/ D Œ˚�T Of.!/ in which Of is the Fourier transform of f, which is assumed to be a
bounded function on R.

13.3.1 Convergence of the ROM with Respect to n Over Frequency
Band of Analysis B

For the given frequency band of analysis B, and for a fixed value of the relative error
"0 with 0 < "0 � 1, let n0 (depending on "0) be the smallest value of n such that
1 � n0 < m, for which, for all ! in B, the convergence of the ROM (with respect
to dimension n) is reached with relative error "0 (if n0 was equal to m, then " would
be equal to 0). The value of n0 is such that
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8n � n0;

Z

B
kŒ Oh.!/� � Œ Oh

n
.!/�k2

F d! � "0

Z

B
kŒ Oh.!/�k2

F d!; (8.157)

in which Œ Oh
n
.!/� D Œ˚� .�!2ŒM� C i!ŒD� C ŒK�/�1 Œ˚�T . In practice, for large

computational model, Eq. (8.157) is replaced by a convergence analysis of xn to x
on B for a given subset of generalized forces f.

13.4 Nonparametric Stochastic Model of Both the
Model-Parameter Uncertainties and the Model Uncertainties
(Modeling Errors)

For the given frequency band of analysis B, and for n fixed to the value n0 such that
Eq. (8.157) is verified, the nonparametric stochastic model of uncertainties consists
in replacing in Eq. (8.155) the deterministic matrices ŒM �, ŒD�, and ŒK� by random
matrices ŒM�, ŒD�, and ŒK� defined on the probability space .�; T ;P/, with values
in M

C
n .R/. The deterministic ROM defined by Eqs. (8.154) and (8.155) is then

replaced by the following stochastic ROM:

Xn.!/ D Œ˚� Q.!/; (8.158)

.�!2ŒM� C i!ŒD� C ŒK�/ Q.!/ D f.!/; (8.159)

in which, for all ! in B, Xn.!/ and Q.!/ are C
m- and C

n-valued random vectors
defined on probability space .�; T ;P/.

13.4.1 Available Information for Constructing a Prior Probability
Model of ŒM�, ŒD�, and ŒK�

The available information for constructing the prior probability model of random
matrices ŒM�, ŒD�, and ŒK� using the MaxEnt principle are the following:

(i) Random matrices ŒM�, ŒD�, and ŒK� are with values in M
C
n .R/.

(ii) The mean values of these random matrices are chosen as the corresponding
matrices in the ROM of the mean computational model,

EfŒM�g D ŒM �; EfŒD�g D ŒD�; EfŒK�g D ŒK� : (8.160)

(iii) The prior probability model of these random matrices must be chosen such
that, for all ! in B, the solution Q.!/ of Eq. (8.159) is a second-order C

n-
valued random variable, that is to say, such that

Efk.�!2ŒM� C i!ŒD� C ŒK�/�1k2
F g < C1; 8! 2 B : (8.161)
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13.4.2 Prior Probability Model of ŒM�, ŒD�, and ŒK�, Hyperparameters
and Generator of Realizations

The joint pdf of random matrices ŒM�, ŒD�, and ŒK� is constructed using the MaxEnt
principle under the constraints defined by the available information described
before. Taking into account such an available information, it is proved [107] that
these three random matrices are statistically independent. Taking into account
Eqs. (8.52), (8.55), (8.160), and (8.161), each random matrix ŒM�, ŒD�, and ŒK�

is then chosen in ensemble SEC
" of the positive-definite random matrices with

a given mean value and an arbitrary positive-definite lower bound. The level of
uncertainties, for each type of forces (mass, damping, and stiffness), is controlled
by the three hyperparameters ıM , ıD , and ıK of the pdf of random matrices ŒM�, ŒD�,
and ŒK�, which are defined by Eq. (8.56). The generator of realizations for ensemble
SEC

" has explicitly been described.

13.5 Case of Linear Viscoelastic Structures

The dynamical system is a fixed viscoelastic structure for which the vibrations
are studied around a static equilibrium configuration considered as a natural state
without prestresses and which is subjected to an external load. Consequently, in
the frequency domain, the damping and stiffness matrices depend on frequency !,
instead of to be independent of the frequency as in the previous analyzed case.
Consequently, two aspects must be addressed. The first one is relative to the choice
of the basis for constructing the ROM, and the second one is the nonparametric
stochastic modeling of the frequency dependent damping and stiffness matrices
which are related by a Hilbert transform; we then use for such a nonparametric
stochastic modeling ensemble SE HT of a pair of positive-definite matrix-valued
random functions related to a Hilbert transform.

13.5.1 Mean Computational Model, ROM, and Convergence
In such a case, the mean computational model defined by Eq. (8.149) is replaced by
the following:

.�!2 ŒM� C i!ŒD.!/� C ŒK.!/�/ Ox.!/ D Of.!/; (8.162)

For constructing the ROM, the projection basis is chosen as previously in taking the
stiffness matrix at zero frequency. The generalized eigenvalue problem, defined by
Eq. (8.151), is then rewritten as ŒK.0/� � D � ŒM� �. With such a choice of a basis,
Eqs. (8.154) to (8.156) that defined the ROM for all ! belonging to the frequency
band of analysis B are replaced by

xn.!/ D Œ˚� q.!/; (8.163)

.�!2ŒM� C i!ŒD.!/� C ŒK.!/�/ q.!/ D f.!/; (8.164)

in which ŒM �, ŒD.!/�, and ŒK.!/� belong to M
C
n .R/ and are such that
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ŒM �˛ˇD�˛ ı˛ˇ; ŒD.!/�˛ˇ D<ŒD.!/� �ˇ;�˛ >; ŒK.!/�˛ˇ D<ŒK.!/� �ˇ;�˛ > :

(8.165)

The matrices ŒD.!/� and ŒK.!/� are full matrices belonging to M
C
n .R/, which

verify (see [89]) all the mathematical properties introduced in the construction of
ensemble SE HT and, in particular, verify Eqs. (8.65) to (8.68). For "0 fixed, the value
n0 of the dimension n of the ROM is such that Eq. (8.157) holds (equation in which
the frequency dependence of the damping and stiffness matrices is introduced). In
practice, for large computational model, this criterion is replaced by a convergence
analysis of xn to x on B for a given subset of generalized forces f.

13.5.2 Nonparametric Stochastic Model of Both the Model-Parameter
Uncertainties and the Model Uncertainties (Modeling Errors)

For the given frequency band of analysis B, and for n fixed to the value n0, the
nonparametric stochastic model of uncertainties consists in replacing in Eq. (8.164)
the deterministic matrices ŒM �, ŒD.!/�, and ŒK.!/� by random matrices ŒM�,
ŒD.!/�, and ŒK.!/� defined on the probability space .�; T ;P/, with values in
M

C
n .R/. The deterministic ROM defined by Eqs. (8.163) and (8.164) is then

replaced by the following stochastic ROM:

Xn.!/ D Œ˚� Q.!/; (8.166)

.�!2ŒM� C i!ŒD.!/� C ŒK.!/�/ Q.!/ D f.!/; (8.167)

in which, for all ! in B, Xn.!/ and Q.!/ are C
m- and C

n-valued random vectors
defined on probability space .�; T ;P/.

13.5.3 Available Information for Constructing a Prior Probability
Model of ŒM�, ŒD.!/�, and ŒK.!/�

The available information for constructing the prior probability model of random
matrices ŒM�, ŒD.!/�, and ŒK.!/� using the MaxEnt principle are, for all ! in B:

(i) Random matrices ŒM�, ŒD.!/�, and ŒK.!/� are with values in M
C
n .R/.

