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Abstract

The aim of this paper is to review methods of designing screening experiments,
ranging from designs originally developed for physical experiments to those
especially tailored to experiments on numerical models. The strengths and
weaknesses of the various designs for screening variables in numerical models
are discussed. First, classes of factorial designs for experiments to estimate
main effects and interactions through a linear statistical model are described,
specifically regular and nonregular fractional factorial designs, supersaturated
designs, and systematic fractional replicate designs. Generic issues of aliasing,
bias, and cancellation of factorial effects are discussed. Second, group screening
experiments are considered including factorial group screening and sequential
bifurcation. Third, random sampling plans are addressed including Latin hyper-
cube sampling and sampling plans to estimate elementary effects. Fourth, a
variety of modeling methods commonly employed with screening designs are
briefly described. Finally, a novel study demonstrates six screening methods on
two frequently-used exemplars, and their performances are compared.

Keywords
Computer experiments • fractional factorial designs • Gaussian process mod-
els • group screening • space-filling designs • supersaturated designs • vari-
able selection

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
1.1 Linear Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
1.2 Gaussian Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
1.3 Screening without a Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

D.C. Woods (�) • S.M. Lewis
Southampton Statistical Sciences Research Institute, University of Southampton,
Southampton, SO17 1BJ, UK
e-mail: D.Woods@southampton.ac.uk; S.M.Lewis@southampton.ac.uk

© Springer International Publishing Switzerland 2017
R. Ghanem et al. (eds.), Handbook of Uncertainty Quantification,
DOI 10.1007/978-3-319-12385-1_33

1143

mailto:D.Woods@southampton.ac.uk; S.M.Lewis@southampton.ac.uk


1144 D.C. Woods and S.M. Lewis

2 Factorial Screening Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
2.1 Regular Fractional Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
2.2 Nonregular Fractional Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
2.3 Supersaturated Designs for Main Effects Screening . . . . . . . . . . . . . . . . . . . . . . . . 1154
2.4 Common Issues with Factorial Screening Designs . . . . . . . . . . . . . . . . . . . . . . . . . 1157
2.5 Systematic Fractional Replicate Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157

3 Screening Groups of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
3.1 Factorial Group Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
3.2 Sequential Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161
3.3 Iterated Fractional Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
3.4 Two-Stage Group Screening for Gaussian Process Models . . . . . . . . . . . . . . . . . . . 1163

4 Random Sampling Plans and Space Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
4.1 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
4.2 Sampling Plans for Estimating Elementary Effects (Morris’ Method) . . . . . . . . . . 1166

5 Model Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169
5.1 Variable Selection for Nonregular and Supersaturated Designs . . . . . . . . . . . . . . . 1170
5.2 Variable Selection for Gaussian Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170

6 Examples and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

1 Introduction

Screening [32] is the process of discovering, through statistical design of exper-
iments and modeling, those controllable factors or input variables that have a
substantive impact on the response or output which is either calculated from a
numerical model or observed from a physical process.

Knowledge of these active input variables is key to optimization and control
of the numerical model or process. In many areas of science and industry, there
are often a large number of potentially important variables. Effective screening
experiments are then needed to identify the active variables as economically as
possible. This may be achieved through careful choice of experiment size and the
set of combinations of input variable values (the design) to be run in the experiment.
Each run determines an evaluation of the numerical model or an observation to be
made on the physical process. The variables found to be active from the experiment
are further investigated in one or more follow-up experiments that enable estimation
of a detailed predictive statistical model of the output variable.

The need to screen a large number of input variables in a relatively small
experiment presents challenges for both design and modeling. Crucial to success
is the principle of factor sparsity [16] which states that only a small proportion of
the input variables have a substantive influence on the output. If this widely observed
principle does not hold, then a small screening experiment may fail to reliably detect
the active variables, and a much larger investigation will be required.

While most literature has focused on designs for physical experiments, screening
is also important in the study of numerical models via computer experiments [97].
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Such models often describe complex input-output relationships and have numerous
input variables. A primary reason for building a numerical model is to gain better
understanding of the nature of these relationships, especially the identification of
the active input variables. If a small set of active variables can be identified, then
the computational costs of subsequent exploration and exploitation of the numerical
model are reduced. Construction of a surrogate model from the active variables
requires less experimentation, and smaller Monte Carlo samples may suffice for
uncertainty analysis and uncertainty propagation.

The effectiveness of screening can be evaluated in a variety of ways. Suppose
there are d input variables held in vector x D .x1; : : : ; xd /

T and that X � R
d

contains all possible values of x, i.e., all possible combinations of input variable
values. Let AT � f1; : : : ; dg be the set of indices of the truly active variables
and AS � f1; : : : ; dg consist of the indices of those variables selected as active
through screening. Then, the following measures may be defined: (i) sensitivity,
�s D jAS \ AT j=jAT j, the proportion of active variables that are successfully
detected, where �s is defined as 1 when AT D ;; (ii) false discovery rate [8],
�fdr D jAS \ NAT j=jAS j, where NAT is the complement of AT , the proportion of
variables selected as active that are actually inactive, and �fdr is defined as 0 when
AS D ;; and (iii) type I error rate, �I D jAS \ NAT j=j NAT j, the proportion of inactive
variables that are selected as active. In practice, high sensitivity is often considered
more important than a low type I error rate or false discovery rate [34] because
failure to detect an active input variable results in no further investigation of the
variable and no exploitation of its effect on the output for purposes of optimization
and control.

The majority of designs for screening experiments are tailored to the identifica-
tion and estimation of a surrogate model that approximates an output variable Y .x/.
A class of surrogate models which has been successfully applied in a variety of
fields [80] has the form

Y .x/ D hT.x/ˇ C ".x/; (33.1)

where h is a p�1 vector of known functions of x, ˇ D .ˇ0; : : : ; ˇp�1/
T are unknown

parameters, and ".x/ is a random variable with a N.0; �2/ distribution for constant
�2. Note that if multiple responses are obtained from each run of the experiment,
then the simplest and most common approach is separate screening of the variables
for each response using individual models of the form (33.1).

An important decision in planning a screening experiment is the level of fidelity,
or accuracy, required of a surrogate model for effective screening including the
choice of the elements of h in (33.1). Two forms of (33.1) are commonly used
for screening variables in numerical models: linear regression models and Gaussian
process models.
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1.1 Linear Regression Models

Linear regression models assume that ".x0/ and ".x0
0/, x0 ¤ x0

0 2 X , are
independent random variables. Estimation of detailed mean functions hT.x/ˇ with
a large number of terms requires large experiments which can be prohibitively
expensive. Hence, many popular screening strategies investigate each input variable
xi at two levels, often coded C1 and �1 and referred to as “high” and “low,”
respectively [15, chs. 6 and 7]. Interest is then in identifying those variables that
have a large main effect, defined for variable xi as the difference between the average
expected responses for the 2d�1 combinations of variable values with xi D C1 and
the average for the 2d�1 combinations with xi D �1. Main effects may be estimated
via a first-order surrogate model

hT.x/ˇ D ˇ0 C ˇ1x1 C : : :C ˇdxd ; (33.2)

where p D d C 1. Such a “main effects screening” strategy relies on a firm belief
in strong effect heredity [46], that is, important interactions or other nonlinearities
involve only those input variables that have large main effects. Without this property,
active variables may be overlooked.

There is evidence, particularly from industrial experiments [18, 99], that strong
effect heredity may fail to hold in practice. This has led to the recent development
and assessment of design and data analysis methodology that also allows screening
of interactions between pairs of variables [34, 57]. For two-level variables, the
interaction between xi and xj (i; j D 1; : : : ; d I i ¤ j ) is defined as one-half
of the difference between the conditional main effect for xi given xj D C1 and
the conditional main effect of xi given xj D �1. Main effects and two-variable
interactions can be estimated via a first-order surrogate model supplemented by two-
variable product terms

hT.x/ˇ D ˇ0 C ˇ1x1 C : : :C ˇdxd C ˇ12x1x2 C : : :C ˇ.d�1/dxd�1xd ; (33.3)

where p D 1 C d.d C 1/=2 and ˇdC1; : : : ; ˇp�1 in (33.1) are relabeled
ˇ12; : : : ; ˇ.d�1/d for notational clarity.

The main effects and interactions are collectively known as the factorial effects
and can be shown to be the elements of 2ˇ. The screening problem may be cast
as variable or model selection, that is, choosing a statistical model composed of a
subset of the terms in (33.3).

The parameters in ˇ can be estimated by least squares. Let x.j /i be the value
taken by the i th variable in the j th run .i D 1; : : : ; d I j D 1; : : : ; n/. Then, the

rows of the n� d design matrix Xn D
�
x
.j /
1 ; : : : ; x

.j /

d

�
jD1;:::;n

each hold one run of

the design. Let Yn D .Y .1/; : : : ; Y .n// be the output vector. Then, the least squares
estimator of ˇ is

Ǒ D
�
HTH

��1
HTYn; (33.4)
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where H D .h.xn1/; : : : ;h.x
n
n//

T is the model matrix and .xnj /
T is the j th row of Xn.

For the least squares estimators to be uniquely defined, H must be of full column
rank.

In physical screening experiments, often no attempt is made to estimate nonlinear
effects other than two-variable interactions. This practice is underpinned by the
principle of effect hierarchy [112] which states that low-order factorial effects, such
as main effects and two-variable interactions, are more likely to be important than
higher-order effects. This principle is supported by substantial empirical evidence
from physical experiments.

However, the exclusion of higher-order terms from surrogate model (33.1) can
result in biased estimators (33.4). Understanding, and minimizing, this bias is key to
effective linear model screening. Suppose that a more appropriate surrogate model is

Y .x/ D ˇ0 C hT.x/ˇ C QhT.x/ Q̌ C ";

where Qh.x/ is a Qp-vector of model terms, additional to those held in h.x/, and Q̌ is
a Qp-vector of constants. Then, the expected value of Ǒ is given by

E. Ǒ / D ˇ C A Q̌ ; (33.5)

where

A D .HTH/�1HT QH; (33.6)

and QH D . Qh.xnj //j . The alias matrix A determines the pattern of bias in Ǒ due to

omitting the terms QhT.x/ Q̌ from the surrogate model and can be controlled through
the choice of design. The size of the bias is determined by Q̌ which is outside the
experimenter’s control.

