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Abstract

Analyses of complex processes should account for the uncertainty in the
data, the processes that generated the data, and the models that are used to
represent the processes and data. Accounting for these uncertainties can be
daunting in traditional statistical analyses. In recent years, hierarchical statistical
models have provided a coherent probabilistic framework that can accommodate
these multiple sources of quantifiable uncertainty. This overview describes
a science-based hierarchical statistical modeling approach and the associated
Bayesian inference. In addition, given that many complex processes involve the
dynamical evolution of spatial processes, an overview of hierarchical dynamical
spatio-temporal models is also presented. The hierarchical and spatio-temporal
modeling frameworks are illustrated with a problem concerned with assimilating
ocean vector wind observations from satellite and weather center analyses.
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1 Introduction

Scientists and engineers are increasingly aware of the importance of accurately
characterizing various sources of uncertainty when trying to understand complex
systems. When performing statistical modeling on complex phenomena, the goal
is typically either inference, prediction, or forecasting. To accomplish these goals
through modeling, one must synthesize information. This information can come
from a variety of sources, including direct (in situ) observations, indirect (remotely
sensed) observations, surrogate observations, previous empirical results, expert
opinion, and scientific principles. In order to make inferential or predictive decisions
with a statistical model, one must consider these sources of information in a coherent
manner that accounts adequately for the various sources of uncertainty that are
present. That is, there may be measurement error, model representativeness error,
error associated with differing levels of support between observations and process,
parameterization error, and parameter uncertainty. Over the last 20 years or so, one
of the most useful statistical paradigms in which to consider complex models in
the presence of uncertainty is hierarchical modeling (HM). The purpose of this
overview is to outline the general principles of science-based statistical HM and
its utility to a wide class of processes.

Hierarchical modeling is, at its core, just a system of coherently linked probabil-
ity relationships. In this sense, it is certainly not a new idea, and from a modeling
perspective, such ideas have been at the core of fundamental statistical methods
such as mixed models, structural equation models, spatial models, directed acyclic
graph models, among others. This class of models might be referred to as “little h”
hierarchical models. That is, one is either focused on a data model (i.e., “likelihood”)
and parameters, with the process considered a nuisance, or a data model and process
model, with the parameters considered a nuisance. The perspective presented in
this overview follows more closely the perspective originally outlined by Mark
Berliner [4] in a somewhat obscure conference proceedings paper written while
he was the director of the Geophysical Statistics Project at the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado, USA. In this seminal
paper, Berliner presents a simple, yet fundamentally important, way to think about
partitioning uncertainty associated with data, processes, and parameters in complex



7 Hierarchical Models for Uncertainty Quantification: An Overview 195

systems. As described below, the basic tenet of this modeling paradigm is to
characterize uncertainty in the joint model of data, process, and parameters in terms
of component conditional and marginal distributions, which is often facilitated by
the inclusion of scientific information. The advent of this formulation coincided with
the so-called computational Bayesian revolution, specifically in terms of Markov
chain Monte Carlo (MCMC) methods that were facilitated by the classic paper
of [10]. This understanding provided the practical tools necessary to implement
these models in the Bayesian context. One of the key components of thinking about
models from this perspective is that one deliberately pushes complexity into the
conditional mean, in which case subprocesses and parameters are often modeled
with fairly complex dependence structures. This [4] hierarchical modeling paradigm
might be referred to as a “big H” hierarchical model (HM), to emphasize that the
conditional structure and parameter models are fundamental to the HM, not just
a nuisance, and that scientific/mechanistic information is included in the various
components of the HM.

The chapter begins with a general overview of hierarchical modeling and its
Bayesian implementation. This is then followed by an overview of discrete-time
spatio-temporal dynamical processes, given their importance as component models
in many complex hierarchical modeling applications. A discussion of process and
parameter space reduction is included in this overview of spatio-temporal processes.
A simple illustrative example based on blending different sources of information
for ocean surface vector winds is presented to highlight some of the important
components of hierarchical modeling. Finally, a brief conclusion is presented that
outlines the trade-offs one has to consider when building complex BHMs.

2 Hierarchical Modeling in the Presence of Uncertainty

This section presents a broad overview of statistical hierarchical modeling. The
focus of this presentation is on the role of conditional models and, specifically, the
separation of the joint model into coherently linked models for data, process, and
parameters. This discussion follows similar discussions in [7, 8, 38], and [43].

To motivate the discussion of HMs, consider a problem in which one has
observations of near-surface winds over the ocean from a satellite scatterometer
and wishes to “predict” the distribution of complete spatial fields of the true wind
across time. That is, there are satellite observations of east-west and north-south
wind components that occur at a fairly fine spatial resolution, but are incomplete
spatially due to the polar orbit of the satellite, and the goal is to interpolate the
observations to form complete spatial fields for a regular sequence of times. In
this case, the “process” corresponds to the wind components and, potentially, other
relevant atmospheric state variables (e.g., sea-level pressure). In addition to the
satellite observations, there is additional information from weather center “analysis”
fields (i.e., model output from operational data assimilation systems that combine
worldwide weather observations and deterministic weather forecasting models).
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It is reasonable to assume that the satellite-derived scatterometer observations have
not been used to produce the weather center data assimilation products.

For purposes of this general exposition, let the wind observations (data) be
denoted by D. One possible approach to solving the aforementioned interpola-
tion problem is to apply some deterministic curve-fitting interpolation algorithm
OD D f .D/ (e.g., linear, polynomial, or spline interpolation). However, such

approaches do not account for the uncertainty associated with the observations and,
more importantly, do not utilize scientific knowledge to help fill in the data gaps in
a physically plausible manner.

A more traditional statistical modeling alternative to this curve-fitting interpo-
lation approach might consider a distribution for the data conditioned on some
parameters, say �o, which is denoted by ŒD j �o�. Note the use of a bracket notation
for distribution, “Œ �,” which is common in the hierarchal modeling literature, where
the vertical bar, “j,” denotes conditioning, ŒA; B� represents the joint distribution of
A and B , and ŒA j B� represents the conditional distribution of A “given” B . In the
traditional statistical model, one would seek the parameters, �o, that maximize the
likelihood of observing the data D. Of course, this assumes that the distributional
assumption adequately captures all of the variability (spatial, temporal, multivariate,
etc.) in the data, subject to the correct specification of the parameters. Although
this is very much a reasonable paradigm in many traditional statistical modeling
problems, it is extremely tenuous in the example considered here (and, indeed, most
complex physical, biological, or engineering problems) because it is typically not
possible to adequately represent the complexity in the data via a single distributional
assumption. In particular, this approach does not consider the fact that much of the
complexity of the data arises from the scientific process (e.g., the atmospheric state
variables in the wind example).