(ii) The mean values of these random matrices are chosen as the corresponding
matrices in the ROM of the mean computational model,

EfŒM�g D ŒM �; EfŒD.!/�g D ŒD.!/�; EfŒK.!/�g D ŒK.!/� : (8.168)

(iii) The random matrices ŒD.!/� and ŒK.!/� are such that

ŒD.�!/� D ŒD.!/�; ŒK.�!/� D ŒK.!/� : (8.169)

(iv) The prior probability model of these random matrices must be chosen for that,
for all ! in B, the solution Q.!/ of Eq. (8.167) is a second-order Cn-valued
random variable, that is to say, for that

Efk.�!2ŒM� C i!ŒD.!/� C ŒK.!/�/�1k2
F g < C1; 8! 2 B : (8.170)
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(v) The algebraic dependence between ŒD.!/� and ŒK.!/� induced by the causality
must be preserved, which means that random matrix ŒK.!/� is given by
Eq. (8.72) as a function of random matrix ŒK.0/� and the family of random
matrices fŒD.!/�; ! � 0g,

ŒK.!/� D ŒK.0/� C
2 !2

�
p.v

Z C1

0

1

!2 � !02
ŒD.!0/� d!0; 8 ! � 0 :

(8.171)

13.5.4 Prior Probability Model of ŒM�, ŒD.!/�, and ŒK.0/�,
Hyperparameters, and Generator of Realizations

Taking into account the available information, the use of the MaxEnt principle
yields that random matrices ŒM�, fŒD.!/�; ! � 0g, and ŒK.0/� are statistically
independent.

• As previously, random matrix ŒM� is chosen in ensemble SEC
" of the positive-

definite random matrices with a given mean value and an arbitrary positive-
definite lower bound. The pdf is explicitly defined and depends on the hyperpa-
rameter ıM defined by Eq. (8.56). The generator of realizations is the generator
of the ensemble SEC

" , which was explicitly defined.
• For all fixed !, random matrices ŒD.!/� and ŒK.0/� that are statistically inde-

pendent are constructed as explained in the section devoted to ensemble SE HT.
The levels of uncertainties of random matrices ŒD.!/� and ŒK.0/� are controlled
by the two frequency-independent hyperparameters ıD and ıK introduced in
paragraphs (i) and (ii) located after Eq. (8.70). The generator of realizations is
directly deduced from the generator of realizations of fundamental ensemble
SGC

" , which was explicitly defined.
• With such a nonparametric stochastic modeling, the level of uncertainties is

controlled by hyperparameters ıM , ıD , and ıK , and the generators of realizations
of random matrices ŒM�, ŒD.!/�, and ŒK.0/� are explicitly described.

13.6 Estimation of the Hyperparameters of the Nonparametric
Stochastic Model of Uncertainties

For the nonparametric stochastic model of uncertainties in computational linear
structural dynamics, dimension n of the ROM is fixed to the value n0 for which the
response of the ROM of the mean computational model is converged with respect
to n. The prior probability model of uncertainties then depends on the vector-valued
hyperparameter ınpar D .ıM ; ıD; ıK/ belonging to an admissible set Cnpar.

• If no experimental data are available, then ınpar must be considered as a vector-
valued parameter for performing a sensitivity analysis of the stochastic solution
with respect to the level of uncertainties. Such a nonparametric stochastic model
of both the model-parameter uncertainties and the model uncertainties then
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allows the robustness of the solution to be analyzed as a function of the level
of uncertainties which is controlled by ınpar.

• If experimental data are available, an estimation of ınpar can be carried out,
for instance, using a least square method or the maximum likelihood method
[102, 117, 123]. Let W be the random real vector which is observed, which
is independent of !, but which depends on fXn.!/; ! 2 Bg where Xn.!/ is
the second-order random complex vector given by Eq. (8.158) or (8.166). For
all ınpar in Cnpar, the probability density function of W is denoted as w 7!

pW.wI ınpar/. Using the maximum likelihood method, the optimal value ı
opt
npar

of ınpar is estimated by maximizing the logarithm of the likelihood function,

ı
opt
npar D arg max

ınpar2Cnpar

	expX

`D1

log pW.wexp
` I ınpar/ : (8.172)

in which wexp
1 ; : : : ; wexp

	exp are 	exp independent experimental data corresponding
to W.

14 Parametric-Nonparametric Uncertainties in
Computational Nonlinear Structural Dynamics

The last two presented sections have been devoted to the nonparametric stochastic
model of both the model-parameter uncertainties and the model uncertainties
induced by the modeling errors, without separating the contribution of each one
of these two types of uncertainties. Sometimes, there is an interest of separating
the uncertainties for a small number of model parameters that exhibit an important
sensitivity on the responses, from uncertainties induced by the model uncertainties
and the uncertainties on other model parameters.

Such an objective requires to use a parametric-nonparametric stochastic model
of uncertainties, also called the generalized probabilistic approach of uncertainties
in computational structural dynamics, which has been introduced in [113].

As the nonparametric stochastic model of uncertainties has been presented in the
previous sections for linear dynamical systems formulated in the frequency domain,
in the present section, the parametric-nonparametric stochastic model of uncertain-
ties is presented in computational nonlinear structural dynamics formulated in the
time domain.

14.1 Mean Nonlinear Computational Model in Structural
Dynamics

The dynamical system is a damped fixed structure for which the nonlinear vibrations
are studied in the time domain around a static equilibrium configuration considered
as a natural state without prestresses and subjected to an external load. For given
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nominal values of the model parameters of the dynamical system, the basic finite
element model is called the mean nonlinear computational model. In addition, it is
assumed that a set of model parameters has been identified as sensitive parameters
that are uncertain. These uncertain model parameters are the components of a vector
Qy belonging to an admissible set Cpar which is a subset of RN . It is assumed that
a parameterization is constructed such that Qy D Y.y/ in which y 7! Y.y/ is a
given and known function from Cpar into R

N . For instance, if the component Qyj

of Qy must belong to Œ0; C1Œ, then Qyj could be defined as exp.yj / with yj 2 R,
which yields Yj .y/ D exp.yj /. Hereinafter, it is then assumed that the uncertain
model parameters are represented by vector y D .y1; : : : ; yN / belonging to R

N .
The nonlinear mean computational model, depending on uncertain model parameter
y, is written as

ŒM.y/� Rx.t/ C ŒD.y/� Px.t/ C ŒK.y/� x.t/ C fNL.x.t/; Px.t/I y/ D f.t I y/; (8.173)

in which x.t/ is the unknown time response vector of the m degrees of freedom
(DOF) (displacements and/or rotations); Px.t/ and Rx.t/ are the velocity and acceler-
ation vectors respectively; f.t I y/ is the known external load vector of the m inputs
(forces and/or moments); ŒM.y/�, ŒD.y/�, and ŒK.y/� are the mass, damping, and
stiffness matrices of the linear part of the mean nonlinear computational model,
respectively, which belong to M

C
m .R/; and .x.t/; Px.t// 7! fNL.x.t/; Px.t/I y/ is the

nonlinear mapping that models the local nonlinear forces (such as nonlinear elastic
barriers).

We are interested in the time evolution problem defined by Eq. (8.173) for t > 0

with the initial conditions x.0/ D x0 and Px.0/ D v0.

14.2 Reduced-Order Model (ROM) of the Mean Nonlinear
Computational Model

For all y fixed in R
N , let f�1.y/; : : : ; �m.y/g be an algebraic basis of R

m

constructed, for instance, either using the elastic structural modes of the linearized
system, using the elastic structural modes of the underlying linear system, or
using the POD (proper orthogonal decomposition) modes of the nonlinear system).
Hereinafter, it is assumed that the elastic structural modes of the underlying linear
system are used for constructing the ROM of the mean nonlinear computational
model (such a choice is not intrusive with respect to a black-box software, but in
counterpart requires a large parallel computation induced by all the sampling values
of y, which are considered by the stochastic solver).