1.2 Gaussian Process Models

Gaussian process (GP) models are used when it is anticipated that understanding
more complex relationships between the input and output variables is necessary
for screening. Under a GP model, it is assumed that ".x0/; ".x0

0/ follow a bivariate
normal distribution with correlation dependent on a distance metric applied to x0; x0

0;
see [93] and Metamodel-based sensitivity analysis: polynomial chaos and Gaussian
process.

Screening with a GP model requires interrogation of the parameters that control
this correlation. A common correlation function employed for GP screening has the
form

cor.x; x0/ D

dY
iD1

exp
�
��i jxi � x0

i j
˛i

�
; �i � 0; 0 < ˛i � 2: (33.7)
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Conditional on �1; : : : ; �d , closed-form maximum likelihood or generalized least
squares estimators for ˇ and �2 are available. However, �i requires numerical
estimation. Reliable estimation of these more sophisticated and flexible surrogate
models for a large number of variables requires larger experiments and may incur
an impractically large number of evaluations of the numerical model.

1.3 Screening without a Surrogate Model

The selection of active variables using a surrogate model relies on the model
assumptions and their validation. An alternative model-free approach is the esti-
mation of elementary effects [74]. The elementary effect for the i th input variable
for a combination of input values x0 2 X is an approximation to the derivative of
Y .x0/ in the direction of the i th variable. More formally,

EEi .x0/ D
Y .x0 C�eid / � Y .x0/

�
; i D 1; : : : ; d; (33.8)

where eid is the i th unit vector of length d (the i th column of the d � d identity
matrix) and � > 0 is a given constant such that x C �eid 2 X . Repeated random
draws of x0 from X according to a chosen distribution enable an empirical, model-
free distribution for the elementary effect of the i th variable to be estimated. The
moments (e.g., mean and variance) of this distribution may be used to identify active
effects, as discussed later.

In the remainder of the paper, a variety of screening methods are reviewed and
discussed, starting with (regular and nonregular) factorial and fractional factorial
designs in the next section. Later sections cover methods of screening groups of
variables, such as factorial group screening and sequential bifurcation; random
sampling plans and space-filling designs, including sampling plans for estimating
elementary effects; and model selection methods. The paper finishes by comparing
and contrasting the performance of six screening methods on two examples from
the literature.

2 Factorial Screening Designs

In a full factorial design, each of the d input variables is assigned a fixed number
of values or levels, and the design consists of one run of each of the distinct
combinations of these values. Designs in which each variable has two values are
mainly considered here, giving n D 2d runs in the full factorial design. For even
moderate values of d , experiments using such designs may be infeasibly large due
to the costs or computing resources required. Further, such designs can be wasteful
as they allow estimation of all interactions among the d variables, whereas effect
hierarchy suggests that low-order factorial effects (main effects and two-variable
interactions) will be the most important. These problems may be overcome by using
a carefully chosen subset, or fraction, of the combinations of variable values in the
full factorial design. Such fractional factorial designs have a long history of use in
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physical experiments [39] and, more recently, have also been used in the study of
numerical models [36]. However, they bring the complication that the individual
main effects and interactions cannot be estimated independently. Two classes of
designs are discussed here.

2.1 Regular Fractional Factorial Designs

The most widely used two-level fractional factorial designs are 1=2q fractions of the
2d full factorial design, known as 2d�q designs [112, ch. 5] .1 � q < d is integer).
As the outputs from all the combinations of variable values are not available from the
experiment, the individual main effects and interactions cannot be estimated. How-
ever, in a regular fractional factorial design, 2d�q linear combinations of the facto-
rial effects can be estimated. Two factorial effects that occur in the same linear com-
bination cannot be independently estimated and are said to be aliased. The designs
are constructed by choosing which factorial effects should be aliased together.

The following example illustrates a full factorial design, the construction of a
regular fractional factorial design, and the resulting aliasing among the factorial
effects. Consider first a 23 factorial design in variables x1, x2, x3. Each run of this
design is shown as a row across the columns 3–5 in Table 33.1. Thus, these three
columns form the design matrix. The entries in these columns are the coefficients
of the expected responses in the linear combinations that constitute the main
effects, ignoring constants. Where interactions are involved, as in model (33.3),
their corresponding coefficients are obtained as elementwise products of columns
3–5. Thus, columns 2–8 of Table 33.1 give the model matrix for model (33.3).

A 24�1 regular fractional factorial design in n D 8 runs may be constructed
from the 23 design by assigning the fourth variable, x4, to one of the interaction
columns. In Table 33.1, x4 is assigned to the column corresponding to the highest-
order interaction, x1x2x3. Each of the eight runs now has the property that
x1x2x3x4 D C1, and hence, as each variable can only take values ˙1, it follows
that x1 D x2x3x4, x2 D x1x3x4, and x3 D x1x2x4. Similarly, x1x2 D x3x4, x1x3 D

x2x4, and x1x4 D x2x3. Two consequences are: (i) each main effect is aliased with

Table 33.1 A 24�1 fractional factorial design constructed from the 23 full factorial design
showing the aliased effects

Run I x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

D x1x2x3x4 D x2x3x4 D x1x3x4 D x1x2x4 D x3x4 D x2x4 D x1x4 D x4

1 C1 �1 �1 �1 C1 C1 C1 �1

2 C1 �1 �1 C1 C1 �1 �1 C1

3 C1 �1 C1 �1 �1 C1 �1 C1

4 C1 �1 C1 C1 �1 �1 C1 �1

5 C1 C1 �1 �1 �1 �1 C1 C1

6 C1 C1 �1 C1 �1 C1 �1 �1

7 C1 C1 C1 �1 C1 �1 �1 �1

8 C1 C1 C1 C1 C1 C1 C1 C1
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a three-variable interaction and (ii) each two-variable interaction is aliased with
another two-variable interaction. However, for each variable, the sum of the main
effect and the three-variable interaction not involving that variable can be estimated.
These two effects are said to be aliased. The other pairs of aliased effects are shown
in Table 33.1. The four-variable interaction cannot be estimated and is said to be
aliased with the mean, denoted by I D x1x2x3x4 (column 2 of Table 33.1).

An estimable model for this 24�1 design is

hT.x/ˇ D ˇ0 C ˇ1x1 C : : :C ˇ4x4 C ˇ12x1x2 C ˇ13x1x3 C ˇ23x2x3;

with model matrix H given by columns 2–9 of Table 33.1. The columns of H are
mutually orthogonal, h.xnj /

Th.xnk/ D 0 for j ¤ kI j; k D 1; : : : ; 8. The aliasing in
the design will result in a biased estimator of ˇ. This can be seen by setting

QhT.x/ Q̌ D ˇ14x1x4Cˇ24x2x4Cˇ34x3x4C
X

1�j<k<l�4

ˇjklxj xkxl Cˇ1234x1x2x3x4;

which leads to the alias matrix A D
P8

jD1 ej 8e.8�jC1/8, which is an anti-diagonal
identity matrix, and

E. Ǒ
0/ D ˇ0 C ˇ1234;

E. Ǒ
1/ D ˇ1Cˇ234; E. Ǒ

2/ D ˇ2Cˇ134 E. Ǒ
3/ D ˇ3Cˇ124; E. Ǒ

4/ D ˇ4Cˇ123

E. Ǒ
12/ D ˇ12 C ˇ34; E. Ǒ

13/ D ˇ13 C ˇ24; E. Ǒ
23/ D ˇ23 C ˇ14 :

More generally, to construct a 2d�q fractional factorial design, a set fv1; : : : ; vqg

of defining words, such as x1x2x3x4, must be chosen and the corresponding factorial
effects aliased with the mean. That is, the product of variable values defined by each
of these words is constant in the design (and equal to either �1 or C1). As the
product of any two columns of constants in the design must also be constant, there
is a total of 2q�1 effects aliased with the mean. The list of all effects aliased with the
mean is called the defining relation and is written as I D v1 D : : : D vq D v1v2 D

: : : D v1 � � � vq . Products of the defining words are straightforward to calculate as
x2i D 1, so that v2j D 1 (i D 1; : : : ; d I j D 1; : : : ; 2d ).

The aliasing scheme for a design is easily obtained from the defining relation.
A factorial effect with corresponding word vj is aliased with each factorial effect
corresponding to the words vj v1; vj v2; : : : ; vj v1 � � � vq formed by the product of vj
with every word in the defining relation. Hence, the defining relation I D x1x2x3x4
results in x1 D x2x3x4, x2 D x1x3x4, and so on; see Table 33.1.

As demonstrated above, the impact of aliasing is bias in the estimators of the
regression coefficients in (33.1) which can be formulated through the alias matrix.
For a regular fractional factorial design, the columns of H are mutually orthogonal
and hence A D 1

n
HT QH. If the functions in Qh correspond to those high-order

interactions not included in h, then the elements of A are all either 0 or ˙1. This
is because the aliasing of factorial effects ensures that each column of QH is either
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orthogonal to all columns in H or identical to a column of H up to a change of sign.
Thus, A identifies the aliasing among the factorial effects.

Crucial to fractional factorial design is the choice of a defining relation to ensure
that effects of interest are not aliased together. Typically, this involves choosing
defining words to ensure that only words corresponding to higher-order factorial
effects are included in the defining relation.

Regular fractional factorial designs are classed according to their resolution.
A resolution III design has at least one main effect aliased with a two-variable
interaction. A resolution IV design has no main effects aliased with interactions
but at least one pair of two-variable interactions aliased together. A resolution V
design has no main effects or two-variable interactions aliased with any other main
effects or two-variable interactions. A more detailed and informative classification
of regular fractional factorial designs is obtained via the aberration criterion [25].

Although resolution V designs allow for the estimation of higher-fidelity surro-
gate models, they typically require too many runs for screening studies. The most
common regular fractional factorial designs used in screening are resolution III
designs as part of a main-effects screening strategy. The design in Table 33.1 has
resolution IV.