2.1 Basic Hierarchical Structure

A scientific modeling approach considers a model for the process of interest, say W

here for “wind.” Recognizing the fact that one’s understanding of such scientific
processes is always limited, this uncertainty is accounted for via a stochastic
representation, denoted by the distribution ŒW j �W �, where �W are parameters. The
traditional statistical approach described above does not explicitly account for this
uncertainty nor the uncertainty about the relationship between D and W . To see this
more clearly, one might decompose the joint distribution of the data and the process
given the associated parameters as

ŒD; W j �D; �W � D ŒD j W; �D�ŒW j �W �; (7.1)

where the parameters in the conditional distribution of D given the process W

are denoted by �D , which are different than the parameters �o for the marginal
distribution of the data described above. That is, integrating out the process, W ,
from (7.1), gives ŒD j �o D f�D; �W g�, which implies that the complexity associated
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with the process W is present in the marginal form of this data distribution and the
associated parameters. Typically, this integration cannot be done analytically, and
so one does not know the actual form of this marginal data likelihood nor could one
generally account for the complicated multivariate spatio-temporal dependence in
such a parameterization for real-world processes (e.g., nonlinearity, nonstationarity,
non-Gaussianity). Even in the rare situation where one can do the integration
analytically (e.g., Gaussian data and process models), the marginal dependence
structure is typically more complicated than can be captured by traditional spatio-
temporal parameterizations, that is, the dependence is some complicated function of
the parameters �D and �W . Perhaps more importantly, in the motivating application
considered here, the interest is with W , so one does not want to integrate it
out of (7.1). Indeed, one typically wants to predict this process distribution. This
separation between the data model conditional on the process and the process
model is exactly the paradigm in traditional state-space models in engineering
and time-series applications [e.g., 29]. More generally, the trade-off between
considering a statistical model from the marginal perspective, in which the random
process (parameters) are integrated out, and the conditional perspective, in which
complicated dependence structures must be parameterized, is just the well-known
trade-off that occurs in traditional mixed-model analysis in statistics [e.g., 31].

The decomposition given in (7.1) above is powerful in the sense that it separates
the uncertainty associated with the process and the uncertainty associated with
the observation of the process. However, it does not factor in the uncertainty
associated with the parameters themselves. Utilizing basic probability, one can
always decompose a joint distribution into a sequence of conditional and marginal
distributions. For example, ŒA; B; C � D ŒA j B; C �ŒB j C �ŒC �. Thus, the hierarchical
decomposition can be written as

ŒD; W; �� D ŒD j W; ��ŒW j ��Œ��; (7.2)

where � D f�D; �W g. This hierarchical decomposition is not unique, e.g., it is
equally valid probabilistically to write ŒA; B; C � D ŒC j B; A�ŒA j B�ŒB�, but the
decomposition in (7.2) is meaningful scientifically as it implies causality in the
sense that the parameters drive the process and the process generates the data, etc.
In addition, note that the distributions on the right-hand side (RHS) of (7.2) could
be simplified such that ŒD j W; �� D ŒD j W; �D� and ŒW j �W �, that is, it might be
reasonable to assume conditional independence in the parameter decomposition.
This is a modeling choice, but it is reasonable in this case based on how the
individual data and process distributions were specified above. More generally, it is
helpful to consider the following schematic representation of [4] when partitioning
uncertainty in hierarchical decompositions as it provides a framework for building
probabilistically consistent models:

Œdata; process; parameters� D Œdatajprocess; parameters�

� Œprocessjparameters� � Œparameters�: (7.3)
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2.2 Data Models

Each of the stages of the hierarchy given in (7.3) can be decomposed into products
of distributions or submodels. For example, say there are three datasets for the near-
ocean surface wind process (W ) denoted by D.1/, D.2/, and D.3/. These might
correspond to the satellite scatterometer data mentioned previously, ocean buoy
data, and the weather center analysis data product. These observations need not
be coincident nor even of the same spatial or temporal support as the other data nor
the process. In this case, the data model might be represented as

ŒD.1/; D.2/; D.3/ j W; �D� D ŒD.1/ j W; �
.1/
D �ŒD.2/ j W; �

.2/
D �ŒD.3/ j W; �

.3/
D �; (7.4)

where the parameters for each submodel are given by �D D f�
.1/
D ; �

.2/
D ; �

.3/
D g.

The RHS of (7.4) makes use of the assumption that the three datasets are all
conditionally independent given the true process. This is not to say that the
data are independent marginally, as they surely are not. Yet, the assumption of
conditional independence is a powerful simplifying modeling assumption that is
often reasonable in complex systems, but must be justified in practice. It is important
to emphasize that the specific forms of the component distributions on the RHS of
(7.4) can be quite different from each other, accounting for the differing support
and measurement properties associated with the specific dataset. For example,
satellite scatterometer wind observations have fairly well-known measurement-error
properties and are associated with fairly small areal “footprints” (depending on the
specific instrument), but wind observations from an ocean buoy are best considered
point-level support with well-calibrated measurement-error properties.

2.3 Process Models

Typically, the process model in the hierarchical decomposition can also be further
decomposed into component distributions. For example, in the case of the wind
example described here, the wind process is a vector composed of two components,
speed and direction or, equivalently, north-south and east-west components that
depend on pressure. That is, one might write

ŒW .1/; W .2/; W .3/ j �W � D ŒW .1/; W .2/ j W .3/; �
.1;2/
W �ŒW .3/ j �

.3/
W �; (7.5)

where W .1/ and W .2/ correspond to the east-west and north-south wind components
(typically denoted by u and v, respectively) and W .3/ corresponds to the near-
surface atmospheric pressure (typically denoted P ). The decomposition in (7.5) is
not unique, but is sensible in this case because there is strong scientific justification
for conditioning the wind on the pressure [e.g., 14]. The process parameters are
again decomposed into those components associated with each distribution, �W D

f�
.1;2/
W ; �

.3/
W g. The decomposition in (7.5) simplifies the joint dependence structure
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between the various process components by utilizing simplifying assumptions based
on scientific input. It is important to recognize that these components are still
distributions, so that the uncertainties in the relationships (say, between wind and
pressure) can be accommodated through appropriate modeling components (e.g.,
bias and error terms).