For each value of y given in R
N , the generalized eigenvalue problem associated

with the mean mass and stiffness matrices is written as

ŒK.y/� �.y/ D �.y/ ŒM.y/� �.y/; (8.174)
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for which the eigenvalues 0 < �1.y/ � �2.y/ � : : : � �m.y/ and the associated
elastic structural modes f�1.y/; �2.y/; : : : ; �m.y/g are such that

<ŒM.y/� �˛.y/; �ˇ.y/>D �˛.y/ ı˛ˇ; (8.175)

<ŒK.y/� �˛.y/; �ˇ.y/>D �˛.y/ !˛.y/2 ı˛ˇ; (8.176)

in which !˛.y/ D
p

�˛.y/ is the eigenfrequency of elastic structural mode �˛.y/

whose normalization is defined by the generalized mass �˛.y/. Let Œ�.y/� be the
.m � n/ real matrix whose columns are vectors f�1.y/; : : : ; �n.y/g. For y fixed in
R

N and for all fixed t > 0, the ROM is obtained as the projection xn.t/ of x.t/ on
the subspace of Rm spanned by f�1.y/; : : : ; �n.y/g with n � m, which is written as
xn.t/ D Œ�.y/� q.t/ in which q.t/ is the vector in R

n of the generalized coordinates
and is written, for all t > 0, as

xn.t/ D Œ�.y/� q.t/; (8.177)

ŒM.y/� Rq.t/ C ŒD.y/� Pq.t/ C ŒK.y/� q.t/ C FNL.q.t/; Pq.t/I y/ D f.t I y/;

(8.178)

in which ŒM.y/�, ŒD.y/�, and ŒK.y/� (generalized mass, damping, and stiffness
matrices) belong to M

C
n .R/ and are such that

ŒM.y/�˛ˇ D �˛.y/ ı˛ˇ; ŒD.y/�˛ˇ D<ŒD.y/� �ˇ.y/; �˛.y/>; (8.179)

ŒK.y/�˛ˇ D �˛.y/ !˛.y/2 ı˛ˇ : (8.180)

In general, ŒD.y/� is a full matrix. The generalized force f.t I y/ is a R
n-vector

such that f.t I y/ D Œ�.y/�T f.t I y/. The generalized nonlinear force is such that
FNL.q.t/; Pq.t/I y/ D Œ �.y/�T fNL.Œ �.y/� q.t/; Œ �.y/� Pq.t/I y/.

Convergence of the ROM with respect to n. Let n0 be the value of n, for which,
for a given accuracy and for all y in R

N , the response xn is converged to x for all
n > n0.

14.3 Parametric-Nonparametric Stochastic Modeling of
Uncertainties

In all this section, the value of n is fixed to the value n0 defined hereinbefore.

14.3.1 Methodology
• The parametric stochastic modeling of uncertainties consists in modeling uncer-

tain model parameter y by a second-order random variable Y D .Y1; : : : ; YN /,
defined on the probability space .�; T ;P/, with values in R

N . Consequently,
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deterministic matrices ŒM.y/�, ŒD.y/�, and ŒK.y/� defined by Eqs. (8.179)–
(8.180) become the second-order random matrices, ŒM.Y/�, ŒD.Y/�, and ŒK.Y/�,
defined on probability space .�; T ;P/, with values in M

C
n .R/. The mean values

of these random matrices are the matrices in M
C
n .R/ such that

Œ M � D EfŒM.Y/�g; Œ D � D EfŒD.Y/�g; Œ K � D EfŒK.Y/�g; (8.181)

• The nonparametric stochastic modeling of uncertainties consists, for all y fixed in
R

N , in modeling matrices ŒM.y/�, ŒD.y/�, and ŒK.y/� defined by Eqs. (8.179)–
(8.180), by the second-order random matrices ŒM.y/� D f� 0 7! ŒM.� 0I y/�g,
ŒD.y/� D f� 0 7! ŒD.� 0I y/�g, and ŒK.y/� D f� 0 7! ŒK.� 0I x/�g, defined on
another probability space .�0; T 0;P 0/ (and thus independent of Y), with values
in M

C
n .R/.

• The parametric-nonparametric stochastic modeling of uncertainties consists, in
Eq. (8.178)):

(i) In modeling ŒM.y/�, ŒD.y/�, and ŒK.y/� by random matrices ŒM.y/�, ŒD.y/�,
and ŒK.y/�,

(ii) In modeling uncertain model parameter y by the R
N -valued random

variable Y.

Consequently, the statistically dependent random matrices ŒM.Y/� D f.�; � 0/ 7!

ŒM.� 0I Y.�//�g, ŒD.Y/� D f.�; � 0/ 7! ŒD.� 0I Y.�//�g and ŒK.Y/� D f.�; � 0/ 7!

ŒK.� 0I Y.�//�g are measurable mappings from � � �0 into M
C
n .R/. The deter-

ministic ROM defined by Eqs. (8.177)–(8.178) is then replaced by the following
stochastic ROM:

Xn.t/ D Œ�.Y/� Q.t/; (8.182)

ŒM.Y/� RQ.t/ C ŒD.Y/� PQ.t/ C ŒK.Y/� Q.t/ C FNL.Q.t/; PQ.t/I Y/ D f.t I Y/;

(8.183)

in which for all fixed t , Xn.t/ D f.�; � 0/ 7! Xn.�; � 0I t /g and Q.t/ D f.�; � 0/ 7!

Q.�; � 0I t /g are Rm- and R
n-valued random vectors defined for .�; � 0/ in � ��0.

14.3.2 Prior Probability Model of Y, Hyperparameters, and Generator
of Realizations

The prior pdf pY on R
N of random vector Y is constructed using the MaxEnt prin-

ciple under the constraints defined by the available information given by Eq. (8.81),
as explained in Sect. 11, in which a generator of realizations fY.�/; � 2 �g

has been detailed. Such a generator depends on the hyperparameters related to
the available information. In general, the hyperparameters are the mean vector
y D EfYg belonging to R

N and a vector-valued hyperparameter ıpar that belongs
to an admissible set Cpar, which allows the level of parametric uncertainties to be
controlled.
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14.3.3 Prior Probability Model of ŒM.y/�, ŒD.y/�, and ŒK.y/�,
Hyperparameters, and Generator of Realizations

Similarly to the construction given in section entitled “Nonparametric Stochastic
Model of Uncertainties in Computational Linear Structural Dynamics”, for all
y fixed in R

N , random matrices ŒM.y/�, ŒD.y/�, and ŒK.y/�, are statistically
independent and written as

ŒM.y/�D ŒLM .y/�T ŒGM � ŒLM .y/�; (8.184)

ŒD.y/�D ŒLD.y/�T ŒGD� ŒLD.y/�; (8.185)

ŒK.y/�D ŒLK.y/�T ŒGK� ŒLK.y/�; (8.186)

in which, for all y in R
N , ŒLM .y/�, ŒLD.y/�, and ŒLK.y/� are the upper triangular

matrices such that (Cholesky factorization) ŒM.y/� D ŒLM .y/�T ŒLM .y/�, ŒD.y/� D

ŒLD.y/�T ŒLD.y/�, and ŒK.y/� D ŒLK.y/�T ŒLK.y/�. In Eqs. (8.184) to (8.186),
ŒGM �, ŒGD�, and ŒGK� are independent random matrices defined on probability
space .�0; T 0;P 0/, with values in M

C
n .R/, independent of y, and belonging to

fundamental ensemble SGC
" of random matrices. The level of nonparametric

uncertainties is controlled by the coefficients of variation ıGM , ıGD , and ıGK

defined by Eq. (8.24) and the vector-valued parameter ınpar is defined as ınpar D

.ıM ; ıD; ıK/ that belongs to an admissible set Cnpar. The generator of realizations
fŒGM .� 0/�; ŒGD.� 0/�; ŒGK.� 0/� for � 0 in �0 is explicitly described in the section
devoted to the construction of ensembles SGC

" and SGC
0 .