2.2 Nonregular Fractional Factorial Designs

The regular designs discussed above require n to be a power of two, which limits
their application to some experiments. Further, even resolution III regular fractional
factorials may require too many runs to be feasible for large numbers of variables.
For example, with 11 variables, a resolution III regular fractional design requires
n D 16 runs. Smaller experiments with n not equal to a power of two can often be
performed by using the wider class of nonregular fractional factorial designs [115]
that cannot be constructed via a set of defining words. For 11 variables, a design with
n D 12 runs can be constructed that can estimate all 11 main effects independently
of each other. While these designs are more flexible in their run size, the cost is
a more complex aliasing scheme that makes interpretation of experimental results
more challenging and requires the use of more sophisticated modeling methods.

Many nonregular designs are constructed via orthogonal arrays [92]. A sym-
metric orthogonal array of strength t , denoted by OA(n, sd , t ), is an n � d matrix
of s different symbols such that all ordered t -tuples of the symbols occur equally
often as rows of any n � t submatrix of the array. Each such array defines an
n-run factorial design in d variables, each having s levels. Here, only arrays with
s D 2 symbols, ˙1, will be discussed. The strength of the array is closely related
to the resolution of the design. An array of strength t D 2 allows estimation of all
main effects independently of each other but not of the two-variable interactions
(cf. resolution III); a strength 3 array allows estimation of main effects inde-
pendently of two-variable interactions (cf. resolution IV). Clearly, the two-level
regular fractional factorial designs are all orthogonal arrays. However, the class of
orthogonal arrays is wider and includes many other designs that cannot be obtained
via a defining relation.
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Table 33.2 The n D 12-run nonregular Plackett-Burman design

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

2 �1 �1 �1 �1 �1 1 1 1 1 1 1

3 �1 �1 1 1 1 �1 �1 �1 1 1 1

4 �1 1 �1 1 1 �1 1 1 �1 �1 1

5 �1 1 1 �1 1 1 �1 1 �1 1 �1

6 �1 1 1 1 �1 1 1 �1 1 �1 �1

7 1 �1 1 1 �1 �1 1 1 �1 1 �1

8 1 �1 1 �1 1 1 1 �1 �1 �1 1

9 1 �1 �1 1 1 1 �1 1 1 �1 �1

10 1 1 1 �1 �1 �1 �1 1 1 �1 1

11 1 1 �1 1 �1 1 �1 �1 �1 1 1

12 1 1 �1 �1 1 �1 1 �1 1 1 �1

An important class of orthogonal arrays are constructed from Hadamard matrices
[44]. A Hadamard matrix C of order n is an n � n matrix with entries ˙1 such
that CTC D nIn, where In is the n � n identity matrix. An OA(n, 2n�1, 2) is
obtained by multiplying rows of C by �1 as necessary to make all entries in the first
column equal to +1 and then removing the first column. Such a design can estimate
the main effects of all d D n � 1 variables independently, assuming negligible
interactions. This class of designs includes the regular fractional factorials (e.g., for
n D 4; 8; 16; : : :) but also other designs with n a multiple of four but not a power of
two (n D 12; 20; 24; : : :). These designs were first proposed by Plackett and Burman
[84]. Table 33.2 gives the n D 12-run Plackett-Burman (PB) design, one of the most
frequently used for screening.

The price paid for the greater economy of run size offered by nonregular
designs is more complex aliasing. Although designs formed from orthogonal arrays,
including PB designs, allow estimation of each main effect independently of all
other main effects, these estimators will usually be partially aliased with many
two-variable interactions. That is, the alias matrix A will contain many entries with
0 < jaij j < 1. For example, consider the aliasing between main effects and two-
variable interactions for the 12-run PB design in Table 33.2, as summarized in the
11� 55 alias matrix. The main effect of each variable is partially aliased with all 45
interactions that do not include that variable. That is, for the i th variable,

E. Ǒ
i / D ˇi C

1

3

11X
jD1

11X
k>j

.�1/bijk .1 � 1iDj\iDk/ˇjk;

where 1A is the indicator function for the set A and bijk D 0 or 1 (i; j; k D

1; : : : ; 11). For this design, each interaction is partially aliased with nine main
effects. The competing 16-run resolution III 211�7 regular fraction has each main
effect aliased with at most four two-variable interactions, and each interaction
aliased only with at most one main effect. Hence, while an active interaction would
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Table 33.3 The definitive
screening design for d D 6

variables

Run x1 x2 x3 x4 x5 x6

1 0 1 �1 �1 �1 �1

2 0 �1 1 1 1 1

3 1 0 �1 1 1 �1

4 �1 0 1 �1 �1 1

5 �1 �1 0 1 �1 �1

6 1 1 0 �1 1 1

7 �1 1 1 0 1 �1

8 1 �1 �1 0 �1 1

9 1 �1 1 �1 0 �1

10 �1 1 �1 1 0 1

11 1 1 1 1 �1 0

12 �1 �1 �1 �1 1 0

13 0 0 0 0 0 0

bias only one main effect for the regular design, it would bias nine main effects for
the PB design, albeit to a lesser extent.

However, an important advantage of partial aliasing is that it allows interactions
to be considered through the use of variable selection methods (discussed later)
without requiring a large increase in the number of runs. For example, the 12-run
PB design has been used to identify important interactions [26, 46].

A wide range of nonregular designs can be constructed. An algorithm has been
developed for constructing designs which allow orthogonal estimation of all main
effects together with catalogues of designs for n D 12; 16; 20 [101]. Other authors
have used computer search and criteria based on model selection properties to
find nonregular designs [58]. A common approach is to use criteria derived from
D-optimality [4, ch. 11] to find fractional factorial designs for differing numbers
of variables and runs [35]. Designs from these methods may or may not allow
independent estimation of the variable main effects dependent on the models under
investigation and the number of runs available.

Most screening experiments use designs at two levels, possibly with the addition
of one or more center points to provide a portmanteau test for curvature. Recently,
an economic class of three-level screening designs have been proposed, called
“definitive screening designs” (DSDs) [53], to investigate d variables, generally
in as few as n D 2d C 1 runs. The structure of the designs is illustrated in
Table 33.3 for d D 6. The design has a single center point and 2d runs formed
from d mirrored pairs. The j th pair has the j th variable set to zero and the other
d � 1 variables set to ˙1. The second run in the pair is formed by multiplying all
the elements in the first run by �1. That is, the 2d runs form a foldover design
[17]. This foldover property ensures that main effects and two-variable interactions
are orthogonal and hence main effects are estimated independently from these
interactions, unlike for resolution III or PB designs. Further, all quadratic effects
are estimated independently of the main effects but not independently of the two-
variable interactions. Finally, the two-variable interactions will be partially aliased
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with each other. These designs are growing in popularity, with a sizeable literature
available on their construction [79, 82, 113].

2.3 Supersaturated Designs for Main Effects Screening

For experiments with a large number of variables or runs that are very expensive
or time consuming, supersaturated designs have been proposed as a low-resource
(small n) solution to the screening problem [42]. Originally, supersaturated designs
were defined as having too few runs to estimate the intercept and the d main effects
in model (33.2), that is, n < dC1. The resulting partial aliasing is more complicated
than for the designs discussed so far, in that at least one main effect estimator
is biased by one or more other main effects. Consequently, there has been some
controversy about the use of these designs [1]. Recently, evidence has been provided
for the effectiveness of the designs when factor sparsity holds and the active main
effects are large [34, 67]. Applications of supersaturated designs include screening
variables in numerical models for circuit design [65], extraterrestrial atmospheric
science [27], and simulation models for maritime terrorism [114].

Supersaturated designs were first proposed in the discussion [14] of random
balance designs [98]. The first systematic construction method [11] found designs
via computer search that have pairs of columns of the design matrix Xn as nearly
orthogonal as possible through use of the E.s2/ design selection criterion (defined
below). There was no further research in the area for more than 30 years until
Lin [61] and Wu [111] independently revived interest in the construction of these
designs. Both their methods are based on Hadamard matrices and can be understood,
respectively, as (i) selecting a half-fraction from a Hadamard matrix (Lin) and (ii)
appending one or more interaction columns to a Hadamard matrix and assigning a
new variable to each of these columns (Wu).

Both methods can be illustrated using the n D 12-run PB design in Table 33.2.
To construct a supersaturated design for d D 10 variables in n D 6 runs by method
(i), all six runs of the PB design with x11 D �1 are removed, followed by deletion
of the x11 column. The resulting design is shown in Table. 33.4. To obtain a design
by method (ii) for d D 21 variables in n D 12 runs, ten columns are appended that
correspond to the interactions of x1 with variables x2 to x11, and variables x12 to x21
are assigned to these columns; see Table 33.5.

Table 33.4 An n D 6-run supersaturated design for d D 10 variables obtained by the method of
Lin [61]

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 �1 �1 �1 �1 �1 1 1 1 1 1

2 �1 �1 1 1 1 �1 �1 �1 1 1

3 �1 1 �1 1 1 �1 1 1 �1 �1

4 1 �1 1 �1 1 1 1 �1 �1 �1

5 1 1 1 �1 �1 �1 �1 1 1 �1

6 1 1 �1 1 �1 1 �1 �1 �1 1
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Since 1993, there has been a substantial research effort on construction methods
for supersaturated designs; see, for example, [62, 77, 78]. The most commonly used
criterion for design selection in the literature is E.s2/-optimality [11]. More recently,
the Bayesian D-optimality criterion [35, 51] has become popular.

2.3.1 E.s2/-Optimality
This criterion selects a balanced design, that is, a design with n D 2m for some
integer m > 0 where each column of Xn contains m entries equal to �1 and m
entries equal to +1. The E.s2/-optimal design minimizes the average of the squared
inner products between columns i and j of Xn .i; j D 1; : : : ; d I i ¤ j /,

E.s2/ D
2

d.d � 1/

X
i<j

s2ij ; (33.9)

where sij is the ij th element of .Xn/T Xn .i; j D 1; : : : ; d /. A lower bound on
E.s2/ is available [19, 94]. The designs in Tables 33.4 and 33.5 achieve the lower
bound and hence are E.s2/-optimal. For the design in Table 33.4, each s2ij D 4.
For the design in Table 33.5, E.s2/ D 6:857 (to 3 dp), with 120 pairs of columns
being orthogonal (s2ij D 0) and the remaining 90 pairs of columns having s2ij D 16.
Recently, the definition of E.s2/ has been extended to unbalanced designs [52,67] by
including the inner product between each column of Xn and the vector 1n, the n� 1

vector with every entry 1, which corresponds to the intercept term in model (33.1).
This extension widens the class of available designs.