Other types of joint interactions in the process can also be simplified through such
conditional probability relationships. For example, given that the wind process is
time varying, one might be able to make Markov assumptions in time. For example,
if Wt corresponds to the wind process at time t for t D 0; : : : ; T , then

ŒW0; W1; : : : ; WT j �W � D

TY

tD1

ŒWt j Wt�1; �W �ŒW0�; (7.6)

represents a first-order Markov assumption, that is, the process is independent of
the past if conditioned on the most recent past. This is a significant simplifying
assumption, and must be justified in practice, but such assumptions are often
very realistic for real-world time-varying processes. Similar sorts of conditioning
arguments can be made for networks, spatial processes (e.g., Markov random
fields), and spatio-temporal processes (e.g., spatio-temporal dynamical models) as
described in [7].

2.4 Parameter Models

An important consequence of the hierarchical modeling paradigm described above
is the recognition that additional complexity can be accommodated by allowing
the parameters to be random and endowing them with dependence structures
(e.g., multivariate, spatial, temporal, etc.). That is, the parameter models can
themselves be quite complex and can incorporate additional information, whether
that be through exogenous data sources (e.g., a sea-surface temperature index
corresponding to the El Niño/La Niña phenomenon) or scientific knowledge (e.g.,
spatial turbulent scaling relationships). For example, one might write Œ�W jX; �X �,
where X is some exogenous covariate and �X are parameters. It can be very difficult,
if not impossible, to account for such complex parameter dependence structures in
the classical modeling approach discussed above.

Now, one must decide how to account for the uncertainty in X and �X , which
often leads to yet another data or parameter level of the model hierarchy. Typically,
at some point, there is no more information that can assist the specification of these
distributions, and one either assigns some sort of non-informative distribution to the
parameters or, in some cases, estimates them through some other means.

It is apparent that the distinction between “process” and “parameter” may not
always be precise. This can be the case in some applications, but the strength
of the hierarchal paradigm is that it is the complete sequence of the hierarchical
decomposition that is important, not what one calls “process” or “parameter.”
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This suggests that one requires a flexible inferential paradigm that allows one to
perform inference and prediction on both process and parameters and even their
joint interaction.

2.5 Bayesian Formulation

The Bayesian paradigm fits naturally with hierarchical models because the posterior
distribution is proportional to the product distributions in the hierarchical decom-
position. For example, in the schematic representation of [4] given in (7.3), the
posterior distribution can be written via Bayes’ rule as

Œprocess; parameters j data� / Œdatajprocess; parameters�

� Œprocessjparameters� � Œparameters�; (7.7)

where the normalizing constant is the integral (in the case of continuous distri-
butions) of (7.3) with respect to the process and parameters (i.e., the marginal
distribution of the data). In the context of the wind example, the posterior distri-
bution can be written

ŒW; �W ; �D j D� / ŒD j W; �D�ŒW j �W �Œ�D; �W �: (7.8)

In practice, it is not typically possible to calculate the normalizing constant (1=ŒD�)
analytically. With the understanding that Markov chain Monte Carlo (MCMC)
methods could be used generally for such purposes (i.e., after the seminal paper
of [10]), this has not been a serious limitation.

MCMC methods seek to draw simulation samples from a distribution that
coincides with the posterior distribution of interest. In particular, a Markov chain is
constructed algorithmically such that samples from the stationary distribution of the
Markov chain correspond to samples from the desired posterior distribution. Details
of the implementation of such algorithms are beyond the scope of this overview,
but they can be found in references such as [25] and [6]. Alternatively, approximate
solutions can sometimes be found with less computational burden, such as with
variational methods, approximate Bayesian computation (ABC), and integrated
nested Laplace approximations (INLA) [e.g., 21, 27, 30]. In general, one must find
trade-offs between model complexity and computational complexity when building
complex statistical models in the presence of uncertainty (see the Conclusion of this
chapter).

In some simpler modeling situations (e.g., state-space models), one might be
content with assuming the parameters are fixed but unknown rather than assign them
distributions. In that case, one could write (7.8) as

ŒW j D; �W ; �D� / ŒD j W; �D�ŒW j �W �: (7.9)
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In applications where the component models are not too complex, these parameters
can be estimated using classical statistical approaches, and then the parameters are
used in a “plug-in” fashion in the model. For example, in state-space modeling,
one might estimate the parameters through an E-M algorithm and then evaluate
the process distributions through a Kalman filter/smoother [e.g., 29]. Such an
approach is sometimes called “empirical Bayes” or, in the context of hierarchical
models, empirical hierarchical modeling (EHM) [e.g., 7]. A potential concern using
such an approach is accounting for the uncertainty in the parameter estimation.
In some cases, this uncertainty can be accounted for by Taylor approximations or
bootstrap resampling methods [e.g., 29]. Typically, in complex models, the BHM
framework provides a more sensible approach to uncertainty quantification than
EHM approaches.

3 Dynamical Spatio-temporal Process Models

The motivating wind example discussed above can be thought of as a data
assimilation (DA) problem. [33] characterize DA as a set of methods that blend
observations with prior system knowledge in an optimal way in order to obtain a
distributional summary of a process of interest. In this context, “system knowledge”
can correspond to deterministic models, scientific/mechanistic relationships, model
output, and expert opinion. As summarized in [33], there is a large literature in the
physical sciences dedicated to various methods for DA. In many ways, this is just
a type of inverse modeling, and many different solution approaches are possible.
However, if DA is considered from a BHM perspective, then one can gain a more
comprehensive characterization of the uncertainty associated with the data, process,
and parameters. From a statistical perspective, these methods typically require a
dynamical spatio-temporal model (DSTM) of some sort. Hence, this section gives
a brief overview of hierarchical DSTMs. More complete details can be found in [7]
and [40]. This overview considers only DSTMs from a discrete-time perspective for
the sake of brevity. However, it should be noted that many science-oriented process
models are specified from a continuous time perspective (e.g., differential equations)
and these can be used either to motivate HMs or can be implemented directly within
the HM framework (e.g., [4]).