14.3.4 Mean Values of Random Matrices ŒM.Y/�, ŒD.Y/�, ŒK.Z/� and
Hyperparameters of the Parametric-Nonparametric Stochastic
Model of Uncertainties

Taking into account the construction presented hereinbefore, we have

EfŒM.Y/�g D Œ M �; EfŒD.Y/�g D Œ D �; EfŒK.Y/�g D Œ K �; (8.187)

in which the matrices Œ M �, Œ D �, and Œ K � are the deterministic matrices defined by
Eq. (8.181). The hyperparameters of the parametric-nonparametric stochastic model
of uncertainties are

y 2 R
N ; ıpar 2 Cpar; ınpar D .ıM ; ıD; ıK/ 2 Cnpar : (8.188)

14.4 Estimation of the Hyperparameters of the
Parametric-Nonparametric Stochastic Model of Uncertainties

The value of n is fixed to the value n0 that has been defined. The parametric-
nonparametric stochastic model of uncertainties is controlled by the hyperparam-
eters defined by Eq. (8.188).
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• If no experimental data are available, then y can be fixed to a nominal value
y0, and ıpar and ınpar must be considered as parameters to perform a sensitivity
analysis of the stochastic solution. Such a parametric-nonparametric stochastic
model of uncertainties allows the robustness of the solution to be analyzed as a
function of the level of uncertainties controlled by ıpar and ınpar.

• If experimental data are available, an estimation of y, ıpar, and ınpar can be
carried out, for instance, using a least square method or the maximum likelihood
method [102, 117, 123]. Let W be the random real vector which is observed,
which is independent of t , but which depends on fXn.t/; t � 0g where Xn.t/

is the second-order stochastic solution of Eq. (8.182)–(8.183) for t > 0 with
initial conditions for t D 0. Let r D .y; ıpar; ınpar/ be the vector-valued
hyperparameter belonging to the admissible set Cr D R

N � Cpar � Cnpar. For
all r in Cr, the probability density function of W is denoted as w 7! pW.wI r/.
Using the maximum likelihood method, the optimal values r opt of r are estimated
by maximizing the logarithm of the likelihood function,

r opt D arg max
r2Cr

	expX

`D1

log pW.wexp
` I r/ : (8.189)

in which wexp
1 ; : : : ; wexp

	exp are 	exp independent experimental data corresponding
to W.

15 Key Research Findings and Applications

15.1 Propagation of Uncertainties Using Nonparametric or
Parametric-Nonparametric Stochastic Models of
Uncertainties

The stochastic modeling introduces some random vectors and some random matri-
ces in the stochastic computational models. Consequently, a stochastic solver is
required. Two distinct classes of techniques can be used:

• The first one is constituted of the stochastic spectral methods, pioneered by
Roger Ghanem in 1990–1991 [43, 44], consisting in performing a projection of
the Galerkin type (see [45, 46, 67, 69, 84, 121]), and of separated representations
methods [34, 85]. This class of techniques allows for obtaining a great precision
for the approximated solution that is constructed.

• The second class is composed of methods based on a direct simulation of which
the most popular is the Monte Carlo numerical simulation method (see, for
instance, [41,96]). With such a method, the convergence can be controlled during
the computation, and its speed of convergence is independent of the stochastic
dimension and can be improved using either advanced Monte Carlo simulation
procedures [100], or a technique of subset simulation [6], or finally a method of
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local simulation domain [93]. The Monte Carlo simulation method is a stochastic
solver that is particularly well adapted to the high stochastic dimension induced
by the random matrices introduced by the nonparametric method of uncertainties.

15.2 Experimental Validations of the Nonparametric Method of
Uncertainties

The nonparametric stochastic modeling of uncertainties has been experimentally
validated through applications in different domains of computational sciences and
engineering, in particular:

• In linear dynamics, for the dynamics of complex structures in the low-frequency
domain [7, 12, 13]; for the dynamics of structures with nonhomogeneous uncer-
tainties, in the low-frequency domain [24] and in transient dynamics [35]; and
finally for the dynamics of composite sandwich panels in low- and medium-
frequency domains [25];

• In nonlinear dynamics, for nonlinear structural dynamics of fuel assemblies [9],
for nonlinear post-buckling static and dynamical analyses of uncertain cylindrical
shells [21], and for some nonlinear reduced-order models [81];

• In linear structural acoustics, for the vibroacoustic of complex structures in low-
and medium-frequency domains [38], with sound-insulation layers [39], and for
the wave propagation in multilayer live tissues in the ultrasonic domain [30];

• In continuum mechanics of solids, for the nonlinear thermomechanical analysis
[97] and the heat transfer in complex composite panels [98] and for linear
elasticity of composited reinforced with fibers at mesoscale [48].

15.3 Additional Ingredients for the Nonparametric Stochastic
Modeling of Uncertainties

Some important ingredients have been developed for having the tools required for
performing the nonparametric stochastic modeling of uncertainties in linear and
nonlinear dynamics of mechanical systems, in particular:

• The dynamic substructuring with uncertain substructures which allows for the
nonparametric modeling of nonhomogeneous uncertainties in different parts of a
structure [116];

• The nonparametric stochastic modeling of uncertain structures with uncertain
boundary conditions/coupling between substructures [78];

• The nonparametric stochastic modeling of matrices that depend on the frequency
and that are related by a Hilbert transform due to the existence of causality
properties, such as those encountered in the linear viscoelasticity theory [89,115];

• The multi-body dynamics for which there are uncertain bodies (mass, center of
mass, inertia tensor), for which the uncertainties in the bodies come from a lack
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of knowledge of the distribution of the mass inside the bodies (for instance, the
spatial distribution of the passengers inside a high-speed train) [10];

• The nonparametric stochastic modeling in vibroacoustics of complex systems for
low- and medium-frequency domains, including the stochastic modeling of the
coupling matrices between the structure and the acoustic cavities [38, 89, 110];

• The formulation of the nonparametric stochastic modeling of the nonlinear
operators occurring in the static and the dynamics of uncertain geometrically
nonlinear structures [21, 77, 81].

15.4 Applications of the Nonparametric Stochastic Modeling of
Uncertainties in Different Fields of Computational Sciences
and Engineering

• In dynamics:

Aeronautics and aerospace engineering systems [7, 20, 78, 88, 91]
Biomechanics [30, 31]
Environment for well integrity for geologic CO2 sequestration [32]
Nuclear engineering [9, 12, 13, 29]
Pipe conveying fluid [94]
Rotordynamics [79, 80, 82]
Soil-structure interaction and wave propagation in soils [4, 5, 26, 27]
Vibration of turbomachines [18, 19, 22, 70]
Vibroacoustics of automotive vehicles [3, 38–40, 61]

• In continuum mechanics of heterogeneous materials:

Composites reinforced with fibers [48]
Heat transfer of complex composite panels [98]
Nonlinear thermomechanics in heterogeneous materials [97]
Polycrystalline microstructures [49]
Porous materials [52]
Random elasticity tensors of materials exhibiting symmetry properties [51,53]

16 Conclusions

In this chapter, fundamental mathematical tools have been presented concerning
the random matrix theory, which are useful for many problems encountered
in uncertainty quantification, in particular for the nonparametric method of the
multiscale stochastic modeling of heterogeneous elastic materials, and for the non-
parametric stochastic models of uncertainties in computational structural dynamics.
The explicit construction of ensembles of random matrices but also the presentation
of numerical tools for constructing general ensembles of random matrices are pre-
sented and can be used in high dimension. Many applications and validations have
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already been performed in many fields of computational sciences and engineering,
but the methodologies and tools presented can be used and developed for many other
problems for which uncertainties must be quantified.