2.3.2 Bayesian D-Optimality
This criterion selects a design that maximizes the determinant of the posterior
variance-covariance matrix for .ˇ0;ˇ

T/T,

�D D
ˇ̌
.H?/TH? C K=�2

ˇ̌1=.dC1/
; (33.10)

where H? D Œ1njXn�, K D IdC1 � e1.dC1/eT
1.dC1/, �

2 > 0, and �2K�1 is the
prior variance-covariance matrix for ˇ. Equation (33.10) results from assuming an
informative prior distribution for each ˇi (i D 1; : : : ; d ) with mean zero and small
prior variance, to reflect factor sparsity, and a non-informative prior distribution
for ˇ0. The prior information can be regarded as equivalent to having sufficient
additional runs to allow estimation of all parameters ˇ0; : : : ; ˇd , with the value of �2

reflecting the quantity of available prior information. However, the optimal designs
obtained tend to be insensitive to the choice of �2 [67].

Both E.s2/- and D-optimal designs may be found numerically, using algorithms
such as columnwise-pairwise [59] or coordinate exchange [71]. From simulation
studies, it has been shown that there is little difference in the performance of E.s2/-
and Bayesian D-optimal designs assessed by, for example, sensitivity and type I
error rate [67].
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Supersaturated designs have also been constructed that allow the detection
of two-variable interactions [64]. Here, the definition of supersaturated has been
widened to include designs that have fewer runs than the total number of factorial
effects to be investigated. In particular, Bayesian D-optimal designs have been
shown to be effective in identifying active interactions [34]. Note that under this
expanded definition of supersaturated designs, all fractional factorial designs are
supersaturated under model (33.1) when n < p.

2.4 Common Issues with Factorial Screening Designs

The analysis of unreplicated factorial designs commonly used for screening exper-
iments has been a topic of much research [45, 56, 105]. In a physical experiment,
the lack of replication to provide a model-free estimate of �2 can make it difficult
to assess the importance of individual factorial effects. The most commonly applied
method for orthogonal designs treats this problem as analogous to the identification
of outliers and makes use of (half-) normal plots of the factorial effects. For
many nonregular and supersaturated designs, more advanced analysis methods
are necessary; see later. For studies on numerical models, provided all the input
variables are controlled, the problem of assessing statistical significance does not
occur as no unusually large observations can have arisen due to “chance.” Here,
factorial effects may be ranked by size and those variables whose effects lead to a
substantive change in the response declared active.

Biased estimators of factorial effects, however, are an issue for experiments
on both numerical models and physical processes. Complex (partial) aliasing can
produce two types of bias in the estimated parameters in model (33.1): upward bias
so that a type I error may occur (amalgamation) or downward bias leading to missing
active variables (cancellation). Simulation studies have been used to assess these
risks [31, 34, 67].

Bias may also, of course, be induced by assuming a form of the surrogate
model that is too simple, for example, through the surrogate having too few turning
points (e.g., being a polynomial of too low order) or lacking the detail to explain
the local behavior of the numerical model. This kind of bias is potentially the
primary source of mistakes in screening variables in numerical models. When
prior scientific knowledge suggests that the numerical model is highly nonlinear,
screening methods should be employed that have fewer restrictions on the surrogate
model or are model-free. Such methods, including designs for the estimation of
elementary effects (33.8), are described later in this paper. Typically, they require
larger experiments than the designs in the present section.

2.5 Systematic Fractional Replicate Designs

Systematic fractional replicate designs [28] enable expressions to be estimated that
indicate the influence of each variable on the output, through main effects and
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interactions, without assumptions in model (33.1) on the order of interactions that
may be important. These designs have had considerable use for screening inputs to
numerical models, especially in the medical and biological sciences [100, 116]. In
these designs, each variable takes two levels and there are n D 2d C 2 runs.

The designs are simple to construct as (i) one run with all variables set to �1,
(ii) d runs with each variable in turn set to C1 and the other variables set to �1,
(iii) d runs with each variable in turn set to �1 and the other variables set to C1,
and (iv) one run with all variables set to C1. Let the elements of vector Yn be such
that Y .1/ is the output from the run in (i), Y .2/; : : : ; Y .dC1/ are the outputs from the
runs in (ii), Y .dC2/; : : : ; Y .2dC1/ are from the runs in (iii), and Y 2dC2 is from the
run in (iv). In such a design, each main effect can be estimated independently of all
two-variable interactions. This can easily be seen from the alternative construction
as a foldover from a one-factor-at-a-time (OFAAT) design with n D d C 1, that is,
a design having one run with each variable set to �1 and d runs with each variable
in turn set to C1 with all other variables set to �1.

For each variable xi (i D 1; : : : ; d ), two linear combinations, So.i/ and Se.i/,
of “odd order” and “even order” model parameters, respectively, can be estimated:

So.i/ D ˇi C

dX
jD1

dX
kD1

i¤j¤k

ˇijk C : : : ; (33.11)

and

Se.i/ D

dX
jD1

i¤j

ˇij C

dX
jD1

dX
kD1

dX
lD1

i¤j¤k¤l

ˇijkl C : : : ; (33.12)

with respective unbiased estimators

C0.i/ D
1

4

˚�
Y .2dC2/ � Y .dCiC1/

�
C

�
Y .iC1/ � Y .1/

��
;

and

Ce.i/ D
1

4

˚�
Y .2dC2/ � Y .dCiC1/

�
�

�
Y .iC1/ � Y .1/

��
:

Under effect hierarchy, it may be anticipated that a large absolute value of Co.i/
is due to a large main effect for the i th variable, and a large absolute value of
Ce.i/ is due to large two-variable interactions. A design that also enables estimation
of two-variable interactions independently of each other is obtained by appending
.d � 1/.d � 2/=2 runs, each having two variables set to +1 and d � 2 variables set
to �1 [91].
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For numerical models, where observations are not subject to random error, active
variables are selected by ranking the sensitivity indices defined by

S.i/ D
M.i/Pd
jD1 M.j /

; i D 1; : : : ; d; (33.13)

where M.i/ D jCo.i/j C jCe.i/j. This methodology is potentially sensitive to the
cancellation or amalgamation of factorial effects, discussed in the previous section.

From (33.8), it can also be seen that use of a systematic fractional replicate design
is equivalent to calculating two elementary effects (with� D 2) for each variable at
the extremes of the design region. Let EE1i D

�
Y .2dC2/ � Y .dCiC1/

�
=2 and EE2i D�

Y .iC1/ � Y .1/
�
=2 be these elementary effects for the i th variable. Then, it follows

directly that S.i/ / max .jEE1i j; jEE2i j/, and the above method selects as active
those variables with elementary effects that are large in absolute value.

3 Screening Groups of Variables

Early work on group screening used pooled blood samples to detect individuals
with a disease as economically as possible [33]. The technique was extended,
almost 20 years later, to screening large numbers of two-level variables in factorial
experiments where a main effects only model is assumed for the output [108]. For
an overview of this work and several other strategies, see [75].

In group screening, the set of variables is partitioned into groups, and the values
of the variables within each group are varied together. Smaller designs can then
be used to experiment on these groups. This strategy deliberately aliases the main
effects of the individual variables. Hence, follow-up experimentation is needed on
those variables in the groups found to be important in order to detect the individual
active variables. The main screening techniques that employ grouping of variables
are described below.

3.1 Factorial Group Screening

The majority of factorial group screening methods apply to variables with two
levels and use two stages of experimentation. At the first stage, the d variables
are partitioned into g groups, where the j th group contains gj � 1 variables
.j D 1; : : : ; g/. High and low levels for each of the g grouped variables are
defined by setting all the individual variables in a group to either their high level
or their low level simultaneously. The first experiment with n1 runs is performed
on the relatively small number of grouped variables. Classical group screening then
estimates the main effects for each of the grouped variables and takes those variables
involved in groups that have large estimated main effects through to a second-stage
experiment. Individual variables are investigated at this stage, and their main effects,
and possibly interactions, are estimated.
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For sufficiently large groups of variables, highly resource-efficient designs
can be employed at stage 1 of classical group screening for even very large
numbers of factors. Under the assumption of negligible interactions, orthogonal
nonregular designs, such as PB designs, may be used. For screening variables from
a deterministic numerical model, designs in which the columns corresponding to the
grouped main effects are not orthogonal can be effective [9] provided n1 > g C 1,
as the precision of factorial effect estimators is not a concern.

Effective classical group screening depends on strong effect heredity, namely,
that important two-variable interactions occur only between variables both having
important main effects. More recently, strategies for group screening that also
investigate interactions at stage 1 have been developed [57]. In interaction group
screening, both main effects and two-variable interactions between the grouped
variables are estimated at stage 1. The interaction between two grouped variables is
the summation of the interactions between all pairs of variables where one variable
comes from each group; interactions between two variables in the same group are
aliased with the mean. Variables in groups found to have large estimated main
effects or to be involved in large interactions are carried forward to the second stage.
From the second-stage experiment, main effects and interactions are examined
between the individual variables within each group declared active. Where the
first stage has identified a large interaction between two grouped variables, the
interactions between pairs of individual variables, one from each group, are also
investigated. For this strategy, larger resolution V designs, capable of independently
estimating all grouped main effects and two-variable interactions, have so far been
used at stage 1, when decisions to drop groups of variables are made.

Group screening experiments can be viewed as supersaturated experiments in
the individual variables. However, when orthogonal designs are used for the stage
1 experiment, decisions on which groups of variables to take forward can be made
using t -tests on the grouped main effects and interactions. When smaller designs are
used, particularly if n1 is less than the number of grouped effects of interest, more
advanced modeling methods are required, in common with other supersaturated
designs (see later). Incorrectly discarding active variables at stage 1 may result
in missed opportunities to improve process control or product quality. Hence, it
is common to be conservative in the choice of design at stage 1, for example, in the
number of runs, and also to allow a higher type I error rate.