The data model in a general DSTM can be written

Zt .�/ D H.Yt .�/; �d .t/; �t .�//; t D 1; : : : ; T;

where Zt .�/ corresponds to the data at time t and Yt .�/ is the corresponding latent
process of interest, with a linear or nonlinear mapping function, H.�/, that relates
the data to the latent process. The data model error is given by �t .�/, and data model
parameters are represented by �d .t/. These parameters may vary spatially and/or
temporally in general. As discussed more generally above, an important assumption
that is present here, and in many hierarchical representations of DSTMs, is that
the data Zt .�/ are independent in time when conditioned on the true process, Yt .�/
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and parameters �d .t/. Thus, the observations conditioned on the true process and
parameters can be represented

TY

tD1

ŒZt .�/ j Yt .�/; �d .t/�:

The key component of the DSTM is the dynamical process model. As discussed
above, one can simplify this by making use of conditional independence through
Markov assumptions. For example, a first-order Markov process can be written as

ŒYt .�/jYt�1.�/; : : : ; Y0.�/; f�p.t/; t D 0; : : : ; T g� D ŒYt .�/jYt�1.�/; �p.t/�;

for t D 1; 2; : : : so that

ŒY0.�/; Y1.�/; : : : ; YT .�/jf�p.t/; t D 0; : : : ; T g� D

TY

tD1

ŒYt .�/jYt�1.�/; �p.t/�

� ŒY0.�/j�p.0/�: (7.10)

Higher-order Markov assumptions could be considered if warranted by the specific
problem of interest. Such relationships are critical for real-world spatio-temporal
processes because they follow the etiology of process development.

Now, the modeling focus is on the component Markov models in (7.10). For
example, a first-order process can be written generally as

Yt .�/ D M.Yt�1.�/; �p.t/; �t .�//; t D 1; 2; : : : ; (7.11)

where M.�/ is the evolution operator (linear or nonlinear), �t .�/ is the noise
(error) process, and �p.t/ are process model parameters that may vary with time
and/or space. Typically, one would also specify a distribution for the initial state,
ŒY0.�/j�p.0/�.

The hierarchical model then requires distributions to be assigned to the parame-
ters f�d .t/; �p.t/; t D 0; : : : ; T g: Specific distributional forms for the parameters
(e.g., spatially or temporally varying, dependence on auxiliary covariate informa-
tion, etc.) depend strongly on the problem of interest. Indeed, as mentioned above,
one of the most critical aspects of complex hierarchical modeling is the specification
of these distributions. This is illustrated below with regard to linear and nonlinear
DSTMs.

3.1 Linear DSTM Process Models

In the case where one has a discrete set of spatial locations Ds D fs1; s2; : : : ; sng of
interest (e.g., a lattice or grid), the first-order evolution process model (7.11) can be
written as
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Yt .si / D

nX

j D1

mij .�m/Yt�1.sj / C �t .si /; (7.12)

for t D 1; 2; : : :, with redistribution (transition) components mij .�m/ that depend
on parameters �m. If interest is in continuous space and discrete time, one can also
write this in terms of an integro-difference equation (IDE)

Yt .s/ D

Z

Ds

m.s; xI �m/Yt�1.x/dx C �t .s/; s; x 2 Ds; (7.13)

for t D 1; 2; : : :, where m.s; xI �m/ is a transition kernel that gives redistribution
weights for process at the previous time and �t .s/ is a time-varying (continuous)
spatial error process. Analogous stochastic partial differential equation models
could be specified for continuous time and space.

Now, denoting the process vector Yt � .Yt .s1/; : : : ; Yt .sn//0; (7.12) can be
written in vector/matrix form as a first-order vector autoregression (VAR(1)) DSTM

Yt D MYt�1 C �t ; (7.14)

where the n � n transition matrix is given by M with elements fmij g with the
associated time-varying spatial error process given by �t � .�t .s1/; : : : ; �t .sn//0,
which is typically specified to be zero mean and Gaussian, with spatial variance-
covariance matrix C�. Usually, M and C� are assumed to depend on parameters
�m and ��, respectively, to mitigate the curse of dimensionality that often occurs
in spatio-temporal modeling. As discussed below, the parameterization of these
matrices is one way that additional mechanistic information can be incorporated
into the HM framework.

3.2 Nonlinear DSTM Process Models

Many mechanistic processes are best modeled nonlinearly, at least at some spatial
and temporal scales of variability. A class of nonlinear statistical DSTMs can
be specified to accommodate such processes with quadratic interactions. Such a
general quadratic nonlinear (GQN) DSTM [35] can be written as

Yt .si / D

nX

j D1

mij Yt�1.sj / C

nX

kD1

nX

`D1

bi;k`Yt�1.sk/g.Yt�1.s`/I �g/ C �t .si /;

(7.15)

where mij are the linear transition coefficients seen previously and quadratic
interaction transition coefficients are denoted by bi;k`. A transformation of one
of the components of the quadratic interaction is specified through the function
g.�/, which can depend on parameters �g. This function g.�/ is responsible for the
“general” in GQN, and such transformations are critical for many processes such
as density-dependent growth that one may see in an epidemic or invasive species



204 C.K. Wikle

population process. The spatio-temporal error process is again typically assumed
to be independent in time and Gaussian with mean zero and a spatial covariance
matrix. Note that the conditional GQN model is Gaussian, but the marginal model
will not in general be Gaussian because of the nonlinear interactions.

3.3 Multivariate DSTM Process Models

There are three primary approaches to modeling multivariate spatio-temporal
dynamical processes in statistics. An obvious approach is to simply augment the
process vector (e.g., concatenating the process vectors for a given time) and then
using one of the univariate models (such as described above) to model the evolution
of the process. That is, if there are J processes given by fY.j /

t g; j D 1; : : : ; J ,
then for time t one could write Wt � .Y.1/0

t ; : : : ; Y.J /0
t /0 and then evolve Wt

as above. The simplicity of this approach is appealing, but it is often more
difficult to incorporate scientific information into the process evolution. Perhaps
more critically, this often leads to very high-dimensional process vectors, which
compounds the curse of dimensionality issue that is endemic in spatio-temporal
statistical modeling.

As discussed generally above, multivariate processes can be modeled hier-
archically by using the law of total probability and applying some conditional
independence assumptions. As a simple example, consider J D 3 processes for the
component conditional distribution for time t given time t � 1 might be written as

ŒY.1/
t ; Y.2/

t ; Y3
t jY.1/

t�1; Y.2/
t�1; Y3

t�1� D ŒY.1/
t jY.3/

t ; Y.1/
t�1; Y.2/

t�1�

� ŒY.2/
t jY.3/

t ; Y.1/
t�1; Y.2/

t�1�ŒY.3/
t jY.3/

t�1�:

That is, processes 1 and 2 are conditionally independent at time t given process
3 at time t and previous values of processes 1 and 2 at time t � 1, and process 3
at time t is conditionally independent of the others given its previous values. Such
a model formulation has the advantage of being able to match up to mechanistic
knowledge about the processes and their interactions. However, if such knowledge
is not available, this conditional formulation is arbitrary (or there is no basis for the
conditional independence assumptions), and such an approach is not recommended.