References

1. Agmon, N., Alhassid, Y., Levine, R.D.: An algorithm for finding the distribution of maximal
entropy. J. Comput. Phys. 30, 250–258 (1979)

2. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. John Wiley &
Sons, New York (2003)

3. Arnoux, A., Batou, A., Soize, C., Gagliardini, L.: Stochastic reduced order computational
model of structures having numerous local elastic modes in low frequency dynamics. J. Sound
Vib. 332(16), 3667–3680 (2013)

4. Arnst, M., Clouteau, D., Chebli, H., Othman, R., Degrande, G.: A non-parametric probabilis-
tic model for ground-borne vibrations in buildings. Probab. Eng. Mech. 21(1), 18–34 (2006)

5. Arnst, M., Clouteau, D., Bonnet, M.: Inversion of probabilistic structural models using
measured transfer functions. Comput. Methods Appl. Mech. Eng. 197(6–8), 589–608 (2008)

6. Au, S.K., Beck, J.L.: Subset simulation and its application to seismic risk based on dynamic
analysis. J. Eng. Mech. – ASCE 129(8), 901–917 (2003)

7. Avalos, J., Swenson, E.D., Mignolet, M.P., Lindsley, N.J.: Stochastic modeling of structural
uncertainty/variability from ground vibration modal test data. J. Aircr. 49(3), 870–884 (2012)

8. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice-Hall,
New York (1976)

9. Batou, A., Soize, C.: Experimental identification of turbulent fluid forces applied to fuel
assemblies using an uncertain model and fretting-wear estimation. Mech. Syst. Signal Pr.
23(7), 2141–2153 (2009)

10. Batou, A., Soize, C.: Rigid multibody system dynamics with uncertain rigid bodies. Multi-
body Syst. Dyn. 27(3), 285–319 (2012)

11. Batou, A., Soize, C.: Calculation of Lagrange multipliers in the construction of maximum
entropydistributions in high stochastic dimension. SIAM/ASA J. Uncertain. Quantif. 1(1),
431–451 (2013)

12. Batou, A., Soize, C., Audebert, S.: Model identification in computational stochastic dynamics
using experimental modal data. Mech. Syst. Signal Pr. 50–51, 307–322 (2014)

13. Batou, A., Soize, C., Corus, M.: Experimental identification of an uncertain computational
dynamical model representing a family of structures. Comput. Struct. 89(13–14), 1440–1448
(2011)

14. Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and
universality of level fluctuation laws. Phys. Rev. Lett. 52(1), 1–4 (1984)

15. Bohigas, O., Giannoni, M.J., Schmit, C.: Spectral fluctuations of classically chaotic quantum
systems. In: Seligman, T.H., Nishioka, H. (eds.) Quantum Chaos and Statistical Nuclear
Physics, pp. 18–40. Springer, New York (1986)

16. Bohigas, O., Legrand, O., Schmit, C., Sornette, D.: Comment on spectral statistics in
elastodynamics. J. Acoust. Soc. Am. 89(3), 1456–1458 (1991)

17. Burrage, K., Lenane, I., Lythe, G.: Numerical methods for second-order stochastic differential
equations. SIAM J. Sci. Comput. 29, 245–264 (2007)

18. Capiez-Lernout, E., Soize, C.: Nonparametric modeling of random uncertainties for dynamic
response of mistuned bladed disks. ASME J. Eng. Gas Turbines Power 126(3), 600–618
(2004)

19. Capiez-Lernout, E., Soize, C., Lombard, J.P., Dupont, C., Seinturier, E.: Blade manufacturing
tolerances definition for a mistuned industrial bladed disk. ASME J. Eng. Gas Turbines Power
127(3), 621–628 (2005)



8 Random Matrix Models and Nonparametric Method for Uncertainty: : : 283

20. Capiez-Lernout, E., Pellissetti, M., Pradlwarter, H., Schueller, G.I., Soize, C.: Data and model
uncertainties in complex aerospace engineering systems. J. Sound Vib. 295(3–5), 923–938
(2006)

21. Capiez-Lernout, E., Soize, C., Mignolet, M.: Post-buckling nonlinear static and dynamical
analyses of uncertain cylindrical shells and experimental validation. Comput. Methods Appl.
Mech. Eng. 271(1), 210–230 (2014)

22. Capiez-Lernout, E., Soize, C., Mbaye, M.: Mistuning analysis and uncertainty quantification
of an industrial bladed disk with geometrical nonlinearity. J. Sound Vib. 356, 124–143 (2015)

23. Chadwick, P., Vianello, M., Cowin, S.C.: A new proof that the number of linear elastic
symmetries is eight. J. Mech. Phys. Solids 49, 2471–2492 (2001)

24. Chebli, H., Soize, C.: Experimental validation of a nonparametric probabilistic model of non
homogeneous uncertainties for dynamical systems. J. Acoust. Soc. Am. 115(2), 697–705
(2004)

25. Chen, C., Duhamel, D., Soize, C.: Probabilistic approach for model and data uncertainties
and its experimental identification in structural dynamics: case of composite sandwich panels.
J. Sound Vib. 294(1–2), 64–81 (2006)

26. Cottereau, R., Clouteau, D., Soize, C.: Construction of a probabilistic model for impedance
matrices. Comput. Methods Appl. Mech. Eng. 196(17–20), 2252–2268 (2007)

27. Cottereau, R., Clouteau, D., Soize, C.: Probabilistic impedance of foundation, impact of the
seismic design on uncertain soils. Earthq. Eng. Struct. D. 37(6), 899–918 (2008)

28. Das, S., Ghanem, R.: A bounded random matrix approach for stochastic upscaling. Multiscale
Model. Simul. 8(1), 296–325 (2009)

29. Desceliers, C., Soize, C., Cambier, S.: Non-parametric – parametric model for random
uncertainties in nonlinear structural dynamics – application to earthquake engineering.
Earthq. Eng. Struct. Dyn. 33(3), 315–327 (2004)

30. Desceliers, C., Soize, C., Grimal, Q., Talmant, M., Naili, S.: Determination of the random
anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model
and experiments. J. Acoust. Soc. Am. 125(4), 2027–2034 (2009)

31. Desceliers, C., Soize, C., Naili, S., Haiat, G.: Probabilistic model of the human cortical bone
with mechanical alterations in ultrasonic range. Mech. Syst. Signal Pr. 32, 170–177 (2012)

32. Desceliers, C., Soize, C., Yanez-Godoy, H., Houdu, E., Poupard, O.: Robustness analysis of
an uncertain computational model to predict well integrity for geologic CO2 sequestration.
Comput. Mech. 17(2), 307–323 (2013)

33. Doob, J.L.: Stochastic Processes. John Wiley & Sons, New York (1990)
34. Doostan, A., Iaccarino, G.: A least-squares approximation of partial differential equations

with high dimensional random inputs. J. Comput. Phys. 228(12), 4332–4345 (2009)
35. Duchereau, J., Soize, C.: Transient dynamics in structures with nonhomogeneous uncertain-

ties induced by complex joints. Mech. Syst. Signal Pr. 20(4), 854–867 (2006)
36. Dyson, F.J.: Statistical theory of the energy levels of complex systems. Parts I, II, III. J. Math.