In the two-stage process, the design for the second experiment cannot be decided
until the stage 1 data have been collected and the groups of factors deemed active
have been identified. In fact, the size, N2, of the second-stage experiment required
by the group screening strategy is a random variable. The distribution of N2 is
determined by features under the experimenter’s control, such as d , g, g1; : : : ; gg ,
n1, the first-stage design, and decision rules for declaring a grouped variable active
at stage 1. It also depends on features outside the experimenter’s control, such as
the number of active individual variables and the size and nature of their effects,
and the signal-to-noise ratio if the process is noisy. Given prior knowledge of these
uncontrollable features, the grouping strategy, designs, and analysis methods can be
tailored, for example, to produce a smaller expected experiment size, n1 C E.N2/,



33 Design of Experiments for Screening 1161

or to minimize the probability of missing active variables [57,104]. Of course, these
two goals are usually in conflict and hence a trade-off has to be made. In practice,
the design used at stage 2 depends on the number of variables brought forward
and the particular effects requiring estimation; options include regular or nonregular
fractional factorial designs and D-optimal designs.

Original descriptions of classical group screening made the assumption that
all the active variable main effects have the same sign to avoid the possibility of
cancellation of the main effects of two or more active variables in the same group.
As discussed previously, cancellation can affect any fractional factorial experiment.
Group screening is often viewed as particularly susceptible due to the complete
aliasing of main effects of individual variables and the screening out of whole groups
of variables at stage 1. Often, particularly for numerical models, prior knowledge
makes reasonable the assumption of active main effects having the same sign.
Otherwise, the risks of missing active variables should be assessed by simulation
[69], and, in fact, the risk can be modest under factor sparsity [34].

3.2 Sequential Bifurcation

Screening groups of variables is also used in sequential bifurcation, proposed orig-
inally for deterministic simulation experiments [10]. The technique can investigate
a very large number of variables, each having two levels, when a sufficiently
accurate surrogate for the output is a first-order model (33.2). It is assumed that each
parameter ˇi (i D 1; : : : ; d ) is positive (or can be made positive by interchanging
the variable levels) to avoid cancellation of effects.

The procedure starts with a single group composed of all the variables which is
split into two new groups (bifurcation). For a deterministic numerical model, the
initial experiment has just two runs: all variables set to the low levels .x.1// and
all variables set to the high levels .x.2//. If the output Y .2/ > Y .1/, then the group
is split, with variables x1; : : : ; xd1 placed in group 1 and xd1C1; : : : ; xd placed in
group 2. At the next stage, a single further run x.3/ is made which has all group 1
variables set to their high levels and all group 2 variables set low. If Y .3/ > Y .1/,
then group 1 is split further, and group 2 is split if Y .2/ > Y .3/. These comparisons
can be replaced by Y .3/ � Y .1/ > ı and Y .2/ � Y .3/ > ı, where ı is an elicited
threshold. This procedure of performing one new run and assessing the split of each
subsequent group continues until singleton groups, containing variables deemed to
be active, have been identified. Finally, these individual variables are investigated.
If the output variable is stochastic, the replications of each run are made, and a
two-sample t -test can be used to decide whether or not to split a group.

Typically, if d D 2k for some integer k > 0, then at each split, half the variables
are assigned to one of the groups, and the other half are assigned to the second group.
Otherwise, use of unequal group sizes can increase the efficiency (in terms of overall
experiment size) of sequential bifurcation when there is prior knowledge of effect
sizes. Then, at each split, the first new group should have size equal to the largest
possible power of 2. For example, if the group to be split contains m variables, then
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the first new group should contain 2l variables such that 2l < m. The remaining
m � 2l variables are assigned to the second group. If variables have been ordered
by an a priori assessment of increasing importance, the most important variables
will be in the second, smaller group, and hence more variables can be ruled out as
unimportant more quickly.

The importance of two-variable interactions may be investigated by using the
output from the following runs to assess each split. The first is run x used in the
standard sequential bifurcation method; the second is the mirror image of x in which
each variable is set low that is set high in x and vice versa. This foldover structure
ensures that any two-variable interactions will not bias estimators of grouped
main effects at each stage. This alternative design also permits standard sequential
bifurcation to be performed and, if the variables deemed active differ from those
found via the foldover, then the presence of active interactions is indicated. Again,
successful identification of the active variables relies on the principle of strong effect
heredity.

A variety of adaptations of sequential bifurcation have been proposed, including
methods of controlling type I and type II error rates [106, 107] and a procedure to
identify dispersion effects in robust parameter design [3]. For further details, see
[55, ch. 4].

3.3 Iterated Fractional Factorial Designs

These designs [2] also group variables in a sequence of applications of the
same fractional factorial design. Unlike factorial group screening and sequential
bifurcation, the variables are assigned at random to the groups at each stage.
Individual variables are identified as active if they are in the intersection of those
groups having important main effects at each stage.

Suppose there are g D 2l groups, for integer l > 0. The initial design has
2g runs obtained as a foldover of a g � g Hadamard matrix; for details, see [23].
This construction gives a design in which main effects are not aliased with two-
variable interactions. The d � g variables are assigned at random to the groups,
and each grouped variable is then assigned at random to a column of the design.
The experiment is performed and analyzed as a stage 1 group screening design.
Subsequent stages repeat this procedure, using the same design but with different,
independent assignments of variables to groups and groups to columns. Individual
variables which are common to groups of variables found to be active across several
stages of experimentation are deemed to be active. Estimates of the main effects
using data from all the stages can also be constructed.

There are two further differences from the other grouping methods discussed
in this section. First, for a proportion of the stages, the variables are set to a mid-
level value (0), rather than high (C1) or low (�1). These runs allow an estimate
of curvature to be made and some screening of quadratic effects to be undertaken.
Second, to mitigate cancellation of main effects, the coding of the high and low
levels may be swapped at random, that is, the sign of the main effect reversed.
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The use of iterated fractional factorial designs requires a larger total number
of runs than other group screening methods, as a sequence of factorial screening
designs is implemented. However, the method has been suggested for use when
there are many variables (thousands) arranged in a few large groups. Simulation
studies [95, 96] have indicated that it can be effective here, provided there are very
few active variables.

3.4 Two-Stage Group Screening for Gaussian Process Models

More recently, methodology for group screening in two stages of experimentation
using Gaussian process modeling to identify the active variables has been developed
for numerical models [73]. At the first stage, an initial experiment that employs an
orthogonal space-filling design (see the next section) is used to identify variables to
be grouped together. Examples are variables that are inert or those having a similar
effect on the output, such as having a common sign and a similarly-sized linear or
quadratic effect. A sensitivity analysis on the grouped variables is then performed
using a Gaussian process model, built from the first-stage data. Groups of variables
identified as active in this analysis are investigated in a second-stage experiment in
which the variables found to be unimportant are kept constant. The second-stage
data are then combined with the first-stage data and a further sensitivity analysis
performed to make a final selection of the active variables. An important advantage
of this method is the reduced computational cost of performing a sensitivity study
on the grouped variables at the first stage.

4 Random Sampling Plans and Space Filling

4.1 Latin Hypercube Sampling

The most common experimental design used to study deterministic numerical
models is the Latin hypercube sample (LHS) [70]. These designs address the
difficult problem of space filling in high dimensions, that is, when there are many
controllable variables. Even when adequate space filling in d dimensions with n
points may be impossible, an LHS design offers n points that have good one-
dimensional space-filling properties for a chosen distribution, usually a uniform
distribution. Thus, use of an LHS at least implicitly invokes the principle of factor
sparsity and hence is potentially suited for use in screening experiments.

Construction of a standard d -dimensional LHS is straightforward: generate d
random permutations of the integers 1; : : : ; n and arrange them as an n � d matrix
D (one permutation forming each column); transform each element of D to obtain a
sample from a given distribution F .�/, that is, define the coordinates of the design

points as x.i/j D F �1
n
.d

.i/
j � 1/=.n � 1/

o
, where d.i/j is the ij th element of D

(i D 1; : : : ; nI j D 1; : : : ; d ). Typically, a (small) random perturbation is added to
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Fig. 33.1 Latin hypercube samples with n D 9 and d D 2: (a) random LHS, (b) random LHS
generated from an orthogonal array, (c) maximin LHS

each d.i/j or some equivalent operation performed, prior to transformation to x.i/j .
An LHS design generated by this method is shown in Fig. 33.1a.

There may be great variation in the overall space-filling properties of LHS
designs. For example, the LHS design in Fig. 33.1a clearly has poor two-
dimensional space-filling properties. Hence, a variety of extensions to Latin
hypercube sampling have been proposed. Most prevalent are orthogonal array-
based and maximin Latin hypercube sampling.

To generate an orthogonal array-based LHS [81, 102], the matrix D is formed
from an orthogonal array. Hence, the columns of D are no longer independent
permutations of 1; : : : ; d . For simplicity, assume O is a symmetric OA(n, sd , t )
with symbols 1; : : : ; s and t � 2. The j th row of D is formed by mapping the
n=s occurrences of each symbol in the j th column of O to a random permutation,
˛, of n=s new symbols, i.e., 1 ! ˛.1; : : : ; n=s/, 2 ! ˛.n=s C 1; : : : ; 2n=s/,
. . . , s ! ˛..s � 1/n=s C 1; : : : ; n/, where ˛.1; : : : ; a/ is a permutation of the
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integers 1; : : : ; a. Figure 33.1b shows an orthogonal array-based LHS, constructed
from an OA(9, 32, 2). Notice the improved two-dimensional space filling compared
with the randomly generated LHS. The two-dimensional projection properties of
more general space-filling designs have also been considered by other authors [29],
especially for uniform designs minimizing specific L2-discrepancies [38].

In addition to the orthogonal array-based LHS, there has been a variety of work
on generating space-filling designs that directly minimize the correlation between
columns of Xn [47], including algorithmic [103] and analytic [117] construction
methods. Such designs have good two-dimensional space-filling properties and
also provide near-independent estimators of the ˇi (i D 1; : : : ; d ) in Eq. (33.2),
a desirable property for screening.