The third primary approach for modeling multivariate dynamical spatio-temporal
processes is to condition the J processes on one or more latent processes, much
like what is done in multivariate factor analysis. For a set of K � J common latent
dynamical processes, f˛

.k/

`;t g; which may or may not be spatially referenced, consider

Y
.j /

t .si / D

nX̨

`D1

KX

kD1

h
.jk/

i;` ˛
.k/

`;t C �
.j /
t .si /; (7.16)

for i D 1; : : : ; n, j D 1; : : : ; J , where h
.jk/

i;` are interaction coefficients that account
for how the `th element of the kth latent process influences the j th process at
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location i . This is a powerful modeling framework, but the curse of dimensionality
in parameter space can easily make this impracticable. In addition, care must be
taken when modeling the latent processes, which is typically done at the next level of
the model hierarchy, as there are identifiability problems between the h parameters
at this level and potential dynamical evolution parameters for the ˛ processes at the
next level [see 7, Section 7.4.2, for more discussion].

3.4 Process and Parameter Reduction

As mentioned above, one of the greatest challenges when considering DSTMs in
hierarchical settings is the curse of dimensionality associated with the process and
parameter space. For the fairly common situation where the number of spatial
locations (n) is much larger than the number of time replicates (T ), even the
fairly simple linear VAR(1) model (7.14) is problematic as there are on order n2

parameters to estimate. This is compounded for the GQN model (7.15), which has
on order n3 free parameters and similarly for the multivariate model. To proceed,
one must reduce the number of free parameters to be estimated in the model and/or
reduce the dimension of the dynamical process. These two approaches are discussed
briefly below.

3.4.1 Parameter Reduction
Very seldom would one estimate the full variance/covariance matrix (C�) in
the DSTM. Rather, given that these are spatial covariance matrices, one would
either use one of the common spatial covariance function representations (e.g.,
Matérn, conditional autoregressive, etc.; see Cressie and Wikle [7, Chapter 4])
or a spatial random effect representation (see the “Process Reduction” section
below). Generally, the transition parameters in the DSTM require the most care. For
example, in the case of the simple VAR model (7.14), one could parameterize the
transition matrix M simply as a random walk (i.e., M D I), a spatially homogeneous
autoregressive process (i.e., M D �I), or a spatially varying autoregressive process
(M D diag.�m/). The first two parameterizations are somewhat unrealistic for
most real-world dynamical processes, and the latter, although able to accommo-
date non-separable spatio-temporal dependence, does not account for interactions
dynamically across space and time. Although in the context of evolving a spectral
latent process (see below), such models can be very effective.

More mechanistically realistic dynamical parameterizations in the context of
physical space representations recognize that spatio-temporal interactions are cru-
cial for dynamical propagation. For example, in the linear case, the asymmetry and
rate of decay of the transition parameters relative to a location (say, si ) control
propagation (linear advection) and spread (diffusion). This suggests that a simple
lagged-nearest-neighbor parameterization can be quite effective. For example,

Yt .si / D
X

j 2Ni

mij Yt�1.sj / C �t .si /; (7.17)
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where Ni corresponds to a prespecified neighborhood of location si ; i D 1; : : : ; n

and mij D 0 for all sj 62 Ni . Such a parameterization reduces the number of
parameters from O.n2/ to O.n/. It can be shown that such a parameterization can
be motivated by many mechanistic models, such as those suggested by standard
discretization of differential equations (e.g., finite difference, Galerkin, spectral)
[e.g., see 7, 35]. In these cases, the mij parameters in (7.17) can be parameterized
in terms of other mechanistically motivated knowledge, such as spatially varying
diffusion or advection coefficients [e.g., 16,17,32,37,45]. Mechanistically motivated
parameterizations can also be applied to nonlinear and multivariate processes [35].

3.4.2 Process Rank Reduction
Useful process reductions can be formulated with the realization that the essen-
tial dynamics for spatio-temporal processes typically exist on a relatively low-
dimensional manifold [e.g., 41]. This is helpful because instead of having to model
the evolution of the n-dimensional process fYt g, one can model the evolution of
a much lower-dimensional (n˛) process f˛t g, where n˛ << n. Thus, consider a
decomposition of Yt [36] such that

Yt D �t C ˚˛t C ��t C �t ; (7.18)

where �t is an n-dimensional time-varying (potentially) spatial mean corresponding
to large-scale non-dynamic features and/or covariate effects; ˚ is an n � n˛ matrix
of basis vectors corresponding to the latent dynamical expansion coefficient process,
f˛t g; and � can either be an n�n� basis function matrix corresponding to the latent
process, f�t g, which typically is assumed to have different dynamical characteristics
than f˛t g or this component might account for non-dynamical spatial variability.
The error process f�t g is typically Gaussian and assumed to be mean zero with
simple dependence structure. Note that a continuous space representation of this
decomposition can be expressed in terms of IDEs [e.g., see 7, Section 7.1.3].

The evolution of the latent ˛t process can proceed according to the basic linear or
nonlinear models described above. Even in this low-dimensional context, parameter
space reduction may still be necessary, particularly the case in nonlinear models
(e.g., there are on the order of n3

˛ free parameters to estimate in the GQN model).
Mechanistic knowledge can again be used to motivate such parameterizations in
some cases [11, 36], and/or model selection approaches can be used to reduce the
parameter space, such as stochastic search variable selection [e.g., 34].

There are many choices for the basis vectors that make up ˚ and � . It has
become quite common in recent years to represent spatial processes in terms
of basis decompositions, and there are many choices for these, such as orthog-
onal polynomials, empirical spectral decompositions (i.e., empirical orthogonal
functions (EOFs)), stochastic optimals, balanced truncations, wavelets, splines,
bisquare bases, Wendland bases, Moran’s I bases, kernel convolution and “predictive
process” bases, and dynamic factor bases [e.g., see the discussion in 7,39]. Each has
its proponents, although it does not seem to matter too much in the spatial context
which basis is used, so long as it can accommodate the appropriate variability. In the
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context of DSTMs, it can make more of a difference because it is important that
interactions across spatial scales be allowed [e.g., 40]. This is more difficult to
do in the standard “knot-based” representations (e.g., splines, kernel convolutions,
predictive processes) in which case the ˛t coefficients are spatially referenced, but
not necessarily multi-resolution. Most of the other basis representations are in some
sense multi-scale, and the associated expansion coefficients ˛t are not indexed
in space. However, the product of the basis times the expansion coefficients is
spatially referenced, and more importantly, dynamical evolution in the DSTM can
accommodate scale interactions. Note that the coefficients �t associated with the
matrix � are typically specified to have much-simpler dynamical structure (if at all)
as the assumption is that the controlling dynamics are associated with ˛t . In general,
the �t coefficient portion of the expansion is used to accommodate extra-dynamical
spatial variability and/or exogenous effects.