Phys. 3, 140–175 (1962)
37. Dyson, F.J., Mehta, M.L.: Statistical theory of the energy levels of complex systems. Parts IV,

V. J. Math. Phys. 4, 701–719 (1963)
38. Durand, J.F., Soize, C., Gagliardini, L.: Structural-acoustic modeling of automotive vehicles

in presence of uncertainties and experimental identification and validation. J. Acoust. Soc.
Am. 124(3), 1513–1525 (2008)

39. Fernandez, C., Soize, C., Gagliardini, L.: Fuzzy structure theory modeling of sound-insulation
layers in complex vibroacoustic uncertain systems – theory and experimental validation.
J. Acoust. Soc. Am. 125(1), 138–153 (2009)

40. Fernandez, C., Soize, C., Gagliardini, L.: Sound-insulation layer modelling in car computa-
tional vibroacoustics in the medium-frequency range. Acta Acust. United Ac. 96(3), 437–444
(2010)

41. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York
(1996)



284 C. Soize

42. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian distribution
of images. IEEE Trans. Pattern Anal. Mach. Intell. PAM I-6, 721–741 (1984)

43. Ghanem, R., Spanos, P.D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech.
Trans. ASME 57(1), 197–202 (1990)

44. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New
York (1991)

45. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A spectral Approach (rev. edn.). Dover
Publications, New York (2003)

46. Ghosh, D., Ghanem, R.: Stochastic convergence acceleration through basis enrichment of
polynomial chaos expansions. Int. J. Numer. Methods Eng. 73(2), 162–184 (2008)

47. Golub, G.H., Van Loan, C.F.: Matrix Computations, Fourth, The Johns Hopkins University
Press, Baltimore (2013)

48. Guilleminot, J., Soize, C., Kondo, D.: Mesoscale probabilistic models for the elasticity tensor
of fiber reinforced composites: experimental identification and numerical aspects. Mech.
Mater. 41(12), 1309–1322 (2009)

49. Guilleminot, J., Noshadravan, A., Soize, C., Ghanem, R.G.: A probabilistic model for
bounded elasticity tensor random fields with application to polycrystalline microstructures.
Comput. Methods Appl. Mech. Eng. 200, 1637–1648 (2011)

50. Guilleminot, J., Soize, C.: Probabilistic modeling of apparent tensors in elastostatics: a
MaxEnt approach under material symmetry and stochastic boundedness constraints. Probab.
Eng. Mech. 28(SI), 118–124 (2012)

51. Guilleminot, J., Soize, C.: Generalized stochastic approach for constitutive equation in linear
elasticity: a random matrix model. Int. J. Numer. Methods Eng. 90(5), 613–635 (2012)

52. Guilleminot, J., Soize, C., Ghanem, R.: Stochastic representation for anisotropic permeability
tensor random fields. Int. J. Numer. Anal. Met. Geom. 36(13), 1592–1608 (2012)

53. Guilleminot, J., Soize, C.: On the statistical dependence for the components of random
elasticity tensors exhibiting material symmetry properties. J. Elast. 111(2), 109–130 (2013)

54. Guilleminot, J., Soize, C.: Stochastic model and generator for random fields with symmetry
properties: application to the mesoscopic modeling of elastic random media. Multiscale
Model. Simul. (A SIAM Interdiscip. J.) 11(3), 840–870 (2013)

55. Gupta, A.K., Nagar, D.K.: Matrix Variate Distributions. Chapman & Hall/CRC, Boca Raton
(2000)

56. Hairer, E., Lubich, C., G. Wanner, G.: Geometric Numerical Integration. Structure-Preserving
Algorithms for Ordinary Differential Equations. Springer, Heidelberg (2002)

57. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 109, 57–97 (1970)

58. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 and
108(2), 171–190 (1957)

59. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New
York (2005)

60. Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Applications. Academic,
San Diego (1992)

61. Kassem, M., Soize, C., Gagliardini, L.: Structural partitioning of complex structures in the
medium-frequency range. An application to an automotive vehicle. J. Sound Vib. 330(5),
937–946 (2011)

62. Khasminskii, R.:Stochastic Stability of Differential Equations, 2nd edn. Springer, Heidelberg
(2012)

63. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differentials Equations. Springer,
Heidelberg (1992)

64. Langley, R.S.: A non-Poisson model for the vibration analysis of uncertain dynamic systems.
Proc. R. Soc. Ser. A 455, 3325–3349 (1999)

65. Legrand, O., Sornette, D.: Coarse-grained properties of the chaotic trajectories in the stadium.
Physica D 44, 229–235 (1990)



8 Random Matrix Models and Nonparametric Method for Uncertainty: : : 285

66. Legrand, O., Schmit, C., Sornette, D.: Quantum chaos methods applied to high-frequency
plate vibrations. Europhys. Lett. 18(2), 101–106 (1992)

67. Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification with Applica-
tions to Computational Fluid Dynamics. Springer, Heidelberg (2010)

68. Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons, New York
(2009)

69. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations. Comput. Methods Appl. Mech. Eng. 194(12–16), 1295–1331 (2005)

70. Mbaye, M., Soize, C., Ousty, J.P., Capiez-Lernout, E.: Robust analysis of design in vibration
of turbomachines. J. Turbomach. 135(2), 021008-1–021008-8 (2013)

71. Mehrabadi, M.M., Cowin, S.C.: Eigentensors of linear anisotropic elastic materials. Q. J.
Mech. Appl. Math. 43:15–41 (1990)

72. Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic, New
York (1967)

73. Mehta, M.L.: Random Matrices, Revised and Enlarged, 2nd edn. Academic Press, San Diego
(1991)

74. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, San Diego (2014)
75. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 49, 335–341 (1949)
76. Mignolet, M.P., Soize, C.: Nonparametric stochastic modeling of linear systems with

prescribed variance of several natural frequencies. Probab. Eng. Mech. 23(2–3), 267–278
(2008)

77. Mignolet, M.P., Soize, C.: Stochastic reduced order models for uncertain nonlinear dynamical
systems. Comput. Methods Appl. Mech. Eng. 197(45–48), 3951–3963 (2008)

78. Mignolet, M.P., Soize, C., Avalos, J.: Nonparametric stochastic modeling of structures with
uncertain boundary conditions/coupling between substructures. AIAA J. 51(6), 1296–1308
(2013)

79. Murthy, R., Mignolet, M.P., El-Shafei, A.: Nonparametric stochastic modeling of uncertainty
in rotordynamics-Part I: Formulation. J. Eng. Gas Turb. Power 132, 092501-1–092501-7
(2009)

80. Murthy, R., Mignolet, M.P., El-Shafei, A.: Nonparametric stochastic modeling of uncertainty
in rotordynamics-Part II: applications. J. Eng. Gas Turb. Power 132, 092502-1–092502-11
(2010)

81. Murthy, R., Wang, X.Q., Perez, R., Mignolet, M.P., Richter, L.A.: Uncertainty-based experi-
mental validation of nonlinear reduced order models. J. Sound Vib. 331, 1097–1114 (2012)

82. Murthy, R., Tomei, J.C., Wang, X.Q., Mignolet, M.P., El-Shafei, A.: Nonparametric stochastic
modeling of structural uncertainty in rotordynamics: Unbalance and balancing aspects. J. Eng.
Gas Turb. Power 136, 62506-1–62506-11 (2014)

83. Neal, R.M.: Slice sampling. Ann. Stat. 31, 705–767 (2003)
84. Nouy, A.: Recent developments in spectral stochastic methods for the numerical solution

of stochastic partial differential equations. Arch. Comput. Methods Eng. 16(3), 251–285
(2009)

85. Nouy, A.: Proper Generalized Decomposition and separated representations for the numerical
solution of high dimensional stochastic problems. Arch. Comput. Methods Eng. 16(3), 403–
434 (2010)

86. Nouy, A., Soize, C.: Random fields representations for stochastic elliptic boundary value
problems and statistical inverse problems. Eur. J. Appl. Math. 25(3), 339–373 (2014)