A maximin LHS [76] achieves a wide spread of design points across the design
region by maximizing the minimum distance between pairs of design points within
the class of LHS designs with n points and d variables. The Euclidean distance
between two points x D .x1; : : : ; xd /

T and x0 D .x0
1; : : : ; x

0
d /

T is given by

dist.x; x0/ D

8<
:

dX
jD1

.xj � x0
j /
2

9=
;

1
2

: (33.14)

Rather than maximizing directly the minimum of (33.14), most authors [6, 76] find
designs by minimization of

�.Xn/ D

8
<
:

X
1�i<j�n

h
dist.xni ; x

n
j /

i�q

9
=
;

1=q

; (33.15)

where, for q ! 1, minimization of (33.15) is equivalent to maximizing the
minimum of (33.14) across all pairs of design points; see also [85]. Figure 33.1c
shows a maximin LHS, found by this method with q D 15. This design displays
better two-dimensional space filling than the random LHS and a more even
distribution of the design points than the orthogonal array-based LHS.

Maximin LHS can be found using the R packages DiceDesign [40] and
SLHD [5]. More general classes of distance-based space-filling designs, without
the projection properties of the Latin hypercubes, can also be found [see 13, 50].
Studies of the numerical efficiencies of optimization algorithms for LHS designs
are available [29, 49].

Construction of LHS designs is an active area of research, and many further
extensions to the basic methods have been suggested. Recently, maximum projec-
tion space-filling designs have been found [54] that minimize

 .Xn/ D

8<
:
1�
n
2

�
X

1�i<j�n

1Qd
lD1.x

.l/
i � x

.l/
j /

2

9=
; : (33.16)
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Such a design promotes good space-filling properties, as measured by (33.15), in
all projections of the design into subspaces of variables. Objective function (33.16)
arises from the use of a weighted Euclidean distance; see also [13].

Another important recent development is sliced LHS designs [6, 88, 89], where
the design can be partitioned into sets of runs or slices, each of which is an
orthogonal or maximin LHS. The overall design, composed of the runs from all
the slices, is also an LHS. Such designs may be used to study multiple numerical
models having the same inputs where one slice is used to investigate each model,
for example, to compare results from different model implementations. They are
also useful for experiments on quantitative and qualitative variables when each slice
is combined with one combination of levels of the qualitative variables. This latter
application is the most important for screening where the resulting data may be
used to estimate a surrogate linear model with dummy variables or a GP model with
an appropriate correlation structure [90]. Supersaturated LHS designs, for d � n,
have also been developed [21]. See Maximin sliced Latin hypercube designs, with
application to cross validating prediction error for more on space-filling and Latin
hypercube designs.

4.2 Sampling Plans for Estimating Elementary Effects
(Morris’ Method)

As an alternative to estimation of a surrogate model, Morris [74] suggested a model-
free approach that uses the elementary effect (33.8) to measure the sensitivity of the
response Y .x/ to a change in the i th variable at point x. Each EEi .x/may be exactly
or approximately (a) zero for all x, implying a negligible influence of the i th variable
on Y .x/; (b) a nonzero constant for all x, implying a linear, additive effect; (c) a
nonconstant function of xi , implying nonlinearity; or (d) a nonconstant function of
xj for j ¤ i , implying the presence of at least one interaction involving xi .

In practice, active variables are usually selected using data from a relatively small
experiment, and therefore it is not possible to reconstruct EEi .x/ as a continuous
function of x. The use of r “trajectory vectors”, x1; : : : ; xr , enables the following
sensitivity indices to be defined for i D 1; : : : ; d :

	i D
1

r

rX
jD1

EEi .xj / (33.17)

and

�i D

vuut
rX

jD1

�
EEi .xj / � 	i

�2
r � 1

: (33.18)
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A large value of the mean 	i suggests the i th input variable is active. Nonlinear
and interaction effects are indicated by large values of �i . Plots of the sensitivity
indices may be used to decide which variables are active and, among these variables,
which have complex (nonadditive and nonlinear) effects.

In addition to (33.17) and (33.18), an additional measure [22] of the individual
effect of the i th variable has been proposed that overcomes the possible cancellation
of elementary effects in (33.17) due to non-monotonic variable effects, namely,

	?i D
1

r

rX
jD1

jEEi .xj /j; (33.19)

where j � j denotes the absolute value. Large values of both 	i and 	?i suggest that
the i th variable is active and has a linear effect on Y .x/; large values of 	?i and
small values of 	i indicate cancellation in (33.17) and a nonlinear effect for the i th
variable.

Four examples of the types of effects which use of (33.17), (33.18) and (33.19)
seeks to identify are shown in Fig. 33.2. These are linear, nonlinear, and interaction
effects corresponding to nonzero values of (33.17) and (33.19) and both zero and
nonzero values of (33.18). It is not possible to use these statistics to distinguish
between nonlinear and interaction effects; see Fig. 33.2b, c.

The future development of a surrogate model can be simplified by separation
of the active variables into two vectors, xS1 and xS2 , where the variables in xS1
have linear effects and the variables in xS2 have nonlinear effects or are involved in
interactions [12]. For example, model (33.1) might be fitted in which h.xS1/ consists
of linear functions and ".xS2/ is modeled via a Gaussian process with correlation
structure dependent only on variables in xS2 .

In the elementary effect literature, the design region is assumed to be X D

Œ0; 1�d , after any necessary scaling, and is usually approximated by a d -dimensional
grid, XG , having f equally spaced values, 0; 1=.f � 1/; : : : ; 1, for each input
variable. The design of a screening experiment to allow the computation of the
sample moments (33.17), (33.18) and (33.19) has three components: the trajectory
vectors x1; : : : ; xr , the m-run sub-design used to calculate EEi .xj / (i D 1; : : : ; d )
for each xj (j D 1; : : : ; r), and stepsize �. Choices for these components are now
discussed.

1. Morris [74] chose x1; : : : ; xr at random from XG , subject to the constraint that
xj C�eid 2 XG for i D 1; : : : ; d I j D 1; : : : ; r . Alternative suggestions include
choosing the trajectory vectors as the r points of a space-filling design [22] found,
for example, by minimizing (33.15). Larger values of r result in (33.17), (33.18)
and (33.19) being more precise estimators of the corresponding moments of the
elementary effect distribution. Morris used r D 3 or 4; more recently, other
authors [22] have discussed the use of larger values (r D 10–50).

2. An OFAAT design with m D d C 1 runs may be used to calcu-
late EE1.xj /; : : : ; EEd .xj / for j D 1; : : : ; r . The design matrix is
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Fig. 33.2 Illustrative examples of effects for an active variable xi with values of 	i , 	?i , and �i . In
plots (c) and (d), the plotting symbols correspond to the ten levels of a second variable. (a) Linear
effect: 	i > 0, 	?i > 0; �i D 0. (b) Nonlinear effect: 	?i > 0; �i > 0. (c) Interaction: �i > 0.
(d) Nonlinear effect and interaction: 	?i > 0, �i > 0

Xj D 1dC1xj C �B, where 1m is a column m-vector with all entries equal
to 1 and B D

PdC1
lD2

Pl�1
kD1 el.dC1/eT

kd . That is, B is the .d C 1/ � d matrix

B D

0
BBBBB@

0 0 0 � � � 0

1 0 0 � � � 0

1 1 0 � � � 0
:::
:::

:::

1 1 1 � � � 1

1
CCCCCA
:
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Designs are generated by swapping 0’s and 1’s at random within each column
of B and randomizing the column order. The overall design Xn D .XT

1 ; : : : ;X
T
r /

T

then has n D .d C 1/r runs. It can be shown that this choice of B, combined
with the randomization scheme, minimizes the variability in the number of times
in Xn that each variable takes each of the f possible values [74].

Such OFAAT designs have the disadvantage of poor projectivity onto subsets
of (active) variables, compared with, for example, LHS designs. Projection of
a d -dimensional OFAAT design into d � 1 dimensions reduces the number of
distinct points from d C 1 to d . This is a particular issue when the projection
of the screening design onto the active variables is used to estimate a detailed
surrogate model. Better projection properties may be obtained by replacing an
OFAAT design by a rotated simplex [86] at the cost of less precision in the
estimators of the elementary effects.

3. The choice of the “stepsize” � in (33.8) is determined by the choice of design
region XG . Recommended values are f D 2g for some integer g > 0 and
� D f =2.f � 1/. This choice ensures that all f d=2 elementary effects are
equally likely to be selected for each variable when the trajectory vectors x are
selected at random from XG .

Further extensions of the elementary effect methodology include the application
to group screening for numerical models with hundreds or thousands of input
variables through the study of 	? (33.19) [22], and a sequential experimentation
strategy to reduce the number of runs of the numerical model required [12]. This
latter approach performs r OFAAT experiments, one for each trajectory vector,
in turn. For the j th experiment, elementary effects are calculated only for those
variables that have not already been identified as having a nonlinear or interaction
effect. That is, if �i > �0, for some threshold �0, when �i is calculated from r1 < r

trajectory vectors, the i th elementary effect is no longer calculated for xr1C1; : : : ; xr .
The threshold �0 can be elicited directly from subject experts or by using prior
knowledge about departures from linearity for the effect of each variable [12]. An
obvious generalization of the elementary effect method is to compute sensitivity
indices directly from the (averaged local) derivatives (see �Chap. 33, “Design of
Experiments for Screening”).

Methodology for the design and analysis of screening experiments using elemen-
tary effects is available in the R package sensitivity [87].

5 Model Selection Methods

The selection and estimation of a surrogate model (33.1) from an application of a
design discussed in this paper generally requires advanced statistical methods. An
exception is a regular fractional factorial design. For these designs, standard linear
modeling methods can be used provided that only one effect from each alias string is
included in the model and it is recognized that Ǒ may be biased. A brief description

http://dx.doi.org/10.1007/978-3-319-12385-1_33
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is now given of variable selection methods for (a) linear models with nonregular and
supersaturated designs and (b) Gaussian process models.