The projection of the process fYt g to the lower-dimensional manifold need not be
linear as shown in (7.18). There are a bewildering number of choices for nonlinear
dimension reduction, and some of them could potentially represent the dynamics
more realistically (e.g., Laplacian eigenmaps [2], kernel principal components [e.g.,
44], etc.). However, these methods are somewhat limited by a lack of uniqueness
in the back projection of the expansion coefficients into physical space, which
requires either some sort of ad hoc procedure or an additional modeling component
in the HM.

In some cases, the process is so complicated that it might be very difficult to
specify an adequate process model. If deterministic simulation models are available,
it can sometimes be easier to incorporate the mechanistic information through a
surrogate model or statistical emulator. That is, much like the design and analysis
of computer modeling experiment literature [e.g., 12,18,28], one builds a statistical
model for the fairly rich simulation output (in terms of spatio-temporal behavior)
and uses that either as a black box [e.g., 15, 22] or to inform prior distributions
for simpler mechanistically motivated DSTMs [e.g., 19]. In other cases, one can
build simpler lower-dimensional emulators and link them together hierarchically to
represent the dynamical process [e.g., 20]. It is important to note that emulators in
the context of dynamical spatio-temporal processes typically are built from what
[15] call the “first-order” perspective. That is, process evolution is accounted for
explicitly in the conditional mean structure, following the etiology of the real-world
process. This is unlike the design and analysis of computer modeling literature,
which typically considers so-called “second-order” emulators, in which the focus is
on the covariance structure. Such an approach is well suited for the model calibration
problem.

4 Example: Near-Surface Winds Over the Ocean

To illustrate many of the HM concepts described above, consider the motivating
example of prediction of complete near-surface wind fields from a blend of weather
center analysis winds and satellite scatterometer winds (so-called surface vector
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winds (SVW)). Some relevant background on the problem is presented, followed by
a fairly simple BHM illustration applied to this problem.

4.1 Surface Vector Wind Background

Near-surface ocean winds are a critical component of the atmosphere/ocean inter-
face as they are directly responsible for the transfer momentum to the ocean and
the wind speed modulates the exchanges of heat and freshwater to and from the
upper ocean. The advent of spaceborne scatterometer instruments in the 1990s
provided the first global wind fields, on daily timescales, from observations. Prior
to these scatterometer instruments, ocean winds were largely inferred from global
weather forecast models (so-called analyses). These analyses depend on sparse
global network of in situ wind observations from buoys and ships of opportunity
and blend them with a mechanistic model of the atmosphere. The practical spatial
resolution of such winds is limited to the relatively large spatial and temporal scales
of variability.

Scatterometer SVW observations are not direct measures of the wind [see 23, for
a more detailed description]. The winds are derived from complicated (“geophysical
model function”) relationships concerning the roughness imparted on the ocean
by surface capillary waves in response to the shear stress vector at the air-sea
interface. Depending on the specific sensor, SVW estimates from scatterometers
are accurate to within at least 2 ms�1 in speed and 30ı in direction, and resolutions
are on the order of 12.5–50 km for up to 90% global coverage on daily timescales.
The SVW retrievals occur in swaths along the polar-orbiting satellite ground track,
with varying swath widths depending on the instrument system. For the purposes
of predicting complete spatial fields, it is important to note that because of the
polar orbit (approximately 14 polar orbits per day), the swaths overlap at high
latitudes and are separated by gaps in coverage at low latitudes. So, although there
are gaps over a day, areas in which there are SVWs exhibit much finer spatial
resolution of atmospheric wind features than the analysis wind products from the
same period, which are complete in space but have much lower effective spatial
feature resolution in general (i.e., an unrealistic kinetic energy spatial spectrum).
The goal of a statistical data assimilation is then to blend the complete, but energy-
deficient, weather center analyses with the incomplete, yet energy-realistic, SVW in
order to provide spatially complete wind fields at sub-daily intervals while managing
the uncertainties associated with the different data sources and the blending
procedure.

Uncertainty management via BHM with process dynamics motivated by mech-
anistic models (i.e., leading order terms and/or approximations of the primitive
equations) has been shown to be a very effective approach for this wind data
assimilation problem [e.g., see the sequence of papers: 5, 13, 23, 24, 26, 36, 42].
In particular, these methods have been shown to be quite useful in the context of
providing inputs to ocean forecasting systems such as the Mediterranean Forecast
System (MFS) [23, 24].
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The MFS produces 10-day forecasts for upper ocean fields every day. This
forecast model resolves medium-scale (in time and space) features (e.g., synoptic
scale) in the upper ocean, and the most uncertain parts of the forecast fields
correspond to so-called mesoscales (i.e., hourly and 10–50 km scales). These are the
primary scales of the upper ocean hydrodynamic instabilities driven by the surface
wind. Thus, modeling uncertainty in the surface wind field can be an important
means of quantifying uncertainty in the MFS ocean forecasts on the scales that are
most important to daily users.

4.2 Ocean SVW BHM

[23] describe the details of a SVW BHM for the MFS, and [24] discuss the
impacts of the resulting BHM SVW fields in an ensemble forecast methodology
built around realizations from the posterior distribution for SVW from the BHM.
The process model in [23] involves the leading-order terms in a Rayleigh friction
equation (RFE) approximation at synoptic scales, with extra-spatial variability
added to account for turbulent scaling relationships in the wind field. A critical
component of the [23] model is that it is multivariate in terms of modeling the east-
west (u) and north-south (v) wind components and surface pressure (all of which
are spatio-temporal processes) such that the wind components are independently
conditioned on the pressure, which is a reasonable and justifiable assumption to
first order. However, higher-order interactions of wind components are most likely
important even after conditioning on the pressure field, so the model presented here
considers a multivariate low-rank representation of the residual wind components
after accounting for potential pressure gradient effects as suggested by the RFE.
The data, process, and parameter models are described below.