87. Ohayon, R., Soize, C.: Structural Acoustics and Vibration. Academic, San Diego (1998)
88. Ohayon, R., Soize, C.: Advanced computational dissipative structural acoustics and fluid-

structure interaction in low- and medium-frequency domains. Reduced-order models and
uncertainty quantification. Int. J. Aeronaut. Space Sci. 13(2), 127–153 (2012)

89. Ohayon, R., Soize, C.: Advanced Computational Vibroacoustics. Reduced-Order Models and
Uncertainty Quantification. Cambridge University Press, New York (2014)

90. Papoulis, A.: Signal Analysis. McGraw-Hill, New York (1977)



286 C. Soize

91. Pellissetti, M., Capiez-Lernout, E., Pradlwarter, H., Soize, C., Schueller, G.I.: Reliability
analysis of a satellite structure with a parametric and a non-parametric probabilistic model.
Comput. Methods Appl. Mech. Eng. 198(2), 344–357 (2008)

92. Poter, C.E.: Statistical Theories of Spectra: Fluctuations. Academic, New York (1965)
93. Pradlwarter, H.J., Schueller, G.I.: Local domain Monte Carlo simulation. Struct. Saf. 32(5),

275–280 (2010)
94. Ritto, T.G., Soize, C., Rochinha, F.A., Sampaio, R.: Dynamic stability of a pipe conveying

fluid with an uncertain computational model. J. Fluid Struct. 49, 412–426 (2014)
95. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2005)
96. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn. John Wiley

& Sons, New York (2008)
97. Sakji, S., Soize, C., Heck, J.V.: Probabilistic uncertainties modeling for thermomechanical

analysis of plasterboard submitted to fire load. J. Struct. Eng. – ASCE 134(10), 1611–1618
(2008)

98. Sakji, S., Soize, C., Heck, J.V.: Computational stochastic heat transfer with model uncertain-
ties in a plasterboard submitted to fire load and experimental validation. Fire Mater. 33(3),
109–127 (2009)

99. Schmit, C.: Quantum and classical properties of some billiards on the hyperbolic plane. In:
Giannoni, M.J., Voros, A., Zinn-Justin, J. (eds.) Chaos and Quantum Physics, pp. 333–369.
North-Holland, Amsterdam (1991)

100. Schueller, G.I.: Efficient Monte Carlo simulation procedures in structural uncertainty and
reliability analysis – recent advances. Struct. Eng. Mech. 32(1), 1–20 (2009)

101. Schwartz, L.: Analyse II Calcul Différentiel et Equations Différentielles. Hermann, Paris
(1997)

102. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New
York (1980)

103. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423,
623–659 (1948)

104. Soize, C.: Oscillators submitted to squared Gaussian processes. J. Math. Phys. 21(10), 2500–
2507 (1980)

105. Soize, C.: The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit
Steady State Solutions. World Scientific Publishing Co Pte Ltd, Singapore (1994)

106. Soize, C.: A nonparametric model of random uncertainties in linear structural dynamics.
In: Bouc R., Soize, C. (eds.) Progress in Stochastic Structural Dynamics, pp. 109–138.
Publications LMA-CNRS, Marseille (1999). ISBN 2-909669-16-5

107. Soize, C.: A nonparametric model of random uncertainties for reduced matrix models in
structural dynamics. Probab. Eng. Mech. 15(3), 277–294 (2000)

108. Soize, C.: Maximum entropy approach for modeling random uncertainties in transient
elastodynamics. J. Acoust. Soc. Am. 109(5), 1979–1996 (2001)

109. Soize, C.: Random matrix theory and non-parametric model of random uncertainties. J. Sound
Vib. 263(4), 893–916 (2003)

110. Soize, C.: Random matrix theory for modeling random uncertainties in computational
mechanics. Comput. Methods Appl. Mech. Eng. 194(12–16), 1333–1366 (2005)

111. Soize, C.: Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic
partial differential operators. Comput. Methods Appl. Mech. Eng. 195(1–3), 26–64 (2006)

112. Soize, C.: Construction of probability distributions in high dimension using the maximum
entropy principle. Applications to stochastic processes, random fields and random matrices.
Int. J. Numer. Methods Eng. 76(10), 1583–1611 (2008)

113. Soize, C.: Generalized Probabilistic approach of uncertainties in computational dynamics
using random matrices and polynomial chaos decompositions. Int. J. Numer. Methods Eng.
81(8), 939–970 (2010)

114. Soize, C.: Stochastic Models of Uncertainties in Computational Mechanics. American Society
of Civil Engineers (ASCE), Reston (2012)



8 Random Matrix Models and Nonparametric Method for Uncertainty: : : 287

115. Soize, C., Poloskov, I.E.: Time-domain formulation in computational dynamics for linear
viscoelastic media with model uncertainties and stochastic excitation. Comput. Math. Appl.
64(11), 3594–3612 (2012)

116. Soize, C., Chebli, H.: Random uncertainties model in dynamic substructuring using a
nonparametric probabilistic model. J. Eng. Mech.-ASCE 129(4), 449–457 (2003)

117. Spall, J.C.: Introduction to Stochastic Search and Optimization. John Wiley & Sons, Hoboken
(2003)

118. Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic
differential equation. Stoch. Anal. Appl. 8(4), 94–120 (1990)

119. Talay, D.: Simulation and numerical analysis of stochastic differential systems. In: Kree,
P., Wedig, W. (eds.) Probabilistic Methods in Applied Physics. Lecture Notes in Physics,
vol. 451, pp. 54–96. Springer, Heidelberg (1995)

120. Talay, D.: Stochastic Hamiltonian system: exponential convergence to the invariant measure
and discretization by the implicit Euler scheme. Markov Process. Relat. Fields 8, 163–198
(2002)

121. Tipireddy, R., Ghanem, R.: Basis adaptation in homogeneous chaos spaces. J. Comput. Phys.
259, 304–317 (2014)

122. Walpole, L.J.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl.
Mech. 21, 169–242 (1981)

123. Walter, E., Pronzato, L.: Identification of Parametric Models from Experimental Data.
Springer, Berlin (1997)

124. Weaver, R.L.: Spectral statistics in elastodynamics. J. Acoust. Soc. Am. 85(3), 1005–1013
(1989)

125. Wigner, E.P.: On the statistical distribution of the widths and spacings of nuclear resonance
levels. Proc. Camb. Philos. Soc. 47, 790–798 (1951)

126. Wigner, E.P.: Distribution laws for the roots of a random Hermitian matrix In: Poter, C.E.
(ed.) Statistical Theories of Spectra: Fluctuations, pp. 446–461. Academic, New York (1965)

127. Wright, M., Weaver, R.: New Directions in Linear Acoustics and Vibration. Quantum Chaos,
Random Matrix Theory, and Complexity. Cambridge University Press, New York (2010)

128. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method For Solid and Structural
Mechanics, Sixth edition. Elsevier, Butterworth-Heinemann, Amsterdam (2005)


	8 Random Matrix Models and Nonparametric Method for Uncertainty Quantification
	Contents
	1 Introduction
	2 Notions on Random Matrices and on the Nonparametric Method for Uncertainty Quantification
	2.1 What Is a Random Matrix?
	2.2 What Is the Nonparametric Method for Uncertainty Quantification?