5.1 Variable Selection for Nonregular and Supersaturated
Designs

For designs with complex partial aliasing such as supersaturated and nonregular
fractional factorial designs, a wide range of model selection methods have been
proposed. An early suggestion was forward stepwise selection [72], but this was
shown to have low sensitivity in many situations [1, 67]. More recently, evidence
has been provided for the effectiveness of shrinkage regression for the selection of
active effects using data from these more complex designs [34, 67, 83], particularly
use of the Dantzig selector [24]. For this method, estimators Ǒ of the parameters in
model (33.1) are chosen to satisfy

min
Ǒ 2Rp

pX
uD1

j Ǒ
uj subject to jjHT.Yn � H Ǒ /jj1 � s; (33.20)

with s a tuning constant and jjajj1 D max jai j, aT D .a1; : : : ; ap/. This equation
balances the desire for a parsimonious model with the need for models that
adequately describe the data. The value of s can be chosen via an information
criterion [20] (e.g., AIC, AICc, BIC). The solution to (33.20) may be obtained
via linear programming; computationally efficient algorithms exist for calculating
coefficient paths for varying s [48].

The Dantzig selector is applied to choose a subset of potentially active variables,
and then standard least squares is used to fit a reduced linear model. The terms
in this model whose coefficient estimates exceeded a threshold t , elicited from
subject experts, are declared active. This procedure is known as the Gauss-Dantzig
selector [24].

Other methods for variable selection that have been effective for these designs
include Bayesian methods that use mixture prior distributions for the elements of ˇ

[26, 41] and the application of stochastic optimization algorithms [110].

5.2 Variable Selection for Gaussian Process Models

Screening for a Gaussian process model (33.1), with constant mean (h.x/ D 1)
and ".x/; ".x/0 having correlation (33.7), may be performed by deciding which �i
in (33.7) are “large” using data obtained from an LHS or other space-filling design.
Two approaches to this problem are outlined below: stepwise Gaussian process
variable selection (SGPVS) [109] and reference distribution variable selection
(RDVS) [63].

In the first method, screening is via stepwise selection of �i , ˛i in (33.7),
analogous to forward stepwise selection in linear regression models. The SGPVS
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algorithm identifies those variables that differ from the majority in their impact on
the response in the following steps:

(i) Find the maximized log-likelihood for model (33.1) subject to �i D � and
˛i D ˛ for all i D 1; : : : ; d ; denote this by l0.

(ii) Set E D f1; : : : ; dg.
(iii) For each j 2 E , find the maximized log-likelihood subject to �k D � and

˛k D ˛ for all k 2 E n fj g; denote the maximized log-likelihood by lj .
(iv) Let j ? D arg max

j2E
lj . If lj ? � l0 > c, set E D E n fj ?g, l0 D lj ? and go to

step (iii). Otherwise, stop.

In step (iv), the value c 	 6 (the 5% critical value for a X2 distribution) has been
suggested [109].

The algorithm starts by assuming an isotropic correlation function, and, at each
iteration, at most one variable is allocated individual correlation parameters. The
initial model contains only four parameters and the largest model considered has
4d C 2 parameters. However, factor sparsity suggests that the algorithm usually
terminates before models of this size are considered. Hence, smaller experiments
can be used than are normally employed for GP regression in d variables (e.g.,
d D 20 and n D 40 or 50 [109]). This approach essentially adds one variable at a
time to the model. Hence, it has, potentially, similar issues as stepwise regression for
linear models; in particular, the space of possible GP models is not very thoroughly
explored.

The second method, RDVS, is a fully Bayesian approach to the GP variable selec-
tion problem. A Bayesian treatment of model (33.1) with correlation function (33.7)
requires numerical methods, such as Markov Chain Monte Carlo (MCMC), to
obtain an approximate joint posterior distribution of �1; : : : ; �d (in RDVS, ˛i D 2

for all i ). Conjugate prior distributions can be used for ˇ0 and �2 to reduce the
computational complexity of this approximation. In RVDS, a prior distribution,
formed as a mixture of a standard uniform distribution on Œ0; 1� and a point mass
at 1, is assigned to 
i D exp .�0:25�i /. This reparameterization of �i aids the
implementation of MCMC algorithms and provides an intuitive interpretation: small
0 < 
i � 1 corresponds to an active variable with the response changing rapidly
with respect to the i th variable.

To screen variables using RVDS, the design matrix Xn for the experiment is
augmented by a .d C 1/th column corresponding to an inert variable (having no
substantive effect on the response) whose values are set at random. The posterior
median for the correlation parameter, �dC1, of the inert variable is computed for
b different randomly generated design matrices, formed by sampling values for the
inert variable, to obtain an empirical reference distribution for the median �dC1. The
percentiles of this reference distribution can be used to assess the importance of the
“real” variables via the size of the corresponding correlation parameters.

For methods that also incorporate variable selection into the Gaussian process
mean function, i.e., incorporating the choice of functions in h.x/, see [68, 80].
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6 Examples and Comparisons

In this section, six combinations of the design and modeling strategies discussed
in this paper are demonstrated and compared for variable screening using two test
functions from the literature having d D 20 variables and X D Œ�1; 1�d . The
functions differ in the number of active variables and the strength of influence of
these variables on the output.

Example 1. A function used to demonstrate stepwise Gaussian process variable
selection [109]:

Y .x/ D
5w12
1C w1

C 5.w4 � w20/
2 C w5 C 40w319 � 5w19

C 0:05w2 C 0:08w3 � 0:03w6 C 0:03w7 � 0:09w9 � 0:01w10

� 0:07w11 C 0:25w213 � 0:04w14 C 0:06w15 � 0:01w17 � 0:03w18;
(33.21)

where wi D 0:5xi (i D 1; : : : ; 20). There are six active variables, x1, x4, x5, x12,
x19, and x20.

Example 2. A function used to demonstrate the elementary effect method [74]:

Y .x/ D ˇ0 C

20X
jD1

ˇj vj C

20X
1�j<k

ˇjkvj vk C

20X
1�j<k<l

ˇjklvj vkvl

C
X

1�j<k<l<u

ˇjkluvj vkvlvu; (33.22)

where vi D xi for i ¤ 3; 5; 7 and vi D 11.xi C 1/=.5xi C 6/ � 1 otherwise;
ˇj D 20 (j D 1; : : : ; 10), ˇjk D �15 (j; k D 1; : : : ; 6), ˇjkl D �10

(j; k; l D 1; : : : ; 5), and ˇjklu D 5 (j; k; l; u D 1; : : : ; 4). The remaining ˇj and ˇjk
values are independently generated from a N(0,1) distribution, and these are used
in all the analyses; all other coefficients are set to 0. There are ten active variables,
x1; : : : ; x10.

There are some important differences between these two examples: func-
tion (33.21) has a proportion of active variables (0.3) in line with factor sparsity,
but the influence of many of these active variables on the response is only small;
function (33.22) is not effect sparse (with 50% of the variables being active), but
the active variables have much stronger influence on the response. This second
function also contains many more interactions. Thus, the examples present different
screening challenges. For these two deterministic functions, a single data set was
generated for each design employed.
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The screening strategies employ experiment sizes chosen to allow comparison of
the different methods. They fall into three classes:

1. Methods using Gaussian processes and space-filling designs:
(a) Stepwise Gaussian process variable selection (SGPVS)
(b) Reference distribution variable selection (RDVS)
These two variable selection methods use n D 16; 41; 84; 200 runs, where
n D 200 follows the standard guidelines of n D 10d runs for estimating a
Gaussian process model [66]. For each value of n, two designs are found: a
maximin Latin hypercube sampling design and a maximum projection space-
filling design. These designs were generated from the R packages SLHD [5] and
MaxPro [7] using simulated annealing and quasi-Newton algorithms. For both
methods, ˛i D 2 in (33.7) for all i D 1; : : : ; d ; that is, for SGPVS, stepwise
selection is performed for �i only.

2. One-factor-at-a-time methods:
(a) Elementary effect (EE) method
(b) Systematic fractional replicate designs (SFRD)
The elementary effects were calculated using the R package sensitivity
[87], with each variable taking f D 4 levels, � D 2=3 and r D 2; 4; 10

randomly generated trajectory vectors x1; : : : ; xr , giving design sizes of n D

42; 84; 210, respectively. An n D 42-run SFRD was used to calculate the
sensitivity indices S.i/, Eq. (33.13), for i D 1; : : : ; 20.

3. Linear model methods:
(a) Supersaturated design (SSD)
(b) Definitive screening design (DSD)

The designs used are an SSD with n D 16 runs and a DSD with n D 41 runs.
For each design, variable selection is performed using the Dantzig selector as
implemented in the R package flare [60] with shrinkage parameter s chosen using
AICc. Note that these designs are tailored to screening in linear models and hence
may not perform well when the output is inadequately described by a linear model.

Tables 33.6 and 33.7 summarize the results for Examples 1 and 2, respectively,
and present the sensitivity (�s), type I error rate (�I), and false discovery rate
(�fdr) for the five methods. The summaries reported in these tables use automatic
selection of tuning parameters in each method; see below. More nuanced screening,
for example, using graphical methods, may produce different trade-offs between
sensitivity, type I error rate, and false discovery rate. In general, with the exception
of the EE method, results are better for Example 1, which obeys factor sparsity, than
for Example 2, which does not.