4.2.1 Data Models
Two sources of wind data are considered, along with sea-level pressure data. In par-
ticular, there are satellite wind observations from the QuikSCAT scatterometer and
surface winds and pressures from an analysis by the European Centre for Medium-
Range Weather Forecasts (ECMWF). In this simple illustrative application, the
pressure will be considered “known,” and only the wind components are modeled
as a process, i.e., the pressure is used as an exogenous variable here. The wind data
models are then:

dQu
t jut ; �2

Q � ind: Gau.HQ
t ut ; �2

QI/;

dQv
t jvt ; �2

Q � ind: Gau.HQ
t vt ; �2

QI/;

dEu
t jut ; �2

E � ind: Gau.HE
t ut ; �2

EI/;

dEv
t jvt ; �2

E � ind: Gau.HE
t vt ; �2

EI/;
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where dQu
t and dQv

t are mt -dimensional vectors of scatterometer u-wind and v-wind
observations, respectively, within a specified time window indexed by t ; and dEu

t and
dEv

t are ECMWF u-wind and v-wind component observations, respectively, within
the same window. The spatially vectorized true wind process components are given
by the n-dimensional vectors ut , vt . The mapping matrices for the scatterometer
and ECMWF observations are given by HQ

t and HE
t , respectively. In this case, these

are just incidence matrices that map the observations to the nearest process grid
location [see 7, Chapter 7 for details]. The measurement errors are assumed to have
Gaussian distributions that are independent in space and time, conditioned upon
the true process values. The measurement-error variances, �2

Q and �2
E , correspond

to scatterometer and ECMWF wind components, respectively. The conditional
independence of these data models follows from the more general discussion above
concerning the relative ease of incorporating multiple data sources in the BHM
framework.

The wind data for February 2, 2005, are shown in Figs. 7.1 and 7.2. These plots
show the QuikSCAT scatterometer and ECMWF analysis observations available
within a window of ˙3 h of t D 00:00, 06:00, 12:00, and 18:00 UTC (“Coordinated
Universal Time”). The ECMWF analysis winds and pressures are specified on a
0:5ı � 0:5ı spatial grid, and they are available at each time period for all locations.
This grid is also used for the process vectors, ut and vt . As described above, the
QuikSCAT observations are available intermittently in space due to the polar orbit
of the satellite, but at much higher spatial resolution (25 km) when they are available.
Thus, the mapping matrices for the scatterometer data, HQ

t , are defined as incidence
matrices such that all scatterometer observations within 0:25ı of a process grid
point, and within 3 h of time t , are associated with the wind process at that grid
point and time.

4.2.2 Process Model
The wind component process models are specified as

ut � Dxpt �ux C Dypt �uy C ˚u˛t (7.19)

vt � Dxpt �vx C Dypt �vy C ˚v˛t ; (7.20)

where Dx and Dy are matrix operators that give the x-direction- and y-direction-
centered differences of the spatial field vector on which they operate, respectively,
and pt is the vectorized gridded ECMWF pressure data (assumed known here). In
the context of the process rank reduction decomposition given in (7.18), ˚u and ˚v

correspond to n � n˛ matrices of basis functions for the u- and v-wind components,
respectively, with the common random reduced-rank latent process expansion
coefficients, ˛t . In addition, relative to (7.18), let �u;t � Dxpt �ux C Dypt �uy and
�v;t � Dxpt �vx C Dypt �vy , where these terms represent the importance of winds
on the gradient of pressure, as controlled by the parameters � � f�ux; �uy; �vx; �vyg.
This particular formulation does not include a separate small-scale spatial variability
component (e.g., � ˇt in (7.18)) for simplicity. [36] and [23] include such a term
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Fig. 7.1 Wind observations from February 2, 2005. From top to bottom, the panels correspond
to the available data at 00:00, 06:00, 12:00, and 18:00 UTC (Universal Coordinated Time). The
panels correspond to the ECMWF analysis winds on a 0:5ı � 0:5ı grid. The length of the wind
quiver (arrow) corresponds to speed, where the smallest is 0.06 m/s and the largest is 17.7 m/s.

and parameterize it in terms of two-dimensional spatial wavelet basis functions to
account for the turbulent scaling relationships that are inherent in the SVW.

Note that the basis function matrices, ˚u and ˚v , are constructed from multi-
variate empirical orthogonal functions (EOFs) of the joint ECMWF u- and v-wind
components [see 7, for an overview of EOF basis functions]. The advantage of
such bases in this context is that they are constructed multivariately, so that the
joint dependence of the wind components is considered in their construction. In
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Fig. 7.2 Wind observations from February 2, 2005. From top to bottom, the panels correspond to
the available data at 00:00, 06:00, 12:00, and 18:00 UTC (Universal Coordinated Time). The panels
correspond to the high-resolution (25 km), but spatially intermittent, QuickSCAT scatterometer
wind retrievals. The length of the wind quiver (arrow) corresponds to speed, where the smallest is
0.2 m/s and the largest is 21.3 m/s.

addition, EOFs generally are useful for dynamical reduced-rank modeling because
the dimension reduction is quite significant (in the case here, n D 4096 and
n˛ D 32, which accounts for approximately 98% of the variability in the ECMWF
wind data). Although they can be quite useful for DSTM rank reduction, given
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that EOFs are essentially spatial principal component loadings, they are optimal
for variance reduction but not typically for dynamical propagation. Regarding the
notions of inclusion of mechanistic information in BHMs, note that by conditioning
the wind components on common processes pt and ˛t , the process decomposition
in (7.19) and (7.20) allows a reasonable mechanistic-based approach for building in
the conditional independence between the wind components.

The dynamical evolution of the common latent process coefficients is specified
fairly simply in this illustrative example as

˛t D diag.m˛/ ˛t�1 C �t ; �t � Gau.0; C�/; (7.21)

for t D 1; : : : ; T , where diag.m˛/ corresponds to an n˛-dimensional diagonal
matrix with m˛ on the main diagonal and zeros elsewhere. The initial condition
is specified as ˛0 � Gau.0; C0/. Note that this fairly simple dynamical structure
is motivated by the components of the RFE described in [23] that do not depend
on pressure. Marginal dependence between the elements that make up ˛t is
accommodated by a non-diagonal variance-covariance matrix, C�.

4.2.3 Parameter Models
To facilitate computation for this simple illustrative example, the parameters in
the previous stages are given conjugate prior distributions. In particular, specify
�k � N .�i ; �2

i / for i D fux; uy; vx; vyg, m˛ � N .�˛; C˛/, and C�1
� �

W ..d�S�/�1; d�/, where W . / corresponds to a Wishart distribution. The remaining
parameters and hyperparameters are fixed at scientifically plausible values (e.g.,
�2

Q, �2
E , �i , and �˛ as described in [23]) or given values to suggest vague (non-

informative) priors (e.g., C0, S�, d�, �2
i , C˛).