	3 A Brief History
	3.1 Random Matrix Theory (RMT)
	3.2 Nonparametric Method for UQ and Its Connection with the RMT

	4 Overview
	5 Notations
	5.1 Euclidean and Hermitian Spaces
	5.2 Sets of Matrices
	5.3 Kronecker Symbol, Unit Matrix, and Indicator Function
	5.4 Norms and Usual Operators
	5.5 Order Relation in the Set of All the Positive-Definite Real Matrices
	5.6 Probability Space, Mathematical Expectation, and Space of Second-Order Random Vectors

	6 The MaxEnt for Constructing Random Matrices
	6.1 Volume Element and Probability Density Function (PDF)
	6.1.1 Volume Element on the Euclidean Space of Symmetric Real Matrices
	6.1.2 Probability Density Function of a Symmetric Real Random Matrix
	6.1.3 Support of the Probability Density Function

	6.2 The Shannon Entropy as a Measure of Uncertainties
	6.3 The MaxEnt Principle
	6.3.1 Available Information
	6.3.2 The Admissible Sets for the pdf
	6.3.3 Optimization Problem for Constructing the pdf


	7 A Fundamental Ensemble for the Symmetric Real Random Matrices with a Unit Mean Value
	7.1 Classical Definition ch5-1:Mehta2014
	7.2 Definition by the MaxEnt and Calculation of the pdf
	7.3 Decentering and Interpretation of Hyperparameter δ
	7.4 Generator of Realizations
	7.5 Use of the GOE Ensemble in Uncertainty Quantification

	8 Fundamental Ensembles for Positive-Definite Symmetric Real Random Matrices
	8.1 Ensemble  SG0+  of Positive-Definite Random Matrices With a Unit Mean Value
	8.1.1 Definition of  SG0+  Using the MaxEnt and Expression of the pdf
	8.1.2 Second-Order Moments
	8.1.3 Invariance of Ensemble  SG0+  Under Real Orthogonal Transformations
	8.1.4 Invertibility and Convergence Property When Dimension Goes to Infinity
	8.1.5 Probability Density Function of the Random Eigenvalues
	8.1.6 Algebraic Representation and Generator of Realizations

	8.2 Ensemble SG+ of Positive-Definite Random Matrices with a Unit Mean Value and an Arbitrary Positive-Definite Lower Bound
	8.2.1 Generator of Realizations
	8.2.2 Lower Bound and Invertibility

	8.3 Ensemble SG+b of Positive-Definite Random Matrices with Given Lower and Upper Bounds and with or without Given Mean Value
	8.3.1 Definition of SG+b for a Non-given Mean Value Using the MaxEnt
	8.3.2 Definition of SG+b for a Given Mean Value Using the MaxEnt

	8.4 Ensemble SG+λ of Positive-Definite Random Matrices with a Unit Mean Value and Imposed Second-Order Moments
	8.4.1 Definition of SG+λ Using the MaxEnt and Expression of the pdf
	8.4.2 Generator of Realizations


	9 Ensembles of Random Matrices for the Nonparametric Method in Uncertainty Quantification
	9.1 Ensemble SE+0 of Positive-Definite Random Matrices with a Given Mean Value
	9.1.1 Definition of Ensemble SE+0
	9.1.2 Expression of [A0] as a Transformation of [G0] and Generator of Realizations
	9.1.3 Properties of Random Matrix [A0]
	9.1.4 Covariance Tensor and Coefficient of Variation of Random Matrix [A0]

	9.2 Ensemble SE+ of Positive-Definite Random Matrices with a Given Mean Value and an Arbitrary Positive-Definite Lower Bound
	9.2.1 Definition of Ensemble SE+
	9.2.2 Properties of Random Matrix [A]

	9.3 Ensemble SE+0 of Semipositive-Definite Random Matrices with a Given Semipositive-Definite Mean Value
	9.3.1 Algebraic Structure of the Random Matrices in SE+0
	9.3.2 Definition and Construction of Ensemble SE+0

	9.4 Ensemble SE rect of Rectangular Random Matrices with a Given Mean Value
	9.4.1 Decomposition of a Rectangular Matrix
	9.4.2 Definition of Ensemble SErect

	9.5 Ensemble SE HT of a Pair of Positive-Definite Matrix-Valued Random Functions Related by a Hilbert Transform
	9.5.1 Defining the Deterministic Matrix Problem
	9.5.2 Construction of a Nonparametric Stochastic Model


	10 MaxEnt as a Numerical Tool for Constructing Ensembles of Random Matrices
	10.1 Available Information and Parameterization
	10.1.1 Example of Parameterization

	10.2 Construction of the pdf of Random Vector Y Using the MaxEnt

	11 MaxEnt for Constructing the pdf of a Random Vector
	11.1 Existence and Uniqueness of a Solution to the MaxEnt
	11.2 Numerical Calculation of the Lagrange Multipliers
	11.3 Generator for Random Vector Yλ and Estimation of the Mathematical Expectations in High Dimension
	11.3.1 Random Generator and Estimation of Mathematical Expectations
	11.3.2 Discretization Scheme and Estimating the Mathematical Expectations


	12 Nonparametric Stochastic Model For Constitutive Equation in Linear Elasticity
	12.1 Positive-Definite Matrices Having a Symmetry Class
	12.2 Representation Introducing a Positive-Definite Lower Bound
	12.3 Introducing Deterministic Matrices [A] and [S]
	12.4 Nonparametric Stochastic Model for [C]
	12.4.1 Remarks Concerning the Control of the Statistical Fluctuations and the Limit Cases

	12.5 Construction of [A] Using the MaxEnt Principle
	12.5.1 Defining the Available Information
	12.5.2 Defining the Parameterization
	12.5.3 Construction of [A] Using the Parameterization and Generator of Realizations


	13 Nonparametric Stochastic Model of Uncertainties in Computational Linear Structural Dynamics
	13.1 Methodology
	13.2 Mean Computational Model in Linear Structural Dynamics
	13.3 Reduced-Order Model (ROM) of the Mean Computational Model
	13.3.1 Convergence of the ROM with Respect to n Over Frequency Band of Analysis B

	13.4 Nonparametric Stochastic Model of Both the Model-Parameter Uncertainties and the Model Uncertainties (Modeling Errors)
	13.4.1 Available Information for Constructing a Prior Probability Model of [M], [D], and [K]
	13.4.2 Prior Probability Model of [M], [D], and [K], Hyperparameters and Generator of Realizations

	13.5 Case of Linear Viscoelastic Structures
	13.5.1 Mean Computational Model, ROM, and Convergence
	13.5.2 Nonparametric Stochastic Model of Both the Model-Parameter Uncertainties and the Model Uncertainties (Modeling Errors)
	13.5.3 Available Information for Constructing a Prior Probability Model of [M], [D(ω)], and [K(ω)]
	13.5.4 Prior Probability Model of [M], [D(ω)], and [K(0)], Hyperparameters, and Generator of Realizations

	13.6 Estimation of the Hyperparameters of the Nonparametric Stochastic Model of Uncertainties

	14 Parametric-Nonparametric Uncertainties in Computational Nonlinear Structural Dynamics
	14.1 Mean Nonlinear Computational Model in Structural Dynamics
	14.2 Reduced-Order Model (ROM) of the Mean Nonlinear Computational Model
	14.3 Parametric-Nonparametric Stochastic Modeling of Uncertainties
	14.3.1 Methodology
	14.3.2 Prior Probability Model of Y, Hyperparameters, and Generator of Realizations
	14.3.3 Prior Probability Model of [M(y)], [D(y)], and [K(y)], Hyperparameters, and Generator of Realizations
	14.3.4 Mean Values of Random Matrices [M(Y)], [D(Y)], [K(Z)] and Hyperparameters of the Parametric-Nonparametric Stochastic Model of Uncertainties

	14.4 Estimation of the Hyperparameters of the Parametric-Nonparametric Stochastic Model of Uncertainties

	15 Key Research Findings and Applications
	15.1 Propagation of Uncertainties Using Nonparametric or Parametric-Nonparametric Stochastic Models of Uncertainties
	15.2 Experimental Validations of the Nonparametric Method of Uncertainties
	15.3 Additional Ingredients for the Nonparametric Stochastic Modeling of Uncertainties
	15.4 Applications of the Nonparametric Stochastic Modeling of Uncertainties in Different Fields of Computational Sciencesand Engineering

	16 Conclusions
	References