For the Gaussian process methods (SGPVS and RDVS), the assessments pre-
sented in Tables 33.6 and 33.7 are the better of the results obtained from the maximin
Latin hypercube sampling design and the maximum projection space-filling design.
In Example 1, for n D 16; 41; 84 the maximin LHS design gave the better
performance, while for n D 200 the maximum projection design was preferred.
In Example 2, the maximum projection design was preferred for n D 16; 200
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Table 33.6 Sensitivity (�s), type I error rate (�I), and false discovery rate (�fdr) for Example 1

�s �I �fdr �s �I �fdr �s �I �fdr �s �I �fdr

Gaussian processes and space-filling designs

n D 16 n D 41 n D 84 n D 200

SGPVS 0:33 0:07 0:33 1 0 0 1 0 0 0.67 (1)� 0 0

RVDS 0:17 0 0 0.33 0 0 1 0 0 1 0 0

One-factor-at-a-time designs n D 42 n D 84 n D 210

EE – – – 0.5 0 0 0:83 0 0 0.83 0 0

SFRD – – – 0.83a (1)b 0 0 – – – – – –

Nonregular fractional factorial designs and linear models

n D 16 n D 41

SSD 0:50 0:14 0:40 – – – – – – – – –

DSD – – – 0.17 (0.33)c 0 0 – – – – – –
�Using (33.7) with ˛i D 1
aUsing a threshold of 5% on the sensitivity indices
bUsing a threshold of 1% on the sensitivity indices
cSensitivity for a main effects only model

Table 33.7 Sensitivity (�s), type I error rate (�I), and false discovery rate (�fdr) for Example 2

�s �I �fdr �s �I �fdr �s �I �fdr �s �I �fdr

Gaussian processes and space-filling designs

n D 16 n D 41 n D 84 n D 200

SGPVS 0 0 0 0.40 0 0 1 0 0 1 0 0

RVDS 0 0 0 0.30 0 0 0:80 0 0 1 0 0

One-factor-at-a-time designs n D 42 n D 84 n D 210

EE – – – 0.80 0 0 1 0 0 1 0 0

SFRD – – – 0.60a (1)b 0 0 – – – – – –

Nonregular fractional factorial designs and linear models

n D 16 n D 41

SSD 0:60 0:90 0:60 – – – – – – – – –

DSD – – – 0.10 (0)c 0 0 – – – – – –
aUsing a threshold of 5% on the sensitivity indices
bUsing a threshold of 1% on the sensitivity indices
cSensitivity for a main effects only model

and the maximin LHS design for n D 41; 84. For Example 1, note that, rather
counterintuitively, for correlation function (33.7) with ˛i D 2, SGPVS has lower
sensitivity for n D 200 than for n D 41 or n D 84. A working hypothesis to explain
this result is that larger designs, with points closer together in the design space,
can present challenges in estimating the parameters �1; : : : ; �d when the correlation
function is very smooth. Setting ˛i D 1, so that the correlation function is less
smooth, resulted in better screening for n D 200. The choice of design for Gaussian
process screening is an area for further research, as is the application to screening
of extensions of the Gaussian process model to high-dimensional inputs [37, 43].
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SGPVS and RDVS performed well when used with larger designs (n D 84; 200)
for both examples. For Example 1, the effectiveness of SGPVS has already been
demonstrated [109] for a Latin hypercube design with n D 50 runs. In the current
study, the method was also effective when n D 41. Neither RDVS or SGPVS
provided reliable screening when n D 16. Both methods found Example 2, with
a greater proportion of active variables, more challenging; effective screening was
only achieved when n D 84; 200.

For RVDS, recall that the empirical distribution of the posterior median of
the correlation parameter for the inert variable is used as a reference distribution
to assess the size of the correlation parameters for the actual variables. For the
assessments in Tables 33.6 and 33.7, a variable was declared active if the posterior
median of its correlation parameter exceeded the 90th percentile of the reference
distribution. A graphical analysis can provide a more detailed assessment of the
method. Figure 33.3 shows the reference distribution and the posterior median of
the correlation parameter for each of the 20 variables. Variables declared active have
their posterior medians in the right-hand tail of the reference distribution. For both
examples, the greater effectiveness of RDVS for larger n is clear. It is interesting to
note that choosing a smaller percentile as the threshold to declare a variable active,
for example, 80%, would have resulted in considerably higher type I error and false
discovery rates for n D 16; 41.

For the EE method, performance was assessed by visual inspection of plots of
	?i against �i (i D 1; : : : ; 20); see Fig. 33.4. A number of different samples of
trajectory vectors x1; : : : ; xr were used and similar results obtained for each. For
Example 1, where active variables have a smaller influence on the response, the EE
method struggled to identify all the active variables. Variable x19 was consistently
declared active, having a nonlinear effect. For larger n, variables x1, x4, x12, and
x20 were also identified. For Example 2, with larger active effects, the performance
was better. All active variables are identified when n D 84 (as also demonstrated
by Morris [74]) and when n D 200. Performance was also strong for n D 42, with
only x3 and x7 not identified.

For both examples, relatively effective screening was achieved through use of an
SFRD to estimate sensitivity indices (33.13). These estimated indices are displayed
in Fig. 33.5. Using a threshold of S.i/ > 0:05 leads to a small number of active
variables being missed (one in Example 1 and four in Example 2); the choice of the
lower threshold of S.i/ > 0:01 results in all active variables being identified in both
examples and no type I errors being made.

A study of the two true functions provides some understanding of the strong
performance of the SFRD. Both functions can be reasonably well approximated
(via Taylor series expansions) by linear models involving main effect and interaction
terms, with no cancellation of main effects with three-variable interactions or of two
variable with four-variable interactions. It is not difficult to modify the two functions
to achieve a substantial reduction in the effectiveness of the SFRD. In Example 1,
replacement of the term 5.w4 � w20/2 by 5w24 � 5w220 produces a function which
is highly nonlinear in w4 and w20. Screening for this function resulted in these two
variables being no longer declared active when the SFRD was used. For Example 2,
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Fig. 33.3 RDVS results: histograms of the empirical distribution of the posterior median of the
correlation parameter for 1000 randomly generated inert variables. The posterior medians of the
correlation parameters for the 20 variables are marked as vertical lines (unbroken, declared active;
broken, declared inactive). If there are fewer than five variables declared active, the variable names
are also given. (a) Example 1: n D 16. (b) Example 2: n D 16. (c) Example 1: n D 41.
(d) Example 2: n D 41. (e) Example 1: n D 84. (f) Example 2: n D 84. (g) Example 1: n D 200.
(h) Example 2: n D 200

if ˇj D 20 for j D 1; : : : ; 10, ˇjkl D 0 for j; k; l D 1; : : : ; 5, and ˇjkl D �5

for jkl D 6; : : : ; 10, then use of an SFRD failed to detect variables x7 � x10, even
when the threshold S.i/ > 0:01 was applied, due to cancellation of main effects
and three-variable interactions. The performance of the EE method for both these
modified functions was the same as that achieved for the original functions.
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Fig. 33.4 EE results: plots of 	?i (33.19) against �i (33.18) for Examples 1 and 2. Labels indicate
variables declared active by visual inspection. (a) Example 1: n D 42. (b) Example 2: n D 42. (c)
Example 1: n D 84. (d) Example 2: n D 84. (e) Example 1: n D 210. (f) Example 2: n D 210
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Fig. 33.5 Sensitivity indices (33.13) from the SFRD for Examples 1 and 2 for variables x1 � x20
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Fig. 33.6 Supersaturated (SSD) and definitive screening design (DSD) results: plots of penalty
parameter s against parameter estimates. In each plot, the variables and effects declared active are
labeled, with the exception of plot (b) where 15 variables are declared active. (a) Example 1: SSD
n D 16. (b) Example 2: SSD n D 16. (c) Example 1: DSD n D 41. (d) Example 2: DSD n D 41

The nonregular designs (SSD and DSD) provide an interesting contrast to the
other methods, all of which are tailored to, or have been suggested for, variable
screening for nonlinear numerical models. For the SSD, only main effects are
considered; for the DSD, the surrogate model can include main effects, two-variable
interactions, and quadratic terms. Figure 33.6 gives shrinkage plots for each of the
SSD and DSD which show the estimated model parameters against the shrinkage
parameter s in (33.20). As s ! 0, the shrinkage of the estimated parameters is
reduced; at s D 0, there would be no shrinkage which is not possible for designs
with n < p. These plots may be used to choose the active variables, namely, those
involved in at least one effect whose corresponding estimated model parameter is
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Fig. 33.7 Definitive screening design (DSD) results for main effects only: half-normal plots.
(a) Example 1: DSD n D 41 (main effects). (b) Example 2: DSD n D 41 (main effects)

nonzero for larger values of s. In each plot, the value of s chosen by AICc is marked
by a vertical line. Figure 33.6a, c shows shrinkage plots for Example 1 from which
the dominant active variables are easily identified, although a number of smaller
active variables are missed. For Example 2, Fig. 33.6b, d is much harder to interpret,
because they have a number of moderately large estimated parameters. This reflects
the larger number of active variables in Example 2. Clearly, the effectiveness of both
methods for this second example is limited.

To provide a further comparison between the SSD and DSD, data from the latter
design were also analyzed using a main effects only surrogate model (33.2). For
these models, the DSD is an orthogonal design and hence standard linear model
analyses are appropriate. To summarize the results, Fig. 33.7 gives half-normal
plots [30] for each example. Here, the ordered absolute values of the estimated
main effects are plotted against theoretical half-normal quantiles. Variables whose
estimated main effects stand away from a straight line are declared active, such as
x12 and x19 in Example 1; see Fig. 33.7a. No variables are identified as active for
Example 2. These results agree with t-tests on the estimated model parameters.

7 Conclusions

Screening with numerical models is a challenging problem, due to the large number
of input variables that are typically under investigation and the complex nonlinear
relationships between these variables and the model outputs.

The results from the study in the previous section highlight these challenges
and the dangers of attempting screening using experiments that are too small or
are predicated on linear model methodology. For this study of d D 20 variables
and six screening methods, a sample size of at least n D 40 was required for
effective screening, with more runs needed when factor sparsity did not hold. The
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EE method was the most effective and robust method for screening, with the highly
resource-efficient SSD and DSD being the least effective here. Of course, these two
nonregular designs were not developed for the purpose of screening variables in
nonlinear functions; in contrast to the SFRD, neither explicitly incorporates higher-
order interactions, and the SSD suffers from partial aliasing between main effects.
The two Gaussian process methods, RDVS and SSD, required a greater number of
runs to provide sensitive screening.

Methods that use Gaussian process models have the advantage of also providing
predictive models for the response. Building such models with the EE or SFRD
methods is likely to require additional experimentation. In common with screening
via physical experiments, a sequential screening strategy, where possible, is likely to
be more effective. Here, a small initial experiment could be run, for example, using
the EE method, with more targeted follow-up experimentation and model building
focused on a subset of variables using a Gaussian process modeling approach.
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