4.3 Implementation

The posterior distribution for the random components of the model is given by

Œf˛t g
T
tD0; �; m˛; C� j fdQu

t gT
tD1; fdQv

t gT
tD1; fdEu

t gT
tD1; fdEu

t gT
tD1� /

TY

tD1

ŒdQu
t j ˛t ; ��

TY

tD1

ŒdQv
t j ˛t ; ��

�

TY

tD1

ŒdEu
t j ˛t ; ��

TY

tD1

ŒdEv
t j ˛t ; ��

�

TY

tD1

Œ˛t j˛t�1; m˛; C��Œ˛0�Œm˛�ŒC��Œ��:
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Although an analytical posterior distribution is not available in this case, given
the conjugate distributional forms, the required full-conditional distributions for a
Gibbs sampler can all be derived analytically [e.g., see 7, for the details of a similar
DSTM example]. In the example given here, the spatial grid sizes are n D 4096

and T D 57 times and were considered corresponding to the period from 12:00
UTC January 25, 2005, through 12:00 UTC February 8, 2005, at 6-h intervals.
The reduced-rank vectors were of dimension n˛ D 32. The MCMC was run for
100,000 iterations after a 20,000-iteration burn-in period. The algorithm is quite
efficient given the number of prediction locations 4096 � 57 and large amount of
data (e.g., the MCMC was run in less than 4 h on a standard 2014 vintage laptop
computer).

4.4 Results

The posterior mean wind fields for 12:00 UTC on February 2, 2005, are shown in
Fig. 7.3. In addition, Fig. 7.4 shows a portion of the prediction domain, in which ten
samples widely separated in the MCMC chain are plotted. One can see from this
plot that the uncertainty associated with the spatial prediction of the wind fields is
not homogeneous in the domain. For example, the strong flow off the south coast
of France into the Gulf of Lion (so-called mistral winds) shows more variability
in wind direction than areas over land. Note that this area of increased posterior
variability is over a fairly small spatial region, which is important when one is
using winds to force an ocean model such as with the MFS. That is, the small-scale
variations in the wind forcing can lead to similar-scale uncertainties in the ocean
state variables, which can make a substantial difference in ocean forecasts [see 24,
for an in-depth discussion].
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Fig. 7.3 Posterior mean wind vectors for 12:00 UTC on February 2, 2005, on the prediction grid.
Wind speed is proportional to the length of the vectors, with the direction of wind toward the
“arrowhead” on the wind quiver. The length of the wind quiver corresponds to speed, where the
smallest is 0.0 m/s and the largest is 18.0 m/s.
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Fig. 7.4 Ten samples of wind vectors taken from the posterior distribution for 12:00 UTC on
February 2, 2005, over the western Mediterranean basins. Wind speed is proportional to the length
of the vectors. The direction of the vector is away from the vertex at the center of its grid cell.
In this case, the “arrowhead” on the wind quivers is suppressed so that the variability in the wind
corresponds to the width of the downwind portion of the vector.

5 Conclusion

This chapter has presented a brief summary of hierarchical modeling in the
context of complex processes, typically those with mechanistically motivated
spatio-temporal dependence. When modeling the complex processes one sees in
many science and engineering applications, hierarchical modeling is a coherent
approach to accommodate uncertainty in the observations (measurement error and
sampling error), in the process specification, and in the knowledge of the parameters
and potential additional forcings. The approach is very flexible, but with that
flexibility comes potentially significant challenges and compromises when it comes
to implementation.

Consider what [7] call the “data/model compromise.” Even for complicated
spatio-temporal processes, if one has enough (whatever that may be) high-quality
observations, then the model can be fairly simple since the complex dependence
structure is already contained in the observations and, presumably, can be “learned”
by the statistical model. In many respects, this was the case with the SVW example
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presented above. There are a lot of observations from two different observation
sources in this example, so the wind component process model is actually fairly
simple relative to a mechanistic model that would be used with little or no data.
In other SVW implementations, more sophisticated process models may have to be
used depending on the data coverage and complexity of the dynamic environment
[e.g., 36]. On the other hand, if one specifies a very complex mechanistic process
model, but has very little data, there may not be enough information in the data
to inform the posterior distributions associated with the parameters and process
[e.g., 9]. That is, when the data are not rich enough to learn about the process
and parameters, then one effectively has a practical lack of identifiability that may
inhibit fitting the BHM. In practice, one tries to strike a balance between these two
competing data/model trade-offs.

Perhaps the greatest challenge with implementing complex BHMs is recognizing
the need to trade the complexity of the model for computational simplicity or what
[7] call the “computing/model compromise.” Despite the ever-advancing state of
statistical computation for HMs, the algorithms can still be difficult to implement,
both in terms of time required to code and the effort required to tune the algorithm.
Software packages to implement BHMs are increasing in number and quality, but
it is still often difficult to implement very complex BHMs with these packages.
Thus, one is often faced with the dilemma of either simplifying the model and
sacrificing some realism or utilizing an approximate estimation/inference approach
(e.g., ABC, INLA, variational Bayes, etc.) and either limiting the sorts of inference
that can be accomplished or accepting some inaccuracy relative to the true posterior
distribution of interest. Thus, when implementing a complex BHM, one must always
consider the difference between what one wants to do and what one can do and
whether it is best for the particular problem at hand to sacrifice model complexity
or computational efficiency. Regardless, the BHM paradigm still remains one of the
most powerful frameworks in which to quantify uncertainty.

This chapter is concerned with science-based hierarchical modeling, in which
one has mechanistic information available to inform the model components (either
data, model, or parameters). In recent years, alternative hierarchical modeling
approaches have been developed from the statistical learning perspective [e.g., see
the review outlined in 3], which typically do not make use of scientific/mechanistic
information, but seek to build multilayer models (e.g., “deep learning”) through
nonparametric approaches. These approaches can sometimes be useful in situations
where subject-matter knowledge is not readily available yet can overfit in situations
with complex spatial and temporal dependencies. In both the science-based and
statistical learning-based HM approaches, much more work remains to be done on
the theoretical properties of the estimators and predictors under various amounts
of uncertainty in observations, process models and parameter structure, as well
as data volume. Promising approaches are being developed [e.g., 1], but to date,
these approaches have not been able to speak to the multilevel-dependent parameter
structures common in the science-based BHM setting.
